Sample records for nom model compounds

  1. Investigating the features in differential absorbance spectra of NOM associated with metal ion binding: A comparison of experimental data and TD-DFT calculations for model compounds.

    PubMed

    Yan, Mingquan; Han, Xuze; Zhang, Chenyang

    2017-11-01

    In this study, seven model compounds containing typical functional groups (phenolic and carboxylic groups) present in nature organic matter (NOM) were used to ascertain the nature of the characteristic bands in differential absorbance spectra (DAS) of NOM that are induced by metal ion binding. Some similarities were found between the DAS of the examined model compounds, caffeic acid, ferulic acid, sinapic acid, terephthalic acid, isophthalic acid, esculetin and myricetin and those of NOM. The binding of Cu(II) with carboxylic group might produce two peaks, A1 and A2, while the binding of Cu(II) with phenolic group might produce all four Gaussian peaks, from A1 to A4 displayed in the DAS of NOM. The UV-visible spectra predicted using time-dependent density functional theory (TD-DFT)-based methods met well with the experimental DAS of model compounds at different stages of Cu(II) binding. It demonstrates that the features in absorbance spectra are chiefly caused by HOMO (Highest Occupied Molecular Orbital) - LUMO (Lowest Unoccupied Molecular Orbital) transitions in the molecule and that the appearance of peaks in DAS reflects the changes of the molecular orbitals around reactive functional groups in a molecule before and after metal ion binding. The basis of the DAS features of NOM that are induced by metal ion binding could be identified primarily by the frontier molecular orbital theory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Inhibition of hydroxyl radical reaction with aromatics by dissolved natural organic matter

    USGS Publications Warehouse

    Lindsey, M.E.; Tarr, M.A.

    2000-01-01

    Reaction of aromatic compounds with hydroxyl radical is inhibited by dissolved natural organic matter (NOM). The degree of inhibition is significantly greater than that expected based on a simple model in which aromatic compound molecules bound to NOM are considered to be unreactive. In this study, hydroxyl radical was produced at steady-state concentrations using Fenton chemistry (H2O2 + Fe2+ ??? Fe3+ + HO- + HO??). Suwannee River fulvic acid and humic acid were used as NOM. The most likely mechanism for the observed inhibition is that hydroxyl radical formation occurs in microenvironmental sites remote from the aromatic compounds. In addition to changes in kinetics, pyrene hydroxyl radical reaction also exhibited a mechanistic change in the presence of fulvic acid. The mechanism changed from a reaction that was apparently firstorder in pyrene to one that was apparently secondorder in pyrene, indicating that pyrene self-reaction may have become the dominant mechanism in the presence of fulvic acid. Dissolved NOM causes significant changes in the rate and mechanism of hydroxyl radical degradation of aromatic compounds. Consequently, literature rate constants measured in pure water will not be useful for predicting the degradation of pollutants in environmental systems. The kinetic and mechanistic information in this study will be useful for developing improved degradation methods involving Fenton chemistry.Reaction of aromatic compounds with hydroxyl radical is inhibited by dissolved natural organic matter (NOM). The degree of inhibition is significantly greater than that expected based on a simple model in which aromatic compounds molecules bounds to NOM are considered to be unreactive. In this study, hydroxyl radical was produced at steady-state concentrations using Fenton chemistry (H2O2 + Fe2+ ??? Fe3+ + HO- + HO??). Suwannee River fulvic acid and humic acid were used as NOM. The most likely mechanisms for the observed inhibition is that hydroxyl radical formation occurs in microenvironmental sites remote from the aromatic compounds. In addition to changes in kinetics, pyrene hydroxyl radical reaction also exhibited a mechanistic change in the presence of fulvic acid. The mechanism changed from a reaction that was apparently first-order in pyrene to one that was apparently second-order in pyrene, indicating that pyrene self-reaction may have become the dominant mechanism in the presence of fulvic acid. Dissolved NOM causes significant changes in the rate and mechanism of hydroxyl radical degradation of aromatic compounds. Consequently, literature rate constants measured in pure water will not be useful for predicting the degradation of pollutants in environmental systems. The kinetic and mechanistic information in this study will be useful for developing improved degradation methods involving Fenton chemistry.

  3. Adsorption of selected pharmaceuticals and an endocrine disrupting compound by granular activated carbon. 1. Adsorption capacity and kinetics.

    PubMed

    Yu, Zirui; Peldszus, Sigrid; Huck, Peter M

    2009-03-01

    The adsorption of two representative PhACs (naproxen and carbamazepine) and one EDC (nonylphenol) were evaluated on two granular activated carbons (GAC). The primary objective was to investigate preloading effects by natural organic matter (NOM) on adsorption capacity and kinetics under conditions and concentrations (i.e., ng/L) relevantfor drinking water treatment Isotherms demonstrated that all compounds were significantly negatively impacted by NOM fouling. Adsorption capacity reduction was most severe for the acidic naproxen, followed by the neutral carbamazepine and then the more hydrophobic nonylphenol. The GAC with the wider pore size distribution had considerably greater NOM loading, resulting in lower adsorption capacity. Different patterns forthe change in Freundlich K(F) and 1/n with time revealed different competitive mechanisms for the different compounds. Mass transport coefficients determined by short fixed-bed (SFB) tests with virgin and preloaded GAC demonstrated thatfilm diffusion primarily controls mass transfer on virgin and preloaded carbon. Naproxen suffered the greatest deteriorative effect on kinetic parameters due to preloading, followed by carbamazepine, and then nonylphenol. A type of surface NOM/biofilm, which appeared to add an additional masstransfer resistance layer and thus reduce film diffusion, was observed. In addition, electrostatic interactions between NOM/biofilm and the investigated compounds are proposed to contribute to the reduction of film diffusion. A companion paper building on this work describes treatability studies in pilot-scale GAC adsorbers and the effectiveness of a selected fixed-bed model.

  4. Recent advances in the detection of specific natural organic compounds as carriers for radionuclides in soil and water environments, with examples of radioiodine and plutonium

    DOE PAGES

    Santschi, P. H.; Xu, C.; Zhang, S.; ...

    2017-03-09

    Among the key environmental factors influencing the fate and transport of radionuclides in the environment is natural organic matter (NOM). While this has been known for decades, there still remains great uncertainty in predicting NOM-radionuclide interactions because of lack of understanding of radionuclide interactions with the specific organic moieties within NOM. Furthermore, radionuclide-NOM studies conducted using modelled organic compounds or elevated radionuclide concentrations provide compromised information related to true environmental conditions. Thus, sensitive techniques are required not only for the detection of radionuclides, and their different species, at ambient and/or far-field concentrations, but also for potential trace organic compounds thatmore » are chemically binding these radionuclides. GC-MS and AMS techniques developed in our lab are reviewed in this paper that aim to assess how two radionuclides, iodine and plutonium, form strong bonds with NOM by entirely different mechanisms; iodine tends to bind to aromatic functionalities, whereas plutonium binds to N-containing hydroxamate siderophores at ambient concentrations. While low-level measurements are a prerequisite for assessing iodine and plutonium migration at nuclear waste sites and as environmental tracers, it is necessary to determine their in-situ speciation, which ultimately controls their mobility and transport in natural environments. Finally and more importantly, advanced molecular-level instrumentation (e.g., nuclear magnetic resonance (NMR) and Fourier-transform ion cyclotron resonance coupled with electrospray ionization (ESI-FTICRMS) were applied to resolve either directly or indirectly the molecular environments in which the radionuclides are associated with the NOM.« less

  5. Recent advances in the detection of specific natural organic compounds as carriers for radionuclides in soil and water environments, with examples of radioiodine and plutonium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santschi, P. H.; Xu, C.; Zhang, S.

    Among the key environmental factors influencing the fate and transport of radionuclides in the environment is natural organic matter (NOM). While this has been known for decades, there still remains great uncertainty in predicting NOM-radionuclide interactions because of lack of understanding of radionuclide interactions with the specific organic moieties within NOM. Furthermore, radionuclide-NOM studies conducted using modelled organic compounds or elevated radionuclide concentrations provide compromised information related to true environmental conditions. Thus, sensitive techniques are required not only for the detection of radionuclides, and their different species, at ambient and/or far-field concentrations, but also for potential trace organic compounds thatmore » are chemically binding these radionuclides. GC-MS and AMS techniques developed in our lab are reviewed in this paper that aim to assess how two radionuclides, iodine and plutonium, form strong bonds with NOM by entirely different mechanisms; iodine tends to bind to aromatic functionalities, whereas plutonium binds to N-containing hydroxamate siderophores at ambient concentrations. While low-level measurements are a prerequisite for assessing iodine and plutonium migration at nuclear waste sites and as environmental tracers, it is necessary to determine their in-situ speciation, which ultimately controls their mobility and transport in natural environments. Finally and more importantly, advanced molecular-level instrumentation (e.g., nuclear magnetic resonance (NMR) and Fourier-transform ion cyclotron resonance coupled with electrospray ionization (ESI-FTICRMS) were applied to resolve either directly or indirectly the molecular environments in which the radionuclides are associated with the NOM.« less

  6. The influence of natural organic matter and cations on the rejection of endocrine disrupting and pharmaceutically active compounds by nanofiltration.

    PubMed

    Comerton, Anna M; Andrews, Robert C; Bagley, David M

    2009-02-01

    The impact of natural organic matter (NOM) and cations on the rejection of five endocrine disrupting compounds (EDCs) and pharmaceutically active compounds (PhACs) (acetaminophen, carbamazepine, estrone, gemfibrozil, oxybenzone) by nanofiltration (NF) was examined. The water matrices included membrane bioreactor (MBR) effluent, Lake Ontario water and laboratory-prepared waters modelled to represent the characteristics of the Lake Ontario water. The impact of cations in natural waters on compound rejection was also examined by doubling the natural cation concentration (calcium, magnesium, sodium) in both the Lake Ontario water and the MBR effluent. The presence of Suwannee River NOM spiked into laboratory-grade water was found to cause an increase in compound NF rejection. In addition, the presence of cations alone in laboratory-grade water did not have a significant impact on rejection with the exception of the polar compound gemfibrozil. However, when cation concentration in natural waters was increased, a significant decrease in the rejection of EDCs and PhACs was observed. This suggests that the presence of cations may result in a reduction in the association of EDCs and PhACs with NOM.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Z.; Peldszus, S.; Huck, P.M.

    The adsorption of two representative PhACs (naproxen and carbamazepine) and one EDC (nonylphenol) were evaluated on two granular activated carbons (GAC) namely coal-based Calgon Filtrasorb 400 and coconut shell-based PICA CTIF TE. The primary objective was to investigate preloading effects by natural organic matter (NOM) on adsorption capacity and kinetics under conditions and concentrations (i.e., ng/L) relevant for drinking water treatment. Isotherms demonstrated that all compounds were significantly negatively impacted by NOM fouling. Adsorption capacity reduction was most severe for the acidic naproxen, followed by the neutral carbamazepine and then the more hydrophobic nonylphenol. The GAC with the wider poremore » size distribution had considerably greater NOM loading, resulting in lower adsorption capacity. Different patterns for the change in Freundlich KF and 1/n with time revealed different competitive mechanisms for the different compounds. Mass transport coefficients determined by short fixed-bed (SFB) tests with virgin and preloaded GAC demonstrated that film diffusion primarily controls mass transfer on virgin and preloaded carbon. Naproxen suffered the greatest deteriorative effect on kinetic parameters due to preloading, followed by carbamazepine, and then nonylphenol. A type of surface NOM/biofilm, which appeared to add an additional mass transfer resistance layer and thus reduce film diffusion, was observed. In addition, electrostatic interactions between NOM/biofilm and the investigated compounds are proposed to contribute to the reduction of film diffusion. A companion paper building on this work describes treatability studies in pilot-scale GAC adsorbers and the effectiveness of a selected fixed-bed model. 32 refs., 3 figs., 2 tabs.« less

  8. Electrochemical reductive dehalogenation of iodine-containing contrast agent pharmaceuticals: Examination of reactions of diatrizoate and iopamidol using the method of rotating ring-disc electrode (RRDE).

    PubMed

    Yan, Mingquan; Chen, Zhanghao; Li, Na; Zhou, Yuxuan; Zhang, Chenyang; Korshin, Gregory

    2018-06-01

    This study examined the electrochemical (EC) reduction of iodinated contrast media (ICM) exemplified by iopamidol and diatrizoate. The method of rotating ring-disc electrode (RRDE) was used to elucidate rates and mechanisms of the EC reactions of the selected ICMs. Experiments were carried at varying hydrodynamic conditions, concentrations of iopamidol, diatrizoate, natural organic matter (NOM) and model compounds (resorcinol, catechol, guaiacol) which were used to examine interactions between products of the EC reduction of ICMs and halogenation-active species. The data showed that iopamidol and diatrizoate were EC-reduced at potentials < -0.45 V vs. s.c.e. In the range of potentials -0.65 to -0.85 V their reduction was mass transfer-controlled. The presence of NOM and model compounds did not affect the EC reduction of iopamidol and diatrizoate but active iodine species formed as a result of the EC-induced transformations of these ICMs reacted readily with NOM and model compounds. These data provide more insight into the nature of generation of iodine-containing by-products in the case of reductive degradation of ICMs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Watershed Scale Monitoring and Modeling of Natural Organic Matter (NOM) Generation and Transport

    NASA Astrophysics Data System (ADS)

    Adams, R.; Rees, P. L.; Reckhow, D. A.; Castellon, C. M.

    2006-05-01

    This study describes a coupled watershed scale monitoring campaign, laboratory study, and hydrological modeling study which has been focused on determining the sources and transport mechanisms for Natural Organic Matter (NOM), in a small, mostly forested New England watershed. For some time, the state conservation authorities and a large metropolitan water authority have been concerned that the level of naturally-occurring disinfection byproducts in drinking water supplied by a large surface water reservoir (Watchusett Reservoir, MA) have been increasing over time. The resulting study has attempted to investigate how these compounds, which are mostly formed by the chlorination process at the water treatment plant, are related to NOM precursor compounds which are generated from organic matter and transported by runoff processes in the watershed of the Watchusett Reservoir. The laboratory study measures disinfection byproduct formation potential (DBPFP) through chlorination of raw water samples obtained through field monitoring. Samples are analysed for trihalomethanes (THMs), and haloacetic acids (HAAs). Samples are also analysed for dissolved organic carbon (DOC) and ultraviolet absorbance at 254 nm (UV254). The samples have been collected from as many components of the hydrological cycle as possible in one of the subcatchments of Watchusett Reservoir (Stillwater River). To date the samples include, stream runoff, water impounded naturally in small ponds by beaver dams, rainfall, snow, throughfall (drainage from tree canopies) and samples pumped from shallow suction lysimeters which were installed to monitor soil water in the riparian zone. The current monitoring program began in late-Summer 2005, however infrequent stream samples are available dating back to 2000 from an earlier research project and water quality monitoring by various regulatory authorities. The monitoring program has been designed to capture as much seasonal variation in water chemistry as possible and also to capture a large spring snowmelt event. The modeling study has been designed to provide a method of estimating the export of NOM and DBPFP precursor compounds by running a series of simple macromodels. One of these models has already been developed for DOC transport based on a variant of the popular TOPMODEL hydrological model. Currently, historical daily streamflow and precipitation data have been used to calibrate the hydrological model, and the results from the current and previous monitoring programs are being used to improve the representation of DOM generation in the model. The ultimate aim is to produce a modeling tool which can be used to investigate changes both in land-use and climate in the watershed and the resulting effects on the export of NOM and DBPFP compounds into the reservoir.

  10. Impact of natural organic matter on arsenic removal by modified granular natural siderite: Evidence of ternary complex formation by HPSEC-UV-ICP-MS.

    PubMed

    Li, Fulan; Guo, Huaming; Zhou, Xiaoqian; Zhao, Kai; Shen, Jiaxing; Liu, Fei; Wei, Chao

    2017-02-01

    High arsenic (As) groundwater usually has high concentrations of natural organic matter (NOM). Effects of NOM on arsenic adsorption were investigated to evaluate the efficiency of modified granular natural siderite (MGNS) as an adsorbent for groundwater arsenic remediation. Humic and fulvic acids (HA/FA) were selected as model NOM compounds. In batch tests, HA or FA was either first adsorbed onto the MGNS, or applied together with dissolved arsenic to investigate effects of both adsorbed and dissolved NOM on arsenic removal. The kinetic data showed no significant effects of both adsorbed and dissolved HA/FA on As(III) adsorption. However, As(V) removal was inhibited, whereby the adsorbed NOM compounds had greater inhibitory effect. The inhibitory effect on As(V) removal increased with increasing NOM concentrations. FA exhibited higher inhibitory effect than HA at the same concentration. Steric Exclusion Chromatography-HPLC (SEC-HPLC), and High-Performance Size Exclusion Chromatography-UV-Inductively Coupled Plasma Mass Spectrometry (HPSEC-UV-ICP-MS) revealed that As(V) removal was mostly achieved by the oxyanion adsorption and adversely affected by dissolved FA via competitive adsorption for surface sites. In addition to oxyanion adsorption, removal of As(V) was related to scavenging of ternary HA-As-Fe complexes, which led to the less inhibitory effect of dissolved HA on As(V) removal than dissolved FA via competitive adsorption. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Influence of natural organic matter on fate and transport of silver nanoparticles in saturated porous media: laboratory experiments and modeling

    NASA Astrophysics Data System (ADS)

    Kanel, Sushil R.; Flory, Jason; Meyerhoefer, Allie; Fraley, Jessica L.; Sizemore, Ioana E.; Goltz, Mark N.

    2015-03-01

    Understanding the fate and transport of silver nanoparticles (AgNPs) is of importance due to their widespread use and potential harmful effects on humans and the environment. The present study investigates the fate and transport of widely used Creighton AgNPs in saturated porous media. Previous investigations of AgNP transport in the presence of natural organic matter (NOM) report contradictory results regarding how the presence of NOM affected the stability and mobility of AgNPs. In this work, a nonreactive tracer, AgNPs and a mixture of AgNPs and NOM were injected into a background solution (0.01 mM of NaNO3) flowing through laboratory columns packed with water-saturated glass beads to obtain concentration versus time breakthrough curves. Transport of AgNPs in the presence of NOM was simulated with a model that accounted for both reversible and irreversible attachment. Based upon an analysis of the AgNP breakthrough curves, it was found that addition of NOM at concentrations ranging from 1 to 40 mg L-1 resulted in significant decreases in both the zeroth and first moments of the breakthrough curves. These observations may be attributed to NOM promoting AgNP aggregation and irreversible attachment. Raman and surface-enhanced Raman scattering analysis of NOM-AgNP mixtures revealed that a possible interaction of NOM with AgNP occurred through the carboxylic moieties (-COO-) located in the immediate vicinity of the metallic surface. At higher concentrations of NOM, both the zeroth and first moments of the breakthrough curves increased. Based on modeling and the literature, we hypothesize that as the NOM concentration increases, it begins to coat both the AgNPs and the glass beads, leading to a situation where AgNP transport may be described in the same way that transport of a sorbing hydrophobic compound partitioning to an immobile organic phase is typically described, assuming reversible, rate-limited sorption.

  12. Characterization of Natural Organic Matter by FeCl3 Coagulation

    NASA Astrophysics Data System (ADS)

    Cahyonugroho, O. H.; Hidayah, E. N.

    2018-01-01

    Natural organic matter (NOM) is heterogenous mixture of organic compounds that enter the water from various decomposition and metabolic reactions, including animal, plant, domestic and industrial wastes. NOM refers to group of carbon-based compounds that are found in surface water and ground water. The aim of the study is to assess organic matter characteristics in Jagir River as drinking water source and to characterize the organic components that could be removed during coagulation. Coagulation is the common water treatment process can be used to remove NOM with FeCl3 coagulant in various dosage. NOM surrogates, including total organic carbon (TOC), ultraviolet absorbance at 254 nm (UV254) and specific UV absorbance (SUVA) were chosen to assess the organic removal. Results of jar test experiments showed that NOM can be removed about 40% of NOM surrogates with 200 mg/L FeCl3. About 60% removal of total organic fraction, which is mainly humic substances, as detected by size exclusion chromatography (SEC).

  13. Effect of Natural Organic Matter on the Light-initiated Transformation of Fullerenes

    EPA Science Inventory

    Natural organic matter (NOM) is ubiquitous in natural environments. Previous research has observed enhanced dispersion of Buckminster fullerene (C60) in water in the presence of NOM. It is also well-known that NOM can impact the photoreaction of many organic compounds by producin...

  14. Advanced oxidation of iodinated X-ray contrast media in reverse osmosis brines: the influence of quenching.

    PubMed

    Azerrad, Sara P; Gur-Reznik, Shirra; Heller-Grossman, Lilly; Dosoretz, Carlos G

    2014-10-01

    Among the main restrictions for the implementation of advanced oxidation processes (AOPs) for removal of micropollutants present in reverse osmosis (RO) brines of secondary effluents account the quenching performed by background organic and inorganic constituents. Natural organic matter (NOM) and soluble microbial products (SMP) are the main effluent organic matter constituents. The inorganic fraction is largely constituted by chlorides and bicarbonate alkalinity with sodium and calcium as main counterions. The quenching influence of these components, separately and their mixture, in the transformation of model compounds by UVA/TiO2 was studied applying synthetic brines solutions mimicking 2-fold concentrated RO secondary effluents brines. The results were validated using fresh RO brines. Diatrizoate (DTZ) and iopromide (IOPr) were used as model compound. They have been found to exhibit relative high resistance to oxidation process and therefore represent good markers for AOPs techniques. Under the conditions applied, oxidization of DTZ in the background of RO brines was strongly affected by quenching effects. The major contribution to quenching resulted from organic matter (≈70%) followed by bicarbonate alkalinity (≈30%). NOM displayed higher quenching than SMP in spite of its relative lower concentration. Multivalent cations, i.e., Ca(+2), were found to decrease effectiveness of the technique due to agglomeration of the catalyst. However this influence was lowered in presence of NOM. Different patterns of transformation were found for each model compound in which a delayed deiodination was observed for iopromide whereas diatrizoate oxidation paralleled deiodination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Secondary effects of anion exchange on chloride, sulfate, and lead release: systems approach to corrosion control.

    PubMed

    Willison, Hillary; Boyer, Treavor H

    2012-05-01

    Water treatment processes can cause secondary changes in water chemistry that alter finished water quality including chloride, sulfate, natural organic matter (NOM), and metal release. Hence, the goal of this research was to provide an improved understanding of the chloride-to-sulfate mass ratio (CSMR) with regards to chloride and sulfate variations at full-scale water treatment plants and corrosion potential under simulated premise plumbing conditions. Laboratory corrosion studies were conducted using Pb-Sn solder/Cu tubing galvanic cells exposed to model waters with low (approx. 5 mg/L Cl(-) and 10 mg/L SO(4)(2-)) and high (approx. 50 mg/L Cl(-) and 100 mg/L SO(4)(2-)) concentrations of chloride and sulfate at a constant CSMR of ≈ 0.5. The role of NOM during corrosion was also evaluated by changing the type of organic material. In addition, full-scale sampling was conducted to quantify the raw water variability of chloride, sulfate, and NOM concentrations and the changes to these parameters from magnetic ion exchange treatment. Test conditions with higher concentrations of chloride and sulfate released significantly more lead than the lower chloride and sulfate test waters. In addition, the source of NOM was a key factor in the amount of lead released with the model organic compounds yielding significantly less lead release than aquatic NOM. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Characteristics and fate of natural organic matter during UV oxidation processes.

    PubMed

    Ahn, Yongtae; Lee, Doorae; Kwon, Minhwan; Choi, Il-Hwan; Nam, Seong-Nam; Kang, Joon-Wun

    2017-10-01

    Advanced oxidation processes (AOPs) are widely used in water treatments. During oxidation processes, natural organic matter (NOM) is modified and broken down into smaller compounds that affect the characteristics of the oxidized NOM by AOPs. In this study, NOM was characterized and monitored in the UV/hydrogen peroxide (H 2 O 2 ) and UV/persulfate (PS) processes using a liquid chromatography-organic carbon detector (LC-OCD) technique, and a combination of excitation-emission matrices (EEM) and parallel factor analysis (PARAFAC). The percentages of mineralization of NOM in the UV/H 2 O 2 and UV/PS processes were 20.5 and 83.3%, respectively, with a 10 mM oxidant dose and a contact time of 174 s (UV dose: approximately 30,000 mJ). Low-pressure, Hg UV lamp (254 nm) was applied in this experiment. The steady-state concentration of SO 4 - was 38-fold higher than that of OH at an oxidant dose of 10 mM. With para-chlorobenzoic acid (pCBA) as a radical probe compound, we experimentally determined the rate constants of Suwannee River NOM (SRNOM) with OH (k OH/NOM  = 3.3 × 10 8  M -1 s -1 ) and SO 4 - (k SO4-/NOM  = 4.55 × 10 6  M -1 s -1 ). The hydroxyl radical and sulfate radical showed different mineralization pathways of NOM, which have been verified by the use of LC-OCD and EEM/PARAFAC. Consequently, higher steady-state concentrations of SO 4 - , and different reaction preferences of OH and SO 4 - with the NOM constituent had an effect on the mineralization efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The efficiency of macroporous polystyrene ion-exchange resins in natural organic matter removal from surface water

    NASA Astrophysics Data System (ADS)

    Urbanowska, Agnieszka; Kabsch-Korbutowicz, Małgorzata

    2017-11-01

    Natural water sources used for water treatment contains various organic and inorganic compounds. Surface waters are commonly contaminated with natural organic matter (NOM). NOM removal from water is important e.g. due to lowering the risk of disinfection by-product formation during chlorination. Ion exchange with the use of synthetic ion-exchange resins is an alternative process to typical NOM removal approach (e.g. coagulation, adsorption or oxidation) as most NOM compounds have anionic character. Moreover, neutral fraction could be removed from water due to its adsorption on resin surface. In this study, applicability of two macroporous, polystyrene ion exchange resins (BD400FD and A100) in NOM removal from water was assessed including comparison of treatment efficiency in various process set-ups and conditions. Moreover, resin regeneration effectivity was determined. Obtained results shown that examined resins could be applied in NOM removal and it should be noticed that column set-up yielded better results (contrary to batch set-up). Among the examined resins A100 one possessed better properties. It was determined that increase of solution pH resulted in a slight decrease in treatment efficiency while higher temperature improved it. It was also observed that regeneration efficiency was comparable in both tested methods but batch set-up required less reagents.

  18. In-situ regeneration of saturated granular activated carbon by an iron oxide nanocatalyst.

    PubMed

    Chiu, Chao-An; Hristovski, Kiril; Huling, Scott; Westerhoff, Paul

    2013-03-15

    Granular activated carbon (GAC) can remove trace organic pollutants and natural organic matter (NOM) from industrial and municipal waters. This paper evaluates an iron nanocatalyst approach, based on Fenton-like oxidation reactions, to regenerate spent GAC within a packed bed configuration after saturation by organic compounds. Specifically, we focus on regenerating GAC packed beds equilibrated with varying influent concentrations of phenol, a model organic compound. Iron nanocatalysts were synthesized using ferric chloride, a chemical already used as a coagulant at municipal WTPs, and reacted with hydrogen peroxide (H(2)O(2)) for the purpose of in-situ regeneration. Up to 95% of phenol adsorption capacity was regenerated for GAC equilibrated with 1000 mg/L of phenol. Using this technique, at least four adsorption-regeneration cycles can be performed sequentially for the same batch of GAC with fresh iron nanocatalysts while achieving a regeneration efficiency of 90 ± 5% between each loading. Moreover, the iron nanocatalyst can be recovered and reused multiple times. Lower initial adsorbate concentrations (10-500 mg/L) resulted in a slightly lower saturated adsorbent-phase concentration of phenol and lower regeneration efficiencies (72 ± 5%). Additionally, this catalytic in-situ regeneration was applied to GAC saturated by NOM. A slightly lower regeneration efficiency (60%) was observed for the Suwannee River NOM adsorption capacity of GAC. The next step is validation in a pilot-scale test that applies this regeneration technique to a GAC adsorber employed in NOM removal. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Organic matrix in produced water from the Osage-Skiatook Petroleum Environmental Research site, Osage County, Oklahoma

    USGS Publications Warehouse

    Sirivedhin, Tanita; Dallbauman, Liese

    2004-01-01

    Produced water (water co-produced with oil and gas) constitutes the single largest waste stream for oil and gas industry. Reclaiming this water for beneficial use is thought to be one of the most practical solutions that can solve both environmental and water shortage problems. The feasibility of this practice depends on the ability to remove its chemical content to the levels that meets the appropriate standards. Organic compounds are probably the most difficult fraction to handle. In this paper, the discrete organic compounds and non-volatile, macromolecular organic compounds (i.e., natural organic matter––NOM) of three produced water samples from the Osage-Skiatook Environmental Research site were characterized. Two of the three produced waters had very little contribution from NOM, while one of the samples had about 23% NOM contribution to its organic matrix pool. Fluorescent spectrophotometric scans provided little differentiation among the organic quality of the produced water, while pyrolysis-GC/MS showed that the NOM characteristics of the three produced waters were distinct. Specifically, the overall halogenated content and aromaticity of the NOM were found to be possible qualifiers that distinguish produced water from the coalbed methane well from produced water from the oil well. And the specific chemical fragments that are linked to polysaccharide sources were found to be potential identifiers that distinguish produced water from the newer oil well from produced water from the older oil well. These identifiers were, however, only suggested for this preliminary study. More samples must be included to build a substantial database on produced water NOM to confirm and identify more markers.

  20. Fully in Silico Calibration of Empirical Predictive Models for Environmental Fate Properties of Novel Munitions Compounds

    DTIC Science & Technology

    2016-04-01

    57) ASTM Standard E 2552 (2008) Standard guide for assessing the environmental and human health impacts of new energetic compounds; ASTM...Project ER-1735 APRIL 2016 Paul G. Tratnyek Alexandra J. Salter-Blanc Oregon Health & Science University Eric J. Bylaska Kurt R...order NEB Nudged Elastic Band NMR Nuclear Magnetic Resonance NOM Natural Organic Matter OHSU Oregon Health & Science University PCM Polarizable

  1. DETERMINING ACTIVE OXIDANT SPECIES REACTING WITH ORGANOPHOSPHATE PESTICIDES IN CHLORINATED DRINKING WATER

    EPA Science Inventory

    Chlorpyrifos (CP) is an organophosphate (OP) pesticide that was used as a model compound to investigate the transformation of OP pesticides at low pH and in the presence of bromide and natural organic matter (NOM) under drinking water treatment conditions. Raman spectroscopy was...

  2. NDMA formation from amine-based pharmaceuticals--impact from prechlorination and water matrix.

    PubMed

    Shen, Ruqiao; Andrews, Susan A

    2013-05-01

    The presence of N-nitrosodimethylamine (NDMA) in drinking water is most commonly associated with the chloramination of amine-based precursors. One option to control the NDMA formation is to remove the precursors via pre-oxidation, and prechlorination is among the most effective options in reducing NDMA formation. However, most of the findings to-date are based on single-precursor scenarios using the model precursor dimethylamine (DMA) and natural organic matter (NOM), while few studies have considered the potential interactions between water matrix components and the target precursors when investigating the prechlorination impact. Specifically, little is known for the behaviour of amine-based pharmaceuticals which have recently been reported to contribute to NDMA formation upon chloramination. This work demonstrates that prechlorination can affect both the ultimate NDMA conversion and the reaction kinetics from selected pharmaceuticals, and the nature and extent of the impact was compound-specific and matrix-specific. In the absence of NOM, the NDMA formation from most pharmaceuticals was reduced upon prechlorination, except for sumatriptan which showed a consistent increase in NDMA formation with increasing free chlorine contact time. In the presence of NOM, prechlorination was shown to enhance initial reactions by reducing the binding between NOM and pharmaceuticals, but prolonged prechlorination broke down NOM into smaller products which could then form new bonds with pharmaceuticals and thus inhibit their further conversion into NDMA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Evaluation of conceptual models of natural organic matter (humus) from a consideration of the chemical and biochemical processes of humification

    USGS Publications Warehouse

    Wershaw, Robert L.

    2004-01-01

    Natural organic matter (NOM) has been studied for more than 200 years because of its importance in enhancing soil fertility, soil structure, and water-holding capacity and as a carbon sink in the global carbon cycle. Two different types of models have been proposed for NOM: (1) the humic polymer models and (2) the molecular aggregate models. In the humic polymer models, NOM molecules are depicted as large (humic) polymers that have unique chemical structures that are different from those of the precursor plant degradation products. In the molecular aggregate models, NOM is depicted as being composed of molecular aggregates (supramolecular aggregates) of plant degradation products held together by non-covalent bonds. The preponderance of evidence favors the supramolecular aggregate models. These models were developed by studying the properties of NOM extracted from soils and natural waters, and as such, they provide only a very generalized picture of the structure of NOM aggregates in soils and natural waters prior to extraction. A compartmental model, in which the structure of the NOM in each of the compartments is treated separately, should provide a more accurate representation of NOM in soil and sediment systems. The proposed NOM compartments are: (1) partially degraded plant tissue, (2) biomass from microorganisms, (3) organic coatings on mineral grains, (4) pyrolytic carbon, (5) organic precipitates, and (6) dissolved organic matter (DOM) in interstitial water. Within each of these compartments there are NOM supramolecular aggregates that will be dissolved by the solvent systems that are used by researchers for extraction of NOM from soils and sediments. In natural water systems DOM may be considered as existing in two subcompartments: (1) truly dissolved DOM and (2) colloidal DOM.

  4. Elucidating Adsorptive Fractions of Natural Organic Matter on Carbon Nanotubes.

    PubMed

    Ateia, Mohamed; Apul, Onur G; Shimizu, Yuta; Muflihah, Astri; Yoshimura, Chihiro; Karanfil, Tanju

    2017-06-20

    Natural organic matter (NOM) is a heterogeneous mixture of organic compounds that is omnipresent in natural waters. To date, the understanding of the adsorption of NOM components by carbon nanotubes (CNTs) is limited because of the limited number of comprehensive studies in the literature examining the adsorption of NOM by CNTs. In this study, 11 standard NOM samples from various sources were characterized, and their adsorption behaviors on four different CNTs were examined side-by-side using total organic carbon, fluorescence, UV-visible spectroscopy, and high-performance size-exclusion chromatography (HPSEC) analysis. Adsorption was influenced by the chemical properties of the NOM, including aromaticity, degree of oxidation, and carboxylic acidity. Fluorescence excitation-emission matrix (EEM) analysis showed preferential adsorption of decomposed and terrestrial-derived NOM compared to freshly produced and microbial-derived NOM. HPSEC analysis revealed preferential adsorption of fractions in the molecular weight range of 0.5-2 kDa for humic acids but in the molecular weight range of 1-3 kDa for all fulvic acids and reverse-osmosis isolates. However, the smallest characterized fraction (MW < 0.4 kDa) in all samples did not adsorb on the CNTs.

  5. Treatability and characterization of Natural Organic Matter (NOM) in South African waters using newly developed methods

    NASA Astrophysics Data System (ADS)

    Nkambule, T. I.; Krause, R. W. M.; Haarhoff, J.; Mamba, B. B.

    Managing the removal of Natural Organic Matter (NOM) or problematic components from water has become increasingly important. NOM is a heterogeneous mixture of organic compounds of human origin and derived from plant and microbial residues. The inadequate removal of NOM has a bearing on the capacity of the other treatment processes to remove organic micro-pollutants or inorganic species that may be present in the water. In addition the action of certain disinfection processes has been shown to lead to the formation of harmful disinfection by-products (DBPs). Owing to the complexity, in composition and structure, of NOM, the techniques currently employed for its characterization have a number of limitations, both in terms of quantification and removal of the NOM within short periods of time. The dissolved organic carbon (DOC), biodegradable dissolved organic carbon (BDOC) and Fluorescence Emission Excitation Matrices (FEEM) were used to characterize NOM from various water samples collected around South Africa. Characterization results gave an indication of the character of NOM present in all the water samples. FEEM and UV-Vis results indicated that most of the water samples were aromatic in nature, since they had high hydrophobic and humic acid-like materials content. Generally, the characterization data indicated a varying composition of NOM amongst the various sampling points. The polarity rapid assessment method (PRAM) was then employed as a rapid NOM characterization tool. The characterization under PRAM is based on preferential adsorption of dissolved organic matter (DOM) fractions onto solid phase extraction (SPE) sorbents. The PRAM also allows the separation of DOM into fractions by polarity, hence reducing the molecular heterogeneity of NOM and thus aiding the removal of specific NOM fractions from water. The PRAM provided a quick characterization of the NOM character. However, DOC quantification by the PRAM analysis was hindered by excessive carbon leaching from the SPE cartridges. The BDOC method of analysis is based on the bacteria fixed on the biologically active sand and gives a ratio of the biodegradable NOM versus the non-biodegradable NOM. For the BDOC analysis, the percentage DOC removal for the samples ranged from 12% to 61%.

  6. Reaction of bromine and chlorine with phenolic compounds and natural organic matter extracts--Electrophilic aromatic substitution and oxidation.

    PubMed

    Criquet, Justine; Rodriguez, Eva M; Allard, Sebastien; Wellauer, Sven; Salhi, Elisabeth; Joll, Cynthia A; von Gunten, Urs

    2015-11-15

    Phenolic compounds are known structural moieties of natural organic matter (NOM), and their reactivity is a key parameter for understanding the reactivity of NOM and the disinfection by-product formation during oxidative water treatment. In this study, species-specific and/or apparent second order rate constants and mechanisms for the reactions of bromine and chlorine have been determined for various phenolic compounds (phenol, resorcinol, catechol, hydroquinone, phloroglucinol, bisphenol A, p-hydroxybenzoic acid, gallic acid, hesperetin and tannic acid) and flavone. The reactivity of bromine with phenolic compounds is very high, with apparent second order rate constants at pH 7 in the range of 10(4) to 10(7) M(-1) s(-1). The highest value was recorded for the reaction between HOBr and the fully deprotonated resorcinol (k = 2.1 × 10(9) M(-1) s(-1)). The reactivity of phenolic compounds is enhanced by the activating character of the phenolic substituents, e.g. further hydroxyl groups. With the data set from this study, the ratio between the species-specific rate constants for the reactions of chlorine versus bromine with phenolic compounds was confirmed to be about 3000. Phenolic compounds react with bromine or chlorine either by oxidation (electron transfer, ET) or electrophilic aromatic substitution (EAS) processes. The dominant process mainly depends on the relative position of the hydroxyl substituents and the possibility of quinone formation. While phenol, p-hydroxybenzoic acid and bisphenol A undergo EAS, hydroquinone, catechol, gallic acid and tannic acid, with hydroxyl substituents in ortho or para positions, react with bromine by ET leading to quantitative formation of the corresponding quinones. Some compounds (e.g. phloroglucinol) show both partial oxidation and partial electrophilic aromatic substitution and the ratio observed for the pathways depends on the pH. For the reaction of six NOM extracts with bromine, electrophilic aromatic substitution accounted for only 20% of the reaction, and for one NOM extract (Pony Lake fulvic acid) it accounted for <10%. This shows that for natural organic matter samples, oxidation (ET) is far more important than bromine incorporation (EAS). Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. A review: Potential and challenges of biologically activated carbon to remove natural organic matter in drinking water purification process.

    PubMed

    Korotta-Gamage, Shashika Madushi; Sathasivan, Arumugam

    2017-01-01

    The use of biologically activated carbon (BAC) in drinking water purification is reviewed. In the past BAC is seen mostly as a polishing treatment. However, BAC has the potential to provide solution to recent challenges faced by water utilities arising from change in natural organic matter (NOM) composition in drinking water sources - increased NOM concentration with a larger fraction of hydrophilic compounds and ever increasing trace level organic pollutants. Hydrophilic NOM is not removed by traditional coagulation process and causes bacterial regrowth and increases disinfection by-products (DBPs) formation during disinfection. BAC can offer many advantages by removing hydrophilic fraction and many toxic and endocrine compounds which are not otherwise removed. BAC can also aid the other downstream processes if used as a pre-treatment. Major drawback of BAC was longer empty bed contact time (EBCT) required for an effective NOM removal. This critical review analyses the strategies that have been adopted to enhance the biological activity of the carbon by operational means and summarises the surface modification methods. To maximize the benefit of the BAC, a rethink of current treatment plant configuration is proposed. If the process can be expedited and adopted appropriately, BAC can solve many of the current problems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Nanoparticles in natural systems II: The natural oxide fraction at interaction with natural organic matter and phosphate

    NASA Astrophysics Data System (ADS)

    Hiemstra, Tjisse; Antelo, Juan; van Rotterdam, A. M. D.(Debby); van Riemsdijk, Willem H.

    2010-01-01

    Information on the particle size and reactive surface area of natural samples and its interaction with natural organic matter (NOM) is essential for the understanding bioavailability, toxicity, and transport of elements in the natural environment. In part I of this series ( Hiemstra et al., 2010), a method is presented that allows the determination of the effective reactive surface area ( A, m 2/g soil) of the oxide particles of natural samples which uses a native probe ion (phosphate) and a model oxide (goethite) as proxy. In soils, the natural oxide particles are generally embedded in a matrix of natural organic matter (NOM) and this will affect the ion binding properties of the oxide fraction. A remarkably high variation in the natural phosphate loading of the oxide surfaces ( Γ, μmol/m 2) is observed in our soils and the present paper shows that it is due to surface complexation of NOM, acting as a competitor via site competition and electrostatic interaction. The competitive interaction of NOM can be described with the charge distribution (CD) model by defining a ≡NOM surface species. The interfacial charge distribution of this ≡NOM surface species can be rationalized based on calculations done with an evolved surface complexation model, known as the ligand and charge distribution (LCD) model. An adequate choice is the presence of a charge of -1 v.u. at the 1-plane and -0.5 v.u. at the 2-plane of the electrical double layer used (Extended Stern layer model). The effective interfacial NOM adsorption can be quantified by comparing the experimental phosphate concentration, measured under standardized field conditions (e.g. 0.01 M CaCl 2), with a prediction that uses the experimentally derived surface area ( A) and the reversibly bound phosphate loading ( Γ, μmol/m 2) of the sample (part I) as input in the CD model. Ignoring the competitive action of adsorbed NOM leads to a severe under-prediction of the phosphate concentration by a factor ˜10 to 1000. The calculated effective loading of NOM is low at a high phosphate loading ( Γ) and vice versa, showing the mutual competition of both constituents. Both constituents in combination usually dominate the surface loading of natural oxide fraction of samples and form the backbone in modeling the fate of other (minor) ions in the natural environment. Empirically, the effective NOM adsorption is found to correlate well to the organic carbon content (OC) of the samples. The effective NOM adsorption can also be linked to DOC. For this, a Non-Ideal Competitive adsorption (NICA) model is used. DOC is found to be a major explaining factor for the interfacial loading of NOM as well as phosphate. The empirical NOM-OC relation or the parameterized NICA model can be used as an alternative for estimating the effective NOM adsorption to be implemented in the CD model for calculation of the surface complexation of field samples. The biogeochemical impact of the NOM-PO 4 interaction is discussed.

  9. Selecting and Ranking Cost Research Projects

    DTIC Science & Technology

    1993-09-01

    Model (STACM) Enhancements Automated Cost Estimating Integrated Tools ( ACEIT ) Libraries BM/C 3 GEP Engineering and Cost BM/C 3 EP Engineering and Cost...50K NOM VHI 0.02635481 STACM ENHANCEMENTS NOM អK NOM VHI 0.02468682 ACEIT LIBRARIES VHI 50-IOOK HI VHI 0.06357704 GEP ENGRG. & COST VHI 100-150K VHl...0.02505922 SCATS LOW អK NOM VIII 0.02468682 PICES SUPPORT NOM 50-100K NOM VlIl 0.02455186 ACEIT SUPPORT VIII 50-100K VHI VHI 0.08208244 GUARDIAN

  10. Interactions of aqueous NOM with nanoscale TiO2: implications for ceramic membrane filtration-ozonation hybrid process.

    PubMed

    Kim, Jeonghwan; Shan, Wenqian; Davies, Simon H R; Baumann, Melissa J; Masten, Susan J; Tarabara, Volodymyr V

    2009-07-15

    The combined effect of pH and calcium on the interactions of nonozonated and ozonated natural organic matter (NOM) with nanoscale TiO2 was investigated. The approach included characterization of TiO2 nanoparticles and NOM, extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) modeling of NOM-TiO2 and NOM-NOM interactions, batch study on the NOM adsorption onto TiO2 surface, and bench-scale study on the treatment of NOM-containing feed waters using a hybrid process that combines ozonation and ultrafiltration with a 5 kDa ceramic (TiO2 surface) membrane. It was demonstrated that depending on pH and TiO2 loading, the adsorption of NOM species is controlled by either the availability of divalent cations or by preozonation of NOM. XDLVO surface energy analysis predicts NOM adsorption onto TiO2 in the ozone-controlled regime but not in the calcium-controlled regime. In both regimes, short-range NOM-NOM and NOM-TiO2 interactions were governed by acid-base and van der Waals forces, whereas the role of electrostatic forces was relatively insignificant. Ozonation increased the surface energy of NOM, contributing to the hydrophilic repulsion component of the NOM-NOM and NOM-TiO2 interactions. In the calcium-controlled regime, neither NOM-TiO2 nor NOM-NOM interaction controlled adsorption. Non-XDLVO interactions such as intermolecular bridging by calcium were hypothesized to be responsible for the observed adsorption behavior. Adsorption data proved to be highly predictive of the permeate flux performance.

  11. Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of NOM characteristics and water quality parameters.

    PubMed

    Hyung, Hoon; Kim, Jae-Hong

    2008-06-15

    The effect of natural organic matter (NOM) characteristics and water quality parameters on NOM adsorption to multiwalled carbon nanotubes (MWNT) was investigated. Isotherm experiment results were fitted well with a modified Freundlich isotherm model that took into account the heterogeneous nature of NOM. The preferential adsorption of the higher molecular weight fraction of NOM was observed by size exclusion chromatographic analysis. Experiments performed with various NOM samples suggested that the degree of NOM adsorption varied greatly depending on the type of NOM and was proportional to the aromatic carbon content of NOM. The NOM adsorption to MWNT was also dependent on water quality parameters: adsorption increased as pH decreased and ionic strength increased. As a result of NOM adsorption to MWNT, a fraction of MWNT formed a stable suspension in water and the concentration of MWNT suspension depended on the amount of NOM adsorbed per unit mass of MWNT. The amount of MWNT suspended in water was also affected by ionic strength and pH. The findings in this study suggested that the fate and transport of MWNT in natural systems would be largely influenced by NOM characteristics and water quality parameters.

  12. Modeling the formation of N-nitrosodimethylamine (NDMA) from the reaction of natural organic matter (NOM) with monochloramine.

    PubMed

    Chen, Zhuo; Valentine, Richard L

    2006-12-01

    This paper presents mechanistic studies on the formation of NDMA, a newly identified chloramination disinfection byproduct, from reactions of monochloramine with natural organic matter. A kinetic model was developed to validate proposed reactions and to predict NDMA formation in chloraminated water during the time frame of 1-5 days. This involved incorporating NDMA formation reactions into an established comprehensive model describing the oxidation of humic-type natural organic matter by monochloramine. A rate-limiting step involving the oxidation of NOM is theorized to control the rate of NDMA formation which is assumed to be proportional to the rate of NOM oxidized by monochloramine. The applicability of the model to describe NDMA formation in the presence of three NOM sources over a wide range in water quality (i.e., pH, DOC, and ammonia concentrations) was evaluated. Results show that with accurate measurement of monochloramine demand for a specific supply, NDMA formation could be modeled over an extended range of experimental conditions by considering a single NOM source-specific value of thetaNDMA, a stoichiometric coefficient relating the amount of NDMA produced to the amount of NOM oxidized, and several kinetic parameters describing NOM oxidation. Furthermore, the oxidation of NOM is the rate-limiting step governing NDMA formation. This suggests that NDMA formation over a 1-5 day time frame may be estimated from information on the chloramine or free chlorine demand of the NOM and the source-specific linear relationship between this demand and NDMA formation. Although the proposed model has not yet been validated for shorter time periods that may better characterize the residence time in some distribution systems, the improved understanding of the important reactions governing NDMA formation and the resulting model should benefit the water treatment industry as a tool in developing strategies that minimize NDMA formation.

  13. Removal of natural organic matter from drinking water by advanced oxidation processes.

    PubMed

    Matilainen, Anu; Sillanpää, Mika

    2010-06-01

    Over the past 10-20years the amount of the natural organic matter (NOM) has been increased in raw water supplies on several areas. The presence of NOM causes many problems in drinking water treatment processes, including: (i) negative effect on water quality by colour, taste and odor problems, (ii) increased coagulant and disinfectant dose requirements (which in turn results increased sludge and potential harmful disinfection by-product formation), (iii) promoted biological growth in distribution system, and (iv) increased levels of complexed heavy metals and adsorbed organic pollutants. Thus, more efficient methods for the removal of NOM have emerged. Among these are advanced oxidation processes (AOPs). These include O(3)/H(2)O(2), O(3)/UV, UV/H(2)O(2), TiO(2)/UV, H(2)O(2)/catalyst, Fenton and photo-Fenton prosesses as well as ultrasound. In the present work, an overview of the recent research studies dealing with AOP methods for the removal of NOM and related compounds from drinking water is presented.

  14. Influence of natural organic matter in porous media on fine particle transport.

    PubMed

    Zhou, Yuhong; Cheng, Tao

    2018-06-15

    Although extensive research has been conducted to understand the effects of dissolved organic matter (DOM) on fine particle transport, less attention has been paid to natural organic matter (NOM) in the transport medium (i.e., immobile rock and sediment grains). The objective of this study is to elucidate the roles of NOM in the transport medium in mediating particle transport. We conducted experimental and modelling study on the transport of nanoscale titanium dioxide (nTiO 2 ) and illite colloid in columns packed with quartz sand under water-saturated conditions. Peat moss was used as an example NOM and packed in some of the columns to investigate its influence on particle transport. Experimental results showed that NOM may either increase or decrease particle transport depending on the specific conditions. NOM in the transport medium was found to attract particles and reduce particle mobility when the energy barrier between particle and NOM is low or non-existent. NOM also adsorb to Fe and Al oxyhydroxides and promote the transport of negatively-charged particles at low pH. Partial dissolution of NOM releases DOM, and the DOM adsorbs to and increases the transport of positively-charged particles. Additionally, NOM changes pore water pH, which influences particle mobility by affecting the interaction energy between the particle and transport medium. Modelling results showed that the deposition sites provided by peat moss are very heterogeneous, and the NOM from peat moss may reduce particle deposition rate by adsorbing to the particle and/or transport medium. Findings from this study demonstrate that NOM in the transport medium not only changes property of the medium, but also may alter water chemistry. Therefore, the role of NOM in mediating particle transport is complicated and dependent on the property of the particle, NOM, and mineralogical composition of the medium. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Fluctuations of dissolved organic matter in river used for drinking water and impacts on conventional treatment plant performance.

    PubMed

    Volk, Christian; Kaplan, Louis A; Robinson, Jeff; Johnson, Bruce; Wood, Larry; Zhu, Hai Wei; LeChevallier, Mark

    2005-06-01

    Natural organic matter (NOM) in drinking water supplies can provide precursors for disinfectant byproducts, molecules that impact taste and odors, compounds that influence the efficacy of treatment, and other compounds that are a source of energy and carbon for the regrowth of microorganisms during distribution. NOM, measured as dissolved organic carbon (DOC), was monitored daily in the White River and the Indiana-American water treatment plant over 22 months. Other parameters were either measured daily (UV-absorbance, alkalinity, color, temperature) or continuously (turbidity, pH, and discharge) and used with stepwise linear regressions to predict DOC concentrations. The predictive models were validated with monthly samples of the river water and treatment plant effluent taken over a 2-year period after the daily monitoring had ended. Biodegradable DOC (BDOC) concentrations were measured in the river water and plant effluent twice monthly for 18 months. The BDOC measurements, along with measurements of humic and carbohydrate constituents within the DOC and BDOC pools, revealed that carbohydrates were the organic fraction with the highest percent removal during treatment, followed by BDOC, humic substances, and refractory DOC.

  16. Characterization of pyrogenic organic matter by 2-dimenstional HETeronucleus CORelation solid-state 13C NMR (HETCOR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Knicker, Heike

    2016-04-01

    During the last years, increasing evidences are provided that the common view of charcoal as a polyaromatic network is too much simplified. Experiments with model compounds indicated that it represents a heterogeneous mixture of thermally altered biomacromolecules with N, O and likely also S substitutions as common features. If produced from a N-rich feedstock, the so called black nitrogen (BN) has to be considered as an integral part of the aromatic charcoal network. In order to study this network one-dimensional (1D) solid-state nuclear magnetic resonance (NMR) spectroscopy is often applied. However, this technique suffers from broad resonance lines and low resolution. Applying 2D techniques can help but until recently, this was unfeasible for natural organic matter (NOM) due to sensitivity problems and the high complexity of the material. On the other hand, during the last decade, the development of stronger magnetic field instruments and advanced pulse sequences has put them into reach for NOM research. Although 2D NMR spectroscopy has many different applications, all pulse sequences are based on the introduction of a preparation time during which the magnetization of a spin system is adjusted into a state appropriate to whatever properties are to be detected in the indirect dimension. Then, the spins are allowed to evolve with the given conditions and after their additional manipulation during a mixing period the modulated magnetization is detected. Assembling several 1D spectra with incrementing evolution time creates a data set which is two-dimensional in time (t1, t2). Fourier transformation of both dimensions leads to a 2D contour plot correlating the interactions detected in the indirect dimension t1 with the signals detected in the direct dimension t2. The so called solid-state heteronuclear correlation (HETCOR) NMR spectroscopy represents a 2D technique allows the determination which protons are interacting with which carbons. In the present work this technique was used for monitoring the chemical changes occurring during charring of biomass derived from model compounds, fire-affected and unaffected NOM. The 2D 13C HETCOR NMR spectrum of the fire- unaffected soils revealed that most of the carboxyl C occurs as ester or amide. Aside from cross peaks typically seen in spectra of NOM, the spectrum of the respective fire-affected counterpart shows additional signals assignable to PyOM.

  17. Competitive adsorption of PPCP and humic substances by carbon nanotube membranes: Effects of coagulation and PPCP properties.

    PubMed

    Wang, Yifei; Yang, Qing; Dong, Junqing; Huang, Haiou

    2018-04-01

    Natural organic matter (NOM) and pharmaceuticals and personal care products (PPCP) are known to compete for adsorption sites on carbon nanotubes (CNT), resulting in decreasing PPCP adsorption onto CNT. In this study, four types of PPCP, as such acetaminophen (AAP), caffeine (CAF), triclosan (TCS), and carbendazim (CBD) were used to investigate the effects of PPCP properties and NOM coagulation on the competitive adsorption of PPCP and NOM. Coagulation preferentially removed HS from a natural surface water, thereby increasing adsorption of AAP, CAF, TCS and CBD by 19%, 13%, 17% and 11%, respectively. Similar trends were obtained with synthetic natural waters, for which the adsorption of AAP, CAF, TCS, and CBD increased by 29%, 7%, 44% and 69%, respectively, as humic acid (HA) concentration decreased from 10mgL -1 to 0mgL -1 . Furthermore, PPCP properties also affected their competition with NOM for adsorption by CNT membranes Because CAF existed in cationic form at pH ranging from 7 to 8.3, its adsorption was less affected by the presence/coagulation of NOM than AAP, CBD, and TCS. Based upon these findings, coagulation has the potential to be integrated with CNT adsorption for the removal of PPCP compounds during advanced drinking water treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The roles of tertiary amine structure, background organic matter and chloramine species on NDMA formation.

    PubMed

    Selbes, Meric; Kim, Daekyun; Ates, Nuray; Karanfil, Tanju

    2013-02-01

    N-nitrosodimethylamine (NDMA), a probable human carcinogen, is a disinfection by-product that has been detected in chloraminated and chlorinated drinking waters and wastewaters. Formation mechanisms and precursors of NDMA are still not well understood. The main objectives of this study were to systematically investigate (i) the effect of tertiary amine structure, (ii) the effect of background natural organic matter (NOM), and (iii) the roles of mono vs. dichloramine species on the NDMA formation. Dimethylamine (DMA) and 20 different tertiary aliphatic and aromatic amines were carefully examined based on their functional groups attached to the basic DMA structure. The wide range (0.02-83.9%) of observed NDMA yields indicated the importance of the structure of tertiary amines, and both stability and electron distribution of the leaving group of tertiary amines on NDMA formation. DMA associated with branched alkyl groups or benzyl like structures having only one carbon between the ring and DMA structure consistently gave higher NDMA yields. Compounds with electron withdrawing groups (EWG) reacted preferentially with monochloramine, whereas compounds with electron donating group (EDG) showed tendency to react with dichloramine to form NDMA. When the selected amines were present in NOM solutions, NDMA formation increased for compounds with EWG while decreased for compounds with EDG. This impact was attributed to the competitions between NOM and amines for chloramine species. The results provided additional information to the commonly accepted mechanism for NDMA formation including chloramine species reacting with tertiary amines and the role of the leaving group on overall NDMA conversion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Formularity: Software for Automated Formula Assignment of Natural and Other Organic Matter from Ultrahigh-Resolution Mass Spectra.

    PubMed

    Tolić, Nikola; Liu, Yina; Liyu, Andrey; Shen, Yufeng; Tfaily, Malak M; Kujawinski, Elizabeth B; Longnecker, Krista; Kuo, Li-Jung; Robinson, Errol W; Paša-Tolić, Ljiljana; Hess, Nancy J

    2017-12-05

    Ultrahigh resolution mass spectrometry, such as Fourier transform ion cyclotron resonance mass spectrometry (FT ICR MS), can resolve thousands of molecular ions in complex organic matrices. A Compound Identification Algorithm (CIA) was previously developed for automated elemental formula assignment for natural organic matter (NOM). In this work, we describe software Formularity with a user-friendly interface for CIA function and newly developed search function Isotopic Pattern Algorithm (IPA). While CIA assigns elemental formulas for compounds containing C, H, O, N, S, and P, IPA is capable of assigning formulas for compounds containing other elements. We used halogenated organic compounds (HOC), a chemical class that is ubiquitous in nature as well as anthropogenic systems, as an example to demonstrate the capability of Formularity with IPA. A HOC standard mix was used to evaluate the identification confidence of IPA. Tap water and HOC spike in Suwannee River NOM were used to assess HOC identification in complex environmental samples. Strategies for reconciliation of CIA and IPA assignments were discussed. Software and sample databases with documentation are freely available.

  20. Removal of natural organic matter from water using ion-exchange resins and cyclodextrin polyurethanes

    NASA Astrophysics Data System (ADS)

    Nkambule, T. I.; Krause, R. W.; Mamba, B. B.; Haarhoff, J.

    Natural organic matter (NOM) consists of a complex mixture of naturally occurring organic compounds. Although it is not considered toxic by itself, NOM present during water disinfection may result in the formation of disinfection by-products (DBPs), many of which are either carcinogenic or mutagenic. Although it is difficult to completely characterize NOM due to its complex and large structure, a consideration of its structure is necessary for a better understanding of the mechanism of NOM removal from water. In this study, water from the Vaalkop water treatment plant was characterized for its NOM composition by fractionation over ion-exchange resins. Fractionation at different pH with different resins resulted in the isolation of the neutral, basic and acidic fractions of both the hydrophobic and hydrophilic NOM. The hydrophilic basic fraction was found to be the most abundant fraction in the source water. Each of the isolated NOM fractions were percolated through cyclodextrin (CD) polyurethanes, resulting in an adsorption efficiency of between 6% and 33%. The acidic fractions were the most adsorbed fractions by the CD polyurethanes, while the neutral fractions being the least adsorbed. The water samples were then subjected to an ozonation regime at the treatment plant and then fractionated as before. As expected there were decreases of the neutral and basic fractions after ozonation. The application of CD polyurethanes to the fractions after ozonation resulted in a removal efficiency of up to 59%, nearly double that of the non-treated sample. Also, in the case of the ozone pre-treated samples, it was mainly the hydrophilic basic fraction which was removed. All the fractions were subjected to a chlorination test to determine the trihalomethane (THM) formation potential. All six NOM fractions resulted in THM formation, but the hydrophilic basic fraction was found to be the most reactive and formed the highest THM concentration. The effect of the combination of ozone and cyclodextrin polyurethane resulted in a relatively good capability to remove NOM from water as evidenced by an up overall 88% reduction of the hydrophilic acidic fraction.

  1. Size, speciation and lability of NOM-metal complexes in hyperalkaline cave dripwater

    NASA Astrophysics Data System (ADS)

    Hartland, Adam; Fairchild, Ian J.; Lead, Jamie R.; Zhang, Hao; Baalousha, Mohammed

    2011-12-01

    Transport of trace metals by natural organic matter (NOM) is potentially an important vector for trace metal incorporation in secondary cave precipitates [speleothems], yet little is known about the size distribution, speciation and metal binding properties of NOM in cave dripwaters. A hyperalkaline cave environment (ca. pH 11) was selected to provide information on colloid-metal interactions in cave waters, and to address the lack of high-pH data in natural systems in general. Colloidal (1 nm-1 μm) NOM in hyperalkaline cave dripwater from Poole's Cavern, UK, was characterised by flow field-flow fractionation (FlFFF) coupled to UV and fluorescence detectors and transmission electron microscopy (TEM) coupled to X-ray energy-dispersive spectroscopy (X-EDS); trace-metal lability was examined by diffusive gradients in thin films (DGT). Colloidal aggregates and small particulates (>1 μm) imaged by TEM were morphologically heterogeneous with qualitative elemental compositions (X-EDS spectra; n = 41) consistent with NOM aggregates containing aluminosilicates, and iron and titanium oxides. Globular organic colloids, with diameters between ca. 1 and 10 nm were the most numerous colloidal class and exhibited high UV-absorbance (254 nm) and fluorescence intensity (320:400 nm excitation: emission) in optical regions characteristic of humic-like compounds. Metal binding with humic substances was modelled using the WHAM 6.1 (model VI) and visual MINTEQ 3.0 (NICA-Donnan) speciation codes. At pH 11, both models predicted dominant humic binding of Cu (ca. 100%) and minimal binding of Ni and Co (ca. <1-7%). A DGT depletion experiment (7 days duration) with the hyperalkaline dripwater showed that the available proportion of each metal was much lower than its total concentration. Metal availability for DGT in the initial stages (24 h) was consistent with weaker binding of alkaline earth metals by humic substances (Ba > Sr > V > Cu > Ni > Co), compared to the transition metals. Integrated over the entire experiment, the DGT-available proportion of transition metals (Ni > Cu & V >> Co) differed greatly from the expected hierarchy from WHAM and MINTEQ, indicating unusually strong complexation of Co. Total metal concentrations of Cu, Ni, and Co in raw and filtered PE1 dripwater samples ( n = 53) were well correlated (Cu vs. Ni, R2 = 0.8; Cu vs. Co, R2 = 0.5) and were strongly reduced (> ca. 50%) by filtration at ca. 100 and 1 nm, indicating a common colloidal association. Our results demonstrate that soil-derived colloids reach speleothems, despite transport through a karst zone with potential for adsorption, and that NOM is a dominant complexant of trace metals in high pH speleothem-forming groundwaters.

  2. Characterization of natural organic matter treated by iron oxide nanoparticle incorporated ceramic membrane-ozonation process.

    PubMed

    Park, Hosik; Kim, Yohan; An, Byungryul; Choi, Heechul

    2012-11-15

    In this study, changes in the physical and structural properties of natural organic matter (NOM) were observed during hybrid ceramic membrane processes that combined ozonation with ultrafiltration ceramic membrane (CM) or with a reactive ceramic membrane (RM), namely, an iron oxide nanoparticles (IONs) incorporated-CM. NOM from feed water and NOM from permeate treated with hybrid ceramic membrane processes were analyzed by employing several NOM characterization techniques. Specific ultraviolet absorbance (SUVA), high-performance size exclusion chromatography (HPSEC) and fractionation analyses showed that the hybrid ceramic membrane process effectively removed and transformed relatively high contents of aromatic, high molecular weight and hydrophobic NOM fractions. Fourier transform infrared spectroscopy (FTIR) and 3-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy revealed that this process caused a significant decrease of the aromaticity of humic-like structures and an increase in electron withdrawing groups. The highest removal efficiency (46%) of hydroxyl radical probe compound (i.e., para-Chlorobenzoic acid (pCBA)) in RM-ozonation process compared with that in CM without ozonation process (8%) revealed the hydroxyl radical formation by the surface-catalyzed reaction between ozone and IONs on the surface of RM. In addition, experimental results on flux decline showed that fouling of RM-ozonation process (15%) was reduced compared with that of CM without ozonation process (30%). These results indicated that the RM-ozonation process enhanced the destruction of NOM and reduced the fouling by generating hydroxyl radicals from the catalytic ozonation in the RM-ozonation process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Selection of anionic exchange resins for removal of natural organic matter (NOM) fractions.

    PubMed

    Cornelissen, E R; Moreau, N; Siegers, W G; Abrahamse, A J; Rietveld, L C; Grefte, A; Dignum, M; Amy, G; Wessels, L P

    2008-01-01

    Early elimination of natural organic matter (NOM) by ion exchange (IEX) in water treatment is expected to improve subsequent water treatment processes and the final drinking water quality. Nine anionic exchange resins were investigated to remove NOM and specific NOM fractions determined by liquid chromatography in combination with organic carbon detection (LC-OCD) and fluorescence excitation-emission matrices (EEM). Breakthrough of NOM was predicted by model calculations using Freundlich isotherms and IEX rate experiments. The time to breakthrough varied from 4 to 38 days. Removal of specific NOM fractions proved to vary considerably for the different types of IEX resins, ranging from 1% to almost 60%. The removal of NOM fractions, specifically humic substances, increased with an increase in water content of the investigated IEX resins and with a decrease in resin size. The best-performing IEX resins consisted of the smallest resins and/or those with the highest water content. The worst-performing IEX resins reflected the highest exchanging capacities and the lowest water contents.

  4. Sorption and biodegradation characteristics of the selected pharmaceuticals and personal care products onto tropical soil.

    PubMed

    Foolad, Mahsa; Hu, Jiangyong; Tran, Ngoc Han; Ong, Say Leong

    2016-01-01

    In the present study, the sorption and biodegradation characteristics of five pharmaceutical and personal care products (PPCPs), including acetaminophen (ACT), carbamazepine (CBZ), crotamiton (CTMT), diethyltoluamide (DEET) and salicylic acid (SA), were studied in laboratory-batch experiments. Sorption kinetics experimental data showed that sorption systems under this study were more appropriately described by the pseudo second-order kinetics with a correlation coefficient (R2)>0.98. Sorption equilibrium data of almost all target compounds onto soil could be better described by the Freundlich sorption isotherm model. The adsorption results showed higher soil affinity for SA, following by ACT. Results also indicated a slight effect of pH on PPCP adsorption with lower pH causing lower adsorption of compounds onto the soil except for SA at pH 12. Moreover, adsorption of PPCPs onto the soil was influenced by natural organic matter (NOM) since the higher amount of NOM caused lower adsorption to the soil. Biodegradation studies of selected PPCPs by indigenous microbial community present in soil appeared that the removal rates of ACT, SA and DEET increased with time while no effect had been observed for the rest. This study suggests that the CBZ and CTMT can be considered as suitable chemical sewage indicators based on their low sorption affinity and high resistance to biodegradation.

  5. Influence of natural organic matter source on copper speciation as demonstrated by Cu binding to fish gills, by ion selective electrode, and by DGT gel sampler

    USGS Publications Warehouse

    Luider, C.D.; Crusius, John; Playle, R.C.; Curtis, P.J.

    2004-01-01

    Rainbow trout (Oncorhynchus mykiss, 2 g) were exposed to 0−5 μM total copper in ion-poor water for 3 h in the presence or absence of 10 mg C/L of qualitatively different natural organic matter (NOM) derived from water spanning a large gradient in hydrologic residence time. Accumulation of Cu by trout gills was compared to Cu speciation determined by ion selective electrode (ISE) and by diffusive gradients in thin films (DGT) gel sampler technology. The presence of NOM decreased Cu uptake by trout gills as well as Cu concentrations determined by ISE and DGT. Furthermore, the source of NOM influenced Cu binding by trout gills with high-color, allochthonous NOM decreasing Cu accumulation by the gills more than low-color autochthonous NOM. The pattern of Cu binding to the NOM measured by Cu ISE and by Cu accumulation by DGT samplers was similar to the fish gill results. A simple Cu−gill binding model required an NOM Cu-binding factor (F) that depended on NOM quality to account for observed Cu accumulation by trout gills; values of F varied by a factor of 2. Thus, NOM metal-binding quality, as well as NOM quantity, are both important when assessing the bioavailability of metals such as Cu to aquatic organisms.

  6. Modeling of natural organic matter transport processes in groundwater.

    PubMed Central

    Yeh, T C; Mas-Pla, J; McCarthy, J F; Williams, T M

    1995-01-01

    A forced-gradient tracer test was conducted at the Georgetown site to study the transport of natural organic matter (NOM) in groundwater. In particular, the goal of this experiment was to investigate the interactions between NOM and the aquifer matrix. A detailed three-dimensional characterization of the hydrologic conductivity heterogeneity of the site was obtained using slug tests. The transport of a conservative tracer (chloride) was successfully reproduced using these conductivity data. Despite the good simulation of the flow field, NOM breakthrough curves could not be reproduced using a two-site sorption model with spatially constant parameters. Preliminary results suggest that different mechanisms for the adsorption/desorption processes, as well as their spatial variability, may significantly affect the transport and fate of NOM. PMID:7621798

  7. Testing the Underlying Chemical Principles of the Biotic Ligand Model (BLM) to Marine Copper Systems: Measuring Copper Speciation Using Fluorescence Quenching.

    PubMed

    Tait, Tara N; McGeer, James C; Smith, D Scott

    2018-01-01

    Speciation of copper in marine systems strongly influences the ability of copper to cause toxicity. Natural organic matter (NOM) contains many binding sites which provides a protective effect on copper toxicity. The purpose of this study was to characterize copper binding with NOM using fluorescence quenching techniques. Fluorescence quenching of NOM with copper was performed on nine sea water samples. The resulting stability constants and binding capacities were consistent with literature values of marine NOM, showing strong binding with [Formula: see text] values from 7.64 to 10.2 and binding capacities ranging from 15 to 3110 nmol mg [Formula: see text] Free copper concentrations estimated at total dissolved copper concentrations corresponding to previously published rotifer effect concentrations, in the same nine samples, were statistically the same as the range of free copper calculated for the effect concentration in NOM-free artificial seawater. These data confirms the applicability of fluorescence spectroscopy techniques for NOM and copper speciation characterization in sea water and demonstrates that such measured speciation is consistent with the chemical principles underlying the biotic ligand model approach for bioavailability-based metals risk assessment.

  8. Iron-Mediated Oxidation of Methoxyhydroquinone under Dark Conditions: Kinetic and Mechanistic Insights.

    PubMed

    Yuan, Xiu; Davis, James A; Nico, Peter S

    2016-02-16

    Despite the biogeochemical significance of the interactions between natural organic matter (NOM) and iron species, considerable uncertainty still remains as to the exact processes contributing to the rates and extents of complexation and redox reactions between these important and complex environmental components. Investigations on the reactivity of low-molecular-weight quinones, which are believed to be key redox active compounds within NOM, toward iron species, could provide considerable insight into the kinetics and mechanisms of reactions involving NOM and iron. In this study, the oxidation of 2-methoxyhydroquinone (MH2Q) by ferric iron (Fe(III)) under dark conditions in the absence and presence of oxygen was investigated within a pH range of 4-6. Although Fe(III) was capable of stoichiometrically oxidizing MH2Q under anaerobic conditions, catalytic oxidation of MH2Q was observed in the presence of O2 due to further cycling between oxygen, semiquinone radicals, and iron species. A detailed kinetic model was developed to describe the predominant mechanisms, which indicated that both the undissociated and monodissociated anions of MH2Q were kinetically active species toward Fe(III) reduction, with the monodissociated anion being the key species accounting for the pH dependence of the oxidation. The generated radical intermediates, namely semiquinone and superoxide, are of great importance in reaction-chain propagation. The kinetic model may provide critical insight into the underlying mechanisms of the thermodynamic and kinetic characteristics of metal-organic interactions and assist in understanding and predicting the factors controlling iron and organic matter transformation and bioavailability in aquatic systems.

