Sample records for noise suppression algorithm

  1. Noise suppression methods for robust speech processing

    NASA Astrophysics Data System (ADS)

    Boll, S. F.; Ravindra, H.; Randall, G.; Armantrout, R.; Power, R.

    1980-05-01

    Robust speech processing in practical operating environments requires effective environmental and processor noise suppression. This report describes the technical findings and accomplishments during this reporting period for the research program funded to develop real time, compressed speech analysis synthesis algorithms whose performance in invariant under signal contamination. Fulfillment of this requirement is necessary to insure reliable secure compressed speech transmission within realistic military command and control environments. Overall contributions resulting from this research program include the understanding of how environmental noise degrades narrow band, coded speech, development of appropriate real time noise suppression algorithms, and development of speech parameter identification methods that consider signal contamination as a fundamental element in the estimation process. This report describes the current research and results in the areas of noise suppression using the dual input adaptive noise cancellation using the short time Fourier transform algorithms, articulation rate change techniques, and a description of an experiment which demonstrated that the spectral subtraction noise suppression algorithm can improve the intelligibility of 2400 bps, LPC 10 coded, helicopter speech by 10.6 point.

  2. Edge enhancement and noise suppression for infrared image based on feature analysis

    NASA Astrophysics Data System (ADS)

    Jiang, Meng

    2018-06-01

    Infrared images are often suffering from background noise, blurred edges, few details and low signal-to-noise ratios. To improve infrared image quality, it is essential to suppress noise and enhance edges simultaneously. To realize it in this paper, we propose a novel algorithm based on feature analysis in shearlet domain. Firstly, as one of multi-scale geometric analysis (MGA), we introduce the theory and superiority of shearlet transform. Secondly, after analyzing the defects of traditional thresholding technique to suppress noise, we propose a novel feature extraction distinguishing image structures from noise well and use it to improve the traditional thresholding technique. Thirdly, with computing the correlations between neighboring shearlet coefficients, the feature attribute maps identifying the weak detail and strong edges are completed to improve the generalized unsharped masking (GUM). At last, experiment results with infrared images captured in different scenes demonstrate that the proposed algorithm suppresses noise efficiently and enhances image edges adaptively.

  3. Real-time spectrum estimation–based dual-channel speech-enhancement algorithm for cochlear implant

    PubMed Central

    2012-01-01

    Background Improvement of the cochlear implant (CI) front-end signal acquisition is needed to increase speech recognition in noisy environments. To suppress the directional noise, we introduce a speech-enhancement algorithm based on microphone array beamforming and spectral estimation. The experimental results indicate that this method is robust to directional mobile noise and strongly enhances the desired speech, thereby improving the performance of CI devices in a noisy environment. Methods The spectrum estimation and the array beamforming methods were combined to suppress the ambient noise. The directivity coefficient was estimated in the noise-only intervals, and was updated to fit for the mobile noise. Results The proposed algorithm was realized in the CI speech strategy. For actual parameters, we use Maxflat filter to obtain fractional sampling points and cepstrum method to differentiate the desired speech frame and the noise frame. The broadband adjustment coefficients were added to compensate the energy loss in the low frequency band. Discussions The approximation of the directivity coefficient is tested and the errors are discussed. We also analyze the algorithm constraint for noise estimation and distortion in CI processing. The performance of the proposed algorithm is analyzed and further be compared with other prevalent methods. Conclusions The hardware platform was constructed for the experiments. The speech-enhancement results showed that our algorithm can suppresses the non-stationary noise with high SNR. Excellent performance of the proposed algorithm was obtained in the speech enhancement experiments and mobile testing. And signal distortion results indicate that this algorithm is robust with high SNR improvement and low speech distortion. PMID:23006896

  4. Environment-specific noise suppression for improved speech intelligibility by cochlear implant users.

    PubMed

    Hu, Yi; Loizou, Philipos C

    2010-06-01

    Attempts to develop noise-suppression algorithms that can significantly improve speech intelligibility in noise by cochlear implant (CI) users have met with limited success. This is partly because algorithms were sought that would work equally well in all listening situations. Accomplishing this has been quite challenging given the variability in the temporal/spectral characteristics of real-world maskers. A different approach is taken in the present study focused on the development of environment-specific noise suppression algorithms. The proposed algorithm selects a subset of the envelope amplitudes for stimulation based on the signal-to-noise ratio (SNR) of each channel. Binary classifiers, trained using data collected from a particular noisy environment, are first used to classify the mixture envelopes of each channel as either target-dominated (SNR>or=0 dB) or masker-dominated (SNR<0 dB). Only target-dominated channels are subsequently selected for stimulation. Results with CI listeners indicated substantial improvements (by nearly 44 percentage points at 5 dB SNR) in intelligibility with the proposed algorithm when tested with sentences embedded in three real-world maskers. The present study demonstrated that the environment-specific approach to noise reduction has the potential to restore speech intelligibility in noise to a level near to that attained in quiet.

  5. Measurement of pattern roughness and local size variation using CD-SEM: current status

    NASA Astrophysics Data System (ADS)

    Fukuda, Hiroshi; Kawasaki, Takahiro; Kawada, Hiroki; Sakai, Kei; Kato, Takashi; Yamaguchi, Satoru; Ikota, Masami; Momonoi, Yoshinori

    2018-03-01

    Measurement of line edge roughness (LER) is discussed from four aspects: edge detection, PSD prediction, sampling strategy, and noise mitigation, and general guidelines and practical solutions for LER measurement today are introduced. Advanced edge detection algorithms such as wave-matching method are shown effective for robustly detecting edges from low SNR images, while conventional algorithm with weak filtering is still effective in suppressing SEM noise and aliasing. Advanced PSD prediction method such as multi-taper method is effective in suppressing sampling noise within a line edge to analyze, while number of lines is still required for suppressing line to line variation. Two types of SEM noise mitigation methods, "apparent noise floor" subtraction method and LER-noise decomposition using regression analysis are verified to successfully mitigate SEM noise from PSD curves. These results are extended to LCDU measurement to clarify the impact of SEM noise and sampling noise on LCDU.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, T; Dong, X; Petrongolo, M

    Purpose: Dual energy CT (DECT) imaging plays an important role in advanced imaging applications due to its material decomposition capability. Direct decomposition via matrix inversion suffers from significant degradation of image signal-to-noise ratios, which reduces clinical value. Existing de-noising algorithms achieve suboptimal performance since they suppress image noise either before or after the decomposition and do not fully explore the noise statistical properties of the decomposition process. We propose an iterative image-domain decomposition method for noise suppression in DECT, using the full variance-covariance matrix of the decomposed images. Methods: The proposed algorithm is formulated in the form of least-square estimationmore » with smoothness regularization. It includes the inverse of the estimated variance-covariance matrix of the decomposed images as the penalty weight in the least-square term. Performance is evaluated using an evaluation phantom (Catphan 600) and an anthropomorphic head phantom. Results are compared to those generated using direct matrix inversion with no noise suppression, a de-noising method applied on the decomposed images, and an existing algorithm with similar formulation but with an edge-preserving regularization term. Results: On the Catphan phantom, our method retains the same spatial resolution as the CT images before decomposition while reducing the noise standard deviation of decomposed images by over 98%. The other methods either degrade spatial resolution or achieve less low-contrast detectability. Also, our method yields lower electron density measurement error than direct matrix inversion and reduces error variation by over 97%. On the head phantom, it reduces the noise standard deviation of decomposed images by over 97% without blurring the sinus structures. Conclusion: We propose an iterative image-domain decomposition method for DECT. The method combines noise suppression and material decomposition into an iterative process and achieves both goals simultaneously. The proposed algorithm shows superior performance on noise suppression with high image spatial resolution and low-contrast detectability. This work is supported by a Varian MRA grant.« less

  7. Iterative image-domain decomposition for dual-energy CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, Tianye; Dong, Xue; Petrongolo, Michael

    2014-04-15

    Purpose: Dual energy CT (DECT) imaging plays an important role in advanced imaging applications due to its capability of material decomposition. Direct decomposition via matrix inversion suffers from significant degradation of image signal-to-noise ratios, which reduces clinical values of DECT. Existing denoising algorithms achieve suboptimal performance since they suppress image noise either before or after the decomposition and do not fully explore the noise statistical properties of the decomposition process. In this work, the authors propose an iterative image-domain decomposition method for noise suppression in DECT, using the full variance-covariance matrix of the decomposed images. Methods: The proposed algorithm ismore » formulated in the form of least-square estimation with smoothness regularization. Based on the design principles of a best linear unbiased estimator, the authors include the inverse of the estimated variance-covariance matrix of the decomposed images as the penalty weight in the least-square term. The regularization term enforces the image smoothness by calculating the square sum of neighboring pixel value differences. To retain the boundary sharpness of the decomposed images, the authors detect the edges in the CT images before decomposition. These edge pixels have small weights in the calculation of the regularization term. Distinct from the existing denoising algorithms applied on the images before or after decomposition, the method has an iterative process for noise suppression, with decomposition performed in each iteration. The authors implement the proposed algorithm using a standard conjugate gradient algorithm. The method performance is evaluated using an evaluation phantom (Catphan©600) and an anthropomorphic head phantom. The results are compared with those generated using direct matrix inversion with no noise suppression, a denoising method applied on the decomposed images, and an existing algorithm with similar formulation as the proposed method but with an edge-preserving regularization term. Results: On the Catphan phantom, the method maintains the same spatial resolution on the decomposed images as that of the CT images before decomposition (8 pairs/cm) while significantly reducing their noise standard deviation. Compared to that obtained by the direct matrix inversion, the noise standard deviation in the images decomposed by the proposed algorithm is reduced by over 98%. Without considering the noise correlation properties in the formulation, the denoising scheme degrades the spatial resolution to 6 pairs/cm for the same level of noise suppression. Compared to the edge-preserving algorithm, the method achieves better low-contrast detectability. A quantitative study is performed on the contrast-rod slice of Catphan phantom. The proposed method achieves lower electron density measurement error as compared to that by the direct matrix inversion, and significantly reduces the error variation by over 97%. On the head phantom, the method reduces the noise standard deviation of decomposed images by over 97% without blurring the sinus structures. Conclusions: The authors propose an iterative image-domain decomposition method for DECT. The method combines noise suppression and material decomposition into an iterative process and achieves both goals simultaneously. By exploring the full variance-covariance properties of the decomposed images and utilizing the edge predetection, the proposed algorithm shows superior performance on noise suppression with high image spatial resolution and low-contrast detectability.« less

  8. Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Xue; Niu, Tianye; Zhu, Lei, E-mail: leizhu@gatech.edu

    2014-05-15

    Purpose: Dual-energy CT (DECT) is being increasingly used for its capability of material decomposition and energy-selective imaging. A generic problem of DECT, however, is that the decomposition process is unstable in the sense that the relative magnitude of decomposed signals is reduced due to signal cancellation while the image noise is accumulating from the two CT images of independent scans. Direct image decomposition, therefore, leads to severe degradation of signal-to-noise ratio on the resultant images. Existing noise suppression techniques are typically implemented in DECT with the procedures of reconstruction and decomposition performed independently, which do not explore the statistical propertiesmore » of decomposed images during the reconstruction for noise reduction. In this work, the authors propose an iterative approach that combines the reconstruction and the signal decomposition procedures to minimize the DECT image noise without noticeable loss of resolution. Methods: The proposed algorithm is formulated as an optimization problem, which balances the data fidelity and total variation of decomposed images in one framework, and the decomposition step is carried out iteratively together with reconstruction. The noise in the CT images from the proposed algorithm becomes well correlated even though the noise of the raw projections is independent on the two CT scans. Due to this feature, the proposed algorithm avoids noise accumulation during the decomposition process. The authors evaluate the method performance on noise suppression and spatial resolution using phantom studies and compare the algorithm with conventional denoising approaches as well as combined iterative reconstruction methods with different forms of regularization. Results: On the Catphan©600 phantom, the proposed method outperforms the existing denoising methods on preserving spatial resolution at the same level of noise suppression, i.e., a reduction of noise standard deviation by one order of magnitude. This improvement is mainly attributed to the high noise correlation in the CT images reconstructed by the proposed algorithm. Iterative reconstruction using different regularization, including quadratic orq-generalized Gaussian Markov random field regularization, achieves similar noise suppression from high noise correlation. However, the proposed TV regularization obtains a better edge preserving performance. Studies of electron density measurement also show that our method reduces the average estimation error from 9.5% to 7.1%. On the anthropomorphic head phantom, the proposed method suppresses the noise standard deviation of the decomposed images by a factor of ∼14 without blurring the fine structures in the sinus area. Conclusions: The authors propose a practical method for DECT imaging reconstruction, which combines the image reconstruction and material decomposition into one optimization framework. Compared to the existing approaches, our method achieves a superior performance on DECT imaging with respect to decomposition accuracy, noise reduction, and spatial resolution.« less

  9. Wavelet-based edge correlation incorporated iterative reconstruction for undersampled MRI.

    PubMed

    Hu, Changwei; Qu, Xiaobo; Guo, Di; Bao, Lijun; Chen, Zhong

    2011-09-01

    Undersampling k-space is an effective way to decrease acquisition time for MRI. However, aliasing artifacts introduced by undersampling may blur the edges of magnetic resonance images, which often contain important information for clinical diagnosis. Moreover, k-space data is often contaminated by the noise signals of unknown intensity. To better preserve the edge features while suppressing the aliasing artifacts and noises, we present a new wavelet-based algorithm for undersampled MRI reconstruction. The algorithm solves the image reconstruction as a standard optimization problem including a ℓ(2) data fidelity term and ℓ(1) sparsity regularization term. Rather than manually setting the regularization parameter for the ℓ(1) term, which is directly related to the threshold, an automatic estimated threshold adaptive to noise intensity is introduced in our proposed algorithm. In addition, a prior matrix based on edge correlation in wavelet domain is incorporated into the regularization term. Compared with nonlinear conjugate gradient descent algorithm, iterative shrinkage/thresholding algorithm, fast iterative soft-thresholding algorithm and the iterative thresholding algorithm using exponentially decreasing threshold, the proposed algorithm yields reconstructions with better edge recovery and noise suppression. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Near-source noise suppression of AMT by compressive sensing and mathematical morphology filtering

    NASA Astrophysics Data System (ADS)

    Li, Guang; Xiao, Xiao; Tang, Jing-Tian; Li, Jin; Zhu, Hui-Jie; Zhou, Cong; Yan, Fa-Bao

    2017-12-01

    In deep mineral exploration, the acquisition of audio magnetotelluric (AMT) data is severely affected by ambient noise near the observation sites; This near-field noise restricts investigation depths. Mathematical morphological filtering (MMF) proved effective in suppressing large-scale strong and variably shaped noise, typically low-frequency noise, but can not deal with pulse noise of AMT data. We combine compressive sensing and MMF. First, we use MMF to suppress the large-scale strong ambient noise; second, we use the improved orthogonal match pursuit (IOMP) algorithm to remove the residual pulse noise. To remove the noise and protect the useful AMT signal, a redundant dictionary that matches with spikes and is insensitive to the useful signal is designed. Synthetic and field data from the Luzong field suggest that the proposed method suppresses the near-source noise and preserves the signal well; thus, better results are obtained that improve the output of either MMF or IOMP.

  11. Adaptive threshold shearlet transform for surface microseismic data denoising

    NASA Astrophysics Data System (ADS)

    Tang, Na; Zhao, Xian; Li, Yue; Zhu, Dan

    2018-06-01

    Random noise suppression plays an important role in microseismic data processing. The microseismic data is often corrupted by strong random noise, which would directly influence identification and location of microseismic events. Shearlet transform is a new multiscale transform, which can effectively process the low magnitude of microseismic data. In shearlet domain, due to different distributions of valid signals and random noise, shearlet coefficients can be shrunk by threshold. Therefore, threshold is vital in suppressing random noise. The conventional threshold denoising algorithms usually use the same threshold to process all coefficients, which causes noise suppression inefficiency or valid signals loss. In order to solve above problems, we propose the adaptive threshold shearlet transform (ATST) for surface microseismic data denoising. In the new algorithm, we calculate the fundamental threshold for each direction subband firstly. In each direction subband, the adjustment factor is obtained according to each subband coefficient and its neighboring coefficients, in order to adaptively regulate the fundamental threshold for different shearlet coefficients. Finally we apply the adaptive threshold to deal with different shearlet coefficients. The experimental denoising results of synthetic records and field data illustrate that the proposed method exhibits better performance in suppressing random noise and preserving valid signal than the conventional shearlet denoising method.

  12. Study on Underwater Image Denoising Algorithm Based on Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Jian, Sun; Wen, Wang

    2017-02-01

    This paper analyzes the application of MATLAB in underwater image processing, the transmission characteristics of the underwater laser light signal and the kinds of underwater noise has been described, the common noise suppression algorithm: Wiener filter, median filter, average filter algorithm is brought out. Then the advantages and disadvantages of each algorithm in image sharpness and edge protection areas have been compared. A hybrid filter algorithm based on wavelet transform has been proposed which can be used for Color Image Denoising. At last the PSNR and NMSE of each algorithm has been given out, which compares the ability to de-noising

  13. Optimization of view weighting in tilted-plane-based reconstruction algorithms to minimize helical artifacts in multi-slice helical CT

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang

    2003-05-01

    In multi-slice helical CT, the single-tilted-plane-based reconstruction algorithm has been proposed to combat helical and cone beam artifacts by tilting a reconstruction plane to fit a helical source trajectory optimally. Furthermore, to improve the noise characteristics or dose efficiency of the single-tilted-plane-based reconstruction algorithm, the multi-tilted-plane-based reconstruction algorithm has been proposed, in which the reconstruction plane deviates from the pose globally optimized due to an extra rotation along the 3rd axis. As a result, the capability of suppressing helical and cone beam artifacts in the multi-tilted-plane-based reconstruction algorithm is compromised. An optomized tilted-plane-based reconstruction algorithm is proposed in this paper, in which a matched view weighting strategy is proposed to optimize the capability of suppressing helical and cone beam artifacts and noise characteristics. A helical body phantom is employed to quantitatively evaluate the imaging performance of the matched view weighting approach by tabulating artifact index and noise characteristics, showing that the matched view weighting improves both the helical artifact suppression and noise characteristics or dose efficiency significantly in comparison to the case in which non-matched view weighting is applied. Finally, it is believed that the matched view weighting approach is of practical importance in the development of multi-slive helical CT, because it maintains the computational structure of fan beam filtered backprojection and demands no extra computational services.

  14. Performance Improvement of Raman Distributed Temperature System by Using Noise Suppression

    NASA Astrophysics Data System (ADS)

    Li, Jian; Li, Yunting; Zhang, Mingjiang; Liu, Yi; Zhang, Jianzhong; Yan, Baoqiang; Wang, Dong; Jin, Baoquan

    2018-06-01

    In Raman distributed temperature system, the key factor for performance improvement is noise suppression, which seriously affects the sensing distance and temperature accuracy. Therefore, we propose and experimentally demonstrate dynamic noise difference algorithm and wavelet transform modulus maximum (WTMM) to de-noising Raman anti-Stokes signal. Experimental results show that the sensing distance can increase from 3 km to 11.5 km and the temperature accuracy increases to 1.58 °C at the sensing distance of 10.4 km.

  15. A real-time MTFC algorithm of space remote-sensing camera based on FPGA

    NASA Astrophysics Data System (ADS)

    Zhao, Liting; Huang, Gang; Lin, Zhe

    2018-01-01

    A real-time MTFC algorithm of space remote-sensing camera based on FPGA was designed. The algorithm can provide real-time image processing to enhance image clarity when the remote-sensing camera running on-orbit. The image restoration algorithm adopted modular design. The MTF measurement calculation module on-orbit had the function of calculating the edge extension function, line extension function, ESF difference operation, normalization MTF and MTFC parameters. The MTFC image filtering and noise suppression had the function of filtering algorithm and effectively suppressing the noise. The algorithm used System Generator to design the image processing algorithms to simplify the design structure of system and the process redesign. The image gray gradient dot sharpness edge contrast and median-high frequency were enhanced. The image SNR after recovery reduced less than 1 dB compared to the original image. The image restoration system can be widely used in various fields.

  16. Wavelet tree structure based speckle noise removal for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yuan, Xin; Liu, Xuan; Liu, Yang

    2018-02-01

    We report a new speckle noise removal algorithm in optical coherence tomography (OCT). Though wavelet domain thresholding algorithms have demonstrated superior advantages in suppressing noise magnitude and preserving image sharpness in OCT, the wavelet tree structure has not been investigated in previous applications. In this work, we propose an adaptive wavelet thresholding algorithm via exploiting the tree structure in wavelet coefficients to remove the speckle noise in OCT images. The threshold for each wavelet band is adaptively selected following a special rule to retain the structure of the image across different wavelet layers. Our results demonstrate that the proposed algorithm outperforms conventional wavelet thresholding, with significant advantages in preserving image features.

  17. Multiple-source multiple-harmonic active vibration control of variable section cylindrical structures: A numerical study

    NASA Astrophysics Data System (ADS)

    Liu, Jinxin; Chen, Xuefeng; Gao, Jiawei; Zhang, Xingwu

    2016-12-01

    Air vehicles, space vehicles and underwater vehicles, the cabins of which can be viewed as variable section cylindrical structures, have multiple rotational vibration sources (e.g., engines, propellers, compressors and motors), making the spectrum of noise multiple-harmonic. The suppression of such noise has been a focus of interests in the field of active vibration control (AVC). In this paper, a multiple-source multiple-harmonic (MSMH) active vibration suppression algorithm with feed-forward structure is proposed based on reference amplitude rectification and conjugate gradient method (CGM). An AVC simulation scheme called finite element model in-loop simulation (FEMILS) is also proposed for rapid algorithm verification. Numerical studies of AVC are conducted on a variable section cylindrical structure based on the proposed MSMH algorithm and FEMILS scheme. It can be seen from the numerical studies that: (1) the proposed MSMH algorithm can individually suppress each component of the multiple-harmonic noise with an unified and improved convergence rate; (2) the FEMILS scheme is convenient and straightforward for multiple-source simulations with an acceptable loop time. Moreover, the simulations have similar procedure to real-life control and can be easily extended to physical model platform.

  18. Adaptive Noise Suppression Using Digital Signal Processing

    NASA Technical Reports Server (NTRS)

    Kozel, David; Nelson, Richard

    1996-01-01

    A signal to noise ratio dependent adaptive spectral subtraction algorithm is developed to eliminate noise from noise corrupted speech signals. The algorithm determines the signal to noise ratio and adjusts the spectral subtraction proportion appropriately. After spectra subtraction low amplitude signals are squelched. A single microphone is used to obtain both eh noise corrupted speech and the average noise estimate. This is done by determining if the frame of data being sampled is a voiced or unvoiced frame. During unvoice frames an estimate of the noise is obtained. A running average of the noise is used to approximate the expected value of the noise. Applications include the emergency egress vehicle and the crawler transporter.

  19. Speckle noise reduction in quantitative optical metrology techniques by application of the discrete wavelet transformation

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Pryputniewicz, Ryszard J.

    2002-06-01

    Effective suppression of speckle noise content in interferometric data images can help in improving accuracy and resolution of the results obtained with interferometric optical metrology techniques. In this paper, novel speckle noise reduction algorithms based on the discrete wavelet transformation are presented. The algorithms proceed by: (a) estimating the noise level contained in the interferograms of interest, (b) selecting wavelet families, (c) applying the wavelet transformation using the selected families, (d) wavelet thresholding, and (e) applying the inverse wavelet transformation, producing denoised interferograms. The algorithms are applied to the different stages of the processing procedures utilized for generation of quantitative speckle correlation interferometry data of fiber-optic based opto-electronic holography (FOBOEH) techniques, allowing identification of optimal processing conditions. It is shown that wavelet algorithms are effective for speckle noise reduction while preserving image features otherwise faded with other algorithms.

  20. A Trainable Hearing Aid Algorithm Reflecting Individual Preferences for Degree of Noise-Suppression, Input Sound Level, and Listening Situation.

    PubMed

    Yoon, Sung Hoon; Nam, Kyoung Won; Yook, Sunhyun; Cho, Baek Hwan; Jang, Dong Pyo; Hong, Sung Hwa; Kim, In Young

    2017-03-01

    In an effort to improve hearing aid users' satisfaction, recent studies on trainable hearing aids have attempted to implement one or two environmental factors into training. However, it would be more beneficial to train the device based on the owner's personal preferences in a more expanded environmental acoustic conditions. Our study aimed at developing a trainable hearing aid algorithm that can reflect the user's individual preferences in a more extensive environmental acoustic conditions (ambient sound level, listening situation, and degree of noise suppression) and evaluated the perceptual benefit of the proposed algorithm. Ten normal hearing subjects participated in this study. Each subjects trained the algorithm to their personal preference and the trained data was used to record test sounds in three different settings to be utilized to evaluate the perceptual benefit of the proposed algorithm by performing the Comparison Mean Opinion Score test. Statistical analysis revealed that of the 10 subjects, four showed significant differences in amplification constant settings between the noise-only and speech-in-noise situation ( P <0.05) and one subject also showed significant difference between the speech-only and speech-in-noise situation ( P <0.05). Additionally, every subject preferred different β settings for beamforming in all different input sound levels. The positive findings from this study suggested that the proposed algorithm has potential to improve hearing aid users' personal satisfaction under various ambient situations.

  1. Noise adaptive wavelet thresholding for speckle noise removal in optical coherence tomography.

    PubMed

    Zaki, Farzana; Wang, Yahui; Su, Hao; Yuan, Xin; Liu, Xuan

    2017-05-01

    Optical coherence tomography (OCT) is based on coherence detection of interferometric signals and hence inevitably suffers from speckle noise. To remove speckle noise in OCT images, wavelet domain thresholding has demonstrated significant advantages in suppressing noise magnitude while preserving image sharpness. However, speckle noise in OCT images has different characteristics in different spatial scales, which has not been considered in previous applications of wavelet domain thresholding. In this study, we demonstrate a noise adaptive wavelet thresholding (NAWT) algorithm that exploits the difference of noise characteristics in different wavelet sub-bands. The algorithm is simple, fast, effective and is closely related to the physical origin of speckle noise in OCT image. Our results demonstrate that NAWT outperforms conventional wavelet thresholding.

  2. Total variation optimization for imaging through turbid media with transmission matrix

    NASA Astrophysics Data System (ADS)

    Gong, Changmei; Shao, Xiaopeng; Wu, Tengfei; Liu, Jietao; Zhang, Jianqi

    2016-12-01

    With the transmission matrix (TM) of the whole optical system measured, the image of the object behind a turbid medium can be recovered from its speckle field by means of an image reconstruction algorithm. Instead of Tikhonov regularization algorithm (TRA), the total variation minimization by augmented Lagrangian and alternating direction algorithms (TVAL3) is introduced to recover object images. As a total variation (TV)-based approach, TVAL3 allows to effectively damp more noise and preserve more edges compared with TRA, thus providing more outstanding image quality. Different levels of detector noise and TM-measurement noise are successively added to analyze the antinoise performance of these two algorithms. Simulation results show that TVAL3 is able to recover more details and suppress more noise than TRA under different noise levels, thus providing much more excellent image quality. Furthermore, whether it be detector noise or TM-measurement noise, the reconstruction images obtained by TVAL3 at SNR=15 dB are far superior to those by TRA at SNR=50 dB.

  3. Image quality enhancement in low-light-level ghost imaging using modified compressive sensing method

    NASA Astrophysics Data System (ADS)

    Shi, Xiaohui; Huang, Xianwei; Nan, Suqin; Li, Hengxing; Bai, Yanfeng; Fu, Xiquan

    2018-04-01

    Detector noise has a significantly negative impact on ghost imaging at low light levels, especially for existing recovery algorithm. Based on the characteristics of the additive detector noise, a method named modified compressive sensing ghost imaging is proposed to reduce the background imposed by the randomly distributed detector noise at signal path. Experimental results show that, with an appropriate choice of threshold value, modified compressive sensing ghost imaging algorithm can dramatically enhance the contrast-to-noise ratio of the object reconstruction significantly compared with traditional ghost imaging and compressive sensing ghost imaging methods. The relationship between the contrast-to-noise ratio of the reconstruction image and the intensity ratio (namely, the average signal intensity to average noise intensity ratio) for the three reconstruction algorithms are also discussed. This noise suppression imaging technique will have great applications in remote-sensing and security areas.

  4. Nonstationary EO/IR Clutter Suppression and Dim Object Tracking

    NASA Astrophysics Data System (ADS)

    Tartakovsky, A.; Brown, A.; Brown, J.

    2010-09-01

    We develop and evaluate the performance of advanced algorithms which provide significantly improved capabilities for automated detection and tracking of ballistic and flying dim objects in the presence of highly structured intense clutter. Applications include ballistic missile early warning, midcourse tracking, trajectory prediction, and resident space object detection and tracking. The set of algorithms include, in particular, adaptive spatiotemporal clutter estimation-suppression and nonlinear filtering-based multiple-object track-before-detect. These algorithms are suitable for integration into geostationary, highly elliptical, or low earth orbit scanning or staring sensor suites, and are based on data-driven processing that adapts to real-world clutter backgrounds, including celestial, earth limb, or terrestrial clutter. In many scenarios of interest, e.g., for highly elliptic and, especially, low earth orbits, the resulting clutter is highly nonstationary, providing a significant challenge for clutter suppression to or below sensor noise levels, which is essential for dim object detection and tracking. We demonstrate the success of the developed algorithms using semi-synthetic and real data. In particular, our algorithms are shown to be capable of detecting and tracking point objects with signal-to-clutter levels down to 1/1000 and signal-to-noise levels down to 1/4.

  5. Analysis and compensation of reference frequency mismatch in multiple-frequency feedforward active noise and vibration control system

    NASA Astrophysics Data System (ADS)

    Liu, Jinxin; Chen, Xuefeng; Yang, Liangdong; Gao, Jiawei; Zhang, Xingwu

    2017-11-01

    In the field of active noise and vibration control (ANVC), a considerable part of unwelcome noise and vibration is resulted from rotational machines, making the spectrum of response signal multiple-frequency. Narrowband filtered-x least mean square (NFXLMS) is a very popular algorithm to suppress such noise and vibration. It has good performance since a priori-knowledge of fundamental frequency of the noise source (called reference frequency) is adopted. However, if the priori-knowledge is inaccurate, the control performance will be dramatically degraded. This phenomenon is called reference frequency mismatch (RFM). In this paper, a novel narrowband ANVC algorithm with orthogonal pair-wise reference frequency regulator is proposed to compensate for the RFM problem. Firstly, the RFM phenomenon in traditional NFXLMS is closely investigated both analytically and numerically. The results show that RFM changes the parameter estimation problem of the adaptive controller into a parameter tracking problem. Then, adaptive sinusoidal oscillators with output rectification are introduced as the reference frequency regulator to compensate for the RFM problem. The simulation results show that the proposed algorithm can dramatically suppress the multiple-frequency noise and vibration with an improved convergence rate whether or not there is RFM. Finally, case studies using experimental data are conducted under the conditions of none, small and large RFM. The shaft radial run-out signal of a rotor test-platform is applied to simulate the primary noise, and an IIR model identified from a real steel structure is applied to simulate the secondary path. The results further verify the robustness and effectiveness of the proposed algorithm.

  6. Complex differential variance angiography with noise-bias correction for optical coherence tomography of the retina

    PubMed Central

    Braaf, Boy; Donner, Sabine; Nam, Ahhyun S.; Bouma, Brett E.; Vakoc, Benjamin J.

    2018-01-01

    Complex differential variance (CDV) provides phase-sensitive angiographic imaging for optical coherence tomography (OCT) with immunity to phase-instabilities of the imaging system and small-scale axial bulk motion. However, like all angiographic methods, measurement noise can result in erroneous indications of blood flow that confuse the interpretation of angiographic images. In this paper, a modified CDV algorithm that corrects for this noise-bias is presented. This is achieved by normalizing the CDV signal by analytically derived upper and lower limits. The noise-bias corrected CDV algorithm was implemented into an experimental 1 μm wavelength OCT system for retinal imaging that used an eye tracking scanner laser ophthalmoscope at 815 nm for compensation of lateral eye motions. The noise-bias correction improved the CDV imaging of the blood flow in tissue layers with a low signal-to-noise ratio and suppressed false indications of blood flow outside the tissue. In addition, the CDV signal normalization suppressed noise induced by galvanometer scanning errors and small-scale lateral motion. High quality cross-section and motion-corrected en face angiograms of the retina and choroid are presented. PMID:29552388

  7. Complex differential variance angiography with noise-bias correction for optical coherence tomography of the retina.

    PubMed

    Braaf, Boy; Donner, Sabine; Nam, Ahhyun S; Bouma, Brett E; Vakoc, Benjamin J

    2018-02-01

    Complex differential variance (CDV) provides phase-sensitive angiographic imaging for optical coherence tomography (OCT) with immunity to phase-instabilities of the imaging system and small-scale axial bulk motion. However, like all angiographic methods, measurement noise can result in erroneous indications of blood flow that confuse the interpretation of angiographic images. In this paper, a modified CDV algorithm that corrects for this noise-bias is presented. This is achieved by normalizing the CDV signal by analytically derived upper and lower limits. The noise-bias corrected CDV algorithm was implemented into an experimental 1 μm wavelength OCT system for retinal imaging that used an eye tracking scanner laser ophthalmoscope at 815 nm for compensation of lateral eye motions. The noise-bias correction improved the CDV imaging of the blood flow in tissue layers with a low signal-to-noise ratio and suppressed false indications of blood flow outside the tissue. In addition, the CDV signal normalization suppressed noise induced by galvanometer scanning errors and small-scale lateral motion. High quality cross-section and motion-corrected en face angiograms of the retina and choroid are presented.

  8. SMI adaptive antenna arrays for weak interfering signals. [Sample Matrix Inversion

    NASA Technical Reports Server (NTRS)

    Gupta, Inder J.

    1986-01-01

    The performance of adaptive antenna arrays in the presence of weak interfering signals (below thermal noise) is studied. It is shown that a conventional adaptive antenna array sample matrix inversion (SMI) algorithm is unable to suppress such interfering signals. To overcome this problem, the SMI algorithm is modified. In the modified algorithm, the covariance matrix is redefined such that the effect of thermal noise on the weights of adaptive arrays is reduced. Thus, the weights are dictated by relatively weak signals. It is shown that the modified algorithm provides the desired interference protection.

  9. A general framework of noise suppression in material decomposition for dual-energy CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrongolo, Michael; Dong, Xue; Zhu, Lei, E-mail: leizhu@gatech.edu

    Purpose: As a general problem of dual-energy CT (DECT), noise amplification in material decomposition severely reduces the signal-to-noise ratio on the decomposed images compared to that on the original CT images. In this work, the authors propose a general framework of noise suppression in material decomposition for DECT. The method is based on an iterative algorithm recently developed in their group for image-domain decomposition of DECT, with an extension to include nonlinear decomposition models. The generalized framework of iterative DECT decomposition enables beam-hardening correction with simultaneous noise suppression, which improves the clinical benefits of DECT. Methods: The authors propose tomore » suppress noise on the decomposed images of DECT using convex optimization, which is formulated in the form of least-squares estimation with smoothness regularization. Based on the design principles of a best linear unbiased estimator, the authors include the inverse of the estimated variance–covariance matrix of the decomposed images as the penalty weight in the least-squares term. Analytical formulas are derived to compute the variance–covariance matrix for decomposed images with general-form numerical or analytical decomposition. As a demonstration, the authors implement the proposed algorithm on phantom data using an empirical polynomial function of decomposition measured on a calibration scan. The polynomial coefficients are determined from the projection data acquired on a wedge phantom, and the signal decomposition is performed in the projection domain. Results: On the Catphan{sup ®}600 phantom, the proposed noise suppression method reduces the average noise standard deviation of basis material images by one to two orders of magnitude, with a superior performance on spatial resolution as shown in comparisons of line-pair images and modulation transfer function measurements. On the synthesized monoenergetic CT images, the noise standard deviation is reduced by a factor of 2–3. By using nonlinear decomposition on projections, the authors’ method effectively suppresses the streaking artifacts of beam hardening and obtains more uniform images than their previous approach based on a linear model. Similar performance of noise suppression is observed in the results of an anthropomorphic head phantom and a pediatric chest phantom generated by the proposed method. With beam-hardening correction enabled by their approach, the image spatial nonuniformity on the head phantom is reduced from around 10% on the original CT images to 4.9% on the synthesized monoenergetic CT image. On the pediatric chest phantom, their method suppresses image noise standard deviation by a factor of around 7.5, and compared with linear decomposition, it reduces the estimation error of electron densities from 33.3% to 8.6%. Conclusions: The authors propose a general framework of noise suppression in material decomposition for DECT. Phantom studies have shown the proposed method improves the image uniformity and the accuracy of electron density measurements by effective beam-hardening correction and reduces noise level without noticeable resolution loss.« less

  10. A Robust Approach For Acoustic Noise Suppression In Speech Using ANFIS

    NASA Astrophysics Data System (ADS)

    Martinek, Radek; Kelnar, Michal; Vanus, Jan; Bilik, Petr; Zidek, Jan

    2015-11-01

    The authors of this article deals with the implementation of a combination of techniques of the fuzzy system and artificial intelligence in the application area of non-linear noise and interference suppression. This structure used is called an Adaptive Neuro Fuzzy Inference System (ANFIS). This system finds practical use mainly in audio telephone (mobile) communication in a noisy environment (transport, production halls, sports matches, etc). Experimental methods based on the two-input adaptive noise cancellation concept was clearly outlined. Within the experiments carried out, the authors created, based on the ANFIS structure, a comprehensive system for adaptive suppression of unwanted background interference that occurs in audio communication and degrades the audio signal. The system designed has been tested on real voice signals. This article presents the investigation and comparison amongst three distinct approaches to noise cancellation in speech; they are LMS (least mean squares) and RLS (recursive least squares) adaptive filtering and ANFIS. A careful review of literatures indicated the importance of non-linear adaptive algorithms over linear ones in noise cancellation. It was concluded that the ANFIS approach had the overall best performance as it efficiently cancelled noise even in highly noise-degraded speech. Results were drawn from the successful experimentation, subjective-based tests were used to analyse their comparative performance while objective tests were used to validate them. Implementation of algorithms was experimentally carried out in Matlab to justify the claims and determine their relative performances.

  11. Seismic random noise attenuation method based on empirical mode decomposition of Hausdorff dimension

    NASA Astrophysics Data System (ADS)

    Yan, Z.; Luan, X.

    2017-12-01

    Introduction Empirical mode decomposition (EMD) is a noise suppression algorithm by using wave field separation, which is based on the scale differences between effective signal and noise. However, since the complexity of the real seismic wave field results in serious aliasing modes, it is not ideal and effective to denoise with this method alone. Based on the multi-scale decomposition characteristics of the signal EMD algorithm, combining with Hausdorff dimension constraints, we propose a new method for seismic random noise attenuation. First of all, We apply EMD algorithm adaptive decomposition of seismic data and obtain a series of intrinsic mode function (IMF)with different scales. Based on the difference of Hausdorff dimension between effectively signals and random noise, we identify IMF component mixed with random noise. Then we use threshold correlation filtering process to separate the valid signal and random noise effectively. Compared with traditional EMD method, the results show that the new method of seismic random noise attenuation has a better suppression effect. The implementation process The EMD algorithm is used to decompose seismic signals into IMF sets and analyze its spectrum. Since most of the random noise is high frequency noise, the IMF sets can be divided into three categories: the first category is the effective wave composition of the larger scale; the second category is the noise part of the smaller scale; the third category is the IMF component containing random noise. Then, the third kind of IMF component is processed by the Hausdorff dimension algorithm, and the appropriate time window size, initial step and increment amount are selected to calculate the Hausdorff instantaneous dimension of each component. The dimension of the random noise is between 1.0 and 1.05, while the dimension of the effective wave is between 1.05 and 2.0. On the basis of the previous steps, according to the dimension difference between the random noise and effective signal, we extracted the sample points, whose fractal dimension value is less than or equal to 1.05 for the each IMF components, to separate the residual noise. Using the IMF components after dimension filtering processing and the effective wave IMF components after the first selection for reconstruction, we can obtained the results of de-noising.

  12. Intensity inhomogeneity compensation and tissue segmentation for magnetic resonance imaging with noise-suppressed multiplicative intrinsic component optimization

    NASA Astrophysics Data System (ADS)

    Dong, Huaipeng; Zhang, Qi; Shi, Jun

    2017-12-01

    Magnetic resonance (MR) images suffer from intensity inhomogeneity. Segmentation-based approaches can simultaneously achieve both intensity inhomogeneity compensation (IIC) and tissue segmentation for MR images with little noise, but they often fail for images polluted by severe noise. Here, we propose a noise-robust algorithm named noise-suppressed multiplicative intrinsic component optimization (NSMICO) for simultaneous IIC and tissue segmentation. Considering the spatial characteristics in an image, an adaptive nonlocal means filtering term is incorporated into the objective function of NSMICO to decrease image deterioration due to noise. Then, a fuzzy local factor term utilizing the spatial and gray-level relationship among local pixels is embedded into the objective function to reach a balance between noise suppression and detail preservation. Experimental results on synthetic natural and MR images with various levels of intensity inhomogeneity and noise, as well as in vivo clinical MR images, have demonstrated the effectiveness of the NSMICO and its superiority to three competing approaches. The NSMICO could be potentially valuable for MR image IIC and tissue segmentation.

  13. The Research on Denoising of SAR Image Based on Improved K-SVD Algorithm

    NASA Astrophysics Data System (ADS)

    Tan, Linglong; Li, Changkai; Wang, Yueqin

    2018-04-01

    SAR images often receive noise interference in the process of acquisition and transmission, which can greatly reduce the quality of images and cause great difficulties for image processing. The existing complete DCT dictionary algorithm is fast in processing speed, but its denoising effect is poor. In this paper, the problem of poor denoising, proposed K-SVD (K-means and singular value decomposition) algorithm is applied to the image noise suppression. Firstly, the sparse dictionary structure is introduced in detail. The dictionary has a compact representation and can effectively train the image signal. Then, the sparse dictionary is trained by K-SVD algorithm according to the sparse representation of the dictionary. The algorithm has more advantages in high dimensional data processing. Experimental results show that the proposed algorithm can remove the speckle noise more effectively than the complete DCT dictionary and retain the edge details better.

  14. Adaptive control and noise suppression by a variable-gain gradient algorithm

    NASA Technical Reports Server (NTRS)

    Merhav, S. J.; Mehta, R. S.

    1987-01-01

    An adaptive control system based on normalized LMS filters is investigated. The finite impulse response of the nonparametric controller is adaptively estimated using a given reference model. Specifically, the following issues are addressed: The stability of the closed loop system is analyzed and heuristically established. Next, the adaptation process is studied for piecewise constant plant parameters. It is shown that by introducing a variable-gain in the gradient algorithm, a substantial reduction in the LMS adaptation rate can be achieved. Finally, process noise at the plant output generally causes a biased estimate of the controller. By introducing a noise suppression scheme, this bias can be substantially reduced and the response of the adapted system becomes very close to that of the reference model. Extensive computer simulations validate these and demonstrate assertions that the system can rapidly adapt to random jumps in plant parameters.

  15. Hard decoding algorithm for optimizing thresholds under general Markovian noise

    NASA Astrophysics Data System (ADS)

    Chamberland, Christopher; Wallman, Joel; Beale, Stefanie; Laflamme, Raymond

    2017-04-01

    Quantum error correction is instrumental in protecting quantum systems from noise in quantum computing and communication settings. Pauli channels can be efficiently simulated and threshold values for Pauli error rates under a variety of error-correcting codes have been obtained. However, realistic quantum systems can undergo noise processes that differ significantly from Pauli noise. In this paper, we present an efficient hard decoding algorithm for optimizing thresholds and lowering failure rates of an error-correcting code under general completely positive and trace-preserving (i.e., Markovian) noise. We use our hard decoding algorithm to study the performance of several error-correcting codes under various non-Pauli noise models by computing threshold values and failure rates for these codes. We compare the performance of our hard decoding algorithm to decoders optimized for depolarizing noise and show improvements in thresholds and reductions in failure rates by several orders of magnitude. Our hard decoding algorithm can also be adapted to take advantage of a code's non-Pauli transversal gates to further suppress noise. For example, we show that using the transversal gates of the 5-qubit code allows arbitrary rotations around certain axes to be perfectly corrected. Furthermore, we show that Pauli twirling can increase or decrease the threshold depending upon the code properties. Lastly, we show that even if the physical noise model differs slightly from the hypothesized noise model used to determine an optimized decoder, failure rates can still be reduced by applying our hard decoding algorithm.

  16. An algorithm that improves speech intelligibility in noise for normal-hearing listeners.

    PubMed

    Kim, Gibak; Lu, Yang; Hu, Yi; Loizou, Philipos C

    2009-09-01

    Traditional noise-suppression algorithms have been shown to improve speech quality, but not speech intelligibility. Motivated by prior intelligibility studies of speech synthesized using the ideal binary mask, an algorithm is proposed that decomposes the input signal into time-frequency (T-F) units and makes binary decisions, based on a Bayesian classifier, as to whether each T-F unit is dominated by the target or the masker. Speech corrupted at low signal-to-noise ratio (SNR) levels (-5 and 0 dB) using different types of maskers is synthesized by this algorithm and presented to normal-hearing listeners for identification. Results indicated substantial improvements in intelligibility (over 60% points in -5 dB babble) over that attained by human listeners with unprocessed stimuli. The findings from this study suggest that algorithms that can estimate reliably the SNR in each T-F unit can improve speech intelligibility.

  17. The a priori SDR Estimation Techniques with Reduced Speech Distortion for Acoustic Echo and Noise Suppression

    NASA Astrophysics Data System (ADS)

    Thoonsaengngam, Rattapol; Tangsangiumvisai, Nisachon

    This paper proposes an enhanced method for estimating the a priori Signal-to-Disturbance Ratio (SDR) to be employed in the Acoustic Echo and Noise Suppression (AENS) system for full-duplex hands-free communications. The proposed a priori SDR estimation technique is modified based upon the Two-Step Noise Reduction (TSNR) algorithm to suppress the background noise while preserving speech spectral components. In addition, a practical approach to determine accurately the Echo Spectrum Variance (ESV) is presented based upon the linear relationship assumption between the power spectrum of far-end speech and acoustic echo signals. The ESV estimation technique is then employed to alleviate the acoustic echo problem. The performance of the AENS system that employs these two proposed estimation techniques is evaluated through the Echo Attenuation (EA), Noise Attenuation (NA), and two speech distortion measures. Simulation results based upon real speech signals guarantee that our improved AENS system is able to mitigate efficiently the problem of acoustic echo and background noise, while preserving the speech quality and speech intelligibility.

  18. Adaptive nonlinear L2 and L3 filters for speckled image processing

    NASA Astrophysics Data System (ADS)

    Lukin, Vladimir V.; Melnik, Vladimir P.; Chemerovsky, Victor I.; Astola, Jaakko T.

    1997-04-01

    Here we propose adaptive nonlinear filters based on calculation and analysis of two or three order statistics in a scanning window. They are designed for processing images corrupted by severe speckle noise with non-symmetrical. (Rayleigh or one-side exponential) distribution laws; impulsive noise can be also present. The proposed filtering algorithms provide trade-off between impulsive noise can be also present. The proposed filtering algorithms provide trade-off between efficient speckle noise suppression, robustness, good edge/detail preservation, low computational complexity, preservation of average level for homogeneous regions of images. Quantitative evaluations of the characteristics of the proposed filter are presented as well as the results of the application to real synthetic aperture radar and ultrasound medical images.

  19. Near-Field Noise Source Localization in the Presence of Interference

    NASA Astrophysics Data System (ADS)

    Liang, Guolong; Han, Bo

    In order to suppress the influence of interference sources on the noise source localization in the near field, the near-field broadband source localization in the presence of interference is studied. Oblique projection is constructed with the array measurements and the steering manifold of interference sources, which is used to filter the interference signals out. 2D-MUSIC algorithm is utilized to deal with the data in each frequency, and then the results of each frequency are averaged to achieve the positioning of the broadband noise sources. The simulations show that this method suppresses the interference sources effectively and is capable of locating the source which is in the same direction with the interference source.

  20. Analysis of modified SMI method for adaptive array weight control

    NASA Technical Reports Server (NTRS)

    Dilsavor, R. L.; Moses, R. L.

    1989-01-01

    An adaptive array is applied to the problem of receiving a desired signal in the presence of weak interference signals which need to be suppressed. A modification, suggested by Gupta, of the sample matrix inversion (SMI) algorithm controls the array weights. In the modified SMI algorithm, interference suppression is increased by subtracting a fraction F of the noise power from the diagonal elements of the estimated covariance matrix. Given the true covariance matrix and the desired signal direction, the modified algorithm is shown to maximize a well-defined, intuitive output power ratio criterion. Expressions are derived for the expected value and variance of the array weights and output powers as a function of the fraction F and the number of snapshots used in the covariance matrix estimate. These expressions are compared with computer simulation and good agreement is found. A trade-off is found to exist between the desired level of interference suppression and the number of snapshots required in order to achieve that level with some certainty. The removal of noise eigenvectors from the covariance matrix inverse is also discussed with respect to this application. Finally, the type and severity of errors which occur in the covariance matrix estimate are characterized through simulation.

  1. Algorithm for Cosmic Noise Suppression in Free Space Optical Communications

    NASA Astrophysics Data System (ADS)

    Yuvaraj, George; Himani Sharma, Goyal, Dr.

    2017-08-01

    This article describes an algorithm to reduce cosmic noise in free space optical communication system. This method is intended to increase communication system’s performance and to increase the sustainability of the communication system by means of image processing technique. Apart from these, methods employed in testing the model are also presented for the communication system that uses either terrestrial or extraterrestrial medium to propagate message using optics or visible light without considering environmental impact that is turbulence, atmospheric absorption, beam dispersion and light intensity on its performance.

  2. A new edge detection algorithm based on Canny idea

    NASA Astrophysics Data System (ADS)

    Feng, Yingke; Zhang, Jinmin; Wang, Siming

    2017-10-01

    The traditional Canny algorithm has poor self-adaptability threshold, and it is more sensitive to noise. In order to overcome these drawbacks, this paper proposed a new edge detection method based on Canny algorithm. Firstly, the media filtering and filtering based on the method of Euclidean distance are adopted to process it; secondly using the Frei-chen algorithm to calculate gradient amplitude; finally, using the Otsu algorithm to calculate partial gradient amplitude operation to get images of thresholds value, then find the average of all thresholds that had been calculated, half of the average is high threshold value, and the half of the high threshold value is low threshold value. Experiment results show that this new method can effectively suppress noise disturbance, keep the edge information, and also improve the edge detection accuracy.

  3. Application of adaptive filters in denoising magnetocardiogram signals

    NASA Astrophysics Data System (ADS)

    Khan, Pathan Fayaz; Patel, Rajesh; Sengottuvel, S.; Saipriya, S.; Swain, Pragyna Parimita; Gireesan, K.

    2017-05-01

    Magnetocardiography (MCG) is the measurement of weak magnetic fields from the heart using Superconducting QUantum Interference Devices (SQUID). Though the measurements are performed inside magnetically shielded rooms (MSR) to reduce external electromagnetic disturbances, interferences which are caused by sources inside the shielded room could not be attenuated. The work presented here reports the application of adaptive filters to denoise MCG signals. Two adaptive noise cancellation approaches namely least mean squared (LMS) algorithm and recursive least squared (RLS) algorithm are applied to denoise MCG signals and the results are compared. It is found that both the algorithms effectively remove noisy wiggles from MCG traces; significantly improving the quality of the cardiac features in MCG traces. The calculated signal-to-noise ratio (SNR) for the denoised MCG traces is found to be slightly higher in the LMS algorithm as compared to the RLS algorithm. The results encourage the use of adaptive techniques to suppress noise due to power line frequency and its harmonics which occur frequently in biomedical measurements.

  4. SMI adaptive antenna arrays for weak interfering signals

    NASA Technical Reports Server (NTRS)

    Gupta, I. J.

    1987-01-01

    The performance of adaptive antenna arrays is studied when a sample matrix inversion (SMI) algorithm is used to control array weights. It is shown that conventional SMI adaptive antennas, like other adaptive antennas, are unable to suppress weak interfering signals (below thermal noise) encountered in broadcasting satellite communication systems. To overcome this problem, the SMI algorithm is modified. In the modified algorithm, the covariance matrix is modified such that the effect of thermal noise on the weights of the adaptive array is reduced. Thus, the weights are dictated by relatively weak coherent signals. It is shown that the modified algorithm provides the desired interference protection. The use of defocused feeds as auxiliary elements of an SMI adaptive array is also discussed.

  5. Simple data-smoothing and noise-suppression technique

    NASA Technical Reports Server (NTRS)

    Duty, R. L.

    1970-01-01

    Algorithm, based on the Borel method of summing divergent sequences, is used for smoothing noisy data where knowledge of frequency content is not required. Technique's effectiveness is demonstrated by a series of graphs.

  6. Effective noise-suppressed and artifact-reduced reconstruction of SPECT data using a preconditioned alternating projection algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Si; Xu, Yuesheng, E-mail: yxu06@syr.edu; Zhang, Jiahan

    Purpose: The authors have recently developed a preconditioned alternating projection algorithm (PAPA) with total variation (TV) regularizer for solving the penalized-likelihood optimization model for single-photon emission computed tomography (SPECT) reconstruction. This algorithm belongs to a novel class of fixed-point proximity methods. The goal of this work is to investigate how PAPA performs while dealing with realistic noisy SPECT data, to compare its performance with more conventional methods, and to address issues with TV artifacts by proposing a novel form of the algorithm invoking high-order TV regularization, denoted as HOTV-PAPA, which has been explored and studied extensively in the present work.more » Methods: Using Monte Carlo methods, the authors simulate noisy SPECT data from two water cylinders; one contains lumpy “warm” background and “hot” lesions of various sizes with Gaussian activity distribution, and the other is a reference cylinder without hot lesions. The authors study the performance of HOTV-PAPA and compare it with PAPA using first-order TV regularization (TV-PAPA), the Panin–Zeng–Gullberg one-step-late method with TV regularization (TV-OSL), and an expectation–maximization algorithm with Gaussian postfilter (GPF-EM). The authors select penalty-weights (hyperparameters) by qualitatively balancing the trade-off between resolution and image noise separately for TV-PAPA and TV-OSL. However, the authors arrived at the same penalty-weight value for both of them. The authors set the first penalty-weight in HOTV-PAPA equal to the optimal penalty-weight found for TV-PAPA. The second penalty-weight needed for HOTV-PAPA is tuned by balancing resolution and the severity of staircase artifacts. The authors adjust the Gaussian postfilter to approximately match the local point spread function of GPF-EM and HOTV-PAPA. The authors examine hot lesion detectability, study local spatial resolution, analyze background noise properties, estimate mean square errors (MSEs), and report the convergence speed and computation time. Results: HOTV-PAPA yields the best signal-to-noise ratio, followed by TV-PAPA and TV-OSL/GPF-EM. The local spatial resolution of HOTV-PAPA is somewhat worse than that of TV-PAPA and TV-OSL. Images reconstructed using HOTV-PAPA have the lowest local noise power spectrum (LNPS) amplitudes, followed by TV-PAPA, TV-OSL, and GPF-EM. The LNPS peak of GPF-EM is shifted toward higher spatial frequencies than those for the three other methods. The PAPA-type methods exhibit much lower ensemble noise, ensemble voxel variance, and image roughness. HOTV-PAPA performs best in these categories. Whereas images reconstructed using both TV-PAPA and TV-OSL are degraded by severe staircase artifacts; HOTV-PAPA substantially reduces such artifacts. It also converges faster than the other three methods and exhibits the lowest overall reconstruction error level, as measured by MSE. Conclusions: For high-noise simulated SPECT data, HOTV-PAPA outperforms TV-PAPA, GPF-EM, and TV-OSL in terms of hot lesion detectability, noise suppression, MSE, and computational efficiency. Unlike TV-PAPA and TV-OSL, HOTV-PAPA does not create sizable staircase artifacts. Moreover, HOTV-PAPA effectively suppresses noise, with only limited loss of local spatial resolution. Of the four methods, HOTV-PAPA shows the best lesion detectability, thanks to its superior noise suppression. HOTV-PAPA shows promise for clinically useful reconstructions of low-dose SPECT data.« less

  7. Effective noise-suppressed and artifact-reduced reconstruction of SPECT data using a preconditioned alternating projection algorithm

    PubMed Central

    Li, Si; Zhang, Jiahan; Krol, Andrzej; Schmidtlein, C. Ross; Vogelsang, Levon; Shen, Lixin; Lipson, Edward; Feiglin, David; Xu, Yuesheng

    2015-01-01

    Purpose: The authors have recently developed a preconditioned alternating projection algorithm (PAPA) with total variation (TV) regularizer for solving the penalized-likelihood optimization model for single-photon emission computed tomography (SPECT) reconstruction. This algorithm belongs to a novel class of fixed-point proximity methods. The goal of this work is to investigate how PAPA performs while dealing with realistic noisy SPECT data, to compare its performance with more conventional methods, and to address issues with TV artifacts by proposing a novel form of the algorithm invoking high-order TV regularization, denoted as HOTV-PAPA, which has been explored and studied extensively in the present work. Methods: Using Monte Carlo methods, the authors simulate noisy SPECT data from two water cylinders; one contains lumpy “warm” background and “hot” lesions of various sizes with Gaussian activity distribution, and the other is a reference cylinder without hot lesions. The authors study the performance of HOTV-PAPA and compare it with PAPA using first-order TV regularization (TV-PAPA), the Panin–Zeng–Gullberg one-step-late method with TV regularization (TV-OSL), and an expectation–maximization algorithm with Gaussian postfilter (GPF-EM). The authors select penalty-weights (hyperparameters) by qualitatively balancing the trade-off between resolution and image noise separately for TV-PAPA and TV-OSL. However, the authors arrived at the same penalty-weight value for both of them. The authors set the first penalty-weight in HOTV-PAPA equal to the optimal penalty-weight found for TV-PAPA. The second penalty-weight needed for HOTV-PAPA is tuned by balancing resolution and the severity of staircase artifacts. The authors adjust the Gaussian postfilter to approximately match the local point spread function of GPF-EM and HOTV-PAPA. The authors examine hot lesion detectability, study local spatial resolution, analyze background noise properties, estimate mean square errors (MSEs), and report the convergence speed and computation time. Results: HOTV-PAPA yields the best signal-to-noise ratio, followed by TV-PAPA and TV-OSL/GPF-EM. The local spatial resolution of HOTV-PAPA is somewhat worse than that of TV-PAPA and TV-OSL. Images reconstructed using HOTV-PAPA have the lowest local noise power spectrum (LNPS) amplitudes, followed by TV-PAPA, TV-OSL, and GPF-EM. The LNPS peak of GPF-EM is shifted toward higher spatial frequencies than those for the three other methods. The PAPA-type methods exhibit much lower ensemble noise, ensemble voxel variance, and image roughness. HOTV-PAPA performs best in these categories. Whereas images reconstructed using both TV-PAPA and TV-OSL are degraded by severe staircase artifacts; HOTV-PAPA substantially reduces such artifacts. It also converges faster than the other three methods and exhibits the lowest overall reconstruction error level, as measured by MSE. Conclusions: For high-noise simulated SPECT data, HOTV-PAPA outperforms TV-PAPA, GPF-EM, and TV-OSL in terms of hot lesion detectability, noise suppression, MSE, and computational efficiency. Unlike TV-PAPA and TV-OSL, HOTV-PAPA does not create sizable staircase artifacts. Moreover, HOTV-PAPA effectively suppresses noise, with only limited loss of local spatial resolution. Of the four methods, HOTV-PAPA shows the best lesion detectability, thanks to its superior noise suppression. HOTV-PAPA shows promise for clinically useful reconstructions of low-dose SPECT data. PMID:26233214

  8. An improved AE detection method of rail defect based on multi-level ANC with VSS-LMS

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Cui, Yiming; Wang, Yan; Sun, Mingjian; Hu, Hengshan

    2018-01-01

    In order to ensure the safety and reliability of railway system, Acoustic Emission (AE) method is employed to investigate rail defect detection. However, little attention has been paid to the defect detection at high speed, especially for noise interference suppression. Based on AE technology, this paper presents an improved rail defect detection method by multi-level ANC with VSS-LMS. Multi-level noise cancellation based on SANC and ANC is utilized to eliminate complex noises at high speed, and tongue-shaped curve with index adjustment factor is proposed to enhance the performance of variable step-size algorithm. Defect signals and reference signals are acquired by the rail-wheel test rig. The features of noise signals and defect signals are analyzed for effective detection. The effectiveness of the proposed method is demonstrated by comparing with the previous study, and different filter lengths are investigated to obtain a better noise suppression performance. Meanwhile, the detection ability of the proposed method is verified at the top speed of the test rig. The results clearly illustrate that the proposed method is effective in detecting rail defects at high speed, especially for noise interference suppression.

  9. Flat-fielding of Solar Hα Observations Based on the Maximum Correntropy Criterion

    NASA Astrophysics Data System (ADS)

    Xu, Gao-Gui; Zheng, Sheng; Lin, Gang-Hua; Wang, Xiao-Fan

    2016-08-01

    The flat-field CCD calibration method of Kuhn et al. (KLL) is an efficient method for flat-fielding. However, since it depends on the minimum of the sum of squares error (SSE), its solution is sensitive to noise, especially non-Gaussian noise. In this paper, a new algorithm is proposed to determine the flat field. The idea is to change the criterion of gain estimate from SSE to the maximum correntropy. The result of a test on simulated data demonstrates that our method has a higher accuracy and a faster convergence than KLL’s and Chae’s. It has been found that the method effectively suppresses noise, especially in the case of typical non-Gaussian noise. And the computing time of our algorithm is the shortest.

  10. Interband cascade laser based mid-infrared methane sensor system using a novel electrical-domain self-adaptive direct laser absorption spectroscopy (SA-DLAS).

    PubMed

    Song, Fang; Zheng, Chuantao; Yan, Wanhong; Ye, Weilin; Wang, Yiding; Tittel, Frank K

    2017-12-11

    To suppress sensor noise with unknown statistical properties, a novel self-adaptive direct laser absorption spectroscopy (SA-DLAS) technique was proposed by incorporating a recursive, least square (RLS) self-adaptive denoising (SAD) algorithm and a 3291 nm interband cascade laser (ICL) for methane (CH 4 ) detection. Background noise was suppressed by introducing an electrical-domain noise-channel and an expectation-known-based RLS SAD algorithm. Numerical simulations and measurements were carried out to validate the function of the SA-DLAS technique by imposing low-frequency, high-frequency, White-Gaussian and hybrid noise on the ICL scan signal. Sensor calibration, stability test and dynamic response measurement were performed for the SA-DLAS sensor using standard or diluted CH 4 samples. With the intrinsic sensor noise considered only, an Allan deviation of ~43.9 ppbv with a ~6 s averaging time was obtained and it was further decreased to 6.3 ppbv with a ~240 s averaging time, through the use of self-adaptive filtering (SAF). The reported SA-DLAS technique shows enhanced sensitivity compared to a DLAS sensor using a traditional sensing architecture and filtering method. Indoor and outdoor atmospheric CH 4 measurements were conducted to validate the normal operation of the reported SA-DLAS technique.

  11. LBP-based penalized weighted least-squares approach to low-dose cone-beam computed tomography reconstruction

    NASA Astrophysics Data System (ADS)

    Ma, Ming; Wang, Huafeng; Liu, Yan; Zhang, Hao; Gu, Xianfeng; Liang, Zhengrong

    2014-03-01

    Cone-beam computed tomography (CBCT) has attracted growing interest of researchers in image reconstruction. The mAs level of the X-ray tube current, in practical application of CBCT, is mitigated in order to reduce the CBCT dose. The lowering of the X-ray tube current, however, results in the degradation of image quality. Thus, low-dose CBCT image reconstruction is in effect a noise problem. To acquire clinically acceptable quality of image, and keep the X-ray tube current as low as achievable in the meanwhile, some penalized weighted least-squares (PWLS)-based image reconstruction algorithms have been developed. One representative strategy in previous work is to model the prior information for solution regularization using an anisotropic penalty term. To enhance the edge preserving and noise suppressing in a finer scale, a novel algorithm combining the local binary pattern (LBP) with penalized weighted leastsquares (PWLS), called LBP-PWLS-based image reconstruction algorithm, is proposed in this work. The proposed LBP-PWLS-based algorithm adaptively encourages strong diffusion on the local spot/flat region around a voxel and less diffusion on edge/corner ones by adjusting the penalty for cost function, after the LBP is utilized to detect the region around the voxel as spot, flat and edge ones. The LBP-PWLS-based reconstruction algorithm was evaluated using the sinogram data acquired by a clinical CT scanner from the CatPhan® 600 phantom. Experimental results on the noiseresolution tradeoff measurement and other quantitative measurements demonstrated its feasibility and effectiveness in edge preserving and noise suppressing in comparison with a previous PWLS reconstruction algorithm.

  12. WE-FG-207B-04: Noise Suppression for Energy-Resolved CT Via Variance Weighted Non-Local Filtration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harms, J; Zhu, L

    Purpose: The photon starvation problem is exacerbated in energy-resolved CT, since the detected photons are shared by multiple energy channels. Using pixel similarity-based non-local filtration, we aim to produce accurate and high-resolution energy-resolved CT images with significantly reduced noise. Methods: Averaging CT images reconstructed from different energy channels reduces noise at the price of losing spectral information, while conventional denoising techniques inevitably degrade image resolution. Inspired by the fact that CT images of the same object at different energies share the same structures, we aim to reduce noise of energy-resolved CT by averaging only pixels of similar materials - amore » non-local filtration technique. For each CT image, an empirical exponential model is used to calculate the material similarity between two pixels based on their CT values and the similarity values are organized in a matrix form. A final similarity matrix is generated by averaging these similarity matrices, with weights inversely proportional to the estimated total noise variance in the sinogram of different energy channels. Noise suppression is achieved for each energy channel via multiplying the image vector by the similarity matrix. Results: Multiple scans on a tabletop CT system are used to simulate 6-channel energy-resolved CT, with energies ranging from 75 to 125 kVp. On a low-dose acquisition at 15 mA of the Catphan©600 phantom, our method achieves the same image spatial resolution as a high-dose scan at 80 mA with a noise standard deviation (STD) lower by a factor of >2. Compared with another non-local noise suppression algorithm (ndiNLM), the proposed algorithms obtains images with substantially improved resolution at the same level of noise reduction. Conclusion: We propose a noise-suppression method for energy-resolved CT. Our method takes full advantage of the additional structural information provided by energy-resolved CT and preserves image values at each energy level. Research reported in this publication was supported by the National Institute Of Biomedical Imaging And Bioengineering of the National Institutes of Health under Award Number R21EB019597. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.« less

  13. Signal-Noise Identification of Magnetotelluric Signals Using Fractal-Entropy and Clustering Algorithm for Targeted De-Noising

    NASA Astrophysics Data System (ADS)

    Li, Jin; Zhang, Xian; Gong, Jinzhe; Tang, Jingtian; Ren, Zhengyong; Li, Guang; Deng, Yanli; Cai, Jin

    A new technique is proposed for signal-noise identification and targeted de-noising of Magnetotelluric (MT) signals. This method is based on fractal-entropy and clustering algorithm, which automatically identifies signal sections corrupted by common interference (square, triangle and pulse waves), enabling targeted de-noising and preventing the loss of useful information in filtering. To implement the technique, four characteristic parameters — fractal box dimension (FBD), higuchi fractal dimension (HFD), fuzzy entropy (FuEn) and approximate entropy (ApEn) — are extracted from MT time-series. The fuzzy c-means (FCM) clustering technique is used to analyze the characteristic parameters and automatically distinguish signals with strong interference from the rest. The wavelet threshold (WT) de-noising method is used only to suppress the identified strong interference in selected signal sections. The technique is validated through signal samples with known interference, before being applied to a set of field measured MT/Audio Magnetotelluric (AMT) data. Compared with the conventional de-noising strategy that blindly applies the filter to the overall dataset, the proposed method can automatically identify and purposefully suppress the intermittent interference in the MT/AMT signal. The resulted apparent resistivity-phase curve is more continuous and smooth, and the slow-change trend in the low-frequency range is more precisely reserved. Moreover, the characteristic of the target-filtered MT/AMT signal is close to the essential characteristic of the natural field, and the result more accurately reflects the inherent electrical structure information of the measured site.

  14. Adaptive Noise Suppression of Pediatric Lung Auscultations With Real Applications to Noisy Clinical Settings in Developing Countries

    PubMed Central

    Emmanouilidou, Dimitra; McCollum, Eric D.; Park, Daniel E.

    2015-01-01

    Goal Chest auscultation constitutes a portable low-cost tool widely used for respiratory disease detection. Though it offers a powerful means of pulmonary examination, it remains riddled with a number of issues that limit its diagnostic capability. Particularly, patient agitation (especially in children), background chatter, and other environmental noises often contaminate the auscultation, hence affecting the clarity of the lung sound itself. This paper proposes an automated multiband denoising scheme for improving the quality of auscultation signals against heavy background contaminations. Methods The algorithm works on a simple two-microphone setup, dynamically adapts to the background noise and suppresses contaminations while successfully preserving the lung sound content. The proposed scheme is refined to offset maximal noise suppression against maintaining the integrity of the lung signal, particularly its unknown adventitious components that provide the most informative diagnostic value during lung pathology. Results The algorithm is applied to digital recordings obtained in the field in a busy clinic in West Africa and evaluated using objective signal fidelity measures and perceptual listening tests performed by a panel of licensed physicians. A strong preference of the enhanced sounds is revealed. Significance The strengths and benefits of the proposed method lie in the simple automated setup and its adaptive nature, both fundamental conditions for everyday clinical applicability. It can be simply extended to a real-time implementation, and integrated with lung sound acquisition protocols. PMID:25879837

  15. High Frequency Adaptive Instability Suppression Controls in a Liquid-Fueled Combustor

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2003-01-01

    This effort extends into high frequency (>500 Hz), an earlier developed adaptive control algorithm for the suppression of thermo-acoustic instabilities in a liquidfueled combustor. The earlier work covered the development of a controls algorithm for the suppression of a low frequency (280 Hz) combustion instability based on simulations, with no hardware testing involved. The work described here includes changes to the simulation and controller design necessary to control the high frequency instability, augmentations to the control algorithm to improve its performance, and finally hardware testing and results with an experimental combustor rig developed for the high frequency case. The Adaptive Sliding Phasor Averaged Control (ASPAC) algorithm modulates the fuel flow in the combustor with a control phase that continuously slides back and forth within the phase region that reduces the amplitude of the instability. The results demonstrate the power of the method - that it can identify and suppress the instability even when the instability amplitude is buried in the noise of the combustor pressure. The successful testing of the ASPAC approach helped complete an important NASA milestone to demonstrate advanced technologies for low-emission combustors.

  16. A framework for small infrared target real-time visual enhancement

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoliang; Long, Gucan; Shang, Yang; Liu, Xiaolin

    2015-03-01

    This paper proposes a framework for small infrared target real-time visual enhancement. The framework is consisted of three parts: energy accumulation for small infrared target enhancement, noise suppression and weighted fusion. Dynamic programming based track-before-detection algorithm is adopted in the energy accumulation to detect the target accurately and enhance the target's intensity notably. In the noise suppression, the target region is weighted by a Gaussian mask according to the target's Gaussian shape. In order to fuse the processed target region and unprocessed background smoothly, the intensity in the target region is treated as weight in the fusion. Experiments on real small infrared target images indicate that the framework proposed in this paper can enhances the small infrared target markedly and improves the image's visual quality notably. The proposed framework outperforms tradition algorithms in enhancing the small infrared target, especially for image in which the target is hardly visible.

  17. Analysis of the orbit distortion by the use of the wavelet transform

    NASA Astrophysics Data System (ADS)

    Matsushita, T.; Agui, A.; Yoshigoe, A.; Takao, M.; Aoyagi, H.; Takeuchi, M.; Nakatani, T.; Tanaka, H.

    2004-05-01

    We have adopted matching pursuit algorithm of discrete wavelet transform (DWT) for the analysis of the beam position shift correlated with the motion of insertion device(ID). The beam position data measured by the rf beam position monitors have included high-frequency `noises' and fluctuation of background level. Precise evaluation of the electron beam position shift correlated with the motion of the ID is required for estimation of the steering magnet currents in order to suppress the closed orbit distortion (COD). The DWT is a powerful tool for frequency analysis and data processing. The analysis of DWT was applied to the beam position shift correlated with the phase motion of APPLE-2 type undulator (ID23) in SPring-8. The result of the analysis indicated that `noises' are mainly composed of the components of 50 ˜ 6.25Hz and < 0.1Hz. We carried out the data processing to remove the `noises' by the matching pursuit algorithm. Then we have succeeded in suppressing the COD within 2 μm by the use of the steering magnet currents calculated from the processed data.

  18. Space moving target detection and tracking method in complex background

    NASA Astrophysics Data System (ADS)

    Lv, Ping-Yue; Sun, Sheng-Li; Lin, Chang-Qing; Liu, Gao-Rui

    2018-06-01

    The background of the space-borne detectors in real space-based environment is extremely complex and the signal-to-clutter ratio is very low (SCR ≈ 1), which increases the difficulty for detecting space moving targets. In order to solve this problem, an algorithm combining background suppression processing based on two-dimensional least mean square filter (TDLMS) and target enhancement based on neighborhood gray-scale difference (GSD) is proposed in this paper. The latter can filter out most of the residual background clutter processed by the former such as cloud edge. Through this procedure, both global and local SCR have obtained substantial improvement, indicating that the target has been greatly enhanced. After removing the detector's inherent clutter region through connected domain processing, the image only contains the target point and the isolated noise, in which the isolated noise could be filtered out effectively through multi-frame association. The proposed algorithm in this paper has been compared with some state-of-the-art algorithms for moving target detection and tracking tasks. The experimental results show that the performance of this algorithm is the best in terms of SCR gain, background suppression factor (BSF) and detection results.

  19. Multistatic synthetic aperture radar image formation.

    PubMed

    Krishnan, V; Swoboda, J; Yarman, C E; Yazici, B

    2010-05-01

    In this paper, we consider a multistatic synthetic aperture radar (SAR) imaging scenario where a swarm of airborne antennas, some of which are transmitting, receiving or both, are traversing arbitrary flight trajectories and transmitting arbitrary waveforms without any form of multiplexing. The received signal at each receiving antenna may be interfered by the scattered signal due to multiple transmitters and additive thermal noise at the receiver. In this scenario, standard bistatic SAR image reconstruction algorithms result in artifacts in reconstructed images due to these interferences. In this paper, we use microlocal analysis in a statistical setting to develop a filtered-backprojection (FBP) type analytic image formation method that suppresses artifacts due to interference while preserving the location and orientation of edges of the scene in the reconstructed image. Our FBP-type algorithm exploits the second-order statistics of the target and noise to suppress the artifacts due to interference in a mean-square sense. We present numerical simulations to demonstrate the performance of our multistatic SAR image formation algorithm with the FBP-type bistatic SAR image reconstruction algorithm. While we mainly focus on radar applications, our image formation method is also applicable to other problems arising in fields such as acoustic, geophysical and medical imaging.

  20. An experimental SMI adaptive antenna array simulator for weak interfering signals

    NASA Technical Reports Server (NTRS)

    Dilsavor, Ronald S.; Gupta, Inder J.

    1991-01-01

    An experimental sample matrix inversion (SMI) adaptive antenna array for suppressing weak interfering signals is described. The experimental adaptive array uses a modified SMI algorithm to increase the interference suppression. In the modified SMI algorithm, the sample covariance matrix is redefined to reduce the effect of thermal noise on the weights of an adaptive array. This is accomplished by subtracting a fraction of the smallest eigenvalue of the original covariance matrix from its diagonal entries. The test results obtained using the experimental system are compared with theoretical results. The two show a good agreement.

