Science.gov

Sample records for noise-equivalent temperature difference

  1. A comparison of quantum limited dose and noise equivalent dose

    NASA Astrophysics Data System (ADS)

    Job, Isaias D.; Boyce, Sarah J.; Petrillo, Michael J.; Zhou, Kungang

    2016-03-01

    Quantum-limited-dose (QLD) and noise-equivalent-dose (NED) are performance metrics often used interchangeably. Although the metrics are related, they are not equivalent unless the treatment of electronic noise is carefully considered. These metrics are increasingly important to properly characterize the low-dose performance of flat panel detectors (FPDs). A system can be said to be quantum-limited when the Signal-to-noise-ratio (SNR) is proportional to the square-root of x-ray exposure. Recent experiments utilizing three methods to determine the quantum-limited dose range yielded inconsistent results. To investigate the deviation in results, generalized analytical equations are developed to model the image processing and analysis of each method. We test the generalized expression for both radiographic and fluoroscopic detectors. The resulting analysis shows that total noise content of the images processed by each method are inherently different based on their readout scheme. Finally, it will be shown that the NED is equivalent to the instrumentation-noise-equivalent-exposure (INEE) and furthermore that the NED is derived from the quantum-noise-only method of determining QLD. Future investigations will measure quantum-limited performance of radiographic panels with a modified readout scheme to allow for noise improvements similar to measurements performed with fluoroscopic detectors.

  2. Equivalence of optical and electrical noise equivalent power of hybrid NbTiN-Al microwave kinetic inductance detectors

    SciTech Connect

    Janssen, R. M. J.; Endo, A.; Visser, P. J. de; Klapwijk, T. M.; Baselmans, J. J. A.

    2014-11-10

    We have measured and compared the response of hybrid NbTiN-Al Microwave Kinetic Inductance Detectors (MKIDs) to changes in bath temperature and illumination by sub-mm radiation. We show that these two stimulants have an equivalent effect on the resonance feature of hybrid MKIDs. We determine an electrical noise equivalent power (NEP) from the measured temperature responsivity, quasiparticle recombination time, superconducting transition temperature, and noise spectrum, all of which can be measured in a dark environment. For the two hybrid NbTiN-Al MKIDs studied in detail, the electrical NEP is within a factor of two of the optical NEP, which is measured directly using a blackbody source.

  3. Determination of noise equivalent reflectance for a multispectral scanner: A scanner sensitivity study

    NASA Technical Reports Server (NTRS)

    Gibbons, D. E.; Richard, R. R.

    1979-01-01

    The methods used to calculate the sensitivity parameter noise equivalent reflectance of a remote-sensing scanner are explored, and the results are compared with values measured over calibrated test sites. Data were acquired on four occasions covering a span of 4 years and providing various atmospheric conditions. One of the calculated values was based on assumed atmospheric conditions, whereas two others were based on atmospheric models. Results indicate that the assumed atmospheric conditions provide useful answers adequate for many purposes. A nomograph was developed to indicate sensitivity variations due to geographic location, time of day, and season.

  4. A reconsideration of the noise equivalent power and the data analysis procedure for the infrared imaging video bolometers

    SciTech Connect

    Pandya, Shwetang N. Sano, Ryuichi; Peterson, Byron J.; Kobayashi, Masahiro; Mukai, Kiyofumi; Pandya, Santosh P.

    2014-12-15

    The infrared imaging video bolometer (IRVB) used for measurement of the two-dimensional (2D) radiation profiles from the Large Helical Device has been significantly upgraded recently to improve its signal to noise ratio, sensitivity, and calibration, which ultimately provides quantitative measurements of the radiation from the plasma. The reliability of the quantified data needs to be established by various checks. The noise estimates also need to be revised and more realistic values need to be established. It is shown that the 2D heat diffusion equation can be used for estimating the power falling on the IRVB foil, even with a significant amount of spatial variation in the thermal diffusivity across the area of the platinum foil found experimentally during foil calibration. The equation for the noise equivalent power density (NEPD) is re-derived to include the errors in the measurement of the thermophysical and the optical properties of the IRVB foil. The theoretical value estimated using this newly derived equation matches closely, within 5.5%, with the mean experimental value. The change in the contribution of each error term of the NEPD equation with rising foil temperature is also studied and the blackbody term is found to dominate the other terms at elevated operating temperatures. The IRVB foil is also sensitive to the charge exchange (CX) neutrals escaping from the plasma. The CX neutral contribution is estimated to be marginally higher than the noise equivalent power (NEP) of the IRVB. It is also established that the radiation measured by the IRVB originates from the impurity line radiation from the plasma and not from the heated divertor tiles. The change in the power density due to noise reduction measures such as data smoothing and averaging is found to be comparable to the IRVB NEPD. The precautions that need to be considered during background subtraction are also discussed with experimental illustrations. Finally, the analysis algorithm with all the

  5. Minimum resolvable temperature difference measurements on undersampled imagers

    NASA Astrophysics Data System (ADS)

    Driggers, Ronald G.; Hodgkin, Van A.; Vollmerhausen, Richard H.; O'Shea, Patrick

    2003-08-01

    Minimum Resolvable Temperature Difference (MRTD) is the primary measurement of performance for infrared imaging systems. Where Modulation Transfer Function (MTF) is a measurement of resolution and three-dimensional noise (or noise equivalent temperature difference) is a measurement of sensitivity, MRTD combines both measurements into a test of observer visual acuity through the imager. MRTD has been incorrectly applied to undersampled thermal imagers as a means for assessing the overall performance of the imager. The incorrect application of the MRTD (or just MRT) test to undersampled imagers includes testing to the half-sample (or Nyquist rate) of the sensor and calling the MRT unresolvable beyond this frequency. This approach is known to give poor predictions in overall system performance. Also, measurements at frequencies below the half-sample rate are strongly dependent on the phase between the sampling geometry and the four-bar target. The result is that very little information in the MRT measurement of an undersampled thermal imager is useful. There are a number of alternatives including Dynamic MRT (DMRT), Minimum Temperature Difference Perceived (MTDP), Triangle Orientation Discrimination (TOD), and objective MRT tests. The NVESD approach is to measure the MTF and system noise and to use these measurements in the MRT calculation to give good sensor performance predictions. This paper describes the problems with MRT for undersampled imagers, describes the alternative measurements, and presents the NVESD approach to MRT measurements.

  6. Energy from low temperature differences

    NASA Astrophysics Data System (ADS)

    Parsons, B. K.

    1985-05-01

    A number of energy conservation and alternative energy approaches utilize a low temperature heat source. Applications in this category include: solar ponds, ocean thermal energy conversion (OTEC), low temperature solar thermal, geothermal, and waste heat recovery and bottoming cycles. Low temperature power extraction techniques are presented and the differences between closed and open Rankine power cycles are discussed. Specific applications and technical areas of current research in OTEC along with a breakdown of plant operating conditions and a rough cost estimate illustrate how the use of low temperature power conversion technology can be cost effective.

  7. Effective detective quantum efficiency (eDQE) and effective noise equivalent quanta (eNEQ) for system optimization purposes in digital mammography

    NASA Astrophysics Data System (ADS)

    Salvagnini, Elena; Bosmans, Hilde; Struelens, Lara; Marshall, Nicholas W.

    2012-03-01

    Effective detective quantum efficiency (eDQE) and effective noise equivalent quanta (eNEQ) were recently introduced to broaden the notion of DQE and NEQ by including system parameters such as focus blurring and system scatter rejection methods. This work investigates eDQE and eNEQ normalized for mean glandular dose (eNEQMGD) as a means to characterize and select optimal exposure parameters for a digital mammographic system. The eDQE was measured for three anode/filter combinations, with and without anti-scatter grid and for four thicknesses of poly(methylmethacrylate) (PMMA). The modulation transfer function used to calculate eDQE and eNEQ was measured from an edge positioned at 20,40,60,70 mm above the table top without scattering material in the beam. The grid-in eDQE results for all A/F settings were generally larger than those for grid-out. Contrarily, the eNEQMGD results were higher for grid-out than gridin, with a maximum difference of 61% among all A/F combinations and PMMA thicknesses. The W/Rh combination gave the highest eNEQMGD for all PMMA thicknesses compared to the other A/F combinations (for grid-in and grid-out), supporting the results of alternative methods (e.g. the signal difference to noise ratio method). The eNEQMGD was then multiplied with the contrast obtained from a 0.2mm Al square, resulting in a normalized quantity that was higher for the W/Rh combination than for the other A/F combinations. In particular, the results for the W/Rh combination were greater for the grid-in case. Furthermore, these results showed close agreement with a non-prewhitened match filter with eye response model observer (d') normalized for MGD.

  8. Thermal conductance measurements for the development of ultra low-noise transition-edge sensors with a new method for measuring the noise equivalent power

    NASA Astrophysics Data System (ADS)

    Rostem, Karwan; Glowacka, Dorota M.; Goldie, David J.; Withington, Stafford

    2008-07-01

    Transition-Edge Sensors (TESs) are sensitive devices used in astronomical detectors. Recent projects in ground-based and space astronomy demand the Noise Equivalent Power (NEP) of the TES to be reduced to the limits needed for accurate measurements, for example, of the B-mode polarisation of the CMB. Thus, we have measured thermal conductance of SixNy bridges of various geometries, and present the results that give insight into the phonon transport mechanism inside these low-dimensional structures. We also present a new method for measuring the NEP of TESs using an on-chip black body radiator.

  9. Cryoanalgesia: electrophysiology at different temperatures.

    PubMed

    Zhou, Linqiu; Shao, Zhenhai; Ou, Shihuan

    2003-02-01

    Somatosensory evoked potentials (SEP) and sensory conduction velocity (SCV) were measured in rabbit sciatic nerves following graded cold lesioning. The SEP disappeared when injury was induced at temperatures below -60 degrees C, but returned on day 41+/-4 (mean+/-SD). SEP returned on day 56+/-11 days when the lesion was induced at 100 to -180 degrees C. The SEP latency was prolonged after creating lesions at -100 to -180 degrees C, compared with both the sham operated and the -20 degrees C groups. These experiments suggest the cryolesions produced at temperatures between -60 and -100 degrees C are most suitable for altering the electrophysiological conduction of the nerve, and may result in suitable post-operative analgesia. PMID:12623025

  10. Microclimatic Temperature Relationships over Different Surfaces.

    ERIC Educational Resources Information Center

    Williams, Thomas B.

    1991-01-01

    Describes a study of temperature variations over different surfaces in an urban campus setting. Explains that researchers sampled temperatures over grass, bare soil, gravel, concrete, and blacktop. Reports that grassy areas registered the highest morning temperatures and lowest afternoon temperatures. (SG)

  11. Effects of undersampling on the proper interpretation of modulation transfer function, noise power spectra, and noise equivalent quanta of digital imaging systems.

    PubMed

    Dobbins, J T

    1995-02-01

    The proper understanding of modulation transfer function (MTF), noise power spectra (NPS), and noise equivalent quanta (NEQ) in digital systems is significantly hampered when the systems are undersampled. Undersampling leads to three significant complications: (1) MTF and NPS do not behave as transfer amplitude and variance, respectively, of a single sinusoid, (2) the response of a digital system to a delta function is not spatially invariant and therefore does not fulfill certain technical requirements of classical analysis, and (3) NEQ loses its common meaning as maximum available SNR2 (signal-to-noise) at a particular frequency. These three complications cause the comparisons of MTF and NEQ between undersampled digital systems to depend on the frequency content of the images being evaluated. A tutorial of MTF, NPS, and NEQ concepts for digital systems is presented, along with a complete theoretical treatment of the above-mentioned complications from undersampling.

  12. Measuring noise equivalent irradiance of a digital short-wave infrared imaging system using a broadband source to simulate the night spectrum

    NASA Astrophysics Data System (ADS)

    Green, John R.; Robinson, Timothy

    2015-05-01

    There is a growing interest in developing helmet-mounted digital imaging systems (HMDIS) for integration into military aircraft cockpits. This interest stems from the multiple advantages of digital vs. analog imaging such as image fusion from multiple sensors, data processing to enhance the image contrast, superposition of non-imaging data over the image, and sending images to remote location for analysis. There are several properties an HMDIS must have in order to aid the pilot during night operations. In addition to the resolution, image refresh rate, dynamic range, and sensor uniformity over the entire Focal Plane Array (FPA); the imaging system must have the sensitivity to detect the limited night light available filtered through cockpit transparencies. Digital sensor sensitivity is generally measured monochromatically using a laser with a wavelength near the peak detector quantum efficiency, and is generally reported as either the Noise Equivalent Power (NEP) or Noise Equivalent Irradiance (NEI). This paper proposes a test system that measures NEI of Short-Wave Infrared (SWIR) digital imaging systems using a broadband source that simulates the night spectrum. This method has a few advantages over a monochromatic method. Namely, the test conditions provide spectrum closer to what is experienced by the end-user, and the resulting NEI may be compared directly to modeled night glow irradiance calculation. This comparison may be used to assess the Technology Readiness Level of the imaging system for the application. The test system is being developed under a Cooperative Research and Development Agreement (CRADA) with the Air Force Research Laboratory.

  13. Electron temperature differences and double layers

    NASA Technical Reports Server (NTRS)

    Chan, C.; Hershkowitz, N.; Lonngren, K. E.

    1983-01-01

    Electron temperature differences across plasma double layers are studied experimentally. It is shown that the temperature differences across a double layer can be varied and are not a result of thermalization of the bump-on-tail distribution. The implications of these results for electron thermal energy transport in laser-pellet and tandem-mirror experiments are also discussed.

  14. Detection of Temperature Difference in Neuronal Cells

    PubMed Central

    Tanimoto, Ryuichi; Hiraiwa, Takumi; Nakai, Yuichiro; Shindo, Yutaka; Oka, Kotaro; Hiroi, Noriko; Funahashi, Akira

    2016-01-01

    For a better understanding of the mechanisms behind cellular functions, quantification of the heterogeneity in an organism or cells is essential. Recently, the importance of quantifying temperature has been highlighted, as it correlates with biochemical reaction rates. Several methods for detecting intracellular temperature have recently been established. Here we develop a novel method for sensing temperature in living cells based on the imaging technique of fluorescence of quantum dots. We apply the method to quantify the temperature difference in a human derived neuronal cell line, SH-SY5Y. Our results show that temperatures in the cell body and neurites are different and thus suggest that inhomogeneous heat production and dissipation happen in a cell. We estimate that heterogeneous heat dissipation results from the characteristic shape of neuronal cells, which consist of several compartments formed with different surface-volume ratios. Inhomogeneous heat production is attributable to the localization of specific organelles as the heat source. PMID:26925874

  15. Component analysis of a new Solid State X-ray Image Intensifier (SSXII) using photon transfer and Instrumentation Noise Equivalent Exposure (INEE) measurements

    PubMed Central

    Kuhls-Gilcrist, Andrew; Bednarek, Daniel R.; Rudin, Stephen

    2009-01-01

    The SSXII is a novel x-ray imager designed to improve upon the performance limitations of conventional dynamic radiographic/fluoroscopic imagers related to resolution, charge-trapping, frame-rate, and instrumentation-noise. The SSXII consists of a CsI:Tl phosphor coupled via a fiber-optic taper (FOT) to an electron-multiplying CCD (EMCCD). To facilitate investigational studies, initial designs enable interchangeability of such imaging components. Measurements of various component and configuration characteristics enable an optimization analysis with respect to overall detector performance. Photon transfer was used to characterize the EMCCD performance including ADC sensitivity, read-noise, full-well capacity and quantum efficiency. X-ray sensitivity was measured using RQA x-ray spectra. Imaging components were analyzed in terms of their MTF and transmission efficiency. The EMCCD was measured to have a very low effective read-noise of less than 1 electron rms at modest EMCCD gains, which is more than two orders-of-magnitude less than flat panel (FPD) and CMOS-based detectors. The variable signal amplification from 1 to 2000 times enables selectable sensitivities ranging from 8.5 (168) to over 15k (300k) electrons per incident x-ray photon with (without) a 4:1 FOT; these sensitivities could be readily increased with further component optimization. MTF and DQE measurements indicate the SSXII performance is comparable to current state-of-the-art detectors at low spatial frequencies and far exceeds them at higher spatial frequencies. The instrumentation noise equivalent exposure (INEE) was measured to be less than 0.3 μR out to 10 cycles/mm, which is substantially better than FPDs. Component analysis suggests that these improvements can be substantially increased with further detector optimization. PMID:19763251

  16. Myoglobin solvent structure at different temperatures

    SciTech Connect

    Daniels, B.V.; Korszun, Z.R.; Schoenborn, B.P.

    1994-12-31

    The structure of the solvent surrounding myoglobin crystals has been analyzed using neutron diffraction data, and the results indicate that the water around the protein is not disordered, but rather lies in well-defined hydration shells. We have analyzed the structure of the solvent surrounding the protein by collecting neutron diffraction data at four different temperatures, namely, 80, 130, 180, and 240K. Relative Wilson Statistics applied to low resolution data showed evidence of a phase transition in the region of 180K. A plot of the liquidity factor, B{sub sn}, versus distance from the protein surface begins with a high plateau near the surface of the protein and drops to two minima at distances from the protein surface of about 2.35{Angstrom} and 3.85{Angstrom}. Two distinct hydration shells are observed. Both hydration shells are observed to expand as the temperature is increased.

  17. Meaning of temperature in different thermostatistical ensembles.

    PubMed

    Hänggi, Peter; Hilbert, Stefan; Dunkel, Jörn

    2016-03-28

    Depending on the exact experimental conditions, the thermodynamic properties of physical systems can be related to one or more thermostatistical ensembles. Here, we survey the notion of thermodynamic temperature in different statistical ensembles, focusing in particular on subtleties that arise when ensembles become non-equivalent. The 'mother' of all ensembles, the microcanonical ensemble, uses entropy and internal energy (the most fundamental, dynamically conserved quantity) to derive temperature as a secondary thermodynamic variable. Over the past century, some confusion has been caused by the fact that several competing microcanonical entropy definitions are used in the literature, most commonly the volume and surface entropies introduced by Gibbs. It can be proved, however, that only the volume entropy satisfies exactly the traditional form of the laws of thermodynamics for a broad class of physical systems, including all standard classical Hamiltonian systems, regardless of their size. This mathematically rigorous fact implies that negative 'absolute' temperatures and Carnot efficiencies more than 1 are not achievable within a standard thermodynamical framework. As an important offspring of microcanonical thermostatistics, we shall briefly consider the canonical ensemble and comment on the validity of the Boltzmann weight factor. We conclude by addressing open mathematical problems that arise for systems with discrete energy spectra.

  18. Meaning of temperature in different thermostatistical ensembles.

    PubMed

    Hänggi, Peter; Hilbert, Stefan; Dunkel, Jörn

    2016-03-28

    Depending on the exact experimental conditions, the thermodynamic properties of physical systems can be related to one or more thermostatistical ensembles. Here, we survey the notion of thermodynamic temperature in different statistical ensembles, focusing in particular on subtleties that arise when ensembles become non-equivalent. The 'mother' of all ensembles, the microcanonical ensemble, uses entropy and internal energy (the most fundamental, dynamically conserved quantity) to derive temperature as a secondary thermodynamic variable. Over the past century, some confusion has been caused by the fact that several competing microcanonical entropy definitions are used in the literature, most commonly the volume and surface entropies introduced by Gibbs. It can be proved, however, that only the volume entropy satisfies exactly the traditional form of the laws of thermodynamics for a broad class of physical systems, including all standard classical Hamiltonian systems, regardless of their size. This mathematically rigorous fact implies that negative 'absolute' temperatures and Carnot efficiencies more than 1 are not achievable within a standard thermodynamical framework. As an important offspring of microcanonical thermostatistics, we shall briefly consider the canonical ensemble and comment on the validity of the Boltzmann weight factor. We conclude by addressing open mathematical problems that arise for systems with discrete energy spectra. PMID:26903095

  19. Minimum Temperatures, Diurnal Temperature Ranges and Temperature Inversions in Limestone Sinkholes of Different Sizes and Shapes

    SciTech Connect

    Whiteman, Charles D.; Haiden, Thomas S.; Pospichal, Bernhard; Eisenbach, Stefan; Steinacker, Reinhold

    2004-08-01

    Air temperature data from five enclosed limestone sinkholes of various sizes and shapes on the 1300 m MSL Duerrenstein Plateau near Lunz, Austria have been analyzed to determine the effect of sinkhole geometry on temperature minima, diurnal temperature ranges, temperature inversion strengths and vertical temperature gradients. Data were analyzed for a non-snow-covered October night and for a snow-covered December night when the temperature fell as low as -28.5°C. Surprisingly, temperatures were similar in two sinkholes with very different drainage areas and depths. A three-layer model was used to show that the sky-view factor is the most important topographic parameter controlling cooling for basins in this size range and that the cooling slows when net longwave radiation at the floor of the sinkhole is nearly balanced by the ground heat flux.

  20. Radically Different Kinetics at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Sims, Ian

    2014-06-01

    The use of the CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme, or Reaction Kinetics in Uniform Supersonic Flow) technique coupled with pulsed laser photochemical kinetics methods has shown that reactions involving radicals can be very rapid at temperatures down to 10 K or below. The results have had a major impact in astrochemistry and planetology, as well as proving an exacting test for theory. The technique has also been applied to the formation of transient complexes of interest both in atmospheric chemistry and combustion. Until now, all of the chemical reactions studied in this way have taken place on attractive potential energy surfaces with no overall barrier to reaction. The F + H2 {→} HF + H reaction does possess a substantial energetic barrier ({\\cong} 800 K), and might therefore be expected to slow to a negligible rate at very low temperatures. In fact, this H-atom abstraction reaction does take place efficiently at low temperatures due entirely to tunneling. I will report direct experimental measurements of the rate of this reaction down to a temperature of 11 K, in remarkable agreement with state-of-the-art quantum reactive scattering calculations by François Lique (Université du Havre) and Millard Alexander (University of Maryland). It is thought that long chain cyanopolyyne molecules H(C2)nCN may play an important role in the formation of the orange haze layer in Titan's atmosphere. The longest carbon chain molecule observed in interstellar space, HC11N, is also a member of this series. I will present new results, obtained in collaboration with Jean-Claude Guillemin (Ecole de Chimie de Rennes) and Stephen Klippenstein (Argonne National Labs), on reactions of C2H, CN and C3N radicals (using a new LIF scheme by Hoshina and Endo which contribute to the low temperature formation of (cyano)polyynes. H. Sabbah, L. Biennier, I. R. Sims, Y. Georgievskii, S. J. Klippenstein, I. W. M. Smith, Science 317, 102 (2007). S. D. Le Picard, M

  1. Finite difference program for calculating hydride bed wall temperature profiles

    SciTech Connect

    Klein, J.E.

    1992-10-29

    A QuickBASIC finite difference program was written for calculating one dimensional temperature profiles in up to two media with flat, cylindrical, or spherical geometries. The development of the program was motivated by the need to calculate maximum temperature differences across the walls of the Tritium metal hydrides beds for thermal fatigue analysis. The purpose of this report is to document the equations and the computer program used to calculate transient wall temperatures in stainless steel hydride vessels. The development of the computer code was motivated by the need to calculate maximum temperature differences across the walls of the hydrides beds in the Tritium Facility for thermal fatigue analysis.

  2. Development of Temperature Sensitive Paints for the Detection of Small Temperature Differences

    NASA Technical Reports Server (NTRS)

    Oglesby, Donald M.; Upchurch, Billy T.; Sealey, Bradley S.; Leighty, Bradley D.; Burkett, Cecil G., Jr.; Jalali, Amir

    1997-01-01

    Temperature sensitive paints (TSP s) have recently been used to detect small temperature differences on aerodynamic model surfaces. These types of applications impose stringent performance requirements on a paint system. The TSP s must operate over a broad temperature range, must be physically robust (cannot chip or peel), must be polishable to at least the smoothness of the model surface, and must have sufficient sensitivity to detect small temperature differences. TSP coatings based on the use of metal complexes in polymer binders were developed at NASA Langley Research Center which meet most of the requirements for detection of small temperature differences under severe environmental conditions.

  3. Ground surface temperature simulation for different land covers

    NASA Astrophysics Data System (ADS)

    Herb, William R.; Janke, Ben; Mohseni, Omid; Stefan, Heinz G.

    2008-07-01

    SummaryA model for predicting temperature time series for dry and wet land surfaces is described, as part of a larger project to assess the impact of urban development on the temperature of surface runoff and coldwater streams. Surface heat transfer processes on impervious and pervious land surfaces were investigated for both dry and wet weather periods. The surface heat transfer equations were combined with a numerical approximation of the 1-D unsteady heat diffusion equation to calculate pavement and soil temperature profiles to a depth of 10 m. Equations to predict the magnitude of the radiative, convective, conductive and evaporative heat fluxes at a dry or wet surface, using standard climate data as input, were developed. A model for the effect of plant canopies on surface heat transfer was included for vegetated land surfaces. Given suitable climate data, the model can simulate the land surface and sub-surface temperatures continuously throughout a six month time period or for a single rainfall event. Land surface temperatures have been successfully simulated for pavements, bare soil, short and tall grass, a forest, and two agricultural crops (corn and soybeans). The simulations were run for three different locations in US, and different years as imposed by the availability of measured soil temperature and climate data. To clarify the effect of land use on surface temperatures, the calibrated coefficients for each land use and the same soil coefficients were used to simulate surface temperatures for a six year climate data set from Albertville, MN. Asphalt and concrete give the highest surface temperatures, as expected, while vegetated surfaces gave the lowest. Bare soil gives surface temperatures that lie between those for pavements and plant-covered surfaces. The soil temperature model predicts hourly surface temperatures of bare soil and pavement with root-mean-square errors (RMSEs) of 1-2 °C, and hourly surface temperatures of vegetation-covered surfaces

  4. Atmospheric Circulation of Hot Jupiters: Dayside–Nightside Temperature Differences

    NASA Astrophysics Data System (ADS)

    Komacek, Thaddeus D.; Showman, Adam P.

    2016-04-01

    The full-phase infrared light curves of low-eccentricity hot Jupiters show a trend of increasing dayside-to-nightside brightness temperature difference with increasing equilibrium temperature. Here, we present a three-dimensional model that explains this relationship, in order to provide insight into the processes that control heat redistribution in tidally locked planetary atmospheres. This three-dimensional model combines predictive analytic theory for the atmospheric circulation and dayside–nightside temperature differences over a range of equilibrium temperatures, atmospheric compositions, and potential frictional drag strengths with numerical solutions of the circulation that verify this analytic theory. The theory shows that the longitudinal propagation of waves mediates dayside–nightside temperature differences in hot Jupiter atmospheres, analogous to the wave adjustment mechanism that regulates the thermal structure in Earth’s tropics. These waves can be damped in hot Jupiter atmospheres by either radiative cooling or potential frictional drag. This frictional drag would likely be caused by Lorentz forces in a partially ionized atmosphere threaded by a background magnetic field, and would increase in strength with increasing temperature. Additionally, the amplitude of radiative heating and cooling increases with increasing temperature, and hence both radiative heating/cooling and frictional drag damp waves more efficiently with increasing equilibrium temperature. Radiative heating and cooling play the largest role in controlling dayside–nightside temperature differences in both our analytic theory and numerical simulations, with frictional drag only being important if it is stronger than the Coriolis force. As a result, dayside–nightside temperature differences in hot Jupiter atmospheres increase with increasing stellar irradiation and decrease with increasing pressure.

  5. Temperature Rise during Resin Composite Polymerization under Different Ceramic Restorations

    PubMed Central

    Yondem, Isa; Altintas, Subutay Han; Usumez, Aslihan

    2011-01-01

    Objectives: The purpose of this study was to measure temperature increase induced by various light polymerizing units during resin composite polymerization beneath one of three types of ceramic restorations. Methods: The resin composite (Variolink II) was polymerized between one of three different ceramic specimens (zirconium oxide, lithium disilicate, feldspathic) (diameter 5 mm, height 2 mm) and a dentin disc (diameter 5 mm, height 1 mm) with a conventional halogen light, a high intensity halogen light, or an LED unit. The temperature rise was measured under the dentin disc with a J-type thermocouple wire connected to a data logger. Ten measurements were carried out for each group. The difference between the initial and highest temperature readings was taken and the 10 calculated temperature changes were averaged to determine the mean value in temperature rise. Two way analysis of variance (ANOVA) was used to analyze the data (polymerizing unit, ceramic brand) for significant differences. The Tukey HSD test was used to perform multiple comparisons (α=.05). Results: Temperature rise did not vary significantly depending on the light polymerizing unit used (P=.16), however, the type of ceramic system showed a significant effect on temperature increases (P<.01). There were no statistically significant differences between lithium disilicate and feldspathic ceramic systems (P >.05); in comparison, the resin composite polymerized under the zirconium oxide ceramic system induced a significantly lower temperature increase than the other ceramic systems tested (P<.05) Conclusions: The resin composite polymerized beneath zirconium oxide ceramic system induced significantly smaller temperature changes. The maximal temperature increase detected in all groups in this study was not viewed as critical for pulpal health. PMID:21769272

  6. Dayside-Nightside Temperature Differences in Hot Jupiter Atmospheres

    NASA Astrophysics Data System (ADS)

    Komacek, Thaddeus D.; Showman, Adam P.

    2015-12-01

    The infrared phase curves of low-eccentricity transiting hot Jupiters show a trend of increasing flux amplitude, or increasing day-night temperature difference, with increasing equilibrium temperature. Here we utilize atmospheric circulation modeling and analytic theory to understand this trend, and the more general question: what processes control heat redistribution in tidally-locked giant planet atmospheres? We performed a wide range of 3D numerical simulations of the atmospheric circulation with simplified forcing, and constructed an analytic theory that explains the day-night temperature differences in these simulations over a wide parameter space. Our analytic theory shows that day-night temperature differences in tidally-locked planet atmospheres are mediated by wave propagation. If planetary-scale waves are free to propagate longitudinally, they will efficiently flatten isentropes and lessen day-night temperature differences. If these waves are damped, the day-night temperature differences will necessarily be larger. We expect that wave propagation in hot Jupiter atmospheres can be damped in two ways: by either radiative cooling or frictional drag. Both of these processes increase in efficacy with increasing equilibrium temperature, as radiative cooling is directly related to the cube of temperature and magnetically-induced (Lorentz) drag becomes stronger with increasing partial ionization and hence temperature. We find that radiative cooling plays the largest role in damping wave propagation and hence plays the biggest role in controlling day-night temperature differences. As a result, day-night temperature differences in hot Jupiter atmospheres decrease with increasing pressure and increase with increasing stellar flux. One can apply this result to phase curve observations of individual hot Jupiters in multiple bandpasses, as varying flux amplitudes between wavelengths implies that different photospheric pressure levels are being probed. Namely, a larger

  7. Optimization of injection dose based on noise-equivalent count rate with use of an anthropomorphic pelvis phantom in three-dimensional 18F-FDG PET/CT.

    PubMed

    Inoue, Kazumasa; Kurosawa, Hideo; Tanaka, Takashi; Fukushi, Masahiro; Moriyama, Noriyuki; Fujii, Hirofumi

    2012-07-01

    The optimal injection dose for imaging of the pelvic region in 3D FDG PET tests was investigated based on the noise-equivalent count (NEC) rate with use of an anthropomorphic pelvis phantom. Count rates obtained from an anthropomorphic pelvis phantom were compared with those of pelvic images of 60 patients. The correlation between single photon count rates obtained from the pelvic regions of patients and the doses per body weight was also evaluated. The radioactivity at the maximum NEC rate was defined as an optimal injection dose, and the optimal injection dose for the body weight was evaluated. The image noise of a phantom was also investigated. Count rates obtained from an anthropomorphic pelvis phantom corresponded well with those from the human pelvis. The single photon count rate obtained from the phantom was 9.9 Mcps at the peak NEC rate. The coefficient of correlation between the single photon count rate and the dose per weight obtained from patient data was 0.830. The optimal injection doses for a patient with weighing 60 kg were estimated to be 375 MBq (6.25 MBq/kg) and 435 MBq (7.25 MBq/kg) for uptake periods of 60 and 90 min, respectively. The image noise was minimal at the peak NEC rate. We successfully estimated the optimal injection dose based on the NEC rate in the pelvic region on 3D FDG PET tests using an anthropomorphic pelvis phantom.

  8. Simulation of Soil Temperature Dynamics with Models Using Different Concepts

    PubMed Central

    Sándor, Renáta; Fodor, Nándor

    2012-01-01

    This paper presents two soil temperature models with empirical and mechanistic concepts. At the test site (calcaric arenosol), meteorological parameters as well as soil moisture content and temperature at 5 different depths were measured in an experiment with 8 parcels realizing the combinations of the fertilized, nonfertilized, irrigated, nonirrigated treatments in two replicates. Leaf area dynamics was also monitored. Soil temperature was calculated with the original and a modified version of CERES as well as with the HYDRUS-1D model. The simulated soil temperature values were compared to the observed ones. The vegetation reduced both the average soil temperature and its diurnal amplitude; therefore, considering the leaf area dynamics is important in modeling. The models underestimated the actual soil temperature and overestimated the temperature oscillation within the winter period. All models failed to account for the insulation effect of snow cover. The modified CERES provided explicitly more accurate soil temperature values than the original one. Though HYDRUS-1D provided more accurate soil temperature estimations, its superiority to CERES is not unequivocal as it requires more detailed inputs. PMID:22792047

  9. A comparison of the temperature difference according to the placement of a nasopharyngeal temperature probe

    PubMed Central

    Lim, Hyungsun; Kim, Boram; Kim, Dong-Chan; Lee, Sang-Kyi

    2016-01-01

    Background The purpose of this study was to compare temperatures measured at three different sites where a nasopharyngeal temperature probe is commonly placed. Methods Eighty elective abdominal surgical patients were enrolled. After anesthesia induction, four temperature probes were placed at the nasal cavity, upper portion of the nasopharynx, oropharynx, and the esophagus. The placement of the nasopharyngeal temperature probes was evaluated using a flexible nasendoscope, and the depth from the nares was measured. The four temperatures were simultaneously recorded at 10-minute intervals for 60 minutes. Results The average depths of the probes that were placed in the nasal cavity, upper nasopharynx, and the oropharynx were respectively 5.7 ± 0.9 cm, 9.9 ± 0.7 cm, and 13.6 ± 1.7 cm from the nares. In the baseline temperatures, the temperature differences were significantly greater in the nasal cavity 0.32 (95% CI; 0.27-0.37)℃ than in the nasopharynx 0.02 (0.01–0.04)℃, and oropharynx 0.02 (−0.01 to 0.05)℃ compared with the esophagus (P < 0.001). These differences were maintained for 60 minutes. Twenty patients showed a 0.5℃ or greater temperature difference between the nasal cavity and the esophagus, but no patient showed such a difference at the nasopharynx and oropharynx. Conclusions During general anesthesia, the temperatures measured at the upper nasopharynx and the oropharynx, but not the nasal cavity, reflected the core temperature. Therefore, the authors recommend that a probe should be placed at the nasopharynx (≈ 10 cm) or oropharynx (≈ 14 cm) with mucosal attachment for accurate core temperature measurement. PMID:27482312

  10. Nonlinear relationship between level of blood flow and skin temperature for different dynamics of temperature change.

    PubMed

    Vuksanović, Vesna; Sheppard, Lawrence William; Stefanovska, Aneta

    2008-05-15

    We present a study of the relationship between blood flow and skin temperature under different dynamics of skin-temperature-change: locally induced thermal shock and well controlled, gradual change. First, we demonstrate memory phenomena for blood flow and skin temperature under both conditions. Secondly, we point out that the "hysteresis" loops obtained are dependent on initial conditions, indicating physiological response times of more than twenty minutes. We also show that under thermal shock the level of blood flow is preserved up to some characteristic temperature limit, independently of subject.

  11. Development of Dermanyssus gallinae (Acari: Dermanyssidae) at different temperatures.

    PubMed

    Tucci, E C; Prado, A P; Araújo, R P

    2008-08-01

    The development, viability, and life cycle parameters of Dermanyssus gallinae at five different temperatures (15, 20, 25, 30 and 35 degrees C), and at relative humidity 70-85% were evaluated. Life cycle duration was 690.75 h (28 days) at 15 degrees C, 263.12h (11 days) at 20 degrees C, 164.63 h (7 days) at 25 degrees C, 140.69 h (6 days) at 30 degrees C and 172.04 h (7 days) at 35 degrees C. The optimal development temperature for D. gallinae was 30 degrees C, with the greatest survival in all stages and the shortest development time. High mortality at 35 degrees C indicated that this temperature had adverse effects on development of D. gallinae, and that in field conditions D. gallinae populations may decrease or even disappear due to the negative impact of high temperature on development. There were no significant differences in the pre-oviposition period among the four temperatures 20-35 degrees C, indicating that temperature did not affect this part of the life cycle.

  12. [The regional skin temperature of hand under different clothing conditions].

    PubMed

    Isaji, S; Yoshimura, K; Amano, T

    1994-11-01

    The change in the regional skin temperature of hand was investigated under two different clothing conditions. The skin temperatures at six points on the palm, dorsum, and middle finger of the hand, respectively, were measured by using thermister thermometers simultaneously. The measurements were performed in a climate chamber conditioned at 20 degrees C and 65% R.H.. The subjects were 10 healthy females aged between 20 and 24 years. Five out of the 10 subjects wore light clothing (ca. 0.36 clo) and the others heavy clothing (ca. 0.75 clo). They first rested sitting on a chair for 30 min in the climate chamber before the onset of measurement. The results are as follows: 1) The skin temperature of the palm was higher than that of the other parts. Data were rather scattered in the case of the middle finger. 2) The skin temperature of the middle finger dropped to about 3 degrees C within 20 min after the start of measurement. 3) The skin temperature of the middle finger was affected by the clothing condition. We imagine that the skin temperature of the middle finger closely relates to arteriovenous anastomoses (AVA) located in the finger. Clothing probably plays an important role in controlling the blood flow of the AVA vessels, and consequently the skin temperature of the middle finger changes more sensitively than other parts of the hand.

  13. Dayside-Nightside Temperature Differences in Hot Jupiter Atmospheres

    NASA Astrophysics Data System (ADS)

    Komacek, T. D.; Showman, A. P.

    2015-12-01

    The full-phase light curves of individual close-in extrasolar giant planets, or "hot Jupiters," show a trend of increasing fractional amplitude with increasing planetary equilibrium temperature. The attached figure shows this trend for 7 transiting low-eccentricity hot Jupiters. For these planets, this trend can be realized as a trend of increasing dayside-to-nightside temperature difference with increasing equilibrium temperature, as these planets are expected to be tidally locked. Here we examine this trend, in order to shed insight on the physical processes that regulate heat redistribution in tidally-locked planet atmospheres. We utilize a combination of analytic theory to predict how heat is redistributed from day to night over a range of equilibrium temperature, atmospheric composition, and potential frictional drag strengths, and confirm the theory using numerical circulation modeling. Our theory identifies that the transition from low to high day-night temperature differences is mediated by wave adjustment, the same process that regulates heat redistribution in the tropics of Earth. Due to their low rotation rate and hence large Rossby deformation radius, tidally locked planets allow for wave propagation to occur over a much larger latitude range than on Earth. Hence, wave adjustment processes play a key role in the the global, not just equatorial, heat redistribution in hot Jupiter atmospheres. Wave propagation can be damped in hot Jupiter atmospheres by either radiative cooling to space or potential frictional drag. This frictional drag, if present, would likely be caused by Lorentz forces in a partially ionized atmosphere threaded by a planetary-scale magnetic field. The radiative cooling timescale is inversely related to the cube of temperature, and any Lorentz drag would increase with temperature due to the increasing ionization fraction of the atmosphere. Hence, both of these processes damp waves more effectively as equilibrium temperature increases

  14. Temperature dependencies of Henry's law constants for different plant sesquiterpenes.

    PubMed

    Copolovici, Lucian; Niinemets, Ülo

    2015-11-01

    Sesquiterpenes are plant-produced hydrocarbons with important ecological functions in plant-to-plant and plant-to-insect communication, but due to their high reactivity they can also play a significant role in atmospheric chemistry. So far, there is little information of gas/liquid phase partition coefficients (Henry's law constants) and their temperature dependencies for sesquiterpenes, but this information is needed for quantitative simulation of the release of sesquiterpenes from plants and modeling atmospheric reactions in different phases. In this study, we estimated Henry's law constants (Hpc) and their temperature responses for 12 key plant sesquiterpenes with varying structure (aliphatic, mono-, bi- and tricyclic sesquiterpenes). At 25 °C, Henry's law constants varied 1.4-fold among different sesquiterpenes, and the values were within the range previously observed for monocyclic monoterpenes. Hpc of sesquiterpenes exhibited a high rate of increase, on average ca. 1.5-fold with a 10 °C increase in temperature (Q10). The values of Q10 varied 1.2-fold among different sesquiterpenes. Overall, these data demonstrate moderately high variation in Hpc values and Hpc temperature responses among different sesquiterpenes. We argue that these variations can importantly alter the emission kinetics of sesquiterpenes from plants. PMID:26291755

  15. Temperature profiles of different cooling methods in porcine pancreas procurement.

    PubMed

    Weegman, Bradley P; Suszynski, Thomas M; Scott, William E; Ferrer Fábrega, Joana; Avgoustiniatos, Efstathios S; Anazawa, Takayuki; O'Brien, Timothy D; Rizzari, Michael D; Karatzas, Theodore; Jie, Tun; Sutherland, David E R; Hering, Bernhard J; Papas, Klearchos K

    2014-01-01

    Porcine islet xenotransplantation is a promising alternative to human islet allotransplantation. Porcine pancreas cooling needs to be optimized to reduce the warm ischemia time (WIT) following donation after cardiac death, which is associated with poorer islet isolation outcomes. This study examines the effect of four different cooling Methods on core porcine pancreas temperature (n = 24) and histopathology (n = 16). All Methods involved surface cooling with crushed ice and chilled irrigation. Method A, which is the standard for porcine pancreas procurement, used only surface cooling. Method B involved an intravascular flush with cold solution through the pancreas arterial system. Method C involved an intraductal infusion with cold solution through the major pancreatic duct, and Method D combined all three cooling Methods. Surface cooling alone (Method A) gradually decreased core pancreas temperature to <10 °C after 30 min. Using an intravascular flush (Method B) improved cooling during the entire duration of procurement, but incorporating an intraductal infusion (Method C) rapidly reduced core temperature 15-20 °C within the first 2 min of cooling. Combining all methods (Method D) was the most effective at rapidly reducing temperature and providing sustained cooling throughout the duration of procurement, although the recorded WIT was not different between Methods (P = 0.36). Histological scores were different between the cooling Methods (P = 0.02) and the worst with Method A. There were differences in histological scores between Methods A and C (P = 0.02) and Methods A and D (P = 0.02), but not between Methods C and D (P = 0.95), which may highlight the importance of early cooling using an intraductal infusion. In conclusion, surface cooling alone cannot rapidly cool large (porcine or human) pancreata. Additional cooling with an intravascular flush and intraductal infusion results in improved core porcine pancreas temperature profiles during procurement and

  16. Clay facial masks: physicochemical stability at different storage temperatures.

    PubMed

    Zague, Vivian; de Almeida Silva, Diego; Baby, André Rolim; Kaneko, Telma Mary; Velasco, Maria Valéria Robles

    2007-01-01

    Clay facial masks--formulations that contain a high percentage of solids dispersed in a liquid vehicle--have become of special interest due to specific properties presented by clays, such as particle size, cooling index, high adsorption capacity, and plasticity. Although most of the physicochemical properties of clay dispersions have been studied, specific aspects concerning the physicochemical stability of clay mask products remain unclear. This work aimed at investigating the accelerated physicochemical stability of clay mask formulations stored at different temperatures. Formulations were subjected to centrifuge testing and to thermal treatment for 15 days, during which temperature was varied from -5.0 degrees to 45.0 degrees C. The apparent viscosity and visual aspect (homogeneity) of all formulations were affected by temperature variation, whereas color, odor, and pH value remained unaltered. These results, besides the estimation of physicochemical stability under aging, can be useful in determining the best storage conditions for clay-based formulations.

  17. LED Curing Lights and Temperature Changes in Different Tooth Sites.

    PubMed

    Armellin, E; Bovesecchi, G; Coppa, P; Pasquantonio, G; Cerroni, L

    2016-01-01

    Objectives. The aim of this in vitro study was to assess thermal changes on tooth tissues during light exposure using two different LED curing units. The hypothesis was that no temperature increase could be detected within the dental pulp during polymerization irrespective of the use of a composite resin or a light-curing unit. Methods. Caries-free human first molars were selected, pulp residues were removed after root resection, and four calibrated type-J thermocouples were positioned. Two LED lamps were tested; temperature measurements were made on intact teeth and on the same tooth during curing of composite restorations. The data was analyzed by one-way analysis of variance (ANOVA), Wilcoxon test, Kruskal-Wallis test, and Pearson's χ (2). After ANOVA, the Bonferroni multiple comparison test was performed. Results. Polymerization data analysis showed that in the pulp chamber temperature increase was higher than that without resin. Starlight PRO, in the same condition of Valo lamp, showed a lower temperature increase in pre- and intrapolymerization. A control group (without composite resin) was evaluated. Significance. Temperature increase during resin curing is a function of the rate of polymerization, due to the exothermic polymerization reaction, the energy from the light unit, and time of exposure. PMID:27195282

  18. LED Curing Lights and Temperature Changes in Different Tooth Sites

    PubMed Central

    Armellin, E.; Bovesecchi, G.; Coppa, P.; Pasquantonio, G.; Cerroni, L.

    2016-01-01

    Objectives. The aim of this in vitro study was to assess thermal changes on tooth tissues during light exposure using two different LED curing units. The hypothesis was that no temperature increase could be detected within the dental pulp during polymerization irrespective of the use of a composite resin or a light-curing unit. Methods. Caries-free human first molars were selected, pulp residues were removed after root resection, and four calibrated type-J thermocouples were positioned. Two LED lamps were tested; temperature measurements were made on intact teeth and on the same tooth during curing of composite restorations. The data was analyzed by one-way analysis of variance (ANOVA), Wilcoxon test, Kruskal-Wallis test, and Pearson's χ2. After ANOVA, the Bonferroni multiple comparison test was performed. Results. Polymerization data analysis showed that in the pulp chamber temperature increase was higher than that without resin. Starlight PRO, in the same condition of Valo lamp, showed a lower temperature increase in pre- and intrapolymerization. A control group (without composite resin) was evaluated. Significance. Temperature increase during resin curing is a function of the rate of polymerization, due to the exothermic polymerization reaction, the energy from the light unit, and time of exposure. PMID:27195282

  19. Refinement of thermal imager minimum resolvable temperature difference calculating method

    NASA Astrophysics Data System (ADS)

    Kolobrodov, V. G.; Mykytenko, V. I.

    2015-11-01

    Calculating methods, which accurately predict minimum resolvable temperature difference (MRTD), are of significant interest for many years. The article deals with improvement the accuracy of determining the thermal imaging system MRTD by elaboration the visual perception model. We suggest MRTD calculating algorithm, which is based on a reliable approximation of the human visual system modulation transfer function (MTF) proposed by N. Nill. There was obtained a new expression for the bandwidth evaluation, which is independent of angular size of the Foucault bar target.

  20. Infectivity of PRRS virus in pig manure at different temperatures.

    PubMed

    Linhares, Daniel C L; Torremorell, Montserrat; Joo, Han Soo; Morrison, Robert B

    2012-11-01

    PRRSv is an economically important swine pathogen which can be disseminated from infected pig herds via movement of contaminated manure. The process of manure handling and inadequate cleaning of transport vehicles are commonly implicated as sources of PRRSv transmission. Stability of PRRSv in pig manure at different temperatures is unknown. The objective of this study was to determine PRRSv-infectivity half-life in manure and in a cell culture medium at 4, 20, 60 and 80°C. To assure sample consistency across the study, all samples were prepared from common homogenized solutions (MEM and manure) and frozen at -20°C. Samples were thawed, transferred to a water bath set at a specific temperature, inoculated with 100 μl of PRRSv at designated time points and then tested for virus infectivity. Regression models were created to estimate PRRSv half-life based on incubation temperature. There was an exponential decrease in PRRSv infectivity with increasing temperature. At every temperature tested, PRRSv had shorter half-life when incubated in manure compared to MEM. PRRSv half-life in MEM and manure was estimated at 112.6 and 120.5 h at 4°C, 14.6 and 24.5 h at 20°C, 1.6 and 1.7 h at 40°C, 2.9 and 8.5 min at 60°C, and 0.36-0.59 min at 80°C, respectively. Results of this study can be used as basis for developing strategies to inactivate PRRSv present in manure-contaminated environments using heating treatments. For example, these data suggest that submitting transport trailers to temperature of 50°C for 8h would decrease PRRSv from 10(6) TCID(50)/ml to less than 10(1) TCID(50)/ml.

  1. Piglets’ Surface Temperature Change at Different Weights at Birth

    PubMed Central

    Caldara, Fabiana Ribeiro; dos Santos, Luan Sousa; Machado, Sivanilza Teixeira; Moi, Marta; de Alencar Nääs, Irenilza; Foppa, Luciana; Garcia, Rodrigo Garófallo; de Kássia Silva dos Santos, Rita

    2014-01-01

    The study was carried out in order to verify the effects of piglets’ weight at birth on their surface temperature change (ST) after birth, and its relationship with ingestion time of colostrum. Piglets from four different sows were weighed at birth and divided into a totally randomized design with three treatments according to birth weight (PBW): T1 - less than 1.00 kg, T2 - 1.00 to 1.39 kg, and T3 - higher than or equal to 1.40 kg. The time spent for the first colostrum ingestion was recorded (TFS). Images of piglets’ surface by thermal imaging camera were recorded at birth (STB) and 15, 30, 45, 60, and 120 min after birth. The air temperature and relative humidity were recorded every 30 min and the indexes of temperature and humidity (THI) were calculated. A ST drop after 15 min from birth was observed, increasing again after sixty minutes. Positive correlations were found between the PBW and the ST at 30 and 45 min after birth. The PBW was negatively correlated with the TFS. The THI showed high negative correlations (−0.824 and −0.815) with STB and after 15 min from birth. The piglet’s surface temperature at birth was positively correlated with temperature thereof to 15 min, influencing therefore the temperatures in the interval of 45 to 120 min. The birth weight contributes significantly to postnatal hypothermia and consequently to the time it takes for piglets ingest colostrum, requiring special attention to those of low birth weight. PMID:25049971

  2. Performance of NiTi endodontic instrument under different temperatures.

    PubMed

    Jamleh, Ahmed; Yahata, Yoshio; Ebihara, Arata; Atmeh, Amre R; Bakhsh, Turki; Suda, Hideaki

    2016-09-01

    The purpose of this study was to test nickel titanium (NiTi) instrument performance under different surrounding temperatures. Twenty-four superelastic NiTi instruments with a conical shape comprising a 0.30-mm-diameter tip and 0.06 taper were equally divided into 3 groups according to the temperature employed. Using a specially designed cyclic fatigue testing apparatus, each instrument was deflected to give a curvature 10 mm in radius and a 30° angle. This position was kept as the instrument was immersed in a continuous flow of water under a temperature of 10, 37, or 50 °C for 20 s to calculate the deflecting load (DL). In the same position, the instrument was then allowed to rotate at 300 rpm to fracture, and the working time was converted to the number of cycles to fracture (NCF). The statistical significance was set at p = 0.05. The mean DL (in N) and NCF (in cycles) of the groups at 10, 37, and 50 °C were 10.16 ± 1.36 and 135.50 ± 31.48, 13.50 ± 0.92 and 89.20 ± 16.44, and 14.70 ± 1.21 and 65.50 ± 15.90, respectively. The group at 10 °C had significantly the lowest DL that favorably resulted in the highest NCF. Within the limitations of this study, the surrounding temperature influences the cyclic fatigue resistance and DL of the superelastic NiTi instruments. Lower temperatures are found to favorably decrease the DL and extend the lifetime of the superelastic NiTi instrument. Further NiTi instrument failure studies should be performed under simulated body temperature.

  3. Stall cleanliness and stall temperature of two different freestall bases.

    PubMed

    Wadsworth, B A; Stone, A E; Clark, J D; Ray, D L; Bewley, J M

    2015-06-01

    The objective of this study was to describe the differences in freestall cleanliness and stall temperature between a barn with Dual Chamber Cow Waterbeds (DCCW; Advanced Comfort Technology, Reedsburg, WI) and a barn with rubber-filled mattresses at the University of Kentucky Coldstream Dairy Research Farm from January 18, 2012, to May 3, 2013. Stall cleanliness was measured twice weekly (n=134) by the same 2 observers using a 0.91 m×0.91 m wire grid containing 128 equally sized rectangles (10.16 cm×5.08 cm). This grid was centered at the rear portion of the stall; a rectangle that was visibly wet or had any amount of feces present was defined as a dirty rectangle. Weekly stall temperature (n=66) was measured by the same observer during a.m. milkings in the same predetermined stalls. Feces and wet sawdust were removed from the stalls before stall temperatures were acquired. Temperatures were obtained using a handheld thermometer at 30.48 cm above the stall base as determined via dual laser measurements. Stall temperature was measured on the front, middle, and back of the stall first with clean sawdust and then with the sawdust removed from the stall and wiped clean with a towel. Daily temperature-humidity index (THI) was calculated using Kentucky climate data calculated through the University of Kentucky College of Agriculture via a data logger, located 5.63 km from the Coldstream Dairy Farm. Stall cleanliness was not different between the DCCW barn (26.09±0.89 rectangles) and the rubber-filled mattress barn (23.70±0.89 rectangles). Mean THI throughout the study was 64.39±0.82. Stall temperature was different among THI categories. Temperature-humidity index categories 1 (coldest), 2, 3, and 4 (warmest) had THI ranges of 22.94 to 50.77, 50.77 to 64.88, 64.88 to 78.75, and 78.75 to 101.59, respectively. Stall temperatures (°C; least squares means±SE) were 2.26±0.30, 8.86±0.30, 15.52±0.30, and 20.95±0.30 for THI categories 1 to 4, respectively. Stalls with

  4. Physical Constraints on Temperature Difference in Some Thermogenic Aroid Inflorescences

    PubMed Central

    GIBERNAU, MARC; BARABÉ, DENIS; MOISSON, MARC; TROMBE, ALAIN

    2005-01-01

    • Backgrounds and Aims Thermogenesis in reproductive organs is known from several plant families, including the Araceae. A study was made of the relationship between temperature increase and spadix size in the subfamily Aroideae in order to determine whether the quantitative variation of heat production among species and inflorescences of different sizes follows a physical law of heat transfer. • Methods Spadix temperature was measured in 18 species from eight genera of tropical Araceae from the basal clade of Aroideae, both in French Guiana and in the glasshouses of the Montreal Botanical Garden. • Key Results A significant logarithmic relationship was found between the volume of the thermogenic spadix zone and the maximum temperature difference between the spadix and ambient air. Four heat transfer models were applied to the data (conductive heat transfer alone, convective heat transfer alone, radiative heat transfer alone, and convective and radiative heat transfers) to test if physical (geometric and thermic) constraints apply. Which heat transfer model was the most probable was determined by using the criterion of a classical minimization process represented by the least-squares method. Two heat transfer models appeared to fit the data well and were equivalent: conductive heat transfer alone, and convective plus radiative heat transfers. • Conclusions The increase in the temperature difference between the spadix and ambient air appears to be physically constrained and corresponds to the value of a thermal model of heat conduction in an insulated cylinder with an internal heat source. In the models, a heat metabolic rate of 29.5 mW g−1 was used, which was an acceptable value for an overall metabolic heat rate in aroid inflorescences. PMID:15883130

  5. Deposition Ice Nuclei Concentration at Different Temperatures and Supersaturations

    NASA Astrophysics Data System (ADS)

    López, M. L.; Avila, E.

    2013-05-01

    Ice formation is one of the main processes involved in the initiation of precipitation. Some aerosols serve to nucleate ice in clouds. They are called ice nuclei (IN) and they are generally solid particles, insoluble in water. At temperatures warmer than about -36°C the only means for initiation of the ice phase in the atmosphere involves IN, and temperature and supersaturation required to activate IN are considered as key information for the understanding of primary ice formation in clouds. The objective of this work is to quantify the IN concentration at ground level in Córdoba City, Argentina, under the deposition mode, that is to say that ice deposits on the IN directly from the vapor phase. It happens when the environment is supersaturated with respect to ice and subsaturated with respect to liquid water. Ice nuclei concentrations were measured in a cloud chamber placed in a cold room with temperature control down to -35°C. The operating temperature was varied between -15°C and -30°C. Ice supersaturation was ranged between 2 and 20 %. In order to quantify the number of ice particles produced in each experiment, a dish containing a supercooled solution of cane sugar, water and glycerol was placed on the floor of the cloud chamber. The activated IN grew at the expense of vapor until ice crystals were formed and these then fell down onto the sugar solution. Once there, these crystals could grow enough to be counted easily with a naked eye after a period of about three minutes, when they reach around 2 mm in diameter. In order to compare the present results with previously reported results, the data were grouped in three different ranges of supersaturation: the data with supersaturations between 2 and 8 %, the data with supersaturations between 8 and 14% and the data with supersaturations between 14 and 20 %. In the same way, in order to analize the behavior of IN concentration with supersaturation, the data were grouped for three different temperatures, the

  6. Chlorella Virus Encoded Deoxyuridine triphosphatases Exhibit different Temperature Optima

    SciTech Connect

    Zhang,Y.; Moriyama, H.; Homma, K.; Van Etten, J.

    2005-01-01

    A putative deoxyuridine triphosphatase (dUTPase) gene from chlorella virus PBCV-1 was cloned, and the recombinant protein was expressed in Escherichia coli. The recombinant protein has dUTPase activity and requires Mg{sup 2+} for optimal activity, while it retains some activity in the presence of other divalent cations. Kinetic studies of the enzyme revealed a K{sub m} of 11.7 {mu}M, a turnover k{sub cat} of 6.8 s{sup -1}, and a catalytic efficiency of k{sub cat}/K{sub m} = 5.8 x 105 M{sup -1} s{sup -1}. dUTPase genes were cloned and expressed from two other chlorella viruses IL-3A and SH-6A. The two dUTPases have similar properties to PBCV-1 dUTPase except that IL-3A dUTPase has a lower temperature optimum (37{sup o}C) than PBCV-1 dUTPase (50{sup o}C). The IL-3A dUTPase differs from the PBCV-1 enzyme by nine amino acids, including two amino acid substitutions, Glu81{yields}Ser81 and Thr84{yields}Arg84, in the highly conserved motif III of the proteins. To investigate the difference in temperature optima between the two enzymes, homology modeling and docking simulations were conducted. The results of the simulation and comparisons of amino acid sequence suggest that adjacent amino acids are important in the temperature optima. To confirm this suggestion, three site-directed amino acid substitutions were made in the IL-3A enzyme: Thr84{yields}Arg84, Glu81{yields}Ser81, and Glu81{yields}Ser81 plus Thr84{yields}Arg84. The single substitutions affected the optimal temperature for enzyme activity. The temperature optimum increased from 37 to 55{sup o}C for the enzyme containing the two amino acid substitutions. We postulate that the change in temperature optimum is due to reduction in charge and balkiness in the active cavity that allows more movement of the ligand and protein before the enzyme and substrate complex is formed.

  7. Interhemispheric temperature difference as a predictor of boreal winter ENSO

    NASA Astrophysics Data System (ADS)

    Piskozub, Jacek; Gutowska, Dorota

    2013-04-01

    We use statistical analysis to show statistically significant relationship between the boreal winter MEI index of ENSO and HadCRUT3 temperature difference between Northern and Southern hemispheres (NH - SH) during the preceding summer. Correlation values increase (in absolute terms) if the correlated time periods are increased from month to seasonal length. For example December and January (DJ) MEI values anticorrelate stronger with the preceding MJJA period than with any of the four months taken separately. We believe this is further evidence that the correlation is caused by a real physical process as increase of the averaging period tends to reduce statistical noise. The motivation for looking for such a relationship comes from review of literature on paleoclimatic ENSO behavior. We have noticed that in many cases relatively cold NH coincided with "strong ENSO" (frequent El Niños), for example the Ice Age periods and Little Ice Age. On the other hand periods of relatively warm NH (the Holocene climate optimum or Medieval Climate Anomaly) are coincident with frequent or even "permanent" La Niñas. This relationship suggest the influence of the position of Intertropical Convergence Zone (ITCZ) on the frequency of El Niños. The simplest physical mechanism of the relationship is that the positive (negative) NH-SH temperature difference causes a north (south) shift of ITCZ with a parallel shift of trade wind zones. The North-South orographic difference between the Panama Isthmus and the South America may cause stronger (weaker) trade winds in Eastern Tropical Pacific increasing (decreasing) the thermochemical tilt which, in turn, causes a more negative (positive) ENSO values. Of course this may be only a first approximation of the real mechanism of this "teleconnection". The correlations we have found are not strong even if statistically significant. For example, the MJJA NH-SH temperature vs. DJ MEI correlation has r = -0.28 implying it explains only 8% of boreal

  8. Benzodiazepine stability in postmortem samples stored at different temperatures.

    PubMed

    Melo, Paula; Bastos, M Lourdes; Teixeira, Helena M

    2012-01-01

    Benzodiazepine (lorazepam, estazolam, chlordiazepoxide, and ketazolam) stability was studied in postmortem blood, bile, and vitreous humor stored at different temperatures over six months. The influence of NaF, in blood and bile samples, was also investigated. A solid-phase extraction technique was used on all the studied samples, and benzodiazepine quantification was performed by high-performance liquid chromatography-diode-array detection. Benzodiazepine concentration remained almost stable in all samples stored at -20°C and -80°C. Estazolam appeared to be a stable benzodiazepine during the six-month study, and ketazolam proved to be the most unstable benzodiazepine. A 100% loss of ketazolam occurred in all samples stored over 1 or 2 weeks at room temperature and over 8 or 12 weeks at 4°C, with the simultaneous detection of diazepam. Chlordiazepoxide suffered complete degradation in all samples, except preserved bile samples, stored at room temperature. Samples stored at 4°C for 6 months had a 29-100% decrease in chlordiazepoxide concentration. The data obtained suggest that results from samples with these benzodiazepines stored long-term should be cautiously interpreted. Bile and vitreous humor proved to be the most advantageous samples in cases where degradation of benzodiazepines by microorganisms may occur.

  9. Characterization of polyparaphenylene subjected to different heat treatment temperatures

    SciTech Connect

    Brown, S.D.M.; Matthews, M.J.; Marucci, A.; Pimenta, M.A.; Dresselhaus, M.S.; Endo, M.; Hiraoka, T.

    1998-07-01

    The authors investigated the structural and electronic properties of samples of polyparaphenylene (PPP), derived from two synthesis methods (the Kovacic and Yamamoto methods). These samples have been subjected to different heat-treatment temperatures (650 C {le} T{sub HT} {le} 2,000 C) and their properties are compared to the polymer prior to heat-treatment (T{sub HT} = 0 C). The photoluminescence (PL) spectra of heat-treated PPP based on the two synthesis methods reflects the differences in electronic structure of the starting polymers. The PL emission from the heat-treated Yamamoto polymer is quenched at much lower T{sub HT} than from the Kovacic material. However, Raman spectra taken of the material resulting from heat-treatment of the polymer (using both preparation methods) indicate the presence of phonon modes for PPP in samples at T{sub HT} up to 650 C.

  10. Mechanism of boron uptake by hydrocalumite calcined at different temperatures.

    PubMed

    Qiu, Xinhong; Sasaki, Keiko; Takaki, Yu; Hirajima, Tsuyoshi; Ideta, Keiko; Miyawaki, Jin

    2015-04-28

    Hydrocalumite (Ca-Al-layered double hydroxide (LDH)) was prepared and applied for the removal of borate. The properties of Ca-Al-LDH calcined at different temperatures were diverse, which affected the sorption density and mechanism of boron species. The sorption density increased with increase in calcined temperature and the sample calcined at 900°C (Ca-Al-LDH-900) showed the maximum sorption density in this work. The solid residues after sorption were characterized by (11)B NMR, (27)Al NMR, SEM, and XRD to investigate the sorption mechanism. Dissolution-reprecipitation was the main mechanism for sorption of borate in Ca-Al-LDH. For Ca-Al-LDH calcined at 300 and 500°C, regeneration occurred in a short time and the newly forming LDHs were decomposed to release Ca(2+) ions and formed ettringite with borate. Two stages occurred in the sorption of boron by Ca-Al-LDH calcined at 900°C. In the first stage, boron species adsorbed on the alumina gel resulting from the hydration of calcined products. In this stage, borate was included as an interlayer anion into the newly forming LDHs in the following stage, and then immobilized as HBO3(2-) into the interlayer, most the LDHs. PMID:25661174

  11. Mechanism of boron uptake by hydrocalumite calcined at different temperatures.

    PubMed

    Qiu, Xinhong; Sasaki, Keiko; Takaki, Yu; Hirajima, Tsuyoshi; Ideta, Keiko; Miyawaki, Jin

    2015-04-28

    Hydrocalumite (Ca-Al-layered double hydroxide (LDH)) was prepared and applied for the removal of borate. The properties of Ca-Al-LDH calcined at different temperatures were diverse, which affected the sorption density and mechanism of boron species. The sorption density increased with increase in calcined temperature and the sample calcined at 900°C (Ca-Al-LDH-900) showed the maximum sorption density in this work. The solid residues after sorption were characterized by (11)B NMR, (27)Al NMR, SEM, and XRD to investigate the sorption mechanism. Dissolution-reprecipitation was the main mechanism for sorption of borate in Ca-Al-LDH. For Ca-Al-LDH calcined at 300 and 500°C, regeneration occurred in a short time and the newly forming LDHs were decomposed to release Ca(2+) ions and formed ettringite with borate. Two stages occurred in the sorption of boron by Ca-Al-LDH calcined at 900°C. In the first stage, boron species adsorbed on the alumina gel resulting from the hydration of calcined products. In this stage, borate was included as an interlayer anion into the newly forming LDHs in the following stage, and then immobilized as HBO3(2-) into the interlayer, most the LDHs.

  12. Extracting the Global Sea Surface Temperature Evolutions of Different Timescales

    NASA Astrophysics Data System (ADS)

    Feng, J.; Wu, Z.

    2012-12-01

    A new data analysis procedure, involving empirical orthogonal functions (EOF) analysis and ensemble empirical mode decomposition (EEMD), is employed to extract the evolutions of global Sea Surface Temperature (SST) of different timescales spanning the period from 1880 to 2009 (130 yr). Specifically, EOF analysis serves as a means of lossy data compression to eliminate the spatial-temporally incoherent, noise-like part of the data; and EEMD decomposes SST time series into different time scales, which facilitates research on SST-related weather and climate phenomena that have various timescales. Through validation, it is shown that the difference between the results and the original SST time series are mostly white noises, both spatially and temporally incoherent. We apply the results to study El Niño-Southern Oscillation (ENSO) events. Each ENSO event is examined and we find an oceanic region off Baja California coast ( ) that is instrumental to some ENSO events, especially those recently called ENSO Modoki, whose initial warming may be traced back to earlier warming signals from Baja California.

  13. Maximum vehicle cabin temperatures under different meteorological conditions

    NASA Astrophysics Data System (ADS)

    Grundstein, Andrew; Meentemeyer, Vernon; Dowd, John

    2009-05-01

    A variety of studies have documented the dangerously high temperatures that may occur within the passenger compartment (cabin) of cars under clear sky conditions, even at relatively low ambient air temperatures. Our study, however, is the first to examine cabin temperatures under variable weather conditions. It uses a unique maximum vehicle cabin temperature dataset in conjunction with directly comparable ambient air temperature, solar radiation, and cloud cover data collected from April through August 2007 in Athens, GA. Maximum cabin temperatures, ranging from 41-76°C, varied considerably depending on the weather conditions and the time of year. Clear days had the highest cabin temperatures, with average values of 68°C in the summer and 61°C in the spring. Cloudy days in both the spring and summer were on average approximately 10°C cooler. Our findings indicate that even on cloudy days with lower ambient air temperatures, vehicle cabin temperatures may reach deadly levels. Additionally, two predictive models of maximum daily vehicle cabin temperatures were developed using commonly available meteorological data. One model uses maximum ambient air temperature and average daily solar radiation while the other uses cloud cover percentage as a surrogate for solar radiation. From these models, two maximum vehicle cabin temperature indices were developed to assess the level of danger. The models and indices may be useful for forecasting hazardous conditions, promoting public awareness, and to estimate past cabin temperatures for use in forensic analyses.

  14. Maximum vehicle cabin temperatures under different meteorological conditions.

    PubMed

    Grundstein, Andrew; Meentemeyer, Vernon; Dowd, John

    2009-05-01

    A variety of studies have documented the dangerously high temperatures that may occur within the passenger compartment (cabin) of cars under clear sky conditions, even at relatively low ambient air temperatures. Our study, however, is the first to examine cabin temperatures under variable weather conditions. It uses a unique maximum vehicle cabin temperature dataset in conjunction with directly comparable ambient air temperature, solar radiation, and cloud cover data collected from April through August 2007 in Athens, GA. Maximum cabin temperatures, ranging from 41-76 degrees C, varied considerably depending on the weather conditions and the time of year. Clear days had the highest cabin temperatures, with average values of 68 degrees C in the summer and 61 degrees C in the spring. Cloudy days in both the spring and summer were on average approximately 10 degrees C cooler. Our findings indicate that even on cloudy days with lower ambient air temperatures, vehicle cabin temperatures may reach deadly levels. Additionally, two predictive models of maximum daily vehicle cabin temperatures were developed using commonly available meteorological data. One model uses maximum ambient air temperature and average daily solar radiation while the other uses cloud cover percentage as a surrogate for solar radiation. From these models, two maximum vehicle cabin temperature indices were developed to assess the level of danger. The models and indices may be useful for forecasting hazardous conditions, promoting public awareness, and to estimate past cabin temperatures for use in forensic analyses. PMID:19234721

  15. Measurement of relative permittivity of LTCC ceramic at different temperatures

    NASA Astrophysics Data System (ADS)

    Tan, Qiulin; Kang, Hao; Qin, Li; Xiong, Jijun; Zhou, Zhaoying; Zhang, Wendong; Luo, Tao; Xue, Chenyang; Liu, Jun

    2014-03-01

    Devices based on LTCC (low-temperature co-fired ceramic) technology are more widely applied in high temperature environments, and the temperature-dependent properties of the LTCC material play an important role in measurements of the characteristics of these devices at high temperature. In this paper, the temperature-dependence of the relative permittivity of DuPont 951 LTCC ceramic is studied from room temperature to 500 °C. An expression for relative permittivity is obtained, which relates the relative permittivity to the resonant frequency, inductance, parasitic capacitance and electrode capacitance of the LTCC sample. Of these properties, the electrode capacitance is the most strongly temperature-dependent. The LTCC sample resonant frequency, inductance and parasitic capacitance were measured (from room temperature to 500 °C) with a high temperature measurement system comprising a muffle furnace and network analyzer. We found that the resonant frequency reduced and the inductance and parasitic capacitance increased slightly as the temperature increases. The relative permittivity can be calculated from experimental frequency, inductance and parasitic capacitance measurements. Calculating results show that the relative permittivity of DuPont 951 LTCC ceramic ceramic increases to 8.21 from room temperature to 500 °C.

  16. Study on different characteristics of doped tri calcium phosphate at different sintering temperatures

    NASA Astrophysics Data System (ADS)

    Samanta, Sujan Krishna; Chanda, Abhijit

    2016-04-01

    Pure β-tricalcium phosphate (β-TCP), Zn-doped (3wt %) β-TCP and Mg- doped (3wt %) β-TCP samples were prepared by using a wet chemical precipitation synthesis technique, followed by calcination at 800 °C in air. The developed materials were subjected to sintering at different temperatures. Density and porosity were compared. The X-ray diffractometry (XRD) and Fourier-transformed infrared (FTIR) spectrometer were used to examine the changes in crystalline phases and presence of functional groups of TCP ceramics. The scanning electron microscopy (SEM) was used to study the pore formation, pore size, grain size.

  17. Minimum resolvable temperature difference (MRT): procedure improvements and dynamic MRT

    NASA Astrophysics Data System (ADS)

    Krapels, Keith; Driggers, Ronald; Vollmerhausen, Richard; Halford, Carl

    2002-02-01

    Minimum resolvable temperature difference (MRT or MRTD) is the primary performance test for tactical military infrared (IR) sensors. It is a lab measurement that may be related to discrimination task performance in the field. Also, a theoretical model exists for deriving the MRT of a particular sensor, where the model is used in sensor design evaluation and trades. The model includes both the human and the sensor/display in the overall system performance and can be considered a visual acuity test of a human looking through the IR imager. Both the model and test are validated for first and second generation forward looking IR sensors. The test procedure has been incorrectly applied to undersampled staring array imagers that are becoming more common today. Additionally, it lacks stringent controllability in the procedures, which hampers test repeatability. As a result, multiple measurements are typically performed and the results averaged. This is usually without regard to statistical requirements for estimating values from distributed data. Improvements to the MRT testing procedure are investigated in this research. Data is reported that supports the use of improved techniques. The first improvement is to standardize the sensor and display configuration procedures. A process for standardization is presented and applied to a mid-wave IR imaging sensor. The currently accepted procedure for the static MRT test is accompanied by errors for undersampled staring array imagers. Thus, the second improvement suggested is to utilize dynamic MRT (DMRT) testing for undersampled IR imaging systems. Two motivations for the study presented here are to minimize the uncertainty associated with MRT testing and to improve the characterization of undersampled imagers. These two goals are achieved by the suggested improvements. The resulting DMRTs are compared with modeled MRTs and static MRTs.

  18. Comparison of different measuring methods for body temperature in lactating cows under different climatic conditions.

    PubMed

    Ammer, Stefanie; Lambertz, Christian; Gauly, Matthias

    2016-05-01

    The aim of the research described here was to compare different methods of body temperature (BT) measurements in dairy cows. It was hypothesised that reticular temperature (RET) values reflect the physiological status of the animals in an equivalent way to rectal (RT) and vaginal (VT) measurements. RT, VT and RET temperatures of twelve lactating Holstein-Friesian cows were measured over five consecutive days in June and October 2013. While RT and VT were manually measured three times a day, RET was automatically recorded at 10 min intervals using a bolus in the reticulum. For comparison with RT and VT, different RET values were used: single values at the respective recording times (RET-SIN), and mean (RET-MEAN) and median (RET-MED) values of 2 h prior to RT and VT measurements. Overall, body temperatures averaged 38·1 ± 0·6, 38·2 ± 0·4, 38·7 ± 0·9, 38·5 ± 0·7 and 38·7 ± 0·5 °C for RT, VT, RET-SIN, RET-MEAN and RET-MED, respectively. RT and VT were lower than all RET measurements, while RET-SIN and RET-MED were higher than RET-MEAN (P < 0·001). RET-MEAN and RET-MED values were higher in the morning, whereas RT and VT were greatest in the evening (P < 0·001). Overall, records of RT and VT were strongly correlated (r = 0·75; P < 0·001). In contrast to RET-SIN and RET-MEAN, RET-MED was higher correlated to RT and VT. In June, coefficients were higher between all methods than in October. Relation of barn T to RT and VT was stronger when compared to RET measurements. RET-SIN was higher correlated to barn T than RET-MEAN or RET-MED. Correlation between VT and barn T was strongest (r = 0·48; P < 0·001). In summary, RET-MED showed highest correlation with VT and RT. However, single RET measurements (influenced by water or feed intake) can lead to extreme variations and differences to single VT and RT values.

  19. Differential effects of growth temperature on ice nuclei active at different temperatures that are produced by cells of Pseudomonas syringae.