  9. Nanofiltration and Tight Ultrafiltration Membranes for Natural Organic Matter Removal—Contribution of Fouling and Concentration Polarization to Filtration Resistance

    PubMed Central

    Winter, Joerg; Bérubé, Pierre

    2017-01-01

    Nanofiltration (NF) and tight ultrafiltration (tight UF) membranes are a viable treatment option for high quality drinking water production from sources with high concentrations of contaminants. To date, there is limited knowledge regarding the contribution of concentration polarization (CP) and fouling to the increase in resistance during filtration of natural organic matter (NOM) with NF and tight UF. Filtration tests were conducted with NF and tight UF membranes with molecular weight cut offs (MWCOs) of 300, 2000 and 8000 Da, and model raw waters containing different constituents of NOM. When filtering model raw waters containing high concentrations of polysaccharides (i.e., higher molecular weight NOM), the increase in resistance was dominated by fouling. When filtering model raw waters containing humic substances (i.e., lower molecular weight NOM), the increase in filtration resistance was dominated by CP. The results indicate that low MWCO membranes are better suited for NOM removal, because most of the NOM in surface waters consist mainly of humic substances, which were only effectively rejected by the lower MWCO membranes. However, when humic substances are effectively rejected, CP can become extensive, leading to a significant increase in filtration resistance by the formation of a cake/gel layer at the membrane surface. For this reason, cross-flow operation, which reduces CP, is recommended. PMID:28671604

  10. Physiological effects of five different marine natural organic matters (NOMs) and three different metals (Cu, Pb, Zn) on early life stages of the blue mussel (Mytilus galloprovincialis).

    PubMed

    Nogueira, Lygia Sega; Bianchini, Adalto; Smith, Scott; Jorge, Marianna Basso; Diamond, Rachael L; Wood, Chris M

    2017-01-01

    Metals are present in aquatic environments as a result of natural and anthropogenic inputs, and may induce toxicity to organisms. One of the main factors that influence this toxicity in fresh water is natural organic matter (NOM) but all NOMs are not the same in this regard. In sea water, possible protection by marine NOMs is not well understood. Thus, our study isolated marine NOMs by solid-phase extraction from five different sites and characterized them by excitation-emission fluorescence analysis-one inshore (terrigenous origin), two offshore (autochthonous origin), and two intermediate in composition (indicative of a mixed origin). The physiological effects of these five NOMS alone (at 8 mg/L), of three metals alone (copper, lead and zinc at 6 µg Cu/L, 20 µg Pb/L, and 25 µg Zn/L respectively), and of each metal in combination with each NOM, were evaluated in 48-h exposures of mussel larvae. Endpoints were whole body Ca 2+ +Mg 2+ -ATPase activity, carbonic anhydrase activity and lipid peroxidation. By themselves, NOMs increased lipid peroxidation, Ca 2+ +Mg 2+ -ATPase, and/or carbonic anhydrase activities (significant in seven of 15 NOM-endpoint combinations), whereas metals by themselves did not affect the first two endpoints, but Cu and Pb increased carbonic anhydrase activities. In combination, the effects of NOMs predominated, with the metal exerting no additional effect in 33 out of 45 combinations. While NOM effects varied amongst different isolates, there was no clear pattern with respect to optical or chemical properties. When NOMs were treated as a single source by data averaging, NOM had no effect on Ca 2+ +Mg 2+ -ATPase activity but markedly stimulated carbonic anhydrase activity and lipid peroxidation, and there were no additional effects of any metal. Our results indicate that marine NOMs may have direct effects on this model marine organism, as well as protective effects against metal toxicity, and the quality of marine NOMs may be an important factor in these actions.

  11. Physiological effects of five different marine natural organic matters (NOMs) and three different metals (Cu, Pb, Zn) on early life stages of the blue mussel (Mytilus galloprovincialis)

    PubMed Central

    Bianchini, Adalto; Smith, Scott; Jorge, Marianna Basso; Diamond, Rachael L.; Wood, Chris M.

    2017-01-01

    Metals are present in aquatic environments as a result of natural and anthropogenic inputs, and may induce toxicity to organisms. One of the main factors that influence this toxicity in fresh water is natural organic matter (NOM) but all NOMs are not the same in this regard. In sea water, possible protection by marine NOMs is not well understood. Thus, our study isolated marine NOMs by solid-phase extraction from five different sites and characterized them by excitation-emission fluorescence analysis—one inshore (terrigenous origin), two offshore (autochthonous origin), and two intermediate in composition (indicative of a mixed origin). The physiological effects of these five NOMS alone (at 8 mg/L), of three metals alone (copper, lead and zinc at 6 µg Cu/L, 20 µg Pb/L, and 25 µg Zn/L respectively), and of each metal in combination with each NOM, were evaluated in 48-h exposures of mussel larvae. Endpoints were whole body Ca2++Mg2+-ATPase activity, carbonic anhydrase activity and lipid peroxidation. By themselves, NOMs increased lipid peroxidation, Ca2++Mg2+-ATPase, and/or carbonic anhydrase activities (significant in seven of 15 NOM-endpoint combinations), whereas metals by themselves did not affect the first two endpoints, but Cu and Pb increased carbonic anhydrase activities. In combination, the effects of NOMs predominated, with the metal exerting no additional effect in 33 out of 45 combinations. While NOM effects varied amongst different isolates, there was no clear pattern with respect to optical or chemical properties. When NOMs were treated as a single source by data averaging, NOM had no effect on Ca2++Mg2+-ATPase activity but markedly stimulated carbonic anhydrase activity and lipid peroxidation, and there were no additional effects of any metal. Our results indicate that marine NOMs may have direct effects on this model marine organism, as well as protective effects against metal toxicity, and the quality of marine NOMs may be an important factor in these actions. PMID:28413723

  12. Formularity: Software for Automated Formula Assignment of Natural and Other Organic Matter from Ultrahigh-Resolution Mass Spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolić, Nikola; Liu, Yina; Liyu, Andrey

    Ultrahigh-resolution mass spectrometry, such as Fourier transform ion-cyclotron resonance mass spectrometry (FT-ICR MS), can resolve thousands of molecular ions in complex organic matrices. A Compound Identification Algorithm (CIA) was previously developed for automated elemental formula assignment for natural organic matter (NOM). In this work we describe a user friendly interface for CIA, titled Formularity, which includes an additional functionality to perform search of formulas based on an Isotopic Pattern Algorithm (IPA). While CIA assigns elemental formulas for compounds containing C, H, O, N, S, and P, IPA is capable of assigning formulas for compounds containing other elements. We used halogenatedmore » organic compounds (HOC), a chemical class that is ubiquitous in nature as well as anthropogenic systems, as an example to demonstrate the capability of Formularity with IPA. A HOC standard mix was used to evaluate the identification confidence of IPA. The HOC spike in NOM and tap water were used to assess HOC identification in natural and anthropogenic matrices. Strategies for reconciliation of CIA and IPA assignments are discussed. Software and sample databases with documentation are freely available from the PNNL OMICS software repository https://omics.pnl.gov/software/formularity.« less

  13. Advanced solid-state NMR spectroscopy of natural organic matter.

    PubMed

    Mao, Jingdong; Cao, Xiaoyan; Olk, Dan C; Chu, Wenying; Schmidt-Rohr, Klaus

    2017-05-01

    Solid-state NMR is essential for the characterization of natural organic matter (NOM) and is gaining importance in geosciences and environmental sciences. This review is intended to highlight advanced solid-state NMR techniques, especially a systematic approach to NOM characterization, and their applications to the study of NOM. We discuss some basics of how to acquire high-quality and quantitative solid-state 13 C NMR spectra, and address some common technical mistakes that lead to unreliable spectra of NOM. The identification of specific functional groups in NOM, primarily based on 13 C spectral-editing techniques, is described and the theoretical background of some recently-developed spectral-editing techniques is provided. Applications of solid-state NMR to investigating nitrogen (N) in NOM are described, focusing on limitations of the widely used 15 N CP/MAS experiment and the potential of improved advanced NMR techniques for characterizing N forms in NOM. Then techniques used for identifying proximities, heterogeneities and domains are reviewed, and some examples provided. In addition, NMR techniques for studying segmental dynamics in NOM are reviewed. We also briefly discuss applications of solid-state NMR to NOM from various sources, including soil organic matter, aquatic organic matter, organic matter in atmospheric particulate matter, carbonaceous meteoritic organic matter, and fossil fuels. Finally, examples of NMR-based structural models and an outlook are provided. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Effects of Humic and Fulvic Acids on Silver Nanoparticle Stability, Dissolution, and Toxicity

    PubMed Central

    Gunsolus, Ian L.; Mousavi, Maral P. S.; Hussein, Kadir; Bühlmann, Philippe; Haynes, Christy L.

    2015-01-01

    The colloidal stability of silver nanoparticles (AgNPs) in natural aquatic environments influences their transport and environmental persistence, while their dissolution to Ag+ influences their toxicity to organisms. Here, we characterize the colloidal stability, dissolution behavior, and toxicity of two industrially relevant classes of AgNPs (i.e., AgNPs stabilized by citrate or polyvinylpyrrolidone) after exposure to natural organic matter (NOM, i.e., Suwannee River Humic and Fulvic Acid Standards and Pony Lake Fulvic Acid Reference). We show that NOM interaction with the nanoparticle surface depends on (i) the NOM’s chemical composition, where sulfur- and nitrogen-rich NOM more significantly increases colloidal stability, and (ii) the affinity of the capping agent for the AgNP surface, where nanoparticles with loosely bound capping agents are more effectively stabilized by NOM. Adsorption of NOM is shown to have little effect on AgNP dissolution under most experimental conditions, the exception being when the NOM is rich in sulfur and nitrogen. Similarly, the toxicity of AgNPs to a bacterial model (Shewanella oneidensis MR-1) decreases most significantly in the presence of sulfur- and nitrogen-rich NOM. Our data suggest that the rate of AgNP aggregation and dissolution in aquatic environments containing NOM will depend on the chemical composition of the NOM, and that the toxicity of AgNPs to aquatic microorganisms is controlled primarily by the extent of nanoparticle dissolution. PMID:26047330

  15. Natural and pyrogenic humic acids at goethite and natural oxide surfaces interacting with phosphate.

    PubMed

    Hiemstra, Tjisse; Mia, Shamim; Duhaut, Pierre-Benoît; Molleman, Bastiaan

    2013-08-20

    Fulvic and humic acids have a large variability in binding to metal (hydr) oxide surfaces and interact differently with oxyanions, as examined here experimentally. Pyrogenic humic acid has been included in our study since it will be released to the environment in the case of large-scale application of biochar, potentially creating Darks Earths or Terra Preta soils. A surface complexation approach has been developed that aims to describe the competitive behavior of natural organic matter (NOM) in soil as well as model systems. Modeling points unexpectedly to a strong change of the molecular conformation of humic acid (HA) with a predominant adsorption in the Stern layer domain at low NOM loading. In soil, mineral oxide surfaces remain efficiently loaded by mineral-protected organic carbon (OC), equivalent with a layer thickness of ≥ ~0.5 nm that represents at least 0.1-1.0% OC, while surface-associated OC may be even three times higher. In natural systems, surface complexation modeling should account for this pervasive NOM coverage. With our charge distribution model for NOM (NOM-CD), the pH-dependent oxyanion competition of the organo-mineral oxide fraction can be described. For pyrogenic HA, a more than 10-fold increase in dissolved phosphate is predicted at long-term applications of biochar or black carbon.

  16. Structure, Bonding, and Stability of Mercury Complexes with Thiolate and Thioether Ligands from High-Resolution XANES Spectroscopy and First-Principles Calculations.

    PubMed

    Manceau, Alain; Lemouchi, Cyprien; Rovezzi, Mauro; Lanson, Martine; Glatzel, Pieter; Nagy, Kathryn L; Gautier-Luneau, Isabelle; Joly, Yves; Enescu, Mironel

    2015-12-21

    We present results obtained from high energy-resolution L3-edge XANES spectroscopy and first-principles calculations for the structure, bonding, and stability of mercury(II) complexes with thiolate and thioether ligands in crystalline compounds, aqueous solution, and macromolecular natural organic matter (NOM). Core-to-valence XANES features that vary in intensity differentiate with unprecedented sensitivity the number and identity of Hg ligands and the geometry of the ligand environment. Post-Hartree-Fock XANES calculations, coupled with natural population analysis, performed on MP2-optimized Hg[(SR)2···(RSR)n] complexes show that the shape, position, and number of electronic transitions observed at high energy-resolution are directly correlated to the Hg and S (l,m)-projected empty densities of states and occupations of the hybridized Hg 6s and 5d valence orbitals. Linear two-coordination, the most common coordination geometry in mercury chemistry, yields a sharp 2p to 6s + 5d electronic transition. This transition varies in intensity for Hg bonded to thiol groups in macromolecular NOM. The intensity variation is explained by contributions from next-nearest, low-charge, thioether-type RSR ligands at 3.0-3.3 Å from Hg. Thus, Hg in NOM has two strong bonds to thiol S and k additional weak Hg···S contacts, or 2 + k coordination. The calculated stabilization energy is -5 kcal/mol per RSR ligand. Detection of distant ligands beyond the first coordination shell requires precise measurement of, and comparison to, spectra of reference compounds as well as accurate calculation of spectra for representative molecular models. The combined experimental and theoretical approaches described here for Hg can be applied to other closed-shell atoms, such as Ag(I) and Au(I). To facilitate further calculation of XANES spectra, experimental data, a new crystallographic structure of a key mercury thioether complex, Cartesian coordinates of the computed models, and examples of input files are provided as Supporting Information .

  17. Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: Infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Hay, Michael B.; Myneni, Satish C. B.

    2007-07-01

    Carboxyls play an important role in the chemistry of natural organic molecules (NOM) in the environment, and their behavior is dependent on local structural environment within the macromolecule. We studied the structural environments of carboxyl groups in dissolved NOM from the Pine Barrens (New Jersey, USA), and IHSS NOM isolates from soils and river waters using attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy. It is well established that the energies of the asymmetric stretching vibrations of the carboxylate anion (COO -) are sensitive to the structural environment of the carboxyl group. These energies were compiled from previous infrared studies on small organic acids for a wide variety of carboxyl structural environments and compared with the carboxyl spectral features of the NOM samples. We found that the asymmetric stretching peaks for all NOM samples occur within a narrow range centered at 1578 cm -1, suggesting that all NOM samples examined primarily contain very similar carboxyl structures, independent of sample source and isolation techniques employed. The small aliphatic acids containing hydroxyl (e.g., D-lactate, gluconate), ether/ester (methoxyacetate, acetoxyacetate), and carboxylate (malonate) substitutions on the α-carbon, and the aromatic acids salicylate ( ortho-OH) and furancarboxylate ( O-heterocycle), exhibit strong overlap with the NOM range, indicating that similar structures may be common in NOM. The width of the asymmetric peak suggests that the structural heterogeneity among the predominant carboxyl configurations in NOM is small. Changes in peak area with pH at energies distant from the peak at 1578 cm -1, however, may be indicative of a small fraction of other aromatic carboxyls and aliphatic structures lacking α-substitution. This information is important in understanding NOM-metal and mineral-surface complexation, and in building appropriate structural and mechanistic models of humic materials.

  18. Determination of natural organic matter and iron binding capacity in fen samples

    NASA Astrophysics Data System (ADS)

    Kügler, Stefan; Cooper, Rebecca E.; Frieder Mohr, Jan; Wichard, Thomas; Küsel, Kirsten

    2017-04-01

    Natural organic matter (NOM) plays an important role in ecosystem processes such as soil carbon stabilization, nutrient availability and metal complexation. Iron-NOM-complexes, for example, are known to increase the solubility and, as a result, the bioavailability of iron in natural environments leading to several effects on the microbial community. Due to the various functions of NOM in natural environments, there is a high level of interest in the characterization of the molecular composition. The complexity of NOM presents a significant challenge in the elucidation of its composition. However, the development and utilization of high resolution mass spectrometry (HR-MS) as a tool to detect single compounds in complex samples has spearheaded the effort to elucidate the composition of NOM. Over the past years, the accuracy of ion cyclotron- or Orbitrap mass spectrometers has increased dramatically resulting in the possibility to obtain a mass differentiation of the large number of compounds in NOM. Together these tools provide significant and powerful insight into the molecular composition of NOM. In the current study, we aim to understand abiotic and biotic interactions between NOM and metals, such as iron, found in the Schlöppnerbrunnen fen (Fichtelgebirge, Germany) and how these interactions impact the microbial consortia. We characterized the dissolved organic matter (DOM) as well as basic chemical parameters in the iron-rich (up to 20 mg (g wt peat)-1), slightly acidic (pH 4.8) fen to gain more information about DOM-metal interactions. This minerotrophic peatland connected to the groundwater has received Fe(II) released from the surrounding soils in the Lehstenbach catchment. Absorption spectroscopy (AAS), differential pulse polarography (DPP) and high resolution electrospray ionization mass spectrometry (HR-ESI-Orbitrap-MS) was applied to characterize the molecular composition of DOM in the peat water extract (PWE). We identified typical patterns for DOM illustrated by van Krevelen plots, which indicate the presence of different substance classes including condensed aromatics, lignins and tannins known to complex iron. Our results indicate a variety of potential Fe-DOM-complexes present in the PWE samples when iron is incorporated into the elemental composition search. Using DPP we determine the complexation capacity of iron in the natural matrix of the fen along with the identification of ligands in order to estimate the iron bioavailability for bacteria. As the microbial redox system of the fen is impacted by other metals in the environment, we perform comprehensive analysis of the entirety of metal ions and concentrations in the water samples. Dialysis chambers are currently installed in the iron-rich fen from which pore water samples will be collected at 1 cm increments between 0-20 cm depth to determine the depth profiles of Fe(II)- and Fe(III)-concentration and evaluate the influence of the depth profiles on the interplay between microorganism comprising the natural microbial redox system of the fen. We have shown that metal-DOM-pH interactions affect the bioavailable metal concentration in fen water systems. This information will pave the way for a better understanding of the bacterial recruitment of trace elements and microbial redox reactions.

  19. Influences of NOM composition and bacteriological characteristics on biological stability in a full-scale drinking water treatment plant.

    PubMed

    Park, Ji Won; Kim, Hyun-Chul; Meyer, Anne S; Kim, Sungpyo; Maeng, Sung Kyu

    2016-10-01

    The influences of natural organic matter (NOM) and bacteriological characteristics on the biological stability of water were investigated in a full-scale drinking water treatment plant. We found that prechlorination decreased the hydrophobicity of the organic matter and significantly increased the high-molecular-weight (MW) dissolved organic matter, such as biopolymers and humic substances. High-MW organic matter and structurally complex compounds are known to be relatively slowly biodegradable; however, because of the prechlorination step, the indigenous bacteria could readily utilise these fractions as assimilable organic carbon. Sequential coagulation and sedimentation resulted in the substantial removal of biopolymer (74%), humic substance (33%), bacterial cells (79%), and assimilable organic carbon (67%). Rapid sand and granular activated carbon filtration induced an increase in the low-nucleic-acid content bacteria; however, these bacteria were biologically less active in relation to enzymatic activity and ATP. The granular activated carbon step was essential to securing biological stability (the ability to prevent bacterial growth) by removing the residual assimilable organic carbon that had formed during the ozone treatment. The growth potential of Escherichia coli and indigenous bacteria were found to differ in respect to NOM characteristics. In comparison with E. coli, the indigenous bacteria utilised a broader range of NOM as a carbon source. Principal component analysis demonstrated that the measured biological stability of water could differ, depending on the NOM characteristics, as well as on the bacterial inoculum selected for the analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Effects of chloride, sulfate and natural organic matter (NOM) on the accumulation and release of trace-level inorganic contaminants from corroding iron.

    PubMed

    Peng, Ching-Yu; Ferguson, John F; Korshin, Gregory V

    2013-09-15

    This study examined effects of varying levels of anions (chloride and sulfate) and natural organic matter (NOM) on iron release from and accumulation of inorganic contaminants in corrosion scales formed on iron coupons exposed to drinking water. Changes of concentrations of sulfate and chloride were observed to affect iron release and, in lesser extent, the retention of representative inorganic contaminants (vanadium, chromium, nickel, copper, zinc, arsenic, cadmium, lead and uranium); but, effects of NOM were more pronounced. DOC concentration of 1 mg/L caused iron release to increase, with average soluble and total iron concentrations being four and two times, respectively, higher than those in the absence of NOM. In the presence of NOM, the retention of inorganic contaminants by corrosion scales was reduced. This was especially prominent for lead, vanadium, chromium and copper whose retention by the scales decreased from >80% in the absence of NOM to <30% in its presence. Some of the contaminants, notably copper, chromium, zinc and nickel retained on the surface of iron coupons in the presence of DOC largely retained their mobility and were released readily when ambient water chemistry changed. Vanadium, arsenic, cadmium, lead and uranium retained by the scales were largely unsusceptible to changes of NOM and chloride levels. Modeling indicated that the observed effects were associated with the formation of metal-NOM complexes and effects of NOM on the sorption of the inorganic contaminants on solid phases that are typical for iron corrosion in drinking water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Adhesion of bacterial pathogens to soil colloidal particles: influences of cell type, natural organic matter, and solution chemistry.

    PubMed

    Zhao, Wenqiang; Walker, Sharon L; Huang, Qiaoyun; Cai, Peng

    2014-04-15

    Bacterial adhesion to granular soil particles is well studied; however, pathogen interactions with naturally occurring colloidal particles (<2 μm) in soil has not been investigated. This study was developed to identify the interaction mechanisms between model bacterial pathogens and soil colloids as a function of cell type, natural organic matter (NOM), and solution chemistry. Specifically, batch adhesion experiments were conducted using NOM-present, NOM-stripped soil colloids, Streptococcus suis SC05 and Escherichia coli WH09 over a wide range of solution pH (4.0-9.0) and ionic strength (IS, 1-100 mM KCl). Cell characterization techniques, Freundlich isotherm, and Derjaguin-Landau-Verwey-Overbeek (DLVO) theory (sphere-sphere model) were utilized to quantitatively determine the interactions between cells and colloids. The adhesion coefficients (Kf) of S. suis SC05 to NOM-present and NOM-stripped soil colloids were significantly higher than E. coli WH09, respectively. Similarly, Kf values of S. suis SC05 and E. coli WH09 adhesion to NOM-stripped soil colloids were greater than those colloids with NOM-present, respectively, suggesting NOM inhibits bacterial adhesion. Cell adhesion to soil colloids declined with increasing pH and enhanced with rising IS (1-50 mM). Interaction energy calculations indicate these adhesion trends can be explained by DLVO-type forces, with S. suis SC05 and E. coli WH09 being weakly adhered in shallow secondary energy minima via polymer bridging and charge heterogeneity. S. suis SC05 adhesion decreased at higher IS 100 mM, which is attributed to the change of hydrophobic effect and steric repulsion resulted from the greater presence of extracellular polymeric substances (EPS) on S. suis SC05 surface as compared to E. coli WH09. Hence, pathogen adhesion to the colloidal material is determined by a combination of DLVO, charge heterogeneity, hydrophobic and polymer interactions as a function of solution chemistry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Removal Rate of Organic Matter Using Natural Cellulose via Adsorption Isotherm and Kinetic Studies.

    PubMed

    Din, Mohd Fadhil Md; Ponraj, Mohanadoss; Low, Wen-Pei; Fulazzaky, Mohamad Ali; Iwao, Kenzo; Songip, Ahmad Rahman; Chelliapan, Shreeshivadasan; Ismail, Zulhilmi; Jamal, Mohamad Hidayat

    2016-02-01

    In this study, the removal of natural organic matter (NOM) using coconut fiber (CF) and palm oil fiber (POF) was investigated. Preliminary analysis was performed using a jar test for the selection of optimal medium before the fabricated column model experiment. The equilibrium studies on isotherms and kinetic models for NOM adsorption were analyzed using linearized correlation coefficient. Results showed that the equilibrium data were fitted to Langmuir isotherm model for both CF and POF. The most suitable adsorption model was the pseudo-first-order kinetic model for POF and pseudo-second-order kinetic model for CF. The adsorption capacities achieved by the CF and POF were 15.67 and 30.8 mg/g respectively. Based on this investigation, it can be concluded that the POF is the most suitable material for the removal of NOM in semi polluted river water.

  3. Radiation chemistry of salicylic and methyl substituted salicylic acids: Models for the radiation chemistry of pharmaceutical compounds

    NASA Astrophysics Data System (ADS)

    Ayatollahi, Shakiba; Kalnina, Daina; Song, Weihua; Turks, Maris; Cooper, William J.

    2013-11-01

    Salicylic acid and its derivatives are components of many medications and moieties found in numerous pharmaceutical compounds. They have been used as models for various pharmaceutical compounds in pharmacological studies, for the treatment of pharmaceuticals and personal care products (PPCPs), and, reactions with natural organic matter (NOM). In this study, the radiation chemistry of benzoic acid, salicylic acid and four methyl substituted salicylic acids (MSA) is reported. The absolute bimolecular reaction rate constants for hydroxyl radical reaction with benzoic and salicylic acids as well as 3-methyl-, 4-methyl-, 5-methyl-, and 6-methyl-salicylic acid were determined (5.86±0.54)×109, (1.07±0.07)×1010, (7.48±0.17)×109, (7.31±0.29)×109, (5.47±0.25)×109, (6.94±0.10)×109 (M-1 s-1), respectively. The hydrated electron reaction rate constants were measured (3.02±0.10)×109, (8.98±0.27)×109, (5.39±0.21)×109, (4.33±0.17)×109, (4.72±0.15)×109, (1.42±0.02)×109 (M-1 s-1), respectively. The transient absorption spectra for the six model compounds were examined and their role as model compounds for the radiation chemistry of pharmaceuticals investigated.

  4. PbO2(s, plattnerite) reductive dissolution by natural organic matter: reductant and inhibitory subfractions.

    PubMed

    Shi, Zhi; Stone, Alan T

    2009-05-15

    Natural organic matter (NOM) is a diverse collection of molecules, each possessing its own reductant, complexant, and adsorption properties. Here, we are interested in the ability of NOM to bring about the reductive dissolution of Pb(IV)O2(s). Adding the coagulants FeCl3 or Al2(SO4)3 followed by membrane filtration is one way to remove a subset of NOM molecules from surface water samples. Another is to pass water samples through a granular activated carbon (GAC) column. Results from applying these treatments to Great Dismal Swamp water (DSW) and Nequasset Bog Water (NBW) can best be explained as follows: (i) GAC column treatment is more efficient at removing the NOM fraction most responsible for reductive dissolution. (ii) Coagulation/filtration, with either coagulant, is most efficient at removing a second, inhibitory fraction. Inhibition may arise from (i) adsorption at the mineral/water interface, which blocks approach of reductant molecules and (ii) a micelle-like aggregate nature, which provides hydrophobic pockets that capture reductantmolecules, again keeping them away from the mineral/water interface. Hypotheses regarding reductant and inhibitory fractions are further evaluated using representative low-molecular-weight compounds. Substituted hydroquinones are used as mimics of the reductant fraction, and malonic acid, quinic acid, trehalose, alginic acid, and polygalacturonic acid are used as mimics of the inhibitory fraction.

  5. Comparison of Three Solid Phase Materials for the Extraction of Carboxylic Acids from River Water Followed by 2D GC × GC-TOFMS Determination

    PubMed Central

    Bosire, G. O.; Ngila, J. C.; Parshotam, H.

    2016-01-01

    The extraction and determination of aliphatic and aromatic carboxylic acids as well as their influence on the aromaticity and molecularity relationship of natural organic matter (NOM) in water are reported in this study. Three solid phase extraction (SPE) sorbents were used and their extraction efficiencies evaluated after chromatographic determinations (using gas chromatography with a time of flight mass spectrometer (GC × GC-TOFMS) and liquid chromatography with organic carbon detector (LC-OCD)). More than 42 carboxylic acids were identified in raw water from the Vaal River, which feeds the Lethabo Power Generation Station, South Africa, with cooling water. The aromatic carboxylic acid efficiency (28%) was achieved by using Strata™ X SPE while the highest aliphatic carboxylic acid efficiency (92.08%) was achieved by silica SPE. The hydrophobic nature of NOM in water depends on the nature of organic compounds in water, whether aromatic or aliphatic. The LC-OCD was used to assess the hydrophobicity levels of NOM as a function of these carboxylic acids in cooling water. The LC-OCD results showed that the aromatic nature of NOM in SPE filtered water followed the order Silica>Strata X>C-18. From the results, the hydrophobicity degree of the samples depended on the type and number of carboxylic acids that were removed by the SPE cartridges. PMID:27274730

  6. Development of a hybrid ozonation biofilm-membrane filatration process for the production of drinking water.

    PubMed

    Leiknes, T; Lazarova, M; Odegaard, H

    2005-01-01

    Drinking water sources in Norway are characterized by high concentrations of natural organic matter (NOM), low alkalinity and low turbidity. The removal of NOM is therefore a general requirement in producing potable water. Drinking water treatment plants are commonly designed with coagulation direct filtration or NF spiral wound membrane processes. This study has investigated the feasibility and potential of a hybrid process combining ozonation and biofiltration with a rotating disk membrane for treating drinking water with high NOM concentrations. Ozonation will oxidize the NOM content removing colour and form biodegradable organic compounds, which can be removed in biological filters. A constructed water was used in this study which is representative of ozonated NOM-containing water. A rotating membrane disk bioreactor downstream the ozonation process was used to carry out both the biodegradation as well as biomass separation in the same reactor. Maintenance of biodegradation of the organic matter while controlling biofouling of the membrane and acceptable water production rates was the focus in the study. Three operating modes were investigated. Removal of the biodegradable organics was consistent throughout the study indicating that sufficient biomass was maintained in the reactor for all operating conditions tested. Biofouling control was not achieved through shear-induced cleaning by periodically rotating the membrane disks at high speed. By adding a small amount of sponges in the membrane chamber the biofouling could be controlled by mechanical cleaning of the membrane surface during disk rotation. The overall results indicate that the system can favorably be used in an ozonation/biofiltration process by carrying out both biodegradation as well as biomass separation in the same reactor.

  7. Family-group names in Coleoptera (Insecta)

    PubMed Central

    Bouchard, Patrice; Bousquet, Yves; Davies, Anthony E.; Alonso-Zarazaga, Miguel A.; Lawrence, John F.; Lyal, Chris H. C.; Newton, Alfred F.; Reid, Chris A. M.; Schmitt, Michael; Ślipiński, S. Adam; Smith, Andrew B. T.

    2011-01-01

    Abstract We synthesize data on all known extant and fossil Coleoptera family-group names for the first time. A catalogue of 4887 family-group names (124 fossil, 4763 extant) based on 4707 distinct genera in Coleoptera is given. A total of 4492 names are available, 183 of which are permanently invalid because they are based on a preoccupied or a suppressed type genus. Names are listed in a classification framework. We recognize as valid 24 superfamilies, 211 families, 541 subfamilies, 1663 tribes and 740 subtribes. For each name, the original spelling, author, year of publication, page number, correct stem and type genus are included. The original spelling and availability of each name were checked from primary literature. A list of necessary changes due to Priority and Homonymy problems, and actions taken, is given. Current usage of names was conserved, whenever possible, to promote stability of the classification. New synonymies (family-group names followed by genus-group names): Agronomina Gistel, 1848 syn. nov. of Amarina Zimmermann, 1832 (Carabidae), Hylepnigalioini Gistel, 1856 syn. nov. of Melandryini Leach, 1815 (Melandryidae), Polycystophoridae Gistel, 1856 syn. nov. of Malachiinae Fleming, 1821 (Melyridae), Sclerasteinae Gistel, 1856 syn. nov. of Ptilininae Shuckard, 1839 (Ptinidae), Phloeonomini Ádám, 2001 syn. nov. of Omaliini MacLeay, 1825 (Staphylinidae), Sepedophilini Ádám, 2001 syn. nov. of Tachyporini MacLeay, 1825 (Staphylinidae), Phibalini Gistel, 1856 syn. nov. of Cteniopodini Solier, 1835 (Tenebrionidae); Agronoma Gistel 1848 (type species Carabus familiaris Duftschmid, 1812, designated herein) syn. nov. of Amara Bonelli, 1810 (Carabidae), Hylepnigalio Gistel, 1856 (type species Chrysomela caraboides Linnaeus, 1760, by monotypy) syn. nov. of Melandrya Fabricius, 1801 (Melandryidae), Polycystophorus Gistel, 1856 (type species Cantharis aeneus Linnaeus, 1758, designated herein) syn. nov. of Malachius Fabricius, 1775 (Melyridae), Sclerastes Gistel, 1856 (type species Ptilinus costatus Gyllenhal, 1827, designated herein) syn. nov. of Ptilinus Geoffroy, 1762 (Ptinidae), Paniscus Gistel, 1848 (type species Scarabaeus fasciatus Linnaeus, 1758, designated herein) syn. nov. of Trichius Fabricius, 1775 (Scarabaeidae), Phibalus Gistel, 1856 (type species Chrysomela pubescens Linnaeus, 1758, by monotypy) syn. nov. of Omophlus Dejean, 1834 (Tenebrionidae). The following new replacement name is proposed: Gompeliina Bouchard, 2011 nom. nov. for Olotelina Báguena Corella, 1948 (Aderidae). Reversal of Precedence (Article 23.9) is used to conserve usage of the following names (family-group names followed by genus-group names): Perigonini Horn, 1881 nom. protectum over Trechicini Bates, 1873 nom. oblitum (Carabidae), Anisodactylina Lacordaire, 1854 nom. protectum over Eurytrichina LeConte, 1848 nom. oblitum (Carabidae), Smicronychini Seidlitz, 1891 nom. protectum over Desmorini LeConte, 1876 nom. oblitum (Curculionidae), Bagoinae Thomson, 1859 nom. protectum over Lyprinae Gistel 1848 nom. oblitum (Curculionidae), Aterpina Lacordaire, 1863 nom. protectum over Heliomenina Gistel, 1848 nom. oblitum (Curculionidae), Naupactini Gistel, 1848 nom. protectum over Iphiini Schönherr, 1823 nom. oblitum (Curculionidae), Cleonini Schönherr, 1826 nom. protectum over Geomorini Schönherr, 1823 nom. oblitum (Curculionidae), Magdalidini Pascoe, 1870 nom. protectum over Scardamyctini Gistel, 1848 nom. oblitum (Curculionidae), Agrypninae/-ini Candèze, 1857 nom. protecta over Adelocerinae/-ini Gistel, 1848 nom. oblita and Pangaurinae/-ini Gistel, 1856 nom. oblita (Elateridae), Prosternini Gistel, 1856 nom. protectum over Diacanthini Gistel, 1848 nom. oblitum (Elateridae), Calopodinae Costa, 1852 nom. protectum over Sparedrinae Gistel, 1848 nom. oblitum (Oedemeridae), Adesmiini Lacordaire, 1859 nom. protectum over Macropodini Agassiz, 1846 nom. oblitum (Tenebrionidae), Bolitophagini Kirby, 1837 nom. protectum over Eledonini Billberg, 1820 nom. oblitum (Tenebrionidae), Throscidae Laporte, 1840 nom. protectum over Stereolidae Rafinesque, 1815 nom. oblitum (Throscidae) and Lophocaterini Crowson, 1964 over Lycoptini Casey, 1890 nom. oblitum (Trogossitidae); Monotoma Herbst, 1799 nom. protectum over Monotoma Panzer, 1792 nom. oblitum (Monotomidae); Pediacus Shuckard, 1839 nom. protectum over Biophloeus Dejean, 1835 nom. oblitum (Cucujidae), Pachypus Dejean, 1821 nom. protectum over Pachypus Billberg, 1820 nom. oblitum (Scarabaeidae), Sparrmannia Laporte, 1840 nom. protectum over Leocaeta Dejean, 1833 nom. oblitum and Cephalotrichia Hope, 1837 nom. oblitum (Scarabaeidae). PMID:21594053

  8. Inhibition of calcite precipitation by natural organic material: Kinetics, mechanism, and thermodynamics

    USGS Publications Warehouse

    Lin, Y.-P.; Singer, P.C.; Aiken, G.R.

    2005-01-01

    The inhibition of calcite precipitation by natural organic material (NOM) in solutions seeded with calcite was investigated using a pH-stat system. Experiments were carried out using three NOMs with different physical/chemical properties. For each of the materials, inhibition was found to be more effective at lower carbonate/calcium ratios and lower pH values. The reduction in the precipitation rate could be explained by a Langmuir adsorption model using a conditional equilibrium constant. By identification of the type of site on the NOM molecules that is involved in the adsorption reaction, the "conditional" equilibrium constants obtained at different solution compositions converged to a single "nonconditional" value. The thermodynamic data determined at 25??C and 1 atm suggest that the interaction between NOM molecules and the calcite surface is chemisorptive in nature and that adsorption is an endothermic reaction driven by the entropy change. The greatest degree of inhibition was observed for the NOM with the highest molecular weight and aromatic carbon content. For a given type of NOM, the degree of inhibition of calcite precipitation was dictated by the balance between the enthalpy change and the entropy change of the adsorption reaction. ?? 2005 American Chemical Society.

  9. The environmental applications and implications of nanotechnology in membrane-based separations for water treatment

    NASA Astrophysics Data System (ADS)

    Shan, Wenqian

    This dissertation presents results of three related projects focused on the applications of membrane separation technology to water treatment: 1) Experimental design and evaluation of polyelectrolyte multilayer films as regenerable membrane coatings with controllable surface properties; 2) Modeling of the interactions of nanoscale TiO2 and NOM molecules in aqueous solutions of environmentally relevant compositions; 3) Experimental design and preliminary testing of a membrane-based crossflow filtration hydrocyclone process for the separation of oil-in-water dispersions. Chapter 2 describes the design of polyelectrolyte multilayers as nanoscale membrane coatings and their application in nanofiltration of feed waters that contain suspended colloids and dissolved species. Layer-by-layer deposition of anionic and cationic polyelectrolytes was employed to prepare membrane coatings allowing for a fine control over their surface properties. This approach to membrane design also affords a possibility of regenerating coatings after they are fouled by colloids. This project demonstrated, for first time, the possibility of designing nanofiltration membranes with regenerable skin. Chapter 3 describes a study on the mechanisms of natural organic matter (NOM) adsorption onto the surface of titania nanoparticles. Titainia (TiO 2) is often used in the fabrication of ceramic membranes and understanding how NOM interacts with TiO2 can help to better predict ceramic membrane fouling by NOM-containing waters. The combined effect of pH and calcium on the interactions of nonozonated and ozonated NOM with nanoscale TiO 2 was investigated by applying extended Derjaguin --- Landau --- Verwey - Overbeek (XDLVO) modeling. XDLVO surface energy analysis predicted NOM adsorption onto TiO2 in the ozone-controlled regime but not in the calcium-controlled regime. In both regimes, short range NOM-NOM and NOM-TiO2 interactions were governed by acid-base and van der Waals forces, whereas the role of electrostatic forces was found to be relatively insignificant. Ozonation increased the surface energy of NOM, contributing to the hydrophilic repulsion component of the NOM-NOM and NOM-TiO2 interactions. In the calcium-controlled regime, non-XDLVO interactions such as intermolecular bridging by calcium were hypothesized to be responsible for the observed adsorption behavior. Chapter 4 describes research on the crossflow filtration hydrocyclone separation of oil-in-water dispersions wherein a ceramic tubular membrane was used as the permeable wall of the hydrocyclone. Air sparging was applied to mitigate oil fouling. A dual membrane system consisting of an outer hydrophilic ceramic membrane and an inner hydrophobic polymeric membrane was evaluated to test the possibility of separating the dispersion into two streams: 1) oil with zero or very low concentration of water and 2) water with zero or very low concentration of oil. The performance of the dual membrane system indicated the possibility of using membranes with different chemical affinities to cost-effectively separate the oil-water dispersion into two separate phases. The incorporation of air sparging to membrane filtration was found to be effective in mitigating oil fouling with improved permeate flux.

  10. Redox chemistry and natural organic matter (NOM): Geochemists' dream, analytical chemists' nightmare

    USGS Publications Warehouse

    Macalady, Donald L.; Walton-Day, Katherine

    2011-01-01

    Natural organic matter (NOM) is an inherently complex mixture of polyfunctional organic molecules. Because of their universality and chemical reversibility, oxidation/reductions (redox) reactions of NOM have an especially interesting and important role in geochemistry. Variabilities in NOM composition and chemistry make studies of its redox chemistry particularly challenging, and details of NOM-mediated redox reactions are only partially understood. This is in large part due to the analytical difficulties associated with NOM characterization and the wide range of reagents and experimental systems used to study NOM redox reactions. This chapter provides a summary of the ongoing efforts to provide a coherent comprehension of aqueous redox chemistry involving NOM and of techniques for chemical characterization of NOM. It also describes some attempts to confirm the roles of different structural moieties in redox reactions. In addition, we discuss some of the operational parameters used to describe NOM redox capacities and redox states, and describe nomenclature of NOM redox chemistry. Several relatively facile experimental methods applicable to predictions of the NOM redox activity and redox states of NOM samples are discussed, with special attention to the proposed use of fluorescence spectroscopy to predict relevant redox characteristics of NOM samples.

  11. Permeability of low molecular weight organics through nanofiltration membranes.

    PubMed

    Meylan, Sébastien; Hammes, Frederik; Traber, Jacqueline; Salhi, Elisabeth; von Gunten, Urs; Pronk, Wouter

    2007-09-01

    The removal of natural organic matter (NOM) using nanofiltration (NF) is increasingly becoming an option for drinking water treatment. Low molecular weight (LMW) organic compounds are nevertheless only partially retained by such membranes. Bacterial regrowth and biofilm formation in the drinking water distribution system is favoured by the presence of such compounds, which in this context are considered as the assimilable organic carbon (AOC). In this study, the question of whether NF produces microbiologically stable water was addressed. Two NF membranes (cut-off of about 300Da) were tested with different natural and synthetic water samples in a cross-flow filtration unit. NOM was characterised by liquid chromatography with organic carbon detection (LC-OCD) using a size-exclusion column in addition to specific organic acid measurements, while AOC was measured in a batch growth bioassay. Similarly to high molecular weight organic compounds like polysaccharides or humic substances that have a permeability lower than 1%, charged LMW organic compounds were efficiently retained by the NF membranes tested and showed a permeability lower than 3%. However, LMW neutrals and hydrophobic organic compounds permeate to a higher extent through the membranes and have a permeability of up to 6% and 12%, respectively. Furthermore, AOC was poorly retained by NF and the apparent AOC concentration measured in the permeated water was above the proposed limit for microbiologically stable water. This indicates that the drinking water produced by NF might be biologically unstable in the distribution system. Nevertheless, in comparison with the raw water, NF significantly reduced the AOC concentration.

  12. Implementation Of Palladized Iron-Impregnated Reactive Activated Carbon (RAC) System For PCBs Cleanup: Effects Of PCB Loading, Reaction pH, And Co-Existing NOM And Ionic Species

    EPA Science Inventory

    For the treatment of chlorinated organic compounds in the environment, such as polychlorinated biphenyls (PCBs), we have developed reactive activated carbon (RAC) impregnated with Fe/Pd bimetallic nanoparticles. The RAC system can couple adsorption of PCBs to activated carbon wi...

  13. A Summary of Publications on the Development of Mode-of-Action Information and Statistical Tools for Evaluating Health Outcomes from Drinking Water Disinfection By-Product (DBP) Exposures

    EPA Science Inventory

    Chemical contaminants are formed as a consequence of chemical disinfection of public drinking waters. Chemical disinfectants, which are used to kill harmful microorganisms, react with natural organic matter (NOM), bromide, iodide, and other compounds, forming complex mixtures...

  14. Reactivity of Zerovalent Metals in Aquatic Media: Effects of Organic Surface Coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tratnyek, Paul G.; Salter-Blanc, Alexandra; Nurmi, James

    2011-09-02

    Granular, reactive zerovalent metals (ZVMs)—especially iron (ZVI)—form the basis for model systems that have been used in fundamental and applied studies of a wide variety of environmental processes. This has resulted in notable advances in many areas, including the kinetics and mechanisms of contaminant reduction reactions, theory of filtration and transport of colloids in porous media, and modeling of complex reactive-transport scenarios. Recent emphasis on nano-sized ZVI has created a new opportunity: to advance the understanding of how coatings of organic polyelectrolytes—like natural organic matter (NOM)—influence the reactivity of environmental surfaces. Depending on many factors, organic coatings can be activatingmore » or passivating with respect to redox reactions at particle-solution interfaces. In this study, we show the effects of organic coatings on nZVI vary with a number of factors including: (i) time (i.e., “aging” is evident not only in the structure and composition of the nZVI but also in the interactions between nZVI and NOM) and (ii) the type of organic matter (i.e., suspensions of nZVI are stabilized by NOM and the model polyelectrolyte carboxymethylcellulose (CMC), but NOM stimulates redox reactions involving nZVI while CMC inhibits them).« less

  15. Climate-Induced Changes in the Chemical Characteristics of Natural Organic Matter at a Small Freshwater Wetland

    NASA Astrophysics Data System (ADS)

    Maurice, P. A.; Cabaniss, S. E.; Drummond, J.

    2001-12-01

    This study investigated the spatiotemporal variability in dissolved organic carbon concentration (DOC), natural organic matter (NOM) weight average molecular weight (Mw), and absorptivity at 280 nm (e280, an estimator of aromaticity) at McDonalds Branch, a first-order stream that is a fen wetland. When ground-water discharge to the stream was predominant, the DOC, the Mw, and the e280 were all relatively low. When soil porewater was more important, not only was the DOC higher, but also the Mw and e280. Hence, the contribution of soil pore water relative to ground water controlled not only the concentration but also the average physicochemical characteristics of the NOM. Results from this small watershed study provide insight into climatic effects on surface-water NOM characteristics in a small freshwater fen. Low-flow periods resulted in lower Mw, more aliphatic NOM derived primarily from ground-water discharge to the stream whereas higher flow periods resulted in a higher Mw(by 150-500 Da), more aromatic downstream surface-water NOM pool. Hence, during future summer drought periods, as suggested by climate-change models for much of North America, surface-water NOM likely will be lower molecular weight, more aliphatic, and more hydrophilic with lesser metal binding and HOC uptake abilities, along with decreased ability to attenuate UV radiation.

  16. 77 FR 57614 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-18

    ... entered into NOM and rests on the NOM book. \\5\\ An order that removes liquidity is one that is entered into NOM and that executes against an order resting on the NOM book. Non-NOM market NOM market Customer... send order flow to competing exchanges if they deem fee levels at a particular exchange to be excessive...

  17. Thermal Stability of Goethite-Bound Natural Organic Matter Is Impacted by Carbon Loading.

    PubMed

    Feng, Wenting; Klaminder, Jonatan; Boily, Jean-François

    2015-12-24

    Dissolved natural organic matter (NOM) sorption at mineral surfaces can significantly affect the persistence of organic carbon in soils and sediments. Consequently, determining the mechanisms that stabilize sorbed NOM is crucial for predicting the persistence of carbon in nature. This study determined the effects of loadings and pH on the thermal stability of NOM associated with synthetic goethite (α-FeOOH) particle surfaces, as a proxy for NOM-mineral interactions taking place in nature. NOM thermal stability was investigated using temperature-programmed desorption (TPD) in the 30-700 °C range to collect vibration spectra of thermally decomposing goethite-NOM assemblages, and to concomitantly analyze evolved gases using mass spectrometry. Results showed that NOM thermal stability, indicated by the range of temperatures in which CO2 evolved during thermal decomposition, was greatest in unbound NOM and lowest when NOM was bound to goethite. NOM thermal stability was also loading dependent. It decreased when loadings were in increased the 0.01 to 0.42 mg C m(-2) range, where the upper value corresponds to a Langmuirian adsorption maximum. Concomitant Fourier transform infrared (FTIR) spectroscopy measurement showed that these lowered stabilities could be ascribed to direct NOM-goethite interactions that dominated the NOM binding environment. Mineral surface interactions at larger loadings involved, on the contrary, a smaller fraction of the sorbed NOM, thus increasing thermal stability toward that of its unbound counterpart. This study thus identifies a sorption threshold below which NOM sorption to goethite decreases NOM thermal stability, and above which no strong effects are manifested. This should likely influence the fate of organic carbon exposed to thermal gradients in natural environments.

  18. The removal of disinfection by-product precursors from water with ceramic membranes.

    PubMed

    Harman, B I; Koseoglu, H; Yigit, N O; Sayilgan, E; Beyhan, M; Kitis, M

    2010-01-01

    The main objective of this work was to investigate the effectiveness of ceramic ultrafiltration (UF) membranes with different pore sizes in removing natural organic matter (NOM) from model solutions and drinking water sources. A lab-scale, cross-flow ceramic membrane test unit was used in all experiments. Two different single-channel tubular ceramic membrane modules were tested with average pore sizes of 4 and 10 nm. The impacts of membrane pore size and pressure on permeate flux and the removals of UV(280 nm) absorbance, specific UV absorbance (SUVA(280 nm)), and dissolved organic carbon (DOC) were determined. Prior to experiments with model solutions and raw waters, clean water flux tests were conducted. UV(280) absorbance reductions ranged between 63 and 83% for all pressures and membranes tested in the raw water. More than 90% of UV(280) absorbance reduction was consistently achieved with both membranes in the model NOM solutions. Such high UV absorbance reductions are advantageous due to the fact that UV absorbing sites of NOM are known to be one of the major precursors to disinfection by-products (DBP) such as trihalomethanes and haloacetic acids. For both UF membranes, the ranges of DOC removals in the raw water and model NOM solutions were 55-73% and 79-91%, respectively. SUVA(280) value of the raw water decreased from 2 to about 1.5 L/mg-m by both membranes. For the model solutions, SUVA(280) values were consistently reduced to < or =1 L/mg-m levels after membrane treatment. As the SUVA(280) value of the NOM source increased, the extent of SUVA(280) reduction and DOC removal by the tested ceramic UF membranes also increased. The results overall indicated that ceramic UF membranes, especially the one with 4 nm average pore size, appear to be effective in removing organic matter and DBP precursors from drinking water sources with relatively high and sustainable permeate flux values.

  19. Influence of Natural Organic Matter on Attachment Kinetics of Salmonella Typhimurium

    NASA Astrophysics Data System (ADS)

    Chowdhury, I.; Zorlu, O.; Hill, J. E.; Walker, S. L.

    2011-12-01

    Salmonella enterica serovar Typhimurium is one of the most common and virulent bacterial pathogens, usually found in food and water. This waterborne pathogen has been attributed to causing gastroenteritis and typhoid fever, leading to 16 million cases and over half a million deaths worldwide each year. Natural organic matter (NOM) is ubiquitous in environment and previous work has shown NOM to enhance the stability and transport of bacteria cells; hence NOM will certainly interact with Salmonella and affect its transport in environment. The objective of this study was to investigate the influence of NOM (Suwannee River humic acid standard II, SRHA) on the attachment kinetics of a model Salmonella (Salmonella enterica serovar Typhimurium SA5983) to glass. The transport study was conducted in a parallel plate flow chamber using fluorescent microscope to visualize the bacterial cells, which were tagged with green fluorescent protein (GFP). The solution pH was unadjusted, and the flow rate through parallel plate channel was 0.1 mL/min to simulate groundwater conditions. Parameters varied in this study were NOM presence, ion valence (K+, Ca2+) as well as cell growth phase (mid-exponential and late-exponential growth phases). These parameters were chosen because ion valence may alter the NOM conformation and capacity for bridging, as well growth phase impacts the cellular surface chemistry. Extensive characterization of the bacterial cells was conducted including measurements of electrophoretic mobility, hydrophobicity, acidity, surface charge density and extracellular polymeric substance content. Additionally, electrokintic characterization was conducted for the glass. Preliminary results demonstrated the sensitivity of cell attachment to ionic valence and cell growth phase. Also the addition of NOM reduced the attachment of the Salmonella cells significantly under all of these conditions. Without NOM, attachment efficiencies (α) in KCl were similar at both growth phases; however, in the presence of the divalent ion, α decreased as the cells aged. In presence of NOM and KCl, α was significantly lower at late exponential phase than mid exponential phase; whereas, the opposite was observed with divalent ions. These trends indicate the complex role of NOM, which is coupled with ion valence and growth phase, in the transport of Salmonella. Detailed results will be presented along with proposed mechanisms involved in the interactions between Salmonella and NOM. These mechanisms highlight the role this important naturally occurring macromolecule plays in the fate of Salmonella. This understanding will improve our ability to predict the behavior of this pathogen in environmentally relevant conditions.

  20. Removal of precursors and disinfection by-products (DBPs) by membrane filtration from water; a review.

    PubMed

    Zazouli, Mohammad Ali; Kalankesh, Laleh R

    2017-01-01

    Disinfection by-products (DBPs) have heterogeneous structures which are suspected carcinogens as a result of reactions between NOMs (Natural Organic Matter) and oxidants/disinfectants such as chlorine. Because of variability in DBPs characteristics, eliminate completely from drinking water by single technique is impossible. The current article reviews removal of the precursors and DBPs by different membrane filtration methods such as Microfiltration (MF), Ultrafiltration (UF), Nanofiltration (NF) and Reverse Osmosis (RO) techniques. Also, we provide an overview of existing and potentially Membrane filtration techniques, highlight their strengths and drawbacks. MF membranes are a suitable alternative to remove suspended solids and colloidal materials. However, NOMs fractions are effectively removed by negatively charged UF membrane. RO can remove both organic and inorganic DBPs and precursors simultaneously. NF can be used to remove compounds from macromolecular size to multivalent ions.

  1. Plutonium Immobilization and Mobilization by Soil Organic Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santschi, Peter H.; Schwehr, Kathleen A.; Xu, Chen

    The human and environmental risks associated with Pu disposal, remediation, and nuclear accidents scenarios stems mainly from the very long half-lives of several of its isotopes. The SRS, holding one-third of the nation’s Pu inventory, has a long-term stewardship commitment to investigation of Pu behavior in the groundwater and downgradient vast wetlands. Pu is believed to be essentially immobile due to its low solubility and high particle reactivity to mineral phase or natural organic matter (NOM). For example, in sediments collected from a region of SRS, close to a wetland and a groundwater plume, 239,240Pu concentrations suggest immobilization by NOMmore » compounds, as Pu correlate with NOM contents. Micro-SXRF data indicate, however, that Pu does not correlate with Fe. However, previous studies reported Pu can be transported several kilometers in surface water systems, in the form of a colloidal organic matter carrier, through wind/water interactions. The role of NOM in both immobilizing or re-mobilizing Pu thus has been demonstrated. Our results indicate that more Pu (IV) than (V) was bound to soil colloidal organic matter (COM), amended at far-field concentrations. Contrary to expectations, the presence of NOM in the F-Area soil did not enhance Pu fixation to the organic-rich soil, when compared to the organic-poor soil or the mineral phase from the same soil source, due to the formation of COM-bound Pu. Most importantly, Pu uptake by organic-rich soil decreased with increasing pH because more NOM in the colloidal size desorbed from the particulate fraction at elevated pH, resulting in greater amounts of Pu associated with the COM fraction. This is in contrast to previous observations with low-NOM sediments or minerals, which showed increased Pu uptake with increasing pH levels. This demonstrates that despite Pu immobilization by NOM, COM can convert Pu into a more mobile form. Sediment Pu concentrations in the SRS F-Area wetland were correlated to total organic carbon and total nitrogen contents and even more strongly to hydroxamate siderophore (HS) concentrations. The HS were detected in the particulate or colloidal phases of the sediments but not in the low molecular fractions (< 1000 Da). Macromolecules which scavenged the majority of the potentially mobile Pu were further separated from the bulk mobile organic matter fraction (“water extract”) via isoelectric focusing experiment (IEF). An ESI FTICR-MS spectral comparison of the IEF extract and a siderophore standard (desferrioxamine; DFO) suggested the presence of HS functionalities in the IEF extract.« less

  2. Determination of total and available fractions of PAHs by SPME in oily wastewaters: overcoming interference from NAPL and NOM.

    PubMed

    Gomes, Rui B; Nogueira, Regina; Oliveira, José M; Peixoto, João; Brito, António G

    2009-09-01

    Polycyclic aromatic hydrocarbons (PAHs) are often found in oily wastewaters. Their presence is usually the result of human activities and has a negative effect on the environment. One important step in addressing this problem is to evaluate the effectiveness of PAH removal by biological processes since these are the most cost-effective treatments known today. Many techniques are presently available for PAH determination in wastewaters. Solid phase microextracion (SPME) is known to be one of the most effective techniques for this purpose. When analyzing complex matrices with substances such as natural organic matter (NOM) and non-aqueous phase liquids (NAPL), it is important to differentiate the free dissolved PAH from matrix-bonded PAH. PAHs associated with the bonded fraction are less susceptible to biological treatment. The present study concerns the development of a simple and suitable methodology for the determination of the freely dissolved and the total fraction of PAHs present in oily wastewaters. The methodology was then applied to an oily wastewater from a fuel station retention basin. Headspace SPME was used for analyzing PAH since the presence of a complex or dirty matrix in direct contact with the fiber may damage it. Four model PAHs-anthracene, fluorene, phenanthrene, and pyrene-were analyzed by GC-MS. Negligible depletion SPME technique was used to determine the free fraction. Total PAH was determined by enhancing the mass transfer from the bonded phase to the freely dissolved phase by temperature optimization and the use of the method of standard additions. The PAH absorption kinetics were determined in order to define the optimal sampling conditions for this method. The fitting of the experimental data to a mathematical model was accomplished using Berkeley Madonna software. Humic acid and silicon oil were used as model NOM and NAPL, respectively, to study the effect of these compounds on the decrease of SPME response. Then, the method was evaluated with wastewater from a fuel station spill retention basin. The SPME kinetic parameters-k (1) (uptake rate), k (2) (desorption rate), and K (SPME) (partition coefficient)-were determined from experimental data modeling. The determination of the free fraction required 15-min sampling to ensure that PAH depletion from sample was below 1%. For total PAH, a 30-min extraction at 100 degrees C ensured the maximum signal response in the GC-MS. For the determination of free and total PAHs, extractions were performed before reaching the SPME equilibrium. The wastewater used in this study had no free fraction of the analyzed PAHs. However, the four studied PAHs were found when the method for total PAH was used. The addition of NOM and NAPL dramatically decreased the efficiency of the SPME. This decrease was the result of a greater partition of the PAHs to the NAPL and NOM phases. This fact was also observed in the analysis of the fuel station spill retention basin, where no free PAH was measured. However, using the method of standard addition for the determination of total PAH, it was possible to quantify all four PAHs. The method developed in the present study was found to be adequate to differentiate between free and total PAH present in oily wastewater. It was determined that the presence of NOM and NAPL had a negative effect on SPME efficiency. The presence of binding substances had a great influence on SPME kinetics. Therefore, it is of extreme importance to determine their degree of interference when analyzing oily wastewaters or results can otherwise be erroneous. Other factors influencing the total PAH determinations should be considered in further studies.

  3. Characterization and Phenanthrene Sorption of Natural and Pyrogenic Organic Matter Fractions.

    PubMed

    Jin, Jie; Sun, Ke; Wang, Ziying; Yang, Yan; Han, Lanfang; Xing, Baoshan

    2017-03-07

    Pyrogenic humic acid (HA) is released into the environment during the large-scale application of biochar. However, the biogeochemistry of pyrogenic organic matter (PyOM) fractions and their sorption of hydrophobic organic compounds (HOCs) are poorly understood in comparison with natural organic matter (NOM) fractions. HA and humin (HM) fractions isolated from soils and the oxidized biochars were characterized. Sorption of phenanthrene (PHE) by these fractions was also examined. The characterization results demonstrate that pyrogenic HAs are different from natural HAs, with the former having lower atomic H/C ratios, more abundant aromatic C, and higher concentrations of surface carboxylic groups. Compared with the fresh biochars, the K oc of PHE on their oxidized biochars, pyrogenic HA, and HM fractions were undiminished, which is encouraging for the use of biochar in soil remediation. The PyOM fractions exhibited stronger nonlinear sorption than the NOM fractions. In addition, the PyOM fractions had higher sorption capacity than the NOM fractions due to their low polar C content and high aryl C content. The results obtained from this work will shed new light on the impact of the addition of biochar on the biogeochemistry of soil organic matter and on the fate of HOCs in biochar-amended soil.

  4. UV-activated persulfate oxidation and regeneration of NOM-Saturated granular activated carbon.

    PubMed

    An, Dong; Westerhoff, Paul; Zheng, Mengxin; Wu, Mengyuan; Yang, Yu; Chiu, Chao-An

    2015-04-15

    A new method of ultraviolet light (UV) activated persulfate (PS) oxidation was investigated to regenerate granular activated carbon (GAC) in drinking water applications. The improvements in iodine and methylene blue numbers measured in the GAC after ultraviolet- (UV) activated persulfate suggested that the GAC preloaded with natural organic matter (NOM) was chemically regenerated. An experimental matrix for UV-activated persulfate regeneration included a range of persulfate doses and different UV wavelengths. Over 87% of the initial iodine number for GAC was restored under the optimum conditions, perfulfate dosage 60 g/L and UV exposure 1.75 × 10(4) mJ/cm(2). The persulfate dosages had little effect on the recovery of the methylene blue number, which was approximately 65%. Persulfate activation at 185 nm was superior to activation at 254 nm. UV activation of persulfate in the presence of GAC produced acid, lowering the solution pH. Higher persulfate concentrations and UV exposure resulted in greater GAC regeneration. Typical organic and inorganic byproducts (e.g., benzene compounds and sulfate ions) were measured as a component of treated water quality safety. This study provides a proof-of-concept that can be used to optimize pilot-scale and full-scale UV-activated persulfate for regeneration of NOM-saturated GAC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Evaluation of natural organic matter adsorption on Fe-Al binary oxide: Comparison with single metal oxides.

    PubMed

    Kim, Kyung-Jo; Jang, Am

    2017-10-01

    The adsorption characteristics of three types of standard natural organic matter (NOM) on iron-aluminum (Fe-Al) binary oxide (FAO) and heated aluminum oxide (HAO) under natural surface water condition were investigated using various adsorption isotherms and kinetic models. FAO was synthesized by Fe oxide and Al oxide, mixed using the sol-gel hydrothermal method, and aluminum sulfate was used to make HAO. The amount of adsorbed NOM was increased to 79.6 mg g -1 for humic acid (HA), 101.1 mg g -1 for sodium alginate (SA) in the FAO, but the maximum adsorption capacity of bovine serum albumin (BSA) (461.3 mg g -1 ) was identified on the HAO. The adsorption of HA, BSA, and SA dramatically increased (>70%) on FAO in 5 min and HA was significantly removed (90%) among the three NOM. Mutual interaction among the adsorbed NOM (BSA) occurred on the HAO surface during adsorption due to formation of monolayer by protein molecules at neutral pH. The pseudo second order clearly represented the adsorption kinetics for both adsorbents. The equilibrium isotherm data of FAO was better exhibited by the Langmuir isotherm model than by the Freundlich isotherm, but HAO was a slightly non-linear Langmuir type. Also, the free energy, enthalpy, and entropy of adsorption were determined from the thermodynamic experiments. Adsorption on FAO was spontaneous and an exothermic process. Fluorescence excitation-emission matrix (FEEM) spectra were used to elucidate the variation in organic components. The results obtained suggests that the significant changes in the surface property of the adsorbent (large surface area, increased crystalline intensity, and fine particle size) were effectively determined by the Fe-synthesized Al oxide mixed using the sol-gel hydrothermal method. The results also suggest that the changes enhanced the adsorption capacity, whereby three NOM were notably removed on FAO regardless of NOM characteristics (hydrophobic and hydrophilic). Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Interactions between Natural Organic Matter and Native Microbes in the Oak Ridge FRC Groundwater

    NASA Astrophysics Data System (ADS)

    Wu, X.; Hazen, T.; Fox, P. M.; Nico, P. S.; Li, Q.; Yang, W.; Liu, Y.; Hess, N. J.; Zhang, P.; Qin, Y.; Zhou, J.; Chakraborty, R.

    2016-12-01

    Natural organic matter (NOM) is central to microbial food webs; however, little is known about the interplay between the physical and chemical characteristics of the carbon in NOM and its turnover by microbial communities. Microbial activity changes NOM's structure and properties, which may further influence the bioavailability of NOM. The change of NOM may reversely affect the microbial community structure as well. To date, our understanding of these interactions is insufficient, and it is critical to identify the role of NOM to carbon turnover, structure of microbial community and to the metabolic potential of that community. In this study, we aimed to study the interactions between NOM and native microbial communities present in groundwater at a background site (FW305 well) at Oak Ridge Field Research Center, TN. The total organic carbon and inorganic carbon in FW305 deep sediment samples were 0.071% and 0.011%, respectively. Water-soluble NOM was extracted from these sediment samples, the extraction efficiencies were 3.2% for organic carbon and 1.6% for inorganic carbon. The extracted NOM was then provided as the sole carbon source to native microbes present in groundwater. Subsamples were harvested several times from these incubations during a 50-day study. 16S rRNA gene amplicon sequencing and Geochip were used to identify the changes of microbial communities and expression of functional genes during transformation of the NOM. Several advanced chemical techniques including FTICR-MS and NEXAFS were used to characterize the C pool (i.e., NOM metabolites and microbial byproducts). Preliminary data clearly showed that microbial community responded to NOM, and shifted as functional groups in NOM transformed. Further detailed metabolite and gene-based analysis to elucidate these changes is currently being conducted.

  7. Partitioning of uranyl between ferrihydrite and humic substances at acidic and circum-neutral pH

    NASA Astrophysics Data System (ADS)

    Dublet, Gabrielle; Lezama Pacheco, Juan; Bargar, John R.; Fendorf, Scott; Kumar, Naresh; Lowry, Gregory V.; Brown, Gordon E.

    2017-10-01

    As part of a larger study of the reactivity and mobility of uranyl (U(VI)O22+) cations in subsurface environments containing natural organic matter (NOM) and hydrous ferric oxides, we have examined the effect of reference humic and fulvic substances on the sorption of uranyl on 2-line ferrihydrite (Fh), a common, naturally occurring nano-Fe(III)-hydroxide. Uranyl was reacted with Fh at pH 4.6 and 7.0 in the presence and absence of Elliott Soil Humic Acid (ESHA) (0-835 ppm) or Suwanee River Fulvic Acid (SRFA) (0-955 ppm). No evidence was found for reduction of uranyl by either form of NOM after 24 h of exposure. The following three size fractions were considered in this study: (1) ≥0.2 μm (Fh-NOM aggregates), (2) 0.02-0.2 μm (dispersed Fh nanoparticles and NOM macro-molecules), and (3) <0.02 μm (dissolved). The extent to which U(VI) is sorbed in aggregates or dispersed as colloids was assessed by comparing U, Fe, and NOM concentrations in these three size fractions. Partitioning of uranyl between Fh and NOM was determined in size fraction (1) using X-ray absorption spectroscopy (XAS). Uranyl sorption on Fh-NOM aggregates was affected by the presence of NOM in different ways depending on pH and type of NOM (ESHA vs. SRFA). The presence of ESHA in the uranyl-Fh-NOM ternary system at pH 4.6 enhanced uranyl uptake more than the presence of SRFA. In contrast, neither form of NOM affected uranyl sorption at pH 7.0 over most of the NOM concentration range examined (0-500 ppm); at the highest NOM concentrations (500-955 ppm) uranyl uptake in the aggregates was slightly inhibited at pH 7.0, which is interpreted as being due to the dispersion of Fh aggregates. XAS at the U LIII-edge was used to characterize molecular-level changes in uranyl complexation as a result of sorption to the Fh-NOM aggregates. In the absence of NOM, uranyl formed dominantly inner-sphere, mononuclear, bidentate sorption complexes on Fh. However, when NOM concentration was increased at pH 4.6, the proportion of uranyl-Fh inner-sphere sorption complexes decreased relative to uranyl-ESHA or uranyl-SRFA complexes, which comprised up to ∼60% of the total uranyl in the systems studied. At pH 7.0, uranyl-NOM complexes were also present in the Fh-NOM aggregates in the concentration ranges of ESHA or SRFA considered; however, the proportion of these complexes was smaller at pH 7.0 than at pH 4.6 and did not increase significantly with increasing NOM concentration.

  8. Evaluation of Ohio River NOM Variability and NOM Concentration vs. Reconstitution

    EPA Science Inventory

    Surface water contains natural organic matter (NOM) which reacts with disinfectants creating disinfection byproducts (DBPs), some of which are USEPA regulated contaminants. Characterizing NOM can provide important insight on DBP formation and water treatment process adaptation t...

  9. Preferential adsorption of fluorescing fulvic and humic acid components on activated carbon using flow field-flow fractionation analysis.

    PubMed

    Schmit, Kathryn H; Wells, Martha J M

    2002-02-01

    Activated carbon treatment of drinking water is used to remove natural organic matter (NOM) precursors that lead to the formation of disinfection byproducts. The innate hydrophobic nature and macromolecular size of NOM render it amenable to sorption by activated carbon. Batch equilibrium and minicolumn breakthrough adsorption studies were performed using granular activated carbon to treat NOM-contaminated water. Ultraviolet (UV) absorption spectroscopy and flow field-flow fractionation analysis using tandem diode-array and fluorescence detectors were used to monitor the activated carbon sorption of NOM. Using these techniques, it was possible to study activated carbon adsorption properties of UV absorbing, fluorescing and nonfluorescing, polyelectrolytic macromolecules fractionated from the total macromolecular and nonmacromolecular composition of NOM. Adsorption isotherms were constructed at pH 6 and pH 9. Data were described by the traditional and modified Freundlich models. Activated carbon capacity and adsorbability were compared among fractionated molecular subsets of fulvic and humic acids. Preferential adsorption (or adsorptive fractionation) of polyelectrolytic, fluorescing fulvic and humic macromolecules on activated carbon was observed. The significance of observing preferential adsorption on activated carbon of fluorescing macromolecular components relative to nonfluorescing components is that this phenomenon changes the composition of dissolved organic matter remaining in equilibrium in the aqueous phase relative to the composition that existed in the aqueous phase prior to adsorption. Likewise, it changes the composition of dissolved organic matter remaining in equilibrium in the aqueous phase relative to the adsorbed phase. This research increases our understanding of NOM interactions with activated carbon which may lead to improved methods of potable water production.

  10. Characterizing Ohio River NOM Variability and Reconstituted-Lyophilized NOM as a Source Surrogate

    EPA Science Inventory

    Surface water contains natural organic matter (NOM) that reacts with disinfectants creating disinfection byproducts (DBPs), some of which are USEPA regulated contaminants. Characterizing NOM can provide insight with respect to DBP formation and water treatment process adaptation...