  1. Dereverberation and denoising based on generalized spectral subtraction by multi-channel LMS algorithm using a small-scale microphone array

    NASA Astrophysics Data System (ADS)

    Wang, Longbiao; Odani, Kyohei; Kai, Atsuhiko

    2012-12-01

    A blind dereverberation method based on power spectral subtraction (SS) using a multi-channel least mean squares algorithm was previously proposed to suppress the reverberant speech without additive noise. The results of isolated word speech recognition experiments showed that this method achieved significant improvements over conventional cepstral mean normalization (CMN) in a reverberant environment. In this paper, we propose a blind dereverberation method based on generalized spectral subtraction (GSS), which has been shown to be effective for noise reduction, instead of power SS. Furthermore, we extend the missing feature theory (MFT), which was initially proposed to enhance the robustness of additive noise, to dereverberation. A one-stage dereverberation and denoising method based on GSS is presented to simultaneously suppress both the additive noise and nonstationary multiplicative noise (reverberation). The proposed dereverberation method based on GSS with MFT is evaluated on a large vocabulary continuous speech recognition task. When the additive noise was absent, the dereverberation method based on GSS with MFT using only 2 microphones achieves a relative word error reduction rate of 11.4 and 32.6% compared to the dereverberation method based on power SS and the conventional CMN, respectively. For the reverberant and noisy speech, the dereverberation and denoising method based on GSS achieves a relative word error reduction rate of 12.8% compared to the conventional CMN with GSS-based additive noise reduction method. We also analyze the effective factors of the compensation parameter estimation for the dereverberation method based on SS, such as the number of channels (the number of microphones), the length of reverberation to be suppressed, and the length of the utterance used for parameter estimation. The experimental results showed that the SS-based method is robust in a variety of reverberant environments for both isolated and continuous speech recognition and under various parameter estimation conditions.

  2. Salt-and-pepper noise removal using modified mean filter and total variation minimization

    NASA Astrophysics Data System (ADS)

    Aghajarian, Mickael; McInroy, John E.; Wright, Cameron H. G.

    2018-01-01

    The search for effective noise removal algorithms is still a real challenge in the field of image processing. An efficient image denoising method is proposed for images that are corrupted by salt-and-pepper noise. Salt-and-pepper noise takes either the minimum or maximum intensity, so the proposed method restores the image by processing the pixels whose values are either 0 or 255 (assuming an 8-bit/pixel image). For low levels of noise corruption (less than or equal to 50% noise density), the method employs the modified mean filter (MMF), while for heavy noise corruption, noisy pixels values are replaced by the weighted average of the MMF and the total variation of corrupted pixels, which is minimized using convex optimization. Two fuzzy systems are used to determine the weights for taking average. To evaluate the performance of the algorithm, several test images with different noise levels are restored, and the results are quantitatively measured by peak signal-to-noise ratio and mean absolute error. The results show that the proposed scheme gives considerable noise suppression up to a noise density of 90%, while almost completely maintaining edges and fine details of the original image.

  3. Research on Bayes matting algorithm based on Gaussian mixture model

    NASA Astrophysics Data System (ADS)

    Quan, Wei; Jiang, Shan; Han, Cheng; Zhang, Chao; Jiang, Zhengang

    2015-12-01

    The digital matting problem is a classical problem of imaging. It aims at separating non-rectangular foreground objects from a background image, and compositing with a new background image. Accurate matting determines the quality of the compositing image. A Bayesian matting Algorithm Based on Gaussian Mixture Model is proposed to solve this matting problem. Firstly, the traditional Bayesian framework is improved by introducing Gaussian mixture model. Then, a weighting factor is added in order to suppress the noises of the compositing images. Finally, the effect is further improved by regulating the user's input. This algorithm is applied to matting jobs of classical images. The results are compared to the traditional Bayesian method. It is shown that our algorithm has better performance in detail such as hair. Our algorithm eliminates the noise well. And it is very effectively in dealing with the kind of work, such as interested objects with intricate boundaries.

  4. An innovative information fusion method with adaptive Kalman filter for integrated INS/GPS navigation of autonomous vehicles

    NASA Astrophysics Data System (ADS)

    Liu, Yahui; Fan, Xiaoqian; Lv, Chen; Wu, Jian; Li, Liang; Ding, Dawei

    2018-02-01

    Information fusion method of INS/GPS navigation system based on filtering technology is a research focus at present. In order to improve the precision of navigation information, a navigation technology based on Adaptive Kalman Filter with attenuation factor is proposed to restrain noise in this paper. The algorithm continuously updates the measurement noise variance and processes noise variance of the system by collecting the estimated and measured values, and this method can suppress white noise. Because a measured value closer to the current time would more accurately reflect the characteristics of the noise, an attenuation factor is introduced to increase the weight of the current value, in order to deal with the noise variance caused by environment disturbance. To validate the effectiveness of the proposed algorithm, a series of road tests are carried out in urban environment. The GPS and IMU data of the experiments were collected and processed by dSPACE and MATLAB/Simulink. Based on the test results, the accuracy of the proposed algorithm is 20% higher than that of a traditional Adaptive Kalman Filter. It also shows that the precision of the integrated navigation can be improved due to the reduction of the influence of environment noise.

  5. Noisy image magnification with total variation regularization and order-changed dictionary learning

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Chang, Zhiguo; Fan, Jiulun; Zhao, Xiaoqiang; Wu, Xiaomin; Wang, Yanzi

    2015-12-01

    Noisy low resolution (LR) images are always obtained in real applications, but many existing image magnification algorithms can not get good result from a noisy LR image. We propose a two-step image magnification algorithm to solve this problem. The proposed algorithm takes the advantages of both regularization-based method and learning-based method. The first step is based on total variation (TV) regularization and the second step is based on sparse representation. In the first step, we add a constraint on the TV regularization model to magnify the LR image and at the same time to suppress the noise in it. In the second step, we propose an order-changed dictionary training algorithm to train the dictionaries which is dominated by texture details. Experimental results demonstrate that the proposed algorithm performs better than many other algorithms when the noise is not serious. The proposed algorithm can also provide better visual quality on natural LR images.

  6. Non-heuristic automatic techniques for overcoming low signal-to-noise-ratio bias of localization microscopy and multiple signal classification algorithm.

    PubMed

    Agarwal, Krishna; Macháň, Radek; Prasad, Dilip K

    2018-03-21

    Localization microscopy and multiple signal classification algorithm use temporal stack of image frames of sparse emissions from fluorophores to provide super-resolution images. Localization microscopy localizes emissions in each image independently and later collates the localizations in all the frames, giving same weight to each frame irrespective of its signal-to-noise ratio. This results in a bias towards frames with low signal-to-noise ratio and causes cluttered background in the super-resolved image. User-defined heuristic computational filters are employed to remove a set of localizations in an attempt to overcome this bias. Multiple signal classification performs eigen-decomposition of the entire stack, irrespective of the relative signal-to-noise ratios of the frames, and uses a threshold to classify eigenimages into signal and null subspaces. This results in under-representation of frames with low signal-to-noise ratio in the signal space and over-representation in the null space. Thus, multiple signal classification algorithms is biased against frames with low signal-to-noise ratio resulting into suppression of the corresponding fluorophores. This paper presents techniques to automatically debias localization microscopy and multiple signal classification algorithm of these biases without compromising their resolution and without employing heuristics, user-defined criteria. The effect of debiasing is demonstrated through five datasets of invitro and fixed cell samples.

  7. Multiresolution edge detection using enhanced fuzzy c-means clustering for ultrasound image speckle reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsantis, Stavros; Spiliopoulos, Stavros; Karnabatidis, Dimitrios

    Purpose: Speckle suppression in ultrasound (US) images of various anatomic structures via a novel speckle noise reduction algorithm. Methods: The proposed algorithm employs an enhanced fuzzy c-means (EFCM) clustering and multiresolution wavelet analysis to distinguish edges from speckle noise in US images. The edge detection procedure involves a coarse-to-fine strategy with spatial and interscale constraints so as to classify wavelet local maxima distribution at different frequency bands. As an outcome, an edge map across scales is derived whereas the wavelet coefficients that correspond to speckle are suppressed in the inverse wavelet transform acquiring the denoised US image. Results: A totalmore » of 34 thyroid, liver, and breast US examinations were performed on a Logiq 9 US system. Each of these images was subjected to the proposed EFCM algorithm and, for comparison, to commercial speckle reduction imaging (SRI) software and another well-known denoising approach, Pizurica's method. The quantification of the speckle suppression performance in the selected set of US images was carried out via Speckle Suppression Index (SSI) with results of 0.61, 0.71, and 0.73 for EFCM, SRI, and Pizurica's methods, respectively. Peak signal-to-noise ratios of 35.12, 33.95, and 29.78 and edge preservation indices of 0.94, 0.93, and 0.86 were found for the EFCM, SIR, and Pizurica's method, respectively, demonstrating that the proposed method achieves superior speckle reduction performance and edge preservation properties. Based on two independent radiologists’ qualitative evaluation the proposed method significantly improved image characteristics over standard baseline B mode images, and those processed with the Pizurica's method. Furthermore, it yielded results similar to those for SRI for breast and thyroid images significantly better results than SRI for liver imaging, thus improving diagnostic accuracy in both superficial and in-depth structures. Conclusions: A new wavelet-based EFCM clustering model was introduced toward noise reduction and detail preservation. The proposed method improves the overall US image quality, which in turn could affect the decision-making on whether additional imaging and/or intervention is needed.« less

  8. Multiresolution edge detection using enhanced fuzzy c-means clustering for ultrasound image speckle reduction.

    PubMed

    Tsantis, Stavros; Spiliopoulos, Stavros; Skouroliakou, Aikaterini; Karnabatidis, Dimitrios; Hazle, John D; Kagadis, George C

    2014-07-01

    Speckle suppression in ultrasound (US) images of various anatomic structures via a novel speckle noise reduction algorithm. The proposed algorithm employs an enhanced fuzzy c-means (EFCM) clustering and multiresolution wavelet analysis to distinguish edges from speckle noise in US images. The edge detection procedure involves a coarse-to-fine strategy with spatial and interscale constraints so as to classify wavelet local maxima distribution at different frequency bands. As an outcome, an edge map across scales is derived whereas the wavelet coefficients that correspond to speckle are suppressed in the inverse wavelet transform acquiring the denoised US image. A total of 34 thyroid, liver, and breast US examinations were performed on a Logiq 9 US system. Each of these images was subjected to the proposed EFCM algorithm and, for comparison, to commercial speckle reduction imaging (SRI) software and another well-known denoising approach, Pizurica's method. The quantification of the speckle suppression performance in the selected set of US images was carried out via Speckle Suppression Index (SSI) with results of 0.61, 0.71, and 0.73 for EFCM, SRI, and Pizurica's methods, respectively. Peak signal-to-noise ratios of 35.12, 33.95, and 29.78 and edge preservation indices of 0.94, 0.93, and 0.86 were found for the EFCM, SIR, and Pizurica's method, respectively, demonstrating that the proposed method achieves superior speckle reduction performance and edge preservation properties. Based on two independent radiologists' qualitative evaluation the proposed method significantly improved image characteristics over standard baseline B mode images, and those processed with the Pizurica's method. Furthermore, it yielded results similar to those for SRI for breast and thyroid images significantly better results than SRI for liver imaging, thus improving diagnostic accuracy in both superficial and in-depth structures. A new wavelet-based EFCM clustering model was introduced toward noise reduction and detail preservation. The proposed method improves the overall US image quality, which in turn could affect the decision-making on whether additional imaging and/or intervention is needed.

  9. An experimental adaptive array to suppress weak interfering signals

    NASA Technical Reports Server (NTRS)

    Walton, Eric K.; Gupta, Inder J.; Ksienski, Aharon A.; Ward, James

    1988-01-01

    An experimental adaptive antenna system to suppress weak interfering signals is described. It is a sidelobe canceller with two auxiliary elements. Modified feedback loops are used to control the array weights. The received signals are simulated in hardware for parameter control. Digital processing is used for algorithm implementation and performance evaluation. The experimental results are presented. They show that interfering signals as much as 10 dB below the thermal noise level in the main channel are suppressed by 20-30 dB. Such a system has potential application in suppressing the interference encountered in direct broadcast satellite communication systems.

  10. A universal denoising and peak picking algorithm for LC-MS based on matched filtration in the chromatographic time domain.

    PubMed

    Andreev, Victor P; Rejtar, Tomas; Chen, Hsuan-Shen; Moskovets, Eugene V; Ivanov, Alexander R; Karger, Barry L

    2003-11-15

    A new denoising and peak picking algorithm (MEND, matched filtration with experimental noise determination) for analysis of LC-MS data is described. The algorithm minimizes both random and chemical noise in order to determine MS peaks corresponding to sample components. Noise characteristics in the data set are experimentally determined and used for efficient denoising. MEND is shown to enable low-intensity peaks to be detected, thus providing additional useful information for sample analysis. The process of denoising, performed in the chromatographic time domain, does not distort peak shapes in the m/z domain, allowing accurate determination of MS peak centroids, including low-intensity peaks. MEND has been applied to denoising of LC-MALDI-TOF-MS and LC-ESI-TOF-MS data for tryptic digests of protein mixtures. MEND is shown to suppress chemical and random noise and baseline fluctuations, as well as filter out false peaks originating from the matrix (MALDI) or mobile phase (ESI). In addition, MEND is shown to be effective for protein expression analysis by allowing selection of a large number of differentially expressed ICAT pairs, due to increased signal-to-noise ratio and mass accuracy.

  11. Analysis and suppression of passive noise in surface microseismic data

    NASA Astrophysics Data System (ADS)

    Forghani-Arani, Farnoush

    Surface microseismic surveys are gaining popularity in monitoring the hydraulic fracturing process. The effectiveness of these surveys, however, is strongly dependent on the signal-to-noise ratio of the acquired data. Cultural and industrial noise generated during hydraulic fracturing operations usually dominate the data, thereby decreasing the effectiveness of using these data in identifying and locating microseismic events. Hence, noise suppression is a critical step in surface microseismic monitoring. In this thesis, I focus on two important aspects in using surface-recorded microseismic seismic data: first, I take advantage of the unwanted surface noise to understand the characteristics of these noise and extract information about the propagation medium from the noise; second, I propose effective techniques to suppress the surface noise while preserving the waveforms that contain information about the source of microseisms. Automated event identification on passive seismic data using only a few receivers is challenging especially when the record lengths span over long durations of time. I introduce an automatic event identification algorithm that is designed specifically for detecting events in passive data acquired with a small number of receivers. I demonstrate that the conventional STA/LTA (Short-term Average/Long-term Average) algorithm is not sufficiently effective in event detection in the common case of low signal-to-noise ratio. With a cross-correlation based method as an extension of the STA/LTA algorithm, even low signal-to-noise events (that were not detectable with conventional STA/LTA) were revealed. Surface microseismic data contains surface-waves (generated primarily from hydraulic fracturing activities) and body-waves in the form of microseismic events. It is challenging to analyze the surface-waves on the recorded data directly because of the randomness of their source and their unknown source signatures. I use seismic interferometry to extract the surface-wave arrivals. Interferometry is a powerful tool to extract waves (including body-wave and surface-waves) that propagate from any receiver in the array (called a pseudo source) to the other receivers across the array. Since most of the noise sources in surface microseismic data lie on the surface, seismic interferometry yields pseudo source gathers dominated by surface-wave energy. The dispersive characteristics of these surface-waves are important properties that can be used to extract information necessary for suppressing these waves. I demonstrate the application of interferometry to surface passive data recorded during the hydraulic fracturing operation of a tight gas reservoir and extract the dispersion properties of surface-waves corresponding to a pseudo-shot gather. Comparison of the dispersion characteristics of the surface waves from the pseudo-shot gather with that of an active shot-gather shows interesting similarities and differences. The dispersion character (e.g. velocity change with frequency) of the fundamental mode was observed to have the same behavior for both the active and passive data. However, for the higher mode surface-waves, the dispersion properties are extracted at different frequency ranges. Conventional noise suppression techniques in passive data are mostly stacking-based that rely on enforcing the amplitude of the signal by stacking the waveforms at the receivers and are unable to preserve the waveforms at the individual receivers necessary for estimating the microseismic source location and source mechanism. Here, I introduce a technique based on the tau - p transform, that effectively identifies and separates microseismic events from surface-wave noise in the tau -p domain. This technique is superior to conventional stacking-based noise suppression techniques, because it preserves the waveforms at individual receivers. Application of this methodology to microseismic events with isotropic and double-couple source mechanism, show substantial improvement in the signal-to-noise ratio. Imaging of the processed field data also show improved imaging of the hypocenter location of the microseismic source. In the case of double-couple source mechanism, I suggest two approaches for unifying the polarities at the receivers, a cross-correlation approach and a semblance-based prediction approach. The semblance-based approach is more effective at unifying the polarities, especially for low signal-to-noise ratio data.

  12. Broadband Noise Control Using Predictive Techniques

    NASA Technical Reports Server (NTRS)

    Eure, Kenneth W.; Juang, Jer-Nan

    1997-01-01

    Predictive controllers have found applications in a wide range of industrial processes. Two types of such controllers are generalized predictive control and deadbeat control. Recently, deadbeat control has been augmented to include an extended horizon. This modification, named deadbeat predictive control, retains the advantage of guaranteed stability and offers a novel way of control weighting. This paper presents an application of both predictive control techniques to vibration suppression of plate modes. Several system identification routines are presented. Both algorithms are outlined and shown to be useful in the suppression of plate vibrations. Experimental results are given and the algorithms are shown to be applicable to non- minimal phase systems.

  13. A false-alarm aware methodology to develop robust and efficient multi-scale infrared small target detection algorithm

    NASA Astrophysics Data System (ADS)

    Moradi, Saed; Moallem, Payman; Sabahi, Mohamad Farzan

    2018-03-01

    False alarm rate and detection rate are still two contradictory metrics for infrared small target detection in an infrared search and track system (IRST), despite the development of new detection algorithms. In certain circumstances, not detecting true targets is more tolerable than detecting false items as true targets. Hence, considering background clutter and detector noise as the sources of the false alarm in an IRST system, in this paper, a false alarm aware methodology is presented to reduce false alarm rate while the detection rate remains undegraded. To this end, advantages and disadvantages of each detection algorithm are investigated and the sources of the false alarms are determined. Two target detection algorithms having independent false alarm sources are chosen in a way that the disadvantages of the one algorithm can be compensated by the advantages of the other one. In this work, multi-scale average absolute gray difference (AAGD) and Laplacian of point spread function (LoPSF) are utilized as the cornerstones of the desired algorithm of the proposed methodology. After presenting a conceptual model for the desired algorithm, it is implemented through the most straightforward mechanism. The desired algorithm effectively suppresses background clutter and eliminates detector noise. Also, since the input images are processed through just four different scales, the desired algorithm has good capability for real-time implementation. Simulation results in term of signal to clutter ratio and background suppression factor on real and simulated images prove the effectiveness and the performance of the proposed methodology. Since the desired algorithm was developed based on independent false alarm sources, our proposed methodology is expandable to any pair of detection algorithms which have different false alarm sources.

  14. The Analysis and Suppression of the spike noise in vibrator record

    NASA Astrophysics Data System (ADS)

    Jia, H.; Jiang, T.; Xu, X.; Ge, L.; Lin, J.; Yang, Z.

    2013-12-01

    During the seismic exploration with vibrator, seismic recording systems have often been affected by random spike noise in the background, which leads to strong data distortions as a result of the cross-correlation processing of the vibrator method. Partial or total loss of the desired seismic information is possible if no automatic spike reduction is available in the field prior to correlation of the field record. Generally speaking, original record of vibrator is uncorrelated data, in which the signal is non-wavelet form. In order to obtain the seismic record similar to explosive source, the signal of uncorrelated data needs to use the correlation algorithm to compress into wavelet form. The correlation process results in that the interference of spike in correlated data is not only being suppressed, but also being expanded. So the spike noise suppression of vibrator is indispensable. According to numerical simulation results, the effect of spike in the vibrator record is mainly affected by the amplitude and proportional points in the uncorrelated record. When the spike noise ratio in uncorrelated record reaches 1.5% and the average amplitude exceeds 200, it will make the SNR(signal-to-noise ratio) of the correlated record lower than 0dB, so that it is difficult to separate the signal. While the amplitude and ratio is determined by the intensity of background noise. Therefore, when the noise level is strong, in order to improve SNR of the seismic data, the uncorrelated record of vibrator need to take necessary steps to suppress spike noise. For the sake of reducing the influence of the spike noise, we need to make the detection and suppression of spike noise process for the uncorrelated record. Because vibrator works by inputting sweep signal into the underground long time, ideally, the peak and valley values of each trace have little change. On the basis of the peak and valley values, we can get a reference amplitude value. Then the spike can be detected and suppressed. After this process, it can reduce the effection of spike noise in the uncorrelated record to improve the SNR. At present, because the memory space of vibrator uncorrelated data is always very large, in order to reduce acquisition costs, we usually record correlated data directly. It's reasonable if there is no strong spike sneaking into uncorrelated record. However, due to the fact that the random spike in the background is not avoidable in the acquisition process, and the instantaneous input energy of the vibrator is probably smaller than spike noise, which makes the uncorrelated data contain a certain amount of spike noise, it severely reduces the acquisition quality of vibrator if there is no noise suppression module beforehand. Of course, the suppressing process of spike noise can be carried out in the field acquisition or data processing stage. In the field of vibrator acquisition system, we can use the spike noise suppression before the correlated module, so that it can directly record correlated data without the spike affection. If in the stage of data processing, it is necessary to record uncorrelated data.

  15. Ladar range image denoising by a nonlocal probability statistics algorithm

    NASA Astrophysics Data System (ADS)

    Xia, Zhi-Wei; Li, Qi; Xiong, Zhi-Peng; Wang, Qi

    2013-01-01

    According to the characteristic of range images of coherent ladar and the basis of nonlocal means (NLM), a nonlocal probability statistics (NLPS) algorithm is proposed in this paper. The difference is that NLM performs denoising using the mean of the conditional probability distribution function (PDF) while NLPS using the maximum of the marginal PDF. In the algorithm, similar blocks are found out by the operation of block matching and form a group. Pixels in the group are analyzed by probability statistics and the gray value with maximum probability is used as the estimated value of the current pixel. The simulated range images of coherent ladar with different carrier-to-noise ratio and real range image of coherent ladar with 8 gray-scales are denoised by this algorithm, and the results are compared with those of median filter, multitemplate order mean filter, NLM, median nonlocal mean filter and its incorporation of anatomical side information, and unsupervised information-theoretic adaptive filter. The range abnormality noise and Gaussian noise in range image of coherent ladar are effectively suppressed by NLPS.

  16. Single image super resolution algorithm based on edge interpolation in NSCT domain

    NASA Astrophysics Data System (ADS)

    Zhang, Mengqun; Zhang, Wei; He, Xinyu

    2017-11-01

    In order to preserve the texture and edge information and to improve the space resolution of single frame, a superresolution algorithm based on Contourlet (NSCT) is proposed. The original low resolution image is transformed by NSCT, and the directional sub-band coefficients of the transform domain are obtained. According to the scale factor, the high frequency sub-band coefficients are amplified by the interpolation method based on the edge direction to the desired resolution. For high frequency sub-band coefficients with noise and weak targets, Bayesian shrinkage is used to calculate the threshold value. The coefficients below the threshold are determined by the correlation among the sub-bands of the same scale to determine whether it is noise and de-noising. The anisotropic diffusion filter is used to effectively enhance the weak target in the low contrast region of the target and background. Finally, the high-frequency sub-band is amplified by the bilinear interpolation method to the desired resolution, and then combined with the high-frequency subband coefficients after de-noising and small target enhancement, the NSCT inverse transform is used to obtain the desired resolution image. In order to verify the effectiveness of the proposed algorithm, the proposed algorithm and several common image reconstruction methods are used to test the synthetic image, motion blurred image and hyperspectral image, the experimental results show that compared with the traditional single resolution algorithm, the proposed algorithm can obtain smooth edges and good texture features, and the reconstructed image structure is well preserved and the noise is suppressed to some extent.

  17. A novel pulse compression algorithm for frequency modulated active thermography using band-pass filter

    NASA Astrophysics Data System (ADS)

    Chatterjee, Krishnendu; Roy, Deboshree; Tuli, Suneet

    2017-05-01

    This paper proposes a novel pulse compression algorithm, in the context of frequency modulated thermal wave imaging. The compression filter is derived from a predefined reference pixel in a recorded video, which contains direct measurement of the excitation signal alongside the thermal image of a test piece. The filter causes all the phases of the constituent frequencies to be adjusted to nearly zero value, so that on reconstruction a pulse is obtained. Further, due to band-limited nature of the excitation, signal-to-noise ratio is improved by suppressing out-of-band noise. The result is similar to that of a pulsed thermography experiment, although the peak power is drastically reduced. The algorithm is successfully demonstrated on mild steel and carbon fibre reference samples. Objective comparisons of the proposed pulse compression algorithm with the existing techniques are presented.

  18. An Auditory-Masking-Threshold-Based Noise Suppression Algorithm GMMSE-AMT[ERB] for Listeners with Sensorineural Hearing Loss

    NASA Astrophysics Data System (ADS)

    Natarajan, Ajay; Hansen, John H. L.; Arehart, Kathryn Hoberg; Rossi-Katz, Jessica

    2005-12-01

    This study describes a new noise suppression scheme for hearing aid applications based on the auditory masking threshold (AMT) in conjunction with a modified generalized minimum mean square error estimator (GMMSE) for individual subjects with hearing loss. The representation of cochlear frequency resolution is achieved in terms of auditory filter equivalent rectangular bandwidths (ERBs). Estimation of AMT and spreading functions for masking are implemented in two ways: with normal auditory thresholds and normal auditory filter bandwidths (GMMSE-AMT[ERB]-NH) and with elevated thresholds and broader auditory filters characteristic of cochlear hearing loss (GMMSE-AMT[ERB]-HI). Evaluation is performed using speech corpora with objective quality measures (segmental SNR, Itakura-Saito), along with formal listener evaluations of speech quality rating and intelligibility. While no measurable changes in intelligibility occurred, evaluations showed quality improvement with both algorithm implementations. However, the customized formulation based on individual hearing losses was similar in performance to the formulation based on the normal auditory system.

  19. An Application of Reassigned Time-Frequency Representations for Seismic Noise/Signal Decomposition

    NASA Astrophysics Data System (ADS)

    Mousavi, S. M.; Langston, C. A.

    2016-12-01

    Seismic data recorded by surface arrays are often strongly contaminated by unwanted noise. This background noise makes the detection of small magnitude events difficult. An automatic method for seismic noise/signal decomposition is presented based upon an enhanced time-frequency representation. Synchrosqueezing is a time-frequency reassignment method aimed at sharpening a time-frequency picture. Noise can be distinguished from the signal and suppressed more easily in this reassigned domain. The threshold level is estimated using a general cross validation approach that does not rely on any prior knowledge about the noise level. Efficiency of thresholding has been improved by adding a pre-processing step based on higher order statistics and a post-processing step based on adaptive hard-thresholding. In doing so, both accuracy and speed of the denoising have been improved compared to our previous algorithms (Mousavi and Langston, 2016a, 2016b; Mousavi et al., 2016). The proposed algorithm can either kill the noise (either white or colored) and keep the signal or kill the signal and keep the noise. Hence, It can be used in either normal denoising applications or in ambient noise studies. Application of the proposed method on synthetic and real seismic data shows the effectiveness of the method for denoising/designaling of local microseismic, and ocean bottom seismic data. References: Mousavi, S.M., C. A. Langston., and S. P. Horton (2016), Automatic Microseismic Denoising and Onset Detection Using the Synchrosqueezed-Continuous Wavelet Transform. Geophysics. 81, V341-V355, doi: 10.1190/GEO2015-0598.1. Mousavi, S.M., and C. A. Langston (2016a), Hybrid Seismic Denoising Using Higher-Order Statistics and Improved Wavelet Block Thresholding. Bull. Seismol. Soc. Am., 106, doi: 10.1785/0120150345. Mousavi, S.M., and C.A. Langston (2016b), Adaptive noise estimation and suppression for improving microseismic event detection, Journal of Applied Geophysics., doi: http://dx.doi.org/10.1016/j.jappgeo.2016.06.008.

  20. Configuration study for a 30 GHz monolithic receive array, volume 2

    NASA Technical Reports Server (NTRS)

    Nester, W. H.; Cleaveland, B.; Edward, B.; Gotkis, S.; Hesserbacker, G.; Loh, J.; Mitchell, B.

    1984-01-01

    The formalism of the sidelobe suppression algorithm and the method used to calculate the system noise figure for a 30 GHz monolithic receive array are presented. Results of array element weight determination and performance studies of a Gregorian aperture image system are also given.

  1. ADAPTIVE WATER SENSOR SIGNAL PROCESSING: EXPERIMENTAL RESULTS AND IMPLICATIONS FOR ONLINE CONTAMINANT WARNING SYSTEMS

    EPA Science Inventory

    A contaminant detection technique and its optimization algorithms have two principal functions. One is the adaptive signal treatment that suppresses background noise and enhances contaminant signals, leading to a promising detection of water quality changes at a false rate as low...

  2. The Hilbert-Huang Transform-Based Denoising Method for the TEM Response of a PRBS Source Signal

    NASA Astrophysics Data System (ADS)

    Hai, Li; Guo-qiang, Xue; Pan, Zhao; Hua-sen, Zhong; Khan, Muhammad Younis

    2016-08-01

    The denoising process is critical in processing transient electromagnetic (TEM) sounding data. For the full waveform pseudo-random binary sequences (PRBS) response, an inadequate noise estimation may result in an erroneous interpretation. We consider the Hilbert-Huang transform (HHT) and its application to suppress the noise in the PRBS response. The focus is on the thresholding scheme to suppress the noise and the analysis of the signal based on its Hilbert time-frequency representation. The method first decomposes the signal into the intrinsic mode function, and then, inspired by the thresholding scheme in wavelet analysis; an adaptive and interval thresholding is conducted to set to zero all the components in intrinsic mode function which are lower than a threshold related to the noise level. The algorithm is based on the characteristic of the PRBS response. The HHT-based denoising scheme is tested on the synthetic and field data with the different noise levels. The result shows that the proposed method has a good capability in denoising and detail preservation.

  3. Analysis of a simplified normalized covariance measure based on binary weighting functions for predicting the intelligibility of noise-suppressed speech.

    PubMed

    Chen, Fei; Loizou, Philipos C

    2010-12-01

    The normalized covariance measure (NCM) has been shown previously to predict reliably the intelligibility of noise-suppressed speech containing non-linear distortions. This study analyzes a simplified NCM measure that requires only a small number of bands (not necessarily contiguous) and uses simple binary (1 or 0) weighting functions. The rationale behind the use of a small number of bands is to account for the fact that the spectral information contained in contiguous or nearby bands is correlated and redundant. The modified NCM measure was evaluated with speech intelligibility scores obtained by normal-hearing listeners in 72 noisy conditions involving noise-suppressed speech corrupted by four different types of maskers (car, babble, train, and street interferences). High correlation (r = 0.8) was obtained with the modified NCM measure even when only one band was used. Further analysis revealed a masker-specific pattern of correlations when only one band was used, and bands with low correlation signified the corresponding envelopes that have been severely distorted by the noise-suppression algorithm and/or the masker. Correlation improved to r = 0.84 when only two disjoint bands (centered at 325 and 1874 Hz) were used. Even further improvements in correlation (r = 0.85) were obtained when three or four lower-frequency (<700 Hz) bands were selected.

  4. Analysis of Modified SMI Method for Adaptive Array Weight Control. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Dilsavor, Ronald Louis

    1989-01-01

    An adaptive array is used to receive a desired signal in the presence of weak interference signals which need to be suppressed. A modified sample matrix inversion (SMI) algorithm controls the array weights. The modification leads to increased interference suppression by subtracting a fraction of the noise power from the diagonal elements of the covariance matrix. The modified algorithm maximizes an intuitive power ratio criterion. The expected values and variances of the array weights, output powers, and power ratios as functions of the fraction and the number of snapshots are found and compared to computer simulation and real experimental array performance. Reduced-rank covariance approximations and errors in the estimated covariance are also described.

  5. A complex symbol signal-to-noise ratio estimator and its performance

    NASA Technical Reports Server (NTRS)

    Feria, Y.

    1994-01-01

    This article presents an algorithm for estimating the signal-to-noise ratio (SNR) of signals that contain data on a downconverted suppressed carrier or the first harmonic of a square-wave subcarrier. This algorithm can be used to determine the performance of the full-spectrum combiner for the Galileo S-band (2.2- to 2.3-GHz) mission by measuring the input and output symbol SNR. A performance analysis of the algorithm shows that the estimator can estimate the complex symbol SNR using 10,000 symbols at a true symbol SNR of -5 dB with a mean of -4.9985 dB and a standard deviation of 0.2454 dB, and these analytical results are checked by simulations of 100 runs with a mean of -5.06 dB and a standard deviation of 0.2506 dB.

  6. Noise reduction algorithm with the soft thresholding based on the Shannon entropy and bone-conduction speech cross- correlation bands.

    PubMed

    Na, Sung Dae; Wei, Qun; Seong, Ki Woong; Cho, Jin Ho; Kim, Myoung Nam

    2018-01-01

    The conventional methods of speech enhancement, noise reduction, and voice activity detection are based on the suppression of noise or non-speech components of the target air-conduction signals. However, air-conduced speech is hard to differentiate from babble or white noise signals. To overcome this problem, the proposed algorithm uses the bone-conduction speech signals and soft thresholding based on the Shannon entropy principle and cross-correlation of air- and bone-conduction signals. A new algorithm for speech detection and noise reduction is proposed, which makes use of the Shannon entropy principle and cross-correlation with the bone-conduction speech signals to threshold the wavelet packet coefficients of the noisy speech. The proposed method can be get efficient result by objective quality measure that are PESQ, RMSE, Correlation, SNR. Each threshold is generated by the entropy and cross-correlation approaches in the decomposed bands using the wavelet packet decomposition. As a result, the noise is reduced by the proposed method using the MATLAB simulation. To verify the method feasibility, we compared the air- and bone-conduction speech signals and their spectra by the proposed method. As a result, high performance of the proposed method is confirmed, which makes it quite instrumental to future applications in communication devices, noisy environment, construction, and military operations.

  7. Trackside acoustic diagnosis of axle box bearing based on kurtosis-optimization wavelet denoising

    NASA Astrophysics Data System (ADS)

    Peng, Chaoyong; Gao, Xiaorong; Peng, Jianping; Wang, Ai

    2018-04-01

    As one of the key components of railway vehicles, the operation condition of the axle box bearing has a significant effect on traffic safety. The acoustic diagnosis is more suitable than vibration diagnosis for trackside monitoring. The acoustic signal generated by the train axle box bearing is an amplitude modulation and frequency modulation signal with complex train running noise. Although empirical mode decomposition (EMD) and some improved time-frequency algorithms have proved to be useful in bearing vibration signal processing, it is hard to extract the bearing fault signal from serious trackside acoustic background noises by using those algorithms. Therefore, a kurtosis-optimization-based wavelet packet (KWP) denoising algorithm is proposed, as the kurtosis is the key indicator of bearing fault signal in time domain. Firstly, the geometry based Doppler correction is applied to signals of each sensor, and with the signal superposition of multiple sensors, random noises and impulse noises, which are the interference of the kurtosis indicator, are suppressed. Then, the KWP is conducted. At last, the EMD and Hilbert transform is applied to extract the fault feature. Experiment results indicate that the proposed method consisting of KWP and EMD is superior to the EMD.

  8. Iterative h-minima-based marker-controlled watershed for cell nucleus segmentation.

    PubMed

    Koyuncu, Can Fahrettin; Akhan, Ece; Ersahin, Tulin; Cetin-Atalay, Rengul; Gunduz-Demir, Cigdem

    2016-04-01

    Automated microscopy imaging systems facilitate high-throughput screening in molecular cellular biology research. The first step of these systems is cell nucleus segmentation, which has a great impact on the success of the overall system. The marker-controlled watershed is a technique commonly used by the previous studies for nucleus segmentation. These studies define their markers finding regional minima on the intensity/gradient and/or distance transform maps. They typically use the h-minima transform beforehand to suppress noise on these maps. The selection of the h value is critical; unnecessarily small values do not sufficiently suppress the noise, resulting in false and oversegmented markers, and unnecessarily large ones suppress too many pixels, causing missing and undersegmented markers. Because cell nuclei show different characteristics within an image, the same h value may not work to define correct markers for all the nuclei. To address this issue, in this work, we propose a new watershed algorithm that iteratively identifies its markers, considering a set of different h values. In each iteration, the proposed algorithm defines a set of candidates using a particular h value and selects the markers from those candidates provided that they fulfill the size requirement. Working with widefield fluorescence microscopy images, our experiments reveal that the use of multiple h values in our iterative algorithm leads to better segmentation results, compared to its counterparts. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.

  9. Inverse determination of the penalty parameter in penalized weighted least-squares algorithm for noise reduction of low-dose CBCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing; Guan, Huaiqun; Solberg, Timothy

    2011-07-15

    Purpose: A statistical projection restoration algorithm based on the penalized weighted least-squares (PWLS) criterion can substantially improve the image quality of low-dose CBCT images. The performance of PWLS is largely dependent on the choice of the penalty parameter. Previously, the penalty parameter was chosen empirically by trial and error. In this work, the authors developed an inverse technique to calculate the penalty parameter in PWLS for noise suppression of low-dose CBCT in image guided radiotherapy (IGRT). Methods: In IGRT, a daily CBCT is acquired for the same patient during a treatment course. In this work, the authors acquired the CBCTmore » with a high-mAs protocol for the first session and then a lower mAs protocol for the subsequent sessions. The high-mAs projections served as the goal (ideal) toward, which the low-mAs projections were to be smoothed by minimizing the PWLS objective function. The penalty parameter was determined through an inverse calculation of the derivative of the objective function incorporating both the high and low-mAs projections. Then the parameter obtained can be used for PWLS to smooth the noise in low-dose projections. CBCT projections for a CatPhan 600 and an anthropomorphic head phantom, as well as for a brain patient, were used to evaluate the performance of the proposed technique. Results: The penalty parameter in PWLS was obtained for each CBCT projection using the proposed strategy. The noise in the low-dose CBCT images reconstructed from the smoothed projections was greatly suppressed. Image quality in PWLS-processed low-dose CBCT was comparable to its corresponding high-dose CBCT. Conclusions: A technique was proposed to estimate the penalty parameter for PWLS algorithm. It provides an objective and efficient way to obtain the penalty parameter for image restoration algorithms that require predefined smoothing parameters.« less

  10. Robust statistical methods for impulse noise suppressing of spread spectrum induced polarization data, with application to a mine site, Gansu province, China

    NASA Astrophysics Data System (ADS)

    Liu, Weiqiang; Chen, Rujun; Cai, Hongzhu; Luo, Weibin

    2016-12-01

    In this paper, we investigated the robust processing of noisy spread spectrum induced polarization (SSIP) data. SSIP is a new frequency domain induced polarization method that transmits pseudo-random m-sequence as source current where m-sequence is a broadband signal. The potential information at multiple frequencies can be obtained through measurement. Removing the noise is a crucial problem for SSIP data processing. Considering that if the ordinary mean stack and digital filter are not capable of reducing the impulse noise effectively in SSIP data processing, the impact of impulse noise will remain in the complex resistivity spectrum that will affect the interpretation of profile anomalies. We implemented a robust statistical method to SSIP data processing. The robust least-squares regression is used to fit and remove the linear trend from the original data before stacking. The robust M estimate is used to stack the data of all periods. The robust smooth filter is used to suppress the residual noise for data after stacking. For robust statistical scheme, the most appropriate influence function and iterative algorithm are chosen by testing the simulated data to suppress the outliers' influence. We tested the benefits of the robust SSIP data processing using examples of SSIP data recorded in a test site beside a mine in Gansu province, China.

  11. MO-FG-204-01: Improved Noise Suppression for Dual-Energy CT Through Entropy Minimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrongolo, M; Zhu, L

    2015-06-15

    Purpose: In dual energy CT (DECT), noise amplification during signal decomposition significantly limits the utility of basis material images. Since clinically relevant objects contain a limited number of materials, we propose to suppress noise for DECT based on image entropy minimization. An adaptive weighting scheme is employed during noise suppression to improve decomposition accuracy with limited effect on spatial resolution and image texture preservation. Methods: From decomposed images, we first generate a 2D plot of scattered data points, using basis material densities as coordinates. Data points representing the same material generate a highly asymmetric cluster. We orient an axis bymore » minimizing the entropy in a 1D histogram of these points projected onto the axis. To suppress noise, we replace pixel values of decomposed images with center-of-mass values in the direction perpendicular to the optimal axis. To limit errors due to cluster overlap, we weight each data point’s contribution based on its high and low energy CT values and location within the image. The proposed method’s performance is assessed on physical phantom studies. Electron density is used as the quality metric for decomposition accuracy. Our results are compared to those without noise suppression and with a recently developed iterative method. Results: The proposed method reduces noise standard deviations of the decomposed images by at least one order of magnitude. On the Catphan phantom, this method greatly preserves the spatial resolution and texture of the CT images and limits induced error in measured electron density to below 1.2%. In the head phantom study, the proposed method performs the best in retaining fine, intricate structures. Conclusion: The entropy minimization based algorithm with adaptive weighting substantially reduces DECT noise while preserving image spatial resolution and texture. Future investigations will include extensive investigations on material decomposition accuracy that go beyond the current electron density calculations. This work was supported in part by the National Institutes of Health (NIH) under Grant Number R21 EB012700.« less

  12. Reduction of the Radiating Sound of a Submerged Finite Cylindrical Shell Structure by Active Vibration Control

    PubMed Central

    Kim, Heung Soo; Sohn, Jung Woo; Jeon, Juncheol; Choi, Seung-Bok

    2013-01-01

    In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs) were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water. PMID:23389344

  13. Reduction of the radiating sound of a submerged finite cylindrical shell structure by active vibration control.

    PubMed

    Kim, Heung Soo; Sohn, Jung Woo; Jeon, Juncheol; Choi, Seung-Bok

    2013-02-06

    In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs) were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water.

  14. Spectral Prior Image Constrained Compressed Sensing (Spectral PICCS) for Photon-Counting Computed Tomography

    PubMed Central

    Yu, Zhicong; Leng, Shuai; Li, Zhoubo; McCollough, Cynthia H.

    2016-01-01

    Photon-counting computed tomography (PCCT) is an emerging imaging technique that enables multi-energy imaging with only a single scan acquisition. To enable multi-energy imaging, the detected photons corresponding to the full x-ray spectrum are divided into several subgroups of bin data that correspond to narrower energy windows. Consequently, noise in each energy bin increases compared to the full-spectrum data. This work proposes an iterative reconstruction algorithm for noise suppression in the narrower energy bins used in PCCT imaging. The algorithm is based on the framework of prior image constrained compressed sensing (PICCS) and is called spectral PICCS; it uses the full-spectrum image reconstructed using conventional filtered back-projection as the prior image. The spectral PICCS algorithm is implemented using a constrained optimization scheme with adaptive iterative step sizes such that only two tuning parameters are required in most cases. The algorithm was first evaluated using computer simulations, and then validated by both physical phantoms and in-vivo swine studies using a research PCCT system. Results from both computer-simulation and experimental studies showed substantial image noise reduction in narrow energy bins (43~73%) without sacrificing CT number accuracy or spatial resolution. PMID:27551878

  15. Spectral prior image constrained compressed sensing (spectral PICCS) for photon-counting computed tomography

    NASA Astrophysics Data System (ADS)

    Yu, Zhicong; Leng, Shuai; Li, Zhoubo; McCollough, Cynthia H.

    2016-09-01

    Photon-counting computed tomography (PCCT) is an emerging imaging technique that enables multi-energy imaging with only a single scan acquisition. To enable multi-energy imaging, the detected photons corresponding to the full x-ray spectrum are divided into several subgroups of bin data that correspond to narrower energy windows. Consequently, noise in each energy bin increases compared to the full-spectrum data. This work proposes an iterative reconstruction algorithm for noise suppression in the narrower energy bins used in PCCT imaging. The algorithm is based on the framework of prior image constrained compressed sensing (PICCS) and is called spectral PICCS; it uses the full-spectrum image reconstructed using conventional filtered back-projection as the prior image. The spectral PICCS algorithm is implemented using a constrained optimization scheme with adaptive iterative step sizes such that only two tuning parameters are required in most cases. The algorithm was first evaluated using computer simulations, and then validated by both physical phantoms and in vivo swine studies using a research PCCT system. Results from both computer-simulation and experimental studies showed substantial image noise reduction in narrow energy bins (43-73%) without sacrificing CT number accuracy or spatial resolution.

  16. Speckle Noise Reduction in Optical Coherence Tomography Using Two-dimensional Curvelet-based Dictionary Learning.

    PubMed

    Esmaeili, Mahdad; Dehnavi, Alireza Mehri; Rabbani, Hossein; Hajizadeh, Fedra

    2017-01-01

    The process of interpretation of high-speed optical coherence tomography (OCT) images is restricted due to the large speckle noise. To address this problem, this paper proposes a new method using two-dimensional (2D) curvelet-based K-SVD algorithm for speckle noise reduction and contrast enhancement of intra-retinal layers of 2D spectral-domain OCT images. For this purpose, we take curvelet transform of the noisy image. In the next step, noisy sub-bands of different scales and rotations are separately thresholded with an adaptive data-driven thresholding method, then, each thresholded sub-band is denoised based on K-SVD dictionary learning with a variable size initial dictionary dependent on the size of curvelet coefficients' matrix in each sub-band. We also modify each coefficient matrix to enhance intra-retinal layers, with noise suppression at the same time. We demonstrate the ability of the proposed algorithm in speckle noise reduction of 100 publically available OCT B-scans with and without non-neovascular age-related macular degeneration (AMD), and improvement of contrast-to-noise ratio from 1.27 to 5.12 and mean-to-standard deviation ratio from 3.20 to 14.41 are obtained.

  17. Enhancement of morphological and vascular features in OCT images using a modified Bayesian residual transform

    PubMed Central

    Tan, Bingyao; Wong, Alexander; Bizheva, Kostadinka

    2018-01-01

    A novel image processing algorithm based on a modified Bayesian residual transform (MBRT) was developed for the enhancement of morphological and vascular features in optical coherence tomography (OCT) and OCT angiography (OCTA) images. The MBRT algorithm decomposes the original OCT image into multiple residual images, where each image presents information at a unique scale. Scale selective residual adaptation is used subsequently to enhance morphological features of interest, such as blood vessels and tissue layers, and to suppress irrelevant image features such as noise and motion artefacts. The performance of the proposed MBRT algorithm was tested on a series of cross-sectional and enface OCT and OCTA images of retina and brain tissue that were acquired in-vivo. Results show that the MBRT reduces speckle noise and motion-related imaging artefacts locally, thus improving significantly the contrast and visibility of morphological features in the OCT and OCTA images. PMID:29760996

  18. Dual-microphone and binaural noise reduction techniques for improved speech intelligibility by hearing aid users

    NASA Astrophysics Data System (ADS)

    Yousefian Jazi, Nima

    Spatial filtering and directional discrimination has been shown to be an effective pre-processing approach for noise reduction in microphone array systems. In dual-microphone hearing aids, fixed and adaptive beamforming techniques are the most common solutions for enhancing the desired speech and rejecting unwanted signals captured by the microphones. In fact, beamformers are widely utilized in systems where spatial properties of target source (usually in front of the listener) is assumed to be known. In this dissertation, some dual-microphone coherence-based speech enhancement techniques applicable to hearing aids are proposed. All proposed algorithms operate in the frequency domain and (like traditional beamforming techniques) are purely based on the spatial properties of the desired speech source and does not require any knowledge of noise statistics for calculating the noise reduction filter. This benefit gives our algorithms the ability to address adverse noise conditions, such as situations where interfering talker(s) speaks simultaneously with the target speaker. In such cases, the (adaptive) beamformers lose their effectiveness in suppressing interference, since the noise channel (reference) cannot be built and updated accordingly. This difference is the main advantage of the proposed techniques in the dissertation over traditional adaptive beamformers. Furthermore, since the suggested algorithms are independent of noise estimation, they offer significant improvement in scenarios that the power level of interfering sources are much more than that of target speech. The dissertation also shows the premise behind the proposed algorithms can be extended and employed to binaural hearing aids. The main purpose of the investigated techniques is to enhance the intelligibility level of speech, measured through subjective listening tests with normal hearing and cochlear implant listeners. However, the improvement in quality of the output speech achieved by the algorithms are also presented to show that the proposed methods can be potential candidates for future use in commercial hearing aids and cochlear implant devices.

  19. Blind restoration method of three-dimensional microscope image based on RL algorithm

    NASA Astrophysics Data System (ADS)

    Yao, Jin-li; Tian, Si; Wang, Xiang-rong; Wang, Jing-li

    2013-08-01

    Thin specimens of biological tissue appear three dimensional transparent under a microscope. The optic slice images can be captured by moving the focal planes at the different locations of the specimen. The captured image has low resolution due to the influence of the out-of-focus information comes from the planes adjacent to the local plane. Using traditional methods can remove the blur in the images at a certain degree, but it needs to know the point spread function (PSF) of the imaging system accurately. The accuracy degree of PSF influences the restoration result greatly. In fact, it is difficult to obtain the accurate PSF of the imaging system. In order to restore the original appearance of the specimen under the conditions of the imaging system parameters are unknown or there is noise and spherical aberration in the system, a blind restoration methods of three-dimensional microscope based on the R-L algorithm is proposed in this paper. On the basis of the exhaustive study of the two-dimension R-L algorithm, according to the theory of the microscopy imaging and the wavelet transform denoising pretreatment, we expand the R-L algorithm to three-dimension space. It is a nonlinear restoration method with the maximum entropy constraint. The method doesn't need to know the PSF of the microscopy imaging system precisely to recover the blur image. The image and PSF converge to the optimum solutions by many alterative iterations and corrections. The matlab simulation and experiments results show that the expansion algorithm is better in visual indicators, peak signal to noise ratio and improved signal to noise ratio when compared with the PML algorithm, and the proposed algorithm can suppress noise, restore more details of target, increase image resolution.

  20. Application of the Radon-FCL approach to seismic random noise suppression and signal preservation

    NASA Astrophysics Data System (ADS)

    Meng, Fanlei; Li, Yue; Liu, Yanping; Tian, Yanan; Wu, Ning

    2016-08-01

    The fractal conservation law (FCL) is a linear partial differential equation that is modified by an anti-diffusive term of lower order. The analysis indicated that this algorithm could eliminate high frequencies and preserve or amplify low/medium-frequencies. Thus, this method is quite suitable for the simultaneous noise suppression and enhancement or preservation of seismic signals. However, the conventional FCL filters seismic data only along the time direction, thereby ignoring the spatial coherence between neighbouring traces, which leads to the loss of directional information. Therefore, we consider the development of the conventional FCL into the time-space domain and propose a Radon-FCL approach. We applied a Radon transform to implement the FCL method in this article; performing FCL filtering in the Radon domain achieves a higher level of noise attenuation. Using this method, seismic reflection events can be recovered with the sacrifice of fewer frequency components while effectively attenuating more random noise than conventional FCL filtering. Experiments using both synthetic and common shot point data demonstrate the advantages of the Radon-FCL approach versus the conventional FCL method with regard to both random noise attenuation and seismic signal preservation.

  1. Retinal vessel segmentation on SLO image

    PubMed Central

    Xu, Juan; Ishikawa, Hiroshi; Wollstein, Gadi; Schuman, Joel S.

    2010-01-01

    A scanning laser ophthalmoscopy (SLO) image, taken from optical coherence tomography (OCT), usually has lower global/local contrast and more noise compared to the traditional retinal photograph, which makes the vessel segmentation challenging work. A hybrid algorithm is proposed to efficiently solve these problems by fusing several designed methods, taking the advantages of each method and reducing the error measurements. The algorithm has several steps consisting of image preprocessing, thresholding probe and weighted fusing. Four different methods are first designed to transform the SLO image into feature response images by taking different combinations of matched filter, contrast enhancement and mathematical morphology operators. A thresholding probe algorithm is then applied on those response images to obtain four vessel maps. Weighted majority opinion is used to fuse these vessel maps and generate a final vessel map. The experimental results showed that the proposed hybrid algorithm could successfully segment the blood vessels on SLO images, by detecting the major and small vessels and suppressing the noises. The algorithm showed substantial potential in various clinical applications. The use of this method can be also extended to medical image registration based on blood vessel location. PMID:19163149

  2. Incomplete projection reconstruction of computed tomography based on the modified discrete algebraic reconstruction technique

    NASA Astrophysics Data System (ADS)

    Yang, Fuqiang; Zhang, Dinghua; Huang, Kuidong; Gao, Zongzhao; Yang, YaFei

    2018-02-01

    Based on the discrete algebraic reconstruction technique (DART), this study aims to address and test a new improved algorithm applied to incomplete projection data to generate a high quality reconstruction image by reducing the artifacts and noise in computed tomography. For the incomplete projections, an augmented Lagrangian based on compressed sensing is first used in the initial reconstruction for segmentation of the DART to get higher contrast graphics for boundary and non-boundary pixels. Then, the block matching 3D filtering operator was used to suppress the noise and to improve the gray distribution of the reconstructed image. Finally, simulation studies on the polychromatic spectrum were performed to test the performance of the new algorithm. Study results show a significant improvement in the signal-to-noise ratios (SNRs) and average gradients (AGs) of the images reconstructed from incomplete data. The SNRs and AGs of the new images reconstructed by DART-ALBM were on average 30%-40% and 10% higher than the images reconstructed by DART algorithms. Since the improved DART-ALBM algorithm has a better robustness to limited-view reconstruction, which not only makes the edge of the image clear but also makes the gray distribution of non-boundary pixels better, it has the potential to improve image quality from incomplete projections or sparse projections.

  3. Adaptive Arrays for Weak Interfering Signals: An Experimental System. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Ward, James

    1987-01-01

    An experimental adaptive antenna system was implemented to study the performance of adaptive arrays in the presence of weak interfering signals. It is a sidelobe canceler with two auxiliary elements. Modified feedback loops, which decorrelate the noise components of the two inputs to the loop correlators, control the array weights. Digital processing is used for algorithm implementation and performance evaluation. The results show that the system can suppress interfering signals which are 0 to 10 dB below the thermal noise level in the main channel by 20 to 30 dB. When the desired signal is strong in the auxiliary elements the amount of interference suppression decreases. The amount of degradation depends on the number of interfering signals incident on the communication system. A modified steering vector which overcomes this problem is proposed.

  4. A High-Resolution Demodulation Algorithm for FBG-FP Static-Strain Sensors Based on the Hilbert Transform and Cross Third-Order Cumulant

    PubMed Central

    Huang, Wenzhu; Zhen, Tengkun; Zhang, Wentao; Zhang, Fusheng; Li, Fang

    2015-01-01

    Static strain can be detected by measuring a cross-correlation of reflection spectra from two fiber Bragg gratings (FBGs). However, the static-strain measurement resolution is limited by the dominant Gaussian noise source when using this traditional method. This paper presents a novel static-strain demodulation algorithm for FBG-based Fabry-Perot interferometers (FBG-FPs). The Hilbert transform is proposed for changing the Gaussian distribution of the two FBG-FPs’ reflection spectra, and a cross third-order cumulant is used to use the results of the Hilbert transform and get a group of noise-vanished signals which can be used to accurately calculate the wavelength difference of the two FBG-FPs. The benefit by these processes is that Gaussian noise in the spectra can be suppressed completely in theory and a higher resolution can be reached. In order to verify the precision and flexibility of this algorithm, a detailed theory model and a simulation analysis are given, and an experiment is implemented. As a result, a static-strain resolution of 0.9 nε under laboratory environment condition is achieved, showing a higher resolution than the traditional cross-correlation method. PMID:25923938

  5. A High-Resolution Demodulation Algorithm for FBG-FP Static-Strain Sensors Based on the Hilbert Transform and Cross Third-Order Cumulant.

    PubMed

    Huang, Wenzhu; Zhen, Tengkun; Zhang, Wentao; Zhang, Fusheng; Li, Fang

    2015-04-27

    Static strain can be detected by measuring a cross-correlation of reflection spectra from two fiber Bragg gratings (FBGs). However, the static-strain measurement resolution is limited by the dominant Gaussian noise source when using this traditional method. This paper presents a novel static-strain demodulation algorithm for FBG-based Fabry-Perot interferometers (FBG-FPs). The Hilbert transform is proposed for changing the Gaussian distribution of the two FBG-FPs' reflection spectra, and a cross third-order cumulant is used to use the results of the Hilbert transform and get a group of noise-vanished signals which can be used to accurately calculate the wavelength difference of the two FBG-FPs. The benefit by these processes is that Gaussian noise in the spectra can be suppressed completely in theory and a higher resolution can be reached. In order to verify the precision and flexibility of this algorithm, a detailed theory model and a simulation analysis are given, and an experiment is implemented. As a result, a static-strain resolution of 0.9 nε under laboratory environment condition is achieved, showing a higher resolution than the traditional cross-correlation method.

  6. Vital sign sensing method based on EMD in terahertz band

    NASA Astrophysics Data System (ADS)

    Xu, Zhengwu; Liu, Tong

    2014-12-01

    Non-contact respiration and heartbeat rates detection could be applied to find survivors trapped in the disaster or the remote monitoring of the respiration and heartbeat of a patient. This study presents an improved algorithm that extracts the respiration and heartbeat rates of humans by utilizing the terahertz radar, which further lessens the effects of noise, suppresses the cross-term, and enhances the detection accuracy. A human target echo model for the terahertz radar is first presented. Combining the over-sampling method, low-pass filter, and Empirical Mode Decomposition improves the signal-to-noise ratio. The smoothed pseudo Wigner-Ville distribution time-frequency technique and the centroid of the spectrogram are used to estimate the instantaneous velocity of the target's cardiopulmonary motion. The down-sampling method is adopted to prevent serious distortion. Finally, a second time-frequency analysis is applied to the centroid curve to extract the respiration and heartbeat rates of the individual. Simulation results show that compared with the previously presented vital sign sensing method, the improved algorithm enhances the signal-to-noise ratio to 1 dB with a detection accuracy of 80%. The improved algorithm is an effective approach for the detection of respiration and heartbeat signal in a complicated environment.

  7. Bilateral filtering using the full noise covariance matrix applied to x-ray phase-contrast computed tomography.

    PubMed

    Allner, S; Koehler, T; Fehringer, A; Birnbacher, L; Willner, M; Pfeiffer, F; Noël, P B

    2016-05-21

    The purpose of this work is to develop an image-based de-noising algorithm that exploits complementary information and noise statistics from multi-modal images, as they emerge in x-ray tomography techniques, for instance grating-based phase-contrast CT and spectral CT. Among the noise reduction methods, image-based de-noising is one popular approach and the so-called bilateral filter is a well known algorithm for edge-preserving filtering. We developed a generalization of the bilateral filter for the case where the imaging system provides two or more perfectly aligned images. The proposed generalization is statistically motivated and takes the full second order noise statistics of these images into account. In particular, it includes a noise correlation between the images and spatial noise correlation within the same image. The novel generalized three-dimensional bilateral filter is applied to the attenuation and phase images created with filtered backprojection reconstructions from grating-based phase-contrast tomography. In comparison to established bilateral filters, we obtain improved noise reduction and at the same time a better preservation of edges in the images on the examples of a simulated soft-tissue phantom, a human cerebellum and a human artery sample. The applied full noise covariance is determined via cross-correlation of the image noise. The filter results yield an improved feature recovery based on enhanced noise suppression and edge preservation as shown here on the example of attenuation and phase images captured with grating-based phase-contrast computed tomography. This is supported by quantitative image analysis. Without being bound to phase-contrast imaging, this generalized filter is applicable to any kind of noise-afflicted image data with or without noise correlation. Therefore, it can be utilized in various imaging applications and fields.

  8. An Adaptive Deghosting Method in Neural Network-Based Infrared Detectors Nonuniformity Correction

    PubMed Central

    Li, Yiyang; Jin, Weiqi; Zhu, Jin; Zhang, Xu; Li, Shuo

    2018-01-01

    The problems of the neural network-based nonuniformity correction algorithm for infrared focal plane arrays mainly concern slow convergence speed and ghosting artifacts. In general, the more stringent the inhibition of ghosting, the slower the convergence speed. The factors that affect these two problems are the estimated desired image and the learning rate. In this paper, we propose a learning rate rule that combines adaptive threshold edge detection and a temporal gate. Through the noise estimation algorithm, the adaptive spatial threshold is related to the residual nonuniformity noise in the corrected image. The proposed learning rate is used to effectively and stably suppress ghosting artifacts without slowing down the convergence speed. The performance of the proposed technique was thoroughly studied with infrared image sequences with both simulated nonuniformity and real nonuniformity. The results show that the deghosting performance of the proposed method is superior to that of other neural network-based nonuniformity correction algorithms and that the convergence speed is equivalent to the tested deghosting methods. PMID:29342857

  9. An Adaptive Deghosting Method in Neural Network-Based Infrared Detectors Nonuniformity Correction.

    PubMed

    Li, Yiyang; Jin, Weiqi; Zhu, Jin; Zhang, Xu; Li, Shuo

    2018-01-13

    The problems of the neural network-based nonuniformity correction algorithm for infrared focal plane arrays mainly concern slow convergence speed and ghosting artifacts. In general, the more stringent the inhibition of ghosting, the slower the convergence speed. The factors that affect these two problems are the estimated desired image and the learning rate. In this paper, we propose a learning rate rule that combines adaptive threshold edge detection and a temporal gate. Through the noise estimation algorithm, the adaptive spatial threshold is related to the residual nonuniformity noise in the corrected image. The proposed learning rate is used to effectively and stably suppress ghosting artifacts without slowing down the convergence speed. The performance of the proposed technique was thoroughly studied with infrared image sequences with both simulated nonuniformity and real nonuniformity. The results show that the deghosting performance of the proposed method is superior to that of other neural network-based nonuniformity correction algorithms and that the convergence speed is equivalent to the tested deghosting methods.

  10. Noise suppression in surface microseismic data

    USGS Publications Warehouse

    Forghani-Arani, Farnoush; Batzle, Mike; Behura, Jyoti; Willis, Mark; Haines, Seth S.; Davidson, Michael

    2012-01-01

    We introduce a passive noise suppression technique, based on the τ − p transform. In the τ − p domain, one can separate microseismic events from surface noise based on distinct characteristics that are not visible in the time-offset domain. By applying the inverse τ − p transform to the separated microseismic event, we suppress the surface noise in the data. Our technique significantly improves the signal-to-noise ratios of the microseismic events and is superior to existing techniques for passive noise suppression in the sense that it preserves the waveform. We introduce a passive noise suppression technique, based on the τ − p transform. In the τ − p domain, one can separate microseismic events from surface noise based on distinct characteristics that are not visible in the time-offset domain. By applying the inverse τ − p transform to the separated microseismic event, we suppress the surface noise in the data. Our technique significantly improves the signal-to-noise ratios of the microseismic events and is superior to existing techniques for passive noise suppression in the sense that it preserves the waveform.

  11. An experimental investigation of the interior noise control effects of propeller synchrophasing

    NASA Technical Reports Server (NTRS)

    Jones, J. D.; Fuller, C. R.

    1986-01-01

    A simplified cylindrical model of an aircraft fuselage is used to investigate the mechanisms of interior noise suppression using synchrophasing techniques. This investigation allows isolation of important parameters to define the characteristics of synchrophasing. The optimum synchrophase angle for maximum noise reduction is found for several interior microphone positions with pure tone source excitation. Noise reductions of up to 30 dB are shown for some microphone positions, however, overall reductions are less. A computer algorithm is developed to decompose the cylinder vibration into modal components over a wide range of synchrophase angles. The circumferential modal response of the shell vibration is shown to govern the transmission of sound into the cylinder rather than localized transmission. As well as investigating synchrophasing, the interior sound field due to sources typical of propellers has been measured and discussed.

  12. Application of a multiscale maximum entropy image restoration algorithm to HXMT observations

    NASA Astrophysics Data System (ADS)

    Guan, Ju; Song, Li-Ming; Huo, Zhuo-Xi

    2016-08-01

    This paper introduces a multiscale maximum entropy (MSME) algorithm for image restoration of the Hard X-ray Modulation Telescope (HXMT), which is a collimated scan X-ray satellite mainly devoted to a sensitive all-sky survey and pointed observations in the 1-250 keV range. The novelty of the MSME method is to use wavelet decomposition and multiresolution support to control noise amplification at different scales. Our work is focused on the application and modification of this method to restore diffuse sources detected by HXMT scanning observations. An improved method, the ensemble multiscale maximum entropy (EMSME) algorithm, is proposed to alleviate the problem of mode mixing exiting in MSME. Simulations have been performed on the detection of the diffuse source Cen A by HXMT in all-sky survey mode. The results show that the MSME method is adapted to the deconvolution task of HXMT for diffuse source detection and the improved method could suppress noise and improve the correlation and signal-to-noise ratio, thus proving itself a better algorithm for image restoration. Through one all-sky survey, HXMT could reach a capacity of detecting a diffuse source with maximum differential flux of 0.5 mCrab. Supported by Strategic Priority Research Program on Space Science, Chinese Academy of Sciences (XDA04010300) and National Natural Science Foundation of China (11403014)

  13. Adaptive Temporal Matched Filtering for Noise Suppression in Fiber Optic Distributed Acoustic Sensing.

    PubMed

    Ölçer, İbrahim; Öncü, Ahmet

    2017-06-05

    Distributed vibration sensing based on phase-sensitive optical time domain reflectometry ( ϕ -OTDR) is being widely used in several applications. However, one of the main challenges in coherent detection-based ϕ -OTDR systems is the fading noise, which impacts the detection performance. In addition, typical signal averaging and differentiating techniques are not suitable for detecting high frequency events. This paper presents a new approach for reducing the effect of fading noise in fiber optic distributed acoustic vibration sensing systems without any impact on the frequency response of the detection system. The method is based on temporal adaptive processing of ϕ -OTDR signals. The fundamental theory underlying the algorithm, which is based on signal-to-noise ratio (SNR) maximization, is presented, and the efficacy of our algorithm is demonstrated with laboratory experiments and field tests. With the proposed digital processing technique, the results show that more than 10 dB of SNR values can be achieved without any reduction in the system bandwidth and without using additional optical amplifier stages in the hardware. We believe that our proposed adaptive processing approach can be effectively used to develop fiber optic-based distributed acoustic vibration sensing systems.

  14. Adaptive Temporal Matched Filtering for Noise Suppression in Fiber Optic Distributed Acoustic Sensing

    PubMed Central

    Ölçer, İbrahim; Öncü, Ahmet

    2017-01-01

    Distributed vibration sensing based on phase-sensitive optical time domain reflectometry (ϕ-OTDR) is being widely used in several applications. However, one of the main challenges in coherent detection-based ϕ-OTDR systems is the fading noise, which impacts the detection performance. In addition, typical signal averaging and differentiating techniques are not suitable for detecting high frequency events. This paper presents a new approach for reducing the effect of fading noise in fiber optic distributed acoustic vibration sensing systems without any impact on the frequency response of the detection system. The method is based on temporal adaptive processing of ϕ-OTDR signals. The fundamental theory underlying the algorithm, which is based on signal-to-noise ratio (SNR) maximization, is presented, and the efficacy of our algorithm is demonstrated with laboratory experiments and field tests. With the proposed digital processing technique, the results show that more than 10 dB of SNR values can be achieved without any reduction in the system bandwidth and without using additional optical amplifier stages in the hardware. We believe that our proposed adaptive processing approach can be effectively used to develop fiber optic-based distributed acoustic vibration sensing systems. PMID:28587240

  15. Noise Suppression Methods for Robust Speech Processing

    DTIC Science & Technology

    1980-05-01

    63.8 Sustention 69.0 58.3 40.6 41.7 Sibilation 87.2 85.9 61.2 72.9 Graveness 70.1 56.2 38.0 51.3 Compactness 94.3 95.6 76.3 84.1 To~tal 85.2 79.8...important issues in assessing the algorithm complexity. Specifically, the frequency domain approach will require considerably more memory and be more complex

  16. A Comparison of Some Signal-Processing Algorithms to Suppress Tow-Vessel Noise in a Towed Array, with Results from a Shallow-Water Trial

    DTIC Science & Technology

    1982-10-01

    AKAL, T. , FIORI, S. , HASTRUP , O.F. transmission loss data for some SACLANTCEN SR-33, NATO CONFIDENTIAL. Research Centre, 1979. [AC C 950 788...different shallow-water areas with theoretical results provided by a three-fluid normal-mode propagation model. In: HASTRUP , O.F. and OLESEN, O.V. eds

  17. Jet noise suppression

    NASA Astrophysics Data System (ADS)

    Gliebe, P. R.; Brausch, J. F.; Majjigi, R. K.; Lee, R.

    1991-08-01

    The objectives of this chapter are to review and summarize the jet noise suppression technology, to provide a physical and theoretical model to explain the measured jet noise suppression characteristics of different concepts, and to provide a set of guidelines for evolving jet noise suppression designs. The underlying principle for all jet noise suppression devices is to enhance rapid mixing (i.e., diffusion) of the jet plume by geometric and aerothermodynamic means. In the case of supersonic jets, the shock-cell broadband noise reduction is effectively accomplished by the elimination or mitigation of the shock-cell structure. So far, the diffusion concepts have predominantly concentrated on jet momentum and energy (kinetic and thermal) diffusion, in that order, and have yielded better noise reduction than the simple conical nozzles. A critical technology issue that needs resolution is the effect of flight on the noise suppression potential of mechanical suppressor nozzles. A more thorough investigation of this mechanism is necessary for the successful development and design of an acceptable noise suppression device for future high-speed civil transports.

  18. A mathematical model for simulating noise suppression of lined ejectors

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.

    1994-01-01

    A mathematical model containing the essential features embodied in the noise suppression of lined ejectors is presented. Although some simplification of the physics is necessary to render the model mathematically tractable, the current model is the most versatile and technologically advanced at the current time. A system of linearized equations and the boundary conditions governing the sound field are derived starting from the equations of fluid dynamics. A nonreflecting boundary condition is developed. In view of the complex nature of the equations, a parametric study requires the use of numerical techniques and modern computers. A finite element algorithm that solves the differential equations coupled with the boundary condition is then introduced. The numerical method results in a matrix equation with several hundred thousand degrees of freedom that is solved efficiently on a supercomputer. The model is validated by comparing results either with exact solutions or with approximate solutions from other works. In each case, excellent correlations are obtained. The usefulness of the model as an optimization tool and the importance of variable impedance liners as a mechanism for achieving broadband suppression within a lined ejector are demonstrated.

  19. Relative phase noise induced impairment in M-ary phase-shift-keying coherent optical communication system using distributed fiber Raman amplifier.

    PubMed

    Cheng, Jingchi; Tang, Ming; Fu, Songnian; Shum, Perry Ping; Liu, Deming

    2013-04-01

    We show for the first time, to the best of our knowledge, that, in a coherent communication system that employs a phase-shift-keying signal and Raman amplification, besides the pump relative intensity noise (RIN) transfer to the amplitude, the signal's phase will also be affected by pump RIN through the pump-signal cross-phase modulation. Although the average pump power induced linear phase change can be compensated for by the phase-correction algorithm, a relative phase noise (RPN) parameter has been found to characterize pump RIN induced stochastic phase noise. This extra phase noise brings non-negligible system impairments in terms of the Q-factor penalty. The calculation shows that copumping leads to much more stringent requirements to pump RIN, and relatively larger fiber dispersion helps to suppress the RPN induced impairment. A higher-order phase-shift keying (PSK) signal is less tolerant to noise than a lower-order PSK.

  20. Evaluation of hybrid SART  +  OS  +  TV iterative reconstruction algorithm for optical-CT gel dosimeter imaging

    NASA Astrophysics Data System (ADS)

    Du, Yi; Wang, Xiangang; Xiang, Xincheng; Wei, Zhouping

    2016-12-01

    Optical computed tomography (optical-CT) is a high-resolution, fast, and easily accessible readout modality for gel dosimeters. This paper evaluates a hybrid iterative image reconstruction algorithm for optical-CT gel dosimeter imaging, namely, the simultaneous algebraic reconstruction technique (SART) integrated with ordered subsets (OS) iteration and total variation (TV) minimization regularization. The mathematical theory and implementation workflow of the algorithm are detailed. Experiments on two different optical-CT scanners were performed for cross-platform validation. For algorithm evaluation, the iterative convergence is first shown, and peak-to-noise-ratio (PNR) and contrast-to-noise ratio (CNR) results are given with the cone-beam filtered backprojection (FDK) algorithm and the FDK results followed by median filtering (mFDK) as reference. The effect on spatial gradients and reconstruction artefacts is also investigated. The PNR curve illustrates that the results of SART  +  OS  +  TV finally converges to that of FDK but with less noise, which implies that the dose-OD calibration method for FDK is also applicable to the proposed algorithm. The CNR in selected regions-of-interest (ROIs) of SART  +  OS  +  TV results is almost double that of FDK and 50% higher than that of mFDK. The artefacts in SART  +  OS  +  TV results are still visible, but have been much suppressed with little spatial gradient loss. Based on the assessment, we can conclude that this hybrid SART  +  OS  +  TV algorithm outperforms both FDK and mFDK in denoising, preserving spatial dose gradients and reducing artefacts, and its effectiveness and efficiency are platform independent.

  1. Speech enhancement on smartphone voice recording

    NASA Astrophysics Data System (ADS)

    Tris Atmaja, Bagus; Nur Farid, Mifta; Arifianto, Dhany

    2016-11-01

    Speech enhancement is challenging task in audio signal processing to enhance the quality of targeted speech signal while suppress other noises. In the beginning, the speech enhancement algorithm growth rapidly from spectral subtraction, Wiener filtering, spectral amplitude MMSE estimator to Non-negative Matrix Factorization (NMF). Smartphone as revolutionary device now is being used in all aspect of life including journalism; personally and professionally. Although many smartphones have two microphones (main and rear) the only main microphone is widely used for voice recording. This is why the NMF algorithm widely used for this purpose of speech enhancement. This paper evaluate speech enhancement on smartphone voice recording by using some algorithms mentioned previously. We also extend the NMF algorithm to Kulback-Leibler NMF with supervised separation. The last algorithm shows improved result compared to others by spectrogram and PESQ score evaluation.

  2. Spatial variation in automated burst suppression detection in pharmacologically induced coma.

    PubMed

    An, Jingzhi; Jonnalagadda, Durga; Moura, Valdery; Purdon, Patrick L; Brown, Emery N; Westover, M Brandon

    2015-01-01

    Burst suppression is actively studied as a control signal to guide anesthetic dosing in patients undergoing medically induced coma. The ability to automatically identify periods of EEG suppression and compactly summarize the depth of coma using the burst suppression probability (BSP) is crucial to effective and safe monitoring and control of medical coma. Current literature however does not explicitly account for the potential variation in burst suppression parameters across different scalp locations. In this study we analyzed standard 19-channel EEG recordings from 8 patients with refractory status epilepticus who underwent pharmacologically induced burst suppression as medical treatment for refractory seizures. We found that although burst suppression is generally considered a global phenomenon, BSP obtained using a previously validated algorithm varies systematically across different channels. A global representation of information from individual channels is proposed that takes into account the burst suppression characteristics recorded at multiple electrodes. BSP computed from this representative burst suppression pattern may be more resilient to noise and a better representation of the brain state of patients. Multichannel data integration may enhance the reliability of estimates of the depth of medical coma.

  3. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction.

    PubMed

    Kang, Eunhee; Min, Junhong; Ye, Jong Chul

    2017-10-01

    Due to the potential risk of inducing cancer, radiation exposure by X-ray CT devices should be reduced for routine patient scanning. However, in low-dose X-ray CT, severe artifacts typically occur due to photon starvation, beam hardening, and other causes, all of which decrease the reliability of the diagnosis. Thus, a high-quality reconstruction method from low-dose X-ray CT data has become a major research topic in the CT community. Conventional model-based de-noising approaches are, however, computationally very expensive, and image-domain de-noising approaches cannot readily remove CT-specific noise patterns. To tackle these problems, we want to develop a new low-dose X-ray CT algorithm based on a deep-learning approach. We propose an algorithm which uses a deep convolutional neural network (CNN) which is applied to the wavelet transform coefficients of low-dose CT images. More specifically, using a directional wavelet transform to extract the directional component of artifacts and exploit the intra- and inter- band correlations, our deep network can effectively suppress CT-specific noise. In addition, our CNN is designed with a residual learning architecture for faster network training and better performance. Experimental results confirm that the proposed algorithm effectively removes complex noise patterns from CT images derived from a reduced X-ray dose. In addition, we show that the wavelet-domain CNN is efficient when used to remove noise from low-dose CT compared to existing approaches. Our results were rigorously evaluated by several radiologists at the Mayo Clinic and won second place at the 2016 "Low-Dose CT Grand Challenge." To the best of our knowledge, this work is the first deep-learning architecture for low-dose CT reconstruction which has been rigorously evaluated and proven to be effective. In addition, the proposed algorithm, in contrast to existing model-based iterative reconstruction (MBIR) methods, has considerable potential to benefit from large data sets. Therefore, we believe that the proposed algorithm opens a new direction in the area of low-dose CT research. © 2017 American Association of Physicists in Medicine.