    PubMed

    Gurian-Sherman, D; Lindow, S E

    1995-04-01

    The temperature at which ice-nucleating bacteria are grown causes differences of 100- to 10,000-fold in the fraction of cells that nucleate ice at a given temperature (ice nucleation frequency). Ice nucleation frequencies of cells of Pseudomonas syringae grown at temperatures that ranged from 9 to 33 degrees C were examined in order to more accurately characterize physiological effects on ice nuclei active at temperatures of from about -2 to -10 degrees C, the temperature range for this phenotype. Large differences in ice nucleation frequency occurred at all but the lowest assay temperatures in cells of P. syringae grown in the temperature range of 15 to 33 degrees C. These differences in ice nucleation frequency may be attributed, at least in part, to post-translational factors. Because other studies have indicated that ice nuclei active at the lowest assay temperatures may reflect the amount of ice nucleation protein produced, while higher nucleation temperatures reflect aggregates of this ice nucleation protein, data was normalized to the frequency of ice nuclei active at the lowest ice nucleation temperatures (which also correspond to the most abundant nuclei). This was done in order to develop a baseline of comparison for cells grown at different temperatures that more clearly shows possible post-translational effects such as aggregation of the nucleation protein. After this normalization was performed, and in contrast to the results noted above, the number of ice nuclei in cells grown at 9, 15, and 20 degrees C that were active at different assay temperatures was very similar. Differences in ice nucleation frequency that occurred over all assay temperatures in cells grown between 9 and 20 degrees C may be attributed to differences in the total number of nuclei present in the population of cells. The large effects of growth temperature on nucleation frequency have important implications for estimating numbers of ice nucleating bacteria in environmental samples

  20. N₂O accumulation from denitrification under different temperatures.

    PubMed

    Poh, Leong Soon; Jiang, Xie; Zhang, Zhongbo; Liu, Yu; Ng, Wun Jern; Zhou, Yan

    2015-11-01

    The effects of temperature on nitrous oxide (N2O) accumulation during denitrification and denitritation were investigated. Batch experiments were performed to measure N2O accumulation at 25 and 35 °C. More N2O accumulation was observed during denitritation at the higher temperature as compared with full denitrification and low temperature tests. The highest nitrite concentration tested in this study (25 mg/L NO2 (-)N and pH 8.0) did not show inhibitory effect on N2O reduction. It was found that the major cause of more N2O accumulation during denitrification at higher temperature was due to higher N2O production rate and lower N2O solubility. Specific nitrate, nitrite, and N2O reduction rates increased 62, 61, and 41 %, respectively, when temperature rose from 25 to 35 °C. The decrease of N2O solubility in mixed liquor at 35 °C (when compared to 25 °C) resulted in faster diffusing rate of N2O from liquid to gas phase. It was also more difficult for gas phase N2O to be re-dissolved. The diffused N2O was then accumulated in the headspace, which was not available for denitrification by denitrifiers. The results of this study suggest higher temperature may worsen N2O emission from wastewater treatment plants (WWTPs).

  1. Swimming of pregnant rats at different water temperatures.

    PubMed

    Osorio, R A L; Silveira, V L F; Maldjian, S; Morales, A; Christofani, J S; Russo, A K; Silva, A C; Piçarro, I C

    2003-08-01

    We studied the chronic effect of exercise during water immersion, associated with thermal stress (water temperature at 22, 35 and 40 degrees C) at an intensity of 80% of maximal work load supported in pregnant rats (P) and non-pregnant female rats (NP). P and NP were subdivided into three subgroups according to water temperature during exercise (P22 and NP22; P35 and NP35; P40 and NP40). The animals were submitted to daily swimming sessions of 10-15 min, for 19 days of pregnancy (P) or experimental conditions (NP). Plasma concentration of triglycerides, cholesterol, glucose, total protein, albumin and corticosterone were determined 24 h after the last exercise session. Weight gain and rectal temperature pre- and post-swimming session were also determined. The offspring were examined just after caesarian section on the 20th day of pregnancy to check weight, length and litter size. Pregnant rats showed an increase of triglycerides, reduction of glycemia, total protein and albumin and cholesterol (at 35 degrees C) when compared to non-pregnant animals. Such effects probably lead to an adequate delivery of substrate to the fetus and prepare the mother for lactation. Daily thermal stress did not modify metabolic responses to exercise in pregnant rats. Results also show a deleterious effect on offspring when the mother is exposed daily to extreme temperatures during swimming. These results suggest that water temperature (cold and hot) in swimming have to be considered to avoid damage in fetal development.

  2. Longevity of crapemyrtle pollen stored at different temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temperatures for storage of crapemyrtle (Lagerstroemia app.) pollen over time were studied using clones of two interspecific hybrids (L. 'Cheyenne' and L. 'Wichita') and five species (L. indica 'Catawba', L. subcostata (NA 40181), L. limii, L. speciosa, and L. fauriei 'Kiowa'). Pollen samples were s...

  3. Human local and total heat losses in different temperature.

    PubMed

    Wang, Lijuan; Yin, Hui; Di, Yuhui; Liu, Yanfeng; Liu, Jiaping

    2016-04-01

    This study investigates the effects of operative temperature on the local and total heat losses, and the relationship between the heat loss and thermal sensation. 10 local parts of head, neck, chest, abdomen, upper arm, forearm, hand, thigh, leg and foot are selected. In all these parts, convection, radiation, evaporation, respiration, conduction and diffusion heat losses are analyzed when operative temperature is 23, 28, 33 and 37 °C. The local heat losses show that the radiation and convection heat losses are mainly affected by the area of local body, and the heat loss of the thigh is the most in the ten parts. The evaporation heat loss is mainly affected by the distribution of sweat gland, and the heat loss of the chest is the most. The total heat loss of the local body shows that in low temperature, the thigh, leg and chest have much heat loss, while in high temperature, the chest, abdomen, thigh and head have great heat loss, which are useful for clothing design. The heat losses of the whole body show that as the operative temperature increases, the radiation and convection heat losses decrease, the heat losses of conduction, respiration, and diffusion are almost constant, and the evaporation heat loss increases. By comparison, the heat loss ratios of the radiation, convection and sweat evaporation, are in agreement with the previous researches. At last, the formula about the heat loss ratio of convection and radiation is derived. It's useful for thermal comfort evaluation and HVAC (heating, ventilation and air conditioning) design. PMID:26879106

  4. Effects of lights of different color temperature on the nocturnal changes in core temperature and melatonin in humans.

    PubMed

    Morita, T; Tokura, H

    1996-09-01

    A variety of types of artificial illumination has recently become available, differing in the quality of illumination and range of color temperature. In our previous studies we found that in subjects with normal color vision the nocturnal fall in core temperature and the increase of urinary melatonin excretion were suppressed by bright blue or green light, but not by bright red or dim lights. The aim of our present study was to examine from the view point of chronobiology whether the lights of different color temperature often used in everyday life may affect core temperature and urinary melatonin secretion differently. Experiments were carried out on five subjects with normal color vision. They were exposed for 5 hr (from 21:00 h to 2:00 h) to two kinds of bright (1000 lx) light of different color temperature (6500 K, 3000 K) with dim (50 lx) light as a control; after exposure they slept in darkness. Our main results were as follows: The light with a high color temperature of 6500 K more strongly suppressed the nocturnal fall of the core temperature and the nocturnal increase of melatonin secretion than the light with a low color temperature of 3000 K. This difference was particularly evident for core temperature during the sleep period following experimental illumination.

  5. Rate dependent of strength in metallic glasses at different temperatures.

    PubMed

    Wang, Y W; Bian, X L; Wu, S W; Hussain, I; Jia, Y D; Yi, J; Wang, G

    2016-01-01

    The correlation between the strength at the macroscale and the elastic deformation as well as shear cracking behavior at the microscale of bulk metallic glasses (BMGs) is investigated. The temperatures of 298 K and 77 K as well as the strain rate ranging from 10(-6) s(-1) to 10(-2) s(-1) are applied to the BMGs, in which the mechanical responses of the BMGs are profiled through the compression tests. The yield strength is associated with the activation of the elementary deformation unit, which is insensitive to the strain rate. The maximum compressive strength is linked to the crack propagation during shear fracture process, which is influenced by the strain rate. The cryogenic temperature of 77 K significantly improves the yield strength and the maximum compressive strength of the BMGs. PMID:27270688

  6. Rate dependent of strength in metallic glasses at different temperatures

    PubMed Central

    Wang, Y. W.; Bian, X. L.; Wu, S. W.; Hussain, I.; Jia, Y. D.; Yi, J.; Wang, G.

    2016-01-01

    The correlation between the strength at the macroscale and the elastic deformation as well as shear cracking behavior at the microscale of bulk metallic glasses (BMGs) is investigated. The temperatures of 298 K and 77 K as well as the strain rate ranging from 10−6 s−1 to 10−2 s−1 are applied to the BMGs, in which the mechanical responses of the BMGs are profiled through the compression tests. The yield strength is associated with the activation of the elementary deformation unit, which is insensitive to the strain rate. The maximum compressive strength is linked to the crack propagation during shear fracture process, which is influenced by the strain rate. The cryogenic temperature of 77 K significantly improves the yield strength and the maximum compressive strength of the BMGs. PMID:27270688

  7. Mixed solar wind originating from coronal regions of different temperatures

    NASA Technical Reports Server (NTRS)

    Bochsler, P.

    1983-01-01

    Ionization states of elements in the solar wind are often used to determine thermal gradients in the lower corona. This method is based on the assumption, that in the beginning, solar wind material has a homogeneous temperature determining the original charge state of elements. Features in M/Q-spectra which might appear if the above assumption is violated are investigated and compared with observational evidence.

  8. Estimation of the temperature of a radiating body by measuring the stationary temperatures of a thermometer placed at different distances

    NASA Astrophysics Data System (ADS)

    Barragán, V. M.; Villaluenga, J. P. G.; Izquierdo-Gil, M. A.; Pérez-Cordón, R.

    2016-07-01

    This paper presents a novel method for determining the temperature of a radiating body. The experimental method requires only very common instrumentation. It is based on the measurement of the stationary temperature of an object placed at different distances from the body and on the application of the energy balance equation in a stationary state. The method allows one to obtain the temperature of an inaccessible radiating body when radiation measurements are not available. The method has been applied to the determination of the filament temperature of incandescent lamps of different powers.

  9. Experimental data of solubility at different temperatures: a simple technique

    NASA Astrophysics Data System (ADS)

    Burghoff, J.; Nolte, S.; Tünnermann, A.

    2007-10-01

    This article describes a simple and inexpensive experimental technique, easy to set-up in a laboratory, for the measurement of solute solubilities in liquids (or gases). Experimental values of solubility were determined for the dissolution of benzoic acid in water, at 293 338 K, of 2-naphthol in water, at 293 373 K, and of salicylic acid in water, at 293 343 K. The experimental results obtained are in good agreement with the theoretical values of solubilities presented in literature. Empirical correlations are presented for the prediction of solubility over the entire range of temperatures studied, and they are shown to give the solubility value with very good accuracy.

  10. Benchmark analysis of forecasted seasonal temperature over different climatic areas

    NASA Astrophysics Data System (ADS)

    Giunta, G.; Salerno, R.; Ceppi, A.; Ercolani, G.; Mancini, M.

    2015-12-01

    From a long-term perspective, an improvement of seasonal forecasting, which is often exclusively based on climatology, could provide a new capability for the management of energy resources in a time scale of just a few months. This paper regards a benchmark analysis in relation to long-term temperature forecasts over Italy in the year 2010, comparing the eni-kassandra meteo forecast (e-kmf®) model, the Climate Forecast System-National Centers for Environmental Prediction (CFS-NCEP) model, and the climatological reference (based on 25-year data) with observations. Statistical indexes are used to understand the reliability of the prediction of 2-m monthly air temperatures with a perspective of 12 weeks ahead. The results show how the best performance is achieved by the e-kmf® system which improves the reliability for long-term forecasts compared to climatology and the CFS-NCEP model. By using the reliable high-performance forecast system, it is possible to optimize the natural gas portfolio and management operations, thereby obtaining a competitive advantage in the European energy market.

  11. Luminescence characteristics of nanoporous anodic alumina annealed at different temperatures

    NASA Astrophysics Data System (ADS)

    Ilin, D. O.; Vokhmintsev, A. S.; Weinstein, I. A.

    2016-09-01

    Anodic aluminum oxide (AAO) membranes with 100 µm thickness were synthesized in oxalic acid solution under constant current density. Grown samples were annealed in 500-1250 °C range for 5 h in air. Average pore diameter was evaluated using quantitative analysis of SEM images and appeared to be within 78-86 nm diapason. It was found there was a broad emission band in the 350-620 nm region of photoluminescence (PL) spectra in amorphous membranes which is attributed to F-type oxygen deficient centers or oxalic ions. It was shown that intensive red emission caused by Cr3+ (696 nm) and Mn4+ (680 nm) impurities dominates in PL of AAO samples with crystalline α- and δ-phases after annealing at 1100-1250 °C temperatures.

  12. Shock Initiation of Energetic Materials at Different Initial Temperatures

    SciTech Connect

    Urtiew, P A; Tarver, C M

    2005-01-14

    Shock initiation is one of the most important properties of energetic materials, which must transition to detonation exactly as intended when intentionally shocked and not detonate when accidentally shocked. The development of manganin pressure gauges that are placed inside the explosive charge and record the buildup of pressure upon shock impact has greatly increased the knowledge of these reactive flows. This experimental data, together with similar data from electromagnetic particle velocity gauges, has allowed us to formulate the Ignition and Growth model of shock initiation and detonation in hydrodynamic computer codes for predictions of shock initiation scenarios that cannot be tested experimentally. An important problem in shock initiation of solid explosives is the change in sensitivity that occurs upon heating (or cooling). Experimental manganin pressure gauge records and the corresponding Ignition and Growth model calculations are presented for two solid explosives, LX-17 (92.5 % triaminotrinitrobenzene (TATB) with 7.5 % Kel-F binder) and LX-04 (85 % octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazine (HMX) with 15 % Viton binder) at several initial temperatures.

  13. Temperature-induced plasticity in membrane and storage lipid composition: thermal reaction norms across five different temperatures.

    PubMed

    Van Dooremalen, Coby; Koekkoek, Jacco; Ellers, Jacintha

    2011-02-01

    Temperature is a key environmental factor inducing phenotypic plasticity in a wide range of behavioral, morphological, and life history traits in ectotherms. The strength of temperature-induced responses in fitness-related traits may be determined by plasticity of the underlying physiological or biochemical traits. Lipid composition may be an important trait underlying fitness response to temperature, because it affects membrane fluidity as well as availability of stored energy reserves. Here, we investigate the effect of temperature on lipid composition of the springtail Orchesella cincta by measuring thermal reaction norms across five different temperatures after four weeks of cold or warm acclimation. Fatty acid composition in storage and membrane lipids showed a highly plastic response to temperature, but the responses of single fatty acids revealed deviations from the expectations based on HVA theory. We found an accumulation of C(18:2n6) and C(18:3n3) at higher temperatures and the preservation of C(20:4n6) across temperatures, which is contrary to the expectation of decreased unsaturation at higher temperatures. The thermal response of these fatty acids in O. cincta differed from the findings in other species, and therefore shows there is interspecific variation in how single fatty acids contribute to HVA. Future research should determine the consequences of such variation in terms of costs and benefits for the thermal performance of species. PMID:21115015

  14. Differences between near-surface equivalent temperature and temperature trends for the Eastern United States. Equivalent temperature as an alternative measure of heat content

    USGS Publications Warehouse

    Davey, C.A.; Pielke, R.A.; Gallo, K.P.

    2006-01-01

    There is currently much attention being given to the observed increase in near-surface air temperatures during the last century. The proper investigation of heating trends, however, requires that we include surface heat content to monitor this aspect of the climate system. Changes in heat content of the Earth's climate are not fully described by temperature alone. Moist enthalpy or, alternatively, equivalent temperature, is more sensitive to surface vegetation properties than is air temperature and therefore more accurately depicts surface heating trends. The microclimates evident at many surface observation sites highlight the influence of land surface characteristics on local surface heating trends. Temperature and equivalent temperature trend differences from 1982-1997 are examined for surface sites in the Eastern U.S. Overall trend differences at the surface indicate equivalent temperature trends are relatively warmer than temperature trends in the Eastern U.S. Seasonally, equivalent temperature trends are relatively warmer than temperature trends in winter and are relatively cooler in the fall. These patterns, however, vary widely from site to site, so local microclimate is very important. ?? 2006 Elsevier B.V. All rights reserved.

  15. Study of the model of calibrating differences of brightness temperature from geostationary satellite generated by time zone differences

    NASA Astrophysics Data System (ADS)

    Li, Weidong; Shan, Xinjian; Qu, Chunyan

    2010-11-01

    In comparison with polar-orbiting satellites, geostationary satellites have a higher time resolution and wider field of visions, which can cover eleven time zones (an image covers about one third of the Earth's surface). For a geostationary satellite panorama graph at a point of time, the brightness temperature of different zones is unable to represent the thermal radiation information of the surface at the same point of time because of the effect of different sun solar radiation. So it is necessary to calibrate brightness temperature of different zones with respect to the same point of time. A model of calibrating the differences of the brightness temperature of geostationary satellite generated by time zone differences is suggested in this study. A total of 16 curves of four positions in four different stages are given through sample statistics of brightness temperature of every 5 days synthetic data which are from four different time zones (time zones 4, 6, 8, and 9). The above four stages span January -March (winter), April-June (spring), July-September (summer), and October-December (autumn). Three kinds of correct situations and correct formulas based on curves changes are able to better eliminate brightness temperature rising or dropping caused by time zone differences.

  16. Study of the model of calibrating differences of brightness temperature from geostationary satellite generated by time zone differences

    NASA Astrophysics Data System (ADS)

    Li, Weidong; Shan, Xinjian; Qu, Chunyan

    2009-09-01

    In comparison with polar-orbiting satellites, geostationary satellites have a higher time resolution and wider field of visions, which can cover eleven time zones (an image covers about one third of the Earth's surface). For a geostationary satellite panorama graph at a point of time, the brightness temperature of different zones is unable to represent the thermal radiation information of the surface at the same point of time because of the effect of different sun solar radiation. So it is necessary to calibrate brightness temperature of different zones with respect to the same point of time. A model of calibrating the differences of the brightness temperature of geostationary satellite generated by time zone differences is suggested in this study. A total of 16 curves of four positions in four different stages are given through sample statistics of brightness temperature of every 5 days synthetic data which are from four different time zones (time zones 4, 6, 8, and 9). The above four stages span January -March (winter), April-June (spring), July-September (summer), and October-December (autumn). Three kinds of correct situations and correct formulas based on curves changes are able to better eliminate brightness temperature rising or dropping caused by time zone differences.

  17. Universal behavior of the viscosity of supercooled fragile and polymeric glassformers in different temperature regions

    NASA Astrophysics Data System (ADS)

    Andraca, Adriana; Goldstein, Patricia; del Castillo, Luis Felipe

    2016-11-01

    The behavior of the viscosity of supercooled liquids with temperature has been extensively studied in different regimes. We present a universal behavior for the Logarithmic Shift Factor for fragile and polymeric glassformers in two temperature regions, above and below the crossover temperature Tc, respectively. We find two different equations, one for each region, that may be represented as master plots which show universal behaviors for both cases.

  18. Effects of Different Environment Temperatures on Some Motor Characteristics and Muscle Strength

    ERIC Educational Resources Information Center

    Çakir, Ergün; Yüksek, Selami; Asma, Bülent; Arslanoglu, Erkal

    2016-01-01

    The aim of this study was determine the effects of different environment temperatures on motor characteristics and muscle strength. 15 athletes participated to study. Flexibility, vertical jump, hand grip-leg strength, 30m sprint, 20-meter shuttle run and coordination-agility tests were measured in five different environment temperatures. (22°C,…

  19. Improving the Accuracy of Satellite Sea Surface Temperature Measurements by Explicitly Accounting for the Bulk-Skin Temperature Difference

    NASA Technical Reports Server (NTRS)

    Castro, Sandra L.; Emery, William J.

    2002-01-01

    The focus of this research was to determine whether the accuracy of satellite measurements of sea surface temperature (SST) could be improved by explicitly accounting for the complex temperature gradients at the surface of the ocean associated with the cool skin and diurnal warm layers. To achieve this goal, work centered on the development and deployment of low-cost infrared radiometers to enable the direct validation of satellite measurements of skin temperature. During this one year grant, design and construction of an improved infrared radiometer was completed and testing was initiated. In addition, development of an improved parametric model for the bulk-skin temperature difference was completed using data from the previous version of the radiometer. This model will comprise a key component of an improved procedure for estimating the bulk SST from satellites. The results comprised a significant portion of the Ph.D. thesis completed by one graduate student and they are currently being converted into a journal publication.

  20. Effect of saddle height on skin temperature measured in different days of cycling.

    PubMed

    Priego Quesada, Jose Ignacio; Carpes, Felipe P; Salvador Palmer, Rosario; Pérez-Soriano, Pedro; Cibrián Ortiz de Anda, Rosa M

    2016-01-01

    Infrared thermography can be useful to explore the effects of exercise on neuromuscular function. During cycling, it could be used to investigate the effects of saddle height on thermoregulation. The aim of this study was to examine whether different cycling postures, elicited by different knee flexion angles, could influence skin temperature. Furthermore, we also determined whether the reproducibility of thermal measurements in response to cycling differed in the body regions affected or not affected by saddle height. Sixteen cyclists participated in three tests of 45 min of cycling at their individual 50 % peak power output. Each test was performed in a different knee flexion position on the bicycle (20°, 30°, 40° knee flexion when the pedal crank was at 180°). Different knee angles were obtained by changing saddle height. Skin temperatures were determined by infrared thermography before, immediately after and 10 min after the cycling test, in 16 different regions of interest (ROI) in the trunk and lower limbs. Changes in saddle height did not result in changes in skin temperature in the ROI. However, lower knee flexion elicited higher temperature in popliteus after cycling than higher flexion (p = 0.008 and ES = 0.8), and higher knee flexion elicited lower temperature variation in the tibialis anterior than intermediate knee flexion (p = 0.004 and ES = 0.8). Absolute temperatures obtained good and very good intraday reproducibility in the different measurements (ICCs between 0.44 and 0.85), but temperature variations showed lower reproducibility (ICCs between 0.11 and 0.74). Different postures assumed by the cyclist due to different saddle height did not influence temperature measurements. Skin temperature can be measured on different days with good repeatability, but temperature variations can be more sensitive to the effects of an intervention. PMID:27026901

  1. Aptamer and PNIPAAm co-conjugated nanoparticles regulate activity of enzyme with different temperature.

    PubMed

    Yu, Jiemiao; Yang, Liangrong; Liang, Xiangfeng; Dong, Tingting; Qu, Hongnan; Rong, Meng; Liu, Huizhou

    2016-10-01

    In this paper, we described a temperature responsive nano-system that can regulate activity of enzyme with different temperature. Temperature responsive polymer poly(N-isopropylacrylamide) (PNIPAAm), with low critical solution temperature of 32°C, was synthesized with thiol modification. PNIPAAm and thrombin aptamer were co-functionalized on the surface of gold nanoparticles for effective regulation of thrombin activity with different temperature. On the one hand, we studied the thermal responsive properties of this inhibitor via UV-visible spectroscopy. On the other hand, we investigated the regulation of thrombin activity by this platform with different temperature. The PNIPAAm chains could extend and shrink with different temperature, which suggested that PNIPAAm on the surface of gold nanoparticles could regulate interaction between thrombin and aptamer according to temperature changing. At 25°C, PNIPAAm was hydrophilic extended state, which blocked the interaction between thrombin and aptamer on the surface of gold nanoparticles, therefore thrombin activity had no change. On the contrary, at 37°C, PNIPAAm transformed from hydrophilic extended state to hydrophobic shrank state, allowing the aptamer to capture thrombin, inhibiting the activity of thrombin. More interestingly, this regulation was reverse to normal condition, where 37°C was always the optimum reaction temperature for most of human enzymes. This system we prepared was opposite, which was capable of inhibiting the thrombin activity at 37°C. Furthermore, this was the first report of regulation of thrombin activity using this temperature responsive platform.

  2. Aptamer and PNIPAAm co-conjugated nanoparticles regulate activity of enzyme with different temperature.

    PubMed

    Yu, Jiemiao; Yang, Liangrong; Liang, Xiangfeng; Dong, Tingting; Qu, Hongnan; Rong, Meng; Liu, Huizhou

    2016-10-01

    In this paper, we described a temperature responsive nano-system that can regulate activity of enzyme with different temperature. Temperature responsive polymer poly(N-isopropylacrylamide) (PNIPAAm), with low critical solution temperature of 32°C, was synthesized with thiol modification. PNIPAAm and thrombin aptamer were co-functionalized on the surface of gold nanoparticles for effective regulation of thrombin activity with different temperature. On the one hand, we studied the thermal responsive properties of this inhibitor via UV-visible spectroscopy. On the other hand, we investigated the regulation of thrombin activity by this platform with different temperature. The PNIPAAm chains could extend and shrink with different temperature, which suggested that PNIPAAm on the surface of gold nanoparticles could regulate interaction between thrombin and aptamer according to temperature changing. At 25°C, PNIPAAm was hydrophilic extended state, which blocked the interaction between thrombin and aptamer on the surface of gold nanoparticles, therefore thrombin activity had no change. On the contrary, at 37°C, PNIPAAm transformed from hydrophilic extended state to hydrophobic shrank state, allowing the aptamer to capture thrombin, inhibiting the activity of thrombin. More interestingly, this regulation was reverse to normal condition, where 37°C was always the optimum reaction temperature for most of human enzymes. This system we prepared was opposite, which was capable of inhibiting the thrombin activity at 37°C. Furthermore, this was the first report of regulation of thrombin activity using this temperature responsive platform. PMID:27474278

  3. Different variation behaviors of resistivity for high-temperature-grown and low-temperature-grown p-GaN films

    NASA Astrophysics Data System (ADS)

    Jing, Yang; De-Gang, Zhao; De-Sheng, Jiang; Ping, Chen; Zong-Shun, Liu; Jian-Jun, Zhu; Ling-Cong, Le; Xiao-Jing, Li; Xiao-Guang, He; Li-Qun, Zhang; Hui, Yang

    2016-02-01

    Two series of p-GaN films grown at different temperatures are obtained by metal organic chemical vapor deposition (MOCVD). And the different variation behaviors of resistivity with growth condition for high- temperature(HT)-grown and low-temperature(LT)-grown p-GaN films are investigated. It is found that the resistivity of HT-grown p-GaN film is nearly unchanged when the NH3 flow rate or reactor pressure increases. However, it decreases largely for LT-grown p-GaN film. These different variations may be attributed to the fact that carbon impurities are easy to incorporate into p-GaN film when the growth temperature is low. It results in a relatively high carbon concentration in LT-grown p-GaN film compared with HT-grown one. Therefore, carbon concentration is more sensitive to the growth condition in these samples, ultimately, leading to the different variation behaviors of resistivity for HT- and LT-grown ones. Project supported by the National Natural Science Foundation of China (Grant Nos. 61474110, 61377020, 61376089, 61223005, and 61176126), the National Natural Science Fund for Distinguished Young Scholars, China (Grant No. 60925017), the One Hundred Person Project of the Chinese Academy of Sciences, and the Basic Research Project of Jiangsu Province, China (Grant No. BK20130362).

  4. Clinical review: Brain-body temperature differences in adults with severe traumatic brain injury.

    PubMed

    Childs, Charmaine; Lunn, Kueh Wern

    2013-04-22

    Surrogate or 'proxy' measures of brain temperature are used in the routine management of patients with brain damage. The prevailing view is that the brain is 'hotter' than the body. The polarity and magnitude of temperature differences between brain and body, however, remains unclear after severe traumatic brain injury (TBI). The focus of this systematic review is on the adult patient admitted to intensive/neurocritical care with a diagnosis of severe TBI (Glasgow Coma Scale score of less than 8). The review considered studies that measured brain temperature and core body temperature. Articles published in English from the years 1980 to 2012 were searched in databases, CINAHL, PubMed, Scopus, Web of Science, Science Direct, Ovid SP, Mednar and ProQuest Dissertations & Theses Database. For the review, publications of randomised controlled trials, non-randomised controlled trials, before and after studies, cohort studies, case-control studies and descriptive studies were considered for inclusion. Of 2,391 records identified via the search strategies, 37 were retrieved for detailed examination (including two via hand searching). Fifteen were reviewed and assessed for methodological quality. Eleven studies were included in the systematic review providing 15 brain-core body temperature comparisons. The direction of mean brain-body temperature differences was positive (brain higher than body temperature) and negative (brain lower than body temperature). Hypothermia is associated with large brain-body temperature differences. Brain temperature cannot be predicted reliably from core body temperature. Concurrent monitoring of brain and body temperature is recommended in patients where risk of temperature-related neuronal damage is a cause for clinical concern and when deliberate induction of below-normal body temperature is instituted.

  5. The Joint Toxicity of Different Temperature Coefficient Insecticides on Apolygus lucorum (Hemiptera: Miridae).

    PubMed

    Liu, Jia; Lincoln, Tamra; An, Jingjie; Gao, Zhanlin; Dang, Zhihong; Pan, Wenliang; Li, Yaofa

    2016-08-01

    The effect of temperature on the cotoxicity coefficient (CTC) value was used to evaluate mixture efficacy of different temperature coefficient chemicals from 15 to 35°C by exposing third-instar Apolygus lucorum (Meyer-Dür) to dip-treated asparagus bean pods. The results indicated the joint toxicity of same temperature coefficient insecticide (TCI) types were unaffected by temperature. This means that even when temperatures change, the mixture ratios of the highest CTC values remained the same, and the effect of temperature on the joint toxicity of same TCI types was only on the CTC values. However, the effect of temperature was variable when considering the joint toxicity of different TCI types. The effect of temperature on the joint toxicity of both strong positive and strong negative TCI types was clear, and the highest CTC values of mixture ratios changed with temperature regularly. When comparing the influence of temperature between strong/slight positive/negative insecticides, the results indicated a greater influence of the strong TCI. Paradoxically, the highest CTC value of the imidacloprid and methomyl mixture did not change with temperature changes consistently, even with the variance of imidacloprid ratios, a strong TCI. These results will guide pest managers in choosing the most effective insecticide mixtures for A. lucorum control under given environmental conditions. PMID:27190041

  6. The Joint Toxicity of Different Temperature Coefficient Insecticides on Apolygus lucorum (Hemiptera: Miridae).

    PubMed

    Liu, Jia; Lincoln, Tamra; An, Jingjie; Gao, Zhanlin; Dang, Zhihong; Pan, Wenliang; Li, Yaofa

    2016-08-01

    The effect of temperature on the cotoxicity coefficient (CTC) value was used to evaluate mixture efficacy of different temperature coefficient chemicals from 15 to 35°C by exposing third-instar Apolygus lucorum (Meyer-Dür) to dip-treated asparagus bean pods. The results indicated the joint toxicity of same temperature coefficient insecticide (TCI) types were unaffected by temperature. This means that even when temperatures change, the mixture ratios of the highest CTC values remained the same, and the effect of temperature on the joint toxicity of same TCI types was only on the CTC values. However, the effect of temperature was variable when considering the joint toxicity of different TCI types. The effect of temperature on the joint toxicity of both strong positive and strong negative TCI types was clear, and the highest CTC values of mixture ratios changed with temperature regularly. When comparing the influence of temperature between strong/slight positive/negative insecticides, the results indicated a greater influence of the strong TCI. Paradoxically, the highest CTC value of the imidacloprid and methomyl mixture did not change with temperature changes consistently, even with the variance of imidacloprid ratios, a strong TCI. These results will guide pest managers in choosing the most effective insecticide mixtures for A. lucorum control under given environmental conditions.

  7. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data

    SciTech Connect

    Wan, Z.; Li, Z.L.

    1997-07-01

    The authors have developed a physics-based land-surface temperature (LST) algorithm for simultaneously retrieving surface band-averaged emissivities and temperatures from day/night pairs of MODIS (Moderate Resolution Imaging Spectroradiometer) data in seven thermal infrared bands. The set of 14 nonlinear equations in the algorithm is solved with the statistical regression method and the least-squares fit method. This new LST algorithm was tested with simulated MODIS data for 80 sets of band-averaged emissivities calculated from published spectral data of terrestrial materials in wide ranges of atmospheric and surface temperature conditions. Comprehensive sensitivity and error analysis has been made to evaluate the performance of the new LST algorithm and its dependence on variations in surface emissivity and temperature, upon atmospheric conditions, as well as the noise-equivalent temperature difference (NE{Delta}T) and calibration accuracy specifications of the MODIS instrument. In cases with a systematic calibration error of 0.5%, the standard deviations of errors in retrieved surface daytime and nighttime temperatures fall between 0.4--0.5 K over a wide range of surface temperatures for mid-latitude summer conditions. The standard deviations of errors in retrieved emissivities in bands 31 and 32 (in the 10--12.5 {micro}m IR spectral window region) are 0.009, and the maximum error in retrieved LST values falls between 2--3 K.

  8. [Numerical Simulation of Heat Transfer in the Human Anterior Chamber at Different Corneal Temperatures].

    PubMed

    Guo, Jingmin; Zhang, Hong; Wang, Junming

    2015-12-01

    A three-dimensional (3D) model of human anterior chamber is reconstructed to explore the effect of different corneal temperatures on the heat transfer in the chamber. Based on the optical coherence tomography imaging of the volunteers with normal anterior chamber, a 3D anterior chamber model was reconstructed by the method of UG parametric design. Numerical simulation of heat transfer and aqueous humor flow in the whole anterior chamber were analyzed by the finite volume methods at different corneal temperatures. The results showed that different corneal temperatures had obvious influence on the temperature distribution and the aqueous flow in the anterior chamber. The temperature distribution is linear and axial symmetrical around the pupillary axis. As the temperature difference increases, the symmetry becomes poorer. Aqueous floated along the warm side and sank along the cool side which forms a vortexing flow. Its velocity increased with the addition of temperature difference. Heat fluxes of cornea, lens and iris were mainly affected by the aqueous velocity. The higher the velocity, the bigger more absolute value of the above-mentioned heat fluxes became. It is practicable to perform the numerical simulation of anterior chamber by the optical coherence tomography imaging. The results are useful for studying the important effect of corneal temperature on the heat transfer and aqueous humor dynamics in the anterior chamber.

  9. Wind effect on PV module temperature: Analysis of different techniques for an accurate estimation.

    NASA Astrophysics Data System (ADS)

    Schwingshackl, Clemens; Petitta, Marcello; Ernst Wagner, Jochen; Belluardo, Giorgio; Moser, David; Castelli, Mariapina; Zebisch, Marc; Tetzlaff, Anke

    2013-04-01

    In this abstract a study on the influence of wind to model the PV module temperature is presented. This study is carried out in the framework of the PV-Alps INTERREG project in which the potential of different photovoltaic technologies is analysed for alpine regions. The PV module temperature depends on different parameters, such as ambient temperature, irradiance, wind speed and PV technology [1]. In most models, a very simple approach is used, where the PV module temperature is calculated from NOCT (nominal operating cell temperature), ambient temperature and irradiance alone [2]. In this study the influence of wind speed on the PV module temperature was investigated. First, different approaches suggested by various authors were tested [1], [2], [3], [4], [5]. For our analysis, temperature, irradiance and wind data from a PV test facility at the airport Bolzano (South Tyrol, Italy) from the EURAC Institute of Renewable Energies were used. The PV module temperature was calculated with different models and compared to the measured PV module temperature at the single panels. The best results were achieved with the approach suggested by Skoplaki et al. [1]. Preliminary results indicate that for all PV technologies which were tested (monocrystalline, amorphous, microcrystalline and polycrystalline silicon and cadmium telluride), modelled and measured PV module temperatures show a higher agreement (RMSE about 3-4 K) compared to standard approaches in which wind is not considered. For further investigation the in-situ measured wind velocities were replaced with wind data from numerical weather forecast models (ECMWF, reanalysis fields). Our results show that the PV module temperature calculated with wind data from ECMWF is still in very good agreement with the measured one (R² > 0.9 for all technologies). Compared to the previous analysis, we find comparable mean values and an increasing standard deviation. These results open a promising approach for PV module

  10. Measurement of surface temperature and emissivity of different materials by two-colour pyrometry.

    PubMed

    Raj, Vinay C; Prabhu, S V

    2013-12-01

    An experimental investigation is performed to substantiate the capability of a charge coupled device camera to measure local temperature and emissivity of different materials heated to temperatures above 500 °C by two-colour pyrometric technique using colorimetric method. Materials investigated are Inconel 718 with pyromark (high temperature paint), Inconel 718, stainless steel SS 304 and SS 316. Centerline temperature and emissivity distribution is obtained for target plates maintained at constant temperature by AC heating while complete temperature and emissivity distribution is provided for plates heated by flame impingement. The obtained results are compared with a calibrated infrared camera and thermocouples and the temperature distribution is found to be in close agreement. These results pertain to partially oxidized metal alloys covered in this study. Deviation in the measurement of emissivity can be attributed to its dependence on wavelength range, oxidation, and sensitivity of the image detector. PMID:24387454

  11. Prediction of air temperature in the aircraft cabin under different operational conditions

    NASA Astrophysics Data System (ADS)

    Volavý, F.; Fišer, J.; Nöske, I.

    2013-04-01

    This paper deals with the prediction of the air temperature in the aircraft cabin by means of Computational Fluid Dynamics. The simulations are performed on the CFD model which is based on geometry and cabin interior arrangement of the Flight Test Facility (FTF) located at Fraunhofer IBP, Germany. The experimental test flights under three different cabin temperatures were done in FTF and the various data were gathered during these flights. Air temperature in the cabin was measured on probes located near feet, torso and head of each passenger and also surface temperature and air temperature distributed from inlets were measured. The data were firstly analysed in order to obtain boundary conditions for cabin surfaces and inlets. Then the results of air temperature from the simulations were compared with measured data. The suitability and accuracy of the CFD approach for temperature prediction is discussed.

  12. Measurement of surface temperature and emissivity of different materials by two-colour pyrometry.

    PubMed

    Raj, Vinay C; Prabhu, S V

    2013-12-01

    An experimental investigation is performed to substantiate the capability of a charge coupled device camera to measure local temperature and emissivity of different materials heated to temperatures above 500 °C by two-colour pyrometric technique using colorimetric method. Materials investigated are Inconel 718 with pyromark (high temperature paint), Inconel 718, stainless steel SS 304 and SS 316. Centerline temperature and emissivity distribution is obtained for target plates maintained at constant temperature by AC heating while complete temperature and emissivity distribution is provided for plates heated by flame impingement. The obtained results are compared with a calibrated infrared camera and thermocouples and the temperature distribution is found to be in close agreement. These results pertain to partially oxidized metal alloys covered in this study. Deviation in the measurement of emissivity can be attributed to its dependence on wavelength range, oxidation, and sensitivity of the image detector.

  13. Measurement of surface temperature and emissivity of different materials by two-colour pyrometry

    NASA Astrophysics Data System (ADS)

    Raj, Vinay C.; Prabhu, S. V.

    2013-12-01

    An experimental investigation is performed to substantiate the capability of a charge coupled device camera to measure local temperature and emissivity of different materials heated to temperatures above 500 °C by two-colour pyrometric technique using colorimetric method. Materials investigated are Inconel 718 with pyromark (high temperature paint), Inconel 718, stainless steel SS 304 and SS 316. Centerline temperature and emissivity distribution is obtained for target plates maintained at constant temperature by AC heating while complete temperature and emissivity distribution is provided for plates heated by flame impingement. The obtained results are compared with a calibrated infrared camera and thermocouples and the temperature distribution is found to be in close agreement. These results pertain to partially oxidized metal alloys covered in this study. Deviation in the measurement of emissivity can be attributed to its dependence on wavelength range, oxidation, and sensitivity of the image detector.

  14. Acclimation and acute temperature effects on population differences in oxidative phosphorylation.

    PubMed

    Baris, Tara Z; Crawford, Douglas L; Oleksiak, Marjorie F

    2016-01-15

    Temperature changes affect metabolism on acute, acclamatory, and evolutionary time scales. To better understand temperature's affect on metabolism at these different time scales, we quantified cardiac oxidative phosphorylation (OxPhos) in three Fundulus taxa acclimated to 12 and 28°C and measured at three acute temperatures (12, 20, and 28°C). The Fundulus taxa (northern Maine and southern Georgia F. heteroclitus, and a sister taxa, F. grandis) were used to identify evolved changes in OxPhos. Cardiac OxPhos metabolism was quantified by measuring six traits: state 3 (ADP and substrate-dependent mitochondrial respiration); E state (uncoupled mitochondrial activity); complex I, II, and IV activities; and LEAK ratio. Acute temperature affected all OxPhos traits. Acclimation only significantly affected state 3 and LEAK ratio. Populations were significantly different for state 3. In addition to direct effects, there were significant interactions between acclimation and population for complex I and between population and acute temperature for state 3. Further analyses suggest that acclimation alters the acute temperature response for state 3, E state, and complexes I and II: at the low acclimation temperature, the acute response was dampened at low assay temperatures, and at the high acclimation temperature, the acute response was dampened at high assay temperatures. Closer examination of the data also suggests that differences in state 3 respiration and complex I activity between populations were greatest between fish acclimated to low temperatures when assayed at high temperatures, suggesting that differences between the populations become more apparent at the edges of their thermal range. PMID:26582639

  15. Effect of diurnal temperature difference on lipid accumulation and development in Calanus sinicus (Copepoda: Calanoida)

    NASA Astrophysics Data System (ADS)

    Zhou, Konglin; Sun, Song

    2016-08-01

    Calanus sinicus, the dominant copepod in the Yellow Sea, develops a large oil sac in late spring to prepare for over-summering in the Yellow Sea Cold Water Mass (YSCWM). The lipid accumulation mechanism for the initiation of over-summering is unknown. Here, we cultured C3 copepodites at four constant temperatures (10, 13, 16, and 19°C) and at three temperature regimes that mimicked the temperature variations experienced during diurnal vertical migration (10-13°C, 10-16°C, and 10-19°C) for 18 days to explore the effects of temperature differences on copepod development and lipid accumulation. C. sinicus stored more lipid at low than at high temperatures. A diurnal temperature difference (10-16°C and 10-19°C) promoted greater lipid accumulation (1.9-2.1 times) than a constant temperature of either 16°C or 19°C, by reducing the energy cost at colder temperatures and lengthening copepodite development. Thereafter, the lipid reserve supported gonad development after final molting. Only one male developed in these experiments. This highly female-skewed sex ratio may have been the result of the monotonous microalgae diet fed to the copepodites. This study provides the first evidence that diurnal temperature differences may promote lipid accumulation in C. sinicus, and provides a foundation for future investigations into the mechanisms involved in over-summering in the YSCWM.

  16. Statistical modeling of urban air temperature distributions under different synoptic conditions

    NASA Astrophysics Data System (ADS)

    Beck, Christoph; Breitner, Susanne; Cyrys, Josef; Hald, Cornelius; Hartz, Uwe; Jacobeit, Jucundus; Richter, Katja; Schneider, Alexandra; Wolf, Kathrin

    2015-04-01

    Within urban areas air temperature may vary distinctly between different locations. These intra-urban air temperature variations partly reach magnitudes that are relevant with respect to human thermal comfort. Therefore and furthermore taking into account potential interrelations with other health related environmental factors (e.g. air quality) it is important to estimate spatial patterns of intra-urban air temperature distributions that may be incorporated into urban planning processes. In this contribution we present an approach to estimate spatial temperature distributions in the urban area of Augsburg (Germany) by means of statistical modeling. At 36 locations in the urban area of Augsburg air temperatures are measured with high temporal resolution (4 min.) since December 2012. These 36 locations represent different typical urban land use characteristics in terms of varying percentage coverages of different land cover categories (e.g. impervious, built-up, vegetated). Percentage coverages of these land cover categories have been extracted from different sources (Open Street Map, European Urban Atlas, Urban Morphological Zones) for regular grids of varying size (50, 100, 200 meter horizonal resolution) for the urban area of Augsburg. It is well known from numerous studies that land use characteristics have a distinct influence on air temperature and as well other climatic variables at a certain location. Therefore air temperatures at the 36 locations are modeled utilizing land use characteristics (percentage coverages of land cover categories) as predictor variables in Stepwise Multiple Regression models and in Random Forest based model approaches. After model evaluation via cross-validation appropriate statistical models are applied to gridded land use data to derive spatial urban air temperature distributions. Varying models are tested and applied for different seasons and times of the day and also for different synoptic conditions (e.g. clear and calm

  17. High operating temperature interband cascade focal plane arrays

    SciTech Connect

    Tian, Z.-B.; Godoy, S. E.; Kim, H. S.; Schuler-Sandy, T.; Montoya, J. A.; Krishna, S.

    2014-08-04

    In this paper, we report the initial demonstration of mid-infrared interband cascade (IC) photodetector focal plane arrays with multiple-stage/junction design. The merits of IC photodetectors include low noise and efficient photocarrier extraction, even for zero-bias operation. By adopting enhanced electron barrier design and a total absorber thickness of 0.7 μm, the 5-stage IC detectors show very low dark current (1.10 × 10{sup −7} A/cm{sup 2} at −5 mV and 150 K). Even with un-optimized fabrication and standard commercial (mis-matched) read-out circuit technology, infrared images are obtained by the 320 × 256 IC focal plane array up to 180 K with f/2.3 optics. The minimum noise equivalent temperature difference of 28 mK is obtained at 120 K. These initial results indicate great potential of IC photodetectors, particularly for high operating temperature applications.

  18. Comparing different reactor configurations for Partial Nitritation/Anammox at low temperatures.

    PubMed

    Gilbert, Eva M; Agrawal, Shelesh; Schwartz, Thomas; Horn, Harald; Lackner, Susanne

    2015-09-15

    Partial Nitritation/Anammox (PN/A) is a well-established technology for side-stream nitrogen removal from highly concentrated, warm wastewaters. The focus has now shifted to weakly concentrated municipal wastewaters with much lower concentrations and temperatures. The major challenge is the temperature, which ranges from moderate 20 °C in summer to cold 10 °C in winter. For this study, the most frequently used configurations for side-stream applications were exposed to a slow temperature reduction from 20 °C to 10 °C to simulate a realistic temperature gradient. To evaluate the behavior of the different biomasses based on their properties, four lab reactors were operated in two different configurations. Synthetic wastewater was used to avoid side effects of heterotrophic growth. Differences in the response of the different reactor systems to this temperature gradient clearly indicated, that the geometry of the biomass has a major impact on the overall PN/A performance at low temperatures: While anammox activity in suspended biomass suffered already at 15 °C, it persevered in granular biomass as well as in biofilms on carriers for temperatures down to <13 °C. Further, anammox activity in thicker biofilms was less affected than in thinner biofilms and even adaption to low temperatures was observed. PMID:26043375

  19. Differences between rice and wheat in temperature responses of photosynthesis and plant growth.

    PubMed

    Nagai, Takeshi; Makino, Amane

    2009-04-01

    The temperature responses of photosynthesis (A) and growth were examined in rice and wheat grown hydroponically under day/night temperature regimes of 13/10, 19/16, 25/19, 30/24 and 37/31 degrees C. Irrespective of growth temperature, the maximal rates of A were found to be at 30-35 degrees C in rice and at 25-30 degrees C in wheat. Below 25 degrees C the rates were higher in wheat, while above 30 degrees C they were higher in rice. However, in both species, A measured at the growth temperature remained almost constant irrespective of temperature. Biomass production and relative growth rate (RGR) were greatest in rice grown at 30/24 degrees C and in wheat grown at 25/19 degrees C. Although there was no difference between the species in the optimal temperature of the leaf area ratios (LARs), the net assimilation rate (NAR) in rice decreased at low temperature (19/16 degrees C) while the NAR in wheat decreased at high temperature (37/31 degrees C). For both species, the N-use efficiency (NUE) for growth rate (GR), estimated by dividing the NAR by leaf-N content, correlated with GR and with biomass production. Similarly, when NUE for A at growth temperature was estimated, the temperature response of NUE for A was similar to that of NUE for GR in both species. The results suggest that the difference between rice and wheat in the temperature response of biomass production depends on the difference in temperature dependence of NUE for A.

  20. Eleven years of ground-air temperature tracking over different land cover materials

    NASA Astrophysics Data System (ADS)

    Cermák, Vladimír; Dedecek, Petr; Bodri, Louise; Safanda, Jan; Kresl, Milan

    2015-04-01

    We have analyzed series of air, near surface and shallow ground temperatures under four different land covers, namely bare clayey soil, sand, grass and asphalt, collected between 2002 and 2013, monitored at the Geothermal Climate Change Observatory Sporilov. All obtained temperature series revealed a strong dependence of the subsurface thermal regime on the surface cover material. The ground "skin" temperatures are generally warmer than the surface air temperatures for all monitored surfaces; however they mutually differ significantly reflecting the nature of the land surface. Asphalt shows the highest temperatures, temperatures below the grassy surface are the lowest. A special interest was paid to the assessment of the "temperature offset", the difference between the surface ground temperature and the surface air temperature. Even when its instant value varies dramatically on both, daily and annual scale, by up to 30+ K, on a long time scale it is believed to be generally constant. The characteristic 2003-2013 mean offset values for the individual covers are following: asphalt 4.1 K, sand 1.6 K, clay 1.3 K and grass 0.2-0.3 K. All four surface covers revealed their daily and inter-annual cycles. Incident solar radiation is the primary variable in determining the amount of the temperature offset value and its time changes. A linear relationship between air-ground temperature differences and incident solar radiation was detected. The slope of the linear regression between both variables is clearly surface cover dependent. The greatest value of 3.3 K per 100 W.m-2 was found for asphalt, rates of 1.0 to 1.2 apply for bare soil and sand covers and negative slope of -0.44 K per 100 W.m-2 stands for grass, during the day or year the slope rates may vary extensively reflecting the periodic daily and/or annual cycle as well as the irregular instant deviations in solar radiation.

  1. Day-night difference in the preferred ambient temperature of human subjects.

    PubMed

    Shoemaker, J A; Refinetti, R

    1996-01-01

    To investigate the existence of a day-night difference in thermal preference, 32 college students (16 male, 16 female) were asked to indicate a threshold of discomfort in a climate-controlled environment. The experiment was performed at two distinct times of day that corresponded to the peaks and troughs of the subject's circadian rhythm of body temperature. Males, but not females, felt comfortable at a higher ambient temperature during the trough than during the peak of the body temperature rhythm. These data support the hypothesis (derived from animal studies) that behavioral thermoregulation opposes the circadian rhythm of body temperature.

  2. Salt uptake and water loss in hams with different water contents at the lean surface and at different salting temperatures.

    PubMed

    Garcia-Gil, Núria; Muñoz, Israel; Santos-Garcés, Eva; Arnau, Jacint; Gou, Pere

    2014-01-01

    The salt uptake homogeneity is crucial in assuring quality in dry-cured hams. The aim of this study was to evaluate the effect of the water contents at the lean surface before salting and of the temperature during salting on the salt uptake. Pieces of loin stored at 3°C for 3 days before salting absorbed less salt through a surface that has been dried during storage. A group of raw hams were subjected to different pre-salting storage times (0, 3 and 6 days) and another group subjected to different set room temperatures during salting (-1.0, 0.5 and 4.0°C). The duration of storage before salting and the temperature during salting had a negative and a positive effect on the average salt absorption, respectively. The most important effects appeared after 6 days of storage and at 4°C. No significant differences in salt uptake homogeneity were found between storage times and between salting temperatures. PMID:23896138

  3. Thermal equilibrium and temperature differences among body regions in European plethodontid salamanders.

    PubMed

    Lunghi, Enrico; Manenti, Raoul; Canciani, Giancarlo; Scarì, Giorgio; Pennati, Roberta; Ficetola, Gentile Francesco

    2016-08-01

    Information on species thermal physiology is extremely important to understand species responses to environmental heterogeneity and changes. Thermography is an emerging technology that allows high resolution and accurate measurement of body temperature, but until now it has not been used to study thermal physiology of amphibians in the wild. Hydromantes terrestrial salamanders are strongly depending on ambient temperature for their activity and gas exchanges, but information on their body temperature is extremely limited. In this study we tested if Hydromantes salamanders are thermoconform, we assessed whether there are temperature differences among body regions, and evaluated the time required to reach the thermal equilibrium. During summers of 2014 and 2015 we analysed 56 salamanders (Hydromantes ambrosii and Hydromantes italicus) using infrared thermocamera. We photographed salamanders at the moment in which we found them and 1, 2, 3, 4, 5 and 15min after having kept them in the hands. Body temperature was equal to air temperature; salamanders attained the equilibrium with air temperature in about 8min, the time required to reach equilibrium was longer in individuals with large body size. We detected small temperature differences between body parts, the head being slightly warmer than the body and the tail (mean difference: 0.05°C). These salamanders quickly reach the equilibrium with the environment, thus microhabitat measurement allows obtaining accurate information on their tolerance limits. PMID:27503719

  4. Thermal equilibrium and temperature differences among body regions in European plethodontid salamanders.

    PubMed

    Lunghi, Enrico; Manenti, Raoul; Canciani, Giancarlo; Scarì, Giorgio; Pennati, Roberta; Ficetola, Gentile Francesco

    2016-08-01

    Information on species thermal physiology is extremely important to understand species responses to environmental heterogeneity and changes. Thermography is an emerging technology that allows high resolution and accurate measurement of body temperature, but until now it has not been used to study thermal physiology of amphibians in the wild. Hydromantes terrestrial salamanders are strongly depending on ambient temperature for their activity and gas exchanges, but information on their body temperature is extremely limited. In this study we tested if Hydromantes salamanders are thermoconform, we assessed whether there are temperature differences among body regions, and evaluated the time required to reach the thermal equilibrium. During summers of 2014 and 2015 we analysed 56 salamanders (Hydromantes ambrosii and Hydromantes italicus) using infrared thermocamera. We photographed salamanders at the moment in which we found them and 1, 2, 3, 4, 5 and 15min after having kept them in the hands. Body temperature was equal to air temperature; salamanders attained the equilibrium with air temperature in about 8min, the time required to reach equilibrium was longer in individuals with large body size. We detected small temperature differences between body parts, the head being slightly warmer than the body and the tail (mean difference: 0.05°C). These salamanders quickly reach the equilibrium with the environment, thus microhabitat measurement allows obtaining accurate information on their tolerance limits.

  5. Electrical transport in carbon black-epoxy resin composites at different temperatures

    NASA Astrophysics Data System (ADS)

    Macutkevic, J.; Kuzhir, P.; Paddubskaya, A.; Maksimenko, S.; Banys, J.; Celzard, A.; Fierro, V.; Bistarelli, S.; Cataldo, A.; Micciulla, F.; Bellucci, S.

    2013-07-01

    Results of broadband electric/dielectric properties of different surface area—carbon black/epoxy resin composites above the percolation threshold are reported in a wide temperature range (25-500 K). At higher temperatures (above 400 K), the electrical conductivity of composites is governed by electrical transport in polymer matrix and current carriers tunneling from carbon black clusters to polymer matrix. The activation energy of such processes decreases when the carrier concentration increases, i.e., with the increase of carbon black concentration. At lower temperatures, the electrical conductivity is governed by electron tunneling and hopping. The electrical conductivity and dielectric permittivity of composites strongly decrease after annealing composites at high temperatures (500 K); at the same time potential barrier for carriers tunneling strongly increases. All the observed peculiarities can be used for producing effective low-cost materials on the basis of epoxy resin working at different temperatures for electrical applications.

  6. Correlation of quantum efficiency and photoluminescence lifetime of ZnO tetrapods grown at different temperatures

    NASA Astrophysics Data System (ADS)

    Tam, M. C.; Ng, A. M. C.; Djurišić, A. B.; Wong, K. S.

    2012-07-01

    Absolute external quantum efficiencies (ηs) and photoluminescence (PL) decay lifetimes of ZnO tetrapods grown at different temperatures were measured. All the tetrapods had an UV peak at about 390 nm and a very weak defect emission. Measurements showed that the tetrapods have ηs of 2%-4% at room temperature. The sample, grown at optimal temperature, exhibited the largest absolute η of 4.3% and longest PL decay lifetimes among all the samples. These results showed that precise control of growth temperature plays an important role in making high quality ZnO tetrapods. In time-resolved measurement, the PL decay time constant (τ) versus temperature is well fitted by the theoretical prediction τ =a T3/2. This increase in PL lifetime with increasing temperature shows that the excited state relaxation is dominated by radiative recombination.

  7. Evaluation of steam sterilization processes: comparing calculations using temperature data and biointegrator reduction data and calculation of theoretical temperature difference.

    PubMed

    Lundahl, Gunnel

    2007-01-01

    When calculating of the physical F121.1 degrees c-value by the equation F121.1 degrees C = t x 10(T-121.1/z the temperature (T), in combination with the z-value, influences the F121.1 degrees c-value exponentially. Because the z-value for spores of Geobacillus stearothermophilus often varies between 6 and 9, the biological F-value (F(Bio) will not always correspond to the F0-value based on temperature records from the sterilization process calculated with a z-value of 10, even if the calibration of both of them are correct. Consequently an error in calibration of thermocouples and difference in z-values influences the F121.1 degrees c-values logarithmically. The paper describes how results from measurements with different z-values can be compared. The first part describes the mathematics of a calculation program, which makes it easily possible to compare F0-values based on temperature records with the F(BIO)-value based on analysis of bioindicators such as glycerin-water-suspension sensors. For biological measurements, a suitable bioindicator with a high D121-value can be used (such a bioindicator can be manufactured as described in the article "A Method of Increasing Test Range and Accuracy of Bioindicators-Geobacillus stearothermophilus Spores"). By the mathematics and calculations described in this macro program it is possible to calculate for every position the theoretical temperature difference (deltaT(th)) needed to explain the difference in results between the thermocouple and the biointegrator. Since the temperature difference is a linear function and constant all over the process this value is an indication of the magnitude of an error. A graph and table from these calculations gives a picture of the run. The second part deals with product characteristics, the sterilization processes, loading patterns. Appropriate safety margins have to be chosen in the development phase of a sterilization process to achieve acceptable safety limits. Case studies are

  8. Apoptotic responses of zebrafish (Danio rerio) after exposure with microcystin-LR under different ambient temperatures.

    PubMed

    Ji, Wei; Liang, Hualei; Zhou, Wenshan; Zhang, Xuezhen

    2013-08-01

    Microcystins (MCs) can cause evident hepatic apoptosis. In vitro studies indicated that uptake of MC by isolated hepatocytes was dramatically reduced as ambient temperature dropped, and some studies presented a hypothesis that differences in core body temperatures in animals result in diverse uptake of MC, as well as different toxic effects. Thus far, however, few in vivo studies have been conducted to investigate the effects of temperature on MC-induced hepatocyte apoptosis in fish, a typical poikilotherm. In the present study, zebrafish were treated with MC-LR, an MC metabolite, at three water temperatures (12, 22 and 32 °C), and evident differences in apoptotic profiles were observed. Damage to liver ultrastructures revealed temperature-dependent early-stage patterns of apoptosis. Flow-cytometric analysis indicated that hepatocyte apoptotic rates varied with a temperature-dependent effect. The transcription levels of some apoptosis-related genes were determined using quantitative real-time polymerase chain reaction, and significantly elevated gene expressions of P53, Bcl-2, Bax and caspase-3 were found in the 12 and 32 °C groups. Results of the present study indicate that different ambient temperatures can lead to various toxic effects of MCs on hepatic apoptosis in fish.

  9. Tailoring biochars from different feedstock and produced at different temperature and time of pyrolysis for their use as soil amendments

    NASA Astrophysics Data System (ADS)

    Zornoza, Raul; Moreno, Fabian; Acosta, Jose A.; Gomez Lopez, Maria Dolores; Faz, Angel

    2015-04-01

    Biochar used as a soil amendment to improve soil quality and fertility and increase soil carbon sequestration has been the focus of much research in the recent past. Unlike most conventional soil organic materials, which are readily decomposed, the recalcitrant nature of biochar increases its potential value as a soil amending material for the longer term. However, many biochars can be hydrophobic, and added to soil can aggravate water availability in areas where water scarcity is a major limiting factor for agriculture or forestry. It has been shown that biochar characteristics are influenced by production variables, especially feedstock, pyrolysis temperature and time of pyrolysis. Although there have been different studies characterizing biochars prepared from different sources, there are few studies comparing different types of biochar produced from domestic residues, manures or crop residues pyrolysis; there are, in addition, fewer studies dealing with the hydrophobic properties of the biochars. The different feedstock can have different properties which would result into different biochars even produced at the same operational factors. The main objective of this experiment was to study the influence of feedstock properties and pyrolysis temperature and time on nutrient contents, heavy metals, recalcitrance, thermal stability and hydrophobicity of biochars from cotton crop residues (CR), pig manure (PM) and domestic waste (DW). Biochars were obtained by pyrolysis under oxygen-limited conditions in a muffle furnace. The temperature was increased at 5°C min-1 to 300°C, 400°C, 500°C and 700°C and then maintained for 1h, 2h, 4 and 5 h at this temperature. All biochar properties were strongly influenced by feedstock source except for pH, the recalcitrance index and hydrophobicity. Nutrient contents were normally higher in the PM biochar, except for Cu and Ca which were higher in the DW biochar and B in the CR biochar. Heavy metal contents were significantly

  10. The large volcanic eruptions at different latitude bands and patterns of winter temperature changes over China

    NASA Astrophysics Data System (ADS)

    Hao, Zhixin; Sun, Di

    2016-04-01

    Based on the chronology of 29 large volcanic eruptions events (Volcanic Explosivity Index≥4) since 1951 and gridded temperature dataset from China Meteorological Data Sharing Service System, we identified the patterns of winter temperature changes over China after the large volcanic eruptions, comparing with the mean temperature within the five years before, then we analyzed the related dynamic mechanisms of different patterns by NCEP reanalysis data and model output data from Community Earth System Model (CESM). The results showed that the winter temperature decreased more than 1°C in East China after volcanic eruptions on middle-lower latitudes and equatorial bands. After volcanic eruptions on different latitudes, the temperature spatial patterns were summarized as two types, which included that temperature was cooling centered on Northeast and warming in Tibets, and its opposite pattern. The first pattern was usually detected after tropical volcanic eruptions in spring/summer and it also appeared after volcanic eruptions on high latitudes in spring/autumn. After middle-lower latitude volcanic eruptions, the variation of geopotential height on 500hPa showed that the positive anomaly was existed at the East of Ural mountain, which caused the temperature decreased in Northwest , Central East and Southeast when east asian trough was intensified. After high latitudes volcanic eruptions, the zonal circulation was more obvious at middle latitudes, the cold air was not easy to transport,therefore winter temperature increased in China except for the Yangtze River Basin. The result of full forcing experiments by CESM showed that temperature decreased at most regions after large volcanic eruptions on equatorial /high bands, and troughs and wedges were developed on 500 hPa. The variation of geopotential height was nearly reversed after volcanic eruptions on high latitudes, only the temperature of Tibetan Plateau decreased. But how the variation of geopotential height

  11. The large volcanic eruptions at different latitude bands and patterns of winter temperature changes over China

    NASA Astrophysics Data System (ADS)

    Sun, D.; Hao, Z.; Zheng, J.

    2015-12-01

    Based on the chronology of 29 large volcanic eruptions events (Volcanic Explosivity Index≥4) since 1951 and gridded temperature dataset from China Meteorological Data Sharing Service System, we identified the patterns of winter temperature changes over China after the large volcanic eruptions, comparing with the mean temperature within the five years before, then we analyzed the related dynamic mechanisms of different patterns by NCEP reanalysis data and model output data from Community Earth System Model (CESM). The results showed that the winter temperature decreased more than 1°C in East China after volcanic eruptions on middle-lower latitudes and equatorial bands. After volcanic eruptions on different latitudes, the temperature spatial patterns were summarized as two types, which included that temperature was cooling centered on Northeast and warming in Tibets, and its opposite pattern. The first pattern was usually detected after equatorial volcanic eruptions in spring/summer and it also appeared after volcanic eruptions on high latitudes in spring/autumn. After middle-lower latitude volcanic eruptions, the variation of geopotential height on 500hPa showed that the positive anomaly was existed at the East of Ural mountain, which caused the temperature decreased in Northwest , Central East and Southeast when east asian trough was intensified. After high latitudes volcanic eruptions, the zonal circulation was more obvious at middle latitudes, the cold air was not easy to transport therefore winter temperature increased in China except for the Yangtze River Basin. The result of full forcing experiments by CESM showed that temperature decreased at most regions after large volcanic eruptions on equatorial /high bands, and troughs and wedges were developed on 500 hPa. The variation of geopotential height was nearly reversed after volcanic eruptions on high latitudes, only the temperature of Tibetan Plateau decreased. But how the variation of geopotential height

  12. Different effects of increased water temperature on egg production of Calanus finmarchicus and C. glacialis

    NASA Astrophysics Data System (ADS)

    Pasternak, A. F.; Arashkevich, E. G.; Grothe, U.; Nikishina, A. B.; Solovyev, K. A.

    2013-09-01

    Two copepod species, Calanus finmarchicus (a widespread North Atlantic species) and C. glacialis (an Arctic species), are dominant in the zooplankton of Arctic seas. We hypothesized that the anticipated warming in the Arctic might have different effects on the arctic and boreal species. The effect of temperature on egg production rate (EPR) in these species at temperatures of 0, 2.5, 5, 7.5, and 10°C under contrasting feeding conditions was assessed in 5-day-long experiments. The EPR of the fed C. finmarchicus increased with temperature over the entire tested range. On the contrary, the EPR of C. glacialis increased only in the range of 0-5°C and dropped with further temperature growth. The difference in the influence of temperature on reproduction of these two species is statistically significant. Feeding conditions have a considerable effect on the C. finmarchicus EPR. The EPRs of the female C. glacialis that fed or starved for 5 days displayed no significant difference. These results suggest that the C. finmarchicus EPR increases with temperature under favorable feeding conditions, whereas the C. glacialis EPR decreases at a temperature over 5°C independently of the feeding conditions. This allows for prediction of the shift in abundances of these two species in pelagic communities of Arctic seas in the case of a warming scenario.

  13. Alteration of protein patterns in black rock inhabiting fungi as a response to different temperatures

    PubMed Central

    Tesei, Donatella; Marzban, Gorji; Zakharova, Kristina; Isola, Daniela; Selbmann, Laura; Sterflinger, Katja

    2012-01-01

    Rock inhabiting fungi are among the most stress tolerant organisms on Earth. They are able to cope with different stressors determined by the typical conditions of bare rocks in hot and cold extreme environments. In this study first results of a system biological approach based on two-dimensional protein profiles are presented. Protein patterns of extremotolerant black fungi – Coniosporium perforans, Exophiala jeanselmei – and of the extremophilic fungus – Friedmanniomyces endolithicus – were compared with the cosmopolitan and mesophilic hyphomycete Penicillium chrysogenum in order to follow and determine changes in the expression pattern under different temperatures. The 2D protein gels indicated a temperature dependent qualitative change in all the tested strains. Whereas the reference strain P. chrysogenum expressed the highest number of proteins at 40 °C, thus exhibiting real signs of temperature induced reaction, black fungi, when exposed to temperatures far above their growth optimum, decreased the number of proteins indicating a down-regulation of their metabolism. Temperature of 1 °C led to an increased number of proteins in all of the analysed strains, with the exception of P. chrysogenum. These first results on temperature dependent reactions in rock inhabiting black fungi indicate a rather different strategy to cope with non-optimal temperature than in the mesophilic hyphomycete P. chrysogenum. PMID:22862921

  14. Biochemical and growth acclimation of birch to night temperatures: genotypic similarities and differences.

    PubMed

    Mäenpää, M; Ossipov, V; Kontunen-Soppela, S; Keinänen, M; Rousi, M; Oksanen, E

    2013-01-01

    The responses of plants to environmental factors are connected to the time of day. In this study, silver birch (Betula pendula) was grown in growth chambers at five different night temperatures (6-22 °C), using gradual changes during the evening and morning hours. Despite the increased night respiration and unaffected daytime net photosynthesis (per square metre), the carbon uptake (biomass) of birch did not decrease, probably due to enhanced biochemical processes on warmer nights and the advantage of higher temperatures during the evening and morning hours. The plant stem height, internode length, stem dry weight (DW), stem mass fraction and specific leaf area increased with warmer night temperatures. Changes in growth and metabolite concentrations were partly nonlinear along the temperature gradient. Thus, the temperature effect depends on the temperature window considered. Genotypes had both common and genotype-specific biochemical responses to night temperatures. The common responses among genotypes were related to growth responses, whereas the unique responses may indicate genotype-specific differences in acclimation. The differences in genotypic growth and metabolite levels are valuable for assessing genotype qualities and understanding the connections between the metabolome and growth.

  15. Land Surface Temperature Measurements form EOS MODIS Data

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming

    1996-01-01

    We have developed a physics-based land-surface temperature (LST) algorithm for simultaneously retrieving surface band-averaged emissivities and temperatures from day/night pairs of MODIS (Moderate Resolution Imaging Spectroradiometer) data in seven thermal infrared bands. The set of 14 nonlinear equations in the algorithm is solved with the statistical regression method and the least-squares fit method. This new LST algorithm was tested with simulated MODIS data for 80 sets of band-averaged emissivities calculated from published spectral data of terrestrial materials in wide ranges of atmospheric and surface temperature conditions. Comprehensive sensitivity and error analysis has been made to evaluate the performance of the new LST algorithm and its dependence on variations in surface emissivity and temperature, upon atmospheric conditions, as well as the noise-equivalent temperature difference (NE(Delta)T) and calibration accuracy specifications of the MODIS instrument. In cases with a systematic calibration error of 0.5%, the standard deviations of errors in retrieved surface daytime and nighttime temperatures fall between 0.4-0.5 K over a wide range of surface temperatures for mid-latitude summer conditions. The standard deviations of errors in retrieved emissivities in bands 31 and 32 (in the 10-12.5 micrometer IR spectral window region) are 0.009, and the maximum error in retrieved LST values falls between 2-3 K. Several issues related to the day/night LST algorithm (uncertainties in the day/night registration and in surface emissivity changes caused by dew occurrence, and the cloud cover) have been investigated. The LST algorithms have been validated with MODIS Airborne Simulator (MAS) dada and ground-based measurement data in two field campaigns conducted in Railroad Valley playa, NV in 1995 and 1996. The MODIS LST version 1 software has been delivered.

  16. Improving the Accuracy of Satellite Sea Surface Temperature Measurements by Explicitly Accounting for the Bulk-Skin Temperature Difference

    NASA Technical Reports Server (NTRS)

    Wick, Gary A.; Emery, William J.; Castro, Sandra L.; Lindstrom, Eric (Technical Monitor)

    2002-01-01

    The focus of this research was to determine whether the accuracy of satellite measurements of sea surface temperature (SST) could be improved by explicitly accounting for the complex temperature gradients at the surface of the ocean associated with the cool skin and diurnal warm layers. To achieve this goal, work was performed in two different major areas. The first centered on the development and deployment of low-cost infrared radiometers to enable the direct validation of satellite measurements of skin temperature. The second involved a modeling and data analysis effort whereby modeled near-surface temperature profiles were integrated into the retrieval of bulk SST estimates from existing satellite data. Under the first work area, two different seagoing infrared radiometers were designed and fabricated and the first of these was deployed on research ships during two major experiments. Analyses of these data contributed significantly to the Ph.D. thesis of one graduate student and these results are currently being converted into a journal publication. The results of the second portion of work demonstrated that, with presently available models and heat flux estimates, accuracy improvements in SST retrievals associated with better physical treatment of the near-surface layer were partially balanced by uncertainties in the models and extra required input data. While no significant accuracy improvement was observed in this experiment, the results are very encouraging for future applications where improved models and coincident environmental data will be available. These results are included in a manuscript undergoing final review with the Journal of Atmospheric and Oceanic Technology.

  17. Metabolite profiling reveals temperature effects on the VOCs and flavonoids of different plant populations.

    PubMed

    Goh, H-H; Khairudin, K; Sukiran, N A; Normah, M N; Baharum, S N

    2016-01-01

    Temperature is one of the key factors in limiting the distribution of plants and controlling major metabolic processes. A series of simulated reciprocal transplant experiments were performed to investigate the effect of temperature on plant chemical composition. Polygonum minus of different lowland and highland origin were grown under a controlled environment with different temperature regimes to study the effects on secondary metabolites. We applied gas chromatography-mass spectrometry and liquid chromatography time-of-flight mass spectrometry to identify the chemical compounds. A total of 37 volatile organic compounds and 85 flavonoids were detected, with the largest response observed in the compositional changes of aldehydes and terpenes in highland plants under higher temperature treatment. Significantly less anthocyanidin compounds and larger amounts of flavonols were detected under higher temperature treatment. We also studied natural variation in the different plant populations growing under the same environment and identified compounds unique to each population through metabolite fingerprinting. This study shows that the origin of different plant populations influences the effects of temperature on chemical composition. PMID:26417881

  18. Effects of inherent alkali and alkaline earth metallic species on biomass pyrolysis at different temperatures.

    PubMed

    Hu, Song; Jiang, Long; Wang, Yi; Su, Sheng; Sun, Lushi; Xu, Boyang; He, Limo; Xiang, Jun

    2015-09-01

    This work aimed to investigate effects of inherent alkali and alkaline earth metallic species (AAEMs) on biomass pyrolysis at different temperatures. The yield of CO, H2 and C2H4 was increased and that of CO2 was suppressed with increasing temperature. Increasing temperature could also promote depolymerization and aromatization reactions of active tars, forming heavier polycyclic aromatic hydrocarbons, leading to decrease of tar yields and species diversity. Diverse performance of inherent AAEMs at different temperatures significantly affected the distribution of pyrolysis products. The presence of inherent AAEMs promoted water-gas shift reaction, and enhanced the yield of H2 and CO2. Additionally, inherent AAEMs not only promoted breakage and decarboxylation/decarbonylation reaction of thermally labile hetero atoms of the tar but also enhanced thermal decomposing of heavier aromatics. Inherent AAEMs could also significantly enhance the decomposition of levoglucosan, and alkaline earth metals showed greater effect than alkali metals.

