Sample records for noisy diffusion models

  1. Perceptual decision making: drift-diffusion model is equivalent to a Bayesian model

    PubMed Central

    Bitzer, Sebastian; Park, Hame; Blankenburg, Felix; Kiebel, Stefan J.

    2014-01-01

    Behavioral data obtained with perceptual decision making experiments are typically analyzed with the drift-diffusion model. This parsimonious model accumulates noisy pieces of evidence toward a decision bound to explain the accuracy and reaction times of subjects. Recently, Bayesian models have been proposed to explain how the brain extracts information from noisy input as typically presented in perceptual decision making tasks. It has long been known that the drift-diffusion model is tightly linked with such functional Bayesian models but the precise relationship of the two mechanisms was never made explicit. Using a Bayesian model, we derived the equations which relate parameter values between these models. In practice we show that this equivalence is useful when fitting multi-subject data. We further show that the Bayesian model suggests different decision variables which all predict equal responses and discuss how these may be discriminated based on neural correlates of accumulated evidence. In addition, we discuss extensions to the Bayesian model which would be difficult to derive for the drift-diffusion model. We suggest that these and other extensions may be highly useful for deriving new experiments which test novel hypotheses. PMID:24616689

  2. Sequential Sampling Models in Cognitive Neuroscience: Advantages, Applications, and Extensions.

    PubMed

    Forstmann, B U; Ratcliff, R; Wagenmakers, E-J

    2016-01-01

    Sequential sampling models assume that people make speeded decisions by gradually accumulating noisy information until a threshold of evidence is reached. In cognitive science, one such model--the diffusion decision model--is now regularly used to decompose task performance into underlying processes such as the quality of information processing, response caution, and a priori bias. In the cognitive neurosciences, the diffusion decision model has recently been adopted as a quantitative tool to study the neural basis of decision making under time pressure. We present a selective overview of several recent applications and extensions of the diffusion decision model in the cognitive neurosciences.

  3. Diffusion Decision Model: Current Issues and History

    PubMed Central

    Ratcliff, Roger; Smith, Philip L.; Brown, Scott D.; McKoon, Gail

    2016-01-01

    There is growing interest in diffusion models to represent the cognitive and neural processes of speeded decision making. Sequential-sampling models like the diffusion model have a long history in psychology. They view decision making as a process of noisy accumulation of evidence from a stimulus. The standard model assumes that evidence accumulates at a constant rate during the second or two it takes to make a decision. This process can be linked to the behaviors of populations of neurons and to theories of optimality. Diffusion models have been used successfully in a range of cognitive tasks and as psychometric tools in clinical research to examine individual differences. In this article, we relate the models to both earlier and more recent research in psychology. PMID:26952739

  4. Entangled time in flocking: Multi-time-scale interaction reveals emergence of inherent noise

    PubMed Central

    Murakami, Hisashi

    2018-01-01

    Collective behaviors that seem highly ordered and result in collective alignment, such as schooling by fish and flocking by birds, arise from seamless shuffling (such as super-diffusion) and bustling inside groups (such as Lévy walks). However, such noisy behavior inside groups appears to preclude the collective behavior: intuitively, we expect that noisy behavior would lead to the group being destabilized and broken into small sub groups, and high alignment seems to preclude shuffling of neighbors. Although statistical modeling approaches with extrinsic noise, such as the maximum entropy approach, have provided some reasonable descriptions, they ignore the cognitive perspective of the individuals. In this paper, we try to explain how the group tendency, that is, high alignment, and highly noisy individual behavior can coexist in a single framework. The key aspect of our approach is multi-time-scale interaction emerging from the existence of an interaction radius that reflects short-term and long-term predictions. This multi-time-scale interaction is a natural extension of the attraction and alignment concept in many flocking models. When we apply this method in a two-dimensional model, various flocking behaviors, such as swarming, milling, and schooling, emerge. The approach also explains the appearance of super-diffusion, the Lévy walk in groups, and local equilibria. At the end of this paper, we discuss future developments, including extending our model to three dimensions. PMID:29689074

  5. Diffusion Decision Model: Current Issues and History.

    PubMed

    Ratcliff, Roger; Smith, Philip L; Brown, Scott D; McKoon, Gail

    2016-04-01

    There is growing interest in diffusion models to represent the cognitive and neural processes of speeded decision making. Sequential-sampling models like the diffusion model have a long history in psychology. They view decision making as a process of noisy accumulation of evidence from a stimulus. The standard model assumes that evidence accumulates at a constant rate during the second or two it takes to make a decision. This process can be linked to the behaviors of populations of neurons and to theories of optimality. Diffusion models have been used successfully in a range of cognitive tasks and as psychometric tools in clinical research to examine individual differences. In this review, we relate the models to both earlier and more recent research in psychology. Copyright © 2016. Published by Elsevier Ltd.

  6. ANALYTIC FORMS OF THE PERPENDICULAR DIFFUSION COEFFICIENT IN NRMHD TURBULENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shalchi, A., E-mail: andreasm4@yahoo.com

    2015-02-01

    In the past different analytic limits for the perpendicular diffusion coefficient of energetic particles interacting with magnetic turbulence were discussed. These different limits or cases correspond to different transport modes describing how the particles are diffusing across the large-scale magnetic field. In the current paper we describe a new transport regime by considering the model of noisy reduced magnetohydrodynamic turbulence. We derive different analytic forms of the perpendicular diffusion coefficient, and while we do this, we focus on the aforementioned new transport mode. We show that for this turbulence model a small perpendicular diffusion coefficient can be obtained so thatmore » the latter diffusion coefficient is more than hundred times smaller than the parallel diffusion coefficient. This result is relevant to explain observations in the solar system where such small perpendicular diffusion coefficients have been reported.« less

  7. STARBLADE: STar and Artefact Removal with a Bayesian Lightweight Algorithm from Diffuse Emission

    NASA Astrophysics Data System (ADS)

    Knollmüller, Jakob; Frank, Philipp; Ensslin, Torsten A.

    2018-05-01

    STARBLADE (STar and Artefact Removal with a Bayesian Lightweight Algorithm from Diffuse Emission) separates superimposed point-like sources from a diffuse background by imposing physically motivated models as prior knowledge. The algorithm can also be used on noisy and convolved data, though performing a proper reconstruction including a deconvolution prior to the application of the algorithm is advised; the algorithm could also be used within a denoising imaging method. STARBLADE learns the correlation structure of the diffuse emission and takes it into account to determine the occurrence and strength of a superimposed point source.

  8. Heat source reconstruction from noisy temperature fields using a gradient anisotropic diffusion filter

    NASA Astrophysics Data System (ADS)

    Beitone, C.; Balandraud, X.; Delpueyo, D.; Grédiac, M.

    2017-01-01

    This paper presents a post-processing technique for noisy temperature maps based on a gradient anisotropic diffusion (GAD) filter in the context of heat source reconstruction. The aim is to reconstruct heat source maps from temperature maps measured using infrared (IR) thermography. Synthetic temperature fields corrupted by added noise are first considered. The GAD filter, which relies on a diffusion process, is optimized to retrieve as well as possible a heat source concentration in a two-dimensional plate. The influence of the dimensions and the intensity of the heat source concentration are discussed. The results obtained are also compared with two other types of filters: averaging filter and Gaussian derivative filter. The second part of this study presents an application for experimental temperature maps measured with an IR camera. The results demonstrate the relevancy of the GAD filter in extracting heat sources from noisy temperature fields.

  9. Stochastic field-line wandering in magnetic turbulence with shear. I. Quasi-linear theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shalchi, A.; Negrea, M.; Petrisor, I.

    2016-07-15

    We investigate the random walk of magnetic field lines in magnetic turbulence with shear. In the first part of the series, we develop a quasi-linear theory in order to compute the diffusion coefficient of magnetic field lines. We derive general formulas for the diffusion coefficients in the different directions of space. We like to emphasize that we expect that quasi-linear theory is only valid if the so-called Kubo number is small. We consider two turbulence models as examples, namely, a noisy slab model as well as a Gaussian decorrelation model. For both models we compute the field line diffusion coefficientsmore » and we show how they depend on the aforementioned Kubo number as well as a shear parameter. It is demonstrated that the shear effect reduces all field line diffusion coefficients.« less

  10. A Two-Stage Process Model of Sensory Discrimination: An Alternative to Drift-Diffusion

    PubMed Central

    Landy, Michael S.

    2016-01-01

    Discrimination of the direction of motion of a noisy stimulus is an example of sensory discrimination under uncertainty. For stimuli that are extended in time, reaction time is quicker for larger signal values (e.g., discrimination of opposite directions of motion compared with neighboring orientations) and larger signal strength (e.g., stimuli with higher contrast or motion coherence, that is, lower noise). The standard model of neural responses (e.g., in lateral intraparietal cortex) and reaction time for discrimination is drift-diffusion. This model makes two clear predictions. (1) The effects of signal strength and value on reaction time should interact multiplicatively because the diffusion process depends on the signal-to-noise ratio. (2) If the diffusion process is interrupted, as in a cued-response task, the time to decision after the cue should be independent of the strength of accumulated sensory evidence. In two experiments with human participants, we show that neither prediction holds. A simple alternative model is developed that is consistent with the results. In this estimate-then-decide model, evidence is accumulated until estimation precision reaches a threshold value. Then, a decision is made with duration that depends on the signal-to-noise ratio achieved by the first stage. SIGNIFICANCE STATEMENT Sensory decision-making under uncertainty is usually modeled as the slow accumulation of noisy sensory evidence until a threshold amount of evidence supporting one of the possible decision outcomes is reached. Furthermore, it has been suggested that this accumulation process is reflected in neural responses, e.g., in lateral intraparietal cortex. We derive two behavioral predictions of this model and show that neither prediction holds. We introduce a simple alternative model in which evidence is accumulated until a sufficiently precise estimate of the stimulus is achieved, and then that estimate is used to guide the discrimination decision. This model is consistent with the behavioral data. PMID:27807167

  11. A Two-Stage Process Model of Sensory Discrimination: An Alternative to Drift-Diffusion.

    PubMed

    Sun, Peng; Landy, Michael S

    2016-11-02

    Discrimination of the direction of motion of a noisy stimulus is an example of sensory discrimination under uncertainty. For stimuli that are extended in time, reaction time is quicker for larger signal values (e.g., discrimination of opposite directions of motion compared with neighboring orientations) and larger signal strength (e.g., stimuli with higher contrast or motion coherence, that is, lower noise). The standard model of neural responses (e.g., in lateral intraparietal cortex) and reaction time for discrimination is drift-diffusion. This model makes two clear predictions. (1) The effects of signal strength and value on reaction time should interact multiplicatively because the diffusion process depends on the signal-to-noise ratio. (2) If the diffusion process is interrupted, as in a cued-response task, the time to decision after the cue should be independent of the strength of accumulated sensory evidence. In two experiments with human participants, we show that neither prediction holds. A simple alternative model is developed that is consistent with the results. In this estimate-then-decide model, evidence is accumulated until estimation precision reaches a threshold value. Then, a decision is made with duration that depends on the signal-to-noise ratio achieved by the first stage. Sensory decision-making under uncertainty is usually modeled as the slow accumulation of noisy sensory evidence until a threshold amount of evidence supporting one of the possible decision outcomes is reached. Furthermore, it has been suggested that this accumulation process is reflected in neural responses, e.g., in lateral intraparietal cortex. We derive two behavioral predictions of this model and show that neither prediction holds. We introduce a simple alternative model in which evidence is accumulated until a sufficiently precise estimate of the stimulus is achieved, and then that estimate is used to guide the discrimination decision. This model is consistent with the behavioral data. Copyright © 2016 the authors 0270-6474/16/3611259-16$15.00/0.

  12. Is the Voter Model a Model for Voters?

    NASA Astrophysics Data System (ADS)

    Fernández-Gracia, Juan; Suchecki, Krzysztof; Ramasco, José J.; San Miguel, Maxi; Eguíluz, Víctor M.

    2014-04-01

    The voter model has been studied extensively as a paradigmatic opinion dynamics model. However, its ability to model real opinion dynamics has not been addressed. We introduce a noisy voter model (accounting for social influence) with recurrent mobility of agents (as a proxy for social context), where the spatial and population diversity are taken as inputs to the model. We show that the dynamics can be described as a noisy diffusive process that contains the proper anisotropic coupling topology given by population and mobility heterogeneity. The model captures statistical features of U.S. presidential elections as the stationary vote-share fluctuations across counties and the long-range spatial correlations that decay logarithmically with the distance. Furthermore, it recovers the behavior of these properties when the geographical space is coarse grained at different scales—from the county level through congressional districts, and up to states. Finally, we analyze the role of the mobility range and the randomness in decision making, which are consistent with the empirical observations.

  13. Correlations, soliton modes, and non-Hermitian linear mode transmutation in the one-dimensional noisy Burgers equation.

    PubMed

    Fogedby, Hans C

    2003-08-01

    Using the previously developed canonical phase space approach applied to the noisy Burgers equation in one dimension, we discuss in detail the growth morphology in terms of nonlinear soliton modes and superimposed linear modes. We moreover analyze the non-Hermitian character of the linear mode spectrum and the associated dynamical pinning, and mode transmutation from diffusive to propagating behavior induced by the solitons. We discuss the anomalous diffusion of growth modes, switching and pathways, correlations in the multisoliton sector, and in detail the correlations and scaling properties in the two-soliton sector.

  14. Asymptotic analysis of noisy fitness maximization, applied to metabolism & growth

    NASA Astrophysics Data System (ADS)

    De Martino, Daniele; Masoero, Davide

    2016-12-01

    We consider a population dynamics model coupling cell growth to a diffusion in the space of metabolic phenotypes as it can be obtained from realistic constraints-based modeling. In the asymptotic regime of slow diffusion, that coincides with the relevant experimental range, the resulting non-linear Fokker-Planck equation is solved for the steady state in the WKB approximation that maps it into the ground state of a quantum particle in an Airy potential plus a centrifugal term. We retrieve scaling laws for growth rate fluctuations and time response with respect to the distance from the maximum growth rate suggesting that suboptimal populations can have a faster response to perturbations.

  15. Semiparametric modeling: Correcting low-dimensional model error in parametric models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, Tyrus, E-mail: thb11@psu.edu; Harlim, John, E-mail: jharlim@psu.edu; Department of Meteorology, the Pennsylvania State University, 503 Walker Building, University Park, PA 16802-5013

    2016-03-01

    In this paper, a semiparametric modeling approach is introduced as a paradigm for addressing model error arising from unresolved physical phenomena. Our approach compensates for model error by learning an auxiliary dynamical model for the unknown parameters. Practically, the proposed approach consists of the following steps. Given a physics-based model and a noisy data set of historical observations, a Bayesian filtering algorithm is used to extract a time-series of the parameter values. Subsequently, the diffusion forecast algorithm is applied to the retrieved time-series in order to construct the auxiliary model for the time evolving parameters. The semiparametric forecasting algorithm consistsmore » of integrating the existing physics-based model with an ensemble of parameters sampled from the probability density function of the diffusion forecast. To specify initial conditions for the diffusion forecast, a Bayesian semiparametric filtering method that extends the Kalman-based filtering framework is introduced. In difficult test examples, which introduce chaotically and stochastically evolving hidden parameters into the Lorenz-96 model, we show that our approach can effectively compensate for model error, with forecasting skill comparable to that of the perfect model.« less

  16. Asymmetric rotor-like probes to polarized fluorescence study of the macroscopically oriented uniaxial media: Model parameters recognition

    NASA Astrophysics Data System (ADS)

    Buczkowski, M.; Fisz, J. J.

    2008-07-01

    In this paper the possibility of the numerical data modelling in the case of angle- and time-resolved fluorescence spectroscopy is investigated. The asymmetric fluorescence probes are assumed to undergo the restricted rotational diffusion in a hosting medium. This process is described quantitatively by the diffusion tensor and the aligning potential. The evolution of the system is expressed in terms of the Smoluchowski equation with an appropriate time-developing operator. A matrix representation of this operator is calculated, then symmetrized and diagonalized. The resulting propagator is used to generate the synthetic noisy data set that imitates results of experimental measurements. The data set serves as a groundwork to the χ2 optimization, performed by the genetic algorithm followed by the gradient search, in order to recover model parameters, which are diagonal elements of the diffusion tensor, aligning potential expansion coefficients and directions of the electronic dipole moments. This whole procedure properly identifies model parameters, showing that the outlined formalism should be taken in the account in the case of analysing real experimental data.

  17. Numerical Test of Analytical Theories for Perpendicular Diffusion in Small Kubo Number Turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heusen, M.; Shalchi, A., E-mail: husseinm@myumanitoba.ca, E-mail: andreasm4@yahoo.com

    In the literature, one can find various analytical theories for perpendicular diffusion of energetic particles interacting with magnetic turbulence. Besides quasi-linear theory, there are different versions of the nonlinear guiding center (NLGC) theory and the unified nonlinear transport (UNLT) theory. For turbulence with high Kubo numbers, such as two-dimensional turbulence or noisy reduced magnetohydrodynamic turbulence, the aforementioned nonlinear theories provide similar results. For slab and small Kubo number turbulence, however, this is not the case. In the current paper, we compare different linear and nonlinear theories with each other and test-particle simulations for a noisy slab model corresponding to smallmore » Kubo number turbulence. We show that UNLT theory agrees very well with all performed test-particle simulations. In the limit of long parallel mean free paths, the perpendicular mean free path approaches asymptotically the quasi-linear limit as predicted by the UNLT theory. For short parallel mean free paths we find a Rechester and Rosenbluth type of scaling as predicted by UNLT theory as well. The original NLGC theory disagrees with all performed simulations regardless what the parallel mean free path is. The random ballistic interpretation of the NLGC theory agrees much better with the simulations, but compared to UNLT theory the agreement is inferior. We conclude that for this type of small Kubo number turbulence, only the latter theory allows for an accurate description of perpendicular diffusion.« less

  18. Weighted linear least squares estimation of diffusion MRI parameters: strengths, limitations, and pitfalls.

    PubMed

    Veraart, Jelle; Sijbers, Jan; Sunaert, Stefan; Leemans, Alexander; Jeurissen, Ben

    2013-11-01

    Linear least squares estimators are widely used in diffusion MRI for the estimation of diffusion parameters. Although adding proper weights is necessary to increase the precision of these linear estimators, there is no consensus on how to practically define them. In this study, the impact of the commonly used weighting strategies on the accuracy and precision of linear diffusion parameter estimators is evaluated and compared with the nonlinear least squares estimation approach. Simulation and real data experiments were done to study the performance of the weighted linear least squares estimators with weights defined by (a) the squares of the respective noisy diffusion-weighted signals; and (b) the squares of the predicted signals, which are reconstructed from a previous estimate of the diffusion model parameters. The negative effect of weighting strategy (a) on the accuracy of the estimator was surprisingly high. Multi-step weighting strategies yield better performance and, in some cases, even outperformed the nonlinear least squares estimator. If proper weighting strategies are applied, the weighted linear least squares approach shows high performance characteristics in terms of accuracy/precision and may even be preferred over nonlinear estimation methods. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. A stable computation of log-derivatives from noisy drawdown data

    NASA Astrophysics Data System (ADS)

    Ramos, Gustavo; Carrera, Jesus; Gómez, Susana; Minutti, Carlos; Camacho, Rodolfo

    2017-09-01

    Pumping tests interpretation is an art that involves dealing with noise coming from multiple sources and conceptual model uncertainty. Interpretation is greatly helped by diagnostic plots, which include drawdown data and their derivative with respect to log-time, called log-derivative. Log-derivatives are especially useful to complement geological understanding in helping to identify the underlying model of fluid flow because they are sensitive to subtle variations in the response to pumping of aquifers and oil reservoirs. The main problem with their use lies in the calculation of the log-derivatives themselves, which may display fluctuations when data are noisy. To overcome this difficulty, we propose a variational regularization approach based on the minimization of a functional consisting of two terms: one ensuring that the computed log-derivatives honor measurements and one that penalizes fluctuations. The minimization leads to a diffusion-like differential equation in the log-derivatives, and boundary conditions that are appropriate for well hydraulics (i.e., radial flow, wellbore storage, fractal behavior, etc.). We have solved this equation by finite differences. We tested the methodology on two synthetic examples showing that a robust solution is obtained. We also report the resulting log-derivative for a real case.

  20. Effect of noise on modulation amplitude and phase in frequency-domain diffusive imaging

    PubMed Central

    Kupinski, Matthew A.

    2012-01-01

    Abstract. We theoretically investigate the effect of noise on frequency-domain heterodyne and/or homodyne measurements of intensity-modulated beams propagating through diffusive media, such as a photon density wave. We assumed that the attenuated amplitude and delayed phase are estimated by taking the Fourier transform of the noisy, modulated output data. We show that the estimated amplitude and phase are biased when the number of output photons is small. We also show that the use of image intensifiers for photon amplification in heterodyne or homodyne measurements increases the amount of biases. Especially, it turns out that the biased estimation is independent of AC-dependent noise in sinusoidal heterodyne or homodyne outputs. Finally, the developed theory indicates that the previously known variance model of modulation amplitude and phase is not valid in low light situations. Monte-Carlo simulations with varied numbers of input photons verify our theoretical trends of the bias. PMID:22352660

  1. Initialization of a fractional order identification algorithm applied for Lithium-ion battery modeling in time domain

    NASA Astrophysics Data System (ADS)

    Nasser Eddine, Achraf; Huard, Benoît; Gabano, Jean-Denis; Poinot, Thierry

    2018-06-01

    This paper deals with the initialization of a non linear identification algorithm used to accurately estimate the physical parameters of Lithium-ion battery. A Randles electric equivalent circuit is used to describe the internal impedance of the battery. The diffusion phenomenon related to this modeling is presented using a fractional order method. The battery model is thus reformulated into a transfer function which can be identified through Levenberg-Marquardt algorithm to ensure the algorithm's convergence to the physical parameters. An initialization method is proposed in this paper by taking into account previously acquired information about the static and dynamic system behavior. The method is validated using noisy voltage response, while precision of the final identification results is evaluated using Monte-Carlo method.

  2. Cognitive Diagnostic Analysis Using Hierarchically Structured Skills

    ERIC Educational Resources Information Center

    Su, Yu-Lan

    2013-01-01

    This dissertation proposes two modified cognitive diagnostic models (CDMs), the deterministic, inputs, noisy, "and" gate with hierarchy (DINA-H) model and the deterministic, inputs, noisy, "or" gate with hierarchy (DINO-H) model. Both models incorporate the hierarchical structures of the cognitive skills in the model estimation…

  3. Diffusion MRI noise mapping using random matrix theory

    PubMed Central

    Veraart, Jelle; Fieremans, Els; Novikov, Dmitry S.

    2016-01-01

    Purpose To estimate the spatially varying noise map using a redundant magnitude MR series. Methods We exploit redundancy in non-Gaussian multi-directional diffusion MRI data by identifying its noise-only principal components, based on the theory of noisy covariance matrices. The bulk of PCA eigenvalues, arising due to noise, is described by the universal Marchenko-Pastur distribution, parameterized by the noise level. This allows us to estimate noise level in a local neighborhood based on the singular value decomposition of a matrix combining neighborhood voxels and diffusion directions. Results We present a model-independent local noise mapping method capable of estimating noise level down to about 1% error. In contrast to current state-of-the art techniques, the resultant noise maps do not show artifactual anatomical features that often reflect physiological noise, the presence of sharp edges, or a lack of adequate a priori knowledge of the expected form of MR signal. Conclusions Simulations and experiments show that typical diffusion MRI data exhibit sufficient redundancy that enables accurate, precise, and robust estimation of the local noise level by interpreting the PCA eigenspectrum in terms of the Marchenko-Pastur distribution. PMID:26599599

  4. Pseudodynamic systems approach based on a quadratic approximation of update equations for diffuse optical tomography.

    PubMed

    Biswas, Samir Kumar; Kanhirodan, Rajan; Vasu, Ram Mohan; Roy, Debasish

    2011-08-01

    We explore a pseudodynamic form of the quadratic parameter update equation for diffuse optical tomographic reconstruction from noisy data. A few explicit and implicit strategies for obtaining the parameter updates via a semianalytical integration of the pseudodynamic equations are proposed. Despite the ill-posedness of the inverse problem associated with diffuse optical tomography, adoption of the quadratic update scheme combined with the pseudotime integration appears not only to yield higher convergence, but also a muted sensitivity to the regularization parameters, which include the pseudotime step size for integration. These observations are validated through reconstructions with both numerically generated and experimentally acquired data.

  5. Testing Bayesian and heuristic predictions of mass judgments of colliding objects

    PubMed Central

    Sanborn, Adam N.

    2014-01-01

    Mass judgments of colliding objects have been used to explore people's understanding of the physical world because they are ecologically relevant, yet people display biases that are most easily explained by a small set of heuristics. Recent work has challenged the heuristic explanation, by producing the same biases from a model that copes with perceptual uncertainty by using Bayesian inference with a prior based on the correct combination rules from Newtonian mechanics (noisy Newton). Here I test the predictions of the leading heuristic model (Gilden and Proffitt, 1989) against the noisy Newton model using a novel manipulation of the standard mass judgment task: making one of the objects invisible post-collision. The noisy Newton model uses the remaining information to predict above-chance performance, while the leading heuristic model predicts chance performance when one or the other final velocity is occluded. An experiment using two different types of occlusion showed better-than-chance performance and response patterns that followed the predictions of the noisy Newton model. The results demonstrate that people can make sensible physical judgments even when information critical for the judgment is missing, and that a Bayesian model can serve as a guide in these situations. Possible algorithmic-level accounts of this task that more closely correspond to the noisy Newton model are explored. PMID:25206345

  6. The urgency-gating model can explain the effects of early evidence.

    PubMed

    Carland, Matthew A; Thura, David; Cisek, Paul

    2015-12-01

    In a recent report, Winkel, Keuken, van Maanen, Wagenmakers & Forstmann (Psychonomics Bulletin and Review 21(3): 777-784, 2014) show that during a random-dot motion discrimination task, early differences in motion evidence can influence reaction times (RTs) and error rates in human subjects. They use this as an argument in favor of the drift-diffusion model and against the urgency-gating model. However, their implementation of the urgency-gating model is incomplete, as it lacks the low-pass filter that is necessary to deal with noisy input such as the motion signal used in their experimental task. Furthermore, by focusing analyses solely on comparison of mean RTs they overestimate how long early information influences individual trials. Here, we show that if the urgency-gating model is correctly implemented, including a low-pass filter with a 250 ms time constant, it can successfully reproduce the results of the Winkel et al. experiment.

  7. Simulation of noisy dynamical system by Deep Learning

    NASA Astrophysics Data System (ADS)

    Yeo, Kyongmin

    2017-11-01

    Deep learning has attracted huge attention due to its powerful representation capability. However, most of the studies on deep learning have been focused on visual analytics or language modeling and the capability of the deep learning in modeling dynamical systems is not well understood. In this study, we use a recurrent neural network to model noisy nonlinear dynamical systems. In particular, we use a long short-term memory (LSTM) network, which constructs internal nonlinear dynamics systems. We propose a cross-entropy loss with spatial ridge regularization to learn a non-stationary conditional probability distribution from a noisy nonlinear dynamical system. A Monte Carlo procedure to perform time-marching simulations by using the LSTM is presented. The behavior of the LSTM is studied by using noisy, forced Van der Pol oscillator and Ikeda equation.

  8. A common stochastic accumulator with effector-dependent noise can explain eye-hand coordination

    PubMed Central

    Gopal, Atul; Viswanathan, Pooja

    2015-01-01

    The computational architecture that enables the flexible coupling between otherwise independent eye and hand effector systems is not understood. By using a drift diffusion framework, in which variability of the reaction time (RT) distribution scales with mean RT, we tested the ability of a common stochastic accumulator to explain eye-hand coordination. Using a combination of behavior, computational modeling and electromyography, we show how a single stochastic accumulator to threshold, followed by noisy effector-dependent delays, explains eye-hand RT distributions and their correlation, while an alternate independent, interactive eye and hand accumulator model does not. Interestingly, the common accumulator model did not explain the RT distributions of the same subjects when they made eye and hand movements in isolation. Taken together, these data suggest that a dedicated circuit underlies coordinated eye-hand planning. PMID:25568161

  9. On the emergence of an ‘intention field’ for socially cohesive agents

    NASA Astrophysics Data System (ADS)

    Bouchaud, Jean-Philippe; Borghesi, Christian; Jensen, Pablo

    2014-03-01

    We argue that when a social convergence mechanism exists and is strong enough, one should expect the emergence of a well-defined ‘field’, i.e. a slowly evolving, local quantity around which individual attributes fluctuate in a finite range. This condensation phenomenon is well illustrated by the Deffuant-Weisbuch opinion model for which we provide a natural extension to allow for spatial heterogeneities. We show analytically and numerically that the resulting dynamics of the emergent field is a noisy diffusion equation that has a slow dynamics. This random diffusion equation reproduces the long-ranged, logarithmic decrease of the correlation of spatial voting patterns empirically found in Borghesi and Bouchaud (2010 Eur. Phys. J. B 75 395) and Borghesi et al (2012 PLoS One 7 e36289). Interestingly enough, we find that when the social cohesion mechanism becomes too weak, cultural cohesion breaks down completely, in the sense that the distribution of intentions/opinions becomes infinitely broad. No emerging field exists in this case. All these analytical findings are confirmed by numerical simulations of an agent-based model.

  10. Heat source reconstruction from noisy temperature fields using an optimised derivative Gaussian filter

    NASA Astrophysics Data System (ADS)

    Delpueyo, D.; Balandraud, X.; Grédiac, M.

    2013-09-01

    The aim of this paper is to present a post-processing technique based on a derivative Gaussian filter to reconstruct heat source fields from temperature fields measured by infrared thermography. Heat sources can be deduced from temperature variations thanks to the heat diffusion equation. Filtering and differentiating are key-issues which are closely related here because the temperature fields which are processed are unavoidably noisy. We focus here only on the diffusion term because it is the most difficult term to estimate in the procedure, the reason being that it involves spatial second derivatives (a Laplacian for isotropic materials). This quantity can be reasonably estimated using a convolution of the temperature variation fields with second derivatives of a Gaussian function. The study is first based on synthetic temperature variation fields corrupted by added noise. The filter is optimised in order to reconstruct at best the heat source fields. The influence of both the dimension and the level of a localised heat source is discussed. Obtained results are also compared with another type of processing based on an averaging filter. The second part of this study presents an application to experimental temperature fields measured with an infrared camera on a thin plate in aluminium alloy. Heat sources are generated with an electric heating patch glued on the specimen surface. Heat source fields reconstructed from measured temperature fields are compared with the imposed heat sources. Obtained results illustrate the relevancy of the derivative Gaussian filter to reliably extract heat sources from noisy temperature fields for the experimental thermomechanics of materials.

  11. A model for sequential decoding overflow due to a noisy carrier reference. [communication performance prediction

    NASA Technical Reports Server (NTRS)

    Layland, J. W.

    1974-01-01

    An approximate analysis of the effect of a noisy carrier reference on the performance of sequential decoding is presented. The analysis uses previously developed techniques for evaluating noisy reference performance for medium-rate uncoded communications adapted to sequential decoding for data rates of 8 to 2048 bits/s. In estimating the ten to the minus fourth power deletion probability thresholds for Helios, the model agrees with experimental data to within the experimental tolerances. The computational problem involved in sequential decoding, carrier loop effects, the main characteristics of the medium-rate model, modeled decoding performance, and perspectives on future work are discussed.

  12. A probabilistic union model with automatic order selection for noisy speech recognition.

    PubMed

    Jancovic, P; Ming, J

    2001-09-01

    A critical issue in exploiting the potential of the sub-band-based approach to robust speech recognition is the method of combining the sub-band observations, for selecting the bands unaffected by noise. A new method for this purpose, i.e., the probabilistic union model, was recently introduced. This model has been shown to be capable of dealing with band-limited corruption, requiring no knowledge about the band position and statistical distribution of the noise. A parameter within the model, which we call its order, gives the best results when it equals the number of noisy bands. Since this information may not be available in practice, in this paper we introduce an automatic algorithm for selecting the order, based on the state duration pattern generated by the hidden Markov model (HMM). The algorithm has been tested on the TIDIGITS database corrupted by various types of additive band-limited noise with unknown noisy bands. The results have shown that the union model equipped with the new algorithm can achieve a recognition performance similar to that achieved when the number of noisy bands is known. The results show a very significant improvement over the traditional full-band model, without requiring prior information on either the position or the number of noisy bands. The principle of the algorithm for selecting the order based on state duration may also be applied to other sub-band combination methods.

  13. External Prior Guided Internal Prior Learning for Real-World Noisy Image Denoising

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Zhang, Lei; Zhang, David

    2018-06-01

    Most of existing image denoising methods learn image priors from either external data or the noisy image itself to remove noise. However, priors learned from external data may not be adaptive to the image to be denoised, while priors learned from the given noisy image may not be accurate due to the interference of corrupted noise. Meanwhile, the noise in real-world noisy images is very complex, which is hard to be described by simple distributions such as Gaussian distribution, making real noisy image denoising a very challenging problem. We propose to exploit the information in both external data and the given noisy image, and develop an external prior guided internal prior learning method for real noisy image denoising. We first learn external priors from an independent set of clean natural images. With the aid of learned external priors, we then learn internal priors from the given noisy image to refine the prior model. The external and internal priors are formulated as a set of orthogonal dictionaries to efficiently reconstruct the desired image. Extensive experiments are performed on several real noisy image datasets. The proposed method demonstrates highly competitive denoising performance, outperforming state-of-the-art denoising methods including those designed for real noisy images.

  14. Incorporating networks in a probabilistic graphical model to find drivers for complex human diseases.

    PubMed

    Mezlini, Aziz M; Goldenberg, Anna

    2017-10-01

    Discovering genetic mechanisms driving complex diseases is a hard problem. Existing methods often lack power to identify the set of responsible genes. Protein-protein interaction networks have been shown to boost power when detecting gene-disease associations. We introduce a Bayesian framework, Conflux, to find disease associated genes from exome sequencing data using networks as a prior. There are two main advantages to using networks within a probabilistic graphical model. First, networks are noisy and incomplete, a substantial impediment to gene discovery. Incorporating networks into the structure of a probabilistic models for gene inference has less impact on the solution than relying on the noisy network structure directly. Second, using a Bayesian framework we can keep track of the uncertainty of each gene being associated with the phenotype rather than returning a fixed list of genes. We first show that using networks clearly improves gene detection compared to individual gene testing. We then show consistently improved performance of Conflux compared to the state-of-the-art diffusion network-based method Hotnet2 and a variety of other network and variant aggregation methods, using randomly generated and literature-reported gene sets. We test Hotnet2 and Conflux on several network configurations to reveal biases and patterns of false positives and false negatives in each case. Our experiments show that our novel Bayesian framework Conflux incorporates many of the advantages of the current state-of-the-art methods, while offering more flexibility and improved power in many gene-disease association scenarios.

  15. TIME-DOMAIN METHODS FOR DIFFUSIVE TRANSPORT IN SOFT MATTER

    PubMed Central

    Fricks, John; Yao, Lingxing; Elston, Timothy C.; Gregory Forest, And M.

    2015-01-01

    Passive microrheology [12] utilizes measurements of noisy, entropic fluctuations (i.e., diffusive properties) of micron-scale spheres in soft matter to infer bulk frequency-dependent loss and storage moduli. Here, we are concerned exclusively with diffusion of Brownian particles in viscoelastic media, for which the Mason-Weitz theoretical-experimental protocol is ideal, and the more challenging inference of bulk viscoelastic moduli is decoupled. The diffusive theory begins with a generalized Langevin equation (GLE) with a memory drag law specified by a kernel [7, 16, 22, 23]. We start with a discrete formulation of the GLE as an autoregressive stochastic process governing microbead paths measured by particle tracking. For the inverse problem (recovery of the memory kernel from experimental data) we apply time series analysis (maximum likelihood estimators via the Kalman filter) directly to bead position data, an alternative to formulas based on mean-squared displacement statistics in frequency space. For direct modeling, we present statistically exact GLE algorithms for individual particle paths as well as statistical correlations for displacement and velocity. Our time-domain methods rest upon a generalization of well-known results for a single-mode exponential kernel [1, 7, 22, 23] to an arbitrary M-mode exponential series, for which the GLE is transformed to a vector Ornstein-Uhlenbeck process. PMID:26412904

  16. Robust optical flow using adaptive Lorentzian filter for image reconstruction under noisy condition

    NASA Astrophysics Data System (ADS)

    Kesrarat, Darun; Patanavijit, Vorapoj

    2017-02-01

    In optical flow for motion allocation, the efficient result in Motion Vector (MV) is an important issue. Several noisy conditions may cause the unreliable result in optical flow algorithms. We discover that many classical optical flows algorithms perform better result under noisy condition when combined with modern optimized model. This paper introduces effective robust models of optical flow by using Robust high reliability spatial based optical flow algorithms using the adaptive Lorentzian norm influence function in computation on simple spatial temporal optical flows algorithm. Experiment on our proposed models confirm better noise tolerance in optical flow's MV under noisy condition when they are applied over simple spatial temporal optical flow algorithms as a filtering model in simple frame-to-frame correlation technique. We illustrate the performance of our models by performing an experiment on several typical sequences with differences in movement speed of foreground and background where the experiment sequences are contaminated by the additive white Gaussian noise (AWGN) at different noise decibels (dB). This paper shows very high effectiveness of noise tolerance models that they are indicated by peak signal to noise ratio (PSNR).

  17. Orientation diffusions.

    PubMed

    Perona, P

    1998-01-01

    Diffusions are useful for image processing and computer vision because they provide a convenient way of smoothing noisy data, analyzing images at multiple scales, and enhancing discontinuities. A number of diffusions of image brightness have been defined and studied so far; they may be applied to scalar and vector-valued quantities that are naturally associated with intervals of either the real line, or other flat manifolds. Some quantities of interest in computer vision, and other areas of engineering that deal with images, are defined on curved manifolds;typical examples are orientation and hue that are defined on the circle. Generalizing brightness diffusions to orientation is not straightforward, especially in the case where a discrete implementation is sought. An example of what may go wrong is presented.A method is proposed to define diffusions of orientation-like quantities. First a definition in the continuum is discussed, then a discrete orientation diffusion is proposed. The behavior of such diffusions is explored both analytically and experimentally. It is shown how such orientation diffusions contain a nonlinearity that is reminiscent of edge-process and anisotropic diffusion. A number of open questions are proposed at the end.

  18. Superdiffusion, large-scale synchronization, and topological defects

    NASA Astrophysics Data System (ADS)

    Großmann, Robert; Peruani, Fernando; Bär, Markus

    2016-04-01

    We study an ensemble of random walkers carrying internal noisy phase oscillators which are synchronized among the walkers by local interactions. Due to individual mobility, the interaction partners of every walker change randomly, hereby introducing an additional, independent source of fluctuations, thus constituting the intrinsic nonequilibrium nature of the temporal dynamics. We employ this paradigmatic model system to discuss how the emergence of order is affected by the motion of individual entities. In particular, we consider both normal diffusive motion and superdiffusion. A non-Hamiltonian field theory including multiplicative noise terms is derived which describes the nonequilibrium dynamics at the macroscale. This theory reveals a defect-mediated transition from incoherence to quasi-long-range order for normal diffusion of oscillators in two dimensions, implying a power-law dependence of all synchronization properties on system size. In contrast, superdiffusive transport suppresses the emergence of topological defects, thereby inducing a continuous synchronization transition to long-range order in two dimensions. These results are consistent with particle-based simulations.

  19. From epidemics to information propagation: Striking differences in structurally similar adaptive network models

    NASA Astrophysics Data System (ADS)

    Trajanovski, Stojan; Guo, Dongchao; Van Mieghem, Piet

    2015-09-01

    The continuous-time adaptive susceptible-infected-susceptible (ASIS) epidemic model and the adaptive information diffusion (AID) model are two adaptive spreading processes on networks, in which a link in the network changes depending on the infectious state of its end nodes, but in opposite ways: (i) In the ASIS model a link is removed between two nodes if exactly one of the nodes is infected to suppress the epidemic, while a link is created in the AID model to speed up the information diffusion; (ii) a link is created between two susceptible nodes in the ASIS model to strengthen the healthy part of the network, while a link is broken in the AID model due to the lack of interest in informationless nodes. The ASIS and AID models may be considered as first-order models for cascades in real-world networks. While the ASIS model has been exploited in the literature, we show that the AID model is realistic by obtaining a good fit with Facebook data. Contrary to the common belief and intuition for such similar models, we show that the ASIS and AID models exhibit different but not opposite properties. Most remarkably, a unique metastable state always exists in the ASIS model, while there an hourglass-shaped region of instability in the AID model. Moreover, the epidemic threshold is a linear function in the effective link-breaking rate in the AID model, while it is almost constant but noisy in the AID model.

  20. The dynamics of multimodal integration: The averaging diffusion model.

    PubMed

    Turner, Brandon M; Gao, Juan; Koenig, Scott; Palfy, Dylan; L McClelland, James

    2017-12-01

    We combine extant theories of evidence accumulation and multi-modal integration to develop an integrated framework for modeling multimodal integration as a process that unfolds in real time. Many studies have formulated sensory processing as a dynamic process where noisy samples of evidence are accumulated until a decision is made. However, these studies are often limited to a single sensory modality. Studies of multimodal stimulus integration have focused on how best to combine different sources of information to elicit a judgment. These studies are often limited to a single time point, typically after the integration process has occurred. We address these limitations by combining the two approaches. Experimentally, we present data that allow us to study the time course of evidence accumulation within each of the visual and auditory domains as well as in a bimodal condition. Theoretically, we develop a new Averaging Diffusion Model in which the decision variable is the mean rather than the sum of evidence samples and use it as a base for comparing three alternative models of multimodal integration, allowing us to assess the optimality of this integration. The outcome reveals rich individual differences in multimodal integration: while some subjects' data are consistent with adaptive optimal integration, reweighting sources of evidence as their relative reliability changes during evidence integration, others exhibit patterns inconsistent with optimality.

  1. Extracting physics of life at the molecular level: A review of single-molecule data analyses.

    PubMed

    Colomb, Warren; Sarkar, Susanta K

    2015-06-01

    Studying individual biomolecules at the single-molecule level has proved very insightful recently. Single-molecule experiments allow us to probe both the equilibrium and nonequilibrium properties as well as make quantitative connections with ensemble experiments and equilibrium thermodynamics. However, it is important to be careful about the analysis of single-molecule data because of the noise present and the lack of theoretical framework for processes far away from equilibrium. Biomolecular motion, whether it is free in solution, on a substrate, or under force, involves thermal fluctuations in varying degrees, which makes the motion noisy. In addition, the noise from the experimental setup makes it even more complex. The details of biologically relevant interactions, conformational dynamics, and activities are hidden in the noisy single-molecule data. As such, extracting biological insights from noisy data is still an active area of research. In this review, we will focus on analyzing both fluorescence-based and force-based single-molecule experiments and gaining biological insights at the single-molecule level. Inherently nonequilibrium nature of biological processes will be highlighted. Simulated trajectories of biomolecular diffusion will be used to compare and validate various analysis techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Anisotropic diffusion in mesh-free numerical magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.

    2017-04-01

    We extend recently developed mesh-free Lagrangian methods for numerical magnetohydrodynamics (MHD) to arbitrary anisotropic diffusion equations, including: passive scalar diffusion, Spitzer-Braginskii conduction and viscosity, cosmic ray diffusion/streaming, anisotropic radiation transport, non-ideal MHD (Ohmic resistivity, ambipolar diffusion, the Hall effect) and turbulent 'eddy diffusion'. We study these as implemented in the code GIZMO for both new meshless finite-volume Godunov schemes (MFM/MFV). We show that the MFM/MFV methods are accurate and stable even with noisy fields and irregular particle arrangements, and recover the correct behaviour even in arbitrarily anisotropic cases. They are competitive with state-of-the-art AMR/moving-mesh methods, and can correctly treat anisotropic diffusion-driven instabilities (e.g. the MTI and HBI, Hall MRI). We also develop a new scheme for stabilizing anisotropic tensor-valued fluxes with high-order gradient estimators and non-linear flux limiters, which is trivially generalized to AMR/moving-mesh codes. We also present applications of some of these improvements for SPH, in the form of a new integral-Godunov SPH formulation that adopts a moving-least squares gradient estimator and introduces a flux-limited Riemann problem between particles.

  3. Pattern Transitions in Bacterial Oscillating System under Nanofluidic Confinement

    NASA Astrophysics Data System (ADS)

    Shen, Jie-Pan; Chou, Chia-Fu

    2011-03-01

    Successful binary fission in E. coli relies on remarkable oscillatory behavior of the MinCDE protein system to determine the exact division site. The most favorable models to explain this fascinating spatiotemporal regulation on dynamic MinDE pattern formation in cells are based on reaction-diffusion scenario. Although not fully understood, geometric factors caused by bacterial morphology play a crucial role in MinDE dynamics. In the present study, bacteria were cultured, confined and reshaped in various micro/nanofluidic devices, to mimic either curvature changes of cell peripherals. Fluorescence imaging was utilized to detail the mode transitions in multiple MinDE patterns. The understanding of the physics in multiple pattern formations is further complemented via in silico modeling. The study synergizes the join merits of in vivo, in vitro and in silico approaches, to grasp the insight of stochastic dynamics inherited from the noisy mesoscopic biophysics. We acknowledge support from the Foresight Project, Academia Sinica.

  4. An Interactive Procedure to Preserve the Desired Edges during the Image Processing of Noise Reduction

    NASA Astrophysics Data System (ADS)

    Hsu, Chih-Yu; Huang, Hsuan-Yu; Lee, Lin-Tsang

    2010-12-01

    The paper propose a new procedure including four stages in order to preserve the desired edges during the image processing of noise reduction. A denoised image can be obtained from a noisy image at the first stage of the procedure. At the second stage, an edge map can be obtained by the Canny edge detector to find the edges of the object contours. Manual modification of an edge map at the third stage is optional to capture all the desired edges of the object contours. At the final stage, a new method called Edge Preserved Inhomogeneous Diffusion Equation (EPIDE) is used to smooth the noisy images or the previously denoised image at the first stage for achieving the edge preservation. The Optical Character Recognition (OCR) results in the experiments show that the proposed procedure has the best recognition result because of the capability of edge preservation.

  5. NoGOA: predicting noisy GO annotations using evidences and sparse representation.

    PubMed

    Yu, Guoxian; Lu, Chang; Wang, Jun

    2017-07-21

    Gene Ontology (GO) is a community effort to represent functional features of gene products. GO annotations (GOA) provide functional associations between GO terms and gene products. Due to resources limitation, only a small portion of annotations are manually checked by curators, and the others are electronically inferred. Although quality control techniques have been applied to ensure the quality of annotations, the community consistently report that there are still considerable noisy (or incorrect) annotations. Given the wide application of annotations, however, how to identify noisy annotations is an important but yet seldom studied open problem. We introduce a novel approach called NoGOA to predict noisy annotations. NoGOA applies sparse representation on the gene-term association matrix to reduce the impact of noisy annotations, and takes advantage of sparse representation coefficients to measure the semantic similarity between genes. Secondly, it preliminarily predicts noisy annotations of a gene based on aggregated votes from semantic neighborhood genes of that gene. Next, NoGOA estimates the ratio of noisy annotations for each evidence code based on direct annotations in GOA files archived on different periods, and then weights entries of the association matrix via estimated ratios and propagates weights to ancestors of direct annotations using GO hierarchy. Finally, it integrates evidence-weighted association matrix and aggregated votes to predict noisy annotations. Experiments on archived GOA files of six model species (H. sapiens, A. thaliana, S. cerevisiae, G. gallus, B. Taurus and M. musculus) demonstrate that NoGOA achieves significantly better results than other related methods and removing noisy annotations improves the performance of gene function prediction. The comparative study justifies the effectiveness of integrating evidence codes with sparse representation for predicting noisy GO annotations. Codes and datasets are available at http://mlda.swu.edu.cn/codes.php?name=NoGOA .

  6. Reduction of Poisson noise in measured time-resolved data for time-domain diffuse optical tomography.

    PubMed

    Okawa, S; Endo, Y; Hoshi, Y; Yamada, Y

    2012-01-01

    A method to reduce noise for time-domain diffuse optical tomography (DOT) is proposed. Poisson noise which contaminates time-resolved photon counting data is reduced by use of maximum a posteriori estimation. The noise-free data are modeled as a Markov random process, and the measured time-resolved data are assumed as Poisson distributed random variables. The posterior probability of the occurrence of the noise-free data is formulated. By maximizing the probability, the noise-free data are estimated, and the Poisson noise is reduced as a result. The performances of the Poisson noise reduction are demonstrated in some experiments of the image reconstruction of time-domain DOT. In simulations, the proposed method reduces the relative error between the noise-free and noisy data to about one thirtieth, and the reconstructed DOT image was smoothed by the proposed noise reduction. The variance of the reconstructed absorption coefficients decreased by 22% in a phantom experiment. The quality of DOT, which can be applied to breast cancer screening etc., is improved by the proposed noise reduction.

  7. A Simple Noise Correction Scheme for Diffusional Kurtosis Imaging

    PubMed Central

    Glenn, G. Russell; Tabesh, Ali; Jensen, Jens H.

    2014-01-01

    Purpose Diffusional kurtosis imaging (DKI) is sensitive to the effects of signal noise due to strong diffusion weightings and higher order modeling of the diffusion weighted signal. A simple noise correction scheme is proposed to remove the majority of the noise bias in the estimated diffusional kurtosis. Methods Weighted linear least squares (WLLS) fitting together with a voxel-wise, subtraction-based noise correction from multiple, independent acquisitions are employed to reduce noise bias in DKI data. The method is validated in phantom experiments and demonstrated for in vivo human brain for DKI-derived parameter estimates. Results As long as the signal-to-noise ratio (SNR) for the most heavily diffusion weighted images is greater than 2.1, errors in phantom diffusional kurtosis estimates are found to be less than 5 percent with noise correction, but as high as 44 percent for uncorrected estimates. In human brain, noise correction is also shown to improve diffusional kurtosis estimates derived from measurements made with low SNR. Conclusion The proposed correction technique removes the majority of noise bias from diffusional kurtosis estimates in noisy phantom data and is applicable to DKI of human brain. Features of the method include computational simplicity and ease of integration into standard WLLS DKI post-processing algorithms. PMID:25172990

  8. Computation of the ensemble channelized Hotelling observer signal-to-noise ratio for ordered-subset image reconstruction using noisy data

    NASA Astrophysics Data System (ADS)

    Soares, Edward J.; Gifford, Howard C.; Glick, Stephen J.

    2003-05-01

    We investigated the estimation of the ensemble channelized Hotelling observer (CHO) signal-to-noise ratio (SNR) for ordered-subset (OS) image reconstruction using noisy projection data. Previously, we computed the ensemble CHO SNR using a method for approximating the channelized covariance of OS reconstruction, which requires knowledge of the noise-free projection data. Here, we use a "plug-in" approach, in which noisy data is used in place of the noise-free data in the aforementioned channelized covariance approximation. Additionally, we evaluated the use of smoothing of the noisy projections before use in the covariance approximation. Additionally, we evaluated the use of smoothing of the noisy projections before use in the covariance calculation. The task was detection of a 10% contrast Gaussian signal within a slice of the MCAT phantom. Simulated projections of the MCAT phantom were scaled and Poisson noise was added to create 100 noisy signal-absent data sets. Simulated projections of the scaled signal were then added to the noisy background projections to create 100 noisy signal-present data set. These noisy data sets were then used to generate 100 estimates of the ensemble CHO SNR for reconstructions at various iterates. For comparison purposes, the same calculation was repeated with the noise-free data. The results, reported as plots of the average CHO SNR generated in this fashion, along with 95% confidence intervals, demonstrate that this approach works very well, and would allow optimization of imaging systems and reconstruction methods using a more accurate object model (i.e., real patient data).

  9. Maximum likelihood convolutional decoding (MCD) performance due to system losses

    NASA Technical Reports Server (NTRS)

    Webster, L.

    1976-01-01

    A model for predicting the computational performance of a maximum likelihood convolutional decoder (MCD) operating in a noisy carrier reference environment is described. This model is used to develop a subroutine that will be utilized by the Telemetry Analysis Program to compute the MCD bit error rate. When this computational model is averaged over noisy reference phase errors using a high-rate interpolation scheme, the results are found to agree quite favorably with experimental measurements.

  10. Rapid innovation diffusion in social networks.

    PubMed

    Kreindler, Gabriel E; Young, H Peyton

    2014-07-22

    Social and technological innovations often spread through social networks as people respond to what their neighbors are doing. Previous research has identified specific network structures, such as local clustering, that promote rapid diffusion. Here we derive bounds that are independent of network structure and size, such that diffusion is fast whenever the payoff gain from the innovation is sufficiently high and the agents' responses are sufficiently noisy. We also provide a simple method for computing an upper bound on the expected time it takes for the innovation to become established in any finite network. For example, if agents choose log-linear responses to what their neighbors are doing, it takes on average less than 80 revision periods for the innovation to diffuse widely in any network, provided that the error rate is at least 5% and the payoff gain (relative to the status quo) is at least 150%. Qualitatively similar results hold for other smoothed best-response functions and populations that experience heterogeneous payoff shocks.

  11. Rapid innovation diffusion in social networks

    PubMed Central

    Kreindler, Gabriel E.; Young, H. Peyton

    2014-01-01

    Social and technological innovations often spread through social networks as people respond to what their neighbors are doing. Previous research has identified specific network structures, such as local clustering, that promote rapid diffusion. Here we derive bounds that are independent of network structure and size, such that diffusion is fast whenever the payoff gain from the innovation is sufficiently high and the agents’ responses are sufficiently noisy. We also provide a simple method for computing an upper bound on the expected time it takes for the innovation to become established in any finite network. For example, if agents choose log-linear responses to what their neighbors are doing, it takes on average less than 80 revision periods for the innovation to diffuse widely in any network, provided that the error rate is at least 5% and the payoff gain (relative to the status quo) is at least 150%. Qualitatively similar results hold for other smoothed best-response functions and populations that experience heterogeneous payoff shocks. PMID:25024191

  12. Hierarchical singleton-type recurrent neural fuzzy networks for noisy speech recognition.

    PubMed

    Juang, Chia-Feng; Chiou, Chyi-Tian; Lai, Chun-Lung

    2007-05-01

    This paper proposes noisy speech recognition using hierarchical singleton-type recurrent neural fuzzy networks (HSRNFNs). The proposed HSRNFN is a hierarchical connection of two singleton-type recurrent neural fuzzy networks (SRNFNs), where one is used for noise filtering and the other for recognition. The SRNFN is constructed by recurrent fuzzy if-then rules with fuzzy singletons in the consequences, and their recurrent properties make them suitable for processing speech patterns with temporal characteristics. In n words recognition, n SRNFNs are created for modeling n words, where each SRNFN receives the current frame feature and predicts the next one of its modeling word. The prediction error of each SRNFN is used as recognition criterion. In filtering, one SRNFN is created, and each SRNFN recognizer is connected to the same SRNFN filter, which filters noisy speech patterns in the feature domain before feeding them to the SRNFN recognizer. Experiments with Mandarin word recognition under different types of noise are performed. Other recognizers, including multilayer perceptron (MLP), time-delay neural networks (TDNNs), and hidden Markov models (HMMs), are also tested and compared. These experiments and comparisons demonstrate good results with HSRNFN for noisy speech recognition tasks.

  13. Use of laser-induced spark for studying ignition stability and unburned hydrogen escaping from laminar diluted hydrogen diffusion jet flames

    NASA Astrophysics Data System (ADS)

    Phuoc, Tran X.; Chen, Ruey-Hung

    2007-08-01

    Ignition and unburned hydrogen escaping from hydrogen jet diffusion flames diluted with nitrogen up to 70% were experimentally studied. The successful ignition locations were about 2/3 of the flame length above the jet exit for undiluted flames and moved much closer to the exit for diluted flames. For higher levels of dilution or higher flow rates, there existed a region within which a diluted hydrogen diffusion flame can be ignited and burns with a stable liftoff height. This is contrary to previous findings that pure and diluted hydrogen jet diffusion cannot achieve a stable lifted flame configuration. With liftoff, the flame is noisy and short with significant amount of unburned hydrogen escaping into the product gases. If ignition is initiated below this region, the flame propagates upstream quickly and attaches to the burner rim. Results from measurements of unburned hydrogen in the combustion products showed that the amount of unburned hydrogen increased as the nitrogen dilution level was increased. Thus, hydrogen diffusion flame diluted with nitrogen cannot burn completely.

  14. Layer-Based Approach for Image Pair Fusion.

    PubMed

    Son, Chang-Hwan; Zhang, Xiao-Ping

    2016-04-20

    Recently, image pairs, such as noisy and blurred images or infrared and noisy images, have been considered as a solution to provide high-quality photographs under low lighting conditions. In this paper, a new method for decomposing the image pairs into two layers, i.e., the base layer and the detail layer, is proposed for image pair fusion. In the case of infrared and noisy images, simple naive fusion leads to unsatisfactory results due to the discrepancies in brightness and image structures between the image pair. To address this problem, a local contrast-preserving conversion method is first proposed to create a new base layer of the infrared image, which can have visual appearance similar to another base layer such as the denoised noisy image. Then, a new way of designing three types of detail layers from the given noisy and infrared images is presented. To estimate the noise-free and unknown detail layer from the three designed detail layers, the optimization framework is modeled with residual-based sparsity and patch redundancy priors. To better suppress the noise, an iterative approach that updates the detail layer of the noisy image is adopted via a feedback loop. This proposed layer-based method can also be applied to fuse another noisy and blurred image pair. The experimental results show that the proposed method is effective for solving the image pair fusion problem.

  15. A localized Richardson-Lucy algorithm for fiber orientation estimation in high angular resolution diffusion imaging.

    PubMed

    Liu, Xiaozheng; Yuan, Zhenming; Guo, Zhongwei; Xu, Dongrong

    2015-05-01

    Diffusion tensor imaging is widely used for studying neural fiber trajectories in white matter and for quantifying changes in tissue using diffusion properties at each voxel in the brain. To better model the nature of crossing fibers within complex architectures, rather than using a simplified tensor model that assumes only a single fiber direction at each image voxel, a model mixing multiple diffusion tensors is used to profile diffusion signals from high angular resolution diffusion imaging (HARDI) data. Based on the HARDI signal and a multiple tensors model, spherical deconvolution methods have been developed to overcome the limitations of the diffusion tensor model when resolving crossing fibers. The Richardson-Lucy algorithm is a popular spherical deconvolution method used in previous work. However, it is based on a Gaussian distribution, while HARDI data are always very noisy, and the distribution of HARDI data follows a Rician distribution. This current work aims to present a novel solution to address these issues. By simultaneously considering both the Rician bias and neighbor correlation in HARDI data, the authors propose a localized Richardson-Lucy (LRL) algorithm to estimate fiber orientations for HARDI data. The proposed method can simultaneously reduce noise and correct the Rician bias. Mean angular error (MAE) between the estimated Fiber orientation distribution (FOD) field and the reference FOD field was computed to examine whether the proposed LRL algorithm offered any advantage over the conventional RL algorithm at various levels of noise. Normalized mean squared error (NMSE) was also computed to measure the similarity between the true FOD field and the estimated FOD filed. For MAE comparisons, the proposed LRL approach obtained the best results in most of the cases at different levels of SNR and b-values. For NMSE comparisons, the proposed LRL approach obtained the best results in most of the cases at b-value = 3000 s/mm(2), which is the recommended schema for HARDI data acquisition. In addition, the FOD fields estimated by the proposed LRL approach in regions of fiber crossing regions using real data sets also showed similar fiber structures which agreed with common acknowledge in these regions. The novel spherical deconvolution method for improved accuracy in investigating crossing fibers can simultaneously reduce noise and correct Rician bias. With the noise smoothed and bias corrected, this algorithm is especially suitable for estimation of fiber orientations in HARDI data. Experimental results using both synthetic and real imaging data demonstrated the success and effectiveness of the proposed LRL algorithm.

  16. Stability and Noise in the Cyanobacterial Circadian Clock

    NASA Astrophysics Data System (ADS)

    Mihalcescu, Irina

    2008-03-01

    Accuracy in cellular function has to be achieved despite random fluctuations (noise) in the concentrations of different molecular constituents inside and outside the cell. Single cell in vivo monitoring reveals that individual cells generate autonomous circadian rhythms in protein abundance. In multi-cellular organisms, the individual cell rhythms appear to be noisy with drifting phases and frequencies. However, the whole organism is significantly more accurate, the temporal precision being achieved most probably via intercellular coupling of the individual noisy oscillators. In cyanobacteria, we have shown that single cell oscillators are impressively stable and a first estimation rules out strong intercellular coupling. Interestingly, these prokaryotes also have the simplest molecular mechanism at the heart of their circadian clock. In the absence of transcriptional activity in vivo, as well alone in vitro, the three clock proteins KaiA, KaiB and KaiC generate a self-sustained circadian oscillation of autophosphorylation and dephosphorylation. Recent chemical kinetics models provide a possible understanding of the three-protein oscillator, but the measured in vivo stability remains yet unexplained. Is the clock stability a built-in property for each bacterium or does a weak intercellular coupling, make them appear like that? To address this question we first theoretically designed our experiment to be able to distinguish coupling, even weak, from phase diffusion. As the precision of our evaluation increases with the length of the experiments, we continuously monitor, for a couple of weeks, mixtures of cell populations with different initial phases. The inherent experimental noise contribution, initially dominant, is reduced by enhanced statistics. In addition, in situ entrainment experiments confirm our ability to detect a coupling of the circadian oscillator to an external force and to describe explicitly the dynamic change of the mean phase. We report a value of the coupling constant that is small compared to the diffusion constant. These results therefore confirm that the cyanobacterial clock stability is a built-in property: the cyanobacterian clock mechanism is not only the simplest but also the most robust.

  17. An improved swarm optimization for parameter estimation and biological model selection.

    PubMed

    Abdullah, Afnizanfaizal; Deris, Safaai; Mohamad, Mohd Saberi; Anwar, Sohail

    2013-01-01

    One of the key aspects of computational systems biology is the investigation on the dynamic biological processes within cells. Computational models are often required to elucidate the mechanisms and principles driving the processes because of the nonlinearity and complexity. The models usually incorporate a set of parameters that signify the physical properties of the actual biological systems. In most cases, these parameters are estimated by fitting the model outputs with the corresponding experimental data. However, this is a challenging task because the available experimental data are frequently noisy and incomplete. In this paper, a new hybrid optimization method is proposed to estimate these parameters from the noisy and incomplete experimental data. The proposed method, called Swarm-based Chemical Reaction Optimization, integrates the evolutionary searching strategy employed by the Chemical Reaction Optimization, into the neighbouring searching strategy of the Firefly Algorithm method. The effectiveness of the method was evaluated using a simulated nonlinear model and two biological models: synthetic transcriptional oscillators, and extracellular protease production models. The results showed that the accuracy and computational speed of the proposed method were better than the existing Differential Evolution, Firefly Algorithm and Chemical Reaction Optimization methods. The reliability of the estimated parameters was statistically validated, which suggests that the model outputs produced by these parameters were valid even when noisy and incomplete experimental data were used. Additionally, Akaike Information Criterion was employed to evaluate the model selection, which highlighted the capability of the proposed method in choosing a plausible model based on the experimental data. In conclusion, this paper presents the effectiveness of the proposed method for parameter estimation and model selection problems using noisy and incomplete experimental data. This study is hoped to provide a new insight in developing more accurate and reliable biological models based on limited and low quality experimental data.

  18. A Leveraged Signal-to-Noise Ratio (LSTNR) Method to Extract Differentially Expressed Genes and Multivariate Patterns of Expression From Noisy and Low-Replication RNAseq Data

    PubMed Central

    Lozoya, Oswaldo A.; Santos, Janine H.; Woychik, Richard P.

    2018-01-01

    To life scientists, one important feature offered by RNAseq, a next-generation sequencing tool used to estimate changes in gene expression levels, lies in its unprecedented resolution. It can score countable differences in transcript numbers among thousands of genes and between experimental groups, all at once. However, its high cost limits experimental designs to very small sample sizes, usually N = 3, which often results in statistically underpowered analysis and poor reproducibility. All these issues are compounded by the presence of experimental noise, which is harder to distinguish from instrumental error when sample sizes are limiting (e.g., small-budget pilot tests), experimental populations exhibit biologically heterogeneous or diffuse expression phenotypes (e.g., patient samples), or when discriminating among transcriptional signatures of closely related experimental conditions (e.g., toxicological modes of action, or MOAs). Here, we present a leveraged signal-to-noise ratio (LSTNR) thresholding method, founded on generalized linear modeling (GLM) of aligned read detection limits to extract differentially expressed genes (DEGs) from noisy low-replication RNAseq data. The LSTNR method uses an agnostic independent filtering strategy to define the dynamic range of detected aggregate read counts per gene, and assigns statistical weights that prioritize genes with better sequencing resolution in differential expression analyses. To assess its performance, we implemented the LSTNR method to analyze three separate datasets: first, using a systematically noisy in silico dataset, we demonstrated that LSTNR can extract pre-designed patterns of expression and discriminate between “noise” and “true” differentially expressed pseudogenes at a 100% success rate; then, we illustrated how the LSTNR method can assign patient-derived breast cancer specimens correctly to one out of their four reported molecular subtypes (luminal A, luminal B, Her2-enriched and basal-like); and last, we showed the ability to retrieve five different modes of action (MOA) elicited in livers of rats exposed to three toxicants under three nutritional routes by using the LSTNR method. By combining differential measurements with resolving power to detect DEGs, the LSTNR method offers an alternative approach to interrogate noisy and low-replication RNAseq datasets, which handles multiple biological conditions at once, and defines benchmarks to validate RNAseq experiments with standard benchtop assays. PMID:29868123

  19. Speaker Recognition by Combining MFCC and Phase Information in Noisy Conditions

    NASA Astrophysics Data System (ADS)

    Wang, Longbiao; Minami, Kazue; Yamamoto, Kazumasa; Nakagawa, Seiichi

    In this paper, we investigate the effectiveness of phase for speaker recognition in noisy conditions and combine the phase information with mel-frequency cepstral coefficients (MFCCs). To date, almost speaker recognition methods are based on MFCCs even in noisy conditions. For MFCCs which dominantly capture vocal tract information, only the magnitude of the Fourier Transform of time-domain speech frames is used and phase information has been ignored. High complement of the phase information and MFCCs is expected because the phase information includes rich voice source information. Furthermore, some researches have reported that phase based feature was robust to noise. In our previous study, a phase information extraction method that normalizes the change variation in the phase depending on the clipping position of the input speech was proposed, and the performance of the combination of the phase information and MFCCs was remarkably better than that of MFCCs. In this paper, we evaluate the robustness of the proposed phase information for speaker identification in noisy conditions. Spectral subtraction, a method skipping frames with low energy/Signal-to-Noise (SN) and noisy speech training models are used to analyze the effect of the phase information and MFCCs in noisy conditions. The NTT database and the JNAS (Japanese Newspaper Article Sentences) database added with stationary/non-stationary noise were used to evaluate our proposed method. MFCCs outperformed the phase information for clean speech. On the other hand, the degradation of the phase information was significantly smaller than that of MFCCs for noisy speech. The individual result of the phase information was even better than that of MFCCs in many cases by clean speech training models. By deleting unreliable frames (frames having low energy/SN), the speaker identification performance was improved significantly. By integrating the phase information with MFCCs, the speaker identification error reduction rate was about 30%-60% compared with the standard MFCC-based method.