  4. An automated approach to detecting signals in electroantennogram data

    USGS Publications Warehouse

    Slone, D.H.; Sullivan, B.T.

    2007-01-01

    Coupled gas chromatography/electroantennographic detection (GC-EAD) is a widely used method for identifying insect olfactory stimulants present in mixtures of volatiles, and it can greatly accelerate the identification of insect semiochemicals. In GC-EAD, voltage changes across an insect's antenna are measured while the antenna is exposed to compounds eluting from a gas chromatograph. The antenna thus serves as a selective GC detector whose output can be compared to that of a "general" GC detector, commonly a flame ionization detector. Appropriate interpretation of GC-EAD results requires that olfaction-related voltage changes in the antenna be distinguishable from background noise that arises inevitably from antennal preparations and the GC-EAD-associated hardware. In this paper, we describe and compare mathematical algorithms for discriminating olfaction-generated signals in an EAD trace from background noise. The algorithms amplify signals by recognizing their characteristic shape and wavelength while suppressing unstructured noise. We have found these algorithms to be both powerful and highly discriminatory even when applied to noisy traces where the signals would be difficult to discriminate by eye. This new methodology removes operator bias as a factor in signal identification, can improve realized sensitivity of the EAD system, and reduces the number of runs required to confirm the identity of an olfactory stimulant. ?? 2007 Springer Science+Business Media, LLC.

  5. Noise suppressed partial volume correction for cardiac SPECT/CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Chung; Liu, Chi, E-mail: chi.liu@yale.edu

    Purpose: Partial volume correction (PVC) methods typically improve quantification at the expense of increased image noise and reduced reproducibility. In this study, the authors developed a novel voxel-based PVC method that incorporates anatomical knowledge to improve quantification while suppressing noise for cardiac SPECT/CT imaging. Methods: In the proposed method, the SPECT images were first reconstructed using anatomical-based maximum a posteriori (AMAP) with Bowsher’s prior to penalize noise while preserving boundaries. A sequential voxel-by-voxel PVC approach (Yang’s method) was then applied on the AMAP reconstruction using a template response. This template response was obtained by forward projecting a template derived frommore » a contrast-enhanced CT image, and then reconstructed using AMAP to model the partial volume effects (PVEs) introduced by both the system resolution and the smoothing applied during reconstruction. To evaluate the proposed noise suppressed PVC (NS-PVC), the authors first simulated two types of cardiac SPECT studies: a {sup 99m}Tc-tetrofosmin myocardial perfusion scan and a {sup 99m}Tc-labeled red blood cell (RBC) scan on a dedicated cardiac multiple pinhole SPECT/CT at both high and low count levels. The authors then applied the proposed method on a canine equilibrium blood pool study following injection with {sup 99m}Tc-RBCs at different count levels by rebinning the list-mode data into shorter acquisitions. The proposed method was compared to MLEM reconstruction without PVC, two conventional PVC methods, including Yang’s method and multitarget correction (MTC) applied on the MLEM reconstruction, and AMAP reconstruction without PVC. Results: The results showed that the Yang’s method improved quantification, however, yielded increased noise and reduced reproducibility in the regions with higher activity. MTC corrected for PVE on high count data with amplified noise, although yielded the worst performance among all the methods tested on low-count data. AMAP effectively suppressed noise and reduced the spill-in effect in the low activity regions. However it was unable to reduce the spill-out effect in high activity regions. NS-PVC yielded superior performance in terms of both quantitative assessment and visual image quality while improving reproducibility. Conclusions: The results suggest that NS-PVC may be a promising PVC algorithm for application in low-dose protocols, and in gated and dynamic cardiac studies with low counts.« less

  6. Quadratic Frequency Modulation Signals Parameter Estimation Based on Two-Dimensional Product Modified Parameterized Chirp Rate-Quadratic Chirp Rate Distribution.

    PubMed

    Qu, Zhiyu; Qu, Fuxin; Hou, Changbo; Jing, Fulong

    2018-05-19

    In an inverse synthetic aperture radar (ISAR) imaging system for targets with complex motion, the azimuth echo signals of the target are always modeled as multicomponent quadratic frequency modulation (QFM) signals. The chirp rate (CR) and quadratic chirp rate (QCR) estimation of QFM signals is very important to solve the ISAR image defocus problem. For multicomponent QFM (multi-QFM) signals, the conventional QR and QCR estimation algorithms suffer from the cross-term and poor anti-noise ability. This paper proposes a novel estimation algorithm called a two-dimensional product modified parameterized chirp rate-quadratic chirp rate distribution (2D-PMPCRD) for QFM signals parameter estimation. The 2D-PMPCRD employs a multi-scale parametric symmetric self-correlation function and modified nonuniform fast Fourier transform-Fast Fourier transform to transform the signals into the chirp rate-quadratic chirp rate (CR-QCR) domains. It can greatly suppress the cross-terms while strengthening the auto-terms by multiplying different CR-QCR domains with different scale factors. Compared with high order ambiguity function-integrated cubic phase function and modified Lv's distribution, the simulation results verify that the 2D-PMPCRD acquires higher anti-noise performance and obtains better cross-terms suppression performance for multi-QFM signals with reasonable computation cost.

  7. Noise suppression for dual-energy CT via penalized weighted least-square optimization with similarity-based regularization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harms, Joseph; Wang, Tonghe; Petrongolo, Michael

    Purpose: Dual-energy CT (DECT) expands applications of CT imaging in its capability to decompose CT images into material images. However, decomposition via direct matrix inversion leads to large noise amplification and limits quantitative use of DECT. Their group has previously developed a noise suppression algorithm via penalized weighted least-square optimization with edge-preservation regularization (PWLS-EPR). In this paper, the authors improve method performance using the same framework of penalized weighted least-square optimization but with similarity-based regularization (PWLS-SBR), which substantially enhances the quality of decomposed images by retaining a more uniform noise power spectrum (NPS). Methods: The design of PWLS-SBR is basedmore » on the fact that averaging pixels of similar materials gives a low-noise image. For each pixel, the authors calculate the similarity to other pixels in its neighborhood by comparing CT values. Using an empirical Gaussian model, the authors assign high/low similarity value to one neighboring pixel if its CT value is close/far to the CT value of the pixel of interest. These similarity values are organized in matrix form, such that multiplication of the similarity matrix to the image vector reduces image noise. The similarity matrices are calculated on both high- and low-energy CT images and averaged. In PWLS-SBR, the authors include a regularization term to minimize the L-2 norm of the difference between the images without and with noise suppression via similarity matrix multiplication. By using all pixel information of the initial CT images rather than just those lying on or near edges, PWLS-SBR is superior to the previously developed PWLS-EPR, as supported by comparison studies on phantoms and a head-and-neck patient. Results: On the line-pair slice of the Catphan{sup ©}600 phantom, PWLS-SBR outperforms PWLS-EPR and retains spatial resolution of 8 lp/cm, comparable to the original CT images, even at 90% reduction in noise standard deviation (STD). Similar performance on spatial resolution is observed on an anthropomorphic head phantom. In addition, results of PWLS-SBR show substantially improved image quality due to preservation of image NPS. On the Catphan{sup ©}600 phantom, NPS using PWLS-SBR has a correlation of 93% with that via direct matrix inversion, while the correlation drops to −52% for PWLS-EPR. Electron density measurement studies indicate high accuracy of PWLS-SBR. On seven different materials, the measured electron densities calculated from the decomposed material images using PWLS-SBR have a root-mean-square error (RMSE) of 1.20%, while the results of PWLS-EPR have a RMSE of 2.21%. In the study on a head-and-neck patient, PWLS-SBR is shown to reduce noise STD by a factor of 3 on material images with image qualities comparable to CT images, whereas fine structures are lost in the PWLS-EPR result. Additionally, PWLS-SBR better preserves low contrast on the tissue image. Conclusions: The authors propose improvements to the regularization term of an optimization framework which performs iterative image-domain decomposition for DECT with noise suppression. The regularization term avoids calculation of image gradient and is based on pixel similarity. The proposed method not only achieves a high decomposition accuracy, but also improves over the previous algorithm on NPS as well as spatial resolution.« less

  8. Noise suppression for dual-energy CT via penalized weighted least-square optimization with similarity-based regularization

    PubMed Central

    Harms, Joseph; Wang, Tonghe; Petrongolo, Michael; Niu, Tianye; Zhu, Lei

    2016-01-01

    Purpose: Dual-energy CT (DECT) expands applications of CT imaging in its capability to decompose CT images into material images. However, decomposition via direct matrix inversion leads to large noise amplification and limits quantitative use of DECT. Their group has previously developed a noise suppression algorithm via penalized weighted least-square optimization with edge-preservation regularization (PWLS-EPR). In this paper, the authors improve method performance using the same framework of penalized weighted least-square optimization but with similarity-based regularization (PWLS-SBR), which substantially enhances the quality of decomposed images by retaining a more uniform noise power spectrum (NPS). Methods: The design of PWLS-SBR is based on the fact that averaging pixels of similar materials gives a low-noise image. For each pixel, the authors calculate the similarity to other pixels in its neighborhood by comparing CT values. Using an empirical Gaussian model, the authors assign high/low similarity value to one neighboring pixel if its CT value is close/far to the CT value of the pixel of interest. These similarity values are organized in matrix form, such that multiplication of the similarity matrix to the image vector reduces image noise. The similarity matrices are calculated on both high- and low-energy CT images and averaged. In PWLS-SBR, the authors include a regularization term to minimize the L-2 norm of the difference between the images without and with noise suppression via similarity matrix multiplication. By using all pixel information of the initial CT images rather than just those lying on or near edges, PWLS-SBR is superior to the previously developed PWLS-EPR, as supported by comparison studies on phantoms and a head-and-neck patient. Results: On the line-pair slice of the Catphan©600 phantom, PWLS-SBR outperforms PWLS-EPR and retains spatial resolution of 8 lp/cm, comparable to the original CT images, even at 90% reduction in noise standard deviation (STD). Similar performance on spatial resolution is observed on an anthropomorphic head phantom. In addition, results of PWLS-SBR show substantially improved image quality due to preservation of image NPS. On the Catphan©600 phantom, NPS using PWLS-SBR has a correlation of 93% with that via direct matrix inversion, while the correlation drops to −52% for PWLS-EPR. Electron density measurement studies indicate high accuracy of PWLS-SBR. On seven different materials, the measured electron densities calculated from the decomposed material images using PWLS-SBR have a root-mean-square error (RMSE) of 1.20%, while the results of PWLS-EPR have a RMSE of 2.21%. In the study on a head-and-neck patient, PWLS-SBR is shown to reduce noise STD by a factor of 3 on material images with image qualities comparable to CT images, whereas fine structures are lost in the PWLS-EPR result. Additionally, PWLS-SBR better preserves low contrast on the tissue image. Conclusions: The authors propose improvements to the regularization term of an optimization framework which performs iterative image-domain decomposition for DECT with noise suppression. The regularization term avoids calculation of image gradient and is based on pixel similarity. The proposed method not only achieves a high decomposition accuracy, but also improves over the previous algorithm on NPS as well as spatial resolution. PMID:27147376

  9. Spectral CT Image Restoration via an Average Image-Induced Nonlocal Means Filter.

    PubMed

    Zeng, Dong; Huang, Jing; Zhang, Hua; Bian, Zhaoying; Niu, Shanzhou; Zhang, Zhang; Feng, Qianjin; Chen, Wufan; Ma, Jianhua

    2016-05-01

    Spectral computed tomography (SCT) images reconstructed by an analytical approach often suffer from a poor signal-to-noise ratio and strong streak artifacts when sufficient photon counts are not available in SCT imaging. In reducing noise-induced artifacts in SCT images, in this study, we propose an average image-induced nonlocal means (aviNLM) filter for each energy-specific image restoration.  Methods:  The present aviNLM algorithm exploits redundant information in the whole energy domain. Specifically, the proposed aviNLM algorithm yields the restored results by performing a nonlocal weighted average operation on the noisy energy-specific images with the nonlocal weight matrix between the target and prior images, in which the prior image is generated from all of the images reconstructed in each energy bin.  Results: Qualitative and quantitative studies are conducted to evaluate the aviNLM filter by using the data of digital phantom, physical phantom, and clinical patient data acquired from the energy-resolved and -integrated detectors, respectively. Experimental results show that the present aviNLM filter can achieve promising results for SCT image restoration in terms of noise-induced artifact suppression, cross profile, and contrast-to-noise ratio and material decomposition assessment. Conclusion and Significance: The present aviNLM algorithm has useful potential for radiation dose reduction by lowering the mAs in SCT imaging, and it may be useful for some other clinical applications, such as in myocardial perfusion imaging and radiotherapy.

  10. A joint Richardson-Lucy deconvolution algorithm for the reconstruction of multifocal structured illumination microscopy data.

    PubMed

    Ströhl, Florian; Kaminski, Clemens F

    2015-01-16

    We demonstrate the reconstruction of images obtained by multifocal structured illumination microscopy, MSIM, using a joint Richardson-Lucy, jRL-MSIM, deconvolution algorithm, which is based on an underlying widefield image-formation model. The method is efficient in the suppression of out-of-focus light and greatly improves image contrast and resolution. Furthermore, it is particularly well suited for the processing of noise corrupted data. The principle is verified on simulated as well as experimental data and a comparison of the jRL-MSIM approach with the standard reconstruction procedure, which is based on image scanning microscopy, ISM, is made. Our algorithm is efficient and freely available in a user friendly software package.

  11. A joint Richardson—Lucy deconvolution algorithm for the reconstruction of multifocal structured illumination microscopy data

    NASA Astrophysics Data System (ADS)

    Ströhl, Florian; Kaminski, Clemens F.

    2015-03-01

    We demonstrate the reconstruction of images obtained by multifocal structured illumination microscopy, MSIM, using a joint Richardson-Lucy, jRL-MSIM, deconvolution algorithm, which is based on an underlying widefield image-formation model. The method is efficient in the suppression of out-of-focus light and greatly improves image contrast and resolution. Furthermore, it is particularly well suited for the processing of noise corrupted data. The principle is verified on simulated as well as experimental data and a comparison of the jRL-MSIM approach with the standard reconstruction procedure, which is based on image scanning microscopy, ISM, is made. Our algorithm is efficient and freely available in a user friendly software package.

  12. Noise Suppression Based on Multi-Model Compositions Using Multi-Pass Search with Multi-Label N-gram Models

    NASA Astrophysics Data System (ADS)

    Jitsuhiro, Takatoshi; Toriyama, Tomoji; Kogure, Kiyoshi

    We propose a noise suppression method based on multi-model compositions and multi-pass search. In real environments, input speech for speech recognition includes many kinds of noise signals. To obtain good recognized candidates, suppressing many kinds of noise signals at once and finding target speech is important. Before noise suppression, to find speech and noise label sequences, we introduce multi-pass search with acoustic models including many kinds of noise models and their compositions, their n-gram models, and their lexicon. Noise suppression is frame-synchronously performed using the multiple models selected by recognized label sequences with time alignments. We evaluated this method using the E-Nightingale task, which contains voice memoranda spoken by nurses during actual work at hospitals. The proposed method obtained higher performance than the conventional method.

  13. Penalized weighted least-squares approach for low-dose x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Li, Tianfang; Lu, Hongbing; Liang, Zhengrong

    2006-03-01

    The noise of low-dose computed tomography (CT) sinogram follows approximately a Gaussian distribution with nonlinear dependence between the sample mean and variance. The noise is statistically uncorrelated among detector bins at any view angle. However the correlation coefficient matrix of data signal indicates a strong signal correlation among neighboring views. Based on above observations, Karhunen-Loeve (KL) transform can be used to de-correlate the signal among the neighboring views. In each KL component, a penalized weighted least-squares (PWLS) objective function can be constructed and optimal sinogram can be estimated by minimizing the objective function, followed by filtered backprojection (FBP) for CT image reconstruction. In this work, we compared the KL-PWLS method with an iterative image reconstruction algorithm, which uses the Gauss-Seidel iterative calculation to minimize the PWLS objective function in image domain. We also compared the KL-PWLS with an iterative sinogram smoothing algorithm, which uses the iterated conditional mode calculation to minimize the PWLS objective function in sinogram space, followed by FBP for image reconstruction. Phantom experiments show a comparable performance of these three PWLS methods in suppressing the noise-induced artifacts and preserving resolution in reconstructed images. Computer simulation concurs with the phantom experiments in terms of noise-resolution tradeoff and detectability in low contrast environment. The KL-PWLS noise reduction may have the advantage in computation for low-dose CT imaging, especially for dynamic high-resolution studies.

  14. Improved NASA-ANOPP Noise Prediction Computer Code for Advanced Subsonic Propulsion Systems. Volume 2; Fan Suppression Model Development

    NASA Technical Reports Server (NTRS)

    Kontos, Karen B.; Kraft, Robert E.; Gliebe, Philip R.

    1996-01-01

    The Aircraft Noise Predication Program (ANOPP) is an industry-wide tool used to predict turbofan engine flyover noise in system noise optimization studies. Its goal is to provide the best currently available methods for source noise prediction. As part of a program to improve the Heidmann fan noise model, models for fan inlet and fan exhaust noise suppression estimation that are based on simple engine and acoustic geometry inputs have been developed. The models can be used to predict sound power level suppression and sound pressure level suppression at a position specified relative to the engine inlet.

  15. On the importance of preserving the harmonics and neighboring partials prior to vocoder processing: implications for cochlear implants.

    PubMed

    Hu, Yi; Loizou, Philipos C

    2010-01-01

    Pre-processing based noise-reduction algorithms used for cochlear implants (CIs) can sometimes introduce distortions which are carried through the vocoder stages of CI processing. While the background noise may be notably suppressed, the harmonic structure and/or spectral envelope of the signal may be distorted. The present study investigates the potential of preserving the signal's harmonic structure in voiced segments (e.g., vowels) as a means of alleviating the negative effects of pre-processing. The hypothesis tested is that preserving the harmonic structure of the signal is crucial for subsequent vocoder processing. The implications of preserving either the main harmonic components occurring at multiples of F0 or the main harmonics along with adjacent partials are investigated. This is done by first pre-processing noisy speech with a conventional noise-reduction algorithm, regenerating the harmonics, and vocoder processing the stimuli with eight channels of stimulation in steady speech-shaped noise. Results indicated that preserving the main low-frequency harmonics (spanning 1 or 3 kHz) alone was not beneficial. Preserving, however, the harmonic structure of the stimulus, i.e., the main harmonics along with the adjacent partials, was found to be critically important and provided substantial improvements (41 percentage points) in intelligibility.

  16. Lifting wavelet method of target detection

    NASA Astrophysics Data System (ADS)

    Han, Jun; Zhang, Chi; Jiang, Xu; Wang, Fang; Zhang, Jin

    2009-11-01

    Image target recognition plays a very important role in the areas of scientific exploration, aeronautics and space-to-ground observation, photography and topographic mapping. Complex environment of the image noise, fuzzy, all kinds of interference has always been to affect the stability of recognition algorithm. In this paper, the existence of target detection in real-time, accuracy problems, as well as anti-interference ability, using lifting wavelet image target detection methods. First of all, the use of histogram equalization, the goal difference method to obtain the region, on the basis of adaptive threshold and mathematical morphology operations to deal with the elimination of the background error. Secondly, the use of multi-channel wavelet filter wavelet transform of the original image de-noising and enhancement, to overcome the general algorithm of the noise caused by the sensitive issue of reducing the rate of miscarriage of justice will be the multi-resolution characteristics of wavelet and promotion of the framework can be designed directly in the benefits of space-time region used in target detection, feature extraction of targets. The experimental results show that the design of lifting wavelet has solved the movement of the target due to the complexity of the context of the difficulties caused by testing, which can effectively suppress noise, and improve the efficiency and speed of detection.

  17. Joint estimation of 2D-DOA and frequency based on space-time matrix and conformal array.

    PubMed

    Wan, Liang-Tian; Liu, Lu-Tao; Si, Wei-Jian; Tian, Zuo-Xi

    2013-01-01

    Each element in the conformal array has a different pattern, which leads to the performance deterioration of the conventional high resolution direction-of-arrival (DOA) algorithms. In this paper, a joint frequency and two-dimension DOA (2D-DOA) estimation algorithm for conformal array are proposed. The delay correlation function is used to suppress noise. Both spatial and time sampling are utilized to construct the spatial-time matrix. The frequency and 2D-DOA estimation are accomplished based on parallel factor (PARAFAC) analysis without spectral peak searching and parameter pairing. The proposed algorithm needs only four guiding elements with precise positions to estimate frequency and 2D-DOA. Other instrumental elements can be arranged flexibly on the surface of the carrier. Simulation results demonstrate the effectiveness of the proposed algorithm.

  18. Regional regularization method for ECT based on spectral transformation of Laplacian

    NASA Astrophysics Data System (ADS)

    Guo, Z. H.; Kan, Z.; Lv, D. C.; Shao, F. Q.

    2016-10-01

    Image reconstruction in electrical capacitance tomography is an ill-posed inverse problem, and regularization techniques are usually used to solve the problem for suppressing noise. An anisotropic regional regularization algorithm for electrical capacitance tomography is constructed using a novel approach called spectral transformation. Its function is derived and applied to the weighted gradient magnitude of the sensitivity of Laplacian as a regularization term. With the optimum regional regularizer, the a priori knowledge on the local nonlinearity degree of the forward map is incorporated into the proposed online reconstruction algorithm. Simulation experimentations were performed to verify the capability of the new regularization algorithm to reconstruct a superior quality image over two conventional Tikhonov regularization approaches. The advantage of the new algorithm for improving performance and reducing shape distortion is demonstrated with the experimental data.

  19. Subaperture test of wavefront error of large telescopes: error sources and stitching performance simulations

    NASA Astrophysics Data System (ADS)

    Chen, Shanyong; Li, Shengyi; Wang, Guilin

    2014-11-01

    The wavefront error of large telescopes requires to be measured to check the system quality and also estimate the misalignment of the telescope optics including the primary, the secondary and so on. It is usually realized by a focal plane interferometer and an autocollimator flat (ACF) of the same aperture with the telescope. However, it is challenging for meter class telescopes due to high cost and technological challenges in producing the large ACF. Subaperture test with a smaller ACF is hence proposed in combination with advanced stitching algorithms. Major error sources include the surface error of the ACF, misalignment of the ACF and measurement noises. Different error sources have different impacts on the wavefront error. Basically the surface error of the ACF behaves like systematic error and the astigmatism will be cumulated and enlarged if the azimuth of subapertures remains fixed. It is difficult to accurately calibrate the ACF because it suffers considerable deformation induced by gravity or mechanical clamping force. Therefore a selfcalibrated stitching algorithm is employed to separate the ACF surface error from the subaperture wavefront error. We suggest the ACF be rotated around the optical axis of the telescope for subaperture test. The algorithm is also able to correct the subaperture tip-tilt based on the overlapping consistency. Since all subaperture measurements are obtained in the same imaging plane, lateral shift of the subapertures is always known and the real overlapping points can be recognized in this plane. Therefore lateral positioning error of subapertures has no impact on the stitched wavefront. In contrast, the angular positioning error changes the azimuth of the ACF and finally changes the systematic error. We propose an angularly uneven layout of subapertures to minimize the stitching error, which is very different from our knowledge. At last, measurement noises could never be corrected but be suppressed by means of averaging and environmental control. We simulate the performance of the stitching algorithm dealing with surface error and misalignment of the ACF, and noise suppression, which provides guidelines to optomechanical design of the stitching test system.

  20. Seismic random noise removal by delay-compensation time-frequency peak filtering

    NASA Astrophysics Data System (ADS)

    Yu, Pengjun; Li, Yue; Lin, Hongbo; Wu, Ning

    2017-06-01

    Over the past decade, there has been an increasing awareness of time-frequency peak filtering (TFPF) due to its outstanding performance in suppressing non-stationary and strong seismic random noise. The traditional approach based on time-windowing achieves local linearity and meets the unbiased estimation. However, the traditional TFPF (including the improved algorithms with alterable window lengths) could hardly relieve the contradiction between removing noise and recovering the seismic signal, and this situation is more obvious in wave crests and troughs, even for alterable window lengths (WL). To improve the efficiency of the algorithm, the following TFPF in the time-space domain is applied, such as in the Radon domain and radial trace domain. The time-space transforms obtain a reduced-frequency input to reduce the TFPF error and stretch the desired signal along a certain direction, therefore the time-space development brings an improvement by both enhancing reflection events and attenuating noise. It still proves limited in application because the direction should be matched as a straight line or quadratic curve. As a result, waveform distortion and false seismic events may appear when processing the complex stratum record. The main emphasis in this article is placed on the time-space TFPF applicable expansion. The reconstructed signal in delay-compensation TFPF, which is generated according to the similarity among the reflection events, overcomes the limitation of the direction curve fitting. Moreover, the reconstructed signal just meets the TFPF linearity unbiased estimation and integrates signal reservation with noise attenuation. Experiments on both the synthetic model and field data indicate that delay-compensation TFPF has a better performance over the conventional filtering algorithms.

  1. Wind Noise Suppression for Infrasound Sensors

    DTIC Science & Technology

    2014-03-01

    Wind Noise Suppression for Infrasound Sensors by John M. Noble, W.C. Kirkpatrick Alberts, II, Sandra L. Collier, Richard Raspet, and Mark A...Laboratory Adelphi, MD 20783-1197 ARL-TR-6873 March 2014 Wind Noise Suppression for Infrasound Sensors John M. Noble, Sandra L. Collier, and...DATES COVERED (From - To) October 2012 to September 2013 4. TITLE AND SUBTITLE Wind Noise Suppression for Infrasound Sensors 5a. CONTRACT NUMBER 5b

  2. The Block V Receiver fast acquisition algorithm for the Galileo S-band mission

    NASA Technical Reports Server (NTRS)

    Aung, M.; Hurd, W. J.; Buu, C. M.; Berner, J. B.; Stephens, S. A.; Gevargiz, J. M.

    1994-01-01

    A fast acquisition algorithm for the Galileo suppressed carrier, subcarrier, and data symbol signals under low data rate, signal-to-noise ratio (SNR) and high carrier phase-noise conditions has been developed. The algorithm employs a two-arm fast Fourier transform (FFT) method utilizing both the in-phase and quadrature-phase channels of the carrier. The use of both channels results in an improved SNR in the FFT acquisition, enabling the use of a shorter FFT period over which the carrier instability is expected to be less significant. The use of a two-arm FFT also enables subcarrier and symbol acquisition before carrier acquisition. With the subcarrier and symbol loops locked first, the carrier can be acquired from an even shorter FFT period. Two-arm tracking loops are employed to lock the subcarrier and symbol loops parameter modification to achieve the final (high) loop SNR in the shortest time possible. The fast acquisition algorithm is implemented in the Block V Receiver (BVR). This article describes the complete algorithm design, the extensive computer simulation work done for verification of the design and the analysis, implementation issues in the BVR, and the acquisition times of the algorithm. In the expected case of the Galileo spacecraft at Jupiter orbit insertion PD/No equals 14.6 dB-Hz, R(sym) equals 16 symbols per sec, and the predicted acquisition time of the algorithm (to attain a 0.2-dB degradation from each loop to the output symbol SNR) is 38 sec.

  3. Remote Sensing Image Change Detection Based on NSCT-HMT Model and Its Application.

    PubMed

    Chen, Pengyun; Zhang, Yichen; Jia, Zhenhong; Yang, Jie; Kasabov, Nikola

    2017-06-06

    Traditional image change detection based on a non-subsampled contourlet transform always ignores the neighborhood information's relationship to the non-subsampled contourlet coefficients, and the detection results are susceptible to noise interference. To address these disadvantages, we propose a denoising method based on the non-subsampled contourlet transform domain that uses the Hidden Markov Tree model (NSCT-HMT) for change detection of remote sensing images. First, the ENVI software is used to calibrate the original remote sensing images. After that, the mean-ratio operation is adopted to obtain the difference image that will be denoised by the NSCT-HMT model. Then, using the Fuzzy Local Information C-means (FLICM) algorithm, the difference image is divided into the change area and unchanged area. The proposed algorithm is applied to a real remote sensing data set. The application results show that the proposed algorithm can effectively suppress clutter noise, and retain more detailed information from the original images. The proposed algorithm has higher detection accuracy than the Markov Random Field-Fuzzy C-means (MRF-FCM), the non-subsampled contourlet transform-Fuzzy C-means clustering (NSCT-FCM), the pointwise approach and graph theory (PA-GT), and the Principal Component Analysis-Nonlocal Means (PCA-NLM) denosing algorithm. Finally, the five algorithms are used to detect the southern boundary of the Gurbantunggut Desert in Xinjiang Uygur Autonomous Region of China, and the results show that the proposed algorithm has the best effect on real remote sensing image change detection.

  4. Remote Sensing Image Change Detection Based on NSCT-HMT Model and Its Application

    PubMed Central

    Chen, Pengyun; Zhang, Yichen; Jia, Zhenhong; Yang, Jie; Kasabov, Nikola

    2017-01-01

    Traditional image change detection based on a non-subsampled contourlet transform always ignores the neighborhood information’s relationship to the non-subsampled contourlet coefficients, and the detection results are susceptible to noise interference. To address these disadvantages, we propose a denoising method based on the non-subsampled contourlet transform domain that uses the Hidden Markov Tree model (NSCT-HMT) for change detection of remote sensing images. First, the ENVI software is used to calibrate the original remote sensing images. After that, the mean-ratio operation is adopted to obtain the difference image that will be denoised by the NSCT-HMT model. Then, using the Fuzzy Local Information C-means (FLICM) algorithm, the difference image is divided into the change area and unchanged area. The proposed algorithm is applied to a real remote sensing data set. The application results show that the proposed algorithm can effectively suppress clutter noise, and retain more detailed information from the original images. The proposed algorithm has higher detection accuracy than the Markov Random Field-Fuzzy C-means (MRF-FCM), the non-subsampled contourlet transform-Fuzzy C-means clustering (NSCT-FCM), the pointwise approach and graph theory (PA-GT), and the Principal Component Analysis-Nonlocal Means (PCA-NLM) denosing algorithm. Finally, the five algorithms are used to detect the southern boundary of the Gurbantunggut Desert in Xinjiang Uygur Autonomous Region of China, and the results show that the proposed algorithm has the best effect on real remote sensing image change detection. PMID:28587299

  5. Improving the Performance of the Prony Method Using a Wavelet Domain Filter for MRI Denoising

    PubMed Central

    Lentini, Marianela; Paluszny, Marco

    2014-01-01

    The Prony methods are used for exponential fitting. We use a variant of the Prony method for abnormal brain tissue detection in sequences of T 2 weighted magnetic resonance images. Here, MR images are considered to be affected only by Rician noise, and a new wavelet domain bilateral filtering process is implemented to reduce the noise in the images. This filter is a modification of Kazubek's algorithm and we use synthetic images to show the ability of the new procedure to suppress noise and compare its performance with respect to the original filter, using quantitative and qualitative criteria. The tissue classification process is illustrated using a real sequence of T 2 MR images, and the filter is applied to each image before using the variant of the Prony method. PMID:24834108

  6. Improving the performance of the prony method using a wavelet domain filter for MRI denoising.

    PubMed

    Jaramillo, Rodney; Lentini, Marianela; Paluszny, Marco

    2014-01-01

    The Prony methods are used for exponential fitting. We use a variant of the Prony method for abnormal brain tissue detection in sequences of T 2 weighted magnetic resonance images. Here, MR images are considered to be affected only by Rician noise, and a new wavelet domain bilateral filtering process is implemented to reduce the noise in the images. This filter is a modification of Kazubek's algorithm and we use synthetic images to show the ability of the new procedure to suppress noise and compare its performance with respect to the original filter, using quantitative and qualitative criteria. The tissue classification process is illustrated using a real sequence of T 2 MR images, and the filter is applied to each image before using the variant of the Prony method.

  7. Design and implementation of an electrocardiographical signal acquisition and digital processing system orientated to the detection of paroxysmal arrhythmias

    NASA Astrophysics Data System (ADS)

    Iriart Braceli, Agustín; Exequiel Morani, Jorge

    2011-12-01

    This article describes the design, technical aspects and implementation of a device capable of acquiring electrocardiograph signals; visualize them in real time over a graphic liquid crystal display (GLCD), and the storage of these ECG registers on a SD memory card. It also details a noise suppression algorithm using the Wavelet Transform. This system was specially developed to cover some bankruptcy that presents actual Holters or ECG regarding the detection of paroxysmal arrhythmias. The contribution of this work is settled on its portability and low production cost. The filtering method used provides an ECG signal without any significant noise and appropriate to the diagnosis of cardiac pathologies.

  8. The formation of quantum images and their transformation and super-resolution reading

    NASA Astrophysics Data System (ADS)

    Balakin, D. A.; Belinsky, A. V.

    2016-05-01

    Images formed by light with suppressed photon fluctuations are interesting objects for studies with the aim of increasing their limiting information capacity and quality. This light in the sub-Poisson state can be prepared in a resonator filled with a medium with Kerr nonlinearity, in which self-phase modulation takes place. Spatially and temporally multimode light beams are studied and the production of spatial frequency spectra of suppressed photon fluctuations is described. The efficient operation regimes of the system are found. A particular schematic solution is described, which allows one to realize the potential possibilities laid in the formation of the squeezed states of light to a maximum degree during self-phase modulation in a resonator for the maximal suppression of amplitude quantum noises upon two-dimensional imaging. The efficiency of using light with suppressed quantum fluctuations for computer image processing is studied. An algorithm is described for interpreting measurements for increasing the resolution with respect to the geometrical resolution. A mathematical model that characterizes the measurement scheme is constructed and the problem of the image reconstruction is solved. The algorithm for the interpretation of images is verified. Conditions are found for the efficient application of sub-Poisson light for super-resolution imaging. It is found that the image should have a low contrast and be maximally transparent.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balakin, D. A.; Belinsky, A. V., E-mail: belinsky@inbox.ru

    Images formed by light with suppressed photon fluctuations are interesting objects for studies with the aim of increasing their limiting information capacity and quality. This light in the sub-Poisson state can be prepared in a resonator filled with a medium with Kerr nonlinearity, in which self-phase modulation takes place. Spatially and temporally multimode light beams are studied and the production of spatial frequency spectra of suppressed photon fluctuations is described. The efficient operation regimes of the system are found. A particular schematic solution is described, which allows one to realize the potential possibilities laid in the formation of the squeezedmore » states of light to a maximum degree during self-phase modulation in a resonator for the maximal suppression of amplitude quantum noises upon two-dimensional imaging. The efficiency of using light with suppressed quantum fluctuations for computer image processing is studied. An algorithm is described for interpreting measurements for increasing the resolution with respect to the geometrical resolution. A mathematical model that characterizes the measurement scheme is constructed and the problem of the image reconstruction is solved. The algorithm for the interpretation of images is verified. Conditions are found for the efficient application of sub-Poisson light for super-resolution imaging. It is found that the image should have a low contrast and be maximally transparent.« less

  10. Cold-flow acoustic evaluation of a small scale, divergent, lobed nozzle for supersonic jet noise suppression

    NASA Technical Reports Server (NTRS)

    Huff, R. G.; Groesbeck, D. E.

    1975-01-01

    A supersonic jet noise suppressor was tested with cold flow for acoustic and thrust characteristics at nozzle- to atmospheric-pressure ratios of 1.5 to 4.0. Jet noise suppression and spectral characteristics of the divergent, lobed, suppressor (DLS) nozzle with and without an ejector are presented. Suppression was obtained at nozzle pressure ratios of 2.5 to 4.0. The largest, maximum-lobe, sound pressure level suppression with a hard-wall ejector was 14.6 decibels at a nozzle pressure ratio of 3.5. The thrust loss was 2 percent. In general, low-frequency jet noise was suppressed, leaving higher frequencies essentially unchanged. Without the ejector the nozzle showed a thrust loss of 11 percent together with slightly poorer noise suppression.

  11. Noise suppression and crosstalk analysis of on-chip magnetic film-type noise suppressor

    NASA Astrophysics Data System (ADS)

    Ma, Jingyan; Muroga, Sho; Endo, Yasushi; Hashi, Shuichiro; Naoe, Masayuki; Yokoyama, Hiroo; Hayashi, Yoshiaki; Ishiyama, Kazushi

    2018-05-01

    This paper discusses near field, conduction and crosstalk noise suppression of magnetic films with uniaxial anisotropy on transmission lines for a film-type noise suppressor in the GHz frequency range. The electromagnetic noise suppressions of magnetic films with different permeability and resistivity were measured and simulated with simple microstrip lines. The experimental and simulated results of Co-Zr-Nb and CoPd-CaF2 films agreed with each other. The results indicate that the higher permeability leads to a better near field shielding, and in the frequency range of 2-7 GHz, a higher conduction noise suppression. It also suggests that the higher resistivity results in a better crosstalk suppression in the frequency range below 2 GHz. These results can support the design guidelines of the magnetic film-type noise suppressor used in the next generation IC chip.

  12. Active flutter suppression using optical output feedback digital controllers

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A method for synthesizing digital active flutter suppression controllers using the concept of optimal output feedback is presented. A convergent algorithm is employed to determine constrained control law parameters that minimize an infinite time discrete quadratic performance index. Low order compensator dynamics are included in the control law and the compensator parameters are computed along with the output feedback gain as part of the optimization process. An input noise adjustment procedure is used to improve the stability margins of the digital active flutter controller. Sample rate variation, prefilter pole variation, control structure variation and gain scheduling are discussed. A digital control law which accommodates computation delay can stabilize the wing with reasonable rms performance and adequate stability margins.

  13. Aero-acoustic design and test of a multiple splitter exhaust noise suppressor for a 0.914m diameter lift fan

    NASA Technical Reports Server (NTRS)

    Stimpert, D. L.

    1973-01-01

    A lift fan exhaust suppression system to meet future VTOL aircraft noise goals was designed and tested. The test vehicle was a 1.3 pressure ratio, 36 inch (91.44 cm) diameter lift fan with two chord rotor to stator spacing. A two splitter fan exhaust suppression system thirty inches (76.2 cm) long achieved 10 PNdB exhaust suppression in the aft quadrant compared to a design value of 20 PNdB. It was found that a broadband noise floor limited the realizable suppression. An analytical investigation of broadband noise generated by flow over the treatment surfaces provided very good agreement with the measured suppression levels and noise floor sound power levels. A fan thrust decrement of 22% was measured for the fully suppressed configuration of which 11.1% was attributed to the exhaust suppression hardware.

  14. A Post-Transcriptional Feedback Mechanism for Noise Suppression and Fate Stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Maike M. K.; Wen, Winnie Y.; Ingerman, Elena

    Diverse biological systems utilize fluctuations (“noise”) in gene expression to drive lineage-commitment decisions. However, once a commitment is made, noise becomes detrimental to reliable function, and the mechanisms enabling post-commitment noise suppression are unclear. Here, we find that architectural constraints on noise suppression are overcome to stabilize fate commitment. Using single-molecule and time-lapse imaging, we find that—after a noise-driven event—human immunodeficiency virus (HIV) strongly attenuates expression noise through a non-transcriptional negative-feedback circuit. Feedback is established through a serial cascade of post-transcriptional splicing, whereby proteins generated from spliced mRNAs auto-deplete their own precursor unspliced mRNAs. Strikingly, this auto-depletion circuitry minimizes noisemore » to stabilize HIV’s commitment decision, and a noise-suppression molecule promotes stabilization. Lastly, this feedback mechanism for noise suppression suggests a functional role for delayed splicing in other systems and may represent a generalizable architecture of diverse homeostatic signaling circuits.« less

  15. A Post-Transcriptional Feedback Mechanism for Noise Suppression and Fate Stabilization

    DOE PAGES

    Hansen, Maike M. K.; Wen, Winnie Y.; Ingerman, Elena; ...

    2018-05-10

    Diverse biological systems utilize fluctuations (“noise”) in gene expression to drive lineage-commitment decisions. However, once a commitment is made, noise becomes detrimental to reliable function, and the mechanisms enabling post-commitment noise suppression are unclear. Here, we find that architectural constraints on noise suppression are overcome to stabilize fate commitment. Using single-molecule and time-lapse imaging, we find that—after a noise-driven event—human immunodeficiency virus (HIV) strongly attenuates expression noise through a non-transcriptional negative-feedback circuit. Feedback is established through a serial cascade of post-transcriptional splicing, whereby proteins generated from spliced mRNAs auto-deplete their own precursor unspliced mRNAs. Strikingly, this auto-depletion circuitry minimizes noisemore » to stabilize HIV’s commitment decision, and a noise-suppression molecule promotes stabilization. Lastly, this feedback mechanism for noise suppression suggests a functional role for delayed splicing in other systems and may represent a generalizable architecture of diverse homeostatic signaling circuits.« less

  16. Iterative image reconstruction for multienergy computed tomography via structure tensor total variation regularization

    NASA Astrophysics Data System (ADS)

    Zeng, Dong; Bian, Zhaoying; Gong, Changfei; Huang, Jing; He, Ji; Zhang, Hua; Lu, Lijun; Feng, Qianjin; Liang, Zhengrong; Ma, Jianhua

    2016-03-01

    Multienergy computed tomography (MECT) has the potential to simultaneously offer multiple sets of energy- selective data belonging to specific energy windows. However, because sufficient photon counts are not available in the specific energy windows compared with that in the whole energy window, the MECT images reconstructed by the analytical approach often suffer from poor signal-to-noise (SNR) and strong streak artifacts. To eliminate this drawback, in this work we present a penalized weighted least-squares (PWLS) scheme by incorporating the new concept of structure tensor total variation (STV) regularization to improve the MECT images quality from low-milliampere-seconds (low-mAs) data acquisitions. Henceforth the present scheme is referred to as `PWLS- STV' for simplicity. Specifically, the STV regularization is derived by penalizing the eigenvalues of the structure tensor of every point in the MECT images. Thus it can provide more robust measures of image variation, which can eliminate the patchy artifacts often observed in total variation regularization. Subsequently, an alternating optimization algorithm was adopted to minimize the objective function. Experiments with a digital XCAT phantom clearly demonstrate that the present PWLS-STV algorithm can achieve more gains than the existing TV-based algorithms and the conventional filtered backpeojection (FBP) algorithm in terms of noise-induced artifacts suppression, resolution preservation, and material decomposition assessment.

  17. Double-Stage Delay Multiply and Sum Beamforming Algorithm Applied to Ultrasound Medical Imaging.

    PubMed

    Mozaffarzadeh, Moein; Sadeghi, Masume; Mahloojifar, Ali; Orooji, Mahdi

    2018-03-01

    In ultrasound (US) imaging, delay and sum (DAS) is the most common beamformer, but it leads to low-quality images. Delay multiply and sum (DMAS) was introduced to address this problem. However, the reconstructed images using DMAS still suffer from the level of side lobes and low noise suppression. Here, a novel beamforming algorithm is introduced based on expansion of the DMAS formula. We found that there is a DAS algebra inside the expansion, and we proposed use of the DMAS instead of the DAS algebra. The introduced method, namely double-stage DMAS (DS-DMAS), is evaluated numerically and experimentally. The quantitative results indicate that DS-DMAS results in an approximately 25% lower level of side lobes compared with DMAS. Moreover, the introduced method leads to 23%, 22% and 43% improvement in signal-to-noise ratio, full width at half-maximum and contrast ratio, respectively, compared with the DMAS beamformer. Copyright © 2018. Published by Elsevier Inc.

  18. Penalized Weighted Least-Squares Approach to Sinogram Noise Reduction and Image Reconstruction for Low-Dose X-Ray Computed Tomography

    PubMed Central

    Wang, Jing; Li, Tianfang; Lu, Hongbing; Liang, Zhengrong

    2006-01-01

    Reconstructing low-dose X-ray CT (computed tomography) images is a noise problem. This work investigated a penalized weighted least-squares (PWLS) approach to address this problem in two dimensions, where the WLS considers first- and second-order noise moments and the penalty models signal spatial correlations. Three different implementations were studied for the PWLS minimization. One utilizes a MRF (Markov random field) Gibbs functional to consider spatial correlations among nearby detector bins and projection views in sinogram space and minimizes the PWLS cost function by iterative Gauss-Seidel algorithm. Another employs Karhunen-Loève (KL) transform to de-correlate data signals among nearby views and minimizes the PWLS adaptively to each KL component by analytical calculation, where the spatial correlation among nearby bins is modeled by the same Gibbs functional. The third one models the spatial correlations among image pixels in image domain also by a MRF Gibbs functional and minimizes the PWLS by iterative successive over-relaxation algorithm. In these three implementations, a quadratic functional regularization was chosen for the MRF model. Phantom experiments showed a comparable performance of these three PWLS-based methods in terms of suppressing noise-induced streak artifacts and preserving resolution in the reconstructed images. Computer simulations concurred with the phantom experiments in terms of noise-resolution tradeoff and detectability in low contrast environment. The KL-PWLS implementation may have the advantage in terms of computation for high-resolution dynamic low-dose CT imaging. PMID:17024831

  19. Speckle noise suppression method in holographic display using time multiplexing

    NASA Astrophysics Data System (ADS)

    Liu, Su-Juan; Wang, Di; Li, Song-Jie; Wang, Qiong-Hua

    2017-06-01

    We propose a method to suppress the speckle noise in holographic display using time multiplexing. The diffractive optical elements (DOEs) and the subcomputer-generated holograms (sub-CGHs) are generated, respectively. The final image is reconstructed using time multiplexing of the subimages and the final subimages. Meanwhile, the speckle noise of the final image is suppressed by reducing the coherence of the reconstructed light and separating the adjacent image points in space. Compared with the pixel separation method, the experiments demonstrate that the proposed method suppresses the speckle noise effectively with less calculation burden and lower demand for frame rate of the spatial light modulator. In addition, with increases of the DOEs and the sub-CGHs, the speckle noise is further suppressed.

  20. Full-custom design of split-set data weighted averaging with output register for jitter suppression

    NASA Astrophysics Data System (ADS)

    Jubay, M. C.; Gerasta, O. J.

    2015-06-01

    A full-custom design of an element selection algorithm, named as Split-set Data Weighted Averaging (SDWA) is implemented in 90nm CMOS Technology Synopsys Library. SDWA is applied in seven unit elements (3-bit) using a thermometer-coded input. Split-set DWA is an improved DWA algorithm which caters the requirement for randomization along with long-term equal element usage. Randomization and equal element-usage improve the spectral response of the unit elements due to higher Spurious-free dynamic range (SFDR) and without significantly degrading signal-to-noise ratio (SNR). Since a full-custom, the design is brought to transistor-level and the chip custom layout is also provided, having a total area of 0.3mm2, a power consumption of 0.566 mW, and simulated at 50MHz clock frequency. On this implementation, SDWA is successfully derived and improved by introducing a register at the output that suppresses the jitter introduced at the final stage due to switching loops and successive delays.

  1. Development of a high-performance noise-reduction filter for tomographic reconstruction

    NASA Astrophysics Data System (ADS)

    Kao, Chien-Min; Pan, Xiaochuan

    2001-07-01

    We propose a new noise-reduction method for tomographic reconstruction. The method incorporates a priori information on the source image for allowing the derivation of the energy spectrum of its ideal sinogram. In combination with the energy spectrum of the Poisson noise in the measured sinogram, we are able to derive a Wiener-like filter for effective suppression of the sinogram noise. The filtered backprojection (FBP) algorithm, with a ramp filter, is then applied to the filtered sinogram to produce tomographic images. The resulting filter has a closed-form expression in the frequency space and contains a single user-adjustable regularization parameter. The proposed method is hence simple to implement and easy to use. In contrast to the ad hoc apodizing windows, such as Hanning and Butterworth filters, that are commonly used in the conventional FBP reconstruction, the proposed filter is theoretically more rigorous as it is derived by basing upon an optimization criterion, subject to a known class of source image intensity distributions.

  2. A torsion pendulum test of the Lisa Pathfinder free-fall mode

    NASA Astrophysics Data System (ADS)

    Russano, Giuliana; Dolesi, Rita; Cavalleri, Antonella; Hueller, Mauro; Vitale, Stefano; Weber, William Joseph; Tu, HaiBo

    The LISA Pathfinder geodesic explorer mission for gravitational wave astronomy aims to demonstrate the proof of a low acceleration noise level. The relative acceleration between two test masses free falling in orbit is perturbed by the presence of a larger constant relative acceleration that must be actively compensated in order to keep the test particles centered inside an orbiting apparatus. The actuation force applied to compensate this effect introduces a dominant source of force noise. To suppress this noise source, a “free-fall” actuation control scheme has been designed: actuation is limited to brief impulses, with test masses in free fall in between two “kicks”, with this actuation-free motion then analyzed for the remaining sources of acceleration ultra noise. In this work, we will discuss and present preliminary data for an on-ground torsion pendulum experiment to test this technique, and the associated analysis algorithms, at a level nearing the sub-femto-g/sqrt(Hz) performance required for LISA Pathfinder.

  3. SU-F-I-10: Spatially Local Statistics for Adaptive Image Filtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iliopoulos, AS; Sun, X; Floros, D

    Purpose: To facilitate adaptive image filtering operations, addressing spatial variations in both noise and signal. Such issues are prevalent in cone-beam projections, where physical effects such as X-ray scattering result in spatially variant noise, violating common assumptions of homogeneous noise and challenging conventional filtering approaches to signal extraction and noise suppression. Methods: We present a computational mechanism for probing into and quantifying the spatial variance of noise throughout an image. The mechanism builds a pyramid of local statistics at multiple spatial scales; local statistical information at each scale includes (weighted) mean, median, standard deviation, median absolute deviation, as well asmore » histogram or dynamic range after local mean/median shifting. Based on inter-scale differences of local statistics, the spatial scope of distinguishable noise variation is detected in a semi- or un-supervised manner. Additionally, we propose and demonstrate the incorporation of such information in globally parametrized (i.e., non-adaptive) filters, effectively transforming the latter into spatially adaptive filters. The multi-scale mechanism is materialized by efficient algorithms and implemented in parallel CPU/GPU architectures. Results: We demonstrate the impact of local statistics for adaptive image processing and analysis using cone-beam projections of a Catphan phantom, fitted within an annulus to increase X-ray scattering. The effective spatial scope of local statistics calculations is shown to vary throughout the image domain, necessitating multi-scale noise and signal structure analysis. Filtering results with and without spatial filter adaptation are compared visually, illustrating improvements in imaging signal extraction and noise suppression, and in preserving information in low-contrast regions. Conclusion: Local image statistics can be incorporated in filtering operations to equip them with spatial adaptivity to spatial signal/noise variations. An efficient multi-scale computational mechanism is developed to curtail processing latency. Spatially adaptive filtering may impact subsequent processing tasks such as reconstruction and numerical gradient computations for deformable registration. NIH Grant No. R01-184173.« less

  4. Seismic noise attenuation using an online subspace tracking algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Yatong; Li, Shuhua; Zhang, Dong; Chen, Yangkang

    2018-02-01

    We propose a new low-rank based noise attenuation method using an efficient algorithm for tracking subspaces from highly corrupted seismic observations. The subspace tracking algorithm requires only basic linear algebraic manipulations. The algorithm is derived by analysing incremental gradient descent on the Grassmannian manifold of subspaces. When the multidimensional seismic data are mapped to a low-rank space, the subspace tracking algorithm can be directly applied to the input low-rank matrix to estimate the useful signals. Since the subspace tracking algorithm is an online algorithm, it is more robust to random noise than traditional truncated singular value decomposition (TSVD) based subspace tracking algorithm. Compared with the state-of-the-art algorithms, the proposed denoising method can obtain better performance. More specifically, the proposed method outperforms the TSVD-based singular spectrum analysis method in causing less residual noise and also in saving half of the computational cost. Several synthetic and field data examples with different levels of complexities demonstrate the effectiveness and robustness of the presented algorithm in rejecting different types of noise including random noise, spiky noise, blending noise, and coherent noise.

  5. Noise-enhanced clustering and competitive learning algorithms.

    PubMed

    Osoba, Osonde; Kosko, Bart

    2013-01-01

    Noise can provably speed up convergence in many centroid-based clustering algorithms. This includes the popular k-means clustering algorithm. The clustering noise benefit follows from the general noise benefit for the expectation-maximization algorithm because many clustering algorithms are special cases of the expectation-maximization algorithm. Simulations show that noise also speeds up convergence in stochastic unsupervised competitive learning, supervised competitive learning, and differential competitive learning. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Structure-adaptive CBCT reconstruction using weighted total variation and Hessian penalties

    PubMed Central

    Shi, Qi; Sun, Nanbo; Sun, Tao; Wang, Jing; Tan, Shan

    2016-01-01

    The exposure of normal tissues to high radiation during cone-beam CT (CBCT) imaging increases the risk of cancer and genetic defects. Statistical iterative algorithms with the total variation (TV) penalty have been widely used for low dose CBCT reconstruction, with state-of-the-art performance in suppressing noise and preserving edges. However, TV is a first-order penalty and sometimes leads to the so-called staircase effect, particularly over regions with smooth intensity transition in the reconstruction images. A second-order penalty known as the Hessian penalty was recently used to replace TV to suppress the staircase effect in CBCT reconstruction at the cost of slightly blurring object edges. In this study, we proposed a new penalty, the TV-H, which combines TV and Hessian penalties for CBCT reconstruction in a structure-adaptive way. The TV-H penalty automatically differentiates the edges, gradual transition and uniform local regions within an image using the voxel gradient, and adaptively weights TV and Hessian according to the local image structures in the reconstruction process. Our proposed penalty retains the benefits of TV, including noise suppression and edge preservation. It also maintains the structures in regions with gradual intensity transition more successfully. A majorization-minimization (MM) approach was designed to optimize the objective energy function constructed with the TV-H penalty. The MM approach employed a quadratic upper bound of the original objective function, and the original optimization problem was changed to a series of quadratic optimization problems, which could be efficiently solved using the Gauss-Seidel update strategy. We tested the reconstruction algorithm on two simulated digital phantoms and two physical phantoms. Our experiments indicated that the TV-H penalty visually and quantitatively outperformed both TV and Hessian penalties. PMID:27699100

  7. Structure-adaptive CBCT reconstruction using weighted total variation and Hessian penalties.

    PubMed

    Shi, Qi; Sun, Nanbo; Sun, Tao; Wang, Jing; Tan, Shan

    2016-09-01

    The exposure of normal tissues to high radiation during cone-beam CT (CBCT) imaging increases the risk of cancer and genetic defects. Statistical iterative algorithms with the total variation (TV) penalty have been widely used for low dose CBCT reconstruction, with state-of-the-art performance in suppressing noise and preserving edges. However, TV is a first-order penalty and sometimes leads to the so-called staircase effect, particularly over regions with smooth intensity transition in the reconstruction images. A second-order penalty known as the Hessian penalty was recently used to replace TV to suppress the staircase effect in CBCT reconstruction at the cost of slightly blurring object edges. In this study, we proposed a new penalty, the TV-H, which combines TV and Hessian penalties for CBCT reconstruction in a structure-adaptive way. The TV-H penalty automatically differentiates the edges, gradual transition and uniform local regions within an image using the voxel gradient, and adaptively weights TV and Hessian according to the local image structures in the reconstruction process. Our proposed penalty retains the benefits of TV, including noise suppression and edge preservation. It also maintains the structures in regions with gradual intensity transition more successfully. A majorization-minimization (MM) approach was designed to optimize the objective energy function constructed with the TV-H penalty. The MM approach employed a quadratic upper bound of the original objective function, and the original optimization problem was changed to a series of quadratic optimization problems, which could be efficiently solved using the Gauss-Seidel update strategy. We tested the reconstruction algorithm on two simulated digital phantoms and two physical phantoms. Our experiments indicated that the TV-H penalty visually and quantitatively outperformed both TV and Hessian penalties.

  8. Filtered-x generalized mixed norm (FXGMN) algorithm for active noise control

    NASA Astrophysics Data System (ADS)

    Song, Pucha; Zhao, Haiquan

    2018-07-01

    The standard adaptive filtering algorithm with a single error norm exhibits slow convergence rate and poor noise reduction performance under specific environments. To overcome this drawback, a filtered-x generalized mixed norm (FXGMN) algorithm for active noise control (ANC) system is proposed. The FXGMN algorithm is developed by using a convex mixture of lp and lq norms as the cost function that it can be viewed as a generalized version of the most existing adaptive filtering algorithms, and it will reduce to a specific algorithm by choosing certain parameters. Especially, it can be used to solve the ANC under Gaussian and non-Gaussian noise environments (including impulsive noise with symmetric α -stable (SαS) distribution). To further enhance the algorithm performance, namely convergence speed and noise reduction performance, a convex combination of the FXGMN algorithm (C-FXGMN) is presented. Moreover, the computational complexity of the proposed algorithms is analyzed, and a stability condition for the proposed algorithms is provided. Simulation results show that the proposed FXGMN and C-FXGMN algorithms can achieve better convergence speed and higher noise reduction as compared to other existing algorithms under various noise input conditions, and the C-FXGMN algorithm outperforms the FXGMN.

  9. Denoised Wigner distribution deconvolution via low-rank matrix completion

    DOE PAGES

    Lee, Justin; Barbastathis, George

    2016-08-23

    Wigner distribution deconvolution (WDD) is a decades-old method for recovering phase from intensity measurements. Although the technique offers an elegant linear solution to the quadratic phase retrieval problem, it has seen limited adoption due to its high computational/memory requirements and the fact that the technique often exhibits high noise sensitivity. Here, we propose a method for noise suppression in WDD via low-rank noisy matrix completion. Our technique exploits the redundancy of an object’s phase space to denoise its WDD reconstruction. We show in model calculations that our technique outperforms other WDD algorithms as well as modern iterative methods for phasemore » retrieval such as ptychography. Here, our results suggest that a class of phase retrieval techniques relying on regularized direct inversion of ptychographic datasets (instead of iterative reconstruction techniques) can provide accurate quantitative phase information in the presence of high levels of noise.« less

  10. Denoised Wigner distribution deconvolution via low-rank matrix completion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Justin; Barbastathis, George

    Wigner distribution deconvolution (WDD) is a decades-old method for recovering phase from intensity measurements. Although the technique offers an elegant linear solution to the quadratic phase retrieval problem, it has seen limited adoption due to its high computational/memory requirements and the fact that the technique often exhibits high noise sensitivity. Here, we propose a method for noise suppression in WDD via low-rank noisy matrix completion. Our technique exploits the redundancy of an object’s phase space to denoise its WDD reconstruction. We show in model calculations that our technique outperforms other WDD algorithms as well as modern iterative methods for phasemore » retrieval such as ptychography. Here, our results suggest that a class of phase retrieval techniques relying on regularized direct inversion of ptychographic datasets (instead of iterative reconstruction techniques) can provide accurate quantitative phase information in the presence of high levels of noise.« less

  11. Decision-aided ICI mitigation with time-domain average approximation in CO-OFDM

    NASA Astrophysics Data System (ADS)

    Ren, Hongliang; Cai, Jiaxing; Ye, Xin; Lu, Jin; Cao, Quanjun; Guo, Shuqin; Xue, Lin-lin; Qin, Yali; Hu, Weisheng

    2015-07-01

    We introduce and investigate the feasibility of a novel iterative blind phase noise inter-carrier interference (ICI) mitigation scheme for coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. The ICI mitigation scheme is performed through the combination of frequency-domain symbol decision-aided estimation and the ICI phase noise time-average approximation. An additional initial decision process with suitable threshold is introduced in order to suppress the decision error symbols. Our proposed ICI mitigation scheme is proved to be effective in removing the ICI for a simulated CO-OFDM with 16-QAM modulation format. With the slightly high computational complexity, it outperforms the time-domain average blind ICI (Avg-BL-ICI) algorithm at a relatively wide laser line-width and high OSNR.

  12. Width of the confining string in Yang-Mills theory.

    PubMed

    Gliozzi, F; Pepe, M; Wiese, U-J

    2010-06-11

    We investigate the transverse fluctuations of the confining string connecting two static quarks in (2+1)D SU(2) Yang-Mills theory using Monte Carlo calculations. The exponentially suppressed signal is extracted from the large noise by a very efficient multilevel algorithm. The resulting width of the string increases logarithmically with the distance between the static quark charges. Corrections at intermediate distances due to universal higher-order terms in the effective string action are calculated analytically. They accurately fit the numerical data.

  13. An Unsupervised Change Detection Method Using Time-Series of PolSAR Images from Radarsat-2 and GaoFen-3.

    PubMed

    Liu, Wensong; Yang, Jie; Zhao, Jinqi; Shi, Hongtao; Yang, Le

    2018-02-12

    The traditional unsupervised change detection methods based on the pixel level can only detect the changes between two different times with same sensor, and the results are easily affected by speckle noise. In this paper, a novel method is proposed to detect change based on time-series data from different sensors. Firstly, the overall difference image of the time-series PolSAR is calculated by omnibus test statistics, and difference images between any two images in different times are acquired by R j test statistics. Secondly, the difference images are segmented with a Generalized Statistical Region Merging (GSRM) algorithm which can suppress the effect of speckle noise. Generalized Gaussian Mixture Model (GGMM) is then used to obtain the time-series change detection maps in the final step of the proposed method. To verify the effectiveness of the proposed method, we carried out the experiment of change detection using time-series PolSAR images acquired by Radarsat-2 and Gaofen-3 over the city of Wuhan, in China. Results show that the proposed method can not only detect the time-series change from different sensors, but it can also better suppress the influence of speckle noise and improve the overall accuracy and Kappa coefficient.

  14. Comparative intelligibility investigation of single-channel noise-reduction algorithms for Chinese, Japanese, and English.

    PubMed

    Li, Junfeng; Yang, Lin; Zhang, Jianping; Yan, Yonghong; Hu, Yi; Akagi, Masato; Loizou, Philipos C

    2011-05-01

    A large number of single-channel noise-reduction algorithms have been proposed based largely on mathematical principles. Most of these algorithms, however, have been evaluated with English speech. Given the different perceptual cues used by native listeners of different languages including tonal languages, it is of interest to examine whether there are any language effects when the same noise-reduction algorithm is used to process noisy speech in different languages. A comparative evaluation and investigation is taken in this study of various single-channel noise-reduction algorithms applied to noisy speech taken from three languages: Chinese, Japanese, and English. Clean speech signals (Chinese words and Japanese words) were first corrupted by three types of noise at two signal-to-noise ratios and then processed by five single-channel noise-reduction algorithms. The processed signals were finally presented to normal-hearing listeners for recognition. Intelligibility evaluation showed that the majority of noise-reduction algorithms did not improve speech intelligibility. Consistent with a previous study with the English language, the Wiener filtering algorithm produced small, but statistically significant, improvements in intelligibility for car and white noise conditions. Significant differences between the performances of noise-reduction algorithms across the three languages were observed.

  15. Contralateral suppression of transient otoacoustic emissions and sentence recognition in noise in young adults.

    PubMed

    Stuart, Andrew; Butler, Alyson K

    2012-10-01

    One purported role of the medial olivocochlear (MOC) efferent system is to reduce the effects of masking noise. MOC system functioning can be evaluated noninvasively in humans through contralateral suppression of otoacoustic emissions. It has been suggested that the strength of the MOC efferent activity should be positively associated with listening performance in noise. The objective of the study was to further explore this notion by examining contralateral suppression of transient evoked otoacoustic emissions (TEOAEs) and sentence recognition in two noises with normal hearing young adults. A repeated measures multivariate quasi-experimental design was employed. Thirty-two normal hearing young adult females participated. Reception thresholds for sentences (RTSs) were determined monaurally and binaurally in quiet and in competing continuous and interrupted noises. Both noises had an identical power spectrum and differed only in their temporal continuity. "Release from masking" was computed by subtracting RTS signal-to-noise ratios in interrupted from continuous noise. TEOAEs were evoked with 80 dB peSPL click stimuli. To examine contralateral suppression, TEOAEs were evaluated with 60 dB peSPL click stimuli with and without a contralateral 65 dB SPL white noise suppressor. A binaural advantage was observed for RTSs in quiet and noise (p < .0001) while there was no difference between ears (p >.05). In noise, performance was superior in the interrupted noise (i.e., RTSs were lower vs. continuous noise; p < .0001). There were no statistically significant differences in TEOAE levels between ears (p >.05). There was also no significant difference in the amount of suppression between ears (p = .41). There were no significant correlations or predictive linear relations between the amount of TEOAE suppression and any indices of sentence recognition in noise (i.e., RTS signal-to-noise ratios and release from masking; p > .05). The findings are not consistent with the notion that increased medial olivocochlear efferent feedback, as assessed via contralateral suppression of TEOAEs, is associated with improved speech perception in continuous and interrupted noise. American Academy of Audiology.

  16. A practical approach to the development of aircraft GTE's noise suppression system on the base of fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Vinogradov, Vasiliy Yu.; Morozov, Oleg G.; Morozov, Gennady A.; Sakhabutdinov, Airat Zh.; Nureev, Ilnur I.; Kuznetsov, Artem A.; Faskhutdinov, Lenar M.; Sarvarova, Lutsia M.

    2017-04-01

    In this paper, we consider a number of different methods that form the modern approach to the development of aircraft GTE's noise suppression systems at service conditions. The herein-presented efficient noise suppression system on the base of fiber optic sensors makes it possible to reduce pulsations at the exhaust nozzle exit and noise levels at the engine outlet section.

  17. Simulation for noise cancellation using LMS adaptive filter

    NASA Astrophysics Data System (ADS)

    Lee, Jia-Haw; Ooi, Lu-Ean; Ko, Ying-Hao; Teoh, Choe-Yung

    2017-06-01

    In this paper, the fundamental algorithm of noise cancellation, Least Mean Square (LMS) algorithm is studied and enhanced with adaptive filter. The simulation of the noise cancellation using LMS adaptive filter algorithm is developed. The noise corrupted speech signal and the engine noise signal are used as inputs for LMS adaptive filter algorithm. The filtered signal is compared to the original noise-free speech signal in order to highlight the level of attenuation of the noise signal. The result shows that the noise signal is successfully canceled by the developed adaptive filter. The difference of the noise-free speech signal and filtered signal are calculated and the outcome implies that the filtered signal is approaching the noise-free speech signal upon the adaptive filtering. The frequency range of the successfully canceled noise by the LMS adaptive filter algorithm is determined by performing Fast Fourier Transform (FFT) on the signals. The LMS adaptive filter algorithm shows significant noise cancellation at lower frequency range.

  18. Experimental evaluation of leaky least-mean-square algorithms for active noise reduction in communication headsets.

    PubMed

    Cartes, David A; Ray, Laura R; Collier, Robert D

    2002-04-01

    An adaptive leaky normalized least-mean-square (NLMS) algorithm has been developed to optimize stability and performance of active noise cancellation systems. The research addresses LMS filter performance issues related to insufficient excitation, nonstationary noise fields, and time-varying signal-to-noise ratio. The adaptive leaky NLMS algorithm is based on a Lyapunov tuning approach in which three candidate algorithms, each of which is a function of the instantaneous measured reference input, measurement noise variance, and filter length, are shown to provide varying degrees of tradeoff between stability and noise reduction performance. Each algorithm is evaluated experimentally for reduction of low frequency noise in communication headsets, and stability and noise reduction performance are compared with that of traditional NLMS and fixed-leakage NLMS algorithms. Acoustic measurements are made in a specially designed acoustic test cell which is based on the original work of Ryan et al. ["Enclosure for low frequency assessment of active noise reducing circumaural headsets and hearing protection," Can. Acoust. 21, 19-20 (1993)] and which provides a highly controlled and uniform acoustic environment. The stability and performance of the active noise reduction system, including a prototype communication headset, are investigated for a variety of noise sources ranging from stationary tonal noise to highly nonstationary measured F-16 aircraft noise over a 20 dB dynamic range. Results demonstrate significant improvements in stability of Lyapunov-tuned LMS algorithms over traditional leaky or nonleaky normalized algorithms, while providing noise reduction performance equivalent to that of the NLMS algorithm for idealized noise fields.

  19. Density-Aware Clustering Based on Aggregated Heat Kernel and Its Transformation

    DOE PAGES

    Huang, Hao; Yoo, Shinjae; Yu, Dantong; ...

    2015-06-01

    Current spectral clustering algorithms suffer from the sensitivity to existing noise, and parameter scaling, and may not be aware of different density distributions across clusters. If these problems are left untreated, the consequent clustering results cannot accurately represent true data patterns, in particular, for complex real world datasets with heterogeneous densities. This paper aims to solve these problems by proposing a diffusion-based Aggregated Heat Kernel (AHK) to improve the clustering stability, and a Local Density Affinity Transformation (LDAT) to correct the bias originating from different cluster densities. AHK statistically\\ models the heat diffusion traces along the entire time scale, somore » it ensures robustness during clustering process, while LDAT probabilistically reveals local density of each instance and suppresses the local density bias in the affinity matrix. Our proposed framework integrates these two techniques systematically. As a result, not only does it provide an advanced noise-resisting and density-aware spectral mapping to the original dataset, but also demonstrates the stability during the processing of tuning the scaling parameter (which usually controls the range of neighborhood). Furthermore, our framework works well with the majority of similarity kernels, which ensures its applicability to many types of data and problem domains. The systematic experiments on different applications show that our proposed algorithms outperform state-of-the-art clustering algorithms for the data with heterogeneous density distributions, and achieve robust clustering performance with respect to tuning the scaling parameter and handling various levels and types of noise.« less

  20. Fractional order integration and fuzzy logic based filter for denoising of echocardiographic image.

    PubMed

    Saadia, Ayesha; Rashdi, Adnan

    2016-12-01

    Ultrasound is widely used for imaging due to its cost effectiveness and safety feature. However, ultrasound images are inherently corrupted with speckle noise which severely affects the quality of these images and create difficulty for physicians in diagnosis. To get maximum benefit from ultrasound imaging, image denoising is an essential requirement. To perform image denoising, a two stage methodology using fuzzy weighted mean and fractional integration filter has been proposed in this research work. In stage-1, image pixels are processed by applying a 3 × 3 window around each pixel and fuzzy logic is used to assign weights to the pixels in each window, replacing central pixel of the window with weighted mean of all neighboring pixels present in the same window. Noise suppression is achieved by assigning weights to the pixels while preserving edges and other important features of an image. In stage-2, the resultant image is further improved by fractional order integration filter. Effectiveness of the proposed methodology has been analyzed for standard test images artificially corrupted with speckle noise and real ultrasound B-mode images. Results of the proposed technique have been compared with different state-of-the-art techniques including Lsmv, Wiener, Geometric filter, Bilateral, Non-local means, Wavelet, Perona et al., Total variation (TV), Global Adaptive Fractional Integral Algorithm (GAFIA) and Improved Fractional Order Differential (IFD) model. Comparison has been done on quantitative and qualitative basis. For quantitative analysis different metrics like Peak Signal to Noise Ratio (PSNR), Speckle Suppression Index (SSI), Structural Similarity (SSIM), Edge Preservation Index (β) and Correlation Coefficient (ρ) have been used. Simulations have been done using Matlab. Simulation results of artificially corrupted standard test images and two real Echocardiographic images reveal that the proposed method outperforms existing image denoising techniques reported in the literature. The proposed method for denoising of Echocardiographic images is effective in noise suppression/removal. It not only removes noise from an image but also preserves edges and other important structure. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. A moving hum filter to suppress rotor noise in high-resolution airborne magnetic data

    USGS Publications Warehouse

    Xia, J.; Doll, W.E.; Miller, R.D.; Gamey, T.J.; Emond, A.M.

    2005-01-01

    A unique filtering approach is developed to eliminate helicopter rotor noise. It is designed to suppress harmonic noise from a rotor that varies slightly in amplitude, phase, and frequency and that contaminates aero-magnetic data. The filter provides a powerful harmonic noise-suppression tool for data acquired with modern large-dynamic-range recording systems. This three-step approach - polynomial fitting, bandpass filtering, and rotor-noise synthesis - significantly reduces rotor noise without altering the spectra of signals of interest. Two steps before hum filtering - polynomial fitting and bandpass filtering - are critical to accurately model the weak rotor noise. During rotor-noise synthesis, amplitude, phase, and frequency are determined. Data are processed segment by segment so that there is no limit on the length of data. The segment length changes dynamically along a line based on modeling results. Modeling the rotor noise is stable and efficient. Real-world data examples demonstrate that this method can suppress rotor noise by more than 95% when implemented in an aeromagnetic data-processing flow. ?? 2005 Society of Exploration Geophysicists. All rights reserved.

  2. A cloud masking algorithm for EARLINET lidar systems

    NASA Astrophysics Data System (ADS)

    Binietoglou, Ioannis; Baars, Holger; D'Amico, Giuseppe; Nicolae, Doina

    2015-04-01

    Cloud masking is an important first step in any aerosol lidar processing chain as most data processing algorithms can only be applied on cloud free observations. Up to now, the selection of a cloud-free time interval for data processing is typically performed manually, and this is one of the outstanding problems for automatic processing of lidar data in networks such as EARLINET. In this contribution we present initial developments of a cloud masking algorithm that permits the selection of the appropriate time intervals for lidar data processing based on uncalibrated lidar signals. The algorithm is based on a signal normalization procedure using the range of observed values of lidar returns, designed to work with different lidar systems with minimal user input. This normalization procedure can be applied to measurement periods of only few hours, even if no suitable cloud-free interval exists, and thus can be used even when only a short period of lidar measurements is available. Clouds are detected based on a combination of criteria including the magnitude of the normalized lidar signal and time-space edge detection performed using the Sobel operator. In this way the algorithm avoids misclassification of strong aerosol layers as clouds. Cloud detection is performed using the highest available time and vertical resolution of the lidar signals, allowing the effective detection of low-level clouds (e.g. cumulus humilis). Special attention is given to suppress false cloud detection due to signal noise that can affect the algorithm's performance, especially during day-time. In this contribution we present the details of algorithm, the effect of lidar characteristics (space-time resolution, available wavelengths, signal-to-noise ratio) to detection performance, and highlight the current strengths and limitations of the algorithm using lidar scenes from different lidar systems in different locations across Europe.

  3. Masking of sounds by a background noise--cochlear mechanical correlates.

    PubMed

    Recio-Spinoso, Alberto; Cooper, Nigel P

    2013-05-15

    In the search for cochlear correlates of auditory masking by noise stimuli, we recorded basilar membrane (BM) vibrations evoked by either tone or click signals in the presence of varying levels of background noise. The BM vibrations were recorded from basal regions in healthy cochleae of anaesthetized chinchilla and gerbil. Non-linear interactions that could underpin various aspects of psychophysical masking data, including both compression and suppression at the BM level, were observed. The suppression effects, whereby the amplitude of the responses to each stimulus component could be reduced, depended on the relative intensities of the noise and the tones or clicks. Only stimulus components whose frequencies fell inside the non-linear region of the recording site, i.e. around its characteristic frequency (CF), were affected by presentation of the 'suppressing' stimulus (which could be either the tone or the noise). Mutual suppression, the simultaneous reduction of the responses to both tones and noise components, was observed under some conditions, but overall reductions of BM vibration were rarely observed. Moderate- to high-intensity tones suppressed BM responses to low-intensity Gaussian stimuli, including both broadband and narrowband noise. Suppression effects were larger for spectral components of the noise response that were closer to the CF. In this regime, the tone and noise stimuli became the suppressor and probe signals, respectively. This study provides the first detailed observations of cochlear mechanical correlates of the masking effects of noise. Mechanical detection thresholds for tone signals, which were arbitrarily defined using three criteria, are shown to increase in almost direct proportion to the noise level for low and moderately high noise levels, in a manner that resembles the findings of numerous psychophysical observations.

  4. Phase noise suppression for coherent optical block transmission systems: a unified framework.

    PubMed

    Yang, Chuanchuan; Yang, Feng; Wang, Ziyu

    2011-08-29

    A unified framework for phase noise suppression is proposed in this paper, which could be applied in any coherent optical block transmission systems, including coherent optical orthogonal frequency-division multiplexing (CO-OFDM), coherent optical single-carrier frequency-domain equalization block transmission (CO-SCFDE), etc. Based on adaptive modeling of phase noise, unified observation equations for different coherent optical block transmission systems are constructed, which lead to unified phase noise estimation and suppression. Numerical results demonstrate that the proposal is powerful in mitigating laser phase noise.