  19. Effects of inherent alkali and alkaline earth metallic species on biomass pyrolysis at different temperatures.

    PubMed

    Hu, Song; Jiang, Long; Wang, Yi; Su, Sheng; Sun, Lushi; Xu, Boyang; He, Limo; Xiang, Jun

    2015-09-01

    This work aimed to investigate effects of inherent alkali and alkaline earth metallic species (AAEMs) on biomass pyrolysis at different temperatures. The yield of CO, H2 and C2H4 was increased and that of CO2 was suppressed with increasing temperature. Increasing temperature could also promote depolymerization and aromatization reactions of active tars, forming heavier polycyclic aromatic hydrocarbons, leading to decrease of tar yields and species diversity. Diverse performance of inherent AAEMs at different temperatures significantly affected the distribution of pyrolysis products. The presence of inherent AAEMs promoted water-gas shift reaction, and enhanced the yield of H2 and CO2. Additionally, inherent AAEMs not only promoted breakage and decarboxylation/decarbonylation reaction of thermally labile hetero atoms of the tar but also enhanced thermal decomposing of heavier aromatics. Inherent AAEMs could also significantly enhance the decomposition of levoglucosan, and alkaline earth metals showed greater effect than alkali metals. PMID:26005925

  20. Effect of soil temperature on root resistance: implications for different trees under Mediterranean conditions.

    PubMed

    García-Tejera, Omar; López-Bernal, Álvaro; Villalobos, Francisco J; Orgaz, Francisco; Testi, Luca

    2016-04-01

    The effect of temperature on radial root hydraulic specific resistance (Rp) is a known phenomenon; however, the impact ofRpvariations expected from soil temperature changes over the tree root system is unknown. The present article analyses the relations hip ofRpwith temperature in olive 'Picual' and a hybrid rootstock, GF677, at five different temperatures, showing that a variation of 3- and 4.5-folds exists for olive 'Picual' and GF677 in the range from 10 to 20 °C. The functions obtained were scaled up to show the theoretical changes of total radial root system resistance in a common tree orchard in a Mediterranean climate at a daily and seasonal scale, using recorded soil temperature values: a difference between summer and winter of 3.5-fold for olive 'Picual' and 9-fold for GF677 was observed. Nevertheless,Rpchanges are not only related to temperature, as cavitation or circadian rhythms in aquaporin expression may also play a role. The results obtained from an experiment with the two cultivars submitted to constant pressure and temperature during several hours exhibited a variation inRp, but this was of lower magnitude than that observed due to temperature changes. Finally, a comparison ofRpat 25 °C between GF677 and GN15 (another rootstock obtained from the same parental as GF677) showed significant differences. According to our results, diurnal and seasonal changes inRpdue to temperature variations are of significant importance, and it would therefore be advisable to assess them explicitly into soil-plant-atmosphere continuum models. PMID:26769470

  1. The Shift of Thermoneutral Zone in Striped Hamster Acclimated to Different Temperatures

    PubMed Central

    Zhao, Zhi-Jun; Chi, Qing-Sheng; Liu, Quan-Sheng; Zheng, Wei-Hong; Liu, Jin-Song; Wang, De-Hua

    2014-01-01

    Temperature affects all biological functions and will therefore modulate ecologically significant interactions between animals and their environment. Here, we examined the effect of ambient temperature (Ta) on the thermal biology and energy budget in striped hamsters acclimated to cold (5°C), warm (21°C) and hot temperatures (31°C). Thermoneutral zone (TNZ) was 22.5–32.5°C, 25–32.5°C and 30–32.5°C in the cold-, warm- and hot-acclimated hamsters, respectively. The cold acclimation decreased the lower critical temperature and made the TNZ wider, and hot exposure elevated the lower critical temperature, resulting in a narrow TNZ. Within the TNZ, cold-acclimated hamsters showed a significantly higher rate of metabolism and thermogenesis than those acclimated to hot temperature. Digestive enzymes activities, including intestinal sucrase, maltase, L-alanine aminopeptidase-N and leucine aminopeptidase were higher in the cold than in the hot. The changes in metabolic rate and thermogenesis at different temperatures were in parallel with cytochrome c oxidase activity and uncoupling protein 1 gene expression of brown adipose tissue. This suggests that the shift of the lower critical temperature of TNZ is possibly associated with the rate of metabolism and thermogenesis, as well as with the digestive capacity of the gastrointestinal tract at different Ta. The upper critical temperature of TNZ may be independent of the changes in Ta. The changes of lower critical temperature of TNZ are an important strategy in adaption to variations of Ta. PMID:24400087

  2. Temperature Profiles Along the Root with Gutta-percha Warmed through Different Heat Sources

    PubMed Central

    Simeone, Michele; Santis, Roberto De; Ametrano, Gianluca; Prisco, Davide; Borrelli, Marino; Paduano, Sergio; Riccitiello, Francesco; Spagnuolo, Gianrico

    2014-01-01

    Objectives: To evaluate temperature profiles developing in the root during warm compaction of gutta-percha with the heat sources System B and System MB Obtura (Analityc Technology, Redmond, WA, USA). Thirty extracted human incisor teeth were used. Root canals were cleaned and shaped by means of Protaper rotary files (Dentsply-Maillefer, Belgium), and imaging was performed by micro-CT (Skyscan 1072, Aartselaar, Belgium). Methods: Teeth were instrumented with K-type thermocouples, and the roots were filled with thermoplastic gutta-percha. Vertical compaction was achieved through the heat sources System B and System MB, and temperature profiles were detect-ed by means of NI Dac Interface controlled by the LabView System. With both heat sources, higher temperature levels were recorded in the region of the root far from the apex. When the warm plugger tip was positioned at a distance of 3 mm from the root apex, temperature levels of about 180°C were used to soften gutta-percha, and no statistically significant differences were observed between peak temperatures developed by the two heating sources at the root apex. However, a temperature level higher than 40°C was maintained for a longer time with System MB. Results: Statistically significant differences were observed in peak temperature levels recorded far from the root apex. Thus, with a temperature of about 180°C and the warm plugger positioned at 3 mm from the root apex, both heating sources led to a temperature slightly higher than 40°C at the apex of the root, suggesting that the gutta-percha was properly softened. Significance: A temperature level higher than 40°C was maintained for a longer time with System MB, thus providing an ad-equate time for warm compaction of the gutta-percha. PMID:25614768

  3. Recovery of Pasteurella hemolytica from aerosols at differing temperature and humidity.

    PubMed Central

    Jericho, K W; Langford, E V; Pantekoek, J

    1977-01-01

    A Pasteurella hemolytica suspension with fetal calf serum was aerosolized in a standard system with ambient temperature of 30 or 2 degrees C and relative humidity conditions of 90 or 60%. The number of organisms sprayed in five minutes and the number recovered from one third of the aerosol during these five minutes was determined. Recoveries were influenced by temperature difference between aerosol and collecting fluid. Recoveries ranged between 0.059--0.94%. Images Fig. 1. PMID:861840

  4. Temperature measurements with two different IR sensors in a continuous-flow microwave heated system.

    PubMed

    Rydfjord, Jonas; Svensson, Fredrik; Fagrell, Magnus; Sävmarker, Jonas; Thulin, Måns; Larhed, Mats

    2013-01-01

    In a continuous-flow system equipped with a nonresonant microwave applicator we have investigated how to best assess the actual temperature of microwave heated organic solvents with different characteristics. This is non-trivial as the electromagnetic field will influence most traditional methods of temperature measurement. Thus, we used a microwave transparent fiber optic probe, capable of measuring the temperature inside the reactor, and investigated two different IR sensors as non-contact alternatives to the internal probe. IR sensor 1 measures the temperature on the outside of the reactor whilst IR sensor 2 is designed to measure the temperature of the fluid through the borosilicate glass that constitutes the reactor wall. We have also, in addition to the characterization of the before mentioned IR sensors, developed statistical models to correlate the IR sensor reading to a correct value of the inner temperature (as determined by the internal fiber optic probe), thereby providing a non-contact, indirect, temperature assessment of the heated solvent. The accuracy achieved with these models lie well within the range desired for most synthetic chemistry applications.

  5. Influence of temperature on phenanthrene toxicity towards nitrifying bacteria in three soils with different properties.

    PubMed

    Suszek-Łopatka, Beata; Maliszewska-Kordybach, Barbara; Klimkowicz-Pawlas, Agnieszka; Smreczak, Bożena

    2016-09-01

    This study focused on the combined effect of environmental conditions (temperature) and contamination (polycyclic aromatic hydrocarbons, PAHs) on the activity of soil microorganisms (nitrifying bacteria). Phenanthrene (Phe) at five contamination levels (0, 1, 10, 100 and 1000 mg kg(-1) dry mass of soil) was employed as a model PAH compound in laboratory experiments that were conducted at three temperatures (i.e., 20 °C (recommended by ISO 15685 method), 15 and 30 °C). Three soils with different properties were used in these studies, and the activity of the nitrifying bacteria was assessed based on nitrification potential (NP) determinations. For the statistical evaluation of the results, the ANCOVA (analysis of covariance) method for three independent variables (i.e., temperature, phenanthrene concentration, soil matrix (as a qualitative variable)) and their interactions was employed. The results indicated on the significant interaction of all studied factors. Temperature influenced the toxicity of Phe towards NP, and this effect was related to the Phe concentration as well as was varied for the different soils. A low content of soil organic matter (controlling bioavailability of phenanthrene to soil microorganisms) enhanced the combined effect of temperature and Phe toxicity, and a high biological activity of the soil (high NP values) increased the effect of high temperature on the Phe stimulatory influence. The results indicate that the temperature should not be neglected in tests evaluating PAH ecotoxicity, especially for reliable ecological risk assessment. PMID:27394082

  6. Influence trend of temperature distribution in skin tissue generated by different exposure dose pulse laser

    NASA Astrophysics Data System (ADS)

    Shan, Ning; Wang, Zhijing; Liu, Xia

    2014-11-01

    Laser is widely applied in military and medicine fields because of its excellent capability. In order to effectively defend excess damage by laser, the thermal processing theory of skin tissue generated by laser should be carried out. The heating rate and thermal damage area should be studied. The mathematics model of bio-tissue heat transfer that is irradiated by laser is analyzed. And boundary conditions of bio-tissue are discussed. Three layer FEM grid model of bio-tissue is established. The temperature rising inducing by pulse laser in the tissue is modeled numerically by adopting ANSYS software. The changing trend of temperature in the tissue is imitated and studied under the conditions of different exposure dose pulse laser. The results show that temperature rising in the tissue depends on the parameters of pulse laser largely. In the same conditions, the pulse width of laser is smaller and its instant power is higher. And temperature rising effect in the tissue is very clear. On the contrary, temperature rising effect in the tissue is lower. The cooling time inducing by temperature rising effect in the tissue is longer along with pulse separation of laser is bigger. And the temperature difference is bigger in the pulse period.

  7. Momentum and mass fluxes in a gas confined between periodically structured surfaces at different temperatures.

    PubMed

    Donkov, Alexander A; Tiwari, Sudarshan; Liang, Tengfei; Hardt, Steffen; Klar, Axel; Ye, Wenjing

    2011-07-01

    It is well known that in a gas-filled duct or channel along which a temperature gradient is applied, a thermal creep flow is created. Here we show that a mass and momentum flux can also be induced in a gas confined between two parallel structured surfaces at different temperatures, i.e., orthogonal to the temperature gradient. We use both analytical and numerical methods to compute the resulting fluxes. The momentum flux assumes its maximum value in the free-molecular flow regime, the (normalized) mass flux in the transition flow regime. The discovered phenomena could find applications in methods for energy-conversion and thermal pumping of gases. PMID:21867301

  8. Momentum and mass fluxes in a gas confined between periodically structured surfaces at different temperatures

    NASA Astrophysics Data System (ADS)

    Donkov, Alexander A.; Tiwari, Sudarshan; Liang, Tengfei; Hardt, Steffen; Klar, Axel; Ye, Wenjing

    2011-07-01

    It is well known that in a gas-filled duct or channel along which a temperature gradient is applied, a thermal creep flow is created. Here we show that a mass and momentum flux can also be induced in a gas confined between two parallel structured surfaces at different temperatures, i.e., orthogonal to the temperature gradient. We use both analytical and numerical methods to compute the resulting fluxes. The momentum flux assumes its maximum value in the free-molecular flow regime, the (normalized) mass flux in the transition flow regime. The discovered phenomena could find applications in methods for energy-conversion and thermal pumping of gases.

  9. Growth response of Listeria monocytogenes NCTC 7973 in two different media at four incubation temperatures.

    PubMed

    Hany, O E; Siddiqi, R; Khan, M A

    1993-05-01

    Listeria monocytogenes NCTC 7973 was cultivated in tryptose phosphate broth (TPB) and tryptone soya broth (TSB) at four different temperatures: 4 degrees, 20 degrees, 30 degrees and 37 degrees C. Cells grown in TSB at 20 degrees C displayed maximum absorbance over cells grown in TPB at the same temperature. Moreover, this observation was further confirmed by dry mass determination and viable count. We determined that cells grown in TSB at 20 degrees C exhibited significant enhanced growth as compared to cells grown in TPB at the same temperature, hence TSB was found to be the medium of choice for maximum biomass production.

  10. Temperature Characterization of Different Urban Microhabitats of Aedes albopictus (Diptera Culicidae) in Central-Northern Italy.

    PubMed

    Vallorani, Roberto; Angelini, Paola; Bellini, Romeo; Carrieri, Marco; Crisci, Alfonso; Mascali Zeo, Silvia; Messeri, Gianni; Venturelli, Claudio

    2015-08-01

    Aedes albopictus (Skuse) is an invasive mosquito species that has spread to many countries in temperate regions bordering the Mediterranean basin, where it is becoming a major public health concern. A good knowledge of the thermal features of the most productive breeding sites for Ae. albopictus is crucial for a better estimation of the mosquitoes' life cycle and developmental rates. In this article, we address the problem of predicting air temperature in three microhabitats common in urban and suburban areas and the air and water temperature inside an ordinary catch basin, which is considered the most productive breeding site for Ae. albopictus in Italy. Temperature differences were statistically proven between the three microhabitats and between the catch basin external and internal temperature. The impacts on the developmental rates for each life stage of Ae. albopictus were tested through a parametric function of the temperature, and the aquatic stages resulted as being the most affected using the specific temperature inside a typical catch basin instead of a generic air temperature. The impact of snow cover on the catch basin internal temperature, and consequently on the mortality of diapausing eggs, was also evaluated. These data can be useful to improve epidemiological models for a better prediction of Ae. albopictus seasonal and population dynamics in central-northern Italian urban areas. PMID:26314064

  11. Experimental set up of a magnetoelectric measuring system operating at different temperatures

    NASA Astrophysics Data System (ADS)

    Gil, K.; Gil, J.; Cruz, B.; Ramirez, A.; Medina, M.; Torres, J.

    2016-02-01

    The magnetoelectric effect is the phenomenon whereby through a magnetic stimulation can be produced an electrical response or vice versa. We implement a magnetoelectric voltage measuring device through the dynamic method for a different range of temperatures. The system was split into an electric set and an instrumentation and control set. Design and element selection criteria that the experimenter must take into account are presented, with special emphasis in the design of the sample holder, which is the fundamental component that differentiates the system operating at high temperature and the one operating at room temperature. The experimental equipment consists of an electromagnet with DC magnetic flux density (B) in a range of (0.0 to 1.6) KOe, a Helmholtz coil which operates with a sinusoidal B between (0.0 and 0.016) KOe and a PT100 temperature sensor. A tubular heating resistance, a Checkman temperature control and an SSR 40A were used for controlling the temperature. As an application of the system, the transverse and longitudinal magnetoelectric coefficient was measured for a thin film of BiFeO3 at room temperature and 307K. It was observed that the behaviour of the longitudinal and transverse magnetoelectric coefficient matches the reported value and decreased with increasing temperature.

  12. Temperature influences on water permeability and chlorpyrifos uptake in aquatic insects with differing respiratory strategies

    USGS Publications Warehouse

    Buchwalter, D.B.; Jenkins, J.J.; Curtis, L.R.

    2003-01-01

    Aquatic insects have evolved diverse respiratory strategies that range from breathing atmospheric air to breathing dissolved oxygen. These strategies result in vast morphological differences among taxa in terms of exchange epithelial surface areas that are in direct contact with the surrounding water that, in turn, affect physiological processes. This paper examines the effects of acute temperature shifts on water permeability and chlorpyrifos uptake in aquatic insects with different respiratory strategies. While considerable differences existed in water permeability among the species tested, acute temperature shifts raised water influx rates similarly in air-breathing and gill-bearing taxa. This contrasts significantly with temperature-shift effects on chlorpyrifos uptake. Temperature shifts of 4.5??C increased 14C-chlorpyrifos accumulation rates in the gill-bearing mayfly Cinygma sp. and in the air-breathing hemipteran Sigara washingtonensis. However, the temperature-induced increase in 14C-chlorpyrifos uptake after 8 h of exposure was 2.75-fold higher in Cinygma than in Sigara. Uptake of 14C-chlorpyrifos was uniformly higher in Cinygma than in Sigara in all experiments. These findings suggest that organisms with relatively large exchange epithelial surface areas are potentially more vulnerable to both osmoregulatory distress as well as contaminant accumulation. Temperature increases appear more likely to impact organisms that have relatively large exchange epithelial surface areas, both as an individual stressor and in combination with additional stressors such as contaminants.

  13. Temperature influences on water permeability and chlorpyrifos uptake in aquatic insects with differing respiratory strategies.

    PubMed

    Buchwalter, David B; Jenkins, Jeffrey J; Curtis, Lawrence R

    2003-11-01

    Aquatic insects have evolved diverse respiratory strategies that range from breathing atmospheric air to breathing dissolved oxygen. These strategies result in vast morphological differences among taxa in terms of exchange epithelial surface areas that are in direct contact with the surrounding water that, in turn, affect physiological processes. This paper examines the effects of acute temperature shifts on water permeability and chlorpyrifos uptake in aquatic insects with different respiratory strategies. While considerable differences existed in water permeability among the species tested, acute temperature shifts raised water influx rates similarly in air-breathing and gill-bearing taxa. This contrasts significantly with temperature-shift effects on chlorpyrifos uptake. Temperature shifts of 4.5 degrees C increased 14C-chlorpyrifos accumulation rates in the gill-bearing mayfly Cinygma sp. and in the air-breathing hemipteran Sigara washingtonensis. However, the temperature-induced increase in 14C-chlorpyrifos uptake after 8 h of exposure was 2.75-fold higher in Cinygma than in Sigara. Uptake of 14C-chlorpyrifos was uniformly higher in Cinygma than in Sigara in all experiments. These findings suggest that organisms with relatively large exchange epithelial surface areas are potentially more vulnerable to both osmoregulatory distress as well as contaminant accumulation. Temperature increases appear more likely to impact organisms that have relatively large exchange epithelial surface areas, both as an individual stressor and in combination with additional stressors such as contaminants.

  14. SURVIVAL CAPACITY OF Arcobacter butzleri INOCULATED IN POULTRY MEAT AT TWO DIFFERENT REFRIGERATION TEMPERATURES.

    PubMed

    Badilla-Ramírez, Yanán; Fallas-Padilla, Karolina L; Fernández-Jaramillo, Heriberto; Arias-Echandi, María Laura

    2016-01-01

    Arcobacter spp. are emerging enteropathogens and potential zoonotic agents that can be transmitted by food and water, being considered a public health risk. The high isolation rate of these bacteria from poultry products suggests that it may be a major source of human infections. One hallmark for differentiating the genus Arcobacter from Campylobacter includes their growing capacity at low temperatures (15-30 °C) under aerobic conditions. However, little is known about the population density variation of these bacteria at different refrigeration temperatures. The aim of this study was to determine the survival behavior of two different Arcobacter butzleri concentrations (10(4) CFU/mL and 10(7) CFU/mL) inoculated on chicken legs and held at two different refrigeration temperatures (4 and 10 °C) throughout storage time. Results have shown that A. butzleri had growing capacity both at 4 and 10 °C. No statistical difference between the survival trends was found for both bacterial concentrations and temperatures tested. This study shows that A. butzleri is a robust species with regard to storage temperature, and represents a potential health risk for poultry meat consumers. PMID:27007565

  15. SURVIVAL CAPACITY OF Arcobacter butzleri INOCULATED IN POULTRY MEAT AT TWO DIFFERENT REFRIGERATION TEMPERATURES

    PubMed Central

    BADILLA-RAMÍREZ, Yanán; FALLAS-PADILLA, Karolina L.; FERNÁNDEZ-JARAMILLO, Heriberto; ARIAS-ECHANDI, María Laura

    2016-01-01

    Arcobacter spp. are emerging enteropathogens and potential zoonotic agents that can be transmitted by food and water, being considered a public health risk. The high isolation rate of these bacteria from poultry products suggests that it may be a major source of human infections. One hallmark for differentiating the genus Arcobacter fromCampylobacter includes their growing capacity at low temperatures (15-30 °C) under aerobic conditions. However, little is known about the population density variation of these bacteria at different refrigeration temperatures. The aim of this study was to determine the survival behavior of two different Arcobacter butzleri concentrations (104 CFU/mL and 107 CFU/mL) inoculated on chicken legs and held at two different refrigeration temperatures (4 and 10 °C) throughout storage time. Results have shown that A. butzleri had growing capacity both at 4 and 10 °C. No statistical difference between the survival trends was found for both bacterial concentrations and temperatures tested. This study shows that A. butzleri is a robust species with regard to storage temperature, and represents a potential health risk for poultry meat consumers. PMID:27007565

  16. Genetically determined differences in ethanol sensitivity influenced by body temperature during intoxication

    SciTech Connect

    Alkana, R.L.; Finn, D.A.; Bejanian, M.; Crabbe, J.C.

    1988-01-01

    The present study investigated the importance of body temperature during intoxication in mediating differences between five inbred strains of mice (C57BL/6J; BALB/cJ; DBA/2J; A/HeJ; 129/J) in their acute sensitivity to the hypnotic effects of ethanol. Mice exposed to 22/degrees/C after ethanol injection became hypothermic and exhibited statistically significant differences between strains in rectal temperatures at the return of the righting reflex (RORR), duration of loss of the righting reflex (LORR), and blood and brain ethanol concentrations at RORR. Exposure to 34/degrees/C after injection offset ethanol-hypothermia and markedly reduced strain-related differences in rectal temperatures and blood and brain ethanol concentrations at RORR. Brain ethanol concentrations at RORR were significantly lower in C57, BALB, DBA and A/He mice exposed to 34/degrees/C compared to mice exposed to 22/degrees/C during intoxication suggesting that offsetting hypothermia increased ethanol sensitivity in these strains. Taken with previous in vitro studies, these results suggest that genetically determined differences in acute sensitivity to the behavioral effects of ethanol reflect differences in body temperature during intoxication as well as differences in sensitivity to the initial actions of ethanol at the cellular level.

  17. Demographic comparison and population projection of Rhynchophorus ferrugineus (Coleoptera: Curculionidae) reared on sugarcane at different temperatures

    PubMed Central

    Peng, Lu; Miao, Yunxin; Hou, Youming

    2016-01-01

    Understanding how temperature affects fitness is important for conservation and pest management, especially in the era of global climate change. Rhynchophorus ferrugineus (Oliver) (Coleoptera: Curculionidae) is a worldwide pest of many economically important crops. Although much is known about this pest’s life cycle, its adaptability to different temperatures is not fully understood. Here, we used age- and stage-specific life tables to investigate the effects of temperature on fitness-related traits and demographic parameters of R. ferrugineus under eight constant temperature regimens in the laboratory. The growth potential of these populations was also evaluated. The greatest longevity for males and females was 158.0 d at 24 °C and 144.5 d at 21 °C, respectively, but mean total fecundity was the highest at 27 °C. The intrinsic rate of increase (r), finite rate of increase (λ), and net reproductive rate (R0) increased initially at low temperatures and then decreased. All metrics reached a maximum at 27 °C and a minimum at 36 °C. Mean generation times (T ) decreased across the temperature range with a minimum at 36 °C. Our results indicate that the optimum temperature for growth of R. ferrugineus was approximately 27 °C. Our work will be of value for developing strategies for control management of this pest species. PMID:27545594

  18. Piezoresistive Sensitivity, Linearity and Resistance Time Drift of Polysilicon Nanofilms with Different Deposition Temperatures

    PubMed Central

    Shi, Changzhi; Liu, Xiaowei; Chuai, Rongyan

    2009-01-01

    Our previous research work indicated that highly boron doped polysilicon nanofilms (≤100 nm in thickness) have higher gauge factor (the maximum is ∼34 for 80 nm-thick films) and better temperature stability than common polysilicon films (≥ 200nm in thickness) at the same doping levels. Therefore, in order to further analyze the influence of deposition temperature on the film structure and piezoresistance performance, the piezoresistive sensitivity, piezoresistive linearity (PRL) and resistance time drift (RTD) of 80 nm-thick highly boron doped polysilicon nanofilms (PSNFs) with different deposition temperatures were studied here. The tunneling piezoresistive model was established to explain the relationship between the measured gauge factors (GFs) and deposition temperature. It was seen that the piezoresistance coefficient (PRC) of composite grain boundaries is higher than that of grains and the magnitude of GF is dependent on the resistivity of grain boundary (GB) barriers and the weight of the resistivity of composite GBs in the film resistivity. In the investigations on PRL and RTD, the interstitial-vacancy (IV) model was established to model GBs as the accumulation of IV pairs. And the recrystallization of metastable IV pairs caused by material deformation or current excitation is considered as the prime reason for piezoresistive nonlinearity (PRNL) and RTD. Finally, the optimal deposition temperature for the improvement of film performance and reliability is about 620 °C and the high temperature annealing is not very effective in improving the piezoresistive performance of PSNFs deposited at lower temperatures. PMID:22399960

  19. Demographic comparison and population projection of Rhynchophorus ferrugineus (Coleoptera: Curculionidae) reared on sugarcane at different temperatures.

    PubMed

    Peng, Lu; Miao, Yunxin; Hou, Youming

    2016-01-01

    Understanding how temperature affects fitness is important for conservation and pest management, especially in the era of global climate change. Rhynchophorus ferrugineus (Oliver) (Coleoptera: Curculionidae) is a worldwide pest of many economically important crops. Although much is known about this pest's life cycle, its adaptability to different temperatures is not fully understood. Here, we used age- and stage-specific life tables to investigate the effects of temperature on fitness-related traits and demographic parameters of R. ferrugineus under eight constant temperature regimens in the laboratory. The growth potential of these populations was also evaluated. The greatest longevity for males and females was 158.0 d at 24 °C and 144.5 d at 21 °C, respectively, but mean total fecundity was the highest at 27 °C. The intrinsic rate of increase (r), finite rate of increase (λ), and net reproductive rate (R0) increased initially at low temperatures and then decreased. All metrics reached a maximum at 27 °C and a minimum at 36 °C. Mean generation times (T ) decreased across the temperature range with a minimum at 36 °C. Our results indicate that the optimum temperature for growth of R. ferrugineus was approximately 27 °C. Our work will be of value for developing strategies for control management of this pest species. PMID:27545594

  20. Multi-stage pulsed laser deposition of aluminum nitride at different temperatures

    NASA Astrophysics Data System (ADS)

    Duta, L.; Stan, G. E.; Stroescu, H.; Gartner, M.; Anastasescu, M.; Fogarassy, Zs.; Mihailescu, N.; Szekeres, A.; Bakalova, S.; Mihailescu, I. N.

    2016-06-01

    We report on multi-stage pulsed laser deposition of aluminum nitride (AlN) on Si (1 0 0) wafers, at different temperatures. The first stage of deposition was carried out at 800 °C, the optimum temperature for AlN crystallization. In the second stage, the deposition was conducted at lower temperatures (room temperature, 350 °C or 450 °C), in ambient Nitrogen, at 0.1 Pa. The synthesized structures were analyzed by grazing incidence X-ray diffraction (GIXRD), transmission electron microscopy (TEM), atomic force microscopy and spectroscopic ellipsometry (SE). GIXRD measurements indicated that the two-stage deposited AlN samples exhibited a randomly oriented wurtzite structure with nanosized crystallites. The peaks were shifted to larger angles, indicative for smaller inter-planar distances. Remarkably, TEM images demonstrated that the high-temperature AlN "seed" layers (800 °C) promoted the growth of poly-crystalline AlN structures at lower deposition temperatures. When increasing the deposition temperature, the surface roughness of the samples exhibited values in the range of 0.4-2.3 nm. SE analyses showed structures which yield band gap values within the range of 4.0-5.7 eV. A correlation between the results of single- and multi-stage AlN depositions was observed.

  1. Effect of temperature on the substrate utilization profiles of microbial communities in different sewer sediments.

    PubMed

    Biggs, Catherine A; Olaleye, Omolara I; Jeanmeure, Laurent F C; Deines, Peter; Jensen, Henriette S; Tait, Simon J; Wright, Phillip C

    2011-01-01

    Sewer systems represent an essential component of modern society. They have a major impact on our quality of life by preventing serious illnesses caused by waterborne diseases, by protecting the environment, and by enabling economic and social development through reducing flood risk. In the UK, systems are normally large and complex and, because of the long lifespan of these assets, their performance and hence their management are influenced by long-term environmental and urban changes. Recent work has focussed on the long-term changes in the hydraulic performance of these systems in response to climate change, e.g. rainfall and economic development. One climate-related driver that has received little attention is temperature, which may in itself have a complex dependence on factors such as rainfall. This study uses Biolog EcoPlates to investigate the effect of different temperatures (4 degrees C, 24 degrees C and 30 degrees C) on the carbon substrate utilization profiles of bacterial communities within sewer sediment deposits. Distinct differences in the metabolic profiles across the different temperatures were observed. Increasing temperature resulted in a shift in biological activity with an increase in the number of different carbon sources that can be utilized. Certain carboxylic and amino acids, however, did not support growth, regardless of temperature. Distinct differences in carbon utilization profiles were also found within sewers that have similar inputs. Therefore, this study has demonstrated that the carbon utilization profile for microbial communities found within sewer sediment deposits is dependent on both temperature and spatial variations. PMID:21473276

  2. Evaluation of AIRS, MODIS, and HIRS 11 Micron Brightness Temperature Difference Changes from 2002 through 2006

    NASA Technical Reports Server (NTRS)

    Broberg, Steven E.; Aumann, Hartmut H.; Gregorich, David T.; Xiong, X.

    2006-01-01

    In an effort to validate the accuracy and stability of AIRS data at low scene temperatures (200-250 K range), we evaluated brightness temperatures at 11 microns with Aqua MODIS band 31 and HIRS/3 channel 8 for Antarctic granules between September 2002 and May 2006. We found excellent agreement with MODIS (at the 0.2 K level) over the full emperature range in data from early in the Aqua mission. However, in more recent data, starting in April 2005, we found a scene temperature dependence in MODIS-AIRS brightness temperature differences, with a discrepancy of 1- 1.5 K at 200 K. The comparison between AIRS and HIRS/3 (channel 8) on NOAA 16 for the same time period yields excellent agreement. The cause and time dependence of the disagreement with MODIS is under evaluation, but the change was coincident with a change in the MODIS production software from collection 4 to 5.

  3. Surface acoustic wave velocity of gold films deposited on silicon substrates at different temperatures

    SciTech Connect

    Salas, E.; Jimenez Rioboo, R. J.; Prieto, C.; Every, A. G.

    2011-07-15

    Au thin films have been deposited by DC magnetron sputtering on Si (001) substrates at different substrate temperatures, ranging from 200 K to 450 K. With increasing temperature, the expected crystallinity and morphology of the Au thin film are clearly improved, as shown by x ray diffraction, atomic force microscopy and scanning electron microscopy experiments. Parallel to this, the surface acoustic wave propagation velocity shows a clear enhancement toward the ideal values obtained from numerical simulations of a Au thin film on Si (001) substrate. Moreover, a very thin and slightly rough interlayer between the Si (001) substrate and the Au thin film is developed for temperatures above 350 K. The composition and nature of this interlayer is not known. This interlayer may be responsible for the steep change in the structural and elastic properties of the Au thin films at the higher temperatures and possibly also for an improvement of the adhesion properties of the Au on the Si (001) substrate.

  4. The forms of alkalis in the biochar produced from crop residues at different temperatures.

    PubMed

    Yuan, Jin-Hua; Xu, Ren-Kou; Zhang, Hong

    2011-02-01

    The forms of alkalis of the biochars produced from the straws of canola, corn, soybean and peanut at different temperatures (300, 500 and 700°C) were studied by means of oxygen-limited pyrolysis. The alkalinity and pH of the biochars increased with increased pyrolysis temperature. The X-ray diffraction spectra and the content of carbonates of the biochars suggested that carbonates were the major alkaline components in the biochars generated at the high temperature; they were also responsible for the strong buffer plateau-regions on the acid-base titration curves at 500 and 700°C. The data of FTIR-PAS and zeta potentials indicated that the functional groups such as -COO(-) (-COOH) and -O(-) (-OH) contained by the biochars contributed greatly to the alkalinity of the biochar samples tested, especially for those generated at the lower temperature. These functional groups were also responsible for the negative charges of the biochars.

  5. Locomotor activity and body temperature in selected mouse lines differing greatly in feed intake.

    PubMed

    Sojka, P A; Griess, R S; Nielsen, M K

    2013-08-01

    Locomotor activity, body temperature, feed intake, and BW were measured on 382 mature male mice sampled from lines previously selected (25 generations) for either high (MH) or low (ML) heat loss and an unselected control (MC). Animals were from all 3 independent replicates of the 3 lines and across 4 generations (68 through 71). Locomotor activity and body temperatures were obtained using implanted transmitters with data collection over 4 d following a 3-d postsurgery recovery period. Data were collected every minute and then averaged into 30-min periods, thus providing 192 data points for each mouse. Least-squares means for feed intake adjusted for BW (Feed/BW, feed·BW(-1)·d(-1), g/g) were 0.1586, 0.1234, and 0.1125 (±0.0022) for MH, MC, and ML, respectively, with line being a highly significant source of variation (P < 0.0003). Line effects for locomotor activity counts, transformed to the 0.25 power for analysis, were significantly different, with MH mice being 2.1 times more active than ML mice (P < 0.003); MC mice were intermediate. Differences in body temperature were significant for both line (P < 0.03) and day effects (P < 0.001), with a 0.32°C difference between the MH and ML lines. Fourier series analysis used the combined significant periodicities of 24, 18, 12, 9, 6, and 3 h to describe circadian cycles for activity and body temperature. All 3 lines expressed daily peaks in body temperature and locomotor activity ∼3 h into darkness and ∼2 h after lights were turned on. There was a stronger relationship between locomotor activity and Feed/BW (P < 0.0001) than between body temperature and Feed/BW (P < 0.01); differences between lines in locomotor activity and body temperature explained 17% and 3%, respectively, of differences between lines in Feed/BW. Thus, line differences in locomotor activity contribute to line differences in maintenance, but approximately 80% of the differences between the MH and ML selection lines in Feed/BW remains

  6. Analysis of temperature difference on the total of energy expenditure during static bicycle exercise

    NASA Astrophysics Data System (ADS)

    Sugiono

    2016-04-01

    How to manage energy expenditure for cyclist is very crucial part to achieve a good performance. As the tropical situation, the differences of temperature level might be contributed in energy expenditure and durability. The aim of the paper is to estimate and to analysis the configuration of energy expenditure for static cycling activity based on heart rate value in room with air conditioning (AC)/no AC treatment. The research is started with study literatures of climate factors, temperature impact on human body, and definition of energy expenditure. The next step is design the experiment for 5 participants in 2 difference models for 26.80C – 74% relative humidity (room no AC) and 23,80C – 54.8% relative humidity (room with AC). The participants’ heart rate and blood pressure are measured in rest condition and in cycling condition to know the impact of difference temperature in energy expenditure profile. According to the experiment results, the reducing of the temperature has significantly impact on the decreasing of energy expenditure at average 0.3 Kcal/minute for all 5 performers. Finally, the research shows that climate condition (temperature and relative humidity) are very important factors to manage and to reach a higher performance of cycling sport.

  7. Behavior, metabolism and swimming physiology in juvenile Spinibarbus sinensis exposed to PFOS under different temperatures.

    PubMed

    Xia, Ji-Gang; Nie, Li-Juan; Mi, Xia-Mei; Wang, Wei-Zhen; Ma, Yi-Jie; Cao, Zhen-Dong; Fu, Shi-Jian

    2015-10-01

    The harmful effects of perfluorooctane sulfonate (PFOS) are of growing international concern. This paper aimed to gain an integrated understanding of fitness-related ecological end points, such as behavior, metabolism and swimming physiology, in juvenile Spinibarbus sinensis in response to PFOS toxicity at different temperatures. The fish were exposed to a range of PFOS concentrations (0, 0.32, 0.8, 2 and 5 mg/L) at different temperatures (18 and 28 °C) for 30 days. The effects on fish behavior, metabolic characteristics and aerobic swimming performance caused by PFOS at different temperatures were investigated. Our results showed that both PFOS and temperature had important influences on spontaneous swimming behavior, social interactions, routine metabolic rate (RMR), net energetic cost of transport (COTnet) and critical swimming speed (U crit) in fish. The lowest observed effect concentration for both U crit and RMR was 5 and 0.8 mg/L at 18 and 28 °C, respectively. We found that PFOS affected various behavioral and social end points and also appeared to affect metabolic rates and reduced U crit, likely as a result of increased COTnet, and that many of these effects also changed with respect to temperature. Our results further the understanding of the metabolic and behavioral toxicity of PFOS to aquatic organisms.

  8. Temperature rise during polymerization of different cavity liners and composite resins

    PubMed Central

    Karatas, Ozcan; Turel, Verda; Bayindir, Yusuf Ziya

    2015-01-01

    Objective: The purpose of this study was to evaluate the thermal insulating properties of different light curing cavity liners and composite resins during light emitting diode (LED) curing. Materials and Methods: Sixty-four dentin discs, 1 mm thick and 8 mm in diameter, were prepared. Specimens were divided into four groups. Calcium hydroxide (Ca[OH]2), resin-modified glass ionomer cement, flowable composite and adhesive systems were applied to dentin discs according to the manufacturers’ instructions. The rise in temperature during polymerization with a LED curing unit (LCU) was measured using a K-type thermocouple connected to a data logger. Subsequently, all specimens were randomly divided into one of two groups. A silorane-based composite resin and a methacrylate-based composite resin were applied to the specimens. Temperature rise during polymerization of composite resins with LCU were then measured again. Data were analyzed using one-way ANOVA and post hoc Tukey analyses. Results: There were significant differences in temperature rise among the liners, adhesives, and composite resins (P < 0.05). Silorane-based composite resin exhibited significantly greater temperature rises than methacrylate-based resin (P < 0.05). The smallest temperature rises were observed in Ca(OH)2 specimens. Conclusion: Thermal insulating properties of different restorative materials are important factors in pulp health. Bonding agents alone are not sufficient to protect pulp from thermal stimuli throughout curing. PMID:26751112

  9. Hot in Baltimore: linking urban form to fine-scale temperature differences

    NASA Astrophysics Data System (ADS)

    Scott, A.; Waugh, D.; Zaitchik, B. F.; Guikema, S.

    2015-12-01

    Better understanding how urban morphology creates microclimates can help policymakers and planners mitigate the effects of heatwaves and other negative urban heat island effects. In Baltimore, where the observed downtown-rural temperature difference (as measured by NOAA stations) can reach 5°C, low-income neighborhoods are almost entirely covered by impervious surfaces like concrete but lack trees and parks. Their urban-rural temperature difference is then expected to exceed the reported one. However, that difference is not well quantified because these areas lack weather station coverage. Additionally, high resolution satellite imagery shows only land surface temperatures (inadequate for policy and health interventions) and may miss severe heat events. To remedy this, a low-cost monitoring network was installed in East Baltimore over summer 2015 aiming to characterize spatial and temporal variability and examine how heat excess varies during heat events. Results confirm that E. Baltimore exceeds downtown temperatures and show that a dense network of low cost sensors can help attribute temperature anomalies to local features such as land cover, building density and tree canopy.

  10. Metabolic flux and nodes control analysis of brewer's yeasts under different fermentation temperature during beer brewing.

    PubMed

    Yu, Zhimin; Zhao, Haifeng; Zhao, Mouming; Lei, Hongjie; Li, Huiping

    2012-12-01

    The aim of this work was to further investigate the glycolysis performance of lager and ale brewer's yeasts under different fermentation temperature using a combined analysis of metabolic flux, glycolytic enzyme activities, and flux control. The results indicated that the fluxes through glycolytic pathway decreased with the change of the fermentation temperature from 15 °C to 10 °C, which resulted in the prolonged fermentation times. The maximum activities (V (max)) of hexokinase (HK), phosphofructokinase (PFK), and pyruvate kinase (PK) at key nodes of glycolytic pathway decreased with decreasing fermentation temperature, which was estimated to have different control extent (22-84 %) on the glycolytic fluxes in exponential or flocculent phase. Moreover, the decrease of V (max) of PFK or PK displayed the crucial role in down-regulation of flux in flocculent phase. In addition, the metabolic state of ale strain was more sensitive to the variation of temperature than that of lager strain. The results of the metabolic flux and nodes control analysis in brewer's yeasts under different fermentation temperature may provide an alternative approach to regulate glycolytic flux by changing V (max) and improve the production efficiency and beer quality.

  11. Analysis of temperature difference on the total of energy expenditure during static bicycle exercise

    NASA Astrophysics Data System (ADS)

    Sugiono

    2016-04-01

    How to manage energy expenditure for cyclist is very crucial part to achieve a good performance. As the tropical situation, the differences of temperature level might be contributed in energy expenditure and durability. The aim of the paper is to estimate and to analysis the configuration of energy expenditure for static cycling activity based on heart rate value in room with air conditioning (AC)/no AC treatment. The research is started with study literatures of climate factors, temperature impact on human body, and definition of energy expenditure. The next step is design the experiment for 5 participants in 2 difference models for 26.80C - 74% relative humidity (room no AC) and 23,80C - 54.8% relative humidity (room with AC). The participants’ heart rate and blood pressure are measured in rest condition and in cycling condition to know the impact of difference temperature in energy expenditure profile. According to the experiment results, the reducing of the temperature has significantly impact on the decreasing of energy expenditure at average 0.3 Kcal/minute for all 5 performers. Finally, the research shows that climate condition (temperature and relative humidity) are very important factors to manage and to reach a higher performance of cycling sport.

  12. [The Influence of Different Ionic Concentration in Cell Physiological Solution on Temperature Measurement by Near Infrared].

    PubMed

    Zheng, Yu; Chen, Xiong; Zhou, Mei; Wang, Meng-jun; Wang, Jin-hai; Li, Gang; Cui, Jun

    2015-10-01

    It is important to real-timely monitor and control the temperature of cell physiological solution in patch clamp experiments, which can eliminate the uncertainty due to temperature and improve the measurement accuracy. This paper studies the influence of different ions at different concentrations in the physiological solution on precision of a temperature model by using near infrared spectroscopy and chemometrics method. Firstly, we prepared twelve sample solutions respectively with the solutes of CaCl2, KCl and NaCl at four kinds of concentrations, and collected the spectra of different solutions at the setting temperature range 20-40 degrees C, the range of the spectra is 9 615-5 714 cm(-1). Then we divided the spectra of each solution at different temperatures into two parts (a training set and a prediction set) by three methods. Interval partial least squares method was used to select an effective wavelength range and develop calibration models between the spectra in the selected range and temperature velues. The experimental results show that RMSEP of CaCl2 solution with 0.25 g x mL(-1) is maximum, the result of the three tests are 0.386 3, 0.303 7 and 0.337 2 degrees C, RMSEP of NaCl with 0.005 g x mL(-1) solution is minimum, the result of the three tests are 0.220 8, 0.155 3 and 0.145 2 degrees C. The experimental results indicate that Ca2+ has the greatest influence on the accuracy of the temperature model of the cell physiological solution, then K+, and Na+ has the least influence. And with the ionic concentration increasing, the model accuracy decreases. Therefore; when we build the temperature model of cell physiological solution, it is necessary to change the proportion of the three kinds of main ions in cell physiological solution reasonably in order to correct the effects of different ionic concentrations in physiological solution and improve the accuracy of temperature measurements by near infrared spectroscopy. PMID:26904806

  13. Influence of Different Temperature Sensors on Measuring Energy Efficiency and Heating-Up Time of Hobs

    NASA Astrophysics Data System (ADS)

    Beges, G.; Drnovsek, J.; Ogorevc, J.; Bojkovski, J.

    2015-03-01

    Measuring performance, mainly temperature dependence, for electric cooking ranges, hobs, ovens, and grills for household use is essential for producers as low power consumption of appliances represents a powerful selling point and also in terms of ecodesign requirements. It is also important from a consumer perspective, as these appliances are responsible for the significant share of households' electricity bills. The aim of the paper was to highlight and clearly define possible ambiguities and weaknesses of standardized procedures for measuring hob performance. Differences between measurement/test results of testing laboratories are possible due to lack of detailed information in the standard, and it is difficult to obtain technical accessories required in the standard. An energy consumption comparison of three different hobs is presented (standard iron electrical hob, radiant-glass ceramic, and induction hob). Various temperature sensors (different types of thermocouples and a platinum resistance thermometer) and technical accessories (e.g., different cookware) were used to research differences or influences on final result of hobs' energy efficiency. Results show that temperature measurements with different sensors have an influence on the time difference in critical points for determination of hob energy efficiency.

  14. Effects of wearing two different types of clothing on body temperatures during and after exercise

    NASA Astrophysics Data System (ADS)

    Jeong, Woon Seon; Tokura, Hiromi

    1989-06-01

    The experiment was conducted to investigate the human thermoregulatory responses during rest, exercise and recovery at T a 20°C and 60% R.H. under the conditions of wearing two different types of clothing. Six healthy men wore two types of clothing: one covering the whole body area except the head (Type A, weight 1656 g), and the other covering only the trunk, upper arms and thighs (Type B, weight 996 g). The level of rectal temperature was kept significantly higher in Type B than in Type A during rest and recovery. The increased and decreased rates of rectal temperature during exercise and recovery were significantly greater in Type A than in Type B, respectively. These findings are discussed from the viewpoint of the differences of skin temperatures of the extremities between Type A and Type B.

  15. Vertical Magnetic Levitation Force Measurement on Single Crystal YBaCuO Bulk at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Celik, Sukru; Guner, Sait Baris; Ozturk, Kemal; Ozturk, Ozgur

    Magnetic levitation force measurements of HTS samples are performed with the use of liquid nitrogen. It is both convenient and cheap. However, the temperature of the sample cannot be changed (77 K) and there is problem of frost. So, it is necessary to build another type of system to measure the levitation force high Tc superconductor at different temperatures. In this study, we fabricated YBaCuO superconducting by top-seeding-melting-growth (TSMG) technique and measured vertical forces of them at FC (Field Cooling) and ZFC (Zero Field Cooling) regimes by using our new designed magnetic levitation force measurement system. It was used to investigate the three-dimensional levitation force and lateral force in the levitation system consisting of a cylindrical magnet and a permanent cylindrical superconductor at different temperatures (37, 47, 57, 67 and 77 K).

  16. Oxygen Isotopes of Phosphate of Different Sedimentary Pools: Water Temperature Proxy or a Diagenetic Signature?

    NASA Astrophysics Data System (ADS)

    Lai, H.; Anderson, L. D.; Paytan, A.

    2009-12-01

    Commonly used strategies for estimates of deep-water paleotemperatures utilize d18O and Mg/Ca ratios in foraminifera. However in organic rich sediments, oxidation of organic matter, with the resultant production of protons, results in significant to complete dissolution of foraminifera. Similarly foraminifera are not preserved in deep sediment below the CCD. Investigators constructing surface-water temperatures have circumvented foraminiferal dissolution by using the temperature relationship of the saturation of refractory organic compound (alkenones) produced by the coccolithophoroid Emiliania huxleyi, however, deep water temperatures can not be reconstructed using this proxy. Here we explore the use of the temperature-d18O relationship of phosphate components captured within sediments as a recorder of deep water temperatures. We utilize a modification of the phosphate extraction procedure SEDEX to operationally define three different phosphate components: weakly adsorbed, oxide-associated, and authigenic apatite. Each phosphate component was processed to produce a silver phosphate precipitate and the phosphate d18O measured by Thermal Conversion Elemental Analysis (TCEA). We will present results using a large bulk consistency standard on the fine-tuning of both the phosphate extraction procedure and the precipitation of silver phosphate. Technique improvements have dramatically increased reproducibility from 20% to less than 4% for all three steps. Temperature estimates from the silver phosphate d18O for all three steps are similar, within sample variability and analytical error, and are consistent with expected deep water temperatures. Application of the technique to a suite of core-top sites from sea mounts within the Monterey Bay with known bottom water temperatures and d18Owater and dissolved phosphate isotope signatures will be presented. In addition, we will evaluate down-core changes in all three components.

  17. Regional differences in body temperature in hypothermic and rewarmed young calves.

    PubMed

    Olson, D P; South, P J; Hendrix, K

    1983-04-01

    One- to 7-day-old Holstein bull calves were anesthetized and cold-stressed until their core body temperature (CBT; colonic) was lowered by 10 C. The calves were then rewarmed in warm water, by heat pads or heat lamps, or allowed to recover naturally (unassisted). Temperatures of peripheral tissues, muscles, and the body core were recorded. The time required to lower the CBT of the cold-stressed calves was 168 +/- 11.7 minutes (mean +/- SE). Cold exposure caused a linear decrease in blood, colonic, rectal, and oral temperatures, whereas temperature decreases in the thigh and pectoral muscles, dorsal and ventral thoracic regions, and the hock joint region were generally of greater magnitude and were curvilinear in pattern. By the time the CBT had decreased 1 C, tissue temperatures during cooling were less than (P less than 0.01) the respective temperatures obtained before cooling. The mean time required to rewarm the calves in warm water (47.1 +/- 3.5 minutes) was less than (P less than 0.05) that for the other rewarming methods. The mean rewarming times for the heat pad (128 +/- 12.8) and heat lamp (125.4 +/- 10.9) methods were greater than (P less than 0.05) that for the warm water method, but less than (P less than 0.05) that for the unassisted calves (190.7 +/- 23.1). In general, there was a linear increase in most of the tissue temperatures during recovery although temperatures in the hock joint region were variable. Temperature differences were observed between the thigh and pectoral muscles and between subcutaneous tissues during cooling and recovery. There was poor correlation between the ages of the calves and the time required to decrease their CBT during cooling and also the time required to increase their CBT, regardless of the rewarming method used.

  18. Drop Hammer Tests with Three Oleo Strut Models and Three Different Shock Strut Oils at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Kranz, M

    1954-01-01

    Drop hammer tests with different shock strut models and shock strut oils were performed at temperatures ranging to -40 C. The various shock strut models do not differ essentially regarding their springing and damping properties at low temperatures; however, the influence of the different shock strut oils on the springing properties at low temperatures varies greatly.

  19. Interindividual differences in circadian patterns of catecholamine excretion, body temperature, performance, and subjective arousal.

    PubMed

    Akerstedt, T; Fröberg, J E

    1976-12-01

    Interindividual differences in circadian rhythms of urinary catecholamine excretion, performance, self-ratings of arousal and oral temperature were studied in 80 subjects divided into three groups--morning-active, evening-active, and intermediate. Catecholamine excretion, body temperature, and self-ratings of arousal exhibited pronounced circadian variations. Morning-active subjects exceeded other groups in the 24 h level of adrenaline excretion but crest phases did not differ, occurring close to 13.00 h. No differences between groups were found for noradrenaline excretion. Crest phases occurred close to noon. Self-rated alertness exhibited a significantly earlier (14.12 h) crest phase for morning-active than for evening-active subjects (16.09 h). The performance did not differ between groups.

  20. Resistivity Variation due to CO2 Migration in Different Temperature and Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Nakatsuka, Y.; Onishi, K.; Yamada, Y.; Matsuoka, T.; Xue, Z.

    2007-12-01

    CO2 geological sequestration is one of the effective approaches solving the global warming problem. Captured CO2 is injected to the deep aquifers or depleted oil and gas fields. Injected CO2 migrates thorough the reservoir rock, however, the details behavior of injected CO2 under the ground at super critical phase is not yet fully understood. Migration of injected CO2 will change by the condition of the injected reservoir such as the temperature and pressure. Also density and permeability of the rock may be changed due to temperature or pressure variations. These changes control the migration behavior of injected CO2. In this study, experiments of resistivity measurements were conducted to detect the migration difference of CO2 in different temperature and pressure conditions by using sandstone core samples. Core sample was taken from Berea sandstone and processed to 5cm diameter and 12cm length. For the resistivity measurement, impression electrode was set on the both end and the measurement electrode of ring condition was set on the side of the rock sample. We stetted the core sample in the pressure vessel and recreated the condition of underground reservoir which is high pressure and high temperature. We injected supercritical CO2 in different pressure and temperature for each experiment. Pressure was changed in range of 8 to 11MPa and temperature was changed in range of 35° to 45°. This means that all the experiments were conducted in supercritical phase. From the measured resistivity variation, we verified the migration of CO2 and compared the migration behavior of CO2 in different conditions.

  1. Effects of different temperature treatments on biological ice nuclei in snow samples

    NASA Astrophysics Data System (ADS)

    Hara, Kazutaka; Maki, Teruya; Kakikawa, Makiko; Kobayashi, Fumihisa; Matsuki, Atsushi

    2016-09-01

    The heat tolerance of biological ice nucleation activity (INA) depends on their types. Different temperature treatments may cause varying degrees of inactivation on biological ice nuclei (IN) in precipitation samples. In this study, we measured IN concentration and bacterial INA in snow samples using a drop freezing assay, and compared the results for unheated snow and snow treated at 40 °C and 90 °C. At a measured temperature of -7 °C, the concentration of IN in untreated snow was 100-570 L-1, whereas the concentration in snow treated at 40 °C and 90 °C was 31-270 L-1 and 2.5-14 L-1, respectively. In the present study, heat sensitive IN inactivated by heating at 40 °C were predominant, and ranged 23-78% of IN at -7 °C compared with untreated samples. Ice nucleation active Pseudomonas strains were also isolated from the snow samples, and heating at 40 °C and 90 °C inactivated these microorganisms. Consequently, different temperature treatments induced varying degrees of inactivation on IN in snow samples. Differences in the concentration of IN across a range of treatment temperatures might reflect the abundance of different heat sensitive biological IN components.

  2. Metabolic and Cardiovascular Responses during Aquatic Exercise in Water at Different Temperatures in Older Adults

    ERIC Educational Resources Information Center

    Bergamin, Marco; Ermolao, Andrea; Matten, Sonia; Sieverdes, John C.; Zaccaria, Marco

    2015-01-01

    Purpose: The aim of this study was to investigate the physiological responses during upper-body aquatic exercises in older adults with different pool temperatures. Method: Eleven older men (aged 65 years and older) underwent 2 identical aquatic exercise sessions that consisted of 3 upper-body exercises using progressive intensities (30, 35, and 40…

  3. Effects of foliage plants on human physiological and psychological responses at different temperatures

    NASA Astrophysics Data System (ADS)

    Jumeno, Desto; Matsumoto, Hiroshi

    2015-02-01

    Escalation of task demands and time pressures tends to make a worker run into work stress, which leads to mental fatigue and depression. The mental fatigue can be reduced when attention capacity is restored. Nature can serve as a source of fascination which can restore the attention capacity. People bring plants indoors so they can experience nature in their workplace. The stress and fatigue are also affected by air temperatures. The increase or decrease of temperatures from the comfort zone may induce the stress and fatigue. The objective of this study is to investigate the intervention of using foliage plants placed inside a building at different air temperature levels. The effects of foliage plants on human stress and fatigue were measured by human physiological responses such as heart rate, amylase level, electroencephalography (EEG), and the secondary task-reaction time. Several different tasks, namely typing, math and logical sequences are included in the investigation of these studies. Fifteen subjects, with the age ranged from 22 to 38 years old have participated in the study using within subject design. From the study, it is revealed that the presence of foliage plants at several temperatures have different effects on meditation, secondary task reaction time and typing accuracy. This study also revealed that the presence of plants on several types of tasks has different effects of attention which are useful for increasing work performance.

  4. Differences between wheat genotypes in damage from freezing temperatures during reproductive growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter cereal crops in the reproductive stage of growth are considerably more susceptible to freezing temperatures than they are during their vegetative stage during the fall. While damage resulting from spring-freeze events has been documented, information on genotypic differences in tolerance to ...

  5. The Effect of Storage at Three Different Temperatures on the Activity of Lipase Solution.

    ERIC Educational Resources Information Center

    Bradley, Karen; Mathewman, David

    1984-01-01

    Presented are procedures used to assay the activity of lipase during storage at three different temperatures. Since lipase solutions can decay even when refrigerated, it is recommended that the enzyme be freshly prepared prior to laboratory sessions in which they are used. (JN)

  6. Physiological and biochemical responses of Ricinus communis seedlings to different temperatures: a metabolomics approach

    PubMed Central

    2014-01-01

    Background Compared with major crops, growth and development of Ricinus communis is still poorly understood. A better understanding of the biochemical and physiological aspects of germination and seedling growth is crucial for the breeding of high yielding varieties adapted to various growing environments. In this context, we analysed the effect of temperature on growth of young R. communis seedlings and we measured primary and secondary metabolites in roots and cotyledons. Three genotypes, recommended to small family farms as cash crop, were used in this study. Results Seedling biomass was strongly affected by the temperature, with the lowest total biomass observed at 20°C. The response in terms of biomass production for the genotype MPA11 was clearly different from the other two genotypes: genotype MPA11 produced heavier seedlings at all temperatures but the root biomass of this genotype decreased with increasing temperature, reaching the lowest value at 35°C. In contrast, root biomass of genotypes MPB01 and IAC80 was not affected by temperature, suggesting that the roots of these genotypes are less sensitive to changes in temperature. In addition, an increasing temperature decreased the root to shoot ratio, which suggests that biomass allocation between below- and above ground parts of the plants was strongly affected by the temperature. Carbohydrate contents were reduced in response to increasing temperature in both roots and cotyledons, whereas amino acids accumulated to higher contents. Our results show that a specific balance between amino acids, carbohydrates and organic acids in the cotyledons and roots seems to be an important trait for faster and more efficient growth of genotype MPA11. Conclusions An increase in temperature triggers the mobilization of carbohydrates to support the preferred growth of the aerial parts, at the expense of the roots. A shift in the carbon-nitrogen metabolism towards the accumulation of nitrogen-containing compounds seems

  7. Nutrient transformation during aerobic composting of pig manure with biochar prepared at different temperatures.

    PubMed

    Li, Ronghua; Wang, Quan; Zhang, Zengqiang; Zhang, Guangjie; Li, Zhonghong; Wang, Li; Zheng, Jianzhong

    2015-01-01

    The effects of the corn stalk charred biomass (CB) prepared at different pyrolysis temperatures as additives on nutrient transformation during aerobic composting of pig manure were investigated. The results showed that the addition of CB carbonized at different temperatures to pig manure compost significantly influenced the compost temperature, moisture, pH, electrical conductivity, organic matter degradation, total nitrogen, [Formula: see text] and NH3 variations during composting. Compared with control and adding CB charred at lower temperature treatments, the addition of CB prepared over 700°C resulted in higher pH (over 9.2) and NH3 emission and lower potherb mustard seed germination index value during the thermophilic phase. Peak temperatures of composts appeared at 7 days for control and 11 days for CB added treatments. During 90 days composting, the organic matter degradation could be increased over 14.8-29.6% after adding of CB in the compost mixture. The introduction of CB in pig manure could prolong the thermophilic phase, inhibit moisture reduce, facilitate the organic matter decomposition, reduce diethylene triamine pentaacetic acid (DTPA) extractable Zn and Cu contents in pig manure composts and increase ryegrass growth. The study indicated that the corn stalk CB prepared around 500°C was a suitable additive in pig manure composting. PMID:25209736

  8. A novel method for primary neuronal culture and characterization under different high temperature.

    PubMed

    Zhang, Tao; Hu, Huaiqiang; Tao, Zhen; Niu, Bing; Jiao, Shusheng; Zhang, Jun; Li, Yiyang; Cao, Bingzhen

    2016-09-01

    Heatstroke is a big threat to human health; however, the characteristic of pathological changes of neurons during heatstroke development remains unclear. Here, using an in vitro model of primary cultured neurons from newborn Wistar rats, we investigated the effects of the different combinations of high temperature (37, 39, 41, 43, 45, and 47°C) and exposure time (45 min and 1 h) on the neurons. We found that, under the treatment of 45 min-heat, the neurons could resist high temperature up to 45°C, and under the treatment of 1 h-heat, the mortality of neurons increased as the temperature rises. After heating for 1 h, only a small minority of the neurons died under 41 and 43°C, which primarily occurred in the form of apoptosis. Up to 45°C for 1 h, most neurons occurred to necrosis. Meaningfully, some necrotic neurons expressed specific fried egg-like morphology. Our findings suggest that different high temperatures and exposure times were two key factors influencing the death of neurons. Under the high temperature (below 43°C for 1 h) similar to heatstroke, it just led a small percentage of neurons to apoptosis, and anti-apoptosis controls for preventing and treating heatstroke are promising. PMID:27130681

  9. Investigation of gender difference in human response to temperature step changes.

    PubMed

    Xiong, Jing; Lian, Zhiwei; Zhou, Xin; You, Jianxiong; Lin, Yanbing

    2015-11-01

    The purpose of this study was to examine gender difference in human response to temperature step changes. A total of three step-change conditions (S5: 32 °C-37 °C-32 °C, S11: 26 °C-37 °C-26 °C, and S15: 22 °C-37 °C-22 °C) were designed and a laboratory experiment with 12 males and 12 females was performed. Results of this study support our hypothesis that females differ from males in human response to sudden temperature changes from the perspectives of psychology, physiology and biomarkers. Females are more prone to show thermal dissatisfaction to cool environments while males are more likely to feel thermal discomfort in warm environments. It is logical that men have a stronger thermoregulation ability than women as male skin temperature change amplitude is smaller while the time to be stable for skin temperature is shorter than that of females after both up-steps and down-steps. In S15, males witnessed a more intensive decrease in RMSSD while females underwent a remarkable instant reduce in oral temperatures after the up-step. Marginal significance was observed in male IL-6 before and after the up-step in S15 while female IL-6 prominently increased after the down-step in S15.

  10. In vitro evaluation of temperature rise during different post space preparations

    PubMed Central

    Gokturk, Hakan; Ozkocak, Ismail; Taskan, Mehmet Murat; Aytac, Fatma; Karaarslan, Emine Sirin

    2015-01-01

    Objective: The aim of this study was to evaluate temperature alterations on the outer root surface during post space preparation with six different post drills by using an infrared thermometer. Materials and Methods: Sixty extracted single-rooted human mandibular incisor teeth were used. After root canal obturation, the specimens were divided into six groups (n = 10). During post space preparation, the temperature rises were measured in the middle third of the roots using a noncontact infrared thermometer with a sensitivity of 0.1°C. The temperature data were transferred from the thermometer to the computer and were observed graphically. Results: The maximum temperature rise was observed in Snowpost 2 (29.95 ± 10.2°C) (P < 0.001), but there were no significant differences among Snowpost 2 (29.95 ± 10.2°C), Snowpost 1 (24.6 ± 8.0°C), and Relyx 2 (17.68 ± 9.1°C) (P > 0.05). Conclusions: Although water coolant used, the critical temperature rise was observed on the outer root surface in all post drill systems. PMID:26929693

  11. Quantitative determination based on the differences between spectra-temperature relationships.

    PubMed

    Li, Zhe; Zhou, Mei; Luo, Yongshun; Li, Gang; Lin, Ling

    2016-08-01

    In the Near-infrared (NIR) spectral measurement it is not always possible to keep the experimental conditions constant. The fluctuations in external variables, such as temperature, will result in a nonlinear shift and a broadening of the spectral bands. In this study, the temperature-induced spectral variation coefficient (TSVC) was obtained by using loading space standardization (LSS). The relationship between TSVC and normalized squared temperature was quantitatively analyzed and applied to the quantitative determination of the compositions in mixtures. NIR spectra of peanut-soy-corn oil mixtures measured at seven temperatures were analyzed. It was found that, the relationship between TSVC and normalized squared temperature can be established by using LSS. Furthermore, the quantitative determination of the compositions in a mixture can be achieved by using the difference between the relationships, i.e., the slope of the relationship. The calibration curves between slope and composition volume are found to be reliable with the correlation coefficients (R(2)) as high as 0.9992. Quantitative determination by the calibration curves were also validated. Therefore, the method can be an effective tool for investigating the effect of temperature and quantitatively analysis. PMID:27216655

  12. Fitness costs associated with different frequencies and magnitudes of temperature change in the butterfly Bicyclus anynana.

    PubMed

    Franke, Kristin; Heitmann, Nadja; Tobner, Anne; Fischer, Klaus

    2014-04-01

    Plastic responses to changes in environmental conditions are ubiquitous and typically highly effective, but are predicted to incur costs. We here investigate the effects of different frequencies and magnitudes of temperature change in the tropical butterfly Bicyclus anynana, considering developmental (Experiment 1) and adult stage plasticity (Experiment 2). We predicted negative effects of more frequent temperature changes on development, immune function and/or reproduction. Results from Experiment 1 showed that repeated temperature changes during development, if involving large amplitudes, negatively affect larval time, larval growth rate and pupal mass, while adult traits remained unaffected. However, results from treatment groups with smaller temperature amplitudes yielded no clear patterns. In Experiment 2 prolonged but not repeated exposure to 39°C increased heat tolerance, potentially reflecting costs of repeatedly activating emergency responses. At the same time fecundity was more strongly reduced in the group with prolonged heat stress, suggesting a trade-off between heat tolerance and reproduction. Clear effects were restricted to conditions involving large temperature amplitudes or high temperatures.

  13. Analysing the Effects of Different Land Cover Types on Land Surface Temperature Using Satellite Data

    NASA Astrophysics Data System (ADS)

    Şekertekin, A.; Kutoglu, Ş. H.; Kaya, S.; Marangoz, A. M.

    2015-12-01

    Monitoring Land Surface Temperature (LST) via remote sensing images is one of the most important contributions to climatology. LST is an important parameter governing the energy balance on the Earth and it also helps us to understand the behavior of urban heat islands. There are lots of algorithms to obtain LST by remote sensing techniques. The most commonly used algorithms are split-window algorithm, temperature/emissivity separation method, mono-window algorithm and single channel method. In this research, mono window algorithm was implemented to Landsat 5 TM image acquired on 28.08.2011. Besides, meteorological data such as humidity and temperature are used in the algorithm. Moreover, high resolution Geoeye-1 and Worldview-2 images acquired on 29.08.2011 and 12.07.2013 respectively were used to investigate the relationships between LST and land cover type. As a result of the analyses, area with vegetation cover has approximately 5 ºC lower temperatures than the city center and arid land., LST values change about 10 ºC in the city center because of different surface properties such as reinforced concrete construction, green zones and sandbank. The temperature around some places in thermal power plant region (ÇATES and ZETES) Çatalağzı, is about 5 ºC higher than city center. Sandbank and agricultural areas have highest temperature due to the land cover structure.

  14. Temperature Values Variability in Piezoelectric Implant Site Preparation: Differences between Cortical and Corticocancellous Bovine Bone

    PubMed Central

    Lamazza, Luca; Garreffa, Girolamo; Laurito, Domenica; Lollobrigida, Marco; Palmieri, Luigi; De Biase, Alberto

    2016-01-01

    Purpose. Various parameters can influence temperature rise and detection during implant site preparation. The aim of this study is to investigate local temperature values in cortical and corticocancellous bovine bone during early stages of piezoelectric implant site preparation. Materials and Methods. 20 osteotomies were performed using a diamond tip (IM1s, Mectron Medical Technology, Carasco, Italy) on two different types of bovine bone samples, cortical and corticocancellous, respectively. A standardized protocol was designed to provide constant working conditions. Temperatures were measured in real time at a fixed position by a fiber optic thermometer. Results. Significantly higher drilling time (154.90 sec versus 99.00 sec; p < 0.0001) and temperatures (39.26°C versus 34.73°C; p = 0.043) were observed in the cortical group compared to the corticocancellous group. A remarkable variability of results characterized the corticocancellous blocks as compared to the blocks of pure cortical bone. Conclusion. Bone samples can influence heat generation during in vitro implant site preparation. When compared to cortical bone, corticocancellous samples present more variability in temperature values. Even controlling most experimental factors, the impact of bone samples still remains one of the main causes of temperature variability. PMID:27110567

  15. Water temperature affects pathogenicity of different betanodavirus genotypes in experimentally challenged Dicentrarchus labrax.

    PubMed

    Toffan, Anna; Panzarin, Valentina; Toson, Marica; Cecchettin, Krizia; Pascoli, Francesco

    2016-05-26

    Betanodaviruses are the causative agents of a highly infectious disease of fish known as viral nervous necrosis (VNN). To date, 4 different nervous necrosis virus (NNV) genotypes have been described, but natural reassortant viruses have also been detected, which further increase viral variability. Water temperature plays an important role in determining the appearance and the severity of VNN disease. We assessed the effect of temperature (20°, 25° and 30°C) on mortality and virus load in the brain of European sea bass Dicentrarchus labrax experimentally infected with 4 genetically different betanodaviruses, namely red-spotted grouper NNV (RGNNV), striped jack NNV (SJNNV) and the reassortant strains RGNNV/SJNNV and SJNNV/RGNNV. The RGNNV/SJNNV virus possesses the polymerase gene of RGNNV and the coat protein gene of SJNNV, and vice versa for the SJNNV/RGNNV virus. The obtained results showed that the RGNNV strain is the most pathogenic for juvenile sea bass, but clinical disease and mortality appeared only at higher temperatures. The SJNNV strain is weakly pathogenic for D. labrax regardless of the temperature used, while virus replication was detected in the brain of survivors only at 20°C. Finally, reassortant strains caused low mortality, independent of the temperature used, but the viral load in the brain was strongly influenced by water temperature and the genetic type of the polymerase gene. Taken together, these data show that nodavirus replication in vivo is a composite process regulated by both the genetic features of the viral strain and water temperatures. PMID:27225206

  16. Developmental Biology of Zeugodacus cucurbitae (Diptera: Tephritidae) in Three Cucurbitaceous Hosts at Different Temperature Regimes.

    PubMed

    Mkiga, A M; Mwatawala, M W

    2015-01-01

    Fruit flies are key pests of cucurbits in many parts of the world, including Tanzania. Developmental biology of Zeugodacus cucurbitae (Coquillett) has been determined across temperature regimes in some cucurbitaceous hosts, in limited geographies. This study was conducted to determine duration and survival rates of immature stages of Z. cucurbitae in three cucurbitaceous hosts, at different temperature regimes. It was hypothesized that temperature and cucurbitaceous hosts influence duration and survival of immature stages of Z. cucurbitae. We conducted experiments in the environmental chamber set at 75 ± 10% RH and a photoperiod of 12:12 (L:D) h, at temperatures of 20, 25, and 30°. Our results showed that duration and survival of immature stages of Z. cucurbitae differed significantly among the temperature regimes but not among the hosts. Egg incubation period as well as larval and pupal stages were significantly longer (P < 0.0001) at low temperature in all three hosts Likewise, survival rate of all immature stages were significantly higher (P < 0.0001) at higher than lower temperatures. The three hosts, cucumber (Cucumis sativus), watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai), and pumpkin (Cucurbita pepo) did not significantly affect duration or survival rates of immature stages of Z. cucurbitae. The low developmental thresholds were estimated at 15.88, 13.44, and 12.62 for egg, larva and pupa, respectively. These results further confirm that Z. cucurbitae is well adapted to warm climate, which dominates many areas of Tanzania. PMID:26589874

  17. Water temperature affects pathogenicity of different betanodavirus genotypes in experimentally challenged Dicentrarchus labrax.

    PubMed

    Toffan, Anna; Panzarin, Valentina; Toson, Marica; Cecchettin, Krizia; Pascoli, Francesco

    2016-05-26

    Betanodaviruses are the causative agents of a highly infectious disease of fish known as viral nervous necrosis (VNN). To date, 4 different nervous necrosis virus (NNV) genotypes have been described, but natural reassortant viruses have also been detected, which further increase viral variability. Water temperature plays an important role in determining the appearance and the severity of VNN disease. We assessed the effect of temperature (20°, 25° and 30°C) on mortality and virus load in the brain of European sea bass Dicentrarchus labrax experimentally infected with 4 genetically different betanodaviruses, namely red-spotted grouper NNV (RGNNV), striped jack NNV (SJNNV) and the reassortant strains RGNNV/SJNNV and SJNNV/RGNNV. The RGNNV/SJNNV virus possesses the polymerase gene of RGNNV and the coat protein gene of SJNNV, and vice versa for the SJNNV/RGNNV virus. The obtained results showed that the RGNNV strain is the most pathogenic for juvenile sea bass, but clinical disease and mortality appeared only at higher temperatures. The SJNNV strain is weakly pathogenic for D. labrax regardless of the temperature used, while virus replication was detected in the brain of survivors only at 20°C. Finally, reassortant strains caused low mortality, independent of the temperature used, but the viral load in the brain was strongly influenced by water temperature and the genetic type of the polymerase gene. Taken together, these data show that nodavirus replication in vivo is a composite process regulated by both the genetic features of the viral strain and water temperatures.

  18. Developmental Biology of Zeugodacus cucurbitae (Diptera: Tephritidae) in Three Cucurbitaceous Hosts at Different Temperature Regimes

    PubMed Central

    Mkiga, A. M.; Mwatawala, M. W

    2015-01-01

    Fruit flies are key pests of cucurbits in many parts of the world, including Tanzania. Developmental biology of Zeugodacus cucurbitae (Coquillett) has been determined across temperature regimes in some cucurbitaceous hosts, in limited geographies. This study was conducted to determine duration and survival rates of immature stages of Z. cucurbitae in three cucurbitaceous hosts, at different temperature regimes. It was hypothesized that temperature and cucurbitaceous hosts influence duration and survival of immature stages of Z. cucurbitae. We conducted experiments in the environmental chamber set at 75 ± 10% RH and a photoperiod of 12:12 (L:D) h, at temperatures of 20, 25, and 30°. Our results showed that duration and survival of immature stages of Z. cucurbitae differed significantly among the temperature regimes but not among the hosts. Egg incubation period as well as larval and pupal stages were significantly longer (P < 0.0001) at low temperature in all three hosts Likewise, survival rate of all immature stages were significantly higher (P < 0.0001) at higher than lower temperatures. The three hosts, cucumber (Cucumis sativus), watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai), and pumpkin (Cucurbita pepo) did not significantly affect duration or survival rates of immature stages of Z. cucurbitae. The low developmental thresholds were estimated at 15.88, 13.44, and 12.62 for egg, larva and pupa, respectively. These results further confirm that Z. cucurbitae is well adapted to warm climate, which dominates many areas of Tanzania. PMID:26589874

  19. Thermal Band Characterization of LANDSAT-4 Thematic Mapper. [Buffalo, New York and water temperature in Lake Erie

    NASA Technical Reports Server (NTRS)

    Lansing, J. C.; Barker, J. L.

    1984-01-01

    A quick look monitor in the spacecraft control center was used to measure the TM Band 6 shutter background and the 34.7 C internal blackbody signal on over 50 dates. Comparison of relative internal gains between the four channels to prelaunch values showed changes over 9 months of up to 5%, while 512 x 512 subsections of the original 10 daytime scenes showed scene counts that ranged from 135 down to 62. A night scene of the Buffalo area was used to determine channel gain relative to the mean and to discern a systematic along scan pattern in a difference between forward and reverse scan counts of up to 0.5. A corrected digital image was produced and individual gains and offsets were calculated for the four channels. At satellite radiance was determine and noise equivalent temperature difference was calculated. The calibration data and the Buffalo scene, with the corrections and estimates of the atmospheric transmission and radiance, were used to make a temperature estimate for an area of Lake Erie of 21 C to 27 C. Local records of the temperature showed 21 C.

  20. Grey water treatment in upflow anaerobic sludge blanket (UASB) reactor at different temperatures.

    PubMed

    Elmitwalli, Tarek; Otterpohl, Ralf

    2011-01-01

    The treatment of grey water in two upflow anaerobic sludge blanket (UASB) reactors, operated at different hydraulic retention times (HRTs) and temperatures, was investigated. The first reactor (UASB-A) was operated at ambient temperature (14-25 degrees C) and HRT of 20, 12 and 8 h, while the second reactor (UASB-30) was operated at controlled temperature of 30 degrees C and HRT of 16, 10 and 6 h. The two reactors were fed with grey water from 'Flintenbreite' settlement in Luebeck, Germany. When the grey water was treated in the UASB reactor at 30 degrees C, total chemical oxygen demand (CODt) removal of 52-64% was achieved at HRT between 6 and 16 h, while at lower temperature lower removal (31-41%) was obtained at HRT between 8 and 20 h. Total nitrogen and phosphorous removal in the UASB reactors were limited (22-36 and 10-24%, respectively) at all operational conditions. The results showed that at increasing temperature or decreasing HRT of the reactors, maximum specific methanogenic activity of the sludge in the reactors improved. As the UASB reactor showed a significantly higher COD removal (31-64%) than the septic tank (11-14%) even at low temperature, it is recommended to use UASB reactor instead of septic tank (the most common system) for grey water pre-treatment. Based on the achieved results and due to high peak flow factor, a HRT between 8 and 12 h can be considered the suitable HRT for the UASB reactor treating grey water at temperature 20-30 degrees C, while a HRT of 12-24 h can be applied at temperature lower than 20 degrees C.

  1. Egg Developmental Time and Survival of Chrysomya megacephala and Chrysomya putoria (Diptera: Calliphoridae) Under Different Temperatures.

    PubMed

    Alonso, M A; Souza, C M; Linhares, A X; Thyssen, P J

    2015-07-01

    Chrysomya megacephala (F.) and Chrysomya putoria (Wiedemann) (Diptera: Calliphoridae) are considered of forensic, medical, and veterinary importance in Brazil because of their necrophagous and synanthropic behaviour. The development of flies can be influenced by temperature, and species from the same genus usually have different responses to external variables. The egg development of blow fly can be a useful complementary technique to estimate the minimum postmortem interval. Thus, this study aimed to compare the egg developmental time and survival of C. megacephala and C. putoria at different temperatures to determine the optimal temperature for egg development and the linear regression for developmental time and temperature, thereby determining the minimum threshold (t) and thermal summation constant (K) for each species. Adults of both species were collected in the region of Campinas city, São Paulo state, Brazil. Eggs were incubated at eight constant temperatures between 05 ± 1°C and 35 ± 1°C and the egg developmental time and survival were evaluated. There was no egg survival at 5 and 10°C. The K for C. megacephala and C. putoria were 179.41 HD and 189.94 HD, respectively. The regression slopes and t (10°C) were similar for both species. The optimal temperature for egg survival was between 25 and 35°C, for C. megacephala and 20 and 30°C, for C. putoria. The present data were similar to most data available in the literature, but differences in the same species are a possibility.