  20. Active learning for noisy oracle via density power divergence.

    PubMed

    Sogawa, Yasuhiro; Ueno, Tsuyoshi; Kawahara, Yoshinobu; Washio, Takashi

    2013-10-01

    The accuracy of active learning is critically influenced by the existence of noisy labels given by a noisy oracle. In this paper, we propose a novel pool-based active learning framework through robust measures based on density power divergence. By minimizing density power divergence, such as β-divergence and γ-divergence, one can estimate the model accurately even under the existence of noisy labels within data. Accordingly, we develop query selecting measures for pool-based active learning using these divergences. In addition, we propose an evaluation scheme for these measures based on asymptotic statistical analyses, which enables us to perform active learning by evaluating an estimation error directly. Experiments with benchmark datasets and real-world image datasets show that our active learning scheme performs better than several baseline methods. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Sport, time pressure, and cognitive performance.

    PubMed

    Chiu, Chia N; Chen, Chiao-Yun; Muggleton, Neil G

    2017-01-01

    Sport participation, fitness, and expertise have been associated with a range of cognitive benefits in a range of populations but both the factors that confer such benefits and the nature of the resulting changes are relatively unclear. Additionally, the interactions between time pressure and cognitive performance for these groups is little studied. Using a flanker task, which measures the ability to selectively process information, and with different time limits for responding, we investigated the differences in performance for participants in (1) an unpredictable, open-skill sport (volleyball), (2) an exercise group engaged in predictable, closed-skill sports (running, swimming), and (3) nonsporting controls. Analysis by means of a drift diffusion analysis of response times was used to characterize the nature of any differences. Volleyball players were more accurate than controls and the exercise group, particularly for shorter time limits for responding, as well as tending to respond more quickly. Drift diffusion model analysis suggested that better performance by the volleyball group was due to factors such as stimulus encoding or motor programming and execution rather than decision making. Trends in the pattern of data seen also suggest less noisy cognitive processing (rather than greater efficiency) and should be further investigated. © 2017 Elsevier B.V. All rights reserved.

  2. Simple protocols for oblivious transfer and secure identification in the noisy-quantum-storage model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaffner, Christian

    2010-09-15

    We present simple protocols for oblivious transfer and password-based identification which are secure against general attacks in the noisy-quantum-storage model as defined in R. Koenig, S. Wehner, and J. Wullschleger [e-print arXiv:0906.1030]. We argue that a technical tool from Koenig et al. suffices to prove security of the known protocols. Whereas the more involved protocol for oblivious transfer from Koenig et al. requires less noise in storage to achieve security, our ''canonical'' protocols have the advantage of being simpler to implement and the security error is easier control. Therefore, our protocols yield higher OT rates for many realistic noise parameters.more » Furthermore, a proof of security of a direct protocol for password-based identification against general noisy-quantum-storage attacks is given.« less

  3. Measurements of Crossflow Instability Modes for HIFiRE 5 at Angle of Attack

    DTIC Science & Technology

    2017-11-15

    temperature sensitive paint (TSP) did not show any vortices in noisy flow, and only revealed vortices in quiet flow for a subset of the Reynolds numbers for...evidence of traveling crossflow waves with a noisy freestream, even though the spectra of the surface pressure signals showed an expected progression...cone ray describing the minor axis, and retains a 2:1 elliptical cross-section to the tip. Figure 1: Photograph of model The model is made of solid 15

  4. Age of air and heating rates: comparison of ERA-40 with ERA-Interim

    NASA Astrophysics Data System (ADS)

    Legras, B.; Fueglistaler, S.

    2009-04-01

    The age of air in the stratosphere is often used as a test for the good representation of the Brewer-Dobson circulation by atmospheric models. This is a critical requirement to modelize the distribution of long-lived species in chemical models. It is often advocated that using heating rates for vertical transport in the stratosphere performs better that standard analysed velocities from weather centers. This work is based on an extensive comparison of the age of air using 5 years of heating rates from the ERA-40 reanalysis and from the new ERA-interim reanalysis built with 4D-Var assimilation. The ERA-40 exhibits both too young ages with analyzed velocities and too old ages with heating rates. The reason for too young ages is spurious transport associated with too noisy wind, as a result of 3D-Var assimilation. Heating rates provide a much less noisy meridional circulation and preserve transport barriers and polar vortex confinement. However, excessive cooling near 30 hPa in the tropics blocks the ascending motion within the tropical pipe over extended periods of time inducing very old ages. This effect is usually corrected by an empirical correction which can exceed in some regions the calculated heating rate in magnitude, with opposite sign. We relate this correction to the assimilation temperature increment that is required to compensate the bias of the model, notably the excessive negative heat transport due to the noisy vertical velocities and the lack of mass conservation in the isentropic frame. The new ERA-interim exhibits much reduced noise in the vertical velocity and is ten times less diffusive than the ERA-40 in the tropics. Age of air is then found to be slightly older than given by the observations. The biases in the heating rate have also been considerably reduced with respect to ERA-40 and the assimilation increment is now only a fraction of the heating rate. The age of air is in fairly good aggreement with the observations at 20 km and higher altitudes. Further improvements combining heating rates and a filtered version of the assimilation increment for vertical transport in the stratosphere are discussed. We study the effect of restoring the mass conservation by recalculating a mass divergence balancing the modified heating rates. The new velocity dataset generated in isentropic coordinates is then used to study the interranual variability of the Brewer-Dobson and of heating rate, in relation with the QBO cycle.

  5. A robust firearm identification algorithm of forensic ballistics specimens

    NASA Astrophysics Data System (ADS)

    Chuan, Z. L.; Jemain, A. A.; Liong, C.-Y.; Ghani, N. A. M.; Tan, L. K.

    2017-09-01

    There are several inherent difficulties in the existing firearm identification algorithms, include requiring the physical interpretation and time consuming. Therefore, the aim of this study is to propose a robust algorithm for a firearm identification based on extracting a set of informative features from the segmented region of interest (ROI) using the simulated noisy center-firing pin impression images. The proposed algorithm comprises Laplacian sharpening filter, clustering-based threshold selection, unweighted least square estimator, and segment a square ROI from the noisy images. A total of 250 simulated noisy images collected from five different pistols of the same make, model and caliber are used to evaluate the robustness of the proposed algorithm. This study found that the proposed algorithm is able to perform the identical task on the noisy images with noise levels as high as 70%, while maintaining a firearm identification accuracy rate of over 90%.

  6. Learning touch preferences with a tactile robot using dopamine modulated STDP in a model of insular cortex

    PubMed Central

    Chou, Ting-Shuo; Bucci, Liam D.; Krichmar, Jeffrey L.

    2015-01-01

    Neurorobots enable researchers to study how behaviors are produced by neural mechanisms in an uncertain, noisy, real-world environment. To investigate how the somatosensory system processes noisy, real-world touch inputs, we introduce a neurorobot called CARL-SJR, which has a full-body tactile sensory area. The design of CARL-SJR is such that it encourages people to communicate with it through gentle touch. CARL-SJR provides feedback to users by displaying bright colors on its surface. In the present study, we show that CARL-SJR is capable of learning associations between conditioned stimuli (CS; a color pattern on its surface) and unconditioned stimuli (US; a preferred touch pattern) by applying a spiking neural network (SNN) with neurobiologically inspired plasticity. Specifically, we modeled the primary somatosensory cortex, prefrontal cortex, striatum, and the insular cortex, which is important for hedonic touch, to process noisy data generated directly from CARL-SJR's tactile sensory area. To facilitate learning, we applied dopamine-modulated Spike Timing Dependent Plasticity (STDP) to our simulated prefrontal cortex, striatum, and insular cortex. To cope with noisy, varying inputs, the SNN was tuned to produce traveling waves of activity that carried spatiotemporal information. Despite the noisy tactile sensors, spike trains, and variations in subject hand swipes, the learning was quite robust. Further, insular cortex activities in the incremental pathway of dopaminergic reward system allowed us to control CARL-SJR's preference for touch direction without heavily pre-processed inputs. The emerged behaviors we found in this model match animal's behaviors wherein they prefer touch in particular areas and directions. Thus, the results in this paper could serve as an explanation on the underlying neural mechanisms for developing tactile preferences and hedonic touch. PMID:26257639

  7. Calculation of Rate Spectra from Noisy Time Series Data

    PubMed Central

    Voelz, Vincent A.; Pande, Vijay S.

    2011-01-01

    As the resolution of experiments to measure folding kinetics continues to improve, it has become imperative to avoid bias that may come with fitting data to a predetermined mechanistic model. Towards this end, we present a rate spectrum approach to analyze timescales present in kinetic data. Computing rate spectra of noisy time series data via numerical discrete inverse Laplace transform is an ill-conditioned inverse problem, so a regularization procedure must be used to perform the calculation. Here, we show the results of different regularization procedures applied to noisy multi-exponential and stretched exponential time series, as well as data from time-resolved folding kinetics experiments. In each case, the rate spectrum method recapitulates the relevant distribution of timescales present in the data, with different priors on the rate amplitudes naturally corresponding to common biases toward simple phenomenological models. These results suggest an attractive alternative to the “Occam’s razor” philosophy of simply choosing models with the fewest number of relaxation rates. PMID:22095854

  8. Motion-based prediction is sufficient to solve the aperture problem

    PubMed Central

    Perrinet, Laurent U; Masson, Guillaume S

    2012-01-01

    In low-level sensory systems, it is still unclear how the noisy information collected locally by neurons may give rise to a coherent global percept. This is well demonstrated for the detection of motion in the aperture problem: as luminance of an elongated line is symmetrical along its axis, tangential velocity is ambiguous when measured locally. Here, we develop the hypothesis that motion-based predictive coding is sufficient to infer global motion. Our implementation is based on a context-dependent diffusion of a probabilistic representation of motion. We observe in simulations a progressive solution to the aperture problem similar to physiology and behavior. We demonstrate that this solution is the result of two underlying mechanisms. First, we demonstrate the formation of a tracking behavior favoring temporally coherent features independently of their texture. Second, we observe that incoherent features are explained away while coherent information diffuses progressively to the global scale. Most previous models included ad-hoc mechanisms such as end-stopped cells or a selection layer to track specific luminance-based features as necessary conditions to solve the aperture problem. Here, we have proved that motion-based predictive coding, as it is implemented in this functional model, is sufficient to solve the aperture problem. This solution may give insights in the role of prediction underlying a large class of sensory computations. PMID:22734489

  9. Inverse problem studies of biochemical systems with structure identification of S-systems by embedding training functions in a genetic algorithm.

    PubMed

    Sarode, Ketan Dinkar; Kumar, V Ravi; Kulkarni, B D

    2016-05-01

    An efficient inverse problem approach for parameter estimation, state and structure identification from dynamic data by embedding training functions in a genetic algorithm methodology (ETFGA) is proposed for nonlinear dynamical biosystems using S-system canonical models. Use of multiple shooting and decomposition approach as training functions has been shown for handling of noisy datasets and computational efficiency in studying the inverse problem. The advantages of the methodology are brought out systematically by studying it for three biochemical model systems of interest. By studying a small-scale gene regulatory system described by a S-system model, the first example demonstrates the use of ETFGA for the multifold aims of the inverse problem. The estimation of a large number of parameters with simultaneous state and network identification is shown by training a generalized S-system canonical model with noisy datasets. The results of this study bring out the superior performance of ETFGA on comparison with other metaheuristic approaches. The second example studies the regulation of cAMP oscillations in Dictyostelium cells now assuming limited availability of noisy data. Here, flexibility of the approach to incorporate partial system information in the identification process is shown and its effect on accuracy and predictive ability of the estimated model are studied. The third example studies the phenomenological toy model of the regulation of circadian oscillations in Drosophila that follows rate laws different from S-system power-law. For the limited noisy data, using a priori information about properties of the system, we could estimate an alternate S-system model that showed robust oscillatory behavior with predictive abilities. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Fluorescence molecular imaging based on the adjoint radiative transport equation

    NASA Astrophysics Data System (ADS)

    Asllanaj, Fatmir; Addoum, Ahmad; Rodolphe Roche, Jean

    2018-07-01

    A new reconstruction algorithm for fluorescence diffuse optical tomography of biological tissues is proposed. The radiative transport equation in the frequency domain is used to model light propagation. The adjoint method studied in this work provides an efficient way for solving the inverse problem. The methodology is applied to a 2D tissue-like phantom subjected to a collimated laser beam. Indocyanine Green is used as fluorophore. Reconstructed images of the spatial fluorophore absorption distribution is assessed taking into account the residual fluorescence in the medium. We show that illuminating the tissue surface from a collimated centered direction near the inclusion gaves a better reconstruction quality. Two closely positioned inclusions can be accurately localized. Additionally, their fluorophore absorption coefficients can be quantified. However, the algorithm failes to reconstruct smaller or deeper inclusions. This is due to light attenuation in the medium. Reconstructions with noisy data are also achieved with a reasonable accuracy.

  11. Pattern formation with proportionate growth

    NASA Astrophysics Data System (ADS)

    Dhar, Deepak

    It is a common observation that as baby animals grow, different body parts grow approximately at same rate. This property, called proportionate growth is remarkable in that it is not encountered easily outside biology. The models of growth that have been studied in Physics so far, e.g diffusion -limited aggregation, surface deposition, growth of crystals from melt etc. involve only growth at the surface, with the inner structure remaining frozen. Interestingly, patterns formed in growing sandpiles provide a very wide variety of patterns that show proportionate growth. One finds patterns with different features, with sharply defined boundaries. In particular, even with very simple rules, one can produce patterns that show striking resemblance to those seen in nature. We can characterize the asymptotic pattern exactly in some special cases. I will discuss in particular the patterns grown on noisy backgrounds. Supported by J. C. Bose fellowship from DST (India).

  12. Investigating the impact of mindfulness meditation training on working memory: a mathematical modeling approach.

    PubMed

    van Vugt, Marieke K; Jha, Amishi P

    2011-09-01

    We investigated whether mindfulness training (MT) influences information processing in a working memory task with complex visual stimuli. Participants were tested before (T1) and after (T2) participation in an intensive one-month MT retreat, and their performance was compared with that of an age- and education-matched control group. Accuracy did not differ across groups at either time point. Response times were faster and significantly less variable in the MT versus the control group at T2. Since these results could be due to changes in mnemonic processes, speed-accuracy trade-off, or nondecisional factors (e.g., motor execution), we used a mathematical modeling approach to disentangle these factors. The EZ-diffusion model (Wagenmakers, van der Maas, & Grasman, Psychonomic Bulletin & Review 14:(1), 3-22, 2007) suggested that MT leads to improved information quality and reduced response conservativeness, with no changes in nondecisional factors. The noisy exemplar model further suggested that the increase in information quality reflected a decrease in encoding noise and not an increase in forgetting. Thus, mathematical modeling may help clarify the mechanisms by which MT produces salutary effects on performance.

  13. Multi-stream LSTM-HMM decoding and histogram equalization for noise robust keyword spotting.

    PubMed

    Wöllmer, Martin; Marchi, Erik; Squartini, Stefano; Schuller, Björn

    2011-09-01

    Highly spontaneous, conversational, and potentially emotional and noisy speech is known to be a challenge for today's automatic speech recognition (ASR) systems, which highlights the need for advanced algorithms that improve speech features and models. Histogram Equalization is an efficient method to reduce the mismatch between clean and noisy conditions by normalizing all moments of the probability distribution of the feature vector components. In this article, we propose to combine histogram equalization and multi-condition training for robust keyword detection in noisy speech. To better cope with conversational speaking styles, we show how contextual information can be effectively exploited in a multi-stream ASR framework that dynamically models context-sensitive phoneme estimates generated by a long short-term memory neural network. The proposed techniques are evaluated on the SEMAINE database-a corpus containing emotionally colored conversations with a cognitive system for "Sensitive Artificial Listening".

  14. Machine printed text and handwriting identification in noisy document images.

    PubMed

    Zheng, Yefeng; Li, Huiping; Doermann, David

    2004-03-01

    In this paper, we address the problem of the identification of text in noisy document images. We are especially focused on segmenting and identifying between handwriting and machine printed text because: 1) Handwriting in a document often indicates corrections, additions, or other supplemental information that should be treated differently from the main content and 2) the segmentation and recognition techniques requested for machine printed and handwritten text are significantly different. A novel aspect of our approach is that we treat noise as a separate class and model noise based on selected features. Trained Fisher classifiers are used to identify machine printed text and handwriting from noise and we further exploit context to refine the classification. A Markov Random Field-based (MRF) approach is used to model the geometrical structure of the printed text, handwriting, and noise to rectify misclassifications. Experimental results show that our approach is robust and can significantly improve page segmentation in noisy document collections.

  15. An Improved Swarm Optimization for Parameter Estimation and Biological Model Selection

    PubMed Central

    Abdullah, Afnizanfaizal; Deris, Safaai; Mohamad, Mohd Saberi; Anwar, Sohail

    2013-01-01

    One of the key aspects of computational systems biology is the investigation on the dynamic biological processes within cells. Computational models are often required to elucidate the mechanisms and principles driving the processes because of the nonlinearity and complexity. The models usually incorporate a set of parameters that signify the physical properties of the actual biological systems. In most cases, these parameters are estimated by fitting the model outputs with the corresponding experimental data. However, this is a challenging task because the available experimental data are frequently noisy and incomplete. In this paper, a new hybrid optimization method is proposed to estimate these parameters from the noisy and incomplete experimental data. The proposed method, called Swarm-based Chemical Reaction Optimization, integrates the evolutionary searching strategy employed by the Chemical Reaction Optimization, into the neighbouring searching strategy of the Firefly Algorithm method. The effectiveness of the method was evaluated using a simulated nonlinear model and two biological models: synthetic transcriptional oscillators, and extracellular protease production models. The results showed that the accuracy and computational speed of the proposed method were better than the existing Differential Evolution, Firefly Algorithm and Chemical Reaction Optimization methods. The reliability of the estimated parameters was statistically validated, which suggests that the model outputs produced by these parameters were valid even when noisy and incomplete experimental data were used. Additionally, Akaike Information Criterion was employed to evaluate the model selection, which highlighted the capability of the proposed method in choosing a plausible model based on the experimental data. In conclusion, this paper presents the effectiveness of the proposed method for parameter estimation and model selection problems using noisy and incomplete experimental data. This study is hoped to provide a new insight in developing more accurate and reliable biological models based on limited and low quality experimental data. PMID:23593445

  16. Variable tidal volumes improve lung protective ventilation strategies in experimental lung injury.

    PubMed

    Spieth, Peter M; Carvalho, Alysson R; Pelosi, Paolo; Hoehn, Catharina; Meissner, Christoph; Kasper, Michael; Hübler, Matthias; von Neindorff, Matthias; Dassow, Constanze; Barrenschee, Martina; Uhlig, Stefan; Koch, Thea; de Abreu, Marcelo Gama

    2009-04-15

    Noisy ventilation with variable Vt may improve respiratory function in acute lung injury. To determine the impact of noisy ventilation on respiratory function and its biological effects on lung parenchyma compared with conventional protective mechanical ventilation strategies. In a porcine surfactant depletion model of lung injury, we randomly combined noisy ventilation with the ARDS Network protocol or the open lung approach (n = 9 per group). Respiratory mechanics, gas exchange, and distribution of pulmonary blood flow were measured at intervals over a 6-hour period. Postmortem, lung tissue was analyzed to determine histological damage, mechanical stress, and inflammation. We found that, at comparable minute ventilation, noisy ventilation (1) improved arterial oxygenation and reduced mean inspiratory peak airway pressure and elastance of the respiratory system compared with the ARDS Network protocol and the open lung approach, (2) redistributed pulmonary blood flow to caudal zones compared with the ARDS Network protocol and to peripheral ones compared with the open lung approach, (3) reduced histological damage in comparison to both protective ventilation strategies, and (4) did not increase lung inflammation or mechanical stress. Noisy ventilation with variable Vt and fixed respiratory frequency improves respiratory function and reduces histological damage compared with standard protective ventilation strategies.

  17. Detection and identification of substances using noisy THz signal

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Zakharova, Irina G.; Zagursky, Dmitry Yu.; Varentsova, Svetlana A.

    2017-05-01

    We discuss an effective method for the detection and identification of substances using a high noisy THz signal. In order to model such a noisy signal, we add to the THz signal transmitted through a pure substance, a noisy THz signal obtained in real conditions at a long distance (more than 3.5 m) from the receiver in air. The insufficiency of the standard THz-TDS method is demonstrated. The method discussed in the paper is based on time-dependent integral correlation criteria calculated using spectral dynamics of medium response. A new type of the integral correlation criterion, which is less dependent on spectral characteristics of the noisy signal under investigation, is used for the substance identification. To demonstrate the possibilities of the integral correlation criteria in real experiment, they are applied for the identification of explosive HMX in the reflection mode. To explain the physical mechanism for the false absorption frequencies appearance in the signal we make a computer simulation using 1D Maxwell's equations and density matrix formalism. We propose also new method for the substance identification by using the THz pulse frequency up-conversion and discuss an application of the cascade mechanism of molecules high energy levels excitation for the substance identification.

  18. Noisy Spins and the Richardson-Gaudin Model

    NASA Astrophysics Data System (ADS)

    Rowlands, Daniel A.; Lamacraft, Austen

    2018-03-01

    We study a system of spins (qubits) coupled to a common noisy environment, each precessing at its own frequency. The correlated noise experienced by the spins implies long-lived correlations that relax only due to the differing frequencies. We use a mapping to a non-Hermitian integrable Richardson-Gaudin model to find the exact spectrum of the quantum master equation in the high-temperature limit and, hence, determine the decay rate. Our solution can be used to evaluate the effect of inhomogeneous splittings on a system of qubits coupled to a common bath.

  19. Modeling the Evolution of Beliefs Using an Attentional Focus Mechanism

    PubMed Central

    Marković, Dimitrije; Gläscher, Jan; Bossaerts, Peter; O’Doherty, John; Kiebel, Stefan J.

    2015-01-01

    For making decisions in everyday life we often have first to infer the set of environmental features that are relevant for the current task. Here we investigated the computational mechanisms underlying the evolution of beliefs about the relevance of environmental features in a dynamical and noisy environment. For this purpose we designed a probabilistic Wisconsin card sorting task (WCST) with belief solicitation, in which subjects were presented with stimuli composed of multiple visual features. At each moment in time a particular feature was relevant for obtaining reward, and participants had to infer which feature was relevant and report their beliefs accordingly. To test the hypothesis that attentional focus modulates the belief update process, we derived and fitted several probabilistic and non-probabilistic behavioral models, which either incorporate a dynamical model of attentional focus, in the form of a hierarchical winner-take-all neuronal network, or a diffusive model, without attention-like features. We used Bayesian model selection to identify the most likely generative model of subjects’ behavior and found that attention-like features in the behavioral model are essential for explaining subjects’ responses. Furthermore, we demonstrate a method for integrating both connectionist and Bayesian models of decision making within a single framework that allowed us to infer hidden belief processes of human subjects. PMID:26495984

  20. Why Contextual Preference Reversals Maximize Expected Value

    PubMed Central

    2016-01-01

    Contextual preference reversals occur when a preference for one option over another is reversed by the addition of further options. It has been argued that the occurrence of preference reversals in human behavior shows that people violate the axioms of rational choice and that people are not, therefore, expected value maximizers. In contrast, we demonstrate that if a person is only able to make noisy calculations of expected value and noisy observations of the ordinal relations among option features, then the expected value maximizing choice is influenced by the addition of new options and does give rise to apparent preference reversals. We explore the implications of expected value maximizing choice, conditioned on noisy observations, for a range of contextual preference reversal types—including attraction, compromise, similarity, and phantom effects. These preference reversal types have played a key role in the development of models of human choice. We conclude that experiments demonstrating contextual preference reversals are not evidence for irrationality. They are, however, a consequence of expected value maximization given noisy observations. PMID:27337391

  1. Auditory Modeling for Noisy Speech Recognition.

    DTIC Science & Technology

    2000-01-01

    multiple platforms including PCs, workstations, and DSPs. A prototype version of the SOS process was tested on the Japanese Hiragana language with good...judgment among linguists. American English has 48 phonetic sounds in the ARPABET representation. Hiragana , the Japanese phonetic language, has only 20... Japanese Hiragana ," H.L. Pfister, FL 95, 1995. "State Recognition for Noisy Dynamic Systems," H.L. Pfister, Tech 2005, Chicago, 1995. "Experiences

  2. Cryptography from noisy storage.

    PubMed

    Wehner, Stephanie; Schaffner, Christian; Terhal, Barbara M

    2008-06-06

    We show how to implement cryptographic primitives based on the realistic assumption that quantum storage of qubits is noisy. We thereby consider individual-storage attacks; i.e., the dishonest party attempts to store each incoming qubit separately. Our model is similar to the model of bounded-quantum storage; however, we consider an explicit noise model inspired by present-day technology. To illustrate the power of this new model, we show that a protocol for oblivious transfer is secure for any amount of quantum-storage noise, as long as honest players can perform perfect quantum operations. Our model also allows us to show the security of protocols that cope with noise in the operations of the honest players and achieve more advanced tasks such as secure identification.

  3. The strategic use of noise in pragmatic reasoning.

    PubMed

    Bergen, Leon; Goodman, Noah D

    2015-04-01

    We combine two recent probabilistic approaches to natural language understanding, exploring the formal pragmatics of communication on a noisy channel. We first extend a model of rational communication between a speaker and listener, to allow for the possibility that messages are corrupted by noise. In this model, common knowledge of a noisy channel leads to the use and correct understanding of sentence fragments. A further extension of the model, which allows the speaker to intentionally reduce the noise rate on a word, is used to model prosodic emphasis. We show that the model derives several well-known changes in meaning associated with prosodic emphasis. Our results show that nominal amounts of actual noise can be leveraged for communicative purposes. Copyright © 2015 Cognitive Science Society, Inc.

  4. Modeling Pharmacological Clock and Memory Patterns of Interval Timing in a Striatal Beat-Frequency Model with Realistic, Noisy Neurons

    PubMed Central

    Oprisan, Sorinel A.; Buhusi, Catalin V.

    2011-01-01

    In most species, the capability of perceiving and using the passage of time in the seconds-to-minutes range (interval timing) is not only accurate but also scalar: errors in time estimation are linearly related to the estimated duration. The ubiquity of scalar timing extends over behavioral, lesion, and pharmacological manipulations. For example, in mammals, dopaminergic drugs induce an immediate, scalar change in the perceived time (clock pattern), whereas cholinergic drugs induce a gradual, scalar change in perceived time (memory pattern). How do these properties emerge from unreliable, noisy neurons firing in the milliseconds range? Neurobiological information relative to the brain circuits involved in interval timing provide support for an striatal beat frequency (SBF) model, in which time is coded by the coincidental activation of striatal spiny neurons by cortical neural oscillators. While biologically plausible, the impracticality of perfect oscillators, or their lack thereof, questions this mechanism in a brain with noisy neurons. We explored the computational mechanisms required for the clock and memory patterns in an SBF model with biophysically realistic and noisy Morris–Lecar neurons (SBF–ML). Under the assumption that dopaminergic drugs modulate the firing frequency of cortical oscillators, and that cholinergic drugs modulate the memory representation of the criterion time, we show that our SBF–ML model can reproduce the pharmacological clock and memory patterns observed in the literature. Numerical results also indicate that parameter variability (noise) – which is ubiquitous in the form of small fluctuations in the intrinsic frequencies of neural oscillators within and between trials, and in the errors in recording/retrieving stored information related to criterion time – seems to be critical for the time-scale invariance of the clock and memory patterns. PMID:21977014

  5. Competition model for aperiodic stochastic resonance in a Fitzhugh-Nagumo model of cardiac sensory neurons.

    PubMed

    Kember, G C; Fenton, G A; Armour, J A; Kalyaniwalla, N

    2001-04-01

    Regional cardiac control depends upon feedback of the status of the heart from afferent neurons responding to chemical and mechanical stimuli as transduced by an array of sensory neurites. Emerging experimental evidence shows that neural control in the heart may be partially exerted using subthreshold inputs that are amplified by noisy mechanical fluctuations. This amplification is known as aperiodic stochastic resonance (ASR). Neural control in the noisy, subthreshold regime is difficult to see since there is a near absence of any correlation between input and the output, the latter being the average firing (spiking) rate of the neuron. This lack of correlation is unresolved by traditional energy models of ASR since these models are unsuitable for identifying "cause and effect" between such inputs and outputs. In this paper, the "competition between averages" model is used to determine what portion of a noisy, subthreshold input is responsible, on average, for the output of sensory neurons as represented by the Fitzhugh-Nagumo equations. A physiologically relevant conclusion of this analysis is that a nearly constant amount of input is responsible for a spike, on average, and this amount is approximately independent of the firing rate. Hence, correlation measures are generally reduced as the firing rate is lowered even though neural control under this model is actually unaffected.

  6. The attention-weighted sample-size model of visual short-term memory: Attention capture predicts resource allocation and memory load.

    PubMed

    Smith, Philip L; Lilburn, Simon D; Corbett, Elaine A; Sewell, David K; Kyllingsbæk, Søren

    2016-09-01

    We investigated the capacity of visual short-term memory (VSTM) in a phase discrimination task that required judgments about the configural relations between pairs of black and white features. Sewell et al. (2014) previously showed that VSTM capacity in an orientation discrimination task was well described by a sample-size model, which views VSTM as a resource comprised of a finite number of noisy stimulus samples. The model predicts the invariance of [Formula: see text] , the sum of squared sensitivities across items, for displays of different sizes. For phase discrimination, the set-size effect significantly exceeded that predicted by the sample-size model for both simultaneously and sequentially presented stimuli. Instead, the set-size effect and the serial position curves with sequential presentation were predicted by an attention-weighted version of the sample-size model, which assumes that one of the items in the display captures attention and receives a disproportionate share of resources. The choice probabilities and response time distributions from the task were well described by a diffusion decision model in which the drift rates embodied the assumptions of the attention-weighted sample-size model. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Many-body effects in the mobility and diffusivity of interstitial solute in a crystalline solid: The case of helium in BCC tungsten

    NASA Astrophysics Data System (ADS)

    Wen, Haohua; Semenov, A. A.; Woo, C. H.

    2017-09-01

    The many-body dynamics of a crystalline solid containing an interstitial solute atom (ISA) is usually interpreted within the one-particle approximation as a random walker hopping among trapping centers at periodic lattice sites. The corresponding mobility and diffusivity can be formulated based on the transition-state theory in the form of the Arrhenius law. Possible issues arising from the many-body nature of the dynamics may need to be understood and resolved both scientifically and technologically. Noting the congruence between the dynamics of the many-body and stochastic systems within the Mori-Zwanzig theory, we analyzed the dynamics of a model particle subjected to a saw-tooth potential in a noisy medium. The ISA mobility is found to be governed by two sources of dissipative friction: that which is produced by the scattering of lattice waves by the moving ISA (phonon wind), and that which is derived from the energy dissipation associated with overcoming the migration barrier screened by lattice waves (i.e., phonon screened). The many-body effect in both cases increases with temperature, so that the first component of the friction is important at high temperatures and the second component is important at low temperatures. A formulation built on this mechanistic structure of the dissipative friction requires the mobility and diffusivity to be expressed not only in terms of the migration enthalpy and entropy, but also of the phonon drag coefficient. As a test, the complex temperature dependence of the mobility and diffusivity of interstitial helium in BCC W obtained from molecular-dynamics simulation is very well reproduced.

  8. Noisy Oscillations in the Actin Cytoskeleton of Chemotactic Amoeba.

    PubMed

    Negrete, Jose; Pumir, Alain; Hsu, Hsin-Fang; Westendorf, Christian; Tarantola, Marco; Beta, Carsten; Bodenschatz, Eberhard

    2016-09-30

    Biological systems with their complex biochemical networks are known to be intrinsically noisy. Here we investigate the dynamics of actin polymerization of amoeboid cells, which are close to the onset of oscillations. We show that the large phenotypic variability in the polymerization dynamics can be accurately captured by a generic nonlinear oscillator model in the presence of noise. We determine the relative role of the noise with a single dimensionless, experimentally accessible parameter, thus providing a quantitative description of the variability in a population of cells. Our approach, which rests on a generic description of a system close to a Hopf bifurcation and includes the effect of noise, can characterize the dynamics of a large class of noisy systems close to an oscillatory instability.

  9. Noisy Oscillations in the Actin Cytoskeleton of Chemotactic Amoeba

    NASA Astrophysics Data System (ADS)

    Negrete, Jose; Pumir, Alain; Hsu, Hsin-Fang; Westendorf, Christian; Tarantola, Marco; Beta, Carsten; Bodenschatz, Eberhard

    2016-09-01

    Biological systems with their complex biochemical networks are known to be intrinsically noisy. Here we investigate the dynamics of actin polymerization of amoeboid cells, which are close to the onset of oscillations. We show that the large phenotypic variability in the polymerization dynamics can be accurately captured by a generic nonlinear oscillator model in the presence of noise. We determine the relative role of the noise with a single dimensionless, experimentally accessible parameter, thus providing a quantitative description of the variability in a population of cells. Our approach, which rests on a generic description of a system close to a Hopf bifurcation and includes the effect of noise, can characterize the dynamics of a large class of noisy systems close to an oscillatory instability.

  10. A methodology for least-squares local quasi-geoid modelling using a noisy satellite-only gravity field model

    NASA Astrophysics Data System (ADS)

    Klees, R.; Slobbe, D. C.; Farahani, H. H.

    2018-04-01

    The paper is about a methodology to combine a noisy satellite-only global gravity field model (GGM) with other noisy datasets to estimate a local quasi-geoid model using weighted least-squares techniques. In this way, we attempt to improve the quality of the estimated quasi-geoid model and to complement it with a full noise covariance matrix for quality control and further data processing. The methodology goes beyond the classical remove-compute-restore approach, which does not account for the noise in the satellite-only GGM. We suggest and analyse three different approaches of data combination. Two of them are based on a local single-scale spherical radial basis function (SRBF) model of the disturbing potential, and one is based on a two-scale SRBF model. Using numerical experiments, we show that a single-scale SRBF model does not fully exploit the information in the satellite-only GGM. We explain this by a lack of flexibility of a single-scale SRBF model to deal with datasets of significantly different bandwidths. The two-scale SRBF model performs well in this respect, provided that the model coefficients representing the two scales are estimated separately. The corresponding methodology is developed in this paper. Using the statistics of the least-squares residuals and the statistics of the errors in the estimated two-scale quasi-geoid model, we demonstrate that the developed methodology provides a two-scale quasi-geoid model, which exploits the information in all datasets.

  11. 3D synthetic aperture for controlled-source electromagnetics

    NASA Astrophysics Data System (ADS)

    Knaak, Allison

    Locating hydrocarbon reservoirs has become more challenging with smaller, deeper or shallower targets in complicated environments. Controlled-source electromagnetics (CSEM), is a geophysical electromagnetic method used to detect and derisk hydrocarbon reservoirs in marine settings, but it is limited by the size of the target, low-spatial resolution, and depth of the reservoir. To reduce the impact of complicated settings and improve the detecting capabilities of CSEM, I apply synthetic aperture to CSEM responses, which virtually increases the length and width of the CSEM source by combining the responses from multiple individual sources. Applying a weight to each source steers or focuses the synthetic aperture source array in the inline and crossline directions. To evaluate the benefits of a 2D source distribution, I test steered synthetic aperture on 3D diffusive fields and view the changes with a new visualization technique. Then I apply 2D steered synthetic aperture to 3D noisy synthetic CSEM fields, which increases the detectability of the reservoir significantly. With more general weighting, I develop an optimization method to find the optimal weights for synthetic aperture arrays that adapts to the information in the CSEM data. The application of optimally weighted synthetic aperture to noisy, simulated electromagnetic fields reduces the presence of noise, increases detectability, and better defines the lateral extent of the target. I then modify the optimization method to include a term that minimizes the variance of random, independent noise. With the application of the modified optimization method, the weighted synthetic aperture responses amplifies the anomaly from the reservoir, lowers the noise floor, and reduces noise streaks in noisy CSEM responses from sources offset kilometers from the receivers. Even with changes to the location of the reservoir and perturbations to the physical properties, synthetic aperture is still able to highlight targets correctly, which allows use of the method in locations where the subsurface models are built from only estimates. In addition to the technical work in this thesis, I explore the interface between science, government, and society by examining the controversy over hydraulic fracturing and by suggesting a process to aid the debate and possibly other future controversies.

  12. Particle model for optical noisy image recovery via stochastic resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Yongbin; Liu, Hongjun; Huang, Nan; Wang, Zhaolu; Han, Jing

    2017-10-01

    We propose a particle model for investigating the optical noisy image recovery via stochastic resonance. The light propagating in nonlinear media is regarded as moving particles, which are used for analyzing the nonlinear coupling of signal and noise. Owing to nonlinearity, a signal seeds a potential to reinforce itself at the expense of noise. The applied electric field, noise intensity, and correlation length are important parameters that influence the recovery effects. The noise-hidden image with the signal-to-noise intensity ratio of 1:30 is successfully restored and an optimal cross-correlation gain of 6.1 is theoretically obtained.

  13. Cole-Cole, linear and multivariate modeling of capacitance data for on-line monitoring of biomass.

    PubMed

    Dabros, Michal; Dennewald, Danielle; Currie, David J; Lee, Mark H; Todd, Robert W; Marison, Ian W; von Stockar, Urs

    2009-02-01

    This work evaluates three techniques of calibrating capacitance (dielectric) spectrometers used for on-line monitoring of biomass: modeling of cell properties using the theoretical Cole-Cole equation, linear regression of dual-frequency capacitance measurements on biomass concentration, and multivariate (PLS) modeling of scanning dielectric spectra. The performance and robustness of each technique is assessed during a sequence of validation batches in two experimental settings of differing signal noise. In more noisy conditions, the Cole-Cole model had significantly higher biomass concentration prediction errors than the linear and multivariate models. The PLS model was the most robust in handling signal noise. In less noisy conditions, the three models performed similarly. Estimates of the mean cell size were done additionally using the Cole-Cole and PLS models, the latter technique giving more satisfactory results.

  14. Sparse and optimal acquisition design for diffusion MRI and beyond

    PubMed Central

    Koay, Cheng Guan; Özarslan, Evren; Johnson, Kevin M.; Meyerand, M. Elizabeth

    2012-01-01

    Purpose: Diffusion magnetic resonance imaging (MRI) in combination with functional MRI promises a whole new vista for scientists to investigate noninvasively the structural and functional connectivity of the human brain—the human connectome, which had heretofore been out of reach. As with other imaging modalities, diffusion MRI data are inherently noisy and its acquisition time-consuming. Further, a faithful representation of the human connectome that can serve as a predictive model requires a robust and accurate data-analytic pipeline. The focus of this paper is on one of the key segments of this pipeline—in particular, the development of a sparse and optimal acquisition (SOA) design for diffusion MRI multiple-shell acquisition and beyond. Methods: The authors propose a novel optimality criterion for sparse multiple-shell acquisition and quasimultiple-shell designs in diffusion MRI and a novel and effective semistochastic and moderately greedy combinatorial search strategy with simulated annealing to locate the optimum design or configuration. The goal of the optimality criteria is threefold: first, to maximize uniformity of the diffusion measurements in each shell, which is equivalent to maximal incoherence in angular measurements; second, to maximize coverage of the diffusion measurements around each radial line to achieve maximal incoherence in radial measurements for multiple-shell acquisition; and finally, to ensure maximum uniformity of diffusion measurement directions in the limiting case when all the shells are coincidental as in the case of a single-shell acquisition. The approach taken in evaluating the stability of various acquisition designs is based on the condition number and the A-optimal measure of the design matrix. Results: Even though the number of distinct configurations for a given set of diffusion gradient directions is very large in general—e.g., in the order of 10232 for a set of 144 diffusion gradient directions, the proposed search strategy was found to be effective in finding the optimum configuration. It was found that the square design is the most robust (i.e., with stable condition numbers and A-optimal measures under varying experimental conditions) among many other possible designs of the same sample size. Under the same performance evaluation, the square design was found to be more robust than the widely used sampling schemes similar to that of 3D radial MRI and of diffusion spectrum imaging (DSI). Conclusions: A novel optimality criterion for sparse multiple-shell acquisition and quasimultiple-shell designs in diffusion MRI and an effective search strategy for finding the best configuration have been developed. The results are very promising, interesting, and practical for diffusion MRI acquisitions. PMID:22559620

  15. Deep neural network and noise classification-based speech enhancement

    NASA Astrophysics Data System (ADS)

    Shi, Wenhua; Zhang, Xiongwei; Zou, Xia; Han, Wei

    2017-07-01

    In this paper, a speech enhancement method using noise classification and Deep Neural Network (DNN) was proposed. Gaussian mixture model (GMM) was employed to determine the noise type in speech-absent frames. DNN was used to model the relationship between noisy observation and clean speech. Once the noise type was determined, the corresponding DNN model was applied to enhance the noisy speech. GMM was trained with mel-frequency cepstrum coefficients (MFCC) and the parameters were estimated with an iterative expectation-maximization (EM) algorithm. Noise type was updated by spectrum entropy-based voice activity detection (VAD). Experimental results demonstrate that the proposed method could achieve better objective speech quality and smaller distortion under stationary and non-stationary conditions.

  16. Parametric reduced models for the nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Harlim, John; Li, Xiantao

    2015-05-01

    Reduced models for the (defocusing) nonlinear Schrödinger equation are developed. In particular, we develop reduced models that only involve the low-frequency modes given noisy observations of these modes. The ansatz of the reduced parametric models are obtained by employing a rational approximation and a colored-noise approximation, respectively, on the memory terms and the random noise of a generalized Langevin equation that is derived from the standard Mori-Zwanzig formalism. The parameters in the resulting reduced models are inferred from noisy observations with a recently developed ensemble Kalman filter-based parametrization method. The forecasting skill across different temperature regimes are verified by comparing the moments up to order four, a two-time correlation function statistics, and marginal densities of the coarse-grained variables.

  17. Parametric reduced models for the nonlinear Schrödinger equation.

    PubMed

    Harlim, John; Li, Xiantao

    2015-05-01

    Reduced models for the (defocusing) nonlinear Schrödinger equation are developed. In particular, we develop reduced models that only involve the low-frequency modes given noisy observations of these modes. The ansatz of the reduced parametric models are obtained by employing a rational approximation and a colored-noise approximation, respectively, on the memory terms and the random noise of a generalized Langevin equation that is derived from the standard Mori-Zwanzig formalism. The parameters in the resulting reduced models are inferred from noisy observations with a recently developed ensemble Kalman filter-based parametrization method. The forecasting skill across different temperature regimes are verified by comparing the moments up to order four, a two-time correlation function statistics, and marginal densities of the coarse-grained variables.

  18. Differentially Private Frequent Subgraph Mining

    PubMed Central

    Xu, Shengzhi; Xiong, Li; Cheng, Xiang; Xiao, Ke

    2016-01-01

    Mining frequent subgraphs from a collection of input graphs is an important topic in data mining research. However, if the input graphs contain sensitive information, releasing frequent subgraphs may pose considerable threats to individual's privacy. In this paper, we study the problem of frequent subgraph mining (FGM) under the rigorous differential privacy model. We introduce a novel differentially private FGM algorithm, which is referred to as DFG. In this algorithm, we first privately identify frequent subgraphs from input graphs, and then compute the noisy support of each identified frequent subgraph. In particular, to privately identify frequent subgraphs, we present a frequent subgraph identification approach which can improve the utility of frequent subgraph identifications through candidates pruning. Moreover, to compute the noisy support of each identified frequent subgraph, we devise a lattice-based noisy support derivation approach, where a series of methods has been proposed to improve the accuracy of the noisy supports. Through formal privacy analysis, we prove that our DFG algorithm satisfies ε-differential privacy. Extensive experimental results on real datasets show that the DFG algorithm can privately find frequent subgraphs with high data utility. PMID:27616876

  19. On Two-Dimensional ARMA Models for Image Analysis.

    DTIC Science & Technology

    1980-03-24

    2-D ARMA models for image analysis . Particular emphasis is placed on restoration of noisy images using 2-D ARMA models. Computer results are...is concluded that the models are very effective linear models for image analysis . (Author)

  20. The noisy edge of traveling waves

    PubMed Central

    Hallatschek, Oskar

    2011-01-01

    Traveling waves are ubiquitous in nature and control the speed of many important dynamical processes, including chemical reactions, epidemic outbreaks, and biological evolution. Despite their fundamental role in complex systems, traveling waves remain elusive because they are often dominated by rare fluctuations in the wave tip, which have defied any rigorous analysis so far. Here, we show that by adjusting nonlinear model details, noisy traveling waves can be solved exactly. The moment equations of these tuned models are closed and have a simple analytical structure resembling the deterministic approximation supplemented by a nonlocal cutoff term. The peculiar form of the cutoff shapes the noisy edge of traveling waves and is critical for the correct prediction of the wave speed and its fluctuations. Our approach is illustrated and benchmarked using the example of fitness waves arising in simple models of microbial evolution, which are highly sensitive to number fluctuations. We demonstrate explicitly how these models can be tuned to account for finite population sizes and determine how quickly populations adapt as a function of population size and mutation rates. More generally, our method is shown to apply to a broad class of models, in which number fluctuations are generated by branching processes. Because of this versatility, the method of model tuning may serve as a promising route toward unraveling universal properties of complex discrete particle systems. PMID:21187435

  1. a Generic Probabilistic Model and a Hierarchical Solution for Sensor Localization in Noisy and Restricted Conditions

    NASA Astrophysics Data System (ADS)

    Ji, S.; Yuan, X.

    2016-06-01

    A generic probabilistic model, under fundamental Bayes' rule and Markov assumption, is introduced to integrate the process of mobile platform localization with optical sensors. And based on it, three relative independent solutions, bundle adjustment, Kalman filtering and particle filtering are deduced under different and additional restrictions. We want to prove that first, Kalman filtering, may be a better initial-value supplier for bundle adjustment than traditional relative orientation in irregular strips and networks or failed tie-point extraction. Second, in high noisy conditions, particle filtering can act as a bridge for gap binding when a large number of gross errors fail a Kalman filtering or a bundle adjustment. Third, both filtering methods, which help reduce the error propagation and eliminate gross errors, guarantee a global and static bundle adjustment, who requires the strictest initial values and control conditions. The main innovation is about the integrated processing of stochastic errors and gross errors in sensor observations, and the integration of the three most used solutions, bundle adjustment, Kalman filtering and particle filtering into a generic probabilistic localization model. The tests in noisy and restricted situations are designed and examined to prove them.

  2. Learning a Health Knowledge Graph from Electronic Medical Records.

    PubMed

    Rotmensch, Maya; Halpern, Yoni; Tlimat, Abdulhakim; Horng, Steven; Sontag, David

    2017-07-20

    Demand for clinical decision support systems in medicine and self-diagnostic symptom checkers has substantially increased in recent years. Existing platforms rely on knowledge bases manually compiled through a labor-intensive process or automatically derived using simple pairwise statistics. This study explored an automated process to learn high quality knowledge bases linking diseases and symptoms directly from electronic medical records. Medical concepts were extracted from 273,174 de-identified patient records and maximum likelihood estimation of three probabilistic models was used to automatically construct knowledge graphs: logistic regression, naive Bayes classifier and a Bayesian network using noisy OR gates. A graph of disease-symptom relationships was elicited from the learned parameters and the constructed knowledge graphs were evaluated and validated, with permission, against Google's manually-constructed knowledge graph and against expert physician opinions. Our study shows that direct and automated construction of high quality health knowledge graphs from medical records using rudimentary concept extraction is feasible. The noisy OR model produces a high quality knowledge graph reaching precision of 0.85 for a recall of 0.6 in the clinical evaluation. Noisy OR significantly outperforms all tested models across evaluation frameworks (p < 0.01).

  3. Model-Based Localization and Tracking Using Bluetooth Low-Energy Beacons

    PubMed Central

    Cemgil, Ali Taylan

    2017-01-01

    We introduce a high precision localization and tracking method that makes use of cheap Bluetooth low-energy (BLE) beacons only. We track the position of a moving sensor by integrating highly unreliable and noisy BLE observations streaming from multiple locations. A novel aspect of our approach is the development of an observation model, specifically tailored for received signal strength indicator (RSSI) fingerprints: a combination based on the optimal transport model of Wasserstein distance. The tracking results of the entire system are compared with alternative baseline estimation methods, such as nearest neighboring fingerprints and an artificial neural network. Our results show that highly accurate estimation from noisy Bluetooth data is practically feasible with an observation model based on Wasserstein distance interpolation combined with the sequential Monte Carlo (SMC) method for tracking. PMID:29109375

  4. Model-Based Localization and Tracking Using Bluetooth Low-Energy Beacons.

    PubMed

    Daniş, F Serhan; Cemgil, Ali Taylan

    2017-10-29

    We introduce a high precision localization and tracking method that makes use of cheap Bluetooth low-energy (BLE) beacons only. We track the position of a moving sensor by integrating highly unreliable and noisy BLE observations streaming from multiple locations. A novel aspect of our approach is the development of an observation model, specifically tailored for received signal strength indicator (RSSI) fingerprints: a combination based on the optimal transport model of Wasserstein distance. The tracking results of the entire system are compared with alternative baseline estimation methods, such as nearest neighboring fingerprints and an artificial neural network. Our results show that highly accurate estimation from noisy Bluetooth data is practically feasible with an observation model based on Wasserstein distance interpolation combined with the sequential Monte Carlo (SMC) method for tracking.

  5. Deconvolution of noisy transient signals: a Kalman filtering application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candy, J.V.; Zicker, J.E.

    The deconvolution of transient signals from noisy measurements is a common problem occuring in various tests at Lawrence Livermore National Laboratory. The transient deconvolution problem places atypical constraints on algorithms presently available. The Schmidt-Kalman filter, a time-varying, tunable predictor, is designed using a piecewise constant model of the transient input signal. A simulation is developed to test the algorithm for various input signal bandwidths and different signal-to-noise ratios for the input and output sequences. The algorithm performance is reasonable.

  6. A Noisy-Channel Approach to Question Answering

    DTIC Science & Technology

    2003-01-01

    question “When did Elvis Presley die?” To do this, we build a noisy channel model that makes explicit how answer sentence parse trees are mapped into...in Figure 1, the algorithm above generates the following training example: Q: When did Elvis Presley die ? SA: Presley died PP PP in A_DATE, and...engine as a potential candidate for finding the answer to the question “When did Elvis Presley die?” In this case, we don’t know what the answer is

  7. Modeling global vector fields of chaotic systems from noisy time series with the aid of structure-selection techniques.

    PubMed

    Xu, Daolin; Lu, Fangfang

    2006-12-01

    We address the problem of reconstructing a set of nonlinear differential equations from chaotic time series. A method that combines the implicit Adams integration and the structure-selection technique of an error reduction ratio is proposed for system identification and corresponding parameter estimation of the model. The structure-selection technique identifies the significant terms from a pool of candidates of functional basis and determines the optimal model through orthogonal characteristics on data. The technique with the Adams integration algorithm makes the reconstruction available to data sampled with large time intervals. Numerical experiment on Lorenz and Rossler systems shows that the proposed strategy is effective in global vector field reconstruction from noisy time series.

  8. Statistical mechanics of tuned cell signalling: sensitive collective response by synthetic biological circuits

    NASA Astrophysics Data System (ADS)

    Voliotis, M.; Liverpool, T. B.

    2017-03-01

    Living cells sense and process environmental cues through noisy biochemical mechanisms. This apparatus limits the scope of engineering cells as viable sensors. Here, we highlight a mechanism that enables robust, population-wide responses to external stimulation based on cellular communication, known as quorum sensing. We propose a synthetic circuit consisting of two mutually repressing quorum sensing modules. At low cell densities the system behaves like a genetic toggle switch, while at higher cell densities the behaviour of nearby cells is coupled via diffusible quorum sensing molecules. We show by systematic coarse graining that at large length and timescales that the system can be described using the Ising model of a ferromagnet. Thus, in analogy with magnetic systems, the sensitivity of the population-wide response, or its ‘susceptibility’ to a change in the external signal, is highly enhanced for a narrow range of cell-cell coupling close to a critical value. We expect that our approach will be used to enhance the sensitivity of synthetic bio-sensing networks.

  9. How input fluctuations reshape the dynamics of a biological switching system

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Kessler, David A.; Rappel, Wouter-Jan; Levine, Herbert

    2012-12-01

    An important task in quantitative biology is to understand the role of stochasticity in biochemical regulation. Here, as an extension of our recent work [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.107.148101 107, 148101 (2011)], we study how input fluctuations affect the stochastic dynamics of a simple biological switch. In our model, the on transition rate of the switch is directly regulated by a noisy input signal, which is described as a non-negative mean-reverting diffusion process. This continuous process can be a good approximation of the discrete birth-death process and is much more analytically tractable. Within this setup, we apply the Feynman-Kac theorem to investigate the statistical features of the output switching dynamics. Consistent with our previous findings, the input noise is found to effectively suppress the input-dependent transitions. We show analytically that this effect becomes significant when the input signal fluctuates greatly in amplitude and reverts slowly to its mean.

  10. Hot topics in noise

    NASA Astrophysics Data System (ADS)

    Stinson, Michael R.

    2003-10-01

    Our world continues to be a noisy place and the challenge to ``increase and diffuse knowledge of noise propagation, passive and active noise control, and the effects of noise'' remains. In the last several years, noise in the classroom has emerged as one of the hotter topics: Considerable progress has been made in the underpinning research, the formulation of recommendations, and the process of educating society on the social and personal impact of inadequate acoustical conditions in classrooms. The establishment of the ANSI S12.60-2002 standard for classroom acoustics was a milestone event. Noise in cities and the understanding of our soundscapes are subjects of ongoing significance. The development of standards and regulations is a continuing process, with urban community noise regulations, aviation noise, and the preservation of natural quiet in national parks being of current concern. New methods to reduce noise are under development and include passive and active methods of noise control, techniques for modeling the performance of noise barriers, and approaches for designing product sound quality.

  11. Normalized sensitivities and parameter identifiability of in situ diffusion experiments on Callovo Oxfordian clay at Bure site

    NASA Astrophysics Data System (ADS)

    Samper, J.; Dewonck, S.; Zheng, L.; Yang, Q.; Naves, A.

    Diffusion of inert and reactive tracers (DIR) is an experimental program performed by ANDRA at Bure underground research laboratory in Meuse/Haute Marne (France) to characterize diffusion and retention of radionuclides in Callovo-Oxfordian (C-Ox) argillite. In situ diffusion experiments were performed in vertical boreholes to determine diffusion and retention parameters of selected radionuclides. C-Ox clay exhibits a mild diffusion anisotropy due to stratification. Interpretation of in situ diffusion experiments is complicated by several non-ideal effects caused by the presence of a sintered filter, a gap between the filter and borehole wall and an excavation disturbed zone (EdZ). The relevance of such non-ideal effects and their impact on estimated clay parameters have been evaluated with numerical sensitivity analyses and synthetic experiments having similar parameters and geometric characteristics as real DIR experiments. Normalized dimensionless sensitivities of tracer concentrations at the test interval have been computed numerically. Tracer concentrations are found to be sensitive to all key parameters. Sensitivities are tracer dependent and vary with time. These sensitivities are useful to identify which are the parameters that can be estimated with less uncertainty and find the times at which tracer concentrations begin to be sensitive to each parameter. Synthetic experiments generated with prescribed known parameters have been interpreted automatically with INVERSE-CORE 2D and used to evaluate the relevance of non-ideal effects and ascertain parameter identifiability in the presence of random measurement errors. Identifiability analysis of synthetic experiments reveals that data noise makes difficult the estimation of clay parameters. Parameters of clay and EdZ cannot be estimated simultaneously from noisy data. Models without an EdZ fail to reproduce synthetic data. Proper interpretation of in situ diffusion experiments requires accounting for filter, gap and EdZ. Estimates of the effective diffusion coefficient and the porosity of clay are highly correlated, indicating that these parameters cannot be estimated simultaneously. Accurate estimation of De and porosities of clay and EdZ is only possible when the standard deviation of random noise is less than 0.01. Small errors in the volume of the circulation system do not affect clay parameter estimates. Normalized sensitivities as well as the identifiability analysis of synthetic experiments provide additional insight on inverse estimation of in situ diffusion experiments and will be of great benefit for the interpretation of real DIR in situ diffusion experiments.

  12. AveBoost2: Boosting for Noisy Data

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.

    2004-01-01

    AdaBoost is a well-known ensemble learning algorithm that constructs its constituent or base models in sequence. A key step in AdaBoost is constructing a distribution over the training examples to create each base model. This distribution, represented as a vector, is constructed to be orthogonal to the vector of mistakes made by the pre- vious base model in the sequence. The idea is to make the next base model's errors uncorrelated with those of the previous model. In previous work, we developed an algorithm, AveBoost, that constructed distributions orthogonal to the mistake vectors of all the previous models, and then averaged them to create the next base model s distribution. Our experiments demonstrated the superior accuracy of our approach. In this paper, we slightly revise our algorithm to allow us to obtain non-trivial theoretical results: bounds on the training error and generalization error (difference between training and test error). Our averaging process has a regularizing effect which, as expected, leads us to a worse training error bound for our algorithm than for AdaBoost but a superior generalization error bound. For this paper, we experimented with the data that we used in both as originally supplied and with added label noise-a small fraction of the data has its original label changed. Noisy data are notoriously difficult for AdaBoost to learn. Our algorithm's performance improvement over AdaBoost is even greater on the noisy data than the original data.

  13. Dictionary learning based noisy image super-resolution via distance penalty weight model

    PubMed Central

    Han, Yulan; Zhao, Yongping; Wang, Qisong

    2017-01-01

    In this study, we address the problem of noisy image super-resolution. Noisy low resolution (LR) image is always obtained in applications, while most of the existing algorithms assume that the LR image is noise-free. As to this situation, we present an algorithm for noisy image super-resolution which can achieve simultaneously image super-resolution and denoising. And in the training stage of our method, LR example images are noise-free. For different input LR images, even if the noise variance varies, the dictionary pair does not need to be retrained. For the input LR image patch, the corresponding high resolution (HR) image patch is reconstructed through weighted average of similar HR example patches. To reduce computational cost, we use the atoms of learned sparse dictionary as the examples instead of original example patches. We proposed a distance penalty model for calculating the weight, which can complete a second selection on similar atoms at the same time. Moreover, LR example patches removed mean pixel value are also used to learn dictionary rather than just their gradient features. Based on this, we can reconstruct initial estimated HR image and denoised LR image. Combined with iterative back projection, the two reconstructed images are applied to obtain final estimated HR image. We validate our algorithm on natural images and compared with the previously reported algorithms. Experimental results show that our proposed method performs better noise robustness. PMID:28759633

  14. Structural models used in real-time biosurveillance outbreak detection and outbreak curve isolation from noisy background morbidity levels

    PubMed Central

    Cheng, Karen Elizabeth; Crary, David J; Ray, Jaideep; Safta, Cosmin

    2013-01-01

    Objective We discuss the use of structural models for the analysis of biosurveillance related data. Methods and results Using a combination of real and simulated data, we have constructed a data set that represents a plausible time series resulting from surveillance of a large scale bioterrorist anthrax attack in Miami. We discuss the performance of anomaly detection with structural models for these data using receiver operating characteristic (ROC) and activity monitoring operating characteristic (AMOC) analysis. In addition, we show that these techniques provide a method for predicting the level of the outbreak valid for approximately 2 weeks, post-alarm. Conclusions Structural models provide an effective tool for the analysis of biosurveillance data, in particular for time series with noisy, non-stationary background and missing data. PMID:23037798

  15. Detection of frequency-mode-shift during thermoacoustic combustion oscillations in a staged aircraft engine model combustor

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hiroaki; Gotoda, Hiroshi; Tachibana, Shigeru; Yoshida, Seiji

    2017-12-01

    We conduct an experimental study using time series analysis based on symbolic dynamics to detect a precursor of frequency-mode-shift during thermoacoustic combustion oscillations in a staged aircraft engine model combustor. With increasing amount of the main fuel, a significant shift in the dominant frequency-mode occurs in noisy periodic dynamics, leading to a notable increase in oscillation amplitudes. The sustainment of noisy periodic dynamics during thermoacoustic combustion oscillations is clearly shown by the multiscale complexity-entropy causality plane in terms of statistical complexity. A modified version of the permutation entropy allows us to detect a precursor of the frequency-mode-shift before the amplification of pressure fluctuations.

  16. How noisy does a noisy miner have to be? Amplitude adjustments of alarm calls in an avian urban 'adapter'.

    PubMed

    Lowry, Hélène; Lill, Alan; Wong, Bob B M

    2012-01-01

    Urban environments generate constant loud noise, which creates a formidable challenge for many animals relying on acoustic communication. Some birds make vocal adjustments that reduce auditory masking by altering, for example, the frequency (kHz) or timing of vocalizations. Another adjustment, well documented for birds under laboratory and natural field conditions, is a noise level-dependent change in sound signal amplitude (the 'Lombard effect'). To date, however, field research on amplitude adjustments in urban environments has focused exclusively on bird song. We investigated amplitude regulation of alarm calls using, as our model, a successful urban 'adapter' species, the Noisy miner, Manorina melanocephala. We compared several different alarm calls under contrasting noise conditions. Individuals at noisier locations (arterial roads) alarm called significantly more loudly than those at quieter locations (residential streets). Other mechanisms known to improve sound signal transmission in 'noise', namely use of higher perches and in-flight calling, did not differ between site types. Intriguingly, the observed preferential use of different alarm calls by Noisy miners inhabiting arterial roads and residential streets was unlikely to have constituted a vocal modification made in response to sound-masking in the urban environment because the calls involved fell within the main frequency range of background anthropogenic noise. The results of our study suggest that a species, which has the ability to adjust the amplitude of its signals, might have a 'natural' advantage in noisy urban environments.

  17. Frogs Exploit Statistical Regularities in Noisy Acoustic Scenes to Solve Cocktail-Party-like Problems.

    PubMed

    Lee, Norman; Ward, Jessica L; Vélez, Alejandro; Micheyl, Christophe; Bee, Mark A

    2017-03-06

    Noise is a ubiquitous source of errors in all forms of communication [1]. Noise-induced errors in speech communication, for example, make it difficult for humans to converse in noisy social settings, a challenge aptly named the "cocktail party problem" [2]. Many nonhuman animals also communicate acoustically in noisy social groups and thus face biologically analogous problems [3]. However, we know little about how the perceptual systems of receivers are evolutionarily adapted to avoid the costs of noise-induced errors in communication. In this study of Cope's gray treefrog (Hyla chrysoscelis; Hylidae), we investigated whether receivers exploit a potential statistical regularity present in noisy acoustic scenes to reduce errors in signal recognition and discrimination. We developed an anatomical/physiological model of the peripheral auditory system to show that temporal correlation in amplitude fluctuations across the frequency spectrum ("comodulation") [4-6] is a feature of the noise generated by large breeding choruses of sexually advertising males. In four psychophysical experiments, we investigated whether females exploit comodulation in background noise to mitigate noise-induced errors in evolutionarily critical mate-choice decisions. Subjects experienced fewer errors in recognizing conspecific calls and in selecting the calls of high-quality mates in the presence of simulated chorus noise that was comodulated. These data show unequivocally, and for the first time, that exploiting statistical regularities present in noisy acoustic scenes is an important biological strategy for solving cocktail-party-like problems in nonhuman animal communication. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Bounds on the dynamics of sink populations with noisy immigration.

    PubMed

    Eager, Eric Alan; Guiver, Chris; Hodgson, Dave; Rebarber, Richard; Stott, Iain; Townley, Stuart

    2014-03-01

    Sink populations are doomed to decline to extinction in the absence of immigration. The dynamics of sink populations are not easily modelled using the standard framework of per capita rates of immigration, because numbers of immigrants are determined by extrinsic sources (for example, source populations, or population managers). Here we appeal to a systems and control framework to place upper and lower bounds on both the transient and future dynamics of sink populations that are subject to noisy immigration. Immigration has a number of interpretations and can fit a wide variety of models found in the literature. We apply the results to case studies derived from published models for Chinook salmon (Oncorhynchus tshawytscha) and blowout penstemon (Penstemon haydenii). Copyright © 2013 Elsevier Inc. All rights reserved.

  19. The effect of clumped population structure on the variability of spreading dynamics.

    PubMed

    Black, Andrew J; House, Thomas; Keeling, Matt J; Ross, Joshua V

    2014-10-21

    Processes that spread through local contact, including outbreaks of infectious diseases, are inherently noisy, and are frequently observed to be far noisier than predicted by standard stochastic models that assume homogeneous mixing. One way to reproduce the observed levels of noise is to introduce significant individual-level heterogeneity with respect to infection processes, such that some individuals are expected to generate more secondary cases than others. Here we consider a population where individuals can be naturally aggregated into clumps (subpopulations) with stronger interaction within clumps than between them. This clumped structure induces significant increases in the noisiness of a spreading process, such as the transmission of infection, despite complete homogeneity at the individual level. Given the ubiquity of such clumped aggregations (such as homes, schools and workplaces for humans or farms for livestock) we suggest this as a plausible explanation for noisiness of many epidemic time series. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Demosaicking of noisy Bayer-sampled color images with least-squares luma-chroma demultiplexing and noise level estimation.

    PubMed

    Jeon, Gwanggil; Dubois, Eric

    2013-01-01

    This paper adapts the least-squares luma-chroma demultiplexing (LSLCD) demosaicking method to noisy Bayer color filter array (CFA) images. A model is presented for the noise in white-balanced gamma-corrected CFA images. A method to estimate the noise level in each of the red, green, and blue color channels is then developed. Based on the estimated noise parameters, one of a finite set of configurations adapted to a particular level of noise is selected to demosaic the noisy data. The noise-adaptive demosaicking scheme is called LSLCD with noise estimation (LSLCD-NE). Experimental results demonstrate state-of-the-art performance over a wide range of noise levels, with low computational complexity. Many results with several algorithms, noise levels, and images are presented on our companion web site along with software to allow reproduction of our results.

  1. Estimation of object motion parameters from noisy images.

    PubMed

    Broida, T J; Chellappa, R

    1986-01-01

    An approach is presented for the estimation of object motion parameters based on a sequence of noisy images. The problem considered is that of a rigid body undergoing unknown rotational and translational motion. The measurement data consists of a sequence of noisy image coordinates of two or more object correspondence points. By modeling the object dynamics as a function of time, estimates of the model parameters (including motion parameters) can be extracted from the data using recursive and/or batch techniques. This permits a desired degree of smoothing to be achieved through the use of an arbitrarily large number of images. Some assumptions regarding object structure are presently made. Results are presented for a recursive estimation procedure: the case considered here is that of a sequence of one dimensional images of a two dimensional object. Thus, the object moves in one transverse dimension, and in depth, preserving the fundamental ambiguity of the central projection image model (loss of depth information). An iterated extended Kalman filter is used for the recursive solution. Noise levels of 5-10 percent of the object image size are used. Approximate Cramer-Rao lower bounds are derived for the model parameter estimates as a function of object trajectory and noise level. This approach may be of use in situations where it is difficult to resolve large numbers of object match points, but relatively long sequences of images (10 to 20 or more) are available.

  2. Period variability of coupled noisy oscillators

    NASA Astrophysics Data System (ADS)

    Mori, Fumito; Kori, Hiroshi

    2013-03-01

    Period variability, quantified by the standard deviation (SD) of the cycle-to-cycle period, is investigated for noisy phase oscillators. We define the checkpoint phase as the beginning or end point of one oscillation cycle and derive an expression for the SD as a function of this phase. We find that the SD is dependent on the checkpoint phase only when oscillators are coupled. The applicability of our theory is verified using a realistic model. Our work clarifies the relationship between period variability and synchronization from which valuable information regarding coupling can be inferred.