  11. The role of natural organic matter in nitrite formation by LP-UV/H2O2 treatment of nitrate-rich water.

    PubMed

    Semitsoglou-Tsiapou, Sofia; Mous, Astrid; Templeton, Michael R; Graham, Nigel J D; Hernández Leal, Lucía; Kruithof, Joop C

    2016-12-01

    The role of natural organic matter (NOM) on nitrite formation from nitrate photolysis by low pressure ultraviolet lamp (LP-UV) photolysis and LP-UV/H 2 O 2 treatment was investigated. Nitrate levels up to the WHO guideline maximum of 50 mg NO 3 - /L were used in tests. The presence of 4 mg/L Suwannee River natural organic matter (NOM) led to increased nitrite yields compared to NOM-free controls. This was caused partly by NOM scavenging of OH radicals, preserving the produced NO 2 - as well as the ONOO - that leads to NO 2 - formation, but also via the production of radical species ( 1 O 2 , O 2 - and OH) by the photolysis of NOM. In addition, solvated electrons formed by NOM photolysis may reduce nitrate directly to nitrite. For comparison, Nordic Lake NOM, representative of aquatic NOM, as well as Pony Lake NOM, which had a greater nitrogen content (6.51% w/w) than the other two types of NOM, were investigated, yielding similar nitrite levels as Suwannee River NOM. The results suggest that neither the type nor the nitrogen content of the NOM have an effect on the nitrite yields obtained over the range of UV/H 2 O 2 doses applied (UV fluences of 500-2100 mJ/cm 2 and hydrogen peroxide doses of 10, 25, and 50 mg/L). The findings indicate that for UV fluences above 1500 mJ/cm 2 the resulting nitrite concentration can exceed the 0.1 mg/L EU regulatory limit for nitrite, suggesting that nitrite formation by LP-UV advanced oxidation of nitrate-rich waters is important to consider. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Application of the IAS theory combining to a three compartments description of natural organic matter to the adsorption of atrazine or diuron on activated carbon.

    PubMed

    Baudu, M; Raveau, D; Guibaud, G

    2004-07-01

    The study of natural organic matter (NOM) adsorption on an activated carbon showed that equilibrium cannot be described according to a simple model such as a Freundlich isotherm and confirms the need for a closer description of the organic matter to simulate the competitive adsorption with micropollutants. A representation of the organic matter in three fractions is chosen: non-adsorbable, weak and strong adsorbable. The Ideal Adsorbed Solution Theory (IAST) can, under restrictive conditions, be used to effectively predict the competition between the pesticides and the organic matter. Therefore, it was noted that the model simulated with good precision the competition between atrazine or diuron and natural organic matter in aqueous solution for two activated carbons (A and B). The same parameters for the modeling of organic matter adsorption (Freudlich constants for two absorbable fractions) are used with the two pesticides. However, IAST does not allow correct modeling of pesticide adsorption onto two other (C and D) activated carbons in solution in natural water to be described. IAS theory does not reveal competition between diuron and NOM and pore blockage mechanism by the NOM is proposed as the major effect for the adsorption capacity reduction. However, the difference observed between the two pesticides could be due to in addition to the pore blockage effect, a particular phenomenon with the diuron, especially with D activated carbon. We can suppose specific interactions between the diuron and the adsorbed organic matter and a competition between adsorption sites of NOM and activated carbon surface.

  13. Influence of dissolved organic carbon content on modelling natural organic matter acid-base properties.

    PubMed

    Garnier, Cédric; Mounier, Stéphane; Benaïm, Jean Yves

    2004-10-01

    Natural organic matter (NOM) behaviour towards proton is an important parameter to understand NOM fate in the environment. Moreover, it is necessary to determine NOM acid-base properties before investigating trace metals complexation by natural organic matter. This work focuses on the possibility to determine these acid-base properties by accurate and simple titrations, even at low organic matter concentrations. So, the experiments were conducted on concentrated and diluted solutions of extracted humic and fulvic acid from Laurentian River, on concentrated and diluted model solutions of well-known simple molecules (acetic and phenolic acids), and on natural samples from the Seine river (France) which are not pre-concentrated. Titration experiments were modelled by a 6 acidic-sites discrete model, except for the model solutions. The modelling software used, called PROSECE (Programme d'Optimisation et de SpEciation Chimique dans l'Environnement), has been developed in our laboratory, is based on the mass balance equilibrium resolution. The results obtained on extracted organic matter and model solutions point out a threshold value for a confident determination of the studied organic matter acid-base properties. They also show an aberrant decreasing carboxylic/phenolic ratio with increasing sample dilution. This shift is neither due to any conformational effect, since it is also observed on model solutions, nor to ionic strength variations which is controlled during all experiments. On the other hand, it could be the result of an electrode troubleshooting occurring at basic pH values, which effect is amplified at low total concentration of acidic sites. So, in our conditions, the limit for a correct modelling of NOM acid-base properties is defined as 0.04 meq of total analysed acidic sites concentration. As for the analysed natural samples, due to their high acidic sites content, it is possible to model their behaviour despite the low organic carbon concentration.

  14. Modeling bromide effects on yields and speciation of dihaloacetonitriles formed in chlorinated drinking water.

    PubMed

    Roccaro, Paolo; Chang, Hyun-shik; Vagliasindi, Federico G A; Korshin, Gregory V

    2013-10-15

    This study examined effects of bromide on yields and speciation of dihaloacetonitrile (DHAN) species that included dichloro-, bromochloro- and dibromoacetonitriles generated in chlorinated water. Experimental data obtained using two water sources, varying concentrations and characters of Natural Organic Matter (NOM), bromide concentrations, reaction times, chlorine doses, temperatures and pHs were interpreted using a semi-phenomenological model that assumed the presence of three kinetically distinct sites in NOM (denoted as sites S1, S2 and S3) and the occurrence of sequential incorporation of bromine and chlorine into them. One site was found to react very fast with the chlorine and bromine but its contribution in the DHAN generation was very low. The site with the highest contribution to the yield of DHAN (>70%) has the lowest reaction rates. The model introduced dimensionless coefficients (denoted as φ1(DHAN), φ2(DHAN) and φ3(DHAN)) applicable to the initial DHAN generation sites and their monochlorinated and monobrominated products, respectively. These parameters were used to quantify the kinetic preference to bromine incorporation over that of chlorine. Values of these coefficients optimized for DHAN formation were indicative of the strongly preferential incorporation of bromine into the engaged NOM sites. The same set of φ(i)(DHAN) coefficients could be used to model the speciation of DHAN released from their kinetically different precursors. The dimensionless speciation coefficients φ(i)(DHAN) were determined to be site specific and dependent on the NOM content and character as well as pH. The presented model of DHAN formation and speciation can help quantify in more detail the generation of DHAN and provide more insight necessary for further assessment of their potential health effects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Comprehensive isolation of natural organic matter from water for spectral characterizations and reactivity testing

    USGS Publications Warehouse

    Leenheer, J.A.; Croue, J.-P.; Benjamin, M.; Korshin, G.V.; Hwang, C.J.; Bruchet, A.; Aiken, G.R.

    2000-01-01

    A variety of approaches were tested to comprehensively isolate natural organic matter (NOM) from water. For waters with high NOM concentrations such as the Suwannee River, Georgia, approaches that used combinations of membrane concentrations, evaporative concentrations, and adsorption on nonionic XAD resins, ion exchange resins and iron oxide coated sand isolated over 90% of the NOM. However, for waters with low NOM concentrations, losses of half of the NOM were common and desalting of NOM isolates was a problem. A new comprehensive approach was devised and tested on the Seine River, France in which 100 L of filtered water was sodium softened by ion exchange and vacuum evaporated to 100 mL. Colloids (32% of the NOM) were isolated using a 3,500 Dalton membrane by dialysis against 0.1 M HCl and 0.2 M HF to remove salts and silica. On the membrane permeate, hydrophobic NOM (42%) was isolated using XAD-8 resin and hydrophilic NOM (26%) was isolated using a variety of selective desalting precipitations. The colloid fraction was characterized by IR and NMR spectroscopy as N-acetylamino sugars. ?? 2000 American Chemical Society.

  16. Effects of humic substances on precipitation and aggregation of zinc sulfide nanoparticles

    USGS Publications Warehouse

    Deonarine, Amrika; Lau, Boris L.T.; Aiken, George R.; Ryan, Joseph N.; Hsu-Kim, Heileen

    2011-01-01

    Nanoparticulate metal sulfides such as ZnS can influence the transport and bioavailability of pollutant metals in anaerobic environments. The aim of this work was to investigate how the composition of dissolved natural organic matter (NOM) influences the stability of zinc sulfide nanoparticles as they nucleate and aggregate in water with dissolved NOM. We compared NOM fractions that were isolated from several surface waters and represented a range of characteristics including molecular weight, type of carbon, and ligand density. Dynamic light scattering was employed to monitor the growth and aggregation of Zn−S−NOM nanoparticles in supersaturated solutions containing dissolved aquatic humic substances. The NOM was observed to reduce particle growth rates, depending on solution variables such as type and concentration of NOM, monovalent electrolyte concentration, and pH. The rates of growth increased with increasing ionic strength, indicating that observed growth rates primarily represented aggregation of charged Zn−S−NOM particles. Furthermore, the observed rates decreased with increasing molecular weight and aromatic content of the NOM fractions, while carboxylate and reduced sulfur content had little effect. Differences between NOM were likely due to properties that increased electrosteric hindrances for aggregation. Overall, results of this study suggest that the composition and source of NOM are key factors that contribute to the stabilization and persistence of zinc sulfide nanoparticles in the aquatic environment.

  17. Non-operative management of isolated liver trauma.

    PubMed

    Li, Min; Yu, Wen-Kui; Wang, Xin-Bo; Ji, Wu; Li, Jie-Shou; Li, Ning

    2014-10-01

    Liver trauma is the most common abdominal emergency with high morbidity and mortality. Now, non-operative management (NOM) is a selective method for liver trauma. The aim of this study was to determine the success rate, mortality and morbidity of NOM for isolated liver trauma. Medical records of 81 patients with isolated liver trauma in our unit were analyzed retrospectively. The success rate, mortality and morbidity of NOM were evaluated. In this series, 9 patients with grade IV-V liver injuries underwent emergent operation due to hemodynamic instability; 72 patients, 6 with grade V, 18 grade IV, 29 grade III, 15 grade II and 4 grade I, with hemodynamic stability received NOM. The overall success rate of NOM was 97.2% (70/72). The success rates of NOM in the patients with grade I-III, IV and V liver trauma were 100%, 94.4% and 83.3%. The complication rates were 10.0% and 45.5% in the patients who underwent NOM and surgical treatment, respectively. No patient with grade I-II liver trauma had complications. All patients who underwent NOM survived. NOM is the first option for the treatment of liver trauma if the patient is hemodynamically stable. The grade of liver injury and the volume of hemoperitoneum are not suitable criteria for selecting NOM. Hepatic angioembolization associated with the correction of hypothermia, coagulopathy and acidosis is important in the conservative treatment for liver trauma.

  18. Microbial Interactions with Natural Organic Matter Extracted from the Oak Ridge FRC

    NASA Astrophysics Data System (ADS)

    Wu, X.; Jagadamma, S.; Lancaster, A.; Adams, M. W. W.; Hazen, T.; Justice, N.; Chakraborty, R.

    2015-12-01

    Natural organic matter (NOM) is central to microbial food webs; however, little is known about the interplay between the physical and chemical characteristics of NOM and its turnover by microbial communities based upon biotic and abiotic parameters (e.g., biogenic precursors, redox state, bioavailability). Microbial activity changes the structures and properties that influence further bioavailability of NOM. To date, our understanding of these interactions is insufficient, and indigenous microbial activities that regulate NOM turnover are poorly resolved. It is critical to identify NOM characteristics to the structure and composition of microbial communities and to the metabolic potential of that community. Towards that end, sediment samples collected from the background area well FW305 (Oak Ridge Field Research Center, Oak Ridge, TN) were tested for NOM extraction methods that used three mild solvents, e.g., phosphate buffered saline (PBS), pyrophosphate, and MilliQ-water. MilliQ-water was finally chosen for extracting sediment samples via shaking and sonication. Groundwater from well FW301 was used as an inoculum to which the extracted NOM was added as carbon sources to feed native microbes. To identify the specific functional groups of extracted NOM that are bioavailable to indigenous microbes, several techniques, including FTIR, LC-MS, EEM, were applied to characterize the extracted NOM as well as the transformed NOM metabolites. 16S rDNA amplicon sequencing was also performed to identify the specific microbial diversity that was enriched and microbial isolates that preferentially grew with these NOM was also cultivated in the lab for future detailed studies.

  19. Characterizing Variability in Ohio River NOM and Validating Reconstituted Freeze-Dried NOM as a Surrogate for its Aqueous Source

    EPA Science Inventory

    Surface water contains natural organic matter (NOM) which reacts with disinfectants creating disinfection byproducts (DBPs), some of which are USEPA regulated contaminants. Characterizing NOM can provide important insight on DBP formation and water treatment process adaptation t...

  20. Adsorption of sulfamethoxazole by magnetic biochar: Effects of pH, ionic strength, natural organic matter and 17α-ethinylestradiol.

    PubMed

    Reguyal, Febelyn; Sarmah, Ajit K

    2018-07-01

    Recent studies have shown the widespread occurrence of pharmaceuticals in the aquatic environment leading to increasing global concern on their potential adverse effects in the environment and public health. In this study, we evaluated the use of magnetic biochar derived from pine sawdust, one of New Zealand's major wood wastes, to remove an emerging contaminant, sulfamethoxazole (SMX), at different pH, ionic strength, natural organic matter (NOM) and a competing compound, 17α-ethinylestradiol (EE2). In single-solute system, the sorption of SMX onto magnetic biochar was found to be highly pH-dependent and slightly increased with increase in ionic strength. However, the effects of pH, ionic strength and NOM were relatively insignificant compared to the sorption inhibition caused by EE2 in binary-solute system. Both SMX and EE2 sorption onto the highly carbonised biochar in magnetic biochar were postulated to be due to the π-π electron donor acceptor and hydrophobic interaction. EE2 is more hydrophobic than SMX. Hence, strong competition between these compounds was identified where EE2 markedly inhibited the sorption of SMX onto magnetic biochar in all artificial environmental conditions studied. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Relative contributions of copper oxide nanoparticles and dissolved copper to Cu uptake kinetics of Gulf killifish (Fundulus grandis) embryos

    USGS Publications Warehouse

    Jiang, Chuanjia; Castellon, Benjamin T.; Matson, Cole W.; Aiken, George R.; Hsu-Kim, Heileen

    2017-01-01

    The toxicity of soluble metal-based nanomaterials may be due to the uptake of metals in both dissolved and nanoparticulate forms, but the relative contributions of these different forms to overall metal uptake rates under environmental conditions are not quantitatively defined. Here, we investigated the linkage between the dissolution rates of copper(II) oxide (CuO) nanoparticles (NPs) and their bioavailability to Gulf killifish (Fundulus grandis) embryos, with the aim of quantitatively delineating the relative contributions of nanoparticulate and dissolved species for Cu uptake. Gulf killifish embryos were exposed to dissolved Cu and CuO NP mixtures comprising a range of pH values (6.3–7.5) and three types of natural organic matter (NOM) isolates at various concentrations (0.1–10 mg-C L–1), resulting in a wide range of CuO NP dissolution rates that subsequently influenced Cu uptake. First-order dissolution rate constants of CuO NPs increased with increasing NOM concentration and for NOM isolates with higher aromaticity, as indicated by specific ultraviolet absorbance (SUVA), while Cu uptake rate constants of both dissolved Cu and CuO NP decreased with NOM concentration and aromaticity. As a result, the relative contribution of dissolved Cu and nanoparticulate CuO species for the overall Cu uptake rate was insensitive to NOM type or concentration but largely determined by the percentage of CuO that dissolved. These findings highlight SUVA and aromaticity as key NOM properties affecting the dissolution kinetics and bioavailability of soluble metal-based nanomaterials in organic-rich waters. These properties could be used in the incorporation of dissolution kinetics into predictive models for environmental risks of nanomaterials.

  2. Defluoridation of water using activated alumina in presence of natural organic matter via response surface methodology.

    PubMed

    Samarghandi, Mohammad Reza; Khiadani, Mehdi; Foroughi, Maryam; Zolghadr Nasab, Hasan

    2016-01-01

    Adsorption by activated alumina is considered to be one of the most practiced methods for defluoridation of freshwater. This study was conducted, therefore, to investigate the effect of natural organic matters (NOMs) on the removal of fluoride by activated alumina using response surface methodology. To the authors' knowledge, this has not been previously investigated. Physico-chemical characterization of the alumina was determined by scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET), Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence (XRF), and X-ray diffractometer (XRD). Response surface methodology (RSM) was applied to evaluate the effect of single and combined parameters on the independent variables such as the initial concentration of fluoride, NOMs, and pH on the process. The results revealed that while presence of NOM and increase of pH enhance fluoride adsorption on the activated alumina, initial concentration of fluoride has an adverse effect on the efficiency. The experimental data were analyzed and found to be accurately and reliably fitted to a second-order polynomial model. Under optimum removal condition (fluoride concentration 20 mg/L, NOM concentration 20 mg/L, and pH 7) with a desirability value of 0.93 and fluoride removal efficiency of 80.6%, no significant difference was noticed with the previously reported sequence of the co-exiting ion affinity to activated alumina for fluoride removal. Moreover, aluminum residual was found to be below the recommended value by the guideline for drinking water. Also, the increase of fluoride adsorption on the activated alumina, as NOM concentrations increase, could be due to the complexation between fluoride and adsorbed NOM. Graphical abstract ᅟ.

  3. Characteristics of competitive uptake between Microcystin-LR and natural organic matter (NOM) fractions using strongly basic anion exchange resins.

    PubMed

    Dixit, Fuhar; Barbeau, Benoit; Mohseni, Madjid

    2018-08-01

    Microcystins are the most commonly occurring cyanotoxins, and have been extensively studied across the globe. In the present study, a strongly basic anion exchange resin was employed to investigate the removal of Microcystin-LR (MCLR), one of the most toxic microcystin variants. Factors influencing the uptake behavior included the MCLR and resin concentrations, resin dosage, and natural organic matter (NOM) characteristics, specifically, the charge density and molecular weight distribution of source water NOM. Equivalent background concentration (EBC) was employed to evaluate the competitive uptake between NOM and MCLR. The experimental data were compared with different mathematical and physical models and pore diffusion was determined as the rate-limiting step. The resin dose/solute concentration ratio played a key role in the MCLR uptake process and MCLR removal was attributed primarily to electrostatic attractions. Charge density and molecular weight distribution of the background NOM fractions played a major role in MCLR removal at lower resin dosages (200 mg/L ∼ 1 mL/L and below), where a competitive uptake was observed due to the limited exchange sites. Further, evidences of pore blockage and site reduction were also observed in the presence of humics and larger molecular weight organic fractions, where a four-fold reduction in the MCLR uptake was observed. Comparable results were obtained for laboratory studies on synthetic laboratory water and surface water under similar conditions. Given their excellent performance and low cost, anion exchange resins are expected to present promising potentials for applications involving the removal of removal of algal toxins and NOM from surface waters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Nanoparticle Over Mirror plasmonic structures prepared with use of Au colloid produced by laser ablation in water

    NASA Astrophysics Data System (ADS)

    Sawczak, Mirosław; Zyskowski, Marcin; Karczewski, Jakub; Atanasov, Petar A.; Nedyalkov, Nikolay N.; Nikov, Rumen G.; Stankova, Nadya A.; Śliwiński, Gerard

    2016-01-01

    Recently, an intensive research is carried out on plasmonic structures due to their potential application in many areas such as sensing, light harvesting and energy conversion and storage. In particular, a growing interest is observed in the Nanoparticle Over Mirror (NOM) structures for which the lithography and surface chemical functionalization represent the most popular production routes1. However, the application of those techniques is limited by the low efficacy, process complexity and chemical contamination of nanoparticles (NP). In this work, we report the contamination-free and low cost fabrication method of NOMs based on wet coating and ultrasonic-assisted nanocolloid drying process. The glass plates covered with magnetron sputtered 100 nm thick Au film and subsequently with Al2O3 layers (6 - 36 nm) by means of pulsed laser deposition are used as substrates. Au NPs are produced in the form of colloidal suspension by means of laser ablation in water using the 1064 nm, 6 ns Nd:YAG laser. The NOM synthesis is finalized by imposing of the Au NP suspension onto the as prepared Au-Al2O3/glass substrates and dried. To avoid NP agglomeration, the wet coated substrates are sonicated using 20W, 20 kHz ultrasound generator. SEM inspection of the obtained NOM structures confirms the positive sonication effect, i.e. the presence of agglomerate-free, homogenous layers. These consist of NPs (36 nm average diameter) which are characterized by the resonance absorption band at 528 nm. For NOM structures the UV-vis spectra reveal increased infrared activity and peak shift in agreement with theoretical modeling2. The NOM structure characterization is completed by analysis of the SEM and profilometry measurement results.

  5. Exploring molecular sieve capabilities of activated carbon fibers to reduce the impact of NOM preloading on trichloroethylene adsorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanju Karanfil; Seyed A. Dastgheib; Dina Mauldin

    2006-02-15

    Adsorption of trichloroethylene (TCE) by two activated carbon fibers ACF10 and ACF20H and two granular activated carbons, coal-based F400 and Macro preloaded with hydrophobic and transphilic fractions of natural organic matter (NOM) was examined. ACF10, the most microporous activated carbon used in this study, had over 90% of its pore volume in pores smaller than 10 {angstrom}. It also had the highest volume in pores 5-8 {angstrom}, which is the optimum pore size region for TCE adsorption, among the four activated carbons. Adsorption of NOM fractions by ACF10 was, in general, negligible. Therefore, ACF10, functioning as a molecular sieve duringmore » preloading, exhibited the least NOM uptake for each fraction, and subsequently the highest TCE adsorption. The other three sorbents had wider pore size distributions, including high volumes in pores larger than 10 {angstrom}, where NOM molecules can adsorb. As a result, they showed a higher degree of uptake for all NOM fractions, and subsequently lower adsorption capacities for TCE, as compared to ACF10. The results obtained in this study showed that understanding the interplay between the optimum pore size region for the adsorption of target synthetic organic contaminant (SOC) and the pore size region for the adsorption of NOM molecules is important for controlling NOM-SOC competitions. Experiments with different NOM fractions indicated that the degree of NOM loading is important in terms of preloading effects; however the way that the carbon pores are filled and loaded by different NOM fractions can be different and may create an additional negative impact on TCE adsorption. 40 refs., 3 figs., 2 tabs.« less

  6. Effects of source and seasonal variations of natural organic matters on the fate and transport of CeO2 nanoparticles in the environment.

    PubMed

    Li, Zhen; Sahle-Demessie, Endalkachew; Aly Hassan, Ashraf; Pressman, Jonathan G; Sorial, George A; Han, Changseok

    2017-12-31

    Natural organic matter (NOM) affects the stability and transport of nanoparticles (NPs) in natural waters by modifying their physiochemical properties. Source location, and seasonal variations, influence their molecular, physical and electrical charge properties. To understand the variations of NOM on the mobilization of NPs, large volumes of water were collected from the Ohio River (OR) over winter and summer seasons and dissolved NOMs were concentrated. The chemical and structural differences of these NOMs were compared with the Suwannee River humic acid (SRHA) SRHA using 1 H and 13 C nuclear magnetic resonance spectroscopy, and Fourier transforms infrared (FTIR) spectroscopy. Thermal analysis and FTIR confirmed that differences in composition, structure, and functional groups are a result of SRHA fractionation compared to whole molecule OR-NOM. The influence of OR-NOMs on the surface charge of CeO 2 NPs and the effects on the transport and retention in a three-phase (deposition-rinse-re-entrainment) sand-packed columns were investigated at CeO 2 NPs initial concertation of 10ppm, pH6.8, increasing ionic strength (3, 5, and 10mM), retention time of 1min, and increasing NOM concentration (1, 5, and 10ppm). The summer OR-NOM showed higher stabilization and mobilization effect on the CeO 2 than the winter NOM; while their effect was very different form the SRHA. The stabilization of NPs is attributed to both electrostatic and steric effects. The differences in the chemical structure of the complex and heterogeneous NOMs showed disparate reactivity and direct impact on CeO 2 -NPs stability. Using SRHA to study the effect of NOM for drinking water related assessment does not sufficiently represent the natural conditions of the environment. Published by Elsevier B.V.

  7. Disinfection byproduct formation in reverse-osmosis concentrated and lyophilized natural organic matter from a drinking water source.

    PubMed

    Pressman, Jonathan G; McCurry, Daniel L; Parvez, Shahid; Rice, Glenn E; Teuschler, Linda K; Miltner, Richard J; Speth, Thomas F

    2012-10-15

    Drinking water treatment and disinfection byproduct (DBP) research can be complicated by natural organic matter (NOM) temporal variability. NOM preservation by lyophilization (freeze-drying) has been long practiced to address this issue; however, its applicability for drinking water research has been limited because the selected NOM sources are atypical of most drinking water sources. The purpose of this research was to demonstrate that reconstituted NOM from a lyophilized reverse-osmosis (RO) concentrate of a typical drinking water source closely represents DBP formation in the original NOM. A preliminary experiment assessed DBP formation kinetics and yields in concentrated NOM, which demonstrated that chlorine decays faster in concentrate, in some cases leading to altered DBP speciation. Potential changes in NOM reactivity caused by lyophilization were evaluated by chlorination of lyophilized and reconstituted NOM, its parent RO concentrate, and the source water. Bromide lost during RO concentration was replaced by adding potassium bromide prior to chlorination. Although total measured DBP formation tended to decrease slightly and unidentified halogenated organic formation tended to increase slightly as a result of RO concentration, the changes associated with lyophilization were minor. In lyophilized NOM reconstituted back to source water TOC levels and then chlorinated, the concentrations of 19 of 21 measured DBPs, constituting 96% of the total identified DBP mass, were statistically indistinguishable from those in the chlorinated source water. Furthermore, the concentrations of 16 of 21 DBPs in lyophilized NOM reconstituted back to the RO concentrate TOC levels, constituting 86% DBP mass, were statistically indistinguishable from those in the RO concentrate. This study suggests that lyophilization can be used to preserve concentrated NOM without substantially altering the precursors to DBP formation. Published by Elsevier Ltd.

  8. Fractionation of aquatic natural organic matter upon sorption to goethite and kaolinite

    USGS Publications Warehouse

    Meier, M.; Namjesnik-Dejanovic, K.; Maurice, P.A.; Chin, Y.-P.; Aiken, G.R.

    1999-01-01

    Natural organic matter (NOM) consists of a complex mixture of organic molecules; previous studies have suggested that preferential sorption of higher molecular weight, more hydrophobic, and more aromatic components may lead to fractionation of the NOM pool upon passage through porous media. Our work expands upon previous studies by quantifying the change in solution-phase weight average molecular weight (M(w)) upon sorption of bulk (rather than isolated) surface water NOM from the Suwannee River (SR) and the Great Dismal Swamp (GDS) to goethite and kaolinite at different sorption densities and at pH 4, 22??C. High pressure size exclusion chromatography (HPSEC) was used to quantify changes in M(w) upon sorption, and molar absorptivities at ?? = 280 nm were used to approximate changes in solution NOM aromaticity. Two SR water samples were used, with M(w) = 2320 and 2200 Da; a single GDS sample was used, with M(w) = 1890 Da. The SR NOM was slightly more hydrophobic and aromatic. These differences were reflected in greater sorption of SR NOM than GDS NOM. Both surface water NOMs showed a much greater affinity for goethite than for kaolinite. HPSEC analysis of the NOM remaining in solution after 24 h reaction time with geothite revealed that the largest changes in solution phase M(w)s (decreases by 900-1700 Da) occurred at relatively low equilibrium sorbate concentrations (approximately 5-20 mg C 1-1); the decrease in solution M(w) suggested that reactive surface sites were occupied disproportionately by large and intermediate size NOM moieties. At higher equilibrium NOM concentrations (>20 mg C 1-1), as percent adsorption decreased, M(w) in solution was similar to original samples. A smaller decrease in solution NOM M(w) (300-500 Da at 10-20 mg C 1-1 ~ 100 Da at > 20 mg) also occurred upon sorption to kaolinite. Overall, our results showed that factors (as related to NOM composition, clay mineral surface properties, and position along the sorption isotherm) which promote a higher percent sorption lead to the most pronounced decreases in solution M(w).

  9. 77 FR 45700 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... and BONO Port fees will be assessed to non-NOM Participants and NOM Participants. * * * * * The text... NASDAQ ITCH to Trade Options (``ITTO'') \\4\\ ports to non-NOM Participants and NOM Participants for... options equivalent of the NASDAQ Basic data feed offered for equities under NASDAQ Rule 7047. See Chapter...

  10. 76 FR 12178 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... orders on the NOM book, last sale information for trades executed on NOM, and Order Imbalance Information... orders that appear on the feed, and subtracting individual orders that are executed. The Order Imbalance... trades executed on NOM, and Order Imbalance Information as set forth in NOM Rules Chapter VI, Section 8...

  11. Occurrence, habitat, and movements of the endangered northern madtom (Noturus stigmosus) in the Detroit River, 2003-2011

    USGS Publications Warehouse

    Manny, Bruce A.; Daley, Bryon A.; Boase, James C.; Horne, Ashlee N.; Chiotti, Justin A.

    2014-01-01

    The northern madtom (Noturus stigmosus or NOM) is a small catfish, native to North America. It is globally vulnerable and endangered in Canada, Ontario, and Michigan. In 1994 and 1996, it was found in the St. Clair River and in Lake St. Clair, respectively. However, it had not been found downstream in the Detroit River since 1978. We report catches of 304 NOM from 2003 to 2011 and describe their mud and sand habitats in the deep (10 m), dark, Detroit River. We found adult NOM, including 3 ripe males (90–107 mm SL) in head waters of the river near Belle Isle in Michigan waters, and both adult and 4 juvenile NOM (21–30 mm SL) near Peche Island in Ontario waters. From 2009 to 2011, in the river's middle reach, we caught 7 adult NOM for the first time near Fighting Island in Ontario waters, but no NOM in the river's lower reach. Our mark–recapture results showed that within 6 weeks, 2 adult NOM moved east 2.0 km from Michigan waters near Belle Isle across the deep (10 m) Fleming Channel of the Detroit River to Canadian waters near Peche Island. Analysis of annuli from pectoral spines of 7 dead NOM revealed that they live to at least 6 years of age in the Detroit River. This is the first age data that we could find for a NOM population. Our findings extended our knowledge of habitat, reproductive ecology, age, and distribution of NOM in the Detroit River corridor.

  12. 78 FR 75949 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-13

    ... Proposed Rule Change Relating to NOM Penny and Non-Penny Pilot Options December 9, 2013. Pursuant to... proposes to amend the NOM Market Maker \\3\\ Non-Penny Pilot Options \\4\\ Fee for Removing Liquidity and the NOM Market Maker Rebate to Add Liquidity in Penny Pilot Options.\\5\\ \\3\\ The term ``NOM Market Maker...

  13. Kinetic controls on the complexation between mercury and dissolved organic matter in a contaminated environment.

    PubMed

    Miller, Carrie L; Southworth, George; Brooks, Scott; Liang, Liyuan; Gu, Baohua

    2009-11-15

    The interaction of mercury (Hg) with dissolved natural organic matter (NOM) under equilibrium conditions is the focus of many studies but the kinetic controls on Hg-NOM complexation in aquatic systems have often been overlooked. We examined the rates of Hg-NOM complexation both in a contaminated Upper East Fork Poplar Creek (UEFPC) in Oak Ridge, Tennessee, and in controlled laboratory experiments using reducible Hg (Hg(R)) measurements and C(18) solid phase extraction techniques. Of the filterable Hg at the headwaters of UEFPC, >90% was present as Hg(R) and this fraction decreased downstream but remained >29% of the filterable Hg at all sites. The presence of higher Hg(R) concentrations than would be predicted under equilibrium conditions in UEFPC and in experiments with a NOM isolate suggests that kinetic reactions are controlling the complexation between Hg and NOM. The slow formation of Hg-NOM complexes is attributed to competitive ligand exchange among various moieties and functional groups in NOM with a range of binding strengths and configurations. This study demonstrates the need to consider the effects of Hg-NOM complexation kinetics on processes such as Hg methylation and solid phase partitioning.

  14. Photocatalytic degradation of carbamazepine, clofibric acid and iomeprol with P25 and Hombikat UV100 in the presence of natural organic matter (NOM) and other organic water constituents.

    PubMed

    Doll, Tusnelda E; Frimmel, Fritz H

    2005-01-01

    The photocatalytic degradation of natural organic matter (NOM) and organic substance mixtures under simulated solar UV light has been investigated with suspended TiO(2). It could be shown by size-exclusion chromatography that photocatalysis of NOM led to a reduction of the average hydrodynamic radii and presumably of the nominal molecular weight, too. The decrease of the UV/Vis absorption of NOM was faster than the NOM mineralization. This study also focuses on the different abilities of photocatalytic materials (P25 and Hombikat UV100) to decrease persistent substances influenced by the presence of NOM and mixtures of pharmaceuticals or diagnostic agents. In general, the presence of NOM and other organic substances retarded the photocatalysis of a specific persistent substance by the combination of radiation attenuation, competition for active sites and surface deactivation of the catalyst by adsorption. The results of this work prove that photocatalysis is a promising technology to reduce persistent substances like NOM, carbamazepine, clofibric acid, iomeprol and iopromide even if they are present in a complex matrix.

  15. A concentration-dependent multi-term linear free energy relationship for sorption of organic compounds to soils based on the hexadecane dilute-solution reference state.

    PubMed

    Zhu, Dongqiang; Pignatello, Joseph J

    2005-11-15

    A LFER of the type in the title is applied to sorption of numerous compounds to polyethylene and three soils for which sorption to natural organic matter (NOM) is presumed dominant. It provides fractional contributions to the Gibbs free energy of sorption corresponding to hydrophobic effects, dipolar/polarizability (D/P) effects in excess of the reference state, and the sum of possible specific forces such as H-bonding and pi-pi electron donor-acceptor (pi-pi EDA) interactions in excess of the reference state. Minimal inputs are the isotherm, the n-hexadecane-water partition coefficient and the Abraham pi parameter representing D/P effects. Sorption of all compounds to polyethylene can be described by considering only hydrophobic effects. Sorption of a calibration set of apolar compounds (aromatic and aliphatic hydrocarbons and chlorinated hydrocarbons) to the natural sorbents is well-described by a combination of hydrophobic and D/P effects. For the apolar set, D/P contributes approximately 15-40% (2-8% for cyclohexane) of sorption free energy. D/P effects increase with the degree of chlorination for aliphatic compounds. For aromatic compounds D/P effects increase with fused ring size but do not vary with degree of chlorination and chlorine substitution pattern. H-bonding contributes substantially to sorption of alcohols, and similarly for 2-nonanol and 2,4-dichlorophenol (33-44%). pi-pi EDA forces contribute to phenanthrene sorption in one case. The effects of concentration, sorbent aromaticity (literature NMR), and sorbent polarity [(O + N)/C] on hydrophobic and D/P contributions for all compounds indicate that (a) molecules fill sites of progressively greater hydrophilic character; (b) the energy penalty for cavity formation in the solid decreases with concentration due to plasticization and greater intermolecular contact; (c) sorbent aromatic content more than sorbent polarity controls D/P interactions. Basing free energy on an inert electrostatic chemical environment afforded by n-hexadecane permits evaluation of direct electrostatic forces in NOM that contribute to sorption.

  16. Kinetics of natural organic matter (NOM) removal during drinking water biofiltration using different NOM characterization approaches.

    PubMed

    Chen, Fei; Peldszus, Sigrid; Elhadidy, Ahmed M; Legge, Raymond L; Van Dyke, Michele I; Huck, Peter M

    2016-11-01

    To better understand biofiltration, concentration profiles of various natural organic matter (NOM) components throughout a pilot-scale drinking water biofilter were investigated using liquid chromatography - organic carbon detection (LC-OCD) and fluorescence excitation and emission matrices (FEEM). Over a 2 month period, water samples were collected from six ports at different biofilter media depths. Results showed substantial removal of biopolymers (i.e. high molecular weight (MW) NOM components as characterized by LC-OCD) and FEEM protein-like materials, but low removal of humic substances, building blocks and low MW neutrals and low MW acids. For the first time, relative biodegradability of different NOM components characterized by LC-OCD and FEEM approaches were investigated across the entire MW range and for different fluorophore compositions, in addition to establishing the biodegradation kinetics. The removal kinetics for FEEM protein-like materials were different than for the LC-OCD-based biopolymers, illustrating the complementary nature of the LC-OCD and FEEM approaches. LC-OCD biopolymers (both organic carbon and organic nitrogen) and FEEM protein-like materials were shown to follow either first or second order biodegradation kinetics. Due to the low percent removal and small number of data points, the performance of three kinetic models was not distinguishable for humic substances. Pre-filtration of samples for FEEM analyses affected the removal behaviours and/or kinetics especially of protein-like materials which was attributed to the removal of the colloidal/particulate materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The role of splenic angioembolization as an adjunct to nonoperative management of blunt splenic injuries: A systematic review and meta-analysis.

    PubMed

    Crichton, James Charles Ian; Naidoo, Kamil; Yet, Barbaros; Brundage, Susan I; Perkins, Zane

    2017-11-01

    Nonoperative management (NOM) of hemodynamically normal patients with blunt splenic injury (BSI) is the standard of care. Guidelines recommend additional splenic angioembolization (SAE) in patients with American Association for the Surgery of Trauma (AAST) Grade IV and Grade V BSI, but the role of SAE in Grade III injuries is unclear and controversial. The aim of this systematic review was to compare the safety and effectiveness of SAE as an adjunct to NOM versus NOM alone in adults with BSI. A systematic literature search (Medline, Embase, and CINAHL) was performed to identify original studies that compared outcomes in adult BSI patients treated with SAE or NOM alone. Primary outcome was failure of NOM. Secondary outcomes included morbidity, mortality, hospital length of stay, and transfusion requirements. Bayesian meta-analyses were used to calculate an absolute (risk difference) and relative (risk ratio [RR]) measure of treatment effect for each outcome. Twenty-three studies (6,684 patients) were included. For Grades I to V combined, there was no difference in NOM failure rate (SAE, 8.6% vs NOM, 7.7%; RR, 1.09 [0.80-1.51]; p = 0.28), mortality (SAE, 4.8% vs NOM, 5.8%; RR, 0.82 [0.45-1.31]; p = 0.81), hospital length of stay (11.3 vs 9.5 days; p = 0.06), or blood transfusion requirements (1.8 vs 1.7 units; p = 0.47) between patients treated with SAE and those treated with NOM alone. However, morbidity was significantly higher in patients treated with SAE (SAE, 38.1% vs NOM, 18.6%; RR, 1.83 [1.20-2.66]; p < 0.01). When stratified by grade of splenic injury, SAE significantly reduced the failure rate of NOM in patients with Grade IV and Grade V splenic injuries but had minimal effect in those with Grade I to Grade III injuries. Splenic angioembolization should be strongly considered as an adjunct to NOM in patients with AAST Grade IV and Grade V BSI but should not be routinely recommended in patients with AAST Grade I to Grade III injuries. Systematic review and meta-analysis, level III.

  18. An ultrahigh-resolution mass spectrometry index to estimate natural organic matter lability

    PubMed Central

    D'Andrilli, Juliana; Cooper, William T; Foreman, Christine M; Marshall, Alan G

    2015-01-01

    Rationale Determining the chemical constituents of natural organic matter (NOM) by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICRMS) remains the ultimate measure for probing its source material, evolution, and transport; however, lability and the fate of organic matter (OM) in the environment remain controversial. FTICRMS-derived elemental compositions are presented in this study to validate a new interpretative method to determine the extent of NOM lability from various environments. Methods FTICRMS data collected over the last decade from the same 9.4 tesla instrument using negative electrospray ionization at the National High Magnetic Field Laboratory in Tallahassee, Florida, was used to validate the application of a NOM lability index. Solid-phase extraction cartridges were used to isolate the NOM prior to FTICRMS; mass spectral peaks were calibrated internally by commonly identified NOM homologous series, and molecular formulae were determined for NOM composition and lability analysis. Results A molecular lability boundary (MLB) was developed from the FTICRMS molecular data, visualized from van Krevelen diagrams, dividing the data into more and less labile constituents. NOM constituents above the MLB at H/C ≥1.5 correspond to more labile material, whereas NOM constituents below the MLB, H/C <1.5, exhibit less labile, more recalcitrant character. Of all marine, freshwater, and glacial environments considered for this study, glacial ecosystems were calculated to contain the most labile OM. Conclusions The MLB extends our interpretation of FTICRMS NOM molecular data to include a metric of lability, and generally ranked the OM environments from most to least labile as glacial > marine > freshwater. Applying the MLB is useful not only for individual NOM FTICRMS studies, but also provides a lability threshold to compare and contrast molecular data with other FTICRMS instruments that survey NOM from around the world. Copyright © 2015 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd. PMID:26563709

  19. Relationship between patient-perceived vocal handicap and clinician-rated level of vocal dysfunction.

    PubMed

    Childs, Lesley F; Bielinski, Clifford; Toles, Laura; Hamilton, Amy; Deane, Janis; Mau, Ted

    2015-01-01

    The relationship between patient-reported vocal handicap and clinician-rated measures of vocal dysfunction is not understood. This study aimed to determine if a correlation exists between the Voice Handicap Index-10 (VHI-10) and the Voice Functional Communication Measure rating in the National Outcomes Measurement System (NOMS). Retrospective case series. Four hundred and nine voice evaluations over 12 months at a tertiary voice center were reviewed. The VHI-10 and NOMS scores, diagnoses, and potential comorbid factors were collected and analyzed. For the study population as a whole, there was a moderate negative correlation between the NOMS rating and the VHI-10 (Pearson r = -0.57). However, for a given NOMS level, there could be considerable spread in the VHI-10. In addition, as the NOMS decreased stepwise below level 4, there was a corresponding increase in the VHI-10. However, a similar trend in VHI-10 was not observed for NOMS above level 4, indicating the NOMS versus VHI-10 correlation was not linear. Among diagnostic groups, the strongest correlation was found for subjects with functional dysphonia. The NOMS versus VHI-10 correlation was not affected by gender or the coexistence of a psychiatric diagnosis. A simple relationship between VHI-10 and NOMS rating does not exist. Patients with mild vocal dysfunction have a less direct relationship between their NOMS ratings and the VHI-10. These findings provide insight into the interpretation of patient-perceived and clinician-rated measures of vocal function and may allow for better management of expectations and patient counseling in the treatment of voice disorders. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  20. Transformation products formation of ciprofloxacin in UVA/LED and UVA/LED/TiO2 systems: Impact of natural organic matter characteristics.

    PubMed

    Li, Si; Hu, Jiangyong

    2018-04-01

    The role of natural organic matter (NOM) in contaminants removal by photolysis and photocatalysis has aroused increasing interest. However, evaluation of the influence of NOM characteristics on the transformation products (TPs) formation and transformation pathways of contaminants has rarely been performed. This study investigated the decomposition kinetics, mineralization, TPs formation and transformation pathways of antibiotic ciprofloxacin (CIP) during photolysis and photocatalysis in the presence of three commercial NOM isolates (Sigma-Aldrich humic acid (SAHA), Suwannee River humic acid (SRHA) and Suwannee River NOM (SRNOM)) by using UVA light emitting diode (UVA/LED) as an alternative light source. NOM isolates insignificantly affected CIP photolysis but strongly inhibited CIP photocatalysis due to competitive radical quenching. The inhibitory effect followed the order of SAHA (49.6%) > SRHA (29.9%) > SRNOM (21.2%), consistent with their •OH quenching abilities, SUVA 254 values and orders of aromaticity. Mineralization rates as revealed by F - release were negatively affected by NOM during CIP photocatalysis. TPs arising from hydroxylation and defluorination were generally suppressed by NOM isolates in UVA/LED and UVA/LED/TiO 2 systems. In contrast, dealkylation and oxidation of piperazine ring were promoted by NOM. The enhancement in the apparent formation kinetics (k app ) of TP245, TP291, TP334a, TP334b and TP362 followed the order of SRNOM > SRHA > SAHA. k app values were positively correlated with O/C ratio, carboxyl content, E2/E3 and fluorescence index (FI) of NOM and negatively related with SUVA 254 values. The observed correlations indicate that NOM properties are important in determining the fate and transformation of organic contaminants during photolysis and photocatalysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Blunt splenic injuries: have we watched long enough?

    PubMed

    Smith, Jason; Armen, Scott; Cook, Charles H; Martin, Larry C

    2008-03-01

    Nonoperative management (NOM) of blunt splenic injuries (BSIs) has been used with increasing frequency in adult patients. There are currently no definitive guidelines established for how long BSI patients should be monitored for failure of NOM after injury. This study was performed to ascertain the length of inpatient observation needed to capture most failures, and to identify factors associated with failure of NOM. We utilized the National Trauma Data Bank to determine time to failure after BSI. During the 5-year study period, 23,532 patients were identified with BSI, of which 2,366 (10% overall) were taken directly to surgery (within 2 hours of arrival). Of 21,166 patients initially managed nonoperatively, 18,506 were successful (79% of all-comers). Patients with isolated BSI are currently monitored approximately 5 days as inpatients. Of patients failing NOM, 95% failed during the first 72 hours, and monitoring 2 additional days saw only 1.5% more failures. Factors influencing success of NOM included computed tomographic injury grade, severity of patient injury, and American College of Surgeons designation of trauma center. Importantly, patients who failed NOM did not seem to have detrimental outcomes when compared with patients with successful NOM. No statistically significant predictive variables could be identified that would help predict patients who would go on to fail NOM. We conclude that at least 80% of BSI can be managed successfully with NOM, and that patients should be monitored as inpatients for failure after BSI for 3 to 5 days.

  2. The effect of natural organic matter on mercury methylation by Desulfobulbus propionicus 1pr3

    USGS Publications Warehouse

    Moreau, John W.; Gionfriddo, Caitlin M.; Krabbenhoft, David P.; Ogorek, Jacob M.; DeWild, John F.; Aiken, George R.; Roden, Eric E.

    2015-01-01

    Methylation of tracer and ambient mercury (200Hg and 202Hg, respectively) equilibrated with four different natural organic matter (NOM) isolates was investigated in vivo using the Hg-methylating sulfate-reducing bacterium Desulfobulbus propionicus 1pr3. Desulfobulbus cultures grown fermentatively with environmentally representative concentrations of dissolved NOM isolates, Hg[II], and HS− were assayed for absolute methylmercury (MeHg) concentration and conversion of Hg(II) to MeHg relative to total unfiltered Hg(II). Results showed the 200Hg tracer was methylated more efficiently in the presence of hydrophobic NOM isolates than in the presence of transphilic NOM, or in the absence of NOM. Different NOM isolates were associated with variable methylation efficiencies for either the 202Hg tracer or ambient 200Hg. One hydrophobic NOM, F1 HpoA derived from dissolved organic matter from the Florida Everglades, was equilibrated for different times with Hg tracer, which resulted in different methylation rates. A 5 day equilibration with F1 HpoA resulted in more MeHg production than either the 4 h or 30 day equilibration periods, suggesting a time dependence for NOM-enhanced Hg bioavailability for methylation.

  3. Rate and extent NOM removal during oxidation and biofiltration.

    PubMed

    Black, Kerry E; Bérubé, Pierre R

    2014-04-01

    The presence of natural organic matter (NOM) in drinking water treatment presents many challenges. Integrated treatment processes combining oxidation and biofiltration have been demonstrated to be very effective at reducing NOM, specifically biodegradable organics. Laboratory bench-scale experiments were carried out to investigate the effect of oxidation by ozonation or UV/H2O2 on NOM. Specifically the rate of biodegradation was studied by performing bench-scale biodegradation experiments using acclimatized biological activated carbon (BAC). For the source water investigated, oxidation did not preferentially react with the biodegradable or non-biodegradable NOM. In addition, the type or dose of oxidation applied did not affect the observed rate of biodegradation. The rate kinetics for biodegradation were constant for all oxidation conditions investigated. Oxidation prior to biofiltration increased the overall removal of organic matter, but did not affect the rate of biodegradation of NOM. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. The influence of algal organic matter produced by Microcystis aeruginosa on coagulation-ultrafiltration treatment of natural organic matter.

    PubMed

    Xu, Jie; Zhao, Yanxia; Gao, Baoyu; Han, Songlin; Zhao, Qian; Liu, Xiaoli

    2018-04-01

    Cyanobacterial bloom causes the release of algal organic matter (AOM), which inevitably affects the treatment processes of natural organic matter (NOM). This study works on treating micro-polluted surface water (SW) by emerging coagulant, namely titanium sulfate (Ti(SO 4 ) 2 ), followed by Low Pressure Ultrafiltration (LPUF) technology. In particular, we explored the respective influence of extracellular organic matter (EOM) and intracellular organic matter (IOM) on synergetic EOM-NOM/IOM-NOM removal, functional mechanisms and subsequent filtration performance. Results show that the IOM inclusion in surface water body facilitated synergic IOM-NOM composite pollutants removal by Ti(SO 4 ) 2 , wherein loosely-aggregated flocs were produced, resulting in floc cake layer with rich porosity and permeability during LPUF. On the contrary, the surface water invaded by EOM pollutants increased Ti(SO 4 ) 2 coagulation burden, with substantially deteriorated both UV 254 -represented and dissolved organic matter (DOC) removal. Corresponded with the weak Ti(SO 4 ) 2 coagulation for EOM-NOM removal was the resultant serious membrane fouling during LPUF procedure, wherein dense cake layer was formed due to the compact structure of flocs. Although the IOM enhanced NOM removal with reduced Ti(SO 4 ) 2 dose and yielded mitigated membrane fouling, larger percentage of irreversible fouling was seen than NOM and EOM-NOM cases, which was most likely due to the substances with small molecular weight, such as microcystin, adhering in membrane pores. This research would provide theoretical basis for dose selection and process design during AOM-NOM water treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Comparing Readmissions and Infectious Complications of Blunt Splenic Injuries Using a Statewide Database.

    PubMed

    Olufajo, Olubode A; Rios-Diaz, Arturo; Peetz, Allan B; Williams, Katherine J; Havens, Joaquim M; Cooper, Zara R; Gates, Jonathan D; Haider, Adil H; Salim, Ali; Askari, Reza

    2016-04-01

    Although non-operative management of blunt splenic injury (BSI) is increasingly common, the long-term infectious complications after adjunct splenic artery embolization (SAE) are not well described. Patients aged 18-64 y with BSI were identified in the California State Inpatient Database (2007-2011) and categorized as receiving either non-operative management (NOM) without SAE, NOM with SAE, or operative management (OM). The cumulative incidence of infections (surgical site infections [SSI], pneumonia, urinary tract infections, and sepsis) requiring readmission at different times up to one y after injury were calculated. Patient and treatment factors associated with infectious readmissions were determined using multivariable logistic regression models. Of the 4,360 patients with BSI, 61.6% had NOM without SAE, 5.8% had NOM with SAE, and 32.6% had OM. The cumulative incidences of infectious complications after each of the management modes were 1.27%, 1.59%, and 1.76%, respectively, during admission (p = 0.446); 2.16%, 5.18%, and 4.85%, respectively, at 30 d after injury (p < 0.001); and 4.69%, 9.16%, and 8.85%, respectively, at one y after injury (p < 0.001). Risk factors for infection-associated readmissions within one y after injury were Charlson score ≥2 (adjusted odds ratio [AOR] 3.9; 95% confidence interval [CI] 2.61-6.02), length of stay >seven d (AOR 2.47; 95% CI 1.58-3.85), NOM with SAE (AOR 2.00; 95% CI 1.19-3.34), and OM (AOR 1.47; 95% CI 1.05-2.07). The long-term risk of infectious complications in patients with BSI who have NOM with SAE is similar to that in patients who are treated with OM, indicating the need for pro-active strategies to reduce long-term infectious complications after SAE.

  6. Effects of natural organic matter on PCB-activated carbon sorption kinetics: implications for sediment capping applications.

    PubMed

    Fairey, Julian L; Wahman, David G; Lowry, Gregory V

    2010-01-01

    In situ capping of polychlorinated biphenyl (PCB)-contaminated sediments with a layer of activated carbon has been proposed, but several questions remain regarding the long-term effectiveness of this remediation strategy. Here, we assess the degree to which kinetic limitations, size exclusion effects, and electrostatic repulsions impaired PCB sorption to activated carbon. Sorption of 11 PCB congeners with activated carbon was studied in fixed bed reactors with organic-free water (OFW) and Suwannee River natural organic matter (SR-NOM), made by reconstituting freeze-dried SR-NOM at a concentration of 10 mg L(-1) as carbon. In the OFW test, no PCBs were detected in the column effluent over the 390-d study, indicating that PCB-activated carbon equilibrium sorption capacities may be achieved before breakthrough even at the relatively high hydraulic loading rate (HLR) of 3.1 m h(-1). However, in the SR-NOM fixed-bed test, partial PCB breakthrough occurred over the entire 320-d test (HLRs of 3.1-, 1.5-, and 0.8 m h(-1)). Simulations from a modified pore and surface diffusion model indicated that external (film diffusion) mass transfer was the dominant rate-limiting step but that internal (pore diffusion) mass transfer limitations were also present. The external mass transfer limitation was likely caused by formation of PCB-NOM complexes that reduced PCB sorption through a combination of (i) increased film diffusion resistance; (ii) size exclusion effects; and (iii) electrostatic repulsive forces between the PCBs and the NOM-coated activated carbon. However, the seepage velocities in the SR-NOM fixed bed test were about 1000 times higher than would be expected in a sediment cap. Therefore, additional studies are needed to assess whether the mass transfer limitations described here would be likely to manifest themselves at the lower seepage velocities observed in practice.

  7. Influence of natural organic matter (NOM) and synthetic polyelectrolytes on colloidal behavior of metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Ghosh, Saikat

    The colloidal behavior of engineered nanomaterials exposed in an aquatic environment may significantly influence their bioavailability as well as toxicity to different species. Natural organic matter (NOM) is one of the major colloidal materials ubiquitous in the environment with significant structural heterogeneity. Therefore, role of NOM molecules on environmental fate of these engineered NPs needs to be addressed. Colloidal behavior of aluminum (Al2O 3) and magnetic iron oxide (gammaFe2O3) NPs was studied in the presence of structurally different HAs and synthetic polyacrylic acids (PAAs). The conformation behavior of the adsorobed NOM/polyelectrolyte under specific solution conditions were determined with dynamic light scattering, atomic force microscopy measurements. Al2O3 NPs followed the classical DLVO model of colloidal behavior in their pristine state. However, a significant deviation from the classical DLVO model was observed when these NPs were coated with structurally different HAs. Low polar, high molecular weight HA fractions showed much stronger stabilization against Ca2+ induced aggregation. Previously, we observed that these low polar, high molecular weight fractions strongly destabilized the NP suspension when added in a small quantity. A significant transformation in suspension stability was observed possibly due to steric effect of these adsorbed HAs. The colloidal behavior of PAA/NOM coated ferrimagnetic gammaFe 2O3 NPs were investigated. Pure gammaFe2O 3 NPs were extremely unstable in aqueous solution but a significant enhancement in colloidal stability was observed after coating with polyelectrolytes/NOM. The steric as well as electrostatic stabilization introduced by the polyelectrolyte coating strongly dictated the colloidal stability. The alteration of electrosteric stabilization mechanisms by pH-induced conformation change profoundly influences the colloidal stability. Atomic force microscopy (AFM) study revealed a highly stretched conformation of the HA molecular chains adsorbed on gammaFe 2O3 NP surface with increasing pH from 5 to 9 which enhanced the colloidal stability trough long range electrosteric stabilization. The depletion of the polyelectrolytes during dilution of the suspension in the acidic solution conditions and in the presence of Na+ or Ca 2+ decreased the colloidal stability. The conformation of the polyelectrolytes adsorbed on the NP surface altered significantly as a function of substrate surface charge as viewed from the AFM imaging.

  8. Product ion distributions for the reactions of NO+ with some physiologically significant volatile organosulfur and organoselenium compounds obtained using a selective reagent ionization time-of-flight mass spectrometer

    PubMed Central

    Mochalski, Paweł; Unterkofler, Karl; Španěl, Patrik; Smith, David; Amann, Anton

    2014-01-01

    RATIONALE The reactions of NO+ with volatile organic compounds (VOCs) in Selective Reagent Ionization Time-of-Flight Mass Spectrometry (SRI-TOF-MS) reactors are relatively poorly known, inhibiting their use for trace gas analysis. The rationale for this product ion distribution study was to identify the major product ions of the reactions of NO+ ions with 13 organosulfur compounds and 2 organoselenium compounds in an SRI-TOF-MS instrument and thus to prepare the way for their analysis in exhaled breath, in skin emanations and in the headspace of urine, blood and cell and bacterial cultures. METHODS Product ion distributions have been investigated by a SRI-TOF-MS instrument at an E/N in the drift tube reactor of 130 Td for both dry air and humid air (4.9% absolute humidity) used as the matrix gas. The investigated species were five monosulfides (dimethyl sulfide, ethyl methyl sulfide, methyl propyl sulfide, allyl methyl sulfide and methyl 5-methyl-2-furyl sulfide), dimethyl disulfide, dimethyl trisulfide, thiophene, 2-methylthiophene, 3-methylthiophene, methanethiol, allyl isothiocyanate, dimethyl sulfoxide, and two selenium compounds – dimethyl selenide and dimethyl diselenide. RESULTS Charge transfer was seen to be the dominant reaction mechanism in all reactions under study forming the M+ cations. For methanethiol and allyl isothiocyanate significant fractions were also observed of the stable adduct ions NO+M, formed by ion-molecule association, and [M–H]+ ions, formed by hydride ion transfer. Several other minor product channels are seen for most reactions indicating that the nascent excited intermediate (NOM)+* adduct ions partially fragment along other channels, most commonly by the elimination of neutral CH3, CH4 and/or C2H4 species that are probably bound to an NO molecule. Humidity had little effect on the product ion distributions. CONCLUSIONS The findings of this study are of particular importance for data interpretation in studies of volatile organosulfur and volatile organoselenium compounds employing SRI-TOF-MS in the NO+ mode. © 2014 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd. PMID:24975248

  9. Aliphatic side chains of proteins as potential geomarkers of NOM liberated from the melting permafrost and discharged to the Arctic Ocean by the Kolyma River run off

    NASA Astrophysics Data System (ADS)

    Dubinenkov, I. V.; Perminova, I.; Kononikhin, A.; Nikolaev, E.; Hertkorn, N.; Bulygina, E. B.; Holmes, R. M.

    2011-12-01

    The Arctic ecosystem is highly sensitive to climate change. Global warming might have considerable effects on regional carbon cycling due to permafrost melting. Permafrost in the Arctic region represents an extremely large organic carbon reservoir mostly stored in the permafrost. Mobilization of just a small portion of carbon stored in Arctic soils will have considerable impacts on the flux of organic carbon from land to the Arctic Ocean, which can affect the Arctic environment. The Kolyma River watershed is one of the Arctic Ocean's largest. It is dominated by continuous permafrost which is underlain with rich organic soils susceptible to increased fluvial transport. The goal of the work was to analyze the structure of isolated natural organic matter from different fresh water environments of the Kolyma river basin. NOM was isolated from the Kolyma River main stream, its tributaries, a thermokarst lake, a floodplain stream and the permafrost. Solid phase extraction technique was used with Bond Elute PPL cartridges. Nuclear magnetic resonance spectroscopy (NMR) and Fourier Transform Ion Cyclotron Resonance Mass Spectroscopy (FTICRMS) was used for structural studies because of unsurpassed molecular level structural information provided by these high resolution magnetic resonance techniques. The NOM samples from the Kolyma River showed high contents of non-substituted aliphatic structures with a low content of aromatics and carbohydrates. Aliphatic nature may indicate a microbial source of NOM in the form of degraded terpenoids and hopanols. It was shown that almost all NOM samples from the rivers had similar molecular composition enriched with aliphatic units. The samples from permafrost mud streams were significantly different and contained sharp peptide signatures. In general, permafrost NOM contained much less degraded peptide residuest as compared to riverine samples. Identification of these residues showed the presence of branched amino acids (valine, alanine, etc). Mobilization of much more bioavailable pool of organic compounds such as peptides, which were found in the permafrost samples might affect substantially carbon cycling in the region and in the Arctic Ocean. Further understanding of carbon turnover in the Arctic region on the molecular level is needed to predict the possible consequences of massive permafrost thaw for the global climate change and reveal the reliable geomarkers of this process. This can be achieved with a combined use of NMR and FTICRMS spectroscopic techniques possessing unprecedented resolution power for investigation of complex mixtures.. Acknowledgement. This study is part of the Polaris Project, an NSF-funded undergraduate field program based out of the Northeast Science Station in Cherskiy, Northeast Siberia (www.thepolarisproject.org). The research was supported by CRDF-RFBR Grant 09-03-92500 and Travel Grant of IHSS allocated in 2011 to Ivan Dubinenkov.

  10. Is It safe? Nonoperative management of blunt splenic injuries in geriatric trauma patients.

    PubMed

    Trust, Marc D; Teixeira, Pedro G; Brown, Lawrence H; Ali, Sadia; Coopwood, Ben; Aydelotte, Jayson D; Brown, Carlos V R

    2018-01-01

    Because of increased failure rates of nonoperative management (NOM) of blunt splenic injuries (BSI) in the geriatric population, dogma dictated that this management was unacceptable. Recently, there has been an increased use of this treatment strategy in the geriatric population. However, published data assessing the safety of NOM of BSI in this population is conflicting, and well-powered multicenter data are lacking. We performed a retrospective analysis of data from the National Trauma Data Bank (NTDB) from 2014 and identified young (age < 65) and geriatric (age ≥ 65) patients with a BSI. Patients who underwent splenectomy within 6 hours of admission were excluded from the analysis. Outcomes were failure of NOM and mortality. We identified 18,917 total patients with a BSI, 2,240 (12%) geriatric patients and 16,677 (88%) young patients. Geriatric patients failed NOM more often than younger patients (6% vs. 4%, p < 0.0001). On logistic regression analysis, Injury Severity Score of 16 or higher was the only independent risk factor associated with failure of NOM in geriatric patients (odds ratio, 2.778; confidence interval, 1.769-4.363; p < 0.0001). There was no difference in mortality in geriatric patients who had successful vs. failed NOM (11% vs. 15%; p = 0.22). Independent risk factors for mortality in geriatric patients included admission hypotension, Injury Severity Score of 16 or higher, Glasgow Coma Scale score of 8 or less, and cardiac disease. However, failure of NOM was not independently associated with mortality (odds ratio, 1.429; confidence interval, 0.776-2.625; p = 0.25). Compared with younger patients, geriatric patients had a higher but comparable rate of failed NOM of BSI, and failure rates are lower than previously reported. Failure of NOM in geriatric patients is not an independent risk factor for mortality. Based on our results, NOM of BSI in geriatric patients is safe. Therapeutic, level IV.

  11. Nanoparticles in natural systems I: The effective reactive surface area of the natural oxide fraction in field samples

    NASA Astrophysics Data System (ADS)

    Hiemstra, Tjisse; Antelo, Juan; Rahnemaie, Rasoul; van Riemsdijk, Willem H.

    2010-01-01

    Information on the particle size and reactive surface area of natural samples is essential for the application of surface complexation models (SCM) to predict bioavailability, toxicity, and transport of elements in the natural environment. In addition, this information will be of great help to enlighten views on the formation, stability, and structure of nanoparticle associations of natural organic matter (NOM) and natural oxide particles. Phosphate is proposed as a natively present probe ion to derive the effective reactive surface area of natural samples. In the suggested method, natural samples are equilibrated (⩾10 days) with 0.5 M NaHCO 3 (pH = 8.5) at various solid-solution ratios. This matrix fixes the pH and ionic strength, suppresses the influence of Ca 2+ and Mg 2+ ions by precipitation these in solid carbonates, and removes NOM due to the addition of activated carbon in excess, collectively leading to the dominance of the PO 4-CO 3 interaction in the system. The data have been interpreted with the charge distribution (CD) model, calibrated for goethite, and the analysis results in an effective reactive surface area (SA) and a reversibly bound phosphate loading Γ for a series of top soils. The oxidic SA varies between about 3-30 m 2/g sample for a large series of representative agricultural top soils. Scaling of our data to the total iron and aluminum oxide content (dithionite-citrate-bicarbonate extractable), results in the specific surface area between about 200-1200 m 2/g oxide for most soils, i.e. the oxide particles are nano-sized with an equivalent diameter in the order of ˜1-10 nm if considered as non-porous spheres. For the top soils, the effective surface area and the soil organic carbon fraction are strongly correlated. The oxide particles are embedded in a matrix of organic carbon (OC), equivalent to ˜1.4 ± 0.2 mg OC/m 2 oxide for many soils of the collection, forming a NOM-mineral nanoparticle association with an average NOM volume fraction of ˜80%. The average mass density of such a NOM-mineral association is ˜1700 ± 100 kg/m 3 (i.e. high-density NOM). The amount of reversibly bound phosphate is rather close to the amount of phosphate that is extractable with oxalate. The phosphate loading varies remarkably ( Γ ≈ 1-3 μmol/m 2 oxide) in the samples. As discussed in part II of this paper series ( Hiemstra et al., 2010), the phosphate loading ( Γ) of field samples is suppressed by surface complexation of NOM, where hydrophilic, fulvic, and humic acids act as a competitor for (an)ions via site competition and electrostatic interaction.

  12. Comparison of three-dimensional fluorescence analysis methods for predicting formation of trihalomethanes and haloacetic acids.

    PubMed

    Peleato, Nicolás M; Andrews, Robert C

    2015-01-01

    This work investigated the application of several fluorescence excitation-emission matrix analysis methods as natural organic matter (NOM) indicators for use in predicting the formation of trihalomethanes (THMs) and haloacetic acids (HAAs). Waters from four different sources (two rivers and two lakes) were subjected to jar testing followed by 24hr disinfection by-product formation tests using chlorine. NOM was quantified using three common measures: dissolved organic carbon, ultraviolet absorbance at 254 nm, and specific ultraviolet absorbance as well as by principal component analysis, peak picking, and parallel factor analysis of fluorescence spectra. Based on multi-linear modeling of THMs and HAAs, principle component (PC) scores resulted in the lowest mean squared prediction error of cross-folded test sets (THMs: 43.7 (μg/L)(2), HAAs: 233.3 (μg/L)(2)). Inclusion of principle components representative of protein-like material significantly decreased prediction error for both THMs and HAAs. Parallel factor analysis did not identify a protein-like component and resulted in prediction errors similar to traditional NOM surrogates as well as fluorescence peak picking. These results support the value of fluorescence excitation-emission matrix-principal component analysis as a suitable NOM indicator in predicting the formation of THMs and HAAs for the water sources studied. Copyright © 2014. Published by Elsevier B.V.

  13. The influence of iron oxide nanoparticles upon the adsorption of organic matter on magnetic powdered activated carbon.

    PubMed

    Lompe, Kim Maren; Menard, David; Barbeau, Benoit

    2017-10-15

    Combining powdered activated carbon (PAC) with magnetic iron oxides has been proposed in the past to produce adsorbents for natural organic matter (NOM) removal that can be easily separated using a magnetic field. However, the trade-off between the iron oxides' benefits and the reduced carbon content, porosity, and surface area has not yet been investigated systematically. We produced 3 magnetic powdered activated carbons (MPAC) with mass fractions of 10%, 38% and 54% maghemite nanoparticles and compared them to bare PAC and pure nanoparticles with respect to NOM adsorption kinetics and isotherms. While adsorption kinetics were not influenced by the presence of the iron oxide nanoparticles (IONP), as shown by calculated diffusion coefficients from the homogeneous surface diffusion model, nanoparticles reduced the adsorption capacity of NOM due to their lower adsorption capacity. Although the nanoparticles added mesoporosity to the composite materials they blocked intrinsic PAC mesopores at mass fractions >38% as measured by N 2 -adsorption isotherms. Below this mass fraction, the adsorption capacity was mainly dependent on the carbon content in MPAC and mesopore blocking was negligible. If NOM adsorption with MPAC is desired, a highly mesoporous PAC and a low IONP mass fraction should be chosen during MPAC synthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Cost analysis of nonoperative management of acute appendicitis in children.

    PubMed

    Mudri, Martina; Coriolano, Kamary; Bütter, Andreana

    2017-05-01

    The purpose of this study was to determine if nonoperative management of acute appendicitis in children is more cost effective than appendectomy. A retrospective review of children (6-17years) with acute appendicitis treated nonoperatively (NOM) from May 2012 to May 2015 was compared to similar patients treated with laparoscopic appendectomy (OM) (IRB#107535). Inclusion criteria included symptoms ≤48h, localized peritonitis, and ultrasound confirmation of acute appendicitis. Variables analyzed included failure rates, complications, length of stay (LOS), and cost analysis. 26 NOM patients (30% female, mean age 12) and 26 OM patients (73% female, mean age 11) had similar median initial LOS (24.5h (NOM) vs 16.5h (OM), p=0.076). Median total LOS was significantly longer in the NOM group (34.5h (NOM) vs 17.5 (OM), p=0.01). Median cost of appendectomy was $1416.14 (range $781.24-$2729.97). 9/26 (35%) NOM patients underwent appendectomy for recurrent appendicitis. 4/26 (15%) OM patients were readmitted (postoperative abscess (n=2), Clostridium difficile colitis (n=1), postoperative nausea/vomiting (n=1)). Median initial hospital admission costs were significantly higher in the OM group ($3502.70 (OM) vs $1870.37 (NOM), p=0.004)). However, median total hospital costs were similar for both groups ($3708.68 (OM) vs $2698.99 (NOM), p=0.065)). Although initial costs were significantly less in children with acute appendicitis managed nonoperatively, total costs were similar for both groups. The high failure rate of nonoperative management in this series contributed to the total increased cost in the NOM group. 3b. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The effects of dissolved natural organic matter on the adsorption of synthetic organic chemicals by activated carbons and carbon nanotubes.

    PubMed

    Zhang, Shujuan; Shao, Ting; Karanfil, Tanju

    2011-01-01

    Understanding the influence of natural organic matter (NOM) on synthetic organic contaminant (SOC) adsorption by carbon nanotubes (CNTs) is important for assessing the environmental implications of accidental CNT release and spill to natural waters, and their potential use as adsorbents in engineered systems. In this study, adsorption of two SOCs by three single-walled carbon nanotubes (SWNTs), one multi-walled carbon nanotube (MWNT), a microporous activated carbon fiber (ACF) [i.e., ACF10] and a bimodal porous granular activated carbon (GAC) [i.e., HD4000] was compared in the presence and absence of NOM. The NOM effect was found to depend strongly on the pore size distribution of carbons. Minimal NOM effect occurred on the macroporous MWNT, whereas severe NOM effects were observed on the microporous HD4000 and ACF10. Although the single-solute adsorption capacities of the SWNTs were much lower than those of HD4000, in the presence of NOM the SWNTs exhibited adsorption capacities similar to those of HD4000. Therefore, if released into natural waters, SWNTs can behave like an activated carbon, and will be able to adsorb, carry, and transfer SOCs to other systems. However, from an engineering application perspective, CNTs did not exhibit a major advantage, in terms of adsorption capacities, over the GAC and ACF. The NOM effect was also found to depend on molecular properties of SOCs. NOM competition was more severe on the adsorption of 2-phenylphenol, a nonplanar and hydrophilic SOC, than phenanthrene, a planar and hydrophobic SOC, tested in this study. In terms of surface chemistry, both adsorption affinity to SOCs and NOM effect on SOC adsorption were enhanced with increasing hydrophobicity of the SWNTs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Correlation of the physicochemical properties of natural organic matter samples from different sources to their effects on gold nanoparticle aggregation in monovalent electrolyte.