  5. Measurement Sensitivity Improvement of All-Optical Atomic Spin Magnetometer by Suppressing Noises

    PubMed Central

    Chen, Xiyuan; Zhang, Hong; Zou, Sheng

    2016-01-01

    Quantum manipulation technology and photoelectric detection technology have jointly facilitated the rapid development of ultra-sensitive atomic spin magnetometers. To improve the output signal and sensitivity of the spin-exchange-relaxation-free (SERF) atomic spin magnetometer, the noises influencing on the output signal and the sensitivity were analyzed, and the corresponding noise suppression methods were presented. The magnetic field noises, including the residual magnetic field noise and the light shift noise, were reduced to approximately zero by employing the magnetic field compensation method and by adjusting the frequency of the pump beam, respectively. With respect to the operation temperature, the simulation results showed that the temperature of the potassium atomic spin magnetometer realizing the spin-exchange relaxation-free regime was 180 °C. Moreover, the fluctuation noises of the frequency and the power were suppressed by using the frequency and the power stable systems. The experimental power stability results showed that the light intensity stability was enhanced 10%. Contrast experiments on the sensitivity were carried out to demonstrate the validity of the suppression methods. Finally, a sensitivity of 13 fT/Hz1/2 was successfully achieved by suppressing noises and optimizing parameters. PMID:27322272

  6. SU-E-I-01: Iterative CBCT Reconstruction with a Feature-Preserving Penalty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyu, Q; Li, B; Southern Medical University, Guangzhou

    2015-06-15

    Purpose: Low-dose CBCT is desired in various clinical applications. Iterative image reconstruction algorithms have shown advantages in suppressing noise in low-dose CBCT. However, due to the smoothness constraint enforced during the reconstruction process, edges may be blurred and image features may lose in the reconstructed image. In this work, we proposed a new penalty design to preserve image features in the image reconstructed by iterative algorithms. Methods: Low-dose CBCT is reconstructed by minimizing the penalized weighted least-squares (PWLS) objective function. Binary Robust Independent Elementary Features (BRIEF) of the image were integrated into the penalty of PWLS. BRIEF is a generalmore » purpose point descriptor that can be used to identify important features of an image. In this work, BRIEF distance of two neighboring pixels was used to weigh the smoothing parameter in PWLS. For pixels of large BRIEF distance, weaker smooth constraint will be enforced. Image features will be better preserved through such a design. The performance of the PWLS algorithm with BRIEF penalty was evaluated by a CatPhan 600 phantom. Results: The image quality reconstructed by the proposed PWLS-BRIEF algorithm is superior to that by the conventional PWLS method and the standard FDK method. At matched noise level, edges in PWLS-BRIEF reconstructed image are better preserved. Conclusion: This study demonstrated that the proposed PWLS-BRIEF algorithm has great potential on preserving image features in low-dose CBCT.« less

  7. Removal of impulse noise clusters from color images with local order statistics

    NASA Astrophysics Data System (ADS)

    Ruchay, Alexey; Kober, Vitaly

    2017-09-01

    This paper proposes a novel algorithm for restoring images corrupted with clusters of impulse noise. The noise clusters often occur when the probability of impulse noise is very high. The proposed noise removal algorithm consists of detection of bulky impulse noise in three color channels with local order statistics followed by removal of the detected clusters by means of vector median filtering. With the help of computer simulation we show that the proposed algorithm is able to effectively remove clustered impulse noise. The performance of the proposed algorithm is compared in terms of image restoration metrics with that of common successful algorithms.

  8. Single stage, low noise, advanced technology fan. Volume 5: Fan acoustics. Section 1: Results and analysis

    NASA Technical Reports Server (NTRS)

    Jutras, R. R.

    1976-01-01

    The acoustic tests and data analysis for a 0.508-scale fan vehicle of a 111,300 newton (25,000 pound) thrust, full-size engine, which would have application on an advanced transport aircraft, is described. The single-stage advanced technology fan was designed to a pressure ratio of 1.8 at a tip speed of 503 m/sec (1,650 ft/sec) to achieve the desired pressure ratio in a single-stage fan with low radius ratio (0.38), and to maintain adequate stall margin. The fan has 44 tip-shrouded rotor blades and 90 outlet guide vanes. The two basic approaches taken in the acoustic design were: (1) minimization of noise at the source, and (2) suppression of the generated noise in the inlet and bypass exhaust duct. Suppression of the generated noise was accomplished in the inlet through use of the hybrid concept (wall acoustic treatment plus airflow acceleration suppression) and in the exhaust duct with extensive acoustic treatment including a splitter. The goal of the design was attainment of twenty effective perceived noise decibels (20 EPNdB) below current Federal Air Regulation noise standards for a full-scale fan at the takeoff, cutback, and approach conditions. The suppression goal of FAR 36-20 was not reached, but improvements in the technology of both front and aft fan-noise suppression were realized. The suppressed fan noise was shown to be consistent with the proposed federal regulation on aircraft noise.

  9. Axial resolution improvement in spectral domain optical coherence tomography using a depth-adaptive maximum-a-posterior framework

    NASA Astrophysics Data System (ADS)

    Boroomand, Ameneh; Tan, Bingyao; Wong, Alexander; Bizheva, Kostadinka

    2015-03-01

    The axial resolution of Spectral Domain Optical Coherence Tomography (SD-OCT) images degrades with scanning depth due to the limited number of pixels and the pixel size of the camera, any aberrations in the spectrometer optics and wavelength dependent scattering and absorption in the imaged object [1]. Here we propose a novel algorithm which compensates for the blurring effect of these factors of the depth-dependent axial Point Spread Function (PSF) in SDOCT images. The proposed method is based on a Maximum A Posteriori (MAP) reconstruction framework which takes advantage of a Stochastic Fully Connected Conditional Random Field (SFCRF) model. The aim is to compensate for the depth-dependent axial blur in SD-OCT images and simultaneously suppress the speckle noise which is inherent to all OCT images. Applying the proposed depth-dependent axial resolution enhancement technique to an OCT image of cucumber considerably improved the axial resolution of the image especially at higher imaging depths and allowed for better visualization of cellular membrane and nuclei. Comparing the result of our proposed method with the conventional Lucy-Richardson deconvolution algorithm clearly demonstrates the efficiency of our proposed technique in better visualization and preservation of fine details and structures in the imaged sample, as well as better speckle noise suppression. This illustrates the potential usefulness of our proposed technique as a suitable replacement for the hardware approaches which are often very costly and complicated.

  10. Experimental Simulation of Active Control With On-line System Identification on Sound Transmission Through an Elastic Plate

    NASA Technical Reports Server (NTRS)

    1998-01-01

    An adaptive control algorithm with on-line system identification capability has been developed. One of the great advantages of this scheme is that an additional system identification mechanism such as an additional uncorrelated random signal generator as the source of system identification is not required. A time-varying plate-cavity system is used to demonstrate the control performance of this algorithm. The time-varying system consists of a stainless-steel plate which is bolted down on a rigid cavity opening where the cavity depth was changed with respect to time. For a given externally located harmonic sound excitation, the system identification and the control are simultaneously executed to minimize the transmitted sound in the cavity. The control performance of the algorithm is examined for two cases. First, all the water was drained, the external disturbance frequency is swept with 1 Hz/sec. The result shows an excellent frequency tracking capability with cavity internal sound suppression of 40 dB. For the second case, the water level is initially empty and then raised to 3/20 full in 60 seconds while the external sound excitation is fixed with a frequency. Hence, the cavity resonant frequency decreases and passes the external sound excitation frequency. The algorithm shows 40 dB transmitted noise suppression without compromising the system identification tracking capability.

  11. Comparing Binaural Pre-processing Strategies I: Instrumental Evaluation.

    PubMed

    Baumgärtel, Regina M; Krawczyk-Becker, Martin; Marquardt, Daniel; Völker, Christoph; Hu, Hongmei; Herzke, Tobias; Coleman, Graham; Adiloğlu, Kamil; Ernst, Stephan M A; Gerkmann, Timo; Doclo, Simon; Kollmeier, Birger; Hohmann, Volker; Dietz, Mathias

    2015-12-30

    In a collaborative research project, several monaural and binaural noise reduction algorithms have been comprehensively evaluated. In this article, eight selected noise reduction algorithms were assessed using instrumental measures, with a focus on the instrumental evaluation of speech intelligibility. Four distinct, reverberant scenarios were created to reflect everyday listening situations: a stationary speech-shaped noise, a multitalker babble noise, a single interfering talker, and a realistic cafeteria noise. Three instrumental measures were employed to assess predicted speech intelligibility and predicted sound quality: the intelligibility-weighted signal-to-noise ratio, the short-time objective intelligibility measure, and the perceptual evaluation of speech quality. The results show substantial improvements in predicted speech intelligibility as well as sound quality for the proposed algorithms. The evaluated coherence-based noise reduction algorithm was able to provide improvements in predicted audio signal quality. For the tested single-channel noise reduction algorithm, improvements in intelligibility-weighted signal-to-noise ratio were observed in all but the nonstationary cafeteria ambient noise scenario. Binaural minimum variance distortionless response beamforming algorithms performed particularly well in all noise scenarios. © The Author(s) 2015.

  12. Comparing Binaural Pre-processing Strategies I

    PubMed Central

    Krawczyk-Becker, Martin; Marquardt, Daniel; Völker, Christoph; Hu, Hongmei; Herzke, Tobias; Coleman, Graham; Adiloğlu, Kamil; Ernst, Stephan M. A.; Gerkmann, Timo; Doclo, Simon; Kollmeier, Birger; Hohmann, Volker; Dietz, Mathias

    2015-01-01

    In a collaborative research project, several monaural and binaural noise reduction algorithms have been comprehensively evaluated. In this article, eight selected noise reduction algorithms were assessed using instrumental measures, with a focus on the instrumental evaluation of speech intelligibility. Four distinct, reverberant scenarios were created to reflect everyday listening situations: a stationary speech-shaped noise, a multitalker babble noise, a single interfering talker, and a realistic cafeteria noise. Three instrumental measures were employed to assess predicted speech intelligibility and predicted sound quality: the intelligibility-weighted signal-to-noise ratio, the short-time objective intelligibility measure, and the perceptual evaluation of speech quality. The results show substantial improvements in predicted speech intelligibility as well as sound quality for the proposed algorithms. The evaluated coherence-based noise reduction algorithm was able to provide improvements in predicted audio signal quality. For the tested single-channel noise reduction algorithm, improvements in intelligibility-weighted signal-to-noise ratio were observed in all but the nonstationary cafeteria ambient noise scenario. Binaural minimum variance distortionless response beamforming algorithms performed particularly well in all noise scenarios. PMID:26721920

  13. Reset noise suppression in two-dimensional CMOS photodiode pixels through column-based feedback-reset

    NASA Technical Reports Server (NTRS)

    Pain, B.; Cunningham, T. J.; Hancock, B.; Yang, G.; Seshadri, S.; Ortiz, M.

    2002-01-01

    We present new CMOS photodiode imager pixel with ultra-low read noise through on-chip suppression of reset noise via column-based feedback circuitry. The noise reduction is achieved without introducing any image lag, and with insignificant reduction in quantum efficiency and full well.

  14. Active impulsive noise control using maximum correntropy with adaptive kernel size

    NASA Astrophysics Data System (ADS)

    Lu, Lu; Zhao, Haiquan

    2017-03-01

    The active noise control (ANC) based on the principle of superposition is an attractive method to attenuate the noise signals. However, the impulsive noise in the ANC systems will degrade the performance of the controller. In this paper, a filtered-x recursive maximum correntropy (FxRMC) algorithm is proposed based on the maximum correntropy criterion (MCC) to reduce the effect of outliers. The proposed FxRMC algorithm does not requires any priori information of the noise characteristics and outperforms the filtered-x least mean square (FxLMS) algorithm for impulsive noise. Meanwhile, in order to adjust the kernel size of FxRMC algorithm online, a recursive approach is proposed through taking into account the past estimates of error signals over a sliding window. Simulation and experimental results in the context of active impulsive noise control demonstrate that the proposed algorithms achieve much better performance than the existing algorithms in various noise environments.

  15. The suppression of charged-particle-induced noise in infrared detectors

    NASA Technical Reports Server (NTRS)

    Houck, J. R.; Briotta, D. A., Jr.

    1982-01-01

    A d.c.-coupled transimpedance amplifier/pulse suppression circuit designed to remove charged-particle-induced noise from infrared detectors is described. Noise spikes produced by single particle events are large and have short rise times, and can degrade the performance of an infrared detector in moderate radiation environments. The use of the suppression circuit improves the signal-to-noise ratio by a factor of 1.6:1, which corresponds to a reduction in required observing time by a factor of about 2.6.

  16. Speech enhancement based on neural networks improves speech intelligibility in noise for cochlear implant users.

    PubMed

    Goehring, Tobias; Bolner, Federico; Monaghan, Jessica J M; van Dijk, Bas; Zarowski, Andrzej; Bleeck, Stefan

    2017-02-01

    Speech understanding in noisy environments is still one of the major challenges for cochlear implant (CI) users in everyday life. We evaluated a speech enhancement algorithm based on neural networks (NNSE) for improving speech intelligibility in noise for CI users. The algorithm decomposes the noisy speech signal into time-frequency units, extracts a set of auditory-inspired features and feeds them to the neural network to produce an estimation of which frequency channels contain more perceptually important information (higher signal-to-noise ratio, SNR). This estimate is used to attenuate noise-dominated and retain speech-dominated CI channels for electrical stimulation, as in traditional n-of-m CI coding strategies. The proposed algorithm was evaluated by measuring the speech-in-noise performance of 14 CI users using three types of background noise. Two NNSE algorithms were compared: a speaker-dependent algorithm, that was trained on the target speaker used for testing, and a speaker-independent algorithm, that was trained on different speakers. Significant improvements in the intelligibility of speech in stationary and fluctuating noises were found relative to the unprocessed condition for the speaker-dependent algorithm in all noise types and for the speaker-independent algorithm in 2 out of 3 noise types. The NNSE algorithms used noise-specific neural networks that generalized to novel segments of the same noise type and worked over a range of SNRs. The proposed algorithm has the potential to improve the intelligibility of speech in noise for CI users while meeting the requirements of low computational complexity and processing delay for application in CI devices. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Fluorescence molecular tomography reconstruction via discrete cosine transform-based regularization

    NASA Astrophysics Data System (ADS)

    Shi, Junwei; Liu, Fei; Zhang, Jiulou; Luo, Jianwen; Bai, Jing

    2015-05-01

    Fluorescence molecular tomography (FMT) as a noninvasive imaging modality has been widely used for biomedical preclinical applications. However, FMT reconstruction suffers from severe ill-posedness, especially when a limited number of projections are used. In order to improve the quality of FMT reconstruction results, a discrete cosine transform (DCT) based reweighted L1-norm regularization algorithm is proposed. In each iteration of the reconstruction process, different reweighted regularization parameters are adaptively assigned according to the values of DCT coefficients to suppress the reconstruction noise. In addition, the permission region of the reconstructed fluorophores is adaptively constructed to increase the convergence speed. In order to evaluate the performance of the proposed algorithm, physical phantom and in vivo mouse experiments with a limited number of projections are carried out. For comparison, different L1-norm regularization strategies are employed. By quantifying the signal-to-noise ratio (SNR) of the reconstruction results in the phantom and in vivo mouse experiments with four projections, the proposed DCT-based reweighted L1-norm regularization shows higher SNR than other L1-norm regularizations employed in this work.

  18. Suppression of shot noise and spontaneous radiation in electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litvinenko,V.

    2009-08-23

    Shot noise in the electron beam distribution is the main source of noise in high-gain FEL amplifiers, which may affect applications ranging from single- and multi-stage HGHG FELs to an FEL amplifier for coherent electron cooling. This noise also imposes a fundamental limit of about 10{sup 6} on FEL gain, after which SASE FELs saturate. There are several advantages in strongly suppressing this shot noise in the electron beam, and the corresponding spontaneous radiation. For more than a half-century, a traditional passive method has been used successfully in practical low-energy microwave electronic devices to suppress shot noise. Recently, it wasmore » proposed for this purpose in FELs. However, being passive, the method has some significant limitations and is hardly suitable for the highly inhomogeneous beams of modern high-gain FELs. I present a novel active method of suppressing, by many orders-of-magnitude, the shot noise in relativistic electron beams. I give a theoretical description of the process, and detail its fundamental limitation.« less

  19. Suppression of extraneous thermal noise in cavity optomechanics.

    PubMed

    Zhao, Yi; Wilson, Dalziel J; Ni, K-K; Kimble, H J

    2012-02-13

    Extraneous thermal motion can limit displacement sensitivity and radiation pressure effects, such as optical cooling, in a cavity-optomechanical system. Here we present an active noise suppression scheme and its experimental implementation. The main challenge is to selectively sense and suppress extraneous thermal noise without affecting motion of the oscillator. Our solution is to monitor two modes of the optical cavity, each with different sensitivity to the oscillator's motion but similar sensitivity to the extraneous thermal motion. This information is used to imprint "anti-noise" onto the frequency of the incident laser field. In our system, based on a nano-mechanical membrane coupled to a Fabry-Pérot cavity, simulation and experiment demonstrate that extraneous thermal noise can be selectively suppressed and that the associated limit on optical cooling can be reduced.

  20. Input Forces Estimation for Nonlinear Systems by Applying a Square-Root Cubature Kalman Filter.

    PubMed

    Song, Xuegang; Zhang, Yuexin; Liang, Dakai

    2017-10-10

    This work presents a novel inverse algorithm to estimate time-varying input forces in nonlinear beam systems. With the system parameters determined, the input forces can be estimated in real-time from dynamic responses, which can be used for structural health monitoring. In the process of input forces estimation, the Runge-Kutta fourth-order algorithm was employed to discretize the state equations; a square-root cubature Kalman filter (SRCKF) was employed to suppress white noise; the residual innovation sequences, a priori state estimate, gain matrix, and innovation covariance generated by SRCKF were employed to estimate the magnitude and location of input forces by using a nonlinear estimator. The nonlinear estimator was based on the least squares method. Numerical simulations of a large deflection beam and an experiment of a linear beam constrained by a nonlinear spring were employed. The results demonstrated accuracy of the nonlinear algorithm.

  1. Imaging quality analysis of computer-generated holograms using the point-based method and slice-based method

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Chen, Siqing; Zheng, Huadong; Sun, Tao; Yu, Yingjie; Gao, Hongyue; Asundi, Anand K.

    2017-06-01

    Computer holography has made a notably progress in recent years. The point-based method and slice-based method are chief calculation algorithms for generating holograms in holographic display. Although both two methods are validated numerically and optically, the differences of the imaging quality of these methods have not been specifically analyzed. In this paper, we analyze the imaging quality of computer-generated phase holograms generated by point-based Fresnel zone plates (PB-FZP), point-based Fresnel diffraction algorithm (PB-FDA) and slice-based Fresnel diffraction algorithm (SB-FDA). The calculation formula and hologram generation with three methods are demonstrated. In order to suppress the speckle noise, sequential phase-only holograms are generated in our work. The results of reconstructed images numerically and experimentally are also exhibited. By comparing the imaging quality, the merits and drawbacks with three methods are analyzed. Conclusions are given by us finally.

  2. Aeroacoustic Characteristics of a Rectangular Multi-Element Supersonic Jet Mixer-Ejector Nozzle

    NASA Technical Reports Server (NTRS)

    Raman, Ganesh; Taghavi, Ray

    1996-01-01

    This paper provides a unique, detailed evaluation of the acoustics and aerodynamics of a rectangular multi-element supersonic jet mixer-ejector noise suppressor. The performance of such mixer-ejectors is important in aircraft engine application for noise suppression and thrust augmentation. In contrast to most prior experimental studies on ejectors that reported either aerodynamic or acoustic data, our work documents both types of data. We present information on the mixing, pumping, ejector wall pressure distribution, thrust augmentation and noise suppression characteristics of four simple, multi-element, jet mixer-ejector configurations. The four configurations included the effect of ejector area ratio (AR = ejector area/primary jet area) and the effect of non-parallel ejector walls. We also studied in detail the configuration that produced the best noise suppression characteristics. Our results show that ejector configurations that produced the maximum maximum pumping (entrained flow per secondary inlet area) also exhibited the lowest wall pressures in the inlet region, and the maximum thrust augmentation. When cases having the same total mass flow were compared, we found that noise suppression trends corresponded with those for pumping. Surprisingly, the mixing (quantified by the peak Mach number, and flow uniformity) at the ejector exit exhibited no relationship to the noise suppression at moderate primary jet fully expanded Mach numbers (Mj is less than 1.4). However, the noise suppression dependence on the mixing was apparent at higher Mj. The above observations are justified by noting that the mixing at the ejector exit is ot a strong factor in determining the radiated noise when noise produced internal to the ejector dominates the noise field outside the ejector.

  3. Multiple sound source localization using gammatone auditory filtering and direct sound componence detection

    NASA Astrophysics Data System (ADS)

    Chen, Huaiyu; Cao, Li

    2017-06-01

    In order to research multiple sound source localization with room reverberation and background noise, we analyze the shortcomings of traditional broadband MUSIC and ordinary auditory filtering based broadband MUSIC method, then a new broadband MUSIC algorithm with gammatone auditory filtering of frequency component selection control and detection of ascending segment of direct sound componence is proposed. The proposed algorithm controls frequency component within the interested frequency band in multichannel bandpass filter stage. Detecting the direct sound componence of the sound source for suppressing room reverberation interference is also proposed, whose merits are fast calculation and avoiding using more complex de-reverberation processing algorithm. Besides, the pseudo-spectrum of different frequency channels is weighted by their maximum amplitude for every speech frame. Through the simulation and real room reverberation environment experiments, the proposed method has good performance. Dynamic multiple sound source localization experimental results indicate that the average absolute error of azimuth estimated by the proposed algorithm is less and the histogram result has higher angle resolution.

  4. Robust dynamic myocardial perfusion CT deconvolution using adaptive-weighted tensor total variation regularization

    NASA Astrophysics Data System (ADS)

    Gong, Changfei; Zeng, Dong; Bian, Zhaoying; Huang, Jing; Zhang, Xinyu; Zhang, Hua; Lu, Lijun; Feng, Qianjin; Liang, Zhengrong; Ma, Jianhua

    2016-03-01

    Dynamic myocardial perfusion computed tomography (MPCT) is a promising technique for diagnosis and risk stratification of coronary artery disease by assessing the myocardial perfusion hemodynamic maps (MPHM). Meanwhile, the repeated scanning of the same region results in a relatively large radiation dose to patients potentially. In this work, we present a robust MPCT deconvolution algorithm with adaptive-weighted tensor total variation regularization to estimate residue function accurately under the low-dose context, which is termed `MPD-AwTTV'. More specifically, the AwTTV regularization takes into account the anisotropic edge property of the MPCT images compared with the conventional total variation (TV) regularization, which can mitigate the drawbacks of TV regularization. Subsequently, an effective iterative algorithm was adopted to minimize the associative objective function. Experimental results on a modified XCAT phantom demonstrated that the present MPD-AwTTV algorithm outperforms and is superior to other existing deconvolution algorithms in terms of noise-induced artifacts suppression, edge details preservation and accurate MPHM estimation.

  5. Structural health monitoring using DOG multi-scale space: an approach for analyzing damage characteristics

    NASA Astrophysics Data System (ADS)

    Guo, Tian; Xu, Zili

    2018-03-01

    Measurement noise is inevitable in practice; thus, it is difficult to identify defects, cracks or damage in a structure while suppressing noise simultaneously. In this work, a novel method is introduced to detect multiple damage in noisy environments. Based on multi-scale space analysis for discrete signals, a method for extracting damage characteristics from the measured displacement mode shape is illustrated. Moreover, the proposed method incorporates a data fusion algorithm to further eliminate measurement noise-based interference. The effectiveness of the method is verified by numerical and experimental methods applied to different structural types. The results demonstrate that there are two advantages to the proposed method. First, damage features are extracted by the difference of the multi-scale representation; this step is taken such that the interference of noise amplification can be avoided. Second, a data fusion technique applied to the proposed method provides a global decision, which retains the damage features while maximally eliminating the uncertainty. Monte Carlo simulations are utilized to validate that the proposed method has a higher accuracy in damage detection.

  6. Teaching learning based optimization-functional link artificial neural network filter for mixed noise reduction from magnetic resonance image.

    PubMed

    Kumar, M; Mishra, S K

    2017-01-01

    The clinical magnetic resonance imaging (MRI) images may get corrupted due to the presence of the mixture of different types of noises such as Rician, Gaussian, impulse, etc. Most of the available filtering algorithms are noise specific, linear, and non-adaptive. There is a need to develop a nonlinear adaptive filter that adapts itself according to the requirement and effectively applied for suppression of mixed noise from different MRI images. In view of this, a novel nonlinear neural network based adaptive filter i.e. functional link artificial neural network (FLANN) whose weights are trained by a recently developed derivative free meta-heuristic technique i.e. teaching learning based optimization (TLBO) is proposed and implemented. The performance of the proposed filter is compared with five other adaptive filters and analyzed by considering quantitative metrics and evaluating the nonparametric statistical test. The convergence curve and computational time are also included for investigating the efficiency of the proposed as well as competitive filters. The simulation outcomes of proposed filter outperform the other adaptive filters. The proposed filter can be hybridized with other evolutionary technique and utilized for removing different noise and artifacts from others medical images more competently.

  7. Noise Reduction with Microphone Arrays for Speaker Identification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, Z

    Reducing acoustic noise in audio recordings is an ongoing problem that plagues many applications. This noise is hard to reduce because of interfering sources and non-stationary behavior of the overall background noise. Many single channel noise reduction algorithms exist but are limited in that the more the noise is reduced; the more the signal of interest is distorted due to the fact that the signal and noise overlap in frequency. Specifically acoustic background noise causes problems in the area of speaker identification. Recording a speaker in the presence of acoustic noise ultimately limits the performance and confidence of speaker identificationmore » algorithms. In situations where it is impossible to control the environment where the speech sample is taken, noise reduction filtering algorithms need to be developed to clean the recorded speech of background noise. Because single channel noise reduction algorithms would distort the speech signal, the overall challenge of this project was to see if spatial information provided by microphone arrays could be exploited to aid in speaker identification. The goals are: (1) Test the feasibility of using microphone arrays to reduce background noise in speech recordings; (2) Characterize and compare different multichannel noise reduction algorithms; (3) Provide recommendations for using these multichannel algorithms; and (4) Ultimately answer the question - Can the use of microphone arrays aid in speaker identification?« less

  8. Coding strategies for cochlear implants under adverse environments

    NASA Astrophysics Data System (ADS)

    Tahmina, Qudsia

    Cochlear implants are electronic prosthetic devices that restores partial hearing in patients with severe to profound hearing loss. Although most coding strategies have significantly improved the perception of speech in quite listening conditions, there remains limitations on speech perception under adverse environments such as in background noise, reverberation and band-limited channels, and we propose strategies that improve the intelligibility of speech transmitted over the telephone networks, reverberated speech and speech in the presence of background noise. For telephone processed speech, we propose to examine the effects of adding low-frequency and high- frequency information to the band-limited telephone speech. Four listening conditions were designed to simulate the receiving frequency characteristics of telephone handsets. Results indicated improvement in cochlear implant and bimodal listening when telephone speech was augmented with high frequency information and therefore this study provides support for design of algorithms to extend the bandwidth towards higher frequencies. The results also indicated added benefit from hearing aids for bimodal listeners in all four types of listening conditions. Speech understanding in acoustically reverberant environments is always a difficult task for hearing impaired listeners. Reverberated sounds consists of direct sound, early reflections and late reflections. Late reflections are known to be detrimental to speech intelligibility. In this study, we propose a reverberation suppression strategy based on spectral subtraction to suppress the reverberant energies from late reflections. Results from listening tests for two reverberant conditions (RT60 = 0.3s and 1.0s) indicated significant improvement when stimuli was processed with SS strategy. The proposed strategy operates with little to no prior information on the signal and the room characteristics and therefore, can potentially be implemented in real-time CI speech processors. For speech in background noise, we propose a mechanism underlying the contribution of harmonics to the benefit of electroacoustic stimulations in cochlear implants. The proposed strategy is based on harmonic modeling and uses synthesis driven approach to synthesize the harmonics in voiced segments of speech. Based on objective measures, results indicated improvement in speech quality. This study warrants further work into development of algorithms to regenerate harmonics of voiced segments in the presence of noise.

  9. Masking of sounds by a background noise – cochlear mechanical correlates

    PubMed Central

    Recio-Spinoso, Alberto; Cooper, Nigel P

    2013-01-01

    In the search for cochlear correlates of auditory masking by noise stimuli, we recorded basilar membrane (BM) vibrations evoked by either tone or click signals in the presence of varying levels of background noise. The BM vibrations were recorded from basal regions in healthy cochleae of anaesthetized chinchilla and gerbil. Non-linear interactions that could underpin various aspects of psychophysical masking data, including both compression and suppression at the BM level, were observed. The suppression effects, whereby the amplitude of the responses to each stimulus component could be reduced, depended on the relative intensities of the noise and the tones or clicks. Only stimulus components whose frequencies fell inside the non-linear region of the recording site, i.e. around its characteristic frequency (CF), were affected by presentation of the ‘suppressing’ stimulus (which could be either the tone or the noise). Mutual suppression, the simultaneous reduction of the responses to both tones and noise components, was observed under some conditions, but overall reductions of BM vibration were rarely observed. Moderate- to high-intensity tones suppressed BM responses to low-intensity Gaussian stimuli, including both broadband and narrowband noise. Suppression effects were larger for spectral components of the noise response that were closer to the CF. In this regime, the tone and noise stimuli became the suppressor and probe signals, respectively. This study provides the first detailed observations of cochlear mechanical correlates of the masking effects of noise. Mechanical detection thresholds for tone signals, which were arbitrarily defined using three criteria, are shown to increase in almost direct proportion to the noise level for low and moderately high noise levels, in a manner that resembles the findings of numerous psychophysical observations. PMID:23478137

  10. Correcting geometric and photometric distortion of document images on a smartphone

    NASA Astrophysics Data System (ADS)

    Simon, Christian; Williem; Park, In Kyu

    2015-01-01

    A set of document image processing algorithms for improving the optical character recognition (OCR) capability of smartphone applications is presented. The scope of the problem covers the geometric and photometric distortion correction of document images. The proposed framework was developed to satisfy industrial requirements. It is implemented on an off-the-shelf smartphone with limited resources in terms of speed and memory. Geometric distortions, i.e., skew and perspective distortion, are corrected by sending horizontal and vertical vanishing points toward infinity in a downsampled image. Photometric distortion includes image degradation from moiré pattern noise and specular highlights. Moiré pattern noise is removed using low-pass filters with different sizes independently applied to the background and text region. The contrast of the text in a specular highlighted area is enhanced by locally enlarging the intensity difference between the background and text while the noise is suppressed. Intensive experiments indicate that the proposed methods show a consistent and robust performance on a smartphone with a runtime of less than 1 s.

  11. Forward velocity effects on fan noise and the suppression characteristics of advanced inlets as measured in the NASA-Ames 40 by 80 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Moore, M. T.

    1980-01-01

    Forward velocity effects on the forward radiated fan noise and on the suppression characteristics of three advanced inlets relative to a baseline cylindrical inlet were measured in the NASA Ames Research Center 40 x 80 foot Wind Tunnel. A modified JT15D turbofan engine in a quiet nacelle was the source of fan noise; the advanced inlets were a Conventional Takeoff/Landing (CTOL) hybrid inlet, a Short Takeoff/Landing (STOL) hybrid inlet, and a treated deflector inlet. Also measured were the static to flight effects on the fan noise of canting the baseline inlet 4 deg downward to simulate typical wing mounted turbofan engines. The CTOL hybrid inlet suppressed the high tip speed fan noise as much as 18 PNdB on a 61 m (200 ft) sideline scaled to a CF6 size engine while the STOL hybrid inlet suppressed the low tip speed fan noise as much as 13 PNdB on a 61 m (200 ft) sideline scaled to a OCSEE size engine. The deflector inlet suppressed the high tip speed fan noise as much as 13 PNdB at 61 m (200 ft) overhead scaled to a CF6 size engine. No significant changes in fan noise suppression for the CTOL and STOL hybrid inlets occurred for forward velocity changes above 21 m/s (68 ft/s) or for angle of attack changes up to 15 deg. However, changes in both forward velocity and angle of attack changed the deflector inlet noise unpredictably due to the asymmetry of the inlet flow field into the fan.

  12. Noise-enhanced convolutional neural networks.

    PubMed

    Audhkhasi, Kartik; Osoba, Osonde; Kosko, Bart

    2016-06-01

    Injecting carefully chosen noise can speed convergence in the backpropagation training of a convolutional neural network (CNN). The Noisy CNN algorithm speeds training on average because the backpropagation algorithm is a special case of the generalized expectation-maximization (EM) algorithm and because such carefully chosen noise always speeds up the EM algorithm on average. The CNN framework gives a practical way to learn and recognize images because backpropagation scales with training data. It has only linear time complexity in the number of training samples. The Noisy CNN algorithm finds a special separating hyperplane in the network's noise space. The hyperplane arises from the likelihood-based positivity condition that noise-boosts the EM algorithm. The hyperplane cuts through a uniform-noise hypercube or Gaussian ball in the noise space depending on the type of noise used. Noise chosen from above the hyperplane speeds training on average. Noise chosen from below slows it on average. The algorithm can inject noise anywhere in the multilayered network. Adding noise to the output neurons reduced the average per-iteration training-set cross entropy by 39% on a standard MNIST image test set of handwritten digits. It also reduced the average per-iteration training-set classification error by 47%. Adding noise to the hidden layers can also reduce these performance measures. The noise benefit is most pronounced for smaller data sets because the largest EM hill-climbing gains tend to occur in the first few iterations. This noise effect can assist random sampling from large data sets because it allows a smaller random sample to give the same or better performance than a noiseless sample gives. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Reducing Sensor Noise in MEG and EEG Recordings Using Oversampled Temporal Projection.

    PubMed

    Larson, Eric; Taulu, Samu

    2018-05-01

    Here, we review the theory of suppression of spatially uncorrelated, sensor-specific noise in electro- and magentoencephalography (EEG and MEG) arrays, and introduce a novel method for suppression. Our method requires only that the signals of interest are spatially oversampled, which is a reasonable assumption for many EEG and MEG systems. Our method is based on a leave-one-out procedure using overlapping temporal windows in a mathematical framework to project spatially uncorrelated noise in the temporal domain. This method, termed "oversampled temporal projection" (OTP), has four advantages over existing methods. First, sparse channel-specific artifacts are suppressed while limiting mixing with other channels, whereas existing linear, time-invariant spatial operators can spread such artifacts to other channels with a spatial distribution which can be mistaken for one produced by an electrophysiological source. Second, OTP minimizes distortion of the spatial configuration of the data. During source localization (e.g., dipole fitting), many spatial methods require corresponding modification of the forward model to avoid bias, while OTP does not. Third, noise suppression factors at the sensor level are maintained during source localization, whereas bias compensation removes the denoising benefit for spatial methods that require such compensation. Fourth, OTP uses a time-window duration parameter to control the tradeoff between noise suppression and adaptation to time-varying sensor characteristics. OTP efficiently optimizes noise suppression performance while controlling for spatial bias of the signal of interest. This is important in applications where sensor noise significantly limits the signal-to-noise ratio, such as high-frequency brain oscillations.

  14. Adaptive Suppression of Noise in Voice Communications

    NASA Technical Reports Server (NTRS)

    Kozel, David; DeVault, James A.; Birr, Richard B.

    2003-01-01

    A subsystem for the adaptive suppression of noise in a voice communication system effects a high level of reduction of noise that enters the system through microphones. The subsystem includes a digital signal processor (DSP) plus circuitry that implements voice-recognition and spectral- manipulation techniques. The development of the adaptive noise-suppression subsystem was prompted by the following considerations: During processing of the space shuttle at Kennedy Space Center, voice communications among test team members have been significantly impaired in several instances because some test participants have had to communicate from locations with high ambient noise levels. Ear protection for the personnel involved is commercially available and is used in such situations. However, commercially available noise-canceling microphones do not provide sufficient reduction of noise that enters through microphones and thus becomes transmitted on outbound communication links.

  15. Subradiant spontaneous undulator emission through collective suppression of shot noise

    DOE PAGES

    Ratner, D.; Hemsing, E.; Gover, A.; ...

    2015-05-01

    The phenomenon of Dicke’s subradiance, in which the collective properties of a system suppress radiation, has received broad interest in atomic physics. Recent theoretical papers in the field of relativistic electron beams have proposed schemes to achieve subradiance through suppression of shot noise current fluctuations. The resulting “quiet” beam generates less spontaneous radiation than emitted even by a shot noise beam when oscillating in an undulator. Quiet beams could have diverse accelerator applications, including lowering power requirements for seeded free-electron lasers and improving efficiency of hadron cooling. In this paper we present experimental observation of a strong reduction in undulatormore » radiation, demonstrating the feasibility of noise suppression as a practical tool in accelerator physics.« less

  16. Subradiant spontaneous undulator emission through collective suppression of shot noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratner, D.; Hemsing, E.; Gover, A.

    The phenomenon of Dicke’s subradiance, in which the collective properties of a system suppress radiation, has received broad interest in atomic physics. Recent theoretical papers in the field of relativistic electron beams have proposed schemes to achieve subradiance through suppression of shot noise current fluctuations. The resulting “quiet” beam generates less spontaneous radiation than emitted even by a shot noise beam when oscillating in an undulator. Quiet beams could have diverse accelerator applications, including lowering power requirements for seeded free-electron lasers and improving efficiency of hadron cooling. In this paper we present experimental observation of a strong reduction in undulatormore » radiation, demonstrating the feasibility of noise suppression as a practical tool in accelerator physics.« less

  17. A Noise Removal Method for Uniform Circular Arrays in Complex Underwater Noise Environments with Low SNR

    PubMed Central

    Xia, Huijun; Yang, Kunde; Ma, Yuanliang; Wang, Yong; Liu, Yaxiong

    2017-01-01

    Generally, many beamforming methods are derived under the assumption of white noise. In practice, the actual underwater ambient noise is complex. As a result, the noise removal capacity of the beamforming method may be deteriorated considerably. Furthermore, in underwater environment with extremely low signal-to-noise ratio (SNR), the performances of the beamforming method may be deteriorated. To tackle these problems, a noise removal method for uniform circular array (UCA) is proposed to remove the received noise and improve the SNR in complex noise environments with low SNR. First, the symmetrical noise sources are defined and the spatial correlation of the symmetrical noise sources is calculated. Then, based on the preceding results, the noise covariance matrix is decomposed into symmetrical and asymmetrical components. Analysis indicates that the symmetrical component only affect the real part of the noise covariance matrix. Consequently, the delay-and-sum (DAS) beamforming is performed by using the imaginary part of the covariance matrix to remove the symmetrical component. However, the noise removal method causes two problems. First, the proposed method produces a false target. Second, the proposed method would seriously suppress the signal when it is located in some directions. To solve the first problem, two methods to reconstruct the signal covariance matrix are presented: based on the estimation of signal variance and based on the constrained optimization algorithm. To solve the second problem, we can design the array configuration and select the suitable working frequency. Theoretical analysis and experimental results are included to demonstrate that the proposed methods are particularly effective in complex noise environments with low SNR. The proposed method can be extended to any array. PMID:28598386

  18. Denoising of polychromatic CT images based on their own noise properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ji Hye; Chang, Yongjin; Ra, Jong Beom, E-mail: jbra@kaist.ac.kr

    Purpose: Because of high diagnostic accuracy and fast scan time, computed tomography (CT) has been widely used in various clinical applications. Since the CT scan introduces radiation exposure to patients, however, dose reduction has recently been recognized as an important issue in CT imaging. However, low-dose CT causes an increase of noise in the image and thereby deteriorates the accuracy of diagnosis. In this paper, the authors develop an efficient denoising algorithm for low-dose CT images obtained using a polychromatic x-ray source. The algorithm is based on two steps: (i) estimation of space variant noise statistics, which are uniquely determinedmore » according to the system geometry and scanned object, and (ii) subsequent novel conversion of the estimated noise to Gaussian noise so that an existing high performance Gaussian noise filtering algorithm can be directly applied to CT images with non-Gaussian noise. Methods: For efficient polychromatic CT image denoising, the authors first reconstruct an image with the iterative maximum-likelihood polychromatic algorithm for CT to alleviate the beam-hardening problem. We then estimate the space-variant noise variance distribution on the image domain. Since there are many high performance denoising algorithms available for the Gaussian noise, image denoising can become much more efficient if they can be used. Hence, the authors propose a novel conversion scheme to transform the estimated space-variant noise to near Gaussian noise. In the suggested scheme, the authors first convert the image so that its mean and variance can have a linear relationship, and then produce a Gaussian image via variance stabilizing transform. The authors then apply a block matching 4D algorithm that is optimized for noise reduction of the Gaussian image, and reconvert the result to obtain a final denoised image. To examine the performance of the proposed method, an XCAT phantom simulation and a physical phantom experiment were conducted. Results: Both simulation and experimental results show that, unlike the existing denoising algorithms, the proposed algorithm can effectively reduce the noise over the whole region of CT images while preventing degradation of image resolution. Conclusions: To effectively denoise polychromatic low-dose CT images, a novel denoising algorithm is proposed. Because this algorithm is based on the noise statistics of a reconstructed polychromatic CT image, the spatially varying noise on the image is effectively reduced so that the denoised image will have homogeneous quality over the image domain. Through a simulation and a real experiment, it is verified that the proposed algorithm can deliver considerably better performance compared to the existing denoising algorithms.« less

  19. Suppression of Rayleigh backscattering noise using cascaded-SOA and microwave photonic filter for 10 Gb/s loop-back WDM-PON.

    PubMed

    Feng, Hanlin; Ge, Jia; Xiao, Shilin; Fok, Mable P

    2014-05-19

    In this paper, we present a novel Rayleigh backscattering (RB) noise mitigation scheme based on central carrier suppression for 10 Gb/s loop-back wavelength division multiplexing passive optical network (WDM-PON). Microwave modulated multi-subcarrier optical signal is used as downstream seeding light, while cascaded semiconductor optical amplifier (SOA) are used in the optical network unit (ONU) for suppressing the central carrier of the multi-subcarrier upstream signal. With central carrier suppression, interference generated by carrier RB noise at low frequency region is eliminated successfully. Transmission performance over 45 km single mode fiber (SMF) is studied experimentally, and the optical-signal-to-Rayleigh-noise-ratio (OSRNR) can be reduced to 15 dB with central carrier suppression ratio (CCSR) of 21 dB. Receiver sensitivity is further improved by 6 dB with the use of microwave photonic filter (MPF) for suppressing residual upstream microwave signal and residual carrier RB at high frequency region.

  20. A neighboring structure reconstructed matching algorithm based on LARK features

    NASA Astrophysics Data System (ADS)

    Xue, Taobei; Han, Jing; Zhang, Yi; Bai, Lianfa

    2015-11-01

    Aimed at the low contrast ratio and high noise of infrared images, and the randomness and ambient occlusion of its objects, this paper presents a neighboring structure reconstructed matching (NSRM) algorithm based on LARK features. The neighboring structure relationships of local window are considered based on a non-negative linear reconstruction method to build a neighboring structure relationship matrix. Then the LARK feature matrix and the NSRM matrix are processed separately to get two different similarity images. By fusing and analyzing the two similarity images, those infrared objects are detected and marked by the non-maximum suppression. The NSRM approach is extended to detect infrared objects with incompact structure. High performance is demonstrated on infrared body set, indicating a lower false detecting rate than conventional methods in complex natural scenes.

  1. Enhancing nuclear quadrupole resonance (NQR) signature detection leveraging interference suppression algorithms

    NASA Astrophysics Data System (ADS)

    DeBardelaben, James A.; Miller, Jeremy K.; Myrick, Wilbur L.; Miller, Joel B.; Gilbreath, G. Charmaine; Bajramaj, Blerta

    2012-06-01

    Nuclear quadrupole resonance (NQR) is a radio frequency (RF) magnetic spectroscopic technique that has been shown to detect and identify a wide range of explosive materials containing quadrupolar nuclei. The NQR response signal provides a unique signature of the material of interest. The signal is, however, very weak and can be masked by non-stationary RF interference (RFI) and thermal noise, limiting detection distance. In this paper, we investigate the bounds on the NQR detection range for ammonium nitrate. We leverage a low-cost RFI data acquisition system composed of inexpensive B-field sensing and commercial-off-the-shelf (COTS) software-defined radios (SDR). Using collected data as RFI reference signals, we apply adaptive filtering algorithms to mitigate RFI and enable NQR detection techniques to approach theoretical range bounds in tactical environments.

  2. Improved CORF model of simple cell combined with non-classical receptive field and its application on edge detection

    NASA Astrophysics Data System (ADS)

    Sun, Xiao; Chai, Guobei; Liu, Wei; Bao, Wenzhuo; Zhao, Xiaoning; Ming, Delie

    2018-02-01

    Simple cells in primary visual cortex are believed to extract local edge information from a visual scene. In this paper, inspired by different receptive field properties and visual information flow paths of neurons, an improved Combination of Receptive Fields (CORF) model combined with non-classical receptive fields was proposed to simulate the responses of simple cell's receptive fields. Compared to the classical model, the proposed model is able to better imitate simple cell's physiologic structure with consideration of facilitation and suppression of non-classical receptive fields. And on this base, an edge detection algorithm as an application of the improved CORF model was proposed. Experimental results validate the robustness of the proposed algorithm to noise and background interference.

  3. The 3-D numerical simulation research of vacuum injector for linear induction accelerator

    NASA Astrophysics Data System (ADS)

    Liu, Dagang; Xie, Mengjun; Tang, Xinbing; Liao, Shuqing

    2017-01-01

    Simulation method for voltage in-feed and electron injection of vacuum injector is given, and verification of the simulated voltage and current is carried out. The numerical simulation for the magnetic field of solenoid is implemented, and a comparative analysis is conducted between the simulation results and experimental results. A semi-implicit difference algorithm is adopted to suppress the numerical noise, and a parallel acceleration algorithm is used for increasing the computation speed. The RMS emittance calculation method of the beam envelope equations is analyzed. In addition, the simulated results of RMS emittance are compared with the experimental data. Finally, influences of the ferromagnetic rings on the radial and axial magnetic fields of solenoid as well as the emittance of beam are studied.

  4. Single stage, low noise, advanced technology fan. Volume 5: Fan acoustics. Section 2: One-third octave data tabulations and selected narrowband traces

    NASA Technical Reports Server (NTRS)

    Jutras, R. R.

    1976-01-01

    The raw-acoustic data corrected to standard day, from acoustic tests performed on a 0.508-scale fan vehicle of a 111,300 newton thrust, full-size engine, which has application on an advanced transport aircraft, are presented. The single-stage advanced technology fan was designed to a pressure ratio of 1.8 at a tip speed of 503 m/sec to achieve the desired pressure ratio in a single-stage fan with low radius ratio, and to maintain adequate stall margin. The two basic approaches taken in the acoustic design were: (1) minimization of noise at the source, and (2) suppression of the generated noise in the inlet and bypass exhaust duct. Suppression of the generated noise was accomplished in the inlet through use of the hybrid concept (wall acoustic treatment plus airflow acceleration suppression) and in the exhaust duct with extensive acoustic treatment including a splitter. The goal of the design was attainment of twenty effective perceived noise decibels. The suppression goal of FAR 36-20 was not reached, but improvements in the technology of both front and aft fan-noise suppression were realized.

  5. Experimental quiet engine program

    NASA Technical Reports Server (NTRS)

    Cornell, W. G.

    1975-01-01

    Full-scale low-tip-speed fans, a full-scale high-tip-speed fan, scale model versions of fans, and two full-scale high-bypass-ratio turbofan engines, were designed, fabricated, tested, and evaluated. Turbine noise suppression was investigated. Preliminary design studies of flight propulsion system concepts were used in application studies to determine acoustic-economic tradeoffs. Salient results are as follows: tradeoff evaluation of fan tip speed and blade loading; systematic data on source noise characteristics and suppression effectiveness; documentation of high- and low-fan-speed aerodynamic and acoustic technology; aerodynamic and acoustic evaluation of acoustic treatment configurations, casing tip bleed, serrated and variable pitch rotor blades, leaned outlet guide vanes, slotted tip casings, rotor blade shape modifications, and inlet noise suppression; systematic evaluation of aerodynamic and acoustic effects; flyover noise projections of engine test data; turbine noise suppression technology development; and tradeoff evaluation of preliminary design high-fan-speed and low-fan-speed flight engines.

  6. Investigation of optical current transformer signal processing method based on an improved Kalman algorithm

    NASA Astrophysics Data System (ADS)

    Shen, Yan; Ge, Jin-ming; Zhang, Guo-qing; Yu, Wen-bin; Liu, Rui-tong; Fan, Wei; Yang, Ying-xuan

    2018-01-01

    This paper explores the problem of signal processing in optical current transformers (OCTs). Based on the noise characteristics of OCTs, such as overlapping signals, noise frequency bands, low signal-to-noise ratios, and difficulties in acquiring statistical features of noise power, an improved standard Kalman filtering algorithm was proposed for direct current (DC) signal processing. The state-space model of the OCT DC measurement system is first established, and then mixed noise can be processed by adding mixed noise into measurement and state parameters. According to the minimum mean squared error criterion, state predictions and update equations of the improved Kalman algorithm could be deduced based on the established model. An improved central difference Kalman filter was proposed for alternating current (AC) signal processing, which improved the sampling strategy and noise processing of colored noise. Real-time estimation and correction of noise were achieved by designing AC and DC noise recursive filters. Experimental results show that the improved signal processing algorithms had a good filtering effect on the AC and DC signals with mixed noise of OCT. Furthermore, the proposed algorithm was able to achieve real-time correction of noise during the OCT filtering process.

  7. Dependence of image quality on image operator and noise for optical diffusion tomography

    NASA Astrophysics Data System (ADS)

    Chang, Jenghwa; Graber, Harry L.; Barbour, Randall L.

    1998-04-01

    By applying linear perturbation theory to the radiation transport equation, the inverse problem of optical diffusion tomography can be reduced to a set of linear equations, W(mu) equals R, where W is the weight function, (mu) are the cross- section perturbations to be imaged, and R is the detector readings perturbations. We have studied the dependence of image quality on added systematic error and/or random noise in W and R. Tomographic data were collected from cylindrical phantoms, with and without added inclusions, using Monte Carlo methods. Image reconstruction was accomplished using a constrained conjugate gradient descent method. Result show that accurate images containing few artifacts are obtained when W is derived from a reference states whose optical thickness matches that of the unknown teste medium. Comparable image quality was also obtained for unmatched W, but the location of the target becomes more inaccurate as the mismatch increases. Results of the noise study show that image quality is much more sensitive to noise in W than in R, and the impact of noise increase with the number of iterations. Images reconstructed after pure noise was substituted for R consistently contain large peaks clustered about the cylinder axis, which was an initially unexpected structure. In other words, random input produces a non- random output. This finding suggests that algorithms sensitive to the evolution of this feature could be developed to suppress noise effects.

  8. Improving label-free detection of circulating melanoma cells by photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Zhou, Huan; Wang, Qiyan; Pang, Kai; Zhou, Quanyu; Yang, Ping; He, Hao; Wei, Xunbin

    2018-02-01

    Melanoma is a kind of a malignant tumor of melanocytes with the properties of high mortality and high metastasis rate. The circulating melanoma cells with the high content of melanin can be detected by light absorption to diagnose and treat cancer at an early stage. Compared with conventional detection methods such as in vivo flow cytometry (IVFC) based on fluorescence, the in vivo photoacoustic flow cytometry (PAFC) utilizes melanin cells as biomarkers to collect the photoacoustic (PA) signals without toxic fluorescent dyes labeling in a non-invasive way. The information of target tumor cells is helpful for data analysis and cell counting. However, the raw signals in PAFC system contain numerous noises such as environmental noise, device noise and in vivo motion noise. Conventional denoising algorithms such as wavelet denoising (WD) method and means filter (MF) method are based on the local information to extract the data of clinical interest, which remove the subtle feature and leave many noises. To address the above questions, the nonlocal means (NLM) method based on nonlocal data has been proposed to suppress the noise in PA signals. Extensive experiments on in vivo PA signals from the mice with the injection of B16F10 cells in caudal vein have been conducted. All the results indicate that the NLM method has superior noise reduction performance and subtle information reservation.

  9. Analysis of shot noise suppression for electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratner, Daniel; Huang, Zhirong; Stupakov, Gennady

    2011-06-24

    Shot noise can affect the performance of free-electron lasers (FELs) by driving instabilities (e.g., the microbunching instability) or by competing with seeded density modulations. Recent papers have proposed suppressing shot noise to enhance FEL performance. In this paper we use a onedimensional (1D) model to calculate the noise amplification from an energy modulation (e.g., electron interactions from space charge or undulator radiation) followed by a dispersive section. We show that, for a broad class of interactions, selecting the correct dispersive strength suppresses shot noise across a wide range of frequencies. The final noise level depends on the beam’s energy spreadmore » and the properties of the interaction potential. As a result, we confirm and illustrate our analytical results with 1D simulations.« less

  10. Analysis of Shot Noise Suppression for Electron Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratner, Daniel; /Stanford U., Appl. Phys. Dept.; Huang, Zhirong

    2012-05-07

    Shot noise can affect the performance of free-electron lasers (FELs) by driving instabilities (e.g., the microbunching instability) or by competing with seeded density modulations. Recent papers have proposed suppressing shot noise to enhance FEL performance. In this paper we use a one-dimensional (1D) model to calculate the noise amplification from an energy modulation (e.g., electron interactions from space charge or undulator radiation) followed by a dispersive section. We show that, for a broad class of interactions, selecting the correct dispersive strength suppresses shot noise across a wide range of frequencies. The final noise level depends on the beam's energy spreadmore » and the properties of the interaction potential. We confirm and illustrate our analytical results with 1D simulations.« less

  11. Challenges and Recent Developments in Hearing Aids: Part I. Speech Understanding in Noise, Microphone Technologies and Noise Reduction Algorithms

    PubMed Central

    Chung, King

    2004-01-01

    This review discusses the challenges in hearing aid design and fitting and the recent developments in advanced signal processing technologies to meet these challenges. The first part of the review discusses the basic concepts and the building blocks of digital signal processing algorithms, namely, the signal detection and analysis unit, the decision rules, and the time constants involved in the execution of the decision. In addition, mechanisms and the differences in the implementation of various strategies used to reduce the negative effects of noise are discussed. These technologies include the microphone technologies that take advantage of the spatial differences between speech and noise and the noise reduction algorithms that take advantage of the spectral difference and temporal separation between speech and noise. The specific technologies discussed in this paper include first-order directional microphones, adaptive directional microphones, second-order directional microphones, microphone matching algorithms, array microphones, multichannel adaptive noise reduction algorithms, and synchrony detection noise reduction algorithms. Verification data for these technologies, if available, are also summarized. PMID:15678225

  12. Characterization of Window Functions for Regularization of Electrical Capacitance Tomography Image Reconstruction

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Peng, Lihui; Xiao, Deyun

    2007-06-01

    This paper presents a regularization method by using different window functions as regularization for electrical capacitance tomography (ECT) image reconstruction. Image reconstruction for ECT is a typical ill-posed inverse problem. Because of the small singular values of the sensitivity matrix, the solution is sensitive to the measurement noise. The proposed method uses the spectral filtering properties of different window functions to make the solution stable by suppressing the noise in measurements. The window functions, such as the Hanning window, the cosine window and so on, are modified for ECT image reconstruction. Simulations with respect to five typical permittivity distributions are carried out. The reconstructions are better and some of the contours are clearer than the results from the Tikhonov regularization. Numerical results show that the feasibility of the image reconstruction algorithm using different window functions as regularization.

  13. Speech Enhancement Using Gaussian Scale Mixture Models

    PubMed Central

    Hao, Jiucang; Lee, Te-Won; Sejnowski, Terrence J.

    2011-01-01

    This paper presents a novel probabilistic approach to speech enhancement. Instead of a deterministic logarithmic relationship, we assume a probabilistic relationship between the frequency coefficients and the log-spectra. The speech model in the log-spectral domain is a Gaussian mixture model (GMM). The frequency coefficients obey a zero-mean Gaussian whose covariance equals to the exponential of the log-spectra. This results in a Gaussian scale mixture model (GSMM) for the speech signal in the frequency domain, since the log-spectra can be regarded as scaling factors. The probabilistic relation between frequency coefficients and log-spectra allows these to be treated as two random variables, both to be estimated from the noisy signals. Expectation-maximization (EM) was used to train the GSMM and Bayesian inference was used to compute the posterior signal distribution. Because exact inference of this full probabilistic model is computationally intractable, we developed two approaches to enhance the efficiency: the Laplace method and a variational approximation. The proposed methods were applied to enhance speech corrupted by Gaussian noise and speech-shaped noise (SSN). For both approximations, signals reconstructed from the estimated frequency coefficients provided higher signal-to-noise ratio (SNR) and those reconstructed from the estimated log-spectra produced lower word recognition error rate because the log-spectra fit the inputs to the recognizer better. Our algorithms effectively reduced the SSN, which algorithms based on spectral analysis were not able to suppress. PMID:21359139

  14. Image registration for daylight adaptive optics.

    PubMed

    Hart, Michael

    2018-03-15

    Daytime use of adaptive optics (AO) at large telescopes is hampered by shot noise from the bright sky background. Wave-front sensing may use a sodium laser guide star observed through a magneto-optical filter to suppress the background, but the laser beacon is not sensitive to overall image motion. To estimate that, laser-guided AO systems generally rely on light from the object itself, collected through the full aperture of the telescope. Daylight sets a lower limit to the brightness of an object that may be tracked at rates sufficient to overcome the image jitter. Below that limit, wave-front correction on the basis of the laser alone will yield an image that is approximately diffraction limited but that moves randomly. I describe an iterative registration algorithm that recovers high-resolution long-exposure images in this regime from a rapid series of short exposures with very low signal-to-noise ratio. The technique takes advantage of the fact that in the photon noise limit there is negligible penalty in taking short exposures, and also that once the images are recorded, it is not necessary, as in the case of an AO tracker loop, to estimate the image motion correctly and quickly on every cycle. The algorithm is likely to find application in space situational awareness, where high-resolution daytime imaging of artificial satellites is important.

  15. 3-D CSEM data inversion algorithm based on simultaneously active multiple transmitters concept

    NASA Astrophysics Data System (ADS)

    Dehiya, Rahul; Singh, Arun; Gupta, Pravin Kumar; Israil, Mohammad

    2017-05-01

    We present an algorithm for efficient 3-D inversion of marine controlled-source electromagnetic data. The efficiency is achieved by exploiting the redundancy in data. The data redundancy is reduced by compressing the data through stacking of the response of transmitters which are in close proximity. This stacking is equivalent to synthesizing the data as if the multiple transmitters are simultaneously active. The redundancy in data, arising due to close transmitter spacing, has been studied through singular value analysis of the Jacobian formed in 1-D inversion. This study reveals that the transmitter spacing of 100 m, typically used in marine data acquisition, does result in redundancy in the data. In the proposed algorithm, the data are compressed through stacking which leads to both computational advantage and reduction in noise. The performance of the algorithm for noisy data is demonstrated through the studies on two types of noise, viz., uncorrelated additive noise and correlated non-additive noise. It is observed that in case of uncorrelated additive noise, up to a moderately high (10 percent) noise level the algorithm addresses the noise as effectively as the traditional full data inversion. However, when the noise level in the data is high (20 percent), the algorithm outperforms the traditional full data inversion in terms of data misfit. Similar results are obtained in case of correlated non-additive noise and the algorithm performs better if the level of noise is high. The inversion results of a real field data set are also presented to demonstrate the robustness of the algorithm. The significant computational advantage in all cases presented makes this algorithm a better choice.

  16. Priori mask guided image reconstruction (p-MGIR) for ultra-low dose cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Park, Justin C.; Zhang, Hao; Chen, Yunmei; Fan, Qiyong; Kahler, Darren L.; Liu, Chihray; Lu, Bo

    2015-11-01

    Recently, the compressed sensing (CS) based iterative reconstruction method has received attention because of its ability to reconstruct cone beam computed tomography (CBCT) images with good quality using sparsely sampled or noisy projections, thus enabling dose reduction. However, some challenges remain. In particular, there is always a tradeoff between image resolution and noise/streak artifact reduction based on the amount of regularization weighting that is applied uniformly across the CBCT volume. The purpose of this study is to develop a novel low-dose CBCT reconstruction algorithm framework called priori mask guided image reconstruction (p-MGIR) that allows reconstruction of high-quality low-dose CBCT images while preserving the image resolution. In p-MGIR, the unknown CBCT volume was mathematically modeled as a combination of two regions: (1) where anatomical structures are complex, and (2) where intensities are relatively uniform. The priori mask, which is the key concept of the p-MGIR algorithm, was defined as the matrix that distinguishes between the two separate CBCT regions where the resolution needs to be preserved and where streak or noise needs to be suppressed. We then alternately updated each part of image by solving two sub-minimization problems iteratively, where one minimization was focused on preserving the edge information of the first part while the other concentrated on the removal of noise/artifacts from the latter part. To evaluate the performance of the p-MGIR algorithm, a numerical head-and-neck phantom, a Catphan 600 physical phantom, and a clinical head-and-neck cancer case were used for analysis. The results were compared with the standard Feldkamp-Davis-Kress as well as conventional CS-based algorithms. Examination of the p-MGIR algorithm showed that high-quality low-dose CBCT images can be reconstructed without compromising the image resolution. For both phantom and the patient cases, the p-MGIR is able to achieve a clinically-reasonable image with 60 projections. Therefore, a clinically-viable, high-resolution head-and-neck CBCT image can be obtained while cutting the dose by 83%. Moreover, the image quality obtained using p-MGIR is better than the quality obtained using other algorithms. In this work, we propose a novel low-dose CBCT reconstruction algorithm called p-MGIR. It can be potentially used as a CBCT reconstruction algorithm with low dose scan requests

  17. Quiet Clean Short-haul Experimental Engine (QCSEE) Over-The-Wing (OTW) propulsion systems test report. Volume 4: Acoustic performance

    NASA Technical Reports Server (NTRS)

    Stimpert, D. L.

    1979-01-01

    A series of acoustic tests were conducted on the over the wing engine. These tests evaluated the fully suppressed noise levels in forward and reverse thrust operation and provided insight into the component noise sources of the engine plus the suppression achieved by various components. System noise levels using the contract specified calculation procedure indicate that the in-flight noise level on a 152 m sideline at takeoff and approach are 97.2 and 94.6 EPNdB, respectively, compared to a goal of 95.0 EPNdB. In reverse thrust, the system noise level was 106.1 PNdB compared to a goal of 100 PNdB. Baseline source noise levels agreed very well with pretest predictions. Inlet-radiated noise suppression of 14 PNdB was demonstrated with the high throat Mach number inlet at 0.79 throat Mach number.

  18. Supersonic Transport Noise Reduction Technology Program - Phase 2. Volume 1

    DTIC Science & Technology

    1975-09-01

    transport aircraft . In addition, PNL and EPNL con- tributions made by each major engine component ( jet , turbine , combustor and compressor) were... Turbine noise was studied using a J85 engine with massive Inlet suppressor and open nozzle to unmask the turbine . Second-stage turbine blade /nozzle...17. Kty Words (Suggnted by Author(tl) Jet Noise, High Velocity Suppression, Aircraft Engine Suppression, Turbomachlnery Noise, Hybrid Inlet

  19. Contralateral-noise effects on cochlear responses in anesthetized mice are dominated by feedback from an unknown pathway

    PubMed Central

    Usubuchi, Hajime; Vetter, Douglas E.; Elgoyhen, A. Bélen; Thomas, Steven A.; Liberman, M. Charles

    2012-01-01

    Suppression of ipsilateral distortion product otoacoustic emissions (DPOAEs) by contralateral noise is used in humans and animals to assay the strength of sound-evoked negative feedback from the medial olivocochlear (MOC) efferent pathway. However, depending on species and anesthesia, contributions of other feedback systems to the middle or inner ear can cloud the interpretation. Here, contributions of MOC and middle-ear muscle reflexes, as well as autonomic feedback, to contra-noise suppression in anesthetized mice are dissected by selectively eliminating each pathway by surgical transection, pharmacological blockade, or targeted gene deletion. When ipsilateral DPOAEs were evoked by low-level primaries, contra-noise suppression was typically ∼1 dB with contra-noise levels around 95 dB SPL, and it always disappeared upon contralateral cochlear destruction. Lack of middle-ear muscle contribution was suggested by persistence of contra-noise suppression after paralysis with curare, tensor tympani cauterization, or section of the facial nerve. Contribution of cochlear sympathetics was ruled out by studying mutant mice lacking adrenergic signaling (dopamine β-hydroxylase knockouts). Surprisingly, contra-noise effects on low-level DPOAEs were also not diminished by eliminating the MOC system pharmacologically (strychnine), surgically, or by deletion of relevant cholinergic receptors (α9/α10). In contrast, when ipsilateral DPOAEs were evoked by high-level primaries, the contra-noise suppression, although comparable in magnitude, was largely eliminated by MOC blockade or section. Possible alternate pathways are discussed for the source of contra-noise-evoked effects at low ipsilateral levels. PMID:22514298

  20. A generalized leaky FxLMS algorithm for tuning the waterbed effect of feedback active noise control systems

    NASA Astrophysics Data System (ADS)

    Wu, Lifu; Qiu, Xiaojun; Guo, Yecai

    2018-06-01

    To tune the noise amplification in the feedback system caused by the waterbed effect effectively, an adaptive algorithm is proposed in this paper by replacing the scalar leaky factor of the leaky FxLMS algorithm with a real symmetric Toeplitz matrix. The elements in the matrix are calculated explicitly according to the noise amplification constraints, which are defined based on a simple but efficient method. Simulations in an ANC headphone application demonstrate that the proposed algorithm can adjust the frequency band of noise amplification more effectively than the FxLMS algorithm and the leaky FxLMS algorithm.

  1. Investigation of Diesel’s Residual Noise on Predictive Vehicles Noise Cancelling using LMS Adaptive Algorithm

    NASA Astrophysics Data System (ADS)

    Arttini Dwi Prasetyowati, Sri; Susanto, Adhi; Widihastuti, Ida

    2017-04-01

    Every noise problems require different solution. In this research, the noise that must be cancelled comes from roadway. Least Mean Square (LMS) adaptive is one of the algorithm that can be used to cancel that noise. Residual noise always appears and could not be erased completely. This research aims to know the characteristic of residual noise from vehicle’s noise and analysis so that it is no longer appearing as a problem. LMS algorithm was used to predict the vehicle’s noise and minimize the error. The distribution of the residual noise could be observed to determine the specificity of the residual noise. The statistic of the residual noise close to normal distribution with = 0,0435, = 1,13 and the autocorrelation of the residual noise forming impulse. As a conclusion the residual noise is insignificant.

  2. Competitive repetition suppression (CoRe) clustering: a biologically inspired learning model with application to robust clustering.

    PubMed

    Bacciu, Davide; Starita, Antonina

    2008-11-01

    Determining a compact neural coding for a set of input stimuli is an issue that encompasses several biological memory mechanisms as well as various artificial neural network models. In particular, establishing the optimal network structure is still an open problem when dealing with unsupervised learning models. In this paper, we introduce a novel learning algorithm, named competitive repetition-suppression (CoRe) learning, inspired by a cortical memory mechanism called repetition suppression (RS). We show how such a mechanism is used, at various levels of the cerebral cortex, to generate compact neural representations of the visual stimuli. From the general CoRe learning model, we derive a clustering algorithm, named CoRe clustering, that can automatically estimate the unknown cluster number from the data without using a priori information concerning the input distribution. We illustrate how CoRe clustering, besides its biological plausibility, posses strong theoretical properties in terms of robustness to noise and outliers, and we provide an error function describing CoRe learning dynamics. Such a description is used to analyze CoRe relationships with the state-of-the art clustering models and to highlight CoRe similitude with rival penalized competitive learning (RPCL), showing how CoRe extends such a model by strengthening the rival penalization estimation by means of loss functions from robust statistics.

  3. Analyzing radiation absorption difference of dental substance by using Dual CT

    NASA Astrophysics Data System (ADS)

    Yu, H.; Lee, H. K.; Cho, J. H.; Yang, H. J.; Ju, Y. S.

    2015-07-01

    The purpose of this study was to evaluate the changes of noise and computer tomography (CT) number in each dental substance, by using the metal artefact reduction algorithm; we used dual CT for this study. For the study, we produced resin, titanium, gypsum, and wax that are widely used by dentists. In addition, we made nickel to increase the artefact. While making the study materials, we made sure that there is no difficulty when inserting the substances inside phantom. In order to study, we scanned before and after using the metal artefact reduction algorithm. We conducted an average analysis of CT number and noise, before and after using the metal artefact reduction algorithm. As a result, there was no difference in CT number and noise before and after using the metal artefact reduction algorithm. However, when it comes to the noise value in each substance, wax's noise value was the lowest whereas titanium's noise value was the highest, after applying the metal artefact reduction algorithm. In nickel, CT number and noise value from artefact area showed a decreased noise value when applying the metal artefact reduction algorithm. In conclusion, we assumed that we could increase the effectiveness of CT examination by applying dual energy's metal artefact reduction algorithm.

  4. A robust fuzzy local Information c-means clustering algorithm with noise detection

    NASA Astrophysics Data System (ADS)

    Shang, Jiayu; Li, Shiren; Huang, Junwei

    2018-04-01

    Fuzzy c-means clustering (FCM), especially with spatial constraints (FCM_S), is an effective algorithm suitable for image segmentation. Its reliability contributes not only to the presentation of fuzziness for belongingness of every pixel but also to exploitation of spatial contextual information. But these algorithms still remain some problems when processing the image with noise, they are sensitive to the parameters which have to be tuned according to prior knowledge of the noise. In this paper, we propose a new FCM algorithm, combining the gray constraints and spatial constraints, called spatial and gray-level denoised fuzzy c-means (SGDFCM) algorithm. This new algorithm conquers the parameter disadvantages mentioned above by considering the possibility of noise of each pixel, which aims to improve the robustness and obtain more detail information. Furthermore, the possibility of noise can be calculated in advance, which means the algorithm is effective and efficient.

  5. SU-F-I-09: Improvement of Image Registration Using Total-Variation Based Noise Reduction Algorithms for Low-Dose CBCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, S; Farr, J; Merchant, T

    Purpose: To study the effect of total-variation based noise reduction algorithms to improve the image registration of low-dose CBCT for patient positioning in radiation therapy. Methods: In low-dose CBCT, the reconstructed image is degraded by excessive quantum noise. In this study, we developed a total-variation based noise reduction algorithm and studied the effect of the algorithm on noise reduction and image registration accuracy. To study the effect of noise reduction, we have calculated the peak signal-to-noise ratio (PSNR). To study the improvement of image registration, we performed image registration between volumetric CT and MV- CBCT images of different head-and-neck patientsmore » and calculated the mutual information (MI) and Pearson correlation coefficient (PCC) as a similarity metric. The PSNR, MI and PCC were calculated for both the noisy and noise-reduced CBCT images. Results: The algorithms were shown to be effective in reducing the noise level and improving the MI and PCC for the low-dose CBCT images tested. For the different head-and-neck patients, a maximum improvement of PSNR of 10 dB with respect to the noisy image was calculated. The improvement of MI and PCC was 9% and 2% respectively. Conclusion: Total-variation based noise reduction algorithm was studied to improve the image registration between CT and low-dose CBCT. The algorithm had shown promising results in reducing the noise from low-dose CBCT images and improving the similarity metric in terms of MI and PCC.« less

  6. Wiener filter preprocessing for OFDM systems in the presence of both nonstationary and stationary phase noises

    NASA Astrophysics Data System (ADS)

    Zhong, Ke; Lei, Xia; Li, Shaoqian

    2013-12-01

    Statistics-based intercarrier interference (ICI) mitigation algorithm is proposed for orthogonal frequency division multiplexing systems in presence of both nonstationary and stationary phase noises. By utilizing the statistics of phase noise, which can be obtained from measurements or data sheets, a Wiener filter preprocessing algorithm for ICI mitigation is proposed. The proposed algorithm can be regarded as a performance-improving technique for the previous researches on phase noise cancelation. Simulation results show that the proposed algorithm can effectively mitigate ICI and lower the error floor, and therefore significantly improve the performances of previous researches on phase noise cancelation, especially in the presence of severe phase noise.

  7. SU-C-207B-02: Maximal Noise Reduction Filter with Anatomical Structures Preservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maitree, R; Guzman, G; Chundury, A

    Purpose: All medical images contain noise, which can result in an undesirable appearance and can reduce the visibility of anatomical details. There are varieties of techniques utilized to reduce noise such as increasing the image acquisition time and using post-processing noise reduction algorithms. However, these techniques are increasing the imaging time and cost or reducing tissue contrast and effective spatial resolution which are useful diagnosis information. The three main focuses in this study are: 1) to develop a novel approach that can adaptively and maximally reduce noise while preserving valuable details of anatomical structures, 2) to evaluate the effectiveness ofmore » available noise reduction algorithms in comparison to the proposed algorithm, and 3) to demonstrate that the proposed noise reduction approach can be used clinically. Methods: To achieve a maximal noise reduction without destroying the anatomical details, the proposed approach automatically estimated the local image noise strength levels and detected the anatomical structures, i.e. tissue boundaries. Such information was used to adaptively adjust strength of the noise reduction filter. The proposed algorithm was tested on 34 repeating swine head datasets and 54 patients MRI and CT images. The performance was quantitatively evaluated by image quality metrics and manually validated for clinical usages by two radiation oncologists and one radiologist. Results: Qualitative measurements on repeated swine head images demonstrated that the proposed algorithm efficiently removed noise while preserving the structures and tissues boundaries. In comparisons, the proposed algorithm obtained competitive noise reduction performance and outperformed other filters in preserving anatomical structures. Assessments from the manual validation indicate that the proposed noise reduction algorithm is quite adequate for some clinical usages. Conclusion: According to both clinical evaluation (human expert ranking) and qualitative assessment, the proposed approach has superior noise reduction and anatomical structures preservation capabilities over existing noise removal methods. Senior Author Dr. Deshan Yang received research funding form ViewRay and Varian.« less

  8. A comparative intelligibility study of single-microphone noise reduction algorithms.

    PubMed

    Hu, Yi; Loizou, Philipos C

    2007-09-01

    The evaluation of intelligibility of noise reduction algorithms is reported. IEEE sentences and consonants were corrupted by four types of noise including babble, car, street and train at two signal-to-noise ratio levels (0 and 5 dB), and then processed by eight speech enhancement methods encompassing four classes of algorithms: spectral subtractive, sub-space, statistical model based and Wiener-type algorithms. The enhanced speech was presented to normal-hearing listeners for identification. With the exception of a single noise condition, no algorithm produced significant improvements in speech intelligibility. Information transmission analysis of the consonant confusion matrices indicated that no algorithm improved significantly the place feature score, significantly, which is critically important for speech recognition. The algorithms which were found in previous studies to perform the best in terms of overall quality, were not the same algorithms that performed the best in terms of speech intelligibility. The subspace algorithm, for instance, was previously found to perform the worst in terms of overall quality, but performed well in the present study in terms of preserving speech intelligibility. Overall, the analysis of consonant confusion matrices suggests that in order for noise reduction algorithms to improve speech intelligibility, they need to improve the place and manner feature scores.

  9. Noise suppression in surface microseismic data by τ-p transform

    USGS Publications Warehouse

    Forghani-Arani, Farnoush; Batzle, Mike; Behura, Jyoti; Willis, Mark; Haines, Seth; Davidson, Michael

    2013-01-01

    Surface passive seismic methods are receiving increased attention for monitoring changes in reservoirs during the production of unconventional oil and gas. However, in passive seismic data the strong cultural and ambient noise (mainly surface-waves) decreases the effectiveness of these techniques. Hence, suppression of surface-waves is a critical step in surface microseismic monitoring. We apply a noise suppression technique, based on the τ — p transform, to a surface passive seismic dataset recorded over a Barnett Shale reservoir undergoing a hydraulic fracturing process. This technique not only improves the signal-to-noise ratios of added synthetic microseismic events, but it also preserves the event waveforms.

  10. Sub-Poissonian light and photocurrent shot-noise suppression in closed opto-electronic loop

    NASA Technical Reports Server (NTRS)

    Masalov, A. V.; Putilin, A. A.; Vasilyev, Michael V.