  3. A DUEL WITH SILENT NOISY GUN VERSUS NOISY GUN.

    DTIC Science & Technology

    A two person duel where the first person has one silent and one noisy shot to be fired in that order and the second person has one noisy shot is...analized for arbitrary continuously increasing, as the distance between duelists decreases, accuracy functions. The value of the duel and optimal strategies are computed. (Author)

  4. A Numerical Analysis of the Air Distribution System for the Ventilation of the Crew Quarters on board of the International Space Station

    NASA Astrophysics Data System (ADS)

    Bode, Florin; Nastase, Ilinca; Croitoru, Cristiana Verona; Sandu, Mihnea; Dogeanu, Angel

    2018-02-01

    Quality of life on the International Space Station (ISS) has become more and more important, since the time spent by astronauts outside the terrestrial atmosphere has increased in the last years. The actual concept for the Crew Quarters (CQ) have demonstrated the possibility of a personal space for sleep and free time activities in which the noise levels are lower, but not enough, compared to the noisy ISS isle way. However, there are several issues that needs to be improved to increase the performance of CQ. Our project QUEST is intended to propose a new concept of CQ in which we will correct these issues, like the noise levels will be lower, more space for astronaut, increased thermal comfort, reduce the CQ total weight, higher efficiency for the air distribution, personalized ventilation system in CQ for the crew members in order to remove CO2 from the breathing zone. This paper presents a CFD study in which we are comparing the actual and a proposed ventilation solution for introducing the air in CQ. A preliminary numerical model of the present configuration of the air distribution system of the Crew Quarters on board of the ISS, shows the need for an improved air distribution inside these enclosures. Lower velocity values at the inlet diffuser, distributed over a larger surface, as well as diffusers with improved induction would appear to be a better choice. This was confirmed through the development of a new model including linear diffusers with a larger discharge surface. In this new configuration, the regions of possible draught are dramatically reduced. The overall distributions of the velocity magnitudes displaying more uniform, lower values, in the same time with more uniform temperatures. All these observations allow us to consider a better mixing of the air inside the enclosure.

  5. Dendritic tree extraction from noisy maximum intensity projection images in C. elegans.

    PubMed

    Greenblum, Ayala; Sznitman, Raphael; Fua, Pascal; Arratia, Paulo E; Oren, Meital; Podbilewicz, Benjamin; Sznitman, Josué

    2014-06-12

    Maximum Intensity Projections (MIP) of neuronal dendritic trees obtained from confocal microscopy are frequently used to study the relationship between tree morphology and mechanosensory function in the model organism C. elegans. Extracting dendritic trees from noisy images remains however a strenuous process that has traditionally relied on manual approaches. Here, we focus on automated and reliable 2D segmentations of dendritic trees following a statistical learning framework. Our dendritic tree extraction (DTE) method uses small amounts of labelled training data on MIPs to learn noise models of texture-based features from the responses of tree structures and image background. Our strategy lies in evaluating statistical models of noise that account for both the variability generated from the imaging process and from the aggregation of information in the MIP images. These noisy models are then used within a probabilistic, or Bayesian framework to provide a coarse 2D dendritic tree segmentation. Finally, some post-processing is applied to refine the segmentations and provide skeletonized trees using a morphological thinning process. Following a Leave-One-Out Cross Validation (LOOCV) method for an MIP databse with available "ground truth" images, we demonstrate that our approach provides significant improvements in tree-structure segmentations over traditional intensity-based methods. Improvements for MIPs under various imaging conditions are both qualitative and quantitative, as measured from Receiver Operator Characteristic (ROC) curves and the yield and error rates in the final segmentations. In a final step, we demonstrate our DTE approach on previously unseen MIP samples including the extraction of skeletonized structures, and compare our method to a state-of-the art dendritic tree tracing software. Overall, our DTE method allows for robust dendritic tree segmentations in noisy MIPs, outperforming traditional intensity-based methods. Such approach provides a useable segmentation framework, ultimately delivering a speed-up for dendritic tree identification on the user end and a reliable first step towards further morphological characterizations of tree arborization.

  6. SINOMA - A new iterative statistical approach for the identification of linear relationships between noisy time series

    NASA Astrophysics Data System (ADS)

    Thees, Barnim; Buras, Allan; Jetschke, Gottfried; Kutzbach, Lars; Zorita, Eduardo; Wilmking, Martin

    2014-05-01

    In paleoclimatology, reconstructions of environmental conditions play a significant role. Such reconstructions rely on the relationship between proxies (e.g. tree-rings, lake sediments) and the processes which are to be reconstructed (e.g. temperature, precipitation, solar activity). However, both of these variable types in general are noisy. For instance, ring-width is only a proxy for tree growth and further determined by several other environmental signals (e.g. precipitation, length of growing season, competition). On the other hand, records of process data that are to be reconstructed are mostly available for too short periods (too short in terms of calibration) at the particular site at which the proxy data have been sampled. The resulting 'spatial' noise (e.g. by using climate station data not situated at the proxy site) causes additional errors in the relationship between measured proxy data and available process data (e.g. Kutzbach et al., 2011). If deriving models from such noisy data, Thees et al. (2009) and Kutzbach et al. (2011) could show (amongst others), that model slopes (the factor with which the one variable is multiplied to predict the other variable) in most cases are misestimated - depending on the ratio of the variances of the respective variable noises. Despite these facts, many recent reconstructions are based on ordinary least squares regressions, which underestimate model slopes as they do not account for the noise in the predictor variable (Kutzbach et al., 2011). This is because there yet only are few methodological approaches available to treat noisy data in terms of modeling, and for those methods additional information (e.g. a good estimate of the error noise ratio) which often is impossible to acquire is needed. Here we introduce the Sequential Iterative NOise Matching Algorithm - SINOMA - with which we are able to derive good estimates for model slopes between noisy time series. The mathematical background of SINOMA is described accompanied by a successful application to a pseudo-proxy dataset of which the error noise conditions and true model parameters are known. Further examples on its successful application are intended for presentation in another contribution to this EGU session (Buras et al., 2014) which aims at representing SINOMAs range of applicability rather than its theoretical background which is the focus of the herewith submitted contribution. Given the features of yet published paleoclimatological reconstructions (mostly ordinary least squares regression) and the generally noisy characteristics of process and proxy data, SINOMA has the potential to change our understanding of past climate variability. This is because the magnitude of amplitudes in reconstructed climate parameters may change significantly as soon as comparably precise slope estimates (as acquired by SINOMA) are used for reconstructions. Therefore, SINOMA has the potential to reframe our picture of the past. References Kutzbach, L., Thees, B., and Wilmking, M., 2011: Identification of linear relationships from noisy data using errors-in-variables models - relevance for reconstruction of past climate from tree-ring and other proxy information. Climatic Change 105, 155-177. Thees, B., Kutzbach, L., Wilmking, M., Zorita, E., 2009: Ein Bewertungsmaß für die amplitudentreue regressive Abbildung von verrauschten Daten im Rahmen einer iterativen "Errors in Variables" Modellierung (EVM). GKSS Reports 2009/8. GKSS-Forschungszentrum Geesthacht GmbH, Geesthacht, Germany, 20 pp (in German) Allan Buras, Barnim Thees, Markus Czymzik, Nadine Dräger, Ulrike Kienel, Ina Neugebauer, Florian Ott, Tobias Scharnweber, Sonia Simard, Michal Slowinski, Sandra Slowinski, Izabela Zawiska, and Martin Wilmking, 2014: SINOMA - a better tool for proxy based reconstructions? Abstract submitted to EGU-session CL 6.1.

  7. A simple two-stage model predicts response time distributions.

    PubMed

    Carpenter, R H S; Reddi, B A J; Anderson, A J

    2009-08-15

    The neural mechanisms underlying reaction times have previously been modelled in two distinct ways. When stimuli are hard to detect, response time tends to follow a random-walk model that integrates noisy sensory signals. But studies investigating the influence of higher-level factors such as prior probability and response urgency typically use highly detectable targets, and response times then usually correspond to a linear rise-to-threshold mechanism. Here we show that a model incorporating both types of element in series - a detector integrating noisy afferent signals, followed by a linear rise-to-threshold performing decision - successfully predicts not only mean response times but, much more stringently, the observed distribution of these times and the rate of decision errors over a wide range of stimulus detectability. By reconciling what previously may have seemed to be conflicting theories, we are now closer to having a complete description of reaction time and the decision processes that underlie it.

  8. Improved estimation of anomalous diffusion exponents in single-particle tracking experiments

    NASA Astrophysics Data System (ADS)

    Kepten, Eldad; Bronshtein, Irena; Garini, Yuval

    2013-05-01

    The mean square displacement is a central tool in the analysis of single-particle tracking experiments, shedding light on various biophysical phenomena. Frequently, parameters are extracted by performing time averages on single-particle trajectories followed by ensemble averaging. This procedure, however, suffers from two systematic errors when applied to particles that perform anomalous diffusion. The first is significant at short-time lags and is induced by measurement errors. The second arises from the natural heterogeneity in biophysical systems. We show how to estimate and correct these two errors and improve the estimation of the anomalous parameters for the whole particle distribution. As a consequence, we manage to characterize ensembles of heterogeneous particles even for rather short and noisy measurements where regular time-averaged mean square displacement analysis fails. We apply this method to both simulations and in vivo measurements of telomere diffusion in 3T3 mouse embryonic fibroblast cells. The motion of telomeres is found to be subdiffusive with an average exponent constant in time. Individual telomere exponents are normally distributed around the average exponent. The proposed methodology has the potential to improve experimental accuracy while maintaining lower experimental costs and complexity.

  9. Evidence of common and separate eye and hand accumulators underlying flexible eye-hand coordination

    PubMed Central

    Jana, Sumitash; Gopal, Atul

    2016-01-01

    Eye and hand movements are initiated by anatomically separate regions in the brain, and yet these movements can be flexibly coupled and decoupled, depending on the need. The computational architecture that enables this flexible coupling of independent effectors is not understood. Here, we studied the computational architecture that enables flexible eye-hand coordination using a drift diffusion framework, which predicts that the variability of the reaction time (RT) distribution scales with its mean. We show that a common stochastic accumulator to threshold, followed by a noisy effector-dependent delay, explains eye-hand RT distributions and their correlation in a visual search task that required decision-making, while an interactive eye and hand accumulator model did not. In contrast, in an eye-hand dual task, an interactive model better predicted the observed correlations and RT distributions than a common accumulator model. Notably, these two models could only be distinguished on the basis of the variability and not the means of the predicted RT distributions. Additionally, signatures of separate initiation signals were also observed in a small fraction of trials in the visual search task, implying that these distinct computational architectures were not a manifestation of the task design per se. Taken together, our results suggest two unique computational architectures for eye-hand coordination, with task context biasing the brain toward instantiating one of the two architectures. NEW & NOTEWORTHY Previous studies on eye-hand coordination have considered mainly the means of eye and hand reaction time (RT) distributions. Here, we leverage the approximately linear relationship between the mean and standard deviation of RT distributions, as predicted by the drift-diffusion model, to propose the existence of two distinct computational architectures underlying coordinated eye-hand movements. These architectures, for the first time, provide a computational basis for the flexible coupling between eye and hand movements. PMID:27784809

  10. A continuous tensor field approximation of discrete DT-MRI data for extracting microstructural and architectural features of tissue.

    PubMed

    Pajevic, Sinisa; Aldroubi, Akram; Basser, Peter J

    2002-01-01

    The effective diffusion tensor of water, D, measured by diffusion tensor MRI (DT-MRI), is inherently a discrete, noisy, voxel-averaged sample of an underlying macroscopic effective diffusion tensor field, D(x). Within fibrous tissues this field is presumed to be continuous and smooth at a gross anatomical length scale. Here a new, general mathematical framework is proposed that uses measured DT-MRI data to produce a continuous approximation to D(x). One essential finding is that the continuous tensor field representation can be constructed by repeatedly performing one-dimensional B-spline transforms of the DT-MRI data. The fidelity and noise-immunity of this approximation are tested using a set of synthetically generated tensor fields to which background noise is added via Monte Carlo methods. Generally, these tensor field templates are reproduced faithfully except at boundaries where diffusion properties change discontinuously or where the tensor field is not microscopically homogeneous. Away from such regions, the tensor field approximation does not introduce bias in useful DT-MRI parameters, such as Trace(D(x)). It also facilitates the calculation of several new parameters, particularly differential quantities obtained from the tensor of spatial gradients of D(x). As an example, we show that they can identify tissue boundaries across which diffusion properties change rapidly using in vivo human brain data. One important application of this methodology is to improve the reliability and robustness of DT-MRI fiber tractography.

  11. A diffusion-matched principal component analysis (DM-PCA) based two-channel denoising procedure for high-resolution diffusion-weighted MRI

    PubMed Central

    Chang, Hing-Chiu; Bilgin, Ali; Bernstein, Adam; Trouard, Theodore P.

    2018-01-01

    Over the past several years, significant efforts have been made to improve the spatial resolution of diffusion-weighted imaging (DWI), aiming at better detecting subtle lesions and more reliably resolving white-matter fiber tracts. A major concern with high-resolution DWI is the limited signal-to-noise ratio (SNR), which may significantly offset the advantages of high spatial resolution. Although the SNR of DWI data can be improved by denoising in post-processing, existing denoising procedures may potentially reduce the anatomic resolvability of high-resolution imaging data. Additionally, non-Gaussian noise induced signal bias in low-SNR DWI data may not always be corrected with existing denoising approaches. Here we report an improved denoising procedure, termed diffusion-matched principal component analysis (DM-PCA), which comprises 1) identifying a group of (not necessarily neighboring) voxels that demonstrate very similar magnitude signal variation patterns along the diffusion dimension, 2) correcting low-frequency phase variations in complex-valued DWI data, 3) performing PCA along the diffusion dimension for real- and imaginary-components (in two separate channels) of phase-corrected DWI voxels with matched diffusion properties, 4) suppressing the noisy PCA components in real- and imaginary-components, separately, of phase-corrected DWI data, and 5) combining real- and imaginary-components of denoised DWI data. Our data show that the new two-channel (i.e., for real- and imaginary-components) DM-PCA denoising procedure performs reliably without noticeably compromising anatomic resolvability. Non-Gaussian noise induced signal bias could also be reduced with the new denoising method. The DM-PCA based denoising procedure should prove highly valuable for high-resolution DWI studies in research and clinical uses. PMID:29694400

  12. A robust hidden Markov Gauss mixture vector quantizer for a noisy source.

    PubMed

    Pyun, Kyungsuk Peter; Lim, Johan; Gray, Robert M

    2009-07-01

    Noise is ubiquitous in real life and changes image acquisition, communication, and processing characteristics in an uncontrolled manner. Gaussian noise and Salt and Pepper noise, in particular, are prevalent in noisy communication channels, camera and scanner sensors, and medical MRI images. It is not unusual for highly sophisticated image processing algorithms developed for clean images to malfunction when used on noisy images. For example, hidden Markov Gauss mixture models (HMGMM) have been shown to perform well in image segmentation applications, but they are quite sensitive to image noise. We propose a modified HMGMM procedure specifically designed to improve performance in the presence of noise. The key feature of the proposed procedure is the adjustment of covariance matrices in Gauss mixture vector quantizer codebooks to minimize an overall minimum discrimination information distortion (MDI). In adjusting covariance matrices, we expand or shrink their elements based on the noisy image. While most results reported in the literature assume a particular noise type, we propose a framework without assuming particular noise characteristics. Without denoising the corrupted source, we apply our method directly to the segmentation of noisy sources. We apply the proposed procedure to the segmentation of aerial images with Salt and Pepper noise and with independent Gaussian noise, and we compare our results with those of the median filter restoration method and the blind deconvolution-based method, respectively. We show that our procedure has better performance than image restoration-based techniques and closely matches to the performance of HMGMM for clean images in terms of both visual segmentation results and error rate.

  13. How Noisy Does a Noisy Miner Have to Be? Amplitude Adjustments of Alarm Calls in an Avian Urban ‘Adapter’

    PubMed Central

    Lowry, Hélène; Lill, Alan; Wong, Bob B. M.

    2012-01-01

    Background Urban environments generate constant loud noise, which creates a formidable challenge for many animals relying on acoustic communication. Some birds make vocal adjustments that reduce auditory masking by altering, for example, the frequency (kHz) or timing of vocalizations. Another adjustment, well documented for birds under laboratory and natural field conditions, is a noise level-dependent change in sound signal amplitude (the ‘Lombard effect’). To date, however, field research on amplitude adjustments in urban environments has focused exclusively on bird song. Methods We investigated amplitude regulation of alarm calls using, as our model, a successful urban ‘adapter’ species, the Noisy miner, Manorina melanocephala. We compared several different alarm calls under contrasting noise conditions. Results Individuals at noisier locations (arterial roads) alarm called significantly more loudly than those at quieter locations (residential streets). Other mechanisms known to improve sound signal transmission in ‘noise’, namely use of higher perches and in-flight calling, did not differ between site types. Intriguingly, the observed preferential use of different alarm calls by Noisy miners inhabiting arterial roads and residential streets was unlikely to have constituted a vocal modification made in response to sound-masking in the urban environment because the calls involved fell within the main frequency range of background anthropogenic noise. Conclusions The results of our study suggest that a species, which has the ability to adjust the amplitude of its signals, might have a ‘natural’ advantage in noisy urban environments. PMID:22238684

  14. Predictors of noise annoyance in noisy and quiet urban streets.

    PubMed

    Paunović, Katarina; Jakovljević, Branko; Belojević, Goran

    2009-06-01

    Although noise annoyance is a major public health problem in urban areas, there is a lack of published data on predictors for noise annoyance in acoustically different urban environments. The aim of the study was to assess the predictive value of various factors on noise annoyance in noisy and quiet urban streets. Equivalent noise levels [Leq (dBA)] were measured during day, evening and night times in all of the streets of a central Belgrade municipality. Based on 24-hour noise levels, the streets were denoted as noisy (24-hour Leq over 65 dBA), or quiet (24-hour Leq under 55 dBA). A cross-sectional study was performed on 1954 adult residents (768 men and 1186 women), aged 18-80 years. Noise annoyance was estimated using a self-report five-graded scale. In both areas, two multivariate logistic regression models were fitted: the first one with nighttime noise indicators and the other one with parameters for 24-hour noise exposure. In noisy streets, the relevant predictors of high annoyance were: the orientation of living room/bedroom toward the street, noise annoyance at workplace, and noise sensitivity. Significant acoustical factors for high noise annoyance were: nighttime noise level [OR=1.02, 95%CI=1.00-1.04 (per decibel)], nighttime heavy traffic [OR=1.01, 95%CI=1.00-1.02 (per vehicle)]; or day-evening-night noise level (Lden) [OR=1.03, 95%CI=1.00-1.07 (per decibel)]. In quiet streets, the significant predictors were: noise sensitivity, the time spent at home daily, light vehicles at nighttime or heavy vehicles at daytime. Our study identified subjective noise sensitivity as a common annoyance predictor, regardless of noise exposure. Noise levels were important indicators of annoyance only in noisy streets, both for nighttime and 24-hour exposure. We propose that noise sensitivity is the most relevant personal trait for future studies and that nighttime noise levels might be as good as Lden in predicting annoyance in noisy urban areas.

  15. Reduction of noise and image artifacts in computed tomography by nonlinear filtration of projection images

    NASA Astrophysics Data System (ADS)

    Demirkaya, Omer

    2001-07-01

    This study investigates the efficacy of filtering two-dimensional (2D) projection images of Computer Tomography (CT) by the nonlinear diffusion filtration in removing the statistical noise prior to reconstruction. The projection images of Shepp-Logan head phantom were degraded by Gaussian noise. The variance of the Gaussian distribution was adaptively changed depending on the intensity at a given pixel in the projection image. The corrupted projection images were then filtered using the nonlinear anisotropic diffusion filter. The filtered projections as well as original noisy projections were reconstructed using filtered backprojection (FBP) with Ram-Lak filter and/or Hanning window. The ensemble variance was computed for each pixel on a slice. The nonlinear filtering of projection images improved the SNR substantially, on the order of fourfold, in these synthetic images. The comparison of intensity profiles across a cross-sectional slice indicated that the filtering did not result in any significant loss of image resolution.

  16. Long time, large scale properties of the noisy driven-diffusion equation

    NASA Astrophysics Data System (ADS)

    Prakash, J. Ravi; Bouchaud, J. P.; Edwards, S. F.

    1994-07-01

    We study the driven-diffusion equation, describing the dynamics of density fluctuations delta-rho(x-vector, t) in powders or traffic flows. We have performed quite detailed numerical simulations of this equation in one dimension, focusing in particular on the scaling behavior of the correlation function (delta-rho(x-vector, t)delta-rho(0, 0)). One of our motivations was to assess the validity of various theoretical approaches, such as Renormalization Group and different self consistent truncation schemes, to these nonlinear dynamical equations. Although all of them are seen to predict correctly the scaling exponents, only one of them (where the non-exponential nature of the relaxation is taken into account) is able to reproduce satisfactorily the value of the numerical prefactors. Several other interesting issues, such as the noise spectrum of the output current, or the statistics of distance between jams (showing a transition between a `laminar' regime for small noise to a `jammed' regime for higher noise) are also investigated.

  17. A prospective case study of high boost, high frequency emphasis and two-way diffusion filters on MR images of glioblastoma multiforme.

    PubMed

    Anoop, B N; Joseph, Justin; Williams, J; Jayaraman, J Sivaraman; Sebastian, Ansa Maria; Sihota, Praveer

    2018-06-01

    Glioblastoma multiforme (GBM) appears undifferentiated and non-enhancing on magnetic resonance (MR) imagery. As MRI does not offer adequate image quality to allow visual discrimination of the boundary between GBM focus and perifocal vasogenic edema, surgical and radiotherapy planning become difficult. The presence of noise in MR images influences the computation of radiation dosage and precludes the edge based segmentation schemes in automated software for radiation treatment planning. The performance of techniques meant for simultaneous denoising and sharpening, like high boost filters, high frequency emphasize filters and two-way anisotropic diffusion is sensitive to the selection of their operational parameters. Improper selection may cause overshoot and saturation artefacts or noisy grey level transitions can be left unsuppressed. This paper is a prospective case study of the performance of high boost filters, high frequency emphasize filters and two-way anisotropic diffusion on MR images of GBM, for their ability to suppress noise from homogeneous regions and to selectively sharpen the true morphological edges. An objective method for determining the optimum value of the operational parameters of these techniques is also demonstrated. Saturation Evaluation Index (SEI), Perceptual Sharpness Index (PSI), Edge Model based Blur Metric (EMBM), Sharpness of Ridges (SOR), Structural Similarity Index Metric (SSIM), Peak Signal to Noise Ratio (PSNR) and Noise Suppression Ratio (NSR) are the objective functions used. They account for overshoot and saturation artefacts, sharpness of the image, width of salient edges (haloes), susceptibility of edge quality to noise, feature preservation and degree of noise suppression. Two-way diffusion is found to be superior to others in all these respects. The SEI, PSI, EMBM, SOR, SSIM, PSNR and NSR exhibited by two-way diffusion are 0.0016 ± 0.0012, 0.2049 ± 0.0187, 0.0905 ± 0.0408, 2.64 × 10 12  ± 1.6 × 10 12 , 0.9955 ± 0.0024, 38.214 ± 5.2145 and 0.3547 ± 0.0069, respectively.

  18. Modeling evolution of crosstalk in noisy signal transduction networks

    NASA Astrophysics Data System (ADS)

    Tareen, Ammar; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    2018-02-01

    Signal transduction networks can form highly interconnected systems within cells due to crosstalk between constituent pathways. To better understand the evolutionary design principles underlying such networks, we study the evolution of crosstalk for two parallel signaling pathways that arise via gene duplication. We use a sequence-based evolutionary algorithm and evolve the network based on two physically motivated fitness functions related to information transmission. We find that one fitness function leads to a high degree of crosstalk while the other leads to pathway specificity. Our results offer insights on the relationship between network architecture and information transmission for noisy biomolecular networks.

  19. Sifting noisy data for truths about noisy systems. Comment on "Extracting physics of life at the molecular level: A review of single-molecule data analyses" by W. Colomb and S.K. Sarkar

    NASA Astrophysics Data System (ADS)

    Flyvbjerg, Henrik; Mortensen, Kim I.

    2015-06-01

    With each new aspect of nature that becomes accessible to quantitative science, new needs arise for data analysis and mathematical modeling. The classical example is Tycho Brahe's accurate and comprehensive observations of planets, which made him hire Kepler for his mathematical skills to assist with the data analysis. We all learned what that lead to: Kepler's three laws of planetary motion, phenomenology in purely mathematical form. Newton built on this, and the scientific revolution was over, completed.

  20. A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Li, Chuanhao; Peng, Gaoliang; Chen, Yuanhang; Zhang, Zhujun

    2018-02-01

    In recent years, intelligent fault diagnosis algorithms using machine learning technique have achieved much success. However, due to the fact that in real world industrial applications, the working load is changing all the time and noise from the working environment is inevitable, degradation of the performance of intelligent fault diagnosis methods is very serious. In this paper, a new model based on deep learning is proposed to address the problem. Our contributions of include: First, we proposed an end-to-end method that takes raw temporal signals as inputs and thus doesn't need any time consuming denoising preprocessing. The model can achieve pretty high accuracy under noisy environment. Second, the model does not rely on any domain adaptation algorithm or require information of the target domain. It can achieve high accuracy when working load is changed. To understand the proposed model, we will visualize the learned features, and try to analyze the reasons behind the high performance of the model.

  1. Keeping Noise Down on the Farm

    MedlinePlus

    ... Disorders. Email Address Privacy statement It's a Noisy Planet. Protect Their Hearing.® This national public education campaign ... listening, leisure, and working habits. It's a Noisy Planet. Protect Their Hearing® and the Noisy Planet logo ...

  2. A Doubly Stochastic Change Point Detection Algorithm for Noisy Biological Signals.

    PubMed

    Gold, Nathan; Frasch, Martin G; Herry, Christophe L; Richardson, Bryan S; Wang, Xiaogang

    2017-01-01

    Experimentally and clinically collected time series data are often contaminated with significant confounding noise, creating short, noisy time series. This noise, due to natural variability and measurement error, poses a challenge to conventional change point detection methods. We propose a novel and robust statistical method for change point detection for noisy biological time sequences. Our method is a significant improvement over traditional change point detection methods, which only examine a potential anomaly at a single time point. In contrast, our method considers all suspected anomaly points and considers the joint probability distribution of the number of change points and the elapsed time between two consecutive anomalies. We validate our method with three simulated time series, a widely accepted benchmark data set, two geological time series, a data set of ECG recordings, and a physiological data set of heart rate variability measurements of fetal sheep model of human labor, comparing it to three existing methods. Our method demonstrates significantly improved performance over the existing point-wise detection methods.

  3. Noisy image magnification with total variation regularization and order-changed dictionary learning

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Chang, Zhiguo; Fan, Jiulun; Zhao, Xiaoqiang; Wu, Xiaomin; Wang, Yanzi

    2015-12-01

    Noisy low resolution (LR) images are always obtained in real applications, but many existing image magnification algorithms can not get good result from a noisy LR image. We propose a two-step image magnification algorithm to solve this problem. The proposed algorithm takes the advantages of both regularization-based method and learning-based method. The first step is based on total variation (TV) regularization and the second step is based on sparse representation. In the first step, we add a constraint on the TV regularization model to magnify the LR image and at the same time to suppress the noise in it. In the second step, we propose an order-changed dictionary training algorithm to train the dictionaries which is dominated by texture details. Experimental results demonstrate that the proposed algorithm performs better than many other algorithms when the noise is not serious. The proposed algorithm can also provide better visual quality on natural LR images.

  4. Medical image segmentation using genetic algorithms.

    PubMed

    Maulik, Ujjwal

    2009-03-01

    Genetic algorithms (GAs) have been found to be effective in the domain of medical image segmentation, since the problem can often be mapped to one of search in a complex and multimodal landscape. The challenges in medical image segmentation arise due to poor image contrast and artifacts that result in missing or diffuse organ/tissue boundaries. The resulting search space is therefore often noisy with a multitude of local optima. Not only does the genetic algorithmic framework prove to be effective in coming out of local optima, it also brings considerable flexibility into the segmentation procedure. In this paper, an attempt has been made to review the major applications of GAs to the domain of medical image segmentation.

  5. Bayesian Estimation of the DINA Model with Gibbs Sampling

    ERIC Educational Resources Information Center

    Culpepper, Steven Andrew

    2015-01-01

    A Bayesian model formulation of the deterministic inputs, noisy "and" gate (DINA) model is presented. Gibbs sampling is employed to simulate from the joint posterior distribution of item guessing and slipping parameters, subject attribute parameters, and latent class probabilities. The procedure extends concepts in Béguin and Glas,…

  6. A General Cognitive Diagnosis Model for Expert-Defined Polytomous Attributes

    ERIC Educational Resources Information Center

    Chen, Jinsong; de la Torre, Jimmy

    2013-01-01

    Polytomous attributes, particularly those defined as part of the test development process, can provide additional diagnostic information. The present research proposes the polytomous generalized deterministic inputs, noisy, "and" gate (pG-DINA) model to accommodate such attributes. The pG-DINA model allows input from substantive experts…

  7. Judgements of relative noisiness of a supersonic transport and several commercial-service aircraft

    NASA Technical Reports Server (NTRS)

    Powell, C. A.

    1977-01-01

    Two laboratory experiments were conducted on the relative noisiness of takeoff and landing operations of a supersonic transport and several other aircraft in current commercial service. A total of 96 subjects made noisiness judgments on 120 tape-recorded flyover noises in the outdoor-acoustic-simulation experiment; 32 different subjects made judgments on the noises in the indoor-acoustic-simulation experiment. The judgments were made by using the method of numerical category scaling. The effective perceived noise level underestimated the noisiness of the supersonic transport by 3.5 db. For takeoff operations, no difference was found between the noisiness of the supersonic transport and the group of other aircraft for the A-weighted rating scale; however, for landing operations, the noisiness of the supersonic transport was overestimated by 3.7 db. Very high correlation was found between the outdoor-simulation experiment and the indoor-simulation experiment.

  8. Continuous-variable protocol for oblivious transfer in the noisy-storage model.

    PubMed

    Furrer, Fabian; Gehring, Tobias; Schaffner, Christian; Pacher, Christoph; Schnabel, Roman; Wehner, Stephanie

    2018-04-13

    Cryptographic protocols are the backbone of our information society. This includes two-party protocols which offer protection against distrustful players. Such protocols can be built from a basic primitive called oblivious transfer. We present and experimentally demonstrate here a quantum protocol for oblivious transfer for optical continuous-variable systems, and prove its security in the noisy-storage model. This model allows us to establish security by sending more quantum signals than an attacker can reliably store during the protocol. The security proof is based on uncertainty relations which we derive for continuous-variable systems, that differ from the ones used in quantum key distribution. We experimentally demonstrate in a proof-of-principle experiment the proposed oblivious transfer protocol for various channel losses by using entangled two-mode squeezed states measured with balanced homodyne detection. Our work enables the implementation of arbitrary two-party quantum cryptographic protocols with continuous-variable communication systems.

  9. On the Origins of Suboptimality in Human Probabilistic Inference

    PubMed Central

    Acerbi, Luigi; Vijayakumar, Sethu; Wolpert, Daniel M.

    2014-01-01

    Humans have been shown to combine noisy sensory information with previous experience (priors), in qualitative and sometimes quantitative agreement with the statistically-optimal predictions of Bayesian integration. However, when the prior distribution becomes more complex than a simple Gaussian, such as skewed or bimodal, training takes much longer and performance appears suboptimal. It is unclear whether such suboptimality arises from an imprecise internal representation of the complex prior, or from additional constraints in performing probabilistic computations on complex distributions, even when accurately represented. Here we probe the sources of suboptimality in probabilistic inference using a novel estimation task in which subjects are exposed to an explicitly provided distribution, thereby removing the need to remember the prior. Subjects had to estimate the location of a target given a noisy cue and a visual representation of the prior probability density over locations, which changed on each trial. Different classes of priors were examined (Gaussian, unimodal, bimodal). Subjects' performance was in qualitative agreement with the predictions of Bayesian Decision Theory although generally suboptimal. The degree of suboptimality was modulated by statistical features of the priors but was largely independent of the class of the prior and level of noise in the cue, suggesting that suboptimality in dealing with complex statistical features, such as bimodality, may be due to a problem of acquiring the priors rather than computing with them. We performed a factorial model comparison across a large set of Bayesian observer models to identify additional sources of noise and suboptimality. Our analysis rejects several models of stochastic behavior, including probability matching and sample-averaging strategies. Instead we show that subjects' response variability was mainly driven by a combination of a noisy estimation of the parameters of the priors, and by variability in the decision process, which we represent as a noisy or stochastic posterior. PMID:24945142

  10. Retrieval of Dry Snow Parameters from Radiometric Data Using a Dense Medium Model and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Tedesco, Marco; Kim, Edward J.

    2005-01-01

    In this paper, GA-based techniques are used to invert the equations of an electromagnetic model based on Dense Medium Radiative Transfer Theory (DMRT) under the Quasi Crystalline Approximation with Coherent Potential to retrieve snow depth, mean grain size and fractional volume from microwave brightness temperatures. The technique is initially tested on both noisy and not-noisy simulated data. During this phase, different configurations of genetic algorithm parameters are considered to quantify how their change can affect the algorithm performance. A configuration of GA parameters is then selected and the algorithm is applied to experimental data acquired during the NASA Cold Land Process Experiment. Snow parameters retrieved with the GA-DMRT technique are then compared with snow parameters measured on field.

  11. Application of morphological associative memories and Fourier descriptors for classification of noisy subsurface signatures

    NASA Astrophysics Data System (ADS)

    Ortiz, Jorge L.; Parsiani, Hamed; Tolstoy, Leonid

    2004-02-01

    This paper presents a method for recognition of Noisy Subsurface Images using Morphological Associative Memories (MAM). MAM are type of associative memories that use a new kind of neural networks based in the algebra system known as semi-ring. The operations performed in this algebraic system are highly nonlinear providing additional strength when compared to other transformations. Morphological associative memories are a new kind of neural networks that provide a robust performance with noisy inputs. Two representations of morphological associative memories are used called M and W matrices. M associative memory provides a robust association with input patterns corrupted by dilative random noise, while the W associative matrix performs a robust recognition in patterns corrupted with erosive random noise. The robust performance of MAM is used in combination of the Fourier descriptors for the recognition of underground objects in Ground Penetrating Radar (GPR) images. Multiple 2-D GPR images of a site are made available by NASA-SSC center. The buried objects in these images appear in the form of hyperbolas which are the results of radar backscatter from the artifacts or objects. The Fourier descriptors of the prototype hyperbola-like and shapes from non-hyperbola shapes in the sub-surface images are used to make these shapes scale-, shift-, and rotation-invariant. Typical hyperbola-like and non-hyperbola shapes are used to calculate the morphological associative memories. The trained MAMs are used to process other noisy images to detect the presence of these underground objects. The outputs from the MAM using the noisy patterns may be equal to the training prototypes, providing a positive identification of the artifacts. The results are images with recognized hyperbolas which indicate the presence of buried artifacts. A model using MATLAB has been developed and results are presented.

  12. Team Learning for Healthcare Quality Improvement

    PubMed Central

    Eppstein, Margaret J.; Horbar, Jeffrey D.

    2014-01-01

    In organized healthcare quality improvement collaboratives (QICs), teams of practitioners from different hospitals exchange information on clinical practices with the aim of improving health outcomes at their own institutions. However, what works in one hospital may not work in others with different local contexts because of nonlinear interactions among various demographics, treatments, and practices. In previous studies of collaborations where the goal is a collective problem solving, teams of diverse individuals have been shown to outperform teams of similar individuals. However, when the purpose of collaboration is knowledge diffusion in complex environments, it is not clear whether team diversity will help or hinder effective learning. In this paper, we first use an agent-based model of QICs to show that teams comprising similar individuals outperform those with more diverse individuals under nearly all conditions, and that this advantage increases with the complexity of the landscape and level of noise in assessing performance. Examination of data from a network of real hospitals provides encouraging evidence of a high degree of similarity in clinical practices, especially within teams of hospitals engaging in QIC teams. However, our model also suggests that groups of similar hospitals could benefit from larger teams and more open sharing of details on clinical outcomes than is currently the norm. To facilitate this, we propose a secure virtual collaboration system that would allow hospitals to efficiently identify potentially better practices in use at other institutions similar to theirs without any institutions having to sacrifice the privacy of their own data. Our results may also have implications for other types of data-driven diffusive learning such as in personalized medicine and evolutionary search in noisy, complex combinatorial optimization problems. PMID:25360395

  13. Statistics of actin-propelled trajectories in noisy environments

    NASA Astrophysics Data System (ADS)

    Wen, Fu-Lai; Chen, Hsuan-Yi; Leung, Kwan-tai

    2016-06-01

    Actin polymerization is ubiquitously utilized to power the locomotion of eukaryotic cells and pathogenic bacteria in living systems. Inevitably, actin polymerization and depolymerization proceed in a fluctuating environment that renders the locomotion stochastic. Previously, we have introduced a deterministic model that manages to reproduce actin-propelled trajectories in experiments, but not to address fluctuations around them. To remedy this, here we supplement the deterministic model with noise terms. It enables us to compute the effects of fluctuating actin density and forces on the trajectories. Specifically, the mean-squared displacement (MSD) of the trajectories is computed and found to show a super-ballistic scaling with an exponent 3 in the early stage, followed by a crossover to a normal, diffusive scaling of exponent 1 in the late stage. For open-end trajectories such as straights and S-shaped curves, the time of crossover matches the decay time of orientational order of the velocities along trajectories, suggesting that it is the spreading of velocities that leads to the crossover. We show that the super-ballistic scaling of MSD arises from the initial, linearly increasing correlation of velocities, before time translational symmetry is established. When the spreading of velocities reaches a steady state in the long-time limit, short-range correlation then yields a diffusive scaling in MSD. In contrast, close-loop trajectories like circles exhibit localized periodic motion, which inhibits spreading. The initial super-ballistic scaling of MSD arises from velocity correlation that both linearly increases and oscillates in time. Finally, we find that the above statistical features of the trajectories transcend the nature of noises, be it additive or multiplicative, and generalize to other self-propelled systems that are not necessarily actin based.

  14. Early on-orbit calibration results from Aqua MODIS

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoxiong; Barnes, William L.

    2003-04-01

    Aqua MODIS, also known as the MODIS Flight Model 1 (FM1), was launched on May 4, 2002. It opened its nadir aperture door (NAD) on June 24, 2002, beginning its Earth observing mission. In this paper, we present early results from Aqua MODIS on-orbit calibration and characterization and assess the instrument's overall performance. MODIS has 36 spectral bands located on four focal plane assemblies (FPAs). Bands 1-19, and 26 with wavelengths from 0.412 to 2.1 microns are the reflective solar bands (RSB) that are calibrated on-orbit by a solar diffuser (SD). The degradation of the SD is tracked using a solar diffuser stability monitor (SDSM). The bands 20-25, and 27-36 with wavelengths from 3.75 to 14.5 microns are the thermal emissive bands (TEB) that are calibrated on-orbit by a blackbody (BB). Early results indicate that the on-orbit performance has been in good agreement with the predications determined from pre-launch measurements. Except for band 21, the low gain fire band, band 6, known to have some inoperable detectors from pre-launch characterization, and one noisy detector in band 36, all of the detectors' noise characterizations are within their specifications. Examples of the sensor's short-term and limited long-term responses in both TEB and RSB will be provided to illustrate the sensor's on-orbit stability. In addition, we will show some of the improvements that Aqua MODIS made over its predecessor, Terra MODIS (Protoflight Model - PFM), such as removal of the optical leak into the long-wave infrared (LWIR) photoconductive (PC) bands and reduction of electronic crosstalk and out-of-band (OOB) thermal leak into the short-wave infrared (SWIR) bands.

  15. The Noisiness of Low Frequency Bands of Noise

    NASA Technical Reports Server (NTRS)

    Lawton, B. W.

    1975-01-01

    The relative noisiness of low frequency 1/3-octave bands of noise was examined. The frequency range investigated was bounded by the bands centered at 25 and 200 Hz, with intensities ranging from 50 to 95 db (SPL). Thirty-two subjects used a method of adjustment technique, producing comparison band intensities as noisy as 100 and 200 Hz standard bands at 60 and 72 db. The work resulted in contours of equal noisiness for 1/3-octave bands, ranging in intensity from approximately 58 to 86 db (SPL). These contours were compared with the standard equal noisiness contours; in the region of overlap, between 50 and 200 Hz, the agreement was good.

  16. Noisy text categorization.

    PubMed

    Vinciarelli, Alessandro

    2005-12-01

    This work presents categorization experiments performed over noisy texts. By noisy, we mean any text obtained through an extraction process (affected by errors) from media other than digital texts (e.g., transcriptions of speech recordings extracted with a recognition system). The performance of a categorization system over the clean and noisy (Word Error Rate between approximately 10 and approximately 50 percent) versions of the same documents is compared. The noisy texts are obtained through handwriting recognition and simulation of optical character recognition. The results show that the performance loss is acceptable for Recall values up to 60-70 percent depending on the noise sources. New measures of the extraction process performance, allowing a better explanation of the categorization results, are proposed.

  17. Biseparability of noisy pseudopure, W and GHZ states using conditional quantum relative Tsallis entropy

    NASA Astrophysics Data System (ADS)

    Nayak, Anantha S.; Sudha; Usha Devi, A. R.; Rajagopal, A. K.

    2017-02-01

    We employ the conditional version of sandwiched Tsallis relative entropy to determine 1:N-1 separability range in the noisy one-parameter families of pseudopure and Werner-like N-qubit W, GHZ states. The range of the noisy parameter, for which the conditional sandwiched Tsallis relative entropy is positive, reveals perfect agreement with the necessary and sufficient criteria for separability in the 1:N-1 partition of these one parameter noisy states.

  18. Noise-robust speech triage.

    PubMed

    Bartos, Anthony L; Cipr, Tomas; Nelson, Douglas J; Schwarz, Petr; Banowetz, John; Jerabek, Ladislav

    2018-04-01

    A method is presented in which conventional speech algorithms are applied, with no modifications, to improve their performance in extremely noisy environments. It has been demonstrated that, for eigen-channel algorithms, pre-training multiple speaker identification (SID) models at a lattice of signal-to-noise-ratio (SNR) levels and then performing SID using the appropriate SNR dependent model was successful in mitigating noise at all SNR levels. In those tests, it was found that SID performance was optimized when the SNR of the testing and training data were close or identical. In this current effort multiple i-vector algorithms were used, greatly improving both processing throughput and equal error rate classification accuracy. Using identical approaches in the same noisy environment, performance of SID, language identification, gender identification, and diarization were significantly improved. A critical factor in this improvement is speech activity detection (SAD) that performs reliably in extremely noisy environments, where the speech itself is barely audible. To optimize SAD operation at all SNR levels, two algorithms were employed. The first maximized detection probability at low levels (-10 dB ≤ SNR < +10 dB) using just the voiced speech envelope, and the second exploited features extracted from the original speech to improve overall accuracy at higher quality levels (SNR ≥ +10 dB).

  19. Mean-field behavior as a result of noisy local dynamics in self-organized criticality: Neuroscience implications

    NASA Astrophysics Data System (ADS)

    Moosavi, S. Amin; Montakhab, Afshin

    2014-05-01

    Motivated by recent experiments in neuroscience which indicate that neuronal avalanches exhibit scale invariant behavior similar to self-organized critical systems, we study the role of noisy (nonconservative) local dynamics on the critical behavior of a sandpile model which can be taken to mimic the dynamics of neuronal avalanches. We find that despite the fact that noise breaks the strict local conservation required to attain criticality, our system exhibits true criticality for a wide range of noise in various dimensions, given that conservation is respected on the average. Although the system remains critical, exhibiting finite-size scaling, the value of critical exponents change depending on the intensity of local noise. Interestingly, for a sufficiently strong noise level, the critical exponents approach and saturate at their mean-field values, consistent with empirical measurements of neuronal avalanches. This is confirmed for both two and three dimensional models. However, the addition of noise does not affect the exponents at the upper critical dimension (D =4). In addition to an extensive finite-size scaling analysis of our systems, we also employ a useful time-series analysis method to establish true criticality of noisy systems. Finally, we discuss the implications of our work in neuroscience as well as some implications for the general phenomena of criticality in nonequilibrium systems.

  20. Responses of somatosensory area 2 neurons to actively and passively generated limb movements

    PubMed Central

    London, Brian M.

    2013-01-01

    Control of reaching movements requires an accurate estimate of the state of the limb, yet sensory signals are inherently noisy, because of both noise at the receptors themselves and the stochastic nature of the information representation by neural discharge. One way to derive an accurate representation from noisy sensor data is to combine it with the output of a forward model that considers both the previous state estimate and the noisy input. We recorded from primary somatosensory cortex (S1) in macaques (Macaca mulatta) during both active and passive movements to investigate how the proprioceptive representation of movement in S1 may be modified by the motor command (through efference copy). We found neurons in S1 that respond to one or both movement types covering a broad distribution from active movement only, to both, to passive movement only. Those neurons that responded to both active and passive movements responded with similar directional tuning. Confirming earlier results, some, but not all, neurons responded before the onset of volitional movements, possibly as a result of efference copy. Consequently, many of the features necessary to combine the forward model with proprioceptive feedback appear to be present in S1. These features would not be expected from combinations of afferent receptor responses alone. PMID:23274308

  1. Empirical single sample quantification of bias and variance in Q-ball imaging.

    PubMed

    Hainline, Allison E; Nath, Vishwesh; Parvathaneni, Prasanna; Blaber, Justin A; Schilling, Kurt G; Anderson, Adam W; Kang, Hakmook; Landman, Bennett A

    2018-02-06

    The bias and variance of high angular resolution diffusion imaging methods have not been thoroughly explored in the literature and may benefit from the simulation extrapolation (SIMEX) and bootstrap techniques to estimate bias and variance of high angular resolution diffusion imaging metrics. The SIMEX approach is well established in the statistics literature and uses simulation of increasingly noisy data to extrapolate back to a hypothetical case with no noise. The bias of calculated metrics can then be computed by subtracting the SIMEX estimate from the original pointwise measurement. The SIMEX technique has been studied in the context of diffusion imaging to accurately capture the bias in fractional anisotropy measurements in DTI. Herein, we extend the application of SIMEX and bootstrap approaches to characterize bias and variance in metrics obtained from a Q-ball imaging reconstruction of high angular resolution diffusion imaging data. The results demonstrate that SIMEX and bootstrap approaches provide consistent estimates of the bias and variance of generalized fractional anisotropy, respectively. The RMSE for the generalized fractional anisotropy estimates shows a 7% decrease in white matter and an 8% decrease in gray matter when compared with the observed generalized fractional anisotropy estimates. On average, the bootstrap technique results in SD estimates that are approximately 97% of the true variation in white matter, and 86% in gray matter. Both SIMEX and bootstrap methods are flexible, estimate population characteristics based on single scans, and may be extended for bias and variance estimation on a variety of high angular resolution diffusion imaging metrics. © 2018 International Society for Magnetic Resonance in Medicine.

  2. Controlling the loss of quantum correlations via quantum memory channels

    NASA Astrophysics Data System (ADS)

    Duran, Durgun; Verçin, Abdullah

    2018-07-01

    A generic behavior of quantum correlations during any quantum process taking place in a noisy environment is that they are non-increasing. We have shown that mitigation of these decreases providing relative enhancements in correlations is possible by means of quantum memory channels which model correlated environmental quantum noises. For two-qubit systems subject to mixtures of two-use actions of different decoherence channels we point out that improvement in correlations can be achieved in such way that the input-output fidelity is also as high as possible. These make it possible to create the optimal conditions in realizing any quantum communication task in a noisy environment.

  3. The Random-Effect DINA Model

    ERIC Educational Resources Information Center

    Huang, Hung-Yu; Wang, Wen-Chung

    2014-01-01

    The DINA (deterministic input, noisy, and gate) model has been widely used in cognitive diagnosis tests and in the process of test development. The outcomes known as slip and guess are included in the DINA model function representing the responses to the items. This study aimed to extend the DINA model by using the random-effect approach to allow…

  4. Diagnostic Models as Partially Ordered Sets

    ERIC Educational Resources Information Center

    Tatsuoka, Curtis

    2009-01-01

    In this commentary, the author addresses what is referred to as the deterministic input, noisy "and" gate (DINA) model. The author mentions concerns with how this model has been formulated and presented. In particular, the author points out that there is a lack of recognition of the confounding of profiles that generally arises and then discusses…

  5. Hearing impaired speech in noisy classrooms

    NASA Astrophysics Data System (ADS)

    Shahin, Kimary; McKellin, William H.; Jamieson, Janet; Hodgson, Murray; Pichora-Fuller, M. Kathleen

    2005-04-01

    Noisy classrooms have been shown to induce among students patterns of interaction similar to those used by hearing impaired people [W. H. McKellin et al., GURT (2003)]. In this research, the speech of children in a noisy classroom setting was investigated to determine if noisy classrooms have an effect on students' speech. Audio recordings were made of the speech of students during group work in their regular classrooms (grades 1-7), and of the speech of the same students in a sound booth. Noise level readings in the classrooms were also recorded. Each student's noisy and quiet environment speech samples were acoustically analyzed for prosodic and segmental properties (f0, pitch range, pitch variation, phoneme duration, vowel formants), and compared. The analysis showed that the students' speech in the noisy classrooms had characteristics of the speech of hearing-impaired persons [e.g., R. O'Halpin, Clin. Ling. and Phon. 15, 529-550 (2001)]. Some educational implications of our findings were identified. [Work supported by the Peter Wall Institute for Advanced Studies, University of British Columbia.

  6. Quantum teleportation through noisy channels with multi-qubit GHZ states

    NASA Astrophysics Data System (ADS)

    Espoukeh, Pakhshan; Pedram, Pouria

    2014-08-01

    We investigate two-party quantum teleportation through noisy channels for multi-qubit Greenberger-Horne-Zeilinger (GHZ) states and find which state loses less quantum information in the process. The dynamics of states is described by the master equation with the noisy channels that lead to the quantum channels to be mixed states. We analytically solve the Lindblad equation for -qubit GHZ states where Lindblad operators correspond to the Pauli matrices and describe the decoherence of states. Using the average fidelity, we show that 3GHZ state is more robust than GHZ state under most noisy channels. However, GHZ state preserves same quantum information with respect to Einstein-Podolsky-Rosen and 3GHZ states where the noise is in direction in which the fidelity remains unchanged. We explicitly show that Jung et al.'s conjecture (Phys Rev A 78:012312, 2008), namely "average fidelity with same-axis noisy channels is in general larger than average fidelity with different-axes noisy channels," is not valid for 3GHZ and 4GHZ states.

  7. Recursive recovery of Markov transition probabilities from boundary value data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patch, Sarah Kathyrn

    1994-04-01

    In an effort to mathematically describe the anisotropic diffusion of infrared radiation in biological tissue Gruenbaum posed an anisotropic diffusion boundary value problem in 1989. In order to accommodate anisotropy, he discretized the temporal as well as the spatial domain. The probabilistic interpretation of the diffusion equation is retained; radiation is assumed to travel according to a random walk (of sorts). In this random walk the probabilities with which photons change direction depend upon their previous as well as present location. The forward problem gives boundary value data as a function of the Markov transition probabilities. The inverse problem requiresmore » finding the transition probabilities from boundary value data. Problems in the plane are studied carefully in this thesis. Consistency conditions amongst the data are derived. These conditions have two effects: they prohibit inversion of the forward map but permit smoothing of noisy data. Next, a recursive algorithm which yields a family of solutions to the inverse problem is detailed. This algorithm takes advantage of all independent data and generates a system of highly nonlinear algebraic equations. Pluecker-Grassmann relations are instrumental in simplifying the equations. The algorithm is used to solve the 4 x 4 problem. Finally, the smallest nontrivial problem in three dimensions, the 2 x 2 x 2 problem, is solved.« less

  8. Fractional Diffusion, Low Exponent Lévy Stable Laws, and 'Slow Motion' Denoising of Helium Ion Microscope Nanoscale Imagery.

    PubMed

    Carasso, Alfred S; Vladár, András E

    2012-01-01

    Helium ion microscopes (HIM) are capable of acquiring images with better than 1 nm resolution, and HIM images are particularly rich in morphological surface details. However, such images are generally quite noisy. A major challenge is to denoise these images while preserving delicate surface information. This paper presents a powerful slow motion denoising technique, based on solving linear fractional diffusion equations forward in time. The method is easily implemented computationally, using fast Fourier transform (FFT) algorithms. When applied to actual HIM images, the method is found to reproduce the essential surface morphology of the sample with high fidelity. In contrast, such highly sophisticated methodologies as Curvelet Transform denoising, and Total Variation denoising using split Bregman iterations, are found to eliminate vital fine scale information, along with the noise. Image Lipschitz exponents are a useful image metrology tool for quantifying the fine structure content in an image. In this paper, this tool is applied to rank order the above three distinct denoising approaches, in terms of their texture preserving properties. In several denoising experiments on actual HIM images, it was found that fractional diffusion smoothing performed noticeably better than split Bregman TV, which in turn, performed slightly better than Curvelet denoising.

  9. Crossing Fibers Detection with an Analytical High Order Tensor Decomposition

    PubMed Central

    Megherbi, T.; Kachouane, M.; Oulebsir-Boumghar, F.; Deriche, R.

    2014-01-01

    Diffusion magnetic resonance imaging (dMRI) is the only technique to probe in vivo and noninvasively the fiber structure of human brain white matter. Detecting the crossing of neuronal fibers remains an exciting challenge with an important impact in tractography. In this work, we tackle this challenging problem and propose an original and efficient technique to extract all crossing fibers from diffusion signals. To this end, we start by estimating, from the dMRI signal, the so-called Cartesian tensor fiber orientation distribution (CT-FOD) function, whose maxima correspond exactly to the orientations of the fibers. The fourth order symmetric positive definite tensor that represents the CT-FOD is then analytically decomposed via the application of a new theoretical approach and this decomposition is used to accurately extract all the fibers orientations. Our proposed high order tensor decomposition based approach is minimal and allows recovering the whole crossing fibers without any a priori information on the total number of fibers. Various experiments performed on noisy synthetic data, on phantom diffusion, data and on human brain data validate our approach and clearly demonstrate that it is efficient, robust to noise and performs favorably in terms of angular resolution and accuracy when compared to some classical and state-of-the-art approaches. PMID:25246940

  10. Equivalency of the DINA Model and a Constrained General Diagnostic Model. Research Report. ETS RR-11-37

    ERIC Educational Resources Information Center

    von Davier, Matthias

    2011-01-01

    This report shows that the deterministic-input noisy-AND (DINA) model is a special case of more general compensatory diagnostic models by means of a reparameterization of the skill space and the design (Q-) matrix of item by skills associations. This reparameterization produces a compensatory model that is equivalent to the (conjunctive) DINA…

  11. Bayesian soft X-ray tomography using non-stationary Gaussian Processes

    NASA Astrophysics Data System (ADS)

    Li, Dong; Svensson, J.; Thomsen, H.; Medina, F.; Werner, A.; Wolf, R.

    2013-08-01

    In this study, a Bayesian based non-stationary Gaussian Process (GP) method for the inference of soft X-ray emissivity distribution along with its associated uncertainties has been developed. For the investigation of equilibrium condition and fast magnetohydrodynamic behaviors in nuclear fusion plasmas, it is of importance to infer, especially in the plasma center, spatially resolved soft X-ray profiles from a limited number of noisy line integral measurements. For this ill-posed inversion problem, Bayesian probability theory can provide a posterior probability distribution over all possible solutions under given model assumptions. Specifically, the use of a non-stationary GP to model the emission allows the model to adapt to the varying length scales of the underlying diffusion process. In contrast to other conventional methods, the prior regularization is realized in a probability form which enhances the capability of uncertainty analysis, in consequence, scientists who concern the reliability of their results will benefit from it. Under the assumption of normally distributed noise, the posterior distribution evaluated at a discrete number of points becomes a multivariate normal distribution whose mean and covariance are analytically available, making inversions and calculation of uncertainty fast. Additionally, the hyper-parameters embedded in the model assumption can be optimized through a Bayesian Occam's Razor formalism and thereby automatically adjust the model complexity. This method is shown to produce convincing reconstructions and good agreements with independently calculated results from the Maximum Entropy and Equilibrium-Based Iterative Tomography Algorithm methods.

  12. Bayesian soft X-ray tomography using non-stationary Gaussian Processes.

    PubMed

    Li, Dong; Svensson, J; Thomsen, H; Medina, F; Werner, A; Wolf, R

    2013-08-01

    In this study, a Bayesian based non-stationary Gaussian Process (GP) method for the inference of soft X-ray emissivity distribution along with its associated uncertainties has been developed. For the investigation of equilibrium condition and fast magnetohydrodynamic behaviors in nuclear fusion plasmas, it is of importance to infer, especially in the plasma center, spatially resolved soft X-ray profiles from a limited number of noisy line integral measurements. For this ill-posed inversion problem, Bayesian probability theory can provide a posterior probability distribution over all possible solutions under given model assumptions. Specifically, the use of a non-stationary GP to model the emission allows the model to adapt to the varying length scales of the underlying diffusion process. In contrast to other conventional methods, the prior regularization is realized in a probability form which enhances the capability of uncertainty analysis, in consequence, scientists who concern the reliability of their results will benefit from it. Under the assumption of normally distributed noise, the posterior distribution evaluated at a discrete number of points becomes a multivariate normal distribution whose mean and covariance are analytically available, making inversions and calculation of uncertainty fast. Additionally, the hyper-parameters embedded in the model assumption can be optimized through a Bayesian Occam's Razor formalism and thereby automatically adjust the model complexity. This method is shown to produce convincing reconstructions and good agreements with independently calculated results from the Maximum Entropy and Equilibrium-Based Iterative Tomography Algorithm methods.

  13. Optimizing acoustical conditions for speech intelligibility in classrooms

    NASA Astrophysics Data System (ADS)

    Yang, Wonyoung

    High speech intelligibility is imperative in classrooms where verbal communication is critical. However, the optimal acoustical conditions to achieve a high degree of speech intelligibility have previously been investigated with inconsistent results, and practical room-acoustical solutions to optimize the acoustical conditions for speech intelligibility have not been developed. This experimental study validated auralization for speech-intelligibility testing, investigated the optimal reverberation for speech intelligibility for both normal and hearing-impaired listeners using more realistic room-acoustical models, and proposed an optimal sound-control design for speech intelligibility based on the findings. The auralization technique was used to perform subjective speech-intelligibility tests. The validation study, comparing auralization results with those of real classroom speech-intelligibility tests, found that if the room to be auralized is not very absorptive or noisy, speech-intelligibility tests using auralization are valid. The speech-intelligibility tests were done in two different auralized sound fields---approximately diffuse and non-diffuse---using the Modified Rhyme Test and both normal and hearing-impaired listeners. A hybrid room-acoustical prediction program was used throughout the work, and it and a 1/8 scale-model classroom were used to evaluate the effects of ceiling barriers and reflectors. For both subject groups, in approximately diffuse sound fields, when the speech source was closer to the listener than the noise source, the optimal reverberation time was zero. When the noise source was closer to the listener than the speech source, the optimal reverberation time was 0.4 s (with another peak at 0.0 s) with relative output power levels of the speech and noise sources SNS = 5 dB, and 0.8 s with SNS = 0 dB. In non-diffuse sound fields, when the noise source was between the speaker and the listener, the optimal reverberation time was 0.6 s with SNS = 4 dB and increased to 0.8 and 1.2 s with decreased SNS = 0 dB, for both normal and hearing-impaired listeners. Hearing-impaired listeners required more early energy than normal-hearing listeners. Reflective ceiling barriers and ceiling reflectors---in particular, parallel front-back rows of semi-circular reflectors---achieved the goal of decreasing reverberation with the least speech-level reduction.

  14. Multichannel Speech Enhancement Based on Generalized Gamma Prior Distribution with Its Online Adaptive Estimation

    NASA Astrophysics Data System (ADS)

    Dat, Tran Huy; Takeda, Kazuya; Itakura, Fumitada

    We present a multichannel speech enhancement method based on MAP speech spectral magnitude estimation using a generalized gamma model of speech prior distribution, where the model parameters are adapted from actual noisy speech in a frame-by-frame manner. The utilization of a more general prior distribution with its online adaptive estimation is shown to be effective for speech spectral estimation in noisy environments. Furthermore, the multi-channel information in terms of cross-channel statistics are shown to be useful to better adapt the prior distribution parameters to the actual observation, resulting in better performance of speech enhancement algorithm. We tested the proposed algorithm in an in-car speech database and obtained significant improvements of the speech recognition performance, particularly under non-stationary noise conditions such as music, air-conditioner and open window.

  15. Psychophysiological interaction between superior temporal gyrus (STG) and cerebellum: An fMRI study

    NASA Astrophysics Data System (ADS)

    Yusoff, A. N.; Teng, X. L.; Ng, S. B.; Hamid, A. I. A.; Mukari, S. Z. M.

    2016-03-01

    This study aimed to model the psychophysiological interaction (PPI) between the bilateral STG and cerebellum (lobule VI and lobule VII) during an arithmetic addition task. Eighteen young adults participated in this study. They were instructed to solve single-digit addition tasks in quiet and noisy backgrounds during an fMRI scan. Results showed that in both hemispheres, the response in the cerebellum was found to be linearly influenced by the activity in STG (vice-versa) for both in-quiet and in-noise conditions. However, the influence of the cerebellum on STG seemed to be modulated by noise. A two-way PPI model between STG and cerebellum is suggested. The connectivity between the two regions during a simple addition task in a noisy condition is modulated by the participants’ higher attention to perceive.

  16. Statistical Mechanics of Node-perturbation Learning with Noisy Baseline

    NASA Astrophysics Data System (ADS)

    Hara, Kazuyuki; Katahira, Kentaro; Okada, Masato

    2017-02-01

    Node-perturbation learning is a type of statistical gradient descent algorithm that can be applied to problems where the objective function is not explicitly formulated, including reinforcement learning. It estimates the gradient of an objective function by using the change in the object function in response to the perturbation. The value of the objective function for an unperturbed output is called a baseline. Cho et al. proposed node-perturbation learning with a noisy baseline. In this paper, we report on building the statistical mechanics of Cho's model and on deriving coupled differential equations of order parameters that depict learning dynamics. We also show how to derive the generalization error by solving the differential equations of order parameters. On the basis of the results, we show that Cho's results are also apply in general cases and show some general performances of Cho's model.

  17. Numerical Differentiation of Noisy, Nonsmooth Data

    DOE PAGES

    Chartrand, Rick

    2011-01-01

    We consider the problem of differentiating a function specified by noisy data. Regularizing the differentiation process avoids the noise amplification of finite-difference methods. We use total-variation regularization, which allows for discontinuous solutions. The resulting simple algorithm accurately differentiates noisy functions, including those which have a discontinuous derivative.

  18. Progress in characterizing submonolayer island growth: Capture-zone distributions, growth exponents, & hot precursors

    NASA Astrophysics Data System (ADS)

    Einstein, Theodore L.; Pimpinelli, Alberto; González, Diego Luis; Morales-Cifuentes, Josue R.

    2015-09-01

    In studies of epitaxial growth, analysis of the distribution of the areas of capture zones (i.e. proximity polygons or Voronoi tessellations with respect to island centers) is often the best way to extract the critical nucleus size i. For non-random nucleation the normalized areas s of these Voronoi cells are well described by the generalized Wigner distribution (GWD) Pβ(s) = asβ exp(-bs2), particularly in the central region 0.5 < s < 2 where data are least noisy. Extensive Monte Carlo simulations reveal inadequacies of our earlier mean field analysis, suggesting β = i + 2 for diffusion-limited aggregation (DLA). Since simulations generate orders of magnitude more data than experiments, they permit close examination of the tails of the distribution, which differ from the simple GWD form. One refinement is based on a fragmentation model. We also compare island-size distributions. We compare analysis by island-size distribution and by scaling of island density with flux. Modifications appear for attach-limited aggregation (ALA). We focus on the experimental system para-hexaphenyl on amorphous mica, comparing the results of the three analysis techniques and reconciling their results via a novel model of hot precursors based on rate equations, pointing out the existence of intermediate scaling regimes between DLA and ALA.

  19. MRI Brain Tumor Segmentation and Necrosis Detection Using Adaptive Sobolev Snakes.

    PubMed

    Nakhmani, Arie; Kikinis, Ron; Tannenbaum, Allen

    2014-03-21

    Brain tumor segmentation in brain MRI volumes is used in neurosurgical planning and illness staging. It is important to explore the tumor shape and necrosis regions at different points of time to evaluate the disease progression. We propose an algorithm for semi-automatic tumor segmentation and necrosis detection. Our algorithm consists of three parts: conversion of MRI volume to a probability space based on the on-line learned model, tumor probability density estimation, and adaptive segmentation in the probability space. We use manually selected acceptance and rejection classes on a single MRI slice to learn the background and foreground statistical models. Then, we propagate this model to all MRI slices to compute the most probable regions of the tumor. Anisotropic 3D diffusion is used to estimate the probability density. Finally, the estimated density is segmented by the Sobolev active contour (snake) algorithm to select smoothed regions of the maximum tumor probability. The segmentation approach is robust to noise and not very sensitive to the manual initialization in the volumes tested. Also, it is appropriate for low contrast imagery. The irregular necrosis regions are detected by using the outliers of the probability distribution inside the segmented region. The necrosis regions of small width are removed due to a high probability of noisy measurements. The MRI volume segmentation results obtained by our algorithm are very similar to expert manual segmentation.

  20. An Asymptotic Stochastic View of Anticipation in a Noisy Duel (I).

    DTIC Science & Technology

    1981-11-01

    AD-Alit 955 IOWA UNIV IOWA CITEY DEPT OF STATISTICS F/0 12/1 AN ASYMPTOTIC STOCHASTIC VIEW OF ANTICIPATION IN A NOISY DUEL 4-ETCNO(l0RRYLYU) ELY AVD...N I. NDAR[ 1’ A AFOSR -TTZ- 0r ~ 9O0u7 C AN ASYMPTOTIC STOCHASTIC VIEW OF ANTICIPATION IN A NOISY DUEL (I)* Dan R. Royaltyt, J. Colby Kegley*, ’ H.T...David’, and R.W. Berger* Abstract. The noisy duel between two equally accurate duelists, possessing respectively 1 and 2 bullets, is viewed in the

  1. Exploring Reading Comprehension Skill Relationships through the G-DINA Model

    ERIC Educational Resources Information Center

    Chen, Huilin; Chen, Jinsong

    2016-01-01

    By analysing the test data of 1029 British secondary school students' performance on 20 Programme for International Student Assessment English reading items through the generalised deterministic input, noisy "and" gate (G-DINA) model, the study conducted two investigations on exploring the relationships among the five reading…

  2. Heads Up! a Calculation- & Jargon-Free Approach to Statistics

    ERIC Educational Resources Information Center

    Giese, Alan R.

    2012-01-01

    Evaluating the strength of evidence in noisy data is a critical step in scientific thinking that typically relies on statistics. Students without statistical training will benefit from heuristic models that highlight the logic of statistical analysis. The likelihood associated with various coin-tossing outcomes gives students such a model. There…

  3. Modeling Noisy Data with Differential Equations Using Observed and Expected Matrices

    ERIC Educational Resources Information Center

    Deboeck, Pascal R.; Boker, Steven M.