    PubMed

    Louie, Stacey M; Spielman-Sun, Eleanor R; Small, Mitchell J; Tilton, Robert D; Lowry, Gregory V

    2015-02-17

    Engineered nanoparticles (NPs) released into natural environments will interact with natural organic matter (NOM) or humic substances, which will change their fate and transport behavior. Quantitative predictions of the effects of NOM are difficult because of its heterogeneity and variability. Here, the effects of six types of NOM and molecular weight fractions of each on the aggregation of citrate-stabilized gold NPs are investigated. Correlations of NP aggregation rates with electrophoretic mobility and the molecular weight distribution and chemical attributes of NOM (including UV absorptivity or aromaticity, functional group content, and fluorescence) are assessed. In general, the >100 kg/mol components provide better stability than lower molecular weight components for each type of NOM, and they contribute to the stabilizing effect of the unfractionated NOM even in small proportions. In many cases, unfractionated NOM provided better stability than its separated components, indicating a synergistic effect between the high and low molecular weight fractions for NP stabilization. Weight-averaged molecular weight was the best single explanatory variable for NP aggregation rates across all NOM types and molecular weight fractions. NP aggregation showed poorer correlation with UV absorptivity, but the exponential slope of the UV-vis absorbance spectrum was a better surrogate for molecular weight. Functional group data (including reduced sulfur and total nitrogen content) were explored as possible secondary parameters to explain the strong stabilizing effect of a low molecular weight Pony Lake fulvic acid sample to the gold NPs. These results can inform future correlations and measurement requirements to predict NP attachment in the presence of NOM.

  17. Different natural organic matter isolates cause similar stress response patterns in the freshwater amphipod, Gammarus pulex.

    PubMed

    Bedulina, Darya S; Timofeyev, Maxim A; Zimmer, Martin; Zwirnmann, Elke; Menzel, Ralph; Steinberg, Christian E W

    2010-02-01

    Dissolved humic substances (HSs) are exogenous stressors to aquatic plants and animals which activate a variety of transcriptional and biochemical reactions or block photosynthesis. While there are consistent indications which structures may lead to reduced photosynthetic activity, there is much less clear information available on which HS structures or building blocks act as stressors in animals. Consequently, this work was designed to comparatively study the impact of natural organic matter (NOMs) from different sources on major anti-stress mechanisms in one single animal. We utilized major antioxidant responses and relative expression levels of stress proteins (small HSPs and HSP70) and expected that different HSs provoke different response patterns. We tested the freshwater amphipod Gammarus pulex which was collected from several shallow creeks in Northern Germany. All specimens were maintained in aerated 5-L tanks with filtered water from their natural environment at 10 degrees C with prior acclimation. Animals were fed ad libitum with a commercial preparation once every second day. The exposure water was exchanged with the same frequency. NOMs were isolated from three different sources: two from small brown-water lakes in Northern Germany by reverse osmosis and the third one as an aqueous extract from a black layer of a Brazilian sandbar soil (State of Rio de Janeiro). The rationale was to apply NOMs of contrasting quality. Chemical fingerprint features of the NOMs were taken by high-performance size exclusion chromatography. As stress parameters in the animals, the activities of peroxidase and catalase were recorded quantitatively, and stress proteins, HSP70, as well as small alpha-crystalline HSPs were analyzed semiquantitatively. The three NOMs clearly differed in molecular masses, humic substance contents, the moieties of polysaccharides, and low-molecular-weight substances. With the exception of one short-term response, the peroxidase activity increased after 3 to 12 h exposure, whereas the catalase activity did not show any significant modulation. With one exception, the stress protein expression increased after 30 min exposure in a biphasic pattern, and the sHSPs responded less strongly than HSP70. Although the quality of the exposed NOMs differs significantly, a rather uniform response pattern appears in the animals. Obviously, the contrasting contents of HSs and polysaccharides did not affect the anti-stress response of the exposed gammarids which is in contrast to previous lifespan studies with Caenorhabditis elegans. Furthermore, all NOM sources led to increased contents of both HSP70 and sHSPs. To the best of our knowledge, this is the first protein study to show that also small HSPs are expressed when the animals are exposed against humic material. Since the response patterns of the exposed gammarids, in contrast to the initial hypothesis, are rather uniform and since HSs are parts of life on Earth, we furthermore presume that they may have been a primordial exogenous trigger for the development of anti-stress systems in exposed organisms. Effect studies of chemical stresses on organisms should consider exposure to both natural triggers and xenobiotic compounds in low concentrations--in order to prospectively differentiate between these triggers and, subsequently, classify them.

  18. The dependence of chlorine decay and DBP formation kinetics on pipe flow properties in drinking water distribution.

    PubMed

    Zhao, Yingying; Yang, Y Jeffrey; Shao, Yu; Neal, Jill; Zhang, Tuqiao

    2018-04-27

    Simultaneous chlorine decay and disinfection byproduct (DBP) formation have been discussed extensively because of their regulatory and operational significance. This study further examines chemical reaction variability in the water quality changes under various hydrodynamic conditions in drinking water distribution. The variations of kinetic constant for overall chlorine decay (k E ) and trihalomethane (THM) formation were determined under stagnant to turbulent flows using three devices of different wall demand and two types of natural organic matters (NOM) in water. The results from the comparative experiments and modeling analyses show the relative importance of wall demand (k w ), DBP-forming chlorine decay (k D ), and other bulk demand (k b ' ) for pipe flows of Re = 0-52500. It is found that chlorine reactivity of virgin NOM is the overriding factor. Secondly, for tap water NOM of lower reactivity, pipe flow properties (Re or u) can significantly affect k E , the THM yield (T), formation potential (Y), and the time to reach the maximum THM concentration (t max ) through their influence on kinetic ratio k D (k b ' +k w ). These observations, corroborating with turbidity variations during experiments, cannot be explained alone by chlorine dispersion to and from the pipe wall. Mass exchanges through deposition and scale detachment, most likely being flow-dependent, may have contributed to the overall chlorine decay and DBP formation rates. Thus for the simultaneous occurrence of chlorine decay and DBP formation, model considerations of NOM reactivity, pipe types (wall demand), flow hydraulics, and their interactions are essential. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Quantifying and characterizing boreal headwater NOM using hydrological understanding, absorbance spectroscopy, and fluorescence techniques

    NASA Astrophysics Data System (ADS)

    Ledesma, José; Köhler, Stephan; Grabs, Thomas; Bishop, Kevin; Kothawala, Dolly; Schiff, Sherry; Futter, Martyn

    2017-04-01

    Boreal forests store large amounts of carbon, especially in headwater terrestrial-aquatic interfaces dominated by OM-rich riparian zones (RZs). Thus, RZs are the main source of natural organic matter (NOM) in boreal surface waters. We hydrologically illustrated that the transfer of substances, including NOM, from RZs to streams is dominated by a narrow depth range with the highest contribution to solute and water fluxes, the so-called dominant source layer (DSL). By comparing the size of potential sources in relation to lateral fluxes in the DSL in several RZs within a Swedish boreal catchment, we demonstrated that there is a potential long-lasting supply of NOM from these RZ into the stream. This was supported by rough estimates of primary production and 14C measurements, which indicated that modern carbon is the predominant fraction exported. Despite the overwhelming quantitative evidence that RZs are the source of NOM to boreal streams, few studies have compared NOM quality in streams, RZs, and upslope areas. Using absorbance indicators and fluorescence techniques we showed that the NOM character in several RZ sampling sites resembles that of the corresponding streams and differs from that of the upslope soils. Given that forecast future climate in the boreal region and depletion of sulfur pools are expected to increase NOM in aquatic systems, potentially disrupting water quality and the global carbon cycle, is critical to integrate quantitative and qualitative approaches to understand OM cycling in boreal RZs.

  20. Presence of Fe-Al binary oxide adsorbent cake layer in ceramic membrane filtration and their impact for removal of HA and BSA.

    PubMed

    Kim, Kyung-Jo; Jang, Am

    2018-04-01

    To enhance the removal of natural organic matter (NOM) in ceramic (Ce) membrane filtration, an iron-aluminum binary oxide (FAO) was applied to the ceramic membrane surface as the adsorbent cake layer, and it was compared with heated aluminum oxide (HAO) for the evaluation of the control of NOM. Both the HAO and FAO adsorbent cake layers efficiently removed the NOM regardless of NOM's hydrophobic/hydrophilic characteristics, and the dissolved organic carbon (DOC) removal in NOM for FAO was 1-1.12 times greater than that for HAO, which means FAO was more efficient in the removal of DOC in NOM. FAO (0.03 μm), which is smaller in size than HAO (0.4 μm), had greater flux reduction than HAO. The flux reduction increased as the filtration proceeded because most of the organic foulants (colloid/particles and soluble NOM) were captured by the adsorbent cake layer, which caused fouling between the membrane surface and the adsorbent cake layer. However, no chemically irreversible fouling was observed on the Ce membrane at the end of the FAO adsorbent cake layer filtration. This means that a stable adsorbent cake layer by FAO formed on the Ce membrane, and that the reduced pure water flux of the Ce membrane, resulting from the NOM fouling, can easily be recovered through physicochemical cleaning. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. 77 FR 35732 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-14

    ... important Exchange function to provide an opportunity to all market participants to trade against Customer... traded under the symbol MNX (``MNX'') as follows: Non-NOM market NOM market Customer Professional Firm... order resting on the NOM book. [[Page 35733

  2. Evaluation of Disinfection Byproducts Formed from the Chlorination of Lyophilized and Reconstituted NOM Concentrate from a Drinking Water Source - Poster

    EPA Science Inventory

    Drinking water treatment and disinfection byproduct (DBP) research can be complicated by difficulties in shipping large water quantities and NOM geographical and temporal variability. Access to a drinking water representative, shelf-stable, concentrated NOM source would solve th...

  3. Evaluation of Disinfection Byproducts formed from the Chlorination of Lyophilized and Reconstituted NOM Concentrate from a Drinking Water Source

    EPA Science Inventory

    Drinking water treatment and disinfection byproduct (DBP) research can be complicated by difficulties in shipping large water quantities and NOM geographical and temporal variability. Access to a drinking water representative, shelf-stable, concentrated NOM source would solve th...

  4. Nano opto-mechanical systems (NOMS) as a proposal for tactile displays

    NASA Astrophysics Data System (ADS)

    Campo, E. M.; Roig, J.; Roeder, B.; Wenn, D.; Mamojka, B.; Omastova, M.; Terentjev, E. M.; Esteve, J.

    2011-10-01

    For over a decade, special emphasis has been placed in the convergence of different fields of science and technology, in an effort to serve human needs by way of enhancing human capabilities. The convergence of the Nano-Bio-Info-Cogni (NBIC) quartet will provide unique solutions to specific needs. This is the case of, Nano-opto mechanical Systems (NOMS), presented as a solution to tactile perception, both for the visually-impaired and for the general public. NOMS, based on photoactive polymer actuators and devices, is a much sought-after technology. In this scheme, light sources promote mechanical actuation producing a variety of nano-opto mechanical systems such as nano-grippers. In this paper, we will provide a series of specifications that the NOMS team is targeting towards the development of a tactile display using optically-activated smart materials. Indeed, tactile displays remain mainly mechanical, compromising reload speeds and resolution which inhibit 3D tactile representation of web interfaces. We will also discuss how advantageous NOMS tactile displays could be for the general public. Tactile processing based on stimulation delivered through the NOMS tablet, will be tested using neuropsychology methods, in particular event-related brain potentials. Additionally, the NOMS tablet will be instrumental to the development of basic neuroscience research.

  5. Effects of natural organic matter properties on the dissolution kinetics of zinc oxide nanoparticles

    USGS Publications Warehouse

    Jiang, Chuanjia; Aiken, George R.; Hsu-Kim, Heileen

    2015-01-01

    The dissolution of zinc oxide (ZnO) nanoparticles (NPs) is a key step of controlling their environmental fate, bioavailability, and toxicity. Rates of dissolution often depend upon factors such as interactions of NPs with natural organic matter (NOM). We examined the effects of 16 different NOM isolates on the dissolution kinetics of ZnO NPs in buffered potassium chloride solution using anodic stripping voltammetry to directly measure dissolved zinc concentrations. The observed dissolution rate constants (kobs) and dissolved zinc concentrations at equilibrium increased linearly with NOM concentration (from 0 to 40 mg C L–1) for Suwannee River humic and fulvic acids and Pony Lake fulvic acid. When dissolution rates were compared for the 16 NOM isolates, kobs was positively correlated with certain properties of NOM, including specific ultraviolet absorbance (SUVA), aromatic and carbonyl carbon contents, and molecular weight. Dissolution rate constants were negatively correlated to hydrogen/carbon ratio and aliphatic carbon content. The observed correlations indicate that aromatic carbon content is a key factor in determining the rate of NOM-promoted dissolution of ZnO NPs. The findings of this study facilitate a better understanding of the fate of ZnO NPs in organic-rich aquatic environments and highlight SUVA as a facile and useful indicator of NOM interactions with metal-based nanoparticles.

  6. Influence of natural organic matter on equilibrium adsorption of neutral and charged pharmaceuticals onto activated carbon.

    PubMed

    de Ridder, D J; Verliefde, A R D; Heijman, S G J; Verberk, J Q J C; Rietveld, L C; van der Aa, L T J; Amy, G L; van Dijk, J C

    2011-01-01

    Natural organic matter (NOM) can influence pharmaceutical adsorption onto granular activated carbon (GAC) by direct adsorption competition and pore blocking. However, in the literature there is limited information on which of these mechanisms is more important and how this is related to NOM and pharmaceutical properties. Adsorption batch experiments were carried out in ultrapure, waste- and surface water and fresh and NOM preloaded GAC was used. Twenty-one pharmaceuticals were selected with varying hydrophobicity and with neutral, negative or positive charge. The influence of NOM competition and pore blocking could not be separated. However, while reduction in surface area was similar for both preloaded GACs, up to 50% lower pharmaceutical removal was observed on wastewater preloaded GAC. This was attributed to higher hydrophobicity of wastewater NOM, indicating that NOM competition may influence pharmaceutical removal more than pore blocking. Preloaded GAC was negatively charged, which influenced removal of charged pharmaceuticals significantly. At a GAC dose of 6.7 mg/L, negatively charged pharmaceuticals were removed for 0-58%, while removal of positively charged pharmaceuticals was between 32-98%. Charge effects were more pronounced in ultrapure water, as it contained no ions to shield the surface charge. Solutes with higher log D could compete better with NOM, resulting in higher removal.

  7. River-derived humic substances as iron chelators in seawater

    PubMed Central

    Krachler, Regina; Krachler, Rudolf F.; Wallner, Gabriele; Hann, Stephan; Laux, Monika; Cervantes Recalde, Maria F.; Jirsa, Franz; Neubauer, Elisabeth; von der Kammer, Frank; Hofmann, Thilo; Keppler, Bernhard K.

    2015-01-01

    The speciation of iron(III) in oxic seawater is dominated by its hydrolysis and sedimentation of insoluble iron(III)-oxyhydroxide. As a consequence, many oceanic areas have very low iron levels in surface seawater which leads to iron deficiency since phytoplankton require iron as a micronutrient in order to grow. Fortunately, iron solubility is not truly as low as Fe(III) solubility measurements in inorganic seawater would suggest, since oceanic waters contain organic molecules which tend to bind the iron and keep it in solution. Various iron-binding organic ligands which combine to stabilize dissolved iron have been detected and thoroughly investigated in recent years. However, the role of iron-binding ligands from terrestrial sources remains poorly constrained. Blackwater rivers supply large amounts of natural organic material (NOM) to the ocean. This NOM (which consists mainly of vascular plant-derived humic substances) is able to greatly enhance iron bioavailability in estuaries and coastal regions, however, breakdown processes lead to a rapid decrease of river-derived NOM concentrations with increasing distance from land. It has therefore been argued that the influence of river-derived NOM on iron biogeochemistry in offshore seawater does not seem to be significant. Here we used a standard method based on 59Fe as a radiotracer to study the solubility of Fe(III)-oxyhydroxide in seawater in the presence of riverine NOM. We aimed to address the question how effective is freshwater NOM as an iron chelator under open ocean conditions where the concentration of land-derived organic material is about 3 orders of magnitude smaller than in coastal regions, and does this iron chelating ability vary between NOM from different sources and between different size fractions of the river-borne NOM. Our results show that the investigated NOM fractions were able to substantially enhance Fe(III)-oxyhydroxide solubility in seawater at concentrations of the NOM ≥ 5 μg L− 1. Terrigenous NOM concentrations ≥ 5 μg L− 1 are in no way unusual in open ocean surface waters especially of the Arctic and the North Atlantic Oceans. River-derived humic substances could therefore play a greater role as iron carriers in the ocean than previously thought. PMID:26412934

  8. Evidence of soluble microbial products accelerating chloramine decay in nitrifying bulk water samples.

    PubMed

    Bal Krishna, K C; Sathasivan, Arumugam; Chandra Sarker, Dipok

    2012-09-01

    The discovery of a microbially derived soluble product that accelerates chloramine decay is described. Nitrifying bacteria are believed to be wholly responsible for rapid chloramine loss in drinking water systems. However, a recent investigation showed that an unidentified soluble agent significantly accelerated chloramine decay. The agent was suspected to be either natural organic matter (NOM) or soluble microbial products (SMPs). A laboratory scale reactor was fed chloraminated reverse osmosis (RO) treated water to eliminate the interference from NOM. Once nitrification had set in, experiments were conducted on the reactor and feed waters to determine the identity of the component. The study showed the presence of SMPs released by microbes in severely nitrified waters. Further experiments proved that the SMPs significantly accelerated chloramine decay, probably through catalytic reaction. Moreover, application of common protein denaturing techniques stopped the reaction implying that the compound responsible was likely to be a protein. This significant finding will pave the way for better control of chloramine in the distribution systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Influence of humic acid and dihydroxy benzoic acid on the agglomeration, adsorption, sedimentation and dissolution of copper, manganese, aluminum and silica nanoparticles - A tentative exposure scenario.

    PubMed

    Pradhan, Sulena; Hedberg, Jonas; Rosenqvist, Jörgen; Jonsson, Caroline M; Wold, Susanna; Blomberg, Eva; Odnevall Wallinder, Inger

    2018-01-01

    This work focuses on kinetic aspects of stability, mobility, and dissolution of bare Cu, Al and Mn, and SiO2 NPs in synthetic freshwater (FW) with and without the presence of natural organic matter (NOM). This includes elucidation of particle and surface interactions, metal dissolution kinetics, and speciation predictions of released metals in solution. Dihydroxy benzoic acid (DHBA) and humic acid adsorbed rapidly on all metal NPs (<1 min) via multiple surface coordinations, followed in general by rapid agglomeration and concomitant sedimentation for a large fraction of the particles. In contrast, NOM did not induce agglomeration of the SiO2 NPs during the test duration (21 days). DHBA in concentrations of 0.1 and 1 mM was unable to stabilize the metal NPs for time periods longer than 6 h, whereas humic acid, at certain concentrations (20 mg/L) was more efficient (>24 h). The presence of NOM increased the amount of released metals into solution, in particular for Al and Cu, whereas the effect for Mn was minor. At least 10% of the particle mass was dissolved within 24 h and remained in solution for the metal NPs in the presence of NOM. Speciation modeling revealed that released Al and Cu predominantly formed complexes with NOM, whereas less complexation was seen for Mn. The results imply that potentially dispersed NPs of Cu, Al and Mn readily dissolve or sediment close to the source in freshwater of low salinity, whereas SiO2 NPs are more stable and therefore more mobile in solution.

  10. Influence of humic acid and dihydroxy benzoic acid on the agglomeration, adsorption, sedimentation and dissolution of copper, manganese, aluminum and silica nanoparticles – A tentative exposure scenario

    PubMed Central

    Pradhan, Sulena; Rosenqvist, Jörgen; Jonsson, Caroline M.; Wold, Susanna; Blomberg, Eva; Odnevall Wallinder, Inger

    2018-01-01

    This work focuses on kinetic aspects of stability, mobility, and dissolution of bare Cu, Al and Mn, and SiO2 NPs in synthetic freshwater (FW) with and without the presence of natural organic matter (NOM). This includes elucidation of particle and surface interactions, metal dissolution kinetics, and speciation predictions of released metals in solution. Dihydroxy benzoic acid (DHBA) and humic acid adsorbed rapidly on all metal NPs (<1 min) via multiple surface coordinations, followed in general by rapid agglomeration and concomitant sedimentation for a large fraction of the particles. In contrast, NOM did not induce agglomeration of the SiO2 NPs during the test duration (21 days). DHBA in concentrations of 0.1 and 1 mM was unable to stabilize the metal NPs for time periods longer than 6 h, whereas humic acid, at certain concentrations (20 mg/L) was more efficient (>24 h). The presence of NOM increased the amount of released metals into solution, in particular for Al and Cu, whereas the effect for Mn was minor. At least 10% of the particle mass was dissolved within 24 h and remained in solution for the metal NPs in the presence of NOM. Speciation modeling revealed that released Al and Cu predominantly formed complexes with NOM, whereas less complexation was seen for Mn. The results imply that potentially dispersed NPs of Cu, Al and Mn readily dissolve or sediment close to the source in freshwater of low salinity, whereas SiO2 NPs are more stable and therefore more mobile in solution. PMID:29420670

  11. The contemporary management of penetrating splenic injury.

    PubMed

    Berg, Regan J; Inaba, Kenji; Okoye, Obi; Pasley, Jason; Teixeira, Pedro G; Esparza, Michael; Demetriades, Demetrios

    2014-09-01

    Selective non-operative management (NOM) is standard of care for clinically stable patients with blunt splenic trauma and expectant management approaches are increasingly utilised in penetrating abdominal trauma, including in the setting of solid organ injury. Despite this evolution of clinical practice, little is known about the safety and efficacy of NOM in penetrating splenic injury. Trauma registry and medical record review identified all consecutive patients presenting to LAC+USC Medical Center with penetrating splenic injury between January 2001 and December 2011. Associated injuries, incidence and nature of operative intervention, local and systemic complications and mortality were determined. During the study period, 225 patients experienced penetrating splenic trauma. The majority (187/225, 83%) underwent emergent laparotomy. Thirty-eight clinically stable patients underwent a deliberate trial of NOM and 24/38 (63%) were ultimately managed without laparotomy. Amongst patients failing NOM, 3/14 (21%) underwent splenectomy while an additional 6/14 (42%) had splenorrhaphy. Hollow viscus injury (HVI) occurred in 21% of all patients failing NOM. Forty percent of all NOM patients had diaphragmatic injury (DI). All patients undergoing delayed laparotomy for HVI or a splenic procedure presented symptomatically within 24h of the initial injury. No deaths occurred in patients undergoing NOM. Although the vast majority of penetrating splenic trauma requires urgent operative management, a group of patients does present without haemodynamic instability, peritonitis or radiologic evidence of hollow viscus injury. Management of these patients is complicated as over half may remain clinically stable and can avoid laparotomy, making them potential candidates for a trial of NOM. HVI is responsible for NOM failure in up to a fifth of these cases and typically presents within 24h of injury. Delayed laparotomy, within this limited time period, did not appear to increase mortality nor preclude successful splenic salvage. In clinically stable patients, diagnostic laparoscopy remains essential to evaluate and repair occult DI. As NOM for penetrating abdominal trauma becomes more common, multi-centre data is needed to more accurately define the principles of patient selection and the limitations and consequences of this approach in the setting of splenic injury. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Characterization of Natural Organic Matter in Alluvial Aquifer Sediments: Approaches and Implications for Reactivity

    NASA Astrophysics Data System (ADS)

    Fox, P. M.; Nico, P. S.; Hao, Z.; Gilbert, B.; Tfaily, M. M.; Devadoss, J.

    2015-12-01

    Sediment-associated natural organic matter (NOM) is an extremely complex assemblage of organic molecules with a wide range of sizes, functional groups, and structures, which is intricately associated with mineral particles. The chemical nature of NOM may control its' reactivity towards metals, minerals, enzymes, and bacteria. Organic carbon concentrations in subsurface sediments are typically much lower than in surface soils, posing a distinct challenge for characterization. In this study, we investigated NOM associated with shallow alluvial aquifer sediments in a floodplain of the Colorado River. Total organic carbon (TOC) contents in these subsurface sediments are typically around 0.1%, but can range from 0.03% up to approximately 1.5%. Even at the typical TOC values of 0.1%, the mass of sediment-associated OC is approximately 5000 times higher than the mass of dissolved OC, representing a large pool of carbon that may potentially be mobilized or degraded under changing environmental conditions. Sediment-associated OC is much older than both the depositional age of the alluvial sediments and dissolved OC in the groundwater, indicating that the vast majority of NOM was sequestered by the sediment long before it was deposited in the floodplain. We have characterized the sediment-bound NOM from two locations within the floodplain with differing physical and geochemical properties. One location has relatively low organic carbon (<0.2%) and is considered suboxic [dissolved oxygen is low or absent, but no dissolved Fe(II) observed], while the other is a naturally reducing zone with higher organic carbon (0.2-1.5%) and Fe(II)-reducing conditions. An extraction scheme was developed using a combination of sequential extraction [water and sodium pyrophosphate (pH 10)] and purification in order to isolate different fractions of sediment-associated NOM. Analysis of these different NOM fractions was then carried out by FTIR and ESI-FTICR-MS to allow for comparison of NOM structure and composition both across sites and across fractions for a single location. Using this combination of analytical techniques we can probe the variation in NOM chemical composition and mineral association across different biogeochemical regimes and assess the potential reactivity of various NOM pools.

  13. Interactions of ciprofloxacin (CIP), titanium dioxide (TiO2) nanoparticles and natural organic matter (NOM) in aqueous suspensions.

    PubMed

    Fries, Elke; Crouzet, Catherine; Michel, Caroline; Togola, Anne

    2016-09-01

    The aim of the present study was to investigate interactions of the antibiotic ciprofloxacin (CIP), titanium dioxide nanoparticles (TiO2 NP) and natural organic matter (NOM) in aqueous suspensions. The mean hydrodynamic diameter of particles of TiO2 NP and NOM in the suspensions ranged from 113 to 255nm. During batch experiments the radioactivity resulting from (14)CIP was determined in the filtrate (filter pore size 100nm) by scintillation measurements. Up to 72h, no significant sorption of NOM to TiO2 NP was observed at a TiO2 NP concentration of 5mg/L. When the concentration of TiO2 NP was increased to 500mg/L, a small amount of NOM of 9.5%±0.6% was sorbed at 72h. The low sorption affinity of NOM on TiO2 NP surfaces could be explained by the negative charge of both components in alkaline media or by the low hydrophobicity of the NOM contents. At a TiO2 NP concentration of 5mgL(-1), the sorption of CIP on TiO2 NP was insignificant (TiO2 NP/CIP ratio: 10). When the TiO2 NP/CIP ratio was increased to 1000, a significant amount of 53.6%±7.2% of CIP was sorbed on TiO2 NP under equilibrium conditions at 64h. In alkaline media, CIP is present mainly as zwitterions which have an affinity to sorb on negatively charged TiO2 NP surfaces. The sorption of CIP on TiO2 NP in the range of TiO2 NP concentrations currently estimated for municipal wastewater treatment plants is estimated to be rather low. The Freundlich sorption coefficients (KF) in the presence of NOM of 2167L(n)mgmg(-n)kg(-1) was about 10 times lower than in the absence of NOM. This is an indication that the particle fraction of NOM<100nm could play a role as a carrier for ionic organic micro-pollutants as CIP. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Modification of chemical and conformational properties of natural organic matter by click chemistry as revealed by ESI-Orbitrap mass spectrometry.

    PubMed

    Nebbioso, Antonio; Piccolo, Alessandro

    2015-11-01

    A click reaction is reported here for the first time as a useful technique to control the conformational stability of natural organic matter (NOM) suprastructures. Click conjugates were successfully formed between a previously butynylated NOM hydrophobic fraction and a hydrophilic polyethylene glycol (PEG)-amino chain. The click products were shown by size exclusion chromatography (HPSEC) hyphenated with Orbitrap mass spectrometry (MS) in electrospray ionization (ESI) (+), while precursors were visible in ESI (-). Despite their increase in molecular weight, HPSEC elution of click conjugates occurred after that of precursors, thus showing their departure from the NOM supramolecular association. This indicates that the click-conjugated NOM molecules were varied in their hydrophilic and cationic character and lost the capacity to accommodate in the original hydrophobic suprastructures. The most abundant product had the C16H30O5N4 formula, a click conjugate of butanoic acid, while other products were short-chained (C4-C8) linear unsaturated and hydroxylated carboxylic acids. Tandem MS revealed formation of triazole rings in clicked conjugates and their two fragmentations at the ester and the C-N alkyl-aryl bonds. The behavior of NOM molecules modified by click chemistry confirms that hydrophobicity and ionic charge of humic molecules play a pivotal role in stabilizing intermolecular forces in NOM. Moreover, the versatility of the click reaction may become useful to decorate NOM molecules with a variety of substrates, in order to alter NOM conformational and chemical properties and diversify its applications in the environment.

  15. Nom1 Mediates Pancreas Development by Regulating Ribosome Biogenesis in Zebrafish

    PubMed Central

    Qin, Wei; Chen, Zelin; Zhang, Yihan; Yan, Ruibin; Yan, Guanrong; Li, Song; Zhong, Hanbing; Lin, Shuo

    2014-01-01

    Ribosome biogenesis is an important biological process for proper cellular function and development. Defects leading to improper ribosome biogenesis can cause diseases such as Diamond-Blackfan anemia and Shwachman-Bodian-Diamond syndrome. Nucleolar proteins are a large family of proteins and are involved in many cellular processes, including the regulation of ribosome biogenesis. Through a forward genetic screen and positional cloning, we identified and characterized a zebrafish line carrying mutation in nucleolar protein with MIF4G domain 1 (nom1), which encodes a conserved nulceolar protein with a role in pre-rRNA processing. Zebrafish nom1 mutants exhibit major defects in endoderm development, especially in exocrine pancreas. Further studies revealed that impaired proliferation of ptf1a-expressing pancreatic progenitor cells mainly contributed to the phenotype. RNA-seq and molecular analysis showed that ribosome biogenesis and pre-mRNA splicing were both affected in the mutant embryos. Several defects of ribosome assembly have been shown to have a p53-dependent mechanism. In the nom1 mutant, loss of p53 did not rescue the pancreatic defect, suggesting a p53-independent role. Further studies indicate that protein phosphatase 1 alpha, an interacting protein to Nom1, could partially rescue the pancreatic defect in nom1 morphants if a human nucleolar localization signal sequence was artificially added. This suggests that targeting Pp1α into the nucleolus by Nom1 is important for pancreatic proliferation. Altogether, our studies revealed a new mechanism involving Nom1 in controlling vertebrate exocrine pancreas formation. PMID:24967912

  16. Characterization of natural organic matter adsorption in granular activated carbon adsorbers.

    PubMed

    Velten, Silvana; Knappe, Detlef R U; Traber, Jacqueline; Kaiser, Hans-Peter; von Gunten, Urs; Boller, Markus; Meylan, Sébastien

    2011-07-01

    The removal of natural organic matter (NOM) from lake water was studied in two pilot-scale adsorbers containing granular activated carbon (GAC) with different physical properties. To study the adsorption behavior of individual NOM fractions as a function of time and adsorber depth, NOM was fractionated by size exclusion chromatography (SEC) into biopolymers, humics, building blocks, and low molecular weight (LMW) organics, and NOM fractions were quantified by both ultraviolet and organic carbon detectors. High molecular weight biopolymers were not retained in the two adsorbers. In contrast, humic substances, building blocks and LMW organics were initially well and irreversibly removed, and their effluent concentrations increased gradually in the outlet of the adsorbers until a pseudo-steady state concentration was reached. Poor removal of biopolymers was likely a result of their comparatively large size that prevented access to the internal pore structure of the GACs. In both GAC adsorbers, adsorbability of the remaining NOM fractions, compared on the basis of partition coefficients, increased with decreasing molecular size, suggesting that increasingly larger portions of the internal GAC surface area could be accessed as the size of NOM decreased. Overall DOC uptake at pseudo-steady state differed between the two tested GACs (18.9 and 28.6 g-C/kg GAC), and the percent difference in DOC uptake closely matched the percent difference in the volume of pores with widths in the 1-50 nm range that was measured for the two fresh GACs. Despite the differences in NOM uptake capacity, individual NOM fractions were removed in similar proportions by the two GACs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. 77 FR 42050 - Self-Regulatory Organizations; NASDAQ OMX PHLX LLC; Notice of Filing and Immediate Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-17

    ....55 NOM 0.54 0.54 0.55 NOM-MNX 0.56 0.56 0.55 NOM-NDX 0.11 0.81 0.81 \\13\\ These fees are applicable to...-030). \\5\\ See Securities Exchange Act Release No. 67339 (SR-BX-2012- 043). This filing will become...

  18. Characterization of micro-flocs of NOM coagulated by PACl, alum and polysilicate-iron in terms of molecular weight and floc size.

    PubMed

    Fusheng, Li; Akira, Yuasa; Yuka, Ando

    2008-01-01

    Micro-flocs of NOM coagulated by polyaluminium chloride (PACl), alum and polysilicate-iron (PSI) were characterized by flocs size, HPSEC-based molecular weight and the captured content of coagulants-based aluminium and iron. Changes in floc composition with respect to the mass ratios of captured NOM to Al and Fe were examined. Lowering water pH to optimum levels was found to be capable of removing small NOM constituents that are generally difficult to be precipitated at neutral pH levels. For PACl and PSI, the distribution of micro flocs (0.1-5.0 microm) reached steady stage after rapid mixing for 30 seconds, with NOM being found existent within the non-coagulated fraction (d<0.1 microm) and the coagulated fraction with floc sizes above 5.0 microm (d >5.0 microm). For alum, however, the existence of NOM inside intermediate floc fractions of d = 0.1-1.0 microm, 1.0-3.0microm and 3.0-5.0 microm was confirmed.

  19. Television Viewing Does Not Have to Be Sedentary: Motivation to Participate in a TV Exercise Program

    PubMed Central

    Meis, Jessie J. M.; Kremers, Stef P. J.; Bouman, Martine P. A.

    2012-01-01

    The present study explored which underlying motivations induced people to participate in a television exercise program called “The Netherlands on the Move!-television” (NOM-tv). A cross-sectional study was carried out among 1,349 viewers of NOM-tv. The respondents completed the intrinsic motivation inventory (IMI), assessing their levels of intrinsic motivation towards participating in the NOM-tv exercises. The results showed that higher levels of intrinsic motivation (i.e. enjoying the NOM-tv exercises, feeling competent to perform this activity, and willingness to put effort into the exercises) were the most important predictive factors of more frequent participation in the NOM-tv exercises. Future screen-based interventions to reduce sedentary behavior should aim especially at encouraging people's intrinsic orientations towards physical activity in an autonomy-supportive way. PMID:22187637

  20. Powdered activated carbon adsorption of two fishy odorants in water: Trans,trans-2,4-heptadienal and trans,trans-2,4-decadienal.

    PubMed

    Li, Xin; Wang, Jun; Zhang, Xiaojian; Chen, Chao

    2015-06-01

    Powdered activated carbon (PAC) adsorption of two fishy odorants, trans,trans-2,4-heptadienal (HDE) and trans,trans-2,4-decadienal (DDE), was investigated. Both the pseudo first-order and the pseudo second-order kinetic models well described the kinetics curves, and DDE was more readily removed by PAC. In isotherm tests, both Freundlich and Modified Freundlich isotherms fitted the experimental data well. PAC exhibited a higher adsorption capacity for DDE than for HDE, which could be ascribed to the difference in their hydrophobicity. The calculated thermodynamic parameters (ΔG0, ΔH0, and ΔS0) indicated an exothermic and spontaneous adsorption process. PAC dosage, pH, and natural organic matter (NOM) presence were found to influence the adsorption process. With increasing PAC dosage, the pseudo first-order and pseudo second-order rate constants both increased. The value of pH had little influence on HDE or DDE molecules but altered the surface charge of PAC, and the maximum adsorption capacity occurred at pH9. The presence of NOM, especially the fraction with molecular weight less than 1k Dalton, hindered the adsorption. The study showed that preloaded NOM impaired the adsorption capacity of HDE or DDE more severely than simultaneously fed NOM did. Copyright © 2015. Published by Elsevier B.V.

  1. Impact of natural organic matter and increased water hardness on DGT prediction of copper bioaccumulation by yellow lampmussel (Lampsilis cariosa) and fathead minnow (Pimephales promelas).

    PubMed

    Philipps, Rebecca R; Xu, Xiaoyu; Mills, Gary L; Bringolf, Robert B

    2018-06-01

    We conducted an exposure experiment with Diffusive Gradients in Thin- Films (DGT), fathead minnow (Pimephales promelas), and yellow lampmussel (Lampsilis cariosa) to estimate bioavailability and bioaccumulation of Cu. We hypothesized that Cu concentrations measured by DGT can be used to predict Cu accumulation in aquatic animals and alterations of water chemistry can affect DGT's predict ability. Three water chemistries (control soft water, hard water, and addition of natural organic matter (NOM)) and three Cu concentrations (0, 30, and 60 μg/L) were selected, so nine Cu-water chemistry combinations were used. NOM addition treatments resulted in decreased concentrations of DGT-measured Cu and free Cu ion predicted by Biotic Ligand Model (BLM). Both hard water and NOM addition treatments had reduced concentrations of Cu ion and Cu-dissolved organic matter complexes compared to other treatments. DGT-measured Cu concentrations were linearly correlated to fish accumulated Cu, but not to mussel accumulated Cu. Concentrations of bioavailable Cu predicted by BLM, the species complexed with biotic ligands of aquatic organisms and, was highly correlated to DGT-measured Cu. In general, DGT-measured Cu fit Cu accumulations in fish, and this passive sampling technique is acceptable at predicting Cu concentrations in fish in waters with low NOM concentrations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Nonoperative management of blunt hepatic trauma: A systematic review.

    PubMed

    Boese, Christoph Kolja; Hackl, Michael; Müller, Lars Peter; Ruchholtz, Steffen; Frink, Michael; Lechler, Philipp

    2015-10-01

    Nonoperative management (NOM) has become the standard treatment in hemodynamically stable patients with blunt hepatic injuries. While the reported overall success rates of NOM are excellent, there is a lack of consensus regarding the risk factors predicting the failure of NOM. The aim of this systematic review was to identify the incidence and prognostic factors for failure of NOM in adult patients with blunt hepatic trauma. Prospective studies reporting prognostic factors for the failure of nonoperative treatment of blunt liver injuries were identified by searching MEDLINE and the Cochrane Central Register of Controlled Trials. We screened 798 titles and abstracts, of which 8 single-center prospective observational studies, reporting 410 patients, were included in the qualitative and quantitative synthesis. No randomized controlled trials were found. The pooled failure rate of NOM was 9.5% (0-24%). Twenty-six prognostic factors predicting the failure of NOM were reported, of which six reached statistical significance in one or more studies: blood pressure (p < 0.05), fluid resuscitation (p = 0.02), blood transfusion (p = 0.003), peritoneal signs (p < 0.0001), Injury Severity Score (ISS) (p = 0.03), and associated intra-abdominal injuries (p < 0.01). There is evidence that patients presenting with clinical signs of shock, a high ISS, associated intra-abdominal injuries, and peritoneal signs are at an increased risk of failure of NOM for the treatment of blunt hepatic injuries. Systematic review, level III.

  3. Aluminum electrocoagulation as pretreatment during microfiltration of surface water containing NOM: A review of fouling, NOM, DBP, and virus control.

    PubMed

    Chellam, Shankararaman; Sari, Mutiara Ayu

    2016-03-05

    Electrocoagulation (EC) is the intentional corrosion of sacrificial anodes (typically aluminum or iron) by passing electricity to release metal-ion coagulant species and destabilize a wide range of suspended, dissolved, and macromolecular contaminants. It can be integrated ahead of microfiltration (MF) to effectively control turbidity, microorganisms, and disinfection by-products (DBPs) and simultaneously maintain a high MF specific flux. This manuscript summarizes the current knowledge on MF pretreatment by aluminum EC particularly focusing on mechanisms of (i) electrocoagulant dosing, (ii) (bio)colloid destabilization, (iii) fouling reductions, and (iv) enhanced removal of viruses, natural organic matter (NOM), and DBP precursors. Electrolysis efficiently removes hydrophobic NOM, viruses, and siliceous foulants. Aluminum effectively electrocoagulates viruses by physically encapsulating them in flocs, neutralizing their surface charge and reducing electrostatic repulsion, and increasing hydrophobic interactions between any sorbed NOM and free viruses. New results included herein demonstrate that EC achieves DBP control by removing NOM, reducing chlorine-reactivity of remaining NOM, and inducing a slight shift toward more brominated trihalomethanes and haloacetic acids. EC reduces MF fouling by forming large flocs that tend to deposit on the membrane surface, i.e. decrease pore penetration and forming more permeable cakes and by reducing foulant mass in case of significant floc-flotation. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Removal of bisphenol A by adsorption mechanism using PES-SiO2 composite membranes.

    PubMed

    Muhamad, Mimi Suliza; Salim, Mohd Razman; Lau, Woei Jye; Hadibarata, Tony; Yusop, Zulkifli

    2016-08-01

    Polyethersulphone (PES) membranes blended with silicon dioxide (SiO2) nanoparticles were prepared via a dry-jet wet spinning technique for the removal of bisphenol A (BPA) by adsorption mechanism. The morphology of SiO2 nanoparticles was analysed using a transmission electron microscopy and particle size distribution was also analysed. The prepared membranes were characterized by several techniques including field emission scanning electron microscopy, Fourier transform infrared spectroscopy and water contact angle. The adsorption mechanism of membrane towards BPA was evaluated by batch experiments and kinetic model. The influence of natural organic matter (NOM) in feed water on membrane BPA removal was also studied by filtration experiments. Results showed that BPA adsorption capacity as high as 53 µg/g could be achieved by the PES membrane incorporated with 2 wt% SiO2 in which the adsorption mechanism was in accordance with the pseudo-second-order kinetic model. The intraparticles diffusion model suggested that the rate limiting factor of membrane adsorption mechanism is governed by the diffusion of BPA into the membrane pores. The presence of 10 ppm NOM has reported to negatively reduce BPA removal by 24%, as it tended to compete with BPA for membrane adsorption. This work has demonstrated that PES-SiO2 membrane has the potential to eliminate trace amount of BPA from water source containing NOM.

  5. Impact of natural organic matter on particle behavior and phototoxicity of titanium dioxide nanoparticles.

    PubMed

    Li, Shibin; Ma, Hongbo; Wallis, Lindsay K; Etterson, Matthew A; Riley, Benjamin; Hoff, Dale J; Diamond, Stephen A

    2016-01-15

    Due to their inherent phototoxicity and inevitable environmental release, titanium dioxide nanoparticles (nano-TiO2) are increasingly studied in the field of aquatic toxicology. One of the particular interests is the interactions between nano-TiO2 and natural organic matter (NOM). In this study, a series of experiments was conducted to study the impacts of Suwannee River natural organic matter (SRNOM) on phototoxicity and particle behaviors of nano-TiO2. For Daphnia magna, after the addition of 5mg/L SRNOM, LC50 value decreased significantly from 1.03 (0.89-1.20) mg/L to 0.26 (0.22-0.31) mg/L. For zebrafish larvae, phototoxic LC50 values were 39.9 (95% CI, 25.9-61.2) mg/L and 26.3 (95% CI, 18.3-37.8) mg/L, with or without the presence of 5mg/L SRNOM, respectively. There was no statistically significant change of these LC50 values. The impact of SRNOM on phototoxicity of nano-TiO2 was highly dependent on test species, with D. magna being the more sensitive species. The impact on particle behavior was both qualitatively and quantitatively examined. A global predictive model for particle behavior was developed with a three-way interaction of SRNOM, TiO2 concentration, and time and an additive effect of ionic strength. Based on power analyses, 96-h exposure in bioassays was recommended for nanoparticle-NOM interaction studies. The importance of reactive oxygen species (ROS) quenching of SRNOM was also systematically studied using a novel exposure system that isolates the effects of environmental factors. These experiments were conducted with minimal impacts of other important interaction mechanisms (NOM particle stabilization, NOM UV attenuation, and NOM photosensitization). This study highlighted both the particle stabilization and ROS quenching effects of NOM on nano-TiO2 in an aquatic system. There is an urgent need for representative test materials, together with key environmental factors, for future risk assessment and regulations of nanomaterials. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. A comparison of surface water natural organic matter in raw filtered water samples, XAD, and reverse osmosis isolates.

    PubMed

    Maurice, Patricia A; Pullin, Michael J; Cabaniss, Stephen E; Zhou, Qunhui; Namjesnik-Dejanovic, Ksenija; Aiken, George R

    2002-05-01

    This research compared raw filtered waters (RFWs), XAD resin isolates (XAD-8 and XAD-4), and reverse osmosis (RO) isolates of several surface water samples from McDonalds Branch, a small freshwater fen in the New Jersey Pine Barrens (USA). RO and XAD-8 are two of the most common techniques used to isolate natural organic matter (NOM) for studies of composition and reactivity; therefore, it is important to understand how the isolates differ from bulk (unisolated) samples and from one another. Although, any comparison between the isolation methods needs to consider that XAD-8 is specifically designed to isolate the humic fraction, whereas RO concentrates a broad range of organic matter and is not specific to humics. The comparison included for all samples: weight average molecular weight (Mw), number average molecular weight (Mn), polydispersity (rho), absorbance at 280 nm normalized to moles C (epsilon280) (RFW and isolates); and for isolates only: elemental analysis, % carbon distribution by 13C NMR, and aqueous FTIR spectra. As expected, RO isolation gave higher yield of NOM than XAD-8, but also higher ash content, especially Si and S. Mw decreased in the order: RO > XAD-8 > RFW > XAD-4. The Mw differences of isolates compared with RFW may be due to selective isolation (fractionation), or possibly in the case of RO to condensation or coagulation during isolation. 13C NMR results were roughly similar for the two methods, but the XAD-8 isolate was slightly higher in 'aromatic' C and the RO isolate was slightly higher in heteroaliphatic and carbonyl C. Infrared spectra indicated a higher carboxyl content for the XAD-8 isolates and a higher ester:carboxyl ratio for the RO isolates. The spectroscopic data thus are consistent with selective isolation of more hydrophobic compounds by XAD-8, and also with potential ester hydrolysis during that process, although further study is needed to determine whether ester hydrolysis does indeed occur. Researchers choosing between XAD and RO isolation methods for NOM need to consider first the purpose of the isolation; i.e., whether humic fractionation is desirable. Beyond that, they should consider the C yield and ash content, as well as the potential for alteration of NOM by ester hydrolysis (XAD) or condensation/coagulation (RO). Furthermore, the RO and XAD methods produce different fractions or isolates so that researchers should be careful when comparing the compositions and reactivities of NOM samples isolated by these two different techniques.

  7. A comparison of surface water natural organic matter in raw filtered water samples, XAD, and reverse osmosis isolates

    USGS Publications Warehouse

    Maurice, P.A.; Pullin, M.J.; Cabaniss, S.E.; Zhou, Q.; Namjesnik-Dejanovic, K.; Aiken, G.R.

    2002-01-01

    This research compared raw filtered waters (RFWs), XAD resin isolates (XAD-8 and XAD-4), and reverse osmosis (RO) isolates of several surface water samples from McDonalds Branch, a small freshwater fen in the New Jersey Pine Barrens (USA). RO and XAD-8 are two of the most common techniques used to isolate natural organic matter (NOM) for studies of composition and reactivity; therefore, it is important to understand how the isolates differ from bulk (unisolated) samples and from one another. Although, any comparison between the isolation methods needs to consider that XAD-8 is specifically designed to isolate the humic fraction, whereas RO concentrates a broad range of organic matter and is not specific to humics. The comparison included for all samples: weight average molecular weight (Mw), number average molecular weight (Mn), polydispersity (??), absorbance at 280nm normalized to moles C (??280) (RFW and isolates); and for isolates only: elemental analysis, % carbon distribution by 13C NMR, and aqueous FTIR spectra. As expected, RO isolation gave higher yield of NOM than XAD-8, but also higher ash content, especially Si and S. Mw decreased in the order: RO>XAD-8>RFW>XAD-4. The Mw differences of isolates compared with RFW may be due to selective isolation (fractionation), or possibly in the case of RO to condensation or coagulation during isolation. 13C NMR results were roughly similar for the two methods, but the XAD-8 isolate was slightly higher in 'aromatic' C and the RO isolate was slightly higher in heteroaliphatic and carbonyl C. Infrared spectra indicated a higher carboxyl content for the XAD-8 isolates and a higher ester:carboxyl ratio for the RO isolates. The spectroscopic data thus are consistent with selective isolation of more hydrophobic compounds by XAD-8, and also with potential ester hydrolysis during that process, although further study is needed to determine whether ester hydrolysis does indeed occur. Researchers choosing between XAD and RO isolation methods for NOM need to consider first the purpose of the isolation; i.e., whether humic fractionation is desirable. Beyond that, they should consider the C yield and ash content, as well as the potential for alteration of NOM by ester hydrolysis (XAD) or condensation/coagulation (RO). Furthermore, the RO and XAD methods produce different fractions or isolates so that researchers should be careful when comparing the compositions and reactivities of NOM samples isolated by these two different techniques. ?? 2002 Published by Elsevier Science Ltd.

  8. Management of blunt liver trauma in 134 severely injured patients.

    PubMed

    Hommes, Martijn; Navsaria, Pradeep H; Schipper, Inger B; Krige, J E J; Kahn, D; Nicol, Andrew John

    2015-05-01

    In haemodynamic stable patients without an acute abdomen, nonoperative management (NOM) of blunt liver injuries (BLI) has become the standard of care with a reported success rate of between 80 and 100%. Concern has been expressed about the potential overuse of NOM and the fact that failed NOM is associated with higher mortality rate. The aim of this study was to evaluate factors that might indicate the need for surgical intervention, and to assess the efficacy of NOM. A single centre prospective study between 2008 and 2013 in a level-1 Trauma Centre. One hundred thirty four patients with BLI were diagnosed on CT-scan or at laparotomy. The median ISS was 25 (range 16-34). Thirty five (26%) patients underwent an early exploratory laparotomy. The indication for surgery was haemodynamic instability in 11 (31%) patients, an acute abdomen in 16 (46%), and 8 (23%) patients had CT findings of intraabdominal injuries, other than the hepatic injury, that required surgical repair. NOM was initiated in 99 (74%) patients, 36 patients had associated intraabdominal solid organ injuries. Seven patients developed liver related complications. Five (5%) patients required a delayed laparotomy (liver related (3), splenic injury (2)). NOM failure was not related to the presence of shock on admission (p=1000), to the grade of liver injury (p=0.790) or associated intraabdominal injuries (p=0.866). Physiologic behaviour or CT findings dictated the need for operative intervention. NOM of BLI has a high success rate (95%). Nonoperative management of BLI should be considered in patients who respond to resuscitation, irrespective of the grade of liver trauma. Associated intraabdominal solid organ injuries do not exclude NOM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Blunt splenic injury and severe brain injury: a decision analysis and implications for care

    PubMed Central

    Alabbasi, Thamer; Nathens, Avery B.; Tien, Col Homer

    2015-01-01

    Background The initial nonoperative management (NOM) of blunt splenic injuries in hemodynamically stable patients is common. In soldiers who experience blunt splenic injuries with concomitant severe brain injury while on deployment, however, NOM may put the injured soldier at risk for secondary brain injury from prolonged hypotension. Methods We conducted a decision analysis using a Markov process to evaluate 2 strategies for managing hemodynamically stable patients with blunt splenic injuries and severe brain injury — immediate splenectomy and NOM — in the setting of a field hospital with surgical capability but no angiography capabilities. We considered the base case of a 40-year-old man with a life expectancy of 78 years who experienced blunt trauma resulting in a severe traumatic brain injury and an isolated splenic injury with an estimated failure rate of NOM of 19.6%. The primary outcome measured was life expectancy. We assumed that failure of NOM would occur in the setting of a prolonged casualty evacuation, where surgical capability was not present. Results Immediate splenectomy was the slightly more effective strategy, resulting in a very modest increase in overall survival compared with NOM. Immediate splenectomy yielded a survival benefit of only 0.4 years over NOM. Conclusion In terms of overall survival, we would not recommend splenectomy unless the estimated failure rate of NOM exceeded 20%, which corresponds to an American Association for the Surgery of Trauma grade III splenic injury. For military patients for whom angiography may not be available at the field hospital and who require prolonged evacuation, immediate splenectomy should be considered for grade III–V injuries in the presence of severe brain injury. PMID:26100770

  10. Outcomes of Nonoperative Management of Uncomplicated Appendicitis.

    PubMed

    Bachur, Richard G; Lipsett, Susan C; Monuteaux, Michael C

    2017-07-01

    Nonoperative management (NOM) of uncomplicated pediatric appendicitis has promise but remains poorly studied. NOM may lead to an increase in resource utilization. Our objective was to investigate the trends in NOM for uncomplicated appendicitis and study the relevant clinical outcomes including subsequent appendectomy, complications, and resource utilization. Retrospective analysis of administrative data from 45 US pediatric hospitals. Patients <19 years of age presenting to the emergency department (ED) with appendicitis between 2010 and 2016 were studied. NOM was defined by an ED visit for uncomplicated appendicitis treated with antibiotics and the absence of appendectomy at the index encounter. The main outcomes included trends in NOM among children with uncomplicated appendicitis and frequency of subsequent diagnostic imaging, ED visits, hospitalizations, and appendectomy during 12-month follow-up. 99 001 children with appendicitis were identified, with a median age of 10.9 years. Sixty-six percent were diagnosed with nonperforated appendicitis, of which 4190 (6%) were managed nonoperatively. An increasing number of nonoperative cases were observed over 6 years (absolute difference, +20.4%). During the 12-month follow-up period, NOM patients were more likely to have the following: advanced imaging (+8.9% [95% confidence interval (CI) 7.6% to 10.3%]), ED visits (+11.2% [95% CI 9.3% to 13.2%]), and hospitalizations (+43.7% [95% CI 41.7% to 45.8%]). Among patients managed nonoperatively, 46% had a subsequent appendectomy. A significant increase in NOM of nonperforated appendicitis was observed over 6 years. Patients with NOM had more subsequent ED visits and hospitalizations compared with those managed operatively at the index visit. A substantial proportion of patients initially managed nonoperatively eventually had an appendectomy. Copyright © 2017 by the American Academy of Pediatrics.

  11. Blunt splenic injury and severe brain injury: a decision analysis and implications for care.

    PubMed

    Alabbasi, Thamer; Nathens, Avery B; Tien, Homer

    2015-06-01

    The initial nonoperative management (NOM) of blunt splenic injuries in hemodynamically stable patients is common. In soldiers who experience blunt splenic injuries with concomitant severe brain injury while on deployment, however, NOM may put the injured soldier at risk for secondary brain injury from prolonged hypotension. We conducted a decision analysis using a Markov process to evaluate 2 strategies for managing hemodynamically stable patients with blunt splenic injuries and severe brain injury--immediate splenectomy and NOM--in the setting of a field hospital with surgical capability but no angiography capabilities. We considered the base case of a 40-year-old man with a life expectancy of 78 years who experienced blunt trauma resulting in a severe traumatic brain injury and an isolated splenic injury with an estimated failure rate of NOM of 19.6%. The primary outcome measured was life expectancy. We assumed that failure of NOM would occur in the setting of a prolonged casualty evacuation, where surgical capability was not present. Immediate splenectomy was the slightly more effective strategy, resulting in a very modest increase in overall survival compared with NOM. Immediate splenectomy yielded a survival benefit of only 0.4 years over NOM. In terms of overall survival, we would not recommend splenectomy unless the estimated failure rate of NOM exceeded 20%, which corresponds to an American Association for the Surgery of Trauma grade III splenic injury. For military patients for whom angiography may not be available at the field hospital and who require prolonged evacuation, immediate splenectomy should be considered for grade III-V injuries in the presence of severe brain injury.

  12. Humic substances interfere with detection of pathogenic prion protein

    USGS Publications Warehouse

    Smith, Christen B.; Booth, Clarissa J.; Wadzinski, Tyler J.; Legname, Giuseppe; Chappell, Rick; Johnson, Christopher J.; Pedersen, Joel A.

    2014-01-01

    Studies examining the persistence of prions (the etiological agent of transmissible spongiform encephalopathies) in soil require accurate quantification of pathogenic prion protein (PrPTSE) extracted from or in the presence of soil particles. Here, we demonstrate that natural organic matter (NOM) in soil impacts PrPTSE detection by immunoblotting. Methods commonly used to extract PrPTSE from soils release substantial amounts of NOM, and NOM inhibited PrPTSE immunoblot signal. The degree of immunoblot interference increased with increasing NOM concentration and decreasing NOM polarity. Humic substances affected immunoblot detection of prion protein from both deer and hamsters. We also establish that after interaction with humic acid, PrPTSE remains infectious to hamsters inoculated intracerebrally, and humic acid appeared to slow disease progression. These results provide evidence for interactions between PrPTSE and humic substances that influence both accurate measurement of PrPTSE in soil and disease transmission.

  13. Interplay of different NOM fouling mechanisms during ultrafiltration for drinking water production.

    PubMed

    Jermann, D; Pronk, W; Meylan, S; Boller, M

    2007-04-01

    Ultrafiltration is an emerging technology for drinking water production, but a main challenge remains the lack of understanding about fouling. This paper investigates the impact of molecular interactions between different natural organic matter (NOM) compounds on ultrafiltration fouling mechanisms. We performed dead-end filtration experiments with individual and mixed humic acid and alginate (polysaccharide). Alginate showed detrimental, but mostly reversible, flux decline and high solute retention. Our results indicate that this was caused by pore blocking transformed into cake building and weak molecular foulant-membrane and foulant-foulant interactions. In the presence of calcium, aggravated fouling was observed, related to complexation of alginate and its subsequently induced gel formation. With humic acid, more severe irreversible fouling occurred due to humic acid adsorption. Minor adsorption of alginate onto the membrane was also observed, which probably caused the substantial irreversible flux decline. The fouling characteristics in the mixtures reflected a combination of the individual humic acid and alginate experiments and we conclude, that the individual fouling mechanisms mutually influence each other. A model elucidates this interplay of the individual fouling mechanisms via hydrophobic and electrostatic interactions. In our study such an interplay resulted in an alginate cake, or gel in the presence of calcium, which is relatively irreversibly adsorbed onto the membrane by humic acid associations. This study shows the importance of mutual influences between various foulants for improved understanding of fouling phenomena. Furthermore it shows that substances with a minor individual influence might have a large impact in mixed systems such as natural water.

  14. Formation of N-nitrosamines from chlorination and chloramination of molecular weight fractions of natural organic matter.

    PubMed

    Kristiana, Ina; Tan, Jace; Joll, Cynthia A; Heitz, Anna; von Gunten, Urs; Charrois, Jeffrey W A

    2013-02-01

    N-Nitrosamines are a class of disinfection by-products (DBPs) that have been reported to be more toxic than the most commonly detected and regulated DBPs. Only a few studies investigating the formation of N-nitrosamines from disinfection of natural waters have been reported, and little is known about the role of natural organic matter (NOM) and the effects of its nature and reactivity on the formation of N-nitrosamines. This study investigated the influence of the molecular weight (MW) characteristics of NOM on the formation of eight species of N-nitrosamines from chlorination and chloramination, and is the first to report on the formation of eight N-nitrosamines from chlorination and chloramination of MW fractions of NOM. Isolated NOM from three different source waters in Western Australia was fractionated into several apparent MW (AMW) fractions using preparative-scale high performance size exclusion chromatography. These AMW fractions of NOM were then treated with chlorine or chloramine, and analysed for eight species of N-nitrosamines. Among these N-nitrosamines, N-nitrosodimethylamine (NDMA) was the most frequently detected. All AMW fractions of NOM produced N-nitrosamines upon chlorination and chloramination. Regardless of AMW characteristics, chloramination demonstrated a higher potential to form N-nitrosamines than chlorination, and a higher frequency of detection of the N-nitrosamines species was also observed in chloramination. The results showed that inorganic nitrogen may play an important role in the formation of N-nitrosamines, while organic nitrogen is not necessarily a good indicator for their formation. Since chlorination has less potential to form N-nitrosamines, chloramination in pre-chlorination mode was recommended to minimise the formation of N-nitrosamines. There was no clear trend in the formation of N-nitrosamines from chlorination of AMW fractions of NOM. However, during chloramination, NOM fractions with AMW <2.5 kDa were found to produce higher concentrations of NDMA and total N-nitrosamines. The precursor materials of N-nitrosamines appeared to be more abundant in the low to medium MW fractions of NOM, which correspond to the fractions that are most difficult to remove using conventional drinking water treatment processes. Alternative or advanced treatment processes that target the removal of low to medium MW NOM including activated carbon adsorption, biofiltration, reverse osmosis, and nanofiltration, can be employed to minimise the formation of N-nitrosamines. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Management of blunt splenic injuries Retrospective cohort study of early experiences in an Acute Care Surgery Service recently established.

    PubMed

    Occhionorelli, Savino; Morganti, Lucia; Andreotti, Dario; Cappellari, Lorenzo; Stano, Rocco; Portinari, Mattia; Vasquez, Giorgio

    2015-01-01

    To identify patients with splenic injuries, who should benefit from a conservative treatment, and to compare inhospital follow-up and hospital length of stay (LOS), in patients treated by non-operative management (NOM) versus immediate-splenectomy (IS). A retrospective cohort study on consecutive patients, with all grade of splenic injuries, admitted between November 2010 and December 2014 at the Acute Care Surgery Service of the S. Anna University Hospital of Ferrara. Patients were offered NOM or IS. Fifty-four patients were enrolled; 29 (53.7%) underwent IS and 25 (46.3%) were offered NOM. Splenic artery angioembolization was performed in 9 patients (36%) among this latter group. High-grade splenic injuries (IVV) were more represented in IS group (65.5% vs 8%), while low grade (I-II) were more represented in NOM group (64% vs 10.3%). Failure of NOM occurred in 4 patients (16%). Hospital LOS was longer in IS group (p=0.044), while in-hospital and 30-day mortality were not statistically significant different between the two groups. Hemodynamically stable patients, with grade I to III of splenic injuries, without other severe abdominal organ injuries, could benefit from a NOM; the in-hospital follow-up should be done, after a control CECT scan, with US. Observation and strictly monitoring of splenic injuries treated with NOM do not affect patients' hospital los. Non-operative management, Splenic Rupture, Surgery.

  16. Non-operative management of blunt trauma in abdominal solid organ injuries: a prospective study to evaluate the success rate and predictive factors of failure.

    PubMed

    Hashemzadeh, S H; Hashemzadeh, K H; Dehdilani, M; Rezaei, S

    2010-06-01

    Over the past several years, non-operative management (NOM) has increasingly been recommended for the care of selected blunt abdominal solid organ injuries. No prospective study has evaluated the rate of NOM of blunt abdominal trauma in the northwest of Iran. The objective of our study was to evaluate the success rate of this kind of management in patients who do not require emergency surgery. This prospective study was carried out in Imam Khomeini Hospital (as a referral center of trauma) at Tabriz University of Medical Sciences, Iran, between 20 March 2004 and 20 March 2007. All trauma patients who had suffered an injury to a solid abdominal organ (kidney, liver, or spleen) were selected for initial analysis, using the Student's t test or the c2 test. During the three years of the study, 98 patients (83 males and 15 females) with blunt trauma were selected to NOM for renal, hepatic and splenic injuries. Mean age was 26.1+/-17.7 years (range, 2 to 89) and mean injury severity score (ISS) was 14.5+/-7.4. The success rate of NOM was 93.8%. Fifty-one patients (43 males, 8 females; mean ISS, 14.2+/-5.8) underwent NOM of splenic trauma; 38 patients (33 males, 5 females; mean ISS, 12.9+/-8.2) hepatic trauma, and nine patients (7 males, 2 females; mean ISS, 22.2+/-7.6) renal trauma. Six patients underwent laparotomy due to the failure of NOM. The success rates of this treatment were 94.1%, 94.7% and 88.8% for the spleen, liver and kidney injuries, respectively. Age, female gender and ISS were significant predictors of the failure of NOM (P<0.05). According to the authors NOM can be successfully performed for the hemodynamically stable patients with solid organ blunt trauma. The study indicates that the rates of NOM vary in relation to the severity of the organ injury. This suggests trauma centers should use this approach.

  17. Correlating the chemical and spectroscopic characteristics of natural organic matter with the photodegradation of sulfamerazine.

    PubMed

    Batista, Ana Paula S; Teixeira, Antonio Carlos S C; Cooper, William J; Cottrell, Barbara A

    2016-04-15

    The role of aquatic natural organic matter (NOM) in the removal of contaminants of emerging concern has been widely studied. Sulfamerazine (SMR), a sulfonamide antibiotic detected in aquatic environments, is implicated in environmental toxicity and may contribute to the resistance of bacteria to antibiotics. In aquatic systems sulfonamides may undergo direct photodegradation, and, indirect photodegradation through the generation of reactive species. Because some forms of NOM inhibit the photodegradation there is an increasing interest in correlating the spectroscopic parameters of NOM as potential indicators of its degradation in natural waters. Under the conditions used in this study, SMR hydrolysis was shown to be negligible; however, direct photolysis is a significant in most of the solutions studied. Photodegradation was investigated using standard solutions of NOM: Suwannee River natural organic matter (SRNOM), Suwannee River humic acid (SRHA), Suwannee River fulvic acid (SRFA), and Aldrich humic acid (AHA). The steady-state concentrations and formation rates of the reactive species and the SMR degradation rate constants (k1) were correlated with NOM spectroscopic parameters determined using UV-vis absorption, excitation-emission matrix (EEM) fluorescence spectroscopy, and proton nuclear magnetic resonance ((1)H NMR). SMR degradation rate constants (k1) were correlated with steady-state concentrations of NOM triplet-excited state ([(3)NOM(∗)]ss) and the corresponding formation rates ((3)NOM*) for SRNOM, SRHA, and AHA. The efficiency of SMR degradation was highest in AHA solution and was inhibited in solutions of SRFA. The steady-state concentrations of singlet oxygen ([(1)O2]ss) and the SMR degradation rate constants with singlet oxygen (k1O2) were linearly correlated with the total fluorescence and inversely correlated with the carbohydrate/protein content ((1)H NMR) for all forms of NOM. The total fluorescence and EEMs Peak A were confirmed as indicators of (1)O2 formation. Specific ultraviolet absorbance at 254 nm (SUVA254) and aromaticity showed potential correlations with the steady-state concentrations of hydroxyl radical ([HO]ss) and the corresponding formation rates (HO). Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Novel software for data analysis of Fourier transform ion cyclotron resonance mass spectra applied to natural organic matter.

    PubMed

    Grinhut, Tzafrir; Lansky, Dedy; Gaspar, Andras; Hertkorn, Norbert; Schmitt-Kopplin, Philippe; Hadar, Yitzhak; Chen, Yona

    2010-10-15

    Natural organic matter (NOM) occurs as an extremely complex mixture of large, charged molecules that are formed by secondary synthesis reactions. Due to their nature, their full characterization is an important challenge to scientists specializing in NOM as well as analytical chemistry. Ultra-high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) analysis enables the identification of thousands of masses in a single measurement. A major challenge in the data analysis process of NOM using the FT-ICR MS technique is the need to sort the entire data set and to present it in an accessible mode. Here we present a simple targeted algorithm called the David Mass Sort (DMS) algorithm which facilitates the detection and counting of consecutive series of masses correlated to any selected mass spacing. This program searches for specific mass differences among all of the masses in a single spectrum against all of the masses in the same spectrum. As a representative case, the current study focuses on the analysis of the well-characterized Suwannee River humic and fulvic acid (SRHA and SRFA, respectively). By applying this algorithm, we were able to find and assess the amount of singly and doubly charged molecules. In addition we present the capabilities of the program to detect any series of consecutive masses correlated to specific mass spacing, e.g. COO, H(2), OCH(2) and O(2). Under several limitations, these mass spacings may be correlated to both chemical and biochemical changes which occur simultaneously during the formation and/or degradation of large mixtures of compounds. Copyright © 2010 John Wiley & Sons, Ltd.

  19. Morphology as a basis for taxonomy of large spirochetes symbiotic in wood-eating cockroaches and termites: Pillotina gen. nov., nom. rev.; Pillotina calotermitidis sp. nov., nom. rev.; Diplocalyx gen. nov., nom. rev.; Diplocalyx calotermitidis sp. nov., nom. rev.; Hollandina gen. nov., nom.[TRUNCATED

    NASA Technical Reports Server (NTRS)

    Bermudes, D.; Chase, D.; Margulis, L.

    1988-01-01

    The purposes of this paper are (i) to present a framework for the morphometric analysis of large uncultivable spirochetes that are symbiotic in wood-eating cockroaches and termites; (ii) to revive, in accordance with the rules of the International Code of Nomenclature of Bacteria, the names of three genera (Pillotina, Diplocalyx, and Hollandina) and three species (Pillotina calotermitidis, Diplocalyx calotermitidis, and Hollandina pterotermitidis) for the same organisms to which the names were originally applied, because these names were not included on the 1980 Approved Lists of Bacterial Names; and (iii) to formally propose the name Clevelandina reticulitermitidis for a new genus and species of spirochetes from the termite Reticulitermes tibialis. None of these genera and species has been cultivated either axenically or in mixed culture; hence, all are based on type-descriptive material.

  20. Static and dynamic removal of aquatic natural organic matter by carbon nanotubes.

    PubMed

    Ajmani, Gaurav S; Cho, Hyun-Hee; Abbott Chalew, Talia E; Schwab, Kellogg J; Jacangelo, Joseph G; Huang, Haiou

    2014-08-01

    Carbon nanotubes (CNTs) were investigated for their capability and mechanisms to simultaneously remove colloidal natural organic matter (NOM) and humic substances from natural surface water. Static removal testing was conducted via adsorption experiments while dynamic removal was evaluated by layering CNTs onto substrate membranes and filtering natural water through the CNT-layered membranes. Analyses of treated water samples showed that removal of humic substances occurred via adsorption under both static and dynamic conditions. Removal of colloidal NOM occurred at a moderate level of 36-66% in static conditions, independent of the specific surface area (SSA) of CNTs. Dynamic removal of colloidal NOM increased from approximately 15% with the unmodified membrane to 80-100% with the CNT-modified membranes. Depth filtration played an important role in colloidal NOM removal. A comparison of the static and dynamic removal of humic substances showed that equilibrium static removal was higher than dynamic (p < 0.01), but there was also a significant linear relationship between static and dynamic removal (p < 0.05). Accounting for contact time of CNTs with NOM during filtration, it appeared that CNT mat structure was an important determinant of removal efficiencies for colloidal NOM and humic substances during CNT membrane filtration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Influence of natural organic matter on the adsorption of metal ion onto clay particles

    USGS Publications Warehouse

    Schmitt, D.; Taylor, Howard E.; Aiken, G.R.; Roth, D.A.; Frimmel, F.H.

    2002-01-01

    The influence of natural organic matter (NOM) on the adsorption of Al, Fe, Zn, and Pb onto clay minerals was investigated. Adsorption experiments were carried out at pH = 5 and pH = 7 in the presence and absence of NOM. In general, the presence of NOM decreased the adsorption of metal ions onto the clay particles. Al and Fe were strongly influenced by NOM, whereas Zn and Pb adsorption was only slightly altered. The interaction of the metal ions with the minerals and the influence of NOM on this interaction was investigated by coupling SdFFF with an inductively coupled plasma mass spectrometer (ICPMS) or an inductively coupled plasma atomic emission spectrometer (ICPAES). Quantitative atomization of the clay particles in the ICP was confirmed by comparing elemental content determined by direct injection of the clay into the ICPMS with values from acid digestion. Particle sizes of the clays were found to be between 0.1 and 1 μm by sedimentation field-flow fractionation (SdFFF) with UV detection. Aggregation of particles due to metal adsorption was observed using SdFFF-ICPMS measurements. This aggregation was dependent on the specific metal ion and decreased in the presence of NOM and at higher pH value.