    1994-01-01

    We examine experimentally photocurrent noise reduction in the opto-electronic closed loop. Photocurrent noise density 12.5 dB below the shot-noise was observed. So large suppression was not reached in previous experiments and cannot be explained in terms of an ordinary sub-Poissonian light in the loop. We propose the concept of anticorrelation state for the description of light in the loop.

  11. Generation of Higher Order Modes in a Rectangular Duct

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Cabell, Randolph H.; Brown, Donald E.

    2004-01-01

    Advanced noise control methodologies to reduce sound emission from aircraft engines take advantage of the modal structure of the noise in the duct. This noise is caused by the interaction of rotor wakes with downstream obstructions such as exit guide vanes. Mode synthesis has been accomplished in circular ducts and current active noise control work has made use of this capability to cancel fan noise. The goal of the current effort is to examine the fundamental process of higher order mode propagation through an acoustically treated, curved duct. The duct cross-section is rectangular to permit greater flexibility in representation of a range of duct curvatures. The work presented is the development of a feedforward control system to generate a user-specified modal pattern in the duct. The multiple-error, filtered-x LMS algorithm is used to determine the magnitude and phase of signal input to the loudspeakers to produce a desired modal pattern at a set of error microphones. Implementation issues, including loudspeaker placement and error microphone placement, are discussed. Preliminary results from a 9-3/8 inch by 21 inch duct, using 12 loudspeakers and 24 microphones, are presented. These results demonstrate the ability of the control system to generate a user-specified mode while suppressing undesired modes.

  12. Robust Adaptive Beamforming with Sensor Position Errors Using Weighted Subspace Fitting-Based Covariance Matrix Reconstruction.

    PubMed

    Chen, Peng; Yang, Yixin; Wang, Yong; Ma, Yuanliang

    2018-05-08

    When sensor position errors exist, the performance of recently proposed interference-plus-noise covariance matrix (INCM)-based adaptive beamformers may be severely degraded. In this paper, we propose a weighted subspace fitting-based INCM reconstruction algorithm to overcome sensor displacement for linear arrays. By estimating the rough signal directions, we construct a novel possible mismatched steering vector (SV) set. We analyze the proximity of the signal subspace from the sample covariance matrix (SCM) and the space spanned by the possible mismatched SV set. After solving an iterative optimization problem, we reconstruct the INCM using the estimated sensor position errors. Then we estimate the SV of the desired signal by solving an optimization problem with the reconstructed INCM. The main advantage of the proposed algorithm is its robustness against SV mismatches dominated by unknown sensor position errors. Numerical examples show that even if the position errors are up to half of the assumed sensor spacing, the output signal-to-interference-plus-noise ratio is only reduced by 4 dB. Beam patterns plotted using experiment data show that the interference suppression capability of the proposed beamformer outperforms other tested beamformers.

  13. Laboratory experiments on active suppression of advanced turboprop noise

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.

    1985-01-01

    The noise generated by supersonic tip speed propellers may be a cabin environment problem for future propeller-driven airplanes. Active suppression from speakers inside the airplane cabin has been proposed for canceling out this noise. The potential of active suppression of advanced turboprop noise was tested by using speakers in a rectangular duct. Experiments were first performed with sine wave signals. The results compared well with the ideal cancellation curve of noise as a function of phase angle. Recorded noise signals from subsonic and supersonic tip speed propellers were than used in the duct to deterthe potential for canceling their noise. The subsonic propeller data showed significant cancellations but less than those obtained with the sine wave. The blade-passing-tone cancellation curve for the supersonic propeller was very similar to the subsonic curve, indicating that it is potentially just as easy to cancel supersonic as subsonic propeller blade-passing-tone noise. Propeller duct data from a recorded propeller source and spatial data taken on a propeller-drive airplane showed generally good agreement when compared versus phase angle. This agreement, combined with the similarity of the subsonic and supersonic duct propeller data, indicates that the area of cancellation for advanced supersonic propellers will be similar to that measured on the airplane. Since the area of cancellation on the airplane was small, a method for improving the active noise suppression by using outside speakers is discussed.

  14. Optimization of valve opening process for the suppression of impulse exhaust noise

    NASA Astrophysics Data System (ADS)

    Li, Jingxiang; Zhao, Shengdun

    2017-02-01

    Impulse exhaust noise generated by the sudden impact of discharging flow of pneumatic systems has significant temporal characteristics including high sound pressure and rapid sound transient. The impulse noise exposures are more hazardous to hearing than the energy equivalent uniform noise exposures. This paper presents a novel approach to suppress the peak sound pressure as a major indicator of impulsiveness of the impulse exhaust noise by an optimization of the opening process of valve. Relationships between exhaust flow and impulse noise are described by thermodynamics and noise generating mechanism. Then an optimized approach by controlling the valve opening process is derived under a constraint of pre-setting exhaust time. A modified servo-direct-driven valve was designed and assembled in a typical pneumatic system for the verification experiments comparing with an original solenoid valve. Experimental results with groups of initial cylinder pressures and pre-setting exhaust times are shown to verify the effects of the proposed optimization. Some indicators of energy-equivalent and impulsiveness are introduced to discuss the effects of the noise suppressions. Relationship between noise reduction and exhaust time delay is also discussed.

  15. Adaptive PI control strategy for flat permanent magnet linear synchronous motor vibration suppression

    NASA Astrophysics Data System (ADS)

    Meng, Fanwei; Liu, Chengying; Li, Zhijun; Wang, Liping

    2013-01-01

    Due to low damping ratio, flat permanent magnet linear synchronous motor's vibration is difficult to be damped and the accuracy is limited. The vibration suppressing results are not good enough in the existing research because only the longitudinal direction vibration is considered while the normal direction vibration is neglected. The parameters of the direct-axis current controller are set to be the same as those of the quadrature-axis current controller commonly. This causes contradiction between signal noise and response. To suppress the vibration, the electromagnetic force model of the flat permanent magnet synchronous linear motor is formulated first. Through the analysis of the effect that direct-axis current noise and quadrature-axis current noise have on both direction vibration, it can be declared that the conclusion that longitudinal direction vibration is only related to the quadrature-axis current noise while the normal direction vibration is related to both the quadrature-axis current noise and direct-axis current noise. Then, the simulation test on current loop with a low-pass filter is conducted and the results show that the low-pass filter can not suppress the vibration but makes the vibration more severe. So a vibration suppressing strategy that the proportional gain of direct-axis current controller adapted according to quadrature-axis reference current is proposed. This control strategy can suppress motor vibration by suppressing direct-axis current noise. The experiments results about the effect of K p and T i on normal direction vibration, longitudinal vibration and the position step response show that this strategy suppresses vibration effectively while the motor's motion performance is not affected. The maximum reduction of vibration can be up to 40%. In addition, current test under rated load condition is also conducted and the results show that the control strategy can avoid the conflict between the direct-axis current and the quadrature-axis current under typical load. Adaptive PI control strategy can effectively suppress the flat permanent magnet linear synchronous motor's vibration without affecting the motor's performance.

  16. Incrementing data quality of multi-frequency echograms using the Adaptive Wiener Filter (AWF) denoising algorithm

    NASA Astrophysics Data System (ADS)

    Peña, M.

    2016-10-01

    Achieving acceptable signal-to-noise ratio (SNR) can be difficult when working in sparsely populated waters and/or when species have low scattering such as fluid filled animals. The increasing use of higher frequencies and the study of deeper depths in fisheries acoustics, as well as the use of commercial vessels, is raising the need to employ good denoising algorithms. The use of a lower Sv threshold to remove noise or unwanted targets is not suitable in many cases and increases the relative background noise component in the echogram, demanding more effectiveness from denoising algorithms. The Adaptive Wiener Filter (AWF) denoising algorithm is presented in this study. The technique is based on the AWF commonly used in digital photography and video enhancement. The algorithm firstly increments the quality of the data with a variance-dependent smoothing, before estimating the noise level as the envelope of the Sv minima. The AWF denoising algorithm outperforms existing algorithms in the presence of gaussian, speckle and salt & pepper noise, although impulse noise needs to be previously removed. Cleaned echograms present homogenous echotraces with outlined edges.

  17. Algorithmic-Reducibility = Renormalization-Group Fixed-Points; ``Noise''-Induced Phase-Transitions (NITs) to Accelerate Algorithmics (``NIT-Picking'') Replacing CRUTCHES!!!: Gauss Modular/Clock-Arithmetic Congruences = Signal X Noise PRODUCTS..

    NASA Astrophysics Data System (ADS)

    Siegel, J.; Siegel, Edward Carl-Ludwig

    2011-03-01

    Cook-Levin computational-"complexity"(C-C) algorithmic-equivalence reduction-theorem reducibility equivalence to renormalization-(semi)-group phase-transitions critical-phenomena statistical-physics universality-classes fixed-points, is exploited with Gauss modular/clock-arithmetic/model congruences = signal X noise PRODUCT reinterpretation. Siegel-Baez FUZZYICS=CATEGORYICS(SON of ``TRIZ''): Category-Semantics(C-S) tabular list-format truth-table matrix analytics predicts and implements "noise"-induced phase-transitions (NITs) to accelerate versus to decelerate Harel [Algorithmics(1987)]-Sipser[Intro. Theory Computation(1997) algorithmic C-C: "NIT-picking" to optimize optimization-problems optimally(OOPO). Versus iso-"noise" power-spectrum quantitative-only amplitude/magnitude-only variation stochastic-resonance, this "NIT-picking" is "noise" power-spectrum QUALitative-type variation via quantitative critical-exponents variation. Computer-"science" algorithmic C-C models: Turing-machine, finite-state-models/automata, are identified as early-days once-workable but NOW ONLY LIMITING CRUTCHES IMPEDING latter-days new-insights!!!

  18. Convergence and objective functions of some fault/noise-injection-based online learning algorithms for RBF networks.

    PubMed

    Ho, Kevin I-J; Leung, Chi-Sing; Sum, John

    2010-06-01

    In the last two decades, many online fault/noise injection algorithms have been developed to attain a fault tolerant neural network. However, not much theoretical works related to their convergence and objective functions have been reported. This paper studies six common fault/noise-injection-based online learning algorithms for radial basis function (RBF) networks, namely 1) injecting additive input noise, 2) injecting additive/multiplicative weight noise, 3) injecting multiplicative node noise, 4) injecting multiweight fault (random disconnection of weights), 5) injecting multinode fault during training, and 6) weight decay with injecting multinode fault. Based on the Gladyshev theorem, we show that the convergence of these six online algorithms is almost sure. Moreover, their true objective functions being minimized are derived. For injecting additive input noise during training, the objective function is identical to that of the Tikhonov regularizer approach. For injecting additive/multiplicative weight noise during training, the objective function is the simple mean square training error. Thus, injecting additive/multiplicative weight noise during training cannot improve the fault tolerance of an RBF network. Similar to injective additive input noise, the objective functions of other fault/noise-injection-based online algorithms contain a mean square error term and a specialized regularization term.

  19. Reliable motion detection of small targets in video with low signal-to-clutter ratios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, S.A.; Naylor, R.B.

    1995-07-01

    Studies show that vigilance decreases rapidly after several minutes when human operators are required to search live video for infrequent intrusion detections. Therefore, there is a need for systems which can automatically detect targets in live video and reserve the operator`s attention for assessment only. Thus far, automated systems have not simultaneously provided adequate detection sensitivity, false alarm suppression, and ease of setup when used in external, unconstrained environments. This unsatisfactory performance can be exacerbated by poor video imagery with low contrast, high noise, dynamic clutter, image misregistration, and/or the presence of small, slow, or erratically moving targets. This papermore » describes a highly adaptive video motion detection and tracking algorithm which has been developed as part of Sandia`s Advanced Exterior Sensor (AES) program. The AES is a wide-area detection and assessment system for use in unconstrained exterior security applications. The AES detection and tracking algorithm provides good performance under stressing data and environmental conditions. Features of the algorithm include: reliable detection with negligible false alarm rate of variable velocity targets having low signal-to-clutter ratios; reliable tracking of targets that exhibit motion that is non-inertial, i.e., varies in direction and velocity; automatic adaptation to both infrared and visible imagery with variable quality; and suppression of false alarms caused by sensor flaws and/or cutouts.« less

  20. Perceptual Contrast Enhancement with Dynamic Range Adjustment

    PubMed Central

    Zhang, Hong; Li, Yuecheng; Chen, Hao; Yuan, Ding; Sun, Mingui

    2013-01-01

    Recent years, although great efforts have been made to improve its performance, few Histogram equalization (HE) methods take human visual perception (HVP) into account explicitly. The human visual system (HVS) is more sensitive to edges than brightness. This paper proposes to take use of this nature intuitively and develops a perceptual contrast enhancement approach with dynamic range adjustment through histogram modification. The use of perceptual contrast connects the image enhancement problem with the HVS. To pre-condition the input image before the HE procedure is implemented, a perceptual contrast map (PCM) is constructed based on the modified Difference of Gaussian (DOG) algorithm. As a result, the contrast of the image is sharpened and high frequency noise is suppressed. A modified Clipped Histogram Equalization (CHE) is also developed which improves visual quality by automatically detecting the dynamic range of the image with improved perceptual contrast. Experimental results show that the new HE algorithm outperforms several state-of-the-art algorithms in improving perceptual contrast and enhancing details. In addition, the new algorithm is simple to implement, making it suitable for real-time applications. PMID:24339452

  1. Supersonic jet noise and the high speed civil transport

    NASA Astrophysics Data System (ADS)

    Seiner, John M.; Krejsa, Eugene A.

    1989-07-01

    An evaluation is made of the comparative advantages of prospective SST engine noise-suppression systems, with a view to their effectiveness in meeting the federally-mandated community noise standards of FAR 36 Stage III. A noise-suppression system must be capable of removing at least 4 EPNdB of noise percent thrust loss at takeoff. While none of the suppressors presently discussed is capable of meeting this goal, the inverted velocity profile/annular convergent-divergent plug/acoustically-treated ejector suppressor combination of configurational elements appears to represent the most efficient noise-control apparatus. Noncircular cross-section nozzle geometries also furnish a general noise reduction advantage over circular ones.

  2. Magnetic resonance image restoration via dictionary learning under spatially adaptive constraints.

    PubMed

    Wang, Shanshan; Xia, Yong; Dong, Pei; Feng, David Dagan; Luo, Jianhua; Huang, Qiu

    2013-01-01

    This paper proposes a spatially adaptive constrained dictionary learning (SAC-DL) algorithm for Rician noise removal in magnitude magnetic resonance (MR) images. This algorithm explores both the strength of dictionary learning to preserve image structures and the robustness of local variance estimation to remove signal-dependent Rician noise. The magnitude image is first separated into a number of partly overlapping image patches. The statistics of each patch are collected and analyzed to obtain a local noise variance. To better adapt to Rician noise, a correction factor is formulated with the local signal-to-noise ratio (SNR). Finally, the trained dictionary is used to denoise each image patch under spatially adaptive constraints. The proposed algorithm has been compared to the popular nonlocal means (NLM) filtering and unbiased NLM (UNLM) algorithm on simulated T1-weighted, T2-weighted and PD-weighted MR images. Our results suggest that the SAC-DL algorithm preserves more image structures while effectively removing the noise than NLM and it is also superior to UNLM at low noise levels.

  3. High frequency measurements of shot noise suppression in atomic-scale metal contacts

    NASA Astrophysics Data System (ADS)

    Wheeler, Patrick J.; Evans, Kenneth; Russom, Jeffrey; King, Nicholas; Natelson, Douglas

    2009-03-01

    Shot noise provides a means of assessing the number and transmission coefficients of transmitting channels in atomic- and molecular-scale junctions. Previous experiments at low temperatures in metal and semiconductor point contacts have demonstrated the expected suppression of shot noise when junction conductance is near an integer multiple of the conductance quantum, G0≡2e^2/h. Using high frequency techniques, we demonstrate the high speed acquisition of such data at room temperature in mechanical break junctions. In clean Au contacts conductance histograms with clear peaks at G0, 2G0, and 3G0 are acquired within hours, and histograms of simultaneous measurements of the shot noise show clear suppression at those conductance values. We describe the dependence of the noise on bias voltage and analyze the noise vs. conductance histograms in terms of a model that averages over transmission coefficients.

  4. A semi-learning algorithm for noise rejection: an fNIRS study on ADHD children

    NASA Astrophysics Data System (ADS)

    Sutoko, Stephanie; Funane, Tsukasa; Katura, Takusige; Sato, Hiroki; Kiguchi, Masashi; Maki, Atsushi; Monden, Yukifumi; Nagashima, Masako; Yamagata, Takanori; Dan, Ippeita

    2017-02-01

    In pediatrics studies, the quality of functional near infrared spectroscopy (fNIRS) signals is often reduced by motion artifacts. These artifacts likely mislead brain functionality analysis, causing false discoveries. While noise correction methods and their performance have been investigated, these methods require several parameter assumptions that apparently result in noise overfitting. In contrast, the rejection of noisy signals serves as a preferable method because it maintains the originality of the signal waveform. Here, we describe a semi-learning algorithm to detect and eliminate noisy signals. The algorithm dynamically adjusts noise detection according to the predetermined noise criteria, which are spikes, unusual activation values (averaged amplitude signals within the brain activation period), and high activation variances (among trials). Criteria were sequentially organized in the algorithm and orderly assessed signals based on each criterion. By initially setting an acceptable rejection rate, particular criteria causing excessive data rejections are neglected, whereas others with tolerable rejections practically eliminate noises. fNIRS data measured during the attention response paradigm (oddball task) in children with attention deficit/hyperactivity disorder (ADHD) were utilized to evaluate and optimize the algorithm's performance. This algorithm successfully substituted the visual noise identification done in the previous studies and consistently found significantly lower activation of the right prefrontal and parietal cortices in ADHD patients than in typical developing children. Thus, we conclude that the semi-learning algorithm confers more objective and standardized judgment for noise rejection and presents a promising alternative to visual noise rejection

  5. Unified anomaly suppression and boundary extraction in laser radar range imagery based on a joint curve-evolution and expectation-maximization algorithm.

    PubMed

    Feng, Haihua; Karl, William Clem; Castañon, David A

    2008-05-01

    In this paper, we develop a new unified approach for laser radar range anomaly suppression, range profiling, and segmentation. This approach combines an object-based hybrid scene model for representing the range distribution of the field and a statistical mixture model for the range data measurement noise. The image segmentation problem is formulated as a minimization problem which jointly estimates the target boundary together with the target region range variation and background range variation directly from the noisy and anomaly-filled range data. This formulation allows direct incorporation of prior information concerning the target boundary, target ranges, and background ranges into an optimal reconstruction process. Curve evolution techniques and a generalized expectation-maximization algorithm are jointly employed as an efficient solver for minimizing the objective energy, resulting in a coupled pair of object and intensity optimization tasks. The method directly and optimally extracts the target boundary, avoiding a suboptimal two-step process involving image smoothing followed by boundary extraction. Experiments are presented demonstrating that the proposed approach is robust to anomalous pixels (missing data) and capable of producing accurate estimation of the target boundary and range values from noisy data.

  6. Delving into α-stable distribution in noise suppression for seizure detection from scalp EEG

    NASA Astrophysics Data System (ADS)

    Wang, Yueming; Qi, Yu; Wang, Yiwen; Lei, Zhen; Zheng, Xiaoxiang; Pan, Gang

    2016-10-01

    Objective. There is serious noise in EEG caused by eye blink and muscle activities. The noise exhibits similar morphologies to epileptic seizure signals, leading to relatively high false alarms in most existing seizure detection methods. The objective in this paper is to develop an effective noise suppression method in seizure detection and explore the reason why it works. Approach. Based on a state-space model containing a non-linear observation function and multiple features as the observations, this paper delves deeply into the effect of the α-stable distribution in the noise suppression for seizure detection from scalp EEG. Compared with the Gaussian distribution, the α-stable distribution is asymmetric and has relatively heavy tails. These properties make it more powerful in modeling impulsive noise in EEG, which usually can not be handled by the Gaussian distribution. Specially, we give a detailed analysis in the state estimation process to show the reason why the α-stable distribution can suppress the impulsive noise. Main results. To justify each component in our model, we compare our method with 4 different models with different settings on a collected 331-hour epileptic EEG data. To show the superiority of our method, we compare it with the existing approaches on both our 331-hour data and 892-hour public data. The results demonstrate that our method is most effective in both the detection rate and the false alarm. Significance. This is the first attempt to incorporate the α-stable distribution to a state-space model for noise suppression in seizure detection and achieves the state-of-the-art performance.

  7. Robustness analysis of superpixel algorithms to image blur, additive Gaussian noise, and impulse noise

    NASA Astrophysics Data System (ADS)

    Brekhna, Brekhna; Mahmood, Arif; Zhou, Yuanfeng; Zhang, Caiming

    2017-11-01

    Superpixels have gradually become popular in computer vision and image processing applications. However, no comprehensive study has been performed to evaluate the robustness of superpixel algorithms in regard to common forms of noise in natural images. We evaluated the robustness of 11 recently proposed algorithms to different types of noise. The images were corrupted with various degrees of Gaussian blur, additive white Gaussian noise, and impulse noise that either made the object boundaries weak or added extra information to it. We performed a robustness analysis of simple linear iterative clustering (SLIC), Voronoi Cells (VCells), flooding-based superpixel generation (FCCS), bilateral geodesic distance (Bilateral-G), superpixel via geodesic distance (SSS-G), manifold SLIC (M-SLIC), Turbopixels, superpixels extracted via energy-driven sampling (SEEDS), lazy random walk (LRW), real-time superpixel segmentation by DBSCAN clustering, and video supervoxels using partially absorbing random walks (PARW) algorithms. The evaluation process was carried out both qualitatively and quantitatively. For quantitative performance comparison, we used achievable segmentation accuracy (ASA), compactness, under-segmentation error (USE), and boundary recall (BR) on the Berkeley image database. The results demonstrated that all algorithms suffered performance degradation due to noise. For Gaussian blur, Bilateral-G exhibited optimal results for ASA and USE measures, SLIC yielded optimal compactness, whereas FCCS and DBSCAN remained optimal for BR. For the case of additive Gaussian and impulse noises, FCCS exhibited optimal results for ASA, USE, and BR, whereas Bilateral-G remained a close competitor in ASA and USE for Gaussian noise only. Additionally, Turbopixel demonstrated optimal performance for compactness for both types of noise. Thus, no single algorithm was able to yield optimal results for all three types of noise across all performance measures. Conclusively, to solve real-world problems effectively, more robust superpixel algorithms must be developed.

  8. False-nearest-neighbors algorithm and noise-corrupted time series

    NASA Astrophysics Data System (ADS)

    Rhodes, Carl; Morari, Manfred

    1997-05-01

    The false-nearest-neighbors (FNN) algorithm was originally developed to determine the embedding dimension for autonomous time series. For noise-free computer-generated time series, the algorithm does a good job in predicting the embedding dimension. However, the problem of predicting the embedding dimension when the time-series data are corrupted by noise was not fully examined in the original studies of the FNN algorithm. Here it is shown that with large data sets, even small amounts of noise can lead to incorrect prediction of the embedding dimension. Surprisingly, as the length of the time series analyzed by FNN grows larger, the cause of incorrect prediction becomes more pronounced. An analysis of the effect of noise on the FNN algorithm and a solution for dealing with the effects of noise are given here. Some results on the theoretically correct choice of the FNN threshold are also presented.

  9. Sparse signal representation and its applications in ultrasonic NDE.

    PubMed

    Zhang, Guang-Ming; Zhang, Cheng-Zhong; Harvey, David M

    2012-03-01

    Many sparse signal representation (SSR) algorithms have been developed in the past decade. The advantages of SSR such as compact representations and super resolution lead to the state of the art performance of SSR for processing ultrasonic non-destructive evaluation (NDE) signals. Choosing a suitable SSR algorithm and designing an appropriate overcomplete dictionary is a key for success. After a brief review of sparse signal representation methods and the design of overcomplete dictionaries, this paper addresses the recent accomplishments of SSR for processing ultrasonic NDE signals. The advantages and limitations of SSR algorithms and various overcomplete dictionaries widely-used in ultrasonic NDE applications are explored in depth. Their performance improvement compared to conventional signal processing methods in many applications such as ultrasonic flaw detection and noise suppression, echo separation and echo estimation, and ultrasonic imaging is investigated. The challenging issues met in practical ultrasonic NDE applications for example the design of a good dictionary are discussed. Representative experimental results are presented for demonstration. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Performance evaluation of the Champagne source reconstruction algorithm on simulated and real M/EEG data.

    PubMed

    Owen, Julia P; Wipf, David P; Attias, Hagai T; Sekihara, Kensuke; Nagarajan, Srikantan S

    2012-03-01

    In this paper, we present an extensive performance evaluation of a novel source localization algorithm, Champagne. It is derived in an empirical Bayesian framework that yields sparse solutions to the inverse problem. It is robust to correlated sources and learns the statistics of non-stimulus-evoked activity to suppress the effect of noise and interfering brain activity. We tested Champagne on both simulated and real M/EEG data. The source locations used for the simulated data were chosen to test the performance on challenging source configurations. In simulations, we found that Champagne outperforms the benchmark algorithms in terms of both the accuracy of the source localizations and the correct estimation of source time courses. We also demonstrate that Champagne is more robust to correlated brain activity present in real MEG data and is able to resolve many distinct and functionally relevant brain areas with real MEG and EEG data. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Logarithmic Laplacian Prior Based Bayesian Inverse Synthetic Aperture Radar Imaging.

    PubMed

    Zhang, Shuanghui; Liu, Yongxiang; Li, Xiang; Bi, Guoan

    2016-04-28

    This paper presents a novel Inverse Synthetic Aperture Radar Imaging (ISAR) algorithm based on a new sparse prior, known as the logarithmic Laplacian prior. The newly proposed logarithmic Laplacian prior has a narrower main lobe with higher tail values than the Laplacian prior, which helps to achieve performance improvement on sparse representation. The logarithmic Laplacian prior is used for ISAR imaging within the Bayesian framework to achieve better focused radar image. In the proposed method of ISAR imaging, the phase errors are jointly estimated based on the minimum entropy criterion to accomplish autofocusing. The maximum a posterior (MAP) estimation and the maximum likelihood estimation (MLE) are utilized to estimate the model parameters to avoid manually tuning process. Additionally, the fast Fourier Transform (FFT) and Hadamard product are used to minimize the required computational efficiency. Experimental results based on both simulated and measured data validate that the proposed algorithm outperforms the traditional sparse ISAR imaging algorithms in terms of resolution improvement and noise suppression.

  12. Linear-time general decoding algorithm for the surface code

    NASA Astrophysics Data System (ADS)

    Darmawan, Andrew S.; Poulin, David

    2018-05-01

    A quantum error correcting protocol can be substantially improved by taking into account features of the physical noise process. We present an efficient decoder for the surface code which can account for general noise features, including coherences and correlations. We demonstrate that the decoder significantly outperforms the conventional matching algorithm on a variety of noise models, including non-Pauli noise and spatially correlated noise. The algorithm is based on an approximate calculation of the logical channel using a tensor-network description of the noisy state.

  13. Fast noise level estimation algorithm based on principal component analysis transform and nonlinear rectification

    NASA Astrophysics Data System (ADS)

    Xu, Shaoping; Zeng, Xiaoxia; Jiang, Yinnan; Tang, Yiling

    2018-01-01

    We proposed a noniterative principal component analysis (PCA)-based noise level estimation (NLE) algorithm that addresses the problem of estimating the noise level with a two-step scheme. First, we randomly extracted a number of raw patches from a given noisy image and took the smallest eigenvalue of the covariance matrix of the raw patches as the preliminary estimation of the noise level. Next, the final estimation was directly obtained with a nonlinear mapping (rectification) function that was trained on some representative noisy images corrupted with different known noise levels. Compared with the state-of-art NLE algorithms, the experiment results show that the proposed NLE algorithm can reliably infer the noise level and has robust performance over a wide range of image contents and noise levels, showing a good compromise between speed and accuracy in general.

  14. Robust local search for spacecraft operations using adaptive noise

    NASA Technical Reports Server (NTRS)

    Fukunaga, Alex S.; Rabideau, Gregg; Chien, Steve

    2004-01-01

    Randomization is a standard technique for improving the performance of local search algorithms for constraint satisfaction. However, it is well-known that local search algorithms are constraints satisfaction. However, it is well-known that local search algorithms are to the noise values selected. We investigate the use of an adaptive noise mechanism in an iterative repair-based planner/scheduler for spacecraft operations. Preliminary results indicate that adaptive noise makes the use of randomized repair moves safe and robust; that is, using adaptive noise makes it possible to consistently achieve, performance comparable with the best tuned noise setting without the need for manually tuning the noise parameter.

  15. Design and performance of duct acoustic treatment

    NASA Technical Reports Server (NTRS)

    Motsinger, R. E.; Kraft, R. E.

    1991-01-01

    The procedure for designing acoustic treatment panels used to line the walls of aircraft engine ducts and for estimating the resulting suppression of turbofan engine duct noise is discussed. This procedure is intended to be used for estimating noise suppression of existing designs or for designing new acoustic treatment panels and duct configurations to achieve desired suppression levels.

  16. Deep learning for low-dose CT

    NASA Astrophysics Data System (ADS)

    Chen, Hu; Zhang, Yi; Zhou, Jiliu; Wang, Ge

    2017-09-01

    Given the potential risk of X-ray radiation to the patient, low-dose CT has attracted a considerable interest in the medical imaging field. Currently, the main stream low-dose CT methods include vendor-specific sinogram domain filtration and iterative reconstruction algorithms, but they need to access raw data whose formats are not transparent to most users. Due to the difficulty of modeling the statistical characteristics in the image domain, the existing methods for directly processing reconstructed images cannot eliminate image noise very well while keeping structural details. Inspired by the idea of deep learning, here we combine the autoencoder, deconvolution network, and shortcut connections into the residual encoder-decoder convolutional neural network (RED-CNN) for low-dose CT imaging. After patch-based training, the proposed RED-CNN achieves a competitive performance relative to the-state-of-art methods. Especially, our method has been favorably evaluated in terms of noise suppression and structural preservation.

  17. Adaptive non-local means on local principle neighborhood for noise/artifacts reduction in low-dose CT images.

    PubMed

    Zhang, Yuanke; Lu, Hongbing; Rong, Junyan; Meng, Jing; Shang, Junliang; Ren, Pinghong; Zhang, Junying

    2017-09-01

    Low-dose CT (LDCT) technique can reduce the x-ray radiation exposure to patients at the cost of degraded images with severe noise and artifacts. Non-local means (NLM) filtering has shown its potential in improving LDCT image quality. However, currently most NLM-based approaches employ a weighted average operation directly on all neighbor pixels with a fixed filtering parameter throughout the NLM filtering process, ignoring the non-stationary noise nature of LDCT images. In this paper, an adaptive NLM filtering scheme on local principle neighborhoods (PC-NLM) is proposed for structure-preserving noise/artifacts reduction in LDCT images. Instead of using neighboring patches directly, in the PC-NLM scheme, the principle component analysis (PCA) is first applied on local neighboring patches of the target patch to decompose the local patches into uncorrelated principle components (PCs), then a NLM filtering is used to regularize each PC of the target patch and finally the regularized components is transformed to get the target patch in image domain. Especially, in the NLM scheme, the filtering parameter is estimated adaptively from local noise level of the neighborhood as well as the signal-to-noise ratio (SNR) of the corresponding PC, which guarantees a "weaker" NLM filtering on PCs with higher SNR and a "stronger" filtering on PCs with lower SNR. The PC-NLM procedure is iteratively performed several times for better removal of the noise and artifacts, and an adaptive iteration strategy is developed to reduce the computational load by determining whether a patch should be processed or not in next round of the PC-NLM filtering. The effectiveness of the presented PC-NLM algorithm is validated by experimental phantom studies and clinical studies. The results show that it can achieve promising gain over some state-of-the-art methods in terms of artifact suppression and structure preservation. With the use of PCA on local neighborhoods to extract principal structural components, as well as adaptive NLM filtering on PCs of the target patch using filtering parameter estimated based on the local noise level and corresponding SNR, the proposed PC-NLM method shows its efficacy in preserving fine anatomical structures and suppressing noise/artifacts in LDCT images. © 2017 American Association of Physicists in Medicine.

  18. Super Resolution and Interference Suppression Technique applied to SHARAD Radar Data

    NASA Astrophysics Data System (ADS)

    Raguso, M. C.; Mastrogiuseppe, M.; Seu, R.; Piazzo, L.

    2017-12-01

    We will present a super resolution and interference suppression technique applied to the data acquired by the SHAllow RADar (SHARAD) on board the NASA's 2005 Mars Reconnaissance Orbiter (MRO) mission, currently operating around Mars [1]. The algorithms allow to improve the range resolution roughly by a factor of 3 and the Signal to Noise Ratio (SNR) by a several decibels. Range compression algorithms usually adopt conventional Fourier transform techniques, which are limited in the resolution by the transmitted signal bandwidth, analogous to the Rayleigh's criterion in optics. In this work, we investigate a super resolution method based on autoregressive models and linear prediction techniques [2]. Starting from the estimation of the linear prediction coefficients from the spectral data, the algorithm performs the radar bandwidth extrapolation (BWE), thereby improving the range resolution of the pulse-compressed coherent radar data. Moreover, the EMIs (ElectroMagnetic Interferences) are detected and the spectra is interpolated in order to reconstruct an interference free spectrum, thereby improving the SNR. The algorithm can be applied to the single complex look image after synthetic aperture processing (SAR). We apply the proposed algorithm to simulated as well as to real radar data. We will demonstrate the effective enhancement on vertical resolution with respect to the classical spectral estimator. We will show that the imaging of the subsurface layered structures observed in radargrams is improved, allowing additional insights for the scientific community in the interpretation of the SHARAD radar data, which will help to further our understanding of the formation and evolution of known geological features on Mars. References: [1] Seu et al. 2007, Science, 2007, 317, 1715-1718 [2] K.M. Cuomo, "A Bandwidth Extrapolation Technique for Improved Range Resolution of Coherent Radar Data", Project Report CJP-60, Revision 1, MIT Lincoln Laboratory (4 Dec. 1992).

  19. A de-noising algorithm based on wavelet threshold-exponential adaptive window width-fitting for ground electrical source airborne transient electromagnetic signal

    NASA Astrophysics Data System (ADS)

    Ji, Yanju; Li, Dongsheng; Yu, Mingmei; Wang, Yuan; Wu, Qiong; Lin, Jun

    2016-05-01

    The ground electrical source airborne transient electromagnetic system (GREATEM) on an unmanned aircraft enjoys considerable prospecting depth, lateral resolution and detection efficiency, etc. In recent years it has become an important technical means of rapid resources exploration. However, GREATEM data are extremely vulnerable to stationary white noise and non-stationary electromagnetic noise (sferics noise, aircraft engine noise and other human electromagnetic noises). These noises will cause degradation of the imaging quality for data interpretation. Based on the characteristics of the GREATEM data and major noises, we propose a de-noising algorithm utilizing wavelet threshold method and exponential adaptive window width-fitting. Firstly, the white noise is filtered in the measured data using the wavelet threshold method. Then, the data are segmented using data window whose step length is even logarithmic intervals. The data polluted by electromagnetic noise are identified within each window based on the discriminating principle of energy detection, and the attenuation characteristics of the data slope are extracted. Eventually, an exponential fitting algorithm is adopted to fit the attenuation curve of each window, and the data polluted by non-stationary electromagnetic noise are replaced with their fitting results. Thus the non-stationary electromagnetic noise can be effectively removed. The proposed algorithm is verified by the synthetic and real GREATEM signals. The results show that in GREATEM signal, stationary white noise and non-stationary electromagnetic noise can be effectively filtered using the wavelet threshold-exponential adaptive window width-fitting algorithm, which enhances the imaging quality.

  20. SU-E-J-243: Possibility of Exposure Dose Reduction of Cone-Beam Computed Tomography in An Image Guided Patient Positioning System by Using Various Noise Suppression Filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamezawa, H; Fujimoto General Hospital, Miyakonojo, Miyazaki; Arimura, H

    Purpose: To investigate the possibility of exposure dose reduction of the cone-beam computed tomography (CBCT) in an image guided patient positioning system by using 6 noise suppression filters. Methods: First, a reference dose (RD) and low-dose (LD)-CBCT (X-ray volume imaging system, Elekta Co.) images were acquired with a reference dose of 86.2 mGy (weighted CT dose index: CTDIw) and various low doses of 1.4 to 43.1 mGy, respectively. Second, an automated rigid registration for three axes was performed for estimating setup errors between a planning CT image and the LD-CBCT images, which were processed by 6 noise suppression filters, i.e.,more » averaging filter (AF), median filter (MF), Gaussian filter (GF), bilateral filter (BF), edge preserving smoothing filter (EPF) and adaptive partial median filter (AMF). Third, residual errors representing the patient positioning accuracy were calculated as an Euclidean distance between the setup error vectors estimated using the LD-CBCT image and RD-CBCT image. Finally, the relationships between the residual error and CTDIw were obtained for 6 noise suppression filters, and then the CTDIw for LD-CBCT images processed by the noise suppression filters were measured at the same residual error, which was obtained with the RD-CBCT. This approach was applied to an anthropomorphic pelvic phantom and two cancer patients. Results: For the phantom, the exposure dose could be reduced from 61% (GF) to 78% (AMF) by applying the noise suppression filters to the CBCT images. The exposure dose in a prostate cancer case could be reduced from 8% (AF) to 61% (AMF), and the exposure dose in a lung cancer case could be reduced from 9% (AF) to 37% (AMF). Conclusion: Using noise suppression filters, particularly an adaptive partial median filter, could be feasible to decrease the additional exposure dose to patients in image guided patient positioning systems.« less

  1. Phase noise suppression through parametric filtering

    NASA Astrophysics Data System (ADS)

    Cassella, Cristian; Strachan, Scott; Shaw, Steven W.; Piazza, Gianluca

    2017-02-01

    In this work, we introduce and experimentally demonstrate a parametric phase noise suppression technique, which we call "parametric phase noise filtering." This technique is based on the use of a solid-state parametric amplifier operating in its instability region and included in a non-autonomous feedback loop connected at the output of a noisy oscillator. We demonstrate that such a system behaves as a parametrically driven Duffing resonator and can operate at special points where it becomes largely immune to the phase fluctuations that affect the oscillator output signal. A prototype of a parametric phase noise filter (PFIL) was designed and fabricated to operate in the very-high-frequency range. The PFIL prototype allowed us to significantly reduce the phase noise at the output of a commercial signal generator operating around 220 MHz. Noise reduction of 16 dB (40×) and 13 dB (20×) were obtained, respectively, at 1 and 10 kHz offsets from the carrier frequency. The demonstration of this phase noise suppression technique opens up scenarios in the development of passive and low-cost phase noise cancellation circuits for any application demanding high quality frequency generation.

  2. PARC Analysis of the NASA/GE 2D NRA Mixer/Ejector Nozzle

    NASA Technical Reports Server (NTRS)

    DeBonis, J. R.

    1999-01-01

    Interest in developing a new generation supersonic transport has increased in the past several years. Current projections indicate this aircraft would cruise at approximately Mach 2.4, have a range of 5000 nautical miles and carry at least 250 passengers. A large market for such an aircraft will exist in the next century due to a predicted doubling of the demand for long range air transportation by the end of the century and the growing influence of the Pacific Rim nations. Such a proposed aircraft could more than halve the flying time from Los Angeles to Tokyo. However, before a new economically feasible supersonic transport can be built, many key technologies must be developed. Among these technologies is noise suppression. Propulsion systems for a supersonic transport using current technology would exceed acceptable noise levels. All new aircraft must satisfy FAR 36 Stage III noise regulations. The largest area of concern is the noise generated during takeoff. A concerted effort under NASA's High Speed Research (HSR) program has begun to address the problem of noise suppression. One of the most promising concepts being studied in the area of noise suppression is the mixer/ejector nozzle. This study analyzes a typical noise suppressing mixer ejector nozzle at take off conditions, using a Full Navier-Stokes (FNS) computational fluid dynamics (CFD) code.

  3. An environment-adaptive management algorithm for hearing-support devices incorporating listening situation and noise type classifiers.

    PubMed

    Yook, Sunhyun; Nam, Kyoung Won; Kim, Heepyung; Hong, Sung Hwa; Jang, Dong Pyo; Kim, In Young

    2015-04-01

    In order to provide more consistent sound intelligibility for the hearing-impaired person, regardless of environment, it is necessary to adjust the setting of the hearing-support (HS) device to accommodate various environmental circumstances. In this study, a fully automatic HS device management algorithm that can adapt to various environmental situations is proposed; it is composed of a listening-situation classifier, a noise-type classifier, an adaptive noise-reduction algorithm, and a management algorithm that can selectively turn on/off one or more of the three basic algorithms-beamforming, noise-reduction, and feedback cancellation-and can also adjust internal gains and parameters of the wide-dynamic-range compression (WDRC) and noise-reduction (NR) algorithms in accordance with variations in environmental situations. Experimental results demonstrated that the implemented algorithms can classify both listening situation and ambient noise type situations with high accuracies (92.8-96.4% and 90.9-99.4%, respectively), and the gains and parameters of the WDRC and NR algorithms were successfully adjusted according to variations in environmental situation. The average values of signal-to-noise ratio (SNR), frequency-weighted segmental SNR, Perceptual Evaluation of Speech Quality, and mean opinion test scores of 10 normal-hearing volunteers of the adaptive multiband spectral subtraction (MBSS) algorithm were improved by 1.74 dB, 2.11 dB, 0.49, and 0.68, respectively, compared to the conventional fixed-parameter MBSS algorithm. These results indicate that the proposed environment-adaptive management algorithm can be applied to HS devices to improve sound intelligibility for hearing-impaired individuals in various acoustic environments. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  4. 4D-PET reconstruction using a spline-residue model with spatial and temporal roughness penalties

    NASA Astrophysics Data System (ADS)

    Ralli, George P.; Chappell, Michael A.; McGowan, Daniel R.; Sharma, Ricky A.; Higgins, Geoff S.; Fenwick, John D.

    2018-05-01

    4D reconstruction of dynamic positron emission tomography (dPET) data can improve the signal-to-noise ratio in reconstructed image sequences by fitting smooth temporal functions to the voxel time-activity-curves (TACs) during the reconstruction, though the optimal choice of function remains an open question. We propose a spline-residue model, which describes TACs as weighted sums of convolutions of the arterial input function with cubic B-spline basis functions. Convolution with the input function constrains the spline-residue model at early time-points, potentially enhancing noise suppression in early time-frames, while still allowing a wide range of TAC descriptions over the entire imaged time-course, thus limiting bias. Spline-residue based 4D-reconstruction is compared to that of a conventional (non-4D) maximum a posteriori (MAP) algorithm, and to 4D-reconstructions based on adaptive-knot cubic B-splines, the spectral model and an irreversible two-tissue compartment (‘2C3K’) model. 4D reconstructions were carried out using a nested-MAP algorithm including spatial and temporal roughness penalties. The algorithms were tested using Monte-Carlo simulated scanner data, generated for a digital thoracic phantom with uptake kinetics based on a dynamic [18F]-Fluromisonidazole scan of a non-small cell lung cancer patient. For every algorithm, parametric maps were calculated by fitting each voxel TAC within a sub-region of the reconstructed images with the 2C3K model. Compared to conventional MAP reconstruction, spline-residue-based 4D reconstruction achieved  >50% improvements for five of the eight combinations of the four kinetics parameters for which parametric maps were created with the bias and noise measures used to analyse them, and produced better results for 5/8 combinations than any of the other reconstruction algorithms studied, while spectral model-based 4D reconstruction produced the best results for 2/8. 2C3K model-based 4D reconstruction generated the most biased parametric maps. Inclusion of a temporal roughness penalty function improved the performance of 4D reconstruction based on the cubic B-spline, spectral and spline-residue models.

  5. Effect of a Noise-Optimized Second-Generation Monoenergetic Algorithm on Image Noise and Conspicuity of Hypervascular Liver Tumors: An In Vitro and In Vivo Study.

    PubMed

    Marin, Daniele; Ramirez-Giraldo, Juan Carlos; Gupta, Sonia; Fu, Wanyi; Stinnett, Sandra S; Mileto, Achille; Bellini, Davide; Patel, Bhavik; Samei, Ehsan; Nelson, Rendon C

    2016-06-01

    The purpose of this study is to investigate whether the reduction in noise using a second-generation monoenergetic algorithm can improve the conspicuity of hypervascular liver tumors on dual-energy CT (DECT) images of the liver. An anthropomorphic liver phantom in three body sizes and iodine-containing inserts simulating hypervascular lesions was imaged with DECT and single-energy CT at various energy levels (80-140 kV). In addition, a retrospective clinical study was performed in 31 patients with 66 hypervascular liver tumors who underwent DECT during the late hepatic arterial phase. Datasets at energy levels ranging from 40 to 80 keV were reconstructed using first- and second-generation monoenergetic algorithms. Noise, tumor-to-liver contrast-to-noise ratio (CNR), and CNR with a noise constraint (CNRNC) set with a maximum noise increase of 50% were calculated and compared among the different reconstructed datasets. The maximum CNR for the second-generation monoenergetic algorithm, which was attained at 40 keV in both phantom and clinical datasets, was statistically significantly higher than the maximum CNR for the first-generation monoenergetic algorithm (p < 0.001) or single-energy CT acquisitions across a wide range of kilovoltage values. With the second-generation monoenergetic algorithm, the optimal CNRNC occurred at 55 keV, corresponding to lower energy levels compared with first-generation algorithm (predominantly at 70 keV). Patient body size did not substantially affect the selection of the optimal energy level to attain maximal CNR and CNRNC using the second-generation monoenergetic algorithm. A noise-optimized second-generation monoenergetic algorithm significantly improves the conspicuity of hypervascular liver tumors.

  6. Iris double recognition based on modified evolutionary neural network

    NASA Astrophysics Data System (ADS)

    Liu, Shuai; Liu, Yuan-Ning; Zhu, Xiao-Dong; Huo, Guang; Liu, Wen-Tao; Feng, Jia-Kai

    2017-11-01

    Aiming at multicategory iris recognition under illumination and noise interference, this paper proposes a method of iris double recognition based on a modified evolutionary neural network. An equalization histogram and Laplace of Gaussian operator are used to process the iris to suppress illumination and noise interference and Haar wavelet to convert the iris feature to binary feature encoding. Calculate the Hamming distance for the test iris and template iris , and compare with classification threshold, determine the type of iris. If the iris cannot be identified as a different type, there needs to be a secondary recognition. The connection weights in back-propagation (BP) neural network use modified evolutionary neural network to adaptively train. The modified neural network is composed of particle swarm optimization with mutation operator and BP neural network. According to different iris libraries in different circumstances of experimental results, under illumination and noise interference, the correct recognition rate of this algorithm is higher, the ROC curve is closer to the coordinate axis, the training and recognition time is shorter, and the stability and the robustness are better.

  7. Improving Low-dose Cardiac CT Images based on 3D Sparse Representation

    NASA Astrophysics Data System (ADS)

    Shi, Luyao; Hu, Yining; Chen, Yang; Yin, Xindao; Shu, Huazhong; Luo, Limin; Coatrieux, Jean-Louis

    2016-03-01

    Cardiac computed tomography (CCT) is a reliable and accurate tool for diagnosis of coronary artery diseases and is also frequently used in surgery guidance. Low-dose scans should be considered in order to alleviate the harm to patients caused by X-ray radiation. However, low dose CT (LDCT) images tend to be degraded by quantum noise and streak artifacts. In order to improve the cardiac LDCT image quality, a 3D sparse representation-based processing (3D SR) is proposed by exploiting the sparsity and regularity of 3D anatomical features in CCT. The proposed method was evaluated by a clinical study of 14 patients. The performance of the proposed method was compared to the 2D spares representation-based processing (2D SR) and the state-of-the-art noise reduction algorithm BM4D. The visual assessment, quantitative assessment and qualitative assessment results show that the proposed approach can lead to effective noise/artifact suppression and detail preservation. Compared to the other two tested methods, 3D SR method can obtain results with image quality most close to the reference standard dose CT (SDCT) images.

  8. WE-FG-207B-05: Iterative Reconstruction Via Prior Image Constrained Total Generalized Variation for Spectral CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, S; Zhang, Y; Ma, J

    Purpose: To investigate iterative reconstruction via prior image constrained total generalized variation (PICTGV) for spectral computed tomography (CT) using fewer projections while achieving greater image quality. Methods: The proposed PICTGV method is formulated as an optimization problem, which balances the data fidelity and prior image constrained total generalized variation of reconstructed images in one framework. The PICTGV method is based on structure correlations among images in the energy domain and high-quality images to guide the reconstruction of energy-specific images. In PICTGV method, the high-quality image is reconstructed from all detector-collected X-ray signals and is referred as the broad-spectrum image. Distinctmore » from the existing reconstruction methods applied on the images with first order derivative, the higher order derivative of the images is incorporated into the PICTGV method. An alternating optimization algorithm is used to minimize the PICTGV objective function. We evaluate the performance of PICTGV on noise and artifacts suppressing using phantom studies and compare the method with the conventional filtered back-projection method as well as TGV based method without prior image. Results: On the digital phantom, the proposed method outperforms the existing TGV method in terms of the noise reduction, artifacts suppression, and edge detail preservation. Compared to that obtained by the TGV based method without prior image, the relative root mean square error in the images reconstructed by the proposed method is reduced by over 20%. Conclusion: The authors propose an iterative reconstruction via prior image constrained total generalize variation for spectral CT. Also, we have developed an alternating optimization algorithm and numerically demonstrated the merits of our approach. Results show that the proposed PICTGV method outperforms the TGV method for spectral CT.« less

  9. Quiet engine program: Turbine noise suppression. -Volume 1: General treatment evaluation and measurement techniques

    NASA Technical Reports Server (NTRS)

    Clemons, A.; Hehmann, H.; Radecki, K.

    1973-01-01

    Acoustic treatment was developed for jet engine turbine noise suppression. Acoustic impedance and duct transmission loss measurements were made for various suppression systems. An environmental compatibility study on several material types having suppression characteristics is presented. Two sets of engine hardware were designed and are described along with engine test results which include probe, farfield, near field, and acoustic directional array data. Comparisons of the expected and the measured suppression levels are given as well as a discussion of test results and design techniques.

  10. Survey of inlet noise reduction concepts for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Lansing, D. L.; Chestnutt, D.

    1976-01-01

    This paper presents an overview of advanced concepts for the suppression of noise in the inlets of gas turbine engines. Noise suppression concepts are described, the directions of current research are reviewed, and problem areas requiring further work are indicated. The discussion focuses on acoustic liners, high Mach number inlets, active acoustic absorption, water vapor injection, and blade row reflection.

  11. Acoustic tests of duct-burning turbofan jet noise simulation

    NASA Technical Reports Server (NTRS)

    Knott, P. R.; Stringas, E. J.; Brausch, J. F.; Staid, P. S.; Heck, P. H.; Latham, D.

    1978-01-01

    The results of a static acoustic and aerodynamic performance, model-scale test program on coannular unsuppressed and multielement fan suppressed nozzle configurations are summarized. The results of the static acoustic tests show a very beneficial interaction effect. When the measured noise levels were compared with the predicted noise levels of two independent but equivalent conical nozzle flow streams, noise reductions for the unsuppressed coannular nozzles were of the order of 10 PNdB; high levels of suppression (8 PNdB) were still maintained even when only a small amount of core stream flow was used. The multielement fan suppressed coannular nozzle tests showed 15 PNdB noise reductions and up to 18 PNdB noise reductions when a treated ejector was added. The static aerodynamic performance tests showed that the unsuppressed coannular plug nozzles obtained gross thrust coefficients of 0.972, with 1.2 to 1.7 percent lower levels for the multielement fan-suppressed coannular flow nozzles. For the first time anywhere, laser velocimeter velocity profile measurements were made on these types of nozzle configurations and with supersonic heated flow conditions. Measurements showed that a very rapid decay in the mean velocity occurs for the nozzle tested.

  12. Noise effect in an improved conjugate gradient algorithm to invert particle size distribution and the algorithm amendment.

    PubMed

    Wei, Yongjie; Ge, Baozhen; Wei, Yaolin

    2009-03-20

    In general, model-independent algorithms are sensitive to noise during laser particle size measurement. An improved conjugate gradient algorithm (ICGA) that can be used to invert particle size distribution (PSD) from diffraction data is presented. By use of the ICGA to invert simulated data with multiplicative or additive noise, we determined that additive noise is the main factor that induces distorted results. Thus the ICGA is amended by introduction of an iteration step-adjusting parameter and is used experimentally on simulated data and some samples. The experimental results show that the sensitivity of the ICGA to noise is reduced and the inverted results are in accord with the real PSD.

  13. A Laplacian based image filtering using switching noise detector.

    PubMed

    Ranjbaran, Ali; Hassan, Anwar Hasni Abu; Jafarpour, Mahboobe; Ranjbaran, Bahar

    2015-01-01

    This paper presents a Laplacian-based image filtering method. Using a local noise estimator function in an energy functional minimizing scheme we show that Laplacian that has been known as an edge detection function can be used for noise removal applications. The algorithm can be implemented on a 3x3 window and easily tuned by number of iterations. Image denoising is simplified to the reduction of the pixels value with their related Laplacian value weighted by local noise estimator. The only parameter which controls smoothness is the number of iterations. Noise reduction quality of the introduced method is evaluated and compared with some classic algorithms like Wiener and Total Variation based filters for Gaussian noise. And also the method compared with the state-of-the-art method BM3D for some images. The algorithm appears to be easy, fast and comparable with many classic denoising algorithms for Gaussian noise.

  14. Active control of impulsive noise with symmetric α-stable distribution based on an improved step-size normalized adaptive algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Yali; Zhang, Qizhi; Yin, Yixin

    2015-05-01

    In this paper, active control of impulsive noise with symmetric α-stable (SαS) distribution is studied. A general step-size normalized filtered-x Least Mean Square (FxLMS) algorithm is developed based on the analysis of existing algorithms, and the Gaussian distribution function is used to normalize the step size. Compared with existing algorithms, the proposed algorithm needs neither the parameter selection and thresholds estimation nor the process of cost function selection and complex gradient computation. Computer simulations have been carried out to suggest that the proposed algorithm is effective for attenuating SαS impulsive noise, and then the proposed algorithm has been implemented in an experimental ANC system. Experimental results show that the proposed scheme has good performance for SαS impulsive noise attenuation.

  15. Objective performance assessment of five computed tomography iterative reconstruction algorithms.

    PubMed

    Omotayo, Azeez; Elbakri, Idris

    2016-11-22

    Iterative algorithms are gaining clinical acceptance in CT. We performed objective phantom-based image quality evaluation of five commercial iterative reconstruction algorithms available on four different multi-detector CT (MDCT) scanners at different dose levels as well as the conventional filtered back-projection (FBP) reconstruction. Using the Catphan500 phantom, we evaluated image noise, contrast-to-noise ratio (CNR), modulation transfer function (MTF) and noise-power spectrum (NPS). The algorithms were evaluated over a CTDIvol range of 0.75-18.7 mGy on four major MDCT scanners: GE DiscoveryCT750HD (algorithms: ASIR™ and VEO™); Siemens Somatom Definition AS+ (algorithm: SAFIRE™); Toshiba Aquilion64 (algorithm: AIDR3D™); and Philips Ingenuity iCT256 (algorithm: iDose4™). Images were reconstructed using FBP and the respective iterative algorithms on the four scanners. Use of iterative algorithms decreased image noise and increased CNR, relative to FBP. In the dose range of 1.3-1.5 mGy, noise reduction using iterative algorithms was in the range of 11%-51% on GE DiscoveryCT750HD, 10%-52% on Siemens Somatom Definition AS+, 49%-62% on Toshiba Aquilion64, and 13%-44% on Philips Ingenuity iCT256. The corresponding CNR increase was in the range 11%-105% on GE, 11%-106% on Siemens, 85%-145% on Toshiba and 13%-77% on Philips respectively. Most algorithms did not affect the MTF, except for VEO™ which produced an increase in the limiting resolution of up to 30%. A shift in the peak of the NPS curve towards lower frequencies and a decrease in NPS amplitude were obtained with all iterative algorithms. VEO™ required long reconstruction times, while all other algorithms produced reconstructions in real time. Compared to FBP, iterative algorithms reduced image noise and increased CNR. The iterative algorithms available on different scanners achieved different levels of noise reduction and CNR increase while spatial resolution improvements were obtained only with VEO™. This study is useful in that it provides performance assessment of the iterative algorithms available from several mainstream CT manufacturers.

  16. How best to assess suppression in patients with high anisometropia.

    PubMed

    Li, Jinrong; Hess, Robert F; Chan, Lily Y L; Deng, Daming; Chen, Xiang; Yu, Minbin; Thompson, Benjamin S

    2013-02-01

    We have recently described a rapid technique for measuring suppression using a dichoptic signal/noise task. Here, we report a modification of this technique that allows for accurate measurements to be made in amblyopic patients with high levels of anisometropia. This was necessary because aniseikonic image size differences between the two eyes can provide a cue for signal/noise segregation and, therefore, influence suppression measurement in these patients. Suppression was measured using our original technique and with a modified technique whereby the size of the signal and noise elements was randomized across the stimulus to eliminate size differences as a cue for task performance. Eleven patients with anisometropic amblyopia, five with more than 5 diopters (D) spherical equivalent difference (SED), six with less than 5 D SED between the eyes, and 10 control observers completed suppression measurements using both techniques. Suppression measurements in controls and patients with less than 5 D SED were constant across the two techniques; however, patients with more than 5 D SED showed significantly stronger suppression on the modified technique with randomized element size. Measurements made with the modified technique correlated with the loss of visual acuity in the amblyopic eye and were in good agreement with previous reports using detailed psychophysical measurements. The signal/noise technique for measuring suppression can be applied to patients with high levels of anisometropia and aniseikonia if element size is randomized. In addition, deeper suppression is associated with a greater loss of visual acuity in patients with anisometropic amblyopia.

  17. A Rapid Convergent Low Complexity Interference Alignment Algorithm for Wireless Sensor Networks.

    PubMed

    Jiang, Lihui; Wu, Zhilu; Ren, Guanghui; Wang, Gangyi; Zhao, Nan

    2015-07-29

    Interference alignment (IA) is a novel technique that can effectively eliminate the interference and approach the sum capacity of wireless sensor networks (WSNs) when the signal-to-noise ratio (SNR) is high, by casting the desired signal and interference into different signal subspaces. The traditional alternating minimization interference leakage (AMIL) algorithm for IA shows good performance in high SNR regimes, however, the complexity of the AMIL algorithm increases dramatically as the number of users and antennas increases, posing limits to its applications in the practical systems. In this paper, a novel IA algorithm, called directional quartic optimal (DQO) algorithm, is proposed to minimize the interference leakage with rapid convergence and low complexity. The properties of the AMIL algorithm are investigated, and it is discovered that the difference between the two consecutive iteration results of the AMIL algorithm will approximately point to the convergence solution when the precoding and decoding matrices obtained from the intermediate iterations are sufficiently close to their convergence values. Based on this important property, the proposed DQO algorithm employs the line search procedure so that it can converge to the destination directly. In addition, the optimal step size can be determined analytically by optimizing a quartic function. Numerical results show that the proposed DQO algorithm can suppress the interference leakage more rapidly than the traditional AMIL algorithm, and can achieve the same level of sum rate as that of AMIL algorithm with far less iterations and execution time.

  18. Wavelet-based de-noising algorithm for images acquired with parallel magnetic resonance imaging (MRI).

    PubMed

    Delakis, Ioannis; Hammad, Omer; Kitney, Richard I

    2007-07-07

    Wavelet-based de-noising has been shown to improve image signal-to-noise ratio in magnetic resonance imaging (MRI) while maintaining spatial resolution. Wavelet-based de-noising techniques typically implemented in MRI require that noise displays uniform spatial distribution. However, images acquired with parallel MRI have spatially varying noise levels. In this work, a new algorithm for filtering images with parallel MRI is presented. The proposed algorithm extracts the edges from the original image and then generates a noise map from the wavelet coefficients at finer scales. The noise map is zeroed at locations where edges have been detected and directional analysis is also used to calculate noise in regions of low-contrast edges that may not have been detected. The new methodology was applied on phantom and brain images and compared with other applicable de-noising techniques. The performance of the proposed algorithm was shown to be comparable with other techniques in central areas of the images, where noise levels are high. In addition, finer details and edges were maintained in peripheral areas, where noise levels are low. The proposed methodology is fully automated and can be applied on final reconstructed images without requiring sensitivity profiles or noise matrices of the receiver coils, therefore making it suitable for implementation in a clinical MRI setting.

  19. Restoration for Noise Removal in Quantum Images

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Zhang, Yi; Lu, Kai; Wang, Xiaoping

    2017-09-01

    Quantum computation has become increasingly attractive in the past few decades due to its extraordinary performance. As a result, some studies focusing on image representation and processing via quantum mechanics have been done. However, few of them have considered the quantum operations for images restoration. To address this problem, three noise removal algorithms are proposed in this paper based on the novel enhanced quantum representation model, oriented to two kinds of noise pollution (Salt-and-Pepper noise and Gaussian noise). For the first algorithm Q-Mean, it is designed to remove the Salt-and-Pepper noise. The noise points are extracted through comparisons with the adjacent pixel values, after which the restoration operation is finished by mean filtering. As for the second method Q-Gauss, a special mask is applied to weaken the Gaussian noise pollution. The third algorithm Q-Adapt is effective for the source image containing unknown noise. The type of noise can be judged through the quantum statistic operations for the color value of the whole image, and then different noise removal algorithms are used to conduct image restoration respectively. Performance analysis reveals that our methods can offer high restoration quality and achieve significant speedup through inherent parallelism of quantum computation.

  20. Adaptive spatial filtering improves speech reception in noise while preserving binaural cues.

    PubMed

    Bissmeyer, Susan R S; Goldsworthy, Raymond L

    2017-09-01

    Hearing loss greatly reduces an individual's ability to comprehend speech in the presence of background noise. Over the past decades, numerous signal-processing algorithms have been developed to improve speech reception in these situations for cochlear implant and hearing aid users. One challenge is to reduce background noise while not introducing interaural distortion that would degrade binaural hearing. The present study evaluates a noise reduction algorithm, referred to as binaural Fennec, that was designed to improve speech reception in background noise while preserving binaural cues. Speech reception thresholds were measured for normal-hearing listeners in a simulated environment with target speech generated in front of the listener and background noise originating 90° to the right of the listener. Lateralization thresholds were also measured in the presence of background noise. These measures were conducted in anechoic and reverberant environments. Results indicate that the algorithm improved speech reception thresholds, even in highly reverberant environments. Results indicate that the algorithm also improved lateralization thresholds for the anechoic environment while not affecting lateralization thresholds for the reverberant environments. These results provide clear evidence that this algorithm can improve speech reception in background noise while preserving binaural cues used to lateralize sound.

  1. Adaptive antenna arrays for weak interfering signals. [in satellite communication

    NASA Technical Reports Server (NTRS)

    Gupta, I. J.; Ksienski, A. A.

    1986-01-01

    It is shown that conventional adaptive arrays are unable to suppress weak interfering signals. To overcome this problem, the feedback loops controlling the array weights were modified, reducing the noise level by reducing the correlation between the noise components of the two inputs to the loop correlator. Various techniques to decorrelate these noise components are discussed. An expression is derived for the amount of noise decorrelation required to achieve a specified interference suppression. The results are of interest in connection with satellite communications.

  2. Wireless sensing and vibration control with increased redundancy and robustness design.

    PubMed

    Li, Peng; Li, Luyu; Song, Gangbing; Yu, Yan

    2014-11-01

    Control systems with long distance sensor and actuator wiring have the problem of high system cost and increased sensor noise. Wireless sensor network (WSN)-based control systems are an alternative solution involving lower setup and maintenance costs and reduced sensor noise. However, WSN-based control systems also encounter problems such as possible data loss, irregular sampling periods (due to the uncertainty of the wireless channel), and the possibility of sensor breakdown (due to the increased complexity of the overall control system). In this paper, a wireless microcontroller-based control system is designed and implemented to wirelessly perform vibration control. The wireless microcontroller-based system is quite different from regular control systems due to its limited speed and computational power. Hardware, software, and control algorithm design are described in detail to demonstrate this prototype. Model and system state compensation is used in the wireless control system to solve the problems of data loss and sensor breakdown. A positive position feedback controller is used as the control law for the task of active vibration suppression. Both wired and wireless controllers are implemented. The results show that the WSN-based control system can be successfully used to suppress the vibration and produces resilient results in the presence of sensor failure.

  3. Impulsive noise removal from color video with morphological filtering

    NASA Astrophysics Data System (ADS)

    Ruchay, Alexey; Kober, Vitaly

    2017-09-01

    This paper deals with impulse noise removal from color video. The proposed noise removal algorithm employs a switching filtering for denoising of color video; that is, detection of corrupted pixels by means of a novel morphological filtering followed by removal of the detected pixels on the base of estimation of uncorrupted pixels in the previous scenes. With the help of computer simulation we show that the proposed algorithm is able to well remove impulse noise in color video. The performance of the proposed algorithm is compared in terms of image restoration metrics with that of common successful algorithms.

  4. CONEDEP: COnvolutional Neural network based Earthquake DEtection and Phase Picking

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Huang, Y.; Yue, H.; Zhou, S.; An, S.; Yun, N.

    2017-12-01

    We developed an automatic local earthquake detection and phase picking algorithm based on Fully Convolutional Neural network (FCN). The FCN algorithm detects and segments certain features (phases) in 3 component seismograms to realize efficient picking. We use STA/LTA algorithm and template matching algorithm to construct the training set from seismograms recorded 1 month before and after the Wenchuan earthquake. Precise P and S phases are identified and labeled to construct the training set. Noise data are produced by combining back-ground noise and artificial synthetic noise to form the equivalent scale of noise set as the signal set. Training is performed on GPUs to achieve efficient convergence. Our algorithm has significantly improved performance in terms of the detection rate and precision in comparison with STA/LTA and template matching algorithms.

  5. An algorithm to improve speech recognition in noise for hearing-impaired listeners

    PubMed Central

    Healy, Eric W.; Yoho, Sarah E.; Wang, Yuxuan; Wang, DeLiang

    2013-01-01

    Despite considerable effort, monaural (single-microphone) algorithms capable of increasing the intelligibility of speech in noise have remained elusive. Successful development of such an algorithm is especially important for hearing-impaired (HI) listeners, given their particular difficulty in noisy backgrounds. In the current study, an algorithm based on binary masking was developed to separate speech from noise. Unlike the ideal binary mask, which requires prior knowledge of the premixed signals, the masks used to segregate speech from noise in the current study were estimated by training the algorithm on speech not used during testing. Sentences were mixed with speech-shaped noise and with babble at various signal-to-noise ratios (SNRs). Testing using normal-hearing and HI listeners indicated that intelligibility increased following processing in all conditions. These increases were larger for HI listeners, for the modulated background, and for the least-favorable SNRs. They were also often substantial, allowing several HI listeners to improve intelligibility from scores near zero to values above 70%. PMID:24116438

  6. Patient-reported speech in noise difficulties and hyperacusis symptoms and correlation with test results.

    PubMed

    Spyridakou, Chrysa; Luxon, Linda M; Bamiou, Doris E

    2012-07-01

    To compare self-reported symptoms of difficulty hearing speech in noise and hyperacusis in adults with auditory processing disorders (APDs) and normal controls; and to compare self-reported symptoms to objective test results (speech in babble test, transient evoked otoacoustic emission [TEOAE] suppression test using contralateral noise). A prospective case-control pilot study. Twenty-two participants were recruited in the study: 10 patients with reported hearing difficulty, normal audiometry, and a clinical diagnosis of APD; and 12 normal age-matched controls with no reported hearing difficulty. All participants completed the validated Amsterdam Inventory for Auditory Disability questionnaire, a hyperacusis questionnaire, a speech in babble test, and a TEOAE suppression test using contralateral noise. Patients had significantly worse scores than controls in all domains of the Amsterdam Inventory questionnaire (with the exception of sound detection) and the hyperacusis questionnaire (P < .005). Patients also had worse TEOAE suppression test results in both ears than controls; however, this result was not significant after Bonferroni correction. Strong correlations were observed between self-reported symptoms of difficulty hearing speech in noise and speech in babble test results in the right ear (ρ = 0.624, P = .002), and between self-reported symptoms of hyperacusis and TEOAE suppression test results in the right ear (ρ = -0.597 P = .003). There was no significant correlation between the two tests. A strong correlation was observed between right ear speech in babble and patient-reported intelligibility of speech in noise, and right ear TEOAE suppression by contralateral noise and hyperacusis questionnaire. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  7. An Effective Post-Filtering Framework for 3-D PET Image Denoising Based on Noise and Sensitivity Characteristics

    NASA Astrophysics Data System (ADS)

    Kim, Ji Hye; Ahn, Il Jun; Nam, Woo Hyun; Ra, Jong Beom

    2015-02-01

    Positron emission tomography (PET) images usually suffer from a noticeable amount of statistical noise. In order to reduce this noise, a post-filtering process is usually adopted. However, the performance of this approach is limited because the denoising process is mostly performed on the basis of the Gaussian random noise. It has been reported that in a PET image reconstructed by the expectation-maximization (EM), the noise variance of each voxel depends on its mean value, unlike in the case of Gaussian noise. In addition, we observe that the variance also varies with the spatial sensitivity distribution in a PET system, which reflects both the solid angle determined by a given scanner geometry and the attenuation information of a scanned object. Thus, if a post-filtering process based on the Gaussian random noise is applied to PET images without consideration of the noise characteristics along with the spatial sensitivity distribution, the spatially variant non-Gaussian noise cannot be reduced effectively. In the proposed framework, to effectively reduce the noise in PET images reconstructed by the 3-D ordinary Poisson ordered subset EM (3-D OP-OSEM), we first denormalize an image according to the sensitivity of each voxel so that the voxel mean value can represent its statistical properties reliably. Based on our observation that each noisy denormalized voxel has a linear relationship between the mean and variance, we try to convert this non-Gaussian noise image to a Gaussian noise image. We then apply a block matching 4-D algorithm that is optimized for noise reduction of the Gaussian noise image, and reconvert and renormalize the result to obtain a final denoised image. Using simulated phantom data and clinical patient data, we demonstrate that the proposed framework can effectively suppress the noise over the whole region of a PET image while minimizing degradation of the image resolution.

  8. Light intensity-voltage correlations and leakage-current excess noise in a single-mode semiconductor laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurin, I.; Bramati, A.; Giacobino, E.

    2005-09-15

    Semiconductor lasers are particularly well suited for the implementation of pump-noise suppression, yielding a reduction of the intensity noise in the laser. In this simple picture, the maximal amount of squeezing is equal to the quantum efficiency. However, experimental results on intensity noise reduction by pump-noise suppression are usually above this limit. This discrepancy suggests that additional noise sources must be involved. Here we successful y interpret the full noise behavior of a single-mode laser diode far above threshold by considering two excess noise sources: the leakage current fluctuations across the laser and the Petermann excess noise. We have estimatedmore » the contribution of each noise source using the results of the correlations between the laser output intensity noise and the voltage fluctuations across the laser diode (light-voltage correlations) and obtained good agreement between our theory and experimental results.« less

  9. Comparison of Filters Dedicated to Speckle Suppression in SAR Images

    NASA Astrophysics Data System (ADS)

    Kupidura, P.

    2016-06-01

    This paper presents the results of research on the effectiveness of different filtering methods dedicated to speckle suppression in SAR images. The tests were performed on RadarSat-2 images and on an artificial image treated with simulated speckle noise. The research analysed the performance of particular filters related to the effectiveness of speckle suppression and to the ability to preserve image details and edges. Speckle is a phenomenon inherent to radar images - a deterministic noise connected with land cover type, but also causing significant changes in digital numbers of pixels. As a result, it may affect interpretation, classification and other processes concerning radar images. Speckle, resembling "salt and pepper" noise, has the form of a set of relatively small groups of pixels of values markedly different from values of other pixels representing the same type of land cover. Suppression of this noise may also cause suppression of small image details, therefore the ability to preserve the important parts of an image, was analysed as well. In the present study, selected filters were tested, and methods dedicated particularly to speckle noise suppression: Frost, Gamma-MAP, Lee, Lee-Sigma, Local Region, general filtering methods which might be effective in this respect: Mean, Median, in addition to morphological filters (alternate sequential filters with multiple structuring element and by reconstruction). The analysis presented in this paper compared the effectiveness of different filtering methods. It proved that some of the dedicated radar filters are efficient tools for speckle suppression, but also demonstrated a significant efficiency of the morphological approach, especially its ability to preserve image details.

  10. High Speed Research Noise Prediction Code (HSRNOISE) User's and Theoretical Manual

    NASA Technical Reports Server (NTRS)

    Golub, Robert (Technical Monitor); Rawls, John W., Jr.; Yeager, Jessie C.

    2004-01-01

    This report describes a computer program, HSRNOISE, that predicts noise levels for a supersonic aircraft powered by mixed flow turbofan engines with rectangular mixer-ejector nozzles. It fully documents the noise prediction algorithms, provides instructions for executing the HSRNOISE code, and provides predicted noise levels for the High Speed Research (HSR) program Technology Concept (TC) aircraft. The component source noise prediction algorithms were developed jointly by Boeing, General Electric Aircraft Engines (GEAE), NASA and Pratt & Whitney during the course of the NASA HSR program. Modern Technologies Corporation developed an alternative mixer ejector jet noise prediction method under contract to GEAE that has also been incorporated into the HSRNOISE prediction code. Algorithms for determining propagation effects and calculating noise metrics were taken from the NASA Aircraft Noise Prediction Program.

  11. A Robust Deconvolution Method based on Transdimensional Hierarchical Bayesian Inference

    NASA Astrophysics Data System (ADS)

    Kolb, J.; Lekic, V.

    2012-12-01

    Analysis of P-S and S-P conversions allows us to map receiver side crustal and lithospheric structure. This analysis often involves deconvolution of the parent wave field from the scattered wave field as a means of suppressing source-side complexity. A variety of deconvolution techniques exist including damped spectral division, Wiener filtering, iterative time-domain deconvolution, and the multitaper method. All of these techniques require estimates of noise characteristics as input parameters. We present a deconvolution method based on transdimensional Hierarchical Bayesian inference in which both noise magnitude and noise correlation are used as parameters in calculating the likelihood probability distribution. Because the noise for P-S and S-P conversion analysis in terms of receiver functions is a combination of both background noise - which is relatively easy to characterize - and signal-generated noise - which is much more difficult to quantify - we treat measurement errors as an known quantity, characterized by a probability density function whose mean and variance are model parameters. This transdimensional Hierarchical Bayesian approach has been successfully used previously in the inversion of receiver functions in terms of shear and compressional wave speeds of an unknown number of layers [1]. In our method we used a Markov chain Monte Carlo (MCMC) algorithm to find the receiver function that best fits the data while accurately assessing the noise parameters. In order to parameterize the receiver function we model the receiver function as an unknown number of Gaussians of unknown amplitude and width. The algorithm takes multiple steps before calculating the acceptance probability of a new model, in order to avoid getting trapped in local misfit minima. Using both observed and synthetic data, we show that the MCMC deconvolution method can accurately obtain a receiver function as well as an estimate of the noise parameters given the parent and daughter components. Furthermore, we demonstrate that this new approach is far less susceptible to generating spurious features even at high noise levels. Finally, the method yields not only the most-likely receiver function, but also quantifies its full uncertainty. [1] Bodin, T., M. Sambridge, H. Tkalčić, P. Arroucau, K. Gallagher, and N. Rawlinson (2012), Transdimensional inversion of receiver functions and surface wave dispersion, J. Geophys. Res., 117, B02301

  12. Anatomy assisted PET image reconstruction incorporating multi-resolution joint entropy

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Rahmim, Arman

    2015-01-01

    A promising approach in PET image reconstruction is to incorporate high resolution anatomical information (measured from MR or CT) taking the anato-functional similarity measures such as mutual information or joint entropy (JE) as the prior. These similarity measures only classify voxels based on intensity values, while neglecting structural spatial information. In this work, we developed an anatomy-assisted maximum a posteriori (MAP) reconstruction algorithm wherein the JE measure is supplied by spatial information generated using wavelet multi-resolution analysis. The proposed wavelet-based JE (WJE) MAP algorithm involves calculation of derivatives of the subband JE measures with respect to individual PET image voxel intensities, which we have shown can be computed very similarly to how the inverse wavelet transform is implemented. We performed a simulation study with the BrainWeb phantom creating PET data corresponding to different noise levels. Realistically simulated T1-weighted MR images provided by BrainWeb modeling were applied in the anatomy-assisted reconstruction with the WJE-MAP algorithm and the intensity-only JE-MAP algorithm. Quantitative analysis showed that the WJE-MAP algorithm performed similarly to the JE-MAP algorithm at low noise level in the gray matter (GM) and white matter (WM) regions in terms of noise versus bias tradeoff. When noise increased to medium level in the simulated data, the WJE-MAP algorithm started to surpass the JE-MAP algorithm in the GM region, which is less uniform with smaller isolated structures compared to the WM region. In the high noise level simulation, the WJE-MAP algorithm presented clear improvement over the JE-MAP algorithm in both the GM and WM regions. In addition to the simulation study, we applied the reconstruction algorithms to real patient studies involving DPA-173 PET data and Florbetapir PET data with corresponding T1-MPRAGE MRI images. Compared to the intensity-only JE-MAP algorithm, the WJE-MAP algorithm resulted in comparable regional mean values to those from the maximum likelihood algorithm while reducing noise. Achieving robust performance in various noise-level simulation and patient studies, the WJE-MAP algorithm demonstrates its potential in clinical quantitative PET imaging.