  2. Autotrophic Growth of Bacterial and Archaeal Ammonia Oxidizers in Freshwater Sediment Microcosms Incubated at Different Temperatures

    PubMed Central

    Wu, Yucheng; Ke, Xiubin; Hernández, Marcela; Wang, Baozhan; Dumont, Marc G.; Jia, Zhongjun

    2013-01-01

    Both bacteria and archaea potentially contribute to ammonia oxidation, but their roles in freshwater sediments are still poorly understood. Seasonal differences in the relative activities of these groups might exist, since cultivated archaeal ammonia oxidizers have higher temperature optima than their bacterial counterparts. In this study, sediment collected from eutrophic freshwater Lake Taihu (China) was incubated at different temperatures (4°C, 15°C, 25°C, and 37°C) for up to 8 weeks. We examined the active bacterial and archaeal ammonia oxidizers in these sediment microcosms by using combined stable isotope probing (SIP) and molecular community analysis. The results showed that accumulation of nitrate in microcosms correlated negatively with temperature, although ammonium depletion was the same, which might have been related to enhanced activity of other nitrogen transformation processes. Incubation at different temperatures significantly changed the microbial community composition, as revealed by 454 pyrosequencing targeting bacterial 16S rRNA genes. After 8 weeks of incubation, [13C]bicarbonate labeling of bacterial amoA genes, which encode the ammonia monooxygenase subunit A, and an observed increase in copy numbers indicated the activity of ammonia-oxidizing bacteria in all microcosms. Nitrosomonas sp. strain Is79A3 and Nitrosomonas communis lineages dominated the heavy fraction of CsCl gradients at low and high temperatures, respectively, indicating a niche differentiation of active bacterial ammonia oxidizers along the temperature gradient. The 13C labeling of ammonia-oxidizing archaea in microcosms incubated at 4 to 25°C was minor. In contrast, significant 13C labeling of Nitrososphaera-like archaea and changes in the abundance and composition of archaeal amoA genes were observed at 37°C, implicating autotrophic growth of ammonia-oxidizing archaea under warmer conditions. PMID:23455342

  3. Effects of different dentin thicknesses and air cooling on pulpal temperature rise during laser welding.

    PubMed

    Secilmis, Asli; Bulbul, Mehmet; Sari, Tugrul; Usumez, Aslihan

    2013-01-01

    The neodymium/yttrium-aluminum-garnet (Nd/YAG) laser has been suggested to repair broken prostheses in the mouth. This study investigated the effects of different dentin thicknesses and air cooling on pulpal temperature rise during laser welding. Three intact human maxillary molars were prepared for full-veneer crown. For each tooth, dentin thicknesses in mesiobuccal cusp was 2, 3, or 4 mm. Twenty dies were duplicated from each of the prepared teeth. For metal copings with 0.5-mm thickness, wax patterns were prepared with dip wax technique directly onto each of dies. All patterns were sprued and invested. The castings were made using a nickel-chromium alloy (Nicromed Premium, Neodontics). A hole with 0.5-mm diameter was prepared on the mesiobuccal cusp of each crown. The Nd/YAG laser (9.85 W; 1 Hz repetition rate; fluence, 1.230 J/cm(2); Fidelis Plus 3, Fotona) was used for welding with or without air cooling (n = 10). The temperature rise was measured in pulpal chamber with a J-type thermocouple wire that was connected to a data logger. Differences between start and highest temperature reading were taken, and temperature rise values were compared using two-way analysis of variance and Tukey's honestly significant difference tests (α = .05). Pulpal temperature rise varied significantly depending on the dentin thickness and air cooling (p < 0.05). The non-air cooling group induced significantly the highest temperature increases. There were no significant differences between 2- and 3-mm dentin thicknesses groups (p > 0.05); however, pulpal temperature rise was the lowest for 4-mm dentin thickness group (p < 0.05). The highest values of thermal increase were found in the pulp chamber (6.8°C) when no air cooling was used in 2-mm dentin thickness group. Laser welding on base metal castings with Nd/YAG laser can be applied with air cooling to avoid temperature rises known to adversely affect pulpal health when dentin thickness is 2 or 3 mm.

  4. [The effect of Doppler effect on ultraviolet absorption spectrum from difference in temperature (UVASDT)].

    PubMed

    Hu, Yao-gai; Zeng, Fan-qing; Li, Wei; Hu, Ji-ming

    2005-06-01

    In this paper, the formation of UV absorption spectrum from difference in temperature (UVASDT) is discussed. Broadening of spectral lines might be one of the reasons for the formation of UVASDT. The effect of temperature on the broadening of spectral lines is analyzed. The Doppler SDT function is deduced, and the SDT of C60 and progesterone can be explained by it. It is indicated that the Doppler effect might be the primary reason for the formation of UVASDT of this kind of substance.

  5. Estimation of water diffusion coefficient into polycarbonate at different temperatures using numerical simulation

    NASA Astrophysics Data System (ADS)

    Nasirabadi, P. Shojaee; Jabbari, M.; Hattel, J. H.

    2016-06-01

    Nowadays, many electronic systems are exposed to harsh conditions of relative humidity and temperature. Mass transport properties of electronic packaging materials are needed in order to investigate the influence of moisture and temperature on reliability of electronic devices. Polycarbonate (PC) is widely used in the electronics industry. Thus, in this work the water diffusion coefficient into PC is investigated. Furthermore, numerical methods used for estimation of the diffusion coefficient and their assumptions are discussed. 1D and 3D numerical solutions are compared and based on this, it is shown how the estimated value can be different depending on the choice of dimensionality in the model.

  6. Atmospheric Precipitable Water and its association with Surface Air Temperatures over Different Climate Regims

    NASA Astrophysics Data System (ADS)

    Ye, H.; Fetzer, E. J.; Olsene, E. T.; Granger, S. L.; Kahn, B. H.; Fishbein, E. F.; Chen, L.; Teixeira, J.; Lambrigtsen, B. H.

    2008-12-01

    As a greenhouse gas and a key component in the hydrologic cycle, atmospheric water vapor is very important in the earth's climate system. The relationship between air temperature and water vapor content at the surface and in different layers of the atmosphere have been examined in many studies in trying to better understand the magnitude of water vapor feedback in our climate system. Studies have found large spatial variability and large regional and vertical deviations from the Clapeyron-Clausius relation of constant relative humidity. However, there is an ongoing need to understand the climatology of the relationship between the surface air temperature and total column water vapor, and to examine any potential thresholds associated with sudden changes in this relationship as air temperatures continue to increase. This study uses 5-year total precipitable water vapor records measured by the Atmospheric Infrared Sounders (AIRS) and surface air temperature to examine their relationships at tropical to mid latitude conditions found at 60°S- 60°N for winter and summer seasons. In addition, the relationships will be examined for different climate regimes based on Koppen's system. This will help distinguish the geographical regions and physical processes where different relationships are found. This information will improve our understanding of the regional patterns of water vapor feedback associated with warming climate.

  7. Generalization of Logarithmic Mean Temperature Difference Method for Heat Exchanger Performance Analysis

    NASA Astrophysics Data System (ADS)

    Utamura, Motoaki; Nikitin, Konstantin; Kato, Yasuyoshi

    A generalized mean temperature difference (GMTD) method for heat exchangers is proposed. In the analysis of the performance of heat exchangers logarithmic temperature difference (LMTD) method has been widely used. This method, however, limits its application to those heating media with constant physical property. In turn GMTD method allows analysis with physical property distributed in an entire heat exchanger. Temperature profiles of the heat exchanger taken as function of heat load in place of axial position, mean temperature difference is evaluated numerically. It is mathematically demonstrated that LMTD method is an extremity of the GMTD method in the case of constant physical property. The GMTD method is applied to a hot water supplier with supercritical carbon dioxide as a heating media which is attracting attention as energy saving tactics. The hot water supplier operates under the condition of pseudo critical point of carbon dioxide where specific heat behaves anomaly. Incorporating GMTD method averaged overall heat transfer coefficient and subsequently formula of local Nusselt number are successfully derived for microchannel heat exchanger while formal application of LMTD method is found to give poor results i.e. two times less value with a larger error. This proves the validity of GMTD method.

  8. Shelf-life of almond pastry cookies with different types of packaging and levels of temperature.

    PubMed

    Romeo, F V; De Luca, S; Piscopo, A; Santisi, V; Poiana, M

    2010-06-01

    Almond pastries are typical cookies of the south of Italy. Introduction of new packaging for this kind of cookies requires shelf-life assessments. This study, related to different types of packaging under various storage conditions of time and temperature, identifies critical parameters, as color and texture, to track during storage studies and to extend the shelf-life. The cookies were packed in three different ways and stored at two different temperatures. The pastries were separately stored: (1) in polyvinylchloride film; (2) in aluminum foil (ALL); (3) with modified atmosphere (MAP) in plastic vessels sealed into a polyamide/ polyethylene film; and (4) in vessels without any polymeric film. The storage temperatures were 20 and 30 °C. Evolution of texture, water activity, dry matter and color was assessed. Texture was evaluated by a texture analyzer with a puncturing test. Indices for hardening were the area under the curve (N × mm) up to 10 mm of distance, and the maximum force (N) corresponding to the crust fracture. The best results were obtained with ALL packaging and MAP condition, and above all, in all the trials a temperature of 30 °C reduced the crust hardness.

  9. Discriminating among different tea leaves using an operating temperature-modulated tin oxide gas sensor

    NASA Astrophysics Data System (ADS)

    Rastkhadiv, Ali; Jenabi, Amin; Souri, Asma

    2016-03-01

    We report distinguishing different types of tea leaves from each other based on their aroma using a thermal shock-induced generic tin oxide gas sensor. The sensor used in this work consists of a microheater and a tin oxide pellet, both connected to outside circuitry with noble metal contacts. The heater is powered with a series of narrow high magnitude voltage impulses of predetermined thermal impacts adjusted to produce step-like temperature rises of different magnitudes on the gas sensitive pellet. The sensor is exposed to aromas collected from various types of tea leaves at different concentrations. Within 4.5 s, nine 500 ms-wide voltage pulses, each as high as 9.3 V in magnitude, are applied to the microheater. Each pulse causes a step-like temperature jump on the pellet temperature. The transient responses recorded for different tea leaves look different even after amplitude normalization. The sensor profiles are recorded, digitized, and compared with the database of previous experiences. A heuristically defined high dimensional feature vector is automatically generated for each analyte. Classifications are graphically achieved in a 3-D feature space after applying principle component analysis for dimension reduction.

  10. Co-doped sodium chloride crystals exposed to different irradiation temperature

    NASA Astrophysics Data System (ADS)

    Ortiz-Morales, A.; Cruz-Zaragoza, E.; Furetta, C.; Kitis, G.; Flores J., C.; Hernández A., J.; Murrieta S., H.

    2013-07-01

    Monocrystals of NaCl:XCl2:MnCl2(X = Ca,Cd) at four different concentrations have been analyzed. The crystals were exposed to different irradiation temperature, such as at room temperature (RT), solid water (SW), dry ice (DI) and liquid nitrogen (LN). The samples were irradiated with photon from 60Co irradiators. The co-doped sodium chloride crystals show a complex structure of glow curves that can be related to different distribution of traps. The linearity response was analyzed with the F(D) index. The F(D) value was less than unity indicating a sub-linear response was obtained from the TL response on the function of the dose. The glow curves were deconvoluted by using the CGCD program based on the first, second and general order kinetics.

  11. Co-doped sodium chloride crystals exposed to different irradiation temperature

    SciTech Connect

    Ortiz-Morales, A.; Cruz-Zaragoza, E.; Furetta, C.; Kitis, G.; Flores J, C.; Hernandez A, J.; Murrieta S, H.

    2013-07-03

    Monocrystals of NaCl:XCl{sub 2}:MnCl{sub 2}(X = Ca,Cd) at four different concentrations have been analyzed. The crystals were exposed to different irradiation temperature, such as at room temperature (RT), solid water (SW), dry ice (DI) and liquid nitrogen (LN). The samples were irradiated with photon from {sup 60}Co irradiators. The co-doped sodium chloride crystals show a complex structure of glow curves that can be related to different distribution of traps. The linearity response was analyzed with the F(D) index. The F(D) value was less than unity indicating a sub-linear response was obtained from the TL response on the function of the dose. The glow curves were deconvoluted by using the CGCD program based on the first, second and general order kinetics.

  12. Plant Canopy Temperature and Heat Flux Profiles: What Difference Does an Isothermal Skin Make?

    NASA Astrophysics Data System (ADS)

    Crago, R. D.; Qualls, R. J.

    2015-12-01

    Land surface temperature Ts plays a vital role in the determination of sensible (H) and latent heat flux, upwelling long-wave radiation, and ground heat flux. While it is widely recognized that there is a range of skin temperatures represented in even a homogeneous canopy, it is often necessary or convenient to treat the surface as isothermal. This study investigates, at the sub-canopy scale, the implications of assuming that a canopy is isothermal. The focus is on profiles within the canopy of air, foliage, and soil surface temperature, and of sensible and latent heat flux source strength. Data from a dense grassland at the Southern Great Plains experiment in 1997 (SGP97) were used to assess the ability of a multi-layer canopy model to match measured sensible and latent heat fluxes along with radiometric surface temperatures. In its standard mode, the model solves the energy balance for each canopy layer and uses Localized Near Field (LNF) theory to model the turbulent transport. The results suggest the model captures the most important features of canopy flux generation and transport, and support its use to investigate scalar profiles within canopies. For 112 data points at SGP97, the model produced realistic temperature and sensible heat flux source profiles. In addition, it was run in a mode that seeks the isothermal (soil and foliage) skin temperature (Ti) that provides the same Hproduced by the model in its standard mode. This produces profiles of air and foliage temperature and of sensible heat source strength that differ significantly from profiles from the standard mode. Based on these simulations, realistic canopies may have a mixture of positive and negative sensible heat flux sources at various heights, typically with large contributions from the soil surface. There is frequently a discontinuity between foliage temperatures near the soil and the actual soil surface temperature. For isothermal canopies, heat sources at all levels had the same sign and

  13. Statistical significance of trends and trend differences in layer-average atmospheric temperature time series

    NASA Astrophysics Data System (ADS)

    Santer, B. D.; Wigley, T. M. L.; Boyle, J. S.; Gaffen, D. J.; Hnilo, J. J.; Nychka, D.; Parker, D. E.; Taylor, K. E.

    2000-03-01

    This paper examines trend uncertainties in layer-average free atmosphere temperatures arising from the use of different trend estimation methods. It also considers statistical issues that arise in assessing the significance of individual trends and of trend differences between data sets. Possible causes of these trends are not addressed. We use data from satellite and radiosonde measurements and from two reanalysis projects. To facilitate intercomparison, we compute from reanalyses and radiosonde data temperatures equivalent to those from the satellite-based Microwave Sounding Unit (MSU). We compare linear trends based on minimization of absolute deviations (LA) and minimization of squared deviations (LS). Differences are generally less than 0.05°C/decade over 1959-1996. Over 1979-1993, they exceed 0.10°C/decade for lower tropospheric time series and 0.15°C/decade for the lower stratosphere. Trend fitting by the LA method can degrade the lower-tropospheric trend agreement of 0.03°C/decade (over 1979-1996) previously reported for the MSU and radiosonde data. In assessing trend significance we employ two methods to account for temporal autocorrelation effects. With our preferred method, virtually none of the individual 1979-1993 trends in deep-layer temperatures are significantly different from zero. To examine trend differences between data sets we compute 95% confidence intervals for individual trends and show that these overlap for almost all data sets considered. Confidence intervals for lower-tropospheric trends encompass both zero and the model-projected trends due to anthropogenic effects. We also test the significance of a trend in d(t), the time series of differences between a pair of data sets. Use of d(t) removes variability common to both time series and facilitates identification of small trend differences. This more discerning test reveals that roughly 30% of the data set comparisons have significant differences in lower-tropospheric trends

  14. Behavior of Arcobacter butzleri and Arcobacter cryaerophilus in ultrahigh-temperature, pasteurized, and raw cow's milk under different temperature conditions.

    PubMed

    Giacometti, Federica; Serraino, Andrea; Pasquali, Frederique; De Cesare, Alessandra; Bonerba, Elisabetta; Rosmini, Roberto

    2014-01-01

    The growth and survival of Arcobacter butzleri and Arcobacter cryaerophilus in milk were investigated at different storage temperatures. Three strains of each Arcobacter species were inoculated into ultrahigh-temperature (UHT), pasteurized, and raw cow's milk and stored at 4, 10, and 20°C for 6 days. The survival of Arcobacter spp. during storage was evaluated by a culture method. Results clearly showed that A. butzleri and A. cryaerophilus remained viable in milk when stored at 4°C and 10°C for a period of 6 days. When UHT and pasteurized milk were stored at 20°C, the A. butzleri count increased, with a longer lag-phase in pasteurized milk, whereas the A. cryaerophilus count increased in the first 48 h and then rapidly decreased to below the detection limit on the sixth storage day. When raw milk was stored at 20°C, the A. butzleri and A. cryaerophilus counts decreased from the first day of storage and no viable bacteria were recovered on the last day of storage. Generally, A. butzleri displayed a significantly better growth and survival capacity than A. cryaerophilus in milk. The present study is the first to assess the survival and/or growth of A. butzleri and A. cryaerophilus in milk. The evidence suggests that in case of primary contamination of milk or secondary contamination due to postprocessing contamination, milk can act as a potential source of Arcobacter infection in humans and could have public health implications, especially for raw milk consumption.

  15. Assembly of single-stranded DNA onto HOPG surface at different temperature: atomic force microscopy study.

    PubMed

    Liu, Zhiguo; Zhao, Lin; Zhou, Zhen; Sun, Tongze; Zu, Yuangang

    2012-01-01

    Assembly of long single-stranded DNA (ssDNA) and short oligodeoxynucleotides onto bare highly oriented pyrolytic graphite (HOPG) at different temperature has been studied. It was indicated that both long ssDNA and oligodeoxynucleotides can sequentially form network, straight chains, and layer structures when the adsorption temperature was changed from room temperature, 37-55°C. High-resolution atomic force microscopy (AFM) imaging of the layer structures revealed that they are composed of parallel ssDNA chains with relatively higher height and tend to form patterns with three-fold symmetry. These new findings are significantly important for understanding assembly characterization of ssDNA. In addition, this assembly method for ssDNA is expected to be used for preparation of DNA structures in biosensing and DNA-based nanodevices.

  16. [The functional brain state of hibernators and nonhibernators at different animals temperatures].

    PubMed

    Ignat'ev, D A; Gordon, R Ia; Patrushev, I V; Popov, V I

    2012-01-01

    Literature and our own data on structural and functional state of neocortex and hippocampus during both entrance in hibernation of ground squirrel (Spermophilus undulates) and Wistar rats in hypothermia were generalized. During hibernation when body temperature is about 2-4 degrees C the suppression of both bioelectrical and protein-synthesizing activity, the decrease of neuronal cell bodies and the branching of dendrites, retraction of dendritic spines, and a decrease of postsynaptic active zones of synapses were observed. Similar changes in those parameters were triggered for rats during hypoxia-hypercapnia at body temperature 17-19 degrees C. Hypoxia-hypercapnia facilitates the entrance in torpid state for hole animals. Nonhibernating animals during cooling and hypoxia-hypercapnia trigger functioning some mechanisms similar hibernators during entrance in hibernation. Similar morphological and functional changes for both hibernators and nonhibernators at low temperature state show similarity of mechanisms which induce a low level of brain activity of different animals. PMID:22567829

  17. Temperature distribution of air source heat pump barn with different air flow

    NASA Astrophysics Data System (ADS)

    He, X.; Li, J. C.; Zhao, G. Q.

    2016-08-01

    There are two type of airflow form in tobacco barn, one is air rising, the other is air falling. They are different in the structure layout and working principle, which affect the tobacco barn in the distribution of temperature field and velocity distribution. In order to compare the temperature and air distribution of the two, thereby obtain a tobacco barn whose temperature field and velocity distribution are more uniform. Taking the air source heat pump tobacco barn as the investigated subject and establishing relevant mathematical model, the thermodynamics of the two type of curing barn was analysed and compared based on Fluent. Provide a reasonable evidence for chamber arrangement and selection of outlet for air source heat pump tobacco barn.

  18. [Regularities of carbon monoxide outgassing from two nonmetallic materials at different temperatures].

    PubMed

    Zhang, X; Wei, Y; Yu, B

    1998-06-01

    To investigate the regularity of carbon monoxide outgassing from nonmetallic materials in air tight cabin, two nonmetallic materials was observed. 30-9304 foam plastics and aluminum-plated polyester adhesive film were sealed in airtight glass ampules, and outgassed for 70 days at four different temperatures. The outgassing CO was determined continuously with transform/gas chromatography. Curve fitting and regression were used in data analysis. The results showed that: (1) when temperature was kept constant, the relation between the outgassed CO and outgassing time appeared to be a "s" shaped or exponented curve; (2) at a fixed time the amount of outgassed CO increased with temperature exponentially; (3) the amount of CO outgassed in 12 h at 100 degrees C from the two materials corresponds those for 45 d at 50 degrees C, there is an iso-effect principle for CO outgassing.

  19. Concentration of Umami Compounds in Pork Meat and Cooking Juice with Different Cooking Times and Temperatures.

    PubMed

    Rotola-Pukkila, Minna K; Pihlajaviita, Seija T; Kaimainen, Mika T; Hopia, Anu I

    2015-12-01

    This study examined the concentrations of umami compounds in pork loins cooked at 3 different temperatures and 3 different lengths of cooking times. The pork loins were cooked with the sous vide technique. The free amino acids (FAAs), glutamic acid and aspartic acid; the 5'-nucleotides, inosine-5'-monophosphate (IMP) and adenosine-5'-monophosphate (AMP); and corresponding nucleoside inosine of the cooked meat and its released juice were determined by high-performance liquid chromatography. Under the experimental conditions used, the cooking temperature played a more important role than the cooking time in the concentration of the analyzed compounds. The amino acid concentrations in the meat did not remain constant under these experimental conditions. The most notable effect observed was that of the cooking temperature and the higher amino acid concentrations in the released juice of meat cooked at 80 °C compared with 60 and 70 °C. This is most likely due to the heat induced hydrolysis of proteins and peptides releasing water soluble FAAs from the meat into the cooking juice. In this experiment, the cooking time and temperature had no influence on the IMP concentrations observed. However, the AMP concentrations increased with the increasing temperature and time. This suggests that the choice of time and temperature in sous vide cooking affects the nucleotide concentration of pork meat. The Sous vide technique proved to be a good technique to preserve the cooking juice and the results presented here show that cooking juice is rich in umami compounds, which can be used to provide a savory or brothy taste. PMID:26524113

  20. Concentration of Umami Compounds in Pork Meat and Cooking Juice with Different Cooking Times and Temperatures.

    PubMed

    Rotola-Pukkila, Minna K; Pihlajaviita, Seija T; Kaimainen, Mika T; Hopia, Anu I

    2015-12-01

    This study examined the concentrations of umami compounds in pork loins cooked at 3 different temperatures and 3 different lengths of cooking times. The pork loins were cooked with the sous vide technique. The free amino acids (FAAs), glutamic acid and aspartic acid; the 5'-nucleotides, inosine-5'-monophosphate (IMP) and adenosine-5'-monophosphate (AMP); and corresponding nucleoside inosine of the cooked meat and its released juice were determined by high-performance liquid chromatography. Under the experimental conditions used, the cooking temperature played a more important role than the cooking time in the concentration of the analyzed compounds. The amino acid concentrations in the meat did not remain constant under these experimental conditions. The most notable effect observed was that of the cooking temperature and the higher amino acid concentrations in the released juice of meat cooked at 80 °C compared with 60 and 70 °C. This is most likely due to the heat induced hydrolysis of proteins and peptides releasing water soluble FAAs from the meat into the cooking juice. In this experiment, the cooking time and temperature had no influence on the IMP concentrations observed. However, the AMP concentrations increased with the increasing temperature and time. This suggests that the choice of time and temperature in sous vide cooking affects the nucleotide concentration of pork meat. The Sous vide technique proved to be a good technique to preserve the cooking juice and the results presented here show that cooking juice is rich in umami compounds, which can be used to provide a savory or brothy taste.

  1. Bacillus spore inactivation differences after combined mild temperature and high pressure processing using two pressurizing fluids.

    PubMed

    Robertson, Rosalind E; Carroll, Tim; Pearce, Lindsay E

    2008-06-01

    Spores of six species (28 strains) of dairy Bacillus isolates were added to sterile reconstituted skim milk and pressure processed (600 MPa for 60 s at 75 degrees C) using either a water-based pressurizing fluid or silicon oil. Processing temperatures peaked at 88 and 90 degrees C, respectively, for both fluids. For all strains, the log inactivation was consistently higher in the silicon oil than in the water-based fluid. This has potential implications for food safety assessment of combined pressure-temperature processes. High pressure processing causes mild heating during pressurization of both the target sample (i.e., spores) and the pressurizing fluid used for pressure delivery. Primarily, the adiabatic heat of compression of the fluids as well as other heat-transfer properties of the fluids and equipment determines the magnitude of this heating. Pressure cycles run with silicon oil were 7 to 15 degrees C higher in temperature during pressurization than pressure cycles run with the water-based pressurizing fluid, due to the greater adiabatic heat of compression of silicon oil. At and around the target pressure, however, the temperatures of both pressurizing fluids were similar, and they both dropped at the same rate during the holding time at the target pressure. We propose that the increased spore inactivation in the silicon oil system can be attributed to additional heating of the spore preparation when pressurized in oil. This could be explained by the temperature difference between the silicon oil and the aqueous spore preparation established during the pressurization phase of the pressure cycle. These spore-inactivation differences have practical implications because it is common practice to develop inactivation kinetic data on small, jacketed laboratory systems pressurized in oil, with extensive heat loss. However, commercial deployment is invariably on large industrial systems pressurized in water, with limited heat loss. Such effects should be

  2. Texture Analysis of LiF Thin Films Evaporated onto Amorphous Substrates at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Nunzio, P. E.; Fornarini, L.; Martelli, S.; Montereali, R. M.

    1997-12-01

    Polycrystalline thin LiF films thermally evaporated on amorphous substrates show different crystallite orientations depending on the substrate temperature during evaporation. The recording of direct diffraction pole figure shows that the LiF crystallites present a single crystal texture, which can be described as a 522 [uvw] texture for high temperature deposition (250 to 300 °C) and as 16 9 7 [uvw] texture for low temperature (room temperature) substrates. Scanning electron microscopy shows the presence of a globular film structure both for high and low temperature depositions with an average grain size of about 200 to 250 and 130 to 150 nm for high and low temperature evaporations, respectively. By rising the deposition temperature the 100 LiF crystallographic direction approaches the normal to the substrate plane with an increase of the film refractive index. Polykristalline dünne LiF-Schichten, die auf amorphe Substrate thermisch aufgedampft wurden, zeigen verschiedene kristallographische Orientierungen in Abhängigkeit von der Substrattemperatur. Die Polfiguren zeigen eine Einkristalltextur für alle Proben. Die dünnen LiF-Schichten, die bei hohen Temperaturen (250 bis 300 °C) aufgedampft worden sind, lassen sich als 522 [uvw]-Texturen eines kubischen Gitters beschreiben, während bei niedrigen Temperaturen (Zimmertemperatur) eine 16 9 7 [uvw]-Textur aufgewiesen wird. Rasterelektronenmikroskopie-Aufnahmen zeigen eine globulare Struktur der Schichten unabhängig von der Substrattemperatur, mit einer durchschnittlichen Keimgröße von 130 bis 150 nm für Zimmertemperatur bzw. 200 bis 250 nm für 250 bis 300 °C. Die Steigerung der Aufdampftemperatur bewirkt eine Orientierungsänderung der LiF-Kristalle in Richtung der 100 [uvw]-Textur und eine Zunahme der Brechzahl.

  3. Skin and bulk temperature difference at Lake Tahoe: A case study on lake skin effect

    NASA Astrophysics Data System (ADS)

    Wilson, R. Chris; Hook, Simon J.; Schneider, Philipp; Schladow, S. Geoffrey

    2013-09-01

    water, infrared radiometers on satellites measure radiation leaving from the surface skin layer and therefore the retrieved temperature is representative of the skin layer. This is slightly different from the bulk layer deeper in the water where various floating thermometers take temperature measurements to validate satellite measurements. The difference between the bulk and skin temperature (skin effect) must be understood to properly validate schemes that use surface skin temperature to infer bulk temperatures. Further skin temperatures retrieved over inland waters may show different patterns to those retrieved over oceans due to differences in conditions such as wind speed, aerosols, and elevation. We have analyzed the differences between the skin and bulk temperatures at four permanent monitoring stations (buoys) located on Lake Tahoe since 1999 and compared the results with similar studies over the ocean typically obtained from boat cruises. Skin effect distributions were found to be consistent across the buoys; however, the diurnal behavior of the skin effect was slightly different and shown to be related to wind speed measured at an individual buoy. When wind speed was less than 2 m s-1, the skin temperature osclillated and greatly increased the uncertainty in the skin effect reported over Lake Tahoe. When downwelling sky radiation was increased from clouds or high humidity, this led to nighttime skin temperatures that were warmer than bulk temperatures by as much as 0.5 K. The size of the warm skin effect is larger than other ocean studies that observed warm nighttime skin values around 0.1 K. The nighttime skin effect was seen to be more consistent with a smaller standard deviation compared to the daytime skin effect. The nighttime skin behavior had a mean and standard deviation that ranged between 0.3 and 0.5 K and between 0.3 and 0.4 K, respectively. In contrast, daytime skin effect was strongly influenced by direct solar illumination and typically had a

  4. Archaeal Community Structures in the Solfataric Acidic Hot Springs with Different Temperatures and Elemental Compositions

    PubMed Central

    Watanabe, Keiko; Yamamoto, Hideo; Yamamoto, Shuichi

    2013-01-01

    Archaeal 16S rRNA gene compositions and environmental factors of four distinct solfataric acidic hot springs in Kirishima, Japan were compared. The four ponds were selected by differences of temperature and total dissolved elemental concentration as follows: (1) Pond-A: 93°C and 1679 mg L−1, (2) Pond-B: 66°C and 2248 mg L−1, (3) Pond-C: 88°C and 198 mg L−1, and (4) Pond-D: 67°C and 340 mg L−1. In total, 431 clones of 16S rRNA gene were classified into 26 phylotypes. In Pond-B, the archaeal diversity was the highest among the four, and the members of the order Sulfolobales were dominant. The Pond-D also showed relatively high diversity, and the most frequent group was uncultured thermoacidic spring clone group. In contrast to Pond-B and Pond-D, much less diverse archaeal clones were detected in Pond-A and Pond-C showing higher temperatures. However, dominant groups in these ponds were also different from each other. The members of the order Sulfolobales shared 89% of total clones in Pond-A, and the uncultured crenarchaeal groups shared 99% of total Pond-C clones. Therefore, species compositions and biodiversity were clearly different among the ponds showing different temperatures and dissolved elemental concentrations. PMID:23710131

  5. Archaeal community structures in the solfataric acidic hot springs with different temperatures and elemental compositions.

    PubMed

    Satoh, Tomoko; Watanabe, Keiko; Yamamoto, Hideo; Yamamoto, Shuichi; Kurosawa, Norio

    2013-01-01

    Archaeal 16S rRNA gene compositions and environmental factors of four distinct solfataric acidic hot springs in Kirishima, Japan were compared. The four ponds were selected by differences of temperature and total dissolved elemental concentration as follows: (1) Pond-A: 93°C and 1679 mg L(-1), (2) Pond-B: 66°C and 2248 mg L(-1), (3) Pond-C: 88°C and 198 mg L(-1), and (4) Pond-D: 67°C and 340 mg L(-1). In total, 431 clones of 16S rRNA gene were classified into 26 phylotypes. In Pond-B, the archaeal diversity was the highest among the four, and the members of the order Sulfolobales were dominant. The Pond-D also showed relatively high diversity, and the most frequent group was uncultured thermoacidic spring clone group. In contrast to Pond-B and Pond-D, much less diverse archaeal clones were detected in Pond-A and Pond-C showing higher temperatures. However, dominant groups in these ponds were also different from each other. The members of the order Sulfolobales shared 89% of total clones in Pond-A, and the uncultured crenarchaeal groups shared 99% of total Pond-C clones. Therefore, species compositions and biodiversity were clearly different among the ponds showing different temperatures and dissolved elemental concentrations.

  6. Antioxidant activities of orange peel extract in ghee (butter oil) stored at different storage temperatures.

    PubMed

    Asha, A; Manjunatha, M; Rekha, R M; Surendranath, B; Heartwin, P; Rao, J; Magdaline, E; Sinha, Chitranayak

    2015-12-01

    Antioxidant activities of butylatedhydroxyanisole (BHA) and orange peel powder extract in ghee stored at different storage temperatures (T1:6 ± 2 °C; T2: 32 ± 2 °C; T3:60 ± 2 °C) were evaluated during storage period of 21 days. Peroxide value (PV), thiobarbituric acid (TBA), radical scavenging activity (RSA) and free fatty acids (FFA) of ghee samples were analyzed during the study. PV, TBA and FFA of ghee samples increased significantly while radical scavenging activity (RSA) of ghee samples decreased significantly at accelerated temperature (T3) as compared to the temperatures at T1 and T2. Effect of storage temperature on development of peroxides and TBA of ghee samples was significantly higher than the effect of treatment and storage period while treatment had more significant effect on the change in FFA and RSA as compared to storage temperature and storage period. Ghee incorporated with orange peel extract (OPE) showed stronger activity in quenching DPPH radicals and least development of PV, TBA and FFA than ghee incorporated with BHA and control. The study revealed that orange peel could be a good natural source of antioxidants which can be used in fat rich food products like ghee to retard oxidative deterioration. PMID:26604397

  7. Antioxidant activities of orange peel extract in ghee (butter oil) stored at different storage temperatures.

    PubMed

    Asha, A; Manjunatha, M; Rekha, R M; Surendranath, B; Heartwin, P; Rao, J; Magdaline, E; Sinha, Chitranayak

    2015-12-01

    Antioxidant activities of butylatedhydroxyanisole (BHA) and orange peel powder extract in ghee stored at different storage temperatures (T1:6 ± 2 °C; T2: 32 ± 2 °C; T3:60 ± 2 °C) were evaluated during storage period of 21 days. Peroxide value (PV), thiobarbituric acid (TBA), radical scavenging activity (RSA) and free fatty acids (FFA) of ghee samples were analyzed during the study. PV, TBA and FFA of ghee samples increased significantly while radical scavenging activity (RSA) of ghee samples decreased significantly at accelerated temperature (T3) as compared to the temperatures at T1 and T2. Effect of storage temperature on development of peroxides and TBA of ghee samples was significantly higher than the effect of treatment and storage period while treatment had more significant effect on the change in FFA and RSA as compared to storage temperature and storage period. Ghee incorporated with orange peel extract (OPE) showed stronger activity in quenching DPPH radicals and least development of PV, TBA and FFA than ghee incorporated with BHA and control. The study revealed that orange peel could be a good natural source of antioxidants which can be used in fat rich food products like ghee to retard oxidative deterioration.

  8. Intravaginal and in vitro temperature changes with tampons of differing composition and absorbency.

    PubMed

    Hill, Donna R; Davis, Catherine C; Osborn, Thomas W

    2010-02-01

    Vaginal tampons are Class II medical devices used by women to manage menstruation. The purpose of this study was to investigate intravaginal temperature changes with simulated and actual menstrual tampon use. Tampons (with varying absorbent compositions) embedded with a thermocouple sensor were used to study temperature effects in vitro in a model of the vagina (condom placed in a hollow glass tube, jacketed in a 37 degrees C water bath, and dosed with human menses to fluid saturation) and clinically during menstrual tampon wear under controlled conditions (up to 8 h in a stationary, supine position). Elevations in the temperature of the tampon core occurred upon menses fluid acquisition both in vitro and clinically. Temperature profile characteristics varied from a transient spike with commercial cotton-rayon blend tampons of two different absorbencies to a small but sustained rise (> or =6 h) with a carboxymethyl cellulose (CMC)-containing prototype. On the basis of the results from this study, fluid absorption by tampons generates an exothermic event whose characteristics vary with tampon design and composition. We speculate the small, sustained increased in tampon temperature noted during this study may enhance the production of a bacterial exotoxin associated with tampons composed of CMC.

  9. Anaerobic biodegradation of 2,4-dichlorophenol in freshwater lake sediments at different temperatures

    SciTech Connect

    Kohring, G.W.; Rogers, J.E.; Wiegel, J.

    1989-01-01

    Anaerobic degradation of 2,4-dichlorophenol (2,4-DCP) between 5 and 72C was investigated. Anaerobic sediment slurries prepared from local freshwater sediments were partitioned into anaerobic tubes or serum vials, which then were incubated separately at the various temperatures. Reductive 2,4-DCP dechlorination occurred only in the temperature range between 5 and 50C, although methane was formed up to 60C. In sediment samples from two sites and at all temperatures from 5 to 50C, 2,4-DCP was transformed to 4-chlorophenol (4-CP). The 4-CP intermediate was subsequently degraded after an extended lag period in the temperature range from 15 to 40C. Adaptation periods for 2,4-DCP transformation decreased between 5 and 25C, were essentially constant between 25 and 35C, and increased in the tubes incubated at temperatures between 35 and 40C. This suggests that at least two different organisms were involved in the transformation of 2,4-DCP to 4-CP.

  10. Effect of four different reflective barriers on black-globe temperatures in calf hutches.

    PubMed

    Friend, T H; Haberman, J A; Binion, W R

    2014-12-01

    Polyethylene hutches are a popular method of housing dairy calves from 0 to 60 or more days of age, although these hutches get hot when in full sun. This study characterized the relative differences in the ability of four different types of radiant barriers to reduce black-globe temperature within these hutches. Treatments included three different types of covers (two types of laminates (Cadpak P and Cadpak ESD) and an aluminized 3.0-mil white low-density polyethylene (LDPE)) and a reflective paint (LO/MIT-1). The reflective covers were 1.8 × 3 m finished size, and covered the top and sides of the hutch down to 0.15 m above the ground, leaving the front and back exposed. The LO/MIT-1 paint covered the entire sides and roof of the hutch. Two 24-h trials 1 week apart were conducted during relatively hot and clear days in early August. Black-globe temperatures were recorded in duplicate and averaged at 20-min intervals using blackened table tennis balls mounted 0.3 m above the floor in the center of each hutch. Ambient temperature (shade) during the hottest 2-h period for both trials averaged 39.9 °C while the uncovered control averaged 41.1 °C, and LO/MIT-1 averaged 39.9 °C; both of which were significantly higher (P < 0.01) than the Cadpak P (38.9 °C), Cadpak ESD (38.6 °C), and aluminized LDPE (38.7 °C). During periods of high solar radiation, the hutches with covers had lowest black-globe temperatures followed by hutches painted with reflective paint, while control hutches had the highest temperature. PMID:24619461

  11. Temperature Control During Therapeutic Hypothermia for Newborn Encephalopathy Using Different Blanketrol Devices

    PubMed Central

    Kilbride, Howard; Shepherd, Edward; McDonald, Scott A.; Shankaran, Seetha; Truog, William; Das, Abhik; Higgins, Rosemary D.

    2014-01-01

    Therapeutic hypothermia improves the survival and neurodevelopmental outcome of infants with newborn encephalopathy of a hypoxic-ischemic origin. The NICHD Neonatal Research Network (NRN) Whole Body Cooling trial used the Cincinnati Sub-Zero Blanketrol II to achieve therapeutic hypothermia. The Blanketrol III is now available and provides additional cooling modes that may result in better temperature control. This report is a retrospective comparison of infants undergoing hypothermia using two different cooling modes of the Blanketrol device. Infants from the NRN trial were cooled with the Blanketrol II using the Automatic control mode (B2 cohort) and were compared with infants from two new NRN centers that adopted the NRN protocol and used the Blanketrol III in a gradient mode (B3 cohort). The primary outcome was the percent time the esophageal temperature stayed between 33°C and 34°C (target 33.5°C) during maintenance of hypothermia. Cohorts had similar birth weight, gestational age, and level of encephalopathy at the initiation of therapy. Baseline esophageal temperature differed between groups (36.6°C±1.0°C for B2 vs. 33.9°C±1.2°C for B3, p<0.0001) reflecting the practice of passive cooling during transport prior to initiation of active device cooling in the B3 cohort. This difference prevented comparison of temperatures during induction of hypothermia. During maintenance of hypothermia the mean and standard deviation of the percent time between 33°C and 34°C was similar for B2 compared to B3 cohorts (94.8%±0.1% vs. 95.8%±0.1%, respectively). Both the automatic and gradient control modes of the Blanketrol devices appear comparable in maintaining esophageal temperature within the target range during maintenance of therapeutic hypothermia. PMID:25285767

  12. Antioxidant and oxidative stress responses of sojourners at high altitude in different climatic temperatures

    NASA Astrophysics Data System (ADS)

    Sinha, Sanchari; Singh, Som Nath; Saha, Mantu; Kain, T. C.; Tyagi, A. K.; Ray, Uday Sankar

    2010-01-01

    High altitude (HA) is a multi-stressor environment comprising hypobaric hypoxia and cold. Climatic temperature varies with seasonal variation at HA. The present study was undertaken to investigate the effect of ambient temperature on antioxidant profile among sojourners at HA. The study was conducted on sojourners exposed to an altitude of 4,560 m in two different seasons and categorized into two groups (SOJ 1, n = 63, ambient temp. at HA: -6º to +10ºC; SOJ 2, n = 81, ambient temp. at HA: 3º-22ºC). Blood was collected at sea level (SL) and after 4 weeks of HA exposure. Antioxidant enzymes showed significant upregulation in SOJ 2 at HA. In SOJ 1, superoxide dismutase and glutathione peroxidase showed significant upregulation but catalase and glutathione reductase showed significant decrease at HA. Non-enzymatic antioxidants showed significant reduction in SOJ 1 whereas a sustained antioxidant profile was observed in SOJ 2 at HA. Oxidative stress markers showed higher levels in SOJ 1 than SOJ 2 at HA. Differences observed between SOJ 1 and SOJ 2 at HA may be the consequence of different environmental temperatures. Cold stress was higher in SOJ 1 as evidenced from the significantly lower oral temperature in SOJ 1 as compared to SOJ 2. Cold- and hypoxia-induced increase in energy expenditure was significantly high in SOJ 1 than SOJ 2. To conclude, chronic exposure to hypoxia in moderate climatic temperature has a potential preconditioning effect on antioxidant system, but exposure to both cold and hypoxia causes greater oxidative stress due to altered metabolic rate.

  13. Effect of four different reflective barriers on black-globe temperatures in calf hutches

    NASA Astrophysics Data System (ADS)

    Friend, T. H.; Haberman, J. A.; Binion, W. R.

    2014-12-01

    Polyethylene hutches are a popular method of housing dairy calves from 0 to 60 or more days of age, although these hutches get hot when in full sun. This study characterized the relative differences in the ability of four different types of radiant barriers to reduce black-globe temperature within these hutches. Treatments included three different types of covers (two types of laminates (Cadpak P and Cadpak ESD) and an aluminized 3.0-mil white low-density polyethylene (LDPE)) and a reflective paint (LO/MIT-1). The reflective covers were 1.8 × 3 m finished size, and covered the top and sides of the hutch down to 0.15 m above the ground, leaving the front and back exposed. The LO/MIT-1 paint covered the entire sides and roof of the hutch. Two 24-h trials 1 week apart were conducted during relatively hot and clear days in early August. Black-globe temperatures were recorded in duplicate and averaged at 20-min intervals using blackened table tennis balls mounted 0.3 m above the floor in the center of each hutch. Ambient temperature (shade) during the hottest 2-h period for both trials averaged 39.9 °C while the uncovered control averaged 41.1 °C, and LO/MIT-1 averaged 39.9 °C; both of which were significantly higher ( P < 0.01) than the Cadpak P (38.9 °C), Cadpak ESD (38.6 °C), and aluminized LDPE (38.7 °C). During periods of high solar radiation, the hutches with covers had lowest black-globe temperatures followed by hutches painted with reflective paint, while control hutches had the highest temperature.

  14. A dual-temperature-difference approach to estimate daytime sensible and latent heat fluxes under advective conditions during BEAREX08

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Dual-Temperature-Difference (DTD) approach uses continuous radiometric surface temperature measurements in a two-source (soil + vegetation) energy balance model to solve for the daytime evolution of the sensible and latent heat fluxes. By using the surface-air temperature difference at two time...

  15. Analyzing the impact of ambient temperature indicators on transformer life in different regions of Chinese mainland.

    PubMed

    Bai, Cui-fen; Gao, Wen-Sheng; Liu, Tong

    2013-01-01

    Regression analysis is applied to quantitatively analyze the impact of different ambient temperature characteristics on the transformer life at different locations of Chinese mainland. 200 typical locations in Chinese mainland are selected for the study. They are specially divided into six regions so that the subsequent analysis can be done in a regional context. For each region, the local historical ambient temperature and load data are provided as inputs variables of the life consumption model in IEEE Std. C57.91-1995 to estimate the transformer life at every location. Five ambient temperature indicators related to the transformer life are involved into the partial least squares regression to describe their impact on the transformer life. According to a contribution measurement criterion of partial least squares regression, three indicators are conclusively found to be the most important factors influencing the transformer life, and an explicit expression is provided to describe the relationship between the indicators and the transformer life for every region. The analysis result is applicable to the area where the temperature characteristics are similar to Chinese mainland, and the expressions obtained can be applied to the other locations that are not included in this paper if these three indicators are known.

  16. Spatiotemporal Divergence of the Warming Hiatus over Land Based on Different Definitions of Mean Temperature

    PubMed Central

    Zhou, Chunlüe; Wang, Kaicun

    2016-01-01

    Existing studies of the recent warming hiatus over land are primarily based on the average of daily minimum and maximum temperatures (T2). This study compared regional warming rates of mean temperature based on T2 and T24 calculated from hourly observations available from 1998 to 2013. Both T2 and T24 show that the warming hiatus over land is apparent in the mid-latitudes of North America and Eurasia, especially in cold seasons, which is closely associated with the negative North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) and cold air propagation by the Arctic-original northerly wind anomaly into mid-latitudes. However, the warming rates of T2 and T24 are significantly different at regional and seasonal scales because T2 only samples air temperature twice daily and cannot accurately reflect land-atmosphere and incoming radiation variations in the temperature diurnal cycle. The trend has a standard deviation of 0.43 °C/decade for T2 and 0.41 °C/decade for T24, and 0.38 °C/decade for their trend difference in 5° × 5° grids. The use of T2 amplifies the regional contrasts of the warming rate, i.e., the trend underestimation in the US and overestimation at high latitudes by T2. PMID:27531421

  17. Spatiotemporal Divergence of the Warming Hiatus over Land Based on Different Definitions of Mean Temperature.

    PubMed

    Zhou, Chunlüe; Wang, Kaicun

    2016-01-01

    Existing studies of the recent warming hiatus over land are primarily based on the average of daily minimum and maximum temperatures (T2). This study compared regional warming rates of mean temperature based on T2 and T24 calculated from hourly observations available from 1998 to 2013. Both T2 and T24 show that the warming hiatus over land is apparent in the mid-latitudes of North America and Eurasia, especially in cold seasons, which is closely associated with the negative North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) and cold air propagation by the Arctic-original northerly wind anomaly into mid-latitudes. However, the warming rates of T2 and T24 are significantly different at regional and seasonal scales because T2 only samples air temperature twice daily and cannot accurately reflect land-atmosphere and incoming radiation variations in the temperature diurnal cycle. The trend has a standard deviation of 0.43 °C/decade for T2 and 0.41 °C/decade for T24, and 0.38 °C/decade for their trend difference in 5° × 5° grids. The use of T2 amplifies the regional contrasts of the warming rate, i.e., the trend underestimation in the US and overestimation at high latitudes by T2. PMID:27531421

  18. Spatiotemporal Divergence of the Warming Hiatus over Land Based on Different Definitions of Mean Temperature

    NASA Astrophysics Data System (ADS)

    Zhou, Chunlüe; Wang, Kaicun

    2016-08-01

    Existing studies of the recent warming hiatus over land are primarily based on the average of daily minimum and maximum temperatures (T2). This study compared regional warming rates of mean temperature based on T2 and T24 calculated from hourly observations available from 1998 to 2013. Both T2 and T24 show that the warming hiatus over land is apparent in the mid-latitudes of North America and Eurasia, especially in cold seasons, which is closely associated with the negative North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) and cold air propagation by the Arctic-original northerly wind anomaly into mid-latitudes. However, the warming rates of T2 and T24 are significantly different at regional and seasonal scales because T2 only samples air temperature twice daily and cannot accurately reflect land-atmosphere and incoming radiation variations in the temperature diurnal cycle. The trend has a standard deviation of 0.43 °C/decade for T2 and 0.41 °C/decade for T24, and 0.38 °C/decade for their trend difference in 5° × 5° grids. The use of T2 amplifies the regional contrasts of the warming rate, i.e., the trend underestimation in the US and overestimation at high latitudes by T2.

  19. Temperature dependence of in vitro Rubisco kinetics in species of Flaveria with different photosynthetic mechanisms.

    PubMed

    Perdomo, Juan Alejandro; Cavanagh, Amanda P; Kubien, David S; Galmés, Jeroni

    2015-04-01

    There is general consensus in the literature that plants with different photosynthetic mechanisms (i.e. C3 vs. C4) have Rubiscos characterised by different kinetic performances. However, potential differences in the temperature dependencies of Rubisco kinetic parameters between C3 and C4 plants are uncertain. Accordingly, six species of Flaveria with contrasting photosynthetic mechanisms (C3, C3/C4 and C4) were selected and their Rubisco Michaelis-Menten constants for CO2 and RuBP (K c and K RuBP), carboxylase catalytic turnover rate ([Formula: see text]) and CO2/O2 specificity factor (S c/o) were measured between 10 and 40 °C. The results confirmed different Rubisco characteristics between C3 and C4 plants. Rubisco from the C3 species had higher E a for K c and [Formula: see text] than that from C4 species, which were translated into differences in the temperature response of the carboxylase catalytic efficiency ([Formula: see text]/K c). However, E a did not differ for S c/o or K RuBP. Although a mechanism remains uncertain, it appears that the Asp/Glu-149-Ala and Met-309-Ile substitutions lead to differences in the temperature responses of catalysis between C3 and C4 Rubiscos in Flaveria. Therefore, the above observations are consistent with the fact that C3 species have a higher photosynthetic efficiency and ecological dominance in cool environments, with respect to C4 species in temperate environments. PMID:25663529

  20. Surface induces different crystal structures in a room temperature switchable spin crossover compound.

    PubMed

    Gentili, Denis; Liscio, Fabiola; Demitri, Nicola; Schäfer, Bernhard; Borgatti, Francesco; Torelli, Piero; Gobaut, Benoit; Panaccione, Giancarlo; Rossi, Giorgio; Degli Esposti, Alessandra; Gazzano, Massimo; Milita, Silvia; Bergenti, Ilaria; Ruani, Giampiero; Šalitroš, Ivan; Ruben, Mario; Cavallini, Massimiliano

    2016-01-01

    We investigated the influence of surfaces in the formation of different crystal structures of a spin crossover compound, namely [Fe(L)2] (LH: (2-(pyrazol-1-yl)-6-(1H-tetrazol-5-yl)pyridine), which is a neutral compound thermally switchable around room temperature. We observed that the surface induces the formation of two different crystal structures, which exhibit opposite spin transitions, i.e. on heating them up to the transition temperature, one polymorph switches from high spin to low spin and the second polymorph switches irreversibly from low spin to high spin. We attributed this inversion to the presence of water molecules H-bonded to the complex tetrazolyl moieties in the crystals. Thin deposits were investigated by means of polarized optical microscopy, atomic force microscopy, X-ray diffraction, X-ray absorption spectroscopy and micro Raman spectroscopy; moreover the analysis of the Raman spectra and the interpretation of spin inversion were supported by DFT calculations.

  1. Influence of Light Intensity at Different Temperatures on Rate of Respiration of Douglas-Fir Seedlings

    PubMed Central

    Brix, Holger

    1968-01-01

    The rate of photorespiration of Douglas-fir seedlings was measured under different light intensities by: (1) extrapolating the curve for CO2 uptake in relation to atmospheric CO2 content to zero CO2 content, and (2) measuring CO2 evolution of the plants into a CO2-free airstream. Different results, obtained from these techniques, were believed to be caused by a severe restriction of the photosynthetic activity when the latter was used. With the first method, CO2 evolution was lower than the dark respiration rate at low light intensity. For all temperatures studied (6°, 20°, 28°) a further increase in light intensity raised the CO2 evolution above dark respiration before it leveled off. The rate of CO2 evolution was stimulated by increase in temperature at all light intensities. With the CO2-free air method, CO2 evolution in the light was less than dark respiration at all light intensities. PMID:16656775

  2. The circadian body temperature rhythm of Djungarian Hamsters (Phodopus sungorus) revealing different circadian phenotypes.

    PubMed

    Schöttner, Konrad; Waterhouse, Jim; Weinert, Dietmar

    2011-06-01

    Djungarian hamsters (Phodopus sungorus) of our breeding stock show three rhythmic phenotypes: wild type (WT) animals which start their activity shortly after "lights-off" and are active until "lights-on"; delayed activity onset (DAO) hamsters whose activity onset is delayed after "lights-off" but activity offset coincides with "lights-on"; and arrhythmic hamsters (AR) that are episodically active throughout the 24-h day. The main aim of the present study was to investigate whether the observed phenotypic differences are caused by an altered output from the suprachiasmatic nuclei (SCN). As a marker of the circadian clock, the body temperature rhythm purified from masking effects due to motor activity was used. Hamsters were kept singly under standardized laboratory conditions (L:D=14:10h, T: 22°C±2°C, food and water ad libitum). Body temperature and motor activity were monitored by means of implanted G2-E-Mitters and the VitalView(®) System (MiniMitter). Each phenotype showed distinctive rhythms of overt activity and body temperature, these two rhythms being very similar for each phenotype. Correcting body temperatures for the effects of activity produced purified temperature rhythms which retained profiles that were distinctive for the phenotype. These results show that the body temperature rhythm is not simply a consequence of the activity pattern but is caused by the endogenous circadian system. The purification method also allowed estimation of thermoregulatory efficiency using the gradients as a measure for the sensitivity of body temperature to activity changes. In WT and DAO hamsters, the gradients were low during activity period and showed two peaks. The first one occurred after "lights-on", the second one preceded the activity onset. In AR hamsters, the gradients did not reveal circadian changes. The results provide good evidence that the different phenotypes result from differences in the circadian clock. In AR hamsters, the SCN do not produce an

  3. Prediction of thermodynamic and surface properties of Pb-Hg liquid alloys at different temperatures

    NASA Astrophysics Data System (ADS)

    Yadav, S. K.; Jha, L. N.; Jha, I. S.; Singh, B. P.; Koirala, R. P.; Adhikari, D.

    2016-06-01

    The thermodynamic properties, such as free energy of mixing, heat of mixing, activity and structural properties, such as concentration fluctuation in long wavelength limit, short-range order parameter of Pb-Hg liquid alloy at 600 K have been calculated using theoretical modelling. It has then been correlated with modified Butler model to compute the surface tension of the alloys at different temperatures. The Pb-Hg system at 600 K is found to be ordering at higher concentration of Pb.

  4. Perselectivity of porous cellulose nitrate membranes in evapomeation with temperature difference

    SciTech Connect

    Uragami, T.; Komatsu, R.; Miyata, T.

    1995-12-01

    Ethanol-permselectivity from aqueous ethanol solutions through porous cellulose nitrate membranes was investigated by evaporation with temperature difference under various conditions. On the other hand, same experiments using porous cellulose acetate were carried out. From these results of porous cellulose nitrate and cellulose acetate membranes, mechanism of permeation and separation for ethanol-permselectivity through cellulose nitrate membranes is discussed from viewpoints of physical and chemical structures of porous cellulose ester membranes.

  5. Influence of temperature difference calculation method on the evaluation of Rankine cycle performance

    NASA Astrophysics Data System (ADS)

    Morisaki, Takafumi.; Ikegami, Yasuyuki.

    2014-02-01

    In the new century, energy and environmental problems are becoming more critical, and the development of natural energy is desired. Low-grade Thermal Energy Conversion (LTEC) is refocused as one of the renewable energy methods. The usefulness of LTEC is expected using hot springs and waste heat. In the case of the Rankine cycle using ammonia as the working fluid, the thermal properties of the working fluid changes in the evaporator. The traditional evaluation method of heat exchanger performance is the LMTD (Logarithmic Mean Temperature Difference) method. On the other hand, the GMTD (Generalized Mean Temperature Difference) method allows the variation of thermal properties in the heat exchanger. The aim of this study is to compare the two methods for the calculation of temperature differences and the corresponding influence on the total performance of the Rankine cycle that is operated using ammonia as a working fluid. As a result, the thermal efficiency of the Rankine cycle is greater than that of the LMTD method. Moreover, the computable range of the GMTD calculation method is less than that of the LMTD calculation method.

  6. Temperature dependence of far-infrared difference reflectivity of YBa2Cu3O7-y

    NASA Astrophysics Data System (ADS)

    Krenn, H.; Bauer, G.; Vogl, G.; Strasser, G.; Gornik, E.

    1989-04-01

    Far-infrared difference reflectivity spectra (50-450 cm-1) below, across and above the transition temperature on polycrystalline single-phase YBa2Cu3O7-y samples were measured. The data are compared with model fits using the explicit temperature dependence of the Mattis-Bardeen conductivity, an effective-medium approach and temperature-dependent phonon oscillator parameters and alternatively a plasma model. For the plasma model we alternatively use a generalized Drude-like expression with a frequency-dependent damping after Thomas et al. [Phys. Rev. B 36, 846 (1987)] or the original model with Orenstein et al. [Phys. Rev. B 36, 729 (1987)] and Sherwin, Richards, and Zettl [Phys. Rev. B 37, 1587 (1988)] with a Drude contribution plus a mid-infrared oscillator, but with constant carrier relaxation rates. The models explain the difference reflectivity data (precision <0.2%) with a fitting accuracy of 1-2 % (Mattis-Bardeen model) or 2-3 % (plasma model) over the full temperature range. In order to investigate their applicability, reflectivity, and conductivity data of a highly oriented YBa2Cu3O7-y sample, as recently published by Bonn et al. [Phys. Rev. Lett. 58, 2249 (1987)], were also fitted with both models. Because of the frequency dependence of the free-carrier damping rates, it was important to fulfill the Kramers-Kronig relations between the real and the imaginary part of the dynamic conductivity in the calculations. For both models the characteristic dependences of the conductivity on frequency and temperature are given. Whereas, naturally, the Mattis-Bardeen model yields a gaplike depression of the conductivity for frequencies below an assumed gap, the plasma model results in somewhat smoother dependences of Re(σ(ω)) and Im(σ(ω)) in the frequency region of interest.

  7. Anaerobic biodegradation of 2,4-dichlorophenol in freshwater lake sediments at different temperatures

    SciTech Connect

    Kohring, G.W.; Rogers, J.E.; Wiegel, J.

    1989-02-01

    Anaerobic degradation of 2,4-dichlorophenol (2,4-DCP) between 5 and 72 degrees C was investigated. Anaerobic sediment slurries prepared from local freshwater pond sediments were partitioned into anaerobic tubes or serum vials, which then were incubated separately at the various temperatures. Reductive 2,4-DCP dechlorination occurred only in the temperature range between 5 and 50/degree/C, although methane was formed up to 60 degrees C. In sediment samples from two sites and at all tested temperatures from 5 to 50 degrees C, 2,4-DCP was transformed to 4-chlorophenol (4-CP). The 4-CP intermediate was subsequently degraded after an extended lag period in the temperature range from 15 to 40/degree/C. Adaptation periods for 2,4-DCP transformation decreased between 5 and 25/degree/C, were essentially constant between 25 and 35/degree/C, and increased in the tubes incubated at temperatures between 35 and 40/degree/C. The degradation rates increased exponentially between 15 and 30/degree/C, had a second peak at 35/degree/C, and decreased to about 5% of the peak activity by 40/degree/C. In tubes from one sediment sample, incubated at temperatures above 40/degree/C, an increase in the degradation rate was observed following the minimum at 40/degree/C. This suggests that at least two different organisms were involved in the transformation of 2,4-DCP to 4-CP. Storage of the original sediment slurries for 2 months at 12/degree/C resulted in increased adaptation times, but did not affect the degradation rates.

  8. Effect of Different Cooling Regimes on the Mechanical Properties of Cementitious Composites Subjected to High Temperatures

    PubMed Central

    Yu, Jiangtao; Weng, Wenfang; Yu, Kequan

    2014-01-01

    The influence of different cooling regimes (quenching in water and cooling in air) on the residual mechanical properties of engineered cementitious composite (ECC) subjected to high temperature up to 800°C was discussed in this paper. The ECC specimens are exposed to 100, 200, 400, 600, and 800°C with the unheated specimens for reference. Different cooling regimens had a significant influence on the mechanical properties of postfire ECC specimens. The microstructural characterization was examined before and after exposure to fire deterioration by using scanning electron microscopy (SEM). Results from the microtest well explained the mechanical properties variation of postfire specimens. PMID:25161392

  9. Effect of different cooling regimes on the mechanical properties of cementitious composites subjected to high temperatures.

    PubMed

    Yu, Jiangtao; Weng, Wenfang; Yu, Kequan

    2014-01-01

    The influence of different cooling regimes (quenching in water and cooling in air) on the residual mechanical properties of engineered cementitious composite (ECC) subjected to high temperature up to 800°C was discussed in this paper. The ECC specimens are exposed to 100, 200, 400, 600, and 800°C with the unheated specimens for reference. Different cooling regimens had a significant influence on the mechanical properties of postfire ECC specimens. The microstructural characterization was examined before and after exposure to fire deterioration by using scanning electron microscopy (SEM). Results from the microtest well explained the mechanical properties variation of postfire specimens.

  10. A comparison of temperature and precipitation responses to different Earth radiation management geoengineering schemes

    NASA Astrophysics Data System (ADS)

    Crook, J. A.; Jackson, L. S.; Osprey, S. M.; Forster, P. M.

    2015-09-01

    Earth radiation management has been suggested as a way to rapidly counteract global warming in the face of a lack of mitigation efforts, buying time and avoiding potentially catastrophic warming. We compare six different radiation management schemes that use surface, troposphere, and stratosphere interventions in a single climate model in which we projected future climate from 2020 to 2099 based on RCP4.5. We analyze the surface air temperature responses to determine how effective the schemes are at returning temperature to its 1986-2005 climatology and analyze precipitation responses to compare side effects. We find crop albedo enhancement is largely ineffective at returning temperature to its 1986-2005 climatology. Desert albedo enhancement causes excessive cooling in the deserts and severe shifts in tropical precipitation. Ocean albedo enhancement, sea-spray geoengineering, cirrus cloud thinning, and stratospheric SO2 injection have the potential to cool more uniformly, but cirrus cloud thinning may not be able to cool by much more than 1 K globally. We find that of the schemes potentially able to return surface air temperature to 1986-2005 climatology under future greenhouse gas warming, none has significantly less severe precipitation side effects than other schemes. Despite different forcing patterns, ocean albedo enhancement, sea-spray geoengineering, cirrus cloud thinning, and stratospheric SO2 injection all result in large scale tropical precipitation responses caused by Hadley cell changes and land precipitation changes largely driven by thermodynamic changes. Widespread regional scale changes in precipitation over land are significantly different from the 1986-2005 climatology and would likely necessitate significant adaptation despite geoengineering.

  11. Temperature dependence of the optical properties of VO2 deposited on sapphire with different orientations

    NASA Astrophysics Data System (ADS)

    Nazari, M.; Zhao, Y.; Kuryatkov, V. V.; Fan, Z. Y.; Bernussi, A. A.; Holtz, M.

    2013-01-01

    Spectroscopic ellipsometry studies are reported for vanadium dioxide grown on c-, m-, and r-plane sapphire substrates. The crystallographic orientation of the VO2 depends strongly on the substrate, producing diverse strains in the layers which affect the interband transition energies and the phase transition temperatures. These structural differences correlate with distinct variations of the optical transitions observed in the ellipsometry results. For the m- and r-plane substrates, the VO2 appears to transform abruptly from the monoclinic phase to the rutile R structure as temperature is increased. In contrast, VO2 deposited on c-plane sapphire exhibits a sluggish transformation. For the m-plane sample, the energy gap collapses over a narrow temperature range. For the c-plane case, a broad temperature range is obtained between the onset and completion of the transformation. Raman studies of the vibrational structure show that internal stresses due to expansion and contraction across the phase transitions impacts the observed phonon energies.

  12. Long-term global temperature variations under the influence of different cosmophysical factors

    NASA Astrophysics Data System (ADS)

    Biktash, Lilia

    2016-07-01

    We have analyzed different cosmophysical factors which have effect on long-term global temperature variations during solar cycles 20-24. A detailed analysis of total solar irradiance (TSI), the spectral solar ultraviolet emission (UV), space weather and cosmic rays (CRs) have effects on the atmosphere processes. We have shown that increasing of global temperature is likely affected by TSI and UV during solar maxima. During the descending phases of these solar cycles the interplanetary magnetic field and long-lasting solar wind high speed streams occurred frequently and were the primary contributors to minimize of CRs effect on the Earth's atmosphere. In this case global temperature is increased extra as result of increase in the atmosphere's transparency. We show that there are a few effective physical mechanisms of the action of solar activity and space weather on the global temperature. TSI and CRs play essential role in climate change and main part of climate variations can be explained by the mechanism of action TSI and CRs modulated by the solar activity on the state of lower atmosphere and meteorological parameters.

  13. Volatile compound profile of sous-vide cooked lamb loins at different temperature-time combinations.

    PubMed

    Roldán, Mar; Ruiz, Jorge; Del Pulgar, José Sánchez; Pérez-Palacios, Trinidad; Antequera, Teresa

    2015-02-01

    Lamb loins were subjected to sous-vide cooking at different combinations of temperature (60 and 80°C) and time (6 and 24h) to assess the effect on the volatile compound profile. Major chemical families in cooked samples were aliphatic hydrocarbons and aldehydes. The volatile compound profile in sous-vide cooked lamb loin was affected by the cooking temperature and time. Volatile compounds arising from lipid oxidation presented a high abundance in samples cooked at low or moderate cooking conditions (60°C for 6 and 24h, 80°C for 6h), while a more intense time and temperature combination (80°C for 24h) resulted on a higher concentration of volatile compounds arising from Strecker degradations of amino acids, as 2-methylpropanal and 3-methylbutanal. Therefore, sous-vide cooking at moderately high temperatures for long times would result in the formation of a stronger meaty flavor and roast notes in lamb meat. PMID:25306511

  14. CREST Modelling of PBX 9502 Corner Turning Experiments at Different Initial Temperatures

    NASA Astrophysics Data System (ADS)

    Whitworth, Nicholas

    2013-06-01

    Corner turning is an important problem in regard to detonation wave propagation in TATB-based explosives. Experimentally, a sudden change in direction of the propagating wave, such as turning a sharp corner, can result in dead-zones being left behind in the corner turn region, with the observed behaviour being particularly sensitive to the initial temperature of the explosive. In this paper, the entropy-dependent CREST reactive burn model is used to simulate corner turning experiments on the TATB-based explosive PBX 9502. Calculated results of double cylinder tests at three different initial temperatures (-54°C, 25°C, and 75°C), and a ``hockey puck'' experiment at ambient temperature, are compared to the corresponding test measurements. The results show that the model is able to: (i) calculate persistent dead-zones in PBX 9502 without recourse to any shock desensitisation treatment, and (ii) predict changes in corner turning behaviour with initial temperature using one set of coefficients.

  15. CREST modelling of PBX 9502 corner turning experiments at different initial temperatures

    NASA Astrophysics Data System (ADS)

    Whitworth, N. J.

    2014-05-01

    Corner turning is an important problem in regard to detonation wave propagation in TATB-based explosives. Experimentally, a sudden change in the direction of the propagating wave, such as turning a sharp corner, can result in dead-zones being left behind in the corner turn region, with the observed behaviour being particularly sensitive to the initial temperature of the explosive. In this paper, the entropy-dependent CREST reactive burn model is used to simulate corner turning experiments on the TATB-based explosive PBX 9502. Calculated results of double cylinder tests at three different initial temperatures (-54°C, ~23°C, and 75°C), and a "hockey puck" experiment at ambient temperature, are compared to the corresponding test measurements. The results show that the model is able to: (i) calculate persistent dead-zones in PBX 9502 without recourse to any shock desensitisation treatment, and (ii) predict changes in corner turning behaviour with initial temperature using one set of coefficients.

  16. Volatile compound profile of sous-vide cooked lamb loins at different temperature-time combinations.

    PubMed

    Roldán, Mar; Ruiz, Jorge; Del Pulgar, José Sánchez; Pérez-Palacios, Trinidad; Antequera, Teresa

    2015-02-01

    Lamb loins were subjected to sous-vide cooking at different combinations of temperature (60 and 80°C) and time (6 and 24h) to assess the effect on the volatile compound profile. Major chemical families in cooked samples were aliphatic hydrocarbons and aldehydes. The volatile compound profile in sous-vide cooked lamb loin was affected by the cooking temperature and time. Volatile compounds arising from lipid oxidation presented a high abundance in samples cooked at low or moderate cooking conditions (60°C for 6 and 24h, 80°C for 6h), while a more intense time and temperature combination (80°C for 24h) resulted on a higher concentration of volatile compounds arising from Strecker degradations of amino acids, as 2-methylpropanal and 3-methylbutanal. Therefore, sous-vide cooking at moderately high temperatures for long times would result in the formation of a stronger meaty flavor and roast notes in lamb meat.

  17. Sessile droplet freezing and ice adhesion on aluminum with different surface wettability and surface temperature

    NASA Astrophysics Data System (ADS)

    Ou, JunFei; Shi, QingWen; Wang, ZhiLe; Wang, FaJun; Xue, MingShan; Li, Wen; Yan, GuiLong

    2015-07-01

    This paper focused on the sessile droplet freezing and ice adhesion on aluminum with different wettability (hydrophilic, common hydrophobic, and superhydrophobic surfaces, coded as HIS, CHS, SHS, respectively) over a surface temperature range of -9°C to -19°C. It was found that SHS could retard the sessile droplet freezing and lower the ice adhesion probably due to the interfacial air pockets (IAPs) on water/SHS interface. However, as surface temperature decreasing, some IAPs were squeezed out and such freezing retarding and adhesion lowering effect for SHS was reduced greatly. For a surface temperature of -19°C, ice adhesion on SHS was even greater than that on CHS. To discover the reason for the squeezing out of IAPs, forces applied to the suspended water on IAPs were analyzed and it was found that the stability of IAPs was associated with surface micro-structures and surface temperature. These findings might be helpful to designing of SHS with good anti-icing properties.

  18. Effects of elevated temperatures on different restorative materials: An aid to forensic identification processes

    PubMed Central

    Pol, Chetan A.; Ghige, Suvarna K.; Gosavi, Suchitra R.; Hazarey, Vinay K.

    2015-01-01

    Background: Heat-induced alterations to dental and restorative materials can be of great interest to forensic dentistry. Knowing the specific optical behavior of dental materials can be of high importance as recognition of changes induced by high temperatures can lead to the determination of material which was used in a dental restoration, facilitating identification of burned human remains. Aim: To observe the effects of predetermined temperatures (200°C–400°C–600°C–800°C–1000°C) on unrestored teeth and different restorative materials macroscopically and then examine them under a stereomicroscope for the purpose of identification. Materials and Methods: The study was conducted on 375 extracted teeth which were divided into five groups of 75 teeth each as follows: group 1- unrestored teeth, group 2- teeth restored with all-ceramic crowns, Group 3- with class I silver amalgam filling, group 4- with class I composite restoration, and group 5- with class I glass ionomer cement restoration. Results: Unrestored and restored teeth display a series of specific macroscopic & stereomicroscopic structural changes for each range of temperature. Conclusion: Dental tissues and restorative materials undergo a series of changes which correlate well with the various temperatures to which they were exposed. These changes are a consequence of the nature of the materials and their physicochemical characteristics. PMID:26005305

  19. An improved method for correction of air temperature measured using different radiation shields

    NASA Astrophysics Data System (ADS)

    Cheng, Xinghong; Su, Debin; Li, Deping; Chen, Lu; Xu, Wenjing; Yang, Meilin; Li, Yongcheng; Yue, Zhizhong; Wang, Zijing

    2014-11-01

    The variation of air temperature measurement errors using two different radiation shields (DTR502B Vaisala, Finland, and HYTFZ01, Huayun Tongda Satcom, China) was studied. Datasets were collected in the field at the Daxing weather station in Beijing from June 2011 to May 2012. Most air temperature values obtained with these two commonly used radiation shields were lower than the reference records obtained with the new Fiber Reinforced Polymers (FRP) Stevenson screen. In most cases, the air temperature errors when using the two devices were smaller on overcast and rainy days than on sunny days; and smaller when using the imported rather than the Chinese shield. The measured errors changed sharply at sunrise and sunset, and reached maxima at noon. Their diurnal variation characteristics were, naturally, related to changes in solar radiation. The relationships between the record errors, global radiation, and wind speed were nonlinear. An improved correction method was proposed based on the approach described by Nakamura and Mahrt (2005) (NM05), in which the impact of the solar zenith angle (SZA) on the temperature error is considered and extreme errors due to changes in SZA can be corrected effectively. Measurement errors were reduced significantly after correction by either method for both shields. The error reduction rate using the improved correction method for the Chinese and imported shields were 3.3% and 40.4% higher than those using the NM05 method, respectively.

  20. Comparison of different methods of estimating the mean radiant temperature in outdoor thermal comfort studies.

    PubMed

    Krüger, E L; Minella, F O; Matzarakis, A

    2014-10-01

    Correlations between outdoor thermal indices and the calculated or measured mean radiant temperature T(mrt) are in general of high importance because of the combined effect on human energy balance in outdoor spaces. The most accurate way to determine T(mrt) is by means of integral radiation measurements, i.e. measuring the short- and long-wave radiation from six directions using pyranometers and pyrgeometers, an expensive and not always an easily available procedure. Some studies use globe thermometers combined with air temperature and wind speed sensors. An alternative way to determine T(mrt) is based on output from the RayMan model from measured data of incoming global radiation and morphological features of the monitoring site in particular sky view factor (SVF) data. The purpose of this paper is to compare different methods to assess the mean radiant temperature T(mrt) in terms of differences to a reference condition (T(mrt) calculated from field measurements) and to resulting outdoor comfort levels expressed as PET and UTCI values. The T(mrt) obtained from field measurements is a combination of air temperature, wind speed and globe temperature data according to the forced ventilation formula of ISO 7726 for data collected in Glasgow, UK. Four different methods were used in the RayMan model for T(mrt) calculations: input data consisting exclusively of data measured at urban sites; urban data excluding solar radiation, estimated SVF data and solar radiation data measured at a rural site; urban data excluding solar radiation with SVF data for each site; urban data excluding solar radiation and including solar radiation at the rural site taking no account of SVF information. Results show that all methods overestimate T(mrt) when compared to ISO calculations. Correlations were found to be significant for the first method and lower for the other three. Results in terms of comfort (PET, UTCI) suggest that reasonable estimates could be made based on global radiation

  1. Size distribution of carbon layer planes in biochar from different plant type of feedstock with different heating temperatures.

    PubMed

    Lu, Guan-Yang; Ikeya, Kosuke; Watanabe, Akira

    2016-11-01

    Biochar application to soil is a strategy to decelerate the increase in the atmospheric carbon concentration. The composition of condensed aromatic clusters appears to be an important determinant of the degradation rate of char in soil. The objective of the present study was to determine the size distribution of carbon layer planes in biochars produced from different types of feedstock (a broadleaf and a coniferous tree and two herbs) using different heating treatment temperatures (HTT; 400 °C-800 °C) using X-ray diffraction 11 band profile analysis. (13)C nuclear magnetic resonance with the phase-adjusted spinning side bands of the chars indicated different spectral features depending on the HTT and similar carbon composition among the plant types at each HTT. Both the content and composition of carbon layer planes in biochar produced using the same HTT were also similar among the plant types. The carbon layer plane size in the 400 °C and 600 °C chars was distributed from 0.24 to 1.68 or 1.92 nm (corresponding to 37 or 52 rings) with the mean size of 0.79-0.92 and 0.80-1.14 nm, respectively. The carbon layer planes in the 800 °C chars ranged from 0.72-0.96 nm (7-14 rings) to 2.64-3.60 nm (91-169 rings) and the mean values were 1.47-1.89 nm. The relative carbon layer plane content in the 600 °C and 800 °C chars was typically 2 and 3 times that in the 400 °C chars. These results indicate the progression of the formation and/or the size development of graphite-like structures, suggesting that a char produced at a higher HTT would have better carbon sequestrating characteristics.