  2. Influence of natural organic matter (NOM) coatings on nanoparticle adsorption onto supported lipid bilayers.

    PubMed

    Bo, Zhang; Avsar, Saziye Yorulmaz; Corliss, Michael K; Chung, Minsub; Cho, Nam-Joon

    2017-10-05

    As the worldwide usage of nanoparticles in commercial products continues to increase, there is growing concern about the environmental risks that nanoparticles pose to biological systems, including potential damage to cellular membranes. A detailed understanding of how different types of nanoparticles behave in environmentally relevant conditions is imperative for predicting and mitigating potential membrane-associated toxicities. Herein, we investigated the adsorption of two popular nanoparticles (silver and buckminsterfullerene) onto biomimetic supported lipid bilayers of varying membrane charge (positive and negative). The quartz crystal microbalance-dissipation (QCM-D) measurement technique was employed to track the adsorption kinetics. Particular attention was focused on understanding how natural organic matter (NOM) coatings affect nanoparticle-bilayer interactions. Both types of nanoparticles preferentially adsorbed onto the positively charged bilayers, although NOM coatings on the nanoparticle and lipid bilayer surfaces could either inhibit or promote adsorption in certain electrolyte conditions. While past findings showed that NOM coatings inhibit membrane adhesion, our findings demonstrate that the effects of NOM coatings are more nuanced depending on the type of nanoparticle and electrolyte condition. Taken together, the results demonstrate that NOM coatings can modulate the lipid membrane interactions of various nanoparticles, suggesting a possible way to improve the environmental safety of nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Characteristics of flocs formed by polymer-only coagulation in water treatment and their impacts on the performance of downstream membrane separation.

    PubMed

    Maeng, Sung Kyu; Timmes, Thomas C; Kim, Hyun-Chul

    2017-10-01

    Two different quaternary amine polymers were examined as primary coagulants for the removal of natural organic matter (NOM) and concurrent production of flocs favorable for downstream membrane separation. The primary issue explored was the relationship between various coagulation conditions on the floc characteristics and the subsequent performance of microfiltration when filtering coagulated NOM. The size distribution and morphological properties of flocs formed through the coagulation of NOM were characterized and the effects of polymer type and dose on these characteristics were also examined. Coagulation of NOM using polydiallyldimethyl-ammonium chloride (pDADMAC) produced looser and less settleable flocs compared to dosing the equivalent amount of epichlorohydrin/dimethylamine (epi/DMA). This was associated with the formation of a relatively denser cake layer on the top of the membrane for the filtration of NOM coagulated with epi/DMA. The charge neutralization coagulation condition with the polymers removed almost all of the fouling tendency that had occurred when filtering raw NOM. The median diameter and the fractal dimension of the flocs produced increased as the zeta potential approached zero, which resulted in the formation of a cake layer that was easily removed from the surface of the membrane.

  4. Relationships between the structure of natural organic matter and its reactivity towards molecular ozone and hydroxyl radicals

    USGS Publications Warehouse

    Westerhoff, P.; Aiken, G.; Amy, G.; Debroux, J.

    1999-01-01

    Oxidation reaction rate parameters for molecular ozone (O3) and hydroxyl (HO) radicals with a variety of hydrophobic organic acids (HOAs) isolated from different geographic locations were determined from batch ozonation studies. Rate parameter values, obtained under equivalent dissolved organic carbon concentrations in both the presence and absence of non-NOM HO radical scavengers, varied as a function of NOM structure. First-order rate constants for O3 consumption (k(O3)) averaged 8.8 x 10-3 s-1, ranging from 3.9 x 10-3 s-1 for a groundwater HOA to > 16 x 10-3 s-1 for river HOAs with large terrestrial carbon inputs. The average second-order rate constant (k(HO,DOC) between HO radicals and NOM was 3.6 x 108 l (mol C)-1 s-1; a mass of 12 g C per mole C was used in all calculations. Specific ultraviolet absorbance (SUVA) at 254 or 280 nm of the HOAs correlated well (r > 0.9) with O3 consumption rate parameters, implying that organic ??-electrons strongly and selectively influence oxidative reactivity. HO radical reactions with NOM were less selective, although correlation between k(HO,DOC) and SUVA existed. Other physical-chemical properties of NOM, such as aromatic and aliphatic carbon content from 13C-NMR spectroscopy, proved less sensitive for predicting oxidation reactivity than SUVA. The implication of this study is that the structural nature of NOM varies temporally and spatially in a water source, and both the nature and amount of NOM will influence oxidation rates.

  5. [Associated factors to non-operative management failure of hepatic and splenic lesions secondary to blunt abdominal trauma in children].

    PubMed

    Echavarria Medina, Adriana; Morales Uribe, Carlos Hernando; Echavarria R, Luis Guillermo; Vélez Marín, Viviana María; Martínez Montoya, Jorge Alberto; Aguillón, David Fernando

    2017-01-01

    The non operative management (NOM) is the standard management of splenic and liver blunt trauma in pediatric patients.Hemodynamic instability and massive transfusions have been identified as management failures. Few studies evaluate whether there exist factors allowing anticipation of these events. The objective was to identify factors associated with the failure of NOM in splenic and liver injuries for blunt abdominal trauma. Retrospective analysis between 2007-2015 of patients admitted to the pediatric surgery at University Hospital Saint Vincent Foundation with liver trauma and/or closed Spleen. 70 patients were admitted with blunt abdominal trauma, 3 were excluded for immediate surgery (2 hemodynamic instability, 1 peritoneal irritation). Of 67 patients who received NOM, 58 were successful and 9 showed failure (8 hemodynamic instability, 1 hollow viscera injury). We found 3 factors associated with failure NOM: blood pressure (BP) < 90 mmHg at admission (p = 0.0126; RR = 5.19), drop in hemoglobin (Hb) > 2 g/dl in the first 24 hours (p = 0.0009; RR = 15.3), and transfusion of 3 or more units of red blood cells (RBC) (0.00001; RR = 17.1). Mechanism and severity of trauma and Pediatric Trauma Index were not associated with failure NOM. Children with blunted hepatic or splenic trauma respond to NOM. Factors such as BP < 90 mmHg at admission, an Hb fall > 2 g/dl in the first 24 hours and transfusion of 3 or more units of RBC were associated with the failure in NOM.

  6. Study of natural organic matter fractions in water sources of Tehran.

    PubMed

    Zazouli, M A; Nasseri, S; Mahvi, A H; Mesdaghinia, A R; Gholami, M

    2007-05-15

    Natural Organic Matters (NOMs) are abundant in natural water resources and in many ways may affect the unit operations in water treatment. Although, NOMs are considered harmless but they have been recognized disinfection by-products precursors (DBP(s)) during the chlorination process. Formation of DBP(s) highly depends on the composition and concentration of NOM, which can be broadly divided into two fractions of hydrophobic (humic) and hydrophilic (non-humic) substances. The objective of this study was to determine Natural organic matter and its fractions concentration in the surface water sources of Tehran. Water sampling was conducted monthly between May to July 2006 in three rivers Lar, Jajrood and Karaj as the main drinking water supplying sources in Tehran. Quantitative parameters of pH, EC, UV254 and DOC were studied based on to standard methods. The XAD-7 resin method was used for fractionation of NOM. Results showed that NOM concentrations in Lar, Jajrood and Karaj rivers were 8.53, 12.9 and 11.3 mg L(-1), respectively. The HPO (hydrophobic) fraction was predominant compared to the HPI (hydrophilic) fraction in the all of water samples. The mean of total percent of HPO and HPI fractions were about 57 and 43%, respectively. Since the hydrophobic NOM fraction exhibits higher trihalomethane formation potential (THMFP) than hydrophilic NOM, Tehran water chlorination exhibits higher THMFP than haloacetic acid formation potential (HAAFP). The information obtained from this study may be further employed in the design of the control technique and management strategies for the water treatment plant, especially for DBP(s) reduction.

  7. Evaluation of natural organic matter changes from Lake Hohloh by three-dimensional excitation-emission matrix fluorescence spectroscopy during TiO(2)/UV process.

    PubMed

    Valencia, Sergio; Marín, Juan M; Restrepo, Gloria; Frimmel, Fritz H

    2014-03-15

    This study shows the changes of natural organic matter (NOM) from Lake Hohloh, (Black Forest, Germany) during heterogeneous photocatalysis with TiO2 (TiO2/UV). The effect of pH on the adsorption of NOM onto TiO2 in the dark and TiO2/UV degradation of NOM was followed using three-dimensional excitation-emission matrix (EEM) fluorescence. At pH values between 4 and 9, the NOM was adsorbed onto TiO2 in the dark with a greater decrease in the fluorescence intensity and in the spectral shapes, especially under acidic pH conditions. However, at pH = 10 there was not adsorption on NOM which led to a negligible changes the fluorescence intensity. A significant high linear correlation was observed between the DOC adsorption onto TiO2 and the maximum fluorescence intensity. Additionally, the NOM adsorption onto TiO2 and its TiO2/UV degradation shifted the fluorescence maxima toward shorter wavelengths in the EEM contour plots, with a decrease in aromaticity. These changes were accompanied by a substantial decrease in the organically bound halogens adsorbable on activated carbon (AOXFP) and the trihalomethane formation potential (THMFP). Thus, the decrease in maximum fluorescence intensity can be used as an indicator of AOXFP and TTHMFP removal efficiency. Therefore, fluorescence spectroscopy is a robust analytical technique for evaluate TiO2/UV removal of NOM. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Comparison of NOM character in selected Australian and Norwegian drinking waters.

    PubMed

    Fabris, Rolando; Chow, Christopher W K; Drikas, Mary; Eikebrokk, Bjørnar

    2008-09-01

    Observations from many countries around the world during the past 10-20 years indicate increasing natural organic matter (NOM) concentration levels in water sources, due to issues such as global warming, changes in soil acidification, increased drought severity and more intensive rain events. In addition to the trend towards increasing NOM concentration, the character of NOM can vary with source and time (season). The great seasonal variability and the trend towards elevated NOM concentration levels impose challenges to the water industry and the water treatment facilities in terms of operational optimisation and proper process control. The aim of this investigation was to compare selected raw and conventionally treated drinking water sources from different hemispheres with regard to NOM character which may lead to better understanding of the impact of source water on water treatment. Results from the analyses of selected Norwegian and Australian water samples showed that Norwegian NOM exhibited greater humic nature, indicating a stronger bias of allochthonous versus autochthonous organic origin. Similarly, Norwegian source waters had higher average molecular weights than Australian waters. Following coagulation treatment, the organic character of the recalcitrant NOM in both countries was similar. Differences in organic character of these source waters after treatment were found to be related to treatment practice rather than origin of the source water. The characterisation techniques employed also enabled identification of the coagulation processes which were not necessarily optimised for dissolved organic carbon (DOC) removal. The reactivity with chlorine as well as trihalomethane formation potential (THMFP) of the treated waters showed differences in behaviour between Norwegian and Australian sources that appeared to be related to residual higher molecular weight organic material. By evaluation of changes in specific molecular weight regions and disinfection parameters before and after treatment, correlations were found that relate treatment strategy to chlorine demand and DBP formation.

  9. Failure of nonoperative management of pediatric blunt liver and spleen injuries: A prospective Arizona-Texas-Oklahoma-Memphis-Arkansas Consortium study.

    PubMed

    Linnaus, Maria E; Langlais, Crystal S; Garcia, Nilda M; Alder, Adam C; Eubanks, James W; Maxson, R Todd; Letton, Robert W; Ponsky, Todd A; St Peter, Shawn D; Leys, Charles; Bhatia, Amina; Ostlie, Daniel J; Tuggle, David W; Lawson, Karla A; Raines, Alexander R; Notrica, David M

    2017-04-01

    Nonoperative management (NOM) is standard of care for most pediatric blunt liver and spleen injuries (BLSI); only 5% of patients fail NOM in retrospective reports. No prospective studies examine failure of NOM of BLSI in children. The aim of this study was to determine the frequency and clinical characteristics of failure of NOM in pediatric BLSI patients. A prospective observational study was conducted on patients 18 years or younger presenting to any of 10 Level I pediatric trauma centers April 2013 and January 2016 with BLSI on computed tomography. Management of BLSI was based on the Arizona-Texas-Oklahoma-Memphis-Arkansas Consortium pediatric guideline. Failure of NOM was defined as needing laparoscopy or laparotomy. A total of 1008 patients met inclusion; 499 (50%) had liver injury, 410 (41%) spleen injury, and 99 (10%) had both. Most patients were male (n = 624; 62%) with a median age of 10.3 years (interquartile range, 5.9, 14.2). A total of 69 (7%) underwent laparotomy or laparoscopy, but only 34 (3%) underwent surgery for spleen or liver bleeding. Other (nonexclusive) operations were for 21 intestinal injuries; 15 hematoma evacuations, washouts, or drain placements; 9 pancreatic injuries; 5 mesenteric injuries; 3 diaphragm injuries; and 2 bladder injuries. Patients who failed were more likely to receive blood (52 of 69 vs. 162 of 939; p < 0.001) and median time from injury to first blood transfusion was 2.3 hours for those who failed versus 5.9 hours for those who did not (p = 0.002). Overall mortality rate was 24% (8 of 34) in those who failed NOM due to bleeding. NOM fails in 7% of children with BLSI, but only 3% of patients failed for bleeding due to liver or spleen injury. For children failing NOM due to bleeding, the mortality was 24%. Therapeutic study, level II.

  10. Metabolism of native and naturally occurring multiple modified low density lipoprotein in smooth muscle cells of human aortic intima.

    PubMed

    Tertov, V V; Orekhov, A N

    1997-01-01

    The subfraction of low density lipoprotein (LDL) with low sialic acid content that caused accumulation of cholesterol esters in human aortic smooth muscle cells has been found in the blood of coronary atherosclerosis patients. It was demonstrated that this subfraction consists of LDL with small size, high electronegative charge, reduced lipid content, altered tertiary structure of apolipoprotein B, etc. LDL of this subfraction is naturally occurring multiple-modified LDL (nomLDL). In this study we compared the binding, uptake and proteolytic degradation of native LDL and nomLDL by smooth muscle cells cultured from human grossly normal intima, fatty streaks, and atherosclerotic plaques. Uptake of nomLDL by normal and atherosclerotic cells was 3.5- and 6-fold, respectively, higher than uptake of native LDL. Increased uptake of nomLDL was due to increased binding of this LDL by intimal smooth muscle cells. The enhanced binding is explained by the interaction of nomLDL with cellular receptors other than LDL-receptor. Modified LDL interacted with the scavenger receptor, asialoglycoprotein receptor, and also with cell surface proteoglycans. Rates of degradation of nomLDL were 1.5- and 5-fold lower than degradation of native LDL by normal and atherosclerotic cells, respectively. A low rate of nomLDL degradation was also demonstrated in homogenates of intimal cells. Activities of lysosomal proteinases of atherosclerotic cells were decreased compared with normal cells. Pepstatin A, a cathepsin D inhibitor, completely inhibited lipoprotein degradation, while serine, thiol, or metallo-proteinase inhibitors had partial effect. This fact reveals that cathepsin D is involved in initial stages of apoB degradation by intimal smooth muscle cells. Obtained data show that increased uptake and decreased lysosomal degradation of nomLDL may be the main cause of LDL accumulation in human aortic smooth muscle cells, leading to foam cell formation.

  11. Assessing colloid-bound metal export in response to short term changes in runoff from a forested catchment

    NASA Astrophysics Data System (ADS)

    Neubauer, E.; Kammer, F. v. d.; Knorr, K.-H.; Pfeiffer, S.; Reichert, M.; Hofmann, T.

    2012-04-01

    Soils can act as a source of metals and natural organic matter (NOM) in runoff from catchments. Amounts and intensity of rainfall may influence NOM export from catchments. The presence of NOM and other colloids in water may not only enhance metal export, but also significantly change metal speciation. In this study, we investigated the response of metal-colloid associations to short-term discharge variations in the runoff from a small forested catchment (Lehstenbach, Bavaria, Germany). Here, the discharge from the catchment outlet responds within hours to rain events. Near-surface flow in organic-rich layers and peat soils has been identified to increase dissolved organic carbon (DOC) concentrations during stormwater runoff. Flow Field-Flow Fractionation coupled to ICP-MS (FlowFFF-ICPMS) is a high-resolution size separation technique which was used for the detection and quantification of colloids and associated metals. Colloid-associated metals, dissolved metals and metals associated with low-molecular weight organic ligands were also separated by filtration (0.2 µm) and ultrafiltration (1000 g/mol MWCO). During baseflow DOC concentration was <6 mg/L and the pH ranged between 4.6 and 5.0. The DOC concentration exported at a given discharge was subject to strong seasonal variation and depended on the water level before the discharge event. DOC concentrations were up to 8 fold higher during stormwater runoff compared to baseflow. The export of aluminum, arsenic, rare earth elements (REE) and uranium from the catchment increased during stormwater runoff showing a strong correlation with NOM concentrations. This result was supported by FlowFFF-ICPMS data revealing that NOM was the only colloid type available for metal complexation during all hydrological conditions. A clear temporal pattern in the association with the NOM was observed for most of the metals under study: During baseflow, 70-100% (Fe), 90% (Al), 60-100% (REE) and 80-85% (U) were associated with the NOM. During stormwater runoff, the dissolved species concentration and those associated with small organic ligands (<1000 g/mol) increased. The pH drop during the stormwater runoff (pH <4) is most likely the main factor for weaker metal-NOM binding. However, only 25 to 50% of the arsenic was associated with NOM, but no relation to discharge, or pH was exhibited. The results show that fluxes of most trace metals from the catchment are governed by NOM-colloids, even though substantial concentrations are dissolved or associated to low-molecular weight organic substances during stormwater runoff.

  12. Adsorption characteristics of selected pharmaceuticals and an endocrine disrupting compound-Naproxen, carbamazepine and nonylphenol-on activated carbon.

    PubMed

    Yu, Zirui; Peldszus, Sigrid; Huck, Peter M

    2008-06-01

    The adsorption of two representative pharmaceutically active compounds (PhACs) (naproxen and carbamazepine) and one endocrine disrupting compound (nonylphenol) were evaluated on two types of activated carbon. When determining their isotherms at environmentally relevant concentration levels, it was found that at this low concentration range (10-800 ng/L), removals of the target compounds were contrary to expectations based on their hydrophobicity. Nonylphenol (log K(ow) 5.8) was most poorly adsorbed, whereas carbamazepine (log K(ow) 2.45) was most adsorbable. Nonylphenol Freundlich isotherms at this very low concentration range had a much higher 1/n compared to isotherms at much higher concentrations. This indicates that extrapolation from an isotherm obtained at a high concentration range to predict the adsorption of nonylphenol at a concentration well below the range of the original isotherm, leads to a substantial overestimation of its removals. Comparison of isotherms for the target compounds to those for other conventional micropollutants suggested that naproxen and carbamazepine could be effectively removed by applying the same dosage utilized to remove odorous compounds (geosmin and MIB) at very low concentrations. The impact of competitive adsorption by background natural organic matter (NOM) on the adsorption of the target compounds was quantified by using the ideal adsorbed solution theory (IAST) in combination with the equivalent background compound (EBC) approach. The fulfilment of the requirements for applying the simplified IAST-EBC model, which leads to the conclusion that the percentage removal of the target compounds at a given carbon dosage is independent of the initial contaminant concentration, was confirmed for the situation examined in the paper. On this basis it is suggested that the estimated minimum carbon usage rates (CURs) to achieve 90% removal of these emerging contaminants would be valid at concentrations of less than 500 ng/L in natural water.

  13. Removal of micro pollutants using activated biochars and powdered activated carbon in water

    NASA Astrophysics Data System (ADS)

    Kim, E.; Jung, C.; Han, J.; Son, A.; Yoon, Y.

    2015-12-01

    Recent studies have suggested that emerging micropollutants containing endocrine disrupting compounds (EDCs); bisphenol A, 17 α-ethinylestradiol, 17 β-estradiol and pharmaceuticals and personal care products (PPCPs); sulfamethoxazole, carbamazepine, ibuprofen, atenolol, benzophenone, benzotriazole, caffeine, gemfibrozil, primidone, triclocarban in water have been linked to ecological impacts, even at trace concentrations (sub ug/L). Adsorption with adsorbent such as activated carbon having a high-binding affinity has been widely used to eliminate various contaminants in the aqueous phase. Recently, an efficient treatment strategy for EDCs and PPCPs has been considered by using cost effective adsorption particularly with biochar in aqueous environmentIn this study, the objective of this study is to determine the removal of 13 target EDCs/PPCPs having different physicochemical properties by a biochar at various water quality conditions (pH (3.5, 7, and 10.5), background ions (NaCl, CaCl2, Na₂SO₄), ionic strength, natural organic matter (NOM)). The activated biochar produced in a laboratory was also characterized by using conventional analytical methods as well as advanced solid-state nuclear magnetic resonance (NMR) techniques, which answer how these properties determine the competitive adsorption characteristics and mechanisms of EDCs and PPCPs.The primary findings suggest that micropollutants can be removed more effectively by the biochar than the commercially available powdered activated carbon. At pH values below the pKa of each compound, the adsorption affinity toward adsorbents increased significantly with the pH, whereas the adsorption affinity decreased significantly at the pH above the pKa values. Na+ did not significantly impact adsorption, while increasing the concentration of Ca2+lead to increase in the adsorption of these micropollutants. NOM adsorption with humic acids on these adsorbents disturbed adsorption capacity of the target compounds as occupying active adsorption sites and interacting with EDCs/PPCPs. Conclusion that can be drawn thus far is that the biochar shows great physicochemical properties for adsorption to reduce the micropollutants.

  14. Determination of the speciation and bioavailability of samarium to Chlamydomonas reinhardtii in the presence of natural organic matter.

    PubMed

    Rowell, Justine-Anne; Fillion, Marc-Alexandre; Smith, Scott; Wilkinson, Kevin J

    2018-06-01

    As technological interest and environmental emissions of the rare earth elements increase, it is becoming more important to assess their potential environmental impact. Samarium (Sm) is a lanthanide of intermediate molar mass that is used in numerous high-technology applications including wind turbines, solar panels, and electric vehicles. The present study relates the speciation of Sm determined in the presence of natural organic matter (NOM) to its bioavailability to the unicellular green alga Chlamydomonas reinhardtii. The free ion concentration was determined using a cation exchange resin (ion exchange technique) in dynamic mode and compared with thermodynamic modeling. Short-term biouptake experiments were performed in the presence of 4 types of NOM: Suwannee River fulvic acids, Pahokee Peat fulvic acids, Suwannee River humic acids, and a Luther Marsh dissolved organic matter isolate (90-95% humic acids). It was clearly shown that even a small amount of NOM (0.5 mg C L -1 ) resulted in a significant decrease (10 times) in the Sm internalization fluxes. Furthermore, complexation with humic acids (and the corresponding reduction in Sm bioavailability) was stronger than that with fulvic acids. The results showed that the experimentally measured (free) Sm was a better predictor of Sm internalization than either the total concentrations or the free ion concentrations obtained using thermodynamic modeling. Environ Toxicol Chem 2018;37:1623-1631. © 2018 SETAC. © 2018 SETAC.

  15. Sorption and speciation of iodine in groundwater system: The roles of organic matter and organic-mineral complexes.

    PubMed

    Li, Junxia; Zhou, Hailing; Wang, Yanxin; Xie, Xianjun; Qian, Kun

    2017-06-01

    Characterizing the properties of main host of iodine in soil/sediment and the geochemical behaviors of iodine species are critical to understand the mechanisms of iodine mobilization in groundwater systems. Four surface soil and six subsurface sediment samples were collected from the iodine-affected area of Datong basin in northern China to conduct batch experiments and to evaluate the effects of NOM and/or organic-mineral complexes on iodide/iodate geochemical behaviors. The results showed that both iodine contents and k f -iodate values had positive correlations with solid TOC contents, implying the potential host of NOM for iodine in soil/sediment samples. The results of chemical removal of easily extracted NOM indicated that the NOM of surface soils is mainly composed of surface embedded organic matter, while sediment NOM mainly occurs in the form of organic-mineral complexes. After the removal of surface sorbed NOM, the decrease in k f -iodate value of treated surface soils indicates that surface sorbed NOM enhances iodate adsorption onto surface soil. By contrast, k f -iodate value increases in several H 2 O 2 -treated sediment samples, which was considered to result from exposed rod-like minerals rich in Fe/Al oxyhydroxide/oxides. After chemical removal of organic-mineral complexes, the lowest k f -iodate value for both treated surface soils and sediments suggests the dominant role of organic-mineral complexes on controlling the iodate geochemical behavior. In comparison with iodate, iodide exhibited lower affinities on all (un)treated soil/sediment samples. The understanding of different geochemical behaviors of iodine species helps to explain the occurrence of high iodine groundwater with iodate and iodide as the main species in shallow (oxidizing conditions) and deep (reducing conditions) groundwater. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Sorption and speciation of iodine in groundwater system: The roles of organic matter and organic-mineral complexes

    NASA Astrophysics Data System (ADS)

    Li, Junxia; Zhou, Hailing; Wang, Yanxin; Xie, Xianjun; Qian, Kun

    2017-06-01

    Characterizing the properties of main host of iodine in soil/sediment and the geochemical behaviors of iodine species are critical to understand the mechanisms of iodine mobilization in groundwater systems. Four surface soil and six subsurface sediment samples were collected from the iodine-affected area of Datong basin in northern China to conduct batch experiments and to evaluate the effects of NOM and/or organic-mineral complexes on iodide/iodate geochemical behaviors. The results showed that both iodine contents and kf-iodate values had positive correlations with solid TOC contents, implying the potential host of NOM for iodine in soil/sediment samples. The results of chemical removal of easily extracted NOM indicated that the NOM of surface soils is mainly composed of surface embedded organic matter, while sediment NOM mainly occurs in the form of organic-mineral complexes. After the removal of surface sorbed NOM, the decrease in kf-iodate value of treated surface soils indicates that surface sorbed NOM enhances iodate adsorption onto surface soil. By contrast, kf-iodate value increases in several H2O2-treated sediment samples, which was considered to result from exposed rod-like minerals rich in Fe/Al oxyhydroxide/oxides. After chemical removal of organic-mineral complexes, the lowest kf-iodate value for both treated surface soils and sediments suggests the dominant role of organic-mineral complexes on controlling the iodate geochemical behavior. In comparison with iodate, iodide exhibited lower affinities on all (un)treated soil/sediment samples. The understanding of different geochemical behaviors of iodine species helps to explain the occurrence of high iodine groundwater with iodate and iodide as the main species in shallow (oxidizing conditions) and deep (reducing conditions) groundwater.

  17. Nonoperative management in children with early acute appendicitis: A systematic review.

    PubMed

    Xu, Jane; Adams, Susan; Liu, Yingrui Cyril; Karpelowsky, Jonathan

    2017-09-01

    Appendectomy has remained the gold standard treatment of acute appendicitis for more than 100years. Nonoperative management (NOM) has been shown to be a valid treatment alternative for acute uncomplicated appendicitis in adults. A systematic review of available evidence comparing operative management (OM) and NOM in children with acute uncomplicated appendicitis was performed. Systematic searches of MedLine, Embase, and a clinical trial register (https://clinicaltrials.gov/) were performed in March 2016. Only articles that studied NOM for uncomplicated appendicitis in children were included. Data generation was performed independently by two authors, and quality was assessed using the rating schema by the Oxford Centre for Evidence-Based Medicine. 15 articles were selected: four retrospective analyses, four prospective cohort studies, four prospective nonrandomized comparative trials and one randomized controlled trial (RCT). Initial success of the NOM groups (a cure within two weeks of intervention) ranged from 58 to 100%, with 0.1-31.8% recurrence at one year. Although present literature is scarce, publications support the feasibility of further studies investigating NOM of acute uncomplicated appendicitis in children. Higher quality prospective RCTs with larger sample sizes and robust randomization methods, studying the noninferiority of NOM with antibiotics compared with OM are required to establish its utility. This manuscript is a systematic review and thus assigned the lowest evidence used from the manuscripts analyzed which is a Level IV. Copyright © 2017. Published by Elsevier Inc.

  18. Sunlight inactivation of somatic coliphage in the presence of natural organic matter.

    PubMed

    Sun, Chen-Xi; Kitajima, Masaaki; Gin, Karina Yew-Hoong

    2016-01-15

    Long wavelengths of sunlight spectrum (UVA and visible light), as well as natural organic matter (NOM) are important environmental factors affecting survival of viruses in aquatic environment through direct and indirect inactivation. In order to understand the virus inactivation kinetics under such conditions, this study investigated the effects of Suwannee River natural organic matter (NOM) on the inactivation of a somatic coliphage, phiX174, by UVA and visible light. Experiments were carried out to examine the virucidal effects of UVA/visible light, assess the influence of SRNOM at different concentrations, and identify the effective ROS in virus inactivation. The results from this study showed that the presence of NOM could either enhance virus inactivation or reduce virus inactivation depending on the concentration, where the inactivation rate followed a parabolic relationship against NOM concentration. The results indicated that moderate levels of NOM (11 ppm) had the strongest antiviral activity, while very low or very high NOM concentrations prolonged virus survival. The results also showed that OH▪ was the primary ROS in causing phiX174 (ssDNA virus) inactivation, unlike previous findings where (1)O2 was the primary ROS causing MS2 (ssRNA virus) inactivation. The phiX174 inactivation by OH∙ could be described as k=3.7 ✕ 10(13)[OH∙]+1.404 (R(2)=0.8527). Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Factors affecting catalysis of copper corrosion products in NDMA formation from DMA in simulated premise plumbing.

    PubMed

    Zhang, Hong; Andrews, Susan A

    2013-11-01

    This study investigated the effects of corrosion products of copper, a metal commonly employed in household plumbing systems, on N-nitrosodimethylamine (NDMA) formation from a known NDMA precursor, dimethylamine (DMA). Copper-catalyzed NDMA formation increased with increasing copper concentrations, DMA concentrations, alkalinity and hardness, but decreased with increasing natural organic matter (NOM) concentration. pH influenced the speciation of chloramine and the interactions of copper with DMA. The transformation of monochloramine (NH2Cl) to dichloramine and complexation of copper with DMA were involved in elevating the formation of NDMA by copper at pH 7.0. The inhibiting effect of NOM on copper catalysis was attributed to the rapid consumption of NH2Cl by NOM and/or the competitive complexation of NOM with copper to limit the formation of DMA-copper complexes. Hardness ions, as represented by Ca(2+), also competed with copper for binding sites on NOM, thereby weakening the inhibitory effect of NOM on NDMA formation. Common copper corrosion products also participated in these reactions but in different ways. Aqueous copper released from malachite [Cu2CO3(OH)2] was shown to promote NDMA formation while NDMA formation decreased in the presence of CuO, most likely due to the adsorption of DMA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Cell proliferation and p53 expression in pseudoepitheliomatous hyperplasia of oral paracoccidioidomycosis.

    PubMed

    Kaminagakura, E; Bonan, P R F; Lopes, M A; Almeida, O P

    2006-09-01

    Paracoccidioidomycosis (PCMycosis) is a systemic mycosis frequently found in many regions of Latin America. Microscopically, it is characterised by granulomatous inflammation and pseudoepitheliomatous hyperplasia (PEH). This work describes the proliferation index and p53 expression by immunohistochemistry in PEH of PCMycosis, normal oral mucosa (NOM) and mild oral epithelial dysplasia (ED). Ki67 positive cells were present in the basal and parabasal layers in NOM and PEH, while in ED it was also observed in the spinous layer. Percentage of ki67 positive cells was 7.7, 28.2 and 46.0 in NOM, PEH and ED respectively. p53 was negative in NOM and in PEH it was expressed by few cells in the basal layer of only three cases. However, it was expressed in all cases of ED, in basal and parabasal layers. Although histologically PEH mimics well-differentiated squamous cell carcinoma, its proliferative pattern and p53 expression are more similar to NOM than to dysplasia. These findings, confirm PEH as a reactive process probably associated with the underlying chronic inflammation.

  1. Effect of Corrosion Inhibitors on In Situ Leak Repair by Precipitation of Calcium Carbonate in Potable Water Pipelines.

    PubMed

    Wang, Fei; Devine, Christina L; Edwards, Marc A

    2017-08-01

    Corrosion inhibitors can affect calcium carbonate precipitation and associated in situ and in-service water distribution pipeline leak repair via clogging. Clogging of 150 μm diameter leak holes represented by glass capillary tubes, in recirculating solutions that are supersaturated with calcite (Ω calcite = 13), demonstrated that Zn, orthophosphate, tripolyphosphate, and hexametaphosphate corrosion/scaling inhibitors hinder clogging but natural organic matter (NOM) has relatively little impact. Critical concentrations of phosphates that could inhibit leak repair over the short-term in one water tested were: tripolyphophate (0.05 mg/L as P) < hexametaphosphate (0.1 mg/L) < orthophosphate (0.3 mg/L). Inhibitor blends (Zn+orthophosphate and Zn+NOM+orthophosphate) had stronger inhibitory effects compared to each inhibitor (Zn, orthophosphate or NOM) alone, whereas Zn+NOM showed a lesser inhibitory effect than its individual component (NOM) alone due to formation of smaller CaCO 3 particles with a much more negative zeta-potential. Overall, increased dosing of corrosion inhibitors is probably reducing the likelihood of scaling and in-service leak repair via clogging with calcium carbonate solids in potable water systems.

  2. Fluorescence analysis of NOM degradation by photocatalytic oxidation and its potential to mitigate membrane fouling in drinking water treatment.

    PubMed

    Nerger, Bryan A; Peiris, Ramila H; Moresoli, Christine

    2015-10-01

    This study examined the photocatalytic oxidation of natural organic matter (NOM) as a method to mitigate membrane fouling in drinking water treatment. ZnO and TiO2 photocatalysts were tested in concentrations ranging from 0.05 g L(-1) to 0.5 g L(-1). Fluorescence peaks were used as the primary method to characterize the degradation of three specific NOM components - fulvic acid-like humic substances, humic acid-like humic substances, and protein-like substances during photocatalytic oxidation. Fluorescence peaks and Liquid Chromatography-Organic Carbon Detection (LC-OCD) analysis indicated that higher NOM degradation was obtained by photocatalytic oxidation with ZnO than with TiO2. Treatment of the feed water by ZnO photocatalytic oxidation was successful in reducing considerably the extent of hydraulically reversible and irreversible membrane fouling during ultrafiltration (UF) compared to feed water treatment with TiO2. Fouling during UF of water subjected to photocatalytic oxidation appeared to be caused by low molecular weight constituents of NOM generated during photocatalytic oxidation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The effect of natural organic matter polarity and molecular weight on NDMA formation from two antibiotics containing dimethylamine functional groups.

    PubMed

    Leavey-Roback, Shannon L; Krasner, Stuart W; Suffet, Irwin H Mel

    2016-12-01

    N-nitrosodimethylamine (NDMA) is a disinfection byproduct preferentially formed in chloraminated water. NDMA may be formed from certain chemicals containing dimethylamine (DMA) functional groups. This reaction may be slowed by the presence of natural organic matter (NOM). In this study, NOM fractionated by size or polarity was tested for its ability to slow or impede the formation of NDMA from two DMA-containing precursors, the antibiotics tetracycline and spiramycin. The high molecular weight NOM fractions (>10KDa) were shown to be the most effective in reducing the amount of NDMA formed from the precursor chemicals. The filtrate of a C-18 non-polar cartridge was also effective at reducing NDMA formation from tetracycline (spyramycin not tested). Therefore, polar and charged NOM components may be responsible for the reduction in NDMA formation. A possible mechanism for the reduction of NDMA formation from tetracycline is complexation due to the hydrogen bonding of the DMA functional group on tetracycline to polar phenolic functional groups in the NOM. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Experimental and Modeling Study on Detachment of Silver Nanoparticles in Saturated Granular Media

    NASA Astrophysics Data System (ADS)

    Kim, I.; Jeon, C. H.; Lawler, D. F.

    2017-12-01

    The detachment of citrate-capped silver nanoparticles (AgNPs) previously captured in a column packed with 350-μm glass beads was investigated either by increasing the hydrodynamic force (filtration velocity) or by reducing electrosteric attraction. Overall, the physical enforcement showed negligible (0.4 0.7%) release of attached AgNPs while the chemically-driven force resulted in the noticeable release up to 25.5% of attached AgNPs. Among the chemical parameters tested in this study, Na ionic strength reduction clearly demonstrated the reversible deposition in the secondary energy minimum of classical DLVO theory, yielding the most significant release of the attached AgNPs. The immediate and transient AgNP release after the ionic strength reduction further corroborated the weak deposition. However, an insignificant release was observed with Ca ionic strength reduction due to the strong Ca-citrate complexation and the subsequent deposition in the primary energy minimum; calculations indicated that the depth of the secondary energy minimum was only 1/10 that of the Na ion case. The natural organic matter (NOM) coating on both AgNPs and granular media resulted in approximately 6.1% greater AgNP release compared to the case without NOM coating, indicating additional weak deposition due to the reduced steric attraction between AgNPs and granular media. A modified filtration model in agreement with the experimental data provided the estimated detachment coefficient as a transient AgNP releasing capacity independent of the amount of attached AgNPs. The marginal difference between the detachment coefficients from Na ionic strength reduction and NOM coating indicates the release potential by NOM coating was possibly underestimated in the experimental study due to a lesser amount of the initially attached AgNPs. The findings provide insights into chemical factors on possible reentrainment behavior of the engineered nanoparticles in soil and groundwater contamination.

  5. Adsorption of natural organic matter and disinfection byproduct precursors from surface water onto TiO2 nanoparticles: pH effects, isotherm modelling and implications for using TiO2 for drinking water treatment.

    PubMed

    Gora, Stephanie L; Andrews, Susan A

    2017-05-01

    Titanium dioxide is a photocatalyst that can remove organic contaminants of interest to the drinking water treatment industry, including natural organic matter (NOM) and disinfection byproduct (DBP) precursors. The photocatalytic reaction occurs in two steps: adsorption of the contaminant followed by degradation of the adsorbed contaminant upon irradiation with UV light. The second part of this process can lead to the formation of reactive intermediates and negative impacts on treated water quality, such as increased DBP formation potential (DBPfp). Adsorption alone does not result in the formation of reactive intermediates and thus may prove to be a safe way to incorporate TiO 2 into drinking water treatment processes. The goal of this study was to expand on the current understanding of NOM adsorption on TiO 2 and examine it in a drinking water context by observing NOM adsorption from real water sources and evaluating the effects of the resulting reductions on the DBPfp of the treated water. Bottle point isotherm tests were conducted with raw water from two Canadian water treatment plants adjusted to pH 4, pH 6 and pH 8 and dosed with TiO 2 nanoparticles. The DOC results were a good fit to a modified Freundlich isotherm. DBP precursors and liquid chromatography with organic carbon detection NOM fractions associated with DBP formation were removed to some extent at all pHs, but most effectively at pH 4. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Anaerobic Methane Oxidation Driven by Microbial Reduction of Natural Organic Matter in a Tropical Wetland

    PubMed Central

    Valenzuela, Edgardo I.; Prieto-Davó, Alejandra; López-Lozano, Nguyen E.; Hernández-Eligio, Alberto; Vega-Alvarado, Leticia; Juárez, Katy; García-González, Ana Sarahí; López, Mercedes G.

    2017-01-01

    ABSTRACT Wetlands constitute the main natural source of methane on Earth due to their high content of natural organic matter (NOM), but key drivers, such as electron acceptors, supporting methanotrophic activities in these habitats are poorly understood. We performed anoxic incubations using freshly collected sediment, along with water samples harvested from a tropical wetland, amended with 13C-methane (0.67 atm) to test the capacity of its microbial community to perform anaerobic oxidation of methane (AOM) linked to the reduction of the humic fraction of its NOM. Collected evidence demonstrates that electron-accepting functional groups (e.g., quinones) present in NOM fueled AOM by serving as a terminal electron acceptor. Indeed, while sulfate reduction was the predominant process, accounting for up to 42.5% of the AOM activities, the microbial reduction of NOM concomitantly occurred. Furthermore, enrichment of wetland sediment with external NOM provided a complementary electron-accepting capacity, of which reduction accounted for ∼100 nmol 13CH4 oxidized · cm−3 · day−1. Spectroscopic evidence showed that quinone moieties were heterogeneously distributed in the wetland sediment, and their reduction occurred during the course of AOM. Moreover, an enrichment derived from wetland sediments performing AOM linked to NOM reduction stoichiometrically oxidized methane coupled to the reduction of the humic analogue anthraquinone-2,6-disulfonate. Microbial populations potentially involved in AOM coupled to microbial reduction of NOM were dominated by divergent biota from putative AOM-associated archaea. We estimate that this microbial process potentially contributes to the suppression of up to 114 teragrams (Tg) of CH4 · year−1 in coastal wetlands and more than 1,300 Tg · year−1, considering the global wetland area. IMPORTANCE The identification of key processes governing methane emissions from natural systems is of major importance considering the global warming effects triggered by this greenhouse gas. Anaerobic oxidation of methane (AOM) coupled to the microbial reduction of distinct electron acceptors plays a pivotal role in mitigating methane emissions from ecosystems. Given their high organic content, wetlands constitute the largest natural source of atmospheric methane. Nevertheless, processes controlling methane emissions in these environments are poorly understood. Here, we provide tracer analysis with 13CH4 and spectroscopic evidence revealing that AOM linked to the microbial reduction of redox functional groups in natural organic matter (NOM) prevails in a tropical wetland. We suggest that microbial reduction of NOM may largely contribute to the suppression of methane emissions from tropical wetlands. This is a novel avenue within the carbon cycle in which slowly decaying NOM (e.g., humic fraction) in organotrophic environments fuels AOM by serving as a terminal electron acceptor. PMID:28341676

  7. Anaerobic Methane Oxidation Driven by Microbial Reduction of Natural Organic Matter in a Tropical Wetland.

    PubMed

    Valenzuela, Edgardo I; Prieto-Davó, Alejandra; López-Lozano, Nguyen E; Hernández-Eligio, Alberto; Vega-Alvarado, Leticia; Juárez, Katy; García-González, Ana Sarahí; López, Mercedes G; Cervantes, Francisco J

    2017-06-01

    Wetlands constitute the main natural source of methane on Earth due to their high content of natural organic matter (NOM), but key drivers, such as electron acceptors, supporting methanotrophic activities in these habitats are poorly understood. We performed anoxic incubations using freshly collected sediment, along with water samples harvested from a tropical wetland, amended with 13 C-methane (0.67 atm) to test the capacity of its microbial community to perform anaerobic oxidation of methane (AOM) linked to the reduction of the humic fraction of its NOM. Collected evidence demonstrates that electron-accepting functional groups (e.g., quinones) present in NOM fueled AOM by serving as a terminal electron acceptor. Indeed, while sulfate reduction was the predominant process, accounting for up to 42.5% of the AOM activities, the microbial reduction of NOM concomitantly occurred. Furthermore, enrichment of wetland sediment with external NOM provided a complementary electron-accepting capacity, of which reduction accounted for ∼100 nmol 13 CH 4 oxidized · cm -3 · day -1 Spectroscopic evidence showed that quinone moieties were heterogeneously distributed in the wetland sediment, and their reduction occurred during the course of AOM. Moreover, an enrichment derived from wetland sediments performing AOM linked to NOM reduction stoichiometrically oxidized methane coupled to the reduction of the humic analogue anthraquinone-2,6-disulfonate. Microbial populations potentially involved in AOM coupled to microbial reduction of NOM were dominated by divergent biota from putative AOM-associated archaea. We estimate that this microbial process potentially contributes to the suppression of up to 114 teragrams (Tg) of CH 4 · year -1 in coastal wetlands and more than 1,300 Tg · year -1 , considering the global wetland area. IMPORTANCE The identification of key processes governing methane emissions from natural systems is of major importance considering the global warming effects triggered by this greenhouse gas. Anaerobic oxidation of methane (AOM) coupled to the microbial reduction of distinct electron acceptors plays a pivotal role in mitigating methane emissions from ecosystems. Given their high organic content, wetlands constitute the largest natural source of atmospheric methane. Nevertheless, processes controlling methane emissions in these environments are poorly understood. Here, we provide tracer analysis with 13 CH 4 and spectroscopic evidence revealing that AOM linked to the microbial reduction of redox functional groups in natural organic matter (NOM) prevails in a tropical wetland. We suggest that microbial reduction of NOM may largely contribute to the suppression of methane emissions from tropical wetlands. This is a novel avenue within the carbon cycle in which slowly decaying NOM (e.g., humic fraction) in organotrophic environments fuels AOM by serving as a terminal electron acceptor. Copyright © 2017 American Society for Microbiology.

  8. Preservation of NOM-metal complexes in a modern hyperalkaline stalagmite: Implications for speleothem trace element geochemistry

    NASA Astrophysics Data System (ADS)

    Hartland, Adam; Fairchild, Ian J.; Müller, Wolfgang; Dominguez-Villar, David

    2014-03-01

    We report the first quantitative study of the capture of colloidal natural organic matter (NOM) and NOM-complexed trace metals (V, Co, Cu, Ni) in speleothems. This study combines published NOM-metal dripwater speciation measurements with high-resolution laser ablation ICPMS (LA-ICPMS) and sub-annual stable isotope ratio (δ18O and δ13C), fluorescence and total organic carbon (TOC) analyses of a fast-growing hyperalkaline stalagmite (pH ˜11) from Poole’s Cavern, Derbyshire UK, which formed between 1997 and 2008 AD. We suggest that the findings reported here elucidate trace element variations arising from colloidal transport and calcite precipitation rate changes observed in multiple, natural speleothems deposited at ca. pH 7-8. We find that NOM-metal(aq) complexes on the boundary between colloidal and dissolved (˜1 nm diameter) show an annual cyclicity which is inversely correlated with the alkaline earth metals and is explained by calcite precipitation rate changes (as recorded by kinetically-fractionated stable isotopes). This relates to the strength of the NOM-metal complexation reaction, resulting in very strongly bound metals (Co in this system) essentially recording NOM co-precipitation (ternary complexation). More specifically, empirical partition coefficient (Kd) values between surface-reactive metals (V, Co, Cu, Ni) [expressed as ratio of trace element to Ca ratios in calcite and in solution] arise from variations in the ‘free’ fraction of total metal in aqueous solution (fm). Hence, differences in the preservation of each metal in calcite can be explained quantitatively by their complexation behaviour with aqueous NOM. Differences between inorganic Kd values and field measurements for metal partitioning into calcite occur where [free metal] ≪ [total metal] due to complexation reactions between metals and organic ligands (and potentially inorganic colloids). It follows that where fm ≈ 0, apparent inorganic Kd app values are also ≈0, but the true partition coefficient (Kd actual) is significantly higher. Importantly, the Kd of NOM-metal complexes [organic carbon-metal ratio) approaches 1 for the most stable aqueous complexes, as is shown here for Co, but has values of 24-150 for V, Ni and Cu. This implies that ternary surface complexation (metal-ligand co-adsorption) can occur (as for NOM-Co), but is the exception rather than the rule. We also demonstrate the potential for trace metals to record information on NOM composition as expressed through changing NOM-metal complexation patterns in dripwaters. Therefore, a suite of trace metals in stalagmites show variations clearly attributable to changes in organic ligand concentration and composition, and which potentially reflect the state of overlying surface ecosystems. The heterogeneous speciation and size distribution of aqueous NOM and metals (Lead and Wilkinson, 2006; Aiken et al., 2011). The variability in NOM-metal transport in caves that arises from the interaction between infiltration, flow routing, and the hydrodynamic properties of the fine colloids and particulates (Hartland et al., 2012). Variable dissociation kinetics through time as a function of (a) (Hartland et al., 2011). The surface charge of calcite and the availability of CaCO3 lattice sites as well as increased incidence of crystallographic defects with implications for incorporation of a range of trace species (Fairchild and Treble, 2009; Fairchild and Hartland, 2010). Thus, incorporation in speleothem calcite with consistent surface site properties will be determined by: The size and composition (i.e. hydrophilicity/hydrophobicity) of the NOM ligand, affecting adsorption and stability at the calcite surface. The lability (i.e. exchangeability) of the complexed metal and its binding affinity for the calcite surface. The concentration of aqueous complexes. Given the complexities, a partitioning approach to the problem is appropriate as a first approximation rather than a precise description. This study seeks to make the first quantitative connection between the organic and inorganic compositions of speleothems and thus determine the potential for speleothems to encode fluctuations in colloid-facilitated trace metal transport in karst aquifers. Recent findings of direct relevance to the present studyThe conjugate dripwater (PE1) to the stalagmite studied here (PC-08-1) was characterised in June 2009 using an array of complementary techniques, in which the size, speciation and lability of NOM-metal complexes was characterised (Hartland et al., 2011), where lability is defined as the capacity for complexes to dissociate in the context of the on-going interfacial process at the stalagmite surface. In PE1 dripwater, the most stable aqueous complexes were formed between Co and the finest, low molecular weight component of the NOM spectrum (Hartland et al., 2011). Speciation experiments demonstrated that Co was essentially non-exchangeable (free metal (fm) = <0.05), being retained in aqueous complexes, whilst Cu, Ni and V were all predominantly bound by NOM (fm = 0.2-0.3).In contrast, Sr and Ba were freely exchangeable between the solution and solid phase (Hartland et al., 2011) and Mg was absent, presumably due to the poor solubility of Mg(OH)2 at hyperalkaline pH (Ksp = 1.5 × 10-11): Mg2+(aq)+2OH-(aq)↔Mg( On the other hand, the transition metals were not lost as insoluble hydroxides (Hartland et al., 2012), despite having lower solubility than Mg (e.g. Cu(OH)2Ksp = 2.2 × 10-20); and this is consistent with the dominant role of NOM in solubilising and transporting the transition metals in this system (Hartland et al., 2011).The transport of metals by complexes with NOM in PE1 dripwater through the hydrological year was studied by Hartland et al. (2012). This study had two findings of direct relevance to the study of trace metal variations in the conjugate PC-08-1 stalagmite: Complexes between metals and the smallest, low-molecular weight fraction of NOM showed an attenuated delivery in dripwaters consistent with the non-conservative behaviour of analogous tracers in fractured-rock studies due to diffusion into micro-fractures. This mode of transport was termed ‘low-flux’ and was the dominant mode of transport for Co and V. Complexes between metals and coarse colloids (>100 nm) and particulates (>1000 nm) showed a rapid responsiveness to infiltration events. This was termed the ‘high-flux’ mode of NOM-metal transport and was interpreted as being dominantly fracture-fed. This mode of transport was dominated by Cu, Zn and Ni. The ‘high-flux’ vs ‘low-flux’ interplay of trace metal transport is summarised in Fig. 1.The PC-08-1 stalagmite studied here was deposited following the removal of stalagmite PC-97-1 studied by Baker et al. (1999b) and which grew under the PE1 drip point between 1927 and 1997. Both the PC-97-1 stalagmite and its regrowth (PC-08-1) are characterised by annual lamina couplets consisting of a porous pale layer and a dense fluorescent layer. Fluorescence in the PC-97-1 stalagmite displayed a marked sinusoidal pattern with 10% of laminae exhibiting a double band structure (Baker et al., 1999b).

  9. Estimating variance components and breeding values for number of oocytes and number of embryos in dairy cattle using a single-step genomic evaluation.

    PubMed

    Cornelissen, M A M C; Mullaart, E; Van der Linde, C; Mulder, H A

    2017-06-01

    Reproductive technologies such as multiple ovulation and embryo transfer (MOET) and ovum pick-up (OPU) accelerate genetic improvement in dairy breeding schemes. To enhance the efficiency of embryo production, breeding values for traits such as number of oocytes (NoO) and number of MOET embryos (NoM) can help in selection of donors with high MOET or OPU efficiency. The aim of this study was therefore to estimate variance components and (genomic) breeding values for NoO and NoM based on Dutch Holstein data. Furthermore, a 10-fold cross-validation was carried out to assess the accuracy of pedigree and genomic breeding values for NoO and NoM. For NoO, 40,734 OPU sessions between 1993 and 2015 were analyzed. These OPU sessions originated from 2,543 donors, from which 1,144 were genotyped. For NoM, 35,695 sessions between 1994 and 2015 were analyzed. These MOET sessions originated from 13,868 donors, from which 3,716 were genotyped. Analyses were done using only pedigree information and using a single-step genomic BLUP (ssGBLUP) approach combining genomic information and pedigree information. Heritabilities were very similar based on pedigree information or based on ssGBLUP [i.e., 0.32 (standard error = 0.03) for NoO and 0.21 (standard error = 0.01) for NoM with pedigree, 0.31 (standard error = 0.03) for NoO, and 0.22 (standard error = 0.01) for NoM with ssGBLUP]. For animals without their own information as mimicked in the cross-validation, the accuracy of pedigree-based breeding values was 0.46 for NoO and NoM. The accuracies of genomic breeding values from ssGBLUP were 0.54 for NoO and 0.52 for NoM. These results show that including genomic information increases the accuracies. These moderate accuracies in combination with a large genetic variance show good opportunities for selection of potential bull dams. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Surgical intervention for paediatric liver injuries is almost history - a 12-year cohort from a major Scandinavian trauma centre.

    PubMed

    Koyama, Tomohide; Skattum, Jorunn; Engelsen, Peder; Eken, Torsten; Gaarder, Christine; Naess, Pål Aksel

    2016-11-29

    Although nonoperative management (NOM) has become standard care, optimal treatment of liver injuries in children is still challenging since many of these patients have multiple injuries. Moreover, the role of angiography remains poorly defined, and a high index of suspicion of complications is warranted. This study reviews treatment and outcomes in children with liver injuries at a major Scandinavian trauma centre over a 12-year period. Patients <17 years old with liver injury admitted to Oslo University Hospital Ullevaal during the period 2002-2013 were retrospectively reviewed. Data were compiled from the institutional trauma registry and medical records. A total of 66 children were included. The majority was severely injured as reflected by a median injury severity score of 20.5 (mean 22.2). NOM was attempted in 60 (90.9%) patients and was successful in 57, resulting in a NOM success rate of 95.0% [95% CI 89.3 to 100]. Only one of the three NOM failures was liver related, occurred in the early part of the study period, and consisted in operative placement of drains for bile leak. Two (3.0%) patients underwent angiographic embolization (AE). Complications occurred in 18 (27.3% [95 % CI 16.2 to 38.3]) patients. Only 2 (3.0%) patients had liver related complications, in both cases bile leak. Six (9.1%) patients underwent therapeutic laparotomy for non-liver related injuries. Two (3.0%) patients died secondary to traumatic brain injury. This single institution paediatric liver injury cohort confirms high attempted NOM and NOM success rates even in patients with high grade injuries and multiple accompanying injuries. AE can be a useful NOM adjunct in the treatment of paediatric liver injuries, but is seldom indicated. Moreover, bile leak is the most common liver-related complication and the need for liver-related surgery is very infrequent. NOM is the treatment of choice in almost all liver injuries in children, with operative management and interventional radiology very infrequently indicated.

  11. Influence of natural organic matter on the screening of pharmaceuticals in water by using liquid chromatography with full scan mass spectrometry.

    PubMed

    Rivera, Zahira Herrera; Oosterink, Efraim; Rietveld, Luuk; Schoutsen, Frans; Stolker, Linda

    2011-08-26

    The influence of natural organic matter on the screening of pharmaceuticals in water was determined by using high resolution liquid chromatography (HRLC) combined with full scan mass spectrometry (MS) techniques like time of flight (ToF) or Orbitrap MS. Water samples containing different amount of natural organic matter (NOM) and residues of a set of 11 pharmaceuticals were analyzed by using Exactive Orbitrap™ LC-MS. The samples were screened for residues of pharmaceuticals belonging to different classes like benzimidazoles, macrolides, penicillins, quinolones, sulfonamides, tetracyclines, tranquillizers, non-steroidal anti-inflammatory drugs (NSAIDs), anti-epileptics and lipid regulators. The method characteristics were established over a concentration range of 0.1-500 μg L(-1). The 11 pharmaceuticals were added to two effluent and two influent water samples. The NOM concentration within the samples ranged from 2 to 8 mg L(-1) of dissolved organic carbon. The HRLC-Exactive Orbitrap™ LC-MS system was set at a resolution of 50,000 (FWHM) and this selection was found sufficient for the detection of the list of pharmaceuticals. With this resolution setting, accurate mass measurements with errors below 2 ppm were found, despite of the NOM concentration of the different types of water samples. The linearities were acceptable with correlation coefficients greater than 0.95 for 30 of the 51 measured linearities. The limit of detection varies between 0.1 μg L(-1)and 100 μg L(-1). It was demonstrated that sensitivity could be affected by matrix constituents in both directions of signal reduction or enhancement. Finally it was concluded that with direct shoot method used (no sample pretreatment) all compounds, were detected but LODs depend on matrix-analyte-concentration combination. No direct relation was observed between NOM concentration and method characteristics. For accurate quantification the use of internal standards and/or sample clean-up is necessary. The direct shoot method is only applicable for qualitative screening purposes. The use of full scan MS makes it possible to search for unknown contaminants. With the use of adequate software and a database containing more than 50,000 entries a tool is available to search for unknowns. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Adsorption of Methyl Tertiary Butyl Ether on Granular Zeolites: Batch and Column Studies

    PubMed Central

    Abu-Lail, Laila; Bergendahl, John A.; Thompson, Robert W.

    2010-01-01

    Methyl tertiary butyl ether (MTBE) has been shown to be readily removed from water with powdered zeolites, but the passage of water through fixed beds of very small powdered zeolites produces high friction losses not encountered in flow through larger sized granular materials. In this study, equilibrium and kinetic adsorption of MTBE onto granular zeolites, a coconut shell granular activated carbon (CS-1240), and a commercial carbon adsorbent (CCA) sample was evaluated. In addition, the effect of natural organic matter (NOM) on MTBE adsorption was evaluated. Batch adsorption experiments determined that ZSM-5 was the most effective granular zeolite for MTBE adsorption. Further equilibrium and kinetic experiments verified that granular ZSM-5 is superior to CS-1240 and CCA in removing MTBE from water. No competitive-adsorption effects between NOM and MTBE were observed for adsorption to granular ZSM-5 or CS-1240, however there was competition between NOM and MTBE for adsorption onto the CCA granules. Fixed-bed adsorption experiments for longer run times were performed using granular ZSM-5. The bed depth service time model (BDST) was used to analyze the breakthrough data. PMID:20153106

  13. Modélisation des phénomènes électromagnétiques dans les matériaux supraconducteurs

    NASA Astrophysics Data System (ADS)

    Maslouh, M.; Bouillault, F.

    1998-03-01

    This paper describes a numerical method to determine the losses in a solid superconductor plunged in transverse magnetic field or in transport current. The model which is based on the Bean critical state, shows that the hysteretic phenomena are taken in account. Cet article présente une méthode de calcul permettant la détermination des pertes dans un matériau massif supraconducteur soumis à un champ magnétique transversal ou parcouru par un courant de transport. Le modèle, basé sur celui de l'état critique de Bean, met en évidence le caractère hystérétique des phénomènes.

  14. Characterization of Natural Organic Matter in Low-Carbon Environments: Extraction and Analytical Approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Patricia M.; Nico, Peter S.; Tfaily, Malak M.

    2017-12-31

    Sediment-associated natural organic matter (NOM) is a complex assemblage of organic molecules with a wide range of sizes, functional groups, and structures, which is intricately associated with mineral particles. Organic carbon (OC) concentrations in subsurface sediments are typically 10 to 200 times lower than in surface soils, posing a distinct challenge for characterization. A range of chemical extractions were evaluated for extraction of NOM, and a NOM extraction scheme was developed using a combination of sequential extraction with water (MQ) and sodium pyrophosphate at pH 10 (PP), and purification by dialysis and solid phase extraction in order to isolate differentmore » fractions of sediment-associated NOM. Analysis of these different NOM fractions was then carried out by Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible (UV-Vis) spectroscopy, and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS). The OC extraction efficiency of the tested extractions followed the order PP>NaOH>HCl=hydroxylamine hydrochloride>dithionite. Greater concentrations of OC in PP vs NaOH extracts suggest that metal complexation and/or ligand exchange plays an important role in OC stabilization. Characterization of different pools of extraction NOM by FITR shows that the water soluble fraction has a higher fraction of aliphatic and carboxylic groups, while the PP fractions have higher C=C groups. This trend from aliphatic to more aromatic is also supported by the UV-Vis and ESI-FTICR-MS data.« less

  15. Characterization of natural organic matter in low-carbon sediments: Extraction and analytical approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Patricia M.; Nico, Peter S.; Tfaily, Malak M.

    Sediment-associated natural organic matter (NOM) is a complex assemblage of organic molecules with a wide range of sizes, functional groups, and structures, which is intricately associated with mineral particles. Organic carbon (OC) concentrations in subsurface sediments are typically 10 to 200 times lower than in surface soils, posing a distinct challenge for characterization. A range of chemical extractions were evaluated for extraction of NOM, and a NOM extraction scheme was developed using a combination of sequential extraction with water (MQ) and sodium pyrophosphate at pH 10 (PP), and purification by dialysis and solid phase extraction in order to isolate differentmore » fractions of sediment-associated NOM. Analysis of these different NOM fractions was then carried out by Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible (UV-Vis) spectroscopy, and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS). The OC extraction efficiency of the tested extractions followed the order PP>NaOH>HCl=hydroxylamine hydrochloride>dithionite. Greater concentrations of OC in PP vs NaOH extracts suggest that metal complexation and/or ligand exchange plays an important role in OC stabilization. Characterization of different pools of extraction NOM by FITR shows that the water soluble fraction has a higher fraction of aliphatic and carboxylic groups, while the PP fractions have higher C=C groups. This trend from aliphatic to more aromatic is also supported by the UV-Vis and ESI-FTICR-MS data.« less

  16. Interaction of Benzo(a)pyrene with the natural organic matter of soil using three-dimensional (3-D) fluorescence spectroscopy with Parallel Factor Analysis

    NASA Astrophysics Data System (ADS)

    El Fallah, Rawa

    2017-04-01

    Benzo(a)pyrene (BaP) is a polycyclic aromatic hydrocarbon arising mainly from the incomplete combustion of organic material. It is toxic and has mutagenic and carcinogenic properties. It is classified as a priority pollutant by The United States Environmental Protection Agency (US-EPA). After it's emission in the atmosphere, and due to its physico-chemical properties, BaP will be deposited in the soil. Its aromaticity gives it the capacity to be studied by fluorescence spectroscopy so that of the Natural Organic Matter (NOM). In this study we used fluorescence excitation-emission-matrix (FEEM) with Parallel Factor analysis (PARAFAC) to study the interaction between NOM of soil and BaP. Soil sample was treated with Tetrasodium pyrophosphate along with Sodium hydroxide to obtain the Humic Substances, which afterwards were physically fractioned under acidic pH into solid Humic Acid and liquid Fulvic Acid. Three concentrations of BaP solution were added to each soil fraction. We compared the results of PARAFAC analysis of the samples containing BaP and the original NOM fractions. In the samples containing BaP, four fluorophores (components) were found, the fourth identified as BaP. Out of the three other fluorophores characteristic of NOM, two were found similar in all NOM fractions whereas only one fluorophore had some variations in its spectral characteristics. The presence of BaP changed the fluorescence of NOM. These modifications were depending on the type of soil fraction.

  17. Interactions of carbon nanotubes with aqueous/aquatic media containing organic/inorganic contaminants and selected organisms of aquatic ecosystems--A review.

    PubMed

    Boncel, Sławomir; Kyzioł-Komosińska, Joanna; Krzyżewska, Iwona; Czupioł, Justyna

    2015-10-01

    Due to their unique molecular architecture translating into numerous every-day applications, carbon nanotubes (CNTs) will be ultimately an increasingly significant environmental contaminant. This work reviews qualitative/quantitative analyses of interactions of various types of CNTs and their chemically modified analogues with aqueous/aquatic media containing organic and inorganic contaminants and selected organisms of aquatic ecosystems. A special emphasis was placed on physicochemical interactions between CNTs as adsorbents of heavy metal cations and aromatic compounds (dyes) with its environmental consequences. The studies revealed CNTs as more powerful adsorbents of aromatic compounds (an order of magnitude higher adsorption capacity) than metal cations. Depending on the presence of natural organic matter (NOM) and/or co-contaminants, CNTs may act as Trojan horse while passing through biological membranes (in the absence of NOM coordinating metal ions). Nanotubes, depending on flow conditions and their morphology/surface chemistry, may travel with natural waters or sediment with immobilized PAHs or metals and/or increase cyto- and ecotoxicity of PAHs/metal ions by their release via competitive complexation, or cause synergic ecotoxicity while adsorbing nutrients. Additionally, toxicity of CNTs against exemplary aquatic microorganisms was reviewed. It was found for Daphnia magna that longer exposures to CNTs led to higher ecotoxicity with a prolonged CNTs excretion. SWCNTs were more toxic than MWCNTs, while hydrophilization of CNTs via oxidation or anchoring thereto polar/positively charged polymer chains enhanced stability of nanotubes dispersion in aqueous media. On the other hand, bioavailability of functionalized CNTs was improved leading to more complex both mechanisms of uptake and cytotoxic effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Natural organic matters removal efficiency by coagulation

    NASA Astrophysics Data System (ADS)

    Sapingi, Mohd Sharizal Mohd; Pishal, Munirah; Murshed, Mohamad Fared

    2017-10-01

    The presence of Natural Organic Matter (NOM) in surface water results in unwanted characteristics in terms of color, odor, and taste. NOM content reaction with free chlorine in treated water lowers the water quality further. Chlorine is added for disinfection and produces undesirable disinfection by-products (DPBs). DBPs in drinking water are carcinogenic to consumers and may promote cancerous cell development in the human body. This study was performed to compare the coagulant efficiency of aluminum sulfate (Alum) and ferric chloride (FeCl3) on NOM removal (as in UV254 absorbance) and turbidity removal under three pH conditions (pH 6, pH 7, and sample actual pH). The three sampling points for these studies were Jalan Baru River, Kerian River, and Redac Pond. Additional sampling points, such as Lubuk Buntar and a tubewell located in the Civil Engineering School, were included to observe differences in characteristics. DOC, UV absorbance, and full wavelength were tested, after which samples treated with alum were also tested to further analyze the NOM content. Based on UV254 absorbance and DOC data, specific UV value was calculated to obtain vital synopsis of the characteristics of NOM content, as well as coagulation efficiency.

  19. Exploring how organic matter controls structural transformations in natural aquatic nanocolloidal dispersions.

    PubMed

    King, Stephen M; Jarvie, Helen P

    2012-07-03

    The response of the dispersion nanostructure of surface river bed sediment to the controlled removal and readdition of natural organic matter (NOM), in the absence and presence of background electrolyte, was examined using the technique of small-angle neutron scattering (SANS). Partial NOM removal induced aggregation of the mineral particles, but more extensive NOM removal restored colloidal stability. When peat humic acid (PHA) was added to a NOM-deficient sediment concentration-related structural transformations were observed: at 255 mg/L PHA aggregation of the nanocolloid was actually enhanced, but at 380 mg/L PHA disaggregation and colloidal stability were promoted. The addition of 2 mM CaCl(2) induced mild aggregation in the native sediment but not in sediments with added PHA, suggesting that the native NOM and the PHA respond differently to changes in ionic strength. A first attempt at using SANS to directly characterize the thickness and coverage of an adsorbed PHA layer in a natural nanocolloid is also presented. The results are discussed in the context of a hierarchical aquatic colloidal nanostructure, and the implications for contemporary studies of the role of dissolved organic carbon (DOC) in sustaining the transport of colloidal iron in upland catchments.

  20. Natural Organic Matter Removal and Fouling in a Low Pressure Hybrid Membrane Systems

    PubMed Central

    Uyak, Vedat; Akdagli, Muge; Cakmakci, Mehmet; Koyuncu, Ismail

    2014-01-01

    The objective of this study was to investigate powdered activated carbon (PAC) contribution to natural organic matter (NOM) removal by a submerged MF and UF hybrid systems. It was found that filtration of surface waters by a bare MF and UF membranes removed negligible TOC; by contrast, significant amounts of TOC were removed when daily added PAC particles were predeposited on the membrane surfaces. These results support the assumption that the membranes surface properties and PAC layer structure might have considerably influential factor on NOM removal. Moreover, it was concluded that the dominant removal mechanism of hybrid membrane system is adsorption of NOM within PAC layer rather than size exclusion of NOM by both of membrane pores. Transmembrane pressure (TMP) increases with PAC membrane systems support the view that PAC adsorption pretreatment will not prevent the development of membrane pressure; on the contrary, PAC particles themselves caused membrane fouling by blocking the entrance of pores of MF and UF membranes. Although all three source waters have similar HPI content, it appears that the PAC interaction with the entrance of membrane pores was responsible for offsetting the NOM fractional effects on membrane fouling for these source waters. PMID:24523651

  1. Department of the Army Supply Bulletin, Army Medical Department Supply Information, SB8-75-11

    DTIC Science & Technology

    2001-11-20

    SULFATE INJECTION USP 10MG 1ML CARTRIDGE-NEEDLE UNIT10S MFR: SANOFI LOT/SER NO: C790PD NSN: 6505-00-812-2596 NOM: MORPHINE SULFATE INJECTION...100 TABLETS PER BOTTLE MFR: SANOFI LOT/SER NO: SP344 NSN: 6505-01-178-7903 NOM: PYRIDOSTIGMINE BROMIDE TABLETS USP 30MG I.S. 210 TABS...ML 2ML SYRINGE WITH NEEDLE 10/PACKAGE MFR: SANOFI LOT/SER NO: C740RL NSN: 6505-01-274-0951 NOM: DIAZEPAM INJECTION USP 5MG/ML 2ML SYRINGE

  2. Single and combined effects of phosphate, silicate, and natural organic matter on arsenic removal from soft and hard groundwater using ferric chloride

    NASA Astrophysics Data System (ADS)

    Chanpiwat, Penradee; Hanh, Hoang Thi; Bang, Sunbaek; Kim, Kyoung-Woong

    2017-06-01

    In order to assess the effects of phosphate, silicate and natural organic matter (NOM) on arsenic removal by ferric chloride, batch coprecipitation experiments were conducted over a wide pH range using synthetic hard and soft groundwaters, similar to those found in northern Vietnam. The efficiency of arsenic removal from synthetic groundwater by coprecipitation with FeCl3 was remarkably decreased by the effects of PO4 3-, SiO4 4- and NOM. The negative effects of SiO4 4- and NOM on arsenic removal were not as strong as that of PO4 3-. Combining PO4 3- and SiO4 4- increased the negative effects on both arsenite (As3+) and arsenate (As5+) removal. The introduction of NOM into the synthetic groundwater containing both PO4 3- and SiO4 4- markedly magnified the negative effects on arsenic removal. In contrast, both Ca2+ and Mg2+ substantially increased the removal of As3+ at pH 8-12 and the removal of As5+ over the entire pH range. In the presence of Ca2+ and Mg2+, the interaction of NOM with Fe was either removed or the arsenic binding to Fe-NOM colloidal associations and/or dissolved complexes were flocculated. Removal of arsenic using coprecipitation by FeCl3 could not sufficiently reduce arsenic contents in the groundwater (350 μg/L) to meet the WHO guideline for drinking water (10 μg/L), especially when the arsenic-rich groundwater also contains co-occurring solutes such as PO4 3-, SiO4 4- and NOM; therefore, other remediation processes, such as membrane technology, should be introduced or additionally applied after this coprecipitation process, to ensure the safety of drinking water.

  3. Selective angiographic embolization of blunt splenic traumatic injuries in adults decreases failure rate of nonoperative management.