    2010-01-01

    Complex intraindividual variability observed in psychology may be well described using differential equations. It is difficult, however, to apply differential equation models in psychological contexts, as time series are frequently short, poorly sampled, and have large proportions of measurement and dynamic error. Furthermore, current methods for…

  4. Machine learning-based kinetic modeling: a robust and reproducible solution for quantitative analysis of dynamic PET data

    NASA Astrophysics Data System (ADS)

    Pan, Leyun; Cheng, Caixia; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2017-05-01

    A variety of compartment models are used for the quantitative analysis of dynamic positron emission tomography (PET) data. Traditionally, these models use an iterative fitting (IF) method to find the least squares between the measured and calculated values over time, which may encounter some problems such as the overfitting of model parameters and a lack of reproducibility, especially when handling noisy data or error data. In this paper, a machine learning (ML) based kinetic modeling method is introduced, which can fully utilize a historical reference database to build a moderate kinetic model directly dealing with noisy data but not trying to smooth the noise in the image. Also, due to the database, the presented method is capable of automatically adjusting the models using a multi-thread grid parameter searching technique. Furthermore, a candidate competition concept is proposed to combine the advantages of the ML and IF modeling methods, which could find a balance between fitting to historical data and to the unseen target curve. The machine learning based method provides a robust and reproducible solution that is user-independent for VOI-based and pixel-wise quantitative analysis of dynamic PET data.

  5. Machine learning-based kinetic modeling: a robust and reproducible solution for quantitative analysis of dynamic PET data.

    PubMed

    Pan, Leyun; Cheng, Caixia; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2017-05-07

    A variety of compartment models are used for the quantitative analysis of dynamic positron emission tomography (PET) data. Traditionally, these models use an iterative fitting (IF) method to find the least squares between the measured and calculated values over time, which may encounter some problems such as the overfitting of model parameters and a lack of reproducibility, especially when handling noisy data or error data. In this paper, a machine learning (ML) based kinetic modeling method is introduced, which can fully utilize a historical reference database to build a moderate kinetic model directly dealing with noisy data but not trying to smooth the noise in the image. Also, due to the database, the presented method is capable of automatically adjusting the models using a multi-thread grid parameter searching technique. Furthermore, a candidate competition concept is proposed to combine the advantages of the ML and IF modeling methods, which could find a balance between fitting to historical data and to the unseen target curve. The machine learning based method provides a robust and reproducible solution that is user-independent for VOI-based and pixel-wise quantitative analysis of dynamic PET data.

  6. Recovery of Background Structures in Nanoscale Helium Ion Microscope Imaging.

    PubMed

    Carasso, Alfred S; Vladár, András E

    2014-01-01

    This paper discusses a two step enhancement technique applicable to noisy Helium Ion Microscope images in which background structures are not easily discernible due to a weak signal. The method is based on a preliminary adaptive histogram equalization, followed by 'slow motion' low-exponent Lévy fractional diffusion smoothing. This combined approach is unexpectedly effective, resulting in a companion enhanced image in which background structures are rendered much more visible, and noise is significantly reduced, all with minimal loss of image sharpness. The method also provides useful enhancements of scanning charged-particle microscopy images obtained by composing multiple drift-corrected 'fast scan' frames. The paper includes software routines, written in Interactive Data Language (IDL),(1) that can perform the above image processing tasks.

  7. A Response-Time Approach to Comparing Generalized Rational and Take-the-Best Models of Decision Making

    ERIC Educational Resources Information Center

    Bergert, F. Bryan; Nosofsky, Robert M.

    2007-01-01

    The authors develop and test generalized versions of take-the-best (TTB) and rational (RAT) models of multiattribute paired-comparison inference. The generalized models make allowances for subjective attribute weighting, probabilistic orders of attribute inspection, and noisy decision making. A key new test involves a response-time (RT)…

  8. Uncertainty in eddy covariance measurements and its application to physiological models

    Treesearch

    D.Y. Hollinger; A.D. Richardson; A.D. Richardson

    2005-01-01

    Flux data are noisy, and this uncertainty is largely due to random measurement error. Knowledge of uncertainty is essential for the statistical evaluation of modeled andmeasured fluxes, for comparison of parameters derived by fitting models to measured fluxes and in formal data-assimilation efforts. We used the difference between simultaneous measurements from two...

  9. Application of a Cognitive Diagnostic Model to a High-Stakes Reading Comprehension Test

    ERIC Educational Resources Information Center

    Ravand, Hamdollah

    2016-01-01

    General cognitive diagnostic models (CDM) such as the generalized deterministic input, noisy, "and" gate (G-DINA) model are flexible in that they allow for both compensatory and noncompensatory relationships among the subskills within the same test. Most of the previous CDM applications in the literature have been add-ons to simulation…

  10. Adaptive optimal input design and parametric estimation of nonlinear dynamical systems: application to neuronal modeling.

    PubMed

    Madi, Mahmoud K; Karameh, Fadi N

    2018-05-11

    Many physical models of biological processes including neural systems are characterized by parametric nonlinear dynamical relations between driving inputs, internal states, and measured outputs of the process. Fitting such models using experimental data (data assimilation) is a challenging task since the physical process often operates in a noisy, possibly non-stationary environment; moreover, conducting multiple experiments under controlled and repeatable conditions can be impractical, time consuming or costly. The accuracy of model identification, therefore, is dictated principally by the quality and dynamic richness of collected data over single or few experimental sessions. Accordingly, it is highly desirable to design efficient experiments that, by exciting the physical process with smart inputs, yields fast convergence and increased accuracy of the model. We herein introduce an adaptive framework in which optimal input design is integrated with Square root Cubature Kalman Filters (OID-SCKF) to develop an online estimation procedure that first, converges significantly quicker, thereby permitting model fitting over shorter time windows, and second, enhances model accuracy when only few process outputs are accessible. The methodology is demonstrated on common nonlinear models and on a four-area neural mass model with noisy and limited measurements. Estimation quality (speed and accuracy) is benchmarked against high-performance SCKF-based methods that commonly employ dynamically rich informed inputs for accurate model identification. For all the tested models, simulated single-trial and ensemble averages showed that OID-SCKF exhibited (i) faster convergence of parameter estimates and (ii) lower dependence on inter-trial noise variability with gains up to around 1000 msec in speed and 81% increase in variability for the neural mass models. In terms of accuracy, OID-SCKF estimation was superior, and exhibited considerably less variability across experiments, in identifying model parameters of (a) systems with challenging model inversion dynamics and (b) systems with fewer measurable outputs that directly relate to the underlying processes. Fast and accurate identification therefore carries particular promise for modeling of transient (short-lived) neuronal network dynamics using a spatially under-sampled set of noisy measurements, as is commonly encountered in neural engineering applications. © 2018 IOP Publishing Ltd.

  11. Do Quiet Areas Afford Greater Health-Related Quality of Life than Noisy Areas?

    PubMed Central

    Shepherd, Daniel; Welch, David; Dirks, Kim N.; McBride, David

    2013-01-01

    People typically choose to live in quiet areas in order to safeguard their health and wellbeing. However, the benefits of living in quiet areas are relatively understudied compared to the burdens associated with living in noisy areas. Additionally, research is increasingly focusing on the relationship between the human response to noise and measures of health and wellbeing, complementing traditional dose-response approaches, and further elucidating the impact of noise and health by incorporating human factors as mediators and moderators. To further explore the benefits of living in quiet areas, we compared the results of health-related quality of life (HRQOL) questionnaire datasets collected from households in localities differentiated by their soundscapes and population density: noisy city, quiet city, quiet rural, and noisy rural. The dose-response relationships between noise annoyance and HRQOL measures indicated an inverse relationship between the two. Additionally, quiet areas were found to have higher mean HRQOL domain scores than noisy areas. This research further supports the protection of quiet locales and ongoing noise abatement in noisy areas. PMID:23535280

  12. The Noisiness of Low-Frequency One-Third Octave Bands of Noise. M.S. Thesis - Southampton Univ.

    NASA Technical Reports Server (NTRS)

    Lawton, B. W.

    1975-01-01

    This study examined the relative noisiness of low frequency one-third octave bands of noise bounded by the bands centered at 25 Hz and 200 Hz, with intensities ranging from 50 db sound pressure level (SPL) to 95 db SPL. The thirty-two subjects used a method-of-adjustment technique, producing comparison-band intensities as noisy as standard bands centered at 100 Hz and 200 Hz with intensities of 60 db SPL and 72 db SPL. Four contours of equal noisiness were developed for one-third octave bands, extending down to 25 Hz and ranging in intensity from approximately 58 db SPL to 86 db SPL. These curves were compared with the contours of equal noisiness of Kryter and Pearsons. In the region of overlap (between 50 Hz and 200 Hz) the agreement was good.

  13. Feasibility of high resolution seismic reflection to improve accuracy of hydrogeologic models in a culturally noisy part of Ventura County, CA, USA

    USGS Publications Warehouse

    Miller, R.; Black, W.; Miele, M.; Morgan, T.; Ivanov, J.; Xia, J.; Peterie, S.

    2011-01-01

    A high-resolution seismic reflection investigation mapped reflectors and identified characteristics potentially influencing the interpretation of the hydrogeology underlying a portion of the Oxnard Plain in Ventura County, California. Design and implementation of this study was heavily influenced by high levels of cultural noise from vehicles, power lines, roads, manufacturing facilities, and underground utilities/vaults. Acquisition and processing flows were tailored to this noisy environment and relatively shallow target interval. Layering within both upper and lower aquifer systems was delineated at a vertical resolution potential of around 2.5 m at 350 m depth. ?? 2011 Society of Exploration Geophysicists.

  14. Reconstruction of pulse noisy images via stochastic resonance

    PubMed Central

    Han, Jing; Liu, Hongjun; Sun, Qibing; Huang, Nan

    2015-01-01

    We investigate a practical technology for reconstructing nanosecond pulse noisy images via stochastic resonance, which is based on the modulation instability. A theoretical model of this method for optical pulse signal is built to effectively recover the pulse image. The nanosecond noise-hidden images grow at the expense of noise during the stochastic resonance process in a photorefractive medium. The properties of output images are mainly determined by the input signal-to-noise intensity ratio, the applied voltage across the medium, and the correlation length of noise background. A high cross-correlation gain is obtained by optimizing these parameters. This provides a potential method for detecting low-level or hidden pulse images in various imaging applications. PMID:26067911

  15. A Double Dissociation between Anterior and Posterior Superior Temporal Gyrus for Processing Audiovisual Speech Demonstrated by Electrocorticography.

    PubMed

    Ozker, Muge; Schepers, Inga M; Magnotti, John F; Yoshor, Daniel; Beauchamp, Michael S

    2017-06-01

    Human speech can be comprehended using only auditory information from the talker's voice. However, comprehension is improved if the talker's face is visible, especially if the auditory information is degraded as occurs in noisy environments or with hearing loss. We explored the neural substrates of audiovisual speech perception using electrocorticography, direct recording of neural activity using electrodes implanted on the cortical surface. We observed a double dissociation in the responses to audiovisual speech with clear and noisy auditory component within the superior temporal gyrus (STG), a region long known to be important for speech perception. Anterior STG showed greater neural activity to audiovisual speech with clear auditory component, whereas posterior STG showed similar or greater neural activity to audiovisual speech in which the speech was replaced with speech-like noise. A distinct border between the two response patterns was observed, demarcated by a landmark corresponding to the posterior margin of Heschl's gyrus. To further investigate the computational roles of both regions, we considered Bayesian models of multisensory integration, which predict that combining the independent sources of information available from different modalities should reduce variability in the neural responses. We tested this prediction by measuring the variability of the neural responses to single audiovisual words. Posterior STG showed smaller variability than anterior STG during presentation of audiovisual speech with noisy auditory component. Taken together, these results suggest that posterior STG but not anterior STG is important for multisensory integration of noisy auditory and visual speech.

  16. Measurement-based quantum communication with resource states generated by entanglement purification

    NASA Astrophysics Data System (ADS)

    Wallnöfer, J.; Dür, W.

    2017-01-01

    We investigate measurement-based quantum communication with noisy resource states that are generated by entanglement purification. We consider the transmission of encoded information via noisy quantum channels using a measurement-based implementation of encoding, error correction, and decoding. We show that such an approach offers advantages over direct transmission, gate-based error correction, and measurement-based schemes with direct generation of resource states. We analyze the noise structure of resource states generated by entanglement purification and show that a local error model, i.e., noise acting independently on all qubits of the resource state, is a good approximation in general, and provides an exact description for Greenberger-Horne-Zeilinger states. The latter are resources for a measurement-based implementation of error-correction codes for bit-flip or phase-flip errors. This provides an approach to link the recently found very high thresholds for fault-tolerant measurement-based quantum information processing based on local error models for resource states with error thresholds for gate-based computational models.

  17. Performance of signal-to-noise ratio estimation for scanning electron microscope using autocorrelation Levinson-Durbin recursion model.

    PubMed

    Sim, K S; Lim, M S; Yeap, Z X

    2016-07-01

    A new technique to quantify signal-to-noise ratio (SNR) value of the scanning electron microscope (SEM) images is proposed. This technique is known as autocorrelation Levinson-Durbin recursion (ACLDR) model. To test the performance of this technique, the SEM image is corrupted with noise. The autocorrelation function of the original image and the noisy image are formed. The signal spectrum based on the autocorrelation function of image is formed. ACLDR is then used as an SNR estimator to quantify the signal spectrum of noisy image. The SNR values of the original image and the quantified image are calculated. The ACLDR is then compared with the three existing techniques, which are nearest neighbourhood, first-order linear interpolation and nearest neighbourhood combined with first-order linear interpolation. It is shown that ACLDR model is able to achieve higher accuracy in SNR estimation. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  18. A novel framework for objective detection and tracking of TC center from noisy satellite imagery

    NASA Astrophysics Data System (ADS)

    Johnson, Bibin; Thomas, Sachin; Rani, J. Sheeba

    2018-07-01

    This paper proposes a novel framework for automatically determining and tracking the center of a tropical cyclone (TC) during its entire life-cycle from the Thermal infrared (TIR) channel data of the geostationary satellite. The proposed method handles meteorological images with noise, missing or partial information due to the seasonal variability and lack of significant spatial or vortex features. To retrieve the cyclone center from these circumstances, a synergistic approach based on objective measures and Numerical Weather Prediction (NWP) model is being proposed. This method employs a spatial gradient scheme to process missing and noisy frames or a spatio-temporal gradient scheme for image sequences that are continuous and contain less noise. The initial estimate of the TC center from the missing imagery is corrected by exploiting a NWP model based post-processing scheme. The validity of the framework is tested on Infrared images of different cyclones obtained from various Geostationary satellites such as the Meteosat-7, INSAT- 3 D , Kalpana-1 etc. The computed track is compared with the actual track data obtained from Joint Typhoon Warning Center (JTWC), and it shows a reduction of mean track error by 11 % as compared to the other state of the art methods in the presence of missing and noisy frames. The proposed method is also successfully tested for simultaneous retrieval of the TC center from images containing multiple non-overlapping cyclones.

  19. Statistical analysis of effective singular values in matrix rank determination

    NASA Technical Reports Server (NTRS)

    Konstantinides, Konstantinos; Yao, Kung

    1988-01-01

    A major problem in using SVD (singular-value decomposition) as a tool in determining the effective rank of a perturbed matrix is that of distinguishing between significantly small and significantly large singular values to the end, conference regions are derived for the perturbed singular values of matrices with noisy observation data. The analysis is based on the theories of perturbations of singular values and statistical significance test. Threshold bounds for perturbation due to finite-precision and i.i.d. random models are evaluated. In random models, the threshold bounds depend on the dimension of the matrix, the noisy variance, and predefined statistical level of significance. Results applied to the problem of determining the effective order of a linear autoregressive system from the approximate rank of a sample autocorrelation matrix are considered. Various numerical examples illustrating the usefulness of these bounds and comparisons to other previously known approaches are given.

  20. SOM-based nonlinear least squares twin SVM via active contours for noisy image segmentation

    NASA Astrophysics Data System (ADS)

    Xie, Xiaomin; Wang, Tingting

    2017-02-01

    In this paper, a nonlinear least square twin support vector machine (NLSTSVM) with the integration of active contour model (ACM) is proposed for noisy image segmentation. Efforts have been made to seek the kernel-generated surfaces instead of hyper-planes for the pixels belonging to the foreground and background, respectively, using the kernel trick to enhance the performance. The concurrent self organizing maps (SOMs) are applied to approximate the intensity distributions in a supervised way, so as to establish the original training sets for the NLSTSVM. Further, the two sets are updated by adding the global region average intensities at each iteration. Moreover, a local variable regional term rather than edge stop function is adopted in the energy function to ameliorate the noise robustness. Experiment results demonstrate that our model holds the higher segmentation accuracy and more noise robustness.

  1. TABLES OF VALUES AND SHOOTING TIMES IN NOISY DUELS.

    DTIC Science & Technology

    A noisy duel is a zero-sum, two-person game with the following structure: Each player has bullets which he can fire at any times in (0, 1). If...shooting times for noisy duels are presented, which, in some cases, can be used to trace the play of the game. An additional table illustrates how

  2. Consistency of Cluster Analysis for Cognitive Diagnosis: The Reduced Reparameterized Unified Model and the General Diagnostic Model.

    PubMed

    Chiu, Chia-Yi; Köhn, Hans-Friedrich

    2016-09-01

    The asymptotic classification theory of cognitive diagnosis (ACTCD) provided the theoretical foundation for using clustering methods that do not rely on a parametric statistical model for assigning examinees to proficiency classes. Like general diagnostic classification models, clustering methods can be useful in situations where the true diagnostic classification model (DCM) underlying the data is unknown and possibly misspecified, or the items of a test conform to a mix of multiple DCMs. Clustering methods can also be an option when fitting advanced and complex DCMs encounters computational difficulties. These can range from the use of excessive CPU times to plain computational infeasibility. However, the propositions of the ACTCD have only been proven for the Deterministic Input Noisy Output "AND" gate (DINA) model and the Deterministic Input Noisy Output "OR" gate (DINO) model. For other DCMs, there does not exist a theoretical justification to use clustering for assigning examinees to proficiency classes. But if clustering is to be used legitimately, then the ACTCD must cover a larger number of DCMs than just the DINA model and the DINO model. Thus, the purpose of this article is to prove the theoretical propositions of the ACTCD for two other important DCMs, the Reduced Reparameterized Unified Model and the General Diagnostic Model.

  3. Patch-based anisotropic diffusion scheme for fluorescence diffuse optical tomography--part 2: image reconstruction.

    PubMed

    Correia, Teresa; Koch, Maximilian; Ale, Angelique; Ntziachristos, Vasilis; Arridge, Simon

    2016-02-21

    Fluorescence diffuse optical tomography (fDOT) provides 3D images of fluorescence distributions in biological tissue, which represent molecular and cellular processes. The image reconstruction problem is highly ill-posed and requires regularisation techniques to stabilise and find meaningful solutions. Quadratic regularisation tends to either oversmooth or generate very noisy reconstructions, depending on the regularisation strength. Edge preserving methods, such as anisotropic diffusion regularisation (AD), can preserve important features in the fluorescence image and smooth out noise. However, AD has limited ability to distinguish an edge from noise. We propose a patch-based anisotropic diffusion regularisation (PAD), where regularisation strength is determined by a weighted average according to the similarity between patches around voxels within a search window, instead of a simple local neighbourhood strategy. However, this method has higher computational complexity and, hence, we wavelet compress the patches (PAD-WT) to speed it up, while simultaneously taking advantage of the denoising properties of wavelet thresholding. Furthermore, structural information can be incorporated into the image reconstruction with PAD-WT to improve image quality and resolution. In this case, the weights used to average voxels in the image are calculated using the structural image, instead of the fluorescence image. The regularisation strength depends on both structural and fluorescence images, which guarantees that the method can preserve fluorescence information even when it is not structurally visible in the anatomical images. In part 1, we tested the method using a denoising problem. Here, we use simulated and in vivo mouse fDOT data to assess the algorithm performance. Our results show that the proposed PAD-WT method provides high quality and noise free images, superior to those obtained using AD.

  4. Symbolic Number Comparison Is Not Processed by the Analog Number System: Different Symbolic and Non-symbolic Numerical Distance and Size Effects

    PubMed Central

    Krajcsi, Attila; Lengyel, Gábor; Kojouharova, Petia

    2018-01-01

    HIGHLIGHTS We test whether symbolic number comparison is handled by an analog noisy system.Analog system model has systematic biases in describing symbolic number comparison.This suggests that symbolic and non-symbolic numbers are processed by different systems. Dominant numerical cognition models suppose that both symbolic and non-symbolic numbers are processed by the Analog Number System (ANS) working according to Weber's law. It was proposed that in a number comparison task the numerical distance and size effects reflect a ratio-based performance which is the sign of the ANS activation. However, increasing number of findings and alternative models propose that symbolic and non-symbolic numbers might be processed by different representations. Importantly, alternative explanations may offer similar predictions to the ANS prediction, therefore, former evidence usually utilizing only the goodness of fit of the ANS prediction is not sufficient to support the ANS account. To test the ANS model more rigorously, a more extensive test is offered here. Several properties of the ANS predictions for the error rates, reaction times, and diffusion model drift rates were systematically analyzed in both non-symbolic dot comparison and symbolic Indo-Arabic comparison tasks. It was consistently found that while the ANS model's prediction is relatively good for the non-symbolic dot comparison, its prediction is poorer and systematically biased for the symbolic Indo-Arabic comparison. We conclude that only non-symbolic comparison is supported by the ANS, and symbolic number comparisons are processed by other representation. PMID:29491845

  5. Social Sensor Analytics: Making Sense of Network Models in Social Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowling, Chase P.; Harrison, Joshua J.; Sathanur, Arun V.

    Social networks can be thought of as noisy sensor networks mapping real world information to the web. Owing to the extensive body of literature in sensor network analysis, this work sought to apply several novel and traditional methods in sensor network analysis for the purposes of efficiently interrogating social media data streams from raw data. We carefully revisit our definition of a social media signal from previous work both in terms of time-varying features within the data and the networked nature of the medium. Further, we detail our analysis of global patterns in Twitter over the months of November 2013more » and June 2014, detect and categorize events, and illustrate how these analyses can be used to inform graph-based models of Twitter, namely using a recent network influence model called PhySense: similar to PageRank but tuned to behavioral analysis by leveraging a sociologically inspired probabilistic model. We ultimately identify forms of information dissemination via analysis of time series and dynamic graph spectra and corroborate these findings through manual investigation of the data as a requisite step in modeling the diffusion process with PhySense. We hope to sufficiently characterize global behavior in a medium such as Twitter as a means of learning global model parameters one may use to predict or simulate behavior on a large scale. We have made our time series and dynamic graph analytical code available via a GitHub repository https://github.com/cpatdowling/salsa and our data are available upon request.« less

  6. A model of the human in a cognitive prediction task.

    NASA Technical Reports Server (NTRS)

    Rouse, W. B.

    1973-01-01

    The human decision maker's behavior when predicting future states of discrete linear dynamic systems driven by zero-mean Gaussian processes is modeled. The task is on a slow enough time scale that physiological constraints are insignificant compared with cognitive limitations. The model is basically a linear regression system identifier with a limited memory and noisy observations. Experimental data are presented and compared to the model.

  7. On the Analysis of Fraction Subtraction Data: The DINA Model, Classification, Latent Class Sizes, and the Q-Matrix

    ERIC Educational Resources Information Center

    DeCarlo, Lawrence T.

    2011-01-01

    Cognitive diagnostic models (CDMs) attempt to uncover latent skills or attributes that examinees must possess in order to answer test items correctly. The DINA (deterministic input, noisy "and") model is a popular CDM that has been widely used. It is shown here that a logistic version of the model can easily be fit with standard software for…

  8. A hybrid neural network model for noisy data regression.

    PubMed

    Lee, Eric W M; Lim, Chee Peng; Yuen, Richard K K; Lo, S M

    2004-04-01

    A hybrid neural network model, based on the fusion of fuzzy adaptive resonance theory (FA ART) and the general regression neural network (GRNN), is proposed in this paper. Both FA and the GRNN are incremental learning systems and are very fast in network training. The proposed hybrid model, denoted as GRNNFA, is able to retain these advantages and, at the same time, to reduce the computational requirements in calculating and storing information of the kernels. A clustering version of the GRNN is designed with data compression by FA for noise removal. An adaptive gradient-based kernel width optimization algorithm has also been devised. Convergence of the gradient descent algorithm can be accelerated by the geometric incremental growth of the updating factor. A series of experiments with four benchmark datasets have been conducted to assess and compare effectiveness of GRNNFA with other approaches. The GRNNFA model is also employed in a novel application task for predicting the evacuation time of patrons at typical karaoke centers in Hong Kong in the event of fire. The results positively demonstrate the applicability of GRNNFA in noisy data regression problems.

  9. Bayesian module identification from multiple noisy networks.

    PubMed

    Zamani Dadaneh, Siamak; Qian, Xiaoning

    2016-12-01

    Module identification has been studied extensively in order to gain deeper understanding of complex systems, such as social networks as well as biological networks. Modules are often defined as groups of vertices in these networks that are topologically cohesive with similar interaction patterns with the rest of the vertices. Most of the existing module identification algorithms assume that the given networks are faithfully measured without errors. However, in many real-world applications, for example, when analyzing protein-protein interaction networks from high-throughput profiling techniques, there is significant noise with both false positive and missing links between vertices. In this paper, we propose a new model for more robust module identification by taking advantage of multiple observed networks with significant noise so that signals in multiple networks can be strengthened and help improve the solution quality by combining information from various sources. We adopt a hierarchical Bayesian model to integrate multiple noisy snapshots that capture the underlying modular structure of the networks under study. By introducing a latent root assignment matrix and its relations to instantaneous module assignments in all the observed networks to capture the underlying modular structure and combine information across multiple networks, an efficient variational Bayes algorithm can be derived to accurately and robustly identify the underlying modules from multiple noisy networks. Experiments on synthetic and protein-protein interaction data sets show that our proposed model enhances both the accuracy and resolution in detecting cohesive modules, and it is less vulnerable to noise in the observed data. In addition, it shows higher power in predicting missing edges compared to individual-network methods.

  10. The noisy voter model on complex networks.

    PubMed

    Carro, Adrián; Toral, Raúl; San Miguel, Maxi

    2016-04-20

    We propose a new analytical method to study stochastic, binary-state models on complex networks. Moving beyond the usual mean-field theories, this alternative approach is based on the introduction of an annealed approximation for uncorrelated networks, allowing to deal with the network structure as parametric heterogeneity. As an illustration, we study the noisy voter model, a modification of the original voter model including random changes of state. The proposed method is able to unfold the dependence of the model not only on the mean degree (the mean-field prediction) but also on more complex averages over the degree distribution. In particular, we find that the degree heterogeneity--variance of the underlying degree distribution--has a strong influence on the location of the critical point of a noise-induced, finite-size transition occurring in the model, on the local ordering of the system, and on the functional form of its temporal correlations. Finally, we show how this latter point opens the possibility of inferring the degree heterogeneity of the underlying network by observing only the aggregate behavior of the system as a whole, an issue of interest for systems where only macroscopic, population level variables can be measured.

  11. Accelerated gradient based diffuse optical tomographic image reconstruction.

    PubMed

    Biswas, Samir Kumar; Rajan, K; Vasu, R M

    2011-01-01

    Fast reconstruction of interior optical parameter distribution using a new approach called Broyden-based model iterative image reconstruction (BMOBIIR) and adjoint Broyden-based MOBIIR (ABMOBIIR) of a tissue and a tissue mimicking phantom from boundary measurement data in diffuse optical tomography (DOT). DOT is a nonlinear and ill-posed inverse problem. Newton-based MOBIIR algorithm, which is generally used, requires repeated evaluation of the Jacobian which consumes bulk of the computation time for reconstruction. In this study, we propose a Broyden approach-based accelerated scheme for Jacobian computation and it is combined with conjugate gradient scheme (CGS) for fast reconstruction. The method makes explicit use of secant and adjoint information that can be obtained from forward solution of the diffusion equation. This approach reduces the computational time many fold by approximating the system Jacobian successively through low-rank updates. Simulation studies have been carried out with single as well as multiple inhomogeneities. Algorithms are validated using an experimental study carried out on a pork tissue with fat acting as an inhomogeneity. The results obtained through the proposed BMOBIIR and ABMOBIIR approaches are compared with those of Newton-based MOBIIR algorithm. The mean squared error and execution time are used as metrics for comparing the results of reconstruction. We have shown through experimental and simulation studies that Broyden-based MOBIIR and adjoint Broyden-based methods are capable of reconstructing single as well as multiple inhomogeneities in tissue and a tissue-mimicking phantom. Broyden MOBIIR and adjoint Broyden MOBIIR methods are computationally simple and they result in much faster implementations because they avoid direct evaluation of Jacobian. The image reconstructions have been carried out with different initial values using Newton, Broyden, and adjoint Broyden approaches. These algorithms work well when the initial guess is close to the true solution. However, when initial guess is far away from true solution, Newton-based MOBIIR gives better reconstructed images. The proposed methods are found to be stable with noisy measurement data.

  12. Not-Post-Peierls compatibility under noisy channels

    NASA Astrophysics Data System (ADS)

    Ducuara, Andrés F.; Susa, Cristian E.; Reina, John H.

    2017-06-01

    The Pusey-Barrett-Rudolph (PBR) theorem deals with the realism of the quantum states. It establishes that every pure quantum state is real, in the context of quantum ontological models. Specifically, by guaranteeing the property of not-Post-Peierls (\

  13. How Reliable is Bayesian Model Averaging Under Noisy Data? Statistical Assessment and Implications for Robust Model Selection

    NASA Astrophysics Data System (ADS)

    Schöniger, Anneli; Wöhling, Thomas; Nowak, Wolfgang

    2014-05-01

    Bayesian model averaging ranks the predictive capabilities of alternative conceptual models based on Bayes' theorem. The individual models are weighted with their posterior probability to be the best one in the considered set of models. Finally, their predictions are combined into a robust weighted average and the predictive uncertainty can be quantified. This rigorous procedure does, however, not yet account for possible instabilities due to measurement noise in the calibration data set. This is a major drawback, since posterior model weights may suffer a lack of robustness related to the uncertainty in noisy data, which may compromise the reliability of model ranking. We present a new statistical concept to account for measurement noise as source of uncertainty for the weights in Bayesian model averaging. Our suggested upgrade reflects the limited information content of data for the purpose of model selection. It allows us to assess the significance of the determined posterior model weights, the confidence in model selection, and the accuracy of the quantified predictive uncertainty. Our approach rests on a brute-force Monte Carlo framework. We determine the robustness of model weights against measurement noise by repeatedly perturbing the observed data with random realizations of measurement error. Then, we analyze the induced variability in posterior model weights and introduce this "weighting variance" as an additional term into the overall prediction uncertainty analysis scheme. We further determine the theoretical upper limit in performance of the model set which is imposed by measurement noise. As an extension to the merely relative model ranking, this analysis provides a measure of absolute model performance. To finally decide, whether better data or longer time series are needed to ensure a robust basis for model selection, we resample the measurement time series and assess the convergence of model weights for increasing time series length. We illustrate our suggested approach with an application to model selection between different soil-plant models following up on a study by Wöhling et al. (2013). Results show that measurement noise compromises the reliability of model ranking and causes a significant amount of weighting uncertainty, if the calibration data time series is not long enough to compensate for its noisiness. This additional contribution to the overall predictive uncertainty is neglected without our approach. Thus, we strongly advertise to include our suggested upgrade in the Bayesian model averaging routine.

  14. Acoustic and perceptual effects of magnifying interaural difference cues in a simulated "binaural" hearing aid.

    PubMed

    de Taillez, Tobias; Grimm, Giso; Kollmeier, Birger; Neher, Tobias

    2018-06-01

    To investigate the influence of an algorithm designed to enhance or magnify interaural difference cues on speech signals in noisy, spatially complex conditions using both technical and perceptual measurements. To also investigate the combination of interaural magnification (IM), monaural microphone directionality (DIR), and binaural coherence-based noise reduction (BC). Speech-in-noise stimuli were generated using virtual acoustics. A computational model of binaural hearing was used to analyse the spatial effects of IM. Predicted speech quality changes and signal-to-noise-ratio (SNR) improvements were also considered. Additionally, a listening test was carried out to assess speech intelligibility and quality. Listeners aged 65-79 years with and without sensorineural hearing loss (N = 10 each). IM increased the horizontal separation of concurrent directional sound sources without introducing any major artefacts. In situations with diffuse noise, however, the interaural difference cues were distorted. Preprocessing the binaural input signals with DIR reduced distortion. IM influenced neither speech intelligibility nor speech quality. The IM algorithm tested here failed to improve speech perception in noise, probably because of the dispersion and inconsistent magnification of interaural difference cues in complex environments.

  15. Long-Range Correlations in Sentence Series from A Story of the Stone

    PubMed Central

    Yang, Tianguang; Gu, Changgui; Yang, Huijie

    2016-01-01

    A sentence is the natural unit of language. Patterns embedded in series of sentences can be used to model the formation and evolution of languages, and to solve practical problems such as evaluating linguistic ability. In this paper, we apply de-trended fluctuation analysis to detect long-range correlations embedded in sentence series from A Story of the Stone, one of the greatest masterpieces of Chinese literature. We identified a weak long-range correlation, with a Hurst exponent of 0.575±0.002 up to a scale of 104. We used the structural stability to confirm the behavior of the long-range correlation, and found that different parts of the series had almost identical Hurst exponents. We found that noisy records can lead to false results and conclusions, even if the noise covers a limited proportion of the total records (e.g., less than 1%). Thus, the structural stability test is an essential procedure for confirming the existence of long-range correlations, which has been widely neglected in previous studies. Furthermore, a combination of de-trended fluctuation analysis and diffusion entropy analysis demonstrated that the sentence series was generated by a fractional Brownian motion. PMID:27648941

  16. Long-Range Correlations in Sentence Series from A Story of the Stone.

    PubMed

    Yang, Tianguang; Gu, Changgui; Yang, Huijie

    2016-01-01

    A sentence is the natural unit of language. Patterns embedded in series of sentences can be used to model the formation and evolution of languages, and to solve practical problems such as evaluating linguistic ability. In this paper, we apply de-trended fluctuation analysis to detect long-range correlations embedded in sentence series from A Story of the Stone, one of the greatest masterpieces of Chinese literature. We identified a weak long-range correlation, with a Hurst exponent of 0.575±0.002 up to a scale of 104. We used the structural stability to confirm the behavior of the long-range correlation, and found that different parts of the series had almost identical Hurst exponents. We found that noisy records can lead to false results and conclusions, even if the noise covers a limited proportion of the total records (e.g., less than 1%). Thus, the structural stability test is an essential procedure for confirming the existence of long-range correlations, which has been widely neglected in previous studies. Furthermore, a combination of de-trended fluctuation analysis and diffusion entropy analysis demonstrated that the sentence series was generated by a fractional Brownian motion.

  17. Biomimetic air sampling for detection of low concentrations of molecules and bioagents : LDRD 52744 final report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Robert Clark

    2003-12-01

    Present methods of air sampling for low concentrations of chemicals like explosives and bioagents involve noisy and power hungry collectors with mechanical parts for moving large volumes of air. However there are biological systems that are capable of detecting very low concentrations of molecules with no mechanical moving parts. An example is the silkworm moth antenna which is a highly branched structure where each of 100 branches contains about 200 sensory 'hairs' which have dimensions of 2 microns wide by 100 microns long. The hairs contain about 3000 pores which is where the gas phase molecules enter the aqueous (lymph)more » phase for detection. Simulations of diffusion of molecules indicate that this 'forest' of hairs is 'designed' to maximize the extraction of the vapor phase molecules. Since typical molecules lose about 4 decades in diffusion constant upon entering the liquid phase, it is important to allow air diffusion to bring the molecule as close to the 'sensor' as possible. The moth acts on concentrations as low as 1000 molecules per cubic cm. (one part in 1e16). A 3-D collection system of these dimensions could be fabricated by micromachining techniques available at Sandia. This LDRD addresses the issues involved with extracting molecules from air onto micromachined structures and then delivering those molecules to microsensors for detection.« less

  18. Frequency characteristics of human muscle and cortical responses evoked by noisy Achilles tendon vibration.

    PubMed

    Mildren, Robyn L; Peters, Ryan M; Hill, Aimee J; Blouin, Jean-Sébastien; Carpenter, Mark G; Inglis, J Timothy

    2017-05-01

    Noisy stimuli, along with linear systems analysis, have proven to be effective for mapping functional neural connections. We explored the use of noisy (10-115 Hz) Achilles tendon vibration to examine somatosensory reflexes in the triceps surae muscles in standing healthy young adults ( n = 8). We also examined the association between noisy vibration and electrical activity recorded over the sensorimotor cortex using electroencephalography. We applied 2 min of vibration and recorded ongoing muscle activity of the soleus and gastrocnemii using surface electromyography (EMG). Vibration amplitude was varied to characterize reflex scaling and to examine how different stimulus levels affected postural sway. Muscle activity from the soleus and gastrocnemii was significantly correlated with the tendon vibration across a broad frequency range (~10-80 Hz), with a peak located at ~40 Hz. Vibration-EMG coherence positively scaled with stimulus amplitude in all three muscles, with soleus displaying the strongest coupling and steepest scaling. EMG responses lagged the vibration by ~38 ms, a delay that paralleled observed response latencies to tendon taps. Vibration-evoked cortical oscillations were observed at frequencies ~40-70 Hz (peak ~54 Hz) in most subjects, a finding in line with previous reports of sensory-evoked γ-band oscillations. Further examination of the method revealed 1 ) accurate reflex estimates could be obtained with <60 s of low-level (root mean square = 10 m/s 2 ) vibration; 2 ) responses did not habituate over 2 min of exposure; and importantly, 3 ) noisy vibration had a minimal influence on standing balance. Our findings suggest noisy tendon vibration is an effective novel approach to characterize somatosensory reflexes during standing. NEW & NOTEWORTHY We applied noisy (10-115 Hz) vibration to the Achilles tendon to examine the frequency characteristics of lower limb somatosensory reflexes during standing. Ongoing muscle activity was coherent with the noisy vibration (peak coherence ~40 Hz), and coherence positively scaled with increases in stimulus amplitude. Our findings suggest that noisy tendon vibration, along with linear systems analysis, is an effective novel approach to study somatosensory reflex actions in active muscles. Copyright © 2017 the American Physiological Society.

  19. Simultaneous dense coding affected by fluctuating massless scalar field

    NASA Astrophysics Data System (ADS)

    Huang, Zhiming; Ye, Yiyong; Luo, Darong

    2018-04-01

    In this paper, we investigate the simultaneous dense coding (SDC) protocol affected by fluctuating massless scalar field. The noisy model of SDC protocol is constructed and the master equation that governs the SDC evolution is deduced. The success probabilities of SDC protocol are discussed for different locking operators under the influence of vacuum fluctuations. We find that the joint success probability is independent of the locking operators, but other success probabilities are not. For quantum Fourier transform and double controlled-NOT operators, the success probabilities drop with increasing two-atom distance, but SWAP operator is not. Unlike the SWAP operator, the success probabilities of Bob and Charlie are different. For different noisy interval values, different locking operators have different robustness to noise.

  20. Effects of flashlight guidance on chest compression performance in cardiopulmonary resuscitation in a noisy environment.

    PubMed

    You, Je Sung; Chung, Sung Phil; Chang, Chul Ho; Park, Incheol; Lee, Hye Sun; Kim, SeungHo; Lee, Hahn Shick

    2013-08-01

    In real cardiopulmonary resuscitation (CPR), noise can arise from instructional voices and environmental sounds in places such as a battlefield and industrial and high-traffic areas. A feedback device using a flashing light was designed to overcome noise-induced stimulus saturation during CPR. This study was conducted to determine whether 'flashlight' guidance influences CPR performance in a simulated noisy setting. We recruited 30 senior medical students with no previous experience of using flashlight-guided CPR to participate in this prospective, simulation-based, crossover study. The experiment was conducted in a simulated noisy situation using a cardiac arrest model without ventilation. Noise such as patrol car and fire engine sirens was artificially generated. The flashlight guidance device emitted light pulses at the rate of 100 flashes/min. Participants also received instructions to achieve the desired rate of 100 compressions/min. CPR performances were recorded with a Resusci Anne mannequin with a computer skill-reporting system. There were significant differences between the control and flashlight groups in mean compression rate (MCR), MCR/min and visual analogue scale. However, there were no significant differences in correct compression depth, mean compression depth, correct hand position, and correctly released compression. The flashlight group constantly maintained the pace at the desired 100 compressions/min. Furthermore, the flashlight group had a tendency to keep the MCR constant, whereas the control group had a tendency to decrease it after 60 s. Flashlight-guided CPR is particularly advantageous for maintaining a desired MCR during hands-only CPR in noisy environments, where metronome pacing might not be clearly heard.

  1. A Double Dissociation between Anterior and Posterior Superior Temporal Gyrus for Processing Audiovisual Speech Demonstrated by Electrocorticography

    PubMed Central

    Ozker, Muge; Schepers, Inga M.; Magnotti, John F.; Yoshor, Daniel; Beauchamp, Michael S.

    2017-01-01

    Human speech can be comprehended using only auditory information from the talker’s voice. However, comprehension is improved if the talker’s face is visible, especially if the auditory information is degraded as occurs in noisy environments or with hearing loss. We explored the neural substrates of audiovisual speech perception using electrocorticography, direct recording of neural activity using electrodes implanted on the cortical surface. We observed a double dissociation in the responses to audiovisual speech with clear and noisy auditory component within the superior temporal gyrus (STG), a region long known to be important for speech perception. Anterior STG showed greater neural activity to audiovisual speech with clear auditory component, whereas posterior STG showed similar or greater neural activity to audiovisual speech in which the speech was replaced with speech-like noise. A distinct border between the two response patterns was observed, demarcated by a landmark corresponding to the posterior margin of Heschl’s gyrus. To further investigate the computational roles of both regions, we considered Bayesian models of multisensory integration, which predict that combining the independent sources of information available from different modalities should reduce variability in the neural responses. We tested this prediction by measuring the variability of the neural responses to single audiovisual words. Posterior STG showed smaller variability than anterior STG during presentation of audiovisual speech with noisy auditory component. Taken together, these results suggest that posterior STG but not anterior STG is important for multisensory integration of noisy auditory and visual speech. PMID:28253074

  2. Micro-level dynamics of the online information propagation: A user behavior model based on noisy spiking neurons.

    PubMed

    Lymperopoulos, Ilias N; Ioannou, George D

    2016-10-01

    We develop and validate a model of the micro-level dynamics underlying the formation of macro-level information propagation patterns in online social networks. In particular, we address the dynamics at the level of the mechanism regulating a user's participation in an online information propagation process. We demonstrate that this mechanism can be realistically described by the dynamics of noisy spiking neurons driven by endogenous and exogenous, deterministic and stochastic stimuli representing the influence modulating one's intention to be an information spreader. Depending on the dynamically changing influence characteristics, time-varying propagation patterns emerge reflecting the temporal structure, strength, and signal-to-noise ratio characteristics of the stimulation driving the online users' information sharing activity. The proposed model constitutes an overarching, novel, and flexible approach to the modeling of the micro-level mechanisms whereby information propagates in online social networks. As such, it can be used for a comprehensive understanding of the online transmission of information, a process integral to the sociocultural evolution of modern societies. The proposed model is highly adaptable and suitable for the study of the propagation patterns of behavior, opinions, and innovations among others. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Robust estimation for ordinary differential equation models.

    PubMed

    Cao, J; Wang, L; Xu, J

    2011-12-01

    Applied scientists often like to use ordinary differential equations (ODEs) to model complex dynamic processes that arise in biology, engineering, medicine, and many other areas. It is interesting but challenging to estimate ODE parameters from noisy data, especially when the data have some outliers. We propose a robust method to address this problem. The dynamic process is represented with a nonparametric function, which is a linear combination of basis functions. The nonparametric function is estimated by a robust penalized smoothing method. The penalty term is defined with the parametric ODE model, which controls the roughness of the nonparametric function and maintains the fidelity of the nonparametric function to the ODE model. The basis coefficients and ODE parameters are estimated in two nested levels of optimization. The coefficient estimates are treated as an implicit function of ODE parameters, which enables one to derive the analytic gradients for optimization using the implicit function theorem. Simulation studies show that the robust method gives satisfactory estimates for the ODE parameters from noisy data with outliers. The robust method is demonstrated by estimating a predator-prey ODE model from real ecological data. © 2011, The International Biometric Society.

  4. Recovery of Background Structures in Nanoscale Helium Ion Microscope Imaging

    PubMed Central

    Carasso, Alfred S; Vladár, András E

    2014-01-01

    This paper discusses a two step enhancement technique applicable to noisy Helium Ion Microscope images in which background structures are not easily discernible due to a weak signal. The method is based on a preliminary adaptive histogram equalization, followed by ‘slow motion’ low-exponent Lévy fractional diffusion smoothing. This combined approach is unexpectedly effective, resulting in a companion enhanced image in which background structures are rendered much more visible, and noise is significantly reduced, all with minimal loss of image sharpness. The method also provides useful enhancements of scanning charged-particle microscopy images obtained by composing multiple drift-corrected ‘fast scan’ frames. The paper includes software routines, written in Interactive Data Language (IDL),1 that can perform the above image processing tasks. PMID:26601050

  5. Noisy transcription factor NF-κB oscillations stabilize and sensitize cytokine signaling in space

    NASA Astrophysics Data System (ADS)

    Gangstad, Sirin W.; Feldager, Cilie W.; Juul, Jeppe; Trusina, Ala

    2013-02-01

    NF-κB is a major transcription factor mediating inflammatory response. In response to a pro-inflammatory stimulus, it exhibits a characteristic response—a pulse followed by noisy oscillations in concentrations of considerably smaller amplitude. NF-κB is an important mediator of cellular communication, as it is both activated by and upregulates production of cytokines, signals used by white blood cells to find the source of inflammation. While the oscillatory dynamics of NF-κB has been extensively investigated both experimentally and theoretically, the role of the noise and the lower secondary amplitude has not been addressed. We use a cellular automaton model to address these issues in the context of spatially distributed communicating cells. We find that noisy secondary oscillations stabilize concentric wave patterns, thus improving signal quality. Furthermore, both lower secondary amplitude as well as noise in the oscillation period might be working against chronic inflammation, the state of self-sustained and stimulus-independent excitations. Our findings suggest that the characteristic irregular secondary oscillations of lower amplitude are not accidental. On the contrary, they might have evolved to increase robustness of the inflammatory response and the system's ability to return to a pre-stimulated state.

  6. Determining the solution space for a coordinated whole body movement in a noisy environment: application to the upstart in gymnastics.

    PubMed

    Hiley, Michael J; Yeadon, Maurice R

    2014-08-01

    The upstart is a fundamental skill in gymnastics, requiring whole body coordination to transfer the gymnast from a swing beneath the bar to a support position above the bar. The aim of this study was to determine the solution space within which a gymnast could successfully perform an upstart. A previous study had shown that the underlying control strategy for the upstart could be accounted for by maximizing the likelihood of success while operating in a noisy environment. In the current study, data were collected on a senior gymnast and a computer simulation model of a gymnast and bar was used to determine the solution space for maximizing success while operating in a noisy environment. The effects of timing important actions, gymnast strength, and movement execution noise on the success of the upstart were then systematically determined. The solution space for the senior gymnast was relatively large. Decreasing strength and increasing movement execution noise reduced the size of the solution space. A weaker gymnast would have to use a different technique than that used by the senior gymnast to produce an acceptable success rate.

  7. Mapping ecological systems with a random foret model: tradeoffs between errors and bias

    Treesearch

    Emilie Grossmann; Janet Ohmann; James Kagan; Heather May; Matthew Gregory

    2010-01-01

    New methods for predictive vegetation mapping allow improved estimations of plant community composition across large regions. Random Forest (RF) models limit over-fitting problems of other methods, and are known for making accurate classification predictions from noisy, nonnormal data, but can be biased when plot samples are unbalanced. We developed two contrasting...

  8. Factors Affecting the Item Parameter Estimation and Classification Accuracy of the DINA Model

    ERIC Educational Resources Information Center

    de la Torre, Jimmy; Hong, Yuan; Deng, Weiling

    2010-01-01

    To better understand the statistical properties of the deterministic inputs, noisy "and" gate cognitive diagnosis (DINA) model, the impact of several factors on the quality of the item parameter estimates and classification accuracy was investigated. Results of the simulation study indicate that the fully Bayes approach is most accurate when the…

  9. A New Framework of Removing Salt and Pepper Impulse Noise for the Noisy Image Including Many Noise-Free White and Black Pixels

    NASA Astrophysics Data System (ADS)

    Li, Song; Wang, Caizhu; Li, Yeqiu; Wang, Ling; Sakata, Shiro; Sekiya, Hiroo; Kuroiwa, Shingo

    In this paper, we propose a new framework of removing salt and pepper impulse noise. In our proposed framework, the most important point is that the number of noise-free white and black pixels in a noisy image can be determined by using the noise rates estimated by Fuzzy Impulse Noise Detection and Reduction Method (FINDRM) and Efficient Detail-Preserving Approach (EDPA). For the noisy image includes many noise-free white and black pixels, the detected noisy pixel from the FINDRM is re-checked by using the alpha-trimmed mean. Finally, the impulse noise filtering phase of the FINDRM is used to restore the image. Simulation results show that for the noisy image including many noise-free white and black pixels, the proposed framework can decrease the False Hit Rate (FHR) efficiently compared with the FINDRM. Therefore, the proposed framework can be used more widely than the FINDRM.

  10. The Quantum Steganography Protocol via Quantum Noisy Channels

    NASA Astrophysics Data System (ADS)

    Wei, Zhan-Hong; Chen, Xiu-Bo; Niu, Xin-Xin; Yang, Yi-Xian

    2015-08-01

    As a promising branch of quantum information hiding, Quantum steganography aims to transmit secret messages covertly in public quantum channels. But due to environment noise and decoherence, quantum states easily decay and change. Therefore, it is very meaningful to make a quantum information hiding protocol apply to quantum noisy channels. In this paper, we make the further research on a quantum steganography protocol for quantum noisy channels. The paper proved that the protocol can apply to transmit secret message covertly in quantum noisy channels, and explicity showed quantum steganography protocol. In the protocol, without publishing the cover data, legal receivers can extract the secret message with a certain probability, which make the protocol have a good secrecy. Moreover, our protocol owns the independent security, and can be used in general quantum communications. The communication, which happen in our protocol, do not need entangled states, so our protocol can be used without the limitation of entanglement resource. More importantly, the protocol apply to quantum noisy channels, and can be used widely in the future quantum communication.

  11. Using the ratio of the magnetic field to the analytic signal of the magnetic gradient tensor in determining the position of simple shaped magnetic anomalies

    NASA Astrophysics Data System (ADS)

    Karimi, Kurosh; Shirzaditabar, Farzad

    2017-08-01

    The analytic signal of magnitude of the magnetic field’s components and its first derivatives have been employed for locating magnetic structures, which can be considered as point-dipoles or line of dipoles. Although similar methods have been used for locating such magnetic anomalies, they cannot estimate the positions of anomalies in noisy states with an acceptable accuracy. The methods are also inexact in determining the depth of deep anomalies. In noisy cases and in places other than poles, the maximum points of the magnitude of the magnetic vector components and Az are not located exactly above 3D bodies. Consequently, the horizontal location estimates of bodies are accompanied by errors. Here, the previous methods are altered and generalized to locate deeper models in the presence of noise even at lower magnetic latitudes. In addition, a statistical technique is presented for working in noisy areas and a new method, which is resistant to noise by using a ‘depths mean’ method, is made. Reduction to the pole transformation is also used to find the most possible actual horizontal body location. Deep models are also well estimated. The method is tested on real magnetic data over an urban gas pipeline in the vicinity of Kermanshah province, Iran. The estimated location of the pipeline is accurate in accordance with the result of the half-width method.

  12. Filters for Improvement of Multiscale Data from Atomistic Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, David J.; Reynolds, Daniel R.

    Multiscale computational models strive to produce accurate and efficient numerical simulations of systems involving interactions across multiple spatial and temporal scales that typically differ by several orders of magnitude. Some such models utilize a hybrid continuum-atomistic approach combining continuum approximations with first-principles-based atomistic models to capture multiscale behavior. By following the heterogeneous multiscale method framework for developing multiscale computational models, unknown continuum scale data can be computed from an atomistic model. Concurrently coupling the two models requires performing numerous atomistic simulations which can dominate the computational cost of the method. Furthermore, when the resulting continuum data is noisy due tomore » sampling error, stochasticity in the model, or randomness in the initial conditions, filtering can result in significant accuracy gains in the computed multiscale data without increasing the size or duration of the atomistic simulations. In this work, we demonstrate the effectiveness of spectral filtering for increasing the accuracy of noisy multiscale data obtained from atomistic simulations. Moreover, we present a robust and automatic method for closely approximating the optimum level of filtering in the case of additive white noise. By improving the accuracy of this filtered simulation data, it leads to a dramatic computational savings by allowing for shorter and smaller atomistic simulations to achieve the same desired multiscale simulation precision.« less

  13. Filters for Improvement of Multiscale Data from Atomistic Simulations

    DOE PAGES

    Gardner, David J.; Reynolds, Daniel R.

    2017-01-05

    Multiscale computational models strive to produce accurate and efficient numerical simulations of systems involving interactions across multiple spatial and temporal scales that typically differ by several orders of magnitude. Some such models utilize a hybrid continuum-atomistic approach combining continuum approximations with first-principles-based atomistic models to capture multiscale behavior. By following the heterogeneous multiscale method framework for developing multiscale computational models, unknown continuum scale data can be computed from an atomistic model. Concurrently coupling the two models requires performing numerous atomistic simulations which can dominate the computational cost of the method. Furthermore, when the resulting continuum data is noisy due tomore » sampling error, stochasticity in the model, or randomness in the initial conditions, filtering can result in significant accuracy gains in the computed multiscale data without increasing the size or duration of the atomistic simulations. In this work, we demonstrate the effectiveness of spectral filtering for increasing the accuracy of noisy multiscale data obtained from atomistic simulations. Moreover, we present a robust and automatic method for closely approximating the optimum level of filtering in the case of additive white noise. By improving the accuracy of this filtered simulation data, it leads to a dramatic computational savings by allowing for shorter and smaller atomistic simulations to achieve the same desired multiscale simulation precision.« less

  14. Transfer Function Identification Using Orthogonal Fourier Transform Modeling Functions

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2013-01-01

    A method for transfer function identification, including both model structure determination and parameter estimation, was developed and demonstrated. The approach uses orthogonal modeling functions generated from frequency domain data obtained by Fourier transformation of time series data. The method was applied to simulation data to identify continuous-time transfer function models and unsteady aerodynamic models. Model fit error, estimated model parameters, and the associated uncertainties were used to show the effectiveness of the method for identifying accurate transfer function models from noisy data.

  15. Image barcodes

    NASA Astrophysics Data System (ADS)

    Damera-Venkata, Niranjan; Yen, Jonathan

    2003-01-01

    A Visually significant two-dimensional barcode (VSB) developed by Shaked et. al. is a method used to design an information carrying two-dimensional barcode, which has the appearance of a given graphical entity such as a company logo. The encoding and decoding of information using the VSB, uses a base image with very few graylevels (typically only two). This typically requires the image histogram to be bi-modal. For continuous-tone images such as digital photographs of individuals, the representation of tone or "shades of gray" is not only important to obtain a pleasing rendition of the face, but in most cases, the VSB renders these images unrecognizable due to its inability to represent true gray-tone variations. This paper extends the concept of a VSB to an image bar code (IBC). We enable the encoding and subsequent decoding of information embedded in the hardcopy version of continuous-tone base-images such as those acquired with a digital camera. The encoding-decoding process is modeled by robust data transmission through a noisy print-scan channel that is explicitly modeled. The IBC supports a high information capacity that differentiates it from common hardcopy watermarks. The reason for the improved image quality over the VSB is a joint encoding/halftoning strategy based on a modified version of block error diffusion. Encoder stability, image quality vs. information capacity tradeoffs and decoding issues with and without explicit knowledge of the base-image are discussed.

  16. The effects of sleep deprivation on item and associative recognition memory.

    PubMed

    Ratcliff, Roger; Van Dongen, Hans P A

    2018-02-01

    Sleep deprivation adversely affects the ability to perform cognitive tasks, but theories range from predicting an overall decline in cognitive functioning because of reduced stability in attentional networks to specific deficits in various cognitive domains or processes. We measured the effects of sleep deprivation on two memory tasks, item recognition ("was this word in the list studied") and associative recognition ("were these two words studied in the same pair"). These tasks test memory for information encoded a few minutes earlier and so do not address effects of sleep deprivation on working memory or consolidation after sleep. A diffusion model was used to decompose accuracy and response time distributions to produce parameter estimates of components of cognitive processing. The model assumes that over time, noisy evidence from the task stimulus is accumulated to one of two decision criteria, and parameters governing this process are extracted and interpreted in terms of distinct cognitive processes. Results showed that sleep deprivation reduces drift rate (evidence used in the decision process), with little effect on the other components of the decision process. These results contrast with the effects of aging, which show little decline in item recognition but large declines in associative recognition. The results suggest that sleep deprivation degrades the quality of information stored in memory and that this may occur through degraded attentional processes. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  17. Estimating Classifier Accuracy Using Noisy Expert Labels

    DTIC Science & Technology

    estimators to real -world problems is limited. We applythe estimators to labels simulated from three models of the expert labeling process and also four real ...thatconditional dependence between experts negatively impacts estimator performance. On two of the real datasets, the estimatorsclearly outperformed the

  18. Errors associated with fitting Gaussian profiles to noisy emission-line spectra

    NASA Technical Reports Server (NTRS)

    Lenz, Dawn D.; Ayres, Thomas R.

    1992-01-01

    Landman et al. (1982) developed prescriptions to predict profile fitting errors for Gaussian emission lines perturbed by white noise. We show that their scaling laws can be generalized to more complicated signal-dependent 'noise models' of common astronomical detector systems.

  19. Estimation of signal-dependent noise level function in transform domain via a sparse recovery model.

    PubMed

    Yang, Jingyu; Gan, Ziqiao; Wu, Zhaoyang; Hou, Chunping

    2015-05-01

    This paper proposes a novel algorithm to estimate the noise level function (NLF) of signal-dependent noise (SDN) from a single image based on the sparse representation of NLFs. Noise level samples are estimated from the high-frequency discrete cosine transform (DCT) coefficients of nonlocal-grouped low-variation image patches. Then, an NLF recovery model based on the sparse representation of NLFs under a trained basis is constructed to recover NLF from the incomplete noise level samples. Confidence levels of the NLF samples are incorporated into the proposed model to promote reliable samples and weaken unreliable ones. We investigate the behavior of the estimation performance with respect to the block size, sampling rate, and confidence weighting. Simulation results on synthetic noisy images show that our method outperforms existing state-of-the-art schemes. The proposed method is evaluated on real noisy images captured by three types of commodity imaging devices, and shows consistently excellent SDN estimation performance. The estimated NLFs are incorporated into two well-known denoising schemes, nonlocal means and BM3D, and show significant improvements in denoising SDN-polluted images.

  20. Parasol cell mosaics are unlikely to drive the formation of structured orientation maps in primary visual cortex.

    PubMed

    Hore, Victoria R A; Troy, John B; Eglen, Stephen J

    2012-11-01

    The receptive fields of on- and off-center parasol cell mosaics independently tile the retina to ensure efficient sampling of visual space. A recent theoretical model represented the on- and off-center mosaics by noisy hexagonal lattices of slightly different density. When the two lattices are overlaid, long-range Moiré interference patterns are generated. These Moiré interference patterns have been suggested to drive the formation of highly structured orientation maps in visual cortex. Here, we show that noisy hexagonal lattices do not capture the spatial statistics of parasol cell mosaics. An alternative model based upon local exclusion zones, termed as the pairwise interaction point process (PIPP) model, generates patterns that are statistically indistinguishable from parasol cell mosaics. A key difference between the PIPP model and the hexagonal lattice model is that the PIPP model does not generate Moiré interference patterns, and hence stimulated orientation maps do not show any hexagonal structure. Finally, we estimate the spatial extent of spatial correlations in parasol cell mosaics to be only 200-350 μm, far less than that required to generate Moiré interference. We conclude that parasol cell mosaics are too disordered to drive the formation of highly structured orientation maps in visual cortex.

  1. Low frequency full waveform seismic inversion within a tree based Bayesian framework

    NASA Astrophysics Data System (ADS)

    Ray, Anandaroop; Kaplan, Sam; Washbourne, John; Albertin, Uwe

    2018-01-01

    Limited illumination, insufficient offset, noisy data and poor starting models can pose challenges for seismic full waveform inversion. We present an application of a tree based Bayesian inversion scheme which attempts to mitigate these problems by accounting for data uncertainty while using a mildly informative prior about subsurface structure. We sample the resulting posterior model distribution of compressional velocity using a trans-dimensional (trans-D) or Reversible Jump Markov chain Monte Carlo method in the wavelet transform domain of velocity. This allows us to attain rapid convergence to a stationary distribution of posterior models while requiring a limited number of wavelet coefficients to define a sampled model. Two synthetic, low frequency, noisy data examples are provided. The first example is a simple reflection + transmission inverse problem, and the second uses a scaled version of the Marmousi velocity model, dominated by reflections. Both examples are initially started from a semi-infinite half-space with incorrect background velocity. We find that the trans-D tree based approach together with parallel tempering for navigating rugged likelihood (i.e. misfit) topography provides a promising, easily generalized method for solving large-scale geophysical inverse problems which are difficult to optimize, but where the true model contains a hierarchy of features at multiple scales.

  2. Predicting speech intelligibility based on the signal-to-noise envelope power ratio after modulation-frequency selective processing.

    PubMed

    Jørgensen, Søren; Dau, Torsten

    2011-09-01

    A model for predicting the intelligibility of processed noisy speech is proposed. The speech-based envelope power spectrum model has a similar structure as the model of Ewert and Dau [(2000). J. Acoust. Soc. Am. 108, 1181-1196], developed to account for modulation detection and masking data. The model estimates the speech-to-noise envelope power ratio, SNR(env), at the output of a modulation filterbank and relates this metric to speech intelligibility using the concept of an ideal observer. Predictions were compared to data on the intelligibility of speech presented in stationary speech-shaped noise. The model was further tested in conditions with noisy speech subjected to reverberation and spectral subtraction. Good agreement between predictions and data was found in all cases. For spectral subtraction, an analysis of the model's internal representation of the stimuli revealed that the predicted decrease of intelligibility was caused by the estimated noise envelope power exceeding that of the speech. The classical concept of the speech transmission index fails in this condition. The results strongly suggest that the signal-to-noise ratio at the output of a modulation frequency selective process provides a key measure of speech intelligibility. © 2011 Acoustical Society of America

  3. Why do people appear not to extrapolate trajectories during multiple object tracking? A computational investigation

    PubMed Central

    Zhong, Sheng-hua; Ma, Zheng; Wilson, Colin; Liu, Yan; Flombaum, Jonathan I

    2014-01-01

    Intuitively, extrapolating object trajectories should make visual tracking more accurate. This has proven to be true in many contexts that involve tracking a single item. But surprisingly, when tracking multiple identical items in what is known as “multiple object tracking,” observers often appear to ignore direction of motion, relying instead on basic spatial memory. We investigated potential reasons for this behavior through probabilistic models that were endowed with perceptual limitations in the range of typical human observers, including noisy spatial perception. When we compared a model that weights its extrapolations relative to other sources of information about object position, and one that does not extrapolate at all, we found no reliable difference in performance, belying the intuition that extrapolation always benefits tracking. In follow-up experiments we found this to be true for a variety of models that weight observations and predictions in different ways; in some cases we even observed worse performance for models that use extrapolations compared to a model that does not at all. Ultimately, the best performing models either did not extrapolate, or extrapolated very conservatively, relying heavily on observations. These results illustrate the difficulty and attendant hazards of using noisy inputs to extrapolate the trajectories of multiple objects simultaneously in situations with targets and featurally confusable nontargets. PMID:25311300

  4. Deep RNNs for video denoising

    NASA Astrophysics Data System (ADS)

    Chen, Xinyuan; Song, Li; Yang, Xiaokang

    2016-09-01

    Video denoising can be described as the problem of mapping from a specific length of noisy frames to clean one. We propose a deep architecture based on Recurrent Neural Network (RNN) for video denoising. The model learns a patch-based end-to-end mapping between the clean and noisy video sequences. It takes the corrupted video sequences as the input and outputs the clean one. Our deep network, which we refer to as deep Recurrent Neural Networks (deep RNNs or DRNNs), stacks RNN layers where each layer receives the hidden state of the previous layer as input. Experiment shows (i) the recurrent architecture through temporal domain extracts motion information and does favor to video denoising, and (ii) deep architecture have large enough capacity for expressing mapping relation between corrupted videos as input and clean videos as output, furthermore, (iii) the model has generality to learned different mappings from videos corrupted by different types of noise (e.g., Poisson-Gaussian noise). By training on large video databases, we are able to compete with some existing video denoising methods.

  5. Effect of noisy stimulation on neurobiological sensitization systems and its role for normal and pathological physiology

    NASA Astrophysics Data System (ADS)

    Huber, Martin; Braun, Hans; Krieg, J.\\:Urgen-Christian

    2004-03-01

    Sensitization is discussed as an important phenomenon playing a role in normal physiology but also with respect to the initiation and progression of a variety of neuropsychiatric disorders such as epilepsia, substance-related disorders or recurrent affective disorders. The relevance to understand the dynamics of sensitization phenomena is emphasized by recent findings that even single stimulations can induce longlasting changes in biological systems. To address specific questions associated with the sensitization dynamics, we use a computational approach and develop simple but physiologically-plausible models. In the present study we examine the effect of noisy stimulation on sensitization development in the model. We consider sub- and suprathresold stimulations with varying noise intensities and determine as response measures the (i) absolute number of stimulus-induced sensitzations and (ii) the temporal relsation of stimulus-sensitization coupling. The findings indicate that stochastic effects including stochastic resonance might well contribute to the physiology of sensitization mechanisms under both nomal and pathological conditions.

  6. A hybrid technique for speech segregation and classification using a sophisticated deep neural network

    PubMed Central

    Nawaz, Tabassam; Mehmood, Zahid; Rashid, Muhammad; Habib, Hafiz Adnan

    2018-01-01

    Recent research on speech segregation and music fingerprinting has led to improvements in speech segregation and music identification algorithms. Speech and music segregation generally involves the identification of music followed by speech segregation. However, music segregation becomes a challenging task in the presence of noise. This paper proposes a novel method of speech segregation for unlabelled stationary noisy audio signals using the deep belief network (DBN) model. The proposed method successfully segregates a music signal from noisy audio streams. A recurrent neural network (RNN)-based hidden layer segregation model is applied to remove stationary noise. Dictionary-based fisher algorithms are employed for speech classification. The proposed method is tested on three datasets (TIMIT, MIR-1K, and MusicBrainz), and the results indicate the robustness of proposed method for speech segregation. The qualitative and quantitative analysis carried out on three datasets demonstrate the efficiency of the proposed method compared to the state-of-the-art speech segregation and classification-based methods. PMID:29558485

  7. Effectual switching filter for removing impulse noise using a SCM detector

    NASA Astrophysics Data System (ADS)

    Yuan, Jin-xia; Zhang, Hong-juan; Ma, Yi-de

    2012-03-01

    An effectual method is proposed to remove impulse noise from corrupted color images. The spiking cortical model (SCM) is adopted as a noise detector to identify noisy pixels in each channel of color images, and detected noise pixels are saved in three marking matrices. According to the three marking matrices, the detected noisy pixels are divided into two types (type I and type II). They are filtered differently: an adaptive median filter is used for type I and an adaptive vector median for type II. Noise-free pixels are left unchanged. Extensive experiments show that the proposed method outperforms most of the other well-known filters in the aspects of both visual and objective quality measures, and this method can also reduce the possibility of generating color artifacts while preserving image details.