  2. Improvement of skin optical clearing efficacy by topical treatment of glycerol at different temperatures

    NASA Astrophysics Data System (ADS)

    Deng, Zijian; Liu, Caihua; Tao, Wei; Zhu, Dan

    2011-01-01

    In the past decades, laser has been widely used in clinical diagnosis and cosmetic therapy. However, there is limitation for further usage in deeper tissue for high scattering property. Skin optical clearing technique, by introducing optical clearing agents (OCAs) into tissue, will have a potential impact on optical diagnosis and therapy. In this work, anhydrous glycerol at different temperatures of 4, 25, 32 and 45°C were applied respectively to in vitro porcine skin, and reflectance and transmittance spectra were then measured dynamically using a spectrometry combined with integrating sphere system. Further, reduced scattering coefficient and penetration depth were obtained. Results showed that, glycerol at different temperatures could induce the reduced scattering coefficient of in vitro skin to decrease and the penetration depth to increase. 4 and 25°C glycerol had similar effect, decreasing the scattering by 48.2% and 49.7%, and increasing penetration depth by 37.9% and 39.5%, respectively. However, 32 and 45°C glycerol treatment could decrease scattering by 61.6% and 76.6%, and increase penetration depth by 53.3% and 84.1%, respectively. In conclusion, glycerol at higher temperature can induce greater and faster skin optical clearing efficacy.

  3. Formation of brominated pollutants during the pyrolysis and combustion of tetrabromobisphenol A at different temperatures.

    PubMed

    Ortuño, Nuria; Moltó, Julia; Conesa, Juan A; Font, Rafael

    2014-08-01

    Tetrabromobisphenol A (TBBPA) is the most widely used brominated flame retardant worldwide. A detailed examination of the degradation products emitted during thermal decomposition of TBBPA is presented in the study. Runs were performed in a laboratory furnace at different temperatures (650 and 800 °C) and in different atmospheres (nitrogen and air). More than one hundred semivolatile compounds have been identified by GC/MS, with special interest in brominated ones. Presence of HBr and brominated light hydrocarbons increased with temperature and in the presence of oxygen. Maximum formation of PAHs is observed at pyrolytic condition at the higher temperature. High levels of 2,4-, 2,6- and 2,4,6- bromophenols were found. The levels of polybrominated dibenzo-p-dioxins and furans have been detected in the ppm range. The most abundant isomers are 2,4,6,8-TeBDF in pyrolysis and 1,2,3,7,8-PeBDF in combustion. These results should be considered in the assessment of thermal treatment of materials containing brominated flame retardants.

  4. Ferromagnetism in Semiconductor C-Ni Films at Different Annealing Temperature

    NASA Astrophysics Data System (ADS)

    Dalouji, Vali; Elahi, Smohammad

    2016-02-01

    In this work, the microstructure and magnetic properties of carbon-nickel (C-Ni) composite films annealed at different temperatures (300-1000∘C) were investigated. The films were grown by radio frequency magnetron sputtering on quartz substrates at room temperature. The nickel concentration in the films are affected by changing of the value of evaporation nickel atoms and measured by Rutherford backscattering spectroscopy (RBS). Values of coercive field were measured under both increasing and decreasing applied magnetic field. It is shown that the coercive field of films strongly dependent on the annealing temperature and at 500∘C films has maximum value of 93.67Oe. The difference in the coercive fields increased for films annealed from 300 to 500∘C and then decreased from 500 to 1000∘C. The ID/IG ratio of Raman spectra would indicate the presence of higher sp2 bonded carbon in the films annealed at 800∘C.

  5. Monoethanol amine modified zeolite 13X for CO{sub 2} adsorption at different temperatures

    SciTech Connect

    P.D. Jadhav; R.V. Chatti; R.B. Biniwale; N.K. Labhsetwar; S. Devotta; S.S. Rayalu . s_rayalu@neeri.res.in

    2007-12-15

    Zeolite 13X has been modified with monoethanol amine (MEA). MEA loadings of 0.5-25 wt % have been achieved using the impregnation method in different solvents. The mode of incorporation based on methanol with stirring at room temperature appears to be the most feasible. The adsorbent has been characterized for crystallinity, surface area, pore volume, and pore size. The thermal stability of the adsorbent is studied using a thermal analyzer. The CO{sub 2} adsorption capacity of adsorbents is evaluated using the breakthrough adsorption method with a packed column on a 10 g scale. The adsorption capacities of adsorbents are estimated in the temperature range 30-120{sup o}C. The adsorbents show improvement in CO{sub 2} adsorption capacity over the unmodified zeolite by a factor of ca. 1.6 at 30{sup o}C, whereas at 120{sup o}C the efficiency improved by a factor of 3.5. For adsorption at these temperatures, different MEA loading levels were found to be suitable as per the governing adsorption phenomena, that is, physical or chemical. The adsorbent is also studied for CO{sub 2} selectivity over N{sub 2} at 75{sup o}C. The MEA-modified adsorbent shows better CO{sub 2} selectivity, which was improved further in the presence of moisture. 25 refs., 6 figs., 3t abs.

  6. [Spectral Characteristics of Spring Maize Varieties with Different Heat Tolerance to High Temperature].

    PubMed

    Tao, Zhi-qiang; Chen, Yuan-quan; Zou, Juan-xiu; Li, Chao; Yuan, Shu-fen; Yan, Peng; Shi, Jiang-tao; Sui, Peng

    2016-02-01

    This paper discussed the response of spectral characteristics on high temperature at grain filling stage of different spring maize varieties by adopting two spectrometer (SPAD-502 Chlorophyll Meter and Sunscan Plant Canopy Analyzer), and analyzed the impact of high temperature on the photosynthetic properties of spring maize in North China Plain. The test was conductedfrom the year 2011 to 2012 in Wuqiao County, Hebei Province. This test chose three different varieties, i. e. Tianyu 198 (TY198), Xingyu 998 (XY998) and Tianrun 606 (TR606), then two sowing date (April 15th and April 25th) was set. We analyzed chlorophyll relative content (SPAD), leaf area index (LAI) and photosynthetically active radiation (PAR) at grain filling stage. The results showed that the days of daily maximum temperature above 33 °C and the mean day temperature at grain filling stage in spring maize sowing on April 15th increased 3.5 d and 0.8 °C, respectively, compared to that sowing on April 25th, moreover the sunshine hours, rainfall, diurnal temperature and length of growing period were similar. Compared with XY998 and TR606, TY198's stress tolerance indices (STI) increased by 2.9% and 11.0%, respectively. According to STI from high to low order, TY198, XY998 and TR606 respectively as heat resistant type, moderate heat resistant type and thermo-labile type variety. TY198, compared with XY998 and TR606 sowing on April 15th, yield increased by 4.1% and 13.7%, SPAD increased by 12.5% and 19.6%, LAI increased by 5.3% and 5.6%, PAR increased by 4.0% and 14.0%. Sowing on April 15th, yield increased by 1.3% and 2.8%, SPAD increased by 3.5% and 6.0%, LAI increased by 1.7% and 4.1%, PAR increased by -4.4% and 0.9%. Three varieties had significant yield differences in the environment of high temperature stress, heat resistant type have significant (p < 0.05) advantage in the aspect of yield, SPAD and LAI. The production of TY198, XY998 and TR606 sowing on April 15th compared to that sowing on

  7. [Spectral Characteristics of Spring Maize Varieties with Different Heat Tolerance to High Temperature].

    PubMed

    Tao, Zhi-qiang; Chen, Yuan-quan; Zou, Juan-xiu; Li, Chao; Yuan, Shu-fen; Yan, Peng; Shi, Jiang-tao; Sui, Peng

    2016-02-01

    This paper discussed the response of spectral characteristics on high temperature at grain filling stage of different spring maize varieties by adopting two spectrometer (SPAD-502 Chlorophyll Meter and Sunscan Plant Canopy Analyzer), and analyzed the impact of high temperature on the photosynthetic properties of spring maize in North China Plain. The test was conductedfrom the year 2011 to 2012 in Wuqiao County, Hebei Province. This test chose three different varieties, i. e. Tianyu 198 (TY198), Xingyu 998 (XY998) and Tianrun 606 (TR606), then two sowing date (April 15th and April 25th) was set. We analyzed chlorophyll relative content (SPAD), leaf area index (LAI) and photosynthetically active radiation (PAR) at grain filling stage. The results showed that the days of daily maximum temperature above 33 °C and the mean day temperature at grain filling stage in spring maize sowing on April 15th increased 3.5 d and 0.8 °C, respectively, compared to that sowing on April 25th, moreover the sunshine hours, rainfall, diurnal temperature and length of growing period were similar. Compared with XY998 and TR606, TY198's stress tolerance indices (STI) increased by 2.9% and 11.0%, respectively. According to STI from high to low order, TY198, XY998 and TR606 respectively as heat resistant type, moderate heat resistant type and thermo-labile type variety. TY198, compared with XY998 and TR606 sowing on April 15th, yield increased by 4.1% and 13.7%, SPAD increased by 12.5% and 19.6%, LAI increased by 5.3% and 5.6%, PAR increased by 4.0% and 14.0%. Sowing on April 15th, yield increased by 1.3% and 2.8%, SPAD increased by 3.5% and 6.0%, LAI increased by 1.7% and 4.1%, PAR increased by -4.4% and 0.9%. Three varieties had significant yield differences in the environment of high temperature stress, heat resistant type have significant (p < 0.05) advantage in the aspect of yield, SPAD and LAI. The production of TY198, XY998 and TR606 sowing on April 15th compared to that sowing on

  8. Investigation of temperature and aridity at different elevations of Mt. Ailao, SW China.

    PubMed

    You, Guangyong; Zhang, Yiping; Liu, Yuhong; Schaefer, Douglas; Gong, Hede; Gao, Jinbo; Lu, Zhiyun; Song, Qinghai; Zhao, Junbin; Wu, Chuansheng; Yu, Lei; Xie, Youneng

    2013-05-01

    Our current understanding is that plant species distribution in the subtropical mountain forests of Southwest China is controlled mainly by inadequate warmth. Due to abundant annual precipitation, aridity has been less considered in this context, yet rainfall here is highly seasonal, and the magnitude of drought severity at different elevations has not been examined due to limited access to higher elevations in this area.In this study, short-term micrometeorological variables were measured at 2,480 m and 2,680 m, where different forest types occur. Drought stress was evaluated by combining measurements of water evaporation demand (E p) and soil volumetric water content (VWC). The results showed that: (1) mean temperature decreased 1 °C from 2,480 m to 2,680 m and the minimum temperature at 2,680 m was above freezing. (2) Elevation had a significant influence on E p; however, the difference in daily E p between 2,480 m and 2,680 m was not significant, which was possibly due to the small difference in elevation between these two sites. (3) VWC had larger range of annual variation at 2,680 m than at 2,480 m, especially for the surface soil layer.We conclude that the decrease in temperature does not effectively explain the sharp transition between these forest types. During the dry season, plants growing at 2,680 m are likely to experience more drought stress. In seeking to understand the mountain forest distribution, further studies should consider the effects of drought stress alongside those of altitude. PMID:22752399

  9. Estimating cutting front temperature difference in disk and CO2 laser beam fusion cutting

    NASA Astrophysics Data System (ADS)

    Scintilla, L. D.; Tricarico, L.

    2012-07-01

    A three-dimensional, semi-stationary, simplified thermal numerical model was developed. The average cutting front temperature difference in disk and CO2 laser beam fusion cutting of 90MnCrV8 was estimated by computing the conductive power loss. Basing on heat affected zone extension experimentally measured and using an inverse methodology approach, the unknown thermal load on the cutting front during laser cutting was calculated. The accuracy of the numerical power loss estimation was evaluated comparing the results from simulation with the ones from analytical models. A good agreement was found for all the test cases considered in this study. The conduction losses estimation was used for justifying the lower quality of disk laser cuts due to the lower average cut front temperature. This results in the increase of viscosity of molten material and in the subsequent more difficult ejection of the melted material from the cut kerf.

  10. A shear viscosity study of cerium (III) nitrate in concentrated aqueous solutions at different temperatures

    NASA Astrophysics Data System (ADS)

    Ouerfelli, N.; Bouanz, M.

    1996-04-01

    Kinematic viscosities and densities of 0953-8984/8/16/005/img1 in aqueous solutions, from pure water to very concentrated solutions, were determined at different temperatures. Shear viscosity data for this asymmetrical 3:1 electrolyte were calculated. For the low concentrations 0953-8984/8/16/005/img2, the Jones - Dole coefficients A and B were determined for this rare-earth salt by fitting the quadratic behaviour of the square root of the molar concentration with the least-squares method. At concentrations above 1 mol 0953-8984/8/16/005/img3, the logarithm of viscosity can be fitted by a third-order polynomial, where the coefficients exhibit a linear dependence on the reciprocal of the absolute temperature. This phenomenon is due to the strong ion - solvent correlation.

  11. Calibration and simulation of ASM2d at different temperatures in a phosphorus removal pilot plant.

    PubMed

    García-Usach, F; Ferrer, J; Bouzas, A; Seco, A

    2006-01-01

    In this work, an organic and nutrient removal pilot plant was used to study the temperature influence on phosphorus accumulating organisms. Three experiments were carried out at 13, 20 and 24.5 degrees C, achieving a high phosphorus removal percentage in all cases. The ASM2d model was calibrated at 13 and 20 degrees C and the Arrhenius equation constant was obtained for phosphorus removal processes showing that the temperature influences on the biological phosphorus removal subprocesses in a different degree. The 24.5 degrees C experiment was simulated using the model parameters obtained by means of the Arrhenius equation. The simulation results for the three experiments showed good correspondence with the experimental data, demonstrating that the model and the calibrated parameters were able to predict the pilot plant behaviour.

  12. Raman Spectroscopy of Mars Relevant Minerals at Different Atmospheric, Pressure, and Temperature Conditions

    NASA Astrophysics Data System (ADS)

    Böttger, U.; Pavlov, S.; Deßmann, N.; Hübers, H.-W.; Weber, I.; Jessberger, E.; Tarcea, N.; Dörfer, T.; Popp, J.

    2011-10-01

    In the scope of the ExoMars mission Raman measurements will be performed with the RLS Spectrometer to identify organic compounds and mineral products as indicators of biological activity [1]. Minerals produced by water related processes as well as igneous minerals and their alteration products will be characterized. Furthermore, in this context it is of interest to assess the influence of the environmental conditions on the Raman spectra. Measurements performed under conditions different in temperature or pressure from normal environmental condition on Earth might have an influence on Raman spectra [1-3]. Here Raman spectra of Mars relevant minerals are presented. The analysis is made in vacuum, and with pressure, temperature, and atmospheric composition corresponding to environmental conditions on Mars and for comparison on Earth.

  13. Thermal Diffusivity for III-VI Semiconductor Melts at Different Temperatures

    NASA Technical Reports Server (NTRS)

    Ban, H.; Li, C.; Lin, B.; Emoto, K.; Scripa, R. N.; Su, C.-H.; Lehoczky, S. L.

    2004-01-01

    The change of the thermal properties of semiconductor melts reflects the structural changes inside the melts, and a fundamental understanding of this structural transformation is essential for high quality semiconductor crystal growth process. This paper focused on the technical development and the measurement of thermal properties of III-VI semiconductor melts at high temperatures. Our previous work has improved the laser flash method for the specialized quartz sample cell. In this paper, we reported the results of our recent progress in further improvements of the measurement system by minimizing the free convection of the melt, adding a front IR detector, and placing the sample cell in a vacuum environment. The results for tellurium and selenium based compounds, some of which have never been reported in the literature, were obtained at different temperatures as a function of time. The data were compared with other measured thermophysical properties to shed light on the structural transformations of the melt.

  14. Studies of Water Absorption Behavior of Plant Fibers at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Saikia, Dip

    2010-05-01

    Moisture absorption of natural fiber plastic composites is one major concern in their outdoor applications. The absorbed moisture has many detrimental effects on the mechanical performance of these composites. A knowledge of the moisture diffusivity, permeability, and solubility is very much essential for the application of natural fibers as an excellent reinforcement in polymers. An effort has been made to study the water absorption behavior of some natural fibers such as bowstring hemp, okra, and betel nut at different temperatures to improve the long-term performance of composites reinforced with these fibers. The gain in moisture content in the fibers due to water absorption was measured as a function of exposure time at temperatures ranging from 300 K to 340 K. The thermodynamic parameters of the sorption process, such as diffusion coefficients and corresponding activation energies, were estimated.

  15. Ultra-broadband room-temperature terahertz quantum cascade laser sources based on difference frequency generation.

    PubMed

    Fujita, Kazuue; Hitaka, Masahiro; Ito, Akio; Yamanishi, Masamichi; Dougakiuchi, Tatsuo; Edamura, Tadataka

    2016-07-25

    We present ultra-broadband room temperature monolithic terahertz quantum cascade laser (QCL) sources based on intra-cavity difference frequency generation, emitting continuously more than one octave in frequency between 1.6 and 3.8 THz, with a peak output power of ~200 μW. Broadband terahertz emission is realized by nonlinear mixing between single-mode and multi-mode spectra due to distributed feedback grating and Fabry-Perot cavity, respectively, in a mid-infrared QCL with dual-upper-state active region design. Besides, at low temperature of 150 K, the device produces a peak power of ~1.0 mW with a broadband THz emission centered at 2.5 THz, ranging from 1.5 to 3.7 THz.

  16. Differences in SOM decomposition and temperature sensitivity among soil aggregate size classes in a temperate grasslands.

    PubMed

    Wang, Qing; Wang, Dan; Wen, Xuefa; Yu, Guirui; He, Nianpeng; Wang, Rongfu

    2015-01-01

    The principle of enzyme kinetics suggests that the temperature sensitivity (Q10) of soil organic matter (SOM) decomposition is inversely related to organic carbon (C) quality, i.e., the C quality-temperature (CQT) hypothesis. We tested this hypothesis by performing laboratory incubation experiments with bulk soil, macroaggregates (MA, 250-2000 μm), microaggregates (MI, 53-250 μm), and mineral fractions (MF, <53 μm) collected from an Inner Mongolian temperate grassland. The results showed that temperature and aggregate size significantly affected on SOM decomposition, with notable interactive effects (P<0.0001). For 2 weeks, the decomposition rates of bulk soil and soil aggregates increased with increasing incubation temperature in the following order: MA>MF>bulk soil >MI(P <0.05). The Q10 values were highest for MA, followed (in decreasing order) by bulk soil, MF, and MI. Similarly, the activation energies (Ea) for MA, bulk soil, MF, and MI were 48.47, 33.26, 27.01, and 23.18 KJ mol-1, respectively. The observed significant negative correlations between Q10 and C quality index in bulk soil and soil aggregates (P<0.05) suggested that the CQT hypothesis is applicable to soil aggregates. Cumulative C emission differed significantly among aggregate size classes (P <0.0001), with the largest values occurring in MA (1101 μg g-1), followed by MF (976 μg g-1) and MI (879 μg g-1). These findings suggest that feedback from SOM decomposition in response to changing temperature is closely associated withsoil aggregation and highlights the complex responses of ecosystem C budgets to future warming scenarios.

  17. Basal and maximal metabolic rates differ in their response to rapid temperature change among avian species.

    PubMed

    Dubois, Karine; Hallot, Fanny; Vézina, François

    2016-10-01

    In birds, acclimation and acclimatization to temperature are associated with changes in basal (BMR), summit (Msum) and maximal (MMR) metabolic rates but little is known about the rate at which species adjust their phenotype to short-term temperature variations. Our aims were (1) to determine the pattern of metabolic adjustments following a rapid temperature change, (2) to determine whether performance varies at similar rates during exposure to warm or cold environments, and (3) to determine if BMR, Msum and MMR change at comparable rates during thermal acclimation. We measured these parameters in white-throated sparrows (Zonotrichia albicollis), black-capped chickadees (Poecile atricapillus), and snow buntings (Plectrophenax nivalis) after acclimation to 10 °C (day 0) and on the 4th and 8th days of acclimation to either -5 or 28 °C. Birds changed their metabolic phenotype within 8 days with patterns differing among species. Sparrows expressed the expected metabolic increases in the cold and decreases at thermoneutrality while performance in chickadees and buntings was not influenced by temperature but changed over time with inverse patterns. Our results suggest that BMR varies at comparable rates in warm and cold environments but changes faster than Msum and MMR, likely due to limitations in the rate of change in organ size and function. They also suggest that maximal metabolic capacity is lost faster in a warm environment than it is gained in a cold environment. With the expected increase in temperature stochasticity at northern latitudes, a loss of thermogenic capacity during warm winter days could, therefore, be detrimental if birds are slow to readjust their phenotype with the return of cold days.

  18. Life table of Tamarixia radiata (Hymenoptera: Eulophidae) on Diaphorina citri (Hemiptera: Psyllidae) at different temperatures.

    PubMed

    Gómez-Torres, Mariuxi Lorena; Nava, Dori Edson; Parra, José Roberto Postali

    2012-04-01

    Tamarixia radiata (Waterston, 1922) is the main parasitoid of Diaphorina citri (Kuwayama, 1907), and has been used in classical biological control programs in several countries. The current study investigated the biology and determined the fertility life table of T. radiata in different temperatures, to obtain information to support the establishment of a biological control program for D. citri in Brazil. Fifth-instar nymphs of D. citri were offered to females of T. radiata for parasitism, for 24 h. Then, the parasitoid was removed and the nymphs were placed in incubators at 15, 20, 25, 30, or 35 +/- 1 degrees C, 70 +/- 10% RH, and a 14-h photophase. The percentages of parasitism and emergence, the sex ratio, and the preimaginal period of T. radiata were determined. The fertility life table was developed from the biological data. The highest parasitism rate (77.24%) was obtained at a temperature of 26.3 degrees C, and the lowest parasitism rates occurred at 15 and 35 degrees C (23.1 and 40.2%, respectively). The highest percentages of emergence of the parasitoid occurred at 25, 30, and 35 degrees C (86.7, 88.3, and 78.8%, respectively), with the calculated peak at 30.8 degrees C (89.90%). The duration of the preimaginal developmental period for both females and males of T. radiata was inversely proportional to temperature in the thermal range of 15-35 degrees C. The development of T. radiata occurred at all temperatures studied, and the highest viability of the preimaginal period occurred at 25 degrees C. The highest values of net reproductive rate and finite growth ratio (lambda) were observed at 25 degrees C, so that in each generation the population of T. radiata increased 126.79 times, higher than the values obtained at the other temperatures.

  19. Survival kinetics of Listeria monocytogenes on raw sheep milk cured cheese under different storage temperatures.

    PubMed

    Valero, Antonio; Hernandez, Marta; De Cesare, Alessandra; Manfreda, Gerardo; González-García, Patricia; Rodríguez-Lázaro, David

    2014-08-01

    Raw sheep milk cured cheese produced in the Castilla y Leon region (Spain) constitutes a traditional semi-hard aromatic cheese typically aged for three to six months. This product is catalogued as ready-to-eat since it is not submitted to any further treatment before consumption. Thus, foodborne pathogens such as Listeria monocytogenes can represent a health concern for susceptible consumers. This study was aimed at evaluating the survival of L. monocytogenes on raw sheep milk cured cheese under different storage temperatures. Log-linear+shoulder and Weibull type models were fitted to data observed in order to estimate kinetic parameters. The Arrhenius relationship was further used to predict the impact of temperature on L. monocytogenes behavior during storage at 4, 12 and 22°C. Additionally, growth of lactic acid bacteria (LAB) as a representative group of the indigenous microbiota was evaluated. Results obtained indicated that the time to eradication (time when absence of L. monocytogenes in the analyzed samples was observed) was 114, 104, and 77 days for cheese samples stored at 4, 12 and 22°C, respectively. The LAB population showed an increase at 12 and 22°C during storage. However, an increase of 1 log CFU/g was observed during the first 2 weeks irrespectively of the storage temperature. The log-linear+shoulder model indicated a good fit to observed data. Likewise, the Arrhenius relationship explained sufficiently the dependency of temperature on L. monocytogenes behavior. This study demonstrated that cheese storage at ambient temperatures could lead to the preservation of its quality properties as well as its safety against L. monocytogenes.

  20. Tuning the hopping conductivity of WO3 films by ion bombardment at different temperatures

    NASA Astrophysics Data System (ADS)

    Heinz, B.; Merz, M.; Widmayer, P.; Ziemann, P.

    2001-10-01

    WO3 films, either prepared by sputtering or evaporation under high or ultrahigh vacuum conditions, were irradiated with He+ and Ar+ ions (energy range 300-350 keV) at ambient and low temperatures (77-100 K). The resulting ion induced changes of the optical absorption as well as of the electrical conductivity could be determined on one and the same sample, which enables the variable range hopping (VRH) model to be tested under the assumption that the density of irradiation induced color centers is proportional to the electronic density of states contributing to the hopping conductivity. It is found that the data obtained at 300 K for He+ and Ar+ bombardment can be described within the VRH model by one common conductivity versus absorption curve, even though the effectiveness per projectile of the heavier ion for coloration as well as for increasing the conductivity is much higher. This is different at low temperatures. While the ion induced coloration is practically independent of the irradiation temperature for both projectiles, the effectiveness per projectile to enhance the conductivity is interchanged. This is attributed to the additional damage produced by the heavier ion at low temperatures resulting in strongly impeded hopping processes. Consistent with the VRH model, the temperature dependence of the conductivity of ion bombarded WO3 films follow the Mott "T-1/4" law, if the ion induced conductivity is not too high. For very high ion fluences clear deviations from the VRH model are observed for the conductivity versus absorption curves accompanied by a shift of the above power laws from T-1/4 towards T-1/2.

  1. Basal and maximal metabolic rates differ in their response to rapid temperature change among avian species.

    PubMed

    Dubois, Karine; Hallot, Fanny; Vézina, François

    2016-10-01

    In birds, acclimation and acclimatization to temperature are associated with changes in basal (BMR), summit (Msum) and maximal (MMR) metabolic rates but little is known about the rate at which species adjust their phenotype to short-term temperature variations. Our aims were (1) to determine the pattern of metabolic adjustments following a rapid temperature change, (2) to determine whether performance varies at similar rates during exposure to warm or cold environments, and (3) to determine if BMR, Msum and MMR change at comparable rates during thermal acclimation. We measured these parameters in white-throated sparrows (Zonotrichia albicollis), black-capped chickadees (Poecile atricapillus), and snow buntings (Plectrophenax nivalis) after acclimation to 10 °C (day 0) and on the 4th and 8th days of acclimation to either -5 or 28 °C. Birds changed their metabolic phenotype within 8 days with patterns differing among species. Sparrows expressed the expected metabolic increases in the cold and decreases at thermoneutrality while performance in chickadees and buntings was not influenced by temperature but changed over time with inverse patterns. Our results suggest that BMR varies at comparable rates in warm and cold environments but changes faster than Msum and MMR, likely due to limitations in the rate of change in organ size and function. They also suggest that maximal metabolic capacity is lost faster in a warm environment than it is gained in a cold environment. With the expected increase in temperature stochasticity at northern latitudes, a loss of thermogenic capacity during warm winter days could, therefore, be detrimental if birds are slow to readjust their phenotype with the return of cold days. PMID:27233918

  2. The Statistical Differences Between the Gridded Temperature Datasets, and its Implications for Stochastic Modelling

    NASA Astrophysics Data System (ADS)

    Fredriksen, H. B.; Løvsletten, O.; Rypdal, M.; Rypdal, K.

    2014-12-01

    Several research groups around the world collect instrumental temperature data and combine them in different ways to obtain global gridded temperature fields. The three most well known datasets are HadCRUT4 produced by the Climatic Research Unit and the Met Office Hadley Centre in UK, one produced by NASA GISS, and one produced by NOAA. Recently Berkeley Earth has also developed a gridded dataset. All these four will be compared in our analysis. The statistical properties we will focus on are the standard deviation and the Hurst exponent. These two parameters are sufficient to describe the temperatures as long-range memory stochastic processes; the standard deviation describes the general fluctuation level, while the Hurst exponent relates the strength of the long-term variability to the strength of the short-term variability. A higher Hurst exponent means that the slow variations are stronger compared to the fast, and that the autocovariance function will have a stronger tail. Hence the Hurst exponent gives us information about the persistence or memory of the process. We make use of these data to show that data averaged over a larger area exhibit higher Hurst exponents and lower variance than data averaged over a smaller area, which provides information about the relationship between temporal and spatial correlations of the temperature fluctuations. Interpolation in space has some similarities with averaging over space, although interpolation is more weighted towards the measurement locations. We demonstrate that the degree of spatial interpolation used can explain some differences observed between the variances and memory exponents computed from the various datasets.

  3. Film Thickness and Flow Properties of Resin-Based Cements at Different Temperatures

    PubMed Central

    Bagheri, R

    2013-01-01

    Statement of Problem: For a luting agent to allow complete seating of prosthetic restorations, it must obtain an appropriate flow rate maintaining a minimum film thickness. The performance of recently introduced luting agents in this regard has not been evaluated. Purpose: To measure and compare the film thickness and flow properties of seven resin-containing luting cements at different temperatures (37°C, 25°C and10°C). Material and Methods: Specimens were prepared from five resin luting cements; seT (SDI), Panavia F (Kuraray), Varioloink II (Ivoclar), Maxcem (Kerr), Nexus2 (Kerr) and two resin-modified glass-ionomer luting cements (RM-GICs); GC Fuji Plus (GC Corporation), and RelyX Luting 2 (3 M/ESPE). The film thickness and flow rate of each cement (n=15) was determined using the test described in ISO at three different temperatures. Results: There was a linear correlation between film thickness and flow rate for most of the materials. Cooling increased fluidity of almost all materials while the effect of temperature on film thickness was material dependent. At 37°C, all products revealed a film thickness of less than 25µm except for GC Fuji Plus. At 25°C, all cements produced a film thickness of less than 27 µm except for seT. At 10°C, apart from seT and Rely X Luting 2, the remaining cements showed a film thickness smaller than 20 µm. Conclusion: Cooling increased fluidity of almost all materials, however. the film thickness did not exceed 35 µm in either condition, in spite of the lowest film thickness being demonstrated at the lowest temperature. PMID:24724120

  4. Temperature effect on the mechanical properties of gold nano films with different thickness

    NASA Astrophysics Data System (ADS)

    Birleanu, C.; Pustan, M.; Merie, V.; Müller, R.; Voicu, R.; Baracu, A.; Craciun, S.

    2016-08-01

    The microelectronic industry has been growing rapidly over the past 10-20 years, as has its reliance on thin-film deposition techniques for components manufacturing. As modern devices generate quite a bit of heat and peak temperatures can reach over 100°C, there is a need to provide adequate cooling for a device to stay operable. A series of chrome gold films with various thicknesses were prepared on silicon substrate. The structural and surface morphology, adhesion, friction, Young's modulus and hardness of this thin film were studied for three different thicknesses under temperature variations between 20 to 100°C. The variation of the film thickness and temperature affects the structure, surface and mechanical properties of Cr/Au thin films. Obviously these thermal cycles are unavoidable and eventually lead to thermal fatigue damage and device failure. Consequently, the knowledge of mechanical properties of thin films at elevated temperatures is required for proper chip design and reliability assessments. Elastic modulus and hardness are two important mechanical properties of the thin-film structural materials used in microelectromechanical systems. The mechanical properties of electroplated chrome-gold thin film are found to be highly dependent on the manufacturing process and also of the thin film thickness. On the other hand it is important to find the effect of temperature on these properties. Investigated samples are made of thin layers of chromium and gold with differences in thickness. The three levels of nominal thicknesses of Au films are: 100, 300 and 500 nm. In order to obtain the relations between surface pattern/surface chemistry and nanotribological properties and adhesive behaviors of the films were evaluated with a noise- and vibration-isolated and environment-controlled XE 70-AFM from Park Systems, using the contact mode. The tests were performed at temperatures between 10°C - 100°C and at a relative humidity RH of 40%. Each measurement was

  5. Microbial biomass and activity in soils with different moisture content heated at high temperatures

    NASA Astrophysics Data System (ADS)

    Barreiro, Ana; Lombao, Alba; Martin, Angela; Cancelo-González, Javier; Carballas, Tarsy; Díaz-Raviña, Montserrat

    2015-04-01

    It is well known that soil properties determining the thermal transmissivity (moisture, texture, organic matter, etc.) and the duration and temperatures reached during soil heating are key factors driving the fire-induced changes in soil microbial communities. However, despite its interest, the information about this topic is scarce. The aim of the present study is to analyze, under laboratory conditions, the impact of the thermal shock (infrared lamps reaching temperatures of 100 °C, 200 °C and 400 °C) on microbial communities of three acid soils under different moisture level (0 %, 25 % and 50 % per soil volume). Soil temperature was measured with thermocouples and the impact of soil heating was evaluated by means of the analysis of the temperature-time curves calculating the maximum temperature reached (Tmax) and the degree-hours (GH) as an estimation of the amount of heat supplied to the samples (fire severity). The bacterial growth (leucine incorporation) and the total microbial biomass (PLFA) were measured immediately after the heating and one month after the incubation of reinoculated soils. The results showed clearly the importance of moisture level in the transmission of heat through the soil and hence in the further direct impact of high temperatures on microorganisms living in soil. In general, the values of microbial parameters analyzed were low, particularly immediately after soil heating at higher temperatures; the bacterial activity measurements (leucine incorporation technique) being more sensitive to detect the thermal shock showed than total biomass measurements (PLFA). After 1 month incubation, soil microbial communities tend to recover due to the proliferation of surviving population using as substrate the dead microorganisms (soil sterilization). Thus, time elapsed after the heating was found to be decisive when examining the relationships between the microbial properties and the soil heating parameters (GH, Tmax). Analysis of results also

  6. Low temperature embrittlement behaviour of different ferritic-martensitic alloys for fusion applications

    NASA Astrophysics Data System (ADS)

    Rieth, M.; Dafferner, B.

    1996-10-01

    In the last few years a lot of different low activation CrWVTa steels have been developed world-wide. Without irradiation some of these alloys show clearly a better low temperature embrittlement behaviour than commercial CrNiMoV(Nb) alloys. Within the MANITU project a study was carried out to compare, prior to the irradiation program, the embrittlement behaviour of different alloys in the unirradiated condition performing instrumented Charpy impact bending tests with sub-size specimens. The low activation materials (LAM) considered were different OPTIFER alloys (Forschungszentrum Karlsruhe), F82H (JAERI), 9Cr2WVTa (ORNL), and GA3X (PNL). The modified commercial 10-11% CrNiMoVNb steels were MANET and OPTIMAR. A meaningful comparison between these alloys could be drawn, since the specimens of all materials were manufactured and tested under the same conditions.

  7. Fabrication of porous titanium implants by three-dimensional printing and sintering at different temperatures.

    PubMed

    Xiong, Yaoyang; Qian, Chao; Sun, Jian

    2012-01-01

    This study evaluated the feasibility of using three-dimensional printing (3DP) to fabricate porous titanium implants. Titanium powder was blended with a water-soluble binder material. Green, porous, titanium implants fabricated by 3DP were sintered under protective argon atmosphere at 1,200, 1,300, or 1,400°C. Sintered implant prototypes had uniform shrinkage and no obvious shape distortion after sintering. Evaluation of their mechanical properties revealed that titanium prototypes sintered at different temperatures had elastic modulus of 5.9-34.8 GPa, porosity of 41.06-65.01%, hardness of 115.2-182.8 VHN, and compressive strength of 81.3-218.6 MPa. There were significant differences in each type of these data among the different sintering temperatures (p<0.01). Results of this study confirmed the feasibility of fabricating porous titanium implants by 3DP: pore size and pore interconnectivity were conducive to bone cell ingrowth for implant stabilization, and the mechanical properties matched well with those of the human bone. PMID:23037845

  8. Effect of Different Denture Base Materials and Changed Mouth Temperature on Dimensional Stability of Complete Dentures

    PubMed Central

    Arafa, Khalid A. O.

    2016-01-01

    Background. Type of materials used in fabrication of denture base has an effect on dimension during denture base material processing and other factors related to clinical use. Objective. The study aims were to assess the dimensional stability including thermal changes of three different denture base materials. Methods. Ninety patients were selected to construct complete dentures with different denture base materials. They were randomly divided into three groups: group 1, patients with cobalt chrome metallic base; group 2, patients with heat curing acrylic resin fabricated by injection moulding technique; and group 3, patients with denture bases fabricated by conventional heat curing acrylic resin. The dimensional changes were assessed using digital caliper. Results. After the twelfth month, injection moulding acrylic resin had significantly the highest dimensional change followed by the conventional heat curing acrylic resin. There were no significant differences in the dimensions between the three types of denture base materials at normal mouth temperature, while, after hot tea drinking at 45°C, the dimensional change was significantly the highest in cobalt chrome metallic denture base group. Conclusion. Cobalt chrome metallic denture base has stable dimension compared to denture bases fabricated of acrylic resin but it was more affected by altered mouth temperature. The study was registered in the International Standard Randomized Controlled Trials Number (ISRCTN) registry with study ID (ISRCTN94238244). PMID:27143970

  9. Effect of Different Denture Base Materials and Changed Mouth Temperature on Dimensional Stability of Complete Dentures.

    PubMed

    Arafa, Khalid A O

    2016-01-01

    Background. Type of materials used in fabrication of denture base has an effect on dimension during denture base material processing and other factors related to clinical use. Objective. The study aims were to assess the dimensional stability including thermal changes of three different denture base materials. Methods. Ninety patients were selected to construct complete dentures with different denture base materials. They were randomly divided into three groups: group 1, patients with cobalt chrome metallic base; group 2, patients with heat curing acrylic resin fabricated by injection moulding technique; and group 3, patients with denture bases fabricated by conventional heat curing acrylic resin. The dimensional changes were assessed using digital caliper. Results. After the twelfth month, injection moulding acrylic resin had significantly the highest dimensional change followed by the conventional heat curing acrylic resin. There were no significant differences in the dimensions between the three types of denture base materials at normal mouth temperature, while, after hot tea drinking at 45°C, the dimensional change was significantly the highest in cobalt chrome metallic denture base group. Conclusion. Cobalt chrome metallic denture base has stable dimension compared to denture bases fabricated of acrylic resin but it was more affected by altered mouth temperature. The study was registered in the International Standard Randomized Controlled Trials Number (ISRCTN) registry with study ID (ISRCTN94238244).

  10. Evaluating Fracture Toughness of Rolled Zircaloy-2 at Different Temperatures Using XFEM

    NASA Astrophysics Data System (ADS)

    Goel, Sunkulp; Kumar, Nikhil; Fuloria, Devasri; Jayaganthan, R.; Singh, I. V.; Srivastava, D.; Dey, G. K.; Saibaba, N.

    2016-09-01

    Fracture toughness and mechanical properties of the zircaloy-2 processed by rolling at different temperatures have been investigated, and simulations have been performed using extended finite element method (XFEM). The solutionized alloy was rolled at different temperatures for different thickness reductions (25-85%). Fracture toughness has been investigated by compact tension test. The improved fracture toughness of the rolled zircaloy-2 samples is due to high dislocation density. SEM image of the fractured surface shows the reduction in dimple sizes with the increase in dislocation density due to the formation of microvoids as a result of severe strain induced during rolling. Compact tension test, edge crack, center crack and three-point bend specimen simulations have been performed by XFEM. In XFEM, the cracks are not a part of finite element mesh and are modeled by adding enrichment function in the standard finite element displacement approximation. The XFEM results obtained for compact tension test have been found to be in good agreement with the experiment.

  11. The effect of temperature differences on the distribution of an airborne contaminant in an experimental room.

    PubMed

    Lee, Eungyoung; Feigley, Charles E; Khan, Jamil A; Hussey, James R

    2006-07-01

    Estimating exposure to contaminants emitted into workroom air is essential for worker protection. Although contaminant concentrations are often not spatially uniform within workrooms, many methods for estimating exposure do not adequately account for this variability. Here the impact of temperature differences within a room on spatial contaminant distribution was studied. Tracer gas (99.5% propylene) concentrations were monitored automatically at 144 sampling points with a photoionization detector. One wall was chosen to represent a building's external wall and was heated or cooled to simulate summer or winter conditions. Experiments were preformed at two flow rates (5.5 and 3.3 m(3) min(-1)) and six thermal conditions (isothermal, three summer conditions and two winter conditions). For 5.5 m(3) min(-1) and all thermal conditions, the coefficient of variation (CV) ranged from 0.34 to 0.45 and the normalized average concentrations were similar. For 3.3 m(3) min(-1), winter conditions produced greater spatial variability of concentration (CV = 0.72 and 1.10) than isothermal or summer conditions (CV range = 0.29-0.34). Tests simulating winter conditions suggest that the resulting stable temperature structure inhibited the dilution of the tracer and enhanced its segregation in the lower portion of the room, especially for the lower flow rate (3.3 m(3) min(-1)). Therefore, not explicitly addressing thermal effect in exposure modeling may impact the estimated accuracy and precision when used for rooms that are non-isothermal and not well mixed. These findings also have implications for air monitoring. Dispersion patterns for different thermal conditions were found to be substantially different, even when the mean concentrations were nearly the same. Thus, monitoring data from a single season should not be taken as representative of the entire year, when summer and winter conditions create temperature gradients in a room.

  12. Role of different scattering mechanisms on the temperature dependence of transport in graphene

    PubMed Central

    Sarkar, Suman; Amin, Kazi Rafsanjani; Modak, Ranjan; Singh, Amandeep; Mukerjee, Subroto; Bid, Aveek

    2015-01-01

    Detailed experimental and theoretical studies of the temperature dependence of the effect of different scattering mechanisms on electrical transport properties of graphene devices are presented. We find that for high mobility devices the transport properties are mainly governed by completely screened short range impurity scattering. On the other hand, for the low mobility devices transport properties are determined by both types of scattering potentials - long range due to ionized impurities and short range due to completely screened charged impurities. The results could be explained in the framework of Boltzmann transport equations involving the two independent scattering mechanisms. PMID:26608479

  13. Charge-discharge characteristics of the mesocarbon microbeads heat-treated at different temperatures

    SciTech Connect

    Mabuchi, Akihiro; Tokumitsu, Katsuhisa; Fujimoto, Hiroyuki; Kasuh, Takahiro

    1995-04-01

    Mesocarbon microbeads (MCMB) is one of the promising carbon materials as anodes for rechargeable lithium batteries among commercially available carbon materials. have examined the correlation between carbon structures and charge-discharge characteristics of the MCMBs prepared at different heat-treatment temperatures. It was found that the MCMB heat-treated at 700 C possesses a tremendously high charge-discharge capacity of 750 Ah/kg. This suggests that there is another mechanism for the charge-discharge reaction besides a graphite intercalation compound mechanism which is well known. Therefore, the authors propose a cavity mechanism in which intercrystallite spaces in MCMB are capable of storing lithium species.

  14. Hawking radiation temperatures in non-stationary Kerr black holes with different tortoise coordinate transformations

    NASA Astrophysics Data System (ADS)

    Lan, X. G.; Jiang, Q. Q.; Wei, L. F.

    2012-04-01

    We apply the Damour-Ruffini-Sannan method to study the Hawking radiations of scalar and Dirac particles in non-stationary Kerr black holes under different tortoise coordinate transformations. We found that all the relevant Hawking radiation spectra show still the blackbody ones, while the Hawking temperatures are strongly related to the used tortoise coordinate transformations. The properties of these dependences are discussed analytically and numerically. Our results imply that proper selections of tortoise coordinate transformations should be important in the studies of Hawking radiations and the correct selection would be given by the experimental observations in the future.

  15. Active transport of the Ca(2+)-pump: introduction of the temperature difference as a driving force.

    PubMed

    Lervik, Anders; Bedeaux, Dick; Kjelstrup, Signe

    2013-05-01

    We analyse a kinetic cycle of the Ca(2+)-ATPase molecular pump using mesoscopic non-equilibrium thermodynamics. The pump is known to generate heat, and by analysing the operation on the mesoscopic level, we are able to introduce a temperature difference and the corresponding heat flux in the description. Integration over the internal coordinates then results in non-linear flux-force relations describing the operation of the pump on the macroscopic level. Specifically, we obtain an expression for the heat flux associated with the active transport and the coupling of heat effects to the transport of ions and the rate of the ATP-hydrolysis.

  16. Electrical resistance of CNT-PEEK composites under compression at different temperatures

    PubMed Central

    2011-01-01

    Electrically conductive polymers reinforced with carbon nanotubes (CNTs) have generated a great deal of scientific and industrial interest in the last few years. Advanced thermoplastic composites made of three different weight percentages (8%, 9%, and 10%) of multiwalled CNTs and polyether ether ketone (PEEK) were prepared by shear mixing process. The temperature- and pressure-dependent electrical resistance of these CNT-PEEK composites have been studied and presented in this paper. It has been found that electrical resistance decreases significantly with the application of heat and pressure. PMID:21711952

  17. Electrical resistance of CNT-PEEK composites under compression at different temperatures

    NASA Astrophysics Data System (ADS)

    Mohiuddin, Mohammad; van Hoa, Suong

    2011-06-01

    Electrically conductive polymers reinforced with carbon nanotubes (CNTs) have generated a great deal of scientific and industrial interest in the last few years. Advanced thermoplastic composites made of three different weight percentages (8%, 9%, and 10%) of multiwalled CNTs and polyether ether ketone (PEEK) were prepared by shear mixing process. The temperature- and pressure-dependent electrical resistance of these CNT-PEEK composites have been studied and presented in this paper. It has been found that electrical resistance decreases significantly with the application of heat and pressure.

  18. Response of largemouth bass (Micropterus salmoides) from different thermal environments to increased water temperature.

    PubMed

    Mulhollem, Joshua J; Suski, Cory D; Wahl, David H

    2015-08-01

    Due to concerns of global climate change, additional research is needed to quantify the thermal tolerance of species, and how organisms are able to adapt to changes in thermal regime. We quantified the thermal tolerance and thermal stress response of a temperate sportfish from two different thermal environments. One group of largemouth bass (Micropterus salmoides) inhabited thermally enhanced reservoirs (used for power plant cooling), with water temperatures typically 2-5°C warmer than nearby reservoirs. We tested fish for chronic thermal maxima and reaction to an 8°C heat shock using three common physiological indices of stress. We observed no evidence of differences between groups in thermal maxima. We observed no differences in thermal maxima between fish from artificially warmed and natural systems. Our results disagree with research, suggesting differences due to adaptation to different thermal environments. We speculate that behavioral modifications, lack of adequate time for genetic divergence, or the robust genetic plasticity of largemouth bass explain the lack of difference between treatment groups. PMID:25869216

  19. Response of largemouth bass (Micropterus salmoides) from different thermal environments to increased water temperature.

    PubMed

    Mulhollem, Joshua J; Suski, Cory D; Wahl, David H

    2015-08-01

    Due to concerns of global climate change, additional research is needed to quantify the thermal tolerance of species, and how organisms are able to adapt to changes in thermal regime. We quantified the thermal tolerance and thermal stress response of a temperate sportfish from two different thermal environments. One group of largemouth bass (Micropterus salmoides) inhabited thermally enhanced reservoirs (used for power plant cooling), with water temperatures typically 2-5°C warmer than nearby reservoirs. We tested fish for chronic thermal maxima and reaction to an 8°C heat shock using three common physiological indices of stress. We observed no evidence of differences between groups in thermal maxima. We observed no differences in thermal maxima between fish from artificially warmed and natural systems. Our results disagree with research, suggesting differences due to adaptation to different thermal environments. We speculate that behavioral modifications, lack of adequate time for genetic divergence, or the robust genetic plasticity of largemouth bass explain the lack of difference between treatment groups.

  20. Size distribution of carbon layer planes in biochar from different plant type of feedstock with different heating temperatures.

    PubMed

    Lu, Guan-Yang; Ikeya, Kosuke; Watanabe, Akira

    2016-11-01

    Biochar application to soil is a strategy to decelerate the increase in the atmospheric carbon concentration. The composition of condensed aromatic clusters appears to be an important determinant of the degradation rate of char in soil. The objective of the present study was to determine the size distribution of carbon layer planes in biochars produced from different types of feedstock (a broadleaf and a coniferous tree and two herbs) using different heating treatment temperatures (HTT; 400 °C-800 °C) using X-ray diffraction 11 band profile analysis. (13)C nuclear magnetic resonance with the phase-adjusted spinning side bands of the chars indicated different spectral features depending on the HTT and similar carbon composition among the plant types at each HTT. Both the content and composition of carbon layer planes in biochar produced using the same HTT were also similar among the plant types. The carbon layer plane size in the 400 °C and 600 °C chars was distributed from 0.24 to 1.68 or 1.92 nm (corresponding to 37 or 52 rings) with the mean size of 0.79-0.92 and 0.80-1.14 nm, respectively. The carbon layer planes in the 800 °C chars ranged from 0.72-0.96 nm (7-14 rings) to 2.64-3.60 nm (91-169 rings) and the mean values were 1.47-1.89 nm. The relative carbon layer plane content in the 600 °C and 800 °C chars was typically 2 and 3 times that in the 400 °C chars. These results indicate the progression of the formation and/or the size development of graphite-like structures, suggesting that a char produced at a higher HTT would have better carbon sequestrating characteristics. PMID:27537403

  1. Temperature dependence of the optical properties of VO2 deposited on sapphire with different orientations

    NASA Astrophysics Data System (ADS)

    Nazari, Mohammad; Zhao, Yong; Kuryatkov, Vladimir; Fan, Zhaoyang; Bernussi, Ayrton; Holtz, Mark

    2012-10-01

    Vanadium dioxide exhibits a reversible first-order metal-insulator phase transition (MIT) at temperature TMIT= 350 K. The transformation brings structural phase transition and abrupt changes in electrical conductivity and optical properties. Despite intensive studies of this material, little is understood about the optical properties and their connection with the structural properties across the phase transition. We report spectroscopic ellipsometry and Raman investigations of the optical properties of vanadium dioxide on sapphire substrates with c-, m- and r- orientations. For the m- and r-plane substrates, VO2 is strained such that the material transforms from the monoclinic M1 phase directly to the rutile R structure. In contrast, c-plane sapphire produces strains favoring transformation from M1 into monoclinic M2 material, prior to reaching the R phase. These structural differences result in distinct variations of the optical transitions observed in the ellipsometry results. While in m-plane sample the energy gap collapses over a narrow temperature range, for the c-plane case, a broad temperature range is obtained over which the energy gap is small but not fully collapsed. Raman studies show diverse phonon behavior across the phase transitions.

  2. Influence of different rubber dam application on intraoral temperature and relative humidity.

    PubMed

    Haruyama, Akiko; Kameyama, Atsushi; Tatsuta, Chihiro; Ishii, Kurumi; Sugiyama, Toshiko; Sugiyama, Setsuko; Takahashi, Toshiyuki

    2014-01-01

    The purpose of this study was to investigate the effect of type of rubber dam and application method on the moisture exclusion effect. The intraoral temperature and relative humidity were compared among various moisture exclusion appliances. Various dry field techniques were applied to 5 subjects and intraoral temperature and relative humidity measured 5 min after placing a digital hygro-thermometer in the mouth. The relative humidity was 100% in all subjects when moisture was excluded by means of cotton rolls alone. When only tooth 36 was exposed, relative humidity was significantly lower with latex, urethane, or 3-dimensional sheets than with cotton rolls alone, and was similar to the level of humidity in the room. When a local rubber dam was used, the relative humidity was significantly higher than the indoor humidity (p<0.05). No significant differences were noted in the intraoral temperature or relative humidity between exposure of 4 teeth and 1 tooth, but variation in the relative humidity was more marked in 4- than in 1-tooth exposure. The creation of an air vent did not influence the moisture exclusion effect. These results suggest that the rubber dam isolation technique excludes moisture to a level equivalent to the humidity in the room when only a single tooth is exposed, but the moisture exclusion effect may be inconsistent when several teeth are exposed.

  3. Structures and relative stabilities of ammonia clusters at different temperatures: DFT vs. ab initio.

    PubMed

    Malloum, Alhadji; Fifen, Jean Jules; Dhaouadi, Zoubeida; Engo, Serge Guy Nana; Jaidane, Nejm-Eddine

    2015-11-21

    A hydrogen bond network in ammonia clusters plays a key role in understanding the properties of species embedded in ammonia. This network is dictated by the structures of neutral ammonia clusters. In this work, structures of neutral ammonia clusters (NH3)n(=2-10) have been studied at M06-2X/6-31++G(d,p) and MP2/6-31++g(d,p) levels of theory. The analysis of the relative stabilities of various hydrogen bond types has also been studied and vibrational spectroscopy of the ammonia pentamer and decamer is investigated. We noted that M06-2X provides lower electronic energies, greater binding energies and higher structural resolution than MP2. We also noted that at the M06-2X level of theory, the binding energy converges to the experimental vaporization enthalpy faster than that at the MP2 level of theory. As a result, it is found that the M06-2X functional could be more suitable than the MP2 ab initio method in the description of structures and energies of ammonia clusters. However, we found that the electronic energy differences obtained at both levels of computation follow a linear relation with n (number of ammonia molecules in a cluster). As far as the structures of ammonia clusters are concerned, we proposed new "significant" isomers that have not been reported previously. The most remarkable is the global minimum electronic energy structure of the ammonia hexamer, which has an inversion centre and confirms experimental observation. Moreover, we reported the relative stabilities of neutral ammonia clusters for temperatures ranging from 25 to 400 K. The stability of isomers changes with the increase of the temperature. As a result, the branched and less bonded isomers are the most favored at high temperatures and disfavored at low temperatures, while compact and symmetric isomers dominate the population of clusters at low temperatures. In fine, from this work, the global minimum energy structures of ammonia clusters are known for the first time at a given temperature

  4. Impact response characteristics of a cyclotetramethylene tetranitramine based polymer-bonded explosives under different temperatures

    NASA Astrophysics Data System (ADS)

    Xiaogan, Dai; Yushi, Wen; Hui, Huang; Panjun, Zhang; Maoping, Wen

    2013-09-01

    The temperature-impact safety correlation of a cyclotetramethylene tetranitramine (HMX) based polymer-bonded explosive (PBX) was investigated. Matrix of tests was determined by projectile velocities in the range of 160 m/s-370 m/s and five temperature cases of 28 °C (room temperature), 75 °C, 105 °C, 160 °C, and 195 °C. The safety performance under thermal-impact combined environment was evaluated by high speed camera and air over-pressure gauges. The samples before and after impact were compared by the scanning electron microscope. The mechanical performance and thermal decomposition under different temperatures were also studied by mechanics machine and the thermo gravimetric analysis technique. The phase transition of PBX-2 is investigated by XRD spectrograph. The results show that the reaction threshold of unheated explosive is between 263.5 m/s and 269.9 m/s. While heated to 75 °C and 105 °C, the values are increased to 316 m/s-367 m/s and 286 m/s-298.3 m/s, respectively. However, the threshold is less than 176 m/s at 160 °C and the threshold at 195 °C is even lower, which is less than 166.7 m/s. According to the temperature histories, the pictures of wreckages, the over-pressures, the mechanical performance, the thermal decomposition, and phase transition properties, some conclusions can be drawn. First of all, compared with unheated case, the impact safety of PBX-2 is improved at both 75 °C and 105 °C by a softened, easy-flowing, and energy absorbing mechanical properties. Secondly, at 160 °C, the impact safety becomes worse due to the thermal decomposition. Thirdly, when the temperature reaches or exceeds the β → δ phase transition range, the impact safety of PBX-2 becomes significantly worse.

  5. Differences in lipid characteristics among populations: low-temperature adaptability of ayu, Plecoglossus altivelis.

    PubMed

    Xue, Changhu; Okabe, Masaya; Saito, Hiroaki

    2012-01-01

    The lipid and fatty acid compositions of the total lipids of three cultured populations (migratory between fresh and salt water, Lake Biwa landlocked, and Setogawa River forms) of ayu, Plecoglossus altivelis, were investigated to clarify the difference in lipid characteristics and temperature adaptability among the three groups. Triacylglycerols were the dominant depot lipids of the three populations, while phospholipids, such as phosphatidylcholine and phosphatidylethanolamine, were found to be the major components of the polar lipids, and their lipid classes are similar to each other. The major fatty acids in the triacylglycerols of all specimens were 16:0, 18:0, 16:1n-7, 18:1n-7, 18:1n-9, 18:2n-6 (linoleic acid), 20:5n-3 (EPA, icosapentaenoic acid), and 22:6n-3 (DHA, docosahexaenoic acid), similar to the tissue phospholipids of the three populations, 16:0, 18:0, 16:1n-7, 18:1n-7, 18:1n-9, 18:2n-6, 20:4n-6, EPA, and DHA. All classes had high levels of 18:2n-6, which originates from their dietary lipids. Compared with the lower DHA levels of the triacylglycerols, the higher levels in the phospholipids suggest their selective accumulation or a biosynthetic pathway to DHA as in freshwater fish. Two populations (the migratory and Setogawa River forms) adapted to lower temperatures with comparatively high levels of polyunsaturated fatty acids (PUFA) for their membrane fluidities. With significantly higher levels of n-3 PUFA and total PUFA, the mean DHA content in the lipids of the Setogawa River form (the population that adapted to lower temperatures) was significantly higher than that of the migratory form. From these results, we concluded that the Setogawa River population actively concentrates long-chain PUFA in its polar lipids and has high adaptability to low temperature.

  6. Individual differences in temperature perception: evidence of common processing of sensation intensity of warmth and cold.

    PubMed

    Green, Barry G; Akirav, Carol

    2007-01-01

    The longstanding question of whether temperature is sensed via separate sensory systems for warmth and cold was investigated by measuring individual differences in perception of nonpainful heating and cooling. Sixty-two subjects gave separate ratings of the intensity of thermal sensations (warmth, cold) and nociceptive sensations (burning/stinging/pricking) produced by cooling (29 degrees C) or heating (37 degrees C) local regions of the forearm. Stimuli were delivered via a 4 x 4 array of 8 mm x 8 mm Peltier thermoelectric modules that enabled test temperatures to be presented sequentially to individual modules or simultaneously to the full array. Stimulation of the full array showed that perception of warmth and cold were highly correlated (Pearson r = 0.83, p < 0.05). Ratings of nonpainful nociceptive sensations produced by the two temperatures were also correlated, but to a lesser degree (r = 0.44), and the associations between nociceptive and thermal sensations (r = 0.35 and 0.22 for 37 and 29 degrees C, respectively) were not significant after correction for multiple statistical tests. Intensity ratings for individual modules indicated that the number of responsive sites out of 16 was a poor predictor of temperature sensations but a significant predictor of nociceptive sensations. The very high correlation between ratings of thermal sensations conflicts with the classical view that warmth and cold are mediated by separate thermal modalities and implies that warm-sensitive and cold-sensitive spinothalamic pathways converge and undergo joint modulation in the central nervous system. Integration of thermal stimulation from the skin and body core within the thermoregulatory system is suggested as the possible source of this convergence.

  7. Relating trends in land surface-air temperature difference to soil moisture and evapotranspiration

    NASA Astrophysics Data System (ADS)

    Veal, Karen; Taylor, Chris; Gallego-Elvira, Belen; Ghent, Darren; Harris, Phil; Remedios, John

    2016-04-01

    Soil water is central to both physical and biogeochemical processes within the Earth System. Drying of soils leads to evapotranspiration (ET) becoming limited or "water-stressed" and is accompanied by rises in land surface temperature (LST), land surface-air temperature difference (delta T), and sensible heat flux. Climate models predict sizable changes to the global water cycle but there is variation between models in the time scale of ET decay during dry spells. The e-stress project is developing novel satellite-derived diagnostics to assess the ability of Earth System Models (ESMs) to capture behaviour that is due to soil moisture controls on ET. Satellite records of LST now extend 15 years or more. MODIS Terra LST is available from 2000 to the present and the Along-Track Scanning Radiometer (ATSR) LST record runs from 1995 to 2012. This paper presents results from an investigation into the variability and trends in delta T during the MODIS Terra mission. We use MODIS Terra and MODIS Aqua LST and ESA GlobTemperature ATSR LST with 2m air temperatures from reanalyses to calculate trends in delta T and "water-stressed" area. We investigate the variability of delta T in relation to soil moisture (ESA CCI Passive Daily Soil Moisture), vegetation (MODIS Monthly Normalized Difference Vegetation Index) and precipitation (TRMM Multi-satellite Monthly Precipitation) and compare the temporal and spatial variability of delta T with model evaporation data (GLEAM). Delta T anomalies show significant negative correlations with soil moisture, in different seasons, in several regions across the planet. Global mean delta T anomaly is small (magnitude mostly less than 0.2 K) between July 2002 and July 2008 and decreases to a minimum in early 2010. The reduction in delta T anomaly coincides with an increase in soil moisture anomaly and NDVI anomaly suggesting an increase in evapotranspiration and latent heat flux with reduced sensible heat flux. In conclusion there have been

  8. Changes in exercise and post-exercise core temperature under different clothing conditions.

    PubMed

    Kenny, G P; Reardon, F D; Thoden, J S; Giesbrecht, G G

    1999-07-01

    This study evaluates the effect of different levels of insulation on esophageal (Tes) and rectal (Tre) temperature responses during and following moderate exercise. Seven subjects completed three 18-min bouts of treadmill exercise (75% VO2max, 22 degrees C ambient temperature) followed by 30 min of recovery wearing either: (1) jogging shoes, T-shirt and shorts (athletic clothing); (2) single-knit commercial coveralls worn over the athletic clothing (coveralls); or (3) a Canadian Armed Forces nuclear, bacteriological and chemical warfare protective overgarment with hood, worn over the athletic clothing (NBCW overgarment). Tes was similar at the start of exercise for each condition and baseline Tre was approximately 0.4 degree C higher than Tes. The hourly equivalent rate of increase in Tes during the final 5 min of exercise was 1.8 degrees C, 3.0 degrees C and 4.2 degrees C for athletic clothing, coveralls and NBCW overgarment respectively (P < 0.05). End-exercise Tes was significantly different between conditions [37.7 degrees C (SEM 0.1 degree C), 38.2 degrees C (SEM 0.2 degree C and 38.5 degrees C (SEM 0.2 degree C) for athletic clothing, coveralls and NBCW overgarment respectively)] (P < 0.05). No comparable difference in the rate of temperature increase for Tre was demonstrated, except that end-exercise Tre for the NBCW overgarment condition was significantly greater (0.5 degree C) than that for the athletic clothing condition. There was a drop in Tes during the initial minutes of recovery to sustained plateaus which were significantly (P < 0.05) elevated above pre-exercise resting values by 0.6 degree C, 0.8 degree C and 1.0 degree C, for athletic clothing, coveralls, and NBCW overgarment, respectively. Post-exercise Tre decreased very gradually from end-exercise values during the 30-min recovery. Only the NBCW overgarment condition Tre was significantly elevated (0.3 degree C) above the athletic clothing condition (P < 0.05). In conclusion, Tes is far more

  9. Changes in exercise and post-exercise core temperature under different clothing conditions

    NASA Astrophysics Data System (ADS)

    Kenny, Glen P.; Reardon, Francis D.; Thoden, Jim S.; Giesbrecht, Gordon G.; Kenny, G.

    This study evaluates the effect of different levels of insulation on esophageal (Tes) and rectal (Tre) temperature responses during and following moderate exercise. Seven subjects completed three 18-min bouts of treadmill exercise (75% VO2max, 22°C ambient temperature) followed by 30 min of recovery wearing either: (1) jogging shoes, T-shirt and shorts (athletic clothing); (2) single-knit commercial coveralls worn over the athletic clothing (coveralls); or (3) a Canadian Armed Forces nuclear, bacteriological and chemical warfare protective overgarment with hood, worn over the athletic clothing (NBCW overgarment). Tes was similar at the start of exercise for each condition and baseline Tre was 0.4°C higher than Tes. The hourly equivalent rate of increase in Tes during the final 5 min of exercise was 1.8°C, 3.0°C and 4.2°C for athletic clothing, coveralls and NBCW overgarment respectively (P<0.05). End-exercise Tes was significantly different between conditions [37.7°C (SEM 0.1°C), 38.2°C (SEM 0.2°C and 38.5°C (SEM 0.2°C) for athletic clothing, coveralls and NBCW overgarment respectively)] (P<0.05). No comparable difference in the rate of temperature increase for Tre was demonstrated, except that end-exercise Tre for the NBCW overgarment condition was significantly greater (0.5°C) than that for the athletic clothing condition. There was a drop in Tes during the initial minutes of recovery to sustained plateaus which were significantly (P<0.05) elevated above pre-exercise resting values by 0.6°C, 0.8°C and 1.0°C, for athletic clothing, coveralls, and NBCW overgarment, respectively. Post-exercise Tre decreased very gradually from end-exercise values during the 30-min recovery. Only the NBCW overgarment condition Tre was significantly elevated (0.3°C) above the athletic clothing condition (P<0.05). In conclusion, Tes is far more sensitive in reflecting the heat stress of different levels of insulation during exercise and post-exercise than Tre

  10. Effect of high pressure high temperature processing on the volatile fraction of differently coloured carrots.

    PubMed

    Kebede, Biniam T; Grauwet, Tara; Palmers, Stijn; Vervoort, Liesbeth; Carle, Reinhold; Hendrickx, Marc; Van Loey, Ann

    2014-06-15

    To get deeper insight into the effect of high pressure high temperature (HPHT) processing on the volatile fraction of carrots, differently coloured cultivars exhibiting orange, purple, red and yellow hues were investigated. The impact of HPHT sterilisation was compared with thermal sterilisation based on equivalent microbiological inactivation. The results of this study demonstrated HPHT sterilisation to exert a distinct effect on important chemical reactions in comparison to thermal sterilisation. A comprehensive integration of MS-based metabolomic fingerprinting (HS-SPME-GC-MS) and chemometric tools has been implemented as an untargeted multivariate screening tool to identify differences. In all carrot cultivars, two dominant discriminative quality-related reactions were found: oxidative degradation and the Maillard reaction. Regarding the first reaction, oxidative terpenes, free fatty acids and carotenoids degradation products were detected at higher levels after HPHT sterilisation. Regarding the latter reaction, HPHT sterilisation appeared to suppress the formation of Maillard and Strecker degradation products.

  11. Effects of high temperature on different restorations in forensic identification: Dental samples and mandible

    PubMed Central

    Patidar, Kalpana A; Parwani, Rajkumar; Wanjari, Sangeeta

    2010-01-01

    Introduction: The forensic odontologist strives to utilize the charred human dentition throughout each stage of dental evaluation, and restorations are as unique as fingerprints and their radiographic morphology as well as the types of filling materials are often the main feature for identification. The knowledge of detecting residual restorative material and composition of unrecovered adjacent restoration is a valuable tool-mark in the presumptive identification of the dentition of a burned victim. Gold, silver amalgam, silicate restoration, and so on, have a different resistance to prolonged high temperature, therefore, the identification of burned bodies can be correlated with adequate qualities and quantities of the traces. Most of the dental examination relies heavily on the presence of the restoration as well as the relationship of one dental structure to another. This greatly narrows the research for the final identification that is based on postmortem data. Aim: The purpose of this study is to examine the resistance of teeth and different restorative materials, and the mandible, to variable temperature and duration, for the purpose of identification. Materials and Methods: The study was conducted on 72 extracted teeth which were divided into six goups of 12 teeth each based on the type of restorative material. (Group 1 - unrestored teeth, group 2 - teeth restored with Zn3(PO4)2, group 3 - with silver amalgam, group 4 with glass ionomer cement, group 5 - Ni-Cr-metal crown, group 6 - metal ceramic crown) and two specimens of the mandible. The effect of incineration at 400°C (5 mins, 15 mins, 30 mins) and 1100°C (15 mins) was studied. Results: Damage to the teeth subjected to variable temperatures and time can be categorized as intact (no damage), scorched (superficially parched and discolored), charred (reduced to carbon by incomplete combustion) and incinerated (burned to ashes). PMID:21189989

  12. Effect of different post mortem temperatures on carcass quality of suckling lamb.

    PubMed

    Rubio, Begoña; Vieira, Ceferina; Martínez, Beatriz; Fernández, Ana M

    2013-08-01

    The effect of post mortem treatment on microbiological lamb carcass quality was studied. Suckling lambs carcasses were assigned to three different post mortem treatments: conventional (2  for 24 h), ultra-rapid (-20  for 3.5 h then 2  until 24 h post mortem) and slow (12   for 7 h then 2  until 24 h post mortem). Carcass pH and temperature were measured at 0, 3.5, 7 and 24 h post slaughter. Lamb carcasses were sampled for total aerobic viable and Enterobacteriaceae counts just after dressing and 24 h post mortem. A significant effect (p < 0.05) of post mortem treatment on carcasses temperature and pH was found corresponding the faster pH fall to slowly chilled muscles. However, no differences were found at 24 h post mortem among treatments in both parameters. Regarding microbiological results, carcasses of ultra-rapid treatment had the lowest total aerobic viable and Enterobacteriaceae counts and those belonging to conventional treatment had the highest total aerobic viable counts. From 0 to 24 h post mortem, an increase of total aerobic viable was observed in conventional and slow treatments whilst Enterobacteriaceae counts remained constant in all cases. From a microbiological point of view, the ultra-rapid treatment was the only one allowed to maintain the hygienic carcasses quality. However, according to pH and temperature results the carcasses subjected to this treatment may be susceptible to cold shortening.

  13. Causes of differing temperature trends in radiosonde upper air data sets

    NASA Astrophysics Data System (ADS)

    Free, Melissa; Seidel, Dian J.

    2005-04-01

    Differences between trends in different radiosonde temperature products resulting from the varying choices made by the developers of the data sets create obstacles for use of those products in climate change detection and attribution. To clarify the causes of these differences, one must examine results using a common subset of locations to minimize spatial sampling effects. When this is done for the Lanzante-Klein-Seidel (LKS) and Hadley Center (HadRT) radiosonde data sets, differences are reduced by at least one third. Differing homogeneity adjustment methods and differences in the source data are both important factors contributing to the remaining discrepancies. In contrast, subsampling the microwave sounding unit (MSU) satellite data sets according to the radiosonde coverage does not generally bring the trends in the satellite data closer to those in the radiosonde data so that adjustments and other processing differences appear to be the predominant sources of satellite-radiosonde discrepancies. Experiments in which we subsample globally complete data sets provide additional insight into the role of sampling errors. In the troposphere, spatial sampling errors are frequently comparable to the trends for 1979-1997, while in the stratosphere the errors are generally small relative to the trends. Sampling effects estimated from National Centers for Environmental Prediction reanalysis and MSU satellite data for seven actual radiosonde networks show little consistent relation between sampling error and network size. These results may have significant implications for the design of future climate monitoring networks. However, estimates of sampling effects using the reanalysis and the satellite data sets differ noticeably from each other and from effects estimated from actual radiosonde data, suggesting that these globally complete data sets may not fully reproduce actual sampling effects.

  14. Effects of plant growth substances on rooting of Hedychium spicatum under different temperature regimes.

    PubMed

    Giri, Dinesh; Tamta, Sushma

    2013-03-01

    Present study was carried out to develop a simple and efficient vegetative propagation protocol by applying various treatments to rhizome cuttings with different test solutions of auxins and phenolic compound. These were alpha-naphthalene acetic acid (NAA), Indole-3-butyric acid (IBA), Indole Acetic Acid (IAA), phloroglucinol and coumarin. The concentrations for each treatment were 10.0, 50.0 and 100.0 microM. After treatments the rhizome cuttings were planted in polybags containing forest soil and kept under different temperature regimes i.e., inside polyhose (at 20-25 degrees C), inside mist chamber (at 15-20 degrees C) and under nethouse (nursery condition, at 14-18 degrees C). The maximum rooting percentage (74.06%) was achieved at 20-25 degrees C (inside polyhouse) by applying 50.0 microM IBA. Inside poly house condition, the various developmental parameters showed better responses compare to other conditions. On the basis of present study emphasizes that the temperature play a crucial role in rooting and further growth of the plants in this species. By using this simple and significant conventional method of propagation we could be propagate this vulnerable medicinal and aromatic species at large scale for commercial purpose. PMID:24175432

  15. Quantitative trait loci associated with lettuce seed germination under different temperature and light environments.

    PubMed

    Hayashi, Eiji; Aoyama, Natsuyo; Still, David W

    2008-11-01

    Temperature and light are primary environmental cues affecting seed germination. To elucidate the genetic architecture underlying lettuce (Lactuca sativa L.) seed germination under different environmental conditions, an F8 recombinant inbred line population consisting of 131 families was phenotyped for final germination and germination rate. Seeds were imbibed in water at 20 degrees C under continuous red light (20-Rc), 20 degrees C continuous dark (20-Dc), 31.5 degrees C continuous red light (31.5-Rc), 31.5 degrees C continuous dark (31.5-Dc), or 20 degrees C far-red light for 24 h followed by continuous dark (20-FRc-Dc). Thirty-eight quantitative trait loci (QTL) were identified from two seed maturation environments: 10 for final germination and 28 for germination rate. The amount of variation attributed to an individual QTL ranged from 9.3% to 17.2% and from 5.6% to 26.2% for final germination and germination rate, respectively. Path analysis indicated that factors affecting germination under 31.5-Rc or 31.5-Dc are largely the same, and these appear to differ from those employed under 20-FRc-Dc. QTL and path analysis support the notion of common and unique factors for germination under diverse temperature and light regimes. A highly significant effect of the seed maturation environment on subsequent germination capacity under environmental stress was observed.

  16. Effects of plant growth substances on rooting of Hedychium spicatum under different temperature regimes.

    PubMed

    Giri, Dinesh; Tamta, Sushma

    2013-03-01

    Present study was carried out to develop a simple and efficient vegetative propagation protocol by applying various treatments to rhizome cuttings with different test solutions of auxins and phenolic compound. These were alpha-naphthalene acetic acid (NAA), Indole-3-butyric acid (IBA), Indole Acetic Acid (IAA), phloroglucinol and coumarin. The concentrations for each treatment were 10.0, 50.0 and 100.0 microM. After treatments the rhizome cuttings were planted in polybags containing forest soil and kept under different temperature regimes i.e., inside polyhose (at 20-25 degrees C), inside mist chamber (at 15-20 degrees C) and under nethouse (nursery condition, at 14-18 degrees C). The maximum rooting percentage (74.06%) was achieved at 20-25 degrees C (inside polyhouse) by applying 50.0 microM IBA. Inside poly house condition, the various developmental parameters showed better responses compare to other conditions. On the basis of present study emphasizes that the temperature play a crucial role in rooting and further growth of the plants in this species. By using this simple and significant conventional method of propagation we could be propagate this vulnerable medicinal and aromatic species at large scale for commercial purpose.

  17. Dielectrical Properties of CeO2 Nanoparticles at Different Temperatures

    PubMed Central

    Zamiri, Reza; Abbastabar Ahangar, Hossein; Kaushal, Ajay; Zakaria, Azmi; Zamiri, Golnoosh; Tobaldi, David; Ferreira, J. M. F.

    2015-01-01

    A template-free precipitation method was used as a simple and low cost method for preparation of CeO2 nanoparticles. The structure and morphology of the prepared nanoparticle samples were studied in detail using X-ray diffraction, Raman spectroscopy and Scanning Electron Microscopy (SEM) measurements. The whole powder pattern modelling (WPPM) method was applied on XRD data to accurately measure the crystalline domain size and their size distribution. The average crystalline domain diameter was found to be 5.2 nm, with a very narrow size distribution. UV-visible absorbance spectrum was used to calculate the optical energy band gap of the prepared CeO2 nanoparticles. The FT-IR spectrum of prepared CeO2 nanoparticles showed absorption bands at 400 cm-1 to 450 cm-1 regime, which correspond to CeO2 stretching vibration. The dielectric constant (εr) and dielectric loss (tan δ) values of sintered CeO2 compact consolidated from prepared nanoparticles were measured at different temperatures in the range from 298 K (room temperature) to 623 K, and at different frequencies from 1 kHz to 1 MHz. PMID:25910071

  18. CMOS-Compatible Room-Temperature Rectifier Toward Terahertz Radiation Detection

    NASA Astrophysics Data System (ADS)

    Varlamava, Volha; De Amicis, Giovanni; Del Monte, Andrea; Perticaroli, Stefano; Rao, Rosario; Palma, Fabrizio

    2016-08-01

    In this paper, we present a new rectifying device, compatible with the technology of CMOS image sensors, suitable for implementing a direct-conversion detector operating at room temperature for operation at up to terahertz frequencies. The rectifying device can be obtained by introducing some simple modifications of the charge-storage well in conventional CMOS integrated circuits, making the proposed solution easy to integrate with the existing imaging systems. The rectifying device is combined with the different elements of the detector, composed of a 3D high-performance antenna and a charge-storage well. In particular, its position just below the edge of the 3D antenna takes maximum advantage of the high electric field concentrated by the antenna itself. In addition, the proposed structure ensures the integrity of the charge-storage well of the detector. In the structure, it is not necessary to use very scaled and costly technological nodes, since the CMOS transistor only provides the necessary integrated readout electronics. On-wafer measurements of RF characteristics of the designed junction are reported and discussed. The overall performances of the entire detector in terms of noise equivalent power (NEP) are evaluated by combining low-frequency measurements of the rectifier with numerical simulations of the 3D antenna and the semiconductor structure at 1 THz, allowing prediction of the achievable NEP.