    PubMed

    Bhullar, Indermeet S; Frykberg, Eric R; Siragusa, Daniel; Chesire, David; Paul, Julia; Tepas, Joseph J; Kerwin, Andrew J

    2012-05-01

    To determine whether angioembolization (AE) in hemodynamically stable adult patients with blunt splenic trauma (BST) at high risk for failure of nonoperative management (NOM) (contrast blush [CB] on computed tomography, high-grade IV-V injuries, or decreasing hemoglobin) results in lower failure rates than reported. The records of patients with BST from July 2000 to December 2010 at a Level I trauma center were retrospectively reviewed using National Trauma Registry of the American College of Surgeons. Failure of NOM (FNOM) occurred if splenic surgery was required after attempted NOM. Logistic regression analysis was used to identify factors associated with FNOM. A total of 1,039 patients with BST were found. Pediatric patients (age <17 years), those who died in the emergency department, and those requiring immediate surgery for hemodynamic instability were excluded. Of the 539 (64% of all BST) hemodynamically stable patients who underwent NOM, 104 (19%) underwent AE and 435 (81%) were observed without AE (NO-AE). FNOM for the various groups were as follows: overall NOM (4%), NO-AE (4%), and AE (4%). There was no significant difference in FNOM for NO-AE versus AE for grades I to III: grade I (1% vs. 0%, p = 1), grade II (2% vs. 0%, p = 0.318), and grade III (5% vs. 0%, p = 0.562); however, a significant decrease in FNOM was noted with the addition of AE for grades IV to V: grade IV (23% vs. 3%, p = 0.04) and grade V (63% vs. 9%, p = 0.03). Statistically significant independent risk factors for FNOM were grade IV to V injuries and CB. Application of strictly defined selection criteria for NOM and AE in patients with BST resulted in one of the lowest overall FNOM rates (4%). Hemodynamically stable BST patients are candidates for NOM with selective AE for high-risk patients with grade IV to V injuries, CB on initial computed tomography, and/or decreasing hemoglobin levels. III, therapeutic study.

  4. Operative and nonoperative management for renal trauma: comparison of outcomes. A systematic review and meta-analysis

    PubMed Central

    Mingoli, Andrea; La Torre, Marco; Migliori, Emanuele; Cirillo, Bruno; Zambon, Martina; Sapienza, Paolo; Brachini, Gioia

    2017-01-01

    Introduction Preservation of kidney and renal function is the goal of nonoperative management (NOM) of renal trauma (RT). The advantages of NOM for minor blunt RT have already been clearly described, but its value for major blunt and penetrating RT is still under debate. We present a systematic review and meta-analysis on NOM for RT, which was compared with the operative management (OM) with respect to mortality, morbidity, and length of hospital stay (LOS). Methods The Preferred Reporting Items for Systematic Reviews and Meta-analyses statement was followed for this study. A systematic search was performed on Embase, Medline, Cochrane, and PubMed for studies published up to December 2015, without language restrictions, which compared NOM versus OM for renal injuries. Results Twenty nonrandomized retrospective cohort studies comprising 13,824 patients with blunt (2,998) or penetrating (10,826) RT were identified. When all RT were considered (American Association for the Surgery of Trauma grades 1–5), NOM was associated with lower mortality and morbidity rates compared to OM (8.3% vs 17.1%, odds ratio [OR] 0.471; 95% confidence interval [CI] 0.404–0.548; P<0.001 and 2% vs 53.3%, OR 0.0484; 95% CI 0.0279–0.0839, P<0.001). Likewise, NOM represented the gold standard treatment resulting in a lower mortality rate compared to OM even when only high-grade RT was considered (9.1% vs 17.9%, OR 0.332; 95% CI 0.155–0.708; P=0.004), be they blunt (4.1% vs 8.1%, OR 0.275; 95% CI 0.0957–0.788; P=0.016) or penetrating (9.1% vs 18.1%, OR 0.468; 95% CI 0.398–0.0552; P<0.001). Conclusion Our meta-analysis demonstrated that NOM for RT is the treatment of choice not only for AAST grades 1 and 2, but also for higher grade blunt and penetrating RT. PMID:28894376

  5. Nanometre-scale crystals formed in the presence of natural organic matter .

    NASA Astrophysics Data System (ADS)

    Frisia, Silvia; Borsato, Andrea; Zhang, Huiming; Meister, Patrick; Della Porta, Giovanna; Marjo, Chris; Cheong, Soshan; Hartland, Adam; Gattolin, Giovanni; Ischia, Gloria; Anderson, Ebony; Rich, Anne

    2017-04-01

    Nanocrystals have been observed to form micrite in several environments where natural organic matter (NOM) is present in dissolved, colloidal and particulate form, in both modern and ancient continental and marine sediments. In ancient (Triassic) marine deposits, we found perfectly preserved nanocrystal aggregates entombed by NOM, which appears to be associated with clay particulate. These nanocrystal, which have been preserved through million of years, bear similarities with nanocrystal observed in diverse, freshwater, modern settings. In modern and Holocene continental environments, micrite is of interest because of its association with archives of past climate, such as stalagmites. Nanocrystal aggregates forming micrite have been observed in association with microbial structures in tufa, thermal spring pisoids and in cave speleothems. We carried out "instant precipitation" experiments in several caves from New Zealand, Australia and and Italy, cut in both limestones and dolomites, with a focus on finding a relationship between NOM and micrite precipitation. Transmission Electron Microscope (TEM) investigations of the experimental precipitates suggest that nanocrystals nucleated already after 30 minutes on NOM colloids (as confirmed by EDS spectra) possibly originated in the soil zone. Some samples were left to "mature" for 24 hours: aggregates began to show some preferred orientation and a few single crystals on micrometer scale were also observed, which do not seem to be associated with NOM. Our preliminary results suggest that NOM, such as soil-derived humid and fulvic acids, aids nanocrystal aggregate nucleation and growth. The cave experiments seem to indicate that it is not necessary to have microbial mats, or EPS to favor formation of micrite. Our experiments did not capture the occurrence of amorphous precursors, but the amorphous phase may have been gone undetected as NOM is amorphous. Our findings have potential implications for the interpretation of ancient deposits consisting of micrite, where this fabric is not associated with clear microbial structures.

  6. A Summary of Publications on the Development of Mode-of ...

    EPA Pesticide Factsheets

    Chemical contaminants are formed as a consequence of chemical disinfection of public drinking waters. Chemical disinfectants, which are used to kill harmful microorganisms, react with natural organic matter (NOM), bromide, iodide, and other compounds, forming complex mixtures of potentially toxic disinfection byproducts (DBPs). The types and concentrations of DBPs formed during disinfection and the relative proportions of the components vary depending on factors such as source water conditions (e.g., types of NOM present), disinfectant type (e.g., chlorine, ozone, chloramine), and treatment conditions (e.g., pH and temperature). To date, over 500 DBPs have been detected in treated waters. However, typically more than 50% of the organic halide mass produced by chlorination disinfection consists of unidentified chemicals, which are not measured by routine analyses of DBPs. The protocols and methods typically used to evaluate chemical mixtures are best applied to simple defined mixtures consisting of relatively few chemicals. These approaches rely on assumptions (e.g., common mode of action, independent toxic action) regarding the type of joint toxic action (e.g., dose-additivity, synergism) that might be observed. Such methods, used for site assessments or toxicological studies, are often not sufficient to estimate health risk for complex drinking water DBP mixtures. Actual drinking water exposures involve multiple chemicals, many of w

  7. Organochlorine pesticides in lacustrine sediments and tilapias of Metztitlan, Hidalgo, Mexico.

    PubMed

    Fernández-Bringas, Laura M; Ponce-Vélez, Guadalupe; Calva, Laura G; Salgado-Ugarte, Isaías Hazamamberth; Botello, Alfonso V; Díaz González, Gilberto

    2008-09-01

    The organochlorine pesticides (OP) are very stable molecules, due to this stability; they are very resistant in the environment and highly related to fat tissues with a wide diffusion property and an average time life higher then 10 years. We studied sediments (November 2001, April and June 2002) and organisms collected in April and July (2002) from the lacustric zone of Metzitlán, Hidalgo, Mexico. The analysis was performed according to UNEP/IAEA (1982) (sediments) and UNEP/FAO/IOC/IAEA (1986) (organisms) methods. Three chemical families of organochlorine pesticides were identified and analyzed to determine posible toxicological risk. The principal organochlorine compounds found in sediments were gamma-HCH, delta-HCH, p,p'-DDT and the endosulfan sulfate; these xenobiotics come from agriculture lands near the river and lake, used intensively, and most probably carried by the rain and rain flows into the main water body. In the tilapias tissue, p,p'-DDD y delta-HCH were detected. The average concentrations of organochlorine pesticides in sediments were within the internacional limits for freshwater benthonic fauna, although lindane (gamma-HCH) was near the limit. The fish were above the criteria established in the local legislation (NOM-027-SSA1-1993 y NOM-028-SSA1-1993).

  8. Characterizing Variability In Ohio River Natural Organic Matter

    EPA Science Inventory

    Surface water contains natural organic matter (NOM) which reacts with disinfectants creating disinfection byproducts (DBPs), some of which are USEPA regulated contaminants. Characterizing NOM can provide important insight on DBP formation and water treatment process adaptation t...

  9. Characterization and disinfection by-product formation potential of natural organic matter in surface and ground waters from Northern Florida

    USGS Publications Warehouse

    Rostad, C.E.; Leenheer, J.A.; Katz, B.; Martin, B.S.; Noyes, T.I.

    2000-01-01

    Streamwaters in northern Florida have large concentrations of natural organic matter (NOM), and commonly flow directly into the ground water system through karst features, such as sinkholes. In this study NOM from northern Florida stream and ground waters was fractionated, the fractions characterized by infrared (IR) and nuclear magnetic resonance (NMR), and then chlorinated to investigate their disinfection by-product (DBP) formation potential (FP). As the NOM character changed (as quantified by changes in NOM distribution in various fractions, such as hydrophilic acids or hydrophobic neutrals) due to migration through the aquifer, the total organic halide (TOX)-FP and trihalomethane (THM)-FP yield of each of these fractions varied also. In surface waters, the greatest DBP yields were produced by the colloid fraction. In ground waters, DBP yield of the hydrophobic acid fraction (the greatest in terms of mass) decreased during infiltration.

  10. Extraction and characterization of ternary complexes between natural organic matter, cations, and oxyanions from a natural soil.

    PubMed

    Peel, Hannah R; Martin, David P; Bednar, Anthony J

    2017-06-01

    Natural organic matter (NOM) can have a significant influence on the mobility and fate of inorganic oxyanions, such as arsenic and selenium, in the environment. There is evidence to suggest that interactions between NOM and these oxyanions are facilitated by bridging cations (primarily Fe 3+ ) through the formation of ternary complexes. Building on previous work characterizing ternary complexes formed in the laboratory using purified NOM, this study describes the extraction and characterization of intact ternary complexes directly from a soil matrix. The complexes are stable to the basic extraction conditions (pH 12) and do not appear to change when the pH of the extract is adjusted back to neutral. The results suggest that ternary complexes between NOM, cations, and inorganic oxyanions exist in natural soils and could play a role in the speciation of inorganic oxyanions in environmental matrices. Published by Elsevier Ltd.

  11. Effect of Natural Organic Matter on Plutonium Sorption to Goethite

    DOE PAGES

    Conroy, Nathan A.; Zavarin, Mavrik; Kersting, Annie B.; ...

    2016-11-21

    For this research, the effect of citric acid (CA), desferrioxamine B (DFOB), fulvic acid (FA), and humic acid (HA) on plutonium (Pu) sorption to goethite was studied as a function of organic carbon concentration and pH using batch sorption experiments at 5 mg C·L –1 and 50 mg C·L –1 natural organic matter (NOM), 10 –9–10 –10 M 238Pu, and 0.1 g·L –1 goethite concentrations, at pH 3, 5, 7, and 9. Low sorption of ligands coupled with strong Pu complexation decreased Pu sorption at pH 5 and 7, relative to a ligand-free system. Conversely, CA, FA, and HA increasedmore » Pu sorption to goethite at pH 3, suggesting ternary complex formation or, in the case of humic acid, incorporation into HA aggregates. Mechanisms for ternary complex formation were characterized by Fourier transform infrared spectroscopy in the absence of Pu. CA and FA demonstrated clear surface interactions at pH 3, HA appeared unchanged suggesting HA aggregates had formed, and no DFOB interactions were observed. Plutonium sorption decreased in the presence of DFOB (relative to a ligand free system) at all pH values examined. Thus, DFOB does not appear to facilitate formation of ternary Pu-DFOB-goethite complexes. At pH 9, Pu sorption in the presence of all NOM increased relative to pH 5 and 7; speciation models attributed this to Pu(IV) hydrolysis competing with ligand complexation, increasing sorption. In conclusion, the results indicate that in simple Pu-NOM-goethite ternary batch systems, NOM will decrease Pu sorption to goethite at all but particularly low pH conditions.« less

  12. Effect of Natural Organic Matter on Plutonium Sorption to Goethite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conroy, Nathan A.; Zavarin, Mavrik; Kersting, Annie B.

    For this research, the effect of citric acid (CA), desferrioxamine B (DFOB), fulvic acid (FA), and humic acid (HA) on plutonium (Pu) sorption to goethite was studied as a function of organic carbon concentration and pH using batch sorption experiments at 5 mg C·L –1 and 50 mg C·L –1 natural organic matter (NOM), 10 –9–10 –10 M 238Pu, and 0.1 g·L –1 goethite concentrations, at pH 3, 5, 7, and 9. Low sorption of ligands coupled with strong Pu complexation decreased Pu sorption at pH 5 and 7, relative to a ligand-free system. Conversely, CA, FA, and HA increasedmore » Pu sorption to goethite at pH 3, suggesting ternary complex formation or, in the case of humic acid, incorporation into HA aggregates. Mechanisms for ternary complex formation were characterized by Fourier transform infrared spectroscopy in the absence of Pu. CA and FA demonstrated clear surface interactions at pH 3, HA appeared unchanged suggesting HA aggregates had formed, and no DFOB interactions were observed. Plutonium sorption decreased in the presence of DFOB (relative to a ligand free system) at all pH values examined. Thus, DFOB does not appear to facilitate formation of ternary Pu-DFOB-goethite complexes. At pH 9, Pu sorption in the presence of all NOM increased relative to pH 5 and 7; speciation models attributed this to Pu(IV) hydrolysis competing with ligand complexation, increasing sorption. In conclusion, the results indicate that in simple Pu-NOM-goethite ternary batch systems, NOM will decrease Pu sorption to goethite at all but particularly low pH conditions.« less

  13. Rational Design of Antifouling Polymeric Nanocomposite for Sustainable Fluoride Removal from NOM-Rich Water.

    PubMed

    Zhang, Xiaolin; Zhang, Lu; Li, Zhixian; Jiang, Zhao; Zheng, Qi; Lin, Bin; Pan, Bingcai

    2017-11-21

    The presence of natural organic matter (NOM) exerts adverse effects on adsorptive removal of various pollutants including fluoride from water. Herein, we designed a novel nanocomposite adsorbent for preferable and sustainable defluoridation from NOM-rich water. The nanocomposite (HZO@HCA) is obtained by encapsulating hydrous zirconium oxide nanoparticles (HZO NPs) inside hyper-cross-linked polystyrene anion exchanger (HCA) binding tertiary amine groups. Another commercially available nanocomposite HZO@D201, with the host of a cross-linked polystyrene anion exchanger (D201) binding ammonium groups, was involved for comparison. HZO@HCA features with abundant micropores instead of meso-/macropores of HZO@D201, resulting in the inaccessible sites for NOM due to the size exclusion. Also, the tertiary amine groups of HCA favor an efficient desorption of the slightly loaded NOM from HZO@HCA. As expected, Sigma-Aldrich humic acid even at 20 mg of DOC/L did not exert any observable effect on fluoride sequestration by HZO@HCA, whereas a significant inhibition was observed for HZO@D201. Cyclic adsorption runs further verified the superior reusability of HZO@HCA for defluoridation from NOM-rich water. In addition, the HZO@HCA column could generate ∼80 bed volume (BV) effluent from a synthetic fluoride-containing groundwater to meet the drinking water standard (<1.5 mg F/L), whereas HCA and HZO@D201 columns could only generate <5 and ∼40 BV effluents, respectively. This study is believed to shed new light on how to rationally design antifouling nanocomposites for water remediation.

  14. Pilot investigation of two-stage biofiltration for removal of natural organic matter in drinking water treatment.

    PubMed

    Fu, Jie; Lee, Wan-Ning; Coleman, Clark; Meyer, Melissa; Carter, Jason; Nowack, Kirk; Huang, Ching-Hua

    2017-01-01

    A pilot study employing two parallel trains of two-stage biofiltration, i.e., a sand/anthracite (SA) biofilter followed by a biologically-active granular activated carbon (GAC) contactor, was conducted to test the efficiency, feasibility and stability of biofiltration for removing natural organic matter (NOM) after coagulation in a drinking water treatment plant. Results showed the biofiltration process could effectively remove turbidity (<0.1 NTU in all effluents) and NOM (>24% of dissolved organic carbon (DOC), >57% of UV 254 , and >44% of SUVA 254 ), where the SA biofilters showed a strong capacity for turbidity removal, while the GAC contactors played the dominant role in NOM removal. The vertical profile of water quality in the GAC contactors indicated the middle-upper portion was the critical zone for the removal of NOM, where relatively higher adsorption and enhanced biological removal were afforded. Fluorescence excitation-emission matrix (EEM) analysis of NOM showed that the GAC contactors effectively decreased the content of humic-like component, while protein-like component was refractory for the biofiltration process. Nutrients (NH 4 -N and PO 4 -P) supplementation applied upstream of one of the two-stage biofiltration trains (called engineered biofiltration) stimulated the growth of microorganisms, and showed a modest effect on promoting the biological removal of small non-aromatic compositions in NOM. Redundancy analysis (RDA) indicated influent UV 254 was the most explanatory water quality parameter for GAC contactors' treatment performance, and a high load of UV 254 would result in significantly reduced removals of UV 254 and SUVA 254 . Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Synthesis and characterization of Ca-doped LaMnAsO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yong; Straszheim, Warren E.; Das, Pinaki

    Here, we report on our attempt to hole-dope the antiferromagnetic semiconductor LaMnAsO by substitution of the La 3+ site by Ca 2+. We use neutron and x-ray diffraction, magnetic susceptibility, and transport techniques to characterize polycrystalline (La 1–xCa x)MnAsO samples prepared by solid-state reaction and find that the parent compound is highly resistant to substitution with an upper limit x ≤ 0.01. Magnetic susceptibility of the parent and the x = 0.002(x nom = 0.04) compounds indicate a negligible presence of magnetic impurities (i.e., MnO or MnAs). Rietveld analysis of neutron and x-ray diffraction data shows the preservation of bothmore » the tetragonal (P4/nmm) structure upon doping and the antiferromagnetic ordering temperature, T N = 355 ± 5 K.« less

  16. Synthesis and characterization of Ca-doped LaMnAsO

    DOE PAGES

    Liu, Yong; Straszheim, Warren E.; Das, Pinaki; ...

    2018-05-18

    Here, we report on our attempt to hole-dope the antiferromagnetic semiconductor LaMnAsO by substitution of the La 3+ site by Ca 2+. We use neutron and x-ray diffraction, magnetic susceptibility, and transport techniques to characterize polycrystalline (La 1–xCa x)MnAsO samples prepared by solid-state reaction and find that the parent compound is highly resistant to substitution with an upper limit x ≤ 0.01. Magnetic susceptibility of the parent and the x = 0.002(x nom = 0.04) compounds indicate a negligible presence of magnetic impurities (i.e., MnO or MnAs). Rietveld analysis of neutron and x-ray diffraction data shows the preservation of bothmore » the tetragonal (P4/nmm) structure upon doping and the antiferromagnetic ordering temperature, T N = 355 ± 5 K.« less

  17. Nonoperative management of blunt splenic injury in adults: there is (still) a long way to go. The results of the Bologna-Maggiore Hospital trauma center experience and development of a clinical algorithm.

    PubMed

    Tugnoli, Gregorio; Bianchi, Elisa; Biscardi, Andrea; Coniglio, Carlo; Isceri, Salvatore; Simonetti, Luigi; Gordini, Giovanni; Di Saverio, Salomone

    2015-10-01

    Non-operative management (NOM) of hemodynamically stable patients with blunt splenic injury (BSI) is the standard of care, although it is associated with a potential risk of failure. Hemodynamically unstable patients should always undergo immediate surgery and avoid unnecessary CT scans. Angioembolization might help to increase the NOM rates, as well as NOM success rates. The aim of this study was to review and critically analyze the data from BSI cases managed at the Maggiore Hospital Trauma Center during the past 5 years, with a focus on NOM, its success rates and outcomes. A further aim was to develop a proposed clinical practical algorithm for the management of BSI derived from Clinical Audit experience. During the period between January 1, 2009 and December 31, 2013 we managed 293 patients with splenic lesions at the Trauma Center of Maggiore Hospital of Bologna. The data analyzed included the demographics, clinical parameters and characteristics, diagnostic and therapeutic data, as well as the outcomes and follow-up data. A retrospective evaluation of the clinical outcomes through a clinical audit has been used to design a practical clinical algorithm. During the five-year period, 293 patients with BSI were admitted, 77 of whom underwent immediate surgical management. The majority (216) of the patients was initially managed non-operatively and 207 of these patients experienced a successful NOM, with an overall rate of successful NOM of 70 % among all BSI cases. The success rate of NOM was 95.8 % in this series. All patients presenting with stable hemodynamics underwent an immediate CT-scan; angiography with embolization was performed in 54 cases for active contrast extravasation or in cases with grade V lesions even in absence of active bleeding. Proximal embolization was preferentially used for high-grade injuries. After a critical review of the cases treated during the past 5 years during a monthly clinical audit meeting, a clinical algorithm has been developed with the aim of standardizing the clinical management of BSI by a multidisciplinary team to include every patient within the correct diagnostic and therapeutic pathway, in order to improve the outcomes by potentially decreasing the NOM failure rates and to optimize the utilization of resources.

  18. Influence of Natural Organic Matter (NOM) Character on the Distribution of Chlorinated and Chloraminated Disinfection By-Products (DBPs) at Rand Water

    NASA Astrophysics Data System (ADS)

    Marais, Savia S.; Ncube, Esper J.; Haarhoff, Johannes; Msagati, Titus AM; Mamba, Bhekie B.; Nkambule, Thabo I.

    2016-04-01

    Certain disinfection by-products (DBPs) are likely human carcinogens or present mutagenic effects while many DBPs are unidentified. Considering the possibility of DBPs being harmful to human health and the fact that trihalomethanes (THMs) are the only regulated DBP in the South African National Standard (SANS:241) for drinking water, special interest in the precursors to these DBPs' formation is created. It is essential to understand the reactivity and character of the precursors responsible for the formation of DBPs in order to enhance precursor removal strategies during the treatment of drinking water. In this study the character of NOM within surface water and the subsequent distribution of THMs formed in the drinking water from Rand Waters' full scale treatment plant were investigated. Molecular size distribution (MSD) of NOM within the surface water was determined by high performance size exclusion chromatography (HPSEC). Specific ultraviolet absorbance (SUVA) and UV254 measurements formed part of the NOM character study as they provide an indication of the aromaticity of organic matter. The four THMs; bromoform, chloroform, dibromochloromethane (DBCM) and bromodichloromethane (BDCM)were measured by gas chromatography. The sum of these four THMs was expressed as total trihalomethane (TTHM). On average the chloroform constituted 76.2% of the total TTHM, BDCM 22.5% while DBCM and bromoform measured below the detection limit. THM speciation after chlorination and chloramination concentrations increased in the sequence bromoform < DBCM < BDCM < chloroform. Results of the MSD showed a significant correlation between NOM of high molecular size (peak I) and TTHM formation specifically during the summer months (R2= 0.971, p < 0.05). High molecular weight (HMW) NOM also related well to chloroform formation (R2 = 0.963, p < 0.05) however, the formation of BDCM was not due to HWM fraction as indicated by weak regression coefficient. A positive correlation existed between SUVA and UV254 removal percentage (R2 = 0.937, p < 0.05). Seasonal variability in NOM character was evident in the source water in summer when high temperatures and rainfall occurred. The results displayed are an indication that aromatic NOM were the main precursor to TTHM formation, more prominently during summer. Keywords: disinfection by-products, molecular size distribution, natural organic matter, UV254

  19. The role of allophane nano-structure and Fe oxide speciation for hosting soil organic matter in an allophanic Andosol

    NASA Astrophysics Data System (ADS)

    Filimonova, Svetlana; Kaufhold, Stephan; Wagner, Friedrich E.; Häusler, Werner; Kögel-Knabner, Ingrid

    2016-05-01

    We evaluated the impact of nano-structural characteristics of allophanic compounds and Fe oxide speciation on the efficiency of organo-mineral interactions in an allophanic Andosol derived from volcanic ash (Eifel mountains, Germany). The samples selected for our work represented a gradient from: (i) a pure synthetic allophane and (ii) model organo-mineral mixtures to (iii) particle size fractions of the natural Andosol. We thus aimed to link the processes operating at the individual molecular scale to the phenomena active at the aggregate scale. For a non-destructive characterization of the samples, we applied 129Xe NMR spectroscopy of adsorbed Xe atoms (to identify the mineral nano-structure and surface acid centres), ESEM (verifying the nano-spherical structure of allophane), 13C CPMAS NMR (for the nature of the soil organic matter (SOM)), 57Fe Mössbauer spectroscopy (Fe oxide speciation), and N2 adsorption (contribution of micro- and mesoporosity). By using the atomic probe Xe, we obtained evidence for a coupled mechanism of adsorption onto allophane requiring both the narrow pores (voids formed by the primary nano-spherules) and the acid centres located at the defect surfaces of the primary spherules. The validity of this coupled mechanism for the sorption of organic matter was confirmed by the concomitant blocking of acid centres (129Xe NMR data) and the decrease of the N2-available pore volumes (Vmicro and Vmeso) in the model samples DOM/- and NOM/allophane (DOM = dissolved OM, NOM = natural OM). In the Andosol, the high resistance of SOM against oxidation (OCresist = 15-50%) was combined with preferential accumulation of certain organic compounds, e.g. potentially labile substrates such as carbohydrates, and the low molecular weight species such as amino acids. This feature was attributed to the peculiar microporous tortuous structure of allophane aggregates that likely impose certain criteria for the chemical nature and size of mineral-bound SOM. On the other hand, the revealed dominance of nanoparticulate Fe oxyhydroxides (57% ferrihydrite) and Fe-substituted allophane (supposedly formed due to co-precipitation of the Al, Si and Fe in the course of volcanic soil formation) may substantially contribute to the formation of highly resistant organo-mineral associations through the enhanced extent of reactive surface groups in nanoparticles, increased surface charge density and electron accepting properties of substituting Fe3+ species that supposedly enhance the proportion of oxidised organic components.

  20. RIVERBANK FILTRATION: EFFECT OF GROUND PASSAGE ON NOM CHARACTER

    EPA Science Inventory

    Research was conducted to explore the effect of underground travel on the character of the natural organic matter (NOM) originating from the river water source during riverbank filtration (RBF) at three Midwestern US drinking water utilities. Measurements of biodegradable dissolv...

  1. Role of wetland organic matters as photosensitizer for degradation of micropollutants and metabolites.

    PubMed

    Lee, Eunkyung; Shon, Ho Kyong; Cho, Jaeweon

    2014-07-15

    Overall photodegradation of pharmaceuticals, personal care products (PPCPs) and pharmaceutical metabolites were investigated in order to evaluate their photochemical fate in aquatic environments in various natural organic matter (NOM) enriched solutions. Tested PPCPs exhibited different rates of loss during direct and indirect photolysis. Here, only ultraviolet (UV) light source was used for direct photolysis and UV together with (3)DOM(*)for indirect photolysis. Diclofenac and sulfamethoxazole were susceptible to photodegradation, whereas carbamazepine, caffeine, paraxanthine and tri(2-chloroethyl) phosphate (TCEP) showed low levels of photodegradation rate, reflecting their conservative photoreactivity. During indirect photodegradation, in contrast to the hydrophilic autochthonous NOM, allochthonous NOM with relatively high molecular weight (MW), specific ultraviolet absorbance (SUVA) and hydrophobicity (e.g., Suwannee River humic acid (SRHA)) revealed to significantly inhibit the photolysis of target micropollutants. The presence of Typha wetland NOM enhanced the indirect photolysis of well-known conservative micopollutants (carbamazepine and paraxanthine). And atenolol, carbamazepine, glimepiride, and N-acetyl-sulfamethoxazole were found to be sensitive to the triplet excited state of dissolved organic matter ((3)DOM(*)) with Typha wetland NOM under deoxygenated condition. This suggests that photolysis in constructed wetlands connected to the wastewater treatment plant can enhance the degradation of some anthropogenic micropollutants by the interaction with (3)DOM(*) in wetlands. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Simultaneous Removal of Nitrate and Natural Organic Matter from Drinking Water Using a Hybrid Heterotrophic/Autotrophic/Biological Activated Carbon Bioreactor

    PubMed Central

    Saeedi, Reza; Naddafi, Kazem; Nabizadeh, Ramin; Mesdaghinia, Alireza; Nasseri, Simin; Alimohammadi, Mahmood; Nazmara, Shahrokh

    2012-01-01

    Abstract Simultaneous removal of nitrate (\\documentclass{aastex}\\usepackage{amsbsy}\\usepackage{amsfonts}\\usepackage{amssymb}\\usepackage{bm}\\usepackage{mathrsfs}\\usepackage{pifont}\\usepackage{stmaryrd}\\usepackage{textcomp}\\usepackage{portland, xspace}\\usepackage{amsmath, amsxtra}\\pagestyle{empty}\\DeclareMathSizes {10} {9} {7} {6}\\begin{document} $${\\rm NO}_3^{-}$$ \\end{document}) and natural organic matter (NOM) from drinking water using a hybrid heterotrophic/autotrophic/BAC bioreactor (HHABB) was studied in continuous mode. The HHABB consisted of three compartments: ethanol heterotrophic part, sulfur autotrophic part, and biological activated carbon (BAC)-part (including anoxic and aerobic sections). Experiments were performed with \\documentclass{aastex}\\usepackage{amsbsy}\\usepackage{amsfonts}\\usepackage{amssymb}\\usepackage{bm}\\usepackage{mathrsfs}\\usepackage{pifont}\\usepackage{stmaryrd}\\usepackage{textcomp}\\usepackage{portland, xspace}\\usepackage{amsmath, amsxtra}\\pagestyle{empty}\\DeclareMathSizes {10} {9} {7} {6}\\begin{document} $${\\rm NO}_3^{-}$$ \\end{document} concentration 30 mg N/L, \\documentclass{aastex}\\usepackage{amsbsy}\\usepackage{amsfonts}\\usepackage{amssymb}\\usepackage{bm}\\usepackage{mathrsfs}\\usepackage{pifont}\\usepackage{stmaryrd}\\usepackage{textcomp}\\usepackage{portland, xspace}\\usepackage{amsmath, amsxtra}\\pagestyle{empty}\\DeclareMathSizes {10} {9} {7} {6}\\begin{document} $${\\rm NO}_3^{-}$$ \\end{document} loading rate 0.72 kg N/m3/d, C : N ratio 0.53, and three concentrations of NOM (0.6, 2.6, and 5.7 mg C/L). Overall denitrification rate and efficiency of the HHABB were not affected by NOM concentration and were in the suitable ranges of 0.69–0.70 kg N/m3/d and 96.0%–97.7%, respectively. NOM removal at concentration 0.6 mg C/L was not efficient because of organic carbon replacement as soluble microbial products. At higher NOM concentrations, total NOM removal efficiencies were 55%–65%, 55%–70%, and 55%–65% for dissolved organic carbon, trihalomethane formation potential, and UV absorbance at 254 nm (UV254), respectively. The more efficient compartments of the HHABB for the removal of NOM were the ethanol heterotrophic phase and aerobic BAC-phase. The efficiency of the HHABB in the removal of NOM was considerable, and the effluent dissolved organic carbon and trihalomethane formation potential concentrations were relatively low. This study indicated that the HHABB without the anoxic BAC-phase could be a feasible alternative for simultaneous removal of \\documentclass{aastex}\\usepackage{amsbsy}\\usepackage{amsfonts}\\usepackage{amssymb}\\usepackage{bm}\\usepackage{mathrsfs}\\usepackage{pifont}\\usepackage{stmaryrd}\\usepackage{textcomp}\\usepackage{portland, xspace}\\usepackage{amsmath, amsxtra}\\pagestyle{empty}\\DeclareMathSizes {10} {9} {7} {6}\\begin{document} $${\\rm NO}_3^{-}$$ \\end{document} and NOM from drinking water at full scale. PMID:22479146

  3. Quenching and Sensitizing Fullerene Photoreactions by Natural Organic Matter

    EPA Science Inventory

    Effects of natural organic matter (NOM) on the photoreaction kinetics of fullerenes (i.e., C60 and fullerenol) were investigated using simulated sunlight and monochromatic radiation (365 nm). NOM from several sources quenched (slowed) the photoreaction of C60 aggregates in water ...

  4. Lyophilization, Reconstitution, and DBP Formation in Reverse-Osmosis Concentrated Natural Organic Matter

    EPA Science Inventory

    Drinking water treatment and disinfection byproduct (DBP) research can be complicated by natural organic matter (NOM) temporal variability. NOM preservation by lyophilization (freeze-drying) has been long practiced to address this issue; however, its applicability for drinking w...

  5. Advanced solid-state NMR spectroscopy of natural organic matter

    USDA-ARS?s Scientific Manuscript database

    Solid-state NMR is essential for the characterization of natural organic matter (NOM) and is gaining importance in geosciences and environmental sciences. This review is intended to highlight advanced solid-state NMR techniques, especially the systematic approach to NOM characterization, and their ...

  6. Blunt splenic trauma: Assessment, management and outcomes.

    PubMed

    El-Matbouly, Moamena; Jabbour, Gaby; El-Menyar, Ayman; Peralta, Ruben; Abdelrahman, Husham; Zarour, Ahmad; Al-Hassani, Ammar; Al-Thani, Hassan

    2016-02-01

    The approach for diagnosis and management of blunt splenic injury (BSI) has been considerably shifted towards non-operative management (NOM). We aimed to review the current practice for the evaluation, diagnosis and management of BSI. A traditional narrative literature review was carried out using PubMed, MEDLINE and Google scholar search engines. We used the keywords "Traumatic Splenic injury", "Blunt splenic trauma", "management" between December 1954 and November 2014. Most of the current guidelines support the NOM or minimally approaches in hemodynamically stable patients. Improvement in the diagnostic modalities guide the surgeons to decide the timely management pathway Though, there is an increasing shift from operative management (OM) to NOM of BSI; NOM of high grade injury is associated with a greater rate of failure, prolonged hospital stay, risk of delayed hemorrhage and transfusion-associated infections. Some cases with high grade BSI could be successfully treated conservatively, if clinically feasible, while some patients with lower grade injury might end-up with delayed splenic rupture. Therefore, the selection of treatment modalities for BSI should be governed by patient clinical presentation, surgeon's experience in addition to radiographic findings. About one-fourth of the blunt abdominal trauma accounted for BSI. A high index of clinical suspicion along with radiological diagnosis helps to identify and characterize splenic injuries with high accuracy and is useful for timely decision-making to choose between OM or NOM. Careful selection of NOM is associated with high success rate with a lower rate of morbidity and mortality. Copyright © 2015 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.

  7. Trace Element Removal in Distributed Drinking Water Treatment Systems by Cathodic H2O2 Production and UV Photolysis

    PubMed Central

    2017-01-01

    As water scarcity intensifies, point-of-use and point-of-entry treatment may provide a means of exploiting locally available water resources that are currently considered to be unsafe for human consumption. Among the different classes of drinking water contaminants, toxic trace elements (e.g., arsenic and lead) pose substantial operational challenges for distributed drinking water treatment systems. Removal of toxic trace elements via adsorption onto iron oxides is an inexpensive and robust treatment method; however, the presence of metal-complexing ligands associated with natural organic matter (NOM) often prevents the formation of iron precipitates at the relatively low concentrations of dissolved iron typically present in natural water sources, thereby requiring the addition of iron which complicates the treatment process and results in a need to dispose of relatively large amounts of accumulated solids. A point-of-use treatment device consisting of a cathodic cell that produced hydrogen peroxide (H2O2) followed by an ultraviolet (UV) irradiation chamber was used to decrease colloid stabilization and metal-complexing capacity of NOM present in groundwater. Exposure to UV light altered NOM, converting ∼6 μM of iron oxides into settable forms that removed between 0.5 and 1 μM of arsenic (As), lead (Pb), and copper (Cu) from solution via adsorption. After treatment, changes in NOM consistent with the loss of iron-complexing carboxylate ligands were observed, including decreases in UV absorbance and shifts in the molecular composition of NOM to higher H/C and lower O/C ratios. Chronoamperometric experiments conducted in synthetic groundwater revealed that the presence of Ca2+ and Mg2+ inhibited intramolecular charge-transfer within photoexcited NOM, leading to substantially increased removal of iron and trace elements. PMID:29240414

  8. Photochemical generation and decay kinetics of superoxide and hydrogen peroxide in the presence of standard humic and fulvic acids.

    PubMed

    Fujii, Manabu; Otani, Erika

    2017-10-15

    Reactive oxygen species (ROS) such as superoxide (O 2 - ) and hydrogen peroxide (H 2 O 2 ) can be photochemically generated in aerobic waters containing natural organic matters (NOM) such as humic substances (HS). To investigate the effect of NOM molecular composition on the kinetics and mechanism of ROS transformation, photochemical O 2 - generation and subsequent H 2 O 2 production via catalyzed and uncatalyzed (bimolecular dismutation) O 2 - decay were examined in the presence of 14 types of HS (pH 8.0). By using chemiluminescence and colorimetric techniques, the photochemical O 2 - generation rate, quasi-steady-state O 2 - concentration, catalyzed and uncatalyzed O 2 - decay rates, and H 2 O 2 production rate were found to vary significantly by factors of 72, 18, 14, 320, and 7.7, respectively, depending on the type of HS and degree of photolysis. For more than half of the HS samples, both uncatalyzed and catalyzed reductive decay of photogenerated O 2 - were significantly involved in H 2 O 2 generation, and their rates were comparable to those for O 2 - oxidative decay in which H 2 O 2 is not generated. These results suggest that the chemical quality of HS influenced the H 2 O 2 generation pathway. Correlation analyses indicated that rate constants associated with HS-mediated photochemical O 2 - and H 2 O 2 generation are significantly correlated with HS molecular composition including total and aromatic C contents. In particular, practical indices representing NOM aromaticity including specific ultraviolet absorbance (SUVA) can be useful for predicting NOM-mediated ROS generation and decay kinetics. Overall, the present work suggests that NOM concentration and its quality influence NOM-mediated ROS dynamics in aqueous systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Trace Element Removal in Distributed Drinking Water Treatment Systems by Cathodic H2O2 Production and UV Photolysis.

    PubMed

    Barazesh, James M; Prasse, Carsten; Wenk, Jannis; Berg, Stephanie; Remucal, Christina K; Sedlak, David L

    2018-01-02

    As water scarcity intensifies, point-of-use and point-of-entry treatment may provide a means of exploiting locally available water resources that are currently considered to be unsafe for human consumption. Among the different classes of drinking water contaminants, toxic trace elements (e.g., arsenic and lead) pose substantial operational challenges for distributed drinking water treatment systems. Removal of toxic trace elements via adsorption onto iron oxides is an inexpensive and robust treatment method; however, the presence of metal-complexing ligands associated with natural organic matter (NOM) often prevents the formation of iron precipitates at the relatively low concentrations of dissolved iron typically present in natural water sources, thereby requiring the addition of iron which complicates the treatment process and results in a need to dispose of relatively large amounts of accumulated solids. A point-of-use treatment device consisting of a cathodic cell that produced hydrogen peroxide (H 2 O 2 ) followed by an ultraviolet (UV) irradiation chamber was used to decrease colloid stabilization and metal-complexing capacity of NOM present in groundwater. Exposure to UV light altered NOM, converting ∼6 μM of iron oxides into settable forms that removed between 0.5 and 1 μM of arsenic (As), lead (Pb), and copper (Cu) from solution via adsorption. After treatment, changes in NOM consistent with the loss of iron-complexing carboxylate ligands were observed, including decreases in UV absorbance and shifts in the molecular composition of NOM to higher H/C and lower O/C ratios. Chronoamperometric experiments conducted in synthetic groundwater revealed that the presence of Ca 2+ and Mg 2+ inhibited intramolecular charge-transfer within photoexcited NOM, leading to substantially increased removal of iron and trace elements.

  10. Simultaneous uptake of NOM and Microcystin-LR by anion exchange resins: Effect of inorganic ions and resin regeneration.

    PubMed

    Dixit, Fuhar; Barbeau, Benoit; Mohseni, Madjid

    2018-02-01

    This study investigated the efficiency of a strongly basic macroporous anion exchange resin for the co-removal of Microcystin-LR (MCLR) and natural organic matter (NOM) in waters affected by toxic algal blooms. Environmental factors influencing the uptake behavior included MCLR and resin concentrations, NOM and anionic species, specifically nitrate, sulphate and bicarbonate. A860 resin exhibited an excellent adsorption capacity of 3800 μg/g; more than 60% of the MCLR removal was achieved within 10 min with a resin dosage of 200 mg/L (∼1 mL/L). Further, kinetic studies revealed that the overall removal of MCLR is influenced by both external diffusion and intra-particle diffusion. Increasing NOM concentration resulted in a significant reduction of MCLR uptake, especially at lower resin dosages, where a competitive uptake between the charged NOM fractions and MCLR was observed due to limited active sites. In addition, MCLR uptake was significantly reduced in the presence of sulphate and nitrate in the water matrix. Moreover, performance of the resin proved to be stable from one regeneration cycle to another. Approximately 80% of MCLR and 50% of dissolved organic carbon (DOC) were recovered in the regenerated brine. Evidences of resin saturation and site reduction were also observed after 2000 bed volumes (BV) of operation. For all the investigated water matrices, a resin dosage of 1000 mg/L (∼4.5 mL/L) was sufficient to lower MCLR concentration from 100 μg/L to below the World Health Organization guideline of 1 μg/L, while simultaneously providing more than 80% NOM removal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Effect of Humic Substances on the Trapping and Transformations of U(VI) by Ferrihydrite

    NASA Astrophysics Data System (ADS)

    Dublet, G.; Brown, G. E.; Bargar, J.; Fendorf, S. E.; Janot, N.

    2013-12-01

    The Old Rifle DOE site in Colorado was a major site for milling uranium ore. U concentrations up to 1.8 uM persist in the Rifle aquifer, even after 'cleaning' the waste source of contaminations [1]. Understanding the behavior of U(VI) in this anthropogenically perturbed system is crucial for controlling the level of U contamination. Direct investigations of U speciation at this site have shown that U is associated with a wide variety of minerals as well as with natural organic matter (NOM) [2]. NOM has multiple functional groups which can be highly reactive with respect to aqueous metal ions, including actinides. Such interactions result in the formation of organo-mineral-metal (ternary) complexes and catalyze redox transformations; in addition, they can enhance mineral dissolution and metal transport [3,4,5]. In the complex soil/sediment system, aqueous, mineral, and organic phases are intimately mixed and their interactions are difficult to characterize by direct investigation [1]. The nanoparticulate iron hydroxide ferrihydrite (Fh), which is ubiquitous in many natural soils and highly reactive toward metal ions, is expected to significantly influence the fate of U in natural soils and is abundant in the subsurface at the Rifle site. NOM is also abundant at this site; however, little is known about the effect of NOM associated with ferrihydrite on the fate of U in such subsurface environments. To date, simple model systems composed mainly of two components (Fh and NOM) [6], (U and NOM or simple organic molecules) [7], or (Fh and U) [8,9], and more rarely composed of three components [10,11] have been studied in an effort to understand interactions among these components. In order to extend this earlier work to ternary systems, we have carried out batch reactions of U, a humic acid standard - Eliott soil humic acid (ESHA), and Fh under conditions that mimic those in the subsurface at Rifle. We have used U L3- and Fe K-edge XANES and EXAFS spectroscopy coupled with macroscopic uptake measurements to study the effect of this model humic acid on U uptake by Fh in these batch experimental systems. Results from this study will be presented and discussed mainly in terms of the affinity of U towards ESHA vs. Fh under the different conditions tested. [1] Campbell K.M. et al. (2012) Applied Geochemistry 27, 1499-1511 [2] Maher K. et al. (2012) Inorganic Chemistry 52, 3510-3532. [3] Means J.L. and Crerar D.A. (1978) Science 200, 1477-1481 [4] Ludwig C. et al. (1995) Nature 375, 44-47 [5] Gu B. et al. (2005) 39, 5268-5275 [6] Stewart B.D. et al. (2009) Environmental Science & Technology 43, 4922-4927 [7] Sachs S. and Bernhard G. (2011) Journal of Radioanalytical and Nuclear Chemistry 290, 17-29 [8] Nico P.S. et al. (2009) Environmental Science & Technology 43, 7391-7396 [9] Boland D.D. et al. (2011) Environmental Science & Technology 45, 1327-1333 [10] Gustafsson J.P. et al. (2009) Applied Geochemistry 24, 454-462 [11] Payne T.E. et al. (1996) Radiochimica Acta 74, 239-243

  12. 77 FR 76059 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... Project: National Outcome Measures (NOMs) for Substance Abuse Prevention--(OMB No. 0930-0230)--Revision... Prevention's (CSAP) National Outcome Measures for Substance Abuse Prevention (NOMs). Data are collected from... DEPARTMENT OF HEALTH AND HUMAN SERVICES Substance Abuse and Mental Health Services Administration...

  13. Adsorption of Estrogen Contaminants by Graphene Nanomaterials under Natural Organic Matter Preloading: Comparison to Carbon Nanotube, Biochar, and Activated Carbon.

    PubMed

    Jiang, Luhua; Liu, Yunguo; Liu, Shaobo; Zeng, Guangming; Hu, Xinjiang; Hu, Xi; Guo, Zhi; Tan, Xiaofei; Wang, Lele; Wu, Zhibin

    2017-06-06

    Adsorption of two estrogen contaminants (17β-estradiol and 17α-ethynyl estradiol) by graphene nanomaterials was investigated and compared to those of a multi-walled carbon nanotube (MWCNT), a single-walled carbon nanotube (SWCNT), two biochars, a powdered activated carbon (PAC), and a granular activate carbon (GAC) in ultrapure water and in the competition of natural organic matter (NOM). Graphene nanomaterials showed comparable or better adsorption ability than carbon nanotubes (CNTs), biochars (BCs), and activated carbon (ACs) under NOM preloading. The competition of NOM decreased the estrogen adsorption by all adsorbents. However, the impact of NOM on the estrogen adsorption was smaller on graphenes than CNTs, BCs, and ACs. Moreover, the hydrophobicity of estrogens also affected the uptake of estrogens. These results suggested that graphene nanomaterials could be used to removal estrogen contaminants from water as an alternative adsorbent. Nevertheless, if transferred to the environment, they would also adsorb estrogen contaminants, leading to great environmental hazards.

  14. Cercosporoid fungi (Mycosphaerellaceae) 4. Species on dicots (Acanthaceae to Amaranthaceae).

    PubMed

    Braun, Uwe; Crous, Pedro W; Nakashima, Chiharu

    2015-12-01

    The present paper continues a series of comprehensive taxonomic treatments of cercosporoid fungi (formerly Cercospora s. lat.), belonging to the Mycosphaerellaceae (Ascomycota). The fourth contribution of this series initiates treatments of cercosporoid fungi on dicots and comprises species occurring on hosts belonging the the families Acanthaceae, Actinidiaceae, Adoxaceae, Aizoaceae, Altingiaceae, and Amaranthaceae. The species are described and illustrated in alphabetical order under the particular cercosporoid genera, supplemented by keys to the species concerned. A detailed introduction, a survey of currently recognised cercosporoid genera, a key to the genera concerned, and a discussion of taxonomically relevant characters were published in the first part of this series. The following taxonomic novelties are introduced: Cercospora blepharidicola nom. nov., C. celosiigena sp. nov., C. justiciae-adhatodae sp. nov., C. justiciigena nom. nov., C. sambucicola nom. nov., C. thunbergiigena nom. nov., Cercosporella pseudachyranthis comb. nov., Pseudocercospora cyathulae comb. nov., P. depazeoides comb. nov., P. varia var. viburni-sargentii var. nov., P. viburnicola sp. nov., P. viburni-erosi sp. nov., and P. viburni-nudi sp. nov.

  15. Long-term outcome of nonoperative pediatric splenic injury management.

    PubMed

    Kristoffersen, Kristian W; Mooney, David P

    2007-06-01

    Nonoperative management (NOM) of blunt splenic trauma is the standard of care in hemodynamically stable children. The long-term risk of this strategy remains unknown. The object of this study was to investigate the incidence of long-term complications after NOM of pediatric splenic injury. All children who underwent NOM for blunt splenic trauma over an 11-year period were identified. Patients were interviewed for any ailments that could be related to their splenic injury, and hospital data were analyzed. A total of 266 patients were identified, and 228 patients (86%) were interviewed. Mean follow-up time was 5 +/- 3 years. One patient had a delayed complication, a splenic pseudocyst. Pain more than 4 weeks after injury was unusual. Time until return to full activity varied broadly. The incidence of long-term complications after NOM of pediatric splenic injury was 1 (0.44%) in 228 patients. Nonoperative management of pediatric blunt splenic trauma in children is associated with a minimal risk of long-term complications.

  16. Is non-operative management safe and effective for all splenic blunt trauma? A systematic review

    PubMed Central

    2013-01-01

    Introduction The goal of non-operative management (NOM) for blunt splenic trauma (BST) is to preserve the spleen. The advantages of NOM for minor splenic trauma have been extensively reported, whereas its value for the more severe splenic injuries is still debated. The aim of this systematic review was to evaluate the available published evidence on NOM in patients with splenic trauma and to compare it with the operative management (OM) in terms of mortality, morbidity and duration of hospital stay. Methods For this systematic review we followed the "Preferred Reporting Items for Systematic Reviews and Meta-analyses" statement. A systematic search was performed on PubMed for studies published from January 2000 to December 2011, without language restrictions, which compared NOM vs. OM for splenic trauma injuries and which at least 10 patients with BST. Results We identified 21 non randomized studies: 1 Clinical Controlled Trial and 20 retrospective cohort studies analyzing a total of 16,940 patients with BST. NOM represents the gold standard treatment for minor splenic trauma and is associated with decreased mortality in severe splenic trauma (4.78% vs. 13.5% in NOM and OM, respectively), according to the literature. Of note, in BST treated operatively, concurrent injuries accounted for the higher mortality. In addition, it was not possible to determine post-treatment morbidity in major splenic trauma. The definition of hemodynamic stability varied greatly in the literature depending on the surgeon and the trauma team, representing a further bias. Moreover, data on the remaining analyzed outcomes (hospital stay, number of blood transfusions, abdominal abscesses, overwhelming post-splenectomy infection) were not reported in all included studies or were not comparable, precluding the possibility to perform a meaningful cumulative analysis and comparison. Conclusions NOM of BST, preserving the spleen, is the treatment of choice for the American Association for the Surgery of Trauma grades I and II. Conclusions are more difficult to outline for higher grades of splenic injury, because of the substantial heterogeneity of expertise among different hospitals, and potentially inappropriate comparison groups. PMID:24004931

  17. Is non-operative management safe and effective for all splenic blunt trauma? A systematic review.

    PubMed

    Cirocchi, Roberto; Boselli, Carlo; Corsi, Alessia; Farinella, Eriberto; Listorti, Chiara; Trastulli, Stefano; Renzi, Claudio; Desiderio, Jacopo; Santoro, Alberto; Cagini, Lucio; Parisi, Amilcare; Redler, Adriano; Noya, Giuseppe; Fingerhut, Abe

    2013-09-03

    The goal of non-operative management (NOM) for blunt splenic trauma (BST) is to preserve the spleen. The advantages of NOM for minor splenic trauma have been extensively reported, whereas its value for the more severe splenic injuries is still debated. The aim of this systematic review was to evaluate the available published evidence on NOM in patients with splenic trauma and to compare it with the operative management (OM) in terms of mortality, morbidity and duration of hospital stay. For this systematic review we followed the "Preferred Reporting Items for Systematic Reviews and Meta-analyses" statement. A systematic search was performed on PubMed for studies published from January 2000 to December 2011, without language restrictions, which compared NOM vs. OM for splenic trauma injuries and which at least 10 patients with BST. We identified 21 non randomized studies: 1 Clinical Controlled Trial and 20 retrospective cohort studies analyzing a total of 16,940 patients with BST. NOM represents the gold standard treatment for minor splenic trauma and is associated with decreased mortality in severe splenic trauma (4.78% vs. 13.5% in NOM and OM, respectively), according to the literature. Of note, in BST treated operatively, concurrent injuries accounted for the higher mortality. In addition, it was not possible to determine post-treatment morbidity in major splenic trauma. The definition of hemodynamic stability varied greatly in the literature depending on the surgeon and the trauma team, representing a further bias. Moreover, data on the remaining analyzed outcomes (hospital stay, number of blood transfusions, abdominal abscesses, overwhelming post-splenectomy infection) were not reported in all included studies or were not comparable, precluding the possibility to perform a meaningful cumulative analysis and comparison. NOM of BST, preserving the spleen, is the treatment of choice for the American Association for the Surgery of Trauma grades I and II. Conclusions are more difficult to outline for higher grades of splenic injury, because of the substantial heterogeneity of expertise among different hospitals, and potentially inappropriate comparison groups.

  18. Formation of N-nitrosodimethylamine (NDMA) from humic substances in natural water.

    PubMed

    Chen, Zhuo; Valentine, Richard L

    2007-09-01

    N-nitrosodimethylamine (NDMA)formation in chloraminated Iowa River water (IRW) is primarily attributed to reactions with natural organic matter (NOM) generally classified as humic substances. Experiments were conducted to determine the contribution of various NOM humic fractions to the NDMA formation potential (NDMA FP) in this drinking water source. NOM was concentrated by reverse osmosis (RO) and humic fractions were obtained by a series of resin elution procedures. Mass balances showed that nearly 90% of the NDMA formation potential could be recovered in the NOM concentrate and in water reconstituted using additions of the various humic fractions. Generally, the hydrophilic fractions tended to form more NDMA than hydrophobic fractions, and basic fractions tend to form more NDMA than acid fractions when normalized to a carbon basis. Overall, the hydrophobic acid fraction was the dominant source of NDMA when both formation efficiency and water composition were considered. The amount of NDMA formed in a sample was found to correlate linearly with an oxidation-induced decrease in specific UV absorbance (SUVA) value at 272 nm. This is consistent with a mechanism in which precursors are formed as the direct consequence of the oxidation of NOM. The NDMA FP estimated using the slope of this relationship and the initial SUVA value compared closely to the value obtained by measuring the NDMA formed in solutions dosed with excess concentrations of monochloramine that presumably exhaust all potential precursor sources. However, the NOMA FP could not be correlated to the SUVA value of the individual humic fractions indicating that the relationship of the NDMA FP to SUVA value is probably a water-specific parameter dependent on the exact composition of humic fractions. It is hypothesized that either specific NDMA precursors are distributed among the various humic fractions or that the humic material itself represents a "generic" nonspecific precursor source that requires some degree of oxidation to eventually produce NDMA. The nonmonotonic behavior of NOM fluorescence spectra during chloramination and lack of correlation between NOM fluorescence characteristics and NDMA formation limited the usage of fluorescence spectra into probing NDMA formation.

  19. Experimental investigation and modeling of dissolved organic carbon removal by coagulation from seawater.

    PubMed

    Jeong, Sanghyun; Sathasivan, Arumugam; Kastl, George; Shim, Wang Geun; Vigneswaran, Saravanamuthu

    2014-01-01

    Coagulation removes colloidal matters and dissolved organic carbon (DOC) which can cause irreversible membrane fouling. However, how DOC is removed by coagulant is not well-known. Jar test was used to study the removal of hydrophobic and hydrophilic DOC fractions at various doses (0.5-8.0 mg-Fe(+3) L(-1)) of ferric chloride (FeCl3) and pH (5.0-9.0). Natural organic matter (NOM) in seawater and treated seawater were fractionated by liquid chromatography-organic carbon detector (LC-OCD). Compared to surface water, the removal of DOC in seawater by coagulation was remarkably different. Majority of DOC could be easily removed with very low coagulant dose (<5.0 mg-Fe(+3) L(-1)) and the removal efficiency did not vary with pH, but the DOC composition in treated water had significantly changed. Hydrophobic fraction (HB) was better removed at high pH while hydrophilic fraction (HF) was better removed at low pH. A modified model of Kastl et al. (2004) which assumed that the removal occurred by adsorption of un-dissociated compounds onto ferric hydroxide was formulated and successfully validated against the jar test data. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Disinfection Byproduct Formation in Reverse-Osmosis Concentrated and Lyophilized Natural Organic Matter from a Drinking Water Source

    EPA Science Inventory

    Drinking water treatment and disinfection byproduct (DBP) research can be complicated by natural organic matter (NOM) temporal variability. NOM preservation by lyophilization (freeze-drying) has been long practiced to address this issue; however, its applicability for drinking wa...

  1. Spectroscopic characterization of the coordination chemistry and hydrolysis of gallium(III) in the presence of aquatic organic matter

    NASA Astrophysics Data System (ADS)

    Hagvall, Kristoffer; Persson, Per; Karlsson, Torbjörn

    2014-12-01

    Interactions between metals and natural organic matter (NOM) are of great environmental importance and one of the key factors influencing hydrolysis, solubility, and speciation of the metals. However, studying geochemically relevant metals like Al, Fe, and Cu is sometimes associated with analytical problems; for example Fe and Cu are both redox active. Gallium (Ga) is a non-redox active metal that usually occurs at very low concentrations in environmental samples and therefore a wide concentration range of metal(III)-NOM species can be explored by adding Ga(III) to such samples. This makes Ga(III) a good probe and analogue for other metal ions, in particular Al. In addition, due to the increased usage of Ga in society, a better understanding of how Ga interacts with NOM is of importance but such studies are scarce. In this work, Ga(III) interactions with two different organic materials (Suwannee River natural organic matter and Suwannee River fulvic acid) were studied using infrared (IR) and extended X-ray absorption fine structure (EXAFS) spectroscopy in a large experimental range (101-84,076 μg Ga g-1 dry weight; pH 3-8). Our IR spectroscopic results showed that Ga(III) is bonded mainly to carboxylic functional groups and suggested that only a fraction of the total number of carboxylic sites in the samples was actively involved in the bonding. Modeling of the EXAFS data revealed that Ga(III) formed mononuclear chelate complexes with NOM that strongly suppressed the hydrolysis and polymerization of Ga(III). At low Ga(III) concentrations (1675-16,649 μg g-1) organic complexes, consisting of 1-3 chelate ring structures, were the dominating species in the entire pH range while at higher concentrations (67,673-84,076 μg g-1, pH 3.0-7.0) we detected mixtures of mononuclear organic Ga(III) complexes, Ga(III) (hydr)oxide, and free Ga(III) (here defined as the hydrated Ga(III) ion and its soluble hydrolysis products). Moreover, the EXAFS results showed significantly higher contribution from second-shell C atoms (9-11) for the Ga(III)-organic complexes at the lowest concentration (101-125 μg g-1, pH 4.9-5.1), indicating formation of cage-like structures similar to Ga(III)-EDTA. Our combined results showed that Ga(III)-NOM interactions can be of importance for the solubility and speciation of Ga in environmental systems. Furthermore, the similarities between Ga(III) and previous Fe(III) results demonstrate that Ga(III) can be utilized as a probe for metal(III)-NOM interactions over an extended experimental range (e.g., pH and metal concentration) and thereby improve our knowledge about these interactions in general.

  2. Adsorption of organic contaminants by graphene nanosheets, carbon nanotubes and granular activated carbons under natural organic matter preloading conditions.

    PubMed

    Ersan, Gamze; Kaya, Yasemin; Apul, Onur G; Karanfil, Tanju

    2016-09-15

    The effect of NOM preloading on the adsorption of phenanthrene (PNT) and trichloroethylene (TCE) by pristine graphene nanosheets (GNS) and graphene oxide nanosheet (GO) was investigated and compared with those of a single-walled carbon nanotube (SWCNT), a multi-walled carbon nanotube (MWCNT), and two coal based granular activated carbons (GACs). PNT uptake was higher than TCE by all adsorbents on both mass and surface area bases. This was attributed to the hydrophobicity of PNT. The adsorption capacities of PNT and TCE depend on the accessibility of the organic molecules to the inner regions of the adsorbent which was influenced from the molecular size of OCs. The adsorption capacities of all adsorbents decreased as a result of NOM preloading due to site competition and/or pore/interstice blockage. However, among all adsorbents, GO was generally effected least from the NOM preloading for PNT, whereas there was not observed any trend of NOM competition with a specific adsorbent for TCE. In addition, SWCNT was generally affected most from the NOM preloading for TCE and there was not any trend for PNT. The overall results indicated that the fate and transport of organic contaminants by GNSs and CNTs type of nanoadsorbents and GACs in different natural systems will be affected by water quality parameters, characteristics of adsorbent, and properties of adsorbate. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Advanced oxidation processes for the removal of natural organic matter from drinking water sources: A comprehensive review.

    PubMed

    Sillanpää, Mika; Ncibi, Mohamed Chaker; Matilainen, Anu

    2018-02-15

    Natural organic matter (NOM), a key component in aquatic environments, is a complex matrix of organic substances characterized by its fluctuating amounts in water and variable molecular and chemical properties, leading to various interaction schemes with the biogeosphere and hydrologic cycle. These factors, along with the increasing amounts of NOM in surface and ground waters, make the effort of removing naturally-occurring organics from drinking water supplies, and also from municipal wastewater effluents, a challenging task requiring the development of highly efficient and versatile water treatment technologies. Advanced oxidation processes (AOPs) received an increasing amount of attention from researchers around the world, especially during the last decade. The related processes were frequently reported to be among the most suitable water treatment technologies to remove NOM from drinking water supplies and mitigate the formation of disinfection by products (DBPs). Thus, the present work overviews recent research and development studies conducted on the application of AOPs to degrade NOM including UV and/or ozone-based applications, different Fenton processes and various heterogeneous catalytic and photocatalytic oxidative processes. Other non-conventional AOPs such as ultrasonication, ionizing radiation and plasma technologies were also reported. Furthermore, since AOPs are unlikely to achieve complete oxidation of NOM, integration schemes with other water treatment technologies were presented including membrane filtration, adsorption and others processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Enhanced removal of natural organic matters by calcined Mg/Al layered double hydroxide nanocrystalline particles: Adsorption, reusability and mechanism studies

    NASA Astrophysics Data System (ADS)

    Fang, Liping; Hou, Jingwei; Xu, Cuihong; Wang, Yaru; Li, Ji; Xiao, Feng; Wang, Dongsheng

    2018-06-01

    Natural organic matters (NOMs) can generate disinfection by-products during water treatment process, threatening to human health. However, the removal of NOM is still unsatisfactory in water treatment. Hence, this work investigated the removal efficiency of humic and fulvic acids (HA and FA) by layered double hydroxide (LDH) and its calcined forms under different conditions. Our results show that calcination of LDH at 500 °C can effectively enhance the NOM removal with adsorption capacities of 98.8 mg/g for HA and 97.6 mg/g for FA at pH 9.5. The removal efficiency of HA and FA notably increases by decreasing pH. The presence of SO42- and CO32- significantly suppresses the removal of HA or FA by CLDHs. The release of Al from LDH and CLDH is negligible and safe to aquatic organisms at pH > 6.5. Moreover, CLDH shows a good reusability for NOM removal in water treatment. The removal of HA and FA by CLDH is governed through electrostatic interactions and intercalation into the interlayers of LDH was not observed. Fluorescence and molecular weight analyses show that the microbial by-products with mid-molecular weight are more difficult to be removed than HA and FA. This study provides a new insight into the NOM removal using LDH and CLDH.

  5. Nonoperative management of splenic injury in combat: 2002-2012.

    PubMed

    Mitchell, Thomas A; Wallum, Timothy E; Becker, Tyson E; Aden, James K; Bailey, Jeffrey A; Blackbourne, Lorne H; White, Christopher E

    2015-03-01

    Selective nonoperative management of combat-related blunt splenic injury (BSI) is controversial. We evaluated the impact of the November 2008 blunt abdominal trauma clinical practice guideline that permitted selective nonoperative management of some patients with radiological suggestion of hemoperitoneum on implementation of nonoperative management (NOM) of splenic injury in austere environments. Retrospective evaluation of patients with splenic injuries from November 2002 through January 2012 in Iraq and Afghanistan was performed. International Classification of Diseases, 9th Revision, Clinical Modification procedure codes identified patients as laparotomy with splenectomy, or NOM. Delayed operative management had no operative intervention at earlier North American Treaty Organization (NATO) medical treatment facilities (MTFs), and had a definitive intervention at a latter NATO MTFs. Intra-abdominal complications and overall mortality were juxtaposed. A total of 433 patients had splenic injuries from 2002 to 2012. Initial NOM of BSI from 2002 to 2008 compared to 2009-2012 was 44.1% and 47.2%, respectively (p=0.75). Delayed operative management and NOM completion had intra-abdominal complication and mortality rates of 38.1% and 9.1% (p<0.01), and 6.3% and 8.1% (p=0.77). Despite high-energy explosive injuries, NATO Role II MTFs radiological constraints and limited medical resources, hemodynamically normal patients with BSI and low abdominal abbreviated injury scores underwent NOM in austere environments. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  6. Lyophilization and Reconstitution of Reverse-Osmosis Concentrated Natural Organic Matter from a Drinking Water Source

    EPA Science Inventory

    Disinfection by-product (DBP) research can be complicated by difficulties in shipping large water quantities and changing natural organic matter (NOM) characteristics over time. To overcome these issues, it is advantageous to have a reliable method for concentrating NOM with min...

  7. Analysis of the effects of natural organic matter in zinc beneficiation

    USDA-ARS?s Scientific Manuscript database

    In this study, we present the analysis of the effects of Natural Organic Matter (NOM) in zinc beneficiation from abandoned mine tailings using bioleaching technologies. We used standardized Suwannee River Humic Acid (SRHA) as the NOM source to analyze the importance of the quality of the process wat...

  8. Minimizing Dissolved Silica to Reduce Ash Content in Reconstituted Waters Used in Disinfection Byproduct Health Effects Research

    EPA Science Inventory

    Previous health effects research used chlorinated, concentrated natural organic matter (NOM) solutions to create whole mixtures of disinfection byproducts (DBPs). Ohio River water was used as the source water to provide the background NOM matrix. Concentrated river water was coll...

  9. Adsorption of clofibric acid and ketoprofen onto powdered activated carbon: effect of natural organic matter.

    PubMed

    Gao, Yaohuan; Deshusses, Marc A

    2011-12-01

    The adsorption of two acidic pharmaceutically active compounds (PhACs), clofibric acid and ketoprofen, onto powdered activated carbon (PAC) was investigated with a particular focus on the influence of natural organic matter (NOM) on the adsorption of the PhACs. Suwannee River humic acids (SRHAs) were used as a substitute for NOM. Batch adsorption experiments were conducted to obtain adsorption kinetics and adsorption isotherms with and without SRHAs in the system. The adsorption isotherms and adsorption kinetics showed that the adsorption ofclofibric acid was not significantly affected by the presence of SRHAs at a concentration of 5 mg (as carbon) L(-1). An adsorption capacity of 70 to 140 mg g(-1) was observed and equilibrium was reached within 48 h. In contrast, the adsorption of ketoprofen was markedly decreased (from about 120 mg g(-1) to 70-100 mg g(-1)) in the presence of SRHAs. Higher initial concentrations of clofibric acid than ketoprofen during testing may explain the different behaviours that were observed. Also, the more hydrophobic ketoprofen molecules may have less affinity for PAC when humic acids (which are hydrophilic) are present. The possible intermolecular forces that could account for the different behaviour of clofibric acid and ketoprofen adsorption onto PAC are discussed. In particular, the relevance of electrostatic forces, electron donor-acceptor interaction, hydrogen bonding and London dispersion forces are discussed

  10. [Determination of the distribution of relative molecular mass of organic matter by high pressure size exclusion chromatography with UV and TOC detectors].

    PubMed

    Zhang, Han; Dong, Bing-Zhi

    2012-09-01

    An on-line high pressure size exclusion chromatography (HPSEC) with UV and TOC detectors was adapted to examine the distribution of relative molecular mass of natural organic matter (NOM). Through synchronous determination of UV254 and TOC responses in a wide range of relative molecular mass, it was possible to accurately characterize the structure of NOM, especially for some non-aromatic and non-conjugated double bond organics which have low response to UV. It was found that, TOC detector was capable of detecting all kinds of organic matters, including sucrose, sodium alginate and other hydrophilic organic compounds. The sample volume had a positively linear correlation with the TOC response, indicating that the larger volume would produce stronger responses. The effect of ion strength was relatively low, shown by the small decrease of peak area (1.2% ) from none to 0.2 mol x L(-1) NaCl. The pH value of tested samples should be adjusted to neutral or acidic because when the samples were alkaline, the results might be inaccurate. Compared to the sample solvents adopted as ultrapure water, the samples prepared by mobile phase solvents had less interference to salt boundary peak. The on-line HPSEC-UV-TOC can be used accurately to characterize the distribution of relative molecular mass and its four fractions in River Xiang.

  11. Dissociation kinetics of Fe(III)- and Al(III)-natural organic matter complexes at pH 6.0 and 8.0 and 25 °C

    NASA Astrophysics Data System (ADS)

    Jones, Adele M.; Pham, A. Ninh; Collins, Richard N.; Waite, T. David

    2009-05-01

    The rate at which iron- and aluminium-natural organic matter (NOM) complexes dissociate plays a critical role in the transport of these elements given the readiness with which they hydrolyse and precipitate. Despite this, there have only been a few reliable studies on the dissociation kinetics of these complexes suggesting half-times of some hours for the dissociation of Fe(III) and Al(III) from a strongly binding component of NOM. First-order dissociation rate constants are re-evaluated here at pH 6.0 and 8.0 and 25 °C using both cation exchange resin and competing ligand methods for Fe(III) and a cation exchange resin method only for Al(III) complexes. Both methods provide similar results at a particular pH with a two-ligand model accounting satisfactorily for the dissociation kinetics results obtained. For Fe(III), half-times on the order of 6-7 h were obtained for dissociation of the strong component and 4-5 min for dissociation of the weak component. For aluminium, the half-times were on the order of 1.5 h and 1-2 min for the strong and weak components, respectively. Overall, Fe(III) complexes with NOM are more stable than analogous complexes with Al(III), implying Fe(III) may be transported further from its source upon dilution and dispersion.

  12. Measuring Carbon-based Contaminant Mineralization Using Combined CO2 Flux and Radiocarbon Analyses.

    PubMed

    Boyd, Thomas J; Montgomery, Michael T; Cuenca, Richard H; Hagimoto, Yutaka

    2016-10-21

    A method is described which uses the absence of radiocarbon in industrial chemicals and fuels made from petroleum feedstocks which frequently contaminate the environment. This radiocarbon signal - or rather the absence of signal - is evenly distributed throughout a contaminant source pool (unlike an added tracer) and is not impacted by biological, chemical or physical processes (e.g., the 14 C radioactive decay rate is immutable). If the fossil-derived contaminant is fully degraded to CO2, a harmless end-product, that CO2 will contain no radiocarbon. CO2 derived from natural organic matter (NOM) degradation will reflect the NOM radiocarbon content (usually <30,000 years old). Given a known radiocarbon content for NOM (a site background), a two end-member mixing model can be used to determine the CO2 derived from a fossil source in a given soil gas or groundwater sample. Coupling the percent CO2 derived from the contaminant with the CO2 respiration rate provides an estimate for the total amount of contaminant degraded per unit time. Finally, determining a zone of influence (ZOI) representing the volume from which site CO2 is collected allows determining the contaminant degradation per unit time and volume. Along with estimates for total contaminant mass, this can ultimately be used to calculate time-to-remediate or otherwise used by site managers for decision-making.