  13. Preliminary evaluation of turbofan cycle parameters and acoustical suppression on the noise and direct operating cost of a commercial Mach 0.85 transport

    NASA Technical Reports Server (NTRS)

    Eisenberg, J. D.

    1975-01-01

    A study was made of the effects of turbofan cycle parameters and the use of acoustic noise suppression material to quiet 200 passenger, Mach 0.85 trijets having design ranges of 2778, 4630, and 9260 kilometers (1500, 2500, and 5000 n. mi). Aircraft gross weight and direct operating cost, which varied with amount of suppression and cycle selection, are presented as functions of both EPNdB traded and 90 EPNdB contour footprint area. Noise levels 10.9 EPNdB below FAR 36 requirements result in a 5 percent increase in DOC for an aircraft designed for a range of 9260 kilometers (5000 n. mi.). An aircraft designed for a 2778 kilometer (1500 n. mi.) range would have an EPNdB level 14 below FAR 36 for this same economic penalty. In this range of noise level, fan-machinery noise is the principal source.

  14. Wavelet denoising of multiframe optical coherence tomography data

    PubMed Central

    Mayer, Markus A.; Borsdorf, Anja; Wagner, Martin; Hornegger, Joachim; Mardin, Christian Y.; Tornow, Ralf P.

    2012-01-01

    We introduce a novel speckle noise reduction algorithm for OCT images. Contrary to present approaches, the algorithm does not rely on simple averaging of multiple image frames or denoising on the final averaged image. Instead it uses wavelet decompositions of the single frames for a local noise and structure estimation. Based on this analysis, the wavelet detail coefficients are weighted, averaged and reconstructed. At a signal-to-noise gain at about 100% we observe only a minor sharpness decrease, as measured by a full-width-half-maximum reduction of 10.5%. While a similar signal-to-noise gain would require averaging of 29 frames, we achieve this result using only 8 frames as input to the algorithm. A possible application of the proposed algorithm is preprocessing in retinal structure segmentation algorithms, to allow a better differentiation between real tissue information and unwanted speckle noise. PMID:22435103

  15. Wavelet denoising of multiframe optical coherence tomography data.

    PubMed

    Mayer, Markus A; Borsdorf, Anja; Wagner, Martin; Hornegger, Joachim; Mardin, Christian Y; Tornow, Ralf P

    2012-03-01

    We introduce a novel speckle noise reduction algorithm for OCT images. Contrary to present approaches, the algorithm does not rely on simple averaging of multiple image frames or denoising on the final averaged image. Instead it uses wavelet decompositions of the single frames for a local noise and structure estimation. Based on this analysis, the wavelet detail coefficients are weighted, averaged and reconstructed. At a signal-to-noise gain at about 100% we observe only a minor sharpness decrease, as measured by a full-width-half-maximum reduction of 10.5%. While a similar signal-to-noise gain would require averaging of 29 frames, we achieve this result using only 8 frames as input to the algorithm. A possible application of the proposed algorithm is preprocessing in retinal structure segmentation algorithms, to allow a better differentiation between real tissue information and unwanted speckle noise.

  16. Reconstructing signals from noisy data with unknown signal and noise covariance.

    PubMed

    Oppermann, Niels; Robbers, Georg; Ensslin, Torsten A

    2011-10-01

    We derive a method to reconstruct Gaussian signals from linear measurements with Gaussian noise. This new algorithm is intended for applications in astrophysics and other sciences. The starting point of our considerations is the principle of minimum Gibbs free energy, which was previously used to derive a signal reconstruction algorithm handling uncertainties in the signal covariance. We extend this algorithm to simultaneously uncertain noise and signal covariances using the same principles in the derivation. The resulting equations are general enough to be applied in many different contexts. We demonstrate the performance of the algorithm by applying it to specific example situations and compare it to algorithms not allowing for uncertainties in the noise covariance. The results show that the method we suggest performs very well under a variety of circumstances and is indeed qualitatively superior to the other methods in cases where uncertainty in the noise covariance is present.

  17. A connection between the Efferent Auditory System and Noise-Induced Tinnitus Generation. Reduced contralateral suppression of TEOAEs in patients with noise-induced tinnitus.

    PubMed

    Lalaki, Panagiota; Hatzopoulos, Stavros; Lorito, Guiscardo; Kochanek, Krzysztof; Sliwa, Lech; Skarzynski, Henryk

    2011-07-01

    Subjective tinnitus is an auditory perception that is not caused by external stimulation, its source being anywhere in the auditory system. Furthermore, evidence exists that exposure to noise alters cochlear micromechanics, either directly or through complex feed-back mechanisms, involving the medial olivocochlear efferent system. The aim of this study was to assess the role of the efferent auditory system in noise-induced tinnitus generation. Contralateral sound-activated suppression of TEOAEs was performed in a group of 28 subjects with noise-induced tinnitus (NIT) versus a group of 35 subjects with normal hearing and tinnitus, without any history of exposure to intense occupational or recreational noise (idiopathic tinnitus-IT). Thirty healthy, normally hearing volunteers were used as controls for the efferent suppression test. Suppression of the TEOAE amplitude less than 1 dB SPL was considered abnormal, giving a false positive rate of 6.7%. Eighteen out of 28 (64.3%) patients of the NIT group and 9 out of 35 (25.7%) patients of the IT group showed abnormal suppression values, which were significantly different from the controls' (p<0.0001 and p<0.045, respectively). The abnormal activity of the efferent auditory system in NIT cases might indicate that either the activity of the efferent fibers innervating the outer hair cells (OHCs) is impaired or that the damaged OHCs themselves respond abnormally to the efferent stimulation.

  18. Emission computerized axial tomography from multiple gamma-camera views using frequency filtering.

    PubMed

    Pelletier, J L; Milan, C; Touzery, C; Coitoux, P; Gailliard, P; Budinger, T F

    1980-01-01

    Emission computerized axial tomography is achievable in any nuclear medicine department from multiple gamma camera views. Data are collected by rotating the patient in front of the camera. A simple fast algorithm is implemented, known as the convolution technique: first the projection data are Fourier transformed and then an original filter designed for optimizing resolution and noise suppression is applied; finally the inverse transform of the latter operation is back-projected. This program, which can also take into account the attenuation for single photon events, was executed with good results on phantoms and patients. We think that it can be easily implemented for specific diagnostic problems.

  19. A Robust Zero-Watermarking Algorithm for Audio

    NASA Astrophysics Data System (ADS)

    Chen, Ning; Zhu, Jie

    2007-12-01

    In traditional watermarking algorithms, the insertion of watermark into the host signal inevitably introduces some perceptible quality degradation. Another problem is the inherent conflict between imperceptibility and robustness. Zero-watermarking technique can solve these problems successfully. Instead of embedding watermark, the zero-watermarking technique extracts some essential characteristics from the host signal and uses them for watermark detection. However, most of the available zero-watermarking schemes are designed for still image and their robustness is not satisfactory. In this paper, an efficient and robust zero-watermarking technique for audio signal is presented. The multiresolution characteristic of discrete wavelet transform (DWT), the energy compression characteristic of discrete cosine transform (DCT), and the Gaussian noise suppression property of higher-order cumulant are combined to extract essential features from the host audio signal and they are then used for watermark recovery. Simulation results demonstrate the effectiveness of our scheme in terms of inaudibility, detection reliability, and robustness.

  20. A novel phase retrieval method from three-wavelength in-line phase-shifting interferograms based on positive negative 2π phase shifts

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoqing; Wang, Yawei; Ji, Ying; Xu, Yuanyuan; Xie, Ming

    2018-01-01

    A new method to extract quantitative phases for each wavelength from three-wavelength in-line phase-shifting interferograms is proposed. Firstly, seven interferograms with positive negative 2π phase shifts are sequentially captured by using the phase-shifting technique. Secondly, six dc-term suppressed intensities can be achieved by the use of the algebraic algorithm. Finally, the wrapped phases at the three wavelengths can be acquired simultaneously from these six interferograms add-subtracting by employing the trigonometric function method. The surface morphology with increased ambiguity-free range at synthetic beat wavelength can be obtained, while maintaining the low noise precision of the single wavelength measurement, by combining this method with three-wavelength phase unwrapping method. We illustrate the principle of this algorithm, and the simulated experiments of the spherical cap and the HeLa cell are conducted to prove our proposed method, respectively.

  1. SU-F-18C-14: Hessian-Based Norm Penalty for Weighted Least-Square CBCT Reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, T; Sun, N; Tan, S

    Purpose: To develop a Hessian-based norm penalty for cone-beam CT (CBCT) reconstruction that has a similar ability in suppressing noise as the total variation (TV) penalty while avoiding the staircase effect and better preserving low-contrast objects. Methods: We extended the TV penalty to a Hessian-based norm penalty based on the Frobenius norm of the Hessian matrix of an image for CBCT reconstruction. The objective function was constructed using the penalized weighted least-square (PWLS) principle. An effective algorithm was developed to minimize the objective function using a majorization-minimization (MM) approach. We evaluated and compared the proposed penalty with the TV penaltymore » on a CatPhan 600 phantom and an anthropomorphic head phantom, each acquired at a low-dose protocol (10mA/10ms) and a high-dose protocol (80mA/12ms). For both penalties, contrast-to-noise (CNR) in four low-contrast regions-of-interest (ROIs) and the full-width-at-half-maximum (FWHM) of two point-like objects in constructed images were calculated and compared. Results: In the experiment of CatPhan 600 phantom, the Hessian-based norm penalty has slightly higher CNRs and approximately equivalent FWHM values compared with the TV penalty. In the experiment of the anthropomorphic head phantom at the low-dose protocol, the TV penalty result has several artificial piece-wise constant areas known as the staircase effect while in the Hessian-based norm penalty the image appears smoother and more similar to that of the FDK result using the high-dose protocol. Conclusion: The proposed Hessian-based norm penalty has a similar performance in suppressing noise to the TV penalty, but has a potential advantage in suppressing the staircase effect and preserving low-contrast objects. This work was supported in part by National Natural Science Foundation of China (NNSFC), under Grant Nos. 60971112 and 61375018, and Fundamental Research Funds for the Central Universities, under Grant No. 2012QN086.« less

  2. Comparing multiple turbulence restoration algorithms performance on noisy anisoplanatic imagery

    NASA Astrophysics Data System (ADS)

    Rucci, Michael A.; Hardie, Russell C.; Dapore, Alexander J.

    2017-05-01

    In this paper, we compare the performance of multiple turbulence mitigation algorithms to restore imagery degraded by atmospheric turbulence and camera noise. In order to quantify and compare algorithm performance, imaging scenes were simulated by applying noise and varying levels of turbulence. For the simulation, a Monte-Carlo wave optics approach is used to simulate the spatially and temporally varying turbulence in an image sequence. A Poisson-Gaussian noise mixture model is then used to add noise to the observed turbulence image set. These degraded image sets are processed with three separate restoration algorithms: Lucky Look imaging, bispectral speckle imaging, and a block matching method with restoration filter. These algorithms were chosen because they incorporate different approaches and processing techniques. The results quantitatively show how well the algorithms are able to restore the simulated degraded imagery.

  3. PCA-based spatially adaptive denoising of CFA images for single-sensor digital cameras.

    PubMed

    Zheng, Lei; Lukac, Rastislav; Wu, Xiaolin; Zhang, David

    2009-04-01

    Single-sensor digital color cameras use a process called color demosiacking to produce full color images from the data captured by a color filter array (CAF). The quality of demosiacked images is degraded due to the sensor noise introduced during the image acquisition process. The conventional solution to combating CFA sensor noise is demosiacking first, followed by a separate denoising processing. This strategy will generate many noise-caused color artifacts in the demosiacking process, which are hard to remove in the denoising process. Few denoising schemes that work directly on the CFA images have been presented because of the difficulties arisen from the red, green and blue interlaced mosaic pattern, yet a well-designed "denoising first and demosiacking later" scheme can have advantages such as less noise-caused color artifacts and cost-effective implementation. This paper presents a principle component analysis (PCA)-based spatially-adaptive denoising algorithm, which works directly on the CFA data using a supporting window to analyze the local image statistics. By exploiting the spatial and spectral correlations existing in the CFA image, the proposed method can effectively suppress noise while preserving color edges and details. Experiments using both simulated and real CFA images indicate that the proposed scheme outperforms many existing approaches, including those sophisticated demosiacking and denoising schemes, in terms of both objective measurement and visual evaluation.

  4. A Requirements-Driven Optimization Method for Acoustic Treatment Design

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.

    2016-01-01

    Acoustic treatment designers have long been able to target specific noise sources inside turbofan engines. Facesheet porosity and cavity depth are key design variables of perforate-over-honeycomb liners that determine levels of noise suppression as well as the frequencies at which suppression occurs. Layers of these structures can be combined to create a robust attenuation spectrum that covers a wide range of frequencies. Looking to the future, rapidly-emerging additive manufacturing technologies are enabling new liners with multiple degrees of freedom, and new adaptive liners with variable impedance are showing promise. More than ever, there is greater flexibility and freedom in liner design. Subject to practical considerations, liner design variables may be manipulated to achieve a target attenuation spectrum. But characteristics of the ideal attenuation spectrum can be difficult to know. Many multidisciplinary system effects govern how engine noise sources contribute to community noise. Given a hardwall fan noise source to be suppressed, and using an analytical certification noise model to compute a community noise measure of merit, the optimal attenuation spectrum can be derived using multidisciplinary systems analysis methods. The subject of this paper is an analytical method that derives the ideal target attenuation spectrum that minimizes noise perceived by observers on the ground.

  5. Evaluation of model-based versus non-parametric monaural noise-reduction approaches for hearing aids.

    PubMed

    Harlander, Niklas; Rosenkranz, Tobias; Hohmann, Volker

    2012-08-01

    Single channel noise reduction has been well investigated and seems to have reached its limits in terms of speech intelligibility improvement, however, the quality of such schemes can still be advanced. This study tests to what extent novel model-based processing schemes might improve performance in particular for non-stationary noise conditions. Two prototype model-based algorithms, a speech-model-based, and a auditory-model-based algorithm were compared to a state-of-the-art non-parametric minimum statistics algorithm. A speech intelligibility test, preference rating, and listening effort scaling were performed. Additionally, three objective quality measures for the signal, background, and overall distortions were applied. For a better comparison of all algorithms, particular attention was given to the usage of the similar Wiener-based gain rule. The perceptual investigation was performed with fourteen hearing-impaired subjects. The results revealed that the non-parametric algorithm and the auditory model-based algorithm did not affect speech intelligibility, whereas the speech-model-based algorithm slightly decreased intelligibility. In terms of subjective quality, both model-based algorithms perform better than the unprocessed condition and the reference in particular for highly non-stationary noise environments. Data support the hypothesis that model-based algorithms are promising for improving performance in non-stationary noise conditions.

  6. Accuracy metrics for judging time scale algorithms

    NASA Technical Reports Server (NTRS)

    Douglas, R. J.; Boulanger, J.-S.; Jacques, C.

    1994-01-01

    Time scales have been constructed in different ways to meet the many demands placed upon them for time accuracy, frequency accuracy, long-term stability, and robustness. Usually, no single time scale is optimum for all purposes. In the context of the impending availability of high-accuracy intermittently-operated cesium fountains, we reconsider the question of evaluating the accuracy of time scales which use an algorithm to span interruptions of the primary standard. We consider a broad class of calibration algorithms that can be evaluated and compared quantitatively for their accuracy in the presence of frequency drift and a full noise model (a mixture of white PM, flicker PM, white FM, flicker FM, and random walk FM noise). We present the analytic techniques for computing the standard uncertainty for the full noise model and this class of calibration algorithms. The simplest algorithm is evaluated to find the average-frequency uncertainty arising from the noise of the cesium fountain's local oscillator and from the noise of a hydrogen maser transfer-standard. This algorithm and known noise sources are shown to permit interlaboratory frequency transfer with a standard uncertainty of less than 10(exp -15) for periods of 30-100 days.

  7. Enhanced Algorithms for EO/IR Electronic Stabilization, Clutter Suppression, and Track-Before-Detect for Multiple Low Observable Targets

    NASA Astrophysics Data System (ADS)

    Tartakovsky, A.; Brown, A.; Brown, J.

    The paper describes the development and evaluation of a suite of advanced algorithms which provide significantly-improved capabilities for finding, fixing, and tracking multiple ballistic and flying low observable objects in highly stressing cluttered environments. The algorithms have been developed for use in satellite-based staring and scanning optical surveillance suites for applications including theatre and intercontinental ballistic missile early warning, trajectory prediction, and multi-sensor track handoff for midcourse discrimination and intercept. The functions performed by the algorithms include electronic sensor motion compensation providing sub-pixel stabilization (to 1/100 of a pixel), as well as advanced temporal-spatial clutter estimation and suppression to below sensor noise levels, followed by statistical background modeling and Bayesian multiple-target track-before-detect filtering. The multiple-target tracking is performed in physical world coordinates to allow for multi-sensor fusion, trajectory prediction, and intercept. Output of detected object cues and data visualization are also provided. The algorithms are designed to handle a wide variety of real-world challenges. Imaged scenes may be highly complex and infinitely varied -- the scene background may contain significant celestial, earth limb, or terrestrial clutter. For example, when viewing combined earth limb and terrestrial scenes, a combination of stationary and non-stationary clutter may be present, including cloud formations, varying atmospheric transmittance and reflectance of sunlight and other celestial light sources, aurora, glint off sea surfaces, and varied natural and man-made terrain features. The targets of interest may also appear to be dim, relative to the scene background, rendering much of the existing deployed software useless for optical target detection and tracking. Additionally, it may be necessary to detect and track a large number of objects in the threat cloud, and these objects may not always be resolvable in individual data frames. In the present paper, the performance of the developed algorithms is demonstrated using real-world data containing resident space objects observed from the MSX platform, with backgrounds varying from celestial to combined celestial and earth limb, with instances of extremely bright aurora clutter. Simulation results are also presented for parameterized variations in signal-to-clutter levels (down to 1/1000) and signal-to-noise levels (down to 1/6) for simulated targets against real-world terrestrial clutter backgrounds. We also discuss algorithm processing requirements and C++ software processing capabilities from our on-going MDA- and AFRL-sponsored development of an image processing toolkit (iPTK). In the current effort, the iPTK is being developed to a Technology Readiness Level (TRL) of 6 by mid-2010, in preparation for possible integration with STSS-like, SBIRS high-like and SBSS-like surveillance suites.

  8. Noise suppression for micromechanical resonator via intrinsic dynamic feedback

    NASA Astrophysics Data System (ADS)

    Ian, Hou; Gong, Zhi-Rui; Sun, Chang-Pu

    2008-09-01

    We study a dynamic mechanism to passively suppress the thermal noise of a micromechanical resonator through an intrinsic self-feedback that is genuinely non-Markovian. We use two coupled resonators, one as the target resonator and the other as an ancillary resonator, to illustrate the mechanism and its noise reduction effect. The intrinsic feedback is realized through the dynamics of coupling between the two resonators: the motions of the target resonator and the ancillary resonator mutually inthence each other in a cyclic fashion. Specifically, the states that the target resonator has attained earlier will affect the state it attains later due to the presence of the ancillary resonator. We show that the feedback mechanism will bring forth the effect of noise suppression in the spectrum of displacement, but not in the spectrum of momentum.

  9. A Novel Method of Aircraft Detection Based on High-Resolution Panchromatic Optical Remote Sensing Images.

    PubMed

    Wang, Wensheng; Nie, Ting; Fu, Tianjiao; Ren, Jianyue; Jin, Longxu

    2017-05-06

    In target detection of optical remote sensing images, two main obstacles for aircraft target detection are how to extract the candidates in complex gray-scale-multi background and how to confirm the targets in case the target shapes are deformed, irregular or asymmetric, such as that caused by natural conditions (low signal-to-noise ratio, illumination condition or swaying photographing) and occlusion by surrounding objects (boarding bridge, equipment). To solve these issues, an improved active contours algorithm, namely region-scalable fitting energy based threshold (TRSF), and a corner-convex hull based segmentation algorithm (CCHS) are proposed in this paper. Firstly, the maximal variance between-cluster algorithm (Otsu's algorithm) and region-scalable fitting energy (RSF) algorithm are combined to solve the difficulty of targets extraction in complex and gray-scale-multi backgrounds. Secondly, based on inherent shapes and prominent corners, aircrafts are divided into five fragments by utilizing convex hulls and Harris corner points. Furthermore, a series of new structure features, which describe the proportion of targets part in the fragment to the whole fragment and the proportion of fragment to the whole hull, are identified to judge whether the targets are true or not. Experimental results show that TRSF algorithm could improve extraction accuracy in complex background, and that it is faster than some traditional active contours algorithms. The CCHS is effective to suppress the detection difficulties caused by the irregular shape.

  10. Readout circuit with novel background suppression for long wavelength infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Xie, L.; Xia, X. J.; Zhou, Y. F.; Wen, Y.; Sun, W. F.; Shi, L. X.

    2011-02-01

    In this article, a novel pixel readout circuit using a switched-capacitor integrator mode background suppression technique is presented for long wavelength infrared focal plane arrays. This circuit can improve dynamic range and signal-to-noise ratio by suppressing the large background current during integration. Compared with other background suppression techniques, the new background suppression technique is less sensitive to the process mismatch and has no additional shot noise. The proposed circuit is theoretically analysed and simulated while taking into account the non-ideal characteristics. The result shows that the background suppression non-uniformity is ultra-low even for a large process mismatch. The background suppression non-uniformity of the proposed circuit can also remain very small with technology scaling.

  11. State-of-the-art of turbofan engine noise control

    NASA Technical Reports Server (NTRS)

    Jones, W. L.; Groeneweg, J. F.

    1977-01-01

    The technology of turbofan engine noise reduction is surveyed. Specific topics discussed include: (1) new fans for low noise; (2) fan and core noise suppression; (3) turbomachinery noise sources; and (4) a new program for improving static noise testing of fans and engines.

  12. Quantum noise properties of CT images with anatomical textured backgrounds across reconstruction algorithms: FBP and SAFIRE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, Justin, E-mail: justin.solomon@duke.edu; Samei, Ehsan

    2014-09-15

    Purpose: Quantum noise properties of CT images are generally assessed using simple geometric phantoms with uniform backgrounds. Such phantoms may be inadequate when assessing nonlinear reconstruction or postprocessing algorithms. The purpose of this study was to design anatomically informed textured phantoms and use the phantoms to assess quantum noise properties across two clinically available reconstruction algorithms, filtered back projection (FBP) and sinogram affirmed iterative reconstruction (SAFIRE). Methods: Two phantoms were designed to represent lung and soft-tissue textures. The lung phantom included intricate vessel-like structures along with embedded nodules (spherical, lobulated, and spiculated). The soft tissue phantom was designed based onmore » a three-dimensional clustered lumpy background with included low-contrast lesions (spherical and anthropomorphic). The phantoms were built using rapid prototyping (3D printing) technology and, along with a uniform phantom of similar size, were imaged on a Siemens SOMATOM Definition Flash CT scanner and reconstructed with FBP and SAFIRE. Fifty repeated acquisitions were acquired for each background type and noise was assessed by estimating pixel-value statistics, such as standard deviation (i.e., noise magnitude), autocorrelation, and noise power spectrum. Noise stationarity was also assessed by examining the spatial distribution of noise magnitude. The noise properties were compared across background types and between the two reconstruction algorithms. Results: In FBP and SAFIRE images, noise was globally nonstationary for all phantoms. In FBP images of all phantoms, and in SAFIRE images of the uniform phantom, noise appeared to be locally stationary (within a reasonably small region of interest). Noise was locally nonstationary in SAFIRE images of the textured phantoms with edge pixels showing higher noise magnitude compared to pixels in more homogenous regions. For pixels in uniform regions, noise magnitude was reduced by an average of 60% in SAFIRE images compared to FBP. However, for edge pixels, noise magnitude ranged from 20% higher to 40% lower in SAFIRE images compared to FBP. SAFIRE images of the lung phantom exhibited distinct regions with varying noise texture (i.e., noise autocorrelation/power spectra). Conclusions: Quantum noise properties observed in uniform phantoms may not be representative of those in actual patients for nonlinear reconstruction algorithms. Anatomical texture should be considered when evaluating the performance of CT systems that use such nonlinear algorithms.« less

  13. Implementation and performance evaluation of acoustic denoising algorithms for UAV

    NASA Astrophysics Data System (ADS)

    Chowdhury, Ahmed Sony Kamal

    Unmanned Aerial Vehicles (UAVs) have become popular alternative for wildlife monitoring and border surveillance applications. Elimination of the UAV's background noise and classifying the target audio signal effectively are still a major challenge. The main goal of this thesis is to remove UAV's background noise by means of acoustic denoising techniques. Existing denoising algorithms, such as Adaptive Least Mean Square (LMS), Wavelet Denoising, Time-Frequency Block Thresholding, and Wiener Filter, were implemented and their performance evaluated. The denoising algorithms were evaluated for average Signal to Noise Ratio (SNR), Segmental SNR (SSNR), Log Likelihood Ratio (LLR), and Log Spectral Distance (LSD) metrics. To evaluate the effectiveness of the denoising algorithms on classification of target audio, we implemented Support Vector Machine (SVM) and Naive Bayes classification algorithms. Simulation results demonstrate that LMS and Discrete Wavelet Transform (DWT) denoising algorithm offered superior performance than other algorithms. Finally, we implemented the LMS and DWT algorithms on a DSP board for hardware evaluation. Experimental results showed that LMS algorithm's performance is robust compared to DWT for various noise types to classify target audio signals.

  14. Microwave oscillator with reduced phase noise by negative feedback incorporating microwave signals with suppressed carrier

    NASA Technical Reports Server (NTRS)

    Dick, G. J.; Saunders, J.

    1989-01-01

    Oscillator configurations which reduce the effect of 1/f noise sources for both direct feedback and stabilized local oscillator (STALO) circuits are developed and analyzed. By appropriate use of carrier suppression, a small signal is generated which suffers no loss of loop phase information or signal-to-noise ratio. This small signal can be amplified without degradation by multiplicative amplifier noise, and can be detected without saturation of the detector. Together with recent advances in microwave resonator Qs, these circuit improvements will make possible lower phase noise than can be presently achieved without the use of cryogenic devices.

  15. Microseismic Event Location Improvement Using Adaptive Filtering for Noise Attenuation

    NASA Astrophysics Data System (ADS)

    de Santana, F. L., Sr.; do Nascimento, A. F.; Leandro, W. P. D. N., Sr.; de Carvalho, B. M., Sr.

    2017-12-01

    In this work we show how adaptive filtering noise suppression improves the effectiveness of the Source Scanning Algorithm (SSA; Kao & Shan, 2004) in microseism location in the context of fracking operations. The SSA discretizes the time and region of interest in a 4D vector and, for each grid point and origin time, a brigthness value (seismogram stacking) is calculated. For a given set of velocity model parameters, when origin time and hypocenter of the seismic event are correct, a maximum value for coherence (or brightness) is achieved. The result is displayed on brightness maps for each origin time. Location methods such as SSA are most effective when the noise present in the seismograms is incoherent, however, the method may present false positives when the noise present in the data is coherent as occurs in fracking operations. To remove from the seismograms, the coherent noise from the pump and engines used in the operation, we use an adaptive filter. As the noise reference, we use the seismogram recorded at the station closest to the machinery employed. Our methodology was tested on semi-synthetic data. The microseismic was represented by Ricker pulses (with central frequency of 30Hz) on synthetics seismograms, and to simulate real seismograms on a surface microseismic monitoring situation, we added real noise recorded in a fracking operation to these synthetics seismograms. The results show that after the filtering of the seismograms, we were able to improve our detection threshold and to achieve a better resolution on the brightness maps of the located events.

  16. Optical frequency shot-noise suppression in electron beams: Three-dimensional analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nause, A.; Dyunin, E.; Gover, A.

    2010-05-15

    A predicted effect of current shot-noise suppression at optical-frequencies in a drifting charged-particle-beam and the corresponding process of particles self-ordering are analyzed in a one-dimensional (1D) model and verified by three-dimensional numerical simulations. The analysis confirms the prediction of a 1D single mode Langmuir plasma wave model of longitudinal plasma oscillation in the beam, and it defines the regime of beam parameters in which this effect takes place. The suppression of relativistic beam shot noise can be utilized to enhance the coherence of free electron lasers and of any coherent radiation device using an electron beam.

  17. Noise suppressing capillary separation system

    DOEpatents

    Yeung, Edward S.; Xue, Yongjun

    1996-07-30

    A noise-suppressing capillary separation system for detecting the real-time presence or concentration of an analyte in a sample is provided. The system contains a capillary separation means through which the analyte is moved, a coherent light source that generates a beam which is split into a reference beam and a sample beam that irradiate the capillary, and a detector for detecting the reference beam and the sample beam light that transmits through the capillary. The laser beam is of a wavelength effective to be absorbed by a chromophore in the capillary. The system includes a noise suppressing system to improve performance and accuracy without signal averaging or multiple scans.

  18. Frequency noise suppression of a single mode laser with an unbalanced fiber interferometer for subnanometer interferometry.

    PubMed

    Šmíd, Radek; Čížek, Martin; Mikel, Břetislav; Číp, Ondřej

    2015-01-12

    We present a method of noise suppression of laser diodes by an unbalanced Michelson fiber interferometer. The unstabilized laser source is represented by compact planar waveguide external cavity laser module, ORIONTM (Redfern Integrated Optics, Inc.), working at 1540.57 nm with a 1.5-kHz linewidth. We built up the unbalanced Michelson interferometer with a 2.09 km-long arm based on the standard telecommunication single-mode fiber (SMF-28) spool to suppress the frequency noise by the servo-loop control by 20 dB to 40 dB within the Fourier frequency range, remaining the tuning range of the laser frequency.

  19. Noise suppressing capillary separation system

    DOEpatents

    Yeung, E.S.; Xue, Y.

    1996-07-30

    A noise-suppressing capillary separation system for detecting the real-time presence or concentration of an analyte in a sample is provided. The system contains a capillary separation means through which the analyte is moved, a coherent light source that generates a beam which is split into a reference beam and a sample beam that irradiate the capillary, and a detector for detecting the reference beam and the sample beam light that transmits through the capillary. The laser beam is of a wavelength effective to be absorbed by a chromophore in the capillary. The system includes a noise suppressing system to improve performance and accuracy without signal averaging or multiple scans. 13 figs.

  20. SiPM electro-optical detection system noise suppression method

    NASA Astrophysics Data System (ADS)

    Bi, Xiangli; Yang, Suhui; Hu, Tao; Song, Yiheng

    2014-11-01

    In this paper, the single photon detection principle of Silicon Photomultipliers (SiPM) device is introduced. The main noise factors that infect the sensitivity of the electro-optical detection system are analyzed, including background light noise, detector dark noise, preamplifier noise and signal light noise etc. The Optical, electrical and thermodynamic methods are used to suppress the SiPM electro-optical detection system noise, which improved the response sensitivity of the detector. Using SiPM optoelectronic detector with a even high sensitivity, together with small field large aperture optical system, high cutoff narrow bandwidth filters, low-noise operational amplifier circuit, the modular design of functional circuit, semiconductor refrigeration technology, greatly improved the sensitivity of optical detection system, reduced system noise and achieved long-range detection of weak laser radiation signal. Theoretical analysis and experimental results show that the proposed methods are reasonable and efficient.

  1. Adaptive iterated function systems filter for images highly corrupted with fixed - Value impulse noise

    NASA Astrophysics Data System (ADS)

    Shanmugavadivu, P.; Eliahim Jeevaraj, P. S.

    2014-06-01

    The Adaptive Iterated Functions Systems (AIFS) Filter presented in this paper has an outstanding potential to attenuate the fixed-value impulse noise in images. This filter has two distinct phases namely noise detection and noise correction which uses Measure of Statistics and Iterated Function Systems (IFS) respectively. The performance of AIFS filter is assessed by three metrics namely, Peak Signal-to-Noise Ratio (PSNR), Mean Structural Similarity Index Matrix (MSSIM) and Human Visual Perception (HVP). The quantitative measures PSNR and MSSIM endorse the merit of this filter in terms of degree of noise suppression and details/edge preservation respectively, in comparison with the high performing filters reported in the recent literature. The qualitative measure HVP confirms the noise suppression ability of the devised filter. This computationally simple noise filter broadly finds application wherein the images are highly degraded by fixed-value impulse noise.

  2. Multiscale approach to contour fitting for MR images

    NASA Astrophysics Data System (ADS)

    Rueckert, Daniel; Burger, Peter

    1996-04-01

    We present a new multiscale contour fitting process which combines information about the image and the contour of the object at different levels of scale. The algorithm is based on energy minimizing deformable models but avoids some of the problems associated with these models. The segmentation algorithm starts by constructing a linear scale-space of an image through convolution of the original image with a Gaussian kernel at different levels of scale, where the scale corresponds to the standard deviation of the Gaussian kernel. At high levels of scale large scale features of the objects are preserved while small scale features, like object details as well as noise, are suppressed. In order to maximize the accuracy of the segmentation, the contour of the object of interest is then tracked in scale-space from coarse to fine scales. We propose a hybrid multi-temperature simulated annealing optimization to minimize the energy of the deformable model. At high levels of scale the SA optimization is started at high temperatures, enabling the SA optimization to find a global optimal solution. At lower levels of scale the SA optimization is started at lower temperatures (at the lowest level the temperature is close to 0). This enforces a more deterministic behavior of the SA optimization at lower scales and leads to an increasingly local optimization as high energy barriers cannot be crossed. The performance and robustness of the algorithm have been tested on spin-echo MR images of the cardiovascular system. The task was to segment the ascending and descending aorta in 15 datasets of different individuals in order to measure regional aortic compliance. The results show that the algorithm is able to provide more accurate segmentation results than the classic contour fitting process and is at the same time very robust to noise and initialization.

  3. A curvature-based weighted fuzzy c-means algorithm for point clouds de-noising

    NASA Astrophysics Data System (ADS)

    Cui, Xin; Li, Shipeng; Yan, Xiutian; He, Xinhua

    2018-04-01

    In order to remove the noise of three-dimensional scattered point cloud and smooth the data without damnify the sharp geometric feature simultaneity, a novel algorithm is proposed in this paper. The feature-preserving weight is added to fuzzy c-means algorithm which invented a curvature weighted fuzzy c-means clustering algorithm. Firstly, the large-scale outliers are removed by the statistics of r radius neighboring points. Then, the algorithm estimates the curvature of the point cloud data by using conicoid parabolic fitting method and calculates the curvature feature value. Finally, the proposed clustering algorithm is adapted to calculate the weighted cluster centers. The cluster centers are regarded as the new points. The experimental results show that this approach is efficient to different scale and intensities of noise in point cloud with a high precision, and perform a feature-preserving nature at the same time. Also it is robust enough to different noise model.

  4. Traffic Noise Ground Attenuation Algorithm Evaluation

    NASA Astrophysics Data System (ADS)

    Herman, Lloyd Allen

    The Federal Highway Administration traffic noise prediction program, STAMINA 2.0, was evaluated for its accuracy. In addition, the ground attenuation algorithm used in the Ontario ORNAMENT method was evaluated to determine its potential to improve these predictions. Field measurements of sound levels were made at 41 sites on I-440 in Nashville, Tennessee in order to both study noise barrier effectiveness and to evaluate STAMINA 2.0 and the performance of the ORNAMENT ground attenuation algorithm. The measurement sites, which contain large variations in terrain, included several cross sections. Further, all sites contain some type of barrier, natural or constructed, which could more fully expose the strength and weaknesses of the ground attenuation algorithms. The noise barrier evaluation was accomplished in accordance with American National Standard Methods for Determination of Insertion Loss of Outdoor Noise Barriers which resulted in an evaluation of this standard. The entire 7.2 mile length of I-440 was modeled using STAMINA 2.0. A multiple run procedure was developed to emulate the results that would be obtained if the ORNAMENT algorithm was incorporated into STAMINA 2.0. Finally, the predicted noise levels based on STAMINA 2.0 and STAMINA with the ORNAMENT ground attenuation algorithm were compared with each other and with the field measurements. It was found that STAMINA 2.0 overpredicted noise levels by an average of over 2 dB for the receivers on I-440, whereas, the STAMINA with ORNAMENT ground attenuation algorithm overpredicted noise levels by an average of less than 0.5 dB. The mean errors for the two predictions were found to be statistically different from each other, and the mean error for the prediction with the ORNAMENT ground attenuation algorithm was not found to be statistically different from zero. The STAMINA 2.0 program predicts little, if any, ground attenuation for receivers at typical first-row distances from highways where noise barriers are used. The ORNAMENT ground attenuation algorithm, which recognizes and better compensates for the presence of obstacles in the propagation path of a sound wave, predicted significant amounts of ground attenuation for most sites.

  5. Adaptive spectral filtering of PIV cross correlations

    NASA Astrophysics Data System (ADS)

    Giarra, Matthew; Vlachos, Pavlos; Aether Lab Team

    2016-11-01

    Using cross correlations (CCs) in particle image velocimetry (PIV) assumes that tracer particles in interrogation regions (IRs) move with the same velocity. But this assumption is nearly always violated because real flows exhibit velocity gradients, which degrade the signal-to-noise ratio (SNR) of the CC and are a major driver of error in PIV. Iterative methods help reduce these errors, but even they can fail when gradients are large within individual IRs. We present an algorithm to mitigate the effects of velocity gradients on PIV measurements. Our algorithm is based on a model of the CC, which predicts a relationship between the PDF of particle displacements and the variation of the correlation's SNR across the Fourier spectrum. We give an algorithm to measure this SNR from the CC, and use this insight to create a filter that suppresses the low-SNR portions of the spectrum. Our algorithm extends to the ensemble correlation, where it accelerates the convergence of the measurement and also reveals the PDF of displacements of the ensemble (and therefore of statistical metrics like diffusion coefficient). Finally, our model provides theoretical foundations for a number of "rules of thumb" in PIV, like the quarter-window rule.

  6. Dynamic re-weighted total variation technique and statistic Iterative reconstruction method for x-ray CT metal artifact reduction

    NASA Astrophysics Data System (ADS)

    Peng, Chengtao; Qiu, Bensheng; Zhang, Cheng; Ma, Changyu; Yuan, Gang; Li, Ming

    2017-07-01

    Over the years, the X-ray computed tomography (CT) has been successfully used in clinical diagnosis. However, when the body of the patient to be examined contains metal objects, the image reconstructed would be polluted by severe metal artifacts, which affect the doctor's diagnosis of disease. In this work, we proposed a dynamic re-weighted total variation (DRWTV) technique combined with the statistic iterative reconstruction (SIR) method to reduce the artifacts. The DRWTV method is based on the total variation (TV) and re-weighted total variation (RWTV) techniques, but it provides a sparser representation than TV and protects the tissue details better than RWTV. Besides, the DRWTV can suppress the artifacts and noise, and the SIR convergence speed is also accelerated. The performance of the algorithm is tested on both simulated phantom dataset and clinical dataset, which are the teeth phantom with two metal implants and the skull with three metal implants, respectively. The proposed algorithm (SIR-DRWTV) is compared with two traditional iterative algorithms, which are SIR and SIR constrained by RWTV regulation (SIR-RWTV). The results show that the proposed algorithm has the best performance in reducing metal artifacts and protecting tissue details.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litvinenko,V.; Yakimenko, V.

    We propose undertaking a demonstration experiment on suppressing spontaneous undulator radiation from an electron beam at BNL's Accelerator Test Facility (ATF). We describe the method, the proposed layout, and a possible schedule. There are several advantages in strongly suppressing shot noise in the electron beam, and the corresponding spontaneous radiation. The self-amplified spontaneous (SASE) emission originating from shot noise in the electron beam is the main source of noise in high-gain FEL amplifiers. It may negatively affect several HG FEL applications ranging from single- to multi-stage HGHG FELs. SASE saturation also imposes a fundamental hard limit on the gain ofmore » an FEL amplifier in a coherent electron-cooling scheme. A novel active method for suppressing shot noise in relativistic electron beams by many orders-of-magnitude was recently proposed. While theoretically such strong suppression appears feasible, the performance and applicability of this novel method must be evaluated experimentally. Several practical questions about the proposed noise suppressor, such as 3D effects and/or sensitivity to the e-beam parameters also require experimental clarification. To do this, we propose here a proof-of-principle experiment using elements of the VISA FEL at BNL's Accelerator Test Facility.« less

  8. A voting-based star identification algorithm utilizing local and global distribution

    NASA Astrophysics Data System (ADS)

    Fan, Qiaoyun; Zhong, Xuyang; Sun, Junhua

    2018-03-01

    A novel star identification algorithm based on voting scheme is presented in this paper. In the proposed algorithm, the global distribution and local distribution of sensor stars are fully utilized, and the stratified voting scheme is adopted to obtain the candidates for sensor stars. The database optimization is employed to reduce its memory requirement and improve the robustness of the proposed algorithm. The simulation shows that the proposed algorithm exhibits 99.81% identification rate with 2-pixel standard deviations of positional noises and 0.322-Mv magnitude noises. Compared with two similar algorithms, the proposed algorithm is more robust towards noise, and the average identification time and required memory is less. Furthermore, the real sky test shows that the proposed algorithm performs well on the real star images.

  9. Performance of 3DOSEM and MAP algorithms for reconstructing low count SPECT acquisitions.

    PubMed

    Grootjans, Willem; Meeuwis, Antoi P W; Slump, Cornelis H; de Geus-Oei, Lioe-Fee; Gotthardt, Martin; Visser, Eric P

    2016-12-01

    Low count single photon emission computed tomography (SPECT) is becoming more important in view of whole body SPECT and reduction of radiation dose. In this study, we investigated the performance of several 3D ordered subset expectation maximization (3DOSEM) and maximum a posteriori (MAP) algorithms for reconstructing low count SPECT images. Phantom experiments were conducted using the National Electrical Manufacturers Association (NEMA) NU2 image quality (IQ) phantom. The background compartment of the phantom was filled with varying concentrations of pertechnetate and indiumchloride, simulating various clinical imaging conditions. Images were acquired using a hybrid SPECT/CT scanner and reconstructed with 3DOSEM and MAP reconstruction algorithms implemented in Siemens Syngo MI.SPECT (Flash3D) and Hermes Hybrid Recon Oncology (Hyrid Recon 3DOSEM and MAP). Image analysis was performed by calculating the contrast recovery coefficient (CRC),percentage background variability (N%), and contrast-to-noise ratio (CNR), defined as the ratio between CRC and N%. Furthermore, image distortion is characterized by calculating the aspect ratio (AR) of ellipses fitted to the hot spheres. Additionally, the performance of these algorithms to reconstruct clinical images was investigated. Images reconstructed with 3DOSEM algorithms demonstrated superior image quality in terms of contrast and resolution recovery when compared to images reconstructed with filtered-back-projection (FBP), OSEM and 2DOSEM. However, occurrence of correlated noise patterns and image distortions significantly deteriorated the quality of 3DOSEM reconstructed images. The mean AR for the 37, 28, 22, and 17mm spheres was 1.3, 1.3, 1.6, and 1.7 respectively. The mean N% increase in high and low count Flash3D and Hybrid Recon 3DOSEM from 5.9% and 4.0% to 11.1% and 9.0%, respectively. Similarly, the mean CNR decreased in high and low count Flash3D and Hybrid Recon 3DOSEM from 8.7 and 8.8 to 3.6 and 4.2, respectively. Regularization with smoothing priors could suppress these noise patterns at the cost of reduced image contrast. The mean N% was 6.4% and 6.8% for low count QSP and MRP MAP reconstructed images. Alternatively, regularization with an anatomical Bowhser prior resulted in sharp images with high contrast, limited image distortion, and low N% of 8.3% in low count images, although some image artifacts did occur. Analysis of clinical images suggested that the same effects occur in clinical imaging. Image quality of low count SPECT acquisitions reconstructed with modern 3DOSEM algorithms is deteriorated by the occurrence of correlated noise patterns and image distortions. The artifacts observed in the phantom experiments can also occur in clinical imaging. Copyright © 2015. Published by Elsevier GmbH.

  10. Burst suppression probability algorithms: state-space methods for tracking EEG burst suppression

    NASA Astrophysics Data System (ADS)

    Chemali, Jessica; Ching, ShiNung; Purdon, Patrick L.; Solt, Ken; Brown, Emery N.

    2013-10-01

    Objective. Burst suppression is an electroencephalogram pattern in which bursts of electrical activity alternate with an isoelectric state. This pattern is commonly seen in states of severely reduced brain activity such as profound general anesthesia, anoxic brain injuries, hypothermia and certain developmental disorders. Devising accurate, reliable ways to quantify burst suppression is an important clinical and research problem. Although thresholding and segmentation algorithms readily identify burst suppression periods, analysis algorithms require long intervals of data to characterize burst suppression at a given time and provide no framework for statistical inference. Approach. We introduce the concept of the burst suppression probability (BSP) to define the brain's instantaneous propensity of being in the suppressed state. To conduct dynamic analyses of burst suppression we propose a state-space model in which the observation process is a binomial model and the state equation is a Gaussian random walk. We estimate the model using an approximate expectation maximization algorithm and illustrate its application in the analysis of rodent burst suppression recordings under general anesthesia and a patient during induction of controlled hypothermia. Main result. The BSP algorithms track burst suppression on a second-to-second time scale, and make possible formal statistical comparisons of burst suppression at different times. Significance. The state-space approach suggests a principled and informative way to analyze burst suppression that can be used to monitor, and eventually to control, the brain states of patients in the operating room and in the intensive care unit.

  11. Fractal Landscape Algorithms for Environmental Simulations

    NASA Astrophysics Data System (ADS)

    Mao, H.; Moran, S.

    2014-12-01

    Natural science and geographical research are now able to take advantage of environmental simulations that more accurately test experimental hypotheses, resulting in deeper understanding. Experiments affected by the natural environment can benefit from 3D landscape simulations capable of simulating a variety of terrains and environmental phenomena. Such simulations can employ random terrain generation algorithms that dynamically simulate environments to test specific models against a variety of factors. Through the use of noise functions such as Perlin noise, Simplex noise, and diamond square algorithms, computers can generate simulations that model a variety of landscapes and ecosystems. This study shows how these algorithms work together to create realistic landscapes. By seeding values into the diamond square algorithm, one can control the shape of landscape. Perlin noise and Simplex noise are also used to simulate moisture and temperature. The smooth gradient created by coherent noise allows more realistic landscapes to be simulated. Terrain generation algorithms can be used in environmental studies and physics simulations. Potential studies that would benefit from simulations include the geophysical impact of flash floods or drought on a particular region and regional impacts on low lying area due to global warming and rising sea levels. Furthermore, terrain generation algorithms also serve as aesthetic tools to display landscapes (Google Earth), and simulate planetary landscapes. Hence, it can be used as a tool to assist science education. Algorithms used to generate these natural phenomena provide scientists a different approach in analyzing our world. The random algorithms used in terrain generation not only contribute to the generating the terrains themselves, but are also capable of simulating weather patterns.

  12. Resource sharing on CSMA/CD networks in the presence of noise. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Dinschel, Duane Edward

    1987-01-01

    Resource sharing on carrier sense multiple access with collision detection (CSMA/CD) networks can be accomplished by using window-control algorithms for bus contention. The window-control algorithms are designed to grant permission to transmit to the station with the minimum contention parameter. Proper operation of the window-control algorithm requires that all stations sense the same state of the newtork in each contention slot. Noise causes the state of the network to appear as a collision. False collisions can cause the window-control algorithm to terminate without isolating any stations. A two-phase window-control protocol and approximate recurrence equation with noise as a parameter to improve the performance of the window-control algorithms in the presence of noise are developed. The results are compared through simulation, with the approximate recurrence equation yielding the best overall performance. Noise is even a bigger problem when it is not detected by all stations. In such cases it is possible for the window boundaries of the contending stations to become out of phase. Consequently, it is possible to isolate a station other than the one with the minimum contention parameter. To guarantee proper isolation of the minimum, a broadcast phase must be added after the termination of the algorithm. The protocol required to correct the window-control algorithm when noise is not detected by all stations is discussed.

  13. Note: innovative demodulation scheme for coherent detectors in cosmic microwave background experiments.

    PubMed

    Ishidoshiro, K; Chinone, Y; Hasegawa, M; Hazumi, M; Nagai, M; Tajima, O

    2012-05-01

    We propose an innovative demodulation scheme for coherent detectors used in cosmic microwave background polarization experiments. Removal of non-white noise, e.g., narrow-band noise, in detectors is one of the key requirements for the experiments. A combination of modulation and demodulation is used to extract polarization signals as well as to suppress such noise. Traditional demodulation, which is based on the two-point numerical differentiation, works as a first-order high pass filter for the noise. The proposed demodulation is based on the three-point numerical differentiation. It works as a second-order high pass filter. By using a real detector, we confirmed significant improvements of suppression power for the narrow-band noise. We also found improvement of the noise floor.

  14. Bayesian penalized-likelihood reconstruction algorithm suppresses edge artifacts in PET reconstruction based on point-spread-function.

    PubMed

    Yamaguchi, Shotaro; Wagatsuma, Kei; Miwa, Kenta; Ishii, Kenji; Inoue, Kazumasa; Fukushi, Masahiro

    2018-03-01

    The Bayesian penalized-likelihood reconstruction algorithm (BPL), Q.Clear, uses relative difference penalty as a regularization function to control image noise and the degree of edge-preservation in PET images. The present study aimed to determine the effects of suppression on edge artifacts due to point-spread-function (PSF) correction using a Q.Clear. Spheres of a cylindrical phantom contained a background of 5.3 kBq/mL of [ 18 F]FDG and sphere-to-background ratios (SBR) of 16, 8, 4 and 2. The background also contained water and spheres containing 21.2 kBq/mL of [ 18 F]FDG as non-background. All data were acquired using a Discovery PET/CT 710 and were reconstructed using three-dimensional ordered-subset expectation maximization with time-of-flight (TOF) and PSF correction (3D-OSEM), and Q.Clear with TOF (BPL). We investigated β-values of 200-800 using BPL. The PET images were analyzed using visual assessment and profile curves, edge variability and contrast recovery coefficients were measured. The 38- and 27-mm spheres were surrounded by higher radioactivity concentration when reconstructed with 3D-OSEM as opposed to BPL, which suppressed edge artifacts. Images of 10-mm spheres had sharper overshoot at high SBR and non-background when reconstructed with BPL. Although contrast recovery coefficients of 10-mm spheres in BPL decreased as a function of increasing β, higher penalty parameter decreased the overshoot. BPL is a feasible method for the suppression of edge artifacts of PSF correction, although this depends on SBR and sphere size. Overshoot associated with BPL caused overestimation in small spheres at high SBR. Higher penalty parameter in BPL can suppress overshoot more effectively. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  15. Noise Suppression Apparatus and Methods of Manufacturing the Same

    NASA Technical Reports Server (NTRS)

    Weir, Don (Inventor)

    2017-01-01

    A noise suppression apparatus includes a body portion including a plurality of nested channels, each channel of the plurality of nested channels including a first end opening and a second end opening, and a surface portion including each first end opening and each second end opening of each channel.

  16. Bandwidth-limited control and ringdown suppression in high-Q resonators.

    PubMed

    Borneman, Troy W; Cory, David G

    2012-12-01

    We describe how the transient behavior of a tuned and matched resonator circuit and a ringdown suppression pulse may be integrated into an optimal control theory (OCT) pulse-design algorithm to derive control sequences with limited ringdown that perform a desired quantum operation in the presence of resonator distortions of the ideal waveform. Inclusion of ringdown suppression in numerical pulse optimizations significantly reduces spectrometer deadtime when using high quality factor (high-Q) resonators, leading to increased signal-to-noise ratio (SNR) and sensitivity of inductive measurements. To demonstrate the method, we experimentally measure the free-induction decay of an inhomogeneously broadened solid-state free radical spin system at high Q. The measurement is enabled by using a numerically optimized bandwidth-limited OCT pulse, including ringdown suppression, robust to variations in static and microwave field strengths. We also discuss the applications of pulse design in high-Q resonators to universal control of anisotropic-hyperfine coupled electron-nuclear spin systems via electron-only modulation even when the bandwidth of the resonator is significantly smaller than the hyperfine coupling strength. These results demonstrate how limitations imposed by linear response theory may be vastly exceeded when using a sufficiently accurate system model to optimize pulses of high complexity. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Preservation of physical properties with Ensemble-type Kalman Filter Algorithms

    NASA Astrophysics Data System (ADS)

    Janjic, T.

    2017-12-01

    We show the behavior of the localized Ensemble Kalman filter (EnKF) with respect to preservation of positivity, conservation of mass, energy and enstrophy in toy models that conserve these properties. In order to preserve physical properties in the analysis as well as to deal with the non-Gaussianity in an EnKF framework, Janjic et al. 2014 proposed the use of physically based constraints in the analysis step to constrain the solution. In particular, constraints were used to ensure that the ensemble members and the ensemble mean conserve mass and remain nonnegative through measurement updates. In the study, mass and positivity were both preserved by formulating the filter update as a set of quadratic programming problems that incorporate nonnegativity constraints. Simple numerical experiments indicated that this approach can have a significant positive impact on the posterior ensemble distribution, giving results that were more physically plausible both for individual ensemble members and for the ensemble mean. Moreover, in experiments designed to mimic the most important characteristics of convective motion, it is shown that the mass conservation- and positivity-constrained rain significantly suppresses noise seen in localized EnKF results. This is highly desirable in order to avoid spurious storms from appearing in the forecast starting from this initial condition (Lange and Craig 2014). In addition, the root mean square error is reduced for all fields and total mass of the rain is correctly simulated. Similarly, the enstrophy, divergence, as well as energy spectra can as well be strongly affected by localization radius, thinning interval, and inflation and depend on the variable that is observed (Zeng and Janjic, 2016). We constructed the ensemble data assimilation algorithm that conserves mass, total energy and enstrophy (Zeng et al., 2017). With 2D shallow water model experiments, it is found that the conservation of enstrophy within the data assimilation effectively avoids the spurious energy cascade of rotational part and thereby successfully suppresses the noise generated by the data assimilation algorithm. The 14-day deterministic and ensemble free forecast, starting from the initial condition enforced by both total energy and enstrophy constraints, produces the best prediction.

  18. Supermode noise suppression with mutual injection locking for coupled optoelectronic oscillator.

    PubMed

    Dai, Jian; Liu, Anni; Liu, Jingliang; Zhang, Tian; Zhou, Yue; Yin, Feifei; Dai, Yitang; Liu, Yuanan; Xu, Kun

    2017-10-30

    The coupled optoelectronic oscillator (COEO) is typically used to generate high frequency spectrally pure microwave signal with serious sidemodes noise. We propose and experimentally demonstrate a simple scheme for supermode suppression with mutual injection locking between the COEO (master oscillator with multi-modes oscillation) and the embedded free-running oscillator (slave oscillator with single-mode oscillation). The master and slave oscillators share the same electrical feedback path, which means that the mutually injection-locked COEO brings no additional hardware complexity. Owing to the mode matching and mutually injection locking effect, 9.999 GHz signal has been successfully obtained by the mutually injection-locked COEO with the phase noise about -117 dBc/Hz at 10 kHz offset frequency. Besides, the supermode noise can be significantly suppressed more than 50 dB to below -120 dBc.

  19. A method for obtaining reduced-order control laws for high-order systems using optimization techniques

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, V.; Newsom, J. R.; Abel, I.

    1981-01-01

    A method of synthesizing reduced-order optimal feedback control laws for a high-order system is developed. A nonlinear programming algorithm is employed to search for the control law design variables that minimize a performance index defined by a weighted sum of mean-square steady-state responses and control inputs. An analogy with the linear quadractic Gaussian solution is utilized to select a set of design variables and their initial values. To improve the stability margins of the system, an input-noise adjustment procedure is used in the design algorithm. The method is applied to the synthesis of an active flutter-suppression control law for a wind tunnel model of an aeroelastic wing. The reduced-order controller is compared with the corresponding full-order controller and found to provide nearly optimal performance. The performance of the present method appeared to be superior to that of two other control law order-reduction methods. It is concluded that by using the present algorithm, nearly optimal low-order control laws with good stability margins can be synthesized.

  20. Multidimensional deconvolution of optical microscope and ultrasound imaging using adaptive least-mean-square (LMS) inverse filtering

    NASA Astrophysics Data System (ADS)

    Sapia, Mark Angelo

    2000-11-01

    Three-dimensional microscope images typically suffer from reduced resolution due to the effects of convolution, optical aberrations and out-of-focus blurring. Two- dimensional ultrasound images are also degraded by convolutional bluffing and various sources of noise. Speckle noise is a major problem in ultrasound images. In microscopy and ultrasound, various methods of digital filtering have been used to improve image quality. Several methods of deconvolution filtering have been used to improve resolution by reversing the convolutional effects, many of which are based on regularization techniques and non-linear constraints. The technique discussed here is a unique linear filter for deconvolving 3D fluorescence microscopy or 2D ultrasound images. The process is to solve for the filter completely in the spatial-domain using an adaptive algorithm to converge to an optimum solution for de-blurring and resolution improvement. There are two key advantages of using an adaptive solution: (1)it efficiently solves for the filter coefficients by taking into account all sources of noise and degraded resolution at the same time, and (2)achieves near-perfect convergence to the ideal linear deconvolution filter. This linear adaptive technique has other advantages such as avoiding artifacts of frequency-domain transformations and concurrent adaptation to suppress noise. Ultimately, this approach results in better signal-to-noise characteristics with virtually no edge-ringing. Many researchers have not adopted linear techniques because of poor convergence, noise instability and negative valued data in the results. The methods presented here overcome many of these well-documented disadvantages and provide results that clearly out-perform other linear methods and may also out-perform regularization and constrained algorithms. In particular, the adaptive solution is most responsible for overcoming the poor performance associated with linear techniques. This linear adaptive approach to deconvolution is demonstrated with results of restoring blurred phantoms for both microscopy and ultrasound and restoring 3D microscope images of biological cells and 2D ultrasound images of human subjects (courtesy of General Electric and Diasonics, Inc.).

  1. Mechanisms of Undersensing by a Noise Detection Algorithm That Utilizes Far-Field Electrograms With Near-Field Bandpass Filtering.

    PubMed

    Koneru, Jayanthi N; Swerdlow, Charles D; Ploux, Sylvain; Sharma, Parikshit S; Kaszala, Karoly; Tan, Alex Y; Huizar, Jose F; Vijayaraman, Pugazhendi; Kenigsberg, David; Ellenbogen, Kenneth A

    2017-02-01

    Implantable cardioverter defibrillators (ICDs) must establish a balance between delivering appropriate shocks for ventricular tachyarrhythmias and withholding inappropriate shocks for lead-related oversensing ("noise"). To improve the specificity of ICD therapy, manufacturers have developed proprietary algorithms that detect lead noise. The SecureSense TM RV Lead Noise discrimination (St. Jude Medical, St. Paul, MN, USA) algorithm is designed to differentiate oversensing due to lead failure from ventricular tachyarrhythmias and withhold therapies in the presence of sustained lead-related oversensing. We report 5 patients in whom appropriate ICD therapy was withheld due to the operation of the SecureSense algorithm and explain the mechanism for inhibition of therapy in each case. Limitations of algorithms designed to increase ICD therapy specificity, especially for the SecureSense algorithm, are analyzed. The SecureSense algorithm can withhold appropriate therapies for ventricular arrhythmias due to design and programming limitations. Electrophysiologists should have a thorough understanding of the SecureSense algorithm before routinely programming it and understand the implications for ventricular arrhythmia misclassification. © 2016 Wiley Periodicals, Inc.

  2. Reduction of electronic noise from radiofrequency generator during radiofrequency ablation in interventional MRI.

    PubMed

    Oshiro, Thomas; Sinha, Usha; Lu, David; Sinha, Shantanu

    2002-01-01

    MRI has been used increasingly in the recent past for the guidance and monitoring of minimally invasive interventional procedures, using typically radiofrequency (RF) and laser energy, cryoablation, and percutaneous ethanol. RF energy has been used over the last 30 years for the ablation of tissues. Its use in conjunction with MRI for monitoring is limited, however, because of the electronic noise produced by the RF generators, which can significantly deteriorate image quality. The objective of this work was to devise methods by which this noise can be reduced to an acceptable level to allow simultaneous acquisition of MR images for monitoring purposes with the application of RF energy. Three different methods of noise reduction were investigated in a 0.2 T MR scanner: filtration using external hardware circuitry, MR scanner software-controlled filtration, and keyholing. The last two methods were unable by themselves to suppress the noise to an acceptable degree. Hardware filtration, however, provides excellent suppression of RF noise and is able to withstand up to 12 W of RF energy. When all the three approaches are combined, significant reduction of RF noise is achieved. The feasibility of creating an RF lesion of about 1.2 cm diameter in vivo in a porcine model simultaneously with temperature-sensitive MRI with adequate noise suppression is demonstrated.

  3. Eigenvector decomposition of full-spectrum x-ray computed tomography.

    PubMed

    Gonzales, Brian J; Lalush, David S

    2012-03-07

    Energy-discriminated x-ray computed tomography (CT) data were projected onto a set of basis functions to suppress the noise in filtered back-projection (FBP) reconstructions. The x-ray CT data were acquired using a novel x-ray system which incorporated a single-pixel photon-counting x-ray detector to measure the x-ray spectrum for each projection ray. A matrix of the spectral response of different materials was decomposed using eigenvalue decomposition to form the basis functions. Projection of FBP onto basis functions created a de facto image segmentation of multiple contrast agents. Final reconstructions showed significant noise suppression while preserving important energy-axis data. The noise suppression was demonstrated by a marked improvement in the signal-to-noise ratio (SNR) along the energy axis for multiple regions of interest in the reconstructed images. Basis functions used on a more coarsely sampled energy axis still showed an improved SNR. We conclude that the noise-resolution trade off along the energy axis was significantly improved using the eigenvalue decomposition basis functions.

  4. Shot-noise at a Fermi-edge singularity: Non-Markovian dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ubbelohde, N.; Maire, N.; Haug, R. J.

    2013-12-04

    For an InAs quantum dot we study the current shot noise at a Fermi-edge singularity in low temperature cross-correlation measurements. In the regime of the interaction effect the strong suppression of noise observed at zero magnetic field and the sequence of enhancement and suppression in magnetic field go beyond a Markovian master equation model. Qualitative and quantitative agreement can however be achieved by a generalized master equation model taking non-Markovian dynamics into account.

  5. System and Method for Suppression of Unwanted Noise in Ground Test Facilities

    NASA Technical Reports Server (NTRS)

    Zaman, Khairul B. M. Q. (Inventor); Clem, Michelle M. (Inventor); Fagan, Amy F. (Inventor)

    2015-01-01

    Systems and methods for the suppression of unwanted noise from a jet discharging into a duct are disclosed herein. The unwanted noise may be in the form of excited duct modes or howl due to super resonance. A damper member is used to reduce acoustic velocity perturbations at the velocity anti-node, associated with the half-wave resonance of the duct, weakening the resonance condition and reducing the amplitudes of the spectral peaks.

  6. A wavelet and least square filter based spatial-spectral denoising approach of hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Li, Ting; Chen, Xiao-Mei; Chen, Gang; Xue, Bo; Ni, Guo-Qiang

    2009-11-01

    Noise reduction is a crucial step in hyperspectral imagery pre-processing. Based on sensor characteristics, the noise of hyperspectral imagery represents in both spatial and spectral domain. However, most prevailing denosing techniques process the imagery in only one specific domain, which have not utilized multi-domain nature of hyperspectral imagery. In this paper, a new spatial-spectral noise reduction algorithm is proposed, which is based on wavelet analysis and least squares filtering techniques. First, in the spatial domain, a new stationary wavelet shrinking algorithm with improved threshold function is utilized to adjust the noise level band-by-band. This new algorithm uses BayesShrink for threshold estimation, and amends the traditional soft-threshold function by adding shape tuning parameters. Comparing with soft or hard threshold function, the improved one, which is first-order derivable and has a smooth transitional region between noise and signal, could save more details of image edge and weaken Pseudo-Gibbs. Then, in the spectral domain, cubic Savitzky-Golay filter based on least squares method is used to remove spectral noise and artificial noise that may have been introduced in during the spatial denoising. Appropriately selecting the filter window width according to prior knowledge, this algorithm has effective performance in smoothing the spectral curve. The performance of the new algorithm is experimented on a set of Hyperion imageries acquired in 2007. The result shows that the new spatial-spectral denoising algorithm provides more significant signal-to-noise-ratio improvement than traditional spatial or spectral method, while saves the local spectral absorption features better.

  7. Suppression of thermal frequency noise in erbium-doped fiber random lasers.

    PubMed

    Saxena, Bhavaye; Bao, Xiaoyi; Chen, Liang

    2014-02-15

    Frequency and intensity noise are characterized for erbium-doped fiber (EDF) random lasers based on Rayleigh distributed feedback mechanism. We propose a theoretical model for the frequency noise of such random lasers using the property of random phase modulations from multiple scattering points in ultralong fibers. We find that the Rayleigh feedback suppresses the noise at higher frequencies by introducing a Lorentzian envelope over the thermal frequency noise of a long fiber cavity. The theoretical model and measured frequency noise agree quantitatively with two fitting parameters. The random laser exhibits a noise level of 6  Hz²/Hz at 2 kHz, which is lower than what is found in conventional narrow-linewidth EDF fiber lasers and nonplanar ring laser oscillators (NPROs) by a factor of 166 and 2, respectively. The frequency noise has a minimum value for an optimum length of the Rayleigh scattering fiber.

  8. Evaluation of substrate noise suppression method to mitigate crosstalk among trough-silicon vias

    NASA Astrophysics Data System (ADS)

    Araga, Yuuki; Kikuchi, Katsuya; Aoyagi, Masahiro

    2018-04-01

    Substrate noise from a single through-silicon via (TSV) and the noise attenuation by a substrate tap and a guard ring are clarified. A CMOS test vehicle is designed, and 6-µm-diameter TSVs are manufactured on a 20-µm-thick silicon substrate by the via-last method. An on-chip waveform-capturing circuitry is embedded in the test vehicle to capture transient waveforms of substrate noise. The embedded waveform-capturing circuitry demonstrates small and local noise propagation. Experimental results show increased substrate noise level induced by TSVs and the effectiveness of the substrate tap and guard ring for mitigating the crosstalk among TSVs. An analytical model to explain substrate noise propagation is developed to validate experimental results. Results obtained using the substrate model with a multilayer mesh shows good consistency with experimental results, indicating that the model can be used for examination of noise suppression methods.

  9. All-optical noise reduction of fiber laser via intracavity SOA structure.

    PubMed

    Ying, Kang; Chen, Dijun; Pan, Zhengqing; Zhang, Xi; Cai, Haiwen; Qu, Ronghui

    2016-10-10

    We have designed a unique intracavity semiconductor optical amplifier (SOA) structure to suppress the relative intensity noise (RIN) for a fiber DFB laser. By exploiting the gain saturation effect of the SOA, a maximum noise suppression of 30 dB around the relaxation oscillation frequency is achieved, and the whole resonance relaxation oscillation peak completely disappears. Moreover, via a specially designed intracavity SOA structure, the optical intensity inside the SOA will be in a balanced state via the oscillation in the laser cavity, and the frequency noise of the laser will not be degraded with the SOA.

  10. Novel Signal Noise Reduction Method through Cluster Analysis, Applied to Photoplethysmography.

    PubMed

    Waugh, William; Allen, John; Wightman, James; Sims, Andrew J; Beale, Thomas A W

    2018-01-01

    Physiological signals can often become contaminated by noise from a variety of origins. In this paper, an algorithm is described for the reduction of sporadic noise from a continuous periodic signal. The design can be used where a sample of a periodic signal is required, for example, when an average pulse is needed for pulse wave analysis and characterization. The algorithm is based on cluster analysis for selecting similar repetitions or pulses from a periodic single. This method selects individual pulses without noise, returns a clean pulse signal, and terminates when a sufficiently clean and representative signal is received. The algorithm is designed to be sufficiently compact to be implemented on a microcontroller embedded within a medical device. It has been validated through the removal of noise from an exemplar photoplethysmography (PPG) signal, showing increasing benefit as the noise contamination of the signal increases. The algorithm design is generalised to be applicable for a wide range of physiological (physical) signals.

  11. Low-dimensional recurrent neural network-based Kalman filter for speech enhancement.

    PubMed

    Xia, Youshen; Wang, Jun

    2015-07-01

    This paper proposes a new recurrent neural network-based Kalman filter for speech enhancement, based on a noise-constrained least squares estimate. The parameters of speech signal modeled as autoregressive process are first estimated by using the proposed recurrent neural network and the speech signal is then recovered from Kalman filtering. The proposed recurrent neural network is globally asymptomatically stable to the noise-constrained estimate. Because the noise-constrained estimate has a robust performance against non-Gaussian noise, the proposed recurrent neural network-based speech enhancement algorithm can minimize the estimation error of Kalman filter parameters in non-Gaussian noise. Furthermore, having a low-dimensional model feature, the proposed neural network-based speech enhancement algorithm has a much faster speed than two existing recurrent neural networks-based speech enhancement algorithms. Simulation results show that the proposed recurrent neural network-based speech enhancement algorithm can produce a good performance with fast computation and noise reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Suppression effect of otoacoustic emissions in term and preterm infants.

    PubMed

    Jesus, Natália Oliveira de; Angrisani, Rosanna Giaffredo; Maruta, Elaine Colombo; Azevedo, Marisa Frasson de

    2016-01-01

    This research aims at verifying the occurrence and magnitude of suppression effect of otoacoustic emissions evoked by transient stimulus in term and preterm infants, setting a benchmark for clinical use. The study sample consisted of 40 infants, with a rage of age from five days to four months, without any risk indicators for hearing loss and otoacoustic emissions present at birth: the 20 term and 20 preterm infants spent more than five days in the Neonatal Intensive Care Unit. Linear click was presented at 65 dB Sound Pressure Level, in blocks of 15 seconds without noise, and with contralateral noise at 60 dB Sound Pressure Level. The reduced response in the presence of noise indicates positive suppression effect. Mean values of suppression were established and the comparison between the groups was analyzed statistically. Suppression occurred in 100% of the children and did not vary as a function of ear side and between the groups. All children presented suppression regardless of the group. The average suppression obtained on the total population was 0.85 dB. The minimum recommended criterion for clinical use was a reduction of 0.20 dB in the overall response.

  13. Wind noise in hearing aids: I. Effect of wide dynamic range compression and modulation-based noise reduction.

    PubMed

    Chung, King

    2012-01-01

    The objectives of this study were: (1) to examine the effect of wide dynamic range compression (WDRC) and modulation-based noise reduction (NR) algorithms on wind noise levels at the hearing aid output; and (2) to derive effective strategies for clinicians and engineers to reduce wind noise in hearing aids. Three digital hearing aids were fitted to KEMAR. The noise output was recorded at flow velocities of 0, 4.5, 9.0, and 13.5 m/s in a wind tunnel as the KEMAR head was turned from 0° to 360°. Flow noise levels were compared between the 1:1 linear and 3:1 WDRC conditions, and between NR-activated and NR-deactivated conditions when the hearing aid was programmed to the directional and omnidirectional modes. The results showed that: (1) WDRC increased low-level noise and reduced high-level noise; and (2) different noise reduction algorithms provided different amounts of wind noise reduction in different microphone modes, frequency regions, flow velocities, and head angles. Wind noise can be reduced by decreasing the gain for low-level inputs, increasing the compression ratio for high-level inputs, and activating modulation-based noise reduction algorithms.

  14. Novel cooperative neural fusion algorithms for image restoration and image fusion.

    PubMed

    Xia, Youshen; Kamel, Mohamed S

    2007-02-01

    To deal with the problem of restoring degraded images with non-Gaussian noise, this paper proposes a novel cooperative neural fusion regularization (CNFR) algorithm for image restoration. Compared with conventional regularization algorithms for image restoration, the proposed CNFR algorithm can relax need of the optimal regularization parameter to be estimated. Furthermore, to enhance the quality of restored images, this paper presents a cooperative neural fusion (CNF) algorithm for image fusion. Compared with existing signal-level image fusion algorithms, the proposed CNF algorithm can greatly reduce the loss of contrast information under blind Gaussian noise environments. The performance analysis shows that the proposed two neural fusion algorithms can converge globally to the robust and optimal image estimate. Simulation results confirm that in different noise environments, the proposed two neural fusion algorithms can obtain a better image estimate than several well known image restoration and image fusion methods.

  15. Frequency Noise Suppression of a Single Mode Laser with an Unbalanced Fiber Interferometer for Subnanometer Interferometry

    PubMed Central

    Šmíd, Radek; Čížek, Martin; Mikel, Břetislav; Číp, Ondřej

    2015-01-01

    We present a method of noise suppression of laser diodes by an unbalanced Michelson fiber interferometer. The unstabilized laser source is represented by compact planar waveguide external cavity laser module, ORIONTM (Redfern Integrated Optics, Inc.), working at 1540.57 nm with a 1.5-kHz linewidth. We built up the unbalanced Michelson interferometer with a 2.09 km-long arm based on the standard telecommunication single-mode fiber (SMF-28) spool to suppress the frequency noise by the servo-loop control by 20 dB to 40 dB within the Fourier frequency range, remaining the tuning range of the laser frequency. PMID:25587980

  16. Improving Low-dose Cardiac CT Images based on 3D Sparse Representation

    PubMed Central

    Shi, Luyao; Hu, Yining; Chen, Yang; Yin, Xindao; Shu, Huazhong; Luo, Limin; Coatrieux, Jean-Louis

    2016-01-01

    Cardiac computed tomography (CCT) is a reliable and accurate tool for diagnosis of coronary artery diseases and is also frequently used in surgery guidance. Low-dose scans should be considered in order to alleviate the harm to patients caused by X-ray radiation. However, low dose CT (LDCT) images tend to be degraded by quantum noise and streak artifacts. In order to improve the cardiac LDCT image quality, a 3D sparse representation-based processing (3D SR) is proposed by exploiting the sparsity and regularity of 3D anatomical features in CCT. The proposed method was evaluated by a clinical study of 14 patients. The performance of the proposed method was compared to the 2D spares representation-based processing (2D SR) and the state-of-the-art noise reduction algorithm BM4D. The visual assessment, quantitative assessment and qualitative assessment results show that the proposed approach can lead to effective noise/artifact suppression and detail preservation. Compared to the other two tested methods, 3D SR method can obtain results with image quality most close to the reference standard dose CT (SDCT) images. PMID:26980176

  17. A vessel segmentation method for multi-modality angiographic images based on multi-scale filtering and statistical models.