  19. Ballistics ordnance gelatine - How different concentrations, temperatures and curing times affect calibration results.

    PubMed

    Maiden, Nicholas R; Fisk, Wesley; Wachsberger, Christian; Byard, Roger W

    2015-08-01

    A study was undertaken to determine whether different concentrations of ordnance gelatine, water types, temperatures and curing times would have an effect on projectile penetration of a gelatine tissue surrogate. Both Federal Bureau of Investigation (FBI) and North Atlantic Treaty Organization (NATO) specified gelatines were compared against the FBI calibration standard. 10% w/w and 20% w/w concentrations of gelatine with Bloom numbers of 250 and 285 were prepared and cured at variable temperatures (3-20°C) for 21 hours-3 weeks. Each block was shot on four occasions on the same range using steel calibre 4.5 mm BBs fired from a Daisy(®) air rifle at the required standard velocity of 180 ± 4.5 m/s, to ascertain the mean penetration depth. The results showed no significant difference in mean penetration depth using the three different water types (p > 0.05). Temperature changes and curing times did affect penetration depth. At 10°C, mean penetration depth with 20% gelatine 285 Bloom for the two water types tested was 49.7 ± 1.5 mm after 21 h curing time, whereas the same formulation at 20°C using two different water types was 79.1 ± 2.1 mm after 100 h curing time (p < 0.001). Neither of the NATO 20% concentrations of gelatine at 10°C or a 20% concentration of 285 Bloom gelatine at 10°C met the same calibration standard as the FBI recommended 10% formulation at 4°C. A 20% concentration of 285 Bloom at 20°C met the same calibration/penetration criteria as a 10% concentration of 250 Bloom at 4 °C after 100 h of curing, therefore matching the FBI calibration standard for a soft tissue simulant for wound ballistics research. These results demonstrate significant variability in simulant properties. Failure to standardise ballistic simulants may invalidate experimental results.

  20. Ballistics ordnance gelatine - How different concentrations, temperatures and curing times affect calibration results.

    PubMed

    Maiden, Nicholas R; Fisk, Wesley; Wachsberger, Christian; Byard, Roger W

    2015-08-01

    A study was undertaken to determine whether different concentrations of ordnance gelatine, water types, temperatures and curing times would have an effect on projectile penetration of a gelatine tissue surrogate. Both Federal Bureau of Investigation (FBI) and North Atlantic Treaty Organization (NATO) specified gelatines were compared against the FBI calibration standard. 10% w/w and 20% w/w concentrations of gelatine with Bloom numbers of 250 and 285 were prepared and cured at variable temperatures (3-20°C) for 21 hours-3 weeks. Each block was shot on four occasions on the same range using steel calibre 4.5 mm BBs fired from a Daisy(®) air rifle at the required standard velocity of 180 ± 4.5 m/s, to ascertain the mean penetration depth. The results showed no significant difference in mean penetration depth using the three different water types (p > 0.05). Temperature changes and curing times did affect penetration depth. At 10°C, mean penetration depth with 20% gelatine 285 Bloom for the two water types tested was 49.7 ± 1.5 mm after 21 h curing time, whereas the same formulation at 20°C using two different water types was 79.1 ± 2.1 mm after 100 h curing time (p < 0.001). Neither of the NATO 20% concentrations of gelatine at 10°C or a 20% concentration of 285 Bloom gelatine at 10°C met the same calibration standard as the FBI recommended 10% formulation at 4°C. A 20% concentration of 285 Bloom at 20°C met the same calibration/penetration criteria as a 10% concentration of 250 Bloom at 4 °C after 100 h of curing, therefore matching the FBI calibration standard for a soft tissue simulant for wound ballistics research. These results demonstrate significant variability in simulant properties. Failure to standardise ballistic simulants may invalidate experimental results. PMID:26165674

  1. Improving the energy efficiency of refrigeration plants by decreasing the temperature difference in air-cooled condensers

    NASA Astrophysics Data System (ADS)

    Shishov, V. V.; Talyzin, M. S.

    2015-09-01

    The electric energy consumption efficiency is estimated in comparing the real refrigeration machine cycle with the theoretical inverse Carnot cycle. The potential for saving electricity in using aircooled condensers with different values of temperature difference is shown. A procedure for calculating a refrigerating system with the evaporation temperature equal to -10°C, which corresponds at this temperature level to the thermal load of a standard supermarket, is described. The calculation was carried out taking into account the annual profile of temperatures in the indicated locality and based on the possibility of adjusting the condenser capacity for maintaining constant condensation temperature. The payback period in case of using condensers with different values of temperature difference is calculated; for example, in using condensers with a temperature difference of less than 15 K, the payback period will be less than one year. Decreasing the temperature difference results, on one hand, in a larger annual consumption of electric energy by the condenser fans, and on the other hand, it results in a lower condensation pressure, which leads to a smaller annual consumption of energy by the compressor unit. As a result, the total amount of energy consumed by the refrigeration system decreases so that despite a higher cost of condensers designed to operate at lower values of temperature difference, it becomes possible to achieve the above-mentioned payback period. Additionally, the payback period in case of using an air-cooled microchannel aluminum condenser was calculated: in case of using such a condenser with a temperature difference of 8 K instead of the condenser with the temperature difference equal to 15 K, the payback period will be less than half a year. Recommendations for designing new refrigeration systems equipped with air-cooled condensers are given.

  2. Influence of different maceration time and temperatures on total phenols, colour and sensory properties of Cabernet Sauvignon wines.

    PubMed

    Şener, Hasan; Yildirim, Hatice Kalkan

    2013-12-01

    Maceration and fermentation time and temperatures are important factors affecting wine quality. In this study different maceration times (3 and 6 days) and temperatures (15  and 25 ) during production of red wine (Vitis vinifera L. Cabernet Sauvignon) were investigated. In all wines standard wine chemical parameters and some specific parameters as total phenols, tartaric esters, total flavonols and colour parameters (CD, CI, T, dA%, %Y, %R, %B, CIELAB values) were determined. Sensory evaluation was performed by descriptive sensory analysis. The results demonstrated not only the importance of skin contact time and temperature during maceration but also the effects of transition temperatures (different maceration and fermentation temperatures) on wine quality as a whole. The results of sensory descriptive analyses revealed that the temperature significantly affected the aroma and flavour attributes of wines. The highest scores for 'cassis', 'clove', 'fresh fruity' and 'rose' characters were obtained in wines produced at low temperature (15 ) of maceration (6 days) and fermentation.

  3. A comparison of different methods of temperature measurements in sick newborns.

    PubMed

    Uslu, Sinan; Ozdemir, Hamus; Bulbul, Ali; Comert, Serdar; Bolat, Fatih; Can, Emrah; Nuhoglu, Asiye

    2011-12-01

    We aimed to compare the accuracy of digital axillary thermometer (DAT), rectal glass mercury thermometer (RGMT), infrared tympanic thermometer (ITT) and infrared forehead skin thermometer (IFST) measurements with traditional axillary glass mercury thermometer (AGMT) for intermittent temperature measurement in sick newborns. A prospective, descriptive and comparative study in which five different types of thermometer readings were performed sequentially for 3 days. A total of 1989 measurements were collected from 663 newborns. DAT and ITT measurements correlated most closely to AGMT (r = 0.94). The correlation coefficent for IFST and RGMT were 0.74 and 0.87, respectively. The mean differences for DAT, ITT, RGMT and IFST were +0.02°C, +0.03°C, +0.25°C and +0.55°C, respectively. There were not any clinical differences (defined as a mean difference of 0.2°C) between both mean AGMT&DAT and AGMT&ITT measurements. Our study suggests that tympanic thermometer measurement could be used as an acceptable and practical method for sick newborn in neonatal units.

  4. Muscle fatigue examined at different temperatures in experiments on intact mammalian (rat) muscle fibers

    PubMed Central

    Roots, H.; Ball, G.; Talbot-Ponsonby, J.; King, M.; McBeath, K.; Ranatunga, K. W.

    2009-01-01

    In experiments on small bundles of intact fibers from a rat fast muscle, in vitro, we examined the decline in force in repeated tetanic contractions; the aim was to characterize the effect of shortening and of temperature on the initial phase of muscle fatigue. Short tetanic contractions were elicited at a control repetition rate of 1/60 s, and fatigue was induced by raising the rate to 1/5 s for 2–3 min, both in isometric mode (no shortening) and in shortening mode, in which each tetanic contraction included a ramp shortening at a standard velocity. In experiments at 20°C (n = 12), the force decline during a fatigue run was 25% in the isometric mode but was significantly higher (35%) in the shortening mode. In experiments at different temperatures (10–30°C, n = 11), the tetanic frequency and duration were adjusted as appropriate, and for shortening mode, the velocity was adjusted for maximum power output. In isometric mode, fatigue of force was significantly less at 30°C (∼20%) than at 10°C (∼30%); the power output (force × velocity) was >10× higher at 30°C than at 10°C, and power decline during a fatigue run was less at 30°C (∼20–30%) than at 10°C (∼50%). The finding that the extent of fatigue is increased with shortening contractions and is lower at higher temperatures is consistent with the view that force depression by inorganic phosphate, which accumulates within fibers during activity, may be a primary cause of initial muscle fatigue. PMID:19057001

  5. Effects of origin, seasons and storage under different temperatures on germination of Senecio vulgaris (Asteraceae) seeds

    PubMed Central

    2016-01-01

    Invasive plants colonize new environments, become pests and cause biodiversity loss, economic loss and health damage. Senecio vulgaris L. (Common groundsel, Asteraceae), a widely distributing cosmopolitan weed in the temperate area, is reported with large populations in the north–eastern and south–western part, but not in southern, central, or north-western parts of China. We studied the germination behavior of S. vulgaris to explain the distribution and the biological invasion of this species in China. We used seeds originating from six native and six invasive populations to conduct germination experiments in a climate chamber and under outdoor condition. When incubated in a climate chamber (15 °C), seeds from the majority of the populations showed >90% germination percentage (GP) and the GP was equal for seeds with a native and invasive origin. The mean germination time (MGT) was significantly different among the populations. Under outdoor conditions, significant effects of origin, storage conditions (stored at 4 °C or ambient room temperature, ca. 27 °C) and seasons (in summer or autumn) were observed on the GP while the MGT was only affected by the season. In autumn, the GP (38.6%) was higher and the MGT was slightly longer than that in summer. In autumn, seeds stored at 4 °C showed higher GP than those stored at ambient room temperature (ca.27 °C), and seeds from invasive populations revealed higher GP than those from native populations. The results implied that the high temperature in summer has a negative impact on the germination and might cause viability loss or secondary dormancy to S. vulgaris seeds. Our study offers a clue to exploring what factor limits the distribution of S. vulgaris in China by explaining why, in the cities in South-East China and central China such as Wuhan, S. vulgaris cannot establish natural and viable populations.

  6. Porosity of UHPFRC exposed to high temperatures determined by different techniques

    NASA Astrophysics Data System (ADS)

    Korecký, Tomáš; Pokorný, Jaroslav; Fořt, Jan; Čítek, David; Pavlík, Zbyšek

    2016-07-01

    The pore system characterization of an Ultra High Performance Fibre Reinforced Concrete (UHPFRC) exposed to the elevated temperatures is presented in the paper. The porosity and pore size distribution of building materials are of the particular importance because of their clear effect on durability and service life of structural elements and buildings. Material characteristics as mechanical, thermal and hygric properties are strongly dependent on pore system. For porosity measurement, several techniques having specific advantages or disadvantages with respect to the pore size are available. In building materials research, usage of Mercury Intrusion Porosimetry (MIP) with range of the detected pores up to 100 µm is the most common. Nevertheless, in practical measurements, the differences between the porosity values determined by helium pycnometry and MIP are usually observed. It can be attributed to the presence of pores bigger than 100 µm. Based on the literature analysis it is evident that the porosity increases with the amount of fibres used since fibres application reduces workability of fresh mixture and thus cause heterogeneities and microcavities in material microstructure and interfacial transition zone between fibres, aggregates and cement paste. Therefore, the Optical Porosimetry (OP) based on an image analysis is presented in the paper as a suitable supplemental method for classification number, size and shape of bigger pores. At first, porosity is investigated on samples without temperature loading. Then, on samples which are exposed to the temperatures of 400, 800, and 1000 °C respectively. Pores size distribution is studied using mercury intrusion porosimeters Pascal 140 and 440. Images are captured by an optical microscope with an attached digital camera. The obtained results show necessity to apply the combined technique for the assessment of the porosity value.

  7. Effects of origin, seasons and storage under different temperatures on germination of Senecio vulgaris (Asteraceae) seeds

    PubMed Central

    2016-01-01

    Invasive plants colonize new environments, become pests and cause biodiversity loss, economic loss and health damage. Senecio vulgaris L. (Common groundsel, Asteraceae), a widely distributing cosmopolitan weed in the temperate area, is reported with large populations in the north–eastern and south–western part, but not in southern, central, or north-western parts of China. We studied the germination behavior of S. vulgaris to explain the distribution and the biological invasion of this species in China. We used seeds originating from six native and six invasive populations to conduct germination experiments in a climate chamber and under outdoor condition. When incubated in a climate chamber (15 °C), seeds from the majority of the populations showed >90% germination percentage (GP) and the GP was equal for seeds with a native and invasive origin. The mean germination time (MGT) was significantly different among the populations. Under outdoor conditions, significant effects of origin, storage conditions (stored at 4 °C or ambient room temperature, ca. 27 °C) and seasons (in summer or autumn) were observed on the GP while the MGT was only affected by the season. In autumn, the GP (38.6%) was higher and the MGT was slightly longer than that in summer. In autumn, seeds stored at 4 °C showed higher GP than those stored at ambient room temperature (ca.27 °C), and seeds from invasive populations revealed higher GP than those from native populations. The results implied that the high temperature in summer has a negative impact on the germination and might cause viability loss or secondary dormancy to S. vulgaris seeds. Our study offers a clue to exploring what factor limits the distribution of S. vulgaris in China by explaining why, in the cities in South-East China and central China such as Wuhan, S. vulgaris cannot establish natural and viable populations. PMID:27602303

  8. Entransia and Hormidiella, sister lineages of Klebsormidium (Streptophyta), respond differently to light, temperature, and desiccation stress.

    PubMed

    Herburger, Klaus; Karsten, Ulf; Holzinger, Andreas

    2016-09-01

    The green-algal class Klebsormidiophyceae (Streptophyta), which occurs worldwide, comprises the genera Klebsormidium, Interfilum, Entransia, and Hormidiella. Ecophysiological research has so far focused on the first two genera because they are abundant in biological soil crust communities. The present study investigated the photosynthetic performances of Hormidiella attenuata and two strains of Entransia fimbriata under light, temperature, and desiccation stress. Their ultrastructure was compared using transmission electron microscopy. The two Entransia strains showed similar physiological responses. They used light more efficiently than Hormidiella, as indicated by higher oxygen production and relative electron transport rate under low light conditions, lower light saturation and compensation points, and higher maximum oxygen production during light saturation. Their requirement for low light levels explains the restriction of Entransia to dim limnetic habitats. In contrast, Hormidiella, which prefers drier soil habitats, responded to light gradients similarly to other aero-terrestrial green algae. Compared to Entransia, Hormidiella was less affected by short-term desiccation, and rehydration allowed full recovery of the photosynthetic performance. Nevertheless, both strains of Entransia coped with low water availability better than other freshwater algae. Photosynthetic oxygen production in relation to respiratory consumption was higher in low temperatures (Entransia: 5 °C, Hormidiella: 10 °C) and the ratio decreased with increasing temperatures. Hormidiella exhibited conspicuous triangular spaces in the cell wall corners, which were filled either with undulating cell wall material or with various inclusions. These structures are commonly seen in various members of Klebsormidiophyceae. The data revealed significant differences between Hormidiella and Entransia, but appropriate adaptations to their respective habitats.

  9. The time of day differently influences fatigue and locomotor activity: is body temperature a key factor?

    PubMed

    Machado, Frederico Sander Mansur; Rodovalho, Gisele Vieira; Coimbra, Cândido Celso

    2015-03-01

    The aim of this study was to verify the possible interactions between exercise capacity and spontaneous locomotor activity (SLA) during the oscillation of core body temperature (Tb) that occurs during the light/dark cycle. Wistar rats (n=11) were kept at an animal facility under a light/dark cycle of 14/10h at an ambient temperature of 23°C and water and food ad libitum. Initially, in order to characterize the daily oscillation in SLA and Tb of the rats, these parameters were continuously recorded for 24h using an implantable telemetric sensor (G2 E-Mitter). The animals were randomly assigned to two progressive exercise test protocols until fatigue during the beginning of light and dark-phases. Fatigue was defined as the moment rats could not keep pace with the treadmill. We assessed the time to fatigue, workload and Tb changes induced by exercise. Each test was separated by 3days. Our results showed that exercise capacity and heat storage were higher during the light-phase (p<0.05). In contrast, we observed that both SLA and Tb were higher during the dark-phase (p<0.01). Notably, the correlation analysis between the amount of SLA and the running capacity observed at each phase of the daily cycle revealed that, regardless of the time of the day, both types of locomotor physical activity have an important inherent component (r=0.864 and r=0.784, respectively, p<0.01) without a direct relationship between them. This finding provides further support for the existence of specific control mechanisms for each type of physical activity. In conclusion, our data indicate that the relationship between the body temperature and different types of physical activity might be affected by the light/dark cycle. These results mean that, although exercise performance and spontaneous locomotor activity are not directly associated, both are strongly influenced by daily cycles of light and dark. PMID:25479573

  10. Effects of origin, seasons and storage under different temperatures on germination of Senecio vulgaris (Asteraceae) seeds.

    PubMed

    Ndihokubwayo, Noel; Nguyen, Viet-Thang; Cheng, Dandan

    2016-01-01

    Invasive plants colonize new environments, become pests and cause biodiversity loss, economic loss and health damage. Senecio vulgaris L. (Common groundsel, Asteraceae), a widely distributing cosmopolitan weed in the temperate area, is reported with large populations in the north-eastern and south-western part, but not in southern, central, or north-western parts of China. We studied the germination behavior of S. vulgaris to explain the distribution and the biological invasion of this species in China. We used seeds originating from six native and six invasive populations to conduct germination experiments in a climate chamber and under outdoor condition. When incubated in a climate chamber (15 °C), seeds from the majority of the populations showed >90% germination percentage (GP) and the GP was equal for seeds with a native and invasive origin. The mean germination time (MGT) was significantly different among the populations. Under outdoor conditions, significant effects of origin, storage conditions (stored at 4 °C or ambient room temperature, ca. 27 °C) and seasons (in summer or autumn) were observed on the GP while the MGT was only affected by the season. In autumn, the GP (38.6%) was higher and the MGT was slightly longer than that in summer. In autumn, seeds stored at 4 °C showed higher GP than those stored at ambient room temperature (ca.27 °C), and seeds from invasive populations revealed higher GP than those from native populations. The results implied that the high temperature in summer has a negative impact on the germination and might cause viability loss or secondary dormancy to S. vulgaris seeds. Our study offers a clue to exploring what factor limits the distribution of S. vulgaris in China by explaining why, in the cities in South-East China and central China such as Wuhan, S. vulgaris cannot establish natural and viable populations.

  11. Entransia and Hormidiella, sister lineages of Klebsormidium (Streptophyta), respond differently to light, temperature, and desiccation stress

    PubMed Central

    Herburger, Klaus; Karsten, Ulf; Holzinger, Andreas

    2015-01-01

    The green-algal class Klebsormidiophyceae (Streptophyta), which occurs worldwide, comprises the genera Klebsormidium, Interfilum, Entransia, and Hormidiella. Ecophysiological research has so far focused on the first two genera because they are abundant in biological soil crust communities. The present study investigated the photosynthetic performances of Hormidiella attenuata and two strains of Entransia fimbriata under light, temperature, and desiccation stress. Their ultrastructure was compared using transmission electron microscopy. The two Entransia strains showed similar physiological responses. They used light more efficiently than Hormidiella, as indicated by higher oxygen production and relative electron transport rate under low light conditions, lower light saturation and compensation points, and higher maximum oxygen production during light saturation. Their requirement for low light levels explains the restriction of Entransia to dim limnetic habitats. In contrast, Hormidiella, which prefers drier soil habitats, responded to light gradients similarly to other aero-terrestrial green algae. Compared to Entransia, Hormidiella was less affected by short-term desiccation, and rehydration allowed full recovery of the photosynthetic performance. Nevertheless, both strains of Entransia coped with low water availability better than other freshwater algae. Photosynthetic oxygen production in relation to respiratory consumption was higher in low temperatures (Entransia: 5 °C, Hormidiella: 10 °C) and the ratio decreased with increasing temperatures. Hormidiella exhibited conspicuous triangular spaces in the cell wall corners, which were filled either with undulating cell wall material or with various inclusions. These structures are commonly seen in various members of Klebsormidiophyceae. The data revealed significant differences between Hormidiella and Entransia, but appropriate adaptations to their respective habitats. PMID:26439247

  12. Effects of origin, seasons and storage under different temperatures on germination of Senecio vulgaris (Asteraceae) seeds.

    PubMed

    Ndihokubwayo, Noel; Nguyen, Viet-Thang; Cheng, Dandan

    2016-01-01

    Invasive plants colonize new environments, become pests and cause biodiversity loss, economic loss and health damage. Senecio vulgaris L. (Common groundsel, Asteraceae), a widely distributing cosmopolitan weed in the temperate area, is reported with large populations in the north-eastern and south-western part, but not in southern, central, or north-western parts of China. We studied the germination behavior of S. vulgaris to explain the distribution and the biological invasion of this species in China. We used seeds originating from six native and six invasive populations to conduct germination experiments in a climate chamber and under outdoor condition. When incubated in a climate chamber (15 °C), seeds from the majority of the populations showed >90% germination percentage (GP) and the GP was equal for seeds with a native and invasive origin. The mean germination time (MGT) was significantly different among the populations. Under outdoor conditions, significant effects of origin, storage conditions (stored at 4 °C or ambient room temperature, ca. 27 °C) and seasons (in summer or autumn) were observed on the GP while the MGT was only affected by the season. In autumn, the GP (38.6%) was higher and the MGT was slightly longer than that in summer. In autumn, seeds stored at 4 °C showed higher GP than those stored at ambient room temperature (ca.27 °C), and seeds from invasive populations revealed higher GP than those from native populations. The results implied that the high temperature in summer has a negative impact on the germination and might cause viability loss or secondary dormancy to S. vulgaris seeds. Our study offers a clue to exploring what factor limits the distribution of S. vulgaris in China by explaining why, in the cities in South-East China and central China such as Wuhan, S. vulgaris cannot establish natural and viable populations. PMID:27602303

  13. Determining the temporal variability in atmospheric temperature profiles measured using radiosondes and assessment of correction factors for different launch schedules

    NASA Astrophysics Data System (ADS)

    Butterfield, D.; Gardiner, T.

    2015-01-01

    Radiosondes provide one of the primary sources of upper troposphere and stratosphere temperature data for numerical weather prediction, the assessment of long-term trends in atmospheric temperature, study of atmospheric processes and provide intercomparison data for other temperature sensors, e.g. satellites. When intercomparing different temperature profiles it is important to include the effect of temporal mismatch between the measurements. To help quantify this uncertainty the atmospheric temperature variation through the day needs to be assessed, so that a correction and uncertainty for time difference can be calculated. Temperature data from an intensive radiosonde campaign, at Manus Island in Papua New Guinea, were analysed to calculate the hourly rate of change in temperature at different altitudes and provide recommendations and correction factors for different launch schedules. Using these results, three additional longer term data sets were analysed (Lindenberg 1999 to 2008; Lindenberg 2009 to 2012; and Southern Great Plains 2006 to 2012) to assess the diurnal variability of temperature as a function of altitude, time of day and season of the year. This provides the appropriate estimation of temperature differences for given temporal separation and the uncertainty associated with them. A general observation was that 10 or more repeat measurements would be required to get a standard error of the mean of less than 0.1 K per hour of temporal mismatch.

  14. The interrelationship between air temperature and humidity as applied locally to the skin: The resultant response on skin temperature and blood flow with age differences

    PubMed Central

    Petrofsky, Jerrold S.; Berk, Lee; Alshammari, Faris; Lee, Haneul; Hamdan, Adel; Yim, Jong Eun; Kodawala, Yusufi; Patel, Dennis; Nevgi, Bhakti; Shetye, Gauri; Moniz, Harold; Chen, Wei Ti; Alshaharani, Mastour; Pathak, Kunal; Neupane, Sushma; Somanaboina, Karunakar; Shenoy, Samruddha; Cho, Sungwan; Dave, Bargav; Desai, Rajavi; Malthane, Swapnil; Al-Nakhli, Hani

    2012-01-01

    Summary Background Most studies of the skin and how it responds to local heat have been conducted with either water, thermodes, or dry heat packs. Very little has been accomplished to look at the interaction between air humidity and temperature on skin temperature and blood flow. With variable air temperatures and humidity’s around the world, this, in many ways, is a more realistic assessment of environmental impact than previous water bath studies. Material/Methods Eight young and 8 older subjects were examined in an extensive series of experiments where on different days, air temperature was 38, 40, or 42°C. and at each temperature, humidity was either 0%, 25%, 50%, 75%, or 100% humidity. Over a 20 minute period of exposure, the response of the skin in terms of its temperature and blood flow was assessed. Results For both younger and older subjects, for air temperatures of 38 and 40°C., the humidity of the air had no effect on the blood flow response of the skin, while skin temperature at the highest humidity was elevated slightly. However, for air temperatures of 42°C., at 100% humidity, there was a significant elevation in skin blood flow and skin temperature above the other four air humidity’s (p<0.05). In older subjects, the blood flow response was less and the skin temperature was much higher than younger individuals for air at 42°C. and 100% humidity (p<0.05). Conclusions Thus, in older subjects, warm humid air caused a greater rise in skin temperature with less protective effect of blood flow to protect the skin from overheating than is found in younger subjects. PMID:22460091

  15. Acute toxicity of arsenic under different temperatures and salinity conditions on the white shrimp Litopenaeus vannamei.

    PubMed

    Valentino-Álvarez, Jesús Alberto; Núñez-Nogueira, Gabriel; Fernández-Bringas, Laura

    2013-06-01

    The aim of this study was to determine acute toxicity in the post larvae of the white shrimp Litopenaeus vannamei after 96 h of exposure to dissolved arsenic under three different temperatures and salinity conditions. Recent reports have shown an increase in the presence of this metalloid in coastal waters, estuaries, and lagoons along the Mexican coast. The white shrimp stands out for its adaptability to temperature and salinity changes and for being the main product for many commercial fisheries; it has the highest volume of oceanic capture and production in Mexican shrimp farms. Lethal concentrations (LC50-96 h) were obtained at nine different combinations (3 × 3 combinations in total) of temperature (20, 25, and 30 °C) and salinity (17, 25, and 33) showing mean LC50-96 h values (±standard error) of 9.13 ± 0.76, 9.17 ± 0.56, and 6.23 ± 0.57 mgAs L(-1)(at 20 °C and 17, 25, and 33 salinity); 12.29 ± 2.09, 8.70 ± 0.82, and 8.03 ± 0.59 mgAs L(-1) (at 25 °C and 17, 25, and 33 salinity); and 7.84 ± 1.30, 8.49 ± 1.40, and 7.54 ± 0.51 mgAs L(-1) (at 30 °C and 17, 25, and 33 salinity), respectively. No significant differences were observed for the optimal temperature and isosmotic point of maintenance (25 °C-S 25) for the species, with respect to the other experimental conditions tested, except for at 20 °C-S 33, which was the most toxic. Toxicity under 20 °C-S 33 conditions was also higher than 25 °C-S 17 and 20 °C (S 17 or 25). The least toxic condition was 25 °C-S 17. All this suggests that the toxic effect of arsenic is not affected by temperature changes; it depends on the osmoregulatory pattern developed by the shrimp, either hyperosmotic at low salinity or hiposmotic at high salinity, as observed at least on the extreme salinity conditions here tested (17 and 33). However, further studies testing salinities near the isosmotic point (between 20 and 30 salinities) are needed to

  16. Hot-Wire Deposition Study of Amorphous and Microcrystalline Silicon Using Different Temperature and Gas Flow

    NASA Astrophysics Data System (ADS)

    Povolny, Henry; Deng, Xunming

    2002-03-01

    μc-Si:H and α-Si:H films were deposited using a novel Hot Wire Chemical Vapor Deposition system that employs a coiled filament and three separate process gas inlets. A series of films were deposited at filament temperatures Tf ranging from 1500 to 2100 °C and substrate temperatures Ts from 150 to 300 °C. Raman, UV-Visible and IR transmission measurement were taken on these samples. Results show films deposited at low Ts and high Tf tend to be microcrystalline while films deposited at high Ts and low Tf tend to be amorphous. A second series of films were deposited using different gas flow geometries. Films were microcrystalline when Si_2H6 and H2 were directed into the chamber via separate inlets: one through the coiled filament and the other through a gas ring next to the substrate. When both gases were directed into the chamber via the same gas inlet, amorphous films were obtained. * Work was supported by NREL under Thin Film Partnership Program ZAF-8-17619-14 and NDJ-2-30630-08.

  17. Comparison of three different thermometers in evaluating the body temperature of healthy young adult individuals.

    PubMed

    Basak, Tulay; Aciksoz, Semra; Tosun, Betul; Akyuz, Aygul; Acikel, Cengizhan

    2013-10-01

    The aim of this study was to compare the measurement values obtained with a non-contact infrared thermometer, a tympanic thermometer and a chemical dot thermometer. The research population was composed of students studying in two departments of a university in Ankara. A total of 452 students who fit the inclusion criteria of the study and volunteered to participate were included in the sample. Body temperature measurements with different thermometers were performed by the same researcher at the same room temperature. Data were analyzed in a computerized environment by SPSS 15.0 statistical program pack and Bland-Altman graph. Mean age of healthy young adults participating in the study was 19.66 ± 0.94, and 55.1% of them were female. The agreement limits for non-contact infrared and chemical dot was between -1.30 and 0.32°C; for non-contact infrared and tympanic was between -1.26 and 0.13°C; and for chemical dot and tympanic -0.89 and 0.74°C. It was determined that, although the measurement values of the tympanic membrane and chemical dot thermometers conformed with each other, the conformity of the non-contact infrared thermometer was weak.

  18. Proteomic responses to hypoxia at different temperatures in the great scallop (Pecten maximus)

    PubMed Central

    Lacroix, Camille; Richard, Joëlle; Flye-Sainte-Marie, Jonathan; Bargelloni, Luca; Pichereau, Vianney

    2015-01-01

    Hypoxia and hyperthermia are two connected consequences of the ongoing global change and constitute major threats for coastal marine organisms. In the present study, we used a proteomic approach to characterize the changes induced by hypoxia in the great scallop, Pecten maximus, subjected to three different temperatures (10 °C, 18 °C and 25 °C). We did not observe any significant change induced by hypoxia in animals acclimated at 10 °C. At 18 °C and 25 °C, 16 and 11 protein spots were differentially accumulated between normoxia and hypoxia, respectively. Moreover, biochemical data (octopine dehydrogenase activity and arginine assays) suggest that animals grown at 25 °C switched their metabolism towards anaerobic metabolism when exposed to both normoxia and hypoxia, suggesting that this temperature is out of the scallops’ optimal thermal window. The 11 proteins identified with high confidence by mass spectrometry are involved in protein modifications and signaling (e.g., CK2, TBK1), energy metabolism (e.g., ENO3) or cytoskeleton (GSN), giving insights into the thermal-dependent response of scallops to hypoxia. PMID:25861557

  19. Influence of orientation on the size effect in BCC pillars with different critical temperatures.

    SciTech Connect

    Arzt, Eduard; Gruber, Patrick A.; Clark, Blythe G.; Frick, Carl P.; Schneider, Andreas S.

    2010-09-01

    The size effect in body-centered cubic metals is comprehensively investigated through micro/nano-compression tests performed on focused ion beam machined tungsten (W), molybdenum (Mo) and niobium (Nb) pillars, with single slip [2 3 5] and multiple slip [0 0 1] orientations. The results demonstrate that the stress-strain response is unaffected by the number of activated slip systems, indicating that dislocation-dislocation interaction is not a dominant mechanism for the observed diameter dependent yield strength and strain hardening. Furthermore, the limited mobility of screw dislocations, which is different for each material at ambient temperature, acts as an additional strengthening mechanism leading to a material dependent size effect. Nominal values and diameter dependence of the flow stress significantly deviate from studies on face-centered cubic metals. This is demonstrated by the correlation of size dependence with the material specific critical temperature. Activation volumes were found to decrease with decreasing pillar diameter further indicating that the influence of the screw dislocations decreases with smaller pillar diameter.

  20. Characterisation of silica derived from rice husk (Muar, Johor, Malaysia) decomposition at different temperatures

    NASA Astrophysics Data System (ADS)

    Azmi, M. A.; Ismail, N. A. A.; Rizamarhaiza, M.; W. M. Hasif. A. A., K.; Taib, H.

    2016-07-01

    Rice husk was thermally decomposed to yield powder composed of silica (SiO2). Temperatures of 700°C and 1000°C were chosen as the decomposition temperatures. X-Ray Diffraction (XRD), X-Ray Florescence (XRF), Fourier Transform Infrared (FTIR), and Field Emission Scanning Electron Microscope (FESEM) analyses were conducted on a synthetic silica powder (SS-SiO2) and the rice husk ash as for the comparative characterisation study. XRD analyses clearly indicated that the decomposed rice husk yielded silica of different nature which are Crystalline Rice Husk Silica (C-RHSiO2) and Amorphous Rice Husk Silica (A-RHSiO2). Moreover, it was found that SS-SiO2 was of Quartz phase, C-RHSiO2 was of Trydimite and Cristobalite. Through XRF detection, the highest SiO2 purity was detected in SS-SiO2 followed by C-RHSiO2 and A-RHSiO2 with purity percentages of 99.60%, 82.30% and 86.30% respectively. FTIR results clearly indicated silica (SiO2) bonding 1056, 1064, 1047, 777, 790 and 798 cm-1) increased as the crystallinity silica increased. The Cristobalite phase was detected in C-RH SiO2 at the wavelength of 620 cm-1. Morphological features as observed by FESEM analyses confirmed that, SS-SiO2 and C-RH SiO2 showed prominent coarse granular morphology.

  1. Gene and Protein Expression in Response to Different Growth Temperatures and Oxygen Availability in Burkholderia thailandensis

    PubMed Central

    Peano, Clelia; Chiaramonte, Fabrizio; Motta, Sara; Pietrelli, Alessandro; Jaillon, Sebastien; Rossi, Elio; Consolandi, Clarissa; Champion, Olivia L.; Michell, Stephen L.; Freddi, Luca; Falciola, Luigi; Basilico, Fabrizio; Garlanda, Cecilia; Mauri, Pierluigi; De Bellis, Gianluca; Landini, Paolo

    2014-01-01

    Burkholderia thailandensis, although normally avirulent for mammals, can infect macrophages in vitro and has occasionally been reported to cause pneumonia in humans. It is therefore used as a model organism for the human pathogen B. pseudomallei, to which it is closely related phylogenetically. We characterized the B. thailandensis clinical isolate CDC2721121 (BtCDC272) at the genome level and studied its response to environmental cues associated with human host colonization, namely, temperature and oxygen limitation. Effects of the different growth conditions on BtCDC272 were studied through whole genome transcription studies and analysis of proteins associated with the bacterial cell surface. We found that growth at 37°C, compared to 28°C, negatively affected cell motility and flagella production through a mechanism involving regulation of the flagellin-encoding fliC gene at the mRNA stability level. Growth in oxygen-limiting conditions, in contrast, stimulated various processes linked to virulence, such as lipopolysaccharide production and expression of genes encoding protein secretion systems. Consistent with these observations, BtCDC272 grown in oxygen limitation was more resistant to phagocytosis and strongly induced the production of inflammatory cytokines from murine macrophages. Our results suggest that, while temperature sensing is important for regulation of B. thailandensis cell motility, oxygen limitation has a deeper impact on its physiology and constitutes a crucial environmental signal for the production of virulence factors. PMID:24671187

  2. Histological features of respiratory epithelium of calves held at differing temperature and humidity.

    PubMed Central

    Jericho, K W; Magwood, S E

    1977-01-01

    The effect of ambient temperature and humidity on the structure of respiratory epithelium of calves was studied. Four calves of each of three experiments were acclimatized to a nonoperational environmental chamber for six days and then exposed to constant extremes of temperatures and relative humidity of one of 30 degrees C --35%, or 27 degrees C--92%, or 5 degrees C--92% respectively in this chamber for eight days each. Five calves (3 and 2) were similarly acclimatized then exposed to 1 degrees C--40%. Nasal swabs were taken from all animals at regular intervals. Swabs of three animals yielded Mycoplasma spp. and one swab yielded the virus of infectious bovine rhinotracheitis. Detailed histological studies of respiratory epithelium of nose, trachea, major bronchus and terminal bronchioli were conducted at four sites. Goblet cells were least in calves held in hot and dry air; calves held in dry air had the least polymorphonuclear cells and the greatest prevalence of hypochromatic cell layers and vacuolation of epithelial cells. Differences between experiments were evident most for sites of trachea and major bronchus. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. Fig. 9. Fig. 1. Fig. 2. Fig. 3. PMID:922554

  3. Estimates of the difference between thermodynamic temperature and the International Temperature Scale of 1990 in the range 118 K to 303 K.

    PubMed

    Underwood, R; de Podesta, M; Sutton, G; Stanger, L; Rusby, R; Harris, P; Morantz, P; Machin, G

    2016-03-28

    Using exceptionally accurate measurements of the speed of sound in argon, we have made estimates of the difference between thermodynamic temperature, T, and the temperature estimated using the International Temperature Scale of 1990, T90, in the range 118 K to 303 K. Thermodynamic temperature was estimated using the technique of relative primary acoustic thermometry in the NPL-Cranfield combined microwave and acoustic resonator. Our values of (T-T90) agree well with most recent estimates, but because we have taken data at closely spaced temperature intervals, the data reveal previously unseen detail. Most strikingly, we see undulations in (T-T90) below 273.16 K, and the discontinuity in the slope of (T-T90) at 273.16 K appears to have the opposite sign to that previously reported. PMID:26903104

  4. Shear strain determination of the polymer polydimethysiloxane (PMDS) using digital image correlation in different temperatures

    NASA Astrophysics Data System (ADS)

    de Oliveira, G. N.; Nunes, L. C. S.; dos Santos, P. A. M.

    2011-01-01

    In the present work a digital image correlation (DIC) method is used in order to analyze the adhesive shear modulus of poly-dimethylsiloxane (PDMS) submitted to different loads and temperatures. This is an optical-numerical full-field surface displacement measurement method. It is based on a comparison between two images of a specimen coated by a random speckled pattern in the undeformed and in the deformed states. A single lap joint testing is performed. This is a standard test specimen for characterizing adhesive properties and it is considered the simplest form of adhesive joints. For the single lap joint specimen, steel adherends are bonded using a flexible rubber elastic polymer (PDMS), which is a commercially available silicone elastic rubber

  5. Simulated sea surface temperature and heat fluxes in different climates of the Baltic Sea.

    PubMed

    Döscher, Ralf; Meier, H E Markus

    2004-06-01

    The physical state of the Baltic Sea in possible future climates is approached by numerical model experiments with a regional coupled ocean-atmosphere model driven by different global simulations. Scenarios and recent climate simulations are compared to estimate changes. The sea surface is clearly warmer by 2.9 degrees C in the ensemble mean. The horizontal pattern of average annual mean warming can largely be explained in terms of ice-cover reduction. The transfer of heat from the atmosphere to the Baltic Sea shows a changed seasonal cycle: a reduced heat loss in fall, increased heat uptake in spring, and reduced heat uptake in summer. The interannual variability of surface temperature is generally increased. This is associated with a smoothed frequency distribution in northern basins. The overall heat budget shows increased solar radiation to the sea surface, which is balanced by changes of the other heat flux components.

  6. Rarefied Gas Flows Induced through a Pair of Parallel Meshes with Different Temperatures

    NASA Astrophysics Data System (ADS)

    Sugimoto, H.; Kawakami, S.; Moriuchi, K.

    2008-12-01

    A simple method to form micro-channels that induce a rarefied gas flow by the effect of the temperature field is proposed. A pair of parallel wire meshes, one is heated and the other is unheated, induces a gas flow through the pair of meshes in the direction from unheated mesh to heated mesh. Three test devices with different diameters, 1 mm, 100 μm, and 25 μm, of the wire of the mesh, have been devised and the flow through the device is detected by a thin film or a small windmill for various pressures of the gas. The flow is observed in a range of the pressure where the mean free path of gas molecules is close to the scale of the mesh structure, e.g., the diameter of the wire. It is extended to a wider range of the pressure in the device using combined meshes consisting of coarser and finer mesh.

  7. Simulated sea surface temperature and heat fluxes in different climates of the Baltic Sea.

    PubMed

    Döscher, Ralf; Meier, H E Markus

    2004-06-01

    The physical state of the Baltic Sea in possible future climates is approached by numerical model experiments with a regional coupled ocean-atmosphere model driven by different global simulations. Scenarios and recent climate simulations are compared to estimate changes. The sea surface is clearly warmer by 2.9 degrees C in the ensemble mean. The horizontal pattern of average annual mean warming can largely be explained in terms of ice-cover reduction. The transfer of heat from the atmosphere to the Baltic Sea shows a changed seasonal cycle: a reduced heat loss in fall, increased heat uptake in spring, and reduced heat uptake in summer. The interannual variability of surface temperature is generally increased. This is associated with a smoothed frequency distribution in northern basins. The overall heat budget shows increased solar radiation to the sea surface, which is balanced by changes of the other heat flux components. PMID:15264603

  8. Sustained attention to local and global target features is different: performance and tympanic membrane temperature.

    PubMed

    Helton, William S; Hayrynen, Lauren; Schaeffer, David

    2009-10-01

    Vision researchers have investigated the differences between global and local feature perception. No one has, however, examined the role of global and local feature discrimination in sustained attention tasks. In this experiment participants performed a sustained attention task requiring either global or local letter target discriminations or watched the same displays without any work imperative. Reaction time to targets was slower when global feature discriminations were required than when local feature discriminations were required. Tympanic membrane temperature (TMT) was utilized in this study as an index of cerebral activation. Participants in the global letter detection condition had elevated post-task right TMT, indicative of reduced cerebral activation in the right hemisphere, in comparison to participants in the local letter detection or no-work imperative conditions. Both the performance and physiological results of this study indicate increased cognitive fatigue when global feature discriminations are required.

  9. Evaluation of three different optical fiber temperature sensor types for application in gamma radiation environments

    SciTech Connect

    Berghmans, F.; Vos, F.; Decreton, M.

    1998-06-01

    The authors compare the gamma radiation response of three different types of commercially available optical fiber temperature sensors. These are semiconductor absorption, Fabry-Perot cavity and fluorescence sensors. In order to evaluate their possible application in nuclear environments, they first highlight the principles of operation and the constructions. They then report on the gamma irradiation results and explain the observed degradation phenomena. For all three sensor types, the basic transduction mechanism does not seem to be affected by gamma radiation. The semiconductor absorption sensor shows a good radiation resistance (up to 160 kGy) in its present form, whereas the other sensor constructions need to be adapted. For the semiconductor absorption sensor, additional neutron irradiation experiments are performed, which are found to affect the principle of operation of this sensor.

  10. Temperature adaptation in two bivalve species from different thermal habitats: energetics and remodelling of membrane lipids.

    PubMed

    Pernet, Fabrice; Tremblay, Réjean; Comeau, Luc; Guderley, Helga

    2007-09-01

    We compared lipid dynamics and the physiological responses of blue mussels Mytilus edulis, a cold-adapted species, and oysters Crassostrea virginica, a warmer-water species, during simulated overwintering and passage to spring conditions. To simulate overwintering, animals were held at 0 degrees C, 4 degrees C and 9 degrees C for 3 months and then gradually brought to and maintained at 20 degrees C for 5 weeks to simulate spring-summer conditions. Changes in lipid class and fatty acid composition were related to clearance rate and oxygen consumption. We found major differences between species in triglyceride (TAG) metabolism during overwintering. Mussels used digestive gland TAG stores for energy metabolism or reproductive processes during the winter, whereas oysters did not accumulate large TAG stores prior to overwintering. Mussel TAG contained high levels of 20:5n-3 compared to levels in oysters and in the diet. This may help to counteract the effect of low temperature by reducing the melting point of TAG and thus increasing the availability of storage fats at low temperature. Mussels seemed better able to mobilise 20:5n-3 and 18:4n-3 than other fatty acids. We also found that both bivalves underwent a major remodelling of membrane phospholipids. The unsaturation index decreased in the gills and digestive glands of both species during the early stages of warming, principally due to decreases in 22:6n-3 and 20:5n-3. In digestive glands, the unsaturation index did not increase with decreasing temperature beyond a threshold attained at 9 degrees C whereas a perfect negative relationship was observed in gills, as predicted by homeoviscous adaptation. The presence of digestive enzymes and acids in the digestive gland microenvironment may lead to specific requirements for membrane stability. That oysters had lower metabolic rates than mussels coincides with a lower unsaturation index of their lipids, as predicted by Hulbert's theory of membranes as metabolic

  11. The effect of low-temperature demagnetization on paleointensity determinations from samples with different domain states

    NASA Astrophysics Data System (ADS)

    Kulakov, E.; Smirnov, A. V.

    2013-05-01

    It has been recently proposed that incorporation of low-temperature demagnetization (LTD) into the Thellier double-heating method increases the accuracy and success rate of paleointensity experiments by reducing the effects of magnetic remanence carried by large pseudo-singledomain (PSD) and multidomain (MD) grains (e.g., Celino et al., Geophysical Research Letters, 34, L12306, 2007). However, it has been unclear to what degree the LTD affects the remanence carried by single-domain (SD) and small PSD. To investigate this problem, we carried out paleointensity experiments on synthetic magnetite-bearing samples containing nearly SD, PSD, and multidomain MD grains as well as mixtures of MD and SD grains. Before the experiments, a thermal remanent magnetization was imparted to the samples in a known laboratory field. Paleointensities were determined using both the LTD-Thellier and multi-specimen parallel pTRM methods. The samples were subjected to a series of three LTD treatments in liquid nitrogen after each heating. LTD significantly improved the quality of paleointensity determinations from the samples containing large PSD and MD magnetite as well as SD-MD mixtures. In particular, LTD resulted in a significant increase of the paleointensity quality factor, producing more linear Arai plots and reducing data scatter. In addition, field intensities calculated after LTD fell within 2-4% of the known laboratory field. On the other hand, the effect of LTD on paleointensity determinations from samples with nearly SD magnetite is negligible. Paleointensity values based on both pre- and post-LTD data were statistically indistinguishable of the laboratory field. LTD treatment significantly reduced the systematic paleofield overestimation using the multi-specimen method from samples containing PSD and MD grains, as well as SD-MD mixtures. The results of multi-specimen paleointensity experiments performed on the PSD and MD samples using different heating temperatures suggest

  12. Bactericidal Effects against S. aureus and Physicochemical Properties of Plasma Activated Water stored at different temperatures

    PubMed Central

    Shen, Jin; Tian, Ying; Li, Yinglong; Ma, Ruonan; Zhang, Qian; Zhang, Jue; Fang, Jing

    2016-01-01

    Water activated by non-thermal plasma creates an acidified solution containing reactive oxygen and nitrogen species, known as plasma-activated water (PAW). The objective of this study was to investigate the effects of different storage temperatures (25 °C, 4 °C, −20 °C, −80 °C) on bactericidal activities against S. aureus and physicochemical properties of PAW up to 30 days. Interestingly, PAW stored at −80 °C yielded the best antibacterial activity against Staphylococcus aureus, 3~4 log reduction over a 30-day period after PAW generation; meanwhile, PAW stored at 25 °C, 4 °C, and −20 °C, respectively, yielded 0.2~2 log decrease in cell viability after the same exposure and storage time. These results were verified by scanning electron microscope (SEM). The physicochemical properties of PAW stored at different temperatures were evaluated, including pH, oxidation reduction potential (ORP), and hydrogen peroxide, nitrate, nitrite anion and NO radical levels. These findings suggested that bacterial activity of PAW stored at 25 °C, 4 °C, −20 °C decreased over time, and depended on three germicidal factors, specifically ORP, H2O2, and NO3−. Moreover, PAW stored at −80 °C retained bactericidal activity, with NO2− contributing to bactericidal ability in association with H2O2. Our findings provide a basis for PAW storage and practical applications in disinfection and food preservation. PMID:27346695

  13. Bactericidal Effects against S. aureus and Physicochemical Properties of Plasma Activated Water stored at different temperatures

    NASA Astrophysics Data System (ADS)

    Shen, Jin; Tian, Ying; Li, Yinglong; Ma, Ruonan; Zhang, Qian; Zhang, Jue; Fang, Jing

    2016-06-01

    Water activated by non-thermal plasma creates an acidified solution containing reactive oxygen and nitrogen species, known as plasma-activated water (PAW). The objective of this study was to investigate the effects of different storage temperatures (25 °C, 4 °C, ‑20 °C, ‑80 °C) on bactericidal activities against S. aureus and physicochemical properties of PAW up to 30 days. Interestingly, PAW stored at ‑80 °C yielded the best antibacterial activity against Staphylococcus aureus, 3~4 log reduction over a 30-day period after PAW generation; meanwhile, PAW stored at 25 °C, 4 °C, and ‑20 °C, respectively, yielded 0.2~2 log decrease in cell viability after the same exposure and storage time. These results were verified by scanning electron microscope (SEM). The physicochemical properties of PAW stored at different temperatures were evaluated, including pH, oxidation reduction potential (ORP), and hydrogen peroxide, nitrate, nitrite anion and NO radical levels. These findings suggested that bacterial activity of PAW stored at 25 °C, 4 °C, ‑20 °C decreased over time, and depended on three germicidal factors, specifically ORP, H2O2, and NO3‑. Moreover, PAW stored at ‑80 °C retained bactericidal activity, with NO2‑ contributing to bactericidal ability in association with H2O2. Our findings provide a basis for PAW storage and practical applications in disinfection and food preservation.

  14. Low-temperature micro-photoluminescence spectroscopy on laser-doped silicon with different surface conditions

    NASA Astrophysics Data System (ADS)

    Han, Young-Joon; Franklin, Evan; Fell, Andreas; Ernst, Marco; Nguyen, Hieu T.; Macdonald, Daniel

    2016-04-01

    Low-temperature micro-photoluminescence spectroscopy (μ-PLS) is applied to investigate shallow layers of laser-processed silicon for solar cell applications. Micron-scale measurement (with spatial resolution down to 1 μm) enables investigation of the fundamental impact of laser processing on the electronic properties of silicon as a function of position within the laser-processed region, and in particular at specific positions such as at the boundary/edge of processed and unprocessed regions. Low-temperature μ-PLS enables qualitative analysis of laser-processed regions by identifying PLS signals corresponding to both laser-induced doping and laser-induced damage. We show that the position of particular luminescence peaks can be attributed to band-gap narrowing corresponding to different levels of subsurface laser doping, which is achieved via multiple 248 nm nanosecond excimer laser pulses with fluences in the range 1.5-4 J/cm2 and using commercially available boron-rich spin-on-dopant precursor films. We demonstrate that characteristic defect PL spectra can be observed subsequent to laser doping, providing evidence of laser-induced crystal damage. The impact of laser parameters such as fluence and number of repeat pulses on laser-induced damage is also analyzed by observing the relative level of defect PL spectra and absolute luminescence intensity. Luminescence owing to laser-induced damage is observed to be considerably larger at the boundaries of laser-doped regions than at the centers, highlighting the significant role of the edges of laser-doped region on laser doping quality. Furthermore, by comparing the damage signal observed after laser processing of two different substrate surface conditions (chemically-mechanically polished and tetramethylammonium hydroxide etched), we show that wafer preparation can be an important factor impacting the quality of laser-processed silicon and solar cells.

  15. Bactericidal Effects against S. aureus and Physicochemical Properties of Plasma Activated Water stored at different temperatures.

    PubMed

    Shen, Jin; Tian, Ying; Li, Yinglong; Ma, Ruonan; Zhang, Qian; Zhang, Jue; Fang, Jing

    2016-06-27

    Water activated by non-thermal plasma creates an acidified solution containing reactive oxygen and nitrogen species, known as plasma-activated water (PAW). The objective of this study was to investigate the effects of different storage temperatures (25 °C, 4 °C, -20 °C, -80 °C) on bactericidal activities against S. aureus and physicochemical properties of PAW up to 30 days. Interestingly, PAW stored at -80 °C yielded the best antibacterial activity against Staphylococcus aureus, 3~4 log reduction over a 30-day period after PAW generation; meanwhile, PAW stored at 25 °C, 4 °C, and -20 °C, respectively, yielded 0.2~2 log decrease in cell viability after the same exposure and storage time. These results were verified by scanning electron microscope (SEM). The physicochemical properties of PAW stored at different temperatures were evaluated, including pH, oxidation reduction potential (ORP), and hydrogen peroxide, nitrate, nitrite anion and NO radical levels. These findings suggested that bacterial activity of PAW stored at 25 °C, 4 °C, -20 °C decreased over time, and depended on three germicidal factors, specifically ORP, H2O2, and NO3(-). Moreover, PAW stored at -80 °C retained bactericidal activity, with NO2(-) contributing to bactericidal ability in association with H2O2. Our findings provide a basis for PAW storage and practical applications in disinfection and food preservation.

  16. Bactericidal Effects against S. aureus and Physicochemical Properties of Plasma Activated Water stored at different temperatures.

    PubMed

    Shen, Jin; Tian, Ying; Li, Yinglong; Ma, Ruonan; Zhang, Qian; Zhang, Jue; Fang, Jing

    2016-01-01

    Water activated by non-thermal plasma creates an acidified solution containing reactive oxygen and nitrogen species, known as plasma-activated water (PAW). The objective of this study was to investigate the effects of different storage temperatures (25 °C, 4 °C, -20 °C, -80 °C) on bactericidal activities against S. aureus and physicochemical properties of PAW up to 30 days. Interestingly, PAW stored at -80 °C yielded the best antibacterial activity against Staphylococcus aureus, 3~4 log reduction over a 30-day period after PAW generation; meanwhile, PAW stored at 25 °C, 4 °C, and -20 °C, respectively, yielded 0.2~2 log decrease in cell viability after the same exposure and storage time. These results were verified by scanning electron microscope (SEM). The physicochemical properties of PAW stored at different temperatures were evaluated, including pH, oxidation reduction potential (ORP), and hydrogen peroxide, nitrate, nitrite anion and NO radical levels. These findings suggested that bacterial activity of PAW stored at 25 °C, 4 °C, -20 °C decreased over time, and depended on three germicidal factors, specifically ORP, H2O2, and NO3(-). Moreover, PAW stored at -80 °C retained bactericidal activity, with NO2(-) contributing to bactericidal ability in association with H2O2. Our findings provide a basis for PAW storage and practical applications in disinfection and food preservation. PMID:27346695

  17. Response of fish to different simulated rates of water temperature increase

    SciTech Connect

    Wike, L.D.; Tuckfield, R.C.

    1992-08-01

    We initiated this study to define the limits of effluent-temperature rate increases during reactor restart, which will help minimize fish kills. We constructed an apparatus for exposing fish to various temperature-increase regimens and conducted two experiments based on information from system tests and scoping runs. In the rate experiment, we acclimated the fish to 20{degree}C, and then raised the temperature to 40{degree}C at varying rates. Because scoping runs and literature suggested that acclimation temperature may affect temperature-related mortality, we conducted an acclimation experiment. We acclimated the fish to various temperatures, then raised the temperatures to 39--40{degree}C at a rate of 2{degree}C every 12 hours. Based on the analysis of the data, we recommend temperature-increase rates during reactor restart of 2.5{degree}C every nine hours if ambient water temperatures are over 20{degree}C. If water temperatures are at or below 20{degree}C, we recommend temperature-increase rates of 2.5{degree}C every 12 hours. No regulation of temperature is required after effluent temperatures reach 40{degree}C. We recommend further studies, including expanded testing with the simulation system and behavioral and bioenergetic investigations that may further refine acceptable rates of effluent-temperature increases.

  18. Acute effects of ozone on heart rate and body temperature in the unanesthetized, unrestrained rat maintained at different ambient temperatures

    SciTech Connect

    Watkinson, W.P.; Aileru, A.A.; Dowd, S.M.; Doerfler, D.L.; Tepper, J.S.

    1993-01-01

    The present studies were conducted to investigate the concentration-response characteristics of acute ozone (O3) exposure on the cardiovascular and thermoregulatory function of the unanesthetized, unrestrained rat, and to examine the modulating effects produced by changes in ambient temperature (T[sub a]) on the induced toxic response. For all studies, groups of male Fischer 344 rats (n=4-6/group) were implanted with radiotelemetry transmitters and allowed to recover overnight. The transmitters permitted continuous monitoring of electrocardiogram (ECG) and body core temperature (T[sub co]); heart rate (HR) was derived from the ECG signal. Frequency of breathing (f) was obtained in selected experiments by means of a Fenn box. All animals were monitored according to the following protocol: control (filtered air; 0.25 h); exposure (O3; 2 h); recovery (filtered air; 3-18 h). For the concentration-response experiments, O3 concentration was varied from 0.25-1.0 ppm and all exposures were conducted at an T[sub a] of 18-20 C. Significant decreases in HR and T[sub co] were demonstrated at O3 concentrations as low as 0.37 ppm.

  19. [Effects of day and night temperature difference on growth, development, yield and fruit quality of tomatoes].

    PubMed

    Li, Li; Li, Jia; Gao, Qing; Chen, Jin-xing

    2015-09-01

    Abstract: The effects of day and night temperature difference (DIF) on tomato's growth were studied in three precisely controlled units in phytotron. Set DIF as 6 °C (25/19 C), 8 °C (26/18 °C), 10 °C (27/17 °C) respectively, with the same diurnal mean temperature as 22 °C. The results showed that, different tomato varieties needed different suitable DIF at different growth stages. Before flouring, compared with DIF 6 °C , DIF 8 °C could significantly improve the growth and development of the wild currant tomato LA1781, increasing the plant height by 23.1%, fastening leaf development by 1-2 leaves, advancing flowers by 7 d. DIF 10 °C had similar effects with DIF 8 °C on LA1781. As to the cultured ordinary tomatoes LA2397 and LA0490, DIF 6 °C made the seedlings grow well, DIF 8 °C had no significant improved effects on seedlings, DIF 10 °C depressed the seedling's growth and flouring, decreasing the plant height by 12.0%-18.3%, lowering the leaf development by 2-3 leaves, delaying flouring by 2-4 d. But DIF 10 °C increased the dry aboveground mass of these three varieties by 25.2%-44.2%. After flouring, compared with DIF 6 °C, DIF 10 °C could significantly improve the yield and fruit quality of LA1781, increasing fruit number by 34.7%, yield per plant by 92.1%, single fruit mass by 40.0%, soluble sugar content by 16.3%, lycopene content by 95.6%. Compared with DIF 6 °C, LA2397 and LA0490 had higher yields and better fruit quality under DIF 8 °C, and lycopene content increased more than twice as that under DIF 6 °C. Under DIF 10 °C, yields of LA2397 and LA0490 slightly decreased (5.0%), soluble sugar contents of fruit decreased, but fruit size and lycopene content increased. The results showed that, DIF should not be very great in the seedling period of tomatoes, and a moderate DIF in flower and fruit periods could improve the yield and fruit quality, but a too high DIF would result in poor growth and yield reduction.

  20. Steroid signaling system responds differently to temperature and hormone manipulation in the red-eared slider turtle (Trachemys scripta elegans), a reptile with temperature-dependent sex determination.

    PubMed

    Ramsey, M; Crews, D

    2007-01-01

    Many reptiles, including the red-eared slider turtle (Trachemys scripta elegans), exhibit temperature-dependent sex determination (TSD). Temperature determines gonadal sex during the middle of embryogenesis, or the temperature-sensitive period (TSP), when gonadal sex is labile to both temperature and hormones--particularly estrogen. The biological actions of steroid hormones are mediated by their receptors as defined here as the classic transcriptional regulation of target genes. To elucidate estrogen action during sex determination, we examined estrogen receptor alpha (Esr1, hereafter referred to as ERalpha), estrogen receptor beta (Esr2, hereafter referred to as ERbeta), and androgen receptor (Ar, hereafter referred to as AR) expression in slider turtle gonads before, during and after the TSP, as well as following sex reversal via temperature or steroid hormone manipulation. ERalpha and AR levels spike at the female-producing temperature while ovarian sex is determined, but none of the receptors exhibited sexually dimorphic localization within the gonad prior to morphological differentiation. All three receptors respond differentially to sex-reversing treatments. When shifted to female-producing temperatures, embryos maintain ERalpha and AR expression while ERbeta is reduced. When shifted to male-producing temperatures, medullary expression of all three receptors is reduced. Feminization via estradiol (E(2)) treatment at a male-producing temperature profoundly changed the expression patterns for all three receptors. ERalpha and ERbeta redirected to the cortex in E(2)-created ovaries, while AR medullary expression was transiently reduced. Although warmer incubation temperature and estrogen result in the same endpoint (ovarian development), our results indicate different steroid signaling patterns between temperature- and estrogen-induced feminization.

  1. Core temperature differences between males and females during intermittent exercise: physical considerations.

    PubMed

    Gagnon, Daniel; Dorman, Lucy E; Jay, Ollie; Hardcastle, Stephen; Kenny, Glen P

    2009-02-01

    We examined differences in dynamic heat balance between males and females during intermittent exercise. Six males (M) and six females (F) performed three 30-min bouts of exercise (Ex1, Ex2, Ex3) at a constant rate of metabolic heat production (M - W) of approximately 500 W separated by three 15-min periods of inactive recovery. Rate of total heat loss (M - W) was measured by direct calorimetry, while M - W was determined by indirect calorimetry. Esophageal (T (es)) was measured continuously. Exercise at a constant M - W of approximately 500 W, was paralleled by a similar HL between sexes at the end of Ex1 (M: 462 +/- 30 W, F: 442 +/- 9 W, p = 0.117), Ex2 (M: 468 +/- 28 W, F: 508 +/- 18 W, p = 0.343), and Ex3 (M: 469 +/- 17 W, F: 465 +/- 13 W, p = 0.657). Consequently, changes in body heat content were comparable after Ex1 (M: 218 +/- 21 kJ, F: 287 +/- 35 kJ, p = 0.134), Ex2 (M: 109 +/- 18 kJ, F: 158 +/- 29 kJ, p = 0.179), and Ex3 (M: 92 +/- 19 kJ, F: 156 +/- 35 kJ, p = 0.136). However, females had greater overall increases in T (es) at the end of Ex3 (M: 0.55 +/- 0.25 degrees C, F: 0.97 +/- 0.26 degrees C, p Differences in core temperature between sexes appear to be solely related to differences in physical characteristics, and not due to concurrent differences in whole-body thermoregulatory responses.

  2. Noninvasive assessment of muscle temperature during rest, exercise, and postexercise recovery in different environments.

    PubMed

    Flouris, Andreas D; Webb, Paul; Kenny, Glen P

    2015-05-15

    We introduced noninvasive and accurate techniques to estimate muscle temperature (Tm) of vastus lateralis (VL), triceps brachii (TB), and trapezius (TRAP) during rest, exercise, and postexercise recovery using the insulation disk (iDISK) technique. Thirty-six volunteers (24 men, 12 women; 73.0 ± 12.2 kg; 1.75 ± 0.07 m; 24.4 ± 5.5 yr; 49.2 ± 6.8 ml·kg(-1)·min(-1) peak oxygen uptake) underwent periods of rest, cycling exercise at 40% of peak oxygen uptake, and postexercise recovery in three environments: Normal (24°C, 56% relative humidity), Hot-Humid (30°C, 60% relative humidity), and Hot-Dry (40°C, 24% relative humidity). Participants were randomly allocated into the "model" and the "validation" groups. Results in the model group demonstrated that Tm (VL: 36.65 ± 1.27°C; TB: 35.76 ± 1.73°C; TRAP: 36.53 ± 0.96°C) was increased compared with iDISK (VL: 35.67 ± 1.71°C; TB: 34.77 ± 2.27°C; TRAP: 35.98 ± 1.34°C) across all environments (P < 0.001). Stepwise regression analysis generated models that accurately predicted Tm (predTm) of VL (R(2) = 0.73-0.91), TB (R(2) = 0.85-0.93), and TRAP (R(2) = 0.84-0.86) using iDISK and the difference between the current iDISK temperature and that recorded between 1 and 4 min before. Cross-validation analyses in the validation group demonstrated small differences (P < 0.05) of no physiological significance, small effect size of the differences, and strong associations (r = 0.85-0.97; P < 0.001) between Tm and predTm. Moreover, narrow 95% limits of agreement and low percent coefficient of variation were observed between Tm and predTm. It is concluded that the developed noninvasive, practical, and inexpensive techniques provide accurate estimations of VL, TB, and TRAP Tm during rest, cycling exercise, and postexercise recovery.

  3. Noninvasive assessment of muscle temperature during rest, exercise, and postexercise recovery in different environments

    PubMed Central

    Flouris, Andreas D.; Webb, Paul

    2015-01-01

    We introduced noninvasive and accurate techniques to estimate muscle temperature (Tm) of vastus lateralis (VL), triceps brachii (TB), and trapezius (TRAP) during rest, exercise, and postexercise recovery using the insulation disk (iDISK) technique. Thirty-six volunteers (24 men, 12 women; 73.0 ± 12.2 kg; 1.75 ± 0.07 m; 24.4 ± 5.5 yr; 49.2 ± 6.8 ml·kg−1·min−1 peak oxygen uptake) underwent periods of rest, cycling exercise at 40% of peak oxygen uptake, and postexercise recovery in three environments: Normal (24°C, 56% relative humidity), Hot-Humid (30°C, 60% relative humidity), and Hot-Dry (40°C, 24% relative humidity). Participants were randomly allocated into the “model” and the “validation” groups. Results in the model group demonstrated that Tm (VL: 36.65 ± 1.27°C; TB: 35.76 ± 1.73°C; TRAP: 36.53 ± 0.96°C) was increased compared with iDISK (VL: 35.67 ± 1.71°C; TB: 34.77 ± 2.27°C; TRAP: 35.98 ± 1.34°C) across all environments (P < 0.001). Stepwise regression analysis generated models that accurately predicted Tm (predTm) of VL (R2 = 0.73-0.91), TB (R2 = 0.85–0.93), and TRAP (R2 = 0.84–0.86) using iDISK and the difference between the current iDISK temperature and that recorded between 1 and 4 min before. Cross-validation analyses in the validation group demonstrated small differences (P < 0.05) of no physiological significance, small effect size of the differences, and strong associations (r = 0.85–0.97; P < 0.001) between Tm and predTm. Moreover, narrow 95% limits of agreement and low percent coefficient of variation were observed between Tm and predTm. It is concluded that the developed noninvasive, practical, and inexpensive techniques provide accurate estimations of VL, TB, and TRAP Tm during rest, cycling exercise, and postexercise recovery. PMID:25814638

  4. Assessment of acute toxicity of carbofuran in Macrobrachium olfersii (Wiegmann, 1836) at different temperature levels.

    PubMed

    Barbieri, Edison; Moreira, Priscila; Luchini, Luiz Alberto; Hidalgo, Karla Ruiz; Muñoz, Alejandro

    2016-01-01

    Carbofuran (2,3-dihydro-2,2-dimethyl-7-benzofuranyl methylcarbamate; C12H15NO3) is one of the most toxic carbamate pesticides. For acute toxicity of carbofuran, juveniles of Macrobrachium olfersii were exposed to different concentrations of carbofuran using the static renewal method at different temperature levels (15, 20 and 25°C) at pH 7.0. The main purpose of the present study was to detect the acute toxicity of carbofuran to M. olfersii and investigate its effects on oxygen consumption and ammonium excretion; these tests have not been carried out in this species before. First, the acute toxicity - median lethal concentration - of carbofuran to M. olfersii for 24, 48, 72 and 96 h was examined, which resulted in the following values: 1.64, 1.22, 0.86 and 0.42 mg L(-1), respectively. Furthermore, we also found that carbofuran caused an inhibition in oxygen consumption of 60.6, 65.3 and 66.2% with respect to the control. In addition, after separate exposures to carbofuran, elevations in ammonium excretion were more than 500% with respect to the control.

  5. Assessment of acute toxicity of carbofuran in Macrobrachium olfersii (Wiegmann, 1836) at different temperature levels.

    PubMed

    Barbieri, Edison; Moreira, Priscila; Luchini, Luiz Alberto; Hidalgo, Karla Ruiz; Muñoz, Alejandro

    2016-01-01

    Carbofuran (2,3-dihydro-2,2-dimethyl-7-benzofuranyl methylcarbamate; C12H15NO3) is one of the most toxic carbamate pesticides. For acute toxicity of carbofuran, juveniles of Macrobrachium olfersii were exposed to different concentrations of carbofuran using the static renewal method at different temperature levels (15, 20 and 25°C) at pH 7.0. The main purpose of the present study was to detect the acute toxicity of carbofuran to M. olfersii and investigate its effects on oxygen consumption and ammonium excretion; these tests have not been carried out in this species before. First, the acute toxicity - median lethal concentration - of carbofuran to M. olfersii for 24, 48, 72 and 96 h was examined, which resulted in the following values: 1.64, 1.22, 0.86 and 0.42 mg L(-1), respectively. Furthermore, we also found that carbofuran caused an inhibition in oxygen consumption of 60.6, 65.3 and 66.2% with respect to the control. In addition, after separate exposures to carbofuran, elevations in ammonium excretion were more than 500% with respect to the control. PMID:23847016

  6. 2D-PAGE protein analysis of dinoflagellate Alexandrium minutum based on three different temperatures

    NASA Astrophysics Data System (ADS)

    Latib, Norhidayu Abdul; Norshaha, Safida Anira; Usup, Gires; Yusof, Nurul Yuziana Mohd

    2015-09-01

    Harmful algae bloom or red tide seems to be considered as threat to ecosystem, especially to human consumption because of the production of neurotoxin by dinoflagellates species such as Alexandrium minutum which can lead to paralytic shellfish poisoning. The aim of this study is to determine the most suitable method for protein extraction of A. minutum followed by determination of differential protein expression of A. minutum on three different temperatures (15°C, 26°C and 31.5°C). After the optimization, the protein extract was subjected to two-dimensional polyacrylamide gel electrophoresis (2-DE) to compare the intensity and distribution of the protein spots. Based on quantitative and qualitative protein assessment, use of Trizol reagent is the most suitable method to extract protein from A. minutum. 2-DE analysis of the samples results in different distribution and intensity of the protein spots were compared between 15°C, 26°C and 31.5°C.

  7. Growth and heavy metal removal by Klebsiella aerogenes at different pH and temperature

    SciTech Connect

    Al-Shahwani, M.F.; Jazrawi, S.F.; Al-Rawi, E.H.; Ayar, N.S.

    1984-01-01

    A strain of Klebsiella aerogenes isolated from Rustamiyah Station for treatment of wastewater was examined for its ability to grow in a media supplemented with maximum tolerance concentrations of Pb/sup + +/, Zn/sup + +/, Ni/sup + +/, and Cd/sup + +/, separately, at different temperatures and initial pH. The results indicated that at 28/sup 0/C during the first 24 hr, Pb/sup + +/ and Ni/sup + +/ had no effect on the growth of the bacteria, while the presence of Zn/sup + +/ and Cd/sup + +/ decreased the cell count. The growth reached a maximum level after the second day and started to decrease gradually. The bacterial count at 37/sup 0/C was less than that at 28/sup 0/C. No bacterial multiplication occurred at 44/sup 0/C. There was little difference between heavy metal removal at 28 and 37/sup 0/C. At 44/sup 0/C, little removal took place. In general, slightly acidic or neutral medium was better for both bacterial growth and metal removal.

  8. Differences between Last Glacial Maximum and present-day temperature and precipitation in southern South America

    NASA Astrophysics Data System (ADS)

    Berman, Ana Laura; Silvestri, Gabriel E.; Tonello, Marcela S.

    2016-10-01

    This paper is the first analysis of differences between Last Glacial Maximum (LGM) and present climates in southern South America considering the state-of-the-art PMIP3 paleoclimatic models. The study is focused on characteristics of temperature and precipitation over the portion of the continent to the south of 20°S at both sides of the Andes Cordillera. Results demonstrate that model outputs coincide with glacial conditions inferred from the very few paleorecords available in the region. Consequently, these models are a valuable tool for inferring additional conditions in areas where there is a lack of proxy information allowing the reconstruction of the past climate at regional scales. The analyzed PMIP3 models expose an LGM cooling of ∼2-5 °C throughout the year over almost all southern South America but differences are even more pronounced in areas around the southern Andes. Models also suggest that LGM precipitation was substantially lower than present over the portion of southern South America to the east of the Andes inferring reductions of ∼20-30% with respect to present-day values in subtropical areas and ∼40-50% in the southern tip of the continent.

  9. Seasonal differences in intraseasonal and interannual variability of Mediterranean Sea surface temperature

    NASA Astrophysics Data System (ADS)

    Zveryaev, Igor I.

    2015-04-01

    Sea surface temperature (SST) data from the NOAA OI SST data set for 1982-2011 are used to investigate intraseasonal and interannual variability of Mediterranean SST during winter and summer seasons. It is shown that during winter the intraseasonal SST fluctuations are larger than the interannual SST variations in the western Mediterranean (e.g., the Tyrrhenian Sea), but smaller in the central and eastern Mediterranean Sea. In summer, the intraseasonal SST fluctuations are larger in almost the entire Mediterranean basin. Also summertime intraseasonal SST fluctuations are larger (up to three times near the Gulf of Lions) than their wintertime counterparts in the entire Mediterranean basin. The interannual SST variations are larger during summer in the western and central Mediterranean Sea and during winter in its eastern part. The leading empirical orthogonal functions (EOFs) of the Mediterranean SST and of the intensities of its intraseasonal fluctuations are characterized by the differing spatial-temporal structures both during winter and summer implying that their interannual variability is driven by different physical mechanisms. During winter, the EOF-1 of SST is associated with the East Atlantic teleconnection, whereas EOF-1 of the intensity of intraseasonal fluctuations is not linked significantly to regional atmospheric dynamics. The second EOFs of these variables are associated, respectively, with the East Atlantic/West Russia and the North Atlantic teleconnections. While during summer the atmospheric influence on Mediterranean SST is generally weaker, it is revealed that the EOF-1 of the intensity of intraseasonal SST fluctuations is linked to the Polar teleconnection.

  10. Understanding differences in upper stratospheric ozone response to changes in chlorine and temperature as computed using CCMVal-2 models

    NASA Astrophysics Data System (ADS)

    Douglass, A. R.; Stolarski, R. S.; Strahan, S. E.; Oman, L. D.

    2012-08-01

    Projections of future ozone levels are made using models that couple a general circulation model with a representation of atmospheric photochemical processes, allowing interactions among photochemical processes, radiation, and dynamics. Such models are known as coupled chemistry-climate models (CCMs). Although developed from common principles and subject to the same boundary conditions, simulated ozone time series vary among models for scenarios for ozone depleting substances (ODSs) and greenhouse gases. Photochemical processes control the upper stratospheric ozone level, and there is broad agreement among CCMs in that ozone increases as ODSs decrease and temperature decreases due to greenhouse gas increase. There are quantitative differences in the ozone sensitivity to chlorine and temperature. We obtain insight into differences in sensitivity by examining the relationship between the upper stratospheric seasonal cycles of ozone and temperature as produced by fourteen CCMs. All simulations conform to expectation in that ozone is less sensitive to temperature when chlorine levels are highest because chlorine catalyzed loss is nearly independent of temperature. Analysis reveals differences in simulated temperature, ozone and reactive nitrogen that lead to differences in the relative importance of ozone loss processes and are most obvious when chlorine levels are close to background. Differences in the relative importance of loss processes underlie differences in simulated sensitivity of ozone to composition change. This suggests 1) that the multimodel mean is not a best estimate of the sensitivity of upper stratospheric ozone to changes in ODSs and temperature; and 2) that the spread of values is not an appropriate measure of uncertainty.