  8. Security Analysis of Measurement-Device-Independent Quantum Key Distribution in Collective-Rotation Noisy Environment

    NASA Astrophysics Data System (ADS)

    Li, Na; Zhang, Yu; Wen, Shuang; Li, Lei-lei; Li, Jian

    2018-01-01

    Noise is a problem that communication channels cannot avoid. It is, thus, beneficial to analyze the security of MDI-QKD in noisy environment. An analysis model for collective-rotation noise is introduced, and the information theory methods are used to analyze the security of the protocol. The maximum amount of information that Eve can eavesdrop is 50%, and the eavesdropping can always be detected if the noise level ɛ ≤ 0.68. Therefore, MDI-QKD protocol is secure as quantum key distribution protocol. The maximum probability that the relay outputs successful results is 16% when existing eavesdropping. Moreover, the probability that the relay outputs successful results when existing eavesdropping is higher than the situation without eavesdropping. The paper validates that MDI-QKD protocol has better robustness.

  9. Mobile robot trajectory tracking using noisy RSS measurements: an RFID approach.

    PubMed

    Miah, M Suruz; Gueaieb, Wail

    2014-03-01

    Most RF beacons-based mobile robot navigation techniques rely on approximating line-of-sight (LOS) distances between the beacons and the robot. This is mostly performed using the robot's received signal strength (RSS) measurements from the beacons. However, accurate mapping between the RSS measurements and the LOS distance is almost impossible to achieve in reverberant environments. This paper presents a partially-observed feedback controller for a wheeled mobile robot where the feedback signal is in the form of noisy RSS measurements emitted from radio frequency identification (RFID) tags. The proposed controller requires neither an accurate mapping between the LOS distance and the RSS measurements, nor the linearization of the robot model. The controller performance is demonstrated through numerical simulations and real-time experiments. ©2013 Published by ISA. All rights reserved.

  10. Quantum simulations with noisy quantum computers

    NASA Astrophysics Data System (ADS)

    Gambetta, Jay

    Quantum computing is a new computational paradigm that is expected to lie beyond the standard model of computation. This implies a quantum computer can solve problems that can't be solved by a conventional computer with tractable overhead. To fully harness this power we need a universal fault-tolerant quantum computer. However the overhead in building such a machine is high and a full solution appears to be many years away. Nevertheless, we believe that we can build machines in the near term that cannot be emulated by a conventional computer. It is then interesting to ask what these can be used for. In this talk we will present our advances in simulating complex quantum systems with noisy quantum computers. We will show experimental implementations of this on some small quantum computers.

  11. Propagation of spiking regularity and double coherence resonance in feedforward networks.

    PubMed

    Men, Cong; Wang, Jiang; Qin, Ying-Mei; Deng, Bin; Tsang, Kai-Ming; Chan, Wai-Lok

    2012-03-01

    We investigate the propagation of spiking regularity in noisy feedforward networks (FFNs) based on FitzHugh-Nagumo neuron model systematically. It is found that noise could modulate the transmission of firing rate and spiking regularity. Noise-induced synchronization and synfire-enhanced coherence resonance are also observed when signals propagate in noisy multilayer networks. It is interesting that double coherence resonance (DCR) with the combination of synaptic input correlation and noise intensity is finally attained after the processing layer by layer in FFNs. Furthermore, inhibitory connections also play essential roles in shaping DCR phenomena. Several properties of the neuronal network such as noise intensity, correlation of synaptic inputs, and inhibitory connections can serve as control parameters in modulating both rate coding and the order of temporal coding.

  12. Reduced-order modeling of fluids systems, with applications in unsteady aerodynamics

    NASA Astrophysics Data System (ADS)

    Dawson, Scott T. M.

    This thesis focuses on two major themes: modeling and understanding the dynamics of rapidly pitching airfoils, and developing methods that can be used to extract models and pertinent features from datasets obtained in the study of these and other systems in fluid mechanics and aerodynamics. Much of the work utilizes in some capacity dynamic mode decomposition (DMD), a recently developed method to extract dynamical features and models from data. The investigation of pitching airfoils includes both wind tunnel experiments and direct numerical simulations. Experiments are performed on a NACA 0012 airfoil undergoing rapid pitching motion, with the focus on developing a switched linear modeling framework that can accurately predict unsteady aerodynamic forces and pressure distributions throughout arbitrary pitching motions. Numerical simulations are used to study the behavior of sinusoidally pitching airfoils. By systematically varying the amplitude, frequency, mean angle and axis of pitching, a comprehensive database of results is acquired, from which interesting regions in parameter space are identified and studied. Attention is given to pitching at "preferred" frequencies, where vortex shedding in the wake is excited or amplified, leading to larger lift forces. More generally, the ability to extract nonlinear models that describe the behavior of complex fluids systems can assist in not only understanding the dominant features of such systems, but also to achieve accurate prediction and control. One potential avenue to achieve this objective is through numerical approximation of the Koopman operator, an infinite-dimensional linear operator capable of describing finite-dimensional nonlinear systems, such as those that might describe the dominant dynamics of fluids systems. This idea is explored by showing that algorithms designed to approximate the Koopman operator can indeed be utilized to accurately model nonlinear fluids systems, even when the data available is limited or noisy. Data-driven algorithms can be adversely affected by noisy data. Focusing on DMD, it is shown analytically that the algorithm is biased to sensor noise, which explains a previously observed sensitivity to noisy data. Using this finding, a number of modifications to DMD are proposed, which all give better approximations of the true dynamics using noise-corrupted data.

  13. Supervised variational model with statistical inference and its application in medical image segmentation.

    PubMed

    Li, Changyang; Wang, Xiuying; Eberl, Stefan; Fulham, Michael; Yin, Yong; Dagan Feng, David

    2015-01-01

    Automated and general medical image segmentation can be challenging because the foreground and the background may have complicated and overlapping density distributions in medical imaging. Conventional region-based level set algorithms often assume piecewise constant or piecewise smooth for segments, which are implausible for general medical image segmentation. Furthermore, low contrast and noise make identification of the boundaries between foreground and background difficult for edge-based level set algorithms. Thus, to address these problems, we suggest a supervised variational level set segmentation model to harness the statistical region energy functional with a weighted probability approximation. Our approach models the region density distributions by using the mixture-of-mixtures Gaussian model to better approximate real intensity distributions and distinguish statistical intensity differences between foreground and background. The region-based statistical model in our algorithm can intuitively provide better performance on noisy images. We constructed a weighted probability map on graphs to incorporate spatial indications from user input with a contextual constraint based on the minimization of contextual graphs energy functional. We measured the performance of our approach on ten noisy synthetic images and 58 medical datasets with heterogeneous intensities and ill-defined boundaries and compared our technique to the Chan-Vese region-based level set model, the geodesic active contour model with distance regularization, and the random walker model. Our method consistently achieved the highest Dice similarity coefficient when compared to the other methods.

  14. Thermal diffusion of Boussinesq solitons.

    PubMed

    Arévalo, Edward; Mertens, Franz G

    2007-10-01

    We consider the problem of the soliton dynamics in the presence of an external noisy force for the Boussinesq type equations. A set of ordinary differential equations (ODEs) of the relevant coordinates of the system is derived. We show that for the improved Boussinesq (IBq) equation the set of ODEs has limiting cases leading to a set of ODEs which can be directly derived either from the ill-posed Boussinesq equation or from the Korteweg-de Vries (KdV) equation. The case of a soliton propagating in the presence of damping and thermal noise is considered for the IBq equation. A good agreement between theory and simulations is observed showing the strong robustness of these excitations. The results obtained here generalize previous results obtained in the frame of the KdV equation for lattice solitons in the monatomic chain of atoms.

  15. Security Inference from Noisy Data

    DTIC Science & Technology

    2008-04-08

    and RFID chips, introduce new ways of communication and sharing data. For ex- ample, the Nike +iPod Sport Kit is a new wireless accessory for the iPod...Agrawal show: • A wide variety (e.g. different keyboards of the same model, different models, different brands ) of keyboards have keys with distinct...grammar level and spelling level in this case) are built into a single model. Algorithms to maximize global joint probability may improve the

  16. Observing spatio-temporal dynamics of excitable media using reservoir computing

    NASA Astrophysics Data System (ADS)

    Zimmermann, Roland S.; Parlitz, Ulrich

    2018-04-01

    We present a dynamical observer for two dimensional partial differential equation models describing excitable media, where the required cross prediction from observed time series to not measured state variables is provided by Echo State Networks receiving input from local regions in space, only. The efficacy of this approach is demonstrated for (noisy) data from a (cubic) Barkley model and the Bueno-Orovio-Cherry-Fenton model describing chaotic electrical wave propagation in cardiac tissue.

  17. Query-based biclustering of gene expression data using Probabilistic Relational Models.

    PubMed

    Zhao, Hui; Cloots, Lore; Van den Bulcke, Tim; Wu, Yan; De Smet, Riet; Storms, Valerie; Meysman, Pieter; Engelen, Kristof; Marchal, Kathleen

    2011-02-15

    With the availability of large scale expression compendia it is now possible to view own findings in the light of what is already available and retrieve genes with an expression profile similar to a set of genes of interest (i.e., a query or seed set) for a subset of conditions. To that end, a query-based strategy is needed that maximally exploits the coexpression behaviour of the seed genes to guide the biclustering, but that at the same time is robust against the presence of noisy genes in the seed set as seed genes are often assumed, but not guaranteed to be coexpressed in the queried compendium. Therefore, we developed ProBic, a query-based biclustering strategy based on Probabilistic Relational Models (PRMs) that exploits the use of prior distributions to extract the information contained within the seed set. We applied ProBic on a large scale Escherichia coli compendium to extend partially described regulons with potentially novel members. We compared ProBic's performance with previously published query-based biclustering algorithms, namely ISA and QDB, from the perspective of bicluster expression quality, robustness of the outcome against noisy seed sets and biological relevance.This comparison learns that ProBic is able to retrieve biologically relevant, high quality biclusters that retain their seed genes and that it is particularly strong in handling noisy seeds. ProBic is a query-based biclustering algorithm developed in a flexible framework, designed to detect biologically relevant, high quality biclusters that retain relevant seed genes even in the presence of noise or when dealing with low quality seed sets.

  18. Noise-Induced Hearing Loss

    MedlinePlus

    ... to noise. The NIDCD sponsors It's a Noisy Planet. Protect Their Hearing® , a national public education campaign ... induced hearing loss is 100% preventable. NIDCD's Noisy Planet website Have a question? Information specialists can answer ...

  19. Listen to the Noise: Noise Is Beneficial for Cognitive Performance in ADHD

    ERIC Educational Resources Information Center

    Soderlund, Goran; Sikstrom, Sverker; Smart, Andrew

    2007-01-01

    Background: Noise is typically conceived of as being detrimental to cognitive performance. However, given the mechanism of stochastic resonance, a certain amount of noise can benefit performance. We investigate cognitive performance in noisy environments in relation to a neurocomputational model of attention deficit hyperactivity disorder (ADHD)…

  20. Case-Based Policy and Goal Recognition

    DTIC Science & Technology

    2015-09-30

    or noisy. Ontanón et al. [8] use case-based reasoning (CBR) to model human driving vehicle control behaviors and skill level to reduce teen crash...Snodgrass, S., Bonfiglio, D., Winston, F.K., McDonald, C., Gonzalez, A.J.: Case-based prediction of teen driver behavior and skill. In: Pro- ceedings

  1. A two-step patterning process increases the robustness of periodic patterning in the fly eye.

    PubMed

    Gavish, Avishai; Barkai, Naama

    2016-06-01

    Complex periodic patterns can self-organize through dynamic interactions between diffusible activators and inhibitors. In the biological context, self-organized patterning is challenged by spatial heterogeneities ('noise') inherent to biological systems. How spatial variability impacts the periodic patterning mechanism and how it can be buffered to ensure precise patterning is not well understood. We examine the effect of spatial heterogeneity on the periodic patterning of the fruit fly eye, an organ composed of ∼800 miniature eye units (ommatidia) whose periodic arrangement along a hexagonal lattice self-organizes during early stages of fly development. The patterning follows a two-step process, with an initial formation of evenly spaced clusters of ∼10 cells followed by a subsequent refinement of each cluster into a single selected cell. Using a probabilistic approach, we calculate the rate of patterning errors resulting from spatial heterogeneities in cell size, position and biosynthetic capacity. Notably, error rates were largely independent of the desired cluster size but followed the distributions of signaling speeds. Pre-formation of large clusters therefore greatly increases the reproducibility of the overall periodic arrangement, suggesting that the two-stage patterning process functions to guard the pattern against errors caused by spatial heterogeneities. Our results emphasize the constraints imposed on self-organized patterning mechanisms by the need to buffer stochastic effects. Author summary Complex periodic patterns are common in nature and are observed in physical, chemical and biological systems. Understanding how these patterns are generated in a precise manner is a key challenge. Biological patterns are especially intriguing, as they are generated in a noisy environment; cell position and cell size, for example, are subject to stochastic variations, as are the strengths of the chemical signals mediating cell-to-cell communication. The need to generate a precise and robust pattern in this 'noisy' environment restricts the space of patterning mechanisms that can function in the biological setting. Mathematical modeling is useful in comparing the sensitivity of different mechanisms to such variations, thereby highlighting key aspects of their design.We use mathematical modeling to study the periodic patterning of the fruit fly eye. In this system, a highly ordered lattice of differentiated cells is generated in a two-dimensional cell epithelium. The pattern is first observed by the appearance of evenly spaced clusters of ∼10 cells that express specific genes. Each cluster is subsequently refined into a single cell, which initiates the formation and differentiation of a miniature eye unit, the ommatidium. We formulate a mathematical model based on the known molecular properties of the patterning mechanism, and use a probabilistic approach to calculate the errors in cluster formation and refinement resulting from stochastic cell-to-cell variations ('noise') in different quantitative parameters. This enables us to define the parameters most influencing noise sensitivity. Notably, we find that this error is roughly independent of the desired cluster size, suggesting that large clusters are beneficial for ensuring the overall reproducibility of the periodic cluster arrangement. For the stage of cluster refinement, we find that rapid communication between cells is critical for reducing error. Our work provides new insights into the constraints imposed on mechanisms generating periodic patterning in a realistic, noisy environment, and in particular, discusses the different considerations in achieving optimal design of the patterning network.

  2. Emergent kinetic constraints, ergodicity breaking, and cooperative dynamics in noisy quantum systems

    NASA Astrophysics Data System (ADS)

    Everest, B.; Marcuzzi, M.; Garrahan, J. P.; Lesanovsky, I.

    2016-11-01

    Kinetically constrained spin systems play an important role in understanding key properties of the dynamics of slowly relaxing materials, such as glasses. Recent experimental studies have revealed that manifest kinetic constraints govern the evolution of strongly interacting gases of highly excited atoms in a noisy environment. Motivated by this development we explore which types of kinetically constrained dynamics can generally emerge in quantum spin systems subject to strong noise and show how, in this framework, constraints are accompanied by conservation laws. We discuss an experimentally realizable case of a lattice gas, where the interplay between those and the geometry of the lattice leads to collective behavior and time-scale separation even at infinite temperature. This is in contrast to models of glass-forming substances which typically rely on low temperatures and the consequent suppression of thermal activation.

  3. Uncovering noisy social signals: Using optimization methods from experimental physics to study social phenomena.

    PubMed

    Kaptein, Maurits; van Emden, Robin; Iannuzzi, Davide

    2017-01-01

    Due to the ubiquitous presence of treatment heterogeneity, measurement error, and contextual confounders, numerous social phenomena are hard to study. Precise control of treatment variables and possible confounders is often key to the success of studies in the social sciences, yet often proves out of the realm of control of the experimenter. To amend this situation we propose a novel approach coined "lock-in feedback" which is based on a method that is routinely used in high-precision physics experiments to extract small signals out of a noisy environment. Here, we adapt the method to noisy social signals in multiple dimensions and evaluate it by studying an inherently noisy topic: the perception of (subjective) beauty. We show that the lock-in feedback approach allows one to select optimal treatment levels despite the presence of considerable noise. Furthermore, through the introduction of an external contextual shock we demonstrate that we can find relationships between noisy variables that were hitherto unknown. We therefore argue that lock-in methods may provide a valuable addition to the social scientist's experimental toolbox and we explicitly discuss a number of future applications.

  4. Uncovering noisy social signals: Using optimization methods from experimental physics to study social phenomena

    PubMed Central

    2017-01-01

    Due to the ubiquitous presence of treatment heterogeneity, measurement error, and contextual confounders, numerous social phenomena are hard to study. Precise control of treatment variables and possible confounders is often key to the success of studies in the social sciences, yet often proves out of the realm of control of the experimenter. To amend this situation we propose a novel approach coined “lock-in feedback” which is based on a method that is routinely used in high-precision physics experiments to extract small signals out of a noisy environment. Here, we adapt the method to noisy social signals in multiple dimensions and evaluate it by studying an inherently noisy topic: the perception of (subjective) beauty. We show that the lock-in feedback approach allows one to select optimal treatment levels despite the presence of considerable noise. Furthermore, through the introduction of an external contextual shock we demonstrate that we can find relationships between noisy variables that were hitherto unknown. We therefore argue that lock-in methods may provide a valuable addition to the social scientist’s experimental toolbox and we explicitly discuss a number of future applications. PMID:28306728

  5. How human drivers control their vehicle

    NASA Astrophysics Data System (ADS)

    Wagner, P.

    2006-08-01

    The data presented here show that human drivers apply a discrete noisy control mechanism to drive their vehicle. A car-following model built on these observations, together with some physical limitations (crash-freeness, acceleration), lead to non-Gaussian probability distributions in the speed difference and distance which are in good agreement with empirical data. All model parameters have a clear physical meaning and can be measured. Despite its apparent complexity, this model is simple to understand and might serve as a starting point to develop even quantitatively correct models.

  6. Listen Up! Noises Can Damage Your Hearing

    MedlinePlus

    ... Shortened Understanding Aphasia Wise Choices It’s a Noisy Planet: Protect Your Hearing Your ears can be your ... the noise (wear earplugs or earmuffs). Links Noisy Planet Noise-Induced Hearing Loss Interactive Sound Ruler AgePage: ...

  7. Fully Automated Complementary DNA Microarray Segmentation using a Novel Fuzzy-based Algorithm.

    PubMed

    Saberkari, Hamidreza; Bahrami, Sheyda; Shamsi, Mousa; Amoshahy, Mohammad Javad; Ghavifekr, Habib Badri; Sedaaghi, Mohammad Hossein

    2015-01-01

    DNA microarray is a powerful approach to study simultaneously, the expression of 1000 of genes in a single experiment. The average value of the fluorescent intensity could be calculated in a microarray experiment. The calculated intensity values are very close in amount to the levels of expression of a particular gene. However, determining the appropriate position of every spot in microarray images is a main challenge, which leads to the accurate classification of normal and abnormal (cancer) cells. In this paper, first a preprocessing approach is performed to eliminate the noise and artifacts available in microarray cells using the nonlinear anisotropic diffusion filtering method. Then, the coordinate center of each spot is positioned utilizing the mathematical morphology operations. Finally, the position of each spot is exactly determined through applying a novel hybrid model based on the principle component analysis and the spatial fuzzy c-means clustering (SFCM) algorithm. Using a Gaussian kernel in SFCM algorithm will lead to improving the quality in complementary DNA microarray segmentation. The performance of the proposed algorithm has been evaluated on the real microarray images, which is available in Stanford Microarray Databases. Results illustrate that the accuracy of microarray cells segmentation in the proposed algorithm reaches to 100% and 98% for noiseless/noisy cells, respectively.

  8. Inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1979-01-01

    Inert gas thrusters considered for space propulsion systems were investigated. Electron diffusion across a magnetic field was examined utilizing a basic model. The production of doubly charged ions was correlated using only overall performance parameters. The use of this correlation is therefore possible in the design stage of large gas thrusters, where detailed plasma properties are not available. Argon hollow cathode performance was investigated over a range of emission currents, with the positions of the inert, keeper, and anode varied. A general trend observed was that the maximum ratio of emission to flow rate increased at higher propellant flow rates. It was also found that an enclosed keeper enhances maximum cathode emission at high flow rates. The maximum cathode emission at a given flow rate was associated with a noisy high voltage mode. Although this mode has some similarities to the plume mode found at low flows and emissions, it is encountered by being initially in the spot mode and increasing emission. A detailed analysis of large, inert-gas thruster performance was carried out. For maximum thruster efficiency, the optimum beam diameter increases from less than a meter at under 2000 sec specific impulse to several meters at 10,000 sec. The corresponding range in input power ranges from several kilowatts to megawatts.

  9. Neuronal spike-train responses in the presence of threshold noise.

    PubMed

    Coombes, S; Thul, R; Laudanski, J; Palmer, A R; Sumner, C J

    2011-03-01

    The variability of neuronal firing has been an intense topic of study for many years. From a modelling perspective it has often been studied in conductance based spiking models with the use of additive or multiplicative noise terms to represent channel fluctuations or the stochastic nature of neurotransmitter release. Here we propose an alternative approach using a simple leaky integrate-and-fire model with a noisy threshold. Initially, we develop a mathematical treatment of the neuronal response to periodic forcing using tools from linear response theory and use this to highlight how a noisy threshold can enhance downstream signal reconstruction. We further develop a more general framework for understanding the responses to large amplitude forcing based on a calculation of first passage times. This is ideally suited to understanding stochastic mode-locking, for which we numerically determine the Arnol'd tongue structure. An examination of data from regularly firing stellate neurons within the ventral cochlear nucleus, responding to sinusoidally amplitude modulated pure tones, shows tongue structures consistent with these predictions and highlights that stochastic, as opposed to deterministic, mode-locking is utilised at the level of the single stellate cell to faithfully encode periodic stimuli.

  10. Ascertainment-adjusted parameter estimation approach to improve robustness against misspecification of health monitoring methods

    NASA Astrophysics Data System (ADS)

    Juesas, P.; Ramasso, E.

    2016-12-01

    Condition monitoring aims at ensuring system safety which is a fundamental requirement for industrial applications and that has become an inescapable social demand. This objective is attained by instrumenting the system and developing data analytics methods such as statistical models able to turn data into relevant knowledge. One difficulty is to be able to correctly estimate the parameters of those methods based on time-series data. This paper suggests the use of the Weighted Distribution Theory together with the Expectation-Maximization algorithm to improve parameter estimation in statistical models with latent variables with an application to health monotonic under uncertainty. The improvement of estimates is made possible by incorporating uncertain and possibly noisy prior knowledge on latent variables in a sound manner. The latent variables are exploited to build a degradation model of dynamical system represented as a sequence of discrete states. Examples on Gaussian Mixture Models, Hidden Markov Models (HMM) with discrete and continuous outputs are presented on both simulated data and benchmarks using the turbofan engine datasets. A focus on the application of a discrete HMM to health monitoring under uncertainty allows to emphasize the interest of the proposed approach in presence of different operating conditions and fault modes. It is shown that the proposed model depicts high robustness in presence of noisy and uncertain prior.

  11. A nudging-based data assimilation method: the Back and Forth Nudging (BFN) algorithm

    NASA Astrophysics Data System (ADS)

    Auroux, D.; Blum, J.

    2008-03-01

    This paper deals with a new data assimilation algorithm, called Back and Forth Nudging. The standard nudging technique consists in adding to the equations of the model a relaxation term that is supposed to force the observations to the model. The BFN algorithm consists in repeatedly performing forward and backward integrations of the model with relaxation (or nudging) terms, using opposite signs in the direct and inverse integrations, so as to make the backward evolution numerically stable. This algorithm has first been tested on the standard Lorenz model with discrete observations (perfect or noisy) and compared with the variational assimilation method. The same type of study has then been performed on the viscous Burgers equation, comparing again with the variational method and focusing on the time evolution of the reconstruction error, i.e. the difference between the reference trajectory and the identified one over a time period composed of an assimilation period followed by a prediction period. The possible use of the BFN algorithm as an initialization for the variational method has also been investigated. Finally the algorithm has been tested on a layered quasi-geostrophic model with sea-surface height observations. The behaviours of the two algorithms have been compared in the presence of perfect or noisy observations, and also for imperfect models. This has allowed us to reach a conclusion concerning the relative performances of the two algorithms.

  12. Entanglement-enhanced quantum metrology in a noisy environment

    NASA Astrophysics Data System (ADS)

    Wang, Kunkun; Wang, Xiaoping; Zhan, Xiang; Bian, Zhihao; Li, Jian; Sanders, Barry C.; Xue, Peng

    2018-04-01

    Quantum metrology overcomes standard precision limits and plays a central role in science and technology. Practically, it is vulnerable to imperfections such as decoherence. Here we demonstrate quantum metrology for noisy channels such that entanglement with ancillary qubits enhances the quantum Fisher information for phase estimation but not otherwise. Our photonic experiment covers a range of noise for various types of channels, including for two randomly alternating channels such that assisted entanglement fails for each noisy channel individually. We simulate noisy channels by implementing space-multiplexed dual interferometers with quantum photonic inputs. We demonstrate the advantage of entanglement-assisted protocols in a phase estimation experiment run with either a single-probe or multiprobe approach. These results establish that entanglement with ancillae is a valuable approach for delivering quantum-enhanced metrology. Our approach to entanglement-assisted quantum metrology via a simple linear-optical interferometric network with easy-to-prepare photonic inputs provides a path towards practical quantum metrology.

  13. On the phase space structure of IP3 induced Ca2+ signalling and concepts for predictive modeling

    NASA Astrophysics Data System (ADS)

    Falcke, Martin; Moein, Mahsa; TilÅ«naitÄ--, Agne; Thul, Rüdiger; Skupin, Alexander

    2018-04-01

    The correspondence between mathematical structures and experimental systems is the basis of the generalizability of results found with specific systems and is the basis of the predictive power of theoretical physics. While physicists have confidence in this correspondence, it is less recognized in cellular biophysics. On the one hand, the complex organization of cellular dynamics involving a plethora of interacting molecules and the basic observation of cell variability seem to question its possibility. The practical difficulties of deriving the equations describing cellular behaviour from first principles support these doubts. On the other hand, ignoring such a correspondence would severely limit the possibility of predictive quantitative theory in biophysics. Additionally, the existence of functional modules (like pathways) across cell types suggests also the existence of mathematical structures with comparable universality. Only a few cellular systems have been sufficiently investigated in a variety of cell types to follow up these basic questions. IP3 induced Ca2+signalling is one of them, and the mathematical structure corresponding to it is subject of ongoing discussion. We review the system's general properties observed in a variety of cell types. They are captured by a reaction diffusion system. We discuss the phase space structure of its local dynamics. The spiking regime corresponds to noisy excitability. Models focussing on different aspects can be derived starting from this phase space structure. We discuss how the initial assumptions on the set of stochastic variables and phase space structure shape the predictions of parameter dependencies of the mathematical models resulting from the derivation.

  14. XDGMM: eXtreme Deconvolution Gaussian Mixture Modeling

    NASA Astrophysics Data System (ADS)

    Holoien, Thomas W.-S.; Marshall, Philip J.; Wechsler, Risa H.

    2017-08-01

    XDGMM uses Gaussian mixtures to do density estimation of noisy, heterogenous, and incomplete data using extreme deconvolution (XD) algorithms which is compatible with the scikit-learn machine learning methods. It implements both the astroML and Bovy et al. (2011) algorithms, and extends the BaseEstimator class from scikit-learn so that cross-validation methods work. It allows the user to produce a conditioned model if values of some parameters are known.

  15. Real-time reliability measure-driven multi-hypothesis tracking using 2D and 3D features

    NASA Astrophysics Data System (ADS)

    Zúñiga, Marcos D.; Brémond, François; Thonnat, Monique

    2011-12-01

    We propose a new multi-target tracking approach, which is able to reliably track multiple objects even with poor segmentation results due to noisy environments. The approach takes advantage of a new dual object model combining 2D and 3D features through reliability measures. In order to obtain these 3D features, a new classifier associates an object class label to each moving region (e.g. person, vehicle), a parallelepiped model and visual reliability measures of its attributes. These reliability measures allow to properly weight the contribution of noisy, erroneous or false data in order to better maintain the integrity of the object dynamics model. Then, a new multi-target tracking algorithm uses these object descriptions to generate tracking hypotheses about the objects moving in the scene. This tracking approach is able to manage many-to-many visual target correspondences. For achieving this characteristic, the algorithm takes advantage of 3D models for merging dissociated visual evidence (moving regions) potentially corresponding to the same real object, according to previously obtained information. The tracking approach has been validated using video surveillance benchmarks publicly accessible. The obtained performance is real time and the results are competitive compared with other tracking algorithms, with minimal (or null) reconfiguration effort between different videos.

  16. Automated Bayesian model development for frequency detection in biological time series.

    PubMed

    Granqvist, Emma; Oldroyd, Giles E D; Morris, Richard J

    2011-06-24

    A first step in building a mathematical model of a biological system is often the analysis of the temporal behaviour of key quantities. Mathematical relationships between the time and frequency domain, such as Fourier Transforms and wavelets, are commonly used to extract information about the underlying signal from a given time series. This one-to-one mapping from time points to frequencies inherently assumes that both domains contain the complete knowledge of the system. However, for truncated, noisy time series with background trends this unique mapping breaks down and the question reduces to an inference problem of identifying the most probable frequencies. In this paper we build on the method of Bayesian Spectrum Analysis and demonstrate its advantages over conventional methods by applying it to a number of test cases, including two types of biological time series. Firstly, oscillations of calcium in plant root cells in response to microbial symbionts are non-stationary and noisy, posing challenges to data analysis. Secondly, circadian rhythms in gene expression measured over only two cycles highlights the problem of time series with limited length. The results show that the Bayesian frequency detection approach can provide useful results in specific areas where Fourier analysis can be uninformative or misleading. We demonstrate further benefits of the Bayesian approach for time series analysis, such as direct comparison of different hypotheses, inherent estimation of noise levels and parameter precision, and a flexible framework for modelling the data without pre-processing. Modelling in systems biology often builds on the study of time-dependent phenomena. Fourier Transforms are a convenient tool for analysing the frequency domain of time series. However, there are well-known limitations of this method, such as the introduction of spurious frequencies when handling short and noisy time series, and the requirement for uniformly sampled data. Biological time series often deviate significantly from the requirements of optimality for Fourier transformation. In this paper we present an alternative approach based on Bayesian inference. We show the value of placing spectral analysis in the framework of Bayesian inference and demonstrate how model comparison can automate this procedure.

  17. Automated Bayesian model development for frequency detection in biological time series

    PubMed Central

    2011-01-01

    Background A first step in building a mathematical model of a biological system is often the analysis of the temporal behaviour of key quantities. Mathematical relationships between the time and frequency domain, such as Fourier Transforms and wavelets, are commonly used to extract information about the underlying signal from a given time series. This one-to-one mapping from time points to frequencies inherently assumes that both domains contain the complete knowledge of the system. However, for truncated, noisy time series with background trends this unique mapping breaks down and the question reduces to an inference problem of identifying the most probable frequencies. Results In this paper we build on the method of Bayesian Spectrum Analysis and demonstrate its advantages over conventional methods by applying it to a number of test cases, including two types of biological time series. Firstly, oscillations of calcium in plant root cells in response to microbial symbionts are non-stationary and noisy, posing challenges to data analysis. Secondly, circadian rhythms in gene expression measured over only two cycles highlights the problem of time series with limited length. The results show that the Bayesian frequency detection approach can provide useful results in specific areas where Fourier analysis can be uninformative or misleading. We demonstrate further benefits of the Bayesian approach for time series analysis, such as direct comparison of different hypotheses, inherent estimation of noise levels and parameter precision, and a flexible framework for modelling the data without pre-processing. Conclusions Modelling in systems biology often builds on the study of time-dependent phenomena. Fourier Transforms are a convenient tool for analysing the frequency domain of time series. However, there are well-known limitations of this method, such as the introduction of spurious frequencies when handling short and noisy time series, and the requirement for uniformly sampled data. Biological time series often deviate significantly from the requirements of optimality for Fourier transformation. In this paper we present an alternative approach based on Bayesian inference. We show the value of placing spectral analysis in the framework of Bayesian inference and demonstrate how model comparison can automate this procedure. PMID:21702910

  18. sick: The Spectroscopic Inference Crank

    NASA Astrophysics Data System (ADS)

    Casey, Andrew R.

    2016-03-01

    There exists an inordinate amount of spectral data in both public and private astronomical archives that remain severely under-utilized. The lack of reliable open-source tools for analyzing large volumes of spectra contributes to this situation, which is poised to worsen as large surveys successively release orders of magnitude more spectra. In this article I introduce sick, the spectroscopic inference crank, a flexible and fast Bayesian tool for inferring astrophysical parameters from spectra. sick is agnostic to the wavelength coverage, resolving power, or general data format, allowing any user to easily construct a generative model for their data, regardless of its source. sick can be used to provide a nearest-neighbor estimate of model parameters, a numerically optimized point estimate, or full Markov Chain Monte Carlo sampling of the posterior probability distributions. This generality empowers any astronomer to capitalize on the plethora of published synthetic and observed spectra, and make precise inferences for a host of astrophysical (and nuisance) quantities. Model intensities can be reliably approximated from existing grids of synthetic or observed spectra using linear multi-dimensional interpolation, or a Cannon-based model. Additional phenomena that transform the data (e.g., redshift, rotational broadening, continuum, spectral resolution) are incorporated as free parameters and can be marginalized away. Outlier pixels (e.g., cosmic rays or poorly modeled regimes) can be treated with a Gaussian mixture model, and a noise model is included to account for systematically underestimated variance. Combining these phenomena into a scalar-justified, quantitative model permits precise inferences with credible uncertainties on noisy data. I describe the common model features, the implementation details, and the default behavior, which is balanced to be suitable for most astronomical applications. Using a forward model on low-resolution, high signal-to-noise ratio spectra of M67 stars reveals atomic diffusion processes on the order of 0.05 dex, previously only measurable with differential analysis techniques in high-resolution spectra. sick is easy to use, well-tested, and freely available online through GitHub under the MIT license.

  19. Equilibrium Tuition, Applications, Admissions and Enrollment in the College Market

    ERIC Educational Resources Information Center

    Fu, Chao

    2010-01-01

    I develop and structurally estimate an equilibrium model of the college market. Students, who are heterogeneous in both abilities and preferences, make college application decisions, subject to uncertainty and application costs. Colleges observe only noisy measures of student ability and set up tuition and admissions policies to compete for more…

  20. Evaluation of nonlinear properties of epileptic activity using largest Lyapunov exponent

    NASA Astrophysics Data System (ADS)

    Medvedeva, Tatiana M.; Lüttjohann, Annika; van Luijtelaar, Gilles; Sysoev, Ilya V.

    2016-04-01

    Absence seizures are known to be highly non-linear large amplitude oscillations with a well pronounced main time scale. Whilst the appearance of the main frequency is usually considered as a transition from noisy complex dynamics of baseline EEG to more regular absence activity, the dynamical properties of this type of epileptiformic activity in genetic absence models was not studied precisely. Here, the estimation of the largest Lyapunov exponent from intracranial EEGs of 10 WAG/Rij rats (genetic model of absence epilepsy) was performed. Fragments of 10 seizures and 10 episodes of on-going EEG each of 4 s length were used for each animal, 3 cortical and 2 thalamic channels were analysed. The method adapted for short noisy data was implemented. The positive values of the largest Lyapunov exponent were found as for baseline as for spike wave discharges (SWDs), with values for SWDs being significantly less than for on-going activity. Current findings may indicate that SWD is a chaotic process with a well pronounced main timescale rather than a periodic regime. Also, the absence activity was shown to be less chaotic than the baseline one.

  1. Multiview point clouds denoising based on interference elimination

    NASA Astrophysics Data System (ADS)

    Hu, Yang; Wu, Qian; Wang, Le; Jiang, Huanyu

    2018-03-01

    Newly emerging low-cost depth sensors offer huge potentials for three-dimensional (3-D) modeling, but existing high noise restricts these sensors from obtaining accurate results. Thus, we proposed a method for denoising registered multiview point clouds with high noise to solve that problem. The proposed method is aimed at fully using redundant information to eliminate the interferences among point clouds of different views based on an iterative procedure. In each iteration, noisy points are either deleted or moved to their weighted average targets in accordance with two cases. Simulated data and practical data captured by a Kinect v2 sensor were tested in experiments qualitatively and quantitatively. Results showed that the proposed method can effectively reduce noise and recover local features from highly noisy multiview point clouds with good robustness, compared to truncated signed distance function and moving least squares (MLS). Moreover, the resulting low-noise point clouds can be further smoothed by the MLS to achieve improved results. This study provides the feasibility of obtaining fine 3-D models with high-noise devices, especially for depth sensors, such as Kinect.

  2. Recurrent Neural Network Applications for Astronomical Time Series

    NASA Astrophysics Data System (ADS)

    Protopapas, Pavlos

    2017-06-01

    The benefits of good predictive models in astronomy lie in early event prediction systems and effective resource allocation. Current time series methods applicable to regular time series have not evolved to generalize for irregular time series. In this talk, I will describe two Recurrent Neural Network methods, Long Short-Term Memory (LSTM) and Echo State Networks (ESNs) for predicting irregular time series. Feature engineering along with a non-linear modeling proved to be an effective predictor. For noisy time series, the prediction is improved by training the network on error realizations using the error estimates from astronomical light curves. In addition to this, we propose a new neural network architecture to remove correlation from the residuals in order to improve prediction and compensate for the noisy data. Finally, I show how to set hyperparameters for a stable and performant solution correctly. In this work, we circumvent this obstacle by optimizing ESN hyperparameters using Bayesian optimization with Gaussian Process priors. This automates the tuning procedure, enabling users to employ the power of RNN without needing an in-depth understanding of the tuning procedure.

  3. An analysis dictionary learning algorithm under a noisy data model with orthogonality constraint.

    PubMed

    Zhang, Ye; Yu, Tenglong; Wang, Wenwu

    2014-01-01

    Two common problems are often encountered in analysis dictionary learning (ADL) algorithms. The first one is that the original clean signals for learning the dictionary are assumed to be known, which otherwise need to be estimated from noisy measurements. This, however, renders a computationally slow optimization process and potentially unreliable estimation (if the noise level is high), as represented by the Analysis K-SVD (AK-SVD) algorithm. The other problem is the trivial solution to the dictionary, for example, the null dictionary matrix that may be given by a dictionary learning algorithm, as discussed in the learning overcomplete sparsifying transform (LOST) algorithm. Here we propose a novel optimization model and an iterative algorithm to learn the analysis dictionary, where we directly employ the observed data to compute the approximate analysis sparse representation of the original signals (leading to a fast optimization procedure) and enforce an orthogonality constraint on the optimization criterion to avoid the trivial solutions. Experiments demonstrate the competitive performance of the proposed algorithm as compared with three baselines, namely, the AK-SVD, LOST, and NAAOLA algorithms.

  4. Population coding in sparsely connected networks of noisy neurons.

    PubMed

    Tripp, Bryan P; Orchard, Jeff

    2012-01-01

    This study examines the relationship between population coding and spatial connection statistics in networks of noisy neurons. Encoding of sensory information in the neocortex is thought to require coordinated neural populations, because individual cortical neurons respond to a wide range of stimuli, and exhibit highly variable spiking in response to repeated stimuli. Population coding is rooted in network structure, because cortical neurons receive information only from other neurons, and because the information they encode must be decoded by other neurons, if it is to affect behavior. However, population coding theory has often ignored network structure, or assumed discrete, fully connected populations (in contrast with the sparsely connected, continuous sheet of the cortex). In this study, we modeled a sheet of cortical neurons with sparse, primarily local connections, and found that a network with this structure could encode multiple internal state variables with high signal-to-noise ratio. However, we were unable to create high-fidelity networks by instantiating connections at random according to spatial connection probabilities. In our models, high-fidelity networks required additional structure, with higher cluster factors and correlations between the inputs to nearby neurons.

  5. Modeling noisy resonant system response

    NASA Astrophysics Data System (ADS)

    Weber, Patrick Thomas; Walrath, David Edwin

    2017-02-01

    In this paper, a theory-based model replicating empirical acoustic resonant signals is presented and studied to understand sources of noise present in acoustic signals. Statistical properties of empirical signals are quantified and a noise amplitude parameter, which models frequency and amplitude-based noise, is created, defined, and presented. This theory-driven model isolates each phenomenon and allows for parameters to be independently studied. Using seven independent degrees of freedom, this model will accurately reproduce qualitative and quantitative properties measured from laboratory data. Results are presented and demonstrate success in replicating qualitative and quantitative properties of experimental data.

  6. Integrate-and-fire vs Poisson models of LGN input to V1 cortex: noisier inputs reduce orientation selectivity

    PubMed Central

    Lin, I-Chun; Xing, Dajun; Shapley, Robert

    2014-01-01

    One of the reasons the visual cortex has attracted the interest of computational neuroscience is that it has well-defined inputs. The lateral geniculate nucleus (LGN) of the thalamus is the source of visual signals to the primary visual cortex (V1). Most large-scale cortical network models approximate the spike trains of LGN neurons as simple Poisson point processes. However, many studies have shown that neurons in the early visual pathway are capable of spiking with high temporal precision and their discharges are not Poisson-like. To gain an understanding of how response variability in the LGN influences the behavior of V1, we study response properties of model V1 neurons that receive purely feedforward inputs from LGN cells modeled either as noisy leaky integrate-and-fire (NLIF) neurons or as inhomogeneous Poisson processes. We first demonstrate that the NLIF model is capable of reproducing many experimentally observed statistical properties of LGN neurons. Then we show that a V1 model in which the LGN input to a V1 neuron is modeled as a group of NLIF neurons produces higher orientation selectivity than the one with Poisson LGN input. The second result implies that statistical characteristics of LGN spike trains are important for V1's function. We conclude that physiologically motivated models of V1 need to include more realistic LGN spike trains that are less noisy than inhomogeneous Poisson processes. PMID:22684587

  7. Integrate-and-fire vs Poisson models of LGN input to V1 cortex: noisier inputs reduce orientation selectivity.

    PubMed

    Lin, I-Chun; Xing, Dajun; Shapley, Robert

    2012-12-01

    One of the reasons the visual cortex has attracted the interest of computational neuroscience is that it has well-defined inputs. The lateral geniculate nucleus (LGN) of the thalamus is the source of visual signals to the primary visual cortex (V1). Most large-scale cortical network models approximate the spike trains of LGN neurons as simple Poisson point processes. However, many studies have shown that neurons in the early visual pathway are capable of spiking with high temporal precision and their discharges are not Poisson-like. To gain an understanding of how response variability in the LGN influences the behavior of V1, we study response properties of model V1 neurons that receive purely feedforward inputs from LGN cells modeled either as noisy leaky integrate-and-fire (NLIF) neurons or as inhomogeneous Poisson processes. We first demonstrate that the NLIF model is capable of reproducing many experimentally observed statistical properties of LGN neurons. Then we show that a V1 model in which the LGN input to a V1 neuron is modeled as a group of NLIF neurons produces higher orientation selectivity than the one with Poisson LGN input. The second result implies that statistical characteristics of LGN spike trains are important for V1's function. We conclude that physiologically motivated models of V1 need to include more realistic LGN spike trains that are less noisy than inhomogeneous Poisson processes.

  8. Detailed numerical investigation of the dissipative stochastic mechanics based neuron model.

    PubMed

    Güler, Marifi

    2008-10-01

    Recently, a physical approach for the description of neuronal dynamics under the influence of ion channel noise was proposed in the realm of dissipative stochastic mechanics (Güler, Phys Rev E 76:041918, 2007). Led by the presence of a multiple number of gates in an ion channel, the approach establishes a viewpoint that ion channels are exposed to two kinds of noise: the intrinsic noise, associated with the stochasticity in the movement of gating particles between the inner and the outer faces of the membrane, and the topological noise, associated with the uncertainty in accessing the permissible topological states of open gates. Renormalizations of the membrane capacitance and of a membrane voltage dependent potential function were found to arise from the mutual interaction of the two noisy systems. The formalism therein was scrutinized using a special membrane with some tailored properties giving the Rose-Hindmarsh dynamics in the deterministic limit. In this paper, the resultant computational neuron model of the above approach is investigated in detail numerically for its dynamics using time-independent input currents. The following are the major findings obtained. The intrinsic noise gives rise to two significant coexisting effects: it initiates spiking activity even in some range of input currents for which the corresponding deterministic model is quiet and causes bursting in some other range of input currents for which the deterministic model fires tonically. The renormalization corrections are found to augment the above behavioral transitions from quiescence to spiking and from tonic firing to bursting, and, therefore, the bursting activity is found to take place in a wider range of input currents for larger values of the correction coefficients. Some findings concerning the diffusive behavior in the voltage space are also reported.

  9. Noisy swimming at low Reynolds numbers.

    PubMed

    Dunkel, Jörn; Zaid, Irwin M

    2009-08-01

    Small organisms (e.g., bacteria) and artificial microswimmers move due to a combination of active swimming and passive Brownian motion. Considering a simplified linear three-sphere swimmer, we study how the swimmer size regulates the interplay between self-driven and diffusive behavior at low Reynolds number. Starting from the Kirkwood-Smoluchowski equation and its corresponding Langevin equation, we derive formulas for the orientation correlation time, the mean velocity and the mean-square displacement in three space dimensions. The validity of the analytical results is illustrated through numerical simulations. Tuning the swimmer parameters to values that are typical of bacteria, we find three characteristic regimes: (i) Brownian motion at small times, (ii) quasiballistic behavior at intermediate time scales, and (iii) quasidiffusive behavior at large times due to noise-induced rotation. Our analytical results can be useful for a better quantitative understanding of optimal foraging strategies in bacterial systems, and they can help to construct more efficient artificial microswimmers in fluctuating fluids.

  10. Localization Counteracts Decoherence in Noisy Floquet Topological Chains

    NASA Astrophysics Data System (ADS)

    Rieder, M.-T.; Sieberer, L. M.; Fischer, M. H.; Fulga, I. C.

    2018-05-01

    The topological phases of periodically driven, or Floquet systems, rely on a perfectly periodic modulation of system parameters in time. Even the smallest deviation from periodicity leads to decoherence, causing the boundary (end) states to leak into the system's bulk. Here, we show that in one dimension this decay of topologically protected end states depends fundamentally on the nature of the bulk states: a dispersive bulk results in an exponential decay, while a localized bulk slows the decay down to a diffusive process. The localization can be due to disorder, which remarkably counteracts decoherence even when it breaks the symmetry responsible for the topological protection. We derive this result analytically, using a novel, discrete-time Floquet-Lindblad formalism and confirm our findings with the help of numerical simulations. Our results are particularly relevant for experiments, where disorder can be tailored to protect Floquet topological phases from decoherence.

  11. Sensing in a noisy world: lessons from auditory specialists, echolocating bats.

    PubMed

    Corcoran, Aaron J; Moss, Cynthia F

    2017-12-15

    All animals face the essential task of extracting biologically meaningful sensory information from the 'noisy' backdrop of their environments. Here, we examine mechanisms used by echolocating bats to localize objects, track small prey and communicate in complex and noisy acoustic environments. Bats actively control and coordinate both the emission and reception of sound stimuli through integrated sensory and motor mechanisms that have evolved together over tens of millions of years. We discuss how bats behave in different ecological scenarios, including detecting and discriminating target echoes from background objects, minimizing acoustic interference from competing conspecifics and overcoming insect noise. Bats tackle these problems by deploying a remarkable array of auditory behaviors, sometimes in combination with the use of other senses. Behavioral strategies such as ceasing sonar call production and active jamming of the signals of competitors provide further insight into the capabilities and limitations of echolocation. We relate these findings to the broader topic of how animals extract relevant sensory information in noisy environments. While bats have highly refined abilities for operating under noisy conditions, they face the same challenges encountered by many other species. We propose that the specialized sensory mechanisms identified in bats are likely to occur in analogous systems across the animal kingdom. © 2017. Published by The Company of Biologists Ltd.

  12. Noisy Spiking in Visual Area V2 of Amblyopic Monkeys.

    PubMed

    Wang, Ye; Zhang, Bin; Tao, Xiaofeng; Wensveen, Janice M; Smith, Earl L; Chino, Yuzo M

    2017-01-25

    Interocular decorrelation of input signals in developing visual cortex can cause impaired binocular vision and amblyopia. Although increased intrinsic noise is thought to be responsible for a range of perceptual deficits in amblyopic humans, the neural basis for the elevated perceptual noise in amblyopic primates is not known. Here, we tested the idea that perceptual noise is linked to the neuronal spiking noise (variability) resulting from developmental alterations in cortical circuitry. To assess spiking noise, we analyzed the contrast-dependent dynamics of spike counts and spiking irregularity by calculating the square of the coefficient of variation in interspike intervals (CV 2 ) and the trial-to-trial fluctuations in spiking, or mean matched Fano factor (m-FF) in visual area V2 of monkeys reared with chronic monocular defocus. In amblyopic neurons, the contrast versus response functions and the spike count dynamics exhibited significant deviations from comparable data for normal monkeys. The CV 2 was pronounced in amblyopic neurons for high-contrast stimuli and the m-FF was abnormally high in amblyopic neurons for low-contrast gratings. The spike count, CV 2 , and m-FF of spontaneous activity were also elevated in amblyopic neurons. These contrast-dependent spiking irregularities were correlated with the level of binocular suppression in these V2 neurons and with the severity of perceptual loss for individual monkeys. Our results suggest that the developmental alterations in normalization mechanisms resulting from early binocular suppression can explain much of these contrast-dependent spiking abnormalities in V2 neurons and the perceptual performance of our amblyopic monkeys. Amblyopia is a common developmental vision disorder in humans. Despite the extensive animal studies on how amblyopia emerges, we know surprisingly little about the neural basis of amblyopia in humans and nonhuman primates. Although the vision of amblyopic humans is often described as being noisy by perceptual and modeling studies, the exact nature or origin of this elevated perceptual noise is not known. We show that elevated and noisy spontaneous activity and contrast-dependent noisy spiking (spiking irregularity and trial-to-trial fluctuations in spiking) in neurons of visual area V2 could limit the visual performance of amblyopic primates. Moreover, we discovered that the noisy spiking is linked to a high level of binocular suppression in visual cortex during development. Copyright © 2017 the authors 0270-6474/17/370922-14$15.00/0.

  13. Computational wavelength resolution for in-line lensless holography: phase-coded diffraction patterns and wavefront group-sparsity

    NASA Astrophysics Data System (ADS)

    Katkovnik, Vladimir; Shevkunov, Igor; Petrov, Nikolay V.; Egiazarian, Karen

    2017-06-01

    In-line lensless holography is considered with a random phase modulation at the object plane. The forward wavefront propagation is modelled using the Fourier transform with the angular spectrum transfer function. The multiple intensities (holograms) recorded by the sensor are random due to the random phase modulation and noisy with Poissonian noise distribution. It is shown by computational experiments that high-accuracy reconstructions can be achieved with resolution going up to the two thirds of the wavelength. With respect to the sensor pixel size it is a super-resolution with a factor of 32. The algorithm designed for optimal superresolution phase/amplitude reconstruction from Poissonian data is based on the general methodology developed for phase retrieval with a pixel-wise resolution in V. Katkovnik, "Phase retrieval from noisy data based on sparse approximation of object phase and amplitude", http://www.cs.tut.fi/ lasip/DDT/index3.html.

  14. Learning feature representations with a cost-relevant sparse autoencoder.

    PubMed

    Längkvist, Martin; Loutfi, Amy

    2015-02-01

    There is an increasing interest in the machine learning community to automatically learn feature representations directly from the (unlabeled) data instead of using hand-designed features. The autoencoder is one method that can be used for this purpose. However, for data sets with a high degree of noise, a large amount of the representational capacity in the autoencoder is used to minimize the reconstruction error for these noisy inputs. This paper proposes a method that improves the feature learning process by focusing on the task relevant information in the data. This selective attention is achieved by weighting the reconstruction error and reducing the influence of noisy inputs during the learning process. The proposed model is trained on a number of publicly available image data sets and the test error rate is compared to a standard sparse autoencoder and other methods, such as the denoising autoencoder and contractive autoencoder.

  15. Optimal Tikhonov regularization for DEER spectroscopy

    NASA Astrophysics Data System (ADS)

    Edwards, Thomas H.; Stoll, Stefan

    2018-03-01

    Tikhonov regularization is the most commonly used method for extracting distance distributions from experimental double electron-electron resonance (DEER) spectroscopy data. This method requires the selection of a regularization parameter, α , and a regularization operator, L. We analyze the performance of a large set of α selection methods and several regularization operators, using a test set of over half a million synthetic noisy DEER traces. These are generated from distance distributions obtained from in silico double labeling of a protein crystal structure of T4 lysozyme with the spin label MTSSL. We compare the methods and operators based on their ability to recover the model distance distributions from the noisy time traces. The results indicate that several α selection methods perform quite well, among them the Akaike information criterion and the generalized cross validation method with either the first- or second-derivative operator. They perform significantly better than currently utilized L-curve methods.

  16. Recognition of Equations Using a Two-Dimensional Stochastic Context-Free Grammar

    NASA Astrophysics Data System (ADS)

    Chou, Philip A.

    1989-11-01

    We propose using two-dimensional stochastic context-free grammars for image recognition, in a manner analogous to using hidden Markov models for speech recognition. The value of the approach is demonstrated in a system that recognizes printed, noisy equations. The system uses a two-dimensional probabilistic version of the Cocke-Younger-Kasami parsing algorithm to find the most likely parse of the observed image, and then traverses the corresponding parse tree in accordance with translation formats associated with each production rule, to produce eqn I troff commands for the imaged equation. In addition, it uses two-dimensional versions of the Inside/Outside and Baum re-estimation algorithms for learning the parameters of the grammar from a training set of examples. Parsing the image of a simple noisy equation currently takes about one second of cpu time on an Alliant FX/80.

  17. Image Restoration by Spline Functions

    DTIC Science & Technology

    1976-08-31

    motion degradation, over- determined model. 71 Figure 4-7. Singular values for motion blur. 72 Figure 5-1. Models for film-grain noise and filtering. 85...Figure 5-2. Filtering of signal dependent noisy images. 86 Figure 5-3. Filtering of image lines degraded by film- grain noise . 87 Figure 5-4...phenomena. Fhese phenomena include such imperfect imaging cir- cumstances as defocus, motion blur, optical aberrations, and noise D1I r> . Phe pioneers

  18. Quantum systems as embarrassed colleagues: what do tax evasion and state tomography have in common?

    NASA Astrophysics Data System (ADS)

    Ferrie, Chris; Blume-Kohout, Robin

    2011-03-01

    Quantum state estimation (a.k.a. ``tomography'') plays a key role in designing quantum information processors. As a problem, it resembles probability estimation - e.g. for classical coins or dice - but with some subtle and important discrepancies. We demonstrate an improved classical analogue that captures many of these differences: the ``noisy coin.'' Observations on noisy coins are unreliable - much like soliciting sensitive information such as ones tax preparation habits. So, like a quantum system, it cannot be sampled directly. Unlike standard coins or dice, whose worst-case estimation risk scales as 1 / N for all states, noisy coins (and quantum states) have a worst-case risk that scales as 1 /√{ N } and is overwhelmingly dominated by nearly-pure states. The resulting optimal estimation strategies for noisy coins are surprising and counterintuitive. We demonstrate some important consequences for quantum state estimation - in particular, that adaptive tomography can recover the 1 / N risk scaling of classical probability estimation.

  19. Non-stationary component extraction in noisy multicomponent signal using polynomial chirping Fourier transform.

    PubMed

    Lu, Wenlong; Xie, Junwei; Wang, Heming; Sheng, Chuan

    2016-01-01

    Inspired by track-before-detection technology in radar, a novel time-frequency transform, namely polynomial chirping Fourier transform (PCFT), is exploited to extract components from noisy multicomponent signal. The PCFT combines advantages of Fourier transform and polynomial chirplet transform to accumulate component energy along a polynomial chirping curve in the time-frequency plane. The particle swarm optimization algorithm is employed to search optimal polynomial parameters with which the PCFT will achieve a most concentrated energy ridge in the time-frequency plane for the target component. The component can be well separated in the polynomial chirping Fourier domain with a narrow-band filter and then reconstructed by inverse PCFT. Furthermore, an iterative procedure, involving parameter estimation, PCFT, filtering and recovery, is introduced to extract components from a noisy multicomponent signal successively. The Simulations and experiments show that the proposed method has better performance in component extraction from noisy multicomponent signal as well as provides more time-frequency details about the analyzed signal than conventional methods.

  20. Fuzzy difference-of-Gaussian-based iris recognition method for noisy iris images

    NASA Astrophysics Data System (ADS)

    Kang, Byung Jun; Park, Kang Ryoung; Yoo, Jang-Hee; Moon, Kiyoung

    2010-06-01

    Iris recognition is used for information security with a high confidence level because it shows outstanding recognition accuracy by using human iris patterns with high degrees of freedom. However, iris recognition accuracy can be reduced by noisy iris images with optical and motion blurring. We propose a new iris recognition method based on the fuzzy difference-of-Gaussian (DOG) for noisy iris images. This study is novel in three ways compared to previous works: (1) The proposed method extracts iris feature values using the DOG method, which is robust to local variations of illumination and shows fine texture information, including various frequency components. (2) When determining iris binary codes, image noises that cause the quantization error of the feature values are reduced with the fuzzy membership function. (3) The optimal parameters of the DOG filter and the fuzzy membership function are determined in terms of iris recognition accuracy. Experimental results showed that the performance of the proposed method was better than that of previous methods for noisy iris images.

  1. Structural-Vibration-Response Data Analysis

    NASA Technical Reports Server (NTRS)

    Smith, W. R.; Hechenlaible, R. N.; Perez, R. C.

    1983-01-01

    Computer program developed as structural-vibration-response data analysis tool for use in dynamic testing of Space Shuttle. Program provides fast and efficient time-domain least-squares curve-fitting procedure for reducing transient response data to obtain structural model frequencies and dampings from free-decay records. Procedure simultaneously identifies frequencies, damping values, and participation factors for noisy multiple-response records.

  2. Flight instrument and telemetry response and its inversion

    NASA Technical Reports Server (NTRS)

    Weinberger, M. R.

    1971-01-01

    Mathematical models of rate gyros, servo accelerometers, pressure transducers, and telemetry systems were derived and their parameters were obtained from laboratory tests. Analog computer simulations were used extensively for verification of the validity for fast and large input signals. An optimal inversion method was derived to reconstruct input signals from noisy output signals and a computer program was prepared.

  3. From Unbundling to Rebundling: Design Principles for Transforming Institutions in the New Digital Ecosystem

    ERIC Educational Resources Information Center

    Bass, Randy; Eynon, Bret

    2017-01-01

    The last five years have been active and noisy ones for the impact of technology and online education on the future of colleges and universities. Much has been said to disparage the traditional institutional model and champion strategies of disrupting or "unbundling" higher education, powered by the explosion of Web-based learning…

  4. Duels with Continuous Firing,

    DTIC Science & Technology

    A game-theoretic model is proposed for the generalization of a discrete-fire silent duel to a silent duel with continuous firing. This zero-sum two...person game is solved in the symmetric case. It is shown that pure optimal strategies exist and hence also solve a noisy duel with continuous firing. A solution for the general non-symmetric duel is conjectured. (Author)

  5. Speech Intelligibility in Various Noise Conditions with the Nucleus® 5 CP810 Sound Processor.

    PubMed

    Dillier, Norbert; Lai, Wai Kong

    2015-06-11

    The Nucleus(®) 5 System Sound Processor (CP810, Cochlear™, Macquarie University, NSW, Australia) contains two omnidirectional microphones. They can be configured as a fixed directional microphone combination (called Zoom) or as an adaptive beamformer (called Beam), which adjusts the directivity continuously to maximally reduce the interfering noise. Initial evaluation studies with the CP810 had compared performance and usability of the new processor in comparison with the Freedom™ Sound Processor (Cochlear™) for speech in quiet and noise for a subset of the processing options. This study compares the two processing options suggested to be used in noisy environments, Zoom and Beam, for various sound field conditions using a standardized speech in noise matrix test (Oldenburg sentences test). Nine German-speaking subjects who previously had been using the Freedom speech processor and subsequently were upgraded to the CP810 device participated in this series of additional evaluation tests. The speech reception threshold (SRT for 50% speech intelligibility in noise) was determined using sentences presented via loudspeaker at 65 dB SPL in front of the listener and noise presented either via the same loudspeaker (S0N0) or at 90 degrees at either the ear with the sound processor (S0NCI+) or the opposite unaided ear (S0NCI-). The fourth noise condition consisted of three uncorrelated noise sources placed at 90, 180 and 270 degrees. The noise level was adjusted through an adaptive procedure to yield a signal to noise ratio where 50% of the words in the sentences were correctly understood. In spatially separated speech and noise conditions both Zoom and Beam could improve the SRT significantly. For single noise sources, either ipsilateral or contralateral to the cochlear implant sound processor, average improvements with Beam of 12.9 and 7.9 dB in SRT were found. The average SRT of -8 dB for Beam in the diffuse noise condition (uncorrelated noise from both sides and back) is truly remarkable and comparable to the performance of normal hearing listeners in the same test environment. The static directivity (Zoom) option in the diffuse noise condition still provides a significant benefit of 5.9 dB in comparison with the standard omnidirectional microphone setting. These results indicate that CI recipients may improve their speech recognition in noisy environments significantly using these directional microphone-processing options.

  6. Noisy processing and distillation of private quantum States.

    PubMed

    Renes, Joseph M; Smith, Graeme

    2007-01-12

    We provide a simple security proof for prepare and measure quantum key distribution protocols employing noisy processing and one-way postprocessing of the key. This is achieved by showing that the security of such a protocol is equivalent to that of an associated key distribution protocol in which, instead of the usual maximally entangled states, a more general private state is distilled. In addition to a more general target state, the usual entanglement distillation tools are employed (in particular, Calderbank-Shor-Steane-like codes), with the crucial difference that noisy processing allows some phase errors to be left uncorrected without compromising the privacy of the key.

  7. Building an environment model using depth information

    NASA Technical Reports Server (NTRS)

    Roth-Tabak, Y.; Jain, Ramesh

    1989-01-01

    Modeling the environment is one of the most crucial issues for the development and research of autonomous robot and tele-perception. Though the physical robot operates (navigates and performs various tasks) in the real world, any type of reasoning, such as situation assessment, planning or reasoning about action, is performed based on information in its internal world. Hence, the robot's intentional actions are inherently constrained by the models it has. These models may serve as interfaces between sensing modules and reasoning modules, or in the case of telerobots serve as interface between the human operator and the distant robot. A robot operating in a known restricted environment may have a priori knowledge of its whole possible work domain, which will be assimilated in its World Model. As the information in the World Model is relatively fixed, an Environment Model must be introduced to cope with the changes in the environment and to allow exploring entirely new domains. Introduced here is an algorithm that uses dense range data collected at various positions in the environment to refine and update or generate a 3-D volumetric model of an environment. The model, which is intended for autonomous robot navigation and tele-perception, consists of cubic voxels with the possible attributes: Void, Full, and Unknown. Experimental results from simulations of range data in synthetic environments are given. The quality of the results show great promise for dealing with noisy input data. The performance measures for the algorithm are defined, and quantitative results for noisy data and positional uncertainty are presented.

  8. Stochastic calibration and learning in nonstationary hydroeconomic models

    NASA Astrophysics Data System (ADS)

    Maneta, M. P.; Howitt, R.

    2014-05-01

    Concern about water scarcity and adverse climate events over agricultural regions has motivated a number of efforts to develop operational integrated hydroeconomic models to guide adaptation and optimal use of water. Once calibrated, these models are used for water management and analysis assuming they remain valid under future conditions. In this paper, we present and demonstrate a methodology that permits the recursive calibration of economic models of agricultural production from noisy but frequently available data. We use a standard economic calibration approach, namely positive mathematical programming, integrated in a data assimilation algorithm based on the ensemble Kalman filter equations to identify the economic model parameters. A moving average kernel ensures that new and past information on agricultural activity are blended during the calibration process, avoiding loss of information and overcalibration for the conditions of a single year. A regularization constraint akin to the standard Tikhonov regularization is included in the filter to ensure its stability even in the presence of parameters with low sensitivity to observations. The results show that the implementation of the PMP methodology within a data assimilation framework based on the enKF equations is an effective method to calibrate models of agricultural production even with noisy information. The recursive nature of the method incorporates new information as an added value to the known previous observations of agricultural activity without the need to store historical information. The robustness of the method opens the door to the use of new remote sensing algorithms for operational water management.

  9. Modeling the time-varying and level-dependent effects of the medial olivocochlear reflex in auditory nerve responses.

    PubMed

    Smalt, Christopher J; Heinz, Michael G; Strickland, Elizabeth A

    2014-04-01

    The medial olivocochlear reflex (MOCR) has been hypothesized to provide benefit for listening in noisy environments. This advantage can be attributed to a feedback mechanism that suppresses auditory nerve (AN) firing in continuous background noise, resulting in increased sensitivity to a tone or speech. MOC neurons synapse on outer hair cells (OHCs), and their activity effectively reduces cochlear gain. The computational model developed in this study implements the time-varying, characteristic frequency (CF) and level-dependent effects of the MOCR within the framework of a well-established model for normal and hearing-impaired AN responses. A second-order linear system was used to model the time-course of the MOCR using physiological data in humans. The stimulus-level-dependent parameters of the efferent pathway were estimated by fitting AN sensitivity derived from responses in decerebrate cats using a tone-in-noise paradigm. The resulting model uses a binaural, time-varying, CF-dependent, level-dependent OHC gain reduction for both ipsilateral and contralateral stimuli that improves detection of a tone in noise, similarly to recorded AN responses. The MOCR may be important for speech recognition in continuous background noise as well as for protection from acoustic trauma. Further study of this model and its efferent feedback loop may improve our understanding of the effects of sensorineural hearing loss in noisy situations, a condition in which hearing aids currently struggle to restore normal speech perception.

  10. Multispecies diffusion models: A study of uranyl species diffusion

    NASA Astrophysics Data System (ADS)

    Liu, Chongxuan; Shang, Jianying; Zachara, John M.

    2011-12-01

    Rigorous numerical description of multispecies diffusion requires coupling of species, charge, and aqueous and surface complexation reactions that collectively affect diffusive fluxes. The applicability of a fully coupled diffusion model is, however, often constrained by the availability of species self-diffusion coefficients, as well as by computational complication in imposing charge conservation. In this study, several diffusion models with variable complexity in charge and species coupling were formulated and compared to describe reactive multispecies diffusion in groundwater. Diffusion of uranyl [U(VI)] species was used as an example in demonstrating the effectiveness of the models in describing multispecies diffusion. Numerical simulations found that a diffusion model with a single, common diffusion coefficient for all species was sufficient to describe multispecies U(VI) diffusion under a steady state condition of major chemical composition, but not under transient chemical conditions. Simulations revealed that for multispecies U(VI) diffusion under transient chemical conditions, a fully coupled diffusion model could be well approximated by a component-based diffusion model when the diffusion coefficient for each chemical component was properly selected. The component-based diffusion model considers the difference in diffusion coefficients between chemical components, but not between the species within each chemical component. This treatment significantly enhanced computational efficiency at the expense of minor charge conservation. The charge balance in the component-based diffusion model can be enforced, if necessary, by adding a secondary migration term resulting from model simplification. The effect of ion activity coefficient gradients on multispecies diffusion is also discussed. The diffusion models were applied to describe U(VI) diffusive mass transfer in intragranular domains in two sediments collected from U.S. Department of Energy's Hanford 300A, where intragranular diffusion is a rate-limiting process controlling U(VI) adsorption and desorption. The grain-scale reactive diffusion model was able to describe U(VI) adsorption/desorption kinetics that had been previously described using a semiempirical, multirate model. Compared with the multirate model, the diffusion models have the advantage to provide spatiotemporal speciation evolution within the diffusion domains.