    PubMed

    Lu, Pei; Xia, Jun; Li, Zhicheng; Xiong, Jing; Yang, Jian; Zhou, Shoujun; Wang, Lei; Chen, Mingyang; Wang, Cheng

    2016-11-08

    Accurate segmentation of blood vessels plays an important role in the computer-aided diagnosis and interventional treatment of vascular diseases. The statistical method is an important component of effective vessel segmentation; however, several limitations discourage the segmentation effect, i.e., dependence of the image modality, uneven contrast media, bias field, and overlapping intensity distribution of the object and background. In addition, the mixture models of the statistical methods are constructed relaying on the characteristics of the image histograms. Thus, it is a challenging issue for the traditional methods to be available in vessel segmentation from multi-modality angiographic images. To overcome these limitations, a flexible segmentation method with a fixed mixture model has been proposed for various angiography modalities. Our method mainly consists of three parts. Firstly, multi-scale filtering algorithm was used on the original images to enhance vessels and suppress noises. As a result, the filtered data achieved a new statistical characteristic. Secondly, a mixture model formed by three probabilistic distributions (two Exponential distributions and one Gaussian distribution) was built to fit the histogram curve of the filtered data, where the expectation maximization (EM) algorithm was used for parameters estimation. Finally, three-dimensional (3D) Markov random field (MRF) were employed to improve the accuracy of pixel-wise classification and posterior probability estimation. To quantitatively evaluate the performance of the proposed method, two phantoms simulating blood vessels with different tubular structures and noises have been devised. Meanwhile, four clinical angiographic data sets from different human organs have been used to qualitatively validate the method. To further test the performance, comparison tests between the proposed method and the traditional ones have been conducted on two different brain magnetic resonance angiography (MRA) data sets. The results of the phantoms were satisfying, e.g., the noise was greatly suppressed, the percentages of the misclassified voxels, i.e., the segmentation error ratios, were no more than 0.3%, and the Dice similarity coefficients (DSCs) were above 94%. According to the opinions of clinical vascular specialists, the vessels in various data sets were extracted with high accuracy since complete vessel trees were extracted while lesser non-vessels and background were falsely classified as vessel. In the comparison experiments, the proposed method showed its superiority in accuracy and robustness for extracting vascular structures from multi-modality angiographic images with complicated background noises. The experimental results demonstrated that our proposed method was available for various angiographic data. The main reason was that the constructed mixture probability model could unitarily classify vessel object from the multi-scale filtered data of various angiography images. The advantages of the proposed method lie in the following aspects: firstly, it can extract the vessels with poor angiography quality, since the multi-scale filtering algorithm can improve the vessel intensity in the circumstance such as uneven contrast media and bias field; secondly, it performed well for extracting the vessels in multi-modality angiographic images despite various signal-noises; and thirdly, it was implemented with better accuracy, and robustness than the traditional methods. Generally, these traits declare that the proposed method would have significant clinical application.

  18. Objective speech quality assessment and the RPE-LTP coding algorithm in different noise and language conditions.

    PubMed

    Hansen, J H; Nandkumar, S

    1995-01-01

    The formulation of reliable signal processing algorithms for speech coding and synthesis require the selection of a prior criterion of performance. Though coding efficiency (bits/second) or computational requirements can be used, a final performance measure must always include speech quality. In this paper, three objective speech quality measures are considered with respect to quality assessment for American English, noisy American English, and noise-free versions of seven languages. The purpose is to determine whether objective quality measures can be used to quantify changes in quality for a given voice coding method, with a known subjective performance level, as background noise or language conditions are changed. The speech coding algorithm chosen is regular-pulse excitation with long-term prediction (RPE-LTP), which has been chosen as the standard voice compression algorithm for the European Digital Mobile Radio system. Three areas are considered for objective quality assessment which include: (i) vocoder performance for American English in a noise-free environment, (ii) speech quality variation for three additive background noise sources, and (iii) noise-free performance for seven languages which include English, Japanese, Finnish, German, Hindi, Spanish, and French. It is suggested that although existing objective quality measures will never replace subjective testing, they can be a useful means of assessing changes in performance, identifying areas for improvement in algorithm design, and augmenting subjective quality tests for voice coding/compression algorithms in noise-free, noisy, and/or non-English applications.

  19. Detection of low-contrast images in film-grain noise.

    PubMed

    Naderi, F; Sawchuk, A A

    1978-09-15

    When low contrast photographic images are digitized by a very small aperture, extreme film-grain noise almost completely obliterates the image information. Using a large aperture to average out the noise destroys the fine details of the image. In these situations conventional statistical restoration techniques have little effect, and well chosen heuristic algorithms have yielded better results. In this paper we analyze the noisecheating algorithm of Zweig et al. [J. Opt. Soc. Am. 65, 1347 (1975)] and show that it can be justified by classical maximum-likelihood detection theory. A more general algorithm applicable to a broader class of images is then developed by considering the signal-dependent nature of film-grain noise. Finally, a Bayesian detection algorithm with improved performance is presented.

  20. Speech enhancement based on modified phase-opponency detectors

    NASA Astrophysics Data System (ADS)

    Deshmukh, Om D.; Espy-Wilson, Carol Y.

    2005-09-01

    A speech enhancement algorithm based on a neural model was presented by Deshmukh et al., [149th meeting of the Acoustical Society America, 2005]. The algorithm consists of a bank of Modified Phase Opponency (MPO) filter pairs tuned to different center frequencies. This algorithm is able to enhance salient spectral features in speech signals even at low signal-to-noise ratios. However, the algorithm introduces musical noise and sometimes misses a spectral peak that is close in frequency to a stronger spectral peak. Refinement in the design of the MPO filters was recently made that takes advantage of the falling spectrum of the speech signal in sonorant regions. The modified set of filters leads to better separation of the noise and speech signals, and more accurate enhancement of spectral peaks. The improvements also lead to a significant reduction in musical noise. Continuity algorithms based on the properties of speech signals are used to further reduce the musical noise effect. The efficiency of the proposed method in enhancing the speech signal when the level of the background noise is fluctuating will be demonstrated. The performance of the improved speech enhancement method will be compared with various spectral subtraction-based methods. [Work supported by NSF BCS0236707.

  1. Theoretical Modeling of Intensity Noise in InGaN Semiconductor Lasers

    PubMed Central

    2014-01-01

    This paper introduces modeling and simulation of the noise properties of the blue-violet InGaN laser diodes. The noise is described in terms of the spectral properties of the relative intensity noise (RIN). We examine the validity of the present noise modeling by comparing the simulated results with the experimental measurements available in literature. We also compare the obtained noise results with those of AlGaAs lasers. Also, we examine the influence of gain suppression on the quantum RIN. In addition, we examine the changes in the RIN level when describing the gain suppression by the case of inhomogeneous spectral broadening. The results show that RIN of the InGaN laser is nearly 9 dB higher than that of the AlGaAs laser. PMID:25147848

  2. Niobe: Improved noise temperature and back ground noise suppression

    NASA Astrophysics Data System (ADS)

    Tobar, Michael E.; Locke, Clayton R.; Heng, Ik Siong; Ivanov, Eugene N.; Blair, David G.

    2000-06-01

    The calibration and sensitivity of the Niobe detector are presented. Typically the detector operates with a 1 mK noise temperature. A best noise temperature of 890 μK between 1300 to 2000 UTC for day 60 in 1997 is reported. The transducer has been upgraded with a new microwave amplifier, which has a measured electronic noise floor 40 dB lower than the previous amplifier, which is only 10 dB above the quantum limit. A detector noise temperature of 23 μk can be expected with this improvement. Also, we discuss a new filter to suppress accidental coincidences between two gravitational wave detectors. The filter is based on the amplitude ratio of events in pairs of detectors and improves the statistical significance of zero time delay coincidences. .

  3. Multi-scale graph-cut algorithm for efficient water-fat separation.

    PubMed

    Berglund, Johan; Skorpil, Mikael

    2017-09-01

    To improve the accuracy and robustness to noise in water-fat separation by unifying the multiscale and graph cut based approaches to B 0 -correction. A previously proposed water-fat separation algorithm that corrects for B 0 field inhomogeneity in 3D by a single quadratic pseudo-Boolean optimization (QPBO) graph cut was incorporated into a multi-scale framework, where field map solutions are propagated from coarse to fine scales for voxels that are not resolved by the graph cut. The accuracy of the single-scale and multi-scale QPBO algorithms was evaluated against benchmark reference datasets. The robustness to noise was evaluated by adding noise to the input data prior to water-fat separation. Both algorithms achieved the highest accuracy when compared with seven previously published methods, while computation times were acceptable for implementation in clinical routine. The multi-scale algorithm was more robust to noise than the single-scale algorithm, while causing only a small increase (+10%) of the reconstruction time. The proposed 3D multi-scale QPBO algorithm offers accurate water-fat separation, robustness to noise, and fast reconstruction. The software implementation is freely available to the research community. Magn Reson Med 78:941-949, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  4. Study of image matching algorithm and sub-pixel fitting algorithm in target tracking

    NASA Astrophysics Data System (ADS)

    Yang, Ming-dong; Jia, Jianjun; Qiang, Jia; Wang, Jian-yu

    2015-03-01

    Image correlation matching is a tracking method that searched a region most approximate to the target template based on the correlation measure between two images. Because there is no need to segment the image, and the computation of this method is little. Image correlation matching is a basic method of target tracking. This paper mainly studies the image matching algorithm of gray scale image, which precision is at sub-pixel level. The matching algorithm used in this paper is SAD (Sum of Absolute Difference) method. This method excels in real-time systems because of its low computation complexity. The SAD method is introduced firstly and the most frequently used sub-pixel fitting algorithms are introduced at the meantime. These fitting algorithms can't be used in real-time systems because they are too complex. However, target tracking often requires high real-time performance, we put forward a fitting algorithm named paraboloidal fitting algorithm based on the consideration above, this algorithm is simple and realized easily in real-time system. The result of this algorithm is compared with that of surface fitting algorithm through image matching simulation. By comparison, the precision difference between these two algorithms is little, it's less than 0.01pixel. In order to research the influence of target rotation on precision of image matching, the experiment of camera rotation was carried on. The detector used in the camera is a CMOS detector. It is fixed to an arc pendulum table, take pictures when the camera rotated different angles. Choose a subarea in the original picture as the template, and search the best matching spot using image matching algorithm mentioned above. The result shows that the matching error is bigger when the target rotation angle is larger. It's an approximate linear relation. Finally, the influence of noise on matching precision was researched. Gaussian noise and pepper and salt noise were added in the image respectively, and the image was processed by mean filter and median filter, then image matching was processed. The result show that when the noise is little, mean filter and median filter can achieve a good result. But when the noise density of salt and pepper noise is bigger than 0.4, or the variance of Gaussian noise is bigger than 0.0015, the result of image matching will be wrong.

  5. Maximum likelihood estimation of signal-to-noise ratio and combiner weight

    NASA Technical Reports Server (NTRS)

    Kalson, S.; Dolinar, S. J.

    1986-01-01

    An algorithm for estimating signal to noise ratio and combiner weight parameters for a discrete time series is presented. The algorithm is based upon the joint maximum likelihood estimate of the signal and noise power. The discrete-time series are the sufficient statistics obtained after matched filtering of a biphase modulated signal in additive white Gaussian noise, before maximum likelihood decoding is performed.

  6. Evolutionary Fuzzy Block-Matching-Based Camera Raw Image Denoising.

    PubMed

    Yang, Chin-Chang; Guo, Shu-Mei; Tsai, Jason Sheng-Hong

    2017-09-01

    An evolutionary fuzzy block-matching-based image denoising algorithm is proposed to remove noise from a camera raw image. Recently, a variance stabilization transform is widely used to stabilize the noise variance, so that a Gaussian denoising algorithm can be used to remove the signal-dependent noise in camera sensors. However, in the stabilized domain, the existed denoising algorithm may blur too much detail. To provide a better estimate of the noise-free signal, a new block-matching approach is proposed to find similar blocks by the use of a type-2 fuzzy logic system (FLS). Then, these similar blocks are averaged with the weightings which are determined by the FLS. Finally, an efficient differential evolution is used to further improve the performance of the proposed denoising algorithm. The experimental results show that the proposed denoising algorithm effectively improves the performance of image denoising. Furthermore, the average performance of the proposed method is better than those of two state-of-the-art image denoising algorithms in subjective and objective measures.

  7. EMD self-adaptive selecting relevant modes algorithm for FBG spectrum signal

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Wu, Chun-ting; Liu, Huan-lin

    2017-07-01

    Noise may reduce the demodulation accuracy of fiber Bragg grating (FBG) sensing signal so as to affect the quality of sensing detection. Thus, the recovery of a signal from observed noisy data is necessary. In this paper, a precise self-adaptive algorithm of selecting relevant modes is proposed to remove the noise of signal. Empirical mode decomposition (EMD) is first used to decompose a signal into a set of modes. The pseudo modes cancellation is introduced to identify and eliminate false modes, and then the Mutual Information (MI) of partial modes is calculated. MI is used to estimate the critical point of high and low frequency components. Simulation results show that the proposed algorithm estimates the critical point more accurately than the traditional algorithms for FBG spectral signal. While, compared to the similar algorithms, the signal noise ratio of the signal can be improved more than 10 dB after processing by the proposed algorithm, and correlation coefficient can be increased by 0.5, so it demonstrates better de-noising effect.

  8. Neural networks: Application to medical imaging

    NASA Technical Reports Server (NTRS)

    Clarke, Laurence P.

    1994-01-01

    The research mission is the development of computer assisted diagnostic (CAD) methods for improved diagnosis of medical images including digital x-ray sensors and tomographic imaging modalities. The CAD algorithms include advanced methods for adaptive nonlinear filters for image noise suppression, hybrid wavelet methods for feature segmentation and enhancement, and high convergence neural networks for feature detection and VLSI implementation of neural networks for real time analysis. Other missions include (1) implementation of CAD methods on hospital based picture archiving computer systems (PACS) and information networks for central and remote diagnosis and (2) collaboration with defense and medical industry, NASA, and federal laboratories in the area of dual use technology conversion from defense or aerospace to medicine.

  9. [A new peak detection algorithm of Raman spectra].

    PubMed

    Jiang, Cheng-Zhi; Sun, Qiang; Liu, Ying; Liang, Jing-Qiu; An, Yan; Liu, Bing

    2014-01-01

    The authors proposed a new Raman peak recognition method named bi-scale correlation algorithm. The algorithm uses the combination of the correlation coefficient and the local signal-to-noise ratio under two scales to achieve Raman peak identification. We compared the performance of the proposed algorithm with that of the traditional continuous wavelet transform method through MATLAB, and then tested the algorithm with real Raman spectra. The results show that the average time for identifying a Raman spectrum is 0.51 s with the algorithm, while it is 0.71 s with the continuous wavelet transform. When the signal-to-noise ratio of Raman peak is greater than or equal to 6 (modern Raman spectrometers feature an excellent signal-to-noise ratio), the recognition accuracy with the algorithm is higher than 99%, while it is less than 84% with the continuous wavelet transform method. The mean and the standard deviations of the peak position identification error of the algorithm are both less than that of the continuous wavelet transform method. Simulation analysis and experimental verification prove that the new algorithm possesses the following advantages: no needs of human intervention, no needs of de-noising and background removal operation, higher recognition speed and higher recognition accuracy. The proposed algorithm is operable in Raman peak identification.

  10. Intensity-enhanced MART for tomographic PIV

    NASA Astrophysics Data System (ADS)

    Wang, HongPing; Gao, Qi; Wei, RunJie; Wang, JinJun

    2016-05-01

    A novel technique to shrink the elongated particles and suppress the ghost particles in particle reconstruction of tomographic particle image velocimetry is presented. This method, named as intensity-enhanced multiplicative algebraic reconstruction technique (IntE-MART), utilizes an inverse diffusion function and an intensity suppressing factor to improve the quality of particle reconstruction and consequently the precision of velocimetry. A numerical assessment about vortex ring motion with and without image noise is performed to evaluate the new algorithm in terms of reconstruction, particle elongation and velocimetry. The simulation is performed at seven different seeding densities. The comparison of spatial filter MART and IntE-MART on the probability density function of particle peak intensity suggests that one of the local minima of the distribution can be used to separate the ghosts and actual particles. Thus, ghost removal based on IntE-MART is also introduced. To verify the application of IntE-MART, a real plate turbulent boundary layer experiment is performed. The result indicates that ghost reduction can increase the accuracy of RMS of velocity field.

  11. Cook-Levin Theorem Algorithmic-Reducibility/Completeness = Wilson Renormalization-(Semi)-Group Fixed-Points; ``Noise''-Induced Phase-Transitions (NITs) to Accelerate Algorithmics (``NIT-Picking'') REPLACING CRUTCHES!!!: Models: Turing-machine, finite-state-models, finite-automata

    NASA Astrophysics Data System (ADS)

    Young, Frederic; Siegel, Edward

    Cook-Levin theorem theorem algorithmic computational-complexity(C-C) algorithmic-equivalence reducibility/completeness equivalence to renormalization-(semi)-group phase-transitions critical-phenomena statistical-physics universality-classes fixed-points, is exploited via Siegel FUZZYICS =CATEGORYICS = ANALOGYICS =PRAGMATYICS/CATEGORY-SEMANTICS ONTOLOGY COGNITION ANALYTICS-Aristotle ``square-of-opposition'' tabular list-format truth-table matrix analytics predicts and implements ''noise''-induced phase-transitions (NITs) to accelerate versus to decelerate Harel [Algorithmics (1987)]-Sipser[Intro.Thy. Computation(`97)] algorithmic C-C: ''NIT-picking''(!!!), to optimize optimization-problems optimally(OOPO). Versus iso-''noise'' power-spectrum quantitative-only amplitude/magnitude-only variation stochastic-resonance, ''NIT-picking'' is ''noise'' power-spectrum QUALitative-type variation via quantitative critical-exponents variation. Computer-''science''/SEANCE algorithmic C-C models: Turing-machine, finite-state-models, finite-automata,..., discrete-maths graph-theory equivalence to physics Feynman-diagrams are identified as early-days once-workable valid but limiting IMPEDING CRUTCHES(!!!), ONLY IMPEDE latter-days new-insights!!!

  12. Emerging Techniques for Dose Optimization in Abdominal CT

    PubMed Central

    Platt, Joel F.; Goodsitt, Mitchell M.; Al-Hawary, Mahmoud M.; Maturen, Katherine E.; Wasnik, Ashish P.; Pandya, Amit

    2014-01-01

    Recent advances in computed tomographic (CT) scanning technique such as automated tube current modulation (ATCM), optimized x-ray tube voltage, and better use of iterative image reconstruction have allowed maintenance of good CT image quality with reduced radiation dose. ATCM varies the tube current during scanning to account for differences in patient attenuation, ensuring a more homogeneous image quality, although selection of the appropriate image quality parameter is essential for achieving optimal dose reduction. Reducing the x-ray tube voltage is best suited for evaluating iodinated structures, since the effective energy of the x-ray beam will be closer to the k-edge of iodine, resulting in a higher attenuation for the iodine. The optimal kilovoltage for a CT study should be chosen on the basis of imaging task and patient habitus. The aim of iterative image reconstruction is to identify factors that contribute to noise on CT images with use of statistical models of noise (statistical iterative reconstruction) and selective removal of noise to improve image quality. The degree of noise suppression achieved with statistical iterative reconstruction can be customized to minimize the effect of altered image quality on CT images. Unlike with statistical iterative reconstruction, model-based iterative reconstruction algorithms model both the statistical noise and the physical acquisition process, allowing CT to be performed with further reduction in radiation dose without an increase in image noise or loss of spatial resolution. Understanding these recently developed scanning techniques is essential for optimization of imaging protocols designed to achieve the desired image quality with a reduced dose. © RSNA, 2014 PMID:24428277

  13. SU-C-207-05: A Comparative Study of Noise-Reduction Algorithms for Low-Dose Cone-Beam Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, S; Yao, W

    2015-06-15

    Purpose: To study different noise-reduction algorithms and to improve the image quality of low dose cone beam CT for patient positioning in radiation therapy. Methods: In low-dose cone-beam CT, the reconstructed image is contaminated with excessive quantum noise. In this study, three well-developed noise reduction algorithms namely, a) penalized weighted least square (PWLS) method, b) split-Bregman total variation (TV) method, and c) compressed sensing (CS) method were studied and applied to the images of a computer–simulated “Shepp-Logan” phantom and a physical CATPHAN phantom. Up to 20% additive Gaussian noise was added to the Shepp-Logan phantom. The CATPHAN phantom was scannedmore » by a Varian OBI system with 100 kVp, 4 ms and 20 mA. For comparing the performance of these algorithms, peak signal-to-noise ratio (PSNR) of the denoised images was computed. Results: The algorithms were shown to have the potential in reducing the noise level for low-dose CBCT images. For Shepp-Logan phantom, an improvement of PSNR of 2 dB, 3.1 dB and 4 dB was observed using PWLS, TV and CS respectively, while for CATPHAN, the improvement was 1.2 dB, 1.8 dB and 2.1 dB, respectively. Conclusion: Penalized weighted least square, total variation and compressed sensing methods were studied and compared for reducing the noise on a simulated phantom and a physical phantom scanned by low-dose CBCT. The techniques have shown promising results for noise reduction in terms of PSNR improvement. However, reducing the noise without compromising the smoothness and resolution of the image needs more extensive research.« less

  14. Small-Noise Analysis and Symmetrization of Implicit Monte Carlo Samplers

    DOE PAGES

    Goodman, Jonathan; Lin, Kevin K.; Morzfeld, Matthias

    2015-07-06

    Implicit samplers are algorithms for producing independent, weighted samples from multivariate probability distributions. These are often applied in Bayesian data assimilation algorithms. We use Laplace asymptotic expansions to analyze two implicit samplers in the small noise regime. Our analysis suggests a symmetrization of the algorithms that leads to improved implicit sampling schemes at a relatively small additional cost. Here, computational experiments confirm the theory and show that symmetrization is effective for small noise sampling problems.

  15. Improvement of Frequency Locking Algorithm for Atomic Frequency Standards

    NASA Astrophysics Data System (ADS)

    Park, Young-Ho; Kang, Hoonsoo; Heyong Lee, Soo; Eon Park, Sang; Lee, Jong Koo; Lee, Ho Seong; Kwon, Taeg Yong

    2010-09-01

    The authors describe a novel method of frequency locking algorithm for atomic frequency standards. The new algorithm for locking the microwave frequency to the Ramsey resonance is compared with the old one that had been employed in the cesium atomic beam frequency standards such as NIST-7 and KRISS-1. Numerical simulations for testing the performance of the algorithm show that the new method has a noise filtering performance superior to the old one by a factor of 1.2 for the flicker signal noise and 1.4 for random-walk signal noise. The new algorithm can readily be used to enhance the frequency stability for a digital servo employing the slow square wave frequency modulation.

  16. Active Control of Fan Noise: Feasibility Study. Volume 4; Flyover System Noise Studies

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.; Janardan, B. A.; Gliebe, P. R.; Kontos, G. C.

    1996-01-01

    An extension of a prior study has been completed to examine the potential reduction of aircraft flyover noise by the method of active noise control (ANC). It is assumed that the ANC system will be designed such that it cancels discrete tones radiating from the engine fan inlet or fan exhaust duct, at least to the extent that they no longer protrude above the surrounding broadband noise levels. Thus, without considering the engineering details of the ANC system design, tone levels am arbitrarily removed from the engine component noise spectrum and the flyover noise EPNL levels are compared with and without the presence of tones. The study was conducted for a range of engine cycles, corresponding to fan pressure ratios of 1.3, 1.45, 1.6, and 1.75. This report is an extension of an effort reported previously. The major conclusions drawn from the prior study, which was restricted to fan pressure ratios of 1.45 and 1.75, are that, for a fan pressure ratio of 1.75, ANC of tones gives about the same suppression as acoustic treatment without ANC. For a fan pressure ratio of 1.45, ANC appears to offer less effectiveness from passive treatment. In the present study, the other two fan pressure ratios are included in a more detailed examination of the benefits of the ANC suppression levels. The key results of this extended study are the following observations: (1) The maximum overall benefit obtained from suppression of BPF alone was 2.5 EPNdB at high fan speeds. The suppression benefit increases with increase in fan pressure ratio (FPR), (2) The maximum overall benefit obtained from suppression of the first three harmonics was 3 EPNdB at high speeds. Suppression benefit increases with increase in FPR, (3) At low FPR, only about 1.0 EPNdB maximum reduction was obtained. Suppression is primarily from reduction of BPF at high FPR values and from the combination of tones at low FPR, (4) The benefit from ANC is about the same as the benefit from passive treatment at fan pressure ratios of 1.75 and 1.60. At the two lower fan pressure ratios, the effectivness of treatment is much greater than that of ANC, and (5) No significant difference in ANC suppression behavior was found from the QCSEE engine database analysis compared to that of the E3 engine database, for the FPR = 1.3 engine cycle. The effects of ANC on EPNL noise reduction are difficult to generalize. It was found that the reduction obtained in any particular case depended upon the frequency of the tones and their shift with rpm, the amount of ANC suppression received by each tone (which depended on its protrusion from the background), and the NOY-value of the tone relative to the NOY-value of other tones and the peak broadband levels, because PNL is determined from the sum of the NOY-values.

  17. Identification of noise artifacts in searches for long-duration gravitational-wave transients

    NASA Astrophysics Data System (ADS)

    Prestegard, Tanner; Thrane, Eric; Christensen, Nelson L.; Coughlin, Michael W.; Hubbert, Ben; Kandhasamy, Shivaraj; MacAyeal, Evan; Mandic, Vuk

    2012-05-01

    We present an algorithm for the identification of transient noise artifacts (glitches) in cross-correlation searches for long gravitational-wave (GW) transients lasting seconds to weeks. The algorithm utilizes the auto-power in each detector as a discriminator between well-behaved stationary noise (possibly including a GW signal) and non-stationary noise transients. We test the algorithm with both Monte Carlo noise and time-shifted data from the LIGO S5 science run and find that it removes a significant fraction of glitches while keeping the vast majority (99.6%) of the data. We show that this cleaned data can be used to observe GW signals at a significantly lower amplitude than can otherwise be achieved. Using an accretion disk instability signal model, we estimate that the algorithm is accidentally triggered at a rate of less than 10-5% by realistic signals, and less than 3% even for exceptionally loud signals. We conclude that the algorithm is a safe and effective method for cleaning the cross-correlation data used in searches for long GW transients.

  18. Robust optical flow using adaptive Lorentzian filter for image reconstruction under noisy condition

    NASA Astrophysics Data System (ADS)

    Kesrarat, Darun; Patanavijit, Vorapoj

    2017-02-01

    In optical flow for motion allocation, the efficient result in Motion Vector (MV) is an important issue. Several noisy conditions may cause the unreliable result in optical flow algorithms. We discover that many classical optical flows algorithms perform better result under noisy condition when combined with modern optimized model. This paper introduces effective robust models of optical flow by using Robust high reliability spatial based optical flow algorithms using the adaptive Lorentzian norm influence function in computation on simple spatial temporal optical flows algorithm. Experiment on our proposed models confirm better noise tolerance in optical flow's MV under noisy condition when they are applied over simple spatial temporal optical flow algorithms as a filtering model in simple frame-to-frame correlation technique. We illustrate the performance of our models by performing an experiment on several typical sequences with differences in movement speed of foreground and background where the experiment sequences are contaminated by the additive white Gaussian noise (AWGN) at different noise decibels (dB). This paper shows very high effectiveness of noise tolerance models that they are indicated by peak signal to noise ratio (PSNR).

  19. Giant Suppression of the Activation Rate in Dynamical Systems Exhibiting Chaotic Transitions

    NASA Astrophysics Data System (ADS)

    Gac, J. M.; Xafebrowski, J. J.

    2008-05-01

    The phenomenon of giant suppression of activation, when two or more correlated noise signals act on the system, was found a few years ago in dynamical bistable or metastable systems. When the correlation between these noise signals is strong enough and the amplitudes of the noise are chosen correctly --- the life time of the metastable state may be longer than in the case of the application of only a single noise even by many orders of magnitude. In this paper, we investigate similar phenomena in systems exhibiting several chaotic transitions: Pomeau--Manneville intermittency, boundary crisis and interior crisis induced intermittency. Our goal is to show that, in these systems the application of two noise components with the proper choice of the parameters in the case of intermittency can also lengthen the mean laminar phase length or, in the case of boundary crisis, lengthen the time the trajectory spends on the pre-crisis attractor. In systems with crisis induced intermittency, we introduce a new phenomenon we called quasi-deterministic giant suppression of activation in which the lengthening of the laminar phase lengths is caused not by the action of two correlated noise signals but by a single noise term which is correlated with one of the chaotic variables of the system.

  20. A Novel Method of Aircraft Detection Based on High-Resolution Panchromatic Optical Remote Sensing Images

    PubMed Central

    Wang, Wensheng; Nie, Ting; Fu, Tianjiao; Ren, Jianyue; Jin, Longxu

    2017-01-01

    In target detection of optical remote sensing images, two main obstacles for aircraft target detection are how to extract the candidates in complex gray-scale-multi background and how to confirm the targets in case the target shapes are deformed, irregular or asymmetric, such as that caused by natural conditions (low signal-to-noise ratio, illumination condition or swaying photographing) and occlusion by surrounding objects (boarding bridge, equipment). To solve these issues, an improved active contours algorithm, namely region-scalable fitting energy based threshold (TRSF), and a corner-convex hull based segmentation algorithm (CCHS) are proposed in this paper. Firstly, the maximal variance between-cluster algorithm (Otsu’s algorithm) and region-scalable fitting energy (RSF) algorithm are combined to solve the difficulty of targets extraction in complex and gray-scale-multi backgrounds. Secondly, based on inherent shapes and prominent corners, aircrafts are divided into five fragments by utilizing convex hulls and Harris corner points. Furthermore, a series of new structure features, which describe the proportion of targets part in the fragment to the whole fragment and the proportion of fragment to the whole hull, are identified to judge whether the targets are true or not. Experimental results show that TRSF algorithm could improve extraction accuracy in complex background, and that it is faster than some traditional active contours algorithms. The CCHS is effective to suppress the detection difficulties caused by the irregular shape. PMID:28481260

  1. Aeroacoustics of Flight Vehicles: Theory and Practice. Volume 2: Noise Control

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H. (Editor)

    1991-01-01

    Flight vehicles and the underlying concepts of noise generation, noise propagation, noise prediction, and noise control are studied. This volume includes those chapters that relate to flight vehicle noise control and operations: human response to aircraft noise; atmospheric propagation; theoretical models for duct acoustic propagation and radiation; design and performance of duct acoustic treatment; jet noise suppression; interior noise; flyover noise measurement and prediction; and quiet aircraft design and operational characteristics.

  2. Real-time segmentation of burst suppression patterns in critical care EEG monitoring

    PubMed Central

    Westover, M. Brandon; Shafi, Mouhsin M.; Ching, ShiNung; Chemali, Jessica J.; Purdon, Patrick L.; Cash, Sydney S.; Brown, Emery N.

    2014-01-01

    Objective Develop a real-time algorithm to automatically discriminate suppressions from non-suppressions (bursts) in electroencephalograms of critically ill adult patients. Methods A real-time method for segmenting adult ICU EEG data into bursts and suppressions is presented based on thresholding local voltage variance. Results are validated against manual segmentations by two experienced human electroencephalographers. We compare inter-rater agreement between manual EEG segmentations by experts with inter-rater agreement between human vs automatic segmentations, and investigate the robustness of segmentation quality to variations in algorithm parameter settings. We further compare the results of using these segmentations as input for calculating the burst suppression probability (BSP), a continuous measure of depth-of-suppression. Results Automated segmentation was comparable to manual segmentation, i.e. algorithm-vs-human agreement was comparable to human-vs-human agreement, as judged by comparing raw EEG segmentations or the derived BSP signals. Results were robust to modest variations in algorithm parameter settings. Conclusions Our automated method satisfactorily segments burst suppression data across a wide range adult ICU EEG patterns. Performance is comparable to or exceeds that of manual segmentation by human electroencephalographers. Significance Automated segmentation of burst suppression EEG patterns is an essential component of quantitative brain activity monitoring in critically ill and anesthetized adults. The segmentations produced by our algorithm provide a basis for accurate tracking of suppression depth. PMID:23891828

  3. Real-time segmentation of burst suppression patterns in critical care EEG monitoring.

    PubMed

    Brandon Westover, M; Shafi, Mouhsin M; Ching, Shinung; Chemali, Jessica J; Purdon, Patrick L; Cash, Sydney S; Brown, Emery N

    2013-09-30

    Develop a real-time algorithm to automatically discriminate suppressions from non-suppressions (bursts) in electroencephalograms of critically ill adult patients. A real-time method for segmenting adult ICU EEG data into bursts and suppressions is presented based on thresholding local voltage variance. Results are validated against manual segmentations by two experienced human electroencephalographers. We compare inter-rater agreement between manual EEG segmentations by experts with inter-rater agreement between human vs automatic segmentations, and investigate the robustness of segmentation quality to variations in algorithm parameter settings. We further compare the results of using these segmentations as input for calculating the burst suppression probability (BSP), a continuous measure of depth-of-suppression. Automated segmentation was comparable to manual segmentation, i.e. algorithm-vs-human agreement was comparable to human-vs-human agreement, as judged by comparing raw EEG segmentations or the derived BSP signals. Results were robust to modest variations in algorithm parameter settings. Our automated method satisfactorily segments burst suppression data across a wide range adult ICU EEG patterns. Performance is comparable to or exceeds that of manual segmentation by human electroencephalographers. Automated segmentation of burst suppression EEG patterns is an essential component of quantitative brain activity monitoring in critically ill and anesthetized adults. The segmentations produced by our algorithm provide a basis for accurate tracking of suppression depth. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Noise suppression system of OCDMA with spectral/spatial 2D hybrid code

    NASA Astrophysics Data System (ADS)

    Matem, Rima; Aljunid, S. A.; Junita, M. N.; Rashidi, C. B. M.; Shihab Aqrab, Israa

    2017-11-01

    In this paper, we propose a novel 2D spectral/spatial hybrid code based on 1D ZCC and 1D MD where the both present a zero cross correlation property analyzed and the influence of the noise of optical as Phase Induced Intensity Noise (PIIN), shot and thermal noise. This new code is shown effectively to mitigate the PIIN and suppresses MAI. Using 2D ZCC/MD code the performance of the system can be improved in term of as well as to support more simultaneous users compared of the 2D FCC/MDW and 2D DPDC codes.

  5. Flight velocity effects on jet noise of several variations of a 48-tube suppressor installed on a plug nozzle

    NASA Technical Reports Server (NTRS)

    Burley, R. R.; Head, V. L.

    1974-01-01

    Because of the relatively high takeoff speeds of supersonic transport aircraft, it is important to know if the flight velocity affects the noise level of suppressor nozzles. To investigate this, a modified F-106B aircraft was used to conduct a series of flyover and static tests on a 48-tube suppressor installed on an uncooled plug nozzle. Comparison of flyover and static spectra indicated that flight velocity had little effect on the noise suppression of the 48-tube suppressor configuration. However, flight velocity adversely affected noise suppression of the 48-tube suppressor with an acoustic shroud and plug installed.

  6. Comparison of parametric duct-burning turbofan and non-afterburning turbojet engines in a Mach 2.7 transport

    NASA Technical Reports Server (NTRS)

    Whitlow, J. B., Jr.

    1975-01-01

    A parametric study was made of duct-burning turbofan and suppressed dry turbojet engines installed in a supersonic transport. A range of fan pressure ratios was considered for the separate-flow-fan engines. The turbofan engines were studied both with and without jet noise suppressors. Single- as well as dual-stream suppression was considered. Attention was concentrated on designs yielding sideline noises of FAR 36 (108 EPNdB) and below. Trades were made between thrust and wing area for a constant takeoff field length. The turbofans produced lower airplane gross weights than the turbojets at FAR 36 and below. The advantage for the turbofans increased as the sideline noise limit was reduced. Jet noise suppression, especially for the duct stream, was very beneficial for the turbofan engines as long as duct burning was permitted during takeoff. The maximum dry unsuppressed takeoff mode, however, yielded better results at extremely low noise levels. Noise levels as low as FAR 36-11 EPNdB were obtained with a turbofan in this takeoff mode, but at a considerable gross weight penalty relative to the best FAR 36 results.

  7. a Universal De-Noising Algorithm for Ground-Based LIDAR Signal

    NASA Astrophysics Data System (ADS)

    Ma, Xin; Xiang, Chengzhi; Gong, Wei

    2016-06-01

    Ground-based lidar, working as an effective remote sensing tool, plays an irreplaceable role in the study of atmosphere, since it has the ability to provide the atmospheric vertical profile. However, the appearance of noise in a lidar signal is unavoidable, which leads to difficulties and complexities when searching for more information. Every de-noising method has its own characteristic but with a certain limitation, since the lidar signal will vary with the atmosphere changes. In this paper, a universal de-noising algorithm is proposed to enhance the SNR of a ground-based lidar signal, which is based on signal segmentation and reconstruction. The signal segmentation serving as the keystone of the algorithm, segments the lidar signal into three different parts, which are processed by different de-noising method according to their own characteristics. The signal reconstruction is a relatively simple procedure that is to splice the signal sections end to end. Finally, a series of simulation signal tests and real dual field-of-view lidar signal shows the feasibility of the universal de-noising algorithm.

  8. Application of analysis techniques for low frequency interior noise and vibration of commercial aircraft

    NASA Technical Reports Server (NTRS)

    Landmann, A. E.; Tillema, H. F.; Macgregor, G. R.

    1992-01-01

    Finite element analysis (FEA), statistical energy analysis (SEA), and a power flow method (computer program PAIN) were used to assess low frequency interior noise associated with advanced propeller installations. FEA and SEA models were used to predict cabin noise and vibration and evaluate suppression concepts for structure-borne noise associated with the shaft rotational frequency and harmonics (less than 100 Hz). SEA and PAIN models were used to predict cabin noise and vibration and evaluate suppression concepts for airborne noise associated with engine radiated propeller tones. Both aft-mounted and wing-mounted propeller configurations were evaluated. Ground vibration test data from a 727 airplane modified to accept a propeller engine were used to compare with predictions for the aft-mounted propeller. Similar data from the 767 airplane was used for the wing-mounted comparisons.

  9. An effective noise-suppression technique for surface microseismic data

    USGS Publications Warehouse

    Forghani-Arani, Farnoush; Willis, Mark; Haines, Seth S.; Batzle, Mike; Behura, Jyoti; Davidson, Michael

    2013-01-01

    The presence of strong surface-wave noise in surface microseismic data may decrease the utility of these data. We implement a technique, based on the distinct characteristics that microseismic signal and noise show in the τ‐p domain, to suppress surface-wave noise in microseismic data. Because most microseismic source mechanisms are deviatoric, preprocessing is necessary to correct for the nonuniform radiation pattern prior to transforming the data to the τ‐p domain. We employ a scanning approach, similar to semblance analysis, to test all possible double-couple orientations to determine an estimated orientation that best accounts for the polarity pattern of any microseismic events. We then correct the polarity of the data traces according to this pattern, prior to conducting signal-noise separation in the τ‐p domain. We apply our noise-suppression technique to two surface passive-seismic data sets from different acquisition surveys. The first data set includes a synthetic microseismic event added to field passive noise recorded by an areal receiver array distributed over a Barnett Formation reservoir undergoing hydraulic fracturing. The second data set is field microseismic data recorded by receivers arranged in a star-shaped array, over a Bakken Shale reservoir during a hydraulic-fracturing process. Our technique significantly improves the signal-to-noise ratios of the microseismic events and preserves the waveforms at the individual traces. We illustrate that the enhancement in signal-to-noise ratio also results in improved imaging of the microseismic hypocenter.

  10. Two-Microphone Spatial Filtering Improves Speech Reception for Cochlear-Implant Users in Reverberant Conditions With Multiple Noise Sources

    PubMed Central

    2014-01-01

    This study evaluates a spatial-filtering algorithm as a method to improve speech reception for cochlear-implant (CI) users in reverberant environments with multiple noise sources. The algorithm was designed to filter sounds using phase differences between two microphones situated 1 cm apart in a behind-the-ear hearing-aid capsule. Speech reception thresholds (SRTs) were measured using a Coordinate Response Measure for six CI users in 27 listening conditions including each combination of reverberation level (T60 = 0, 270, and 540 ms), number of noise sources (1, 4, and 11), and signal-processing algorithm (omnidirectional response, dipole-directional response, and spatial-filtering algorithm). Noise sources were time-reversed speech segments randomly drawn from the Institute of Electrical and Electronics Engineers sentence recordings. Target speech and noise sources were processed using a room simulation method allowing precise control over reverberation times and sound-source locations. The spatial-filtering algorithm was found to provide improvements in SRTs on the order of 6.5 to 11.0 dB across listening conditions compared with the omnidirectional response. This result indicates that such phase-based spatial filtering can improve speech reception for CI users even in highly reverberant conditions with multiple noise sources. PMID:25330772

  11. Jet Noise Modeling for Supersonic Business Jet Application

    NASA Technical Reports Server (NTRS)

    Stone, James R.; Krejsa, Eugene A.; Clark, Bruce J.

    2004-01-01

    This document describes the development of an improved predictive model for coannular jet noise, including noise suppression modifications applicable to small supersonic-cruise aircraft such as the Supersonic Business Jet (SBJ), for NASA Langley Research Center (LaRC). For such aircraft a wide range of propulsion and integration options are under consideration. Thus there is a need for very versatile design tools, including a noise prediction model. The approach used is similar to that used with great success by the Modern Technologies Corporation (MTC) in developing a noise prediction model for two-dimensional mixer ejector (2DME) nozzles under the High Speed Research Program and in developing a more recent model for coannular nozzles over a wide range of conditions. If highly suppressed configurations are ultimately required, the 2DME model is expected to provide reasonable prediction for these smaller scales, although this has not been demonstrated. It is considered likely that more modest suppression approaches, such as dual stream nozzles featuring chevron or chute suppressors, perhaps in conjunction with inverted velocity profiles (IVP), will be sufficient for the SBJ.

  12. Applications of fractional lower order S transform time frequency filtering algorithm to machine fault diagnosis

    PubMed Central

    Wang, Haibin; Zha, Daifeng; Li, Peng; Xie, Huicheng; Mao, Lili

    2017-01-01

    Stockwell transform(ST) time-frequency representation(ST-TFR) is a time frequency analysis method which combines short time Fourier transform with wavelet transform, and ST time frequency filtering(ST-TFF) method which takes advantage of time-frequency localized spectra can separate the signals from Gaussian noise. The ST-TFR and ST-TFF methods are used to analyze the fault signals, which is reasonable and effective in general Gaussian noise cases. However, it is proved that the mechanical bearing fault signal belongs to Alpha(α) stable distribution process(1 < α < 2) in this paper, even the noise also is α stable distribution in some special cases. The performance of ST-TFR method will degrade under α stable distribution noise environment, following the ST-TFF method fail. Hence, a new fractional lower order ST time frequency representation(FLOST-TFR) method employing fractional lower order moment and ST and inverse FLOST(IFLOST) are proposed in this paper. A new FLOST time frequency filtering(FLOST-TFF) algorithm based on FLOST-TFR method and IFLOST is also proposed, whose simplified method is presented in this paper. The discrete implementation of FLOST-TFF algorithm is deduced, and relevant steps are summarized. Simulation results demonstrate that FLOST-TFR algorithm is obviously better than the existing ST-TFR algorithm under α stable distribution noise, which can work better under Gaussian noise environment, and is robust. The FLOST-TFF method can effectively filter out α stable distribution noise, and restore the original signal. The performance of FLOST-TFF algorithm is better than the ST-TFF method, employing which mixed MSEs are smaller when α and generalized signal noise ratio(GSNR) change. Finally, the FLOST-TFR and FLOST-TFF methods are applied to analyze the outer race fault signal and extract their fault features under α stable distribution noise, where excellent performances can be shown. PMID:28406916

  13. Image denoising based on noise detection

    NASA Astrophysics Data System (ADS)

    Jiang, Yuanxiang; Yuan, Rui; Sun, Yuqiu; Tian, Jinwen

    2018-03-01

    Because of the noise points in the images, any operation of denoising would change the original information of non-noise pixel. A noise detection algorithm based on fractional calculus was proposed to denoise in this paper. Convolution of the image was made to gain direction gradient masks firstly. Then, the mean gray was calculated to obtain the gradient detection maps. Logical product was made to acquire noise position image next. Comparisons in the visual effect and evaluation parameters after processing, the results of experiment showed that the denoising algorithms based on noise were better than that of traditional methods in both subjective and objective aspects.

  14. Denoising and 4D visualization of OCT images

    PubMed Central

    Gargesha, Madhusudhana; Jenkins, Michael W.; Rollins, Andrew M.; Wilson, David L.

    2009-01-01

    We are using Optical Coherence Tomography (OCT) to image structure and function of the developing embryonic heart in avian models. Fast OCT imaging produces very large 3D (2D + time) and 4D (3D volumes + time) data sets, which greatly challenge ones ability to visualize results. Noise in OCT images poses additional challenges. We created an algorithm with a quick, data set specific optimization for reduction of both shot and speckle noise and applied it to 3D visualization and image segmentation in OCT. When compared to baseline algorithms (median, Wiener, orthogonal wavelet, basic non-orthogonal wavelet), a panel of experts judged the new algorithm to give much improved volume renderings concerning both noise and 3D visualization. Specifically, the algorithm provided a better visualization of the myocardial and endocardial surfaces, and the interaction of the embryonic heart tube with surrounding tissue. Quantitative evaluation using an image quality figure of merit also indicated superiority of the new algorithm. Noise reduction aided semi-automatic 2D image segmentation, as quantitatively evaluated using a contour distance measure with respect to an expert segmented contour. In conclusion, the noise reduction algorithm should be quite useful for visualization and quantitative measurements (e.g., heart volume, stroke volume, contraction velocity, etc.) in OCT embryo images. With its semi-automatic, data set specific optimization, we believe that the algorithm can be applied to OCT images from other applications. PMID:18679509

  15. A combined multi-interferogram algorithm for high resolution DEM reconstruction over deformed regions with TerraSAR-X data

    NASA Astrophysics Data System (ADS)

    Zhao, Chaoying; Qu, Feifei; Zhang, Qin; Zhu, Wu

    2012-10-01

    The accuracy of DEM generated with interferometric synthetic aperture radar (InSAR) technique mostly depends on phase unwrapping errors, atmospheric effects, baseline errors and phase noise. The first term is more serious if the high-resolution TerraSAR-X data over urban regions and mountainous regions are applied. In addition, the deformation effect cannot be neglected if the study regions are suffering from surface deformation within the SAR acquisition dates. In this paper, several measures have been taken to generate high resolution DEM over urban regions and mountainous regions with TerraSAR data. The SAR interferometric pairs are divided into two subsets: (a) DEM subsets and (b) deformation subsets. These two interferometric sets serve to generate DEM and deformation, respectively. The external DEM is applied to assist the phase unwrapping with "remove-restore" procedure. The deformation phase is re-scaled and subtracted from each DEM observations. Lastly, the stochastic errors including atmospheric effects and phase noise are suppressed by averaging heights from several interferograms with weights. Six TerraSAR-X data are applied to generate a 6-m-resolution DEM over Xi'an, China using these procedures. Both discrete GPS heights and local high resolution and high precision DEM data are applied to calibrate the DEM generated with our algorithm, and around 4.1 m precision is achieved.

  16. Performance evaluation of image denoising developed using convolutional denoising autoencoders in chest radiography

    NASA Astrophysics Data System (ADS)

    Lee, Donghoon; Choi, Sunghoon; Kim, Hee-Joung

    2018-03-01

    When processing medical images, image denoising is an important pre-processing step. Various image denoising algorithms have been developed in the past few decades. Recently, image denoising using the deep learning method has shown excellent performance compared to conventional image denoising algorithms. In this study, we introduce an image denoising technique based on a convolutional denoising autoencoder (CDAE) and evaluate clinical applications by comparing existing image denoising algorithms. We train the proposed CDAE model using 3000 chest radiograms training data. To evaluate the performance of the developed CDAE model, we compare it with conventional denoising algorithms including median filter, total variation (TV) minimization, and non-local mean (NLM) algorithms. Furthermore, to verify the clinical effectiveness of the developed denoising model with CDAE, we investigate the performance of the developed denoising algorithm on chest radiograms acquired from real patients. The results demonstrate that the proposed denoising algorithm developed using CDAE achieves a superior noise-reduction effect in chest radiograms compared to TV minimization and NLM algorithms, which are state-of-the-art algorithms for image noise reduction. For example, the peak signal-to-noise ratio and structure similarity index measure of CDAE were at least 10% higher compared to conventional denoising algorithms. In conclusion, the image denoising algorithm developed using CDAE effectively eliminated noise without loss of information on anatomical structures in chest radiograms. It is expected that the proposed denoising algorithm developed using CDAE will be effective for medical images with microscopic anatomical structures, such as terminal bronchioles.

  17. Rapid Protein Global Fold Determination Using Ultrasparse Sampling, High-Dynamic Range Artifact Suppression, and Time-Shared NOESY

    PubMed Central

    Coggins, Brian E.; Werner-Allen, Jonathan W.; Yan, Anthony; Zhou, Pei

    2012-01-01

    In structural studies of large proteins by NMR, global fold determination plays an increasingly important role in providing a first look at a target’s topology and reducing assignment ambiguity in NOESY spectra of fully-protonated samples. In this work, we demonstrate the use of ultrasparse sampling, a new data processing algorithm, and a 4-D time-shared NOESY experiment (1) to collect all NOEs in 2H/13C/15N-labeled protein samples with selectively-protonated amide and ILV methyl groups at high resolution in only four days, and (2) to calculate global folds from this data using fully automated resonance assignment. The new algorithm, SCRUB, incorporates the CLEAN method for iterative artifact removal, but applies an additional level of iteration, permitting real signals to be distinguished from noise and allowing nearly all artifacts generated by real signals to be eliminated. In simulations with 1.2% of the data required by Nyquist sampling, SCRUB achieves a dynamic range over 10000:1 (250× better artifact suppression than CLEAN) and completely quantitative reproduction of signal intensities, volumes, and lineshapes. Applied to 4-D time-shared NOESY data, SCRUB processing dramatically reduces aliasing noise from strong diagonal signals, enabling the identification of weak NOE crosspeaks with intensities 100× less than diagonal signals. Nearly all of the expected peaks for interproton distances under 5 Å were observed. The practical benefit of this method is demonstrated with structure calculations for 23 kDa and 29 kDa test proteins using the automated assignment protocol of CYANA, in which unassigned 4-D time-shared NOESY peak lists produce accurate and well-converged global fold ensembles, whereas 3-D peak lists either fail to converge or produce significantly less accurate folds. The approach presented here succeeds with an order of magnitude less sampling than required by alternative methods for processing sparse 4-D data. PMID:22946863

  18. Optimal signal constellation design for ultra-high-speed optical transport in the presence of nonlinear phase noise.

    PubMed

    Liu, Tao; Djordjevic, Ivan B

    2014-12-29

    In this paper, we first describe an optimal signal constellation design algorithm suitable for the coherent optical channels dominated by the linear phase noise. Then, we modify this algorithm to be suitable for the nonlinear phase noise dominated channels. In optimization procedure, the proposed algorithm uses the cumulative log-likelihood function instead of the Euclidian distance. Further, an LDPC coded modulation scheme is proposed to be used in combination with signal constellations obtained by proposed algorithm. Monte Carlo simulations indicate that the LDPC-coded modulation schemes employing the new constellation sets, obtained by our new signal constellation design algorithm, outperform corresponding QAM constellations significantly in terms of transmission distance and have better nonlinearity tolerance.

  19. A modified 3D algorithm for road traffic noise attenuation calculations in large urban areas.

    PubMed

    Wang, Haibo; Cai, Ming; Yao, Yifan

    2017-07-01

    The primary objective of this study is the development and application of a 3D road traffic noise attenuation calculation algorithm. First, the traditional empirical method does not address problems caused by non-direct occlusion by buildings and the different building heights. In contrast, this study considers the volume ratio of the buildings and the area ratio of the projection of buildings adjacent to the road. The influence of the ground affection is analyzed. The insertion loss due to barriers (infinite length and finite barriers) is also synthesized in the algorithm. Second, the impact of different road segmentation is analyzed. Through the case of Pearl River New Town, it is recommended that 5° is the most appropriate scanning angle as the computational time is acceptable and the average error is approximately 3.1 dB. In addition, the algorithm requires only 1/17 of the time that the beam tracking method requires at the cost of more imprecise calculation results. Finally, the noise calculation for a large urban area with a high density of buildings shows the feasibility of the 3D noise attenuation calculation algorithm. The algorithm is expected to be applied in projects requiring large area noise simulations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. An unbiased risk estimator for image denoising in the presence of mixed poisson-gaussian noise.

    PubMed

    Le Montagner, Yoann; Angelini, Elsa D; Olivo-Marin, Jean-Christophe

    2014-03-01

    The behavior and performance of denoising algorithms are governed by one or several parameters, whose optimal settings depend on the content of the processed image and the characteristics of the noise, and are generally designed to minimize the mean squared error (MSE) between the denoised image returned by the algorithm and a virtual ground truth. In this paper, we introduce a new Poisson-Gaussian unbiased risk estimator (PG-URE) of the MSE applicable to a mixed Poisson-Gaussian noise model that unifies the widely used Gaussian and Poisson noise models in fluorescence bioimaging applications. We propose a stochastic methodology to evaluate this estimator in the case when little is known about the internal machinery of the considered denoising algorithm, and we analyze both theoretically and empirically the characteristics of the PG-URE estimator. Finally, we evaluate the PG-URE-driven parametrization for three standard denoising algorithms, with and without variance stabilizing transforms, and different characteristics of the Poisson-Gaussian noise mixture.

  1. An improved algorithm of laser spot center detection in strong noise background

    NASA Astrophysics Data System (ADS)

    Zhang, Le; Wang, Qianqian; Cui, Xutai; Zhao, Yu; Peng, Zhong

    2018-01-01

    Laser spot center detection is demanded in many applications. The common algorithms for laser spot center detection such as centroid and Hough transform method have poor anti-interference ability and low detection accuracy in the condition of strong background noise. In this paper, firstly, the median filtering was used to remove the noise while preserving the edge details of the image. Secondly, the binarization of the laser facula image was carried out to extract target image from background. Then the morphological filtering was performed to eliminate the noise points inside and outside the spot. At last, the edge of pretreated facula image was extracted and the laser spot center was obtained by using the circle fitting method. In the foundation of the circle fitting algorithm, the improved algorithm added median filtering, morphological filtering and other processing methods. This method could effectively filter background noise through theoretical analysis and experimental verification, which enhanced the anti-interference ability of laser spot center detection and also improved the detection accuracy.

  2. Comparison between beamforming and super resolution imaging algorithms for non-destructive evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Chengguang; Drinkwater, Bruce W.

    In this paper the performance of total focusing method is compared with the widely used time-reversal MUSIC super resolution technique. The algorithms are tested with simulated and experimental ultrasonic array data, each containing different noise levels. The simulated time domain signals allow the effects of array geometry, frequency, scatterer location, scatterer size, scatterer separation and random noise to be carefully controlled. The performance of the imaging algorithms is evaluated in terms of resolution and sensitivity to random noise. It is shown that for the low noise situation, time-reversal MUSIC provides enhanced lateral resolution when compared to the total focusing method.more » However, for higher noise levels, the total focusing method shows robustness, whilst the performance of time-reversal MUSIC is significantly degraded.« less

  3. Observation of Shot Noise Suppression at Optical Wavelengths in a Relativistic Electron Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratner, Daniel; Stupakov, Gennady; /SLAC

    2012-06-19

    Control of collective properties of relativistic particles is increasingly important in modern accelerators. In particular, shot noise affects accelerator performance by driving instabilities or by competing with coherent processes. We present experimental observations of shot noise suppression in a relativistic beam at the Linac Coherent Light Source. By adjusting the dispersive strength of a chicane, we observe a decrease in the optical transition radiation emitted from a downstream foil. We show agreement between the experimental results, theoretical models, and 3D particle simulations.

  4. Speech Enhancement of Mobile Devices Based on the Integration of a Dual Microphone Array and a Background Noise Elimination Algorithm.

    PubMed

    Chen, Yung-Yue

    2018-05-08

    Mobile devices are often used in our daily lives for the purposes of speech and communication. The speech quality of mobile devices is always degraded due to the environmental noises surrounding mobile device users. Regretfully, an effective background noise reduction solution cannot easily be developed for this speech enhancement problem. Due to these depicted reasons, a methodology is systematically proposed to eliminate the effects of background noises for the speech communication of mobile devices. This methodology integrates a dual microphone array with a background noise elimination algorithm. The proposed background noise elimination algorithm includes a whitening process, a speech modelling method and an H ₂ estimator. Due to the adoption of the dual microphone array, a low-cost design can be obtained for the speech enhancement of mobile devices. Practical tests have proven that this proposed method is immune to random background noises, and noiseless speech can be obtained after executing this denoise process.

  5. Comparing Binaural Pre-processing Strategies III

    PubMed Central

    Warzybok, Anna; Ernst, Stephan M. A.

    2015-01-01

    A comprehensive evaluation of eight signal pre-processing strategies, including directional microphones, coherence filters, single-channel noise reduction, binaural beamformers, and their combinations, was undertaken with normal-hearing (NH) and hearing-impaired (HI) listeners. Speech reception thresholds (SRTs) were measured in three noise scenarios (multitalker babble, cafeteria noise, and single competing talker). Predictions of three common instrumental measures were compared with the general perceptual benefit caused by the algorithms. The individual SRTs measured without pre-processing and individual benefits were objectively estimated using the binaural speech intelligibility model. Ten listeners with NH and 12 HI listeners participated. The participants varied in age and pure-tone threshold levels. Although HI listeners required a better signal-to-noise ratio to obtain 50% intelligibility than listeners with NH, no differences in SRT benefit from the different algorithms were found between the two groups. With the exception of single-channel noise reduction, all algorithms showed an improvement in SRT of between 2.1 dB (in cafeteria noise) and 4.8 dB (in single competing talker condition). Model predictions with binaural speech intelligibility model explained 83% of the measured variance of the individual SRTs in the no pre-processing condition. Regarding the benefit from the algorithms, the instrumental measures were not able to predict the perceptual data in all tested noise conditions. The comparable benefit observed for both groups suggests a possible application of noise reduction schemes for listeners with different hearing status. Although the model can predict the individual SRTs without pre-processing, further development is necessary to predict the benefits obtained from the algorithms at an individual level. PMID:26721922

  6. MuLoG, or How to Apply Gaussian Denoisers to Multi-Channel SAR Speckle Reduction?

    PubMed

    Deledalle, Charles-Alban; Denis, Loic; Tabti, Sonia; Tupin, Florence

    2017-09-01

    Speckle reduction is a longstanding topic in synthetic aperture radar (SAR) imaging. Since most current and planned SAR imaging satellites operate in polarimetric, interferometric, or tomographic modes, SAR images are multi-channel and speckle reduction techniques must jointly process all channels to recover polarimetric and interferometric information. The distinctive nature of SAR signal (complex-valued, corrupted by multiplicative fluctuations) calls for the development of specialized methods for speckle reduction. Image denoising is a very active topic in image processing with a wide variety of approaches and many denoising algorithms available, almost always designed for additive Gaussian noise suppression. This paper proposes a general scheme, called MuLoG (MUlti-channel LOgarithm with Gaussian denoising), to include such Gaussian denoisers within a multi-channel SAR speckle reduction technique. A new family of speckle reduction algorithms can thus be obtained, benefiting from the ongoing progress in Gaussian denoising, and offering several speckle reduction results often displaying method-specific artifacts that can be dismissed by comparison between results.

  7. Post-processing images from the WFIRST-AFTA coronagraph testbed

    NASA Astrophysics Data System (ADS)

    Zimmerman, Neil T.; Ygouf, Marie; Pueyo, Laurent; Soummer, Remi; Perrin, Marshall D.; Mennesson, Bertrand; Cady, Eric; Mejia Prada, Camilo

    2016-01-01

    The concept for the exoplanet imaging instrument on WFIRST-AFTA relies on the development of mission-specific data processing tools to reduce the speckle noise floor. No instruments have yet functioned on the sky in the planet-to-star contrast regime of the proposed coronagraph (1E-8). Therefore, starlight subtraction algorithms must be tested on a combination of simulated and laboratory data sets to give confidence that the scientific goals can be reached. The High Contrast Imaging Testbed (HCIT) at Jet Propulsion Lab has carried out several technology demonstrations for the instrument concept, demonstrating 1E-8 raw (absolute) contrast. Here, we have applied a mock reference differential imaging strategy to HCIT data sets, treating one subset of images as a reference star observation and another subset as a science target observation. We show that algorithms like KLIP (Karhunen-Loève Image Projection), by suppressing residual speckles, enable the recovery of exoplanet signals at contrast of order 2E-9.

  8. Comparison of muzzle suppression and ear-level hearing protection in firearm use.

    PubMed

    Branch, Matthew Parker

    2011-06-01

    To compare noise reduction of commercially available ear-level hearing protection (muffs/inserts) to that of firearm muzzle suppressors. Experimental sound measurements under consistent environmental conditions. None. Muzzle suppressors for 2 pistol and 2 rifle calibers were tested using the Bruel & Kjaer 2209 sound meter and Bruel & Kjaer 4136 microphone calibrated with the Bruel & Kjaer Pistonphone using Military-Standard 1474D placement protocol. Five shots were recorded unsuppressed and 10 shots suppressed under consistent environmental conditions. Sound reduction was then compared with the real-world noise reduction rate of the best available ear-level protectors. All suppressors offered significantly greater noise reduction than ear-level protection, usually greater than 50% better. Noise reduction of all ear-level protectors is unable to reduce the impulse pressure below 140 dB for certain common firearms, an international standard for prevention of sensorineural hearing loss. Modern muzzle-level suppression is vastly superior to ear-level protection and the only available form of suppression capable of making certain sporting arms safe for hearing. The inadequacy of standard hearing protectors with certain common firearms is not recognized by most hearing professionals or their patients and should affect the way hearing professionals counsel patients and the public.

  9. Robust dynamic myocardial perfusion CT deconvolution for accurate residue function estimation via adaptive-weighted tensor total variation regularization: a preclinical study.

    PubMed

    Zeng, Dong; Gong, Changfei; Bian, Zhaoying; Huang, Jing; Zhang, Xinyu; Zhang, Hua; Lu, Lijun; Niu, Shanzhou; Zhang, Zhang; Liang, Zhengrong; Feng, Qianjin; Chen, Wufan; Ma, Jianhua

    2016-11-21

    Dynamic myocardial perfusion computed tomography (MPCT) is a promising technique for quick diagnosis and risk stratification of coronary artery disease. However, one major drawback of dynamic MPCT imaging is the heavy radiation dose to patients due to its dynamic image acquisition protocol. In this work, to address this issue, we present a robust dynamic MPCT deconvolution algorithm via adaptive-weighted tensor total variation (AwTTV) regularization for accurate residue function estimation with low-mA s data acquisitions. For simplicity, the presented method is termed 'MPD-AwTTV'. More specifically, the gains of the AwTTV regularization over the original tensor total variation regularization are from the anisotropic edge property of the sequential MPCT images. To minimize the associative objective function we propose an efficient iterative optimization strategy with fast convergence rate in the framework of an iterative shrinkage/thresholding algorithm. We validate and evaluate the presented algorithm using both digital XCAT phantom and preclinical porcine data. The preliminary experimental results have demonstrated that the presented MPD-AwTTV deconvolution algorithm can achieve remarkable gains in noise-induced artifact suppression, edge detail preservation, and accurate flow-scaled residue function and MPHM estimation as compared with the other existing deconvolution algorithms in digital phantom studies, and similar gains can be obtained in the porcine data experiment.

  10. Robust dynamic myocardial perfusion CT deconvolution for accurate residue function estimation via adaptive-weighted tensor total variation regularization: a preclinical study

    NASA Astrophysics Data System (ADS)

    Zeng, Dong; Gong, Changfei; Bian, Zhaoying; Huang, Jing; Zhang, Xinyu; Zhang, Hua; Lu, Lijun; Niu, Shanzhou; Zhang, Zhang; Liang, Zhengrong; Feng, Qianjin; Chen, Wufan; Ma, Jianhua

    2016-11-01

    Dynamic myocardial perfusion computed tomography (MPCT) is a promising technique for quick diagnosis and risk stratification of coronary artery disease. However, one major drawback of dynamic MPCT imaging is the heavy radiation dose to patients due to its dynamic image acquisition protocol. In this work, to address this issue, we present a robust dynamic MPCT deconvolution algorithm via adaptive-weighted tensor total variation (AwTTV) regularization for accurate residue function estimation with low-mA s data acquisitions. For simplicity, the presented method is termed ‘MPD-AwTTV’. More specifically, the gains of the AwTTV regularization over the original tensor total variation regularization are from the anisotropic edge property of the sequential MPCT images. To minimize the associative objective function we propose an efficient iterative optimization strategy with fast convergence rate in the framework of an iterative shrinkage/thresholding algorithm. We validate and evaluate the presented algorithm using both digital XCAT phantom and preclinical porcine data. The preliminary experimental results have demonstrated that the presented MPD-AwTTV deconvolution algorithm can achieve remarkable gains in noise-induced artifact suppression, edge detail preservation, and accurate flow-scaled residue function and MPHM estimation as compared with the other existing deconvolution algorithms in digital phantom studies, and similar gains can be obtained in the porcine data experiment.

  11. DEMON-type algorithms for determination of hydro-acoustic signatures of surface ships and of divers

    NASA Astrophysics Data System (ADS)

    Slamnoiu, G.; Radu, O.; Rosca, V.; Pascu, C.; Damian, R.; Surdu, G.; Curca, E.; Radulescu, A.

    2016-08-01

    With the project “System for detection, localization, tracking and identification of risk factors for strategic importance in littoral areas”, developed in the National Programme II, the members of the research consortium intend to develop a functional model for a hydroacoustic passive subsystem for determination of acoustic signatures of targets such as fast boats and autonomous divers. This paper presents some of the results obtained in the area of hydroacoustic signal processing by using DEMON-type algorithms (Detection of Envelope Modulation On Noise). For evaluation of the performance of various algorithm variations we have used both audio recordings of the underwater noise generated by ships and divers in real situations and also simulated noises. We have analysed the results of processing these signals using four DEMON algorithm structures as presented in the reference literature and a fifth DEMON algorithm structure proposed by the authors of this paper. The algorithm proposed by the authors generates similar results to those obtained by applying the traditional algorithms but requires less computing resources than those and at the same time it has proven to be more resilient to random noise influence.

  12. Model- based filtering for artifact and noise suppression with state estimation for electrodermal activity measurements in real time.

    PubMed

    Tronstad, Christian; Staal, Odd M; Saelid, Steinar; Martinsen, Orjan G

    2015-08-01

    Measurement of electrodermal activity (EDA) has recently made a transition from the laboratory into daily life with the emergence of wearable devices. Movement and nongelled electrodes make these devices more susceptible to noise and artifacts. In addition, real-time interpretation of the measurement is needed for user feedback. The Kalman filter approach may conveniently deal with both these issues. This paper presents a biophysical model for EDA implemented in an extended Kalman filter. Employing the filter on data from Physionet along with simulated noise and artifacts demonstrates noise and artifact suppression while implicitly providing estimates of model states and parameters such as the sudomotor nerve activation.

  13. Suppression of background noise in a transonic wind-tunnel test section

    NASA Technical Reports Server (NTRS)

    Schutzenhofer, L. A.; Howard, P. W.

    1975-01-01

    Some exploratory tests were recently performed in the transonic test section of the NASA Marshall Space Flight Center 14-in. wind tunnel to suppress the background noise. In these tests, the perforated walls of the test section were covered with fine wire screens. The screens eliminated the edge tones generated by the holes in the perforated walls and significantly reduced the tunnel background noise. The tunnel noise levels were reduced to such a degree by this simple modification at Mach numbers 0.75, 0.9, 1.1, 1.2, and 1.46 that the fluctuating pressure levels of a turbulent boundary layer could be measured on a 5-deg half-angle cone.

  14. Fast frequency acquisition via adaptive least squares algorithm

    NASA Technical Reports Server (NTRS)

    Kumar, R.

    1986-01-01

    A new least squares algorithm is proposed and investigated for fast frequency and phase acquisition of sinusoids in the presence of noise. This algorithm is a special case of more general, adaptive parameter-estimation techniques. The advantages of the algorithms are their conceptual simplicity, flexibility and applicability to general situations. For example, the frequency to be acquired can be time varying, and the noise can be nonGaussian, nonstationary and colored. As the proposed algorithm can be made recursive in the number of observations, it is not necessary to have a priori knowledge of the received signal-to-noise ratio or to specify the measurement time. This would be required for batch processing techniques, such as the fast Fourier transform (FFT). The proposed algorithm improves the frequency estimate on a recursive basis as more and more observations are obtained. When the algorithm is applied in real time, it has the extra advantage that the observations need not be stored. The algorithm also yields a real time confidence measure as to the accuracy of the estimator.

  15. Noise Suppression Methods for Robust Speech Processing

    DTIC Science & Technology

    1981-04-01

    1]. Techniques available for voice processor modification to account for noise contamination are being developed [4]. Preprocessor noise reduction...analysis window function. Principles governing discrete implementation of the transform pair are discussed, and relationships are formalized which specify

  16. Suppression of low-frequency charge noise in gates-defined GaAs quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Jie; Li, Hai-Ou, E-mail: haiouli@ustc.edu.cn, E-mail: gpguo@ustc.edu.cn; Wang, Ke

    To reduce the charge noise of a modulation-doped GaAs/AlGaAs quantum dot, we have fabricated shallow-etched GaAs/AlGaAs quantum dots using the wet-etching method to study the effects of two-dimensional electron gas (2DEG) underneath the metallic gates. The low-frequency 1/f noise in the Coulomb blockade region of the shallow-etched quantum dot is compared with a non-etched quantum dot on the same wafer. The average values of the gate noise are approximately 0.5 μeV in the shallow-etched quantum dot and 3 μeV in the regular quantum dot. Our results show the quantum dot low-frequency charge noise can be suppressed by the removal ofmore » the 2DEG underneath the metallic gates, which provides an architecture for noise reduction.« less

  17. Forward velocity effects on fan noise and the suppression characteristics of advanced inlets as measured in the NASA Ames 40 by 80 foot wind tunnel: Acoustic data report

    NASA Technical Reports Server (NTRS)

    Moore, M. T.

    1981-01-01

    Forward velocity effects on the forward radiated fan noise and on the suppression characteristics of three advanced inlets relative to a baseline cylindrical inlet were measured in a wind tunnel. A modified JT15D turbofan engine in a quiet nacelle was the source of fan noise; the advanced inlets were a CTOL hybrid inlet, an STOL hybrid inlet, and a treated deflector inlet. Also measured were the static to flight effects on the baseline inlet noise and the effects on the fan noise of canting the baseline inlet 4 deg downward to simulate typical wing mounted turbofan engines. The 1/3 octave band noise data from these tests are given along with selected plots of 1/3 octave band spectra and directivity and full scale PNL directivities. The test facilities and data reduction techniques used are also described.

  18. Jet engine noise source and noise footprint computer programs

    NASA Technical Reports Server (NTRS)

    Dunn, D. G.; Peart, N. A.; Miller, D. L.; Crowley, K. C.

    1972-01-01

    Calculation procedures are presented for predicting maximum passby noise levels and contours (footprints) of conventional jet aircraft with or without noise suppression devices. The procedures have been computerized and a user's guide is presented for the computer programs to be used in predicting the noise characteristics during aircraft takeoffs, fly-over, and/or landing operations.

  19. Noise reduction technologies implemented in head-worn preprocessors for improving cochlear implant performance in reverberant noise fields.

    PubMed

    Chung, King; Nelson, Lance; Teske, Melissa

    2012-09-01

    The purpose of this study was to investigate whether a multichannel adaptive directional microphone and a modulation-based noise reduction algorithm could enhance cochlear implant performance in reverberant noise fields. A hearing aid was modified to output electrical signals (ePreprocessor) and a cochlear implant speech processor was modified to receive electrical signals (eProcessor). The ePreprocessor was programmed to flat frequency response and linear amplification. Cochlear implant listeners wore the ePreprocessor-eProcessor system in three reverberant noise fields: 1) one noise source with variable locations; 2) three noise sources with variable locations; and 3) eight evenly spaced noise sources from 0° to 360°. Listeners' speech recognition scores were tested when the ePreprocessor was programmed to omnidirectional microphone (OMNI), omnidirectional microphone plus noise reduction algorithm (OMNI + NR), and adaptive directional microphone plus noise reduction algorithm (ADM + NR). They were also tested with their own cochlear implant speech processor (CI_OMNI) in the three noise fields. Additionally, listeners rated overall sound quality preferences on recordings made in the noise fields. Results indicated that ADM+NR produced the highest speech recognition scores and the most preferable rating in all noise fields. Factors requiring attention in the hearing aid-cochlear implant integration process are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Artifact Removal from Biosignal using Fixed Point ICA Algorithm for Pre-processing in Biometric Recognition

    NASA Astrophysics Data System (ADS)

    Mishra, Puneet; Singla, Sunil Kumar

    2013-01-01

    In the modern world of automation, biological signals, especially Electroencephalogram (EEG) and Electrocardiogram (ECG), are gaining wide attention as a source of biometric information. Earlier studies have shown that EEG and ECG show versatility with individuals and every individual has distinct EEG and ECG spectrum. EEG (which can be recorded from the scalp due to the effect of millions of neurons) may contain noise signals such as eye blink, eye movement, muscular movement, line noise, etc. Similarly, ECG may contain artifact like line noise, tremor artifacts, baseline wandering, etc. These noise signals are required to be separated from the EEG and ECG signals to obtain the accurate results. This paper proposes a technique for the removal of eye blink artifact from EEG and ECG signal using fixed point or FastICA algorithm of Independent Component Analysis (ICA). For validation, FastICA algorithm has been applied to synthetic signal prepared by adding random noise to the Electrocardiogram (ECG) signal. FastICA algorithm separates the signal into two independent components, i.e. ECG pure and artifact signal. Similarly, the same algorithm has been applied to remove the artifacts (Electrooculogram or eye blink) from the EEG signal.

  1. Experimental study of stochastic noise propagation in SPECT images reconstructed using the conjugate gradient algorithm.

    PubMed

    Mariano-Goulart, D; Fourcade, M; Bernon, J L; Rossi, M; Zanca, M

    2003-01-01

    Thanks to an experimental study based on simulated and physical phantoms, the propagation of the stochastic noise in slices reconstructed using the conjugate gradient algorithm has been analysed versus iterations. After a first increase corresponding to the reconstruction of the signal, the noise stabilises before increasing linearly with iterations. The level of the plateau as well as the slope of the subsequent linear increase depends on the noise in the projection data.

  2. An improved affine projection algorithm for active noise cancellation

    NASA Astrophysics Data System (ADS)

    Zhang, Congyan; Wang, Mingjiang; Han, Yufei; Sun, Yunzhuo

    2017-08-01

    Affine projection algorithm is a signal reuse algorithm, and it has a good convergence rate compared to other traditional adaptive filtering algorithm. There are two factors that affect the performance of the algorithm, which are step factor and the projection length. In the paper, we propose a new variable step size affine projection algorithm (VSS-APA). It dynamically changes the step size according to certain rules, so that it can get smaller steady-state error and faster convergence speed. Simulation results can prove that its performance is superior to the traditional affine projection algorithm and in the active noise control (ANC) applications, the new algorithm can get very good results.

  3. Recursive Algorithms for Real-Time Digital CR-RCn Pulse Shaping

    NASA Astrophysics Data System (ADS)

    Nakhostin, M.

    2011-10-01

    This paper reports on recursive algorithms for real-time implementation of CR-(RC)n filters in digital nuclear spectroscopy systems. The algorithms are derived by calculating the Z-transfer function of the filters for filter orders up to n=4 . The performances of the filters are compared with the performance of the conventional digital trapezoidal filter using a noise generator which separately generates pure series, 1/f and parallel noise. The results of our study enable one to select the optimum digital filter for different noise and rate conditions.

  4. Hearing through the noise: Biologically inspired noise reduction

    NASA Astrophysics Data System (ADS)

    Lee, Tyler Paul

    Vocal communication in the natural world demands that a listener perform a remarkably complicated task in real-time. Vocalizations mix with all other sounds in the environment as they travel to the listener, arriving as a jumbled low-dimensional signal. A listener must then use this signal to extract the structure corresponding to individual sound sources. How this computation is implemented in the brain remains poorly understood, yet an accurate description of such mechanisms would impact a variety of medical and technological applications of sound processing. In this thesis, I describe initial work on how neurons in the secondary auditory cortex of the Zebra Finch extract song from naturalistic background noise. I then build on our understanding of the function of these neurons by creating an algorithm that extracts speech from natural background noise using spectrotemporal modulations. The algorithm, implemented as an artificial neural network, can be flexibly applied to any class of signal or noise and performs better than an optimal frequency-based noise reduction algorithm for a variety of background noises and signal-to-noise ratios. One potential drawback to using spectrotemporal modulations for noise reduction, though, is that analyzing the modulations present in an ongoing sound requires a latency set by the slowest temporal modulation computed. The algorithm avoids this problem by reducing noise predictively, taking advantage of the large amount of temporal structure present in natural sounds. This predictive denoising has ties to recent work suggesting that the auditory system uses attention to focus on predicted regions of spectrotemporal space when performing auditory scene analysis.