  11. Understanding Differences in Upper Stratospheric Ozone Response to Changes in Chlorine and Temperature as Computed Using CCMVal Models

    NASA Technical Reports Server (NTRS)

    Douglass, A. R.; Stolarski, R. S.; Strahan, S. E.; Oman, L. D.

    2012-01-01

    Projections of future ozone levels are made using models that couple a general circulation model with a representation of atmospheric photochemical processes, allowing interactions among photochemical processes, radiation, and dynamics. Such models are known as chemistry and climate models (CCMs). Although developed from common principles and subject to the same boundary conditions, simulated ozone time series vary for projections of changes in ozone depleting substances (ODSs) and greenhouse gases. In the upper stratosphere photochemical processes control ozone level, and ozone increases as ODSs decrease and temperature decreases due to greenhouse gas increase. Simulations agree broadly but there are quantitative differences in the sensitivity of ozone to chlorine and to temperature. We obtain insight into these differences in sensitivity by examining the relationship between the upper stratosphere annual cycle of ozone and temperature as produced by a suite of models. All simulations conform to expectation in that ozone is less sensitive to temperature when chlorine levels are highest because chlorine catalyzed loss is nearly independent of temperature. Differences in sensitivity are traced to differences in simulated temperature, ozone and reactive nitrogen when chlorine levels are close to background. This work shows that differences in the importance of specific processes underlie differences in simulated sensitivity of ozone to composition change. This suggests a) the multi-model mean is not a best estimate of the sensitivity of upper ozone to changes in ODSs and temperature; b) the spread of values is not an appropriate measure of uncertainty.

  12. Effect of different arbuscular mycorrhizal fungi on growth and physiology of maize at ambient and low temperature regimes.

    PubMed

    Chen, Xiaoying; Song, Fengbin; Liu, Fulai; Tian, Chunjie; Liu, Shengqun; Xu, Hongwen; Zhu, Xiancan

    2014-01-01

    The effect of four different arbuscular mycorrhizal fungi (AMF) on the growth and lipid peroxidation, soluble sugar, proline contents, and antioxidant enzymes activities of Zea mays L. was studied in pot culture subjected to two temperature regimes. Maize plants were grown in pots filled with a mixture of sandy and black soil for 5 weeks, and then half of the plants were exposed to low temperature for 1 week while the rest of the plants were grown under ambient temperature and severed as control. Different AMF resulted in different root colonization and low temperature significantly decreased AM colonization. Low temperature remarkably decreased plant height and total dry weight but increased root dry weight and root-shoot ratio. The AM plants had higher proline content compared with the non-AM plants. The maize plants inoculated with Glomus etunicatum and G. intraradices had higher malondialdehyde and soluble sugar contents under low temperature condition. The activities of catalase (CAT) and peroxidase of AM inoculated maize were higher than those of non-AM ones. Low temperature noticeably decreased the activities of CAT. The results suggest that low temperature adversely affects maize physiology and AM symbiosis can improve maize seedlings tolerance to low temperature stress.

  13. Effect of different arbuscular mycorrhizal fungi on growth and physiology of maize at ambient and low temperature regimes.

    PubMed

    Chen, Xiaoying; Song, Fengbin; Liu, Fulai; Tian, Chunjie; Liu, Shengqun; Xu, Hongwen; Zhu, Xiancan

    2014-01-01

    The effect of four different arbuscular mycorrhizal fungi (AMF) on the growth and lipid peroxidation, soluble sugar, proline contents, and antioxidant enzymes activities of Zea mays L. was studied in pot culture subjected to two temperature regimes. Maize plants were grown in pots filled with a mixture of sandy and black soil for 5 weeks, and then half of the plants were exposed to low temperature for 1 week while the rest of the plants were grown under ambient temperature and severed as control. Different AMF resulted in different root colonization and low temperature significantly decreased AM colonization. Low temperature remarkably decreased plant height and total dry weight but increased root dry weight and root-shoot ratio. The AM plants had higher proline content compared with the non-AM plants. The maize plants inoculated with Glomus etunicatum and G. intraradices had higher malondialdehyde and soluble sugar contents under low temperature condition. The activities of catalase (CAT) and peroxidase of AM inoculated maize were higher than those of non-AM ones. Low temperature noticeably decreased the activities of CAT. The results suggest that low temperature adversely affects maize physiology and AM symbiosis can improve maize seedlings tolerance to low temperature stress. PMID:24895680

  14. Small change, big difference: Sea surface temperature distributions for tropical coral reef ecosystems, 1950-2011

    NASA Astrophysics Data System (ADS)

    Lough, J. M.

    2012-09-01

    Changes in tropical sea surface temperature (SST) are examined over the period 1950-2011 during which global average temperature warmed by 0.4°C. Average tropical SST is warming about 70% of the global average rate. Spatially, significant warming between the two time periods, 1950-1980 and 1981-2011, has occurred across 65% of the tropical oceans. Coral reef ecosystems occupy 10% of the tropical oceans, typically in regions of warmer (+1.8°C) and less variable SST (80% of months within 3.3°C range) compared to non-reef areas (80% of months within 7.0°C range). SST is a primary controlling factor of coral reef distribution and coral reef organisms have already shown their sensitivity to the relatively small amount of warming observed so far through, for example, more frequent coral bleaching events and outbreaks of coral disease. Experimental evidence is also emerging of possible thermal thresholds in the range 30°C-32°C for some physiological processes of coral reef organisms. Relatively small changes in SST have already resulted in quite large differences in SST distribution with a maximum ‘hot spot’ of change in the near-equatorial Indo-Pacific which encompasses both the Indo-Pacific warm pools and the center of coral reef biodiversity. Identification of this hot spot of SST change is not new but this study highlights its significance with respect to tropical coral reef ecosystems. Given the modest amount of warming to date, changes in SST distribution are of particular concern for coral reefs given additional local anthropogenic stresses on many reefs and ongoing ocean acidification likely to increasingly compromise coral reef processes.

  15. Migration of DEHP and DINP into dust from PVC flooring products at different surface temperature.

    PubMed

    Jeon, Seunghwan; Kim, Ki-Tae; Choi, Kyungho

    2016-03-15

    Phthalates are important endocrine disrupting chemicals that have been linked to various adverse human health effects. Phthalates are ubiquitously present in indoor environment and could enter humans. Vinyl or PVC floorings have been recognized as one of important sources of phthalate release to indoor environment including house dust. In the present study, we estimated the migration of di(2-ethylhexyl)phthalate (DEHP) and di-isononyl phthalate (DINP) from the flooring materials into the dust under different heating conditions. For this purpose, a small chamber specifically designed for the present study and a Field and Laboratory Emission Cell (FLEC) were used, and four major types of PVC flooring samples including two UV curing paint coated, an uncoated residential, and a wax-coated commercial type were tested. Migration of DEHP was observed for an uncoated residential type and a wax-coated commercial type flooring. After 14 days of incubation, the levels of DEHP in the dust sample was determined at room temperature on average (standard deviation) at 384 ± 19 and 481 ± 53 μg/g, respectively. In contrast, migration of DINP was not observed. The migration of DEHP was strongly influenced by surface characteristics such as UV curing coating. In the residential flooring coated with UV curing paint, migration of DEHP was not observed at room temperature. But under the heated condition, the release of DEHP was observed in the dust in the FLEC. Migration of DEHP from flooring materials increased when the flooring was heated (50 °C). In Korea, heated flooring system, or 'ondol', is very common mode of heating in residential setting, therefore the contribution of PVC flooring to the total indoor DEHP exposure among general population is expected to be greater especially during winter season when the floor is heated.

  16. Migration of DEHP and DINP into dust from PVC flooring products at different surface temperature.

    PubMed

    Jeon, Seunghwan; Kim, Ki-Tae; Choi, Kyungho

    2016-03-15

    Phthalates are important endocrine disrupting chemicals that have been linked to various adverse human health effects. Phthalates are ubiquitously present in indoor environment and could enter humans. Vinyl or PVC floorings have been recognized as one of important sources of phthalate release to indoor environment including house dust. In the present study, we estimated the migration of di(2-ethylhexyl)phthalate (DEHP) and di-isononyl phthalate (DINP) from the flooring materials into the dust under different heating conditions. For this purpose, a small chamber specifically designed for the present study and a Field and Laboratory Emission Cell (FLEC) were used, and four major types of PVC flooring samples including two UV curing paint coated, an uncoated residential, and a wax-coated commercial type were tested. Migration of DEHP was observed for an uncoated residential type and a wax-coated commercial type flooring. After 14 days of incubation, the levels of DEHP in the dust sample was determined at room temperature on average (standard deviation) at 384 ± 19 and 481 ± 53 μg/g, respectively. In contrast, migration of DINP was not observed. The migration of DEHP was strongly influenced by surface characteristics such as UV curing coating. In the residential flooring coated with UV curing paint, migration of DEHP was not observed at room temperature. But under the heated condition, the release of DEHP was observed in the dust in the FLEC. Migration of DEHP from flooring materials increased when the flooring was heated (50 °C). In Korea, heated flooring system, or 'ondol', is very common mode of heating in residential setting, therefore the contribution of PVC flooring to the total indoor DEHP exposure among general population is expected to be greater especially during winter season when the floor is heated. PMID:26824397

  17. Role of temperature differences between surface and deep reservoirs in geyser dynamics: Insights from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Munoz Saez, C.; Shteinberg, A.; Manga, M.

    2012-12-01

    Geysers are springs that produce episodic eruptions of steam, liquid water, and non-condensable gases. Their eruptions are smaller and more frequent than other eruptive processes (volcanic, or hydrothermal eruptions), providing a feasible natural laboratory to understand eruptive processes. Moreover, the fluid dynamics of geysers probe processes that operate in more inaccessible geothermal systems. We developed laboratory experiments to understand the role of the surface temperature on geyser dynamics. For the experimental model, we followed to model developed by Steinberg et al. (1982), which produced periodic eruptions. In this experimental model, eruptions are driven by the ascent of bubbles. The "explosive" ejection of fluid occurs when bubbles reach the surface of the conduit. The eruption of a bubble influences the nucleation on the next bubble through the pressure changes in the conduit. The experimental apparatus consists of a bottom reservoir and a vertical conduit that opens into an upper chamber that collects and returns liquid to the reservoir after the eruption. The reservoir was heated from below at a constant rate. The fluid used was Freon 113, which has a boiling point of 48°C. Temperature in the upper part of the tube was varied between 0° to 20°C. As we increase the temperature difference between the reservoir and the surface of the tube we find (1) that vapor contained in the upper part of bubble tends condense, impeding its ascent to the surface, (2) an increase the number of bubbles generated during the time between eruptions, (3) that the volume of vapor in the tube remain almost constant during the period between eruptions (4) an increase the frequency of eruptions, (5) an increase the escape speed of fluid from the tube, and (6) an increase in Reynolds number. We interpret these results in terms of heat transport by the rising bubbles. Bubbles transport the heat as latent heat of evaporation. Because the amount of heating was the same in

  18. Developing a heatwave early warning system for Sweden: evaluating sensitivity of different epidemiological modelling approaches to forecast temperatures.

    PubMed

    Åström, Christofer; Ebi, Kristie L; Langner, Joakim; Forsberg, Bertil

    2015-01-01

    Over the last two decades a number of heatwaves have brought the need for heatwave early warning systems (HEWS) to the attention of many European governments. The HEWS in Europe are operating under the assumption that there is a high correlation between observed and forecasted temperatures. We investigated the sensitivity of different temperature mortality relationships when using forecast temperatures. We modelled mortality in Stockholm using observed temperatures and made predictions using forecast temperatures from the European Centre for Medium-range Weather Forecasts to assess the sensitivity. We found that the forecast will alter the expected future risk differently for different temperature mortality relationships. The more complex models seemed more sensitive to inaccurate forecasts. Despite the difference between models, there was a high agreement between models when identifying risk-days. We find that considerations of the accuracy in temperature forecasts should be part of the design of a HEWS. Currently operating HEWS do evaluate their predictive performance; this information should also be part of the evaluation of the epidemiological models that are the foundation in the HEWS. The most accurate description of the relationship between high temperature and mortality might not be the most suitable or practical when incorporated into a HEWS.

  19. Determining the temporal variability in atmospheric temperature profiles measured using radiosondes and assessment of correction factors for different launch schedules

    NASA Astrophysics Data System (ADS)

    Butterfield, D.; Gardiner, T.

    2014-08-01

    Radiosondes provide one of the primary sources of upper atmosphere temperature data for numerical weather prediction, the assessment of long-term trends in atmospheric temperature, the study atmospheric processes and provide a source of intercomparison data for other temperature sensors e.g. satellites. When intercomparing different temperature profiles it is important to include the effect of temporal mis-match between the measurements. To help quantify this uncertainty the atmospheric temperature variation through the day needs to be assessed, so that a correction and uncertainty for time difference can be calculated. Temperature data from an intensive radiosonde campaign were analysed to calculate the hourly rate of change in temperature at different altitudes and provide recommendations and correction factors for different launch schedules. Using these results, three additional longer term data sets were analysed to assess the diurnal variability temperature as a function of altitude, time of day and season of the year. This provides data on the appropriate correction factors to use for a given temporal separation and the uncertainty associated with them. A general observation was that 10 or more repeat measurements would be required to get a standard uncertainty of less than 0.1 K h-1 of temporal mis-match.

  20. Moisture and temperature controls on nitrification differ among ammonia oxidizer communities from three alpine soil habitats

    NASA Astrophysics Data System (ADS)

    Osborne, Brooke B.; Baron, Jill S.; Wallenstein, Matthew D.

    2016-03-01

    Climate change is altering the timing and magnitude of biogeochemical fluxes in many highelevation ecosystems. The consequent changes in alpine nitrification rates have the potential to influence ecosystem scale responses. In order to better understand how changing temperature and moisture conditions may influence ammonia oxidizers and nitrification activity, we conducted laboratory incubations on soils collected in a Colorado watershed from three alpine habitats (glacial outwash, talus, and meadow). We found that bacteria, not archaea, dominated all ammonia oxidizer communities. Nitrification increased with moisture in all soils and under all temperature treatments. However, temperature was not correlated with nitrification rates in all soils. Site-specific temperature trends suggest the development of generalist ammonia oxidzer communities in soils with greater in situ temperature fluctuations and specialists in soils with more steady temperature regimes. Rapidly increasing temperatures and changing soil moisture conditions could explain recent observations of increased nitrate production in some alpine soils.

  1. Isotopic ordering in eggshells reflects body temperatures and suggests differing thermophysiology in two Cretaceous dinosaurs

    NASA Astrophysics Data System (ADS)

    Eagle, Robert A.; Enriquez, Marcus; Grellet-Tinner, Gerald; Pérez-Huerta, Alberto; Hu, David; Tütken, Thomas; Montanari, Shaena; Loyd, Sean J.; Ramirez, Pedro; Tripati, Aradhna K.; Kohn, Matthew J.; Cerling, Thure E.; Chiappe, Luis M.; Eiler, John M.

    2015-10-01

    Our understanding of the evolutionary transitions leading to the modern endothermic state of birds and mammals is incomplete, partly because tools available to study the thermophysiology of extinct vertebrates are limited. Here we show that clumped isotope analysis of eggshells can be used to determine body temperatures of females during periods of ovulation. Late Cretaceous titanosaurid eggshells yield temperatures similar to large modern endotherms. In contrast, oviraptorid eggshells yield temperatures lower than most modern endotherms but ~6 °C higher than co-occurring abiogenic carbonates, implying that this taxon did not have thermoregulation comparable to modern birds, but was able to elevate its body temperature above environmental temperatures. Therefore, we observe no strong evidence for end-member ectothermy or endothermy in the species examined. Body temperatures for these two species indicate that variable thermoregulation likely existed among the non-avian dinosaurs and that not all dinosaurs had body temperatures in the range of that seen in modern birds.

  2. Moisture and temperature controls on nitrification differ among ammonia oxidizer communities from three alpine soil habitats

    USGS Publications Warehouse

    Osborne, Brooke B; Baron, Jill S.; Wallenstein, Matthew D.

    2015-01-01

    Climate change is altering the timing and magnitude of biogeochemical fluxes in many high elevation ecosystems. The consequent changes in alpine nitrification rates have the potential to influence ecosystem scale responses. In order to better understand how changing temperature and moisture conditions may influence ammonia oxidizers and nitrification activity, we conducted laboratory incubations on soils collected in a Colorado watershed from three alpine habitats (glacial outwash, talus, and meadow). We found that bacteria, not archaea, dominated all ammonia oxidizer communities. Nitrification increased with moisture in all soils and under all temperature treatments. However, temperature was not correlated with nitrification rates in all soils. Site-specific temperature trends suggest the development of generalist ammonia oxidizer communities in soils with greater in situ temperature fluctuations and specialists in soils with more steady temperature regimes. Rapidly increasing temperatures and changing soil moisture conditions could explain recent observations of increased nitrate production in some alpine soils.

  3. The Giant Magnetostriction of [Fe/Tb/Fe/Dy]n Multilayer Films Under Different Annealing Temperature

    NASA Astrophysics Data System (ADS)

    Li, X. D.; Zhao, Z. J.; Feng, T.; Pan, L. K.; Huang, S. M.; Chen, Y. W.; Sun, Z.

    The effect of annealing temperature on the magnetic and giant magnetostriction (GMS) of [Fe/Tb/Fe/Dy]n multilayer films were investigated. X-ray diffraction showed that the multilayer films' microstructures were still in amorphous at annealing temperature 300°C. The multilayer films began to crystalline at annealing temperature 400°C. The saturation magnetization of multilayer films increased by the increasing annealed temperature. The coercivity first decreased at annealing temperature 300°C and then increased when the annealing temperature was higher than 400°C. The multilayer films had good low-field GMS, and the magnetostriction of the multilayer films increased by the increasing annealing temperature.

  4. The EUSTACE project: combining different components of the observing system to deliver global, daily information on surface air temperature

    NASA Astrophysics Data System (ADS)

    Rayner, Nick

    2016-04-01

    Day-to-day variations in surface air temperature affect society in many ways and are fundamental information for many climate services; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, we must develop an understanding of the relationships between traditional surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. Here we reflect on our experience so far within the Horizon 2020 project EUSTACE of using satellite skin temperature retrievals to help us to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types and developing new statistical models of how surface air temperature varies in a connected way from place to place. We will present plans and progress along this road in the EUSTACE project (2015-June 2018): - providing new, consistent, multi-component estimation of uncertainty in surface skin temperature retrievals from satellites; - identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; - estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; - using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras. Information will also be given on how interested users can become involved.

  5. Trends, spectral characteristics, and rainfall relationships of low-latitude sea surface temperatures at different longitudes

    NASA Astrophysics Data System (ADS)

    Kane, R. P.

    2000-01-01

    The sea surface temperature (SST) data for low latitudes in the Pacific, Atlantic, and Indian Oceans for 1950-1996 (47 years) showed different seasonal variation patterns at different longitudes. When the seasonal patterns were subtracted from the monthly values, the deseasoned residuals showed considerable anomalies (interannual variability). In the Pacific the main features were the El Niño events. In the Atlantic, North and South Atlantic SST showed dissimilar anomalies, and these did not have any fixed lag or lead relationships with the Pacific events. The same was true for the low-latitude Indian Ocean SST. The correlation of Pacific SST with Atlantic or Indian Oceans' SST was less than ˜0.65, yielding a common variance (square of the correlation) of less than ˜40%. Thus, whereas SST anomalies might have some common origin, the manifestation of SST anomalies at different longitudes was erratic, with no preference for any longitude to start with, nor any definite sequence of occurrence in the Pacific relative to the Atlantic or Indian Oceans. A spectral analysis showed that all regions had quasi-biennial, quasi-triennial, and higher periodicities, but the exact values of these periodicities differed significantly at different longitudes. All parameters had long-term trends. These were mostly nonuniform, almost negligible in the first half (1950-1973) and mostly upward in the second half (1973-1996), indicating warming in recent decades, which is also reflected in decreases in snow cover area in the Northern Hemisphere. Rainfalls in various regions are considerably influenced by local SST regimes. For northeast Brazil, Atlantic SST influence is overpowering and often operates independently of the Pacific SST (El Niños). Hence the emphasis given in mass media (press, radio, and television) to the role of El Niño events only in influencing the rainfalls may turn out to be misleading, as seems to have happened for the 1997 El Niño. This El Niño started in

  6. Evolution of morphology and structure of Pb thin films grown by pulsed laser deposition at different substrate temperatures

    SciTech Connect

    Lorusso, Antonella Maiolo, Berlinda; Perrone, Alessio; Gontad, Francisco; Maruccio, Giuseppe; Tasco, Vittorianna

    2014-03-15

    Pb thin films were prepared by pulsed laser deposition on a Si (100) substrate at different growth temperatures to investigate their morphology and structure. The morphological analysis of the thin metal films showed the formation of spherical submicrometer grains whose average size decreased with temperature. X-ray diffraction measurements confirmed that growth temperature influences the Pb polycrystalline film structure. A preferred orientation of Pb (111) normal to the substrate was achieved at 30 °C and became increasingly pronounced along the Pb (200) plane as the substrate temperature increased. These thin films could be used to synthesize innovative materials, such as metallic photocathodes, with improved photoemission performances.

  7. Different effects of temperature on foraging activity schedules in sympatric Myrmecia ants.

    PubMed

    Jayatilaka, Piyankarie; Narendra, Ajay; Reid, Samuel F; Cooper, Paul; Zeil, Jochen

    2011-08-15

    Animals avoid temperatures that constrain foraging by restricting activity to specific times of the day or year. However, because temperature alters the availability of food resources, it is difficult to separate temperature-dependent effects on foraging and the occupation of temporal niches. By studying two congeneric, sympatric Myrmecia ants we isolated the effect of temperature and investigated whether temperature affects foraging schedules and causes the two ants to be active at distinct times of the day or year. We monitored foraging activity and identified the ants' temperature tolerance in the laboratory by determining (1) critical thermal minima and maxima (CT(min) and CT(max)) and (2) the relationship between walking speed and temperature. Ants of Myrmecia croslandi were diurnal throughout the year, but ceased above-ground activity during winter. Surface temperature at the onset of foraging was 9.8-30.1°C, while their laboratory CT(min) and CT(max) were 10.4 and 48.5°C, respectively. Time of foraging onset was significantly influenced by surface temperature at time of sunrise and of onset. Ants of Myrmecia pyriformis were nocturnal throughout the year. Surface temperature at the onset of foraging was 5.4-26.2°C, while their laboratory CT(min) and CT(max) were 8.2 and 41.6°C, respectively. Time of foraging onset was not influenced by surface temperature, but solely by sunset time. We conclude that temperature determines the timing of foraging as well as the daily and seasonal foraging activity in M. croslandi, but has less obvious effects on M. pyriformis. In both species, CT(max) was greater than temperatures at the natural foraging times. PMID:21795570

  8. Reproduction and survival under different water temperatures of Gyrodactylus mexicanus (Platyhelminthes: Monogenea), a parasite of Girardinichthys multiradiatus in Central Mexico.

    PubMed

    Sereno-Uribe, Ana L; Zambrano, Luis; García-Varela, Martín

    2012-12-01

    Gyrodactylid population growth may depend on abiotic variables such as temperature. We tested the survival and reproductive rate of Gyrodactylus mexicanus, a parasite infecting fins of Girardinichthys multiradiatus, at 3 different water temperatures, 10-13, 19-22, and 24 C. The temporal sequence of birth and age at death of each parasite isolated from the hosts was recorded through at least 8 generations. Our results showed that the average number of offspring per parasite was 2.0 when averaged across all temperatures. However, the generation time was negatively correlated with temperature. The innate capacity for increase (r(m)) was positively correlated with water temperature: from 0.29 parasite/day at 13 C to 0.48 parasite/day at 24 C. These data confirm that water temperature has a direct influence on parasite population dynamics. The current study represents the first contribution to understanding the population ecology of the monogenean G. mexicanus in central Mexico.

  9. How does low temperature coupled with different pressures affect initiation mechanisms and subsequent decompositions in nitramine explosive HMX?

    PubMed

    Wu, Qiong; Xiong, Guolin; Zhu, Weihua; Xiao, Heming

    2015-09-21

    We have performed ab initio molecular dynamics simulations to study coupling effects of temperature (534-873 K) and pressure (1-20 GPa) on the initiation mechanisms and subsequent chemical decompositions of nitramine explosive 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX). A new initiation decomposition mechanism of HMX was found to be the unimolecular C-H bond breaking, and this mechanism was independent of the coupling effects of different temperatures and pressures. The formed hydrogen radicals could promote subsequent decompositions of HMX. Subsequent decompositions were very sensitive to the pressure at low temperatures (534 and 608 K), while the temperature became the foremost factor that affected the decomposition at a high temperature (873 K) instead of the pressure. Our study may provide a new insight into understanding the coupling effects of the temperature and pressure on the initiation decomposition mechanisms of nitramine explosives.

  10. Generalized inverse analysis for fins of different profiles with all temperature-dependent parameters

    NASA Astrophysics Data System (ADS)

    Singh, Kuljeet; Das, Ranjan

    2016-08-01

    An inverse analysis is done to predict unknown and optimal dimensions of a fin satisfying either a given temperature or maximizing heat transfer rate. The profile simulating many geometries involves all temperature-dependent heat transfer modes. A hybrid algorithm is used to estimate relevant fin parameters. The present study shall be useful in selecting optimal dimensions to achieve either a particular temperature distribution or maximize heat transfer rate on various profiles.

  11. Electrical properties of undoped zinc oxide nanostructures at different annealing temperature

    NASA Astrophysics Data System (ADS)

    Nasir, M. F.; Zainol, M. N.; Hannas, M.; Mamat, M. H.; Rahman, S. A.; Rusop, Mohamad

    2016-07-01

    This project has been focused on the electrical and optical properties respectively on the effect of Undoped zinc oxide (ZnO) thin films at different annealing temperature which is varied 400 °C, 450 °C, 500 °C, and 550 °C.Undoped ZnO solutions were deposited onto the glass substrates using sol-gel spin coating method. This project was involved with three phases, which are thin films preparation, deposition and characterization. The thin films were characterized using Current Voltage (I-V) measurement and UV-vis-NIR spectrophotometer for electrical properties and optical properties. The electrical properties show that the resistivity is the lowest at 500 °C which its resistivity is 5.36 × 104 Ωcm-1. The absorption coefficient spectrum obtained from UV-Vis-NIR spectrophotometer measurement shows all films exhibit very low absorption in the visible (400-800nm) and near infrared (NIR) (>800nm) range but exhibit high absorption in the UV range.

  12. CO{sub 2}-gasification reactivity of different carbonaceous materials at elevated temperatures

    SciTech Connect

    Gu, J.; Wu, S.; Wu, Y.; Gao, J.

    2009-07-01

    At the atmospheric pressure and at the temperatures between 1,223 and 1,673 K, the CO{sub 2} gasification reactivity of seven different carbonaceous materials comprising coal tar pitch coke, petroleum coke, natural graphite, carbon black and three coal chars was investigated by using thermogravimetric analysis. Their crystalline structures were analyzed by X-ray diffraction (XRD). It is found that the reactivity of the chars, pitch coke and petroleum coke produced from liquid phase carbonization, is several times poorer than that of the coal chars produced from solid phase carbonization and even lower than that of natural graphite. At the same time, it is obtained that under the condition of the chemical reaction control, the apparent activation energies of the former are in the range of 135.82-174.92 kJ/mol, while those of the latter are between 89.95 kJ/mol and 110.05 kJ/mol. Besides, the reactivity of the sample has a certain correlation with the crystalline structure of the sample, i.e., the larger the fraction of the relatively better crystalline structure is, the poorer the reactivity of the sample is.

  13. Detection of significant differences between absorption spectra of neutral helium and low temperature photoionized helium plasmas

    SciTech Connect

    Bartnik, A.; Wachulak, P.; Fiedorowicz, H.; Fok, T.; Jarocki, R.; Szczurek, M.

    2013-11-15

    In this work, spectral investigations of photoionized He plasmas were performed. The photoionized plasmas were created by irradiation of helium stream, with intense pulses from laser-plasma extreme ultraviolet (EUV) source. The EUV source was based on a double-stream Xe/Ne gas-puff target irradiated with 10 ns/10 J Nd:YAG laser pulses. The most intense emission from the source spanned a relatively narrow spectral region below 20 nm, however, spectrally integrated intensity at longer wavelengths was also significant. The EUV radiation was focused onto a gas stream, injected into a vacuum chamber synchronously with the EUV pulse. The long-wavelength part of the EUV radiation was used for backlighting of the photoionized plasmas to obtain absorption spectra. Both emission and absorption spectra in the EUV range were investigated. Significant differences between absorption spectra acquired for neutral helium and low temperature photoionized plasmas were demonstrated for the first time. Strong increase of intensities and spectral widths of absorption lines, together with a red shift of the K-edge, was shown.

  14. Soil temperature modeling at different depths using neuro-fuzzy, neural network, and genetic programming techniques

    NASA Astrophysics Data System (ADS)

    Kisi, Ozgur; Sanikhani, Hadi; Cobaner, Murat

    2016-05-01

    The applicability of artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS), and genetic programming (GP) techniques in estimating soil temperatures (ST) at different depths is investigated in this study. Weather data from two stations, Mersin and Adana, Turkey, were used as inputs to the applied models in order to model monthly STs. The first part of the study focused on comparison of ANN, ANFIS, and GP models in modeling ST of two stations at the depths of 10, 50, and 100 cm. GP was found to perform better than the ANN and ANFIS-SC in estimating monthly ST. The effect of periodicity (month of the year) on models' accuracy was also investigated. Including periodicity component in models' inputs considerably increased their accuracies. The root mean square error (RMSE) of ANN models was respectively decreased by 34 and 27 % for the depths of 10 and 100 cm adding the periodicity input. In the second part of the study, the accuracies of the ANN, ANFIS, and GP models were compared in estimating ST of Mersin Station using the climatic data of Adana Station. The ANN models generally performed better than the ANFIS-SC and GP in modeling ST of Mersin Station without local climatic inputs.

  15. Evaluation of infectious bursal disease virus stability at different conditions of temperature and pH.

    PubMed

    Rani, Surabhi; Kumar, Sachin

    2015-11-01

    Infectious bursal disease (IBD) is one of the highly pathogenic viral diseases of poultry. The disease poses a serious threat to the economy of many developing countries where agriculture serves as the primary source of national income. Infectious bursal disease virus (IBDV) belongs to the family Birnaviridae. The IBDV is well characterized to cause immunosuppression in poultry. The live attenuated vaccine is the only way to protect the chickens from IBDV infection. The ineffectiveness of vaccine is one of the major causes of IBDV outbreaks in field condition. In the present study, we discuss briefly about the biology of IBDV genome and its proteins under different conditions of temperature and pH in order to evaluate its infectivity under adverse physical conditions. Our results indicate that the IBDV is non-infective above 42 °C and unstable above 72 °C. However, the change in pH does not significantly contribute to the IBDV stability. The study will be useful in estimating an optimum storage condition for IBDV vaccines without causing any deterioration in its viability and effectiveness.

  16. Investigation of potential waste material insulating properties at different temperature for thermal storage application

    NASA Astrophysics Data System (ADS)

    Ali, T. Z. S.; Rosli, A. B.; Gan, L. M.; Billy, A. S.; Farid, Z.

    2013-12-01

    Thermal energy storage system (TES) is developed to extend the operation of power generation. TES system is a key component in a solar energy power generation plant, but the main issue in designing the TES system is its thermal capacity of storage materials, e.g. insulator. This study is focusing on the potential waste material acts as an insulator for thermal energy storage applications. As the insulator is used to absorb heat, it is needed to find suitable material for energy conversion and at the same time reduce the waste generation. Thus, a small-scale experimental testing of natural cooling process of an insulated tank within a confined room is conducted. The experiment is repeated by changing the insulator from the potential waste material and also by changing the heat transfer fluid (HTF). The analysis presented the relationship between heat loss and the reserved period by the insulator. The results show the percentage of period of the insulated tank withstands compared to tank insulated by foam, e.g. newspaper reserved the period of 84.6% as much as foam insulated tank to withstand the heat transfer of cooking oil to the surrounding. The paper finally justifies the most potential waste material as an insulator for different temperature range of heat transfer fluid.

  17. Extractable and Non-Extractable Phenolics and Antioxidant Capacity of Mandarin Waste Dried at Different Temperatures.

    PubMed

    Esparza-Martínez, Francisco J; Miranda-López, Rita; Mata-Sánchez, Sara M; Guzmán-Maldonado, Salvador H

    2016-09-01

    The mandarin industry is generating more waste due to the increasing demand for juice. In this study, extractable and non-extractable phenolics as well as 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), ferric reducing ability of plasma (FRAP), and oxygen radical absorbance capacity (ORAC) antioxidant activities in Satsuma mandarin waste dried at different temperatures were determined. The amounts of non-extractable total phenols, total flavonoids, and condensed tannins measured in mandarin waste dried at 120 °C were 39.4, 44.3, and 45.6 %, respectively, which were higher than those of fresh-mandarin waste. Dried mandarin waste is rich in extractable and non-extractable hesperidin (259.86 and 182.52 mg/g, respectively) and eriocitrin (85.12 and 197.24 mg/g, respectively), as well as non-extractable gallic acid (36.08 μg/g). The antioxidant capacities of extractable and non-extractable phenolics, from the highest to the lowest, were ABTS > ORAC > DPPH > FRAP and ORAC > ABTS > DPPH > FRAP, respectively. The information reported here may encourage mandarin industry operators to re-evaluate their by-products, extending the application of mandarin fruits and reducing waste. PMID:27368409

  18. Extractable and Non-Extractable Phenolics and Antioxidant Capacity of Mandarin Waste Dried at Different Temperatures.

    PubMed

    Esparza-Martínez, Francisco J; Miranda-López, Rita; Mata-Sánchez, Sara M; Guzmán-Maldonado, Salvador H

    2016-09-01

    The mandarin industry is generating more waste due to the increasing demand for juice. In this study, extractable and non-extractable phenolics as well as 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), ferric reducing ability of plasma (FRAP), and oxygen radical absorbance capacity (ORAC) antioxidant activities in Satsuma mandarin waste dried at different temperatures were determined. The amounts of non-extractable total phenols, total flavonoids, and condensed tannins measured in mandarin waste dried at 120 °C were 39.4, 44.3, and 45.6 %, respectively, which were higher than those of fresh-mandarin waste. Dried mandarin waste is rich in extractable and non-extractable hesperidin (259.86 and 182.52 mg/g, respectively) and eriocitrin (85.12 and 197.24 mg/g, respectively), as well as non-extractable gallic acid (36.08 μg/g). The antioxidant capacities of extractable and non-extractable phenolics, from the highest to the lowest, were ABTS > ORAC > DPPH > FRAP and ORAC > ABTS > DPPH > FRAP, respectively. The information reported here may encourage mandarin industry operators to re-evaluate their by-products, extending the application of mandarin fruits and reducing waste.

  19. Dynamics of thermographic skin temperature response during squat exercise at two different speeds.

    PubMed

    Formenti, Damiano; Ludwig, Nicola; Trecroci, Athos; Gargano, Marco; Michielon, Giovanni; Caumo, Andrea; Alberti, Giampietro

    2016-07-01

    Low intensity resistance training with slow movement and tonic force generation has been shown to create blood flow restriction within muscles that may affect thermoregulation through the skin. We aimed to investigate the influence of two speeds of exercise execution on skin temperature dynamics using infrared thermography. Thirteen active males performed randomly two sessions of squat exercise (normal speed, 1s eccentric/1s concentric phase, 1s; slow speed, 5s eccentric/5s concentric phase, 5s), using ~50% of 1 maximal repetition. Thermal images of ST above muscles quadriceps were recorded at a rate of 0.05Hz before the exercise (to determine basal ST) and for 480s following the initiation of the exercise (to determine the nonsteady-state time course of ST). Results showed that ST changed more slowly during the 5s exercise (p=0.002), whereas the delta (with respect to basal) excursions were similar for the two exercises (p>0.05). In summary, our data provided a detailed nonsteady-state portrait of ST changes following squat exercises executed at two different speeds. These results lay the basis for further investigations entailing the joint use of infrared thermography and Doppler flowmetry to study the events taking place both at the skin and the muscle level during exercises executed at slow speed. PMID:27264889

  20. Ontogenic changes rather than difference in temperature cause understory trees to leaf out earlier.

    PubMed

    Vitasse, Yann

    2013-04-01

    In a temperate climate, understory trees leaf out earlier than canopy trees, but the cause of this discrepancy remains unclear. This study aims to investigate whether this discrepancy results from ontogenic changes or from microclimatic differences. Seedlings of five deciduous tree species were grown in spring 2012 in the understory and at canopy height using a 45-m-high construction crane built into a mature mixed forest in the foothills of the Swiss Jura Mountains. The leaf development of these seedlings, as well as conspecific adults, was compared, taking into account the corresponding microclimate. The date of leaf unfolding occurred 10-40 d earlier in seedlings grown at canopy level than in conspecific adults. Seedlings grown in the understory flushed c. 6 d later than those grown at canopy height, which can be attributed to the warmer temperatures recorded at canopy height (c. 1°C warmer). This study demonstrates that later leaf emergence of canopy trees compared with understory trees results from ontogenic changes and not from the vertical thermal profile that exists within forests. This study warns against the assumption that phenological data obtained in warming and photoperiod experiments on juvenile trees can be used for the prediction of forest response to climate warming. PMID:23347086

  1. Detection of significant differences between absorption spectra of neutral helium and low temperature photoionized helium plasmas

    NASA Astrophysics Data System (ADS)

    Bartnik, A.; Wachulak, P.; Fiedorowicz, H.; Fok, T.; Jarocki, R.; Szczurek, M.

    2013-11-01

    In this work, spectral investigations of photoionized He plasmas were performed. The photoionized plasmas were created by irradiation of helium stream, with intense pulses from laser-plasma extreme ultraviolet (EUV) source. The EUV source was based on a double-stream Xe/Ne gas-puff target irradiated with 10 ns/10 J Nd:YAG laser pulses. The most intense emission from the source spanned a relatively narrow spectral region below 20 nm, however, spectrally integrated intensity at longer wavelengths was also significant. The EUV radiation was focused onto a gas stream, injected into a vacuum chamber synchronously with the EUV pulse. The long-wavelength part of the EUV radiation was used for backlighting of the photoionized plasmas to obtain absorption spectra. Both emission and absorption spectra in the EUV range were investigated. Significant differences between absorption spectra acquired for neutral helium and low temperature photoionized plasmas were demonstrated for the first time. Strong increase of intensities and spectral widths of absorption lines, together with a red shift of the K-edge, was shown.

  2. Novel Low Temperature Co-Fired Ceramic Material System Composed of Dielectrics with Different Dielectric Constants

    NASA Astrophysics Data System (ADS)

    Sakamoto, Sadaaki; Adachi, Hiroshige; Kaneko, Kazuhiro; Sugimoto, Yasutaka; Takada, Takahiro

    2013-09-01

    We found that the co-firing low temperature co-fired ceramic (LTCC) materials of different dielectric constants (ɛr) with Cu wiring is achievable using a novel, original design. It was confirmed that the dielectric characteristics of the dielectrics designed in this study are very suitable for the use of the dielectrics in electronic components such as filters mounted in high-speed radio communication equipment. The dielectric constants of the lower- and higher-dielectric-coefficient materials were 8.1 and 44.5, respectively, which are sufficiently effective for downsizing LTCC components. Observing the co-fired interface, it was confirmed that excellent co-firing conditions resulted in no mechanical defects such as delamination or cracks. On the basis of the results of wavelength dispersive X-ray spectrometry (WDX) and X-ray diffractometry (XRD), it was confirmed that co-firing with minimal interdiffusion was realized using the same glass for both dielectrics. It is concluded that the materials developed are good for co-firing in terms of the mechanical defects and interdiffusion that appear in them.

  3. Ontogenic changes rather than difference in temperature cause understory trees to leaf out earlier.

    PubMed

    Vitasse, Yann

    2013-04-01

    In a temperate climate, understory trees leaf out earlier than canopy trees, but the cause of this discrepancy remains unclear. This study aims to investigate whether this discrepancy results from ontogenic changes or from microclimatic differences. Seedlings of five deciduous tree species were grown in spring 2012 in the understory and at canopy height using a 45-m-high construction crane built into a mature mixed forest in the foothills of the Swiss Jura Mountains. The leaf development of these seedlings, as well as conspecific adults, was compared, taking into account the corresponding microclimate. The date of leaf unfolding occurred 10-40 d earlier in seedlings grown at canopy level than in conspecific adults. Seedlings grown in the understory flushed c. 6 d later than those grown at canopy height, which can be attributed to the warmer temperatures recorded at canopy height (c. 1°C warmer). This study demonstrates that later leaf emergence of canopy trees compared with understory trees results from ontogenic changes and not from the vertical thermal profile that exists within forests. This study warns against the assumption that phenological data obtained in warming and photoperiod experiments on juvenile trees can be used for the prediction of forest response to climate warming.

  4. Tympanic temperature and heart rate changes in firefighters during treadmill runs performed with different fireproof jackets.

    PubMed

    Ftaiti, F; Duflot, J C; Nicol, C; Grélot, L

    2001-04-15

    Six well-trained firefighters performed six treadmill runs at 70% of the velocity at VO2max (Maximal aerobic velocity MAV = 13.2+/-0.3 km h(-1)). A recovery time of 1 week was allowed between trials. The first session was performed by subjects wearing only shorts (i.e. no fire jacket, J0). A similar protocol was applied subsequently to test the physiological effects associated with the wearing of one of five different fire jackets: one leather (J1) and four textile-type jackets: VTN with membrane (J2), VTN without membrane (J3), Vidal with Kermel HTA (Haute Teneur en Aramide i.e. high density in Aramide) (J4); and Rolland with Kermel HTA (J5). All sessions were performed in a randomized order and in laboratory conditions. Exercise with the fireproof jackets resulted in higher tympanic temperature (Tty), heart rate (HR) and body mass loss (BML) changes compared to J0 (p<0.001). The magnitudes of these changes depended on the type of the jacket. Exercise in the leather jacket (J1) resulted in the highest Tty and HR, which differed significantly from values in all other conditions (p<0.001). The exercise-induced increases in Tty wearing jackets J3 and J5 were also significantly (p < 0.05) higher than those observed with jackets J2 and J4. In conclusion, textile jackets induced less HR and Tty stresses than the leather one. The magnitude of the physiological responses induced by textile jackets were correlated to jacket weight. J2 and J4 jackets were more effective in limiting hyperthermia and any potential detrimental effect on the exercise capacity.

  5. An alternative method to estimate zero flow temperature differences for Granier's thermal dissipation technique.

    PubMed

    Regalado, Carlos M; Ritter, Axel

    2007-08-01

    Calibration of the Granier thermal dissipation technique for measuring stem sap flow in trees requires determination of the temperature difference (DeltaT) between a heated and an unheated probe when sap flow is zero (DeltaT(max)). Classically, DeltaT(max) has been estimated from the maximum predawn DeltaT, assuming that sap flow is negligible at nighttime. However, because sap flow may continue during the night, the maximum predawn DeltaT value may underestimate the true DeltaT(max). No alternative method has yet been proposed to estimate DeltaT(max) when sap flow is non-zero at night. A sensitivity analysis is presented showing that errors in DeltaT(max) may amplify through sap flux density computations in Granier's approach, such that small amounts of undetected nighttime sap flow may lead to large diurnal sap flux density errors, hence the need for a correct estimate of DeltaT(max). By rearranging Granier's original formula, an optimization method to compute DeltaT(max) from simultaneous measurements of diurnal DeltaT and micrometeorological variables, without assuming that sap flow is negligible at night, is presented. Some illustrative examples are shown for sap flow measurements carried out on individuals of Erica arborea L., which has needle-like leaves, and Myrica faya Ait., a broadleaf species. We show that, although DeltaT(max) values obtained by the proposed method may be similar in some instances to the DeltaT(max) predicted at night, in general the values differ. The procedure presented has the potential of being applied not only to Granier's method, but to other heat-based sap flow systems that require a zero flow calibration, such as the Cermák et al. (1973) heat balance method and the T-max heat pulse system of Green et al. (2003).

  6. On model differences and skill in predicting sea surface temperature in the Nordic and Barents Seas

    NASA Astrophysics Data System (ADS)

    Langehaug, H. R.; Matei, D.; Eldevik, T.; Lohmann, K.; Gao, Y.

    2016-04-01

    The Nordic Seas and the Barents Sea is the Atlantic Ocean's gateway to the Arctic Ocean, and the Gulf Stream's northern extension brings large amounts of heat into this region and modulates climate in northwestern Europe. We have investigated the predictive skill of initialized hindcast simulations performed with three state-of-the-art climate prediction models within the CMIP5-framework, focusing on sea surface temperature (SST) in the Nordic Seas and Barents Sea, but also on sea ice extent, and the subpolar North Atlantic upstream. The hindcasts are compared with observation-based SST for the period 1961-2010. All models have significant predictive skill in specific regions at certain lead times. However, among the three models there is little consistency concerning which regions that display predictive skill and at what lead times. For instance, in the eastern Nordic Seas, only one model has significant skill in predicting observed SST variability at longer lead times (7-10 years). This region is of particular promise in terms of predictability, as observed thermohaline anomalies progress from the subpolar North Atlantic to the Fram Strait within the time frame of a couple of years. In the same model, predictive skill appears to move northward along a similar route as forecast time progresses. We attribute this to the northward advection of SST anomalies, contributing to skill at longer lead times in the eastern Nordic Seas. The skill at these lead times in particular beats that of persistence forecast, again indicating the potential role of ocean circulation as a source for skill. Furthermore, we discuss possible explanations for the difference in skill among models, such as different model resolutions, initialization techniques, and model climatologies and variance.

  7. An alternative method to estimate zero flow temperature differences for Granier's thermal dissipation technique.

    PubMed

    Regalado, Carlos M; Ritter, Axel

    2007-08-01

    Calibration of the Granier thermal dissipation technique for measuring stem sap flow in trees requires determination of the temperature difference (DeltaT) between a heated and an unheated probe when sap flow is zero (DeltaT(max)). Classically, DeltaT(max) has been estimated from the maximum predawn DeltaT, assuming that sap flow is negligible at nighttime. However, because sap flow may continue during the night, the maximum predawn DeltaT value may underestimate the true DeltaT(max). No alternative method has yet been proposed to estimate DeltaT(max) when sap flow is non-zero at night. A sensitivity analysis is presented showing that errors in DeltaT(max) may amplify through sap flux density computations in Granier's approach, such that small amounts of undetected nighttime sap flow may lead to large diurnal sap flux density errors, hence the need for a correct estimate of DeltaT(max). By rearranging Granier's original formula, an optimization method to compute DeltaT(max) from simultaneous measurements of diurnal DeltaT and micrometeorological variables, without assuming that sap flow is negligible at night, is presented. Some illustrative examples are shown for sap flow measurements carried out on individuals of Erica arborea L., which has needle-like leaves, and Myrica faya Ait., a broadleaf species. We show that, although DeltaT(max) values obtained by the proposed method may be similar in some instances to the DeltaT(max) predicted at night, in general the values differ. The procedure presented has the potential of being applied not only to Granier's method, but to other heat-based sap flow systems that require a zero flow calibration, such as the Cermák et al. (1973) heat balance method and the T-max heat pulse system of Green et al. (2003). PMID:17472936

  8. Error correction of the Normalized Difference Vegetation Index and Brightness Temperature calculated from the AVHRR observations

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammed Zahidur

    This thesis investigates Normalized Difference Vegetation Index (NDVI) and Brightness Temperature (BT) stability in the NOAA/NESDIS Global Vegetation Index (GVI) data during 1982-2003. This data was collected from five NOAA series satellites. We have proposed to apply Empirical distribution function (EDF) to improve the stability of the NDVI and BT data derived from the AVHRR sensor on NOAA polar orbiting satellite. The instability of data results from orbit degradation as well as the circuit drifts over the life or a satellite. Degradation of NDVI and BT over time and shifts of NDVI and BT between the satellites was estimated China data set, for it includes a wide variety or different ecosystems represented globally. It was found that data for the years 1988, 1992, 1993, 1994, 1995 and 2000 are not stable enough compared to other years because of satellite orbit drift, AVHRR sensor degradation, and also Mt Pinatubo volcanic eruption in 1992. We assume data from NOAA-7(1982, 1983), NOAA-9 (1985, 1986), NOAA-11(1989, 1990), NOAA-14(1996, 1997), and NOAA-16 (2001, 2002) to be standard because theses satellite's equator crossing time falls between 1330 and 1500. Data from this particular period of the day maximized the value of coefficients. The crux of the proposed correction procedure consists of dividing standard year's data sets into two subsets. The subset 1(standard data correction sets) is used for correcting unstable years and then corrected data for this years compared with the standard data in the subset 2 (standard data validation sets). In this dissertation, we apply EDF to correct this deficiency of data for the affected years. We normalize or correct data by the method of empirical distribution functions compared with the standard. Using these normalized values, we estimate new NDVI and BT time series which provides NDVI and BT data for these years that match in subset 2 that is used for data validation.

  9. Internal neutronics-temperature coupling in Serpent 2 - Reactivity differences resulting from choice of material property correlations

    SciTech Connect

    Valtavirta, V.

    2013-07-01

    This paper describes the unique way of simultaneously solving the power and temperature distributions of a nuclear system with the Monte Carlo neutron transport code Serpent 2. The coupled solution is achieved through the implementation of an internal temperature solver and material property correlations in the code. The program structure is reviewed concerning the temperature solver and the internal correlations as well as the internal coupling between these two and the neutron transport part. To estimate the reactivity differences resulting from correlation choices a simple pin-cell case has been calculated. It is established, that some correlation choices may result in difference in reactivity of approximately 100 pcm. (authors)

  10. Thermal preference, thermal resistance, and metabolic rate of juvenile Chinese pond turtles Mauremys reevesii acclimated to different temperatures.

    PubMed

    Xu, Wei; Dang, Wei; Geng, Jun; Lu, Hong-Liang

    2015-10-01

    The thermal acclimatory capacity of a particular species may determine its resilience to environmental change. Evaluating the physiological acclimatory responses of economically important species is useful for determining their optimal culture conditions. Here, juvenile Chinese three-keeled pond turtles (Mauremys reevesii) were acclimated to one of three different temperatures (17, 25 or 33°C) for four weeks to assess the effects of thermal acclimation on some physiological traits. Thermal acclimation significantly affected thermal resistance, but not thermal preference, of juvenile M. reevesii. Turtles acclimated to 17°C were less resistant to high temperatures than those acclimated to 25°C and 33°C. However, turtles increased resistance to low temperatures with decreasing acclimation temperature. The acclimation response ratio of the critical thermal minimum (CTMin) was lower than that of the critical thermal maximum (CTMax) for acclimation temperatures between 17 and 25°C, but slightly higher between 25 and 33°C. The thermal resistance range (i.e., the difference between CTMax and CTMin) was widest in turtles acclimated to the intermediate temperature (25°C), and narrowest in those acclimated to low temperature (17°C). The standard metabolic rate increased as body temperature and acclimation temperature increased, and the temperature quotient (Q10) between acclimation temperatures 17 and 25°C was higher than the Q10 between 25 and 33°C. Our results suggest that juvenile M. reevesii may have a greater resistance under mild thermal conditions resembling natural environments, and better physiological performance at relatively warm temperatures.

  11. Effect of moderate hypoxia at three acclimation temperatures on stress responses in Atlantic cod with different haemoglobin types.

    PubMed

    Methling, Caroline; Aluru, Neelakanteswar; Vijayan, Mathilakath M; Steffensen, John F

    2010-08-01

    This study examines stress responses in Atlantic cod (Gadus morhua) when exposed to a moderate and transient reduction (35% O(2) sat.) in dissolved oxygen at a range of temperatures (5 degrees C, 10 degrees C and 15 degrees C), conditions occurring in some areas they inhabit. Given their geographical distribution pattern, and differences in preferred temperature of cod with different haemoglobin types, the study was extended to include haemoglobin polymorphism. We hypothesised that the differences in temperature preference between HbI-1 and HbI-2 type cod might also be reflected in a difference in stress response to hypoxia exposure. Two hsp70-isoforms (labelled a and b) were detected and they differed in expression in the gills but not in the liver of Atlantic cod. Acclimation temperature significantly affected the expression of hsp70 in the liver, and in an isoform-specific manner in the gills. Hypoxia exposure increased the expression of hsp70 in the liver, but not the gills, of cod and this response was not influenced by the acclimation temperature. The expression of hsp70 in both tissues did not differ between fish with different haemoglobin types. Acclimation temperature significantly impacted plasma cortisol but not lactate levels. Also, acute oxygen limitation or HbI-type significantly elevated plasma cortisol and lactate levels but these responses were not modulated by acclimation temperature. Taken together, our results suggest that both temperature acclimation and acute hypoxic exposure influence the organismal and cellular stress responses in Atlantic cod. We hypothesise that HbI-2 fish are more tolerant to short-term hypoxic episodes than HbI-1 fish, and this adaptation may be independent of tissue hsp70 expression.

  12. Cochliobolus lunatus colonizes potato by adopting different invasion strategies on cultivars: New insights on temperature dependent-virulence.

    PubMed

    Louis, Bengyella; Waikhom, Sayanika D; Jose, Robinson C; Goyari, Sailendra; Talukdar, Narayan C; Roy, Pranab

    2015-10-01

    Extreme temperature fluctuations affect the interaction dynamics of Cochliobolus lunatus through temperature-dependent virulence, virulence differentiation and induced-virulence which poses a major threat to global food security. The relationship between higher temperature and pathogenicity of C. lunatus on reported hosts are poorly understood. In this study, temperature stress was applied on C. lunatus to investigate the correlation among the different types of conidia. Additionally, a comparative dissection of the invasion process, infection structures and conidial germination pattern on four different Solanum tuberosum L. (potato) cultivars were performed. Based on microscopic examination, it was found that C. lunatus adopts different hyphae morphology and septation pattern at different temperature regimes and produce different types of conidia. The study showed that four-celled conidia are overproduced at elevated temperature (>30 °C) than one, two, three and five-celled conidia. Our finding revealed that C. lunatus conidia exhibit bipolar germination (>14.67%, P<0.05), unipolar germination (>35.33%, P<0.05), penetrate subcutaneously via epidermal anticlinal cell wall (>0.33%, P < 0.05) and differentially form appressoria-like structures during colonization of four different potato cultivars. Importantly, it is shown that unipolar germination and bipolar germination in C. lunatus are independently occurring phenomenon irrespective of the host. It is confirmed that C. lunatus adopt different but highly successful strategies on four different potato cultivars to incite brown-to-black leaf spot disease. Altogether, our data showed that increase in temperature enhances C. lunatus virulence on different potato cultivars irrespective of their inherent thermotolerant traits. PMID:26205908

  13. Temperature effect on proliferation and differentiation of satellite cells from turkeys with different growth rates.

    PubMed

    Clark, D L; Coy, C S; Strasburg, G M; Reed, K M; Velleman, S G

    2016-04-01

    Poultry selected for growth have an inefficient thermoregulatory system and are more sensitive to temperature extremes. Satellite cells are precursors to skeletal muscle and mediate all posthatch muscle growth. Their physiological functions are affected by temperature. The objective of the current study was to determine how temperature affects satellite cells isolated from the pectoralis major (p. major) muscle (breast muscle) of turkeys selected for increased 16 wk body weight (F line) in comparison to a randombred control line (RBC2) from which the F line originated. Pectoralis major muscle satellite cells were thermally challenged by culturing between 33°C and 43°C to analyze the effects of cold and heat on proliferation and differentiation as compared to control temperature of 38°C. Expression levels of myogenic regulatory factors: myogenic differentiation factor 1 (MYOD1) and myogenin (MYOG) were quantified by quantitative polymerase chain reaction (qPCR). At all sampling times, proliferation increased at a linear rate across temperature in both the RBC2 and F lines. Differentiation also increased at a linear rate across temperature from 33 to 41°C at all sampling times in both the F and RBC2 lines. Satellite cells isolated from F line turkeys were more sensitive to both hot and cold temperatures as proliferation and differentiation increased to a greater extent across temperature (33 to 43°C) when compared with the RBC2 line. Expression of MYOD1 and MYOG increased as temperatures increased from 33 to 41°C at all sampling times in both the F and RBC2 lines. These results demonstrate that satellite cell function is sensitive to both cold and hot temperatures and p. major muscle satellite cells from F line turkeys are more sensitive to temperature extremes than RBC2 satellite cells.

  14. Temperature effect on proliferation and differentiation of satellite cells from turkeys with different growth rates.

    PubMed

    Clark, D L; Coy, C S; Strasburg, G M; Reed, K M; Velleman, S G

    2016-04-01

    Poultry selected for growth have an inefficient thermoregulatory system and are more sensitive to temperature extremes. Satellite cells are precursors to skeletal muscle and mediate all posthatch muscle growth. Their physiological functions are affected by temperature. The objective of the current study was to determine how temperature affects satellite cells isolated from the pectoralis major (p. major) muscle (breast muscle) of turkeys selected for increased 16 wk body weight (F line) in comparison to a randombred control line (RBC2) from which the F line originated. Pectoralis major muscle satellite cells were thermally challenged by culturing between 33°C and 43°C to analyze the effects of cold and heat on proliferation and differentiation as compared to control temperature of 38°C. Expression levels of myogenic regulatory factors: myogenic differentiation factor 1 (MYOD1) and myogenin (MYOG) were quantified by quantitative polymerase chain reaction (qPCR). At all sampling times, proliferation increased at a linear rate across temperature in both the RBC2 and F lines. Differentiation also increased at a linear rate across temperature from 33 to 41°C at all sampling times in both the F and RBC2 lines. Satellite cells isolated from F line turkeys were more sensitive to both hot and cold temperatures as proliferation and differentiation increased to a greater extent across temperature (33 to 43°C) when compared with the RBC2 line. Expression of MYOD1 and MYOG increased as temperatures increased from 33 to 41°C at all sampling times in both the F and RBC2 lines. These results demonstrate that satellite cell function is sensitive to both cold and hot temperatures and p. major muscle satellite cells from F line turkeys are more sensitive to temperature extremes than RBC2 satellite cells. PMID:26769270

  15. Differences in the unfolding of procerain induced by pH, guanidine hydrochloride, urea, and temperature.

    PubMed

    Dubey, Vikash Kumar; Jagannadham, M V

    2003-10-28

    The structural and functional aspects along with equilibrium unfolding of procerain, a cysteine protease from Calotropis procera, were studied in solution. The energetic parameters and conformational stability of procerain in different states were also estimated and interpreted. Procerain belongs to the alpha + beta class of proteins. At pH 2.0, procerain exists in a partially unfolded state with characteristics of a molten globule-like state, and the protein is predominantly a beta-sheet conformation and exhibits strong ANS binding. GuHCl and temperature denaturation of procerain in the molten globule-like state is noncooperative, contrary to the cooperativity seen with the native protein, suggesting the presence of two parts in the molecular structure of procerain, possibly domains, with different stability that unfolds in steps. Moreover, tryptophan quenching studies suggested the exposure of aromatic residues to solvent in this state. At lower pH, procerain unfolds to the acid-unfolded state, and a further decrease in the pH drives the protein to the A state. The presence of 0.5 M salt in the solvent composition directs the transition to the A state while bypassing the acid-unfolded state. GuHCl-induced unfolding of procerain at pH 3.0 seen by various methods is cooperative, but the transitions are noncoincidental. Besides, a strong ANS binding to the protein is observed at low concentrations of GuHCl, indicating the presence of an intermediate in the unfolding pathway. On the other hand, even in the presence of urea (8 M), procerain retains all the activity as well as structural parameters at neutral pH. However, the protein is susceptible to unfolding by urea at lower pH, and the transitions are cooperative and coincidental. Further, the properties of the molten globule-like state and the intermediate state are different, but both states have the same conformational stability. This indicates that these intermediates may be located on parallel folding routes

  16. Changes in Temperature Sensitivity and Activation Energy of Soil Organic Matter Decomposition in Different Qinghai-Tibet Plateau Grasslands

    PubMed Central

    Li, Jie; He, Nianpeng; Wei, Xuehong; Gao, Yang; Zuo, Yao

    2015-01-01

    Qinghai-Tibet Plateau grasslands are unique geographical regions and store substantial soil organic matter (SOM) in the soil surface, which make them very sensitive to global climate change. Here, we focused on three main grassland types (alpine meadow, steppe, and desert) and conducted a soil incubation experiment at five different temperatures (5, 10, 15, 20, and 25°C) to investigate SOM decomposition rates (R), temperature sensitivity (Q10), and activation energy (Ea). The results showed that grassland type and incubation temperature had significant impact on R (P < 0.001), and the values of R were exponential correlated with incubation temperature in three alpine grasslands. At the same temperature, R was in the following order: alpine meadow > alpinesteppe > alpine desert. The Q10 values differed significantly among different grasslands, and the overall trends were as follows: alpine meadow (1.56 ± 0.09) < alpine steppe (1.88 ± 0.23) < alpine desert (2.39 ± 0.32). Moreover, the Ea values differed significantly across different grassland types (P < 0.001) and increased with increasing incubation time. The exponential negative correlations between Ea and R at 20°C across all grassland types (all Ps < 0.001) indicated that the substrate-quality temperature hypothesis is applicable to the alpine grasslands. Our findings provide new insights for understanding the responses of SOM decomposition and storage to warming scenarios in this Plateau. PMID:26176705

  17. Changes in Temperature Sensitivity and Activation Energy of Soil Organic Matter Decomposition in Different Qinghai-Tibet Plateau Grasslands.

    PubMed

    Li, Jie; He, Nianpeng; Wei, Xuehong; Gao, Yang; Zuo, Yao

    2015-01-01

    Qinghai-Tibet Plateau grasslands are unique geographical regions and store substantial soil organic matter (SOM) in the soil surface, which make them very sensitive to global climate change. Here, we focused on three main grassland types (alpine meadow, steppe, and desert) and conducted a soil incubation experiment at five different temperatures (5, 10, 15, 20, and 25°C) to investigate SOM decomposition rates (R), temperature sensitivity (Q10), and activation energy (Ea). The results showed that grassland type and incubation temperature had significant impact on R (P < 0.001), and the values of R were exponential correlated with incubation temperature in three alpine grasslands. At the same temperature, R was in the following order: alpine meadow > alpinesteppe > alpine desert. The Q10 values differed significantly among different grasslands, and the overall trends were as follows: alpine meadow (1.56 ± 0.09) < alpine steppe (1.88 ± 0.23) < alpine desert (2.39 ± 0.32). Moreover, the Ea values differed significantly across different grassland types (P < 0.001) and increased with increasing incubation time. The exponential negative correlations between Ea and R at 20°C across all grassland types (all Ps < 0.001) indicated that the substrate-quality temperature hypothesis is applicable to the alpine grasslands. Our findings provide new insights for understanding the responses of SOM decomposition and storage to warming scenarios in this Plateau. PMID:26176705

  18. Changes in Temperature Sensitivity and Activation Energy of Soil Organic Matter Decomposition in Different Qinghai-Tibet Plateau Grasslands.

    PubMed

    Li, Jie; He, Nianpeng; Wei, Xuehong; Gao, Yang; Zuo, Yao

    2015-01-01

    Qinghai-Tibet Plateau grasslands are unique geographical regions and store substantial soil organic matter (SOM) in the soil surface, which make them very sensitive to global climate change. Here, we focused on three main grassland types (alpine meadow, steppe, and desert) and conducted a soil incubation experiment at five different temperatures (5, 10, 15, 20, and 25°C) to investigate SOM decomposition rates (R), temperature sensitivity (Q10), and activation energy (Ea). The results showed that grassland type and incubation temperature had significant impact on R (P < 0.001), and the values of R were exponential correlated with incubation temperature in three alpine grasslands. At the same temperature, R was in the following order: alpine meadow > alpinesteppe > alpine desert. The Q10 values differed significantly among different grasslands, and the overall trends were as follows: alpine meadow (1.56 ± 0.09) < alpine steppe (1.88 ± 0.23) < alpine desert (2.39 ± 0.32). Moreover, the Ea values differed significantly across different grassland types (P < 0.001) and increased with increasing incubation time. The exponential negative correlations between Ea and R at 20°C across all grassland types (all Ps < 0.001) indicated that the substrate-quality temperature hypothesis is applicable to the alpine grasslands. Our findings provide new insights for understanding the responses of SOM decomposition and storage to warming scenarios in this Plateau.

  19. A Student-Constructed Galvanic Cell for the Measurement of Cell Potentials at Different Temperatures

    ERIC Educational Resources Information Center

    Jakubowska, Anna

    2016-01-01

    A student-made galvanic cell is proposed for temperature measurements of cell potential. This cell can be easily constructed by students, the materials needed are readily available and nontoxic, and the solution applied is in an attractive color. For this cell, the potential values are excellently reproducible at each temperature, and the…

  20. Densities of mixtures containing n-alkanes with sunflower seed oil at different temperatures

    SciTech Connect

    Gonzalez, C.; Resa, J.M.; Ruiz, A.; Gutierrez, J.I.

    1996-07-01

    Densities for mixtures containing sunflower seed oil with pentane, hexane, heptane, and octane have been determined at various temperatures between 298.15 K and 313.15 K using a vibrating tube densimeter. The derived excess volumes have been correlated by the Redlich-Kister equation. All the systems showed negative deviations from ideality. The excess volumes increased with an increase in temperature.

  1. Subtle temperature differences may well determine who wins: a story of three submerged aquatic plant species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As temperatures increases globally, shifts in the distribution of plant species are expected, with unknown effects on invasive species abundance. It is then of value to understand the role increased temperature may have on invasive species. Although nonhomeothermic organisms are the mercy of environ...

  2. Molecular analysis of the microbial community structures in water-flooding petroleum reservoirs with different temperatures

    NASA Astrophysics Data System (ADS)

    Wang, L.-Y.; Duan, R.-Y.; Liu, J.-F.; Yang, S.-Z.; Gu, J.-D.; Mu, B.-Z.

    2012-11-01

    Analyses of microbial communities from six water-flooding petroleum reservoirs at temperatures from 21 to 63 °C by 16S rRNA gene clone libraries indicates the presence of physiologically diverse and temperature-dependent microorganisms in these subterrestrial ecosystems. In samples originating from high-temperature petroleum reservoirs, most of the archaeal sequences belong to thermophiles affiliated with members of the genera Thermococcus, Methanothermobacter and the order Thermoplasmatales, whereas bacterial sequences predominantly belong to the phyla Firmicutes, Thermotogae and Thermodesulfobacteria. In contrast to high-temperature petroleum reservoirs, microorganisms belonging to the Proteobacteria, Methanobacteriales and Methanomicrobiales were the most encountered in samples collected from low-temperature petroleum reservoirs. Canonical correspondence analysis (CCA) revealed that temperature, mineralization, ionic type as well as volatile fatty acids showed correlation with the microbial community structures, in particular members of the Firmicutes and the genus Methanothermobacter showed positive correlation with temperature and the concentration of acetate. Overall, these data indicate the large occurrence of hydrogenotrophic methanogens in petroleum reservoirs and imply that acetate metabolism via syntrophic oxidation may represent the main methanogenic pathway in high-temperature petroleum reservoirs.

  3. Effect of biochar produced at different pyrolysis temperature on the soil respiration of abandoned mine soil

    NASA Astrophysics Data System (ADS)

    Kim, Yong Seong; Kim, Juhee; Hwang, Wonjae; Hyun, Seunghun

    2015-04-01

    infrared gas sensor, and these data were sent to a data logger. During the measuring periods, the cumulative CO2 emission were similar between the control (516.8 mg-CO2 kg-1-soil) and BC4 5% mixture (519.3 mg-CO2 kg-1-soil), while BC7 5% mixture was significantly decreased (356.1 mg-CO2 kg-1-soil) compared to other treatment and control. Because the degradation rate of biochar generally increased with decreasing pyrolysis temperature, this result suggest that the soil respiration rates of biochar amended soils are affected by physico-chemical properties of biochar during early incubation periods (about 1 weeks), For example, surface properties of used biochars, which are related to adsorption of soil organic matter and CO2, have different properties with pyrolysis temperature such as specific surface area (BC4=5.08 m2g-1; BC7=260.75 m2 g-1, respectively), average pore diameter (BC4=4,673 nm; BC7=2,606 nm, respectively), and functional groups of biochar surface. However, there was not clear evidence of biochar-mine soil interaction process, because of the short observation periods. Future work should focus on the adsorption of CO2 and soil organic matter of biochar and soil-biochar interaction with long time periods and various biological test.

  4. Long-term water temperature reconstructions from mountain lakes with different catchment and morphometric features.

    PubMed

    Luoto, Tomi P; Nevalainen, Liisa

    2013-01-01

    Long-term water temperature records are necessary for better understanding climate change impacts on freshwaters. We reconstruct summer water temperatures from three climatically sensitive mountain lakes in Austria using paleolimnological methods aiming to examine long-term thermal dynamics and lakes' responses to regional climate variability since the Little Ice Age. Our results indicate divergent trends for the lakes. In two of the lakes, which are located at the sunny southern slope of mountains, water temperature has increased several degrees concurrent with the observed air temperature increase. In contrast, no change is observed in the reconstructed water temperatures of a shaded lake, located at the northern slope, where also the ecological and thermal changes are most subtle. The results indicate the importance of cold water inputs, such as snowmelt and groundwater, on lakes' thermal conditions and suggest that watershed characteristics and lake stratification play a major role in defining the lake-specific thermal regime. PMID:23965988

  5. Critical currents of YBCO tapes and Bi-2212 wires at different temperatures and magnetic fields

    SciTech Connect

    Lombardo, V.; Barzi, e.; Turrioni, D.; Zlobin, A.V.; /Fermilab

    2010-08-01

    Design studies for the cooling channel of a Muon Collider call for straight and helical solenoids generating field well in excess of the critical fields of state of the art Low Temperature Superconductors (LTS) such as Nb{sub 3}Sn or NbTi. Therefore, High Temperature Superconductors (HTS) will need to be used for the manufacturing of all or certain sections of such magnets to be able to generate and withstand the field levels at the cryogenic temperatures required by the new machine. In this work, two major High Temperature Superconductors - Bi2212 round wires and YBCO coated conductor tapes - are investigated to understand how critical current density of such conductors scales as a function of external field and operating temperature. This is vital information to make conductor choices depending on the application and to proceed with the design of such magnets.

  6. Determination of apparent ileal amino acid digestibility in rapeseed meal and cake processed at different temperatures using the direct and difference method with growing pigs.

    PubMed

    Li, Defa; Pengbin, Xi; Liming, Gong; Shijun, Fan; Canghai, Huang

    2002-10-01

    Studies were conducted with ten barrows, average initial body weight 34.5 +/- 2.1 kg, fitted with a T-cannula at the distal ileum, to study the accuracy of determination of the apparent ileal digestibility (AID) values of crude protein (CP) and amino acids (AA) in rapeseed meal and cake and the effects of processing, using the difference method. Five corn starch-based diets in the studies were formulated to contain 17.7% CP and based on soybean meal, prepress-extraction rapeseed meal, prepress-extraction rapeseed meal plus soybean meal, high-temperature press rapeseed cake plus soybean meal, or low-temperature press rapeseed cake plus soybean meal as the sole source of dietary protein. The design was an incomplete Latin Square involving two three-week periods and five-treatments. It was found that the AID values of CP and most AA determined with the difference or direct method were significantly lower in rapeseed meal or cakes than soybean meal. The AID values of CP and most AA in prepress-extraction rapeseed meal, high-temperature press or low-temperature cakes determined with the difference method were no difference from those in prepress-extraction rapeseed meal determined with the direct method. The AID values of CP and AA in rapeseed meal and cake determined with the difference method were accurate, when the contribution of CP and AA from rapeseed was more than 50%. The AID values of CP and AA (especially lysine) were lower in the high-temperature press rapeseed cake than in the low-temperature press cake or the prepress-extraction meal.

  7. Fungal Communities Associated with the Biodegradation of Polyester Polyurethane Buried under Compost at Different Temperatures

    PubMed Central

    Zafar, Urooj; Houlden, Ashley

    2013-01-01

    Plastics play an essential role in the modern world due to their low cost and durability. However, accumulation of plastic waste in the environment causes wide-scale pollution with long-lasting effects, making plastic waste management expensive and problematic. Polyurethanes (PUs) are heteropolymers that made up ca. 7% of the total plastic production in Europe in 2011. Polyester PUs in particular have been extensively reported as susceptible to microbial biodegradation in the environment, particularly by fungi. In this study, we investigated the impact of composting on PUs, as composting is a microbially rich process that is increasingly being used for the processing of green waste and food waste as an economically viable alternative to landfill disposal. PU coupons were incubated for 12 weeks in fresh compost at 25°C, 45°C, and 50°C to emulate the thermophilic and maturation stages of the composting process. Incubation at all temperatures caused significant physical deterioration of the polyester PU coupons and was associated with extensive fungal colonization. Terminal restriction fragment length polymorphism (TRFLP) analysis and pyrosequencing of the fungal communities on the PU surface and in the surrounding compost revealed that the population on the surface of PU was different from the surrounding compost community, suggesting enrichment and selection. The most dominant fungi identified from the surfaces of PU coupons by pyrosequencing was Fusarium solani at 25°C, while at both 45°C and 50°C, Candida ethanolica was the dominant species. The results of this preliminary study suggest that the composting process has the potential to biodegrade PU waste if optimized further in the future. PMID:24056469

  8. Effect of different storage temperature on chemical composition of onion (Allium cepa L.) and its enzymes.

    PubMed

    Sharma, Kavita; Lee, Yong Rok

    2016-03-01

    Onion stored at 4, 10, and 25 °C for 9 months were analyzed for changes in quercetin and its glucosidase content, enzymes, pyruvic acid, and sugar content. During storage, concentration of quercetin and its glucosidase showed an irregular variation at all studied temperature but at 4 °C the rate was high as compared to 10 and 25 °C. The enzymatic activity of Q4'G glucosidase and Q4'glucosyltransferase increased progressively until six months at 4, 10 and 25 °C, but later it started to decrease. At 4 and 10 °C, peroxidase activity increased during the first five weeks then decreased, while at 25 °C peroxidase activity decreased progressively after two months storage. Fructose, glucose and sucrose showed a different although more regular pattern by decreasing progressively at 4, 10 °C. At 4 °C fructose and glucose accumulated in the initial 3 to 4 months of storage while sucrose was unchanged. However, at 10 and 25 °C, fructose and glucose concentration continuously decreased, while sucrose increased consistently. Onion pyruvic acid increased at 4 and 10 °C during the first six months, while at 25 °C the fluctuation was observed during the whole storage period. Overall, we conclude that storage at 4 °C maintained the quality of onions best, as evidenced by the positive changes. PMID:27570287

  9. Natural populations of Arabidopsis thaliana differ in seedling responses to high-temperature stress

    PubMed Central

    Zhang, Nana; Belsterling, Brian; Raszewski, Jesse; Tonsor, Stephen J.