  11. Rational integration of noisy evidence and prior semantic expectations in sentence interpretation.

    PubMed

    Gibson, Edward; Bergen, Leon; Piantadosi, Steven T

    2013-05-14

    Sentence processing theories typically assume that the input to our language processing mechanisms is an error-free sequence of words. However, this assumption is an oversimplification because noise is present in typical language use (for instance, due to a noisy environment, producer errors, or perceiver errors). A complete theory of human sentence comprehension therefore needs to explain how humans understand language given imperfect input. Indeed, like many cognitive systems, language processing mechanisms may even be "well designed"--in this case for the task of recovering intended meaning from noisy utterances. In particular, comprehension mechanisms may be sensitive to the types of information that an idealized statistical comprehender would be sensitive to. Here, we evaluate four predictions about such a rational (Bayesian) noisy-channel language comprehender in a sentence comprehension task: (i) semantic cues should pull sentence interpretation towards plausible meanings, especially if the wording of the more plausible meaning is close to the observed utterance in terms of the number of edits; (ii) this process should asymmetrically treat insertions and deletions due to the Bayesian "size principle"; such nonliteral interpretation of sentences should (iii) increase with the perceived noise rate of the communicative situation and (iv) decrease if semantically anomalous meanings are more likely to be communicated. These predictions are borne out, strongly suggesting that human language relies on rational statistical inference over a noisy channel.

  12. Rational integration of noisy evidence and prior semantic expectations in sentence interpretation

    PubMed Central

    Gibson, Edward; Bergen, Leon; Piantadosi, Steven T.

    2013-01-01

    Sentence processing theories typically assume that the input to our language processing mechanisms is an error-free sequence of words. However, this assumption is an oversimplification because noise is present in typical language use (for instance, due to a noisy environment, producer errors, or perceiver errors). A complete theory of human sentence comprehension therefore needs to explain how humans understand language given imperfect input. Indeed, like many cognitive systems, language processing mechanisms may even be “well designed”–in this case for the task of recovering intended meaning from noisy utterances. In particular, comprehension mechanisms may be sensitive to the types of information that an idealized statistical comprehender would be sensitive to. Here, we evaluate four predictions about such a rational (Bayesian) noisy-channel language comprehender in a sentence comprehension task: (i) semantic cues should pull sentence interpretation towards plausible meanings, especially if the wording of the more plausible meaning is close to the observed utterance in terms of the number of edits; (ii) this process should asymmetrically treat insertions and deletions due to the Bayesian “size principle”; such nonliteral interpretation of sentences should (iii) increase with the perceived noise rate of the communicative situation and (iv) decrease if semantically anomalous meanings are more likely to be communicated. These predictions are borne out, strongly suggesting that human language relies on rational statistical inference over a noisy channel. PMID:23637344

  13. EEG Mu (µ) rhythm spectra and oscillatory activity differentiate stuttering from non-stuttering adults.

    PubMed

    Saltuklaroglu, Tim; Harkrider, Ashley W; Thornton, David; Jenson, David; Kittilstved, Tiffani

    2017-06-01

    Stuttering is linked to sensorimotor deficits related to internal modeling mechanisms. This study compared spectral power and oscillatory activity of EEG mu (μ) rhythms between persons who stutter (PWS) and controls in listening and auditory discrimination tasks. EEG data were analyzed from passive listening in noise and accurate (same/different) discrimination of tones or syllables in quiet and noisy backgrounds. Independent component analysis identified left and/or right μ rhythms with characteristic alpha (α) and beta (β) peaks localized to premotor/motor regions in 23 of 27 people who stutter (PWS) and 24 of 27 controls. PWS produced μ spectra with reduced β amplitudes across conditions, suggesting reduced forward modeling capacity. Group time-frequency differences were associated with noisy conditions only. PWS showed increased μ-β desynchronization when listening to noise and early in discrimination events, suggesting evidence of heightened motor activity that might be related to forward modeling deficits. PWS also showed reduced μ-α synchronization in discrimination conditions, indicating reduced sensory gating. Together these findings indicate spectral and oscillatory analyses of μ rhythms are sensitive to stuttering. More specifically, they can reveal stuttering-related sensorimotor processing differences in listening and auditory discrimination that also may be influenced by basal ganglia deficits. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Speech understanding in noise with the Roger Pen, Naida CI Q70 processor, and integrated Roger 17 receiver in a multi-talker network.

    PubMed

    De Ceulaer, Geert; Bestel, Julie; Mülder, Hans E; Goldbeck, Felix; de Varebeke, Sebastien Pierre Janssens; Govaerts, Paul J

    2016-05-01

    Roger is a digital adaptive multi-channel remote microphone technology that wirelessly transmits a speaker's voice directly to a hearing instrument or cochlear implant sound processor. Frequency hopping between channels, in combination with repeated broadcast, avoids interference issues that have limited earlier generation FM systems. This study evaluated the benefit of the Roger Pen transmitter microphone in a multiple talker network (MTN) for cochlear implant users in a simulated noisy conversation setting. Twelve post-lingually deafened adult Advanced Bionics CII/HiRes 90K recipients were recruited. Subjects used a Naida CI Q70 processor with integrated Roger 17 receiver. The test environment simulated four people having a meal in a noisy restaurant, one the CI user (listener), and three companions (talkers) talking non-simultaneously in a diffuse field of multi-talker babble. Speech reception thresholds (SRTs) were determined without the Roger Pen, with one Roger Pen, and with three Roger Pens in an MTN. Using three Roger Pens in an MTN improved the SRT by 14.8 dB over using no Roger Pen, and by 13.1 dB over using a single Roger Pen (p < 0.0001). The Roger Pen in an MTN provided statistically and clinically significant improvement in speech perception in noise for Advanced Bionics cochlear implant recipients. The integrated Roger 17 receiver made it easy for users of the Naida CI Q70 processor to take advantage of the Roger system. The listening advantage and ease of use should encourage more clinicians to recommend and fit Roger in adult cochlear implant patients.

  15. Feature Extraction Using Attributed Scattering Center Models for Model-Based Automatic Target Recognition (ATR)

    DTIC Science & Technology

    2005-10-01

    section of the coiled arm. Right: measured realized total gain for a square spiral in free space with inductive treatment. . . . . . . . 154 8.5 Initial...appreciable velocities can often be easily separated from clutter returns, slow moving targets of more moderate cross sections can be very difficult to detect...electromagnetic radiation and measuring the energy scattered back. The data obtained as a result of this process is a finite-extent, noisy set of

  16. In-hardware demonstration of model-independent adaptive tuning of noisy systems with arbitrary phase drift

    DOE PAGES

    Scheinker, Alexander; Baily, Scott; Young, Daniel; ...

    2014-08-01

    In this work, an implementation of a recently developed model-independent adaptive control scheme, for tuning uncertain and time varying systems, is demonstrated on the Los Alamos linear particle accelerator. The main benefits of the algorithm are its simplicity, ability to handle an arbitrary number of components without increased complexity, and the approach is extremely robust to measurement noise, a property which is both analytically proven and demonstrated in the experiments performed. We report on the application of this algorithm for simultaneous tuning of two buncher radio frequency (RF) cavities, in order to maximize beam acceptance into the accelerating electromagnetic fieldmore » cavities of the machine, with the tuning based only on a noisy measurement of the surviving beam current downstream from the two bunching cavities. The algorithm automatically responds to arbitrary phase shift of the cavity phases, automatically re-tuning the cavity settings and maximizing beam acceptance. Because it is model independent it can be utilized for continuous adaptation to time-variation of a large system, such as due to thermal drift, or damage to components, in which the remaining, functional components would be automatically re-tuned to compensate for the failing ones. We start by discussing the general model-independent adaptive scheme and how it may be digitally applied to a large class of multi-parameter uncertain systems, and then present our experimental results.« less

  17. FALSE DETERMINATIONS OF CHAOS IN SHORT NOISY TIME SERIES. (R828745)

    EPA Science Inventory

    A method (NEMG) proposed in 1992 for diagnosing chaos in noisy time series with 50 or fewer observations entails fitting the time series with an empirical function which predicts an observation in the series from previous observations, and then estimating the rate of divergenc...

  18. Discovering Knowledge from Noisy Databases Using Genetic Programming.

    ERIC Educational Resources Information Center

    Wong, Man Leung; Leung, Kwong Sak; Cheng, Jack C. Y.

    2000-01-01

    Presents a framework that combines Genetic Programming and Inductive Logic Programming, two approaches in data mining, to induce knowledge from noisy databases. The framework is based on a formalism of logic grammars and is implemented as a data mining system called LOGENPRO (Logic Grammar-based Genetic Programming System). (Contains 34…

  19. The Effects of Noisy Data on Text Retrieval.

    ERIC Educational Resources Information Center

    Taghva, Kazem; And Others

    1994-01-01

    Discusses the use of optical character recognition (OCR) for inputting documents in an information retrieval system and describes a study that used an OCR-generated database and its corresponding corrected version to examine query evaluation in the presence of noisy data. Scanning technology, recognition technology, and retrieval technology are…

  20. Neuronal Spike Timing Adaptation Described with a Fractional Leaky Integrate-and-Fire Model

    PubMed Central

    Teka, Wondimu; Marinov, Toma M.; Santamaria, Fidel

    2014-01-01

    The voltage trace of neuronal activities can follow multiple timescale dynamics that arise from correlated membrane conductances. Such processes can result in power-law behavior in which the membrane voltage cannot be characterized with a single time constant. The emergent effect of these membrane correlations is a non-Markovian process that can be modeled with a fractional derivative. A fractional derivative is a non-local process in which the value of the variable is determined by integrating a temporal weighted voltage trace, also called the memory trace. Here we developed and analyzed a fractional leaky integrate-and-fire model in which the exponent of the fractional derivative can vary from 0 to 1, with 1 representing the normal derivative. As the exponent of the fractional derivative decreases, the weights of the voltage trace increase. Thus, the value of the voltage is increasingly correlated with the trajectory of the voltage in the past. By varying only the fractional exponent, our model can reproduce upward and downward spike adaptations found experimentally in neocortical pyramidal cells and tectal neurons in vitro. The model also produces spikes with longer first-spike latency and high inter-spike variability with power-law distribution. We further analyze spike adaptation and the responses to noisy and oscillatory input. The fractional model generates reliable spike patterns in response to noisy input. Overall, the spiking activity of the fractional leaky integrate-and-fire model deviates from the spiking activity of the Markovian model and reflects the temporal accumulated intrinsic membrane dynamics that affect the response of the neuron to external stimulation. PMID:24675903

  1. An ensemble Kalman filter for statistical estimation of physics constrained nonlinear regression models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harlim, John, E-mail: jharlim@psu.edu; Mahdi, Adam, E-mail: amahdi@ncsu.edu; Majda, Andrew J., E-mail: jonjon@cims.nyu.edu

    2014-01-15

    A central issue in contemporary science is the development of nonlinear data driven statistical–dynamical models for time series of noisy partial observations from nature or a complex model. It has been established recently that ad-hoc quadratic multi-level regression models can have finite-time blow-up of statistical solutions and/or pathological behavior of their invariant measure. Recently, a new class of physics constrained nonlinear regression models were developed to ameliorate this pathological behavior. Here a new finite ensemble Kalman filtering algorithm is developed for estimating the state, the linear and nonlinear model coefficients, the model and the observation noise covariances from available partialmore » noisy observations of the state. Several stringent tests and applications of the method are developed here. In the most complex application, the perfect model has 57 degrees of freedom involving a zonal (east–west) jet, two topographic Rossby waves, and 54 nonlinearly interacting Rossby waves; the perfect model has significant non-Gaussian statistics in the zonal jet with blocked and unblocked regimes and a non-Gaussian skewed distribution due to interaction with the other 56 modes. We only observe the zonal jet contaminated by noise and apply the ensemble filter algorithm for estimation. Numerically, we find that a three dimensional nonlinear stochastic model with one level of memory mimics the statistical effect of the other 56 modes on the zonal jet in an accurate fashion, including the skew non-Gaussian distribution and autocorrelation decay. On the other hand, a similar stochastic model with zero memory levels fails to capture the crucial non-Gaussian behavior of the zonal jet from the perfect 57-mode model.« less

  2. Security of modified Ping-Pong protocol in noisy and lossy channel

    PubMed Central

    Han, Yun-Guang; Yin, Zhen-Qiang; Li, Hong-Wei; Chen, Wei; Wang, Shuang; Guo, Guang-Can; Han, Zheng-Fu

    2014-01-01

    The “Ping-Pong” (PP) protocol is a two-way quantum key protocol based on entanglement. In this protocol, Bob prepares one maximally entangled pair of qubits, and sends one qubit to Alice. Then, Alice performs some necessary operations on this qubit and sends it back to Bob. Although this protocol was proposed in 2002, its security in the noisy and lossy channel has not been proven. In this report, we add a simple and experimentally feasible modification to the original PP protocol, and prove the security of this modified PP protocol against collective attacks when the noisy and lossy channel is taken into account. Simulation results show that our protocol is practical. PMID:24816899

  3. Security of modified Ping-Pong protocol in noisy and lossy channel.

    PubMed

    Han, Yun-Guang; Yin, Zhen-Qiang; Li, Hong-Wei; Chen, Wei; Wang, Shuang; Guo, Guang-Can; Han, Zheng-Fu

    2014-05-12

    The "Ping-Pong" (PP) protocol is a two-way quantum key protocol based on entanglement. In this protocol, Bob prepares one maximally entangled pair of qubits, and sends one qubit to Alice. Then, Alice performs some necessary operations on this qubit and sends it back to Bob. Although this protocol was proposed in 2002, its security in the noisy and lossy channel has not been proven. In this report, we add a simple and experimentally feasible modification to the original PP protocol, and prove the security of this modified PP protocol against collective attacks when the noisy and lossy channel is taken into account. Simulation results show that our protocol is practical.

  4. Decoding communities in networks

    NASA Astrophysics Data System (ADS)

    Radicchi, Filippo

    2018-02-01

    According to a recent information-theoretical proposal, the problem of defining and identifying communities in networks can be interpreted as a classical communication task over a noisy channel: memberships of nodes are information bits erased by the channel, edges and nonedges in the network are parity bits introduced by the encoder but degraded through the channel, and a community identification algorithm is a decoder. The interpretation is perfectly equivalent to the one at the basis of well-known statistical inference algorithms for community detection. The only difference in the interpretation is that a noisy channel replaces a stochastic network model. However, the different perspective gives the opportunity to take advantage of the rich set of tools of coding theory to generate novel insights on the problem of community detection. In this paper, we illustrate two main applications of standard coding-theoretical methods to community detection. First, we leverage a state-of-the-art decoding technique to generate a family of quasioptimal community detection algorithms. Second and more important, we show that the Shannon's noisy-channel coding theorem can be invoked to establish a lower bound, here named as decodability bound, for the maximum amount of noise tolerable by an ideal decoder to achieve perfect detection of communities. When computed for well-established synthetic benchmarks, the decodability bound explains accurately the performance achieved by the best community detection algorithms existing on the market, telling us that only little room for their improvement is still potentially left.

  5. A hybrid symplectic principal component analysis and central tendency measure method for detection of determinism in noisy time series with application to mechanomyography

    NASA Astrophysics Data System (ADS)

    Xie, Hong-Bo; Dokos, Socrates

    2013-06-01

    We present a hybrid symplectic geometry and central tendency measure (CTM) method for detection of determinism in noisy time series. CTM is effective for detecting determinism in short time series and has been applied in many areas of nonlinear analysis. However, its performance significantly degrades in the presence of strong noise. In order to circumvent this difficulty, we propose to use symplectic principal component analysis (SPCA), a new chaotic signal de-noising method, as the first step to recover the system dynamics. CTM is then applied to determine whether the time series arises from a stochastic process or has a deterministic component. Results from numerical experiments, ranging from six benchmark deterministic models to 1/f noise, suggest that the hybrid method can significantly improve detection of determinism in noisy time series by about 20 dB when the data are contaminated by Gaussian noise. Furthermore, we apply our algorithm to study the mechanomyographic (MMG) signals arising from contraction of human skeletal muscle. Results obtained from the hybrid symplectic principal component analysis and central tendency measure demonstrate that the skeletal muscle motor unit dynamics can indeed be deterministic, in agreement with previous studies. However, the conventional CTM method was not able to definitely detect the underlying deterministic dynamics. This result on MMG signal analysis is helpful in understanding neuromuscular control mechanisms and developing MMG-based engineering control applications.

  6. A hybrid symplectic principal component analysis and central tendency measure method for detection of determinism in noisy time series with application to mechanomyography.

    PubMed

    Xie, Hong-Bo; Dokos, Socrates

    2013-06-01

    We present a hybrid symplectic geometry and central tendency measure (CTM) method for detection of determinism in noisy time series. CTM is effective for detecting determinism in short time series and has been applied in many areas of nonlinear analysis. However, its performance significantly degrades in the presence of strong noise. In order to circumvent this difficulty, we propose to use symplectic principal component analysis (SPCA), a new chaotic signal de-noising method, as the first step to recover the system dynamics. CTM is then applied to determine whether the time series arises from a stochastic process or has a deterministic component. Results from numerical experiments, ranging from six benchmark deterministic models to 1/f noise, suggest that the hybrid method can significantly improve detection of determinism in noisy time series by about 20 dB when the data are contaminated by Gaussian noise. Furthermore, we apply our algorithm to study the mechanomyographic (MMG) signals arising from contraction of human skeletal muscle. Results obtained from the hybrid symplectic principal component analysis and central tendency measure demonstrate that the skeletal muscle motor unit dynamics can indeed be deterministic, in agreement with previous studies. However, the conventional CTM method was not able to definitely detect the underlying deterministic dynamics. This result on MMG signal analysis is helpful in understanding neuromuscular control mechanisms and developing MMG-based engineering control applications.

  7. Decoding communities in networks.

    PubMed

    Radicchi, Filippo

    2018-02-01

    According to a recent information-theoretical proposal, the problem of defining and identifying communities in networks can be interpreted as a classical communication task over a noisy channel: memberships of nodes are information bits erased by the channel, edges and nonedges in the network are parity bits introduced by the encoder but degraded through the channel, and a community identification algorithm is a decoder. The interpretation is perfectly equivalent to the one at the basis of well-known statistical inference algorithms for community detection. The only difference in the interpretation is that a noisy channel replaces a stochastic network model. However, the different perspective gives the opportunity to take advantage of the rich set of tools of coding theory to generate novel insights on the problem of community detection. In this paper, we illustrate two main applications of standard coding-theoretical methods to community detection. First, we leverage a state-of-the-art decoding technique to generate a family of quasioptimal community detection algorithms. Second and more important, we show that the Shannon's noisy-channel coding theorem can be invoked to establish a lower bound, here named as decodability bound, for the maximum amount of noise tolerable by an ideal decoder to achieve perfect detection of communities. When computed for well-established synthetic benchmarks, the decodability bound explains accurately the performance achieved by the best community detection algorithms existing on the market, telling us that only little room for their improvement is still potentially left.

  8. Noisy scale-free networks

    NASA Astrophysics Data System (ADS)

    Scholz, Jan; Dejori, Mathäus; Stetter, Martin; Greiner, Martin

    2005-05-01

    The impact of observational noise on the analysis of scale-free networks is studied. Various noise sources are modeled as random link removal, random link exchange and random link addition. Emphasis is on the resulting modifications for the node-degree distribution and for a functional ranking based on betweenness centrality. The implications for estimated gene-expressed networks for childhood acute lymphoblastic leukemia are discussed.

  9. Perceived Barriers to Hearing Protection Use by Employees in Amplified Music Venues, a Focus Group Study

    ERIC Educational Resources Information Center

    Kelly, Aoife C.; Boyd, Sara M.; Henehan, Gary T. M.

    2015-01-01

    Objective: It is a legal requirement for employees in noisy workplaces such as nightclubs to be provided with suitable information regarding their noise exposure risks, used a focus group approach to examine employees' attitudes to workplace noise and to hearing protection use. The subsequent analysis was based on an adapted Health Belief Model.…

  10. Multi-Agent Task Negotiation Among UAVs to Defend Against Swarm Attacks

    DTIC Science & Technology

    2012-03-01

    are based on economic models [39]. Auction methods of task coordination also attempt to deal with agents dealing with noisy, dynamic environments...August 2006. [34] M. Alighanbari, “ Robust and decentralized task assignment algorithms for uavs,” Ph.D. dissertation, Massachusetts Institute of Technology...Implicit Coordination . . . . . . . . . . . . . 12 2.4 Decentralized Algorithm B - Market- Based . . . . . . . . . . . . . . . . 12 2.5 Decentralized

  11. Improved estimates of partial volume coefficients from noisy brain MRI using spatial context.

    PubMed

    Manjón, José V; Tohka, Jussi; Robles, Montserrat

    2010-11-01

    This paper addresses the problem of accurate voxel-level estimation of tissue proportions in the human brain magnetic resonance imaging (MRI). Due to the finite resolution of acquisition systems, MRI voxels can contain contributions from more than a single tissue type. The voxel-level estimation of this fractional content is known as partial volume coefficient estimation. In the present work, two new methods to calculate the partial volume coefficients under noisy conditions are introduced and compared with current similar methods. Concretely, a novel Markov Random Field model allowing sharp transitions between partial volume coefficients of neighbouring voxels and an advanced non-local means filtering technique are proposed to reduce the errors due to random noise in the partial volume coefficient estimation. In addition, a comparison was made to find out how the different methodologies affect the measurement of the brain tissue type volumes. Based on the obtained results, the main conclusions are that (1) both Markov Random Field modelling and non-local means filtering improved the partial volume coefficient estimation results, and (2) non-local means filtering was the better of the two strategies for partial volume coefficient estimation. Copyright 2010 Elsevier Inc. All rights reserved.

  12. Dynamics of a modified Hindmarsh-Rose neural model with random perturbations: Moment analysis and firing activities

    NASA Astrophysics Data System (ADS)

    Mondal, Argha; Upadhyay, Ranjit Kumar

    2017-11-01

    In this paper, an attempt has been made to understand the activity of mean membrane voltage and subsidiary system variables with moment equations (i.e., mean, variance and covariance's) under noisy environment. We consider a biophysically plausible modified Hindmarsh-Rose (H-R) neural system injected by an applied current exhibiting spiking-bursting phenomenon. The effects of predominant parameters on the dynamical behavior of a modified H-R system are investigated. Numerically, it exhibits period-doubling, period halving bifurcation and chaos phenomena. Further, a nonlinear system has been analyzed for the first and second order moments with additive stochastic perturbations. It has been solved using fourth order Runge-Kutta method and noisy systems by Euler's scheme. It has been demonstrated that the firing properties of neurons to evoke an action potential in a certain parameter space of the large exact systems can be estimated using an approximated model. Strong stimulation can cause a change in increase or decrease of the firing patterns. Corresponding to a fixed set of parameter values, the firing behavior and dynamical differences of the collective variables of a large, exact and approximated systems are investigated.

  13. Unified anomaly suppression and boundary extraction in laser radar range imagery based on a joint curve-evolution and expectation-maximization algorithm.

    PubMed

    Feng, Haihua; Karl, William Clem; Castañon, David A

    2008-05-01

    In this paper, we develop a new unified approach for laser radar range anomaly suppression, range profiling, and segmentation. This approach combines an object-based hybrid scene model for representing the range distribution of the field and a statistical mixture model for the range data measurement noise. The image segmentation problem is formulated as a minimization problem which jointly estimates the target boundary together with the target region range variation and background range variation directly from the noisy and anomaly-filled range data. This formulation allows direct incorporation of prior information concerning the target boundary, target ranges, and background ranges into an optimal reconstruction process. Curve evolution techniques and a generalized expectation-maximization algorithm are jointly employed as an efficient solver for minimizing the objective energy, resulting in a coupled pair of object and intensity optimization tasks. The method directly and optimally extracts the target boundary, avoiding a suboptimal two-step process involving image smoothing followed by boundary extraction. Experiments are presented demonstrating that the proposed approach is robust to anomalous pixels (missing data) and capable of producing accurate estimation of the target boundary and range values from noisy data.

  14. Effects of pedagogical ideology on the perceived loudness and noise levels in preschools.

    PubMed

    Jonsdottir, Valdis; Rantala, Leena M; Oskarsson, Gudmundur Kr; Sala, Eeva

    2015-01-01

    High activity noise levels that result in detrimental effects on speech communication have been measured in preschools. To find out if different pedagogical ideologies affect the perceived loudness and levels of noise, a questionnaire study inquiring about the experience of loudness and voice symptoms was carried out in Iceland in eight private preschools, called "Hjalli model", and in six public preschools. Noise levels were also measured in the preschools. Background variables (stress level, age, length of working career, education, smoking, and number of children per teacher) were also analyzed in order to determine how much they contributed toward voice symptoms and the experience of noisiness. Results indicate that pedagogical ideology is a significant factor for predicting noise and its consequences. Teachers in the preschool with tighter pedagogical control of discipline (the "Hjalli model") experienced lower activity noise loudness than teachers in the preschool with a more relaxed control of behavior (public preschool). Lower noise levels were also measured in the "Hjalli model" preschool and fewer "Hjalli model" teachers reported voice symptoms. Public preschool teachers experienced more stress than "Hjalli model" teachers and the stress level was, indeed, the background variable that best explained the voice symptoms and the teacher's perception of a noisy environment. Discipline, structure, and organization in the type of activity predicted the activity noise level better than the number of children in the group. Results indicate that pedagogical ideology is a significant factor for predicting self-reported noise and its consequences.

  15. Overcoming Indecision by Changing the Decision Boundary

    PubMed Central

    2017-01-01

    The dominant theoretical framework for decision making asserts that people make decisions by integrating noisy evidence to a threshold. It has recently been shown that in many ecologically realistic situations, decreasing the decision boundary maximizes the reward available from decisions. However, empirical support for decreasing boundaries in humans is scant. To investigate this problem, we used an ideal observer model to identify the conditions under which participants should change their decision boundaries with time to maximize reward rate. We conducted 6 expanded-judgment experiments that precisely matched the assumptions of this theoretical model. In this paradigm, participants could sample noisy, binary evidence presented sequentially. Blocks of trials were fixed in duration, and each trial was an independent reward opportunity. Participants therefore had to trade off speed (getting as many rewards as possible) against accuracy (sampling more evidence). Having access to the actual evidence samples experienced by participants enabled us to infer the slope of the decision boundary. We found that participants indeed modulated the slope of the decision boundary in the direction predicted by the ideal observer model, although we also observed systematic deviations from optimality. Participants using suboptimal boundaries do so in a robust manner, so that any error in their boundary setting is relatively inexpensive. The use of a normative model provides insight into what variable(s) human decision makers are trying to optimize. Furthermore, this normative model allowed us to choose diagnostic experiments and in doing so we present clear evidence for time-varying boundaries. PMID:28406682

  16. CNN: a speaker recognition system using a cascaded neural network.

    PubMed

    Zaki, M; Ghalwash, A; Elkouny, A A

    1996-05-01

    The main emphasis of this paper is to present an approach for combining supervised and unsupervised neural network models to the issue of speaker recognition. To enhance the overall operation and performance of recognition, the proposed strategy integrates the two techniques, forming one global model called the cascaded model. We first present a simple conventional technique based on the distance measured between a test vector and a reference vector for different speakers in the population. This particular distance metric has the property of weighting down the components in those directions along which the intraspeaker variance is large. The reason for presenting this method is to clarify the discrepancy in performance between the conventional and neural network approach. We then introduce the idea of using unsupervised learning technique, presented by the winner-take-all model, as a means of recognition. Due to several tests that have been conducted and in order to enhance the performance of this model, dealing with noisy patterns, we have preceded it with a supervised learning model--the pattern association model--which acts as a filtration stage. This work includes both the design and implementation of both conventional and neural network approaches to recognize the speakers templates--which are introduced to the system via a voice master card and preprocessed before extracting the features used in the recognition. The conclusion indicates that the system performance in case of neural network is better than that of the conventional one, achieving a smooth degradation in respect of noisy patterns, and higher performance in respect of noise-free patterns.

  17. Weak synchronization and large-scale collective oscillation in dense bacterial suspensions

    NASA Astrophysics Data System (ADS)

    Wu, Yilin

    Collective oscillatory behavior is ubiquitous in nature and it plays a vital role in many biological processes. Collective oscillations in biological multicellular systems often arise from coupling mediated by diffusive chemicals, by electrochemical mechanisms, or by biomechanical interaction between cells and their physical environment. In these examples, the phase of some oscillatory intracellular degree of freedom is synchronized. Here, in contrast, we discovered a unique 'weak synchronization' mechanism that does not require long-range coupling, nor even inherent oscillation of individual cells: We found that millions of motile cells in dense bacterial suspensions can self-organize into highly robust collective oscillatory motion, while individuals move in an erratic manner. Over large spatial scales we found that the phase of the oscillations is in fact organized into a centimeter scale traveling wave. We present a model of noisy self-propelled particles with strictly local interactions that accounts faithfully for our observations. These findings expand our knowledge of biological self-organization and reveal a new type of long-range order in active matter systems. The mechanism of collective oscillation uncovered here may inspire new strategies to control the self-organization of active matter and swarming robots. This work is supported by funding from CUHK Direct research Grants (4053019, 4053079, 4053130), the Research Grants Council of HKSAR (RGC Ref. No. CUHK 409713), and from the National Natural Science Foundation of China (NSFC 21473152).

  18. Cortical and Sensory Causes of Individual Differences in Selective Attention Ability among Listeners with Normal Hearing Thresholds

    ERIC Educational Resources Information Center

    Shinn-Cunningham, Barbara

    2017-01-01

    Purpose: This review provides clinicians with an overview of recent findings relevant to understanding why listeners with normal hearing thresholds (NHTs) sometimes suffer from communication difficulties in noisy settings. Method: The results from neuroscience and psychoacoustics are reviewed. Results: In noisy settings, listeners focus their…

  19. Generation of Werner states and preservation of entanglement in a noisy environment [rapid communication

    NASA Astrophysics Data System (ADS)

    Jakóbczyk, Lech; Jamróz, Anna

    2005-12-01

    We study the influence of noisy environment on the evolution of two-atomic system in the presence of collective damping. Generation of Werner states as asymptotic stationary states of evolution is described. We also show that for some initial states the amount of entanglement is preserved during the evolution.

  20. Sound quality characteristics of refrigerator noise in real living environments with relation to psychoacoustical and autocorrelation function parameters.

    PubMed

    Sato, Shin-ichi; You, Jin; Jeon, Jin Yong

    2007-07-01

    Psychoacoustical and autocorrelation function (ACF) parameters were employed to describe the temporal fluctuations of refrigerator noise during starting, transition into/from the stationary phase and termination of operation. The temporal fluctuations of refrigerator noise include a click at start-up, followed by a rapid increase in volume, a change of pitch, and termination of the operation. Subjective evaluations of the noise of 24 different refrigerators were conducted in a real living environment. The relationship between objective measures and perceived noisiness was examined by multiple regression analysis. Sound quality indices were developed based on psychoacoustical and ACF parameters. The psychoacoustical parameters found to be important for evaluating noisiness in the stationary phase were loudness and roughness. The relationship between noisiness and ACF parameters shows that sound energy and its fluctuations are important for evaluating noisiness. Also, refrigerator sounds that had a fluctuation of pitch were rated as more annoying. The tolerance level for the starting phase of refrigerator noise was found to be 33 dBA, which is the level where 65% of the participants in the subjective tests were satisfied.

  1. The PREP pipeline: standardized preprocessing for large-scale EEG analysis.

    PubMed

    Bigdely-Shamlo, Nima; Mullen, Tim; Kothe, Christian; Su, Kyung-Min; Robbins, Kay A

    2015-01-01

    The technology to collect brain imaging and physiological measures has become portable and ubiquitous, opening the possibility of large-scale analysis of real-world human imaging. By its nature, such data is large and complex, making automated processing essential. This paper shows how lack of attention to the very early stages of an EEG preprocessing pipeline can reduce the signal-to-noise ratio and introduce unwanted artifacts into the data, particularly for computations done in single precision. We demonstrate that ordinary average referencing improves the signal-to-noise ratio, but that noisy channels can contaminate the results. We also show that identification of noisy channels depends on the reference and examine the complex interaction of filtering, noisy channel identification, and referencing. We introduce a multi-stage robust referencing scheme to deal with the noisy channel-reference interaction. We propose a standardized early-stage EEG processing pipeline (PREP) and discuss the application of the pipeline to more than 600 EEG datasets. The pipeline includes an automatically generated report for each dataset processed. Users can download the PREP pipeline as a freely available MATLAB library from http://eegstudy.org/prepcode.

  2. Magic state distillation protocols with noisy Clifford gates

    NASA Astrophysics Data System (ADS)

    Brooks, Peter

    2013-03-01

    A promising approach to universal fault-tolerant quantum computation is to implement the non-universal group of Clifford gates, and to achieve universality by adding the ability to prepare high-fidelity copies of certain ``magic states''. By applying state distillation protocols, many noisy copies of a magic state ancilla can be purified into a smaller number of clean copies which are arbitrarily close to the perfect state, using only Clifford operations. In practice, the Clifford gates themselves will be noisy, which can limit the efficiency of state distillation and put a floor on the achievable fidelity with the desired state. Recently, a number of new state distillation protocols have been proposed that have the potential to reduce the required resource overhead. I analyze these protocols and explore the tradeoffs between these different approaches to magic state distillation when noisy Clifford gates are taken into account. Supported in part by IARPA under contract D11PC20165, by NSF under Grant No. PHY-0803371, by DOE under Grant No. DE-FG03-92-ER40701, and by NSA/ARO under Grant No. W911NF-09-1-0442.

  3. Parameter Estimation and Model Selection in Computational Biology

    PubMed Central

    Lillacci, Gabriele; Khammash, Mustafa

    2010-01-01

    A central challenge in computational modeling of biological systems is the determination of the model parameters. Typically, only a fraction of the parameters (such as kinetic rate constants) are experimentally measured, while the rest are often fitted. The fitting process is usually based on experimental time course measurements of observables, which are used to assign parameter values that minimize some measure of the error between these measurements and the corresponding model prediction. The measurements, which can come from immunoblotting assays, fluorescent markers, etc., tend to be very noisy and taken at a limited number of time points. In this work we present a new approach to the problem of parameter selection of biological models. We show how one can use a dynamic recursive estimator, known as extended Kalman filter, to arrive at estimates of the model parameters. The proposed method follows. First, we use a variation of the Kalman filter that is particularly well suited to biological applications to obtain a first guess for the unknown parameters. Secondly, we employ an a posteriori identifiability test to check the reliability of the estimates. Finally, we solve an optimization problem to refine the first guess in case it should not be accurate enough. The final estimates are guaranteed to be statistically consistent with the measurements. Furthermore, we show how the same tools can be used to discriminate among alternate models of the same biological process. We demonstrate these ideas by applying our methods to two examples, namely a model of the heat shock response in E. coli, and a model of a synthetic gene regulation system. The methods presented are quite general and may be applied to a wide class of biological systems where noisy measurements are used for parameter estimation or model selection. PMID:20221262

  4. Noise/spike detection in phonocardiogram signal as a cyclic random process with non-stationary period interval.

    PubMed

    Naseri, H; Homaeinezhad, M R; Pourkhajeh, H

    2013-09-01

    The major aim of this study is to describe a unified procedure for detecting noisy segments and spikes in transduced signals with a cyclic but non-stationary periodic nature. According to this procedure, the cycles of the signal (onset and offset locations) are detected. Then, the cycles are clustered into a finite number of groups based on appropriate geometrical- and frequency-based time series. Next, the median template of each time series of each cluster is calculated. Afterwards, a correlation-based technique is devised for making a comparison between a test cycle feature and the associated time series of each cluster. Finally, by applying a suitably chosen threshold for the calculated correlation values, a segment is prescribed to be either clean or noisy. As a key merit of this research, the procedure can introduce a decision support for choosing accurately orthogonal-expansion-based filtering or to remove noisy segments. In this paper, the application procedure of the proposed method is comprehensively described by applying it to phonocardiogram (PCG) signals for finding noisy cycles. The database consists of 126 records from several patients of a domestic research station acquired by a 3M Littmann(®) 3200, 4KHz sampling frequency electronic stethoscope. By implementing the noisy segments detection algorithm with this database, a sensitivity of Se=91.41% and a positive predictive value, PPV=92.86% were obtained based on physicians assessments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. RBoost: Label Noise-Robust Boosting Algorithm Based on a Nonconvex Loss Function and the Numerically Stable Base Learners.

    PubMed

    Miao, Qiguang; Cao, Ying; Xia, Ge; Gong, Maoguo; Liu, Jiachen; Song, Jianfeng

    2016-11-01

    AdaBoost has attracted much attention in the machine learning community because of its excellent performance in combining weak classifiers into strong classifiers. However, AdaBoost tends to overfit to the noisy data in many applications. Accordingly, improving the antinoise ability of AdaBoost plays an important role in many applications. The sensitiveness to the noisy data of AdaBoost stems from the exponential loss function, which puts unrestricted penalties to the misclassified samples with very large margins. In this paper, we propose two boosting algorithms, referred to as RBoost1 and RBoost2, which are more robust to the noisy data compared with AdaBoost. RBoost1 and RBoost2 optimize a nonconvex loss function of the classification margin. Because the penalties to the misclassified samples are restricted to an amount less than one, RBoost1 and RBoost2 do not overfocus on the samples that are always misclassified by the previous base learners. Besides the loss function, at each boosting iteration, RBoost1 and RBoost2 use numerically stable ways to compute the base learners. These two improvements contribute to the robustness of the proposed algorithms to the noisy training and testing samples. Experimental results on the synthetic Gaussian data set, the UCI data sets, and a real malware behavior data set illustrate that the proposed RBoost1 and RBoost2 algorithms perform better when the training data sets contain noisy data.

  6. Estimation of zeta potential of electroosmotic flow in a microchannel using a reduced-order model.

    PubMed

    Park, H M; Hong, S M; Lee, J S

    2007-10-01

    A reduced-order model is derived for electroosmotic flow in a microchannel of nonuniform cross section using the Karhunen-Loève Galerkin (KLG) procedure. The resulting reduced-order model is shown to predict electroosmotic flows accurately with minimal consumption of computer time for a wide range of zeta potential zeta and dielectric constant epsilon. Using the reduced-order model, a practical method is devised to estimate zeta from the velocity measurements of the electroosmotic flow in the microchannel. The proposed method is found to estimate zeta with reasonable accuracy even with noisy velocity measurements.

  7. On higher order discrete phase-locked loops.

    NASA Technical Reports Server (NTRS)

    Gill, G. S.; Gupta, S. C.

    1972-01-01

    An exact mathematical model is developed for a discrete loop of a general order particularly suitable for digital computation. The deterministic response of the loop to the phase step and the frequency step is investigated. The design of the digital filter for the second-order loop is considered. Use is made of the incremental phase plane to study the phase error behavior of the loop. The model of the noisy loop is derived and the optimization of the loop filter for minimum mean-square error is considered.

  8. Inference of Stochastic Nonlinear Oscillators with Applications to Physiological Problems

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, Vadim N.; Luchinsky, Dmitry G.

    2004-01-01

    A new method of inferencing of coupled stochastic nonlinear oscillators is described. The technique does not require extensive global optimization, provides optimal compensation for noise-induced errors and is robust in a broad range of dynamical models. We illustrate the main ideas of the technique by inferencing a model of five globally and locally coupled noisy oscillators. Specific modifications of the technique for inferencing hidden degrees of freedom of coupled nonlinear oscillators is discussed in the context of physiological applications.

  9. Noisy probability judgment, the conjunction fallacy, and rationality: Comment on Costello and Watts (2014).

    PubMed

    Crupi, Vincenzo; Tentori, Katya

    2016-01-01

    According to Costello and Watts (2014), probability theory can account for key findings in human judgment research provided that random noise is embedded in the model. We concur with a number of Costello and Watts's remarks, but challenge the empirical adequacy of their model in one of their key illustrations (the conjunction fallacy) on the basis of recent experimental findings. We also discuss how our argument bears on heuristic and rational thinking. (c) 2015 APA, all rights reserved).

  10. Multi-Modal Active Perception for Autonomously Selecting Landing Sites on Icy Moons

    NASA Technical Reports Server (NTRS)

    Arora, A.; Furlong, P. M.; Wong, U.; Fong, T.; Sukkarieh, S.

    2017-01-01

    Selecting suitable landing sites is fundamental to achieving many mission objectives in planetary robotic lander missions. However, due to sensing limitations, landing sites which are both safe and scientifically valuable often cannot be determined reliably from orbit, particularly, in icy moon missions where orbital sensing data is noisy and incomplete. This paper presents an active perception approach to Entry Descent and Landing (EDL) which enables the lander to autonomously plan informative descent trajectories, acquire high quality sensing data during descent and exploit this additional information to select higher utility landing sites. Our approach consists of two components: probabilistic modeling of landing site features and approximate trajectory planning using a sampling based planner. The proposed framework allows the lander to plan long horizons paths and remain robust to noisy data. Results in simulated environments show large performance improvements over alternative approaches and show promise that our approach has strong potential to improve science return of not only icy moon missions but EDL systems in general.

  11. Use of direct gradient analysis to uncover biological hypotheses in 16s survey data and beyond.

    PubMed

    Erb-Downward, John R; Sadighi Akha, Amir A; Wang, Juan; Shen, Ning; He, Bei; Martinez, Fernando J; Gyetko, Margaret R; Curtis, Jeffrey L; Huffnagle, Gary B

    2012-01-01

    This study investigated the use of direct gradient analysis of bacterial 16S pyrosequencing surveys to identify relevant bacterial community signals in the midst of a "noisy" background, and to facilitate hypothesis-testing both within and beyond the realm of ecological surveys. The results, utilizing 3 different real world data sets, demonstrate the utility of adding direct gradient analysis to any analysis that draws conclusions from indirect methods such as Principal Component Analysis (PCA) and Principal Coordinates Analysis (PCoA). Direct gradient analysis produces testable models, and can identify significant patterns in the midst of noisy data. Additionally, we demonstrate that direct gradient analysis can be used with other kinds of multivariate data sets, such as flow cytometric data, to identify differentially expressed populations. The results of this study demonstrate the utility of direct gradient analysis in microbial ecology and in other areas of research where large multivariate data sets are involved.

  12. Extreme deconvolution: Inferring complete distribution functions from noisy, heterogeneous and incomplete observations

    NASA Astrophysics Data System (ADS)

    Bovy Jo; Hogg, David W.; Roweis, Sam T.

    2011-06-01

    We generalize the well-known mixtures of Gaussians approach to density estimation and the accompanying Expectation-Maximization technique for finding the maximum likelihood parameters of the mixture to the case where each data point carries an individual d-dimensional uncertainty covariance and has unique missing data properties. This algorithm reconstructs the error-deconvolved or "underlying" distribution function common to all samples, even when the individual data points are samples from different distributions, obtained by convolving the underlying distribution with the heteroskedastic uncertainty distribution of the data point and projecting out the missing data directions. We show how this basic algorithm can be extended with conjugate priors on all of the model parameters and a "split-and-"erge- procedure designed to avoid local maxima of the likelihood. We demonstrate the full method by applying it to the problem of inferring the three-dimensional veloc! ity distribution of stars near the Sun from noisy two-dimensional, transverse velocity measurements from the Hipparcos satellite.

  13. Fast and accurate fitting and filtering of noisy exponentials in Legendre space.

    PubMed

    Bao, Guobin; Schild, Detlev

    2014-01-01

    The parameters of experimentally obtained exponentials are usually found by least-squares fitting methods. Essentially, this is done by minimizing the mean squares sum of the differences between the data, most often a function of time, and a parameter-defined model function. Here we delineate a novel method where the noisy data are represented and analyzed in the space of Legendre polynomials. This is advantageous in several respects. First, parameter retrieval in the Legendre domain is typically two orders of magnitude faster than direct fitting in the time domain. Second, data fitting in a low-dimensional Legendre space yields estimates for amplitudes and time constants which are, on the average, more precise compared to least-squares-fitting with equal weights in the time domain. Third, the Legendre analysis of two exponentials gives satisfactory estimates in parameter ranges where least-squares-fitting in the time domain typically fails. Finally, filtering exponentials in the domain of Legendre polynomials leads to marked noise removal without the phase shift characteristic for conventional lowpass filters.

  14. Stochastic resonant damping in a noisy monostable system: theory and experiment.

    PubMed

    Volpe, Giovanni; Perrone, Sandro; Rubi, J Miguel; Petrov, Dmitri

    2008-05-01

    Usually in the presence of a background noise an increased effort put in controlling a system stabilizes its behavior. Rarely it is thought that an increased control of the system can lead to a looser response and, therefore, to a poorer performance. Strikingly there are many systems that show this weird behavior; examples can be drawn form physical, biological, and social systems. Until now no simple and general mechanism underlying such behaviors has been identified. Here we show that such a mechanism, named stochastic resonant damping, can be provided by the interplay between the background noise and the control exerted on the system. We experimentally verify our prediction on a physical model system based on a colloidal particle held in an oscillating optical potential. Our result adds a tool for the study of intrinsically noisy phenomena, joining the many constructive facets of noise identified in the past decades-for example, stochastic resonance, noise-induced activation, and Brownian ratchets.

  15. Building Diversified Multiple Trees for classification in high dimensional noisy biomedical data.

    PubMed

    Li, Jiuyong; Liu, Lin; Liu, Jixue; Green, Ryan

    2017-12-01

    It is common that a trained classification model is applied to the operating data that is deviated from the training data because of noise. This paper will test an ensemble method, Diversified Multiple Tree (DMT), on its capability for classifying instances in a new laboratory using the classifier built on the instances of another laboratory. DMT is tested on three real world biomedical data sets from different laboratories in comparison with four benchmark ensemble methods, AdaBoost, Bagging, Random Forests, and Random Trees. Experiments have also been conducted on studying the limitation of DMT and its possible variations. Experimental results show that DMT is significantly more accurate than other benchmark ensemble classifiers on classifying new instances of a different laboratory from the laboratory where instances are used to build the classifier. This paper demonstrates that an ensemble classifier, DMT, is more robust in classifying noisy data than other widely used ensemble methods. DMT works on the data set that supports multiple simple trees.

  16. Synthesis of hover autopilots for rotary-wing VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Hall, W. E.; Bryson, A. E., Jr.

    1972-01-01

    The practical situation is considered where imperfect information on only a few rotor and fuselage state variables is available. Filters are designed to estimate all the state variables from noisy measurements of fuselage pitch/roll angles and from noisy measurements of both fuselage and rotor pitch/roll angles. The mean square response of the vehicle to a very gusty, random wind is computed using various filter/controllers and is found to be quite satisfactory although, of course, not so good as when one has perfect information (idealized case). The second part of the report considers precision hover over a point on the ground. A vehicle model without rotor dynamics is used and feedback signals in position and integral of position error are added. The mean square response of the vehicle to a very gusty, random wind is computed, assuming perfect information feedback, and is found to be excellent. The integral error feedback gives zero position error for a steady wind, and smaller position error for a random wind.

  17. Bayesian inference of interaction properties of noisy dynamical systems with time-varying coupling: capabilities and limitations

    NASA Astrophysics Data System (ADS)

    Wilting, Jens; Lehnertz, Klaus

    2015-08-01

    We investigate a recently published analysis framework based on Bayesian inference for the time-resolved characterization of interaction properties of noisy, coupled dynamical systems. It promises wide applicability and a better time resolution than well-established methods. At the example of representative model systems, we show that the analysis framework has the same weaknesses as previous methods, particularly when investigating interacting, structurally different non-linear oscillators. We also inspect the tracking of time-varying interaction properties and propose a further modification of the algorithm, which improves the reliability of obtained results. We exemplarily investigate the suitability of this algorithm to infer strength and direction of interactions between various regions of the human brain during an epileptic seizure. Within the limitations of the applicability of this analysis tool, we show that the modified algorithm indeed allows a better time resolution through Bayesian inference when compared to previous methods based on least square fits.

  18. Diffusion tensor tracking of neuronal fiber pathways in the living human brain

    NASA Astrophysics Data System (ADS)

    Lori, Nicolas Francisco

    2001-11-01

    The technique of diffusion tensor tracking (DTT) is described, in which diffusion tensor magnetic resonance imaging (DT-MRI) data are processed to allow the visualization of white matter (WM) tracts in a living human brain. To illustrate the methods, a detailed description is given of the physics of DT-MRI, the structure of the DT-MRI experiment, the computer tools that were developed to visualize WM tracts, the anatomical consistency of the obtained WM tracts, and the accuracy and precision of DTT using computer simulations. When presenting the physics of DT-MRI, a completely quantum-mechanical view of DT-MRI is given where some of the results are new. Examples of anatomical tracts viewed using DTT are presented, including the genu and the splenium of the corpus callosum, the ventral pathway with its amygdala connection highlighted, the geniculo- calcarine tract separated into anterior and posterior parts, the geniculo-calcarine tract defined using functional magnetic resonance imaging (MRI), and U- fibers. In the simulation, synthetic DT-MRI data were constructed that would be obtained for a cylindrical WM tract with a helical trajectory surrounded by gray matter. Noise was then added to the synthetic DT-MRI data, and DTT trajectories were calculated using the noisy data (realistic tracks). Simulated DTT errors were calculated as the vector distance between the realistic tracks and the ideal trajectory. The simulation tested the effects of a comprehensive set of experimental conditions, including voxel size, data sampling, data averaging, type of tract tissue, tract diameter and type of tract trajectory. Simulated DTT accuracy and precision were typically below the voxel dimension, and precision was compatible with the experimental results.

  19. Data and Network Science for Noisy Heterogeneous Systems

    ERIC Educational Resources Information Center

    Rider, Andrew Kent

    2013-01-01

    Data in many growing fields has an underlying network structure that can be taken advantage of. In this dissertation we apply data and network science to problems in the domains of systems biology and healthcare. Data challenges in these fields include noisy, heterogeneous data, and a lack of ground truth. The primary thesis of this work is that…

  20. Effects of cone surface waviness and freestream noise on transition in supersonic flow

    NASA Technical Reports Server (NTRS)

    Morrisette, E. L.; Creel, T. R., Jr.; Chen, F.-J.

    1986-01-01

    A comparison of transition on wavy-wall and smooth-wall cones in a Mach 3.5 wind tunnel is made under conditions of either low freestream noise (quiet flow) or high freestream noise (noisy flow). The noisy flow compares to that found in conventional wind tunnels while the quiet flow gives transitional Reynolds numbers on smooth sharp cones comparable to those found in flight. The waves were found to have a much smaller effect on transition than similar sized trip wires. A satisfatory correlating parameter for the effect of waves on transition was simply the wave height-to-length ratio. A given value of this ratio was found to cause the same percentage change in transition location in quiet and noisy flows.

  1. Scared and less noisy: glucocorticoids are associated with alarm call entropy

    PubMed Central

    Blumstein, Daniel T.; Chi, Yvonne Y.

    2012-01-01

    The nonlinearity and arousal hypothesis predicts that highly aroused mammals will produce nonlinear, noisy vocalizations. We tested this prediction by measuring faecal glucocorticoid metabolites (GCMs) in adult yellow-bellied marmots (Marmota flaviventris), and asking if variation in GCMs was positively correlated with Wiener entropy—a measure of noise. Contrary to our prediction, we found a significant negative relationship: marmots with more faecal GCMs produced calls with less noise than those with lower levels of GCMs. A previous study suggested that glucocorticoids modulate the probability that a marmot will emit a call. This study suggests that, like some other species, calls emitted from highly aroused individuals are less noisy. Glucocorticoids thus play an important, yet underappreciated role, in alarm call production. PMID:21976625

  2. Scared and less noisy: glucocorticoids are associated with alarm call entropy.

    PubMed

    Blumstein, Daniel T; Chi, Yvonne Y

    2012-04-23

    The nonlinearity and arousal hypothesis predicts that highly aroused mammals will produce nonlinear, noisy vocalizations. We tested this prediction by measuring faecal glucocorticoid metabolites (GCMs) in adult yellow-bellied marmots (Marmota flaviventris), and asking if variation in GCMs was positively correlated with Wiener entropy-a measure of noise. Contrary to our prediction, we found a significant negative relationship: marmots with more faecal GCMs produced calls with less noise than those with lower levels of GCMs. A previous study suggested that glucocorticoids modulate the probability that a marmot will emit a call. This study suggests that, like some other species, calls emitted from highly aroused individuals are less noisy. Glucocorticoids thus play an important, yet underappreciated role, in alarm call production.

  3. Modified two-photon absorption and dispersion of ultrafast third-order polarization beats via twin noisy driving fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yanpeng; Department of Electronic Science and Technology, Xi'an Jiaotong University, Xi'an 710049; Gan Chenli

    2006-05-15

    We investigate the color-locked twin-noisy-field correlation effects in third-order nonlinear absorption and dispersion of ultrafast polarization beats. We demonstrate a phase-sensitive method for studying the two-photon nondegenerate four-wave mixing (NDFWM) due to atomic coherence in a multilevel system. The reference signal is another one-photon degenerate four-wave-mixing signal, which propagates along the same optical path as the NDFWM signal. This method is used for studying the phase dispersion of the third-order susceptibility and for the optical heterodyne detection of the NDFWM signal. The third-order nonlinear response can be controlled and modified through the color-locked correlation of twin noisy fields.

  4. Pulsation Detection from Noisy Ultrasound-Echo Moving Images of Newborn Baby Head Using Fourier Transform

    NASA Astrophysics Data System (ADS)

    Yamada, Masayoshi; Fukuzawa, Masayuki; Kitsunezuka, Yoshiki; Kishida, Jun; Nakamori, Nobuyuki; Kanamori, Hitoshi; Sakurai, Takashi; Kodama, Souichi

    1995-05-01

    In order to detect pulsation from a series of noisy ultrasound-echo moving images of a newborn baby's head for pediatric diagnosis, a digital image processing system capable of recording at the video rate and processing the recorded series of images was constructed. The time-sequence variations of each pixel value in a series of moving images were analyzed and then an algorithm based on Fourier transform was developed for the pulsation detection, noting that the pulsation associated with blood flow was periodically changed by heartbeat. Pulsation detection for pediatric diagnosis was successfully made from a series of noisy ultrasound-echo moving images of newborn baby's head by using the image processing system and the pulsation detection algorithm developed here.

  5. Substructure System Identification for Finite Element Model Updating

    NASA Technical Reports Server (NTRS)

    Craig, Roy R., Jr.; Blades, Eric L.

    1997-01-01

    This report summarizes research conducted under a NASA grant on the topic 'Substructure System Identification for Finite Element Model Updating.' The research concerns ongoing development of the Substructure System Identification Algorithm (SSID Algorithm), a system identification algorithm that can be used to obtain mathematical models of substructures, like Space Shuttle payloads. In the present study, particular attention was given to the following topics: making the algorithm robust to noisy test data, extending the algorithm to accept experimental FRF data that covers a broad frequency bandwidth, and developing a test analytical model (TAM) for use in relating test data to reduced-order finite element models.

  6. Organization of brain tissue - Is the brain a noisy processor.

    NASA Technical Reports Server (NTRS)

    Adey, W. R.

    1972-01-01

    This paper presents some thoughts on functional organization in cerebral tissue. 'Spontaneous' wave and unit firing are considered as essential phenomena in the handling of information. Various models are discussed which have been suggested to describe the pseudorandom behavior of brain cells, leading to a view of the brain as an information processor and its role in learning, memory, remembering and forgetting.

  7. Learning Discriminative Sparse Models for Source Separation and Mapping of Hyperspectral Imagery

    DTIC Science & Technology

    2010-10-01

    allowing spectroscopic analysis. The data acquired by these spectrometers play significant roles in biomedical, environmental, land-survey, and...noisy in nature , so there are differences between the true and the observed signals. In addition, there are distortions associated with atmosphere... handwriting classification, showing advantages of using both terms instead of only using the reconstruction term as in previous approaches. C. Dictionary

  8. Light-based Modeling and Control of Circadian Rhythm

    DTIC Science & Technology

    2016-08-29

    the foundation of the full research. 1. Circadian phase estimation and control: Demonstrate the applicability of the adaptive notch filter (ANF) to...the adaptive notch filter (ANF) to extract circadian phase from noisy Drosophila locomotive activity measurements and the efficacy of using the ANF...full research. 1. Circadian phase estimation and control: Demonstrate the applicability of the adaptive notch filter (ANF) to extract circadian

  9. Delineation of sediments below flood basalts by joint inversion of seismic and magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Manglik, A.; Verma, Saurabh K.

    A one-dimensional joint-inversion (JI) scheme considering seismic reflection and refraction, and MT data is developed. Its efficacy to resolve low velocity conducting sediments below high velocity resistive flood basalts is tested for a representative geological model considering noisy, incomplete data. The JI is found to provide improved results in comparison to those obtained by individual seismic and MT inversions.

  10. Query Expansion for Noisy Legal Documents

    DTIC Science & Technology

    2008-11-01

    9] G. Salton (ed). The SMART retrieval system experiments in automatic document processing. 1971. [10] H. Schutze and J . Pedersen. A cooccurrence...Language Modeling and Information Retrieval. http://www.lemurproject.org. [2] J . Baron, D. Lewis, and D. Oard. TREC 2006 legal track overview. In...Retrieval, 1993. [8] J . Rocchio. Relevance feedback in information retrieval. In The SMART retrieval system experiments in automatic document processing, 1971

  11. Identifying stochastic oscillations in single-cell live imaging time series using Gaussian processes

    PubMed Central

    Manning, Cerys; Rattray, Magnus

    2017-01-01

    Multiple biological processes are driven by oscillatory gene expression at different time scales. Pulsatile dynamics are thought to be widespread, and single-cell live imaging of gene expression has lead to a surge of dynamic, possibly oscillatory, data for different gene networks. However, the regulation of gene expression at the level of an individual cell involves reactions between finite numbers of molecules, and this can result in inherent randomness in expression dynamics, which blurs the boundaries between aperiodic fluctuations and noisy oscillators. This underlies a new challenge to the experimentalist because neither intuition nor pre-existing methods work well for identifying oscillatory activity in noisy biological time series. Thus, there is an acute need for an objective statistical method for classifying whether an experimentally derived noisy time series is periodic. Here, we present a new data analysis method that combines mechanistic stochastic modelling with the powerful methods of non-parametric regression with Gaussian processes. Our method can distinguish oscillatory gene expression from random fluctuations of non-oscillatory expression in single-cell time series, despite peak-to-peak variability in period and amplitude of single-cell oscillations. We show that our method outperforms the Lomb-Scargle periodogram in successfully classifying cells as oscillatory or non-oscillatory in data simulated from a simple genetic oscillator model and in experimental data. Analysis of bioluminescent live-cell imaging shows a significantly greater number of oscillatory cells when luciferase is driven by a Hes1 promoter (10/19), which has previously been reported to oscillate, than the constitutive MoMuLV 5’ LTR (MMLV) promoter (0/25). The method can be applied to data from any gene network to both quantify the proportion of oscillating cells within a population and to measure the period and quality of oscillations. It is publicly available as a MATLAB package. PMID:28493880

  12. Two-level structural sparsity regularization for identifying lattices and defects in noisy images

    DOE PAGES

    Li, Xin; Belianinov, Alex; Dyck, Ondrej E.; ...

    2018-03-09

    Here, this paper presents a regularized regression model with a two-level structural sparsity penalty applied to locate individual atoms in a noisy scanning transmission electron microscopy image (STEM). In crystals, the locations of atoms is symmetric, condensed into a few lattice groups. Therefore, by identifying the underlying lattice in a given image, individual atoms can be accurately located. We propose to formulate the identification of the lattice groups as a sparse group selection problem. Furthermore, real atomic scale images contain defects and vacancies, so atomic identification based solely on a lattice group may result in false positives and false negatives.more » To minimize error, model includes an individual sparsity regularization in addition to the group sparsity for a within-group selection, which results in a regression model with a two-level sparsity regularization. We propose a modification of the group orthogonal matching pursuit (gOMP) algorithm with a thresholding step to solve the atom finding problem. The convergence and statistical analyses of the proposed algorithm are presented. The proposed algorithm is also evaluated through numerical experiments with simulated images. The applicability of the algorithm on determination of atom structures and identification of imaging distortions and atomic defects was demonstrated using three real STEM images. In conclusion, we believe this is an important step toward automatic phase identification and assignment with the advent of genomic databases for materials.« less

  13. Two-level structural sparsity regularization for identifying lattices and defects in noisy images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xin; Belianinov, Alex; Dyck, Ondrej E.

    Here, this paper presents a regularized regression model with a two-level structural sparsity penalty applied to locate individual atoms in a noisy scanning transmission electron microscopy image (STEM). In crystals, the locations of atoms is symmetric, condensed into a few lattice groups. Therefore, by identifying the underlying lattice in a given image, individual atoms can be accurately located. We propose to formulate the identification of the lattice groups as a sparse group selection problem. Furthermore, real atomic scale images contain defects and vacancies, so atomic identification based solely on a lattice group may result in false positives and false negatives.more » To minimize error, model includes an individual sparsity regularization in addition to the group sparsity for a within-group selection, which results in a regression model with a two-level sparsity regularization. We propose a modification of the group orthogonal matching pursuit (gOMP) algorithm with a thresholding step to solve the atom finding problem. The convergence and statistical analyses of the proposed algorithm are presented. The proposed algorithm is also evaluated through numerical experiments with simulated images. The applicability of the algorithm on determination of atom structures and identification of imaging distortions and atomic defects was demonstrated using three real STEM images. In conclusion, we believe this is an important step toward automatic phase identification and assignment with the advent of genomic databases for materials.« less

  14. Automated deconvolution of structured mixtures from heterogeneous tumor genomic data

    PubMed Central

    Roman, Theodore; Xie, Lu

    2017-01-01

    With increasing appreciation for the extent and importance of intratumor heterogeneity, much attention in cancer research has focused on profiling heterogeneity on a single patient level. Although true single-cell genomic technologies are rapidly improving, they remain too noisy and costly at present for population-level studies. Bulk sequencing remains the standard for population-scale tumor genomics, creating a need for computational tools to separate contributions of multiple tumor clones and assorted stromal and infiltrating cell populations to pooled genomic data. All such methods are limited to coarse approximations of only a few cell subpopulations, however. In prior work, we demonstrated the feasibility of improving cell type deconvolution by taking advantage of substructure in genomic mixtures via a strategy called simplicial complex unmixing. We improve on past work by introducing enhancements to automate learning of substructured genomic mixtures, with specific emphasis on genome-wide copy number variation (CNV) data, as well as the ability to process quantitative RNA expression data, and heterogeneous combinations of RNA and CNV data. We introduce methods for dimensionality estimation to better decompose mixture model substructure; fuzzy clustering to better identify substructure in sparse, noisy data; and automated model inference methods for other key model parameters. We further demonstrate their effectiveness in identifying mixture substructure in true breast cancer CNV data from the Cancer Genome Atlas (TCGA). Source code is available at https://github.com/tedroman/WSCUnmix PMID:29059177

  15. Effects of self-absorption on simultaneous estimation of temperature distribution and concentration fields of soot and metal-oxide nanoparticles in nanofluid fuel flames using a spectrometer

    NASA Astrophysics Data System (ADS)

    Liu, Guannan; Liu, Dong

    2018-06-01

    An improved inverse reconstruction model with consideration of self-absorption effect for the temperature distribution and concentration fields of soot and metal-oxide nanoparticles in nanofluid fuel flames was proposed based on the flame emission spectrometry. The effects of self-absorption on the temperature profile and concentration fields were investigated for various measurement errors, flame optical thicknesses and detecting lines numbers. The model neglecting the self-absorption caused serious reconstruction errors especially in the nanofluid fuel flames with large optical thicknesses, while the improved model was used to successfully recover the temperature distribution and concentration fields of soot and metal-oxide nanoparticles for the flames regardless of the optical thickness. Through increasing detecting lines number, the reconstruction accuracy can be greatly improved due to more flame emission information received by the spectrometer. With the adequate detecting lines number, the estimations for the temperature distribution and concentration fields of soot and metal-oxide nanoparticles in flames with large optical thicknesses were still satisfying even from the noisy radiation intensities with signal to noise ratio (SNR) as low as 46 dB. The results showed that the improved reconstruction model was effective and robust to concurrently retrieve the temperature distribution and volume fraction fields of soot and metal-oxide nanoparticles for the exact and noisy data in nanofluid fuel sooting flames with different optical thicknesses.

  16. The EZ diffusion model provides a powerful test of simple empirical effects.

    PubMed

    van Ravenzwaaij, Don; Donkin, Chris; Vandekerckhove, Joachim

    2017-04-01

    Over the last four decades, sequential accumulation models for choice response times have spread through cognitive psychology like wildfire. The most popular style of accumulator model is the diffusion model (Ratcliff Psychological Review, 85, 59-108, 1978), which has been shown to account for data from a wide range of paradigms, including perceptual discrimination, letter identification, lexical decision, recognition memory, and signal detection. Since its original inception, the model has become increasingly complex in order to account for subtle, but reliable, data patterns. The additional complexity of the diffusion model renders it a tool that is only for experts. In response, Wagenmakers et al. (Psychonomic Bulletin & Review, 14, 3-22, 2007) proposed that researchers could use a more basic version of the diffusion model, the EZ diffusion. Here, we simulate experimental effects on data generated from the full diffusion model and compare the power of the full diffusion model and EZ diffusion to detect those effects. We show that the EZ diffusion model, by virtue of its relative simplicity, will be sometimes better able to detect experimental effects than the data-generating full diffusion model.

  17. Indicators to assess the environmental performances of an innovative subway station : example of Noisy-Champs

    NASA Astrophysics Data System (ADS)

    Schertzer, D. J. M.; Charbonnier, L.; Versini, P. A.; Tchiguirinskaia, I.

    2017-12-01

    Noisy-Champs is a train station located in Noisy-le-Grand and Champs-sur-Marne, in the Paris urban area (France). Integrated into the Grand Paris Express project (huge development project to modernise the transport network around Paris), this station is going to be radically transformed and become a major hub. Designed by the architectural office Duthilleul, the new Noisy-Champs station aspires to be an example of an innovative and sustainable infrastructure. Its architectural precepts are indeed meant to improve its environmental performances, especially those related to storm water management, water consumption and users' thermal and hygrometric comfort. In order to assess and monitor these performances, objectives and associated indicators have been developed. They aim to be adapted for a specific infrastructure such as a public transport station. Analyses of pre-existing comfort simulations, blueprints and regulatory documents have led to identify the main issues for the Noisy-Champs station, focusing on its resilience to extreme events like droughts, heatwaves and heaxvy rainfalls. Both objectives and indicators have been proposed by studying the space-time variabilities of physical fluxes (heat, pollutants, radiation, wind and water) and passenger flows, and their interactions. Each indicator is linked to an environmental performance and has been determined after consultation of the different stakeholders involved in the rebuilding of the station. It results a monitoring program to assess the environmental performances of the station composed by both the indicators grid and their related objectives, and a measurement program detailing the nature and location of sensors, and the frequency of measurements.

  18. Computed radiography as a gamma ray detector—dose response and applications

    NASA Astrophysics Data System (ADS)

    O'Keeffe, D. S.; McLeod, R. W.