  5. ECG signal performance de-noising assessment based on threshold tuning of dual-tree wavelet transform.

    PubMed

    El B'charri, Oussama; Latif, Rachid; Elmansouri, Khalifa; Abenaou, Abdenbi; Jenkal, Wissam

    2017-02-07

    Since the electrocardiogram (ECG) signal has a low frequency and a weak amplitude, it is sensitive to miscellaneous mixed noises, which may reduce the diagnostic accuracy and hinder the physician's correct decision on patients. The dual tree wavelet transform (DT-WT) is one of the most recent enhanced versions of discrete wavelet transform. However, threshold tuning on this method for noise removal from ECG signal has not been investigated yet. In this work, we shall provide a comprehensive study on the impact of the choice of threshold algorithm, threshold value, and the appropriate wavelet decomposition level to evaluate the ECG signal de-noising performance. A set of simulations is performed on both synthetic and real ECG signals to achieve the promised results. First, the synthetic ECG signal is used to observe the algorithm response. The evaluation results of synthetic ECG signal corrupted by various types of noise has showed that the modified unified threshold and wavelet hyperbolic threshold de-noising method is better in realistic and colored noises. The tuned threshold is then used on real ECG signals from the MIT-BIH database. The results has shown that the proposed method achieves higher performance than the ordinary dual tree wavelet transform into all kinds of noise removal from ECG signal. The simulation results indicate that the algorithm is robust for all kinds of noises with varying degrees of input noise, providing a high quality clean signal. Moreover, the algorithm is quite simple and can be used in real time ECG monitoring.

  6. A hybrid algorithm for speckle noise reduction of ultrasound images.

    PubMed

    Singh, Karamjeet; Ranade, Sukhjeet Kaur; Singh, Chandan

    2017-09-01

    Medical images are contaminated by multiplicative speckle noise which significantly reduce the contrast of ultrasound images and creates a negative effect on various image interpretation tasks. In this paper, we proposed a hybrid denoising approach which collaborate the both local and nonlocal information in an efficient manner. The proposed hybrid algorithm consist of three stages in which at first stage the use of local statistics in the form of guided filter is used to reduce the effect of speckle noise initially. Then, an improved speckle reducing bilateral filter (SRBF) is developed to further reduce the speckle noise from the medical images. Finally, to reconstruct the diffused edges we have used the efficient post-processing technique which jointly considered the advantages of both bilateral and nonlocal mean (NLM) filter for the attenuation of speckle noise efficiently. The performance of proposed hybrid algorithm is evaluated on synthetic, simulated and real ultrasound images. The experiments conducted on various test images demonstrate that our proposed hybrid approach outperforms the various traditional speckle reduction approaches included recently proposed NLM and optimized Bayesian-based NLM. The results of various quantitative, qualitative measures and by visual inspection of denoise synthetic and real ultrasound images demonstrate that the proposed hybrid algorithm have strong denoising capability and able to preserve the fine image details such as edge of a lesion better than previously developed methods for speckle noise reduction. The denoising and edge preserving capability of hybrid algorithm is far better than existing traditional and recently proposed speckle reduction (SR) filters. The success of proposed algorithm would help in building the lay foundation for inventing the hybrid algorithms for denoising of ultrasound images. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Improved liver R2* mapping by pixel-wise curve fitting with adaptive neighborhood regularization.

    PubMed

    Wang, Changqing; Zhang, Xinyuan; Liu, Xiaoyun; He, Taigang; Chen, Wufan; Feng, Qianjin; Feng, Yanqiu

    2018-08-01

    To improve liver R2* mapping by incorporating adaptive neighborhood regularization into pixel-wise curve fitting. Magnetic resonance imaging R2* mapping remains challenging because of the serial images with low signal-to-noise ratio. In this study, we proposed to exploit the neighboring pixels as regularization terms and adaptively determine the regularization parameters according to the interpixel signal similarity. The proposed algorithm, called the pixel-wise curve fitting with adaptive neighborhood regularization (PCANR), was compared with the conventional nonlinear least squares (NLS) and nonlocal means filter-based NLS algorithms on simulated, phantom, and in vivo data. Visually, the PCANR algorithm generates R2* maps with significantly reduced noise and well-preserved tiny structures. Quantitatively, the PCANR algorithm produces R2* maps with lower root mean square errors at varying R2* values and signal-to-noise-ratio levels compared with the NLS and nonlocal means filter-based NLS algorithms. For the high R2* values under low signal-to-noise-ratio levels, the PCANR algorithm outperforms the NLS and nonlocal means filter-based NLS algorithms in the accuracy and precision, in terms of mean and standard deviation of R2* measurements in selected region of interests, respectively. The PCANR algorithm can reduce the effect of noise on liver R2* mapping, and the improved measurement precision will benefit the assessment of hepatic iron in clinical practice. Magn Reson Med 80:792-801, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  8. Techniques Analysis of the Interference Suppression Algorithm in Broadband Aeronautical Multi-carrier Communication System

    NASA Astrophysics Data System (ADS)

    Li, Dong-xia; Ye, Qian-wen

    Out-of-band radiation suppression algorithm must be used efficiently for broadband aeronautical communication system in order not to interfere the operation of the existing systems in aviation L-Band. Based on the simple introduction of the broadband aeronautical multi-carrier communication (B-AMC) system model, several sidelobe suppression techniques in orthogonal frequency multiplexing (OFDM) system are presented and analyzed so as to find a suitable algorithm for B-AMC system in this paper. Simulation results show that raise-cosine function windowing can suppress the out-of-band radiation of B-AMC system effectively.

  9. Complex noise suppression using a sparse representation and 3D filtering of images

    NASA Astrophysics Data System (ADS)

    Kravchenko, V. F.; Ponomaryov, V. I.; Pustovoit, V. I.; Palacios-Enriquez, A.

    2017-08-01

    A novel method for the filtering of images corrupted by complex noise composed of randomly distributed impulses and additive Gaussian noise has been substantiated for the first time. The method consists of three main stages: the detection and filtering of pixels corrupted by impulsive noise, the subsequent image processing to suppress the additive noise based on 3D filtering and a sparse representation of signals in a basis of wavelets, and the concluding image processing procedure to clean the final image of the errors emerged at the previous stages. A physical interpretation of the filtering method under complex noise conditions is given. A filtering block diagram has been developed in accordance with the novel approach. Simulations of the novel image filtering method have shown an advantage of the proposed filtering scheme in terms of generally recognized criteria, such as the structural similarity index measure and the peak signal-to-noise ratio, and when visually comparing the filtered images.

  10. Development of a voltage-dependent current noise algorithm for conductance-based stochastic modelling of auditory nerve fibres.

    PubMed

    Badenhorst, Werner; Hanekom, Tania; Hanekom, Johan J

    2016-12-01

    This study presents the development of an alternative noise current term and novel voltage-dependent current noise algorithm for conductance-based stochastic auditory nerve fibre (ANF) models. ANFs are known to have significant variance in threshold stimulus which affects temporal characteristics such as latency. This variance is primarily caused by the stochastic behaviour or microscopic fluctuations of the node of Ranvier's voltage-dependent sodium channels of which the intensity is a function of membrane voltage. Though easy to implement and low in computational cost, existing current noise models have two deficiencies: it is independent of membrane voltage, and it is unable to inherently determine the noise intensity required to produce in vivo measured discharge probability functions. The proposed algorithm overcomes these deficiencies while maintaining its low computational cost and ease of implementation compared to other conductance and Markovian-based stochastic models. The algorithm is applied to a Hodgkin-Huxley-based compartmental cat ANF model and validated via comparison of the threshold probability and latency distributions to measured cat ANF data. Simulation results show the algorithm's adherence to in vivo stochastic fibre characteristics such as an exponential relationship between the membrane noise and transmembrane voltage, a negative linear relationship between the log of the relative spread of the discharge probability and the log of the fibre diameter and a decrease in latency with an increase in stimulus intensity.

  11. Direction of Arrival Estimation for MIMO Radar via Unitary Nuclear Norm Minimization

    PubMed Central

    Wang, Xianpeng; Huang, Mengxing; Wu, Xiaoqin; Bi, Guoan

    2017-01-01

    In this paper, we consider the direction of arrival (DOA) estimation issue of noncircular (NC) source in multiple-input multiple-output (MIMO) radar and propose a novel unitary nuclear norm minimization (UNNM) algorithm. In the proposed method, the noncircular properties of signals are used to double the virtual array aperture, and the real-valued data are obtained by utilizing unitary transformation. Then a real-valued block sparse model is established based on a novel over-complete dictionary, and a UNNM algorithm is formulated for recovering the block-sparse matrix. In addition, the real-valued NC-MUSIC spectrum is used to design a weight matrix for reweighting the nuclear norm minimization to achieve the enhanced sparsity of solutions. Finally, the DOA is estimated by searching the non-zero blocks of the recovered matrix. Because of using the noncircular properties of signals to extend the virtual array aperture and an additional real structure to suppress the noise, the proposed method provides better performance compared with the conventional sparse recovery based algorithms. Furthermore, the proposed method can handle the case of underdetermined DOA estimation. Simulation results show the effectiveness and advantages of the proposed method. PMID:28441770

  12. A Quasiphysics Intelligent Model for a Long Range Fast Tool Servo

    PubMed Central

    Liu, Qiang; Zhou, Xiaoqin; Lin, Jieqiong; Xu, Pengzi; Zhu, Zhiwei

    2013-01-01

    Accurately modeling the dynamic behaviors of fast tool servo (FTS) is one of the key issues in the ultraprecision positioning of the cutting tool. Herein, a quasiphysics intelligent model (QPIM) integrating a linear physics model (LPM) and a radial basis function (RBF) based neural model (NM) is developed to accurately describe the dynamic behaviors of a voice coil motor (VCM) actuated long range fast tool servo (LFTS). To identify the parameters of the LPM, a novel Opposition-based Self-adaptive Replacement Differential Evolution (OSaRDE) algorithm is proposed which has been proved to have a faster convergence mechanism without compromising with the quality of solution and outperform than similar evolution algorithms taken for consideration. The modeling errors of the LPM and the QPIM are investigated by experiments. The modeling error of the LPM presents an obvious trend component which is about ±1.15% of the full span range verifying the efficiency of the proposed OSaRDE algorithm for system identification. As for the QPIM, the trend component in the residual error of LPM can be well suppressed, and the error of the QPIM maintains noise level. All the results verify the efficiency and superiority of the proposed modeling and identification approaches. PMID:24163627

  13. Noise-cancellation-based nonuniformity correction algorithm for infrared focal-plane arrays.

    PubMed

    Godoy, Sebastián E; Pezoa, Jorge E; Torres, Sergio N

    2008-10-10

    The spatial fixed-pattern noise (FPN) inherently generated in infrared (IR) imaging systems compromises severely the quality of the acquired imagery, even making such images inappropriate for some applications. The FPN refers to the inability of the photodetectors in the focal-plane array to render a uniform output image when a uniform-intensity scene is being imaged. We present a noise-cancellation-based algorithm that compensates for the additive component of the FPN. The proposed method relies on the assumption that a source of noise correlated to the additive FPN is available to the IR camera. An important feature of the algorithm is that all the calculations are reduced to a simple equation, which allows for the bias compensation of the raw imagery. The algorithm performance is tested using real IR image sequences and is compared to some classical methodologies. (c) 2008 Optical Society of America

  14. Improving Cancer Detection and Dose Efficiency in Dedicated Breast Cancer CT

    DTIC Science & Technology

    2010-02-01

    source trajectory and data truncation, which can however be solved with the back-projection filtration ( BPF ) algorithm [6,7]. I have used the BPF ...high to low radiation dose levels. I have investigated noise properties in images reconstructed by use of FDK and BPF algorithms at different noise...analytic algorithms such as the FDK and BPF algorithms are applied to sparse-view data, the reconstruction images will contain artifacts such as streak

  15. An l1-TV Algorithm for Deconvolution with Salt and Pepper Noise

    DTIC Science & Technology

    2009-04-01

    deblurring in the presence of impulsive noise ,” Int. J. Comput. Vision, vol. 70, no. 3, pp. 279–298, Dec. 2006. [13] A. E. Beaton and J. W. Tukey, “The...AN 1-TV ALGORITHM FOR DECONVOLUTIONWITH SALT AND PEPPER NOISE Brendt Wohlberg∗ T-7 Mathematical Modeling and Analysis Los Alamos National Laboratory...and pepper noise , but the extension of this formulation to more general prob- lems, such as deconvolution, has received little attention. We consider

  16. Calibrated Noise Measurements with Induced Receiver Gain Fluctuations

    NASA Technical Reports Server (NTRS)

    Racette, Paul; Walker, David; Gu, Dazhen; Rajola, Marco; Spevacek, Ashly

    2011-01-01

    The lack of well-developed techniques for modeling changing statistical moments in our observations has stymied the application of stochastic process theory in science and engineering. These limitations were encountered when modeling the performance of radiometer calibration architectures and algorithms in the presence of non stationary receiver fluctuations. Analyses of measured signals have traditionally been limited to a single measurement series. Whereas in a radiometer that samples a set of noise references, the data collection can be treated as an ensemble set of measurements of the receiver state. Noise Assisted Data Analysis is a growing field of study with significant potential for aiding the understanding and modeling of non stationary processes. Typically, NADA entails adding noise to a signal to produce an ensemble set on which statistical analysis is performed. Alternatively as in radiometric measurements, mixing a signal with calibrated noise provides, through the calibration process, the means to detect deviations from the stationary assumption and thereby a measurement tool to characterize the signal's non stationary properties. Data sets comprised of calibrated noise measurements have been limited to those collected with naturally occurring fluctuations in the radiometer receiver. To examine the application of NADA using calibrated noise, a Receiver Gain Modulation Circuit (RGMC) was designed and built to modulate the gain of a radiometer receiver using an external signal. In 2010, an RGMC was installed and operated at the National Institute of Standards and Techniques (NIST) using their Noise Figure Radiometer (NFRad) and national standard noise references. The data collected is the first known set of calibrated noise measurements from a receiver with an externally modulated gain. As an initial step, sinusoidal and step-function signals were used to modulate the receiver gain, to evaluate the circuit characteristics and to study the performance of a variety of calibration algorithms. The receiver noise temperature and time-bandwidth product of the NFRad are calculated from the data. Statistical analysis using temporal-dependent calibration algorithms reveals that the natural occurring fluctuations in the receiver are stationary over long intervals (100s of seconds); however the receiver exhibits local non stationarity over the interval over which one set of reference measurements are collected. A variety of calibration algorithms have been applied to the data to assess algorithms' performance with the gain fluctuation signals. This presentation will describe the RGMC, experiment design and a comparative analysis of calibration algorithms.

  17. Computation of mass-density images from x-ray refraction-angle images.

    PubMed

    Wernick, Miles N; Yang, Yongyi; Mondal, Indrasis; Chapman, Dean; Hasnah, Moumen; Parham, Christopher; Pisano, Etta; Zhong, Zhong

    2006-04-07

    In this paper, we investigate the possibility of computing quantitatively accurate images of mass density variations in soft tissue. This is a challenging task, because density variations in soft tissue, such as the breast, can be very subtle. Beginning from an image of refraction angle created by either diffraction-enhanced imaging (DEI) or multiple-image radiography (MIR), we estimate the mass-density image using a constrained least squares (CLS) method. The CLS algorithm yields accurate density estimates while effectively suppressing noise. Our method improves on an analytical method proposed by Hasnah et al (2005 Med. Phys. 32 549-52), which can produce significant artefacts when even a modest level of noise is present. We present a quantitative evaluation study to determine the accuracy with which mass density can be determined in the presence of noise. Based on computer simulations, we find that the mass-density estimation error can be as low as a few per cent for typical density variations found in the breast. Example images computed from less-noisy real data are also shown to illustrate the feasibility of the technique. We anticipate that density imaging may have application in assessment of water content of cartilage resulting from osteoarthritis, in evaluation of bone density, and in mammographic interpretation.

  18. Effects of reconstructed magnetic field from sparse noisy boundary measurements on localization of active neural source.

    PubMed

    Shen, Hui-min; Lee, Kok-Meng; Hu, Liang; Foong, Shaohui; Fu, Xin

    2016-01-01

    Localization of active neural source (ANS) from measurements on head surface is vital in magnetoencephalography. As neuron-generated magnetic fields are extremely weak, significant uncertainties caused by stochastic measurement interference complicate its localization. This paper presents a novel computational method based on reconstructed magnetic field from sparse noisy measurements for enhanced ANS localization by suppressing effects of unrelated noise. In this approach, the magnetic flux density (MFD) in the nearby current-free space outside the head is reconstructed from measurements through formulating the infinite series solution of the Laplace's equation, where boundary condition (BC) integrals over the entire measurements provide "smooth" reconstructed MFD with the decrease in unrelated noise. Using a gradient-based method, reconstructed MFDs with good fidelity are selected for enhanced ANS localization. The reconstruction model, spatial interpolation of BC, parametric equivalent current dipole-based inverse estimation algorithm using reconstruction, and gradient-based selection are detailed and validated. The influences of various source depths and measurement signal-to-noise ratio levels on the estimated ANS location are analyzed numerically and compared with a traditional method (where measurements are directly used), and it was demonstrated that gradient-selected high-fidelity reconstructed data can effectively improve the accuracy of ANS localization.

  19. Real-time implementation of optimized maximum noise fraction transform for feature extraction of hyperspectral images

    NASA Astrophysics Data System (ADS)

    Wu, Yuanfeng; Gao, Lianru; Zhang, Bing; Zhao, Haina; Li, Jun

    2014-01-01

    We present a parallel implementation of the optimized maximum noise fraction (G-OMNF) transform algorithm for feature extraction of hyperspectral images on commodity graphics processing units (GPUs). The proposed approach explored the algorithm data-level concurrency and optimized the computing flow. We first defined a three-dimensional grid, in which each thread calculates a sub-block data to easily facilitate the spatial and spectral neighborhood data searches in noise estimation, which is one of the most important steps involved in OMNF. Then, we optimized the processing flow and computed the noise covariance matrix before computing the image covariance matrix to reduce the original hyperspectral image data transmission. These optimization strategies can greatly improve the computing efficiency and can be applied to other feature extraction algorithms. The proposed parallel feature extraction algorithm was implemented on an Nvidia Tesla GPU using the compute unified device architecture and basic linear algebra subroutines library. Through the experiments on several real hyperspectral images, our GPU parallel implementation provides a significant speedup of the algorithm compared with the CPU implementation, especially for highly data parallelizable and arithmetically intensive algorithm parts, such as noise estimation. In order to further evaluate the effectiveness of G-OMNF, we used two different applications: spectral unmixing and classification for evaluation. Considering the sensor scanning rate and the data acquisition time, the proposed parallel implementation met the on-board real-time feature extraction.

  20. Motion artifact and background noise suppression on optical microangiography frames using a naïve Bayes mask.

    PubMed

    Reif, Roberto; Baran, Utku; Wang, Ruikang K

    2014-07-01

    Optical coherence tomography (OCT) is a technique that allows for the three-dimensional (3D) imaging of small volumes of tissue (a few millimeters) with high resolution (∼10  μm). Optical microangiography (OMAG) is a method of processing OCT data, which allows for the extraction of the tissue vasculature with capillary resolution from the OCT images. Cross-sectional B-frame OMAG images present the location of the patent blood vessels; however, the signal-to-noise-ratio of these images can be affected by several factors such as the quality of the OCT system and the tissue motion artifact. This background noise can appear in the en face projection view image. In this work we propose to develop a binary mask that can be applied on the cross-sectional B-frame OMAG images, which will reduce the background noise while leaving the signal from the blood vessels intact. The mask is created by using a naïve Bayes (NB) classification algorithm trained with a gold standard image which is manually segmented by an expert. The masked OMAG images present better contrast for binarizing the image and quantifying the result without the influence of noise. The results are compared with a previously developed frequency rejection filter (FRF) method which is applied on the en face projection view image. It is demonstrated that both the NB and FRF methods provide similar vessel length fractions. The advantage of the NB method is that the results are applicable in 3D and that its use is not limited to periodic motion artifacts.

  1. A Dynamic Compressive Gammachirp Auditory Filterbank

    PubMed Central

    Irino, Toshio; Patterson, Roy D.

    2008-01-01

    It is now common to use knowledge about human auditory processing in the development of audio signal processors. Until recently, however, such systems were limited by their linearity. The auditory filter system is known to be level-dependent as evidenced by psychophysical data on masking, compression, and two-tone suppression. However, there were no analysis/synthesis schemes with nonlinear filterbanks. This paper describe18300060s such a scheme based on the compressive gammachirp (cGC) auditory filter. It was developed to extend the gammatone filter concept to accommodate the changes in psychophysical filter shape that are observed to occur with changes in stimulus level in simultaneous, tone-in-noise masking. In models of simultaneous noise masking, the temporal dynamics of the filtering can be ignored. Analysis/synthesis systems, however, are intended for use with speech sounds where the glottal cycle can be long with respect to auditory time constants, and so they require specification of the temporal dynamics of auditory filter. In this paper, we describe a fast-acting level control circuit for the cGC filter and show how psychophysical data involving two-tone suppression and compression can be used to estimate the parameter values for this dynamic version of the cGC filter (referred to as the “dcGC” filter). One important advantage of analysis/synthesis systems with a dcGC filterbank is that they can inherit previously refined signal processing algorithms developed with conventional short-time Fourier transforms (STFTs) and linear filterbanks. PMID:19330044

  2. Short wavelength limits of current shot noise suppression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nause, Ariel, E-mail: arielnau@post.tau.ac.il; Dyunin, Egor; Gover, Avraham

    Shot noise in electron beam was assumed to be one of the features beyond control of accelerator physics. Current results attained in experiments at Accelerator Test Facility in Brookhaven and Linac Coherent Light Source in Stanford suggest that the control of the shot noise in electron beam (and therefore of spontaneous radiation and Self Amplified Spontaneous Emission of Free Electron Lasers) is feasible at least in the visible range of the spectrum. Here, we present a general linear formulation for collective micro-dynamics of e-beam noise and its control. Specifically, we compare two schemes for current noise suppression: a quarter plasmamore » wavelength drift section and a combined drift/dispersive (transverse magnetic field) section. We examine and compare their limits of applicability at short wavelengths via considerations of electron phase-spread and the related Landau damping effect.« less

  3. Estimation of glacier surface motion by robust phase correlation and point like features of SAR intensity images

    NASA Astrophysics Data System (ADS)

    Fang, Li; Xu, Yusheng; Yao, Wei; Stilla, Uwe

    2016-11-01

    For monitoring of glacier surface motion in pole and alpine areas, radar remote sensing is becoming a popular technology accounting for its specific advantages of being independent of weather conditions and sunlight. In this paper we propose a method for glacier surface motion monitoring using phase correlation (PC) based on point-like features (PLF). We carry out experiments using repeat-pass TerraSAR X-band (TSX) and Sentinel-1 C-band (S1C) intensity images of the Taku glacier in Juneau icefield located in southeast Alaska. The intensity imagery is first filtered by an improved adaptive refined Lee filter while the effect of topographic reliefs is removed via SRTM-X DEM. Then, a robust phase correlation algorithm based on singular value decomposition (SVD) and an improved random sample consensus (RANSAC) algorithm is applied to sequential PLF pairs generated by correlation using a 2D sinc function template. The approaches for glacier monitoring are validated by both simulated SAR data and real SAR data from two satellites. The results obtained from these three test datasets confirm the superiority of the proposed approach compared to standard correlation-like methods. By the use of the proposed adaptive refined Lee filter, we achieve a good balance between the suppression of noise and the preservation of local image textures. The presented phase correlation algorithm shows the accuracy of better than 0.25 pixels, when conducting matching tests using simulated SAR intensity images with strong noise. Quantitative 3D motions and velocities of the investigated Taku glacier during a repeat-pass period are obtained, which allows a comprehensive and reliable analysis for the investigation of large-scale glacier surface dynamics.

  4. Blind Source Parameters for Performance Evaluation of Despeckling Filters.

    PubMed

    Biradar, Nagashettappa; Dewal, M L; Rohit, ManojKumar; Gowre, Sanjaykumar; Gundge, Yogesh

    2016-01-01

    The speckle noise is inherent to transthoracic echocardiographic images. A standard noise-free reference echocardiographic image does not exist. The evaluation of filters based on the traditional parameters such as peak signal-to-noise ratio, mean square error, and structural similarity index may not reflect the true filter performance on echocardiographic images. Therefore, the performance of despeckling can be evaluated using blind assessment metrics like the speckle suppression index, speckle suppression and mean preservation index (SMPI), and beta metric. The need for noise-free reference image is overcome using these three parameters. This paper presents a comprehensive analysis and evaluation of eleven types of despeckling filters for echocardiographic images in terms of blind and traditional performance parameters along with clinical validation. The noise is effectively suppressed using the logarithmic neighborhood shrinkage (NeighShrink) embedded with Stein's unbiased risk estimation (SURE). The SMPI is three times more effective compared to the wavelet based generalized likelihood estimation approach. The quantitative evaluation and clinical validation reveal that the filters such as the nonlocal mean, posterior sampling based Bayesian estimation, hybrid median, and probabilistic patch based filters are acceptable whereas median, anisotropic diffusion, fuzzy, and Ripplet nonlinear approximation filters have limited applications for echocardiographic images.

  5. Blind Source Parameters for Performance Evaluation of Despeckling Filters

    PubMed Central

    Biradar, Nagashettappa; Dewal, M. L.; Rohit, ManojKumar; Gowre, Sanjaykumar; Gundge, Yogesh

    2016-01-01

    The speckle noise is inherent to transthoracic echocardiographic images. A standard noise-free reference echocardiographic image does not exist. The evaluation of filters based on the traditional parameters such as peak signal-to-noise ratio, mean square error, and structural similarity index may not reflect the true filter performance on echocardiographic images. Therefore, the performance of despeckling can be evaluated using blind assessment metrics like the speckle suppression index, speckle suppression and mean preservation index (SMPI), and beta metric. The need for noise-free reference image is overcome using these three parameters. This paper presents a comprehensive analysis and evaluation of eleven types of despeckling filters for echocardiographic images in terms of blind and traditional performance parameters along with clinical validation. The noise is effectively suppressed using the logarithmic neighborhood shrinkage (NeighShrink) embedded with Stein's unbiased risk estimation (SURE). The SMPI is three times more effective compared to the wavelet based generalized likelihood estimation approach. The quantitative evaluation and clinical validation reveal that the filters such as the nonlocal mean, posterior sampling based Bayesian estimation, hybrid median, and probabilistic patch based filters are acceptable whereas median, anisotropic diffusion, fuzzy, and Ripplet nonlinear approximation filters have limited applications for echocardiographic images. PMID:27298618

  6. Colour Terms Affect Detection of Colour and Colour-Associated Objects Suppressed from Visual Awareness

    PubMed Central

    Forder, Lewis; Taylor, Olivia; Mankin, Helen; Scott, Ryan B.; Franklin, Anna

    2016-01-01

    The idea that language can affect how we see the world continues to create controversy. A potentially important study in this field has shown that when an object is suppressed from visual awareness using continuous flash suppression (a form of binocular rivalry), detection of the object is differently affected by a preceding word prime depending on whether the prime matches or does not match the object. This may suggest that language can affect early stages of vision. We replicated this paradigm and further investigated whether colour terms likewise influence the detection of colours or colour-associated object images suppressed from visual awareness by continuous flash suppression. This method presents rapidly changing visual noise to one eye while the target stimulus is presented to the other. It has been shown to delay conscious perception of a target for up to several minutes. In Experiment 1 we presented greyscale photos of objects. They were either preceded by a congruent object label, an incongruent label, or white noise. Detection sensitivity (d’) and hit rates were significantly poorer for suppressed objects preceded by an incongruent label compared to a congruent label or noise. In Experiment 2, targets were coloured discs preceded by a colour term. Detection sensitivity was significantly worse for suppressed colour patches preceded by an incongruent colour term as compared to a congruent term or white noise. In Experiment 3 targets were suppressed greyscale object images preceded by an auditory presentation of a colour term. On congruent trials the colour term matched the object’s stereotypical colour and on incongruent trials the colour term mismatched. Detection sensitivity was significantly poorer on incongruent trials than congruent trials. Overall, these findings suggest that colour terms affect awareness of coloured stimuli and colour- associated objects, and provide new evidence for language-perception interaction in the brain. PMID:27023274

  7. Colour Terms Affect Detection of Colour and Colour-Associated Objects Suppressed from Visual Awareness.

    PubMed

    Forder, Lewis; Taylor, Olivia; Mankin, Helen; Scott, Ryan B; Franklin, Anna

    2016-01-01

    The idea that language can affect how we see the world continues to create controversy. A potentially important study in this field has shown that when an object is suppressed from visual awareness using continuous flash suppression (a form of binocular rivalry), detection of the object is differently affected by a preceding word prime depending on whether the prime matches or does not match the object. This may suggest that language can affect early stages of vision. We replicated this paradigm and further investigated whether colour terms likewise influence the detection of colours or colour-associated object images suppressed from visual awareness by continuous flash suppression. This method presents rapidly changing visual noise to one eye while the target stimulus is presented to the other. It has been shown to delay conscious perception of a target for up to several minutes. In Experiment 1 we presented greyscale photos of objects. They were either preceded by a congruent object label, an incongruent label, or white noise. Detection sensitivity (d') and hit rates were significantly poorer for suppressed objects preceded by an incongruent label compared to a congruent label or noise. In Experiment 2, targets were coloured discs preceded by a colour term. Detection sensitivity was significantly worse for suppressed colour patches preceded by an incongruent colour term as compared to a congruent term or white noise. In Experiment 3 targets were suppressed greyscale object images preceded by an auditory presentation of a colour term. On congruent trials the colour term matched the object's stereotypical colour and on incongruent trials the colour term mismatched. Detection sensitivity was significantly poorer on incongruent trials than congruent trials. Overall, these findings suggest that colour terms affect awareness of coloured stimuli and colour- associated objects, and provide new evidence for language-perception interaction in the brain.

  8. Suppression and enhancement of transcriptional noise by DNA looping

    NASA Astrophysics Data System (ADS)

    Vilar, Jose M. G.; Saiz, Leonor

    2014-06-01

    DNA looping has been observed to enhance and suppress transcriptional noise but it is uncertain which of these two opposite effects is to be expected for given conditions. Here, we derive analytical expressions for the main quantifiers of transcriptional noise in terms of the molecular parameters and elucidate the role of DNA looping. Our results rationalize paradoxical experimental observations and provide the first quantitative explanation of landmark individual-cell measurements at the single molecule level on the classical lac operon genetic system [Choi, L. Cai, K. Frieda, and X. S. Xie, Science 322, 442 (2008), 10.1126/science.1161427].

  9. Image reconstruction algorithms for electrical capacitance tomography based on ROF model using new numerical techniques

    NASA Astrophysics Data System (ADS)

    Chen, Jiaoxuan; Zhang, Maomao; Liu, Yinyan; Chen, Jiaoliao; Li, Yi

    2017-03-01

    Electrical capacitance tomography (ECT) is a promising technique applied in many fields. However, the solutions for ECT are not unique and highly sensitive to the measurement noise. To remain a good shape of reconstructed object and endure a noisy data, a Rudin-Osher-Fatemi (ROF) model with total variation regularization is applied to image reconstruction in ECT. Two numerical methods, which are simplified augmented Lagrangian (SAL) and accelerated alternating direction method of multipliers (AADMM), are innovatively introduced to try to solve the above mentioned problems in ECT. The effect of the parameters and the number of iterations for different algorithms, and the noise level in capacitance data are discussed. Both simulation and experimental tests were carried out to validate the feasibility of the proposed algorithms, compared to the Landweber iteration (LI) algorithm. The results show that the SAL and AADMM algorithms can handle a high level of noise and the AADMM algorithm outperforms other algorithms in identifying the object from its background.

  10. Selection of floating-point or fixed-point for adaptive noise canceller in somatosensory evoked potential measurement.

    PubMed

    Shen, Chongfei; Liu, Hongtao; Xie, Xb; Luk, Keith Dk; Hu, Yong

    2007-01-01

    Adaptive noise canceller (ANC) has been used to improve signal to noise ratio (SNR) of somsatosensory evoked potential (SEP). In order to efficiently apply the ANC in hardware system, fixed-point algorithm based ANC can achieve fast, cost-efficient construction, and low-power consumption in FPGA design. However, it is still questionable whether the SNR improvement performance by fixed-point algorithm is as good as that by floating-point algorithm. This study is to compare the outputs of ANC by floating-point and fixed-point algorithm ANC when it was applied to SEP signals. The selection of step-size parameter (micro) was found different in fixed-point algorithm from floating-point algorithm. In this simulation study, the outputs of fixed-point ANC showed higher distortion from real SEP signals than that of floating-point ANC. However, the difference would be decreased with increasing micro value. In the optimal selection of micro, fixed-point ANC can get as good results as floating-point algorithm.

  11. Piloted Simulation Study of a Dual Thrust-Cutback Procedure for Reducing High-Speed Civil Transport Takeoff Noise Levels

    NASA Technical Reports Server (NTRS)

    Riley, Donald R.; Glaab, Louis J.; Brandon, Jay M.; Person, Lee H., Jr.; Glaab, Patricia C.

    1999-01-01

    A piloted simulation study was performed for the purpose of indicating the noise reduction benefits and piloting performance that could occur for a typical 4-engine high-Speed Civil Transport (HSCT) configuration during takeoff when a dual thrust-cutback procedure was employed with throttle operation under direct computer control. Two thrust cutbacks were employed with the first cutback performed while the vehicle was accelerating on the run-way and the second cutback performed at a distance farther downrange. Added vehicle performance improvements included the incorporation of high-lift increments into the aerodynamic database of the vehicle and the use of limited engine oversizing. Four single-stream turbine bypass engines that had no noise suppression of any kind were used with this configuration. This approach permitted establishing the additional noise suppression level that was needed to meet Federal Air Regulation Part 36 Stage 3 noise levels for subsonic commercial jet aircraft. Noise level results were calculated with the jet mixing and shock noise modules of the Aircraft Noise Prediction Program (ANOPP).

  12. Nonlocal variational model and filter algorithm to remove multiplicative noise

    NASA Astrophysics Data System (ADS)

    Chen, Dai-Qiang; Zhang, Hui; Cheng, Li-Zhi

    2010-07-01

    The nonlocal (NL) means filter proposed by Buades, Coll, and Morel (SIAM Multiscale Model. Simul. 4(2), 490-530, 2005), which makes full use of the redundancy information in images, has shown to be very efficient for image denoising with Gauss noise added. On the basis of the NL method and a striver to minimize the conditional mean-square error, we design a NL means filter to remove multiplicative noise, and combining the NL filter to regularity method, we propose a NL total variational (TV) model and present a fast iterated algorithm for it. Experiments demonstrate that our algorithm is better than TV method; it is superior in preserving small structures and textures and can obtain an improvement in peak signal-to-noise ratio.

  13. Partially suppressed shot noise in hopping conduction: observation in SiGe quantum wells

    PubMed

    Kuznetsov; Mendez; Zuo; Snider; Croke

    2000-07-10

    We have observed shot noise in the hopping conduction of two-dimensional carriers confined in a p-type SiGe quantum well at a temperature of 4 K. Moreover, shot noise is suppressed relative to its "classical" value 2eI by an amount that depends on the length of the sample and the carrier density. We have found a suppression factor to the classical value of about one-half for a 2 &mgr;m long sample, and of one-fifth for a 5 &mgr;m sample. In each case, the factor decreased slightly as the density increased toward the insulator-metal transition. We explain these results in terms of the characteristic length ( approximately 1 &mgr;m in our case) of the inherent inhomogeneity of hopping transport, obtained from percolation theory.

  14. Convergence analyses on on-line weight noise injection-based training algorithms for MLPs.

    PubMed

    Sum, John; Leung, Chi-Sing; Ho, Kevin

    2012-11-01

    Injecting weight noise during training is a simple technique that has been proposed for almost two decades. However, little is known about its convergence behavior. This paper studies the convergence of two weight noise injection-based training algorithms, multiplicative weight noise injection with weight decay and additive weight noise injection with weight decay. We consider that they are applied to multilayer perceptrons either with linear or sigmoid output nodes. Let w(t) be the weight vector, let V(w) be the corresponding objective function of the training algorithm, let α >; 0 be the weight decay constant, and let μ(t) be the step size. We show that if μ(t)→ 0, then with probability one E[||w(t)||2(2)] is bound and lim(t) → ∞ ||w(t)||2 exists. Based on these two properties, we show that if μ(t)→ 0, Σtμ(t)=∞, and Σtμ(t)(2) <; ∞, then with probability one these algorithms converge. Moreover, w(t) converges with probability one to a point where ∇wV(w)=0.

  15. Mean-variance analysis of block-iterative reconstruction algorithms modeling 3D detector response in SPECT

    NASA Astrophysics Data System (ADS)

    Lalush, D. S.; Tsui, B. M. W.

    1998-06-01

    We study the statistical convergence properties of two fast iterative reconstruction algorithms, the rescaled block-iterative (RBI) and ordered subset (OS) EM algorithms, in the context of cardiac SPECT with 3D detector response modeling. The Monte Carlo method was used to generate nearly noise-free projection data modeling the effects of attenuation, detector response, and scatter from the MCAT phantom. One thousand noise realizations were generated with an average count level approximating a typical T1-201 cardiac study. Each noise realization was reconstructed using the RBI and OS algorithms for cases with and without detector response modeling. For each iteration up to twenty, we generated mean and variance images, as well as covariance images for six specific locations. Both OS and RBI converged in the mean to results that were close to the noise-free ML-EM result using the same projection model. When detector response was not modeled in the reconstruction, RBI exhibited considerably lower noise variance than OS for the same resolution. When 3D detector response was modeled, the RBI-EM provided a small improvement in the tradeoff between noise level and resolution recovery, primarily in the axial direction, while OS required about half the number of iterations of RBI to reach the same resolution. We conclude that OS is faster than RBI, but may be sensitive to errors in the projection model. Both OS-EM and RBI-EM are effective alternatives to the EVIL-EM algorithm, but noise level and speed of convergence depend on the projection model used.

  16. Binaural noise reduction via cue-preserving MMSE filter and adaptive-blocking-based noise PSD estimation

    NASA Astrophysics Data System (ADS)

    Azarpour, Masoumeh; Enzner, Gerald

    2017-12-01

    Binaural noise reduction, with applications for instance in hearing aids, has been a very significant challenge. This task relates to the optimal utilization of the available microphone signals for the estimation of the ambient noise characteristics and for the optimal filtering algorithm to separate the desired speech from the noise. The additional requirements of low computational complexity and low latency further complicate the design. A particular challenge results from the desired reconstruction of binaural speech input with spatial cue preservation. The latter essentially diminishes the utility of multiple-input/single-output filter-and-sum techniques such as beamforming. In this paper, we propose a comprehensive and effective signal processing configuration with which most of the aforementioned criteria can be met suitably. This relates especially to the requirement of efficient online adaptive processing for noise estimation and optimal filtering while preserving the binaural cues. Regarding noise estimation, we consider three different architectures: interaural (ITF), cross-relation (CR), and principal-component (PCA) target blocking. An objective comparison with two other noise PSD estimation algorithms demonstrates the superiority of the blocking-based noise estimators, especially the CR-based and ITF-based blocking architectures. Moreover, we present a new noise reduction filter based on minimum mean-square error (MMSE), which belongs to the class of common gain filters, hence being rigorous in terms of spatial cue preservation but also efficient and competitive for the acoustic noise reduction task. A formal real-time subjective listening test procedure is also developed in this paper. The proposed listening test enables a real-time assessment of the proposed computationally efficient noise reduction algorithms in a realistic acoustic environment, e.g., considering time-varying room impulse responses and the Lombard effect. The listening test outcome reveals that the signals processed by the blocking-based algorithms are significantly preferred over the noisy signal in terms of instantaneous noise attenuation. Furthermore, the listening test data analysis confirms the conclusions drawn based on the objective evaluation.

  17. Image fidelity improvement in digital holographic microscopy using optical phase conjugation

    NASA Astrophysics Data System (ADS)

    Chan, Huang-Tian; Chew, Yang-Kun; Shiu, Min-Tzung; Chang, Chi-Ching

    2018-01-01

    With respect to digital holography, techniques in suppressing noises derived from reference arm are maturely developed. However, techniques for the object counterpart are not being well developed. Optical phase conjugation technique was believed to be a promising method for this interest. A 0°-cut BaTiO3 photorefractive crystal was involved in self-pumped phase conjugation scheme, and was employed to in-line digital holographic microscopy, in both transmission-type and reflection-type configuration. On pure physical compensation basis, results revealed that the image fidelity was improved substantially with 2.9096 times decrease in noise level and 3.5486 times increase in the ability to discriminate noise on average, by suppressing the scattering noise prior to recording stage.

  18. From photons to phonons and back: a THz optical memory in diamond.

    PubMed

    England, D G; Bustard, P J; Nunn, J; Lausten, R; Sussman, B J

    2013-12-13

    Optical quantum memories are vital for the scalability of future quantum technologies, enabling long-distance secure communication and local synchronization of quantum components. We demonstrate a THz-bandwidth memory for light using the optical phonon modes of a room temperature diamond. This large bandwidth makes the memory compatible with down-conversion-type photon sources. We demonstrate that four-wave mixing noise in this system is suppressed by material dispersion. The resulting noise floor is just 7×10(-3) photons per pulse, which establishes that the memory is capable of storing single quanta. We investigate the principle sources of noise in this system and demonstrate that high material dispersion can be used to suppress four-wave mixing noise in Λ-type systems.

  19. Segmentation of pomegranate MR images using spatial fuzzy c-means (SFCM) algorithm

    NASA Astrophysics Data System (ADS)

    Moradi, Ghobad; Shamsi, Mousa; Sedaaghi, M. H.; Alsharif, M. R.

    2011-10-01

    Segmentation is one of the fundamental issues of image processing and machine vision. It plays a prominent role in a variety of image processing applications. In this paper, one of the most important applications of image processing in MRI segmentation of pomegranate is explored. Pomegranate is a fruit with pharmacological properties such as being anti-viral and anti-cancer. Having a high quality product in hand would be critical factor in its marketing. The internal quality of the product is comprehensively important in the sorting process. The determination of qualitative features cannot be manually made. Therefore, the segmentation of the internal structures of the fruit needs to be performed as accurately as possible in presence of noise. Fuzzy c-means (FCM) algorithm is noise-sensitive and pixels with noise are classified inversely. As a solution, in this paper, the spatial FCM algorithm in pomegranate MR images' segmentation is proposed. The algorithm is performed with setting the spatial neighborhood information in FCM and modification of fuzzy membership function for each class. The segmentation algorithm results on the original and the corrupted Pomegranate MR images by Gaussian, Salt Pepper and Speckle noises show that the SFCM algorithm operates much more significantly than FCM algorithm. Also, after diverse steps of qualitative and quantitative analysis, we have concluded that the SFCM algorithm with 5×5 window size is better than the other windows.

  20. Poisson-Gaussian Noise Reduction Using the Hidden Markov Model in Contourlet Domain for Fluorescence Microscopy Images

    PubMed Central

    Yang, Sejung; Lee, Byung-Uk

    2015-01-01

    In certain image acquisitions processes, like in fluorescence microscopy or astronomy, only a limited number of photons can be collected due to various physical constraints. The resulting images suffer from signal dependent noise, which can be modeled as a Poisson distribution, and a low signal-to-noise ratio. However, the majority of research on noise reduction algorithms focuses on signal independent Gaussian noise. In this paper, we model noise as a combination of Poisson and Gaussian probability distributions to construct a more accurate model and adopt the contourlet transform which provides a sparse representation of the directional components in images. We also apply hidden Markov models with a framework that neatly describes the spatial and interscale dependencies which are the properties of transformation coefficients of natural images. In this paper, an effective denoising algorithm for Poisson-Gaussian noise is proposed using the contourlet transform, hidden Markov models and noise estimation in the transform domain. We supplement the algorithm by cycle spinning and Wiener filtering for further improvements. We finally show experimental results with simulations and fluorescence microscopy images which demonstrate the improved performance of the proposed approach. PMID:26352138

  1. Adaptive noise correction of dual-energy computed tomography images.

    PubMed

    Maia, Rafael Simon; Jacob, Christian; Hara, Amy K; Silva, Alvin C; Pavlicek, William; Mitchell, J Ross

    2016-04-01

    Noise reduction in material density images is a necessary preprocessing step for the correct interpretation of dual-energy computed tomography (DECT) images. In this paper we describe a new method based on a local adaptive processing to reduce noise in DECT images An adaptive neighborhood Wiener (ANW) filter was implemented and customized to use local characteristics of material density images. The ANW filter employs a three-level wavelet approach, combined with the application of an anisotropic diffusion filter. Material density images and virtual monochromatic images are noise corrected with two resulting noise maps. The algorithm was applied and quantitatively evaluated in a set of 36 images. From that set of images, three are shown here, and nine more are shown in the online supplementary material. Processed images had higher signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) than the raw material density images. The average improvements in SNR and CNR for the material density images were 56.5 and 54.75%, respectively. We developed a new DECT noise reduction algorithm. We demonstrate throughout a series of quantitative analyses that the algorithm improves the quality of material density images and virtual monochromatic images.

  2. On the precision of automated activation time estimation

    NASA Technical Reports Server (NTRS)

    Kaplan, D. T.; Smith, J. M.; Rosenbaum, D. S.; Cohen, R. J.

    1988-01-01

    We examined how the assignment of local activation times in epicardial and endocardial electrograms is affected by sampling rate, ambient signal-to-noise ratio, and sinx/x waveform interpolation. Algorithms used for the estimation of fiducial point locations included dV/dtmax, and a matched filter detection algorithm. Test signals included epicardial and endocardial electrograms overlying both normal and infarcted regions of dog myocardium. Signal-to-noise levels were adjusted by combining known data sets with white noise "colored" to match the spectral characteristics of experimentally recorded noise. For typical signal-to-noise ratios and sampling rates, the template-matching algorithm provided the greatest precision in reproducibly estimating fiducial point location, and sinx/x interpolation allowed for an additional significant improvement. With few restrictions, combining these two techniques may allow for use of digitization rates below the Nyquist rate without significant loss of precision.

  3. Understanding the sensitivity of cavity-enhanced absorption spectroscopy: pathlength enhancement versus noise suppression

    NASA Astrophysics Data System (ADS)

    Ouyang, B.; Jones, R. L.

    2012-12-01

    Cavity-enhanced absorption spectroscopy is now widely used as an ultrasensitive technique in observing weak spectroscopic absorptions. Photons inside the cavity are reflected back and forth between the mirrors with reflectivities R close to one and thus (on average) exploit an absorption pathlength L that is 1/(1 - R) longer than a single pass measurement. As suggested by the Beer-Lambert law, this increase in L results in enhanced absorbance A (given by αL with α being the absorption coefficient) which in turn favours the detection of weak absorptions. At the same time, however, only (1 - R) of the incident light can enter the cavity [assuming that mirror transmission T is equal to (1 - R)], so that the reduction in transmitted light intensity Δ I caused by molecular absorption equates to that would be obtained if in fact no cavity were present. The enhancement in A = Δ I/ I, where I is the total transmitted light intensity, achievable from CEAS therefore comes not from an increase in Δ I, but a sharp decrease in I. In this paper, we calculate the magnitudes of these two terms before and after a cavity is introduced, and aim at interpreting the sensitivity improvement offered by cavity-enhanced absorption spectroscopy from this observable-oriented (i.e. Δ I and I) perspective. It is first shown that photon energy stored in the cavity is at best as intense as the input light source, implying that any absorbing sample within the cavity is exposed to the same or even lower light intensity after the cavity is formed. As a consequence, the intensity of the light absorbed or scattered by the sample, which corresponds to the Δ I term aforementioned, is never greater than would be the case in a single pass measurement. It is then shown that while this "numerator" term is not improved, the "denominator" term, I, is reduced considerably; therefore, the increase in contrast ratio Δ I/ I is solely contributed by the attenuation of transmitted background light I and is ultimately down to the suppression of any measurement noise that is associated with it. The noise component that is most effectively suppressed is the type whose magnitude scales linearly with light intensity I, as is typical of noise caused by environmental instabilities, followed by the shot noise which scales as square root of I. No suppression is achievable for noise sources that are independent of I, a notable example being the thermal noise of a detector or of detection electronics. The usefulness of this "noise suppression" argument is that it links the sensitivity gain offered by a cavity with the property of measurement noise present in the system, and clearly suggests that the achievable sensitivity is dependent on how efficient the various noise components are "suppressed" by the cavity.

  4. A high resolution InSAR topographic reconstruction research in urban area based on TerraSAR-X data

    NASA Astrophysics Data System (ADS)

    Qu, Feifei; Qin, Zhang; Zhao, Chaoying; Zhu, Wu

    2011-10-01

    Aiming at the problems of difficult unwrapping and phase noise in InSAR DEM reconstruction, especially for the high-resolution TerraSAR-X data, this paper improved the height reconstruction algorithm in view of "remove-restore" based on external coarse DEM and multi-interferogram processing, proposed a height calibration method based on CR+GPS data. Several measures have been taken for urban high resolution DEM reconstruction with TerraSAR data. The SAR interferometric pairs with long spatial and short temporal baselines are served for the DEM. The external low resolution and low accuracy DEM is applied for the "remove-restore" concept to ease the phase unwrapping. The stochastic errors including atmospheric effects and phase noise are suppressed by weighted averaging of DEM phases. Six TerraSAR-X data are applied to create the twelve-meter's resolution DEM over Xian, China with the newly-proposed method. The heights in discrete GPS benchmarks are used to calibrate the result, and the RMS of 3.29 meter is achieved by comparing with 1:50000 DEM.

  5. The Effects of Digital Noise Reduction on the Acceptance of Background Noise

    PubMed Central

    Mueller, H. Gustav; Weber, Jennifer; Hornsby, Benjamin W. Y.

    2006-01-01

    Modern hearing aids commonly employ digital noise reduction (DNR) algorithms. The potential benefit of these algorithms is to provide improved speech understanding in noise or, at the least, to provide relaxed listening or increased ease of listening. In this study, 22 adults were fitted with 16-channel wide-dynamic-range compression hearing aids containing DNR processing. The DNR includes both modulation-based and Wiener-filter-type algorithms working simultaneously. Both speech intelligibility and acceptable noise level (ANL) were assessed using the Hearing in Noise Test (HINT) with DNR on and DNR off. The ANL was also assessed without hearing aids. The results showed a significant mean improvement for the ANL (4.2 dB) for the DNR-on condition when compared to DNR-off condition. Moreover, there was a significant correlation between the magnitude of ANL improvement (relative to DNR on) and the DNR-off ANL. There was no significant mean improvement for the HINT for the DNR-on condition, and on an individual basis, the HINT score did not significantly correlate with either aided ANL (DNR on or DNR off). These findings suggest that at least within the constraints of the DNR algorithms and test conditions employed in this study, DNR can significantly improve the clinically measured ANL, which may result in improved ease of listening for speech-in-noise situations. PMID:16959732

  6. A new algorithm for ECG interference removal from single channel EMG recording.

    PubMed

    Yazdani, Shayan; Azghani, Mahmood Reza; Sedaaghi, Mohammad Hossein

    2017-09-01

    This paper presents a new method to remove electrocardiogram (ECG) interference from electromyogram (EMG). This interference occurs during the EMG acquisition from trunk muscles. The proposed algorithm employs progressive image denoising (PID) algorithm and ensembles empirical mode decomposition (EEMD) to remove this type of interference. PID is a very recent method that is being used for denoising digital images mixed with white Gaussian noise. It detects white Gaussian noise by deterministic annealing. To the best of our knowledge, PID has never been used before, in the case of EMG and ECG separation or in other 1D signal denoising applications. We have used it according to this fact that amplitude of the EMG signal can be modeled as white Gaussian noise using a filter with time-variant properties. The proposed algorithm has been compared to the other well-known methods such as HPF, EEMD-ICA, Wavelet-ICA and PID. The results show that the proposed algorithm outperforms the others, on the basis of three evaluation criteria used in this paper: Normalized mean square error, Signal to noise ratio and Pearson correlation.

  7. Rayleigh-maximum-likelihood bilateral filter for ultrasound image enhancement.

    PubMed

    Li, Haiyan; Wu, Jun; Miao, Aimin; Yu, Pengfei; Chen, Jianhua; Zhang, Yufeng

    2017-04-17

    Ultrasound imaging plays an important role in computer diagnosis since it is non-invasive and cost-effective. However, ultrasound images are inevitably contaminated by noise and speckle during acquisition. Noise and speckle directly impact the physician to interpret the images and decrease the accuracy in clinical diagnosis. Denoising method is an important component to enhance the quality of ultrasound images; however, several limitations discourage the results because current denoising methods can remove noise while ignoring the statistical characteristics of speckle and thus undermining the effectiveness of despeckling, or vice versa. In addition, most existing algorithms do not identify noise, speckle or edge before removing noise or speckle, and thus they reduce noise and speckle while blurring edge details. Therefore, it is a challenging issue for the traditional methods to effectively remove noise and speckle in ultrasound images while preserving edge details. To overcome the above-mentioned limitations, a novel method, called Rayleigh-maximum-likelihood switching bilateral filter (RSBF) is proposed to enhance ultrasound images by two steps: noise, speckle and edge detection followed by filtering. Firstly, a sorted quadrant median vector scheme is utilized to calculate the reference median in a filtering window in comparison with the central pixel to classify the target pixel as noise, speckle or noise-free. Subsequently, the noise is removed by a bilateral filter and the speckle is suppressed by a Rayleigh-maximum-likelihood filter while the noise-free pixels are kept unchanged. To quantitatively evaluate the performance of the proposed method, synthetic ultrasound images contaminated by speckle are simulated by using the speckle model that is subjected to Rayleigh distribution. Thereafter, the corrupted synthetic images are generated by the original image multiplied with the Rayleigh distributed speckle of various signal to noise ratio (SNR) levels and added with Gaussian distributed noise. Meanwhile clinical breast ultrasound images are used to visually evaluate the effectiveness of the method. To examine the performance, comparison tests between the proposed RSBF and six state-of-the-art methods for ultrasound speckle removal are performed on simulated ultrasound images with various noise and speckle levels. The results of the proposed RSBF are satisfying since the Gaussian noise and the Rayleigh speckle are greatly suppressed. The proposed method can improve the SNRs of the enhanced images to nearly 15 and 13 dB compared with images corrupted by speckle as well as images contaminated by speckle and noise under various SNR levels, respectively. The RSBF is effective in enhancing edge while smoothing the speckle and noise in clinical ultrasound images. In the comparison experiments, the proposed method demonstrates its superiority in accuracy and robustness for denoising and edge preserving under various levels of noise and speckle in terms of visual quality as well as numeric metrics, such as peak signal to noise ratio, SNR and root mean squared error. The experimental results show that the proposed method is effective for removing the speckle and the background noise in ultrasound images. The main reason is that it performs a "detect and replace" two-step mechanism. The advantages of the proposed RBSF lie in two aspects. Firstly, each central pixel is classified as noise, speckle or noise-free texture according to the absolute difference between the target pixel and the reference median. Subsequently, the Rayleigh-maximum-likelihood filter and the bilateral filter are switched to eliminate speckle and noise, respectively, while the noise-free pixels are unaltered. Therefore, it is implemented with better accuracy and robustness than the traditional methods. Generally, these traits declare that the proposed RSBF would have significant clinical application.

  8. Technical note: suppression of artifacts arising from simultaneous cone-beam imaging and RF transponder tracking in prostate radiotherapy.

    PubMed

    Poludniowski, Gavin; Webb, Steve; Evans, Philip M

    2012-03-01

    Artifacts in treatment-room cone-beam reconstructions have been observed at the authors' center when cone-beam acquisition is simultaneous with radio frequency (RF) transponder tracking using the Calypso 4D system (Calypso Medical, Seattle, WA). These artifacts manifest as CT-number modulations and increased CT-noise. The authors present a method for the suppression of the artifacts. The authors propose a three-stage postprocessing technique that can be applied to image volumes previously reconstructed by a cone-beam system. The stages are (1) segmentation of voxels into air, soft-tissue, and bone; (2) application of a 2D spatial-filter in the axial plane to the soft-tissue voxels; and (3) normalization to remove streaking along the axial-direction. The algorithm was tested on patient data acquired with Synergy XVI cone-beam CT systems (Elekta, Crawley, United Kingdom). The computational demands of the suggested correction are small, taking less than 15 s per cone-beam reconstruction on a desktop PC. For a moderate loss of spatial-resolution, the artifacts are strongly suppressed and low-contrast visibility is improved. The correction technique proposed is fast and effective in removing the artifacts caused by simultaneous cone-beam imaging and RF-transponder tracking.

  9. Complex-based OCT angiography algorithm recovers microvascular information better than amplitude- or phase-based algorithms in phase-stable systems

    NASA Astrophysics Data System (ADS)

    Xu, Jingjiang; Song, Shaozhen; Li, Yuandong; Wang, Ruikang K.

    2018-01-01

    Optical coherence tomography angiography (OCTA) is increasingly becoming a popular inspection tool for biomedical imaging applications. By exploring the amplitude, phase and complex information available in OCT signals, numerous algorithms have been proposed that contrast functional vessel networks within microcirculatory tissue beds. However, it is not clear which algorithm delivers optimal imaging performance. Here, we investigate systematically how amplitude and phase information have an impact on the OCTA imaging performance, to establish the relationship of amplitude and phase stability with OCT signal-to-noise ratio (SNR), time interval and particle dynamics. With either repeated A-scan or repeated B-scan imaging protocols, the amplitude noise increases with the increase of OCT SNR; however, the phase noise does the opposite, i.e. it increases with the decrease of OCT SNR. Coupled with experimental measurements, we utilize a simple Monte Carlo (MC) model to simulate the performance of amplitude-, phase- and complex-based algorithms for OCTA imaging, the results of which suggest that complex-based algorithms deliver the best performance when the phase noise is  <  ~40 mrad. We also conduct a series of in vivo vascular imaging in animal models and human retina to verify the findings from the MC model through assessing the OCTA performance metrics of vessel connectivity, image SNR and contrast-to-noise ratio. We show that for all the metrics assessed, the complex-based algorithm delivers better performance than either the amplitude- or phase-based algorithms for both the repeated A-scan and the B-scan imaging protocols, which agrees well with the conclusion drawn from the MC simulations.

  10. Complex-based OCT angiography algorithm recovers microvascular information better than amplitude- or phase-based algorithms in phase-stable systems.

    PubMed

    Xu, Jingjiang; Song, Shaozhen; Li, Yuandong; Wang, Ruikang K

    2017-12-19

    Optical coherence tomography angiography (OCTA) is increasingly becoming a popular inspection tool for biomedical imaging applications. By exploring the amplitude, phase and complex information available in OCT signals, numerous algorithms have been proposed that contrast functional vessel networks within microcirculatory tissue beds. However, it is not clear which algorithm delivers optimal imaging performance. Here, we investigate systematically how amplitude and phase information have an impact on the OCTA imaging performance, to establish the relationship of amplitude and phase stability with OCT signal-to-noise ratio (SNR), time interval and particle dynamics. With either repeated A-scan or repeated B-scan imaging protocols, the amplitude noise increases with the increase of OCT SNR; however, the phase noise does the opposite, i.e. it increases with the decrease of OCT SNR. Coupled with experimental measurements, we utilize a simple Monte Carlo (MC) model to simulate the performance of amplitude-, phase- and complex-based algorithms for OCTA imaging, the results of which suggest that complex-based algorithms deliver the best performance when the phase noise is  <  ~40 mrad. We also conduct a series of in vivo vascular imaging in animal models and human retina to verify the findings from the MC model through assessing the OCTA performance metrics of vessel connectivity, image SNR and contrast-to-noise ratio. We show that for all the metrics assessed, the complex-based algorithm delivers better performance than either the amplitude- or phase-based algorithms for both the repeated A-scan and the B-scan imaging protocols, which agrees well with the conclusion drawn from the MC simulations.

  11. Optimal design of minimum mean-square error noise reduction algorithms using the simulated annealing technique.

    PubMed

    Bai, Mingsian R; Hsieh, Ping-Ju; Hur, Kur-Nan

    2009-02-01

    The performance of the minimum mean-square error noise reduction (MMSE-NR) algorithm in conjunction with time-recursive averaging (TRA) for noise estimation is found to be very sensitive to the choice of two recursion parameters. To address this problem in a more systematic manner, this paper proposes an optimization method to efficiently search the optimal parameters of the MMSE-TRA-NR algorithms. The objective function is based on a regression model, whereas the optimization process is carried out with the simulated annealing algorithm that is well suited for problems with many local optima. Another NR algorithm proposed in the paper employs linear prediction coding as a preprocessor for extracting the correlated portion of human speech. Objective and subjective tests were undertaken to compare the optimized MMSE-TRA-NR algorithm with several conventional NR algorithms. The results of subjective tests were processed by using analysis of variance to justify the statistic significance. A post hoc test, Tukey's Honestly Significant Difference, was conducted to further assess the pairwise difference between the NR algorithms.

  12. Application of based on improved wavelet algorithm in fiber temperature sensor

    NASA Astrophysics Data System (ADS)

    Qi, Hui; Tang, Wenjuan

    2018-03-01

    It is crucial point that accurate temperature in distributed optical fiber temperature sensor. In order to solve the problem of temperature measurement error due to weak Raman scattering signal and strong noise in system, a new based on improved wavelet algorithm is presented. On the basis of the traditional modulus maxima wavelet algorithm, signal correlation is considered to improve the ability to capture signals and noise, meanwhile, combined with wavelet decomposition scale adaptive method to eliminate signal loss or noise not filtered due to mismatch scale. Superiority of algorithm filtering is compared with others by Matlab. At last, the 3km distributed optical fiber temperature sensing system is used for verification. Experimental results show that accuracy of temperature generally increased by 0.5233.

  13. Role of Active Listening and Listening Effort on Contralateral Suppression of Transient Evoked Otoacousic Emissions.

    PubMed

    Kalaiah, Mohan Kumar; Theruvan, Nikhitha B; Kumar, Kaushlendra; Bhat, Jayashree S

    2017-04-01

    The present study aimed to investigate the effect of active listening and listening effort on the contralateral suppression of transient evoked otoacoustic emissions (CSTEOAEs). Twenty eight young adults participated in the study. Transient evoked otoacoustic emissions (TEOAEs) were recorded using 'linear' clicks at 60 dB peSPL, in three contralateral noise conditions. In condition 1, TEOAEs were obtained in the presence of white noise in the contralateral ear. While, in condition 2, speech was embedded into white noise at +3, -3, and -9 dB signal-to-noise ratio (SNR) and delivered to the contralateral ear. The SNR was varied to investigate the effect of listening effort on the CSTEOAE. In condition 3, speech was played backwards and embedded into white noise at -3 dB SNR. The conditions 1 and 3 served as passive listening condition and the condition 2 served as active listening condition. In active listening condition, the participants categorized the words in to two groups (e.g., animal and vehicle). CSTEOAE was found to be largest in the presence of white noise, and the amount of CSTEOAE was not significantly different between active and passive listening conditions (condition 2 and 3). Listening effort had an effect on the CSTEOAE, the amount of suppression increased with listening effort, when SNR was decreased from +3 dB to -3 dB. However, when the SNR was further reduced to -9 dB, there was no further increase in the amount of CSTEOAE, instead there was a reduction in the amount of suppression. The findings of the present study show that listening effort might affect CSTEOAE.

  14. Role of Active Listening and Listening Effort on Contralateral Suppression of Transient Evoked Otoacousic Emissions

    PubMed Central

    Theruvan, Nikhitha B; Kumar, Kaushlendra; Bhat, Jayashree S

    2017-01-01

    Background and Objectives The present study aimed to investigate the effect of active listening and listening effort on the contralateral suppression of transient evoked otoacoustic emissions (CSTEOAEs). Subjects and Methods Twenty eight young adults participated in the study. Transient evoked otoacoustic emissions (TEOAEs) were recorded using ‘linear’ clicks at 60 dB peSPL, in three contralateral noise conditions. In condition 1, TEOAEs were obtained in the presence of white noise in the contralateral ear. While, in condition 2, speech was embedded into white noise at +3, −3, and −9 dB signal-to-noise ratio (SNR) and delivered to the contralateral ear. The SNR was varied to investigate the effect of listening effort on the CSTEOAE. In condition 3, speech was played backwards and embedded into white noise at −3 dB SNR. The conditions 1 and 3 served as passive listening condition and the condition 2 served as active listening condition. In active listening condition, the participants categorized the words in to two groups (e.g., animal and vehicle). Results CSTEOAE was found to be largest in the presence of white noise, and the amount of CSTEOAE was not significantly different between active and passive listening conditions (condition 2 and 3). Listening effort had an effect on the CSTEOAE, the amount of suppression increased with listening effort, when SNR was decreased from +3 dB to −3 dB. However, when the SNR was further reduced to −9 dB, there was no further increase in the amount of CSTEOAE, instead there was a reduction in the amount of suppression. Conclusions The findings of the present study show that listening effort might affect CSTEOAE. PMID:28417101

  15. PRAXIS: low thermal emission high efficiency OH suppressed fibre spectrograph

    NASA Astrophysics Data System (ADS)

    Content, Robert; Bland-Hawthorn, Joss; Ellis, Simon; Gers, Luke; Haynes, Roger; Horton, Anthony; Lawrence, Jon; Leon-Saval, Sergio; Lindley, Emma; Min, Seong-Sik; Shortridge, Keith; Staszak, Nick; Trinh, Christopher; Xavier, Pascal; Zhelem, Ross

    2014-07-01

    PRAXIS is a second generation instrument that follows on from GNOSIS, which was the first instrument using fibre Bragg gratings for OH suppression to be deployed on a telescope. The Bragg gratings reflect the NIR OH lines while being transparent to the light between the lines. This gives in principle a much higher signal-noise ratio at low resolution spectroscopy but also at higher resolutions by removing the scattered wings of the OH lines. The specifications call for high throughput and very low thermal and detector noise so that PRAXIS will remain sky noise limited even with the low sky background levels remaining after OH suppression. The optical and mechanical designs are presented. The optical train starts with fore-optics that image the telescope focal plane on an IFU which has 19 hexagonal microlenses each feeding a multi-mode fibre. Seven of these fibres are attached to a fibre Bragg grating OH suppression system while the others are reference/acquisition fibres. The light from each of the seven OH suppression fibres is then split by a photonic lantern into many single mode fibres where the Bragg gratings are imprinted. Another lantern recombines the light from the single mode fibres into a multi-mode fibre. A trade-off was made in the design of the IFU between field of view and transmission to maximize the signal-noise ratio for observations of faint, compact objects under typical seeing. GNOSIS used the pre-existing IRIS2 spectrograph while PRAXIS will use a new spectrograph specifically designed for the fibre Bragg grating OH suppression and optimised for 1.47 μm to 1.7 μm (it can also be used in the 1.09 μm to 1.26 μm band by changing the grating and refocussing). This results in a significantly higher transmission due to high efficiency coatings, a VPH grating at low incident angle and optimized for our small bandwidth, and low absorption glasses. The detector noise will also be lower thanks to the use of a current generation HAWAII-2RG detector. Throughout the PRAXIS design, from the fore-optics to the detector enclosure, special care was taken at every step along the optical path to reduce thermal emission or stop it leaking into the system. The spectrograph design itself was particularly challenging in this aspect because practical constraints required that the detector and the spectrograph enclosures be physically separate with air at ambient temperature between them. At present, the instrument uses the GNOSIS fibre Bragg grating OH suppression unit. We intend to soon use a new OH suppression unit based on multicore fibre Bragg gratings which will allow an increased field of view per fibre. Theoretical calculations show that the gain in interline sky background signal-noise ratio over GNOSIS may very well be as high as 9 with the GNOSIS OH suppression unit and 17 with the multicore fibre OH suppression unit.

  16. A multi-band spectral subtraction-based algorithm for real-time noise cancellation applied to gunshot acoustics

    NASA Astrophysics Data System (ADS)

    Ramos, António L. L.; Holm, Sverre; Gudvangen, Sigmund; Otterlei, Ragnvald

    2013-06-01

    Acoustical sniper positioning is based on the detection and direction-of-arrival estimation of the shockwave and the muzzle blast acoustical signals. In real-life situations, the detection and direction-of-arrival estimation processes is usually performed under the influence of background noise sources, e.g., vehicles noise, and might result in non-negligible inaccuracies than can affect the system performance and reliability negatively, specially when detecting the muzzle sound under long range distance and absorbing terrains. This paper introduces a multi-band spectral subtraction based algorithm for real-time noise reduction, applied to gunshot acoustical signals. The ballistic shockwave and the muzzle blast signals exhibit distinct frequency contents that are affected differently by additive noise. In most real situations, the noise component is colored and a multi-band spectral subtraction approach for noise reduction contributes to reducing the presence of artifacts in denoised signals. The proposed algorithm is tested using a dataset generated by combining signals from real gunshots and real vehicle noise. The noise component was generated using a steel tracked military tank running on asphalt and includes, therefore, the sound from the vehicle engine, which varies slightly in frequency over time according to the engine's rpm, and the sound from the steel tracks as the vehicle moves.

  17. Adaptive filtering of GOCE-derived gravity gradients of the disturbing potential in the context of the space-wise approach

    NASA Astrophysics Data System (ADS)

    Piretzidis, Dimitrios; Sideris, Michael G.

    2017-09-01

    Filtering and signal processing techniques have been widely used in the processing of satellite gravity observations to reduce measurement noise and correlation errors. The parameters and types of filters used depend on the statistical and spectral properties of the signal under investigation. Filtering is usually applied in a non-real-time environment. The present work focuses on the implementation of an adaptive filtering technique to process satellite gravity gradiometry data for gravity field modeling. Adaptive filtering algorithms are commonly used in communication systems, noise and echo cancellation, and biomedical applications. Two independent studies have been performed to introduce adaptive signal processing techniques and test the performance of the least mean-squared (LMS) adaptive algorithm for filtering satellite measurements obtained by the gravity field and steady-state ocean circulation explorer (GOCE) mission. In the first study, a Monte Carlo simulation is performed in order to gain insights about the implementation of the LMS algorithm on data with spectral behavior close to that of real GOCE data. In the second study, the LMS algorithm is implemented on real GOCE data. Experiments are also performed to determine suitable filtering parameters. Only the four accurate components of the full GOCE gravity gradient tensor of the disturbing potential are used. The characteristics of the filtered gravity gradients are examined in the time and spectral domain. The obtained filtered GOCE gravity gradients show an agreement of 63-84 mEötvös (depending on the gravity gradient component), in terms of RMS error, when compared to the gravity gradients derived from the EGM2008 geopotential model. Spectral-domain analysis of the filtered gradients shows that the adaptive filters slightly suppress frequencies in the bandwidth of approximately 10-30 mHz. The limitations of the adaptive LMS algorithm are also discussed. The tested filtering algorithm can be connected to and employed in the first computational steps of the space-wise approach, where a time-wise Wiener filter is applied at the first stage of GOCE gravity gradient filtering. The results of this work can be extended to using other adaptive filtering algorithms, such as the recursive least-squares and recursive least-squares lattice filters.

  18. Motion artifact removal algorithm by ICA for e-bra: a women ECG measurement system

    NASA Astrophysics Data System (ADS)

    Kwon, Hyeokjun; Oh, Sechang; Varadan, Vijay K.

    2013-04-01

    Wearable ECG(ElectroCardioGram) measurement systems have increasingly been developing for people who suffer from CVD(CardioVascular Disease) and have very active lifestyles. Especially, in the case of female CVD patients, several abnormal CVD symptoms are accompanied with CVDs. Therefore, monitoring women's ECG signal is a significant diagnostic method to prevent from sudden heart attack. The E-bra ECG measurement system from our previous work provides more convenient option for women than Holter monitor system. The e-bra system was developed with a motion artifact removal algorithm by using an adaptive filter with LMS(least mean square) and a wandering noise baseline detection algorithm. In this paper, ICA(independent component analysis) algorithms are suggested to remove motion artifact factor for the e-bra system. Firstly, the ICA algorithms are developed with two kinds of statistical theories: Kurtosis, Endropy and evaluated by performing simulations with a ECG signal created by sgolayfilt function of MATLAB, a noise signal including 0.4Hz, 1.1Hz and 1.9Hz, and a weighed vector W estimated by kurtosis or entropy. A correlation value is shown as the degree of similarity between the created ECG signal and the estimated new ECG signal. In the real time E-Bra system, two pseudo signals are extracted by multiplying with a random weighted vector W, the measured ECG signal from E-bra system, and the noise component signal by noise extraction algorithm from our previous work. The suggested ICA algorithm basing on kurtosis or entropy is used to estimate the new ECG signal Y without noise component.

  19. Development of gradient descent adaptive algorithms to remove common mode artifact for improvement of cardiovascular signal quality.

    PubMed

    Ciaccio, Edward J; Micheli-Tzanakou, Evangelia

    2007-07-01

    Common-mode noise degrades cardiovascular signal quality and diminishes measurement accuracy. Filtering to remove noise components in the frequency domain often distorts the signal. Two adaptive noise canceling (ANC) algorithms were tested to adjust weighted reference signals for optimal subtraction from a primary signal. Update of weight w was based upon the gradient term of the steepest descent equation: [see text], where the error epsilon is the difference between primary and weighted reference signals. nabla was estimated from Deltaepsilon(2) and Deltaw without using a variable Deltaw in the denominator which can cause instability. The Parallel Comparison (PC) algorithm computed Deltaepsilon(2) using fixed finite differences +/- Deltaw in parallel during each discrete time k. The ALOPEX algorithm computed Deltaepsilon(2)x Deltaw from time k to k + 1 to estimate nabla, with a random number added to account for Deltaepsilon(2) . Deltaw--> 0 near the optimal weighting. Using simulated data, both algorithms stably converged to the optimal weighting within 50-2000 discrete sample points k even with a SNR = 1:8 and weights which were initialized far from the optimal. Using a sharply pulsatile cardiac electrogram signal with added noise so that the SNR = 1:5, both algorithms exhibited stable convergence within 100 ms (100 sample points). Fourier spectral analysis revealed minimal distortion when comparing the signal without added noise to the ANC restored signal. ANC algorithms based upon difference calculations can rapidly and stably converge to the optimal weighting in simulated and real cardiovascular data. Signal quality is restored with minimal distortion, increasing the accuracy of biophysical measurement.

  20. Scale invariant SURF detector and automatic clustering segmentation for infrared small targets detection

    NASA Astrophysics Data System (ADS)

    Zhang, Haiying; Bai, Jiaojiao; Li, Zhengjie; Liu, Yan; Liu, Kunhong

    2017-06-01

    The detection and discrimination of infrared small dim targets is a challenge in automatic target recognition (ATR), because there is no salient information of size, shape and texture. Many researchers focus on mining more discriminative information of targets in temporal-spatial. However, such information may not be available with the change of imaging environments, and the targets size and intensity keep changing in different imaging distance. So in this paper, we propose a novel research scheme using density-based clustering and backtracking strategy. In this scheme, the speeded up robust feature (SURF) detector is applied to capture candidate targets in single frame at first. And then, these points are mapped into one frame, so that target traces form a local aggregation pattern. In order to isolate the targets from noises, a newly proposed density-based clustering algorithm, fast search and find of density peak (FSFDP for short), is employed to cluster targets by the spatial intensive distribution. Two important factors of the algorithm, percent and γ , are exploited fully to determine the clustering scale automatically, so as to extract the trace with highest clutter suppression ratio. And at the final step, a backtracking algorithm is designed to detect and discriminate target trace as well as to eliminate clutter. The consistence and continuity of the short-time target trajectory in temporal-spatial is incorporated into the bounding function to speed up the pruning. Compared with several state-of-arts methods, our algorithm is more effective for the dim targets with lower signal-to clutter ratio (SCR). Furthermore, it avoids constructing the candidate target trajectory searching space, so its time complexity is limited to a polynomial level. The extensive experimental results show that it has superior performance in probability of detection (Pd) and false alarm suppressing rate aiming at variety of complex backgrounds.

Top