  13. Measuring Carbon-based Contaminant Mineralization Using Combined CO2 Flux and Radiocarbon Analyses

    PubMed Central

    Boyd, Thomas J.; Montgomery, Michael T.; Cuenca, Richard H.; Hagimoto, Yutaka

    2016-01-01

    A method is described which uses the absence of radiocarbon in industrial chemicals and fuels made from petroleum feedstocks which frequently contaminate the environment. This radiocarbon signal — or rather the absence of signal — is evenly distributed throughout a contaminant source pool (unlike an added tracer) and is not impacted by biological, chemical or physical processes (e.g., the 14C radioactive decay rate is immutable). If the fossil-derived contaminant is fully degraded to CO2, a harmless end-product, that CO2 will contain no radiocarbon. CO2 derived from natural organic matter (NOM) degradation will reflect the NOM radiocarbon content (usually <30,000 years old). Given a known radiocarbon content for NOM (a site background), a two end-member mixing model can be used to determine the CO2 derived from a fossil source in a given soil gas or groundwater sample. Coupling the percent CO2 derived from the contaminant with the CO2 respiration rate provides an estimate for the total amount of contaminant degraded per unit time. Finally, determining a zone of influence (ZOI) representing the volume from which site CO2 is collected allows determining the contaminant degradation per unit time and volume. Along with estimates for total contaminant mass, this can ultimately be used to calculate time-to-remediate or otherwise used by site managers for decision-making. PMID:27805601

  14. Coupling reverse osmosis with electrodialysis to isolate natural organic matter from fresh waters

    EPA Science Inventory

    This study was undertaken to solve the problem of removal of sulfate and silica from solutions of natural organic matter (NOM) that have been pre-concentrated by reverse osmosis. The goal is the development of a method by which NOM can be concentrated and desalted to obtain a low...

  15. Integrated Disinfection Byproducts (DBPs) Mixtures Research: DBP Concentration via Reverse Osmosis Membrane Techniques

    EPA Science Inventory

    With the completion of the 4-lab project, the NOM concentration aspect of 4-lab is being continued with renewed focus on creating drinking water relevant freeze-dried NOM isolates that can be used for many drinking water research efforts from DBP investigations to water reuse inv...

  16. 75 FR 9632 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-03

    ... liquidity.\\6\\ Nasdaq seeks to encourage continued market making on NOM and to attract additional market making by establishing this new fee schedule. To receive NOM Market Maker pricing, the firm must be...-Regulatory Organizations; The NASDAQ Stock Market LLC; Notice of Filing and Immediate Effectiveness of...

  17. ASCORBIC ACID REDUCTION OF ACTIVE CHLORINE PRIOR TO DETERMINING AMES MUTAGENICITY OF CHLORINATED NATURAL ORGANIC MATTER (NOM)

    EPA Science Inventory

    Many potable water disinfection byproducts (DBPs) that result from the reaction of natural organic matter (NOM) with oxidizing chlorine are known or suspected to be carcinogenic and mutagenic. The Ames assay is routinely used to assess an overall level of mutagenicity for all com...

  18. Suppressing NOM access to controlled porous TiO2 particles enhances the decomposition of target water contaminants

    EPA Science Inventory

    Suppressing access of natural organic matter (NOM) to TiO2 is a key to the successful photocatalytic decomposition of a target contaminant in water. This study first demonstrates simply controlling the porous structure of TiO2 can significantly improve the selective oxidation.

  19. Comparison of myofibroblasts expression in oral squamous cell carcinoma, verrucous carcinoma, high risk epithelial dysplasia, low risk epithelial dysplasia and normal oral mucosa.

    PubMed

    Chaudhary, Minal; Gadbail, Amol Ramchandra; Vidhale, Gaurav; Mankar Gadbail, Mugdha P; Gondivkar, Shailesh M; Gawande, Madhuri; Patil, Swati

    2012-09-01

    The aim was to evaluate and compare the presence of myofibroblasts in oral squamous cell carcinoma (OSCC), verrucous carcinoma (VC), high-risk epithelial dysplasia (HRED), low-risk epithelial dysplasia (LRED), and normal oral mucosa (NOM). The study consisted of 37 OSCC, 15 VC, 15 HRED, 15 LRED and 15 NOM. α-smooth muscle actin (α-SMA) antibody was used to identify myofibroblasts. The α-SMA expression was not observed in NOM and LRED. The α-SMA was expressed in 97.29% of OSCC, 86.66% of VC, 46.66 % of HRED. The α-SMA expression was significantly higher in OSCC than VC (p = 0.023) and HRED (p < 0.000). The α-SMA expression was significantly higher in VC than HRED (p = 0.043). Myofibroblastic expression, as highlighted by α-SMA, is undetectable in NOM and LRED but increases as the disease progresses from potentially malignant disorders, as HRED to VC to invasive OSCC. Thus, proliferation of myofibroblasts may be used as a stromal marker of oral premalignancy and malignancy.

  20. P14.21 Can vascular risk factors influence number of brain metastases?

    PubMed Central

    Berk, B.; Nagel, S.; Kortmann, R.; Hoffmann, K.; Gaudino, C.; Seidel, C.

    2017-01-01

    Abstract BACKGROUND: Up to 30-40% of patients with solid tumors develop cerebral metastases. Number of cerebral metastases is relevant for treatment and prognosis. However, factors that determine number of metastases are not well defined. Distribution of metastases is influenced by blood vessels and cerebral small vessel disease can reduce number of metastases. Aim of this pilot study was to analyze the influence of vascular risk factors (arterial hypertension, diabetes mellitus, smoking, hypercholesterolemia) and of peripheral arterial occlusive disease (PAOD) on number of brain metastases. METHODS: 200 patients with pre-therapeutic 3D-brain MRI and available clinical data were analyzed retrospectively. Number of metastases (NoM) was compared between patients with/without vascular risk factors (vasRF). Results: Patients with PAOD had significant less brain metastases than patients without PAOD (NoM=4.43 vs. 6.02, p=0.043), no other single vasRF conferred a significant effect on NoM. NoM differed significantly between different tumor entities. CONCLUSION: Presence of PAOD showed some effect on number of brain metastases implying that tumor-independent vascular factors can influence brain metastasation.

  1. New scheme for image edge detection using the switching mechanism of nonlinear optical material

    NASA Astrophysics Data System (ADS)

    Pahari, Nirmalya; Mukhopadhyay, Sourangshu

    2006-03-01

    The limitations of electronics in conducting parallel arithmetic, algebraic, and logic processing are well known. Very high-speed (terahertz) performance cannot be expected in conventional electronic mechanisms. To achieve such performance we can introduce optics instead of electronics for information processing, computing, and data handling. Nonlinear optical material (NOM) is a successful candidate in this regard to play a major role in the domain of optically controlled switching systems. The character of some NOMs is such as to reflect the probe beam in the presence of two read beams (or pump beams) exciting the material from opposite directions, using the principle of four-wave mixing. In image processing, edge extraction from an image is an important and essential task. Several optical methods of digital image processing are used for properly evaluating the image edges. We propose here a new method of image edge detection, extraction, and enhancement by use of AND-based switching operations with NOM. In this process we have used the optically inverted image of a supplied image. This can be obtained by the EXOR switching operation of the NOM.

  2. Effects of sorbents in sorption of agrochemical

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayasundera, T.; Jayasundera, S.

    1996-10-01

    Sorption to soil materials is a key process controlling the fate of agrochemicals in the environment. Batch experiments were performed to determine sorption coefficients of metolachlor, alachlor and linuron onto clays, natural organic matter (NOM) coated-clays, and organic sorbents. Our results indicate that the partition coefficient K{sub d} is a function of both sorbent and sorbate properties. The carbon referenced sorption coefficient (K{sub oc}) decreased with increasing polarity of the organic sorbent. Adsorption isotherms onto clays and NOM coated-clays conformed to a Freunlich equation. Studies indicate that at low NOM surface coverage, interactions between NOM and clay surfaces could reducemore » the surface affinity for agrochemical adsorption. Our results suggest that sorption cannot be simply defined as {open_quotes}adsorption{close_quotes} or {open_quotes}partitioning{close_quotes}, but rather there is a continuum of possible interactions. The more polar the solute, the more likely it is that interactions other than hydrophobic will contribute to sorption, causing the currently used K{sub oc}-K{sub ow} correlations to fail.« less

  3. Reactions of hypoiodous acid with model compounds and the formation of iodoform in absence/presence of permanganate.

    PubMed

    Zhao, Xiaodan; Ma, Jun; von Gunten, Urs

    2017-08-01

    The kinetics for the reactions of hypoiodous acid (HOI) with various phenols (phenol, 4-nitrophenol, 4-hydroxybenzoic acid), 3-oxopentanedioic acid (3-OPA) and flavone were investigated in the pH range of 6.0-11.0. The apparent second order rate constants for the reactions of HOI with phenolic compounds, 3-OPA, flavone and citric acid at pH 8.0 are 10-10 7  M -1 s -1 , (4.0 ± 0.3) × 10 3  M -1 s -1 , (2.5 ± 0.2) × 10 3  M -1 s -1 and <1 M -1 s -1 , respectively. The effect of buffer type and concentration was investigated with acetate, phosphate and borate. All tested buffers promote the HOI reactions with phenols. The percentage of iodine incorporation for various (hydroxyl)phenolic compounds and two NOM extracts ranges from 5% to 98%, indicating that electrophilic aromatic substitution and/or electron transfer can occur. The extent of these reactions depends on the number and relative position of the hydroxyl moieties on the phenolic compounds. Iodoform formation rates increase with increasing pH and iodoform yields increase from 9% to 67% for pH 6.0-10.0 for the HOI/3-OPA reactions. In the permanganate/HOI/3-OPA and permanganate/iodide/3-OPA system at pH < 8.0, iodoform formation is elevated compared to the HOI/3-OPA system in absence of permanganate. For pH > 8.0, in presence of permanganate, iodoform formation is significantly inhibited and iodate formation enhanced, which is due to a faster permanganate-mediated HOI disproportionation to iodate compared to the iodination process. The production of reactive iodine in real waters containing iodide in contact with permanganate may lead to the formation of iodinated organic compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Engineering solutions to improve the removal of fecal indicator bacteria by bioinfiltration systems during intermittent flow of stormwater.

    PubMed

    Mohanty, Sanjay K; Torkelson, Andrew A; Dodd, Hanna; Nelson, Kara L; Boehm, Alexandria B

    2013-10-01

    Bioinfiltration systems facilitate the infiltration of urban stormwater into soil and reduce high flow events and flooding. Stormwater carries a myriad of pollutants including fecal indicator bacteria (FIB). Significant knowledge gaps exist about the ability of bioinfiltration systems to remove and retain FIB. The present study investigates the ability of model, simplified bioinfiltration systems containing quartz sand and iron oxide-coated quartz sand (IOCS) to remove two FIB (Enterococcus faecalis and Escherichia coli) suspended in synthetic stormwater with and without natural organic matter (NOM) as well as the potential for accumulated FIB to be remobilized during intermittent flow. The experiments were conducted in two phases: (1) the saturated columns packed with either sand or IOCS were contaminated by injecting stormwater with bacteria followed by injection of sterile stormwater and (2) the contaminated columns were subjected to intermittent infiltration of sterile stormwater preceded by a pause during which columns were either kept saturated or drained by gravity. During intermittent flow, fewer bacteria were released from the saturated column compared to the column drained by gravity: 12% of attached E. coli and 3% of attached Ent. faecalis were mobilized from the drained sand column compared to 3% of attached E. coli and 2% attached Ent. faecalis mobilized from the saturated sand column. Dry and wet cycles introduce moving air-water interfaces that can scour bacteria from grain surfaces. During intermittent flows, less than 0.2% of attached bacteria were mobilized from IOCS, which bound both bacteria irreversibly in the absence of NOM. Addition of NOM, however, increased bacterial mobilization from IOCS: 50% of attached E. coli and 8% of attached Ent. faecalis were released from IOCS columns during draining and rewetting. Results indicate that using geomedia such as IOCS that promote irreversible attachment of bacteria, and maintaining saturated condition, could minimize the mobilization of previous attached bacteria from bioinfiltration systems, although NOM may significantly decrease these benefits.

  5. Source tracing of natural organic matter bound mercury in boreal forest runoff with mercury stable isotopes.

    PubMed

    Jiskra, Martin; Wiederhold, Jan G; Skyllberg, Ulf; Kronberg, Rose-Marie; Kretzschmar, Ruben

    2017-10-18

    Terrestrial runoff represents a major source of mercury (Hg) to aquatic ecosystems. In boreal forest catchments, such as the one in northern Sweden studied here, mercury bound to natural organic matter (NOM) represents a large fraction of mercury in the runoff. We present a method to measure Hg stable isotope signatures of colloidal Hg, mainly complexed by high molecular weight or colloidal natural organic matter (NOM) in natural waters based on pre-enrichment by ultrafiltration, followed by freeze-drying and combustion. We report that Hg associated with high molecular weight NOM in the boreal forest runoff has very similar Hg isotope signatures as compared to the organic soil horizons of the catchment area. The mass-independent fractionation (MIF) signatures (Δ 199 Hg and Δ 200 Hg) measured in soils and runoff were in agreement with typical values reported for atmospheric gaseous elemental mercury (Hg 0 ) and distinctly different from reported Hg isotope signatures in precipitation. We therefore suggest that most Hg in the boreal terrestrial ecosystem originated from the deposition of Hg 0 through foliar uptake rather than precipitation. Using a mixing model we calculated the contribution of soil horizons to the Hg in the runoff. At moderate to high flow runoff conditions, that prevailed during sampling, the uppermost part of the organic horizon (Oe/He) contributed 50-70% of the Hg in the runoff, while the underlying more humified organic Oa/Ha and the mineral soil horizons displayed a lower mobility of Hg. The good agreement of the Hg isotope results with other source tracing approaches using radiocarbon signatures and Hg : C ratios provides additional support for the strong coupling between Hg and NOM. The exploratory results from this study illustrate the potential of Hg stable isotopes to trace the source of Hg from atmospheric deposition through the terrestrial ecosystem to soil runoff, and provide a basis for more in-depth studies investigating the mobility of Hg in terrestrial ecosystems using Hg isotope signatures.

  6. Trauma surgeons practice what they preach: The NTDB story on solid organ injury management.

    PubMed

    Hurtuk, Michael; Reed, R Lawrence; Esposito, Thomas J; Davis, Kimberly A; Luchette, Fred A

    2006-08-01

    Recent studies advocate a nonoperative approach for hepatic and splenic trauma. The purpose of this study was to determine whether the literature has impacted surgical practice and, if so, whether or not the overall mortality of these injuries had changed. The American College of Surgeons' National Trauma Data Bank (NTDB 4.0) was analyzed using trauma admission dates ranging from 1994 to 2003. All hepatic and splenic injuries were identified by ICD-9 codes. As renal trauma management has not changed during the study period, renal injuries were included as a control. Nonoperative management (NOM) rates and overall mortality were determined for each organ. Proportions were compared using chi analysis with significance set at p < 0.05. There were 87,237 solid abdominal organ injuries reported and included: 35,767 splenic, 35,510 hepatic, 15,960 renal injuries. There was a significant (p < 0.00000000005) increase in percentage of NOM for hepatic and splenic trauma whereas renal NOM remained stable for the study period. Despite an increase in NOM for splenic and hepatic injuries, mortality has remained unchanged. This study demonstrates that the management of hepatic and splenic injuries has significantly changed in the past 10 years with no appreciable effect on mortality. NOM has become the standard of care for the management of hepatic and splenic trauma. The NTDB can be used to monitor changes in trauma care in response to new knowledge regarding improved outcomes.

  7. Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review.

    PubMed

    Sillanpää, Mika; Ncibi, Mohamed Chaker; Matilainen, Anu; Vepsäläinen, Mikko

    2018-01-01

    Natural organic matter (NOM) is a complex matrix of organic substances produced in (or channeled to) aquatic ecosystems via various biological, geological and hydrological cycles. Such variability is posing a serious challenge to most water treatment technologies, especially the ones designed to treat drinking water supplies. Lately, in addition to the fluctuating composition of NOM, a substantial increase of its concentration in fresh waters, and also municipal wastewater effluents, has been reported worldwide, which justifies the urgent need to develop highly efficient and versatile water treatment processes. Coagulation is among the most applied processes for water and wastewater treatment. The application of coagulation to remove NOM from drinking water supplies has received a great deal of attention from researchers around the world because it was efficient and helped avoiding the formation of disinfection by products (DBPs). Nonetheless, with the increased fluctuation of NOM in water (concentration and composition), the efficiency of conventional coagulation was substantially reduced, hence the need to develop enhanced coagulation processes by optimizing the operating conditions (mainly the amount coagulants and pH), developing more efficient inorganic or organic coagulants, as well as coupling coagulation with other water treatment technologies. In the present review, recent research studies dealing with the application of coagulation for NOM removal from drinking water supplies are presented and compared. In addition, integration schemes combining coagulation and other water treatment processes are presented, including membrane filtration, oxidation, adsorption and others processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Non-operative management of blunt splenic injuries in a paediatric population: a 12-year experience.

    PubMed

    Kirkegård, Jakob; Avlund, Tue Højslev; Amanavicius, Nerijus; Mortensen, Frank Viborg; Kissmeyer-Nielsen, Peter

    2015-02-01

    Non-operative management (NOM) is now the primary treatment for blunt splenic injuries in children. Only one study has examined the use of NOM in a Scandinavian population. Thus, the purpose of this study is to report our experience in treating children with blunt splenic injuries with NOM at a Danish university hospital. We conducted a retrospective observational study of 34 consecutive children (aged 16 years or less) admitted to our level 1-trauma centre with blunt splenic injury in the 12-year period from 1 January 2001 to 31 December 2012. Data on patients and procedures were obtained by review of all medical records and re-evaluation of all initial computed tomographies (CT). We included 34 children with a median age of 10.5 years (67.6% males) in this study. All patients were scheduled for NOM, and two (5.9%) patients underwent splenic artery embolisation (SAE). Two (5.9%) patients later needed surgical intervention. The NOM success rate was 88% (95% confidence interval (CI): 73-97%) without SAE and 94% (95% CI: 80-99%) with SAE. We found no difference in the American Association for the Surgery of Trauma grade when comparing the initial CT evaluation (mean 2.59 ± 1.1) with the CT re-evaluation (mean 2.71 ± 0.94); p = 0.226. We demonstrated a high degree of success and safety of non-operative treatment in children with blunt splenic injury in a Scandinavian setting. Our results are comparable to international findings.

  9. Blunt splenic injury: are early adverse events related to trauma, nonoperative management, or surgery?

    PubMed

    Frandon, Julien; Rodiere, Mathieu; Arvieux, Catherine; Vendrell, Anne; Boussat, Bastien; Sengel, Christian; Broux, Christophe; Bricault, Ivan; Ferretti, Gilbert; Thony, Frédéric

    2015-01-01

    We aimed to compare clinical outcomes and early adverse events of operative management (OM), nonoperative management (NOM), and NOM with splenic artery embolization (SAE) in blunt splenic injury (BSI) and identify the prognostic factors. Medical records of 136 consecutive patients with BSI admitted to a trauma center from 2005 to 2010 were retrospectively reviewed. Patients were separated into three groups: OM, NOM, and SAE. We focused on associated injuries and early adverse events. Multivariate analysis was performed on 23 prognostic factors to find predictors. The total survival rate was 97.1%, with four deaths all occurred in the OM group. The spleen salvage rate was 91% in NOM and SAE. At least one adverse event was observed in 32.8%, 62%, and 96% of patients in NOM, SAE, and OM groups, respectively (P < 0.001). We found significantly more deaths, infectious complications, pleural drainage, acute renal failures, and pancreatitis in OM and more pseudocysts in SAE. Six prognostic factors were statistically significant for one or more adverse events: simplified acute physiology score 2 ≥25 for almost all adverse events, age ≥50 years for acute respiratory syndrome, limb fracture for secondary bleeding, thoracic injury for pleural drainage, and at least one associated injury for pseudocyst. Adverse events were not related to the type of BSI management. Patients with BSI present worse outcome and more adverse events in OM, but this is related to the severity of injury. The main predictor of adverse events remains the severity of injury.

  10. Removal of microcystin-LR from drinking water using a bamboo-based charcoal adsorbent modified with chitosan.

    PubMed

    Zhang, Hangjun; Zhu, Guoying; Jia, Xiuying; Ding, Ying; Zhang, Mi; Gao, Qing; Hu, Ciming; Xu, Shuying

    2011-01-01

    A new kind of low-cost syntactic adsorbent from bamboo charcoal and chitosan was developed for the removal of microcystin-LR from drinking water. Removal efficiency was higher for the syntactic adsorbent when the amount of bamboo charcoal was increased. The optimum dose ratio of bamboo charcoal to chitosan was 6:4, and the optimum amount was 15 mg/L; equilibrium time was 6 hr. The adsorption isotherm was non-linear and could be simulated by the Freundlich model (R2 = 0.9337). Adsorption efficiency was strongly affected by pH and natural organic matter (NOM). Removal efficiency was 16% higher at pH 3 than at pH 9. Efficiency rate was reduced by 15% with 25 mg/L NOM (UV254 = 0.089 cm(-1)) in drinking water. This study demonstrated that the bamboo charcoal modified with chitosan can effectively remove microcystin-LR from drinking water.

  11. Prospective trial of angiography and embolization for all grade III to V blunt splenic injuries: nonoperative management success rate is significantly improved.

    PubMed

    Miller, Preston R; Chang, Michael C; Hoth, J Jason; Mowery, Nathan T; Hildreth, Amy N; Martin, R Shayn; Holmes, James H; Meredith, J Wayne; Requarth, Jay A

    2014-04-01

    Nonoperative management (NOM) of blunt splenic injury is well accepted. Substantial failure rates in higher injury grades remain common, with one large study reporting rates of 19.6%, 33.3%, and 75% for grades III, IV, and V, respectively. Retrospective data show angiography and embolization can increase salvage rates in these severe injuries. We developed a protocol requiring referral of all blunt splenic injuries, grades III to V, without indication for immediate operation for angiography and embolization. We hypothesized that angiography and embolization of high-grade blunt splenic injury would reduce NOM failure rates in this population. This was a prospective study at our Level I trauma center as part of a performance-improvement project. Demographics, injury characteristics, and outcomes were compared with historic controls. The protocol required all stable patients with grade III to V splenic injuries be referred for angiography and embolization. In historic controls, referral was based on surgeon preference. From January 1, 2010 to December 31, 2012, there were 168 patients with grades III to V spleen injuries admitted; NOM was undertaken in 113 (67%) patients. The protocol was followed in 97 patients, with a failure rate of 5%. Failure rate in the 16 protocol deviations was 25% (p = 0.02). Historic controls from January 1, 2007 to December 31, 2009 were compared with the protocol group. One hundred and fifty-three patients with grade III to V injuries were admitted during this period, 80 (52%) patients underwent attempted NOM. Failure rate was significantly higher than for the protocol group (15%, p = 0.04). Use of a protocol requiring angiography and embolization for all high-grade spleen injuries slated for NOM leads to a significantly decreased failure rate. We recommend angiography and embolization as an adjunct to NOM for all grade III to V splenic injuries. Copyright © 2014 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  12. To nearly come full circle: Nonoperative management of high-grade IV-V blunt splenic trauma is safe using a protocol with routine angioembolization.

    PubMed

    Bhullar, Indermeet S; Tepas, Joseph J; Siragusa, Daniel; Loper, Todd; Kerwin, Andrew; Frykberg, Eric R

    2017-04-01

    Nonoperative management (NOM) of hemodynamically stable high-grade (IV-V) blunt splenic trauma remains controversial given the high failure rates (19%) that persist despite angioembolization (AE) protocols. The NOM protocol was modified in 2011 to include mandatory AE of all grade (IV-V) injuries without contrast blush (CB) along with selective AE of grade (I-V) with CB. The purpose of this study was to determine if this new AE (NAE) protocol significantly lowered the failure rates for grade (IV-V) injuries allowing for safe observation without surgery and if the exclusion of grade III injuries allowed for the prevention of unnecessary angiograms without affecting the overall failure rates. The records of patients with blunt splenic trauma from January 2000 to October 2014 at a Level I trauma center were retrospectively reviewed. Patients were divided into two groups and failure of NOM (FNOM) rates compared: NAE protocol (2011-2014) with mandatory AE for all grade (IV-V) injuries without CB and selective AE for grade (I-V) with CB versus old AE (OAE) protocol (2000-2010) with selective AE for grade (I-V) with CB. Seven hundred twelve patients underwent NOM with 522 (73%) in the OAE group and 190 (27%) in the NAE group. Evolving from the OAE to the NAE strategy resulted in a significantly lower FNOM rate for the overall group (grade I-V) (OAE vs. NAE, 4% to 1%, p = 0.04) and the grade (IV-V) group (OAE vs. NAE, 19% vs. 3%, p = 0.01). Angiograms were avoided in 113 grade (I-III) injuries with no CB; these patients had NOM with observation alone and none failed. A protocol using mandatory AE of all high-grade (IV-V) injuries without CB and selective AE of grade (I-V) with CB may provide for optimum salvage with safe NOM of the high-grade injuries (IV-V) and limited unnecessary angiograms. Therapeutic study, level IV.

  13. Effect of pH, competitive anions and NOM on the leaching of arsenic from solid residuals.

    PubMed

    Ghosh, Amlan; Sáez, A Eduardo; Ela, Wendell

    2006-06-15

    Implementation of the new arsenic MCL in 2006 will lead to the generation of an estimated 6 million pounds of arsenic-bearing solid residuals (ABSRs) every year, which will be disposed predominantly in non-hazardous landfills. The Toxicity Characteristic Leaching Procedure (TCLP) is typically used to assess whether a waste is hazardous and most solid residuals pass the TCLP. However, recent research shows the TCLP significantly underestimates arsenic mobilization in landfills. A variety of compositional dissimilarities between landfill leachates and the TCLP extractant solution likely play a role. Among the abiotic factors likely to play a key role in arsenic remobilization/leaching from solid sorbents are pH, and the concentrations of natural organic matter (NOM) and anions like phosphate, bicarbonate, sulfate and silicate. This study evaluates the desorption of arsenic from actual treatment sorbents, activated alumina (AA) and granular ferric hydroxide (GFH), which are representative of those predicted for use in arsenic removal processes, and as a function of the specific range of pH and concentrations of the competitive anions and NOM found in landfills. The influence of pH is much more significant than that of competing anions or NOM. An increase in one unit of pH may increase the fraction of arsenic leached by 3-4 times. NOM and phosphate replace arsenic from sorbent surface sites up to three orders of magnitude more than bicarbonate, sulfate and silicate, on a per mole basis. Effects of anions are neither additive nor purely competitive. Leaching tests, which compare the fraction of arsenic mobilized by the TCLP vis-a-vis an actual or more realistic synthetic landfill leachate, indicate that higher pH, and greater concentrations of anions and NOM are all factors, but of varying significance, in causing higher extraction in landfill and synthetic leachates than the TCLP.

  14. Thromboembolic Prophylaxis with Heparin in Patients with Blunt Solid Organ Injuries Undergoing Non-operative Treatment.

    PubMed

    Khatsilouskaya, Tatsiana; Haltmeier, Tobias; Cathomas, Marionna; Eberle, Barbara; Candinas, Daniel; Schnüriger, Beat

    2017-05-01

    Patients with blunt solid organ injuries (SOI) are at risk for venous thromboembolism (VTE), and VTE prophylaxis is crucial. However, little is known about the safety of early prophylactic administration of heparin in these patients. This is a retrospective study including adult trauma patients with SOI (liver, spleen, kidney) undergoing non-operative management (NOM) from 01/01/2009 to 31/12/2014. Three groups were distinguished: prophylactic heparin (low molecular weight heparin or low-dose unfractionated heparin) ≤72 h after admission ('early heparin group'), >72 h after admission ('late heparin group'), and no heparin ('no heparin group'). Patient and injury characteristics, transfusion requirements, and outcomes (failed NOM, VTE, and mortality) were compared between the three groups. Overall, 179 patients were included; 44.7% in the 'early heparin group,' 34.6% in the 'late heparin group,' and 20.8% in the 'no heparin group.' In the 'late heparin group,' the ISS was significantly higher than in the 'early' and 'no heparin groups' (median 29.0 vs. 17.0 vs. 19.0; p < 0.001). The overall NOM failure rate was 3.9%. Failed NOM was significantly more frequent in the 'no heparin group' compared to the 'early' and 'late heparin groups' (10.8 vs. 3.2 vs. 1.3%; p = 0.043). In the 'early heparin group' 27.5% patients suffered from a high-grade SOI; none of these patients failed NOM. Mortality did not differ significantly. Although not statistically significant, VTE were more frequent in the 'no heparin group' compared to the 'early' and 'late heparin groups' (10.8 vs. 4.8 vs. 1.3%; p = 0.066). In patients with SOI, heparin was administered early in a high percentage of patients and was not associated with an increased NOM failure rate or higher in-hospital mortality.

  15. A systematic review of the management and outcome of ERCP related duodenal perforations using a standardized classification system.

    PubMed

    Cirocchi, Roberto; Kelly, Michael Denis; Griffiths, Ewen A; Tabola, Renata; Sartelli, Massimo; Carlini, Luigi; Ghersi, Stefania; Di Saverio, Salomone

    2017-12-01

    The incidence of duodenal perforation after ERCP ranges from 0.09% to 1.67% and mortality up to 8%. This systematic review was registered in Prospective Register of Systematic Reviews, PROSPERO. Stapfer classification of ERCP-related duodenal perforations was used. The systematic search yielded 259 articles. Most frequent post-ERCP perforation was Stapfer type II (58.4%), type I second most frequent perforation (17.8%) followed by Stapfer type III in 13.2% and type IV in 10.6%. Rate of NOM was lowest in Stapfer type I perforations (13%), moderate in type III lesions (58.1%) and high in other types of perforations (84.2% in type II and 84.6% in IV). In patients underwent early surgical treatment (<24 h from ERCP) the most frequent operation was simple duodenal suture with or without omentopexy (93.7%). In patients undergoing late surgical treatment (>24 h from ERCP) interventions performed were more complex. In type I lesions post-operative mortality rate was higher in patients underwent late operation (>24 h). In type I lesions, failure of NOM occurred in 42.8% of patients. In type II failure of NOM occurred in 28.9% of patients and in type III there was failure of NOM in only 11.1%, none in type IV. Postoperative mortality after NOM failure was 75% in type I, 22.5% in type II and none died after surgical treatment for failure of NOM in type III perforations. This systematic review showed that in patients with Stapfer type I lesions, early surgical treatment gives better results, however the opposite seems true in Stapfer III and IV lesions. Copyright © 2017 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.

  16. Organ Preservation in Rectal Adenocarcinoma: a phase II randomized controlled trial evaluating 3-year disease-free survival in patients with locally advanced rectal cancer treated with chemoradiation plus induction or consolidation chemotherapy, and total mesorectal excision or nonoperative management.

    PubMed

    Smith, J Joshua; Chow, Oliver S; Gollub, Marc J; Nash, Garrett M; Temple, Larissa K; Weiser, Martin R; Guillem, José G; Paty, Philip B; Avila, Karin; Garcia-Aguilar, Julio

    2015-10-23

    Treatment of patients with non-metastatic, locally advanced rectal cancer (LARC) includes pre-operative chemoradiation, total mesorectal excision (TME) and post-operative adjuvant chemotherapy. This trimodality treatment provides local tumor control in most patients; but almost one-third ultimately die from distant metastasis. Most survivors experience significant impairment in quality of life (QoL), due primarily to removal of the rectum. A current challenge lies in identifying patients who could safely undergo rectal preservation without sacrificing survival benefit and QoL. This multi-institutional, phase II study investigates the efficacy of total neoadjuvant therapy (TNT) and selective non-operative management (NOM) in LARC. Patients with MRI-staged Stage II or III rectal cancer amenable to TME will be randomized to receive FOLFOX/CAPEOX: a) before induction neoadjuvant chemotherapy (INCT); or b) after consolidation neoadjuvant chemotherapy (CNCT), with 5-FU or capecitabine-based chemoradiation. Patients in both arms will be re-staged after completing all neoadjuvant therapy. Those with residual tumor at the primary site will undergo TME. Patients with clinical complete response (cCR) will receive non-operative management (NOM). NOM patients will be followed every 3 months for 2 years, and every 6 months thereafter. TME patients will be followed according to NCCN guidelines. All will be followed for at least 5 years from the date of surgery or--in patients treated with NOM--the last day of treatment. The studies published thus far on the safety of NOM in LARC have compared survival between select groups of patients with a cCR after NOM, to patients with a pathologic complete response (pCR) after TME. The current study compares 3-year disease-free survival (DFS) in an entire population of patients with LARC, including those with cCR and those with pCR. We will compare the two arms of the study with respect to organ preservation at 3 years, treatment compliance, adverse events and surgical complications. We will measure QoL in both groups. We will analyze molecular indications that may lead to more individually tailored treatments in the future. This will be the first NOM trial utilizing a regression schema for response assessment in a prospective fashion. NCT02008656.

  17. Transport, retention, and long-term release behavior of polymer-coated silver nanoparticles in saturated quartz sand: The impact of natural organic matters and electrolyte.

    PubMed

    Hou, Jun; Zhang, Mingzhi; Wang, Peifang; Wang, Chao; Miao, Lingzhan; Xu, Yi; You, Guoxiang; Lv, Bowen; Yang, Yangyang; Liu, Zhilin

    2017-10-01

    This study investigated the transport and long-term release of stabilized silver nanoparticles (AgNPs), including polyvinylpyrrolidone-coated AgNPs (PVP-AgNPs) and bare AgNPs (Bare-AgNPs), in the presence of natural organic matters (NOMs; both humic acids (HA) and alginate (Alg)) and an electrolyte (Ca 2+ ) in a sand-packed column. Very low breakthrough rate (C/C 0 ) of AgNPs (below 0.04) occurred in the absence of NOM and the electrolyte. Increasing the concentration of NOM and decreasing the influent NOM solution's ionic strength (IS) reduced the retention of AgNPs. The reduced NP retention at high NOM and low IS was mainly attributed to the increased energy barrier between the AgNPs and the sand grain surface. Notably, the retention of PVP-AgNPs was enhanced at high Alg concentration and low IS, which mainly resulted from the improved hydrophobicity that could increase the interaction between the PVP-AgNPs and the collector. The total release amount of PVP-AgNPs (10.03%, 9.50%, 28.42%, 6.37%) and Bare-AgNPs (3.28%, 2.58%, 10.36%, 1.54%) were gained when exposed to four kinds of NOM solutions, including deionized water, an electrolyte solution (1 mM Ca 2+ ), HA with an electrolyte (1 mM Ca 2+ ), and a Alg (40 mg/L) solution with an electrolyte (1 mM Ca 2+ ). The long-term release of retained silver nanoparticles in the quartz sand was mostly through the form of released Ag NPs. The factors that increased the mobility of AgNPs in quartz sand could improve the release of the AgNPs. The release of AgNPs had no significant change in the presence Ca 2+ but were increased in the presence of HA. The Alg slightly decreased the release of AgNPs by increasing the hydrophobicity of AgNPs. The results of the study indicated that all the tested NOM and Ca 2+ have prominent influence on the transport and long-term release behavior of silver nanoparticles in saturated quartz sand. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Ozone-induced changes in natural organic matter (NOM) structure

    USGS Publications Warehouse

    Westerhoff, P.; Debroux, J.; Aiken, G.; Amy, G.

    1999-01-01

    Hydrophobic organic acids (combined humic and fulvic acids), obtained from an Antarctic Lake with predominantly microbially derived organic carbon sources and two US fiver systems with terrestrial organic carbon sources, were ozonated. Several analyses, including 13C-NMR, UV absorbance, fluorescence, hydrophobic/transphilic classification, and potentiometric titrations, were performed before and after ozonation. Ozonation reduced aromatic carbon content, selectively reducing phenolic carbon content. Ozonation of the samples resulted in increased aliphatic, carboxyl, plus acetal and ketal anomeric carbon content and shifted towards less hydrophobic compounds.Hydrophobic organic acids (combined humic and fulvic acids), obtained from an Antarctic Lake with predominantly microbially derived organic carbon sources and two US river systems with terrestrial organic carbon sources, were ozonated. Several analyses, including 13C-NMR, UV absorbance, fluorescence, hydrophobic/transphilic classification, and potentiometric titrations, were performed before and after ozonation. Ozonation reduced aromatic carbon content, selectively reducing phenolic carbon content. Ozonation of the samples resulted in increased aliphatic, carboxyl, plus acetal and ketal anomeric carbon content and shifted towards less hydrophobic compounds.

  19. 78 FR 61439 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ... available through the SQF Port to provide them the necessary information to perform market making activities... their market making business at a firm level regardless of factors. If a NOM Participant does not have... Port, the SQF Port is utilized particularly by NOM Market Makers in connection with their market making...

  20. Impact of the Tactical Picture Quality on the Fire Control Radar Search-Lock-On Time

    DTIC Science & Technology

    2006-09-01

    theory terminology). It is required to grade the benefits from the different possible actions so that an optimal solution can be chosen. For instance, in...the fire control radar search-lock-on time (U) 4. AUTEURS (Nom de famille, prénom et initiales. Indiquer les grades militaires, ex.: Bleau, Maj

  1. 78 FR 41455 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ... Proposed Rule Change Relating to Penny Pilot Option Rebates To Add Liquidity July 3, 2013. Pursuant to... proposes to amend certain Customer,\\3\\ Professional \\4\\ and NOM Market Maker \\5\\ Rebates to Add Liquidity..., Professional and NOM Market Maker Penny Pilot Options Rebates to Add Liquidity and make other technical...

  2. THE USE OF PYROLYSIS/GC/MS TO CHARACTERIZE THE ORGANIC QUALITY OF SURFACE WATERS; SPECIAL APPLICATION TO DRINKING WATER TREATMENT AND THE FORMATION OF DISINFECTION BYPRODUCTS

    EPA Science Inventory

    Natural Organ Material (NOM) in aquatic systems controls the effectiveness of engineered treatment processes and the fate of metals and pollutants in natural systems. At present less than 20% of NOM components can be identified. Pyrolysis-Gas Chromatography-Mass Spectrometry (P...

  3. Natural organic matter and the event horizon of mass spectrometry.

    PubMed

    Hertkorn, N; Frommberger, M; Witt, M; Koch, B P; Schmitt-Kopplin, Ph; Perdue, E M

    2008-12-01

    Soils, sediments, freshwaters, and marine waters contain natural organic matter (NOM), an exceedingly complex mixture of organic compounds that collectively exhibit a nearly continuous range of properties (size-reactivity continuum). NOM is composed mainly of carbon, hydrogen, and oxygen, with minor contributions from heteroatoms such as nitrogen, sulfur, and phosphorus. Suwannee River fulvic acid (SuwFA) is a fraction of NOM that is relatively depleted in heteroatoms. Ultrahigh resolution Fourier transform ion cyclotron (FTICR) mass spectra of SuwFA reveal several thousand molecular formulas, corresponding in turn to several hundred thousand distinct chemical environments of carbon even without accountancy of isomers. The mass difference deltam among adjoining C,H,O-molecules between and within clusters of nominal mass is inversely related to molecular dissimilarity: any decrease of deltam imposes an ever growing mandatory difference in molecular composition. Molecular formulas that are expected for likely biochemical precursor molecules are notably absent from these spectra, indicating that SuwFA is the product of diagenetic reactions that have altered the major components of biomass beyond the point of recognition. The degree of complexity of SuwFA can be brought into sharp focus through comparison with the theoretical limits of chemical complexity, as constrained and quantized by the fundamentals of chemical binding. The theoretical C,H,O-compositional space denotes the isomer-filtered complement of the entire, very vast space of molecular structures composed solely of carbon, hydrogen, and oxygen. The molecular formulas within SuwFA occupy a sizable proportion of the theoretical C,H,O-compositional space. A 100 percent coverage of the theoretically feasible C,H,O-compositional space by SuwFA molecules is attained throughout a sizable range of mass and H/C and O/C elemental ratios. The substantial differences between (and complementarity of) the SuwFA molecular formulas that are observed using six different modes of ionization (APCI, APPI, and ESI in positive and negative modus) imply considerable selectivity of the ionization process and suggest that the observed mass spectra represent simplified projections of still more complex mixtures.

  4. Blunt splenic injury: are early adverse events related to trauma, nonoperative management, or surgery?

    PubMed Central

    Frandon, Julien; Rodiere, Mathieu; Arvieux, Catherine; Vendrell, Anne; Boussat, Bastien; Sengel, Christian; Broux, Christophe; Bricault, Ivan; Ferretti, Gilbert; Thony, Frédéric

    2015-01-01

    PURPOSE We aimed to compare clinical outcomes and early adverse events of operative management (OM), nonoperative management (NOM), and NOM with splenic artery embolization (SAE) in blunt splenic injury (BSI) and identify the prognostic factors. METHODS Medical records of 136 consecutive patients with BSI admitted to a trauma center from 2005 to 2010 were retrospectively reviewed. Patients were separated into three groups: OM, NOM, and SAE. We focused on associated injuries and early adverse events. Multivariate analysis was performed on 23 prognostic factors to find predictors. RESULTS The total survival rate was 97.1%, with four deaths all occurred in the OM group. The spleen salvage rate was 91% in NOM and SAE. At least one adverse event was observed in 32.8%, 62%, and 96% of patients in NOM, SAE, and OM groups, respectively (P < 0.001). We found significantly more deaths, infectious complications, pleural drainage, acute renal failures, and pancreatitis in OM and more pseudocysts in SAE. Six prognostic factors were statistically significant for one or more adverse events: simplified acute physiology score 2 ≥25 for almost all adverse events, age ≥50 years for acute respiratory syndrome, limb fracture for secondary bleeding, thoracic injury for pleural drainage, and at least one associated injury for pseudocyst. Adverse events were not related to the type of BSI management. CONCLUSION Patients with BSI present worse outcome and more adverse events in OM, but this is related to the severity of injury. The main predictor of adverse events remains the severity of injury. PMID:26081719

  5. [Preliminary investigation of psychologic factors in 76 tinnitus patients].

    PubMed

    Mao, Kunhua; Jiang, Wen; Feng, Yong

    2011-08-01

    To study the psychological aspects of tinnitus patients, to analyze the distribution of psychologic obstacle in tinnitus patients, and then to provide information for diagnosing and treating tinnitus clinically. All patients were detected their frequency and loudness of tinnitus. Then they were evaluated by symptom checklist 90 (SCL-90), life satisfaction scale, Pittsburgh sleep quality index (PSQI) and tinnitus handicap inventory (THI). All data were analyzed with statistical software SPSS11.0. (1)There was no straight line correlation between frequency, loudness of tinnitus and the patient's scores from SCL-90, life satisfaction rating scale (LSR), life satisfaction index A (LSIA), LSIB, PSQI, THI. (2) To 76 tinnitus patients, some factors of SCL-90 were higher than internal nom. Compared with internal nom, tinnitus patients' score of LSR, LSIA and LSIB were all lower than it. Many of tinnitus patients had sleep disorder, the ratio was higher than internal nom. (3) Grouping these patients, based on the score of THI. To THI four grade group and THI five grade group, their satisfaction of lives were lower, some factors of SCL-90 were higher than internal nom. To THI five grade group, the ratio about sleep disorder was higher than internal nom. There is no straight line correlation between frequency, loudness of tinnitus and the patient's scores from SCL-90, LSR, LSIA, LSIB, PSQ1, THI. Grouping based on the score of THI, the groups of THI four grade and THI five grade are approved that they have psychologic obstacle obviously, they should be paid close attention.

  6. 77 FR 63384 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ... Proposed Rule Change Relating to Non-Penny Pilot and Penny Pilot Options October 10, 2012. Pursuant to.... Specifically, NOM proposes to amend the Non-Penny Pilot Options and Penny Pilot \\3\\ Options pricing. \\3\\ The... assessed for option orders entered into NOM. The Exchange is proposing to amend the Non- Penny Pilot...

  7. Simultaneous E. coli inactivation and NOM degradation in river water via photo-Fenton process at natural pH in solar CPC reactor. A new way for enhancing solar disinfection of natural water.

    PubMed

    Moncayo-Lasso, Alejandro; Sanabria, Janeth; Pulgarin, César; Benítez, Norberto

    2009-09-01

    Bacteria inactivation and natural organic matter oxidation in river water was simultaneously conducted via photo-Fenton reaction at "natural" pH ( approximately 6.5) containing 0.6 mg L(-1) of Fe(3+) and 10 mg L(-1) of H(2)O(2). The experiments were carried out by using a solar compound parabolic collector on river water previously filtered by a slow sand filtration system and voluntarily spiked with Escherichia coli. Fifty five percent of 5.3 mg L(-1) of dissolved organic carbon was mineralized whereas total disinfection was observed without re-growth after 24h in the dark.

  8. Evaluation of Removal Mechanisms in a Graphene Oxide-Coated Ceramic Ultrafiltration Membrane for Retention of Natural Organic Matter, Pharmaceuticals, and Inorganic Salts.

    PubMed

    Chu, Kyoung Hoon; Fathizadeh, Mahdi; Yu, Miao; Flora, Joseph R V; Jang, Am; Jang, Min; Park, Chang Min; Yoo, Sung Soo; Her, Namguk; Yoon, Yeomin

    2017-11-22

    Functionalized graphene oxide (GO), derived from pure graphite via the modified Hummer method, was used to modify commercially available ceramic ultrafiltration membranes using the vacuum method. The modified ceramic membrane functionalized with GO (ceramic GO ) was characterized using a variety of analysis techniques and exhibited higher hydrophilicity and increased negative charge compared with the pristine ceramic membrane. Although the pure water permeability of the ceramic GO membrane (14.4-58.6 L/m 2 h/bar) was slightly lower than that of the pristine membrane (25.1-62.7 L/m 2 h/bar), the removal efficiencies associated with hydrophobic attraction and charge effects were improved significantly after GO coating. Additionally, solute transport in the GO nanosheets of the ceramic GO membrane played a vital role in the retention of target compounds: natural organic matter (NOM; humic acid and tannic acid), pharmaceuticals (ibuprofen and sulfamethoxazole), and inorganic salts (NaCl, Na 2 SO 4 , CaCl 2 , and CaSO 4 ). While the retention efficiencies of NOM, pharmaceuticals, and inorganic salts in the pristine membrane were 74.6%, 15.3%, and 2.9%, respectively, these increased to 93.5%, 51.0%, and 31.4% for the ceramic GO membrane. Consequently, the improved removal mechanisms of the membrane modified with functionalized GO nanosheets can provide efficient retention for water treatment under suboptimal environmental conditions of pH and ionic strength.

  9. Investigation of Microgranular Adsorptive Filtration System

    NASA Astrophysics Data System (ADS)

    Cai, Zhenxiao

    Over the past few decades, enormous advances have been made in the application of low-pressure membrane filtration to both drinking water and wastewater treatment. Nevertheless, the full potential of this technology has not been reached, due primarily to limitations imposed by membrane fouling. In drinking water treatment, much of the fouling is caused by soluble and particulate natural organic matter (NOM). Efforts to overcome the problem have focused on removal of NOM from the feed solution, usually by addition of conventional coagulants like alum and ferric chloride (FeCl3) or adsorbents like powdered activated carbon (PAC). While coagulants and adsorbents can remove a portion of the NOM, their performance with respect to fouling control has been inconsistent, often reducing fouling but sometimes having no effect or even exacerbating fouling. This research investigated microgranular adsorptive filtration (muGAF), a process that combines three existing technologies---granular media filtration, packed bed adsorption, and membrane filtration---in a novel way to reduce membrane fouling while simultaneously removing NOM from water. In this technology, a thin layer of micron-sized adsorbent particles is deposited on the membrane prior to delivering the feed to the system. The research reported here represents the first systematic study of muGAF, and the results demonstrate the promising potential of this process. A new, aluminum-oxide-based adsorbent---heated aluminum oxide particles (HAOPs)---was synthesized and shown to be very effective for NOM removal as well as fouling reduction in muGAF systems. muGAF has also been demonstrated to work well with powdered activated carbon (PAC) as the adsorbent, but not as well as when HAOPs are used; the process has also been successful when used with several different membrane types and configurations. Experiments using a wide range of operational parameters and several analytical tools lead to the conclusion that the fouling in muGAF systems can occur both on the membrane surface and in the cake layer. Fouling caused by soluble NOM, like polysaccharides, occurs mostly on the membrane surface, and increasing the adsorbent surface loading (i.e., the thickness of the layer) can mitigate fouling by such molecules. By contrast, fouling by colloids and particulate matter occurs mostly on the surface or upstream portion of the pre-deposited adsorbent layer. Use of smaller adsorbent particles improves the capture of these contaminants but also exacerbates such fouling. Lastly, preliminary tests demonstrate that muGAF is also effective at reducing fouling caused by NOM in seawater, and that combining multiple adsorbents in muGAF is a potential approach to optimize overall system performance.

  10. N/om, Change, and Social Work: A Recursive Frame Analysis of the Transformative Rituals of the Ju/'hoan Bushmen

    ERIC Educational Resources Information Center

    Keeney, Hillary; Keeney, Bradford

    2013-01-01

    The Ju/'hoan Bushman origin myth is depicted as a contextual frame for their healing and transformative ways. Using Recursive Frame Analysis, these performances are shown to be an enactment of the border crossing between First and Second Creation, that is, pre-linguistic and linguistic domains of experience. Here n/om, or the presumed creative…

  11. Stability of single dispersed silver nanoparticles in natural and synthetic freshwaters: Effects of dissolved oxygen.

    PubMed

    Zou, Xiaoyan; Li, Penghui; Lou, Jie; Fu, Xiaoyan; Zhang, Hongwu

    2017-11-01

    Silver nanoparticles (AgNPs) are increasingly used in various commercial products. This increased use raises ecological concerns because of the large release of AgNPs into the environment. Once released, the local water chemistry has the potential to influence the environmental fates and behaviors of AgNPs. The impacts of dissolved oxygen and natural organic matter (NOM) on the dissolution and stability of AgNPs were investigated in synthetic and natural freshwaters for 7 days. In synthetic freshwater, the aggregation of AgNPs occurred due to the compression of the electric double layer, accompanied by the dissolution of AgNPs. However, once oxygen was removed, the highest dissolved Ag (Ag dis ) concentration decreased from 356.5 μg/L to 272.1 μg/L, the pH of the AgNP suspensions increased from less than 7.6 to more than 8.4, and AgNPs were regenerated by the reduction of released Ag + by citrate. The addition of NOM mitigated aggregation, inhibited oxidative dissolution and induced the transformation of AgNPs into Ag 2 S due to the formation of NOM-adsorbed layers, the reduction of Ag + by NOM, and the high affinity of sulfur-enriched species in NOM for Ag. Likewise, in oxygen-depleted natural freshwaters, the inhibition of oxidative dissolution was obtained in comparison with oxygenated freshwaters, showing a decrease in the maximum Ag dis concentration from 137.6 and 57.0 μg/L to 83.3 and 42.4 μg/L from two natural freshwater sites. Our results suggested that aggregation and dissolution of AgNPs in aquatic environments depend on the chemical composition, where oxygen-depleted freshwaters more significantly increase the colloidal stability. In comparison with oxic conditions, anoxic conditions were more favorable to the regeneration of AgNPs by reducing species (e.g., citrate and NOM) and enhanced the stability of nanoparticles. This indicates that some AgNPs will be more stable for long periods in oxygen-deprived freshwaters, and pose more serious environmental risks than that in oxygenated freshwaters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Effect of Humic Acid on As Redox Transformation and Kinetic Adsorption onto Iron Oxide Based Adsorbent (IBA)

    PubMed Central

    Fakour, Hoda; Lin, Tsair-Fuh

    2014-01-01

    Due to the importance of adsorption kinetics and redox transformation of arsenic (As) during the adsorption process, the present study elucidated natural organic matter (NOM) effects on As adsorption-desorption kinetics and speciation transformation. The experimental procedures were conducted by examining interactions of arsenate and arsenite with different concentrations of humic acid (HA) as a model representative of NOM, in the presence of iron oxide based adsorbent (IBA), as a model solid surface in three environmentally relevant conditions, including the simultaneous adsorption of both As and HA onto IBA, HA adsorption onto As-presorbed IBA, and As adsorption onto HA-presorbed IBA. Experimental adsorption-desorption data were all fitted by original and modified Lagergren pseudo-first and -second order adsorption kinetic models, respectively. Weber’s intraparticle diffusion was also used to gain insight into the mechanisms and rate controlling steps, which the results suggested that intraparticle diffusion of As species onto IBA is the main rate-controlling step. Different concentrations of HA mediated the redox transformation of As species, with a higher oxidation ability than reduction. The overall results indicated the significant effect of organic matter on the adsorption kinetics and redox transformation of As species, and consequently, the fate, transport and mobility of As in different environmentally relevant conditions. PMID:25325357

  13. Response surface methodology investigation into the interactions between arsenic and humic acid in water during the coagulation process.

    PubMed

    Watson, Malcolm Alexander; Tubić, Aleksandra; Agbaba, Jasmina; Nikić, Jasmina; Maletić, Snežana; Molnar Jazić, Jelena; Dalmacija, Božo

    2016-07-15

    Interactions between arsenic and natural organic matter (NOM) are key limiting factors during the optimisation of drinking water treatment when significant amounts of both must be removed. This work uses Response Surface Methodology (RSM) to investigate how they interact during their simultaneous removal by iron chloride coagulation, using humic acid (HA) as a model NOM substance. Using a three factor Box-Behnken experimental design, As and HA removals were modelled, as well as a combined removal response. ANOVA results showed the significance of the coagulant dose for all three responses. At high initial arsenic concentrations (200μg/l), As removal was significantly hindered by the presence of HA. In contrast, the HA removal response was found to be largely independent of the initial As concentration, with the optimum coagulant dose increasing at increasing HA concentrations. The combined response was similar to the HA removal response, and the interactions evident are most interesting in terms of optimising treatment processes during the preparation of drinking water, highlighting the importance of utilizing RSM for such investigations. The combined response model was successfully validated with two different groundwaters used for drinking water supply in the Republic of Serbia, showing excellent agreement under similar experimental conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. The effect of cirrhosis on the risk for failure of nonoperative management of blunt liver injuries.

    PubMed

    Barmparas, Galinos; Cooper, Zara; Ley, Eric J; Askari, Reza; Salim, Ali

    2015-12-01

    The purpose of this study was to delineate the association between cirrhosis and failure of nonoperative management (F-NOM) after blunt liver trauma. We carried out a review of the National Trauma Databank from 2007 to 2011 including patients ≥ 16 years old admitted after a blunt injury. Propensity score was used to match each cirrhotic to 3 noncirrhotic patients. Primary outcome was F-NOM (liver procedure >2 hours after admission and/or operative intervention directed at the liver after angiography). A total of 57 cirrhotic patients who met inclusion criteria were matched with 171 noncirrhotic patients. Splenic injury was present in 41% (35% vs 43%; P = .31) and 28% had a high-grade liver injury III/VI/V (26% vs 29%; P = .73). The majority of patients in both groups were selected for a trial of NOM (77% vs 85%; P = .15). There was no difference in the rate of F-NOM between the 2 groups (14% vs 14%; P = 1.00), even for high-grade injuries (13% vs 20%; P = .72). Cirrhotic patients had a greater overall mortality (28% vs 7%; P < .01), especially if they required a laparotomy (58% vs 17%; P < .01) or if they failed NOM (50% vs 4%; P < .01). Cirrhosis has no effect on the selection of patients with blunt liver injuries for a trial of nonoperative management and does not seem to be associated with a greater risk for failure of nonoperative management within the constraints of our study. Nonoperative management in this population is highly successful and failure is rarely related directly to the liver injury itself. Failure of non-operative management increases the already high mortality risk in this population. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Evidence of micropore filling for sorption of nonpolar organic contaminants by condensed organic matter.

    PubMed

    Ran, Yong; Yang, Yu; Xing, Baoshan; Pignatello, Joseph J; Kwon, Seokjoo; Su, Wei; Zhou, Li

    2013-01-01

    Although microporosity and surface area of natural organic matter (NOM) are crucial for mechanistic evaluation of the sorption process for nonpolar organic contaminants (NOCs), they have been underestimated by the N adsorption technique. We investigated the CO-derived internal hydrophobic microporosity () and specific surface area (SSA) obtained on dry samples and related them to sorption behaviors of NOCs in water for a wide range of condensed NOM samples. The is obtained from the total CO-derived microporosity by subtracting out the contribution of the outer surfaces of minerals and NOM using N adsorption-derived parameters. The correlation between or CO-SSA and fractional organic carbon content () is very significant, demonstrating that much of the microporosity is associated with internal NOM matrices. The average and CO-SSA are, respectively, 75.1 μL g organic carbon (OC) and 185 m g OC from the correlation analysis. The rigid aliphatic carbon significantly contributes to the microporosity of the Pahokee peat. A strong linear correlation is demonstrated between / and the OC-normalized sorption capacity at the liquid or subcooled liquid-state water solubility calculated via the Freundlich equation for each of four NOCs (phenanthrene, naphthalene, 1,3,5-trichlorobenzene, and 1,2-dichlorobenzene). We concluded that micropore filling ("adsorption") contributes to NOC sorption by condensed NOM, but the exact contribution requires knowing the relationship between the dry-state, CO-determined microporosity and the wet-state, NOC-available microporosity of the organic matter. The findings offer new clues for explaining the nonideal sorption behaviors of NOCs. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. The causes of altered chlorophyll fluorescence quenching induction in the Arabidopsis mutant lacking all minor antenna complexes.

    PubMed

    Townsend, Alexandra J; Saccon, Francesco; Giovagnetti, Vasco; Wilson, Sam; Ungerer, Petra; Ruban, Alexander V

    2018-03-13

    Non-photochemical quenching (NPQ) of chlorophyll fluorescence is the process by which excess light energy is harmlessly dissipated within the photosynthetic membrane. The fastest component of NPQ, known as energy-dependent quenching (qE), occurs within minutes, but the site and mechanism of qE remain of great debate. Here, the chlorophyll fluorescence of Arabidopsis thaliana wild type (WT) plants was compared to mutants lacking all minor antenna complexes (NoM). Upon illumination, NoM exhibits altered chlorophyll fluorescence quenching induction (i.e. from the dark-adapted state) characterised by three different stages: (i) a fast quenching component, (ii) transient fluorescence recovery and (iii) a second quenching component. The initial fast quenching component originates in light harvesting complex II (LHCII) trimers and is dependent upon PsbS and the formation of a proton gradient across the thylakoid membrane (ΔpH). Transient fluorescence recovery is likely to occur in both WT and NoM plants, but it cannot be overcome in NoM due to impaired ΔpH formation and a reduced zeaxanthin synthesis rate. Moreover, an enhanced fluorescence emission peak at ~679 nm in NoM plants indicates detachment of LHCII trimers from the bulk antenna system, which could also contribute to the transient fluorescence recovery. Finally, the second quenching component is triggered by both ΔpH and PsbS and enhanced by zeaxanthin synthesis. This study indicates that minor antenna complexes are not essential for qE, but reveals their importance in electron stransport, ΔpH formation and zeaxanthin synthesis. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  17. Factors affecting fluoride and natural organic matter (NOM) removal from natural waters in Tanzania by nanofiltration/reverse osmosis.

    PubMed

    Shen, Junjie; Schäfer, Andrea I

    2015-09-15

    This study examined the feasibility of nanofiltration (NF) and reverse osmosis (RO) in treating challenging natural tropical waters containing high fluoride and natural organic matter (NOM). A total of 166 water samples were collected from 120 sources within northern Tanzania over a period of 16 months. Chemical analysis showed that 81% of the samples have fluoride levels exceeding the WHO drinking guideline of 1.5mg/L. The highest fluoride levels were detected in waters characterized by high ionic strength, high inorganic carbon and on some occasions high total organic carbon (TOC) concentrations. Bench-scale experiments with 22 representative waters (selected based on fluoride concentration, salinity, origin and in some instances organic matter) and 6 NF/RO membranes revealed that ionic strength and recovery affected fluoride retention and permeate flux. This is predominantly due to osmotic pressure and hence the variation of diffusion/convection contributes to fluoride transport. Different membranes had distinct fluoride removal capacities, showing different raw water concentration treatability limits regarding the WHO guideline compliance. BW30, BW30-LE and NF90 membranes had a feed concentration limit of 30-40 mg/L at 50% recovery. NOM retention was independent of water matrices but is governed predominantly by size exclusion. NOM was observed to have a positive impact on fluoride removal. Several mechanisms could contribute but further studies are required before a conclusion could be drawn. In summary, NF/RO membranes were proved to remove both fluoride and NOM reliably even from the most challenging Tanzanian waters, increasing the available drinking water sources. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. 75 FR 24828 - Promoting a Competitive Market for Capacity Reassignments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-06

    ... software should be filed in native applications or print-to-PDF format and not in a scanned format. Mail... Group v. FERC, 225 F.3d 667 (DC Cir. 2000), aff'd sub nom. New York v. FERC, 535 U.S. 1 (2002). 3. With... (1993), aff'd in part and remanded in part sub nom. United Distribution Cos. v. FERC, 88 F.3d 1105 (DC...

  19. The interaction of natural organic matter with iron in a wetland (Tennessee Park, Colorado) receiving acid mine drainage

    USGS Publications Warehouse

    Peiffer, Stefan; Walton-Day, Katherine; Macalady, Donald L.

    1999-01-01

    Pore water from a wetland receiving acid mine drainage was studied for its iron and natural organic matter (NOM) geochemistry on three different sampling dates during summer 1994. Samples were obtained using a new sampling technique that is based on screened pipes of varying length (several centimeters), into which dialysis vessels can be placed and that can be screwed together to allow for vertical pore-water sampling. The iron concentration increased with time (through the summer) and had distinct peaks in the subsurface. Iron was mainly in the ferrous form; however, close to the surface, significant amounts of ferric iron (up to 40% of 2 mmol L-1 total iron concentration) were observed. In all samples studied, iron was strongly associated with NOM. Results from laboratory experiments indicate that the NOM stabilizes the ferric iron as small iron oxide colloids (able to pass a 0.45μm dialysis membrane). We hypothesize that, in the pore water of the wetland, the high NOM concentrations (>100 mg C L-1) allow formation of such colloids at the redoxcline close to the surface and at the contact zone to the adjacent oxic aquifer. Therefore, particle transport along flow paths and resultant export of ferric iron from the wetland into ground water might be possible.

  20. Fractionation and removal of dissolved organic carbon in a full-scale granular activated carbon filter used for drinking water production.

    PubMed

    Gibert, Oriol; Lefèvre, Benoît; Fernández, Marc; Bernat, Xavier; Paraira, Miquel; Pons, Marc

    2013-05-15

    The removal of natural organic matter (NOM) and, more particularly, its individual fractions by two different GACs was investigated in full-scale filters in a drinking water treatment plant (DWTP). Fractionation of NOM was performed by high performance size exclusion chromatography (HPSEC) into biopolymers, humic substances, building blocks and low molecular weight organics. The sorption capacity of GAC in terms of iodine number (IN) and apparent surface area (SBET), as well as the filling of narrow- and super-microporosity were monitored over the 1-year operation of the filters. Both GACs demonstrated to be effective at removing NOM over a wide range of fractions, especially the low and intermediate molecular weight fractions. TOC removal initially occurred via adsorption, and smaller (lighter) fractions were more removed as they could enter and diffuse more easily through the pores of the adsorbent. As time progressed, biodegradation also played a role in the TOC removal, and lighter fractions continued to be preferentially removed due to their higher biodegradability. The gained knowledge would assist drinking water utilities in selecting a proper GAC for the removal of NOM from water and, therefore, complying more successfully the latest water regulations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Colloidal stability of CeO2 nanoparticles coated with either natural organic matter or organic polymers under various hydrochemical conditions

    NASA Astrophysics Data System (ADS)

    Dippon, Urs; Pabst, Silke; Klitzke, Sondra

    2016-04-01

    The worldwide marked for engineered nanoparticles (ENPs) is growing and concerns on the environmental fate- and toxicity of ENPs are rising. Understanding the transport of ENPs within and between environmental compartments such as surface water and groundwater is crucial for exposition modeling, risk assessment and ultimately the protection of drinking water resources. The transport of ENPs is strongly influenced by the surface properties and aggregation behavior of the particles, which is strongly controlled by synthetic and natural organic coatings. Both, surface properties and aggregation characteristics are also key properties for the industrial application of ENPs, which leads to the development and commercialization of an increasing number of surface-functionalized ENPs. These include metals and oxides such as Cerium dioxide (CeO2) with various organic coatings. Therefore, we investigate CeO2 ENPs with different surface coatings such as weakly anionic polyvinyl alcohol (PVA) or strongly anionic poly acrylic acid (PAA) with respect to their colloidal stability in aqueous matrix under various hydrochemical conditions (pH, ionic strength) and their transport behavior in sand filter columns. Furthermore, we investigate the interaction of naturally occurring organic matter (NOM) with CeO2 ENPs and its effect on surface charge (zeta potential), colloidal stability and transport. While uncoated CeO2 ENPs aggregate at pH > 4 in aqueous matrix, our results show that PAA and PVA surface coatings as well as NOM sorbed to CeO2-NP surfaces can stabilize CeO2 ENPs under neutral and alkaline pH conditions in 1 mM KCl solution. Under slightly acidic conditions, differences between the three particle types were observed. PVA can stabilize particle suspensions in presence of 1 mM KCl at pH > 4.3, PAA at pH >4.0 and NOM at >3.2. While the presence of KCl did not influence particle size of NOM-CeO2 ENPs, CaCl2 at >2 mM lead to aggregation. Further results on the influence of KCl and CaCl2 on aggregation of coated CeO2 ENPs and transport in sand filter columns will be presented.

  2. Storm impacts upon the composition of organic matrices in Nagara River--a study based on molecular weight and activated carbon adsorbability.

    PubMed

    Li, Fusheng; Yuasa, Akira; Chiharada, Hajime; Matsui, Yoshihiko

    2003-09-01

    The impacts of a heavy storm of rain on the composition of natural organic matter (NOM) in Nagara River water were studied in terms of molecular weights (MWs) and activated carbon (AC) adsorbabilities using six water samples collected during a critical Typhoon weather condition. The composition in MWs was analyzed using a HPSEC system and that in adsorbabilities was characterized using parameters devised to reflect NOMs average adsorptive strength (K(M)), adsorptive strength polydispersity (sigma), affinity to AC (1/n) and non-adsorbable fraction (C(non)/C(T0)), respectively. These parameters were determined by model description of observed isotherms with a distributed fictive component method. The heavy storm of rain brought higher content of larger organic components into the river source, thus causing changes of NOMs weight-averaged MWs in the range of 2962-3495 Dalton and MW polydispersity in the narrow range of 1.153-1.226. Comparison of K(M) and sigma values for all samples assessed with both indices of TOC and UV260 showed that large proportions of the storm-induced organic components had adsorptive strengths similar to those existent before the storm, with the presence levels for components revealing much strong and weak adsorbabilities being low. Among all organic components brought into the river by the storm of rain, the percentages of non-adsorbable ones was lower (smaller C(non)/C(T0) values); and the adsorbable ones had generally more affinity to the adsorbents used (smaller 1/n values).

  3. Magnetic resonance imaging reveals detailed spatial and temporal distribution of iron-based nanoparticles transported through water-saturated porous media

    NASA Astrophysics Data System (ADS)

    Cuny, Laure; Herrling, Maria Pia; Guthausen, Gisela; Horn, Harald; Delay, Markus

    2015-11-01

    The application of engineered nanoparticles (ENP) such as iron-based ENP in environmental systems or in the human body inevitably raises the question of their mobility. This also includes aspects of product optimization and assessment of their environmental fate. Therefore, the key aim was to investigate the mobility of iron-based ENP in water-saturated porous media. Laboratory-scale transport experiments were conducted using columns packed with quartz sand as model solid phase. Different superparamagnetic iron oxide nanoparticles (SPION) were selected to study the influence of primary particle size (dP = 20 nm and 80 nm) and surface functionalization (plain, -COOH and -NH2 groups) on particle mobility. In particular, the influence of natural organic matter (NOM) on the transport and retention behaviour of SPION was investigated. In our approach, a combination of conventional breakthrough curve (BTC) analysis and magnetic resonance imaging (MRI) to non-invasively and non-destructively visualize the SPION inside the column was applied. Particle surface properties (surface functionalization and resulting zeta potential) had a major influence while their primary particle size turned out to be less relevant. In particular, the mobility of SPION was significantly increased in the presence of NOM due to the sorption of NOM onto the particle surface resulting in a more negative zeta potential. MRI provided detailed spatially resolved information complementary to the quantitative BTC results. The approach can be transferred to other porous systems and contributes to a better understanding of particle transport in environmental porous media and porous media in technical applications.

  4. 78 FR 71690 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... of up to 39,999 contracts per day in a month. Tier 2 Participant adds NOM $0.30 Market Maker... symbols BAC, Pilot Options of GLD, IWM, QQQ 100,000 or more and VXX or $0.40 contracts per day in in SPY a... per day in a month. Tier 2 currently pays a $0.30 per contract rebate to Participants that add NOM...

  5. X-ray fluorescence mapping of mercury on suspended mineral particles and diatoms in a contaminated freshwater system

    NASA Astrophysics Data System (ADS)

    Gu, B.; Mishra, B.; Miller, C.; Wang, W.; Lai, B.; Brooks, S. C.; Kemner, K. M.; Liang, L.

    2014-05-01

    Mercury (Hg) bioavailability and geochemical cycling is affected by its partitioning between the aqueous and particulate phases. We applied X-ray fluorescence (XRF) microprobes to directly visualize and quantify the spatial localization of Hg and its correlations with other elements of interest on suspended particles from a Hg contaminated freshwater system. Up to 175 μg g-1 Hg is found on suspended particles. Mercury is heterogeneously distributed among phytoplankton (e.g., diatoms) and mineral particles that are rich in iron oxides and natural organic matter (NOM), possibly as Hg-NOM-iron oxide ternary complexes. The diatom-bound Hg is mostly found on outer surfaces of the cells, suggesting passive sorption of inorganic Hg on diatoms. Our results indicate that localized sorption of Hg onto suspended particles, including diatoms and NOM-coated oxide minerals, is an important sink for Hg in natural aquatic environments.

  6. Estimating pesticide sampling rates by the polar organic chemical integrative sampler (POCIS) in the presence of natural organic matter and varying hydrodynamic conditions

    USGS Publications Warehouse

    Charlestra, Lucner; Amirbahman, Aria; Courtemanch, David L.; Alvarez, David A.; Patterson, Howard

    2012-01-01

    The polar organic chemical integrative sampler (POCIS) was calibrated to monitor pesticides in water under controlled laboratory conditions. The effect of natural organic matter (NOM) on the sampling rates (Rs) was evaluated in microcosms containing -1 of total organic carbon (TOC). The effect of hydrodynamics was studied by comparing Rs values measured in stirred (SBE) and quiescent (QBE) batch experiments and a flow-through system (FTS). The level of NOM in the water used in these experiments had no effect on the magnitude of the pesticide sampling rates (p > 0.05). However, flow velocity and turbulence significantly increased the sampling rates of the pesticides in the FTS and SBE compared to the QBE (p < 0.001). The calibration data generated can be used to derive pesticide concentrations in water from POCIS deployed in stagnant and turbulent environmental systems without correction for NOM.

  7. Systematic approaches to comprehensive analyses of natural organic matter

    USGS Publications Warehouse

    Leenheer, Jerry A.