    2004-08-01

    Computed radiography (CR) can be used for imaging the spatial distribution of photon emissions from radionuclides. Its wide dynamic range and good response to medium energy gamma rays reduces the need for long exposure times. Measurements of small doses can be performed without having to pre-sensitize the computed radiography plates via an x-ray exposure, as required with screen-film systems. Cassette-based Agfa MD30 and Kodak GP25 CR plates were used in applications involving the detection of gamma ray emissions from technetium-99m and iodine-131. Cassette entrance doses as small as 1 µGy (140 keV gamma rays) produce noisy images, but the images are suitable for applications such as the detection of breaks in radiation protection barriers. A consequence of the gamma ray sensitivity of CR plates is the possibility that some nuclear medicine patients may fog their x-rays if the x-ray is taken soon after their radiopharmaceutical injection. The investigation showed that such fogging is likely to be diffuse.

  19. Super-linear Precision in Simple Neural Population Codes

    NASA Astrophysics Data System (ADS)

    Schwab, David; Fiete, Ila

    2015-03-01

    A widely used tool for quantifying the precision with which a population of noisy sensory neurons encodes the value of an external stimulus is the Fisher Information (FI). Maximizing the FI is also a commonly used objective for constructing optimal neural codes. The primary utility and importance of the FI arises because it gives, through the Cramer-Rao bound, the smallest mean-squared error achievable by any unbiased stimulus estimator. However, it is well-known that when neural firing is sparse, optimizing the FI can result in codes that perform very poorly when considering the resulting mean-squared error, a measure with direct biological relevance. Here we construct optimal population codes by minimizing mean-squared error directly and study the scaling properties of the resulting network, focusing on the optimal tuning curve width. We then extend our results to continuous attractor networks that maintain short-term memory of external stimuli in their dynamics. Here we find similar scaling properties in the structure of the interactions that minimize diffusive information loss.

  20. Assessing the Neural Basis of Uncertainty in Perceptual Category Learning through Varying Levels of Distortion

    ERIC Educational Resources Information Center

    Daniel, Reka; Wagner, Gerd; Koch, Kathrin; Reichenbach, Jurgen R.; Sauer, Heinrich; Schlosser, Ralf G. M.

    2011-01-01

    The formation of new perceptual categories involves learning to extract that information from a wide range of often noisy sensory inputs, which is critical for selecting between a limited number of responses. To identify brain regions involved in visual classification learning under noisy conditions, we developed a task on the basis of the…

  1. Detecting Lower Bounds to Quantum Channel Capacities.

    PubMed

    Macchiavello, Chiara; Sacchi, Massimiliano F

    2016-04-08

    We propose a method to detect lower bounds to quantum capacities of a noisy quantum communication channel by means of a few measurements. The method is easily implementable and does not require any knowledge about the channel. We test its efficiency by studying its performance for most well-known single-qubit noisy channels and for the generalized Pauli channel in an arbitrary finite dimension.

  2. Neonatal nursery noise: practice-based learning and improvement.

    PubMed

    Hassanein, Sahar M A; El Raggal, Nehal M; Shalaby, Amani A

    2013-03-01

    To study the impact of interrupted loud noise in Neonatal Intensive Care Unit (NICU) on neonatal physiologic parameters, and apply methods to alleviate noise sources through teaching NICU's staff. Noise level measured at different day times and during different noisy events in the NICU. Changes in the heart rate, respiratory rate and oxygen saturation were recorded just before and immediately after providing noisy events for 36 preterm and 26 full-term neonates. Focused training, guided by sound-level-meter, was provided to the NICU's staff to minimize noise. The highest mean baseline noise level, 60.5 decibel (dB), was recorded in the NICU critical care area at 12:00 am. The lowest level, 55.2 dB was recorded at 10:00 pm. Noise level inside the incubators was significantly lower than outside, p < 0.001. Noisy events resulted in a significant increase in heart and respiratory rates in preterm neonates as compared to full-terms, p < 0.05. Noise in our NICU exceeded the international permissible levels. Noisy events are numerous, which altered the neonates' physiologic stability especially preterm infants. Staff education is mandatory in ameliorating noise pollution with its deleterious effects on neonatal physiologic homeostasis.

  3. Does finite-temperature decoding deliver better optima for noisy Hamiltonians?

    NASA Astrophysics Data System (ADS)

    Ochoa, Andrew J.; Nishimura, Kohji; Nishimori, Hidetoshi; Katzgraber, Helmut G.

    The minimization of an Ising spin-glass Hamiltonian is an NP-hard problem. Because many problems across disciplines can be mapped onto this class of Hamiltonian, novel efficient computing techniques are highly sought after. The recent development of quantum annealing machines promises to minimize these difficult problems more efficiently. However, the inherent noise found in these analog devices makes the minimization procedure difficult. While the machine might be working correctly, it might be minimizing a different Hamiltonian due to the inherent noise. This means that, in general, the ground-state configuration that correctly minimizes a noisy Hamiltonian might not minimize the noise-less Hamiltonian. Inspired by rigorous results that the energy of the noise-less ground-state configuration is equal to the expectation value of the energy of the noisy Hamiltonian at the (nonzero) Nishimori temperature [J. Phys. Soc. Jpn., 62, 40132930 (1993)], we numerically study the decoding probability of the original noise-less ground state with noisy Hamiltonians in two space dimensions, as well as the D-Wave Inc. Chimera topology. Our results suggest that thermal fluctuations might be beneficial during the optimization process in analog quantum annealing machines.

  4. How perfect can protein interactomes be?

    PubMed

    Levy, Emmanuel D; Landry, Christian R; Michnick, Stephen W

    2009-03-03

    Any engineered device should certainly not contain nonfunctional components, for this would be a waste of energy and money. In contrast, evolutionary theory tells us that biological systems need not be optimized and may very well accumulate nonfunctional elements. Mutational and demographic processes contribute to the cluttering of eukaryotic genomes and transcriptional networks with "junk" DNA and spurious DNA binding sites. Here, we question whether such a notion should be applied to protein interactomes-that is, whether these protein interactomes are expected to contain a fraction of nonselected, nonfunctional protein-protein interactions (PPIs), which we term "noisy." We propose a simple relationship between the fraction of noisy interactions expected in a given organism and three parameters: (i) the number of mutations needed to create and destroy interactions, (ii) the size of the proteome, and (iii) the fitness cost of noisy interactions. All three parameters suggest that noisy PPIs are expected to exist. Their existence could help to explain why PPIs determined from large-scale studies often lack functional relationships between interacting proteins, why PPIs are poorly conserved across organisms, and why the PPI space appears to be immensely large. Finally, we propose experimental strategies to estimate the fraction of evolutionary noise in PPI networks.

  5. The PREP pipeline: standardized preprocessing for large-scale EEG analysis

    PubMed Central

    Bigdely-Shamlo, Nima; Mullen, Tim; Kothe, Christian; Su, Kyung-Min; Robbins, Kay A.

    2015-01-01

    The technology to collect brain imaging and physiological measures has become portable and ubiquitous, opening the possibility of large-scale analysis of real-world human imaging. By its nature, such data is large and complex, making automated processing essential. This paper shows how lack of attention to the very early stages of an EEG preprocessing pipeline can reduce the signal-to-noise ratio and introduce unwanted artifacts into the data, particularly for computations done in single precision. We demonstrate that ordinary average referencing improves the signal-to-noise ratio, but that noisy channels can contaminate the results. We also show that identification of noisy channels depends on the reference and examine the complex interaction of filtering, noisy channel identification, and referencing. We introduce a multi-stage robust referencing scheme to deal with the noisy channel-reference interaction. We propose a standardized early-stage EEG processing pipeline (PREP) and discuss the application of the pipeline to more than 600 EEG datasets. The pipeline includes an automatically generated report for each dataset processed. Users can download the PREP pipeline as a freely available MATLAB library from http://eegstudy.org/prepcode. PMID:26150785

  6. SICK: THE SPECTROSCOPIC INFERENCE CRANK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casey, Andrew R., E-mail: arc@ast.cam.ac.uk

    2016-03-15

    There exists an inordinate amount of spectral data in both public and private astronomical archives that remain severely under-utilized. The lack of reliable open-source tools for analyzing large volumes of spectra contributes to this situation, which is poised to worsen as large surveys successively release orders of magnitude more spectra. In this article I introduce sick, the spectroscopic inference crank, a flexible and fast Bayesian tool for inferring astrophysical parameters from spectra. sick is agnostic to the wavelength coverage, resolving power, or general data format, allowing any user to easily construct a generative model for their data, regardless of itsmore » source. sick can be used to provide a nearest-neighbor estimate of model parameters, a numerically optimized point estimate, or full Markov Chain Monte Carlo sampling of the posterior probability distributions. This generality empowers any astronomer to capitalize on the plethora of published synthetic and observed spectra, and make precise inferences for a host of astrophysical (and nuisance) quantities. Model intensities can be reliably approximated from existing grids of synthetic or observed spectra using linear multi-dimensional interpolation, or a Cannon-based model. Additional phenomena that transform the data (e.g., redshift, rotational broadening, continuum, spectral resolution) are incorporated as free parameters and can be marginalized away. Outlier pixels (e.g., cosmic rays or poorly modeled regimes) can be treated with a Gaussian mixture model, and a noise model is included to account for systematically underestimated variance. Combining these phenomena into a scalar-justified, quantitative model permits precise inferences with credible uncertainties on noisy data. I describe the common model features, the implementation details, and the default behavior, which is balanced to be suitable for most astronomical applications. Using a forward model on low-resolution, high signal-to-noise ratio spectra of M67 stars reveals atomic diffusion processes on the order of 0.05 dex, previously only measurable with differential analysis techniques in high-resolution spectra. sick is easy to use, well-tested, and freely available online through GitHub under the MIT license.« less

  7. Identification of nonlinear normal modes of engineering structures under broadband forcing

    NASA Astrophysics Data System (ADS)

    Noël, Jean-Philippe; Renson, L.; Grappasonni, C.; Kerschen, G.

    2016-06-01

    The objective of the present paper is to develop a two-step methodology integrating system identification and numerical continuation for the experimental extraction of nonlinear normal modes (NNMs) under broadband forcing. The first step processes acquired input and output data to derive an experimental state-space model of the structure. The second step converts this state-space model into a model in modal space from which NNMs are computed using shooting and pseudo-arclength continuation. The method is demonstrated using noisy synthetic data simulated on a cantilever beam with a hardening-softening nonlinearity at its free end.

  8. Feature weight estimation for gene selection: a local hyperlinear learning approach

    PubMed Central

    2014-01-01

    Background Modeling high-dimensional data involving thousands of variables is particularly important for gene expression profiling experiments, nevertheless,it remains a challenging task. One of the challenges is to implement an effective method for selecting a small set of relevant genes, buried in high-dimensional irrelevant noises. RELIEF is a popular and widely used approach for feature selection owing to its low computational cost and high accuracy. However, RELIEF based methods suffer from instability, especially in the presence of noisy and/or high-dimensional outliers. Results We propose an innovative feature weighting algorithm, called LHR, to select informative genes from highly noisy data. LHR is based on RELIEF for feature weighting using classical margin maximization. The key idea of LHR is to estimate the feature weights through local approximation rather than global measurement, which is typically used in existing methods. The weights obtained by our method are very robust in terms of degradation of noisy features, even those with vast dimensions. To demonstrate the performance of our method, extensive experiments involving classification tests have been carried out on both synthetic and real microarray benchmark datasets by combining the proposed technique with standard classifiers, including the support vector machine (SVM), k-nearest neighbor (KNN), hyperplane k-nearest neighbor (HKNN), linear discriminant analysis (LDA) and naive Bayes (NB). Conclusion Experiments on both synthetic and real-world datasets demonstrate the superior performance of the proposed feature selection method combined with supervised learning in three aspects: 1) high classification accuracy, 2) excellent robustness to noise and 3) good stability using to various classification algorithms. PMID:24625071

  9. Sampling Technique for Robust Odorant Detection Based on MIT RealNose Data

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.

    2012-01-01

    This technique enhances the detection capability of the autonomous Real-Nose system from MIT to detect odorants and their concentrations in noisy and transient environments. The lowcost, portable system with low power consumption will operate at high speed and is suited for unmanned and remotely operated long-life applications. A deterministic mathematical model was developed to detect odorants and calculate their concentration in noisy environments. Real data from MIT's NanoNose was examined, from which a signal conditioning technique was proposed to enable robust odorant detection for the RealNose system. Its sensitivity can reach to sub-part-per-billion (sub-ppb). A Space Invariant Independent Component Analysis (SPICA) algorithm was developed to deal with non-linear mixing that is an over-complete case, and it is used as a preprocessing step to recover the original odorant sources for detection. This approach, combined with the Cascade Error Projection (CEP) Neural Network algorithm, was used to perform odorant identification. Signal conditioning is used to identify potential processing windows to enable robust detection for autonomous systems. So far, the software has been developed and evaluated with current data sets provided by the MIT team. However, continuous data streams are made available where even the occurrence of a new odorant is unannounced and needs to be noticed by the system autonomously before its unambiguous detection. The challenge for the software is to be able to separate the potential valid signal from the odorant and from the noisy transition region when the odorant is just introduced.

  10. Quantum error correction assisted by two-way noisy communication

    PubMed Central

    Wang, Zhuo; Yu, Sixia; Fan, Heng; Oh, C. H.

    2014-01-01

    Pre-shared non-local entanglement dramatically simplifies and improves the performance of quantum error correction via entanglement-assisted quantum error-correcting codes (EAQECCs). However, even considering the noise in quantum communication only, the non-local sharing of a perfectly entangled pair is technically impossible unless additional resources are consumed, such as entanglement distillation, which actually compromises the efficiency of the codes. Here we propose an error-correcting protocol assisted by two-way noisy communication that is more easily realisable: all quantum communication is subjected to general noise and all entanglement is created locally without additional resources consumed. In our protocol the pre-shared noisy entangled pairs are purified simultaneously by the decoding process. For demonstration, we first present an easier implementation of the well-known EAQECC [[4, 1, 3; 1

  11. Quantum error correction assisted by two-way noisy communication.

    PubMed

    Wang, Zhuo; Yu, Sixia; Fan, Heng; Oh, C H

    2014-11-26

    Pre-shared non-local entanglement dramatically simplifies and improves the performance of quantum error correction via entanglement-assisted quantum error-correcting codes (EAQECCs). However, even considering the noise in quantum communication only, the non-local sharing of a perfectly entangled pair is technically impossible unless additional resources are consumed, such as entanglement distillation, which actually compromises the efficiency of the codes. Here we propose an error-correcting protocol assisted by two-way noisy communication that is more easily realisable: all quantum communication is subjected to general noise and all entanglement is created locally without additional resources consumed. In our protocol the pre-shared noisy entangled pairs are purified simultaneously by the decoding process. For demonstration, we first present an easier implementation of the well-known EAQECC [[4, 1, 3; 1

  12. [Perception of emotional intonation of noisy speech signal with different acoustic parameters by adults of different age and gender].

    PubMed

    Dmitrieva, E S; Gel'man, V Ia

    2011-01-01

    The listener-distinctive features of recognition of different emotional intonations (positive, negative and neutral) of male and female speakers in the presence or absence of background noise were studied in 49 adults aged 20-79 years. In all the listeners noise produced the most pronounced decrease in recognition accuracy for positive emotional intonation ("joy") as compared to other intonations, whereas it did not influence the recognition accuracy of "anger" in 65-79-year-old listeners. The higher emotion recognition rates of a noisy signal were observed for speech emotional intonations expressed by female speakers. Acoustic characteristics of noisy and clear speech signals underlying perception of speech emotional prosody were found for adult listeners of different age and gender.

  13. Robust Speech Enhancement Using Two-Stage Filtered Minima Controlled Recursive Averaging

    NASA Astrophysics Data System (ADS)

    Ghourchian, Negar; Selouani, Sid-Ahmed; O'Shaughnessy, Douglas

    In this paper we propose an algorithm for estimating noise in highly non-stationary noisy environments, which is a challenging problem in speech enhancement. This method is based on minima-controlled recursive averaging (MCRA) whereby an accurate, robust and efficient noise power spectrum estimation is demonstrated. We propose a two-stage technique to prevent the appearance of musical noise after enhancement. This algorithm filters the noisy speech to achieve a robust signal with minimum distortion in the first stage. Subsequently, it estimates the residual noise using MCRA and removes it with spectral subtraction. The proposed Filtered MCRA (FMCRA) performance is evaluated using objective tests on the Aurora database under various noisy environments. These measures indicate the higher output SNR and lower output residual noise and distortion.

  14. Smoothing of geoelectrical resistivity profiles in order to build a 3D model: A case study from an outcropping limestone block

    NASA Astrophysics Data System (ADS)

    Tóth, Krisztina; Kovács, Gábor

    2014-05-01

    Geoelectrical imaging is one of the most common survey methods in the field of shallow geophysics. In order to get information from the subsurface electric current is induced into the ground. In our summer camp organized by the Department of Geophysics and Space Sciences, Eötvös Loránd University we have carried out resistivity surveys to get more accurate information about the lithology of the Dorog basin located in the Transdanubian range, Middle Hungary. This study focused on the outcropping limestone block located next to the village Leányvár in the Dorog basin. The main aim of the research is the impoundment of the subsurface continuation of the limestone outcrop. Cable problems occurred during field survey therefore the dataset obtained by the measurement have become very noisy thus we had to gain smoothed data with the appropriate editing steps. The goal was to produce an optimized model to demonstrate the reality beneath the subsurface. In order to achieve better results from the noisy dataset we changed some parameters based on the description of the program. Whereas cable problems occurred we exterminated the bad datum points visually and statistically as well. Because of the noisiness we increased the value of the so called damping factor which is a variable parameter in the equation used by the inversion routine responsible for smoothing the data. The limitation of the range of model resistivity values based on our knowledge about geological environment was also necessary in order to avoid physically unrealistic results. The purpose of the modification was to obtain smoothed and more interpretable geoelectric profiles. The geological background combined with the explanation of the profiles gave us the approximate location of the block. In the final step of the research we created a 3D model with proper location and smoothed resistivity data included. This study was supported by the Hungarian Scientific Research Fund (OTKA NK83400) and was realized in the frames of TÁMOP 4.2.4.A/2-11-1-2012-0001 high priority "National Excellence Program - Elaborating and Operating an Inland Student and Researcher Personal Support System convergence program" project's scholarship support.

  15. Estimating varying coefficients for partial differential equation models.

    PubMed

    Zhang, Xinyu; Cao, Jiguo; Carroll, Raymond J

    2017-09-01

    Partial differential equations (PDEs) are used to model complex dynamical systems in multiple dimensions, and their parameters often have important scientific interpretations. In some applications, PDE parameters are not constant but can change depending on the values of covariates, a feature that we call varying coefficients. We propose a parameter cascading method to estimate varying coefficients in PDE models from noisy data. Our estimates of the varying coefficients are shown to be consistent and asymptotically normally distributed. The performance of our method is evaluated by a simulation study and by an empirical study estimating three varying coefficients in a PDE model arising from LIDAR data. © 2017, The International Biometric Society.

  16. Patterned Roughness for Cross-flow Transition Control at Mach 6

    NASA Astrophysics Data System (ADS)

    Arndt, Alexander; Matlis, Eric; Semper, Michael; Corke, Thomas

    2017-11-01

    Experiments are performed to investigate patterned discrete roughness for transition control on a sharp right-circular cone at an angle of attack at Mach 6.0. The approach to transition control is based on exciting less-amplified (subcritical) stationary cross-flow (CF) modes that suppress the growth of the more-amplified (critical) CF modes, and thereby delay transition. The experiments were performed in the Air Force Academy Ludwieg Tube which is a conventional (noisy) design. The cone model is equipped with a motorized 3-D traversing mechanism that mounts on the support sting. The traversing mechanism held a closely-spaced pair of fast-response total pressure Pitot probes. The model utilized a removable tip to exchange between different tip-roughness conditions. Mean flow distortion x-development indicated that the transition Reynolds number increased by 25% with the addition of the subcritical roughness. The energy in traveling disturbances was centered in the band of most amplified traveling CF modes predicted by linear theory. The spatial pattern in the amplitude of the traveling CF modes indicated a nonlinear (sum and difference) interaction between the stationary and traveling CF modes that might explain differences in Retrans between noisy and quiet environments. Air Force Grant FA9550-15-1-0278.

  17. Predicting explorative motor learning using decision-making and motor noise.

    PubMed

    Chen, Xiuli; Mohr, Kieran; Galea, Joseph M

    2017-04-01

    A fundamental problem faced by humans is learning to select motor actions based on noisy sensory information and incomplete knowledge of the world. Recently, a number of authors have asked whether this type of motor learning problem might be very similar to a range of higher-level decision-making problems. If so, participant behaviour on a high-level decision-making task could be predictive of their performance during a motor learning task. To investigate this question, we studied performance during an explorative motor learning task and a decision-making task which had a similar underlying structure with the exception that it was not subject to motor (execution) noise. We also collected an independent measurement of each participant's level of motor noise. Our analysis showed that explorative motor learning and decision-making could be modelled as the (approximately) optimal solution to a Partially Observable Markov Decision Process bounded by noisy neural information processing. The model was able to predict participant performance in motor learning by using parameters estimated from the decision-making task and the separate motor noise measurement. This suggests that explorative motor learning can be formalised as a sequential decision-making process that is adjusted for motor noise, and raises interesting questions regarding the neural origin of explorative motor learning.

  18. Predicting explorative motor learning using decision-making and motor noise

    PubMed Central

    Galea, Joseph M.

    2017-01-01

    A fundamental problem faced by humans is learning to select motor actions based on noisy sensory information and incomplete knowledge of the world. Recently, a number of authors have asked whether this type of motor learning problem might be very similar to a range of higher-level decision-making problems. If so, participant behaviour on a high-level decision-making task could be predictive of their performance during a motor learning task. To investigate this question, we studied performance during an explorative motor learning task and a decision-making task which had a similar underlying structure with the exception that it was not subject to motor (execution) noise. We also collected an independent measurement of each participant’s level of motor noise. Our analysis showed that explorative motor learning and decision-making could be modelled as the (approximately) optimal solution to a Partially Observable Markov Decision Process bounded by noisy neural information processing. The model was able to predict participant performance in motor learning by using parameters estimated from the decision-making task and the separate motor noise measurement. This suggests that explorative motor learning can be formalised as a sequential decision-making process that is adjusted for motor noise, and raises interesting questions regarding the neural origin of explorative motor learning. PMID:28437451

  19. An iterated cubature unscented Kalman filter for large-DoF systems identification with noisy data

    NASA Astrophysics Data System (ADS)

    Ghorbani, Esmaeil; Cha, Young-Jin

    2018-04-01

    Structural and mechanical system identification under dynamic loading has been an important research topic over the last three or four decades. Many Kalman-filtering-based approaches have been developed for linear and nonlinear systems. For example, to predict nonlinear systems, an unscented Kalman filter was applied. However, from extensive literature reviews, the unscented Kalman filter still showed weak performance on systems with large degrees of freedom. In this research, a modified unscented Kalman filter is proposed by integration of a cubature Kalman filter to improve the system identification performance of systems with large degrees of freedom. The novelty of this work lies on conjugating the unscented transform with the cubature integration concept to find a more accurate output from the transformation of the state vector and its related covariance matrix. To evaluate the proposed method, three different numerical models (i.e., the single degree-of-freedom Bouc-Wen model, the linear 3-degrees-of-freedom system, and the 10-degrees-of-freedom system) are investigated. To evaluate the robustness of the proposed method, high levels of noise in the measured response data are considered. The results show that the proposed method is significantly superior to the traditional UKF for noisy measured data in systems with large degrees of freedom.

  20. High-speed laser diagnostics for the study of flame dynamics in a lean premixed gas turbine model combustor

    NASA Astrophysics Data System (ADS)

    Boxx, Isaac; Arndt, Christoph M.; Carter, Campbell D.; Meier, Wolfgang

    2012-03-01

    A series of measurements was taken on two technically premixed, swirl-stabilized methane-air flames (at overall equivalence ratios of ϕ = 0.73 and 0.83) in an optically accessible gas turbine model combustor. The primary diagnostics used were combined planar laser-induced fluorescence of the OH radical and stereoscopic particle image velocimetry (PIV) with simultaneous repetition rates of 10 kHz and a measurement duration of 0.8 s. Also measured were acoustic pulsations and OH chemiluminescence. Analysis revealed strong local periodicity in the thermoacoustically self-excited (or ` noisy') flame (ϕ = 0.73) in the regions of the flow corresponding to the inner shear layer and the jet-inflow. This periodicity appears to be the result of a helical precessing vortex core (PVC) present in that region of the combustor. The PVC has a precession frequency double (at 570 Hz) that of the thermo-acoustic pulsation (at 288 Hz). A comparison of the various data sets and analysis techniques applied to each flame suggests a strong coupling between the PVC and the thermo-acoustic pulsation in the noisy flame. Measurements of the stable (` quiet') flame (ϕ = 0.83) revealed a global fluctuation in both velocity and heat-release around 364 Hz, but no clear evidence of a PVC.

  1. Improved quantitative analysis of spectra using a new method of obtaining derivative spectra based on a singular perturbation technique.

    PubMed

    Li, Zhigang; Wang, Qiaoyun; Lv, Jiangtao; Ma, Zhenhe; Yang, Linjuan

    2015-06-01

    Spectroscopy is often applied when a rapid quantitative analysis is required, but one challenge is the translation of raw spectra into a final analysis. Derivative spectra are often used as a preliminary preprocessing step to resolve overlapping signals, enhance signal properties, and suppress unwanted spectral features that arise due to non-ideal instrument and sample properties. In this study, to improve quantitative analysis of near-infrared spectra, derivatives of noisy raw spectral data need to be estimated with high accuracy. A new spectral estimator based on singular perturbation technique, called the singular perturbation spectra estimator (SPSE), is presented, and the stability analysis of the estimator is given. Theoretical analysis and simulation experimental results confirm that the derivatives can be estimated with high accuracy using this estimator. Furthermore, the effectiveness of the estimator for processing noisy infrared spectra is evaluated using the analysis of beer spectra. The derivative spectra of the beer and the marzipan are used to build the calibration model using partial least squares (PLS) modeling. The results show that the PLS based on the new estimator can achieve better performance compared with the Savitzky-Golay algorithm and can serve as an alternative choice for quantitative analytical applications.

  2. Estimators of The Magnitude-Squared Spectrum and Methods for Incorporating SNR Uncertainty

    PubMed Central

    Lu, Yang; Loizou, Philipos C.

    2011-01-01

    Statistical estimators of the magnitude-squared spectrum are derived based on the assumption that the magnitude-squared spectrum of the noisy speech signal can be computed as the sum of the (clean) signal and noise magnitude-squared spectra. Maximum a posterior (MAP) and minimum mean square error (MMSE) estimators are derived based on a Gaussian statistical model. The gain function of the MAP estimator was found to be identical to the gain function used in the ideal binary mask (IdBM) that is widely used in computational auditory scene analysis (CASA). As such, it was binary and assumed the value of 1 if the local SNR exceeded 0 dB, and assumed the value of 0 otherwise. By modeling the local instantaneous SNR as an F-distributed random variable, soft masking methods were derived incorporating SNR uncertainty. The soft masking method, in particular, which weighted the noisy magnitude-squared spectrum by the a priori probability that the local SNR exceeds 0 dB was shown to be identical to the Wiener gain function. Results indicated that the proposed estimators yielded significantly better speech quality than the conventional MMSE spectral power estimators, in terms of yielding lower residual noise and lower speech distortion. PMID:21886543

  3. The Job Assessment Software System (JASS) and a Strategy for Integrating Output into the Improved Performance Research Integration Tool (IMPRINT)

    DTIC Science & Technology

    2018-01-01

    4.2 Listen to a news broadcast during a dinner conversation 5.5 Study for a math exam in a house of noisy, young children Selective Attention Is...news broadcast during a dinner conversation 5.5 Study for a math exam in a house of noisy, young children Is information about location

  4. Consolidation of visuomotor adaptation memory with consistent and noisy environments

    PubMed Central

    Maeda, Rodrigo S.; McGee, Steven E.

    2016-01-01

    Our understanding of how we learn and retain motor behaviors is still limited. For instance, there is conflicting evidence as to whether the memory of a learned visuomotor perturbation consolidates; i.e., the motor memory becomes resistant to interference from learning a competing perturbation over time. Here, we sought to determine the factors that influence consolidation during visually guided walking. Subjects learned a novel mapping relationship, created by prism lenses, between the perceived location of two targets and the motor commands necessary to direct the feet to their positions. Subjects relearned this mapping 1 wk later. Different groups experienced protocols with or without a competing mapping (and with and without washout trials), presented either on the same day as initial learning or before relearning on day 2. We tested identical protocols under constant and noisy mapping structures. In the latter, we varied, on a trial-by-trial basis, the strength of prism lenses around a non-zero mean. We found that a novel visuomotor mapping is retained at least 1 wk after initial learning. We also found reduced foot-placement error with relearning in constant and noisy mapping groups, despite learning a competing mapping beforehand, and with the exception of one protocol, with and without washout trials. Exposure to noisy mappings led to similar performance on relearning compared with the equivalent constant mapping groups for most protocols. Overall, our results support the idea of motor memory consolidation during visually guided walking and suggest that constant and noisy practices are effective for motor learning. NEW & NOTEWORTHY The adaptation of movement is essential for many daily activities. To interact with targets, this often requires learning the mapping to produce appropriate motor commands based on visual input. Here, we show that a novel visuomotor mapping is retained 1 wk after initial learning in a visually guided walking task. Furthermore, we find that this motor memory consolidates (i.e., becomes more resistant to interference from learning a competing mapping) when learning in constant and noisy mapping environments. PMID:27784800

  5. Speech Comprehension Difficulties in Chronic Tinnitus and Its Relation to Hyperacusis

    PubMed Central

    Vielsmeier, Veronika; Kreuzer, Peter M.; Haubner, Frank; Steffens, Thomas; Semmler, Philipp R. O.; Kleinjung, Tobias; Schlee, Winfried; Langguth, Berthold; Schecklmann, Martin

    2016-01-01

    Objective: Many tinnitus patients complain about difficulties regarding speech comprehension. In spite of the high clinical relevance little is known about underlying mechanisms and predisposing factors. Here, we performed an exploratory investigation in a large sample of tinnitus patients to (1) estimate the prevalence of speech comprehension difficulties among tinnitus patients, to (2) compare subjective reports of speech comprehension difficulties with behavioral measurements in a standardized speech comprehension test and to (3) explore underlying mechanisms by analyzing the relationship between speech comprehension difficulties and peripheral hearing function (pure tone audiogram), as well as with co-morbid hyperacusis as a central auditory processing disorder. Subjects and Methods: Speech comprehension was assessed in 361 tinnitus patients presenting between 07/2012 and 08/2014 at the Interdisciplinary Tinnitus Clinic at the University of Regensburg. The assessment included standard audiological assessments (pure tone audiometry, tinnitus pitch, and loudness matching), the Goettingen sentence test (in quiet) for speech audiometric evaluation, two questions about hyperacusis, and two questions about speech comprehension in quiet and noisy environments (“How would you rate your ability to understand speech?”; “How would you rate your ability to follow a conversation when multiple people are speaking simultaneously?”). Results: Subjectively-reported speech comprehension deficits are frequent among tinnitus patients, especially in noisy environments (cocktail party situation). 74.2% of all investigated patients showed disturbed speech comprehension (indicated by values above 21.5 dB SPL in the Goettingen sentence test). Subjective speech comprehension complaints (both for general and in noisy environment) were correlated with hearing level and with audiologically-assessed speech comprehension ability. In contrast, co-morbid hyperacusis was only correlated with speech comprehension difficulties in noisy environments, but not with speech comprehension difficulties in general. Conclusion: Speech comprehension deficits are frequent among tinnitus patients. Whereas speech comprehension deficits in quiet environments are primarily due to peripheral hearing loss, speech comprehension deficits in noisy environments are related to both peripheral hearing loss and dysfunctional central auditory processing. Disturbed speech comprehension in noisy environments might be modulated by a central inhibitory deficit. In addition, attentional and cognitive aspects may play a role. PMID:28018209

  6. Speech Comprehension Difficulties in Chronic Tinnitus and Its Relation to Hyperacusis.

    PubMed

    Vielsmeier, Veronika; Kreuzer, Peter M; Haubner, Frank; Steffens, Thomas; Semmler, Philipp R O; Kleinjung, Tobias; Schlee, Winfried; Langguth, Berthold; Schecklmann, Martin

    2016-01-01

    Objective: Many tinnitus patients complain about difficulties regarding speech comprehension. In spite of the high clinical relevance little is known about underlying mechanisms and predisposing factors. Here, we performed an exploratory investigation in a large sample of tinnitus patients to (1) estimate the prevalence of speech comprehension difficulties among tinnitus patients, to (2) compare subjective reports of speech comprehension difficulties with behavioral measurements in a standardized speech comprehension test and to (3) explore underlying mechanisms by analyzing the relationship between speech comprehension difficulties and peripheral hearing function (pure tone audiogram), as well as with co-morbid hyperacusis as a central auditory processing disorder. Subjects and Methods: Speech comprehension was assessed in 361 tinnitus patients presenting between 07/2012 and 08/2014 at the Interdisciplinary Tinnitus Clinic at the University of Regensburg. The assessment included standard audiological assessments (pure tone audiometry, tinnitus pitch, and loudness matching), the Goettingen sentence test (in quiet) for speech audiometric evaluation, two questions about hyperacusis, and two questions about speech comprehension in quiet and noisy environments ("How would you rate your ability to understand speech?"; "How would you rate your ability to follow a conversation when multiple people are speaking simultaneously?"). Results: Subjectively-reported speech comprehension deficits are frequent among tinnitus patients, especially in noisy environments (cocktail party situation). 74.2% of all investigated patients showed disturbed speech comprehension (indicated by values above 21.5 dB SPL in the Goettingen sentence test). Subjective speech comprehension complaints (both for general and in noisy environment) were correlated with hearing level and with audiologically-assessed speech comprehension ability. In contrast, co-morbid hyperacusis was only correlated with speech comprehension difficulties in noisy environments, but not with speech comprehension difficulties in general. Conclusion: Speech comprehension deficits are frequent among tinnitus patients. Whereas speech comprehension deficits in quiet environments are primarily due to peripheral hearing loss, speech comprehension deficits in noisy environments are related to both peripheral hearing loss and dysfunctional central auditory processing. Disturbed speech comprehension in noisy environments might be modulated by a central inhibitory deficit. In addition, attentional and cognitive aspects may play a role.

  7. Automatic speech recognition using a predictive echo state network classifier.

    PubMed

    Skowronski, Mark D; Harris, John G

    2007-04-01

    We have combined an echo state network (ESN) with a competitive state machine framework to create a classification engine called the predictive ESN classifier. We derive the expressions for training the predictive ESN classifier and show that the model was significantly more noise robust compared to a hidden Markov model in noisy speech classification experiments by 8+/-1 dB signal-to-noise ratio. The simple training algorithm and noise robustness of the predictive ESN classifier make it an attractive classification engine for automatic speech recognition.

  8. Diffusion models for innovation: s-curves, networks, power laws, catastrophes, and entropy.

    PubMed

    Jacobsen, Joseph J; Guastello, Stephen J

    2011-04-01

    This article considers models for the diffusion of innovation would be most relevant to the dynamics of early 21st century technologies. The article presents an overview of diffusion models and examines the adoption S-curve, network theories, difference models, influence models, geographical models, a cusp catastrophe model, and self-organizing dynamics that emanate from principles of network configuration and principles of heat diffusion. The diffusion dynamics that are relevant to information technologies and energy-efficient technologies are compared. Finally, principles of nonlinear dynamics for innovation diffusion that could be used to rehabilitate the global economic situation are discussed.

  9. On Large Time Behavior and Selection Principle for a Diffusive Carr-Penrose Model

    NASA Astrophysics Data System (ADS)

    Conlon, Joseph G.; Dabkowski, Michael; Wu, Jingchen

    2016-04-01

    This paper is concerned with the study of a diffusive perturbation of the linear LSW model introduced by Carr and Penrose. A main subject of interest is to understand how the presence of diffusion acts as a selection principle, which singles out a particular self-similar solution of the linear LSW model as determining the large time behavior of the diffusive model. A selection principle is rigorously proven for a model which is a semiclassical approximation to the diffusive model. Upper bounds on the rate of coarsening are also obtained for the full diffusive model.

  10. Comparison of non-Gaussian and Gaussian diffusion models of diffusion weighted imaging of rectal cancer at 3.0 T MRI.

    PubMed

    Zhang, Guangwen; Wang, Shuangshuang; Wen, Didi; Zhang, Jing; Wei, Xiaocheng; Ma, Wanling; Zhao, Weiwei; Wang, Mian; Wu, Guosheng; Zhang, Jinsong

    2016-12-09

    Water molecular diffusion in vivo tissue is much more complicated. We aimed to compare non-Gaussian diffusion models of diffusion-weighted imaging (DWI) including intra-voxel incoherent motion (IVIM), stretched-exponential model (SEM) and Gaussian diffusion model at 3.0 T MRI in patients with rectal cancer, and to determine the optimal model for investigating the water diffusion properties and characterization of rectal carcinoma. Fifty-nine consecutive patients with pathologically confirmed rectal adenocarcinoma underwent DWI with 16 b-values at a 3.0 T MRI system. DWI signals were fitted to the mono-exponential and non-Gaussian diffusion models (IVIM-mono, IVIM-bi and SEM) on primary tumor and adjacent normal rectal tissue. Parameters of standard apparent diffusion coefficient (ADC), slow- and fast-ADC, fraction of fast ADC (f), α value and distributed diffusion coefficient (DDC) were generated and compared between the tumor and normal tissues. The SEM exhibited the best fitting results of actual DWI signal in rectal cancer and the normal rectal wall (R 2  = 0.998, 0.999 respectively). The DDC achieved relatively high area under the curve (AUC = 0.980) in differentiating tumor from normal rectal wall. Non-Gaussian diffusion models could assess tissue properties more accurately than the ADC derived Gaussian diffusion model. SEM may be used as a potential optimal model for characterization of rectal cancer.

  11. Identification and tracking of particular speaker in noisy environment

    NASA Astrophysics Data System (ADS)

    Sawada, Hideyuki; Ohkado, Minoru

    2004-10-01

    Human is able to exchange information smoothly using voice under different situations such as noisy environment in a crowd and with the existence of plural speakers. We are able to detect the position of a source sound in 3D space, extract a particular sound from mixed sounds, and recognize who is talking. By realizing this mechanism with a computer, new applications will be presented for recording a sound with high quality by reducing noise, presenting a clarified sound, and realizing a microphone-free speech recognition by extracting particular sound. The paper will introduce a realtime detection and identification of particular speaker in noisy environment using a microphone array based on the location of a speaker and the individual voice characteristics. The study will be applied to develop an adaptive auditory system of a mobile robot which collaborates with a factory worker.

  12. Reliability of laboratory tests of VSTOL and other long duration noises

    NASA Technical Reports Server (NTRS)

    Kryter, K. D.; Peeler, D. J.; Dobbs, M. E.; Lukas, J. S.

    1974-01-01

    Paired-comparison and magnitude estimations of the subjective noisiness or unacceptability of noise from fixed wing jet aircraft and simulated noise of VSTOL aircraft were obtained from groups of subjects given different instructions. These results suggest that VSTOL noises can be evaluated in terms of their noisiness or unwantedness to people with reasonable accuracy by units of the physical measures designated as PNdBM, with or without tone corrections, and dBD sub 2. Also, that consideration should be given to the use of D sub 2 as an overall frequency weighting function for sound level meters instead of the presently available A weighting. Two new units of noise measurement, PLdB and dB(E), used for predicting subjective noisiness, were found to be less accurate than PNdBM or dBD sub 2 in this regard.

  13. Analog circuit for the measurement of phase difference between two noisy sine-wave signals

    NASA Technical Reports Server (NTRS)

    Shakkottai, P.; Kwack, E. Y.; Back, L. H.

    1989-01-01

    A simple circuit was designed to measure the phase difference between two noisy sine waves. It locks over a wide range of frequencies and produces an output proportional to the phase difference of rapidly varying signals. A square wave locked in frequency and phase to the first signal is produced by a phase-locked loop and is amplified by an operational amplifier.

  14. VALUES OF NOISY DUELS WITH NOT-NECESSARILY EQUAL ACCURACY FUNCTIONS.

    DTIC Science & Technology

    Let G sub mn(P sub 1, P sub 2) be the noisy duel in which the first player has m bullets with accuracy function P sub 1 and the second player has n...bullets with accuracy function P sub 2 where m, n, P sub 1, and P sub 2 are known to both players. Results are well known for the duels in which P sub

  15. The Impact of Frequency Modulation (FM) System Use and Caregiver Training on Young Children with Hearing Impairment in a Noisy Listening Environment

    ERIC Educational Resources Information Center

    Nguyen, Huong Thi Thien

    2011-01-01

    The two objectives of this single-subject study were to assess how an FM system use impacts parent-child interaction in a noisy listening environment, and how a parent/caregiver training affect the interaction between parent/caregiver and child. Two 5-year-old children with hearing loss and their parent/caregiver participated. Experiment 1 was…

  16. Coherent-state information concentration and purification in atomic memory

    NASA Astrophysics Data System (ADS)

    Herec, Jiří; Filip, Radim

    2006-12-01

    We propose a feasible method of coherent-state information concentration and purification utilizing quantum memory. The method allows us to optimally concentrate and purify information carried by many noisy copies of an unknown coherent state (randomly distributed in time) to a single copy. Thus nonclassical resources and operations can be saved, if we compare information processing with many noisy copies and a single copy with concentrated and purified information.

  17. Image denoising by exploring external and internal correlations.

    PubMed

    Yue, Huanjing; Sun, Xiaoyan; Yang, Jingyu; Wu, Feng

    2015-06-01

    Single image denoising suffers from limited data collection within a noisy image. In this paper, we propose a novel image denoising scheme, which explores both internal and external correlations with the help of web images. For each noisy patch, we build internal and external data cubes by finding similar patches from the noisy and web images, respectively. We then propose reducing noise by a two-stage strategy using different filtering approaches. In the first stage, since the noisy patch may lead to inaccurate patch selection, we propose a graph based optimization method to improve patch matching accuracy in external denoising. The internal denoising is frequency truncation on internal cubes. By combining the internal and external denoising patches, we obtain a preliminary denoising result. In the second stage, we propose reducing noise by filtering of external and internal cubes, respectively, on transform domain. In this stage, the preliminary denoising result not only enhances the patch matching accuracy but also provides reliable estimates of filtering parameters. The final denoising image is obtained by fusing the external and internal filtering results. Experimental results show that our method constantly outperforms state-of-the-art denoising schemes in both subjective and objective quality measurements, e.g., it achieves >2 dB gain compared with BM3D at a wide range of noise levels.

  18. Fast first arrival picking algorithm for noisy microseismic data

    NASA Astrophysics Data System (ADS)

    Kim, Dowan; Byun, Joongmoo; Lee, Minho; Choi, Jihoon; Kim, Myungsun

    2017-01-01

    Most microseismic events occur during hydraulic fracturing. Thus microseismic monitoring, by recording seismic waves from microseismic events, is one of the best methods for locating the positions of hydraulic fractures. However, since microseismic events have very low energy, the data often have a low signal-to-noise ratio (S/N ratio) and it is not easy to pick the first arrival time. In this study, we suggest a new fast picking method optimised for noisy data using cross-correlation and stacking. In this method, a reference trace is selected and the time differences between the first arrivals of the reference trace and those of the other traces are computed by cross-correlation. Then, all traces are aligned with the reference trace by time shifting, and the aligned traces are summed together to produce a stacked reference trace that has a considerably improved S/N ratio. After the first arrival time of the stacked reference trace is picked, the first arrival time of each trace is calculated automatically using the time differences obtained in the cross-correlation process. In experiments with noisy synthetic data and field data, this method produces more reliable results than the traditional method, which picks the first arrival time of each noisy trace separately. In addition, the computation time is dramatically reduced.

  19. Benefits of incorporating the adaptive dynamic range optimization amplification scheme into an assistive listening device for people with mild or moderate hearing loss.

    PubMed

    Chang, Hung-Yue; Luo, Ching-Hsing; Lo, Tun-Shin; Chen, Hsiao-Chuan; Huang, Kuo-You; Liao, Wen-Huei; Su, Mao-Chang; Liu, Shu-Yu; Wang, Nan-Mai

    2017-08-28

    This study investigated whether a self-designed assistive listening device (ALD) that incorporates an adaptive dynamic range optimization (ADRO) amplification strategy can surpass a commercially available monaurally worn linear ALD, SM100. Both subjective and objective measurements were implemented. Mandarin Hearing-In-Noise Test (MHINT) scores were the objective measurement, whereas participant satisfaction was the subjective measurement. The comparison was performed in a mixed design (i.e., subjects' hearing status being mild or moderate, quiet versus noisy, and linear versus ADRO scheme). The participants were two groups of hearing-impaired subjects, nine mild and eight moderate, respectively. The results of the ADRO system revealed a significant difference in the MHINT sentence reception threshold (SRT) in noisy environments between monaurally aided and unaided conditions, whereas the linear system did not. The benchmark results showed that the ADRO scheme is effectively beneficial to people who experience mild or moderate hearing loss in noisy environments. The satisfaction rating regarding overall speech quality indicated that the participants were satisfied with the speech quality of both ADRO and linear schemes in quiet environments, and they were more satisfied with ADRO than they with the linear scheme in noisy environments.

  20. Shape Adaptive, Robust Iris Feature Extraction from Noisy Iris Images

    PubMed Central

    Ghodrati, Hamed; Dehghani, Mohammad Javad; Danyali, Habibolah

    2013-01-01

    In the current iris recognition systems, noise removing step is only used to detect noisy parts of the iris region and features extracted from there will be excluded in matching step. Whereas depending on the filter structure used in feature extraction, the noisy parts may influence relevant features. To the best of our knowledge, the effect of noise factors on feature extraction has not been considered in the previous works. This paper investigates the effect of shape adaptive wavelet transform and shape adaptive Gabor-wavelet for feature extraction on the iris recognition performance. In addition, an effective noise-removing approach is proposed in this paper. The contribution is to detect eyelashes and reflections by calculating appropriate thresholds by a procedure called statistical decision making. The eyelids are segmented by parabolic Hough transform in normalized iris image to decrease computational burden through omitting rotation term. The iris is localized by an accurate and fast algorithm based on coarse-to-fine strategy. The principle of mask code generation is to assign the noisy bits in an iris code in order to exclude them in matching step is presented in details. An experimental result shows that by using the shape adaptive Gabor-wavelet technique there is an improvement on the accuracy of recognition rate. PMID:24696801

  1. Shape adaptive, robust iris feature extraction from noisy iris images.

    PubMed

    Ghodrati, Hamed; Dehghani, Mohammad Javad; Danyali, Habibolah

    2013-10-01

    In the current iris recognition systems, noise removing step is only used to detect noisy parts of the iris region and features extracted from there will be excluded in matching step. Whereas depending on the filter structure used in feature extraction, the noisy parts may influence relevant features. To the best of our knowledge, the effect of noise factors on feature extraction has not been considered in the previous works. This paper investigates the effect of shape adaptive wavelet transform and shape adaptive Gabor-wavelet for feature extraction on the iris recognition performance. In addition, an effective noise-removing approach is proposed in this paper. The contribution is to detect eyelashes and reflections by calculating appropriate thresholds by a procedure called statistical decision making. The eyelids are segmented by parabolic Hough transform in normalized iris image to decrease computational burden through omitting rotation term. The iris is localized by an accurate and fast algorithm based on coarse-to-fine strategy. The principle of mask code generation is to assign the noisy bits in an iris code in order to exclude them in matching step is presented in details. An experimental result shows that by using the shape adaptive Gabor-wavelet technique there is an improvement on the accuracy of recognition rate.

  2. Noisy Ocular Recognition Based on Three Convolutional Neural Networks.

    PubMed

    Lee, Min Beom; Hong, Hyung Gil; Park, Kang Ryoung

    2017-12-17

    In recent years, the iris recognition system has been gaining increasing acceptance for applications such as access control and smartphone security. When the images of the iris are obtained under unconstrained conditions, an issue of undermined quality is caused by optical and motion blur, off-angle view (the user's eyes looking somewhere else, not into the front of the camera), specular reflection (SR) and other factors. Such noisy iris images increase intra-individual variations and, as a result, reduce the accuracy of iris recognition. A typical iris recognition system requires a near-infrared (NIR) illuminator along with an NIR camera, which are larger and more expensive than fingerprint recognition equipment. Hence, many studies have proposed methods of using iris images captured by a visible light camera without the need for an additional illuminator. In this research, we propose a new recognition method for noisy iris and ocular images by using one iris and two periocular regions, based on three convolutional neural networks (CNNs). Experiments were conducted by using the noisy iris challenge evaluation-part II (NICE.II) training dataset (selected from the university of Beira iris (UBIRIS).v2 database), mobile iris challenge evaluation (MICHE) database, and institute of automation of Chinese academy of sciences (CASIA)-Iris-Distance database. As a result, the method proposed by this study outperformed previous methods.

  3. Optical coherence tomography retinal image reconstruction via nonlocal weighted sparse representation

    NASA Astrophysics Data System (ADS)

    Abbasi, Ashkan; Monadjemi, Amirhassan; Fang, Leyuan; Rabbani, Hossein

    2018-03-01

    We present a nonlocal weighted sparse representation (NWSR) method for reconstruction of retinal optical coherence tomography (OCT) images. To reconstruct a high signal-to-noise ratio and high-resolution OCT images, utilization of efficient denoising and interpolation algorithms are necessary, especially when the original data were subsampled during acquisition. However, the OCT images suffer from the presence of a high level of noise, which makes the estimation of sparse representations a difficult task. Thus, the proposed NWSR method merges sparse representations of multiple similar noisy and denoised patches to better estimate a sparse representation for each patch. First, the sparse representation of each patch is independently computed over an overcomplete dictionary, and then a nonlocal weighted sparse coefficient is computed by averaging representations of similar patches. Since the sparsity can reveal relevant information from noisy patches, combining noisy and denoised patches' representations is beneficial to obtain a more robust estimate of the unknown sparse representation. The denoised patches are obtained by applying an off-the-shelf image denoising method and our method provides an efficient way to exploit information from noisy and denoised patches' representations. The experimental results on denoising and interpolation of spectral domain OCT images demonstrated the effectiveness of the proposed NWSR method over existing state-of-the-art methods.

  4. A Self-Organizing State-Space-Model Approach for Parameter Estimation in Hodgkin-Huxley-Type Models of Single Neurons

    PubMed Central

    Vavoulis, Dimitrios V.; Straub, Volko A.; Aston, John A. D.; Feng, Jianfeng

    2012-01-01

    Traditional approaches to the problem of parameter estimation in biophysical models of neurons and neural networks usually adopt a global search algorithm (for example, an evolutionary algorithm), often in combination with a local search method (such as gradient descent) in order to minimize the value of a cost function, which measures the discrepancy between various features of the available experimental data and model output. In this study, we approach the problem of parameter estimation in conductance-based models of single neurons from a different perspective. By adopting a hidden-dynamical-systems formalism, we expressed parameter estimation as an inference problem in these systems, which can then be tackled using a range of well-established statistical inference methods. The particular method we used was Kitagawa's self-organizing state-space model, which was applied on a number of Hodgkin-Huxley-type models using simulated or actual electrophysiological data. We showed that the algorithm can be used to estimate a large number of parameters, including maximal conductances, reversal potentials, kinetics of ionic currents, measurement and intrinsic noise, based on low-dimensional experimental data and sufficiently informative priors in the form of pre-defined constraints imposed on model parameters. The algorithm remained operational even when very noisy experimental data were used. Importantly, by combining the self-organizing state-space model with an adaptive sampling algorithm akin to the Covariance Matrix Adaptation Evolution Strategy, we achieved a significant reduction in the variance of parameter estimates. The algorithm did not require the explicit formulation of a cost function and it was straightforward to apply on compartmental models and multiple data sets. Overall, the proposed methodology is particularly suitable for resolving high-dimensional inference problems based on noisy electrophysiological data and, therefore, a potentially useful tool in the construction of biophysical neuron models. PMID:22396632

  5. Stochastic approach to data analysis in fluorescence correlation spectroscopy.

    PubMed

    Rao, Ramachandra; Langoju, Rajesh; Gösch, Michael; Rigler, Per; Serov, Alexandre; Lasser, Theo

    2006-09-21

    Fluorescence correlation spectroscopy (FCS) has emerged as a powerful technique for measuring low concentrations of fluorescent molecules and their diffusion constants. In FCS, the experimental data is conventionally fit using standard local search techniques, for example, the Marquardt-Levenberg (ML) algorithm. A prerequisite for these categories of algorithms is the sound knowledge of the behavior of fit parameters and in most cases good initial guesses for accurate fitting, otherwise leading to fitting artifacts. For known fit models and with user experience about the behavior of fit parameters, these local search algorithms work extremely well. However, for heterogeneous systems or where automated data analysis is a prerequisite, there is a need to apply a procedure, which treats FCS data fitting as a black box and generates reliable fit parameters with accuracy for the chosen model in hand. We present a computational approach to analyze FCS data by means of a stochastic algorithm for global search called PGSL, an acronym for Probabilistic Global Search Lausanne. This algorithm does not require any initial guesses and does the fitting in terms of searching for solutions by global sampling. It is flexible as well as computationally faster at the same time for multiparameter evaluations. We present the performance study of PGSL for two-component with triplet fits. The statistical study and the goodness of fit criterion for PGSL are also presented. The robustness of PGSL on noisy experimental data for parameter estimation is also verified. We further extend the scope of PGSL by a hybrid analysis wherein the output of PGSL is fed as initial guesses to ML. Reliability studies show that PGSL and the hybrid combination of both perform better than ML for various thresholds of the mean-squared error (MSE).

  6. Multilevel Sequential2 Monte Carlo for Bayesian inverse problems

    NASA Astrophysics Data System (ADS)

    Latz, Jonas; Papaioannou, Iason; Ullmann, Elisabeth

    2018-09-01

    The identification of parameters in mathematical models using noisy observations is a common task in uncertainty quantification. We employ the framework of Bayesian inversion: we combine monitoring and observational data with prior information to estimate the posterior distribution of a parameter. Specifically, we are interested in the distribution of a diffusion coefficient of an elliptic PDE. In this setting, the sample space is high-dimensional, and each sample of the PDE solution is expensive. To address these issues we propose and analyse a novel Sequential Monte Carlo (SMC) sampler for the approximation of the posterior distribution. Classical, single-level SMC constructs a sequence of measures, starting with the prior distribution, and finishing with the posterior distribution. The intermediate measures arise from a tempering of the likelihood, or, equivalently, a rescaling of the noise. The resolution of the PDE discretisation is fixed. In contrast, our estimator employs a hierarchy of PDE discretisations to decrease the computational cost. We construct a sequence of intermediate measures by decreasing the temperature or by increasing the discretisation level at the same time. This idea builds on and generalises the multi-resolution sampler proposed in P.S. Koutsourelakis (2009) [33] where a bridging scheme is used to transfer samples from coarse to fine discretisation levels. Importantly, our choice between tempering and bridging is fully adaptive. We present numerical experiments in 2D space, comparing our estimator to single-level SMC and the multi-resolution sampler.

  7. Extracting surface diffusion coefficients from batch adsorption measurement data: application of the classic Langmuir kinetics model.

    PubMed

    Chu, Khim Hoong

    2017-11-09

    Surface diffusion coefficients may be estimated by fitting solutions of a diffusion model to batch kinetic data. For non-linear systems, a numerical solution of the diffusion model's governing equations is generally required. We report here the application of the classic Langmuir kinetics model to extract surface diffusion coefficients from batch kinetic data. The use of the Langmuir kinetics model in lieu of the conventional surface diffusion model allows derivation of an analytical expression. The parameter estimation procedure requires determining the Langmuir rate coefficient from which the pertinent surface diffusion coefficient is calculated. Surface diffusion coefficients within the 10 -9 to 10 -6  cm 2 /s range obtained by fitting the Langmuir kinetics model to experimental kinetic data taken from the literature are found to be consistent with the corresponding values obtained from the traditional surface diffusion model. The virtue of this simplified parameter estimation method is that it reduces the computational complexity as the analytical expression involves only an algebraic equation in closed form which is easily evaluated by spreadsheet computation.

  8. High frequency modal identification on noisy high-speed camera data

    NASA Astrophysics Data System (ADS)

    Javh, Jaka; Slavič, Janko; Boltežar, Miha

    2018-01-01

    Vibration measurements using optical full-field systems based on high-speed footage are typically heavily burdened by noise, as the displacement amplitudes of the vibrating structures are often very small (in the range of micrometers, depending on the structure). The modal information is troublesome to measure as the structure's response is close to, or below, the noise level of the camera-based measurement system. This paper demonstrates modal parameter identification for such noisy measurements. It is shown that by using the Least-Squares Complex-Frequency method combined with the Least-Squares Frequency-Domain method, identification at high-frequencies is still possible. By additionally incorporating a more precise sensor to identify the eigenvalues, a hybrid accelerometer/high-speed camera mode shape identification is possible even below the noise floor. An accelerometer measurement is used to identify the eigenvalues, while the camera measurement is used to produce the full-field mode shapes close to 10 kHz. The identified modal parameters improve the quality of the measured modal data and serve as a reduced model of the structure's dynamics.

  9. NF-κB-Chromatin Interactions Drive Diverse Phenotypes by Modulating Transcriptional Noise

    PubMed Central

    Wong, Victor C.; Bass, Victor L.; Bullock, M. Elise; Chavali, Arvind K.; Lee, Robin E.C.; Mothes, Walther; Gaudet, Suzanne; Miller-Jensen, Kathryn

    2018-01-01

    SUMMARY Noisy gene expression generates diverse phenotypes, but little is known about mechanisms that modulate noise. Combining experiments and modeling, we studied how tumor necrosis factor (TNF) initiates noisy expression of latent HIV via the transcription factor nuclear factor κB (NF-κB) and how the HIV genomic integration site modulates noise to generate divergent (low-versus-high) phenotypes of viral activation. We show that TNF-induced transcriptional noise varies more than mean transcript number and that amplification of this noise explains low-versus-high viral activation. For a given integration site, live-cell imaging shows that NF-κB activation correlates with viral activation, but across integration sites, NF-κB activation cannot account for differences in transcriptional noise and phenotypes. Instead, differences in transcriptional noise are associated with differences in chromatin state and RNA polymerase II regulation. We conclude that, whereas NF-κB regulates transcript abundance in each cell, the chromatin environment modulates noise in the population to support diverse HIV activation in response to TNF. PMID:29346759

  10. Seeing the mean: ensemble coding for sets of faces.

    PubMed

    Haberman, Jason; Whitney, David

    2009-06-01

    We frequently encounter groups of similar objects in our visual environment: a bed of flowers, a basket of oranges, a crowd of people. How does the visual system process such redundancy? Research shows that rather than code every element in a texture, the visual system favors a summary statistical representation of all the elements. The authors demonstrate that although it may facilitate texture perception, ensemble coding also occurs for faces-a level of processing well beyond that of textures. Observers viewed sets of faces varying in emotionality (e.g., happy to sad) and assessed the mean emotion of each set. Although observers retained little information about the individual set members, they had a remarkably precise representation of the mean emotion. Observers continued to discriminate the mean emotion accurately even when they viewed sets of 16 faces for 500 ms or less. Modeling revealed that perceiving the average facial expression in groups of faces was not due to noisy representation or noisy discrimination. These findings support the hypothesis that ensemble coding occurs extremely fast at multiple levels of visual analysis. (c) 2009 APA, all rights reserved.

  11. Fast and Accurate Fitting and Filtering of Noisy Exponentials in Legendre Space

    PubMed Central

    Bao, Guobin; Schild, Detlev

    2014-01-01

    The parameters of experimentally obtained exponentials are usually found by least-squares fitting methods. Essentially, this is done by minimizing the mean squares sum of the differences between the data, most often a function of time, and a parameter-defined model function. Here we delineate a novel method where the noisy data are represented and analyzed in the space of Legendre polynomials. This is advantageous in several respects. First, parameter retrieval in the Legendre domain is typically two orders of magnitude faster than direct fitting in the time domain. Second, data fitting in a low-dimensional Legendre space yields estimates for amplitudes and time constants which are, on the average, more precise compared to least-squares-fitting with equal weights in the time domain. Third, the Legendre analysis of two exponentials gives satisfactory estimates in parameter ranges where least-squares-fitting in the time domain typically fails. Finally, filtering exponentials in the domain of Legendre polynomials leads to marked noise removal without the phase shift characteristic for conventional lowpass filters. PMID:24603904

  12. Research on key technologies of LADAR echo signal simulator

    NASA Astrophysics Data System (ADS)

    Xu, Rui; Shi, Rui; Ye, Jiansen; Wang, Xin; Li, Zhuo

    2015-10-01

    LADAR echo signal simulator is one of the most significant components of hardware-in-the-loop (HWIL) simulation systems for LADAR, which is designed to simulate the LADAR return signal in laboratory conditions. The device can provide the laser echo signal of target and background for imaging LADAR systems to test whether it is of good performance. Some key technologies are investigated in this paper. Firstly, the 3D model of typical target is built, and transformed to the data of the target echo signal based on ranging equation and targets reflection characteristics. Then, system model and time series model of LADAR echo signal simulator are established. Some influential factors which could induce fixed delay error and random delay error on the simulated return signals are analyzed. In the simulation system, the signal propagating delay of circuits and the response time of pulsed lasers are belong to fixed delay error. The counting error of digital delay generator, the jitter of system clock and the desynchronized between trigger signal and clock signal are a part of random delay error. Furthermore, these system insertion delays are analyzed quantitatively, and the noisy data are obtained. The target echo signals are got by superimposing of the noisy data and the pure target echo signal. In order to overcome these disadvantageous factors, a method of adjusting the timing diagram of the simulation system is proposed. Finally, the simulated echo signals are processed by using a detection algorithm to complete the 3D model reconstruction of object. The simulation results reveal that the range resolution can be better than 8 cm.

  13. Classifying Noisy Protein Sequence Data: A Case Study of Immunoglobulin Light Chains

    DTIC Science & Technology

    2005-01-01

    collected from patients with and without amyloidosis , and indicates that the proposed modified classifi- ers are more robust to sequence variability than...piled from patients with and without amyloidosis provides unique features to serve as a model system, not only for conformational disease studies but...produced by patients with amyloidosis . SVMs have been used recently in a wide variety of applica- tions in computational biology (Noble, 2004). Most

  14. Pattern Recognition Algorithm for High-Sensitivity Odorant Detection in Unknown Environments

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.

    2012-01-01

    In a realistic odorant detection application environment, the collected sensory data is a mix of unknown chemicals with unknown concentrations and noise. The identification of the odorants among these mixtures is a challenge in data recognition. In addition, deriving their individual concentrations in the mix is also a challenge. A deterministic analytical model was developed to accurately identify odorants and calculate their concentrations in a mixture with noisy data.

  15. Signal detection by active, noisy hair bundles

    NASA Astrophysics Data System (ADS)

    O'Maoiléidigh, Dáibhid; Salvi, Joshua D.; Hudspeth, A. J.

    2018-05-01

    Vertebrate ears employ hair bundles to transduce mechanical movements into electrical signals, but their performance is limited by noise. Hair bundles are substantially more sensitive to periodic stimulation when they are mechanically active, however, than when they are passive. We developed a model of active hair-bundle mechanics that predicts the conditions under which a bundle is most sensitive to periodic stimulation. The model relies only on the existence of mechanotransduction channels and an active adaptation mechanism that recloses the channels. For a frequency-detuned stimulus, a noisy hair bundle's phase-locked response and degree of entrainment as well as its detection bandwidth are maximized when the bundle exhibits low-amplitude spontaneous oscillations. The phase-locked response and entrainment of a bundle are predicted to peak as functions of the noise level. We confirmed several of these predictions experimentally by periodically forcing hair bundles held near the onset of self-oscillation. A hair bundle's active process amplifies the stimulus preferentially over the noise, allowing the bundle to detect periodic forces less than 1 pN in amplitude. Moreover, the addition of noise can improve a bundle's ability to detect the stimulus. Although, mechanical activity has not yet been observed in mammalian hair bundles, a related model predicts that active but quiescent bundles can oscillate spontaneously when they are loaded by a sufficiently massive object such as the tectorial membrane. Overall, this work indicates that auditory systems rely on active elements, composed of hair cells and their mechanical environment, that operate on the brink of self-oscillation.

  16. Estimation of effective brain connectivity with dual Kalman filter and EEG source localization methods.

    PubMed

    Rajabioun, Mehdi; Nasrabadi, Ali Motie; Shamsollahi, Mohammad Bagher

    2017-09-01

    Effective connectivity is one of the most important considerations in brain functional mapping via EEG. It demonstrates the effects of a particular active brain region on others. In this paper, a new method is proposed which is based on dual Kalman filter. In this method, firstly by using a brain active localization method (standardized low resolution brain electromagnetic tomography) and applying it to EEG signal, active regions are extracted, and appropriate time model (multivariate autoregressive model) is fitted to extracted brain active sources for evaluating the activity and time dependence between sources. Then, dual Kalman filter is used to estimate model parameters or effective connectivity between active regions. The advantage of this method is the estimation of different brain parts activity simultaneously with the calculation of effective connectivity between active regions. By combining dual Kalman filter with brain source localization methods, in addition to the connectivity estimation between parts, source activity is updated during the time. The proposed method performance has been evaluated firstly by applying it to simulated EEG signals with interacting connectivity simulation between active parts. Noisy simulated signals with different signal to noise ratios are used for evaluating method sensitivity to noise and comparing proposed method performance with other methods. Then the method is applied to real signals and the estimation error during a sweeping window is calculated. By comparing proposed method results in different simulation (simulated and real signals), proposed method gives acceptable results with least mean square error in noisy or real conditions.

  17. Vulnerability to paroxysmal oscillations in delayed neural networks: A basis for nocturnal frontal lobe epilepsy?

    NASA Astrophysics Data System (ADS)

    Quan, Austin; Osorio, Ivan; Ohira, Toru; Milton, John

    2011-12-01

    Resonance can occur in bistable dynamical systems due to the interplay between noise and delay (τ) in the absence of a periodic input. We investigate resonance in a two-neuron model with mutual time-delayed inhibitory feedback. For appropriate choices of the parameters and inputs three fixed-point attractors co-exist: two are stable and one is unstable. In the absence of noise, delay-induced transient oscillations (referred to herein as DITOs) arise whenever the initial function is tuned sufficiently close to the unstable fixed-point. In the presence of noisy perturbations, DITOs arise spontaneously. Since the correlation time for the stationary dynamics is ˜τ, we approximated a higher order Markov process by a three-state Markov chain model by rescaling time as t → 2sτ, identifying the states based on whether the sub-intervals were completely confined to one basin of attraction (the two stable attractors) or straddled the separatrix, and then determining the transition probability matrix empirically. The resultant Markov chain model captured the switching behaviors including the statistical properties of the DITOs. Our observations indicate that time-delayed and noisy bistable dynamical systems are prone to generate DITOs as switches between the two attractors occur. Bistable systems arise transiently in situations when one attractor is gradually replaced by another. This may explain, for example, why seizures in certain epileptic syndromes tend to occur as sleep stages change.