    2015-01-01

    Little is known about adaptive within-species variation in thermotolerance in wild plants despite its likely role in both functional adaptation at range limits and in predicting response to climate change. Heat shock protein Hsp101, rapidly heat induced in Arabidopsis thaliana, plays a central role in thermotolerance in laboratory studies, yet little is known about variation in its expression in natural populations. We explored variation in thermotolerance and Hsp101 expression in seedlings from 16 natural populations of A. thaliana sampled along an elevation and climate gradient. We tested both naive controls (maintained at 22 °C until heat stress) and thermally pre-acclimated plants (exposed to a 38 °C 3-h acclimation treatment). After acclimation, seedlings were exposed to one of two heat stresses: 42 or 45 °C. Thermotolerance was measured as post-stress seedling survival and root growth. When stressed at 45 °C, both thermotolerance and Hsp101 expression were significantly increased by pre-acclimation. However, thermotolerance did not differ between pre-acclimation and control when followed by a 42 °C stress. Immediately after heat stress, pre-acclimated seedlings contained significantly more Hsp101 than control seedlings. At 45 °C, Hsp101 expression was positively associated with survival (r2 = 0.37) and post-stress root growth (r2 = 0.15). Importantly, seedling survival, post-stress root growth at 45 °C and Hsp101 expression at 42 °C were significantly correlated with the home sites' first principal component of climate variation. This climate gradient mainly reflects a temperature and precipitation gradient. Thus, the extent of Hsp101 expression modulation and thermotolerance appear to be interrelated and to evolve adaptively in natural populations of A. thaliana. PMID:26286225

  10. Triangle orientation discrimination: the alternative to minimum resolvable temperature difference and minimum resolvable contrast

    NASA Astrophysics Data System (ADS)

    Bijl, Piet; Valeton, J. Mathieu

    1998-07-01

    The characterization of electro-optical system performance by means of the minimum resolvable temperature difference (MRTD) or the minimum resolvable contrast (MRC) has at least three serious disadvantages: (1) the bar pattern stimulus is theoretically and practically unsuitable for 1D or 2D spatially sampled systems such as pixel-array cameras, (2) spatial phase is not taken into account, and (3) the results depend on the observer's subjective decision criterion. We propose an adequate and easily applicable alternative: the triangle orientation discrimination (TOD) threshold. The TOD is based on an improved test pattern, a better defined observer task, and a solid psychophysical measurement procedure. The method has a large number of theoretical and practical advantages: it is suitable for pixel-array cameras, scanning systems and other electro-optical and optical imaging system sin both the thermal and visual domains, it has a close relationship to real target acquisition, and the observer task is easy. The results are free from observer bias and allow statistical significance tests. The method lends itself very well to automatic measurements, and can be extended for future sensor systems that include advanced image processing. The TOD curve can be implemented easily in a target acquisition (TA) model such as ACQUIRE. An observer performance study with real targets shows that the TOD curve better predicts TA performance than the mRC does. The method has been implemented successfully in a thermal imager field test apparatus called the thermal imager performance indicator and may be implemented in current MRTD test equipment with little effort.

  11. Natural populations of Arabidopsis thaliana differ in seedling responses to high-temperature stress.

    PubMed

    Zhang, Nana; Belsterling, Brian; Raszewski, Jesse; Tonsor, Stephen J

    2015-01-01

    Little is known about adaptive within-species variation in thermotolerance in wild plants despite its likely role in both functional adaptation at range limits and in predicting response to climate change. Heat shock protein Hsp101, rapidly heat induced in Arabidopsis thaliana, plays a central role in thermotolerance in laboratory studies, yet little is known about variation in its expression in natural populations. We explored variation in thermotolerance and Hsp101 expression in seedlings from 16 natural populations of A. thaliana sampled along an elevation and climate gradient. We tested both naive controls (maintained at 22 °C until heat stress) and thermally pre-acclimated plants (exposed to a 38 °C 3-h acclimation treatment). After acclimation, seedlings were exposed to one of two heat stresses: 42 or 45 °C. Thermotolerance was measured as post-stress seedling survival and root growth. When stressed at 45 °C, both thermotolerance and Hsp101 expression were significantly increased by pre-acclimation. However, thermotolerance did not differ between pre-acclimation and control when followed by a 42 °C stress. Immediately after heat stress, pre-acclimated seedlings contained significantly more Hsp101 than control seedlings. At 45 °C, Hsp101 expression was positively associated with survival (r(2) = 0.37) and post-stress root growth (r(2) = 0.15). Importantly, seedling survival, post-stress root growth at 45 °C and Hsp101 expression at 42 °C were significantly correlated with the home sites' first principal component of climate variation. This climate gradient mainly reflects a temperature and precipitation gradient. Thus, the extent of Hsp101 expression modulation and thermotolerance appear to be interrelated and to evolve adaptively in natural populations of A. thaliana. PMID:26286225

  12. Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser.

    PubMed

    Namjou, K; Cai, S; Whittaker, E A; Faist, J; Gmachl, C; Capasso, F; Sivco, D L; Cho, A Y

    1998-02-01

    We report what we believe are the first spectroscopic measurements to be made with a room-temperature quantum-cascade distributed-feedback laser. Using wavelength modulation spectroscopy, we detected N(2)O and CH(4) in the chemical fingerprint wavelength range near 8microm . The noise equivalent absorbance for our measurement was 5 parts in 10(5), limited by excess amplitude modulation on the laser output, which corresponds to a 1-Hz bandwidth detection limit of 250 parts N(2)O in 10(9) parts N(2) in a 1-m path length.

  13. Isotopic ordering in eggshells reflects body temperatures and suggests differing thermophysiology in two Cretaceous dinosaurs.

    PubMed

    Eagle, Robert A; Enriquez, Marcus; Grellet-Tinner, Gerald; Pérez-Huerta, Alberto; Hu, David; Tütken, Thomas; Montanari, Shaena; Loyd, Sean J; Ramirez, Pedro; Tripati, Aradhna K; Kohn, Matthew J; Cerling, Thure E; Chiappe, Luis M; Eiler, John M

    2015-10-13

    Our understanding of the evolutionary transitions leading to the modern endothermic state of birds and mammals is incomplete, partly because tools available to study the thermophysiology of extinct vertebrates are limited. Here we show that clumped isotope analysis of eggshells can be used to determine body temperatures of females during periods of ovulation. Late Cretaceous titanosaurid eggshells yield temperatures similar to large modern endotherms. In contrast, oviraptorid eggshells yield temperatures lower than most modern endotherms but ∼ 6 °C higher than co-occurring abiogenic carbonates, implying that this taxon did not have thermoregulation comparable to modern birds, but was able to elevate its body temperature above environmental temperatures. Therefore, we observe no strong evidence for end-member ectothermy or endothermy in the species examined. Body temperatures for these two species indicate that variable thermoregulation likely existed among the non-avian dinosaurs and that not all dinosaurs had body temperatures in the range of that seen in modern birds.

  14. Isotopic ordering in eggshells reflects body temperatures and suggests differing thermophysiology in two Cretaceous dinosaurs.

    PubMed

    Eagle, Robert A; Enriquez, Marcus; Grellet-Tinner, Gerald; Pérez-Huerta, Alberto; Hu, David; Tütken, Thomas; Montanari, Shaena; Loyd, Sean J; Ramirez, Pedro; Tripati, Aradhna K; Kohn, Matthew J; Cerling, Thure E; Chiappe, Luis M; Eiler, John M

    2015-01-01

    Our understanding of the evolutionary transitions leading to the modern endothermic state of birds and mammals is incomplete, partly because tools available to study the thermophysiology of extinct vertebrates are limited. Here we show that clumped isotope analysis of eggshells can be used to determine body temperatures of females during periods of ovulation. Late Cretaceous titanosaurid eggshells yield temperatures similar to large modern endotherms. In contrast, oviraptorid eggshells yield temperatures lower than most modern endotherms but ∼ 6 °C higher than co-occurring abiogenic carbonates, implying that this taxon did not have thermoregulation comparable to modern birds, but was able to elevate its body temperature above environmental temperatures. Therefore, we observe no strong evidence for end-member ectothermy or endothermy in the species examined. Body temperatures for these two species indicate that variable thermoregulation likely existed among the non-avian dinosaurs and that not all dinosaurs had body temperatures in the range of that seen in modern birds. PMID:26462135

  15. Regional differences in the surface temperature of Naked Neck laying hens in a semi-arid environment.

    PubMed

    de Souza, João Batista Freire; de Arruda, Alex Martins Varela; Domingos, Hérica Girlane Tertulino; de Macedo Costa, Leonardo Lelis

    2013-05-01

    The aim of this study was to evaluate the regional differences in the surface temperature of Naked Neck hens that were subjected to different temperatures in a semi-arid environment. The surface temperature was measured in four body regions (face, neck, legs and feathered area) of 60 Naked Neck hens. The following environmental variables were measured at the center of the shed: the black globe temperature (T G ), air temperature (T A ), wind speed (U) and relative humidity (R H ). The T A was divided into three classes: 1 (24.0-26.0 °C), 2 (26.1-28.9 °C) and 3 (29.0-31.0 °C). An analysis of variance was performed by the least squares method and a comparison of the means by the Tukey-Kramer test. The results showed a significant effect of T A class, the body region and the interaction between these two effects on the surface temperature. There was no significant difference between the T A classes for the face and neck. The legs and feathered area showed significant differences between the T A classes. Regarding the effect of body regions within each T A class, there was a significant difference among all regions in the three T A classes. In all T A classes the neck had the highest average followed by the face and legs. The feathered area showed the lowest average of the different T A classes. In conclusion, this study showed that there are regional differences in the surface temperature of Naked Neck hens, with the legs acting as thermal windows. PMID:22689146

  16. Regional differences in the surface temperature of Naked Neck laying hens in a semi-arid environment

    NASA Astrophysics Data System (ADS)

    de Souza, João Batista Freire; de Arruda, Alex Martins Varela; Domingos, Hérica Girlane Tertulino; de Macedo Costa, Leonardo Lelis

    2013-05-01

    The aim of this study was to evaluate the regional differences in the surface temperature of Naked Neck hens that were subjected to different temperatures in a semi-arid environment. The surface temperature was measured in four body regions (face, neck, legs and feathered area) of 60 Naked Neck hens. The following environmental variables were measured at the center of the shed: the black globe temperature ( T G ), air temperature ( T A ), wind speed ( U) and relative humidity ( R H ). The T A was divided into three classes: 1 (24.0-26.0 °C), 2 (26.1-28.9 °C) and 3 (29.0-31.0 °C). An analysis of variance was performed by the least squares method and a comparison of the means by the Tukey-Kramer test. The results showed a significant effect of T A class, the body region and the interaction between these two effects on the surface temperature. There was no significant difference between the T A classes for the face and neck. The legs and feathered area showed significant differences between the T A classes. Regarding the effect of body regions within each T A class, there was a significant difference among all regions in the three T A classes. In all T A classes the neck had the highest average followed by the face and legs. The feathered area showed the lowest average of the different T A classes. In conclusion, this study showed that there are regional differences in the surface temperature of Naked Neck hens, with the legs acting as thermal windows.

  17. [Investigation of apomyoglobin stability depending on urea and temperature at two different pH values].

    PubMed

    Baryshnikova, E N; Sharanov, M G; Kashparov, I A; Il'ina, N B; Bychkova, V E

    2005-01-01

    Equilibrium unfolding of apomyoglobin by urea was investigated in the temperature range from 5 to 25 degrees C at two pH values. The thermodynamic parameters of the apomyoglobin native-unfolded state transition were determined. Conformational changes in the protein structure were monitored by tryptophan fluorescence and far UV circular dichroism. Apomyoglobin preserves its native conformation at pH 5.7 and 6.2 in the temperature range used. It was shown that the apomyoglobin stability and its unfolding cooperativity are substantially lower at 5 degrees C than at other temperatures. This fact should be taken in account at the investigation of apomyoglobin.

  18. Long-term rearing of Arctic charr Salvelinus alpinus under different salinity regimes at constant temperature.

    PubMed

    Arnason, T; Gunnarsson, S; Imsland, A K; Thorarensen, H; Smáradóttir, H; Steinarsson, A; Gústavsson, A; Johansson, M; Björnsson, B Th

    2014-10-01

    Arctic charr Salvelinus alpinus of the Hólar strain (mean ± s.e. body mass = 152·1 ± 3·1 g) were reared at four different salinity regimes at a constant temperature of 7·4° C. Two groups were given a three-month acclimation in salinity 18 before the salinity was increased to either 25 or 29 (groups called A25 and A29), and two groups were reared in salinities 25 or 29 over the full experimental period of 409 days (groups called F25 and F29). In the first 3 months, the A25 and A29 groups had the highest growth rates. By October 2011, there were no significant differences (two-way nested ANOVA, P > 0·05) in the mean body masses among A25, F25 and F29 (c. 1450 g), whereas A29 had a lower mean mass (1282 g). The growth in the last period from October 2011 to January 2012 was reduced by sexual maturation in the highest salinity regimes (A29 and F29), whereas fish in groups A25 and F25 showed high growth throughout the study. Males in all salinity groups had higher growth rates than females for the most part of the study, but the divergence between the sexes was most pronounced in the highest salinity regimes. All salinity groups showed distinct changes in Na(+) , K(+) -ATPase activity, with high activity in spring and summer, and lower activity in the autumn. Plasma sodium (Na(+) ) levels were stable indicating that none of the experimental groups had problems in maintaining hydromineral balance during the study. While plasma leptin levels were not affected by salinity regimes, it was noted that these levels were 13-30% higher in fish with empty guts compared with those having food in their gut at the time of sampling. This suggests a link between leptin levels and food intake, indicating that this hormone may play a role in food intake and energy allocation in fishes.

  19. Foot model for tracking temperature of safety boot insoles: application to different insole materials in firefighter boots.

    PubMed

    García-Hernández, César; Sánchez-Álvarez, Eduardo J; Huertas-Talón, José-Luis

    2016-01-01

    This research is based on the development of a human foot model to study the temperature conditions of a foot bottom surface under extreme external conditions. This foot model is made by combining different manufacturing techniques to enable the simulation of bones and tissues, allowing the placement of sensors on its surface to track the temperature values of different points inside a shoe. These sensors let researchers capture valuable data during a defined period of time, making it possible to compare the features of different safety boots, socks or soles, among others. In this case, it has been applied to compare different plantar insole materials, placed into safety boots on a high-temperature surface.

  20. Growth and biopigment accumulation of cyanobacterium Spirulina platensis at different light intensities and temperature

    PubMed Central

    Kumar, Manoj; Kulshreshtha, Jyoti; Singh, Gajendra Pal

    2011-01-01

    In order to find out optimum culture condition for algal growth, the effect of light irradiance and temperature on growth rate, biomass composition and pigment production of Spirulina platensis were studied in axenic batch cultures. Growth kinetics of cultures showed a wide range of temperature tolerance from 20 °C to 40 °C. Maximum growth rate, cell production with maximum accumulation of chlorophyll and phycobilliproteins were found at temperature 35 °C and 2,000 lux light intensity. But with further increase in temperature and light intensity, reduction in growth rate was observed. Carotenoid content was found maximum at 3,500 lux. Improvement in the carotenoid content with increase in light intensity is an adaptive mechanism of cyanobacterium S.platensis for photoprotection, could be a good basis for the exploitation of microalgae as a source of biopigments. PMID:24031731

  1. Low-temperature production of silicon carbide films of different polytypes

    SciTech Connect

    Semenov, A. V. Puzikov, V. M.; Golubova, E. P.; Baumer, V. N.; Dobrotvorskaya, M. V.

    2009-05-15

    The study is concerned with the effect of temperature on the structure of SiC films formed by deposition of the C and Si ions with the energy 120 eV. On the basis of the X-ray structural studies, it is unambiguously established that the structure of the growing polytype is finely dependent on the substrate temperature. In the temperature range from 1080 deg. C to 1510 deg. C, the sequence of films involving the 21R, 51R, 27R, and 6H polytypes is produced for the first time. The effect of temperature on the silicon-carbon atomic content ratio [Si]/[C] in the deposited films is determined. At optimized parameters of deposition the film structured as the 51R rhombohedral polytype is grown.

  2. Thermodynamic dissociation constant studies of caffeine at different temperatures and in organic water solvent mixture.

    PubMed

    Saeeduddin; Khanzada, A W K

    2004-01-01

    Thermodynamic dissociation studies have been carried out potentiometrically at various temperatures from 25 to 50 degrees C and in 10, 20, 30 and 40% v/v dioxane-water solvent mixture at 25 degrees C. The influence of temperature and nature of solvent on dissociation equilibria of caffeine is being investigated. A computer program in GW-BASIC has been used to calculate the pK values.

  3. The interaction between peripheral and central fatigue at different muscle temperatures during sustained isometric contractions.

    PubMed

    Lloyd, Alex; Hodder, Simon; Havenith, George

    2015-08-15

    Changes in central fatigue have been linked to active and passive changes in core temperature, as well as integration of sensory feedback from thermoreceptors in the skin. However, the effects of muscle temperature (Tm), and thereby metaboreceptor and local afferent nerve temperature, on central fatigue (measured using voluntary activation percentage) during sustained, high muscle fatigue exercise remain unexamined. In this study, we investigated Tm across the range of cold to hot, and its effect on voluntary activation percentage during sustained isometric contractions of the knee extensors. The results suggest that contrary to brief contractions, during a sustained fatiguing contraction Tm significantly (P < 0.001) influences force output (-0.7%/°C increase) and central fatigue (-0.5%/°C increase), showing a negative relationship across the Tm continuum in moderately trained individuals. The negative relationship between voluntary activation percentage and Tm indicates muscle temperature may influence central fatigue during sustained and high muscle fatigue exercise. On the basis of on an integrative analysis between the present data and previous literature, the impact of core and muscle temperature on voluntary muscle activation is estimated to show a ratio of 5.5 to 1, respectively. Accordingly, Tm could assume a secondary or tertiary role in the reduction of voluntary muscle activation when body temperature leaves a thermoneutral range.

  4. Physical characterization of Rhipsalis (Cactaceae) fruits and seeds germination in different temperatures and light regimes.

    PubMed

    Lone, A B; Colombo, R C; Andrade, B L G; Takahashi, L S A; Faria, R T

    2016-06-01

    The germination characteristics of the native cactus species are poorly known, being the temperature and the light the factors that the most interferes in that process. Thus, the objective of the present work was to characterize the fruits and evaluate the influence of the temperature and the light in the seed germination of Rhipsalis floccosa, Rhipsalis pilocarpa and Rhipsalis teres. The tested constant temperatures were 15, 20, 25, 30 and 35 °C and the alternate of 20-30 °C and 25-35 °C in a photoperiod of 10 hours, and with determination of the most appropriate temperature, the germination was tested in light absence. The germination percentage, the index of germination speed and medium time of germination were evaluated. For R. floccosa, the highest germination percentage was at 20 °C. For R. pilocarpa and R. teres, the highest germination percentages occurred in 15 °C and 20 °C. There was correlation to germination percentage between the three species, indicating that they had similar germination behavior. Total absence of germination was verified for the three species in condition of light absence. In conclusion, the temperature of 20 °C is the most suitable for the seed germination of R. floccosa. For the species R. pilocarpa and R. teres, the temperatures of 15 and 20 °C are the most suitable.

  5. Physical characterization of Rhipsalis (Cactaceae) fruits and seeds germination in different temperatures and light regimes.

    PubMed

    Lone, A B; Colombo, R C; Andrade, B L G; Takahashi, L S A; Faria, R T

    2016-06-01

    The germination characteristics of the native cactus species are poorly known, being the temperature and the light the factors that the most interferes in that process. Thus, the objective of the present work was to characterize the fruits and evaluate the influence of the temperature and the light in the seed germination of Rhipsalis floccosa, Rhipsalis pilocarpa and Rhipsalis teres. The tested constant temperatures were 15, 20, 25, 30 and 35 °C and the alternate of 20-30 °C and 25-35 °C in a photoperiod of 10 hours, and with determination of the most appropriate temperature, the germination was tested in light absence. The germination percentage, the index of germination speed and medium time of germination were evaluated. For R. floccosa, the highest germination percentage was at 20 °C. For R. pilocarpa and R. teres, the highest germination percentages occurred in 15 °C and 20 °C. There was correlation to germination percentage between the three species, indicating that they had similar germination behavior. Total absence of germination was verified for the three species in condition of light absence. In conclusion, the temperature of 20 °C is the most suitable for the seed germination of R. floccosa. For the species R. pilocarpa and R. teres, the temperatures of 15 and 20 °C are the most suitable. PMID:26934150

  6. Performance of TFET and FinFET devices applied to current mirrors for different dimensions and temperatures

    NASA Astrophysics Data System (ADS)

    Martino, M. D. V.; Martino, J. A.; Agopian, P. G. D.; Vandooren, A.; Rooyackers, R.; Simoen, E.; Thean, A.; Claeys, C.

    2016-05-01

    The goal of this work is to compare the behavior of a current mirror designed with Tunnel-FET and FinFET devices. The suitability of these technologies in such a basic circuit has been analyzed focusing on the susceptibility to output bias conditions, dimensions mismatching and temperature variations. In the experimental part, results revealed a similar channel width dependence, but a much more relevant channel length dependence for the circuit with FinFETs. Meanwhile, varying the output bias, it was observed that a wider range of output drain voltage results in a suitable mirrored current for the circuit with tunnel field effect transistors (TFETs). In the second part of this work, numerical simulations have been performed for different temperatures. The opposite trends observed for higher temperatures could be justified based on the different dominant transport mechanism in each circuit. Globally, current mirrors with TFETs presented the best results, with lower output current susceptibility to dimensions mismatching and temperature variation.

  7. Effect of different temperature-time combinations on lipid and protein oxidation of sous-vide cooked lamb loins.

    PubMed

    Roldan, Mar; Antequera, Teresa; Armenteros, Monica; Ruiz, Jorge

    2014-04-15

    Forty-five lamb loins were subjected to sous-vide cooking at different combinations of temperature (60, 70 and 80 °C) and time (6, 12 and 24 h) to assess the effect on the oxidative stability of lipids and proteins. Heating induced both lipid and protein oxidation in lamb loins. Higher cooking temperature-time combinations increased conjugated dienes and decreased thiobarbituric reactive substances (TBARS) values and hexanal. Total protein carbonyls increased throughout time at all cooking temperatures considered, while α-aminoadipic (AAS) and γ-glutamic semialdehydes (GGS) increased when cooking at 60 °C but not at 80 °C. Links between the decrease in secondary compounds from lipid oxidation due to cooking at higher temperatures and for longer times with the increased levels of 3-methylbutanal and greater differences between total protein carbonyls and AAS plus GGS were hypothesised. PMID:24295686

  8. Effect of different temperature-time combinations on lipid and protein oxidation of sous-vide cooked lamb loins.

    PubMed

    Roldan, Mar; Antequera, Teresa; Armenteros, Monica; Ruiz, Jorge

    2014-04-15

    Forty-five lamb loins were subjected to sous-vide cooking at different combinations of temperature (60, 70 and 80 °C) and time (6, 12 and 24 h) to assess the effect on the oxidative stability of lipids and proteins. Heating induced both lipid and protein oxidation in lamb loins. Higher cooking temperature-time combinations increased conjugated dienes and decreased thiobarbituric reactive substances (TBARS) values and hexanal. Total protein carbonyls increased throughout time at all cooking temperatures considered, while α-aminoadipic (AAS) and γ-glutamic semialdehydes (GGS) increased when cooking at 60 °C but not at 80 °C. Links between the decrease in secondary compounds from lipid oxidation due to cooking at higher temperatures and for longer times with the increased levels of 3-methylbutanal and greater differences between total protein carbonyls and AAS plus GGS were hypothesised.

  9. Investigation of effective base transit time and current gain modulation of light-emitting transistors under different ambient temperatures

    SciTech Connect

    Yang, Hao-Hsiang; Tu, Wen-Chung; Wang, Hsiao-Lun; Wu, Chao-Hsin

    2014-11-03

    In this report, the modulation of current gain of InGaP/GaAs light-emitting transistors under different ambient temperatures are measured and analyzed using thermionic emission model of quantum well embedded in the transistor base region. Minority carriers captured by quantum wells gain more energy at high temperatures and escape from quantum wells resulting in an increase of current gain and lower optical output, resulting in different I-V characteristics from conventional heterojunction bipolar transistors. The effect of the smaller thermionic lifetime thus reduces the effective base transit time of transistors at high temperatures. The unique current gain enhancement of 27.61% is achieved when operation temperature increase from 28 to 85 °C.

  10. Critical Temperature Differences of a Standing Wave Thermoacoustic Prime Mover with Various Helium-Based Binary Mixture Working Gases

    NASA Astrophysics Data System (ADS)

    Setiawan, Ikhsan; Nohtomi, Makoto; Katsuta, Masafumi

    2015-06-01

    Thermoacoustic prime movers are energy conversion devices which convert thermal energy into acoustic work. The devices are environmentally friendly because they do not produce any exhaust gases. In addition, they can utilize clean energy such as solar-thermal energy or waste heat from internal combustion engines as the heat sources. The output mechanical work of thermoacoustic prime movers are usually used to drive a thermoacoustic refrigerator or to generate electricity. A thermoacoustic prime mover with low critical temperature difference is desired when we intend to utilize low quality of heat sources such as waste heat and sun light. The critical temperature difference can be significantly influenced by the kinds of working gases inside the resonator and stack's channels of the device. Generally, helium gas is preferred as the working gas due to its high sound speed which together with high mean pressure will yield high acoustic power per unit volume of the device. Moreover, adding a small amount of a heavy gas to helium gas may improve the efficiency of thermoacoustic devices. This paper presents numerical study and estimation of the critical temperature differences of a standing wave thermoacoustic prime mover with various helium-based binary-mixture working gases. It is found that mixing helium (He) gas with other common gases, namely argon (Ar), nitrogen (N2), oxygen (O2), and carbon dioxide (CO2), at appropriate pressures and molar compositions, reduce the critical temperature differences to lower than those of the individual components of the gas mixtures. In addition, the optimum mole fractions of Hegas which give the minimum critical temperature differences are shifted to larger values as the pressure increases, and tends to be constant at around 0.7 when the pressure increases more than 2 MPa. However, the minimum critical temperature differences slightly increase as the pressure increases to higher than 1.5 MPa. Furthermore, we found that the lowest

  11. Aquatic hyphomycete strains from metal-contaminated and reference streams might respond differently to future increase in temperature.

    PubMed

    Ferreira, Verónica; Gonçalves, Ana Lúcia; Canhoto, Cristina

    2012-01-01

    Aquatic hyphomycetes, a group of polyphyletic fungi, have been reported in streams contaminated with metals. This tolerance to metal contamination however can result in limited performance and limited ability to cope with additional environmental change. The predicted increase in water temperature, as a consequence of global warming, will have an additional effect on many streams. The sensitivity to temperature of strains of three aquatic hyphomycete species isolated from a metal-contaminated stream and an uncontaminated stream was assessed by determining their radial growth and activity (conidial production, oxygen consumption, mycelial biomass accumulation, fine particulate organic matter [FPOM] production, and microbial induced leaf mass loss) at 13 C (present water temperature in autumn) and at 18 C (predicted water temperature under global warming). Growth and reproductive activity generally were depressed for the strains isolated from the metal-contaminated stream when compared with those isolated from the unpolluted stream. These differences however were not translated into differences in FPOM production and leaf-litter mass loss, indicating that the strains isolated from the contaminated stream can decompose leaf litter similar to those of the reference stream. The 5 C increase in temperature stimulated fungal activity and litter decomposition, irrespective of species and strain. This might have strong effect on aquatic food-web and ecosystem functioning under global warming because increases in litter decomposition might lead to food shortage for higher trophic levels. The sensitivity to temperature depended on the response variable, species and strain. FPOM production was the variable most sensitive to temperature across strains and species and that for which temperature sensitivities differed most between strains. Fungal tolerance to metal contamination affects the extent to which its functions are stimulated by an increase in temperature, constituting

  12. Aquatic hyphomycete strains from metal-contaminated and reference streams might respond differently to future increase in temperature.

    PubMed

    Ferreira, Verónica; Gonçalves, Ana Lúcia; Canhoto, Cristina

    2012-01-01

    Aquatic hyphomycetes, a group of polyphyletic fungi, have been reported in streams contaminated with metals. This tolerance to metal contamination however can result in limited performance and limited ability to cope with additional environmental change. The predicted increase in water temperature, as a consequence of global warming, will have an additional effect on many streams. The sensitivity to temperature of strains of three aquatic hyphomycete species isolated from a metal-contaminated stream and an uncontaminated stream was assessed by determining their radial growth and activity (conidial production, oxygen consumption, mycelial biomass accumulation, fine particulate organic matter [FPOM] production, and microbial induced leaf mass loss) at 13 C (present water temperature in autumn) and at 18 C (predicted water temperature under global warming). Growth and reproductive activity generally were depressed for the strains isolated from the metal-contaminated stream when compared with those isolated from the unpolluted stream. These differences however were not translated into differences in FPOM production and leaf-litter mass loss, indicating that the strains isolated from the contaminated stream can decompose leaf litter similar to those of the reference stream. The 5 C increase in temperature stimulated fungal activity and litter decomposition, irrespective of species and strain. This might have strong effect on aquatic food-web and ecosystem functioning under global warming because increases in litter decomposition might lead to food shortage for higher trophic levels. The sensitivity to temperature depended on the response variable, species and strain. FPOM production was the variable most sensitive to temperature across strains and species and that for which temperature sensitivities differed most between strains. Fungal tolerance to metal contamination affects the extent to which its functions are stimulated by an increase in temperature, constituting

  13. Possibility of passive THz camera using for a temperature difference observing of objects placed inside the human body

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.; Kuchik, Igor E.

    2014-06-01

    As it is well-known, application of the passive THz camera for the security problems is very promising way. It allows seeing concealed object without contact with a person and this camera is non-dangerous for a person. We demonstrate new possibility of the passive THz camera using for a temperature difference observing on the human skin if this difference is caused by different temperatures inside the body. We discuss some physical experiments, in which a person drinks hot, and warm, and cold water and he eats. After computer processing of images captured by passive THz camera TS4 we may see the pronounced temperature trace on skin of the human body. For proof of validity of our statement we make the similar physical experiment using the IR camera. Our investigation allows to increase field of the passive THz camera using for the detection of objects concealed in the human body because the difference in temperature between object and parts of human body will be reflected on the human skin. However, modern passive THz cameras have not enough resolution in a temperature to see this difference. That is why, we use computer processing to enhance the camera resolution for this application. We consider images produced by THz passive cameras manufactured by Microsemi Corp., and ThruVision Corp.

  14. Effects of a glyphosate-based herbicide on the development of Common toads (Bufo bufo L.; Amphibia) at different temperatures

    NASA Astrophysics Data System (ADS)

    Baier, Fabian; Gruber, Edith; Spangl, Bernhard; Zaller, Johann G.

    2016-04-01

    Herbicides based on the active ingredient glyphosate are frequently applied in agriculture, horticulture and private gardens all over the world. Recently, leaching of glyphosate or its metabolite (AMPA) into water bodies inhabited by amphibians has been reported. However, very little is known about non-target effects of these herbicides on amphibians and even less is known to what extent different temperatures might alter these effects. Using climate chambers, we investigated the effects of the glyphosate-based herbicide Roundup PowerFlex® (480 g L-1 glyphosate, formulated as 588 g L-1 potassium salt) on the larval development of Common toads (Bufo bufo L.; Amphibia: Anura) under different temperature regimes (15°C vs. 20°C). We established five herbicide concentrations: 0, 1.5, 3, 4 mg acid equivalent L-1 and a 4 mg a.e. L-1 pulse treatment (totally three applications of 1.5, 1.5 and another 1 mg a.e. L-1) at each temperature in a full-factorial design. Each treatment combination was replicated five times, the experiment ran for 24 days. Results showed a highly significant effect of temperature on body length and body width but no effect of herbicide concentration on these growth parameters. Moreover, highly significant interactions between herbicide and temperature on body length and body width were observed suggesting that herbicides had different effects on different temperatures. In conclusion, although Roundup PowerFlex® at the tested concentrations appeared to have no acute toxicity to larvae of Common toads, the observed effects on tadpole morphology will potentially affect competitive interactions in spawning ponds of amphibia. Our findings of herbicide x temperature interactions might become more prevalent when human-induced climate change will lead to more extreme temperatures.

  15. Differences in the catalytic mechanisms of mesophilic and thermophilic indole-3-glycerol phosphate synthase enzymes at their adaptive temperatures

    SciTech Connect

    Zaccardi, Margot J.; Mannweiler, Olga; Boehr, David D.

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Catalytic mechanisms of thermophilic-mesophilic enzymes may differ. Black-Right-Pointing-Pointer Product release is rate-determining for thermophilic IGPS at low temperatures. Black-Right-Pointing-Pointer But at higher temperatures, proton transfer from the general acid is rate-limiting. Black-Right-Pointing-Pointer Rate-determining step is different still for mesophilic IGPS. Black-Right-Pointing-Pointer Both chemical and physical steps of catalysis are important for temperature adaptation. -- Abstract: Thermophilic enzymes tend to be less catalytically-active at lower temperatures relative to their mesophilic counterparts, despite having very similar crystal structures. An often cited hypothesis for this general observation is that thermostable enzymes have evolved a more rigid tertiary structure in order to cope with their more extreme, natural environment, but they are also less flexible at lower temperatures, leading to their lower catalytic activity under mesophilic conditions. An alternative hypothesis, however, is that complementary thermophilic-mesophilic enzyme pairs simply operate through different evolutionary-optimized catalytic mechanisms. In this communication, we present evidence that while the steps of the catalytic mechanisms for mesophilic and thermophilic indole-3-glycerol phosphate synthase (IGPS) enzymes are fundamentally similar, the identity of the rate-determining step changes as a function of temperature. Our findings indicate that while product release is rate-determining at 25 Degree-Sign C for thermophilic IGPS, near its adaptive temperature (75 Degree-Sign C), a proton transfer event, involving a general acid, becomes rate-determining. The rate-determining steps for thermophilic and mesophilic IGPS enzymes are also different at their respective, adaptive temperatures with the mesophilic IGPS-catalyzed reaction being rate-limited before irreversible CO{sub 2} release, and the thermophilic IGPS

  16. Effect of Different Temperatures on Consumption of Two Spotted Mite, Tetranychus urticae, Eggs by the Predatory Thrips, Scolothrips longicornis

    PubMed Central

    Pakyari, Hajar; Enkegaard, Annie

    2012-01-01

    Environmental variables such as temperature are important factors affecting the efficacy of biological control agents. This study evaluated the predation rate of the predatory thrips Scolothrips longicornis Priesner (Thysanoptera: Thripidae) against the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) under laboratory conditions. Based on daily and total prey consumption of different life stages of S. longicornis on spider mite eggs at temperatures covering the range suitable for development and survival of the predator (15° C to 37° C, 60 ± 10% RH, 16:8 L:D), there was a significant effect of temperature on prey consumption. The number of prey consumed daily by first and second instar larvae increased linearly with increasing temperature from 15 °C to 37 °C, whereas daily consumption of preovipositing and postovipositing females was uninfluenced by temperature. Lower temperature thresholds for consumption by first and second instar larvae of S. longicornis was estimated to be 6.8 ± 0.04° C and 4.6 ± 0.03° C, respectively. The daily consumption of ovipositing females followed a nonlinear pattern, with maximum daily predation estimated at 32.8° C. From the model used to describe consumption of ovipositing females, an upper threshold for consumption of 41.4° C was estimated. The performance of S. longicornis at the different temperatures is discussed in relation to its practical use in integrated pest control programs. PMID:23425212

  17. Use of palm mid-fraction in dark chocolate as base filling centre at different storage temperatures.

    PubMed

    Jinap, S; Ali, A A; Man, Y B; Suria, A M

    2000-11-01

    Dark chocolates filled with palm mid-fraction (PMF) were stored at different temperatures to evaluate the physical and chemical changes. Storage at low temperature (18 degrees C) reduces the PMF migration to negligible extent. Higher storage temperatures (30 and 35 degrees C) increased the PMF migration from the filling centre into the chocolate coating. As a consequence of fat migration, fatty acid composition, triglyceride composition, hardness, solid fat content, melting point and polymorphic structure changed, leading to bloom formation, which started by fat migration and was influenced by recrystallization tendency within the chocolate coating.

  18. Preparation of nickel oxide thin films at different annealing temperature by sol-gel spin coating method

    NASA Astrophysics Data System (ADS)

    Abdullah, M. A. R.; Mamat, M. H.; Ismail, A. S.; Malek, M. F.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2016-07-01

    Preparation of NiO thin films at different annealing temperature by sol-gel method was conducted to synthesize the quality of the surface thin films. The effects of annealing temperature on the surface topology were systematically investigated. Our studies confirmed that the surface roughness of the thin films was increased whenever annealing temperature was increase. NiO thin films morphology structure analysis was confirmed by field emission scanning electron microscope. Surface roughness of the thin films was investigated by atomic force microscopy.

  19. Differences in the Temperature Sensitivity of Soil Organic Carbon Decomposition in a Semi-Arid Ecosystem across an Elevational Gradient

    NASA Astrophysics Data System (ADS)

    Delvinne, H.; Flores, A. N.; Benner, S. G.; Feris, K. P.; De Graaff, M. A.

    2015-12-01

    Semi-arid ecosystems are a significant component of the global carbon (C) cycle as they store approximately 20% of global soil C. Yet, projected increases in mean annual temperatures might alter the amount of soil organic C (SOC) currently stored in these ecosystems. Uncertainties about the temperature sensitivity of SOC decomposition have hindered accurate predictions of C cycle feedbacks to climate change. This study aims to elucidate how the temperature sensitivity of SOC decomposition varies along an elevational (1000m) and climatic (i.e. mean annual temperature and precipitation) gradient. The study sites are located at Reynolds Creek Critical Zone Observatory in Owyhee Mountains of Idaho, USA. We conducted stratified random sampling of soil up to 0-5cm across sagebrush canopy and inter-canopy areas at four elevations. We hypothesized decomposition of SOC pools at lower elevations to have greater temperature sensitivity (more CO2 respired per unit C) compared to upper due to the quality of C that is inherently more temperature sensitive. To assess the temperature sensitivity of SOC decomposition, we used aerobic laboratory incubations (n=40) across a temperature gradient ((15, 20, 25, 30) oC) at constant soil moisture (60% water holding capacity) for 120 days and measured CO2 respired. Cumulative CO2 respired increased with increasing incubation temperature. Cumulative CO2 respired also increased with elevation as upper elevations support greater amounts of C. However, when normalized by SOC, we found that the temperature response of CO2 respiration was greater in soils derived from lower than higher elevations (p<0.05). These results indicate that the response of SOC decomposition to elevated temperatures differs strongly across the landscape in semi-arid ecosystems.

  20. Thermopreference, tolerance and metabolic rate of early stages juvenile Octopus maya acclimated to different temperatures.

    PubMed

    Noyola, Javier; Caamal-Monsreal, Claudia; Díaz, Fernando; Re, Denisse; Sánchez, Adolfo; Rosas, Carlos

    2013-01-01

    Thermopreference, tolerance and oxygen consumption rates of early juveniles Octopus maya (O. maya; weight range 0.38-0.78g) were determined after acclimating the octopuses to temperatures (18, 22, 26, and 30°C) for 20 days. The results indicated a direct relationship between preferred temperature (PT) and acclimated temperature, the PT was 23.4°C. Critical Thermal Maxima, (CTMax; 31.8±1.2, 32.7±0.9, 34.8±1.4 and 36.5±1.0) and Critical Thermal Minima, (CTMin; 11.6±0.2, 12.8±0.6, 13.7±1.0, 19.00±0.9) increased significantly (P<0.05) with increasing acclimation temperatures. The endpoint for CTMax was ink release and for CTMin was tentacles curled, respectively. A thermal tolerance polygon over the range of 18-30°C resulted in a calculated area of 210.0°C(2). The oxygen consumption rate increased significantly α=0.05 with increasing acclimation temperatures between 18 and 30°C. Maximum and minimum temperature quotients (Q10) were observed between 26-30°C and 22-26°C as 3.03 and 1.71, respectively. These results suggest that O. maya has an increased capability for adapting to moderate temperatures, and suggest increased culture potential in subtropical regions southeast of México.

  1. Different responses of the skin temperature to physical exercise: Systematic review.

    PubMed

    Neves, Eduardo B; Vilaca-Alves, Jose; Antunes, Natacha; Felisberto, Ivo M V; Rosa, Claudio; Reis, Victor M

    2015-08-01

    Studies suggest that skin temperature behavior varies according to the type of exercise, intensity, duration, muscle mass and subcutaneous fat layer. In this sense, the aim of this study was to investigate the skin temperature behavior in the active muscles and other body segments, during and after exercise, according to the type and intensity of the exercise. A systematic literature review was conducted between November 2014 and March 2015 in the Web of Science database, using the terms "thermography" and "exercise" and "muscle" to achieve the objective of this study. During the research were found 55 scientific articles which were subjected to a selection process. Inclusion criteria were: Studies in human beings and original research. The exclusion criterion was the presence of subjects with some kind of disease. The seven papers that make up the present review are dated between 2008 and 2015. From all analyzed studies, it was possible to understand the general behavior of the active muscle skin temperature during the exercise, immediately after and in the 48h after exercise, according to the type and intensity of the exercise performed, which are illustrated in two figures. It can be concluded that the skin temperature over active muscles increases during high intensity anaerobic exercise, decreases slowly after exercise and increases again in the days after the exercise. On the other hand, during low intensity aerobic exercise, skin temperature over active muscles decreases, returning to normal values a few minutes after it and present a small rise in the following days. With regard to the skin temperature over non-active muscles, it can be seen that it decreases during exercise, returning to normal values a few minutes after it and rise similarly to the skin temperature over active muscles in the following days, in all types of exercises studied.

  2. Thermopreference, tolerance and metabolic rate of early stages juvenile Octopus maya acclimated to different temperatures.

    PubMed

    Noyola, Javier; Caamal-Monsreal, Claudia; Díaz, Fernando; Re, Denisse; Sánchez, Adolfo; Rosas, Carlos

    2013-01-01

    Thermopreference, tolerance and oxygen consumption rates of early juveniles Octopus maya (O. maya; weight range 0.38-0.78g) were determined after acclimating the octopuses to temperatures (18, 22, 26, and 30°C) for 20 days. The results indicated a direct relationship between preferred temperature (PT) and acclimated temperature, the PT was 23.4°C. Critical Thermal Maxima, (CTMax; 31.8±1.2, 32.7±0.9, 34.8±1.4 and 36.5±1.0) and Critical Thermal Minima, (CTMin; 11.6±0.2, 12.8±0.6, 13.7±1.0, 19.00±0.9) increased significantly (P<0.05) with increasing acclimation temperatures. The endpoint for CTMax was ink release and for CTMin was tentacles curled, respectively. A thermal tolerance polygon over the range of 18-30°C resulted in a calculated area of 210.0°C(2). The oxygen consumption rate increased significantly α=0.05 with increasing acclimation temperatures between 18 and 30°C. Maximum and minimum temperature quotients (Q10) were observed between 26-30°C and 22-26°C as 3.03 and 1.71, respectively. These results suggest that O. maya has an increased capability for adapting to moderate temperatures, and suggest increased culture potential in subtropical regions southeast of México. PMID:24229799

  3. Effect of compost, nitrogen salts, and NPK fertilizers on methane oxidation potential at different temperatures.

    PubMed

    Jugnia, Louis-B; Mottiar, Yaseen; Djuikom, Euphrasie; Cabral, Alexandre R; Greer, Charles W

    2012-03-01

    The effects of compost, nitrogen salts, and nitrogen-phosphorous-potassium (NPK) fertilizers on the methane oxidation potential (MOP) of landfill cover soil at various temperatures were assessed. For this, we used batch assays conducted at 5°C, 15°C, and 25°C with microcosms containing landfill cover soil slurries amended with these elements. Results indicated variable impacts dependent on the type of amendment and the incubation temperature. For a given incubation temperature, MOP varied from one compost to another and with the amount of compost added, except for the shrimp/peat compost. With this latter compost, independent of the amount, MOP values remained similar and were significantly higher than those obtained with other composts. Amendment with most of the tested nitrogen salts led to similar improvements in methanotrophic activity, except for urea. MOP with NPK fertilizer addition was amongst the highest in this study; the minimum value obtained with NPK (20-0-20) suggested the importance of P for methanotrophs. MOP generally increased with temperature, and nutrient limitation became less important at higher temperatures. Overall, at each of the three temperatures tested, MOP with NPK fertilizer amendments provided the best results and was comparable to those observed with the addition of the shrimp/peat compost. The results of this study provide the first evidence of the following: (1) compost addition to improve methanotrophic activity in a landfill cover soil should consider the amount and type of compost used and (2) the importance of using NPK fertilizers rather than nitrogen salts, in enhancing this activity, primarily at low temperatures. One can also consider the potential beneficial impact of adding these elements to enhance plant growth, which is an advantage for MOP. PMID:21894478

  4. Changes in life history parameters of Rhopalosiphum maidis (Homoptera: Aphididae) under four different elevated temperature and CO2 combinations.

    PubMed

    Xie, Haicui; Zhao, Lei; Wang, Wenqiang; Wang, Zhenying; Ni, Xinzhi; Cai, Wanzhi; He, Kanglai

    2014-08-01

    Biological characteristics of corn leaf aphid, Rhopalosiphum maidis (Fitch), on barley, Hordeum vulgare L., were examined for two generations under four different elevated temperature and CO2 combinations. The developmental duration for each life stage was significantly reduced under the elevated temperature (+4 degrees C). The elevated CO2 (700-750 microl/liter) reduced only the development time of fourth-instar nymph. The overall duration of nymphal stage was reduced in the second generation. Thus, the temperature was the dominant factor to development duration of corn leaf aphid. The fecundity of corn leaf aphid was significantly increased under the elevated temperature and CO2, as well as in the later generation. Elevated temperature and CO2 increased the number of alate production, which may enhance the aphid migration or dispersal and the spread of plant viruses. Corn leaf aphid had the highest intrinsic rate of increase under the elevated temperature and CO2 combination in the second generation. These results indicate that the combined effects of both elevated temperature and CO2 on aphid biology may exacerbate aphid damage on barley under the climate change in accompany with elevated temperature and CO2 level. PMID:25195429

  5. The impact of different cooling strategies on urban air temperatures: the cases of Campinas, Brazil and Mendoza, Argentina

    NASA Astrophysics Data System (ADS)

    Alchapar, Noelia Liliana; Cotrim Pezzuto, Claudia; Correa, Erica Norma; Chebel Labaki, Lucila

    2016-07-01

    This paper describes different ways of reducing urban air temperature and their results in two cities: Campinas, Brazil—a warm temperate climate with a dry winter and hot summer (Cwa), and Mendoza, Argentina—a desert climate with cold steppe (BWk). A high-resolution microclimate modeling system—ENVI-met 3.1—was used to evaluate the thermal performance of an urban canyon in each city. A total of 18 scenarios were simulated including changes in the surface albedo, vegetation percentage, and the H/W aspect ratio of the urban canyons. These results revealed the same trend in behavior for each of the combinations of strategies evaluated in both cities. Nevertheless, these strategies produce a greater temperature reduction in the warm temperate climate (Cwa). Increasing the vegetation percentage reduces air temperatures and mean radiant temperatures in all scenarios. In addition, there is a greater decrease of urban temperature with the vegetation increase when the H/W aspect ratio is lower. Also, applying low albedo on vertical surfaces and high albedo on horizontal surfaces is successful in reducing air temperatures without raising the mean radiant temperature. The best combination of strategies—60 % of vegetation, low albedos on walls and high albedos on pavements and roofs, and 1.5 H/W—could reduce air temperatures up to 6.4 °C in Campinas and 3.5 °C in Mendoza.

  6. Numerical study of active control of mixing in electro-osmotic flows by temperature difference using lattice Boltzmann methods.

    PubMed

    Alizadeh, A; Wang, J K; Pooyan, S; Mirbozorgi, S A; Wang, M

    2013-10-01

    In this paper, the effect of temperature difference between inlet flow and walls on the electro-osmotic flow through a two-dimensional microchannel is investigated. The main objective is to study the effect of temperature variations on the distribution of ions and consequently internal electric potential field, electric body force, and velocity fields in an electro-osmotic flow. We assume constant temperature and zeta potential on walls and use the mean temperature of each cross section to characterize the Boltzmann ion distribution across the channel. Based on these assumptions, the multiphysical transports are still able to be described by the classical Poisson-Boltzmann model. In this work, the Navier-Stokes equation for fluid flow, the Poisson-Boltzmann equation for ion distribution, and the energy equation for heat transfer are solved by a couple lattice Boltzmann method. The modeling results indicate that the temperature difference between walls and the inlet solution may lead to two symmetrical vortices at the entrance region of the microchannel which is appropriate for mixing enhancements. The advantage of this phenomenon for active control of mixing in electro-osmotic flow is the manageability of the vortex scale without extra efforts. For instance, the effective domain of this pattern could broaden by the following modulations: decreasing the external electric potential field, decreasing the electric double layer thickness, or increasing the temperature difference between inlet flow and walls. This work may provide a novel strategy for design or optimization of microsystems. PMID:23859813

  7. Abundance trend with condensation temperature for stars with different Galactic birth places

    NASA Astrophysics Data System (ADS)

    Adibekyan, V.; Delgado-Mena, E.; Figueira, P.; Sousa, S. G.; Santos, N. C.; González Hernández, J. I.; Minchev, I.; Faria, J. P.; Israelian, G.; Harutyunyan, G.; Suárez-Andrés, L.; Hakobyan, A. A.

    2016-08-01

    Context. During the past decade, several studies reported a correlation between chemical abundances of stars and condensation temperature (also known as Tc trend). However, the real astrophysical nature of this correlation is still debated. Aims: The main goal of this work is to explore the possible dependence of the Tc trend on stellar Galactocentric distances, Rmean. Methods: We used high-quality spectra of about 40 stars observed with the HARPS and UVES spectrographs to derive precise stellar parameters, chemical abundances, and stellar ages. A differential line-by-line analysis was applied to achieve the highest possible precision in the chemical abundances. Results: We confirm previous results that [X/Fe] abundance ratios depend on stellar age and that for a given age, some elements also show a dependence on Rmean. When using the whole sample of stars, we observe a weak hint that the Tc trend depends on Rmean. The observed dependence is very complex and disappears when only stars with similar ages are considered. Conclusions: To conclude on the possible dependence of the Tc trend on the formation place of stars, a larger sample of stars with very similar atmospheric parameters and stellar ages observed at different Galactocentric distances is needed. Based on observations collected with the HARPS spectrograph at the 3.6-m telescope (program ID: 095.D-0717(A)), installed at the La Silla Observatory, ESO (Chile), with the UVES spectrograph at the 8-m Very Large Telescope (program ID: 095.D-0717(B)), installed at the Cerro Paranal Observatory, ESO (Chile). Also based on data obtained from the ESO Science Archive Facility under request numbers: vadibekyan180760, vadibekyan180762, vadibekyan180764, vadibekyan180768, vadibekyan180769, vadibekyan180771, vadibekyan180773, vadibekyan180778, and vadibekyan180779.Tables with stellar parameters and chemical abundances are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or

  8. Land Surface Temperature Measurements from EOD MODIS Data

    NASA Technical Reports Server (NTRS)

    Wan, Zheng-Ming

    1998-01-01

    We made more tests of the version 2.0 daily Level 2 and Level 3 Land-Surface Temperature (LST) code (PGE 16) jointly with the MODIS Science Data Support Team (SDST). After making minor changes a few times, the PGE16 code has been successfully integrated and tested by MODIS SDST, and recently has passed the inspection at the Goddard Distributed Active Archive Center (DAAC). We conducted a field campaign in the area of Mono Lake, California on March 10, 1998, in order to validate the MODIS LST algorithm in cold and dry conditions. Two MODIS Airborne Simulator (MAS) flights were completed during the field campaign, one before noon, and another around 10 pm PST. The weather condition for the daytime flight was perfect: clear sky, the column water vapor measured by radiosonde around 0.3 cm, and wind speed less than a half meter per second. The quality of MAS data is good for both day and night flights. We analyzed the noise equivalent temperature difference (NE(delta)T) and the calibration accuracy of the seven MAS thermal infrared (TIR) bands, that are used in the MODIS day/night LST algorithm, with daytime MAS data over four flat homogeneous study areas: two on Grant Lake (covered with ice and snow, respectively), one on Mono Lake, and another on the snow field site where we made field measurements. NE(delta)T ranges from 0.2 to 0.6 k for bands 42, 45, 46, and 48. It ranges from 0.8 to 1.1 K for bands 30-32. The day and night MAS data have been used to retrieve surface temperature and emissivities in these bands. A simple method to correct the effect of night thin cirrus has been incorporated into the day/night LST algorithm in dry atmospheric conditions. We compared the retrieved surface temperatures with those measured with TIR spectrometer, radiometers and thermistors in the snow test site, and the retrieved emissivity images with topographic map. The daytime LST values match well within 1 K. The night LST retrieved from MAS data is 3.3 K colder than those from

  9. Temperature changes in different groups of teeth during cavity preparaton with Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Brugnera J"nior, Aldo, Jr.; Marchesan, Melissa A.; Zanin, Fatima A. A.; Guerisoli, Danilo Z.; Pécora, Jesus D.

    2002-10-01

    Objective: Various studies have recommended parameters for the use of Er:YAG laser for the treatment of enamel and dentis caries; however, none have studied the increase in temperature caused by laser in individual groups of teeth. Summary Background Data: The effect of preparation with Er:YAG laser on the pulp temperature changes is one of the major problems in using the laser for preparation of dental hard tissue. Methods: The authors studied the intrapulpar temperature changes in 10 incisors, 10 canines, 10 premolars and 10 molars during Class V cavity preparation with focused short pulse (250 μs/pulse) and very short pulse (80-120 μs/pulse) Er:YAG laser, using the following parameters: 10 Hz frequency, 500 mJ per pulse, 6 s, 10 mm distance, 25 ml/min water flow, at 23°C and 65% humidity. Results: The greatest increase in temperature was foundin the incisors and the least increase in the molars at both pulse modes. Conclusions:The very short pulse mode caused less of an increase in temperature in the pulp chamber in all teeth than the short pulse mode.

  10. The study on characterizations of SrTiO3 thin films with different growth temperatures

    NASA Astrophysics Data System (ADS)

    Kınacı, B.; Akın, N.; Kars Durukan, İ.; Memmedli, T.; Özçelik, S.

    2014-12-01

    Strontium titanate (SrTiO3) thin films were deposited on cleaned p-type (1 0 0) oriented silicon substrates using radio frequency (RF) magnetron sputtering method at a substrate temperatures of 200 °C, 300 °C, 400 °C and 500 °C. During deposition, sputtering pressure (PS) was maintained at 3.9 × 10-3 Torr using argon (Ar) gas, and RF power (PRF) was set to a constant value of 100 W for all experiments. Crystalline quality, surface morphology and band gap of the films were investigated by X-ray diffraction (XRD) analysis, atomic force microscopy (AFM) and photoluminescence (PL) measurements. Experimental results showed crystalline quality, and surface morphology of the films were remarkably improved by high substrate temperature. In addition to above analyzes, SrTiO3/p-Si structure deposited at 500 °C substrate temperature have been investigated using temperature dependent current-voltage (I-V-T) characteristics in the temperature range of 110-350 K by steps of 30 K due to its better characteristics. The ideality factor (n), barrier height (Φb) and series resistance (Rs) values were extracted. Moreover, Φb and Rs values were recalculated using Norde's method.

  11. [Study on the vacuum ultraviolet transmittance of barium fluoride crystals at different temperature].

    PubMed

    Peng, Ru-Yi; Fu, Li-Ping; Tao, Ye

    2014-03-01

    Two VUV-grade BaF2 windows with 0.5 mm-thick and 1 mm-thick respectively were selected to study the transmittance variety with the temperature. The results show that the cutoff wavelength of BaF2 crystals will shift towards the long wave with the increase in temperature. In a certain temperature range, BaF2 crystals can depress 130.4 nm radiation well, and also has a high transmittance at 135.6 nm. Compared with the reported method in which SrF2 crystals can be applied to suppress 130.4 nm stray light by heating, BaF2 crystal can inhibit the 130. 4 nm emission line completely, and thus reduce the power consumption of the device at the same time. This indicates that BaF2 crystals can play an important role in the ionosphere optical remote sensing detection. PMID:25208398

  12. Effect of different ultrasound contrast materials and temperatures on patient comfort during intrauterine and tubal assessment for infertility.

    PubMed

    Fenzl, Vanja

    2012-12-01

    Hysterosalpingo-contrast sonography (HyCoSy) is safe and easy to perform outpatient method in the evaluation of female infertility. During this procedure a certain level of discomfort and pain are experienced by patients. On the basis of reducing avoidable pain inductors the aim of this study was to compare pain sensation due to different warmth of applied contrasts (sterile saline and Echovist(®)). Prospective and randomized study was performed on patients requiring tubal and uterine assessment during standard infertility work up. One group of patients was examined using both contrasts at room temperature and the other group using preheated contrasts at body temperature. Pain experience of the procedure was rated by patients for each contrast by numerical scale (0-10) immediately after the procedure. There was significant statistical difference between pain scores during application of two contrasts in each group; Echovist induces significantly less pain in comparison to sterile saline at the same temperature (P=0.002, 0.001). Between two groups there is also statistically significant difference in pain during introduction of the same contrast at different temperature (P<0.001). The most tolerable for the patient is body temperature of the applied contrasts although their structure and concentrations can be another factor associated with tolerability of the procedure. PMID:22542789

  13. The effect of temperature on apoptosis and adipogenesis on skeletal muscle satellite cells derived from different muscle types.

    PubMed

    Harding, Rachel L; Clark, Daniel L; Halevy, Orna; Coy, Cynthia S; Yahav, Shlomo; Velleman, Sandra G

    2015-09-01

    Satellite cells are multipotential stem cells that mediate postnatal muscle growth and respond differently to temperature based upon aerobic versus anaerobic fiber-type origin. The objective of this study was to determine how temperatures below and above the control, 38°C, affect the fate of satellite cells isolated from the anaerobic pectoralis major (p. major) or mixed fiber biceps femoris (b. femoris). At all sampling times, p. major and b. femoris cells accumulated less lipid when incubated at low temperatures and more lipid at elevated temperatures compared to the control. Satellite cells isolated from the p. major were more sensitive to temperature as they accumulated more lipid at elevated temperatures compared to b. femoris cells. Expression of adipogenic genes, CCAAT/enhancer-binding protein β (C/EBPβ) and proliferator-activated receptor gamma (PPARγ) were different within satellite cells isolated from the p. major or b. femoris. At 72 h of proliferation, C/EBPβ expression increased with increasing temperature in both cell types, while PPARγ expression decreased with increasing temperature in p. major satellite cells. At 48 h of differentiation, both C/EBPβ and PPARγ expression increased in the p. major and decreased in the b. femoris, with increasing temperature. Flow cytometry measured apoptotic markers for early apoptosis (Annexin-V-PE) or late apoptosis (7-AAD), showing less than 1% of apoptotic satellite cells throughout all experimental conditions, therefore, apoptosis was considered biologically not significant. The results support that anaerobic p. major satellite cells are more predisposed to adipogenic conversion than aerobic b. femoris cells when thermally challenged.

  14. The effect of temperature on apoptosis and adipogenesis on skeletal muscle satellite cells derived from different muscle types

    PubMed Central

    Harding, Rachel L; Clark, Daniel L; Halevy, Orna; Coy, Cynthia S; Yahav, Shlomo; Velleman, Sandra G

    2015-01-01

    Satellite cells are multipotential stem cells that mediate postnatal muscle growth and respond differently to temperature based upon aerobic versus anaerobic fiber-type origin. The objective of this study was to determine how temperatures below and above the control, 38°C, affect the fate of satellite cells isolated from the anaerobic pectoralis major (p. major) or mixed fiber biceps femoris (b. femoris). At all sampling times, p. major and b. femoris cells accumulated less lipid when incubated at low temperatures and more lipid at elevated temperatures compared to the control. Satellite cells isolated from the p. major were more sensitive to temperature as they accumulated more lipid at elevated temperatures compared to b. femoris cells. Expression of adipogenic genes, CCAAT/enhancer-binding protein β (C/EBPβ) and proliferator-activated receptor gamma (PPARγ) were different within satellite cells isolated from the p. major or b. femoris. At 72 h of proliferation, C/EBPβ expression increased with increasing temperature in both cell types, while PPARγ expression decreased with increasing temperature in p. major satellite cells. At 48 h of differentiation, both C/EBPβ and PPARγ expression increased in the p. major and decreased in the b. femoris, with increasing temperature. Flow cytometry measured apoptotic markers for early apoptosis (Annexin-V-PE) or late apoptosis (7-AAD), showing less than 1% of apoptotic satellite cells throughout all experimental conditions, therefore, apoptosis was considered biologically not significant. The results support that anaerobic p. major satellite cells are more predisposed to adipogenic conversion than aerobic b. femoris cells when thermally challenged. PMID:26341996

  15. Impact of different temperatures on survival and energy metabolism in the Asian citrus psyllid, Diaphorina citri Kuwayama.

    PubMed

    El-Shesheny, Ibrahim; Hijaz, Faraj; El-Hawary, Ibrahim; Mesbah, Ibrahim; Killiny, Nabil

    2016-02-01

    Temperature influences the life history and metabolic parameters of insects. Asian citrus psyllid (ACP), Diaphorina citri is a tropical and subtropical pest. ACP invaded new regions around the world and threatened the citrus industry as a vector for Huanglongbing (HLB) disease. ACP is widely distributed and can survive high (up to 45 °C) and low temperatures (as low as -6 °C). The precise mechanism of temperature tolerance in ACP is poorly understood. We investigated adult survival, cellular energy balance, gene expression, and nucleotide and sugar-nucleotide changes under the effect of different temperature regimes (0 °C to 45 °C with 5 °C intervals). The optimum temperatures for survival were 20 and 25 °C. Low temperatures of 0 °C and 5 °C caused 50% mortality after 2 and 4 days respectively, while one day at high temperature (40 °C and 45 °C) caused more than 95% mortality. The lowest quantity of ATP (3.69 ± 1.6 ng/insect) and the maximum ATPase enzyme activities (57.43 ± 7.6 μU/insect) were observed at 25 °C. Correlation between ATP quantities and ATPase activity was negative. Gene expression of hsp 70, V-type proton ATPase catalytic subunit A and ATP synthase α subunit matched these results. Twenty-four nucleotides and sugar-nucleotides were quantified using HPLC in ACP adults maintained at low, high, and optimum temperatures. The nucleotide profiles were different among treatments. The ratios between AMP:ATP and ADP:ATP were significantly decreased and positively correlated to adults survival, whereas the adenylate energy charge was increased in response to low and high temperatures. Exploring energy metabolic regulation in relation with adult survival might help in understanding the physiological basis of how ACP tolerates newly invaded regions.

  16. Effects of 17α-ethinylestradiol at different water temperatures on zebrafish sex differentiation and gonad development.

    PubMed

    Luzio, Ana; Santos, Dércia; Fontaínhas-Fernandes, António A; Monteiro, Sandra M; Coimbra, Ana M

    2016-05-01

    In the current climate change scenario, studies combining effects of water contaminants with environmental parameters, such as temperature, are essential to predict potentially harmful impacts on aquatic organisms. In zebrafish (Danio rerio), sex determination seems to have a polygenic genetic basis, which can be secondarily influenced by environmental factors, such as temperature and endocrine disrupting chemicals (EDCs). The present study aimed to evaluate the effects of the EDC 17α-ethinylestradiol (EE2), a potent synthetic estrogen, on zebrafish sex differentiation and gonad development at different water temperatures. Therefore, zebrafish raised at three distinct water temperatures (23, 28 or 33±0.5°C), were exposed to 4ng/L of EE2, from 2hours to 60days post-fertilization (dpf). Subsequently, a quantitative (stereological) assessment of zebrafish gonads was performed, at 35 and 60dpf, to identify alterations on gonadal development and differentiation. The results show that low temperature delayed general growth of zebrafish, as well as gonad differentiation and maturation, while high temperature induced an opposite effect. Moreover, sex ratio was skewed toward males when zebrafish were exposed to the high temperature. In general, EE2 exposure promoted gonad maturation in both genders, independently of the temperature. However, at the high temperature condition, exposure to EE2 induced a delay in the male gonad development, with some individuals still showing differentiating gonads at 60dpf. The findings of this study support the notion that zebrafish has a genetic sex determination mechanism highly sensitive to environmental factors and show that it is essential to study the effects of water contaminants at different climate scenarios in order to understand potential future impacts on organisms. PMID:26897088

  17. Impact of different temperatures on survival and energy metabolism in the Asian citrus psyllid, Diaphorina citri Kuwayama.

    PubMed

    El-Shesheny, Ibrahim; Hijaz, Faraj; El-Hawary, Ibrahim; Mesbah, Ibrahim; Killiny, Nabil

    2016-02-01

    Temperature influences the life history and metabolic parameters of insects. Asian citrus psyllid (ACP), Diaphorina citri is a tropical and subtropical pest. ACP invaded new regions around the world and threatened the citrus industry as a vector for Huanglongbing (HLB) disease. ACP is widely distributed and can survive high (up to 45 °C) and low temperatures (as low as -6 °C). The precise mechanism of temperature tolerance in ACP is poorly understood. We investigated adult survival, cellular energy balance, gene expression, and nucleotide and sugar-nucleotide changes under the effect of different temperature regimes (0 °C to 45 °C with 5 °C intervals). The optimum temperatures for survival were 20 and 25 °C. Low temperatures of 0 °C and 5 °C caused 50% mortality after 2 and 4 days respectively, while one day at high temperature (40 °C and 45 °C) caused more than 95% mortality. The lowest quantity of ATP (3.69 ± 1.6 ng/insect) and the maximum ATPase enzyme activities (57.43 ± 7.6 μU/insect) were observed at 25 °C. Correlation between ATP quantities and ATPase activity was negative. Gene expression of hsp 70, V-type proton ATPase catalytic subunit A and ATP synthase α subunit matched these results. Twenty-four nucleotides and sugar-nucleotides were quantified using HPLC in ACP adults maintained at low, high, and optimum temperatures. The nucleotide profiles were different among treatments. The ratios between AMP:ATP and ADP:ATP were significantly decreased and positively correlated to adults survival, whereas the adenylate energy charge was increased in response to low and high temperatures. Exploring energy metabolic regulation in relation with adult survival might help in understanding the physiological basis of how ACP tolerates newly invaded regions. PMID:26603556

  18. Cold-start emissions of modern passenger cars at different low ambient temperatures and their evolution over vehicle legislation categories

    NASA Astrophysics Data System (ADS)

    Weilenmann, Martin; Favez, Jean-Yves; Alvarez, Robert

    The emissions of modern gasoline and diesel passenger cars are reduced by catalysts except in cold-starting. Since catalysts require a certain temperature (typically above 300 °C) to work to full efficiency, emissions are significantly higher during the warm-up phase of the car. The duration of this period and the emissions produced depend on the ambient temperature as well as on the initial temperature of the car's propulsion systems. The additional emissions during a warm-up phase, known as "cold-start extra emissions" (CSEEs) for emission inventory modelling, are mostly assessed by emission measurements at an ambient temperature of 23 °C. However, in many European countries average ambient temperatures are below 23 °C. This necessitates emission measurements at lower temperatures in order to model and assess cold-start emissions for real-world temperature conditions. This paper investigates the influence of regulated pollutants and CO 2 emissions of recent gasoline and diesel car models (Euro-4 legislation) at different ambient temperatures, 23, -7 and -20 °C. We present a survey and model of the evolution of cold-start emissions as a function of different car generations (pre-Euro-1 to Euro-4 legislations). In addition the contribution of CSEEs to total fleet running emissions is shown to highlight their increasing importance. For gasoline cars, it turns out that in average real-world driving the majority of the CO (carbon monoxide) and HC (hydrocarbon) total emissions are due to cold-start extra emissions. Moreover, the cold-start emissions increase considerably at lower ambient temperatures. In contrast, cold-start emissions of diesel cars are significantly lower than those of gasoline cars. Furthermore, the transition from Euro-3 to Euro-4 gasoline vehicles shows a trend for a smaller decline for cold-start extra emissions than for legislative limits. Particle and NO x emission of cold-starts are less significant.

  19. Uncovering Different Masking Factors on Wrist Skin Temperature Rhythm in Free-Living Subjects

    PubMed Central

    Martinez-Nicolas, Antonio; Ortiz-Tudela, Elisabet; Rol, Maria Angeles; Madrid, Juan Antonio

    2013-01-01

    Most circadian rhythms are controlled by a major pacemaker located in the hypothalamic suprachiasmatic nucleus. Some of these rhythms, called marker rhythms, serve to characterize the timing of the internal temporal order. However, these variables are susceptible to masking effects as the result of activity, body position, light exposure, environmental temperature and sleep. Recently, wrist skin temperature (WT) has been proposed as a new index for evaluating circadian system status. In light of previous evidence suggesting the important relationship between WT and core body temperature regulation, the aim of this work was to purify the WT pattern in order to obtain its endogenous rhythm with the application of multiple demasking procedures. To this end, 103 subjects (18–24 years old) were recruited and their WT, activity, body position, light exposure, environmental temperature and sleep were recorded under free-living conditions for 1 week. WT demasking by categories or intercepts was applied to simulate a “constant routine” protocol (awakening, dim light, recumbent position, low activity and warm environmental temperature). Although the overall circadian pattern of WT was similar regardless of the masking effects, its amplitude was the rhythmic parameter most affected by environmental conditions. The acrophase and mesor were determined to be the most robust parameters for characterizing this rhythm. In addition, a circadian modulation of the masking effect was found for each masking variable. WT rhythm exhibits a strong endogenous component, despite the existence of multiple external influences. This was evidenced by simultaneously eliminating the influence of activity, body position, light exposure, environmental temperature and sleep. We therefore propose that it could be considered a valuable and minimally-invasive means of recording circadian physiology in ambulatory conditions. PMID:23577201

  20. Uncovering different masking factors on wrist skin temperature rhythm in free-living subjects.

    PubMed

    Martinez-Nicolas, Antonio; Ortiz-Tudela, Elisabet; Rol, Maria Angeles; Madrid, Juan Antonio

    2013-01-01

    Most circadian rhythms are controlled by a major pacemaker located in the hypothalamic suprachiasmatic nucleus. Some of these rhythms, called marker rhythms, serve to characterize the timing of the internal temporal order. However, these variables are susceptible to masking effects as the result of activity, body position, light exposure, environmental temperature and sleep. Recently, wrist skin temperature (WT) has been proposed as a new index for evaluating circadian system status. In light of previous evidence suggesting the important relationship between WT and core body temperature regulation, the aim of this work was to purify the WT pattern in order to obtain its endogenous rhythm with the application of multiple demasking procedures. To this end, 103 subjects (18-24 years old) were recruited and their WT, activity, body position, light exposure, environmental temperature and sleep were recorded under free-living conditions for 1 week. WT demasking by categories or intercepts was applied to simulate a "constant routine" protocol (awakening, dim light, recumbent position, low activity and warm environmental temperature). Although the overall circadian pattern of WT was similar regardless of the masking effects, its amplitude was the rhythmic parameter most affected by environmental conditions. The acrophase and mesor were determined to be the most robust parameters for characterizing this rhythm. In addition, a circadian modulation of the masking effect was found for each masking variable. WT rhythm exhibits a strong endogenous component, despite the existence of multiple external influences. This was evidenced by simultaneously eliminating the influence of activity, body position, light exposure, environmental temperature and sleep. We therefore propose that it could be considered a valuable and minimally-invasive means of recording circadian physiology in ambulatory conditions.

  1. Thermoelectric Performance for SnSe Hot-Pressed at Different Temperature

    NASA Astrophysics Data System (ADS)

    Li, D.; Li, J. C.; Qin, X. Y.; Zhang, J.; Song, C. J.; Wang, L.; Xin, H. X.

    2016-09-01

    Herein, nanoparticles SnSe are prepared by fusion method together with ball-milling technique and the effect of hot-pressing temperatures on the thermoelectric properties of the dense materials is explored. Due to the optimization of carrier concentration, the peak figure of merit (ZT) value of the compacted material reaches 0.73 for SnSe sample hot-pressed at 400°C and 450°C. The present investigation indicates that the thermoelectric performance of the SnSe compound can be significantly improved by sintering with suitable temperature.

  2. Handling temperature bursts reaching 464°C: different microbial strategies in the sisters peak hydrothermal chimney.

    PubMed

    Perner, Mirjam; Gonnella, Giorgio; Kurtz, Stefan; LaRoche, Julie

    2014-08-01

    The active venting Sisters Peak (SP) chimney on the Mid-Atlantic Ridge holds the current temperature record for the hottest ever measured hydrothermal fluids (400°C, accompanied by sudden temperature bursts reaching 464°C). Given the unprecedented temperature regime, we investigated the biome of this chimney with a focus on special microbial adaptations for thermal tolerance. The SP metagenome reveals considerable differences in the taxonomic composition from those of other hydrothermal vent and subsurface samples; these could be better explained by temperature than by other available abiotic parameters. The most common species to which SP genes were assigned were thermophilic Aciduliprofundum sp. strain MAR08-339 (11.8%), Hippea maritima (3.8%), Caldisericum exile (1.5%), and Caminibacter mediatlanticus (1.4%) as well as to the mesophilic Niastella koreensis (2.8%). A statistical analysis of associations between taxonomic and functional gene assignments revealed specific overrepresented functional categories: for Aciduliprofundum, protein biosynthesis, nucleotide metabolism, and energy metabolism genes; for Hippea and Caminibacter, cell motility and/or DNA replication and repair system genes; and for Niastella, cell wall and membrane biogenesis genes. Cultured representatives of these organisms inhabit different thermal niches; i.e., Aciduliprofundum has an optimal growth temperature of 70°C, Hippea and Caminibacter have optimal growth temperatures around 55°C, and Niastella grows between 10 and 37°C. Therefore, we posit that the different enrichment profiles of functional categories reflect distinct microbial strategies to deal with the different impacts of the local sudden temperature bursts in disparate regions of the chimney.

  3. Handling Temperature Bursts Reaching 464°C: Different Microbial Strategies in the Sisters Peak Hydrothermal Chimney

    PubMed Central

    Kurtz, Stefan; LaRoche, Julie

    2014-01-01

    The active venting Sisters Peak (SP) chimney on the Mid-Atlantic Ridge holds the current temperature record for the hottest ever measured hydrothermal fluids (400°C, accompanied by sudden temperature bursts reaching 464°C). Given the unprecedented temperature regime, we investigated the biome of this chimney with a focus on special microbial adaptations for thermal tolerance. The SP metagenome reveals considerable differences in the taxonomic composition from those of other hydrothermal vent and subsurface samples; these could be better explained by temperature than by other available abiotic parameters. The most common species to which SP genes were assigned were thermophilic Aciduliprofundum sp. strain MAR08-339 (11.8%), Hippea maritima (3.8%), Caldisericum exile (1.5%), and Caminibacter mediatlanticus (1.4%) as well as to the mesophilic Niastella koreensis (2.8%). A statistical analysis of associations between taxonomic and functional gene assignments revealed specific overrepresented functional categories: for Aciduliprofundum, protein biosynthesis, nucleotide metabolism, and energy metabolism genes; for Hippea and Caminibacter, cell motility and/or DNA replication and repair system genes; and for Niastella, cell wall and membrane biogenesis genes. Cultured representatives of these organisms inhabit different thermal niches; i.e., Aciduliprofundum has an optimal growth temperature of 70°C, Hippea and Caminibacter have optimal growth temperatures around 55°C, and Niastella grows between 10 and 37°C. Therefore, we posit that the different enrichment profiles of functional categories reflect distinct microbial strategies to deal with the different impacts of the local sudden temperature bursts in disparate regions of the chimney. PMID:24837379

  4. SEASONAL DIFFERENCES IN CLEAR-SKY NIGHTTIME FORAGE TEMPERATURE IN PROXIMITY TO DECIDUOUS TREES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Considerable research has been done on daytime forage shading by silvopasture trees since solar radiation is required for photosynthesis. However, trees also impact nighttime temperature on clear nights when trees also effectively shade forages from cold skies. Appalachia has a temperate climate a...

  5. Controlled AFM detachments and movement of nanoparticles: gold clusters on HOPG at different temperatures.

    PubMed

    Tripathi, Manoj; Paolicelli, Guido; D'Addato, Sergio; Valeri, Sergio

    2012-06-22

    The effect of temperature on the onset of movement of gold nanoclusters (diameter 27 nm) deposited on highly oriented pyrolytic graphite (HOPG) has been studied by atomic force microscopy (AFM) techniques. Using the AFM with amplitude modulation (tapping mode AFM) we have stimulated and controlled the movement of individual clusters. We show how, at room temperature, controlled detachments and smooth movements can be obtained for clusters having dimensions comparable to or smaller than the tip radius. Displacement is practically visible in real time and it can be started and stopped easily by adjusting only one parameter, the tip amplitude oscillation. Analysing the energy dissipation signal at the onset of nanocluster sliding we evaluated a detachment threshold energy as a function of temperature in the range 300-413 K. We also analysed single cluster thermal induced displacement and combining this delicate procedure with AFM forced movement behaviour we conclude that detachment threshold energy is directly related to the activation energy of nanocluster diffusion and it scales linearly with temperature as expected for a single-particle thermally activated process.

  6. Characteristics and nutrient values of biochars produced from giant reed at different temperatures

    Technology Transfer Automat