    2009-01-01

    The more that is learned of the chemistry of aquatic natural organic matter (NOM) the greater is the scientific appreciation of the vast complexity of this subject. This complexity is due not only to a multiplicity of precursor molecules in any environment but to their associations with each other and with other components of local environments such as clays, mineral acids and dissolved metals. In addition, this complex system is subject to constant change owing to environmental variables and microbial action. Thus, there is a good argument that no two NOM samples are exactly the same even from the same source at nearly the same time. When ubiquity of occurrence, reaction with water treatment chemicals, and subsequent human exposure are added to the list of NOM issues, one can understand the appeal that this subject holds for a wide variety of environmental scientists.

  8. Complexes of the antimicrobial ciprofloxacin with soil, peat, and aquatic humic substances.

    PubMed

    Aristilde, Ludmilla; Sposito, Garrison

    2013-07-01

    Natural organic matter (NOM) is implicated in the binding of antibiotics by particles in soils and waters. The authors' previous computational study revealed structural rearrangement of both hydrophilic and hydrophobic moieties of NOM to favor H-bonding and other intermolecular interactions, as well as both competition with ion-exchange reactions and bridging interactions by NOM-bound divalent cations. The importance of these interactions was investigated using fluorescence-quenching spectroscopy to study the adsorption of ciprofloxacin (Cipro), a fluoroquinolone antibiotic, on 4 reference humic substances (HSs): Elliott soil humic acid (HA), Pahokee peat HA, and Suwannee river HA and fulvic acid. A simple affinity spectrum HS model was developed to characterize the cation-exchange capacity and the amount of H-bond donor moieties as a function of pH. The adsorption results stress the influence of both pH conditions and the type of HS: both soil HA and peat HA exhibited up to 3 times higher sorption capacity than the aquatic HS at pH ≥ 6, normalizing to the aromatic C content accounted for the differences among the terrestrial HS, and increasing the concentration of divalent cations led to a decrease in adsorption on aquatic HA but not on soil HA. In addition, the pH-dependent speciation models of the Cipro-HS complexes illustrate an increase in complexation due to an increase in deprotonation of HS ligands with increasing pH and, at circumneutral and alkaline pH, enhanced complexation of zwitterionic Cipro only in the presence of soil HA and peat HA. The findings of the present study imply that, in addition to electrostatic interactions, van der Waals interactions as facilitated by aromatic structures and H-bond donating moieties in terrestrial HS may facilitate a favorable binding environment. Environ Toxicol Chem 2013;32:1467-1478. © 2013 SETAC. Copyright © 2013 SETAC.

  9. The role of visible light active TiO2 specimens on the solar photocatalytic disinfection of E. coli.

    PubMed

    Birben, Nazmiye Cemre; Tomruk, Ayse; Bekbolet, Miray

    2017-05-01

    Solar photocatalytic disinfection efficiency of novel visible light activated (VLA) photocatalysts was evaluated with the aim of assessing inactivation of Escherichia coli as the pathogen indicator organism present in drinking water. Influence of humic acid (HA) on the photocatalytic disinfection efficiency of the specified VLA TiO 2 specimens i.e., N-doped, Se-doped, and Se-N co-doped TiO 2 was also investigated. Photocatalytic disinfection efficiency was assessed by the enumeration of bacteria following selected irradiation periods. Degradation and compositional changes in organic matter (OM) was also tracked by means of UV-vis and advanced fluorescence spectroscopic (EEM features) parameters. Photocatalytic mineralization of the organic matter was followed by dissolved organic carbon contents. Presence of HA as a model organic compound of natural organic matter (NOM) displayed a retardation effect on solar photocatalytic abatement of E. coli. However, no distinctly different effect was observed under solar photolytic conditions due to the presence of HA. Regrowth of E. coli could not be assessed under the specified experimental conditions. A comparison was introduced with respect to the use of undoped TiO 2 P-25 as the photocatalyst.

  10. 78 FR 19152 - Revisions to Modeling, Data, and Analysis Reliability Standard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ... processing software should be filed in native applications or print-to-PDF format and not in a scanned format...,126 (2006), aff'd sub nom. Alcoa, Inc. v. FERC, 564 F.3d 1342 (D.C. Cir. 2009). 3. In March 2007, the... print-to-PDF format and not in a scanned format. Commenters filing electronically do not need to make a...

  11. Functional change in the pattern of swallowing through the performance of orofacial exercises.

    PubMed

    Alves, Irina Claudia Fernandes; Andrade, Claudia Regina Furquim de

    2017-05-22

    The objective was to determine if there was functional improvement of swallowing pattern in subjects identified with risk of oropharyngeal dysphagia after four weeks of specific oropharyngeal exercises. These exercises have pre-determined intensity and duration. It is a longitudinal study of functional effect, determined by initial and final comparative measures. Participants were adults and elderly, selected in a period of 24 months. A total of 68 participants were included. All subjects had a clinical evaluation of swallowing, and an initial measure in a functional scale. The individuals were split into two groups, according to the initial levelling of ASHA NOMS scale. In Group 1 (G1) - ASHA NOMS, initial of levels 1 and 2; Group 2 (G2) - ASHA NOMS, initial of levels 3, 4 and 5. All subjects executed an exercise protocol performed for four weeks. The protocol includes sessions with a speech therapist, and continuity of activities in home environment. Finally, new measurement of swallowing performance was held. For G2 group there was statistically significant improvement. For G1, the relation was insignificant, despite the intense change in ASHA NOMS scale, however, in this group there was a reduced number of individuals due to the profile severity. The program was effective because after four exercise sessions, there was significant improvement in swallowing pattern, demonstrated by functional scale.

  12. Resolving the chemical heterogeneity of natural organic matter: new insights from comprehensive two-dimensional liquid chromatography.

    PubMed

    Duarte, Regina M B O; Barros, Ana C; Duarte, Armando C

    2012-08-03

    For the purpose of resolving the chemical heterogeneity of natural organic matter (NOM), comprehensive two-dimensional liquid chromatography (LC×LC) was employed for the first time to map the hydrophobicity versus molecular weight (MW) distribution of two well-known complex organic mixtures: Suwannee River Fulvic Acids (SR-FA) and Pony Lake Fulvic Acids (PL-FA). Two methods have been developed using either a conventional reversed-phase (RP) silica column or a mixed-mode hydrophilic interaction column operating under aqueous RP mode in the first dimension, and a size-exclusion column in the second dimension. The LC×LC fractions were screened on-line by UV at 254 nm, molecular fluorescence at excitation/emission wavelengths (λ(Exc)/λ(Em)) of 240/450 nm, and by evaporative light scattering. The MW distributions of these two NOM samples were further characterized by number (Mn) and weight (Mw) average MW, and by polydispersity (Mw/Mn). Findings suggest that the combination of two independent separation mechanisms is promising in extend the range of NOM separation. For the cases where NOM separation was accomplished, smaller Mw group fractions seem to be related to a more hydrophobic nature. Regardless of the detection method, the complete range of MW distribution provided by both comprehensive LC×LC methods was found to be lower than those reported in the literature. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Evaluation of bank filtration as a pretreatment method for the provision of hygienically safe drinking water in Norway: results from monitoring at two full-scale sites

    NASA Astrophysics Data System (ADS)

    Kvitsand, Hanne M. L.; Myrmel, Mette; Fiksdal, Liv; Østerhus, Stein W.

    2017-08-01

    Two case studies were carried out in central Norway in order to assess the performance of bank filtration systems in cold-climate fluvial aquifers relying on recharge from humic-rich surface waters with moderate microbial contamination. Three municipal wells and two surface-water sources at operative bank filtration systems were monitored for naturally occurring bacteriophages, fecal indicators, natural organic matter (NOM) and physico-chemical water quality parameters during a 4-month period. Aquifer passage effectively reduced the microorganism and NOM concentrations at both study sites. Bacteriophages were detected in 13 of 16 (81%) surface-water samples and in 4 of 24 (17%) well-water samples, and underwent 3 ± 0.3 log10 reduction after 50-80-m filtration and 20-30 days of subsurface passage. NOM reductions (color: 74-97%; dissolved organic carbon: 54-80%; very hydrophobic acids: 70%) were similar to those achieved by conventional water-treatment processes and no further treatment was needed. Both groundwater dilution and sediment filtration contributed to the hygienic water quality improvements, but sediment filtration appeared to be the most important process with regard to microbial and NOM reductions. A strengths-weaknesses-opportunities-threats analysis showed that bank filtration technology has a high potential as a pretreatment method for the provision of hygienically safe drinking water in Norway.

  14. Characterization of Natural Organic Matter in Conventional Water Treatment Processes and Evaluation of THM Formation with Chlorine

    PubMed Central

    Özdemır, Kadir

    2014-01-01

    This study investigates the fractions of natural organic matter (NOM) and trihalomethane (THM) formation after chlorination in samples of raw water and the outputs from ozonation, coagulation-flocculation, and conventional filtration treatment units. All the water samples are passed through various ultrafiltration (UF) membranes. UF membranes with different molecular size ranges based on apparent molecular weight (AMW), such as 1000, 3000, 10,000, and 30,000 Daltons (Da), are commonly used. The NOM fraction with AMW < 1000 Da (1 K) is the dominant fraction within all the fractionated water samples. Its maximum percentage is 85.86% after the filtration process and the minimum percentage is 65.01% in raw water samples. The total THM (TTHM) yield coefficients range from 22.5 to 42 μg-TTHM/mg-DOC in all fractionated samples, which is related to their specific ultraviolet Absorbance (SUVA) levels. As the molecular weight of the fractions decreased, the TTHM yield coefficients increased. The NOM fractions with AMW values less than 1 K had lower SUVA values (<3 L/mg·m) for all treatment stages and also they had higher yield of TTHM per unit of DOC. The NOM fraction with AMW < 1 K for chlorinated raw water samples has the highest yield coefficient (42 μg-TTHM/mg-DOC). PMID:24558323

  15. Systematic screening and identification of the chlorinated transformation products of aromatic pharmaceuticals and personal care products using high-resolution mass spectrometry.

    PubMed

    Chen, Wen-Ling; Cheng, Jiun-Yi; Lin, Xiao-Qian

    2018-05-08

    Pharmaceuticals and personal care products (PPCPs) are an emerging concern because of the large amount of PPCPs that is discharged and its potential ecological effects on the aquatic environment. Chlorination has proven efficient for removing some aromatic PPCPs from wastewater, but the formation of by-products has not been thoroughly investigated partly because of analytical difficulties. This study developed a method for systematically screening and identifying the transformation products (TPs) of multiple aromatic PPCPs through high-resolution mass spectrometry (HRMS). We spiked an environmentally relevant concentration (5000 ng/L) of three anti-inflammatory drugs, four parabens, bisphenol A, oxybenzone, and triclosan in the Milli-Q water and water containing natural organic matter (NOM). Low-dose chlorination (0.2-0.7 mg/L) was performed. We compared the chemical profiles of the chlorinated and untreated water and selected the ions to be identified based on the results of t-test and the ratio of signal intensities. Compound matching and isotopic pattern comparison were applied to characterising the molecular formulae of TPs. The fragmentation of the PPCPs and TPs was used in elucidating the structures of the TPs. The confirmation of TPs was achieved by comparing the retention time and fragment patterns of TPs with the isomer standards. In the chlorinated water, the aromatic PPCPs were substantially removed, except for the anti-inflammatory drugs (removal rates -5.2%-26%). Even with moderate chlorine dosages, all of the aromatic PPCPs, except for acetylsalicylic acid, were transformed into chlorinated derivatives in the Milli-Q water, and so were some PPCPs in the NOM-added water. The results of structure elucidation and compound confirmation as well as the increases in log K ow suggested that chlorination could transform aromatic PPCPs into more persistent, bioaccumulative, and toxic TPs. The presence of these TPs in the effluents where the PPCPs are removed through chlorination may pose increased risks to aquatic organisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Impact of natural organic matter coatings on the microbial reduction of iron oxides

    NASA Astrophysics Data System (ADS)

    Poggenburg, Christine; Mikutta, Robert; Schippers, Axel; Dohrmann, Reiner; Guggenberger, Georg

    2018-03-01

    Iron (Fe) oxyhydroxides are important constituents of the soil mineral phase known to stabilize organic matter (OM) under oxic conditions. In an anoxic milieu, however, these Fe-organic associations are exposed to microbial reduction, releasing OM into soil solution. At present, only few studies have addressed the influence of adsorbed natural OM (NOM) on the reductive dissolution of Fe oxyhydroxides. This study therefore examined the impact of both the composition and concentration of adsorbed NOM on microbial Fe reduction with regard to (i) electron shuttling, (ii) complexation of Fe(II,III), (iii) surface site coverage and/or pore blockage, and (iv) aggregation. Adsorption complexes with varying carbon loadings were synthesized using different Fe oxyhydroxides (ferrihydrite, lepidocrocite, goethite, hematite, magnetite) and NOM of different origin (extracellular polymeric substances from Bacillus subtilis, OM extracted from soil Oi and Oa horizons). The adsorption complexes were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), N2 gas adsorption, electrophoretic mobility and particle size measurements, and OM desorption. Incubation experiments under anaerobic conditions were conducted for 16 days comparing two different strains of dissimilatory Fe(III)-reducing bacteria (Shewanella putrefaciens, Geobacter metallireducens). Mineral transformation during reduction was assessed via XRD and FTIR. Microbial reduction of the pure Fe oxyhydroxides was controlled by the specific surface area (SSA) and solubility of the minerals. For Shewanella putrefaciens, the Fe reduction of adsorption complexes strongly correlated with the concentration of potentially usable electron-shuttling molecules for NOM concentrations <2 mg C L-1, whereas for Geobacter metallireducens, Fe reduction depended on the particle size and thus aggregation of the adsorption complexes. These diverging results suggest that the influence of NOM on the stability of Fe-organic associations in soils cannot easily be assessed without considering the composition of the microbial soil community.

  17. Internal Lymphedema Correlates with Subjective and Objective Measures of Dysphagia in Head and Neck Cancer Patients.

    PubMed

    Jackson, Leanne K; Ridner, Sheila H; Deng, Jie; Bartow, Carmin; Mannion, Kyle; Niermann, Ken; Gilbert, Jill; Dietrich, Mary S; Cmelak, Anthony J; Murphy, Barbara A

    2016-09-01

    Tumor/treatment-related internal lymphedema (IL) and/or external lymphedema (EL) are associated with functional deficits and increased symptom burden in head and neck cancer patients (HNCP). Previously, we noted association between EL/IL and patient-reported dysphagia using the Vanderbilt Head and Neck Symptom Survey (VHNSS) version 1.0. To determine the relationship between IL/EL and subjective and objective measures of swallowing function. Eighty-one HNCP completed: (1) VHNSS version 2.0, including 13 swallowing/nutrition-related questions grouped into three clusters: swallow solids (ss), swallow liquids (sl), and nutrition(nt); (2) physical assessment of EL using Foldi scale; (3) endoscopic assessment of IL using Patterson scale (n = 56); and (4) modified barium swallow study rated by dysphagia outcome and severity scale (DOSS) and in conjunction with a swallow evaluation by National Outcomes Measurement System (NOMS). Examinations were performed at varied time points to assess lymphedema spectrum, from baseline (n = 15, 18.1%) to 18 months post-therapy (n = 20, 24.1%). VHNSS swallow/nutrition items scores correlated with NOMS/DOSS ratings (p < 0.001). Highest correlation was with NOMS: ss (-0.73); sl (-0.61); nt (-0.56). VHNSS swallow/nutrition scores correlated with maximum grade of swelling for any single structure on Patterson scale: ss (0.43; p = 0.001); sl (0.38; p = 0.004); nt (0.41; p = 0.002). IL of aryepiglottic/pharyngoepiglottic folds, epiglottis, and pyriform sinus were most strongly correlated with VHNSS and NOMS ratings. NOMS/DOSS ratings correlated with EL (> = -0.34; p < 0.01). No meaningful correlations exist between VHNSS swallow/nutrition items and EL (< ± 0.15, p > 0.20). IL correlated with subjective and objective measures of swallow dysfunction. Longitudinal analysis of trajectory and impact of IL/EL on dysphagia is ongoing.

  18. Relevant role of dissolved humic matter in phosphorus bioavailability in natural and agronomical ecosystems through the formation of Humic-(Metal)-Phosphate complexes

    NASA Astrophysics Data System (ADS)

    Baigorri, Roberto; Urrutia, Óscar; Erro, Javier; Pazos-Pérez, Nicolás; María García-Mina, José

    2016-04-01

    Natural Organic Matter (NOM) and the NOM fraction present in soil solution (dissolved organic matter: DOM) are currently considered as fundamental actors in soil fertility and crop mineral nutrition. Indeed, decreases in crop yields as well as soil erosion are closely related to low values of NOM and, in fact, the use of organic amendments as both soil improvers and plant growth enhancers is very usual in countries with soils poor in NOM. This role of NOM (and DOM) seems to be associated with the presence of bio-transformed organic molecules (humic substances) with high cation chelating-complexing ability. In fact, bioavailable micronutrients with metallic character in soil solutions of alkaline and calcareous soils are forming stable complexes with DOM. This beneficial action of DOM also concerns other plant nutrients such as inorganic phosphate (Pi). Among the different mechanisms involved in the beneficial action of DOM on P bioavailability, the possible formation of poly-nuclear complexes including stable chemical bonds between negative binding sites in humic substances and Pi through metal bridges in soil solution might be relevant, especially in acidic soils. In fact, several studies have proven that these complexes can be obtained in the laboratory and are very efficient in prevent Pi soil fixation and improve Pi root uptake. However, clear experimental evidence about their presence in soil solutions of natural and agronomical soil ecosystems has not published yet. We present here experimental results supporting the real presence of stable Pi-metal-Humic (PMH) complexes in the soil solution of several acidic soils. The study is based on the physico-chemical characterization (31P-NMR, FTIR, TEM-EDAX, ICP-OES) of the DOM fraction isolated by ultrafiltration from the soil solution of several representative acidic soils. In average, more than 60 % of Pi was found in the soil solution humic fraction forming stable humic-metal (Fe, Al) complexes.

  19. An illustrated key to the genera of Eumeninae from China, with a checklist of species (Hymenoptera, Vespidae)

    PubMed Central

    2018-01-01

    Abstract An illustrated key to the currently recognized genera of the subfamily Eumeninae (Vespidae) from China is presented together with a list of 267 species and subspecies, belonging to 51 genera. Nortozumia van der Vecht, 1937 is reported for the first time from China. Two replacement names are proposed for junior primary homonyms: Ancistrocerus rufofrustius Tan & Carpenter, nom. n. replacing Ancistrocerus rufopictus (Kostylev) and Orientalicesa confasciatus Tan & Carpenter, nom. n. replacing Orientalicesa unifasciatus (von Schulthess, 1934). PMID:29674892

  20. Haloarcula marismortui (Volcani) sp. nov., nom. rev., an extremely halophilic bacterium from the Dead Sea

    NASA Technical Reports Server (NTRS)

    Oren, A.; Ginzburg, M.; Ginzburg, B. Z.; Hochstein, L. I.; Volcani, B. E.

    1990-01-01

    An extremely halophilic red archaebacterium isolated from the Dead Sea (Ginzburg et al., J. Gen. Physiol. 55: 187-207, 1970) belongs to the genus Haloarcula and differs sufficiently from the previously described species of the genus to be designated a new species; we propose the name Haloarcula marismortui (Volcani) sp. nov., nom. rev. because of the close resemblance of this organism to "Halobacterium marismortui," which was first described by Volcani in 1940. The type strain is strain ATCC 43049.

  1. Modeling of the structure-specific kinetics of abiotic, dark reduction of Hg(II) complexed by O/N and S functional groups in humic acids while accounting for time-dependent structural rearrangement

    USDA-ARS?s Scientific Manuscript database

    Redox transformations involving electron transfer from natural organic matter (NOM) are important for the mercury (Hg) biogeochemical cycle. In the water column light drives the reduction of Hg(II) to Hg(0), whereas in soils and sediments dark reduction of Hg(II) is of greater importance. The object...

  2. Effect of water matrices on removal of veterinary pharmaceuticals by nanofiltration and reverse osmosis membranes.

    PubMed

    Dolar, Davor; Vuković, Ana; Asperger, Danijela; Kosutić, Kresimir

    2011-01-01

    This study explored the removal of five veterinary pharmaceuticals (VPs) (sulfamethoxazole (SMETOX), trimethoprim (TMP), ciprofloxacin (CIPRO), dexamethasone (DEXA) and febantel (FEBA)) from different water matrices (Milli-Q water, model water, tap water and real pharmaceutical wastewater using four types of nanofiltration (NF) membranes (NF90, NF270, NF and HL) and two reverse osmosis (RO) membranes (LFC-1 and XLE). All VPs were added to different water matrices at a concentration of 10 mg/L. Rejections of VPs and water flux were measured. The rejection increased with increase of molecular weight. The highest rejections were obtained with RO membranes (LFC-1, XLE) and tight NF (NF90) membrane. In general, the rejection of VPs was higher in model water and tap water than in Milli-Q water, but the water flux was lower. This was mainly explained by ion adsorption inside the membranes pores. Narrower pore size counteracted the effect of presence of low concentration of natural organic matter (NOM) in tap water. The NOM was assumed to enhance the adsorption of VPs onto membrane surface, increased the size exclusion and electrostatic repulsion also appeared during the transport. Investigated water matrices had influence on water flux decline due to their complexity.

  3. Influence of water chemistry and natural organic matter on active and passive uptake of inorganic mercury by gills of rainbow trout (Oncorhynchus mykiss).

    PubMed

    Klinck, Joel; Dunbar, Michael; Brown, Stephanie; Nichols, Joel; Winter, Anna; Hughes, Christopher; Playle, Richard C

    2005-03-25

    To distinguish physiologically regulated uptake from passive uptake of inorganic Hg in fish, rainbow trout (Oncorhynchus mykiss) were exposed to inorganic Hg (0.5, 1, or 2 microM total Hg) in ion-poor water with various treatments. Addition of ions to the water (mM concentrations of Ca, K, Cl) did not consistently alter Hg accumulation by trout gills, although there was a trend to higher Hg accumulation at higher ion concentrations. The apical Ca channel blockers Verapamil and lanthanum also did not consistently affect Hg accumulation by trout gills. Pre-treatment of trout with the Na channel blocker Phenamil decreased Hg uptake by about half. These results suggest a combination of physiologically regulated and passive uptake of Hg by trout gills. Strong complexing agents of Hg (EDTA, NTA, ethylenediamine, cysteine) decreased Hg-binding by trout gills in a dose-dependent manner. From these data, a conditional equilibrium binding constant for Hg to the gills was estimated as logK(Hg-gill) = 18.0, representing very strong binding of Hg to the gills. This value is a first step in creating a biotic ligand model (BLM) for inorganic Hg and fish. Natural organic matter (2-10 mg C/L) also decreased Hg-binding by trout gills, although mM concentrations of Na, K, and Cl interfered with this effect. At low concentrations of these ions, natural organic matter samples isolated from various sources bound Hg to similar degrees, as judged by Hg accumulation by trout gills. A conditional binding constant to natural organic matter (NOM) was estimated as logK(Hg-NOM) = 18.0 with about 0.5 micromol binding sites per mg C, representing strong binding of Hg to NOM.

  4. Mitigation in Multiple Effects of Graphene Oxide Toxicity in Zebrafish Embryogenesis Driven by Humic Acid.

    PubMed

    Chen, Yuming; Ren, Chaoxiu; Ouyang, Shaohu; Hu, Xiangang; Zhou, Qixing

    2015-08-18

    Graphene oxide (GO) is a widely used carbonaceous nanomaterial. To date, the influence of natural organic matter (NOM) on GO toxicity in aquatic vertebrates has not been reported. During zebrafish embryogenesis, GO induced a significant hatching delay and cardiac edema. The intensive interactions of GO with the chorion induces damage to chorion protuberances, excessive generation of (•)OH, and changes in protein secondary structure. In contrast, humic acid (HA), a ubiquitous form of NOM, significantly relieved the above adverse effects. HA reduced the interactions between GO and the chorion and mitigated chorion damage by regulating the morphology, structures, and surface negative charges of GO. HA also altered the uptake and deposition of GO and decreased the aggregation of GO in embryonic yolk cells and deep layer cells. Furthermore, HA mitigated the mitochondrial damage and oxidative stress induced by GO. This work reveals a feasible antidotal mechanism for GO in the presence of NOM and avoids overestimating the risks of GO in the natural environment.

  5. Estimating pesticide sampling rates by the polar organic chemical integrative sampler (POCIS) in the presence of natural organic matter and varying hydrodynamic conditions.

    PubMed

    Charlestra, Lucner; Amirbahman, Aria; Courtemanch, David L; Alvarez, David A; Patterson, Howard

    2012-10-01

    The polar organic chemical integrative sampler (POCIS) was calibrated to monitor pesticides in water under controlled laboratory conditions. The effect of natural organic matter (NOM) on the sampling rates (R(s)) was evaluated in microcosms containing <0.1-5 mg L(-1) of total organic carbon (TOC). The effect of hydrodynamics was studied by comparing R(s) values measured in stirred (SBE) and quiescent (QBE) batch experiments and a flow-through system (FTS). The level of NOM in the water used in these experiments had no effect on the magnitude of the pesticide sampling rates (p > 0.05). However, flow velocity and turbulence significantly increased the sampling rates of the pesticides in the FTS and SBE compared to the QBE (p < 0.001). The calibration data generated can be used to derive pesticide concentrations in water from POCIS deployed in stagnant and turbulent environmental systems without correction for NOM. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Influence of elevated alkalinity and natural organic matter (NOM) on tissue-specific metal accumulation and reproductive performance in fathead minnows during chronic, multi-trophic exposures to a metal mine effluent.

    PubMed

    Ouellet, Jacob D; Dubé, Monique G; Niyogi, Som

    2013-09-01

    Metal bioavailability in aquatic organisms is known to be influenced by various water chemistry parameters. The present study examined the influence of alkalinity and natural organic matter (NOM) on tissue-specific metal accumulation and reproductive performance of fathead minnows (Pimephales promelas) during environmentally relevant chronic exposures to a metal mine effluent (MME). Sodium bicarbonate (NaHCO3) or NOM (as commercial humic acid) were added to a Canadian MME [45 percent process water effluent (PWE)] in order to evaluate whether increases in alkalinity (3-4 fold) or NOM (~1.5-3mg/L dissolved organic carbon) would reduce metal accumulation and mitigate reproductive toxicity in fathead minnows during a 21-day multi-trophic exposure. Eleven metals (barium, boron, cobalt, copper, lithium, manganese, molybdenum, nickel, rubidium, selenium, and strontium) were elevated in the 45 percent PWE relative to the reference water. Exposure to the unmodified 45 percent PWE resulted in a decrease of fathead minnow egg production (~300 fewer eggs/pair) relative to the unmodified reference water, over the 21-day exposure period. Water chemistry modifications produced a modest decrease in free ion activity of some metals (as shown by MINTEQ, Version 3) in the 45 percent PWE exposure water, but did not alter the metal burden in the treatment-matched larval Chironomus dilutus (the food source of fish during exposure). The tissue-specific metal accumulation increased in fish exposed to the 45 percent PWE relative to the reference water, irrespective of water chemistry modifications, and the tissue metal concentrations were found to be similar between fish in the unmodified and modified 45 percent PWE (higher alkalinity or NOM) treatments. Interestingly however, increased alkalinity and NOM markedly improved fish egg production both in the reference water (~500 and ~590 additional eggs/pair, respectively) and 45 percent PWE treatments (~570 and ~260 additional eggs/pair, respectively), although fecundity over 21 day exposure consistently remained lower in the 45 percent PWE treatment groups relative to the treatment-matched reference groups. Collectively, these findings suggest that metal accumulation caused by chronic 45 percent PWE exposure cannot solely explain the reproductive toxicity in fish, and decrease in food availability (decrease in C. dilutus abundance in 45 percent PWE exposures) might have played a role. In addition, it appears that NaHCO3 or humic acid mitigated reproductive toxicity in fish exposed to 45 percent PWE by their direct beneficial effects on the physiological status of fish. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Oxidation of the odorous compound 2,4,6-trichloroanisole by UV activated persulfate: Kinetics, products, and pathways.

    PubMed

    Luo, Congwei; Jiang, Jin; Ma, Jun; Pang, Suyan; Liu, Yongze; Song, Yang; Guan, Chaoting; Li, Juan; Jin, Yixin; Wu, Daoji

    2016-06-01

    The transformation efficiency and products of an odorous compound 2,4,6-trichloroanisole (TCA) at the wavelength of 254 nm in the presence of persulfate were investigated for the first time. The effects of water matrix (i.e., natural organic matter (NOM), pH, carbonate/bicarbonate (HCO3(-)/CO3(2-)), and chloride ions (Cl(-))) were evaluated. The second order rate constant of TCA reacting with sulfate radical (SO4(-)) was determined to be (3.72 ± 0.10) × 10(9) M(-1) s(-1). Increasing dosage of persulfate increased the observed pseudo-first-order rate constant for TCA degradation (kobs), and the contribution of SO4(-) to TCA degradation was much higher than that of HO at each experimental condition. Degradation rate of TCA decreased with pH increasing from 4.0 to 9.0, which could be explained by the lower radical scavenging effect of dihydrogen phosphate than hydrogen phosphate in acidic condition (pH < 6). NOM significantly decreased kobs due to the effects of radical scavenging and UV absorption with the former one being dominant. kobs decreased from 2.32 × 10(-3) s(-1) to 0.92 × 10(-3) s(-1) with the CO3(2-)/HCO3(-) concentration increased from 0.5 mM to 10 mM in the UV/persulfate process, while kobs slightly decreased from 2.54 × 10(-3) s(-1) in the absence of Cl(-) to 2.10 × 10(-3) s(-1) in the presence of 10 mM Cl(-). Most of these kinetic results could be described by a steady-state kinetic model. Furthermore, liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry at powerful precursor ion scan approach was used to selectively detect oxidation products of TCA. It was found that 2,4,6-trichorophenol (TCP) was the major oxidation product (i.e., the initial yield of TCP was above 90%). The second order rate constant between TCP and SO4(-) was estimated to be (4.16 ± 0.20) × 10(9) M(-1) s(-1). In addition, three products (i.e., 2,6-dichloro-1,4-benzoquinone and two aromatic ring-opening products) were detected in the reaction of TCP with SO4(-), which also appeared in the oxidation of TCA in the UV/persulfate process. A tentative pathway was proposed, where the initial one-electron oxidation of TCA by SO4(-) and further reactions (e.g., ipso-hydroxylation and aromatic ring-cleavage) of the formed cation intermediate TCA were involved. Copyright © 2016. Published by Elsevier Ltd.

  8. Current Trends in the Management of Blunt Solid Organ Injuries.

    PubMed

    Taviloglu, Korhan; Yanar, Hakan

    2009-04-01

    The management of patients with solid organ injuries has changed since the introduction of technically advanced imaging tools, such as ultrasonography and multiple scan computerized tomography, interventional radiological techniques and modern intensive care units. In spite of this development in the management of these patients, major solid organ traumas can still be challenging. There has been great improvement in the non-operative management (NOM) of intra-abdominal solid organ injury in recent decades. In most cases treatment of injuries has shifted from early surgical treatment to NOM.

  9. Quantum Chemical Examination of the Sequential Halogen Incorporation Scheme for the Modeling of Speciation of I/Br/Cl-Containing Trihalomethanes.

    PubMed

    Zhang, Chenyang; Li, Maodong; Han, Xuze; Yan, Mingquan

    2018-02-20

    The recently developed three-step ternary halogenation model interprets the incorporation of chlorine, bromine, and iodine ions into natural organic matter (NOM) and formation of iodine-, bromine-, and chlorine-containing trihalomethanes (THMs) based on the competition of iodine, bromine, and chlorine species at each node of the halogenation sequence. This competition is accounted for using the dimensionless ratios (denoted as γ) of kinetic rates of reactions of the initial attack sites or halogenated intermediates with chlorine, bromine, and iodine ions. However, correlations between the model predictions made and mechanistic aspects of the incorporation of halogen species need to be ascertained in more detail. In this study, quantum chemistry calculations were first used to probe the formation mechanism of 10 species of Cl-/Br-/I- THMs. The HOMO energy (E HOMO ) of each mono-, bi-, or trihalomethanes were calculated by B3LYP method in Gaussian 09 software. Linear correlations were found to exist between the logarithms of experimentally determined kinetic preference coefficients γ reported in prior research and, on the other hand, differences of E HOMO values between brominated/iodinated and chlorinated halomethanes. One notable exception from this trend was that observed for the incorporation of iodine into mono- and di-iodinated intermediates. These observations confirm the three-step halogen incorporation sequence and the factor γ in the statistical model. The combined use of quantum chemistry calculations and the ternary sequential halogenation model provides a new insight into the microscopic nature of NOM-halogen interactions and the trends seen in the behavior of γ factors incorporated in the THM speciation models.

  10. POWDERED ACTIVATED CARBON FROM NORTH DAKOTA LIGNITE: AN OPTION FOR DISINFECTION BY-PRODUCT CONTROL IN WATER TREATMENT PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel J. Stepan; Thomas A. Moe; Melanie D. Hetland

    New federal drinking water regulations have been promulgated to restrict the levels of disinfection by-products (DBPs) in finished public water supplies. DBPs are suspected carcinogens and are formed when organic material is partially oxidized by disinfectants commonly used in the water treatment industry. Additional federal mandates are expected in the near future that will further affect public water suppliers with respect to DBPs. Powdered activated carbon (PAC) has traditionally been used by the water treatment industry for the removal of compounds contributing to taste and odor problems. PAC also has the potential to remove naturally occurring organic matter (NOM) frommore » raw waters prior to disinfection, thus controlling the formation of regulated DBPs. Many small water systems are currently using PAC for taste and odor control and have the potential to use PAC for controlling DBPs. This project, a cooperative effort between the Energy & Environmental Research Center (EERC), the Grand Forks Water Treatment Plant, and the University of North Dakota Department of Civil Engineering, consists of several interrelated tasks. The objective of the research was to evaluate a cost-effective PAC produced from North Dakota lignite for removing NOM from water and reducing trihalomethane formation potential. The research approach was to develop a statistically valid testing protocol that can be used to compare dose-response relationships between North Dakota lignite-derived PAC and commercially available PAC products. A statistical analysis was performed to determine whether significant correlations exist between operating conditions, water properties, PAC properties, and dose-response behavior. Pertinent physical and chemical properties were also measured for each of the waters and each of the PACs.« less

  11. Natural inorganic nanoparticles--formation, fate, and toxicity in the environment.

    PubMed

    Sharma, Virender K; Filip, Jan; Zboril, Radek; Varma, Rajender S

    2015-12-07

    The synthesis, stability, and toxicity of engineered metal nanoparticles (ENPs) have been extensively studied during the past two decades. In contrast, research on the formation, fate, and ecological effects of naturally-occurring nanoparticles (NNPs) has become a focus of attention only recently. The natural existence of metal nanoparticles and their oxides/sulfides in waters, wastewaters, ore deposits, mining regions, and hydrothermal vents, as exemplified by the formation of nanoparticles containing silver and gold (AgNPs and AuNPs), Fe, Mn, pyrite (FeS2), Ag2S, CuS, CdS, and ZnS, is dictated largely by environmental conditions (temperature, pH, oxic/anoxic, light, and concentration and characteristics of natural organic matter (NOM)). Examples include the formation of nanoparticles containing pyrite, Cu and Zn-containing pyrite, and iron in hydrothermal vent black smoker emissions. Metal sulfide nanoparticles can be formed directly from their precursor ions or indirectly by sulfide ion-assisted transformation of the corresponding metal oxides under anaerobic conditions. This tutorial focuses on the formation mechanisms, fate, and toxicity of natural metal nanoparticles. Natural waters containing Ag(I) and Au(III) ions in the presence of NOM generate AgNPs and AuNPs under thermal, non-thermal, and photochemical conditions. These processes are significantly accelerated by existing redox species of iron (Fe(II)/Fe(III)). NOM, metal-NOM complexes, and reactive oxygen species (ROS) such as O2˙(-), ˙OH, and H2O2 are largely responsible for the natural occurrence of nanoparticles. AgNPs and AuNPs emanating from Ag(I)/Au(III)-NOM reactions are stable for several months, thus indicating their potential to be transported over long distances from their point of origin. However, endogenous cations present in natural waters can destabilize the nanoparticles, with divalent cations (e.g., Ca(2+), Mg(2+)) being more influential than their monovalent equivalents (e.g., Na(+), K(+)). The toxicity of NNPs may differ from that of ENPs because of differences in the coatings on the nanoparticle surfaces. An example of this phenomenon is presented and is briefly discussed.

  12. The spleen not taken: Differences in management and outcomes of blunt splenic injuries in teenagers cared for by adult and pediatric trauma teams in a single institution.

    PubMed

    OʼConnor, Sean C; Doud, Andrea N; Sieren, Leah M; Miller, Preston R; Zeller, Kristen A

    2017-09-01

    Nonoperative management (NOM) of blunt splenic injury, initially touted for the care of pediatric patients, has become the standard of care for stable trauma patients of all ages. In our institution, trauma patients younger than 16 years are managed by the pediatric surgery service and patients 16 years or older are managed by the adult trauma service. Angioembolization is routinely used for adults with blunt splenic injury but rarely used for pediatric patients. A retrospective chart review was performed to determine if more liberal use of angioembolization increases the success rate of NOM of blunt splenic injury in adolescents. Using our institutional trauma registry, we performed a retrospective chart review of 13- to 18-year-olds admitted with blunt splenic injury from 2007 to 2015. One hundred thirty-three patients were identified; 59 were 13- to 15-year-olds and cared for by the Pediatric Trauma service, whereas 74 were 16- to 18-year-olds and cared for by the Adult Trauma service. The cohorts were compared with respect to imaging performed, grade of injury, Injury Severity Score, presence of active extravasation or pseudoaneurysm, interventions performed, blood transfused, intensive care unit days, length of stay, complications, and 30-day mortality rates. There were no significant differences in Injury Severity Score, incidence of active extravasation or pseudoaneurysm identified on computed tomography, or grade of injury between the two cohorts. More patients underwent angioembolization in the "adult" group (p = 0.001) with no difference in the success rate of NOM (p = 0.117). The overall failure rate of NOM of high-grade injuries was only 4.1%. Failure of NOM in high-grade injuries is rare; as a result, the number needed to treat with prophylactic angioembolization would be around 37 patients, resulting in undue risk to many patients with no therapeutic benefit. No improvement in failure rate was seen with aggressive angioembolization, though a larger sample size is needed to rule out type 2 error. Therapeutic, level IV.

  13. The splenic injury outcomes trial: An American Association for the Surgery of Trauma multi-institutional study.

    PubMed

    Zarzaur, Ben L; Kozar, Rosemary; Myers, John G; Claridge, Jeffrey A; Scalea, Thomas M; Neideen, Todd A; Maung, Adrian A; Alarcon, Louis; Corcos, Alain; Kerwin, Andrew; Coimbra, Raul

    2015-09-01

    Delayed splenic hemorrhage after nonoperative management (NOM) of blunt splenic injury (BSI) is a feared complication, particularly in the outpatient setting. Significant resources, including angiography (ANGIO), are used in an effort to prevent delayed splenectomy (DS). No prospective, long-term data exist to determine the actual risk of splenectomy. The purposes of this trial were to ascertain the 180-day risk of splenectomy after 24 hours of NOM of BSI and to determine factors related to splenectomy. Eleven Level I trauma centers participated in this prospective observational study. Adult patients achieving 24 hours of NOM of their BSI were eligible. Patients were followed up for 180 days. Demographic, physiologic, radiographic, injury-related information, and spleen-related interventions were recorded. Bivariate and multivariable analyses were used to determine factors associated with DS. A total of 383 patients were enrolled. Twelve patients (3.1%) underwent in-hospital splenectomy between 24 hours and 9 days after injury. Of 366 discharged with a spleen, 1 (0.27%) required readmission for DS on postinjury Day 12. No Grade I injuries experienced DS. The splenectomy rate after 24 hours of NOM was 1.5 per 1,000 patient-days. Only extravasation from the spleen at time of admission (ADMIT-BLUSH) was associated with splenectomy (odds ratio, 3.6; 95% confidence interval, 1.4-12.4). Of patients with ADMIT-BLUSH (n = 49), 17 (34.7%) did not have ANGIO with embolization (EMBO), and 2 of those (11.8%) underwent splenectomy; 32 (65.3%) underwent ANGIO with EMBO, and 2 of those (6.3%, p = 0.6020 compared with no ANGIO with EMBO) required splenectomy. Splenectomy after 24 hours of NOM is rare. After the initial 24 hours, no additional interventions are warranted for patients with Grade I injuries. For Grades II to V, close observation as an inpatient or outpatient is indicated for 10 days to 14 days. ADMIT-BLUSH is a strong predictor of DS and should lead to close observation or earlier surgical intervention. Prognostic/epidemiological study, level III; therapeutic study, level IV.

  14. Zinc oxide nanoparticle toxicity in embryonic zebrafish: Mitigation with different natural organic matter.

    PubMed

    Kteeba, Shimaa M; El-Adawi, Hala I; El-Rayis, Osman A; El-Ghobashy, Ahmed E; Schuld, Jessica L; Svoboda, Kurt R; Guo, Laodong

    2017-11-01

    Exposure experiments were conducted to evaluate the influence of dissolved organic matter (DOM) on the toxicity of ZnO-NPs (10-30 nm) and dissolved Zn at sub-lethal doses (50 and 5 ppm, respectively) to zebrafish (Danio rerio). Humic acid, alginic acid, bovine serum albumin and various natural DOM isolated from rivers as the Milwaukee River-WI (NOMW), Yukon River-AK (NOMA) and Suwannee River-GA DOM (NOMS) were used to represent humic substances (HA), carbohydrates (CHO), proteins (PTN), and natural organic matter (NOM), respectively. Initial experiments were carried out to confirm the toxic effect of ZnO-NPs at 50 ppm, followed by mitigation experiments with different types and concentrations of DOM (0.4-40 mg-C/L). Compared to 0% hatch of 50 ppm ZnO-NPs exposed embryos at 72 h post fertilization (hpf), NOMS, NOMW and HA had the best mitigative effects on hatching (53-65%), followed by NOMA, CHO and PTN (19-35%); demonstrating that the mitigation effects on ZnO-NPs toxicity were related to DOM's quantity and composition. At 96 hpf, 20% of embryos exposed to 50 ppm ZnO-NPs hatched, 100% of embryos reared in embryo medium hatched, and close to 100% of the embryos hatched upon mitigation, except for those mitigated with PTN which had less effect. Dissolved Zn (5 ppm) also exhibited the same toxicity on embryos as ZnO-NPs (50 ppm). However, in the presence of HA, NOM and CHO, the hatching rates at 72 and 96 hpf increased significantly compared to 5% hatch without DOM. The overall mitigation effects produced by DOM followed the order of HA ≥ NOMS > NOM (A&W) > CHO > PTN, although specific mitigation effects varied with DOM concentration and functionalities. Our results also indicate that the toxicity of ZnO-NPs to embryos was mostly derived from NPs although dissolved Zn released from ZnO-NPs also interacted with embryos, affecting hatching, but to a less extent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Non-operative management of blunt hepatic trauma: Does angioembolization have a major impact?

    PubMed

    Bertens, K A; Vogt, K N; Hernandez-Alejandro, R; Gray, D K

    2015-02-01

    A paradigm shift toward non-operative management (NOM) of blunt hepatic trauma has occurred. With advances in percutaneous interventions, even severe liver injuries are being managed non-operatively. However, although overall mortality is decreased with NOM, liver-related morbidity remains high. This study was undertaken to explore the morbidity and mortality of blunt hepatic trauma in the era of angioembolization (AE). A retrospective cohort of trauma patients with blunt hepatic injury who were assessed at our centre between 1999 and 2011 were identified. Logistic regression was undertaken to identify factors increasing the likelihood of operative management (OM) and mortality. We identified 396 patients with a mean ISS of 33 (± 14). Sixty-two (18%) patients had severe liver injuries (≥ AAST grade IV). OM occurred in 109 (27%) patients. Logistic regression revealed high ISS (OR 1.07; 95% CI 1.05-1.10), and lower systolic blood pressure on arrival (OR 0.98; 95% CI 0.97-0.99) to be associated with OM. The overall mortality was 17%. Older patients (OR 1.05; 95% CI 1.03-1.07), those with high ISS (OR 1.11; 95% CI 1.08-1.14) and those requiring OM (OR 2.89; 95% CI 1.47-5.69) were more likely to die. Liver-related morbidities occurred in equal frequency in the OM (23%) and AE (29%) groups (p = 0.32). Only 3% of those with NOM experienced morbidity. The majority of patients with blunt hepatic trauma can be successfully managed non-operatively. Morbidity associated with NOM was low. Patients requiring AE had morbidity similar to OM.

  16. Insights into the photo-induced formation of reactive intermediates from effluent organic matter: The role of chemical constituents.

    PubMed

    Zhou, Huaxi; Lian, Lushi; Yan, Shuwen; Song, Weihua

    2017-04-01

    In the present study, the formation of triplet states of organic matters ( 3 OM ∗ ) from effluent organic matter (EfOM) under simulated solar irradiation was investigated. EfOM was separated into hydrophobic (HPO), transphilic (TPI), and hydrophilic (HPI) components. The quantum yield coefficients (ƒ TMP ) of 3 OM ∗ were measured for each component and compared to those of reference natural organic matter (NOM). NaBH 4 reduction was performed on the EfOM, and the effect of aromatic ketones moieties on triplet formation was also determined. Furthermore, the apparent quantum yield of 1 O 2 (Φ 1O2 ) and O 2 •- (Φ O2•- ) was measured. Our results suggested that the HPI fraction acted as a sink for 3 OM ∗ . A linear correlation was observed between ƒ TMP and Φ 1O2 for NOM/EfOM, except for NaBH 4 -reduced effluent and HPI components. Both ƒ TMP and Φ 1O2 were positively correlated with the contribution rates of NaBH 4 -reducible moieties (aromatic ketones) toward 3 OM ∗ . Aromatic ketones were primarily responsible for the production of 3 OM ∗ from EfOM, whereas quinone moieties played a key role in the production of 3 OM ∗ in NOM-enriched solutions. Understanding the role of chemical constituents on the photo activity of EfOM/NOM is essential for providing useful insights on their photochemical effects in aquatic systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Potential for Occupational Exposure to Engineered Carbon-Based Nanomaterials in Environmental Laboratory Studies

    PubMed Central

    Johnson, David R.; Methner, Mark M.; Kennedy, Alan J.; Steevens, Jeffery A.

    2010-01-01

    Background The potential exists for laboratory personnel to be exposed to engineered carbon-based nanomaterials (CNMs) in studies aimed at producing conditions similar to those found in natural surface waters [e.g., presence of natural organic matter (NOM)]. Objective The goal of this preliminary investigation was to assess the release of CNMs into the laboratory atmosphere during handling and sonication into environmentally relevant matrices. Methods We measured fullerenes (C60), underivatized multiwalled carbon nanotubes (raw MWCNT), hydroxylated MWCNT (MWCNT-OH), and carbon black (CB) in air as the nanomaterials were weighed, transferred to beakers filled with reconstituted freshwater, and sonicated in deionized water and reconstituted freshwater with and without NOM. Airborne nanomaterials emitted during processing were quantified using two hand-held particle counters that measure total particle number concentration per volume of air within the nanometer range (10–1,000 nm) and six specific size ranges (300–10,000 nm). Particle size and morphology were determined by transmission electron microscopy of air sample filters. Discussion After correcting for background particle number concentrations, it was evident that increases in airborne particle number concentrations occurred for each nanomaterial except CB during weighing, with airborne particle number concentrations inversely related to particle size. Sonicating nanomaterial-spiked water resulted in increased airborne nanomaterials, most notably for MWCNT-OH in water with NOM and for CB. Conclusion Engineered nanomaterials can become airborne when mixed in solution by sonication, especially when nanomaterials are functionalized or in water containing NOM. This finding indicates that laboratory workers may be at increased risk of exposure to engineered nanomaterials. PMID:20056572

  18. Immunohistochemical analysis of stromal fibrocytes and myofibroblasts to envision the invasion and lymph node metastasis in oral squamous cell carcinoma.

    PubMed

    Rao, Sowmya J; Rao, Jyothi Bellur Madhava; Rao, Pp Jagadish

    2017-01-01

    Tumor cells work in close coordination with stromal elements from its stage of emergence to metastasis. The study was designed to assess the presence and distribution pattern of stromal fibrocytes and myofibroblasts in oral squamous cell carcinoma (OSCC). Possibility of using these stromal cells as a marker for invasion and lymphnode metastasis was evaluated. A total of 40 cases of OSCC consisting twenty cases of each lymph node positive (pN+) and lymph node negative (pN0) samples and ten normal oral mucosa (NOM) tissues were subjected to double immunostaining using CD34 and alpha-smooth muscle actin (α-SMA) antibodies. Stained sections were evaluated semiquantitatively. CD34 fibrocytes were seen in 70% of NOM and none of OSCC samples. α-SMA myofibroblasts were seen in 80% of OSCC and none of NOM samples. A statistically significant difference was found in fibrocyte values ( P < 0.001) and myofibroblast values ( P < 0.001) between NOM and OSCC study samples. No statistical significance in myofibroblast values between pN0 and pN+ study groups; however, their distribution pattern appreciably varied. This study suggested that fibrocytes could be used as one of the markers for early invasion. Abrupt loss of fibrocytes at the transition zone toward carcinoma and statistical significance in their values supported this inference. Heterogeneity in the distribution pattern of myofibroblasts in tumor stroma indicates that this variability may predict the tumor behavior toward nodal metastasis rather than their mere presence or absence.

  19. Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents.

    PubMed

    Stankus, Dylan P; Lohse, Samuel E; Hutchison, James E; Nason, Jeffrey A

    2011-04-15

    The adsorption of natural organic matter (NOM) to the surfaces of natural colloids and engineered nanoparticles is known to strongly influence, and in some cases control, their surface properties and aggregation behavior. As a result, the understanding of nanoparticle fate, transport, and toxicity in natural systems must include a fundamental framework for predicting such behavior. Using a suite of gold nanoparticles (AuNPs) with different capping agents, the impact of surface functionality, presence of natural organic matter, and aqueous chemical composition (pH, ionic strength, and background electrolytes) on the surface charge and colloidal stability of each AuNP type was investigated. Capping agents used in this study were as follows: anionic (citrate and tannic acid), neutral (2,2,2-[mercaptoethoxy(ethoxy)]ethanol and polyvinylpyrrolidone), and cationic (mercaptopentyl(trimethylammonium)). Each AuNP type appeared to adsorb Suwannee River Humic Acid (SRHA) as evidenced by measurable decreases in zeta potential in the presence of 5 mg C L(-1) SRHA. It was found that 5 mg C L(-1) SRHA provided a stabilizing effect at low ionic strength and in the presence of only monovalent ions while elevated concentrations of divalent cations lead to enhanced aggregation. The colloidal stability of the NPs in the absence of NOM is a function of capping agent, pH, ionic strength, and electrolyte valence. In the presence of NOM at the conditions examined in this study, the capping agent is a less important determinant of stability, and the adsorption of NOM is a controlling factor.

  20. Degradation of natural organic matter by UV/chlorine oxidation: Molecular decomposition, formation of oxidation byproducts and cytotoxicity.

    PubMed

    Wang, Wen-Long; Zhang, Xue; Wu, Qian-Yuan; Du, Ye; Hu, Hong-Ying

    2017-11-01

    The degradation of natural organic matters (NOMs) by the combination of UV and chlorine (UV/chlorine) was investigated in this study. UV/chlorine oxidation can effectively degrade NOMs, with the degradation of chromophores (∼80%) and fluorophores (76.4-80.8%) being more efficient than that of DOC (15.1-18.6%). This effect was attributed to the chromophores and fluorophores (double bonds, aromatic groups and phenolic groups) being preferentially degraded by UV/chlorine oxidation, particularly reactive groups with high electron donating capacity. Radical species •OH and •Cl were generated during UV/chlorine oxidation, with the contribution of •OH 1.4 times as high as that of •Cl. The degradation kinetics of different molecular weight (MW) fractions suggests that UV/chlorine oxidation degrades high MW fractions into low MW fractions, with the degradation rates of high MW fractions (>3000 Da) 4.5 times of those of medium MW fractions (1000-3000 Da). In comparison with chlorination alone, UV/chlorine oxidation did not increase the formation (30 min) and formation potential (24 h) of trihalomethanes, but instead promoted the formation and formation potential of haloacetic acids and chloral hydrate. Adsorbable organic halogen (AOX) formed from UV/chlorine oxidation of NOM were 0.8 times higher than those formed from chlorination. Cytotoxicity studies indicated that the cytotoxicity of NOM increased after both chlorination and UV/chlorine oxidation, which may be due to the formation of AOX. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. In-situ identification of iron electrocoagulation speciation and application for natural organic matter (NOM) removal.

    PubMed

    Dubrawski, Kristian L; Mohseni, Madjid

    2013-09-15

    In this work, iron speciation in electrocoagulation (EC) was studied to determine the impact of operating parameters on natural organic matter (NOM) removal from natural water. Two electrochemical EC parameters, current density (i) and charge loading rate (CLR), were investigated. Variation of these parameters led to a near unity current efficiency (φ = 0.957 ± 0.03), at any combination of i in a range of 1-25 mA/cm(2) and CLR in a range of 12-300 C/L/min. Higher i and CLR led to a higher bulk pH and limited the amount of dissolved oxygen (DO) reduced at the cathode surface due to mass transfer limitations. A low i (1 mA/cm(2)) and intermediate CLR (60 C/L/min) resulted in low bulk DO (<2.5 mg/L), where green rust (GR) was identified by in-situ Raman spectroscopy as the primary crystalline electrochemical product. Longer electrolysis times at higher i led to magnetite (Fe3O4) formation. Both higher (300 C/L/min) and lower (12 C/L/min) CLR values led to increased DO and/or increased pH, with lepidocrocite (γ-FeOOH) as the only crystalline species observed. The NOM removal of the three identified species was compared, with conditions leading to GR formation showing the greatest dissolved organic carbon removal, and highest removal of the low apparent molecular weight (<550 Da) chromophoric NOM fraction, determined by high performance size exclusion chromatography. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Contribution of biomass burning to particles matter smaller than ten microns in Mexico City during April 2013.

    NASA Astrophysics Data System (ADS)

    Mendoza Campos, Alejandra; Agustin Garcia Reynoso, Jóse; Castro Romero, Telma; Carbajal Perez, Jóse Noel; Gerardo Ruiz Suarez, Luis; Peralta Rosales, Oscar Augusto

    2015-04-01

    A forest fire is a natural combustion process in a specific geographic area, it's depends on meteorological variables, topography and vegetation type, The wildfires are potential sources of large amounts of pollutants. The main air pollutants emitted in a forest fire are the particles (PM10 and PM2.5) Carbon Monoxide (CO), Nitrogen Oxides (NOx), Volatile Organic Compounds (VOCs) and a negligible amount of Sulfur Dioxide (SO2) (Chow 1995), The study of the impact of air quality in Mexico City for a forest fire occurred on April 14 of 2013 was conducted a duration of 26 hours of grassland burning and consuming an extension of 150 ha, the WRF-Chem, WRF-fire and METv3 models were used to perform the study, for the study two modeling were made, one including emissions from forest fires and the other one no emission-fire, when interpolation is made between the two modeling and obtained the impact of air quality in Mexico City, performing calculating emissions and modeling, the impact on air quality for PM10particles were observed arriving at a concentration of 350 mg/m3 due to wildfire occurred, this issue exceeds the maximum permissible limit of PM10particles governed by NOM-025-SSA1-1993 that establishes a maximum of 120 mg/m3 on average for 24 hours, the modeling results with measured data is corroborated weather Stations the environmental monitoring network of the Mexico City, that alerts an environmental contingency for particles for the post-wildfire day. Until now is review the rule which establishes a maximum of 75 mg/m3 on average for 24 hours, implying greater involvement in air quality.

  3. Investigating the role of biofilms in trihalomethane formation in water distribution systems with a multicomponent model.

    PubMed

    Abokifa, Ahmed A; Yang, Y Jeffrey; Lo, Cynthia S; Biswas, Pratim

    2016-11-01

    Biofilms are ubiquitous in the pipes of drinking water distribution systems (DWDSs), and recent experimental studies revealed that the chlorination of the microbial carbon associated with the biofilm contributes to the total disinfection by-products (DBPs) formation with distinct mechanisms from those formed from precursors derived from natural organic matter (NOM). A multiple species reactive-transport model was developed to explain the role of biofilms in DBPs formation by accounting for the simultaneous transport and interactions of disinfectants, organic compounds, and biomass. Using parameter values from experimental studies in the literature, the model equations were solved to predict chlorine decay and microbial regrowth dynamics in an actual DWDS, and trihalomethanes (THMs) formation in a pilot-scale distribution system simulator. The model's capability of reproducing the measured concentrations of free chlorine, suspended biomass, and THMs under different hydrodynamic and temperature conditions was demonstrated. The contribution of bacteria-derived precursors to the total THMs production was found to have a significant dependence on the system's hydraulics, seasonal variables, and the quality of the treated drinking water. Under system conditions that promoted fast bacterial re-growth, the transformation of non-microbial into microbial carbon DBP precursors by the biofilms showed a noticeable effect on the kinetics of THMs formation, especially when a high initial chlorine dose was applied. These conditions included elevated water temperature and high concentrations of nutrients in the influent water. The fraction of THMs formed from microbial sources was found to reach a peak of 12% of the total produced THMs under the investigated scenarios. The results demonstrated the importance of integrating bacterial regrowth dynamics in predictive DBPs formation models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Photosensitized degradation of acetaminophen in natural organic matter solutions: The role of triplet states and oxygen.

    PubMed

    Li, Yanyun; Pan, Yanheng; Lian, Lushi; Yan, Shuwen; Song, Weihua; Yang, Xin

    2017-02-01

    The photolysis of acetaminophen, a widely used pharmaceutical, in simulated natural organic matter solutions was investigated. The triplet states of natural organic matter ( 3 NOM*) were found to play the dominant role in its photodegradation, while the contributions from hydroxyl radicals and singlet oxygen were negligible. Dissolved oxygen (DO) plays a dual role. From anaerobic to microaerobic (0.5 mg/L DO) conditions, the degradation rate of acetaminophen increased by 4-fold. That suggests the involvement of DO in reactions with the degradation intermediates. With increasing oxygen levels to saturated conditions (26 mg/L DO), the degradation rate became slower, mainly due to DO's quenching effect on 3 NOM*. Superoxide radical (O 2 - ) did not react with acetaminophen directly, but possibly quenched the intermediates to reverse the degradation process. The main photochemical pathways were shown to involve phenoxyl radical and N-radical cations, finally yielding hydroxylated derivatives, dimers and nitrosophenol. A reaction mechanism involving 3 NOM*, oxygen and O 2 - is proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Overview of the National Occupational Mortality Surveillance (NOMS) system: leukemia and acute myocardial infarction risk by industry and occupation in 30 US states 1985-1999, 2003-2004, and 2007.

    PubMed

    Robinson, Cynthia F; Walker, James T; Sweeney, Marie H; Shen, Rui; Calvert, Geoffrey M; Schumacher, Pam K; Ju, Jun; Nowlin, Susan

    2015-02-01

    Cancer and chronic disease are leading causes of death in the US with an estimated cost of $46 billion. We analyzed 11 million cause-specific deaths of US workers age 18-64 years in 30 states during 1985-1999, 2003-2004, and 2007 by occupation, industry, race, gender, and Hispanic origin. The highest significantly elevated proportionate leukemia mortality was observed in engineers, protective service, and advertising sales manager occupations and in banks/savings &loans/credit agencies, public safety, and public administration industries. The highest significantly elevated smoking-adjusted acute myocardial infarction mortality was noted in industrial and refractory machinery mechanics, farmers, mining machine operators, and agricultural worker occupations; and wholesale farm supplies, agricultural chemical, synthetic rubber, and agricultural crop industries. Significantly elevated risks for acute myocardial infarction and leukemia were observed across several occupations and industries that confirm existing reports and add new information. Interested investigators can access the NOMS website at http://www.cdc.gov/niosh/topics/NOMS/. © 2015 Wiley Periodicals, Inc.

  6. Overview of the National Occupational Mortality Surveillance (NOMS) System: Leukemia and Acute Myocardial Infarction Risk by Industry and Occupation in 30 US States 1985–1999, 2003–2004, and 2007

    PubMed Central

    Robinson, Cynthia F.; Walker, James T.; Sweeney, Marie H.; Shen, Rui; Calvert, Geoffrey M.; Schumacher, Pam K.; Ju, Jun; Nowlin, Susan

    2015-01-01

    Background Cancer and chronic disease are leading causes of death in the US with an estimated cost of $46 billion. Methods We analyzed 11 million cause-specific deaths of US workers age 18–64 years in 30 states during 1985–1999, 2003–2004, and 2007 by occupation, industry, race, gender, and Hispanic origin. Results The highest significantly elevated proportionate leukemia mortality was observed in engineers, protective service, and advertising sales manager occupations and in banks/savings & loans/credit agencies, public safety, and public administration industries. The highest significantly elevated smoking-adjusted acute myocardial infarction mortality was noted in industrial and refractory machinery mechanics, farmers, mining machine operators, and agricultural worker occupations; and wholesale farm supplies, agricultural chemical, synthetic rubber, and agricultural crop industries. Conclusions Significantly elevated risks for acute myocardial infarction and leukemia were observed across several occupations and industries that confirm existing reports and add new information. Interested investigators can access the NOMS website at http//:www.cdc.gov/niosh/topics/NOMS/. PMID:25603936

  7. The reactivity of natural organic matter to disinfection by-products formation and its relation to specific ultraviolet absorbance.

    PubMed

    Kitis, M; Karanfil, T; Kilduff, J E; Wigton, A

    2001-01-01

    Five natural waters with a broad range of DOC concentrations were fractionated using various coal- and wood-based granular activated carbons (GAC) and alum coagulation. Adsorption and alum coagulation fractionated NOM solutions by preferentially removing components having high specific ultraviolet absorbance (SUVA). UV absorbing fractions of NOM were found to be the major contributors to DBP formation. SUVA appears to be an accurate predictor of reactivity with chlorine in terms of DBP yield; however, it was also found that low-SUVA components of NOM have higher bromine incorporation. SUVA has promise as a parameter for on-line monitoring and control of DBP formation in practical applications; however, the effects of bromide concentration may also need to be considered. Understanding how reactivity is correlated to SUVA may allow utilities to optimize the degree of treatment required to comply with DBP regulations. The reactive components that require removal, and the degree of treatment necessary to accomplish this removal, may be directly obtained from the relationship between SUVA removal and the degree of treatment (e.g., alum dose).

  8. Formation of aldehydes and carboxylic acids in ozonated surface water and wastewater: a clear relationship with fluorescence changes.

    PubMed

    Liu, Chen; Tang, Xiangyu; Kim, Jaeshin; Korshin, Gregory V

    2015-04-01

    This study examined the formation of aldehydes and carboxylic acids in ozonated surface water and municipal wastewater secondary effluent and addressed correlations between the generation of these compounds and concurrent changes of the fluorescence of natural/effluent organic matter (NOM/EfOM) substrates. Ozonation was effective in removing fluorophores in all excitation/emission matrix (EEM) regions, with those operationally assigned to humic- and protein-like species showing relatively higher reactivity than fulvic-like species. Examination of HO exposures and attendant changes of fluorescence-based parameters allows establishing strong linear relationships between formation of the aldehydes and carboxylic acids and the relative changes of integrated fluorescence (ΔIF/IF0). This demonstrates the feasibility of surrogate monitoring of the formation of biodegradable ozonation by-products via online measurements of water/wastewater EEM fluorescence. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Lactobacillus alimentarius sp. nov., nom rev. and Lactobacillus farciminis sp. nov., nom. rev.

    PubMed

    Reuter, G

    1983-01-01

    In 1970 two new species within the so-called subgenus "Streptobacterium" Orla-Jensen of the genus Lactobacillus were described (Reuter, 1970). They were named L. alimentarius with the type strain "R 13" (DSM 20249) and L. farciminis with the type strain "Rv 4na" (DSM 20184). Since these two names have so far not been included in the "Approved Lists of Bacterial Names" (Skerman et al., 1980) they are revived for the same organisms with the same type strains. Copyright © 1983 Gustav Fischer Verlag, Stuttgart/New York. Published by Elsevier GmbH.. All rights reserved.

  10. Removal of natural organic matter by titanium tetrachloride: The effect of total hardness and ionic strength.

    PubMed

    Zhao, Y X; Shon, H K; Phuntsho, S; Gao, B Y

    2014-02-15

    This study is the first attempt to investigate the effect of total hardness and ionic strength on coagulation performance and the floc characteristics of titanium tetrachloride (TiCl4). Membrane fouling under different total hardness and ionic strength conditions was also evaluated during a coagulation-ultrafiltration (C-UF) hybrid process. Coagulation experiments were performed with two simulated waters, using humic acid (HA, high molecular weight) and fulvic acid (FA, relatively low molecular weight), respectively, as model natural organic matter (NOM). Results show that both particle and organic matter removal can be enhanced by increasing total hardness and ionic strength. Floc characteristics were significantly influenced by total hardness and ionic strength and were improved in terms of floc size, growth rate, strength, recoverability and compactness. The results of the UF tests show that the pre-coagulation with TiCl4 significantly improves the membrane permeate fluxes. Under different total hardness and ionic strength conditions, the membrane permeate flux varied according to both NOM and floc characteristics. The increase in total hardness and ionic strength improved the membrane permeate flux in the case of HA simulated water treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Total mass difference statistics algorithm: a new approach to identification of high-mass building blocks in electrospray ionization Fourier transform ion cyclotron mass spectrometry data of natural organic matter.

    PubMed

    Kunenkov, Erast V; Kononikhin, Alexey S; Perminova, Irina V; Hertkorn, Norbert; Gaspar, Andras; Schmitt-Kopplin, Philippe; Popov, Igor A; Garmash, Andrew V; Nikolaev, Evgeniy N

    2009-12-15

    The ultrahigh-resolution Fourier transform ion cyclotron resonance (FTICR) mass spectrum of natural organic matter (NOM) contains several thousand peaks with dozens of molecules matching the same nominal mass. Such a complexity poses a significant challenge for automatic data interpretation, in which the most difficult task is molecular formula assignment, especially in the case of heavy and/or multielement ions. In this study, a new universal algorithm for automatic treatment of FTICR mass spectra of NOM and humic substances based on total mass difference statistics (TMDS) has been developed and implemented. The algorithm enables a blind search for unknown building blocks (instead of a priori known ones) by revealing repetitive patterns present in spectra. In this respect, it differs from all previously developed approaches. This algorithm was implemented in designing FIRAN-software for fully automated analysis of mass data with high peak density. The specific feature of FIRAN is its ability to assign formulas to heavy and/or multielement molecules using "virtual elements" approach. To verify the approach, it was used for processing mass spectra of sodium polystyrene sulfonate (PSS, M(w) = 2200 Da) and polymethacrylate (PMA, M(w) = 3290 Da) which produce heavy multielement and multiply-charged ions. Application of TMDS identified unambiguously monomers present in the polymers consistent with their structure: C(8)H(7)SO(3)Na for PSS and C(4)H(6)O(2) for PMA. It also allowed unambiguous formula assignment to all multiply-charged peaks including the heaviest peak in PMA spectrum at mass 4025.6625 with charge state 6- (mass bias -0.33 ppm). Application of the TMDS-algorithm to processing data on the Suwannee River FA has proven its unique capacities in analysis of spectra with high peak density: it has not only identified the known small building blocks in the structure of FA such as CH(2), H(2), C(2)H(2)O, O but the heavier unit at 154.027 amu. The latter was identified for the first time and assigned a formula C(7)H(6)O(4) consistent with the structure of dihydroxyl-benzoic acids. The presence of these compounds in the structure of FA has so far been numerically suggested but never proven directly. It was concluded that application of the TMDS-algorithm opens new horizons in unfolding molecular complexity of NOM and other natural products.

  12. Diel fluctuations in natural organic matter quality in an oligotrophic cave system

    NASA Astrophysics Data System (ADS)

    Brown, T.; Engel, A. S.; Pfiffner, S. M.

    2016-12-01

    Transformations of natural organic matter (NOM) and effects of photochemical degradation on dissolved organic matter (DOM) quality in recharge can be readily studied in cave systems with hydrologic connections between the surface and subsurface. Specifically, diel controls on photodegradation, fresh NOM production, and microbial C cycling were examined from recharge to resurgence of an oligotrophic cave stream in Kentucky. We used NOM isolation and spectroscopic analysis to concentrate and characterize DOM, and lipid profiling to evaluate microbial community structure. A hydrophilic fraction of DOM was isolated from bulk waters in the field using diethylaminoethyl (DEAE) weak anion exchange column chromatography, and isolates were characterized with FTIR spectroscopy to identify differences in macromolecular structure between surface and subsurface (downstream) DOM. Lipids from colloidal NOM (retained on 0.2 µm filter) and stream sediments were extracted using a modified Bligh Dyer method, segregated into classes, and converted to fatty acid methyl esters (FAME) for quantification and identification by GC-MS. During a late summer, low flow, 24-hour sampling event, the quality of surface water DOM recharged at night was 40% richer in aliphatic esters, 30% richer in phenols and alkanes, and elevated in polysaccharides compared with DOM recharged during daylight. IR absorptivity in nocturnal DOM isolates was an order of magnitude lower in the cave stream, with recalcitrant DOM interpreted from bands of aliphatic esters, alkanes, and organo-silicates. Phospholipid fatty acid (PLFA) profiles indicated that the abundance of polyunsaturated PLFA associated with algae, fungi, and higher plants decreased along the flowpath. Cave microbes exhibited elevated trans:cis ratios relative to surface communities, and the ratio increased at night. This suggested that downstream microbial communities existed in a state of reduced activity without inputs of photosynthates at night.

  13. Photochemical Reactions of Particulate Organic Matter: Deciphering the Role of Direct and Indirect Processes

    NASA Astrophysics Data System (ADS)

    Carrasquillo, A. J.; Gelfond, C. E.; Kocar, B. D.

    2016-12-01

    Photochemical reactions of natural organic matter (NOM) represent potentially important pathways for biologically recalcitrant material to be chemically altered in aquatic systems. Irradiation can alter the physical state of organic matter by facilitating the cycling between the particulate (POM) and dissolved (DOM) pools, however, a molecular level understanding of this chemically dynamic system is currently lacking. Photochemical reactions of a target molecule proceed by the direct absorption of a photon, or through reaction with a second photolytically generated species (i.e. the hydroxyl radical, singlet oxygen, excited triplet state NOM, hydrogen peroxide, etc.). Here, we isolate the major direct and indirect photochemical reactions of a lignocellulose-rich POM material (Phragmites australis) to determine their relative importance in changing the the chemical structure of the parent POM, and in the production of DOM. We measured POM molecular structure using a combination of NMR and FTIR for bulk analyses and scanning transmission x-ray microscopy (STXM) for spatially resolved chemistry, while the chemical composition of photo-produced DOM was measured using ultra-high resolution mass spectrometry. Results are discussed in the context of the differences in chemical composition of both NOM pools resulting from the isolated photochemical pathways. All treatments result in an increase in DOM with reaction time, indicating that the larger POM matrix is likely fragmenting into smaller more soluble species. Spectroscopic measurements, on the other hand, point to functionalization reactions which increase the abundance of alcohol, acid, and carbonyl moieties in both carbon pools. This unique dataset provides new insight into how photochemical reactions alter the chemical composition of NOM while highlighting the relative importance