  18. A non-parametric consistency test of the ΛCDM model with Planck CMB data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aghamousa, Amir; Shafieloo, Arman; Hamann, Jan, E-mail: amir@aghamousa.com, E-mail: jan.hamann@unsw.edu.au, E-mail: shafieloo@kasi.re.kr

    Non-parametric reconstruction methods, such as Gaussian process (GP) regression, provide a model-independent way of estimating an underlying function and its uncertainty from noisy data. We demonstrate how GP-reconstruction can be used as a consistency test between a given data set and a specific model by looking for structures in the residuals of the data with respect to the model's best-fit. Applying this formalism to the Planck temperature and polarisation power spectrum measurements, we test their global consistency with the predictions of the base ΛCDM model. Our results do not show any serious inconsistencies, lending further support to the interpretation ofmore » the base ΛCDM model as cosmology's gold standard.« less

  19. Modeling radiation belt electron dynamics during GEM challenge intervals with the DREAM3D diffusion model

    NASA Astrophysics Data System (ADS)

    Tu, Weichao; Cunningham, G. S.; Chen, Y.; Henderson, M. G.; Camporeale, E.; Reeves, G. D.

    2013-10-01

    a response to the Geospace Environment Modeling (GEM) "Global Radiation Belt Modeling Challenge," a 3D diffusion model is used to simulate the radiation belt electron dynamics during two intervals of the Combined Release and Radiation Effects Satellite (CRRES) mission, 15 August to 15 October 1990 and 1 February to 31 July 1991. The 3D diffusion model, developed as part of the Dynamic Radiation Environment Assimilation Model (DREAM) project, includes radial, pitch angle, and momentum diffusion and mixed pitch angle-momentum diffusion, which are driven by dynamic wave databases from the statistical CRRES wave data, including plasmaspheric hiss, lower-band, and upper-band chorus. By comparing the DREAM3D model outputs to the CRRES electron phase space density (PSD) data, we find that, with a data-driven boundary condition at Lmax = 5.5, the electron enhancements can generally be explained by radial diffusion, though additional local heating from chorus waves is required. Because the PSD reductions are included in the boundary condition at Lmax = 5.5, our model captures the fast electron dropouts over a large L range, producing better model performance compared to previous published results. Plasmaspheric hiss produces electron losses inside the plasmasphere, but the model still sometimes overestimates the PSD there. Test simulations using reduced radial diffusion coefficients or increased pitch angle diffusion coefficients inside the plasmasphere suggest that better wave models and more realistic radial diffusion coefficients, both inside and outside the plasmasphere, are needed to improve the model performance. Statistically, the results show that, with the data-driven outer boundary condition, including radial diffusion and plasmaspheric hiss is sufficient to model the electrons during geomagnetically quiet times, but to best capture the radiation belt variations during active times, pitch angle and momentum diffusion from chorus waves are required.

  20. State Identification for Planetary Rovers: Learning and Recognition

    NASA Technical Reports Server (NTRS)

    Aycard, Olivier; Washington, Richard

    1999-01-01

    A planetary rover must be able to identify states where it should stop or change its plan. With limited and infrequent communication from ground, the rover must recognize states accurately. However, the sensor data is inherently noisy, so identifying the temporal patterns of data that correspond to interesting or important states becomes a complex problem. In this paper, we present an approach to state identification using second-order Hidden Markov Models. Models are trained automatically on a set of labeled training data; the rover uses those models to identify its state from the observed data. The approach is demonstrated on data from a planetary rover platform.

  1. Model of bidirectional reflectance distribution function for metallic materials

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Zhu, Jing-Ping; Liu, Hong; Hou, Xun

    2016-09-01

    Based on the three-component assumption that the reflection is divided into specular reflection, directional diffuse reflection, and ideal diffuse reflection, a bidirectional reflectance distribution function (BRDF) model of metallic materials is presented. Compared with the two-component assumption that the reflection is composed of specular reflection and diffuse reflection, the three-component assumption divides the diffuse reflection into directional diffuse and ideal diffuse reflection. This model effectively resolves the problem that constant diffuse reflection leads to considerable error for metallic materials. Simulation and measurement results validate that this three-component BRDF model can improve the modeling accuracy significantly and describe the reflection properties in the hemisphere space precisely for the metallic materials.

  2. Benchmarking of a T-wave alternans detection method based on empirical mode decomposition.

    PubMed

    Blanco-Velasco, Manuel; Goya-Esteban, Rebeca; Cruz-Roldán, Fernando; García-Alberola, Arcadi; Rojo-Álvarez, José Luis

    2017-07-01

    T-wave alternans (TWA) is a fluctuation of the ST-T complex occurring on an every-other-beat basis of the surface electrocardiogram (ECG). It has been shown to be an informative risk stratifier for sudden cardiac death, though the lack of gold standard to benchmark detection methods has promoted the use of synthetic signals. This work proposes a novel signal model to study the performance of a TWA detection. Additionally, the methodological validation of a denoising technique based on empirical mode decomposition (EMD), which is used here along with the spectral method, is also tackled. The proposed test bed system is based on the following guidelines: (1) use of open source databases to enable experimental replication; (2) use of real ECG signals and physiological noise; (3) inclusion of randomized TWA episodes. Both sensitivity (Se) and specificity (Sp) are separately analyzed. Also a nonparametric hypothesis test, based on Bootstrap resampling, is used to determine whether the presence of the EMD block actually improves the performance. The results show an outstanding specificity when the EMD block is used, even in very noisy conditions (0.96 compared to 0.72 for SNR = 8 dB), being always superior than that of the conventional SM alone. Regarding the sensitivity, using the EMD method also outperforms in noisy conditions (0.57 compared to 0.46 for SNR=8 dB), while it decreases in noiseless conditions. The proposed test setting designed to analyze the performance guarantees that the actual physiological variability of the cardiac system is reproduced. The use of the EMD-based block in noisy environment enables the identification of most patients with fatal arrhythmias. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Effective Stochastic Model for Reactive Transport

    NASA Astrophysics Data System (ADS)

    Tartakovsky, A. M.; Zheng, B.; Barajas-Solano, D. A.

    2017-12-01

    We propose an effective stochastic advection-diffusion-reaction (SADR) model. Unlike traditional advection-dispersion-reaction models, the SADR model describes mechanical and diffusive mixing as two separate processes. In the SADR model, the mechanical mixing is driven by random advective velocity with the variance given by the coefficient of mechanical dispersion. The diffusive mixing is modeled as a fickian diffusion with the effective diffusion coefficient. Both coefficients are given in terms of Peclet number (Pe) and the coefficient of molecular diffusion. We use the experimental results of to demonstrate that for transport and bimolecular reactions in porous media the SADR model is significantly more accurate than the traditional dispersion model, which overestimates the mass of the reaction product by as much as 25%.

  4. Multiscale Modeling of Diffusion in a Crowded Environment.

    PubMed

    Meinecke, Lina

    2017-11-01

    We present a multiscale approach to model diffusion in a crowded environment and its effect on the reaction rates. Diffusion in biological systems is often modeled by a discrete space jump process in order to capture the inherent noise of biological systems, which becomes important in the low copy number regime. To model diffusion in the crowded cell environment efficiently, we compute the jump rates in this mesoscopic model from local first exit times, which account for the microscopic positions of the crowding molecules, while the diffusing molecules jump on a coarser Cartesian grid. We then extract a macroscopic description from the resulting jump rates, where the excluded volume effect is modeled by a diffusion equation with space-dependent diffusion coefficient. The crowding molecules can be of arbitrary shape and size, and numerical experiments demonstrate that those factors together with the size of the diffusing molecule play a crucial role on the magnitude of the decrease in diffusive motion. When correcting the reaction rates for the altered diffusion we can show that molecular crowding either enhances or inhibits chemical reactions depending on local fluctuations of the obstacle density.

  5. Complex Geometric Models of Diffusion and Relaxation in Healthy and Damaged White Matter

    PubMed Central

    Farrell, Jonathan A.D.; Smith, Seth A.; Reich, Daniel S.; Calabresi, Peter A.; van Zijl, Peter C.M.

    2010-01-01

    Which aspects of tissue microstructure affect diffusion weighted MRI signals? Prior models, many of which use Monte-Carlo simulations, have focused on relatively simple models of the cellular microenvironment and have not considered important anatomic details. With the advent of higher-order analysis models for diffusion imaging, such as high-angular-resolution diffusion imaging (HARDI), more realistic models are necessary. This paper presents and evaluates the reproducibility of simulations of diffusion in complex geometries. Our framework is quantitative, does not require specialized hardware, is easily implemented with little programming experience, and is freely available as open-source software. Models may include compartments with different diffusivities, permeabilities, and T2 time constants using both parametric (e.g., spheres and cylinders) and arbitrary (e.g., mesh-based) geometries. Three-dimensional diffusion displacement-probability functions are mapped with high reproducibility, and thus can be readily used to assess reproducibility of diffusion-derived contrasts. PMID:19739233

  6. Proposal: A Hybrid Dictionary Modelling Approach for Malay Tweet Normalization

    NASA Astrophysics Data System (ADS)

    Muhamad, Nor Azlizawati Binti; Idris, Norisma; Arshi Saloot, Mohammad

    2017-02-01

    Malay Twitter message presents a special deviation from the original language. Malay Tweet widely used currently by Twitter users, especially at Malaya archipelago. Thus, it is important to make a normalization system which can translated Malay Tweet language into the standard Malay language. Some researchers have conducted in natural language processing which mainly focuses on normalizing English Twitter messages, while few studies have been done for normalize Malay Tweets. This paper proposes an approach to normalize Malay Twitter messages based on hybrid dictionary modelling methods. This approach normalizes noisy Malay twitter messages such as colloquially language, novel words, and interjections into standard Malay language. This research will be used Language Model and N-grams model.

  7. Intuitive Physics: Current Research and Controversies.

    PubMed

    Kubricht, James R; Holyoak, Keith J; Lu, Hongjing

    2017-10-01

    Early research in the field of intuitive physics provided extensive evidence that humans succumb to common misconceptions and biases when predicting, judging, and explaining activity in the physical world. Recent work has demonstrated that, across a diverse range of situations, some biases can be explained by the application of normative physical principles to noisy perceptual inputs. However, it remains unclear how knowledge of physical principles is learned, represented, and applied to novel situations. In this review we discuss theoretical advances from heuristic models to knowledge-based, probabilistic simulation models, as well as recent deep-learning models. We also consider how recent work may be reconciled with earlier findings that favored heuristic models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Non-Gaussian analysis of diffusion weighted imaging in head and neck at 3T: a pilot study in patients with nasopharyngeal carcinoma.

    PubMed

    Yuan, Jing; Yeung, David Ka Wai; Mok, Greta S P; Bhatia, Kunwar S; Wang, Yi-Xiang J; Ahuja, Anil T; King, Ann D

    2014-01-01

    To technically investigate the non-Gaussian diffusion of head and neck diffusion weighted imaging (DWI) at 3 Tesla and compare advanced non-Gaussian diffusion models, including diffusion kurtosis imaging (DKI), stretched-exponential model (SEM), intravoxel incoherent motion (IVIM) and statistical model in the patients with nasopharyngeal carcinoma (NPC). After ethics approval was granted, 16 patients with NPC were examined using DWI performed at 3T employing an extended b-value range from 0 to 1500 s/mm(2). DWI signals were fitted to the mono-exponential and non-Gaussian diffusion models on primary tumor, metastatic node, spinal cord and muscle. Non-Gaussian parameter maps were generated and compared to apparent diffusion coefficient (ADC) maps in NPC. Diffusion in NPC exhibited non-Gaussian behavior at the extended b-value range. Non-Gaussian models achieved significantly better fitting of DWI signal than the mono-exponential model. Non-Gaussian diffusion coefficients were substantially different from mono-exponential ADC both in magnitude and histogram distribution. Non-Gaussian diffusivity in head and neck tissues and NPC lesions could be assessed by using non-Gaussian diffusion models. Non-Gaussian DWI analysis may reveal additional tissue properties beyond ADC and holds potentials to be used as a complementary tool for NPC characterization.

  9. Sensing of Particular Speakers for the Construction of Voice Interface Utilized in Noisy Environment

    NASA Astrophysics Data System (ADS)

    Sawada, Hideyuki; Ohkado, Minoru

    Human is able to exchange information smoothly using voice under different situations such as noisy environment in a crowd and with the existence of plural speakers. We are able to detect the position of a source sound in 3D space, extract a particular sound from mixed sounds, and recognize who is talking. By realizing this mechanism with a computer, new applications will be presented for recording a sound with high quality by reducing noise, presenting a clarified sound, and realizing a microphone-free speech recognition by extracting particular sound. The paper will introduce a realtime detection and identification of particular speaker in noisy environment using a microphone array based on the location of a speaker and the individual voice characteristics. The study will be applied to develop an adaptive auditory system of a mobile robot which collaborates with a factory worker.

  10. Subjective field study of response to impulsive helicopter noise

    NASA Technical Reports Server (NTRS)

    Powell, C. A.

    1981-01-01

    Subjects, located outdoors and indoors, judged the noisiness and other subjective noise characteristics of flyovers of two helicopters and a propeller driven airplane as part of a study of the effects of impulsiveness on the subjective response to helicopter noise. In the first experiment, the impulsive characteristics of one helicopter was controlled by varying the main rotor speed while maintaining a constant airspeed in level flight. The second experiment which utilized only the helicopters, included descent and level flight operations. The more impulsive helicopter was consistently judged less noisy than the less impulsive helicopter at equal effective perceived noise levels (EPNL). The ability of EPNL to predict noisiness was not improved by the addition of either of two proposed impulse corrections. A subjective measure of impulsiveness, however, which was not significantly related to the proposed impulse corrections, was found to improve the predictive ability of EPNL.

  11. GENERAL: Thermal entanglement and teleportation of a thermally mixed entangled state of a Heisenberg chain through a Werner state

    NASA Astrophysics Data System (ADS)

    Huang, Li-Yuan; Fang, Mao-Fa

    2008-07-01

    The thermal entanglement and teleportation of a thermally mixed entangled state of a two-qubit Heisenberg XXX chain under the Dzyaloshinski-Moriya (DM) anisotropic antisymmetric interaction through a noisy quantum channel given by a Werner state is investigated. The dependences of the thermal entanglement of the teleported state on the DM coupling constant, the temperature and the entanglement of the noisy quantum channel are studied in detail for both the ferromagnetic and the antiferromagnetic cases. The result shows that a minimum entanglement of the noisy quantum channel must be provided in order to realize the entanglement teleportation. The values of fidelity of the teleported state are also studied for these two cases. It is found that under certain conditions, we can transfer an initial state with a better fidelity than that for any classical communication protocol.

  12. Avoiding disentanglement of multipartite entangled optical beams with a correlated noisy channel

    PubMed Central

    Deng, Xiaowei; Tian, Caixing; Su, Xiaolong; Xie, Changde

    2017-01-01

    A quantum communication network can be constructed by distributing a multipartite entangled state to space-separated nodes. Entangled optical beams with highest flying speed and measurable brightness can be used as carriers to convey information in quantum communication networks. Losses and noises existing in real communication channels will reduce or even totally destroy entanglement. The phenomenon of disentanglement will result in the complete failure of quantum communication. Here, we present the experimental demonstrations on the disentanglement and the entanglement revival of tripartite entangled optical beams used in a quantum network. We experimentally demonstrate that symmetric tripartite entangled optical beams are robust in pure lossy but noiseless channels. In a noisy channel, the excess noise will lead to the disentanglement and the destroyed entanglement can be revived by the use of a correlated noisy channel (non-Markovian environment). The presented results provide useful technical references for establishing quantum networks. PMID:28295024

  13. Perceived noisiness under anechoic, semi-reverberant and earphone listening conditions

    NASA Technical Reports Server (NTRS)

    Clarke, F. R.; Kryter, K. D.

    1972-01-01

    Magnitude estimates by each of 31 listeners were obtained for a variety of noise sources under three methods of stimuli presentation: loudspeaker presentation in an anechoic chamber, loudspeaker presentation in a normal semi-reverberant room, and earphone presentation. Comparability of ratings obtained in these environments were evaluated with respect to predictability of ratings from physical measures, reliability of ratings, and to the scale values assigned to various noise stimuli. Acoustic environment was found to have little effect upon physical predictive measures and ratings of perceived noisiness were little affected by the acoustic environment in which they were obtained. The need for further study of possible differing interactions between judged noisiness of steady state sound and the methods of magnitude estimation and paired comparisons is indicated by the finding that in these tests the subjects, though instructed otherwise, apparently judged the maximum rather than the effective magnitude of steady-state noises.

  14. The patient-zero problem with noisy observations

    NASA Astrophysics Data System (ADS)

    Altarelli, Fabrizio; Braunstein, Alfredo; Dall'Asta, Luca; Ingrosso, Alessandro; Zecchina, Riccardo

    2014-10-01

    A belief propagation approach has been recently proposed for the patient-zero problem in SIR epidemics. The patient-zero problem consists of finding the initial source of an epidemic outbreak given observations at a later time. In this work, we study a more difficult but related inference problem, in which observations are noisy and there is confusion between observed states. In addition to studying the patient-zero problem, we also tackle the problem of completing and correcting the observations to possibly find undiscovered infected individuals and false test results. Moreover, we devise a set of equations, based on the variational expression of the Bethe free energy, to find the patient-zero along with maximum-likelihood epidemic parameters. We show, by means of simulated epidemics, that this method is able to infer details on the past history of an epidemic outbreak based solely on the topology of the contact network and a single snapshot of partial and noisy observations.

  15. A laboratory study of the subjective response to helicopter blade-slap noise

    NASA Technical Reports Server (NTRS)

    Shepherd, K. P.

    1978-01-01

    The test stimuli recorded during a recent field study consisted of 16 sounds, each presented at 4 peak noise levels. Two helicopters and a fixed-wing aircraft were used. The impulsive characteristics of one helicopter were varied by operating at different rotor speeds, whereas the other helicopter, the noise of which was dominated by the tail rotor, displayed little variation in blade-slap noise. Thirty-two subjects made noisiness judgments on a continuous, 11 point, numerical scale. Preliminary results indicate that proposed impulsiveness corrections provide no significant improvement in the noisiness predictive ability of Effective Perceived Noise Levels (EPNL). For equal EPNL, the two categories of helicopter stimuli, one of which was far more impulsive than the other, showed no difference in judged noisiness. Examination of the physical characteristics of the sounds presented in the laboratory highlighted the difficulty of reproducing acoustical signals with high-crest factors.

  16. Additive Classical Capacity of Quantum Channels Assisted by Noisy Entanglement.

    PubMed

    Zhuang, Quntao; Zhu, Elton Yechao; Shor, Peter W

    2017-05-19

    We give a capacity formula for the classical information transmission over a noisy quantum channel, with separable encoding by the sender and limited resources provided by the receiver's preshared ancilla. Instead of a pure state, we consider the signal-ancilla pair in a mixed state, purified by a "witness." Thus, the signal-witness correlation limits the resource available from the signal-ancilla correlation. Our formula characterizes the utility of different forms of resources, including noisy or limited entanglement assistance, for classical communication. With separable encoding, the sender's signals across multiple channel uses are still allowed to be entangled, yet our capacity formula is additive. In particular, for generalized covariant channels, our capacity formula has a simple closed form. Moreover, our additive capacity formula upper bounds the general coherent attack's information gain in various two-way quantum key distribution protocols. For Gaussian protocols, the additivity of the formula indicates that the collective Gaussian attack is the most powerful.

  17. An integrated approach to improving noisy speech perception

    NASA Astrophysics Data System (ADS)

    Koval, Serguei; Stolbov, Mikhail; Smirnova, Natalia; Khitrov, Mikhail

    2002-05-01

    For a number of practical purposes and tasks, experts have to decode speech recordings of very poor quality. A combination of techniques is proposed to improve intelligibility and quality of distorted speech messages and thus facilitate their comprehension. Along with the application of noise cancellation and speech signal enhancement techniques removing and/or reducing various kinds of distortions and interference (primarily unmasking and normalization in time and frequency fields), the approach incorporates optimal listener expert tactics based on selective listening, nonstandard binaural listening, accounting for short-term and long-term human ear adaptation to noisy speech, as well as some methods of speech signal enhancement to support speech decoding during listening. The approach integrating the suggested techniques ensures high-quality ultimate results and has successfully been applied by Speech Technology Center experts and by numerous other users, mainly forensic institutions, to perform noisy speech records decoding for courts, law enforcement and emergency services, accident investigation bodies, etc.

  18. Bayesian Estimation and Inference Using Stochastic Electronics

    PubMed Central

    Thakur, Chetan Singh; Afshar, Saeed; Wang, Runchun M.; Hamilton, Tara J.; Tapson, Jonathan; van Schaik, André

    2016-01-01

    In this paper, we present the implementation of two types of Bayesian inference problems to demonstrate the potential of building probabilistic algorithms in hardware using single set of building blocks with the ability to perform these computations in real time. The first implementation, referred to as the BEAST (Bayesian Estimation and Stochastic Tracker), demonstrates a simple problem where an observer uses an underlying Hidden Markov Model (HMM) to track a target in one dimension. In this implementation, sensors make noisy observations of the target position at discrete time steps. The tracker learns the transition model for target movement, and the observation model for the noisy sensors, and uses these to estimate the target position by solving the Bayesian recursive equation online. We show the tracking performance of the system and demonstrate how it can learn the observation model, the transition model, and the external distractor (noise) probability interfering with the observations. In the second implementation, referred to as the Bayesian INference in DAG (BIND), we show how inference can be performed in a Directed Acyclic Graph (DAG) using stochastic circuits. We show how these building blocks can be easily implemented using simple digital logic gates. An advantage of the stochastic electronic implementation is that it is robust to certain types of noise, which may become an issue in integrated circuit (IC) technology with feature sizes in the order of tens of nanometers due to their low noise margin, the effect of high-energy cosmic rays and the low supply voltage. In our framework, the flipping of random individual bits would not affect the system performance because information is encoded in a bit stream. PMID:27047326

  19. Bayesian Estimation and Inference Using Stochastic Electronics.

    PubMed

    Thakur, Chetan Singh; Afshar, Saeed; Wang, Runchun M; Hamilton, Tara J; Tapson, Jonathan; van Schaik, André

    2016-01-01

    In this paper, we present the implementation of two types of Bayesian inference problems to demonstrate the potential of building probabilistic algorithms in hardware using single set of building blocks with the ability to perform these computations in real time. The first implementation, referred to as the BEAST (Bayesian Estimation and Stochastic Tracker), demonstrates a simple problem where an observer uses an underlying Hidden Markov Model (HMM) to track a target in one dimension. In this implementation, sensors make noisy observations of the target position at discrete time steps. The tracker learns the transition model for target movement, and the observation model for the noisy sensors, and uses these to estimate the target position by solving the Bayesian recursive equation online. We show the tracking performance of the system and demonstrate how it can learn the observation model, the transition model, and the external distractor (noise) probability interfering with the observations. In the second implementation, referred to as the Bayesian INference in DAG (BIND), we show how inference can be performed in a Directed Acyclic Graph (DAG) using stochastic circuits. We show how these building blocks can be easily implemented using simple digital logic gates. An advantage of the stochastic electronic implementation is that it is robust to certain types of noise, which may become an issue in integrated circuit (IC) technology with feature sizes in the order of tens of nanometers due to their low noise margin, the effect of high-energy cosmic rays and the low supply voltage. In our framework, the flipping of random individual bits would not affect the system performance because information is encoded in a bit stream.

  20. Evaluation of non-Gaussian diffusion in cardiac MRI.

    PubMed

    McClymont, Darryl; Teh, Irvin; Carruth, Eric; Omens, Jeffrey; McCulloch, Andrew; Whittington, Hannah J; Kohl, Peter; Grau, Vicente; Schneider, Jürgen E

    2017-09-01

    The diffusion tensor model assumes Gaussian diffusion and is widely applied in cardiac diffusion MRI. However, diffusion in biological tissue deviates from a Gaussian profile as a result of hindrance and restriction from cell and tissue microstructure, and may be quantified better by non-Gaussian modeling. The aim of this study was to investigate non-Gaussian diffusion in healthy and hypertrophic hearts. Thirteen rat hearts (five healthy, four sham, four hypertrophic) were imaged ex vivo. Diffusion-weighted images were acquired at b-values up to 10,000 s/mm 2 . Models of diffusion were fit to the data and ranked based on the Akaike information criterion. The diffusion tensor was ranked best at b-values up to 2000 s/mm 2 but reflected the signal poorly in the high b-value regime, in which the best model was a non-Gaussian "beta distribution" model. Although there was considerable overlap in apparent diffusivities between the healthy, sham, and hypertrophic hearts, diffusion kurtosis and skewness in the hypertrophic hearts were more than 20% higher in the sheetlet and sheetlet-normal directions. Non-Gaussian diffusion models have a higher sensitivity for the detection of hypertrophy compared with the Gaussian model. In particular, diffusion kurtosis may serve as a useful biomarker for characterization of disease and remodeling in the heart. Magn Reson Med 78:1174-1186, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  1. Modeling gas displacement kinetics in coal with Maxwell-Stefan diffusion theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, X.R.; Wang, G.X.; Massarotto, P.

    2007-12-15

    The kinetics of binary gas counter-diffusion and Darcy flow in a large coal sample were modeled, and the results compared with data from experimental laboratory investigations. The study aimed for a better understanding of the CO{sub 2}-sequestration enhanced coalbed methane (ECBM) recovery process. The transport model used was based on the bidisperse diffusion mechanism and Maxwell-Stefan (MS) diffusion theory. This provides an alternative approach to simulate multicomponent gas diffusion and flow in bulk coals. A series of high-stress core flush tests were performed on a large coal sample sourced from a Bowen Basin coal mine in Queensland, Australia to investigatemore » the kinetics of one gas displacing another. These experimental results were used to derive gas diffusivities, and to examine the predictive capability of the diffusion model. The simulations show good agreements with the displacement experiments revealing that MS diffusion theory is superior for describing diffusion of mixed gases in coals compared with the constant Fick diffusivity model. The optimized effective micropore and macropore diffusivities are comparable with experimental measurements achieved by other researchers.« less

  2. A petrological study of Paleoarchean rocks of the Onverwacht Group: New insights into the geologic evolution of the Barberton Greenstone Belt, South Africa

    NASA Astrophysics Data System (ADS)

    Grosch, E. G.; Mcloughlin, N.; Abu-Alam, T. S.; Vidal, O.

    2012-12-01

    This study presents a multi-disciplinary petrological approach applied to surface samples and a total of 800 m of scientific drill core that furthers our understanding of the geologic evolution of the ca. 3.5 to 3.2 Ga Onverwacht Group of the Barberton greenstone belt (BGB), South Africa. Detrital zircon grains in coarse (diamictite) to fine-grained clastic sedimentary rocks of the Noisy formation (drill core KD2a) that unconformably overlies the volcanic ca. 3472 Ma Hooggenoeg Formation, are investigated by laser ablation LA-ICP-MS to constrain their 207Pb/206Pb ages for depositional age and provenance. A wide range in 207Pb/206Pb ages between ca. 3600 and 3430 Ma is reported, corresponding to surrounding TTG plutons and the ca.3667-3223 Ma Ancient Gneiss Complex. The youngest detrital zircon grain identified has an age of 3432 ± 10 Ma. Given the short time interval for a major change in geologic environment between ca. 3472 Ma and ca. 3432 Ma, it is argued here, that the Noisy formation is the earliest tectonic basin in the BGB, which developed during major tectonic uplift at ca. 3432 Ma. In the overlying ca. 3334 Ma Kromberg type-section, application of a chlorite thermodynamic multi-equilibrium calculation, dioctahedral mica hydration-temperature curve and pseudosection modelling, indicates a wide range in metamorphic conditions from sub-greenschist to the uppermost greenschist facies across the Kromberg type-section. A central mylonitic fuchsite-bearing zone, referred to as the Kromberg Section Mylonites, records at least two metamorphic events: a high-T, low-P (420 ± 30oC, < 3kbar) metamorphism, and a lower-T event (T = 240-350oC, P = 2.9 ± 0.15kbar) related to retrograde metamorphism. An inverted metamorphic field gradient is documented beneath the KSM suggesting thrust repetition of the Kromberg sequence over the clastic rocks of the Noisy formation at ca. 3.2 Ga. This study also presents the first SIMS multiple sulfur isotope dataset on sulfides from the BGB and is used to test current models of mid-Archean biogeochemical sulfur cycling. In-situ δ34SCDT and Δ33S values of volcanic, detrital, diagenetic and hydrothermal pyrite of the Kromberg and Noisy Formations are presented. The Kromberg cherts and mafic-ultramafic hydrothermal vein pyrites exhibit Δ33S of -0.20 to +2.50‰, and δ34SCDT from -6.00 to +1.50‰ recording mixing between atmospheric sulfur and hydrothermal magmatic fluids. The Noisy sedimentary sequence contains detrital and diagenetic pyrites with a significant variation in Δ33S of -0.62 to +1.4‰ and δ34SCDT between -7.00 and +12.6‰ in the upper turbidite unit, to more narrow isotopic ranges with magmatic-atmospheric values in the underlying polymictitic diamictite. A sedimentary quartz-pyrite vein in the diamictite records the largest range and most negative δ34SCDT values so far reported from an Archean terrain (δ34SCDT = -55.04 to +27.46‰), and suggests shallow-level boiling and hydrogen release into early (ca. 3432 Ma) tectonic sedimentary basins during sulfide precipitation and a new possible environment for early microbial life.

  3. Statistical learning and adaptive decision-making underlie human response time variability in inhibitory control.

    PubMed

    Ma, Ning; Yu, Angela J

    2015-01-01

    Response time (RT) is an oft-reported behavioral measure in psychological and neurocognitive experiments, but the high level of observed trial-to-trial variability in this measure has often limited its usefulness. Here, we combine computational modeling and psychophysics to examine the hypothesis that fluctuations in this noisy measure reflect dynamic computations in human statistical learning and corresponding cognitive adjustments. We present data from the stop-signal task (SST), in which subjects respond to a go stimulus on each trial, unless instructed not to by a subsequent, infrequently presented stop signal. We model across-trial learning of stop signal frequency, P(stop), and stop-signal onset time, SSD (stop-signal delay), with a Bayesian hidden Markov model, and within-trial decision-making with an optimal stochastic control model. The combined model predicts that RT should increase with both expected P(stop) and SSD. The human behavioral data (n = 20) bear out this prediction, showing P(stop) and SSD both to be significant, independent predictors of RT, with P(stop) being a more prominent predictor in 75% of the subjects, and SSD being more prominent in the remaining 25%. The results demonstrate that humans indeed readily internalize environmental statistics and adjust their cognitive/behavioral strategy accordingly, and that subtle patterns in RT variability can serve as a valuable tool for validating models of statistical learning and decision-making. More broadly, the modeling tools presented in this work can be generalized to a large body of behavioral paradigms, in order to extract insights about cognitive and neural processing from apparently quite noisy behavioral measures. We also discuss how this behaviorally validated model can then be used to conduct model-based analysis of neural data, in order to help identify specific brain areas for representing and encoding key computational quantities in learning and decision-making.

  4. Validation of a numerical method for interface-resolving simulation of multicomponent gas-liquid mass transfer and evaluation of multicomponent diffusion models

    NASA Astrophysics Data System (ADS)

    Woo, Mino; Wörner, Martin; Tischer, Steffen; Deutschmann, Olaf

    2018-03-01

    The multicomponent model and the effective diffusivity model are well established diffusion models for numerical simulation of single-phase flows consisting of several components but are seldom used for two-phase flows so far. In this paper, a specific numerical model for interfacial mass transfer by means of a continuous single-field concentration formulation is combined with the multicomponent model and effective diffusivity model and is validated for multicomponent mass transfer. For this purpose, several test cases for one-dimensional physical or reactive mass transfer of ternary mixtures are considered. The numerical results are compared with analytical or numerical solutions of the Maxell-Stefan equations and/or experimental data. The composition-dependent elements of the diffusivity matrix of the multicomponent and effective diffusivity model are found to substantially differ for non-dilute conditions. The species mole fraction or concentration profiles computed with both diffusion models are, however, for all test cases very similar and in good agreement with the analytical/numerical solutions or measurements. For practical computations, the effective diffusivity model is recommended due to its simplicity and lower computational costs.

  5. Immunity in the Noisy Penna Model

    NASA Astrophysics Data System (ADS)

    Biecek, Przemysław; Cebrat, Stanisław

    We have modified the Penna standard sexual model in such a way, that the state of each individual has been determined by the individual fluctuation and the fluctuation of the environment. If the sum of both fluctuations is higher than the assumed limit, the organism dies. Additionally, the individuals can learn the trends of the environment's fluctuations, diminishing their deleterious effects. This mechanism leads to the higher mortality of the youngest individuals and the lowest mortality of individuals just before reaching the minimum reproduction age. These phenomena are observed in any mortality curve describing the age structures of human populations.

  6. Performance of concatenated Reed-Solomon/Viterbi channel coding

    NASA Technical Reports Server (NTRS)

    Divsalar, D.; Yuen, J. H.

    1982-01-01

    The concatenated Reed-Solomon (RS)/Viterbi coding system is reviewed. The performance of the system is analyzed and results are derived with a new simple approach. A functional model for the input RS symbol error probability is presented. Based on this new functional model, we compute the performance of a concatenated system in terms of RS word error probability, output RS symbol error probability, bit error probability due to decoding failure, and bit error probability due to decoding error. Finally we analyze the effects of the noisy carrier reference and the slow fading on the system performance.

  7. Strategic sophistication of individuals and teams. Experimental evidence

    PubMed Central

    Sutter, Matthias; Czermak, Simon; Feri, Francesco

    2013-01-01

    Many important decisions require strategic sophistication. We examine experimentally whether teams act more strategically than individuals. We let individuals and teams make choices in simple games, and also elicit first- and second-order beliefs. We find that teams play the Nash equilibrium strategy significantly more often, and their choices are more often a best response to stated first order beliefs. Distributional preferences make equilibrium play less likely. Using a mixture model, the estimated probability to play strategically is 62% for teams, but only 40% for individuals. A model of noisy introspection reveals that teams differ from individuals in higher order beliefs. PMID:24926100

  8. Spatial stochastic modelling of the Hes1 gene regulatory network: intrinsic noise can explain heterogeneity in embryonic stem cell differentiation.

    PubMed

    Sturrock, Marc; Hellander, Andreas; Matzavinos, Anastasios; Chaplain, Mark A J

    2013-03-06

    Individual mouse embryonic stem cells have been found to exhibit highly variable differentiation responses under the same environmental conditions. The noisy cyclic expression of Hes1 and its downstream genes are known to be responsible for this, but the mechanism underlying this variability in expression is not well understood. In this paper, we show that the observed experimental data and diverse differentiation responses can be explained by a spatial stochastic model of the Hes1 gene regulatory network. We also propose experiments to control the precise differentiation response using drug treatment.

  9. Probabilistic models, learning algorithms, and response variability: sampling in cognitive development.

    PubMed

    Bonawitz, Elizabeth; Denison, Stephanie; Griffiths, Thomas L; Gopnik, Alison

    2014-10-01

    Although probabilistic models of cognitive development have become increasingly prevalent, one challenge is to account for how children might cope with a potentially vast number of possible hypotheses. We propose that children might address this problem by 'sampling' hypotheses from a probability distribution. We discuss empirical results demonstrating signatures of sampling, which offer an explanation for the variability of children's responses. The sampling hypothesis provides an algorithmic account of how children might address computationally intractable problems and suggests a way to make sense of their 'noisy' behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Neural Mechanisms for Acoustic Signal Detection under Strong Masking in an Insect

    PubMed Central

    Römer, Heiner

    2015-01-01

    Communication is fundamental for our understanding of behavior. In the acoustic modality, natural scenes for communication in humans and animals are often very noisy, decreasing the chances for signal detection and discrimination. We investigated the mechanisms enabling selective hearing under natural noisy conditions for auditory receptors and interneurons of an insect. In the studied katydid Mecopoda elongata species-specific calling songs (chirps) are strongly masked by signals of another species, both communicating in sympatry. The spectral properties of the two signals are similar and differ only in a small frequency band at 2 kHz present in the chirping species. Receptors sharply tuned to 2 kHz are completely unaffected by the masking signal of the other species, whereas receptors tuned to higher audio and ultrasonic frequencies show complete masking. Intracellular recordings of identified interneurons revealed two mechanisms providing response selectivity to the chirp. (1) Response selectivity is when several identified interneurons exhibit remarkably selective responses to the chirps, even at signal-to-noise ratios of −21 dB, since they are sharply tuned to 2 kHz. Their dendritic arborizations indicate selective connectivity with low-frequency receptors tuned to 2 kHz. (2) Novelty detection is when a second group of interneurons is broadly tuned but, because of strong stimulus-specific adaptation to the masker spectrum and “novelty detection” to the 2 kHz band present only in the conspecific signal, these interneurons start to respond selectively to the chirp shortly after the onset of the continuous masker. Both mechanisms provide the sensory basis for hearing at unfavorable signal-to-noise ratios. SIGNIFICANCE STATEMENT Animal and human acoustic communication may suffer from the same “cocktail party problem,” when communication happens in noisy social groups. We address solutions for this problem in a model system of two katydids, where one species produces an extremely noisy sound, yet the second species still detects its own song. Using intracellular recording techniques we identified two neural mechanisms underlying the surprising behavioral signal detection at the level of single identified interneurons. These neural mechanisms for signal detection are likely to be important for other sensory modalities as well, where noise in the communication channel creates similar problems. Also, they may be used for the development of algorithms for the filtering of specific signals in technical microphones or hearing aids. PMID:26203150

  11. A multiscale MD-FE model of diffusion in composite media with internal surface interaction based on numerical homogenization procedure.

    PubMed

    Kojic, M; Milosevic, M; Kojic, N; Kim, K; Ferrari, M; Ziemys, A

    2014-02-01

    Mass transport by diffusion within composite materials may depend not only on internal microstructural geometry, but also on the chemical interactions between the transported substance and the material of the microstructure. Retrospectively, there is a gap in methods and theory to connect material microstructure properties with macroscale continuum diffusion characteristics. Here we present a new hierarchical multiscale model for diffusion within composite materials that couples material microstructural geometry and interactions between diffusing particles and the material matrix. This model, which bridges molecular dynamics (MD) and the finite element (FE) method, is employed to construct a continuum diffusion model based on a novel numerical homogenization procedure. The procedure is general and robust for evaluating constitutive material parameters of the continuum model. These parameters include the traditional bulk diffusion coefficients and, additionally, the distances from the solid surface accounting for surface interaction effects. We implemented our models to glucose diffusion through the following two geometrical/material configurations: tightly packed silica nanospheres, and a complex fibrous structure surrounding nanospheres. Then, rhodamine 6G diffusion analysis through an aga-rose gel network was performed, followed by a model validation using our experimental results. The microstructural model, numerical homogenization and continuum model offer a new platform for modeling and predicting mass diffusion through complex biological environment and within composite materials that are used in a wide range of applications, like drug delivery and nanoporous catalysts.

  12. A multiscale MD–FE model of diffusion in composite media with internal surface interaction based on numerical homogenization procedure

    PubMed Central

    Kojic, M.; Milosevic, M.; Kojic, N.; Kim, K.; Ferrari, M.; Ziemys, A.

    2014-01-01

    Mass transport by diffusion within composite materials may depend not only on internal microstructural geometry, but also on the chemical interactions between the transported substance and the material of the microstructure. Retrospectively, there is a gap in methods and theory to connect material microstructure properties with macroscale continuum diffusion characteristics. Here we present a new hierarchical multiscale model for diffusion within composite materials that couples material microstructural geometry and interactions between diffusing particles and the material matrix. This model, which bridges molecular dynamics (MD) and the finite element (FE) method, is employed to construct a continuum diffusion model based on a novel numerical homogenization procedure. The procedure is general and robust for evaluating constitutive material parameters of the continuum model. These parameters include the traditional bulk diffusion coefficients and, additionally, the distances from the solid surface accounting for surface interaction effects. We implemented our models to glucose diffusion through the following two geometrical/material configurations: tightly packed silica nanospheres, and a complex fibrous structure surrounding nanospheres. Then, rhodamine 6G diffusion analysis through an aga-rose gel network was performed, followed by a model validation using our experimental results. The microstructural model, numerical homogenization and continuum model offer a new platform for modeling and predicting mass diffusion through complex biological environment and within composite materials that are used in a wide range of applications, like drug delivery and nanoporous catalysts. PMID:24578582

  13. A "desperation-reaction" model of medical diffusion.

    PubMed Central

    Warner, K E

    1975-01-01

    Knowledge about the adoption and diffusion of innovations is briefly reviewed. A model is then proposed to explain how certain innovations, intended to address dire medical problems, might diffuse in a manner not previously reported, with extensive diffusion occurring during what would be a period of small-scale experimentation and limited adoption in the conventional innovation-diffusion environment. The model is illustrated with findings from a case study of the diffusion of drug therapies for four types of leukemia. Possible implications of "desperation-reaction" diffusion are suggested. PMID:1065622

  14. Analysis of the moisture diffusion transfer through fibrous porous membrane used for waterproof breathable fabrics

    NASA Astrophysics Data System (ADS)

    Zhu, Fanglong; Zhou, Yu; Liu, Suyan

    2013-10-01

    In this paper, we propose a new fractal model to determine the moisture effective diffusivity of porous membrane such as expanded polytetrafluorethylene membrane, by taking account of both parallel and perpendicular channels to diffusion flow direction. With the consideration of both the Knudsen and bulk diffusion effect, a relationship between micro-structural parameters and effective moisture diffusivity is deduced. The effective moisture diffusivities predicted by the present fractal model are compared with moisture diffusion experiment data and calculated values obtained from other theoretical models.

  15. Multimodel analysis of anisotropic diffusive tracer-gas transport in a deep arid unsaturated zone

    USGS Publications Warehouse

    Green, Christopher T.; Walvoord, Michelle Ann; Andraski, Brian J.; Striegl, Robert G.; Stonestrom, David A.

    2015-01-01

    Gas transport in the unsaturated zone affects contaminant flux and remediation, interpretation of groundwater travel times from atmospheric tracers, and mass budgets of environmentally important gases. Although unsaturated zone transport of gases is commonly treated as dominated by diffusion, the characteristics of transport in deep layered sediments remain uncertain. In this study, we use a multimodel approach to analyze results of a gas-tracer (SF6) test to clarify characteristics of gas transport in deep unsaturated alluvium. Thirty-five separate models with distinct diffusivity structures were calibrated to the tracer-test data and were compared on the basis of Akaike Information Criteria estimates of posterior model probability. Models included analytical and numerical solutions. Analytical models provided estimates of bulk-scale apparent diffusivities at the scale of tens of meters. Numerical models provided information on local-scale diffusivities and feasible lithological features producing the observed tracer breakthrough curves. The combined approaches indicate significant anisotropy of bulk-scale diffusivity, likely associated with high-diffusivity layers. Both approaches indicated that diffusivities in some intervals were greater than expected from standard models relating porosity to diffusivity. High apparent diffusivities and anisotropic diffusivity structures were consistent with previous observations at the study site of rapid lateral transport and limited vertical spreading of gas-phase contaminants. Additional processes such as advective oscillations may be involved. These results indicate that gases in deep, layered unsaturated zone sediments can spread laterally more quickly, and produce higher peak concentrations, than predicted by homogeneous, isotropic diffusion models.

  16. Maxwell-Stefan diffusion coefficient estimation for ternary systems: an ideal ternary alcohol system.

    PubMed

    Allie-Ebrahim, Tariq; Zhu, Qingyu; Bräuer, Pierre; Moggridge, Geoff D; D'Agostino, Carmine

    2017-06-21

    The Maxwell-Stefan model is a popular diffusion model originally developed to model diffusion of gases, which can be considered thermodynamically ideal mixtures, although its application has been extended to model diffusion in non-ideal liquid mixtures as well. A drawback of the model is that it requires the Maxwell-Stefan diffusion coefficients, which are not based on measurable quantities but they have to be estimated. As a result, numerous estimation methods, such as the Darken model, have been proposed to estimate these diffusion coefficients. However, the Darken model was derived, and is only well defined, for binary systems. This model has been extended to ternary systems according to two proposed forms, one by R. Krishna and J. M. van Baten, Ind. Eng. Chem. Res., 2005, 44, 6939-6947 and the other by X. Liu, T. J. H. Vlugt and A. Bardow, Ind. Eng. Chem. Res., 2011, 50, 10350-10358. In this paper, the two forms have been analysed against the ideal ternary system of methanol/butan-1-ol/propan-1-ol and using experimental values of self-diffusion coefficients. In particular, using pulsed gradient stimulated echo nuclear magnetic resonance (PGSTE-NMR) we have measured the self-diffusion coefficients in various methanol/butan-1-ol/propan-1-ol mixtures. The experimental values of self-diffusion coefficients were then used as the input data required for the Darken model. The predictions of the two proposed multicomponent forms of this model were then compared to experimental values of mutual diffusion coefficients for the ideal alcohol ternary system. This experimental-based approach showed that the Liu's model gives better predictions compared to that of Krishna and van Baten, although it was only accurate to within 26%. Nonetheless, the multicomponent Darken model in conjunction with self-diffusion measurements from PGSTE-NMR represents an attractive method for a rapid estimation of mutual diffusion in multicomponent systems, especially when compared to exhaustive MD simulations.

  17. Non-Gaussian Analysis of Diffusion Weighted Imaging in Head and Neck at 3T: A Pilot Study in Patients with Nasopharyngeal Carcinoma

    PubMed Central

    Yuan, Jing; Yeung, David Ka Wai; Mok, Greta S. P.; Bhatia, Kunwar S.; Wang, Yi-Xiang J.; Ahuja, Anil T.; King, Ann D.

    2014-01-01

    Purpose To technically investigate the non-Gaussian diffusion of head and neck diffusion weighted imaging (DWI) at 3 Tesla and compare advanced non-Gaussian diffusion models, including diffusion kurtosis imaging (DKI), stretched-exponential model (SEM), intravoxel incoherent motion (IVIM) and statistical model in the patients with nasopharyngeal carcinoma (NPC). Materials and Methods After ethics approval was granted, 16 patients with NPC were examined using DWI performed at 3T employing an extended b-value range from 0 to 1500 s/mm2. DWI signals were fitted to the mono-exponential and non-Gaussian diffusion models on primary tumor, metastatic node, spinal cord and muscle. Non-Gaussian parameter maps were generated and compared to apparent diffusion coefficient (ADC) maps in NPC. Results Diffusion in NPC exhibited non-Gaussian behavior at the extended b-value range. Non-Gaussian models achieved significantly better fitting of DWI signal than the mono-exponential model. Non-Gaussian diffusion coefficients were substantially different from mono-exponential ADC both in magnitude and histogram distribution. Conclusion Non-Gaussian diffusivity in head and neck tissues and NPC lesions could be assessed by using non-Gaussian diffusion models. Non-Gaussian DWI analysis may reveal additional tissue properties beyond ADC and holds potentials to be used as a complementary tool for NPC characterization. PMID:24466318

  18. Demonstration of Inexact Computing Implemented in the JPEG Compression Algorithm using Probabilistic Boolean Logic applied to CMOS Components

    DTIC Science & Technology

    2015-12-24

    Signal to Noise Ratio SPICE Simulation Program with Integrated Circuit Emphasis TIFF Tagged Image File Format USC University of Southern California xvii...sources can create errors in digital circuits. These effects can be simulated using Simulation Program with Integrated Circuit Emphasis ( SPICE ) or...compute summary statistics. 4.1 Circuit Simulations Noisy analog circuits can be simulated in SPICE or Cadence SpectreTM software via noisy voltage

  19. Noise Abatement

    NASA Technical Reports Server (NTRS)

    1983-01-01

    SMART, Sound Modification and Regulated Temperature compound, is a liquid plastic mixture with exceptional energy and sound absorbing qualities. It is derived from a very elastic plastic which was an effective noise abatement material in the Apollo Guidance System. Discovered by a NASA employee, it is marketed by Environmental Health Systems, Inc. (EHS). The product has been successfully employed by a diaper company with noisy dryers and a sugar company with noisy blowers. The company also manufactures an audiometric test booth and acoustical office partitions.

  20. Optimum Cyclic Redundancy Codes for Noisy Channels

    NASA Technical Reports Server (NTRS)

    Posner, E. C.; Merkey, P.

    1986-01-01

    Capabilities and limitations of cyclic redundancy codes (CRC's) for detecting transmission errors in data sent over relatively noisy channels (e.g., voice-grade telephone lines or very-high-density storage media) discussed in 16-page report. Due to prevalent use of bytes in multiples of 8 bits data transmission, report primarily concerned with cases in which both block length and number of redundant bits (check bits for use in error detection) included in each block are multiples of 8 bits.

  1. Noise and Chaos in Driven Josephson Junctions

    DTIC Science & Technology

    1987-03-01

    be physically close to some noisy equipment such as a CO2 laser containing an electric discharge and the laser power supply . So we have to try to...regions. The agreement is very good in some of the quanti- tative comparisons such as the step width dependence on the laser power . The simulations...discovered that the noisy I-V curves are caused I various nonlinear dynamic effects. There are I-V curves irradiated at certain laser power levels

  2. Enhancing Communication in Noisy Environments

    DTIC Science & Technology

    2009-10-01

    derived from the ITD and ILD cues, which are binaural . ITD depends on the azimuthal position of the source. Similarly, ILD refers to the fact...4.4 dB No Perceptual Binaural Speech Enhancement [42] 4.5 dB Yes Fuzzy Cocktail Party Processor [25] 7.5 dB Yes Binaural segregation [43] 8.9 dB No...modulation. IEEE Transactions on Neural Networks. 15 (2004): 1135-50. [42] Dong R. Perceptual Binaural Speech Enhancement in Noisy Environments. M.A.Sc

  3. A-law/Mu-law Dynamic Range Compression Deconvolution (Preprint)

    DTIC Science & Technology

    2008-02-04

    noise filtering via the spectrum proportionality filter, and second the signal deblurring via the inverse filter. In this process for regions when...is the joint image of motion impulse response and the noisy blurred image with signal to noise ratio 5, 6(A’) is the gray level recovered image...joint image of motion impulse response and the noisy blurred image with signal to noise ratio 5, (A’) the gray level recovered image using the A-law

  4. [The Russian-language version of the matrix test (RUMatrix) in free field in patients after cochlear implantation in the long term].

    PubMed

    Goykhburg, M V; Bakhshinyan, V V; Petrova, I P; Wazybok, A; Kollmeier, B; Tavartkiladze, G A

    The deterioration of speech intelligibility in the patients using cochlear implantation (CI) systems is especially well apparent in the noisy environment. It explains why phrasal speech tests, such as a Matrix sentence test, have become increasingly more popular in the speech audiometry during rehabilitation after CI. The Matrix test allows to estimate speech perception by the patients in a real life situation. The objective of this study was to assess the effectiveness of audiological rehabilitation of CI patients using the Russian-language version of the matrix test (RUMatrix) in free field in the noisy environment. 33 patients aged from 5 to 40 years with a more than 3 year experience of using cochlear implants inserted at the National Research Center for Audiology and Hearing Rehabilitation were included in our study. Five of these patients were implanted bilaterally. The results of our study showed a statistically significant improvement of speech intelligibility in the noisy environment after the speech processor adjustment; dynamics of the signal-to-noise ratio changes was -1.7 dB (p<0.001). The RUMatrix test is a highly efficient method for the estimation of speech intelligibility in the patients undergoing clinical investigations in the noisy environment. The high degree of comparability of the RUMatrix test with the Matrix tests in other languages makes possible its application in international multicenter studies.

  5. Contribution of tonal components to the overall loudness, annoyance and noisiness of noise: Relation between single tones and noise spectral shape

    NASA Technical Reports Server (NTRS)

    Hellman, R. P.

    1985-01-01

    A large scale laboratory investigation of loudness, annoyance, and noisiness produced by single-tone-noise complexes was undertaken to establish a broader data base for quanitification and prediction of perceived annoyance of sounds containing tonal components. Loudness, annoyance, and noisiness were distinguished as separate, distinct, attributes of sound. Three different spectral patterns of broadband noise with and without added tones were studied: broadband-flat, low-pass, and high-pass. Judgments were obtained by absolute magnitude estimation supplement by loudness matching. The data were examined and evaluated to determine the potential effects of (1) the overall sound pressure level (SPL) of the noise-tone complex, (2) tone SPL, (3) noise SPL, (4) tone-to-noise ratio, (5) the frequency of the added tone, (6) noise spectral shape, and (7) subjective attribute judged on absolute magnitude of annoyance. Results showed that, in contrast to noisiness, loudness and annoyance growth behavior depends on the relationship between the frequency of the added tone and the spectral shape of the noise. The close correspondence between the frequency of the added tone and the spectral shape of the noise. The close correspondence between loundness and annoyance suggests that, to better understand perceived annoyance of sound mixtures, it is necessary to relate the results to basic auditory mechanisms governing loudness and masking.

  6. Noisy Ocular Recognition Based on Three Convolutional Neural Networks

    PubMed Central

    Lee, Min Beom; Hong, Hyung Gil; Park, Kang Ryoung

    2017-01-01

    In recent years, the iris recognition system has been gaining increasing acceptance for applications such as access control and smartphone security. When the images of the iris are obtained under unconstrained conditions, an issue of undermined quality is caused by optical and motion blur, off-angle view (the user’s eyes looking somewhere else, not into the front of the camera), specular reflection (SR) and other factors. Such noisy iris images increase intra-individual variations and, as a result, reduce the accuracy of iris recognition. A typical iris recognition system requires a near-infrared (NIR) illuminator along with an NIR camera, which are larger and more expensive than fingerprint recognition equipment. Hence, many studies have proposed methods of using iris images captured by a visible light camera without the need for an additional illuminator. In this research, we propose a new recognition method for noisy iris and ocular images by using one iris and two periocular regions, based on three convolutional neural networks (CNNs). Experiments were conducted by using the noisy iris challenge evaluation-part II (NICE.II) training dataset (selected from the university of Beira iris (UBIRIS).v2 database), mobile iris challenge evaluation (MICHE) database, and institute of automation of Chinese academy of sciences (CASIA)-Iris-Distance database. As a result, the method proposed by this study outperformed previous methods. PMID:29258217

  7. A double medium model for diffusion in fluid-bearing rock

    NASA Astrophysics Data System (ADS)

    Wang, H. F.

    1993-09-01

    The concept of a double porosity medium to model fluid flow in fractured rock has been applied to model diffusion in rock containing a small amount of a continuous fluid phase that surrounds small volume elements of the solid matrix. The model quantifies the relative role of diffusion in the fluid and solid phases of the rock. The fluid is the fast diffusion path, but the solid contains the volumetrically significant amount of the diffusing species. The double medium model consists of two coupled differential equations. One equation is the diffusion equation for the fluid concentration; it contains a source term for change in the average concentration of the diffusing species in the solid matrix. The second equation represents the assumption that the change in average concentration in a solid element is proportional to the difference between the average concentration in the solid and the concentration in the fluid times the solid-fluid partition coefficient. The double medium model is shown to apply to laboratory data on iron diffusion in fluid-bearing dunite and to measured oxygen isotope ratios at marble-metagranite contacts. In both examples, concentration profiles are calculated for diffusion taking place at constant temperature, where a boundary value changes suddenly and is subsequently held constant. Knowledge of solid diffusivities can set a lower bound to the length of time over which diffusion occurs, but only the product of effective fluid diffusivity and time is constrained for times longer than the characteristic solid diffusion time. The double medium results approach a local, grain-scale equilibrium model for times that are large relative to the time constant for solid diffusion.

  8. The influence of polarizability and charge transfer on specific ion effects in the dynamics of aqueous salt solutions

    NASA Astrophysics Data System (ADS)

    Nguyen, Mary; Rick, Steven W.

    2018-06-01

    The diffusion rates for water molecules in salt solutions depend on the identity of the ions, as well as their concentration. Among the alkali metal ions, cesium and potassium increase and sodium strongly decreases the diffusion constant of water. The origin of the difference can be understood by examining the simulation results using different potential models. In this work, aqueous solutions of salts are simulated with a variety of models. Commonly used non-polarizable models, which otherwise reproduce many experimental properties, do not capture the trend in the diffusion constant, while models which include polarization and/or charge transfer interactions do. For the non-polarizable models, the diffusion constant decreases too strongly with salt concentration. The changes in the water diffusion constant with increasing salt concentration match the diffusion constant of the ion. The ion diffusion constant is dependent on the residence time for water in the ion solvation shell. The non-polarizable models over-estimate the residence time, relative to the translational diffusion constant and so tend to under-estimate the ion and water diffusion constants.

  9. Dynamical Segmentation of the Left Ventricle in Echocardiographic Image Sequences

    DTIC Science & Technology

    2001-10-25

    LV in echocardiographic images using 3D deformable models and superquadrics” EMBS-2000. Vol. 3, 2000, pp. 1724 -1727 [7] Malladi R , Sethian J, Vemuri...very noisy images. An original external energy P is determined automatically and stabilizes the snake on the boundary: ( ) . , ,P r k x y z...1) where r is a constant fixed by the operator and ( ), ,k x y z depends on the image gradient : ( ) 1, , 1 _ k x y z Grad Mod

  10. Sparse coding for flexible, robust 3D facial-expression synthesis.

    PubMed

    Lin, Yuxu; Song, Mingli; Quynh, Dao Thi Phuong; He, Ying; Chen, Chun

    2012-01-01

    Computer animation researchers have been extensively investigating 3D facial-expression synthesis for decades. However, flexible, robust production of realistic 3D facial expressions is still technically challenging. A proposed modeling framework applies sparse coding to synthesize 3D expressive faces, using specified coefficients or expression examples. It also robustly recovers facial expressions from noisy and incomplete data. This approach can synthesize higher-quality expressions in less time than the state-of-the-art techniques.

  11. Sparse Recovery via Differential Inclusions

    DTIC Science & Technology

    2014-07-01

    2242. [Wai09] Martin J. Wainwright, Sharp thresholds for high-dimensional and noisy spar- sity recovery using l1 -constrained quadratic programming...solution, (1.11) βt = { 0, if t < 1/y; y(1− e−κ(t−1/y)), otherwise, which converges to the unbiased Bregman ISS estimator exponentially fast. Let us ...are not given the support set S, so the following two prop- erties are used to evaluate the performance of an estimator β̂. 1. Model selection

  12. Thermal entanglement and teleportation in a dipolar interacting system

    NASA Astrophysics Data System (ADS)

    Castro, C. S.; Duarte, O. S.; Pires, D. P.; Soares-Pinto, D. O.; Reis, M. S.

    2016-04-01

    Quantum teleportation, which depends on entangled states, is a fascinating subject and an important branch of quantum information processing. The present work reports the use of a dipolar spin thermal system as a noisy quantum channel to perform quantum teleportation. Non-locality, tested by violation of Bell's inequality and thermal entanglement, measured by negativity, shows that for the present model all entangled states, even those that do not violate Bell's inequality, are useful for teleportation.

  13. 3D Modeling of Interior Building Environments and Objects from Noisy Sensor Suites

    DTIC Science & Technology

    2015-05-14

    building environments. The interior environment of a building is scanned by a custom hardware system, which provides raw laser and camera sensor readings...interior environment of a building is scanned by a custom hardware system, which provides raw laser and camera sensor readings used to develop these...seemed straight out of a Calvin & Hobbes strip . As soon as I met the people here, I immediately found that the intellectual adventure matched the

  14. A Markovian event-based framework for stochastic spiking neural networks.

    PubMed

    Touboul, Jonathan D; Faugeras, Olivier D

    2011-11-01

    In spiking neural networks, the information is conveyed by the spike times, that depend on the intrinsic dynamics of each neuron, the input they receive and on the connections between neurons. In this article we study the Markovian nature of the sequence of spike times in stochastic neural networks, and in particular the ability to deduce from a spike train the next spike time, and therefore produce a description of the network activity only based on the spike times regardless of the membrane potential process. To study this question in a rigorous manner, we introduce and study an event-based description of networks of noisy integrate-and-fire neurons, i.e. that is based on the computation of the spike times. We show that the firing times of the neurons in the networks constitute a Markov chain, whose transition probability is related to the probability distribution of the interspike interval of the neurons in the network. In the cases where the Markovian model can be developed, the transition probability is explicitly derived in such classical cases of neural networks as the linear integrate-and-fire neuron models with excitatory and inhibitory interactions, for different types of synapses, possibly featuring noisy synaptic integration, transmission delays and absolute and relative refractory period. This covers most of the cases that have been investigated in the event-based description of spiking deterministic neural networks.

  15. Monkeys and humans take local uncertainty into account when localizing a change.

    PubMed

    Devkar, Deepna; Wright, Anthony A; Ma, Wei Ji

    2017-09-01

    Since sensory measurements are noisy, an observer is rarely certain about the identity of a stimulus. In visual perception tasks, observers generally take their uncertainty about a stimulus into account when doing so helps task performance. Whether the same holds in visual working memory tasks is largely unknown. Ten human and two monkey subjects localized a single change in orientation between a sample display containing three ellipses and a test display containing two ellipses. To manipulate uncertainty, we varied the reliability of orientation information by making each ellipse more or less elongated (two levels); reliability was independent across the stimuli. In both species, a variable-precision encoding model equipped with an "uncertainty-indifferent" decision rule, which uses only the noisy memories, fitted the data poorly. In both species, a much better fit was provided by a model in which the observer also takes the levels of reliability-driven uncertainty associated with the memories into account. In particular, a measured change in a low-reliability stimulus was given lower weight than the same change in a high-reliability stimulus. We did not find strong evidence that observers took reliability-independent variations in uncertainty into account. Our results illustrate the importance of studying the decision stage in comparison tasks and provide further evidence for evolutionary continuity of working memory systems between monkeys and humans.

  16. The outbreak of cooperation among success-driven individuals under noisy conditions

    PubMed Central

    Helbing, Dirk; Yu, Wenjian

    2009-01-01

    According to Thomas Hobbes' Leviathan [1651; 2008 (Touchstone, New York), English Ed], “the life of man [is] solitary, poor, nasty, brutish, and short,” and it would need powerful social institutions to establish social order. In reality, however, social cooperation can also arise spontaneously, based on local interactions rather than centralized control. The self-organization of cooperative behavior is particularly puzzling for social dilemmas related to sharing natural resources or creating common goods. Such situations are often described by the prisoner's dilemma. Here, we report the sudden outbreak of predominant cooperation in a noisy world dominated by selfishness and defection, when individuals imitate superior strategies and show success-driven migration. In our model, individuals are unrelated, and do not inherit behavioral traits. They defect or cooperate selfishly when the opportunity arises, and they do not know how often they will interact or have interacted with someone else. Moreover, our individuals have no reputation mechanism to form friendship networks, nor do they have the option of voluntary interaction or costly punishment. Therefore, the outbreak of prevailing cooperation, when directed motion is integrated in a game-theoretical model, is remarkable, particularly when random strategy mutations and random relocations challenge the formation and survival of cooperative clusters. Our results suggest that mobility is significant for the evolution of social order, and essential for its stabilization and maintenance. PMID:19237576

  17. The outbreak of cooperation among success-driven individuals under noisy conditions.

    PubMed

    Helbing, Dirk; Yu, Wenjian

    2009-03-10

    According to Thomas Hobbes' Leviathan [1651; 2008 (Touchstone, New York), English Ed], "the life of man [is] solitary, poor, nasty, brutish, and short," and it would need powerful social institutions to establish social order. In reality, however, social cooperation can also arise spontaneously, based on local interactions rather than centralized control. The self-organization of cooperative behavior is particularly puzzling for social dilemmas related to sharing natural resources or creating common goods. Such situations are often described by the prisoner's dilemma. Here, we report the sudden outbreak of predominant cooperation in a noisy world dominated by selfishness and defection, when individuals imitate superior strategies and show success-driven migration. In our model, individuals are unrelated, and do not inherit behavioral traits. They defect or cooperate selfishly when the opportunity arises, and they do not know how often they will interact or have interacted with someone else. Moreover, our individuals have no reputation mechanism to form friendship networks, nor do they have the option of voluntary interaction or costly punishment. Therefore, the outbreak of prevailing cooperation, when directed motion is integrated in a game-theoretical model, is remarkable, particularly when random strategy mutations and random relocations challenge the formation and survival of cooperative clusters. Our results suggest that mobility is significant for the evolution of social order, and essential for its stabilization and maintenance.

  18. Deep Brain Stimulation Frequency—A Divining Rod for New and Novel Concepts of Nervous System Function and Therapy

    PubMed Central

    Montgomery, Erwin B.; He, Huang

    2016-01-01

    The efficacy of Deep Brain Stimulation (DBS) for an expanding array of neurological and psychiatric disorders demonstrates directly that DBS affects the basic electroneurophysiological mechanisms of the brain. The increasing array of active electrode configurations, stimulation currents, pulse widths, frequencies, and pulse patterns provides valuable tools to probe electroneurophysiological mechanisms. The extension of basic electroneurophysiological and anatomical concepts using sophisticated computational modeling and simulation has provided relatively straightforward explanations of all the DBS parameters except frequency. This article summarizes current thought about frequency and relevant observations. Current methodological and conceptual errors are critically examined in the hope that future work will not replicate these errors. One possible alternative theory is presented to provide a contrast to many current theories. DBS, conceptually, is a noisy discrete oscillator interacting with the basal ganglia–thalamic–cortical system of multiple re-entrant, discrete oscillators. Implications for positive and negative resonance, stochastic resonance and coherence, noisy synchronization, and holographic memory (related to movement generation) are presented. The time course of DBS neuronal responses demonstrates evolution of the DBS response consistent with the dynamics of re-entrant mechanisms. Finally, computational modeling demonstrates identical dynamics as seen by neuronal activities recorded from human and nonhuman primates, illustrating the differences of discrete from continuous harmonic oscillators and the power of conceptualizing the nervous system as composed on interacting discrete nonlinear oscillators. PMID:27548234

  19. Monkeys and humans take local uncertainty into account when localizing a change

    PubMed Central

    Devkar, Deepna; Wright, Anthony A.; Ma, Wei Ji

    2017-01-01

    Since sensory measurements are noisy, an observer is rarely certain about the identity of a stimulus. In visual perception tasks, observers generally take their uncertainty about a stimulus into account when doing so helps task performance. Whether the same holds in visual working memory tasks is largely unknown. Ten human and two monkey subjects localized a single change in orientation between a sample display containing three ellipses and a test display containing two ellipses. To manipulate uncertainty, we varied the reliability of orientation information by making each ellipse more or less elongated (two levels); reliability was independent across the stimuli. In both species, a variable-precision encoding model equipped with an “uncertainty–indifferent” decision rule, which uses only the noisy memories, fitted the data poorly. In both species, a much better fit was provided by a model in which the observer also takes the levels of reliability-driven uncertainty associated with the memories into account. In particular, a measured change in a low-reliability stimulus was given lower weight than the same change in a high-reliability stimulus. We did not find strong evidence that observers took reliability-independent variations in uncertainty into account. Our results illustrate the importance of studying the decision stage in comparison tasks and provide further evidence for evolutionary continuity of working memory systems between monkeys and humans. PMID:28877535

  20. Diffuse-interface model for rapid phase transformations in nonequilibrium systems.

    PubMed

    Galenko, Peter; Jou, David

    2005-04-01

    A thermodynamic approach to rapid phase transformations within a diffuse interface in a binary system is developed. Assuming an extended set of independent thermodynamic variables formed by the union of the classic set of slow variables and the space of fast variables, we introduce finiteness of the heat and solute diffusive propagation at the finite speed of the interface advancing. To describe transformations within the diffuse interface, we use the phase-field model which allows us to follow steep but smooth changes of phase within the width of the diffuse interface. Governing equations of the phase-field model are derived for the hyperbolic model, a model with memory, and a model of nonlinear evolution of transformation within the diffuse interface. The consistency of the model is proved by the verification of the validity of the condition of positive entropy production and by outcomes of the fluctuation-dissipation theorem. A comparison with existing sharp-interface and diffuse-interface versions of the model is given.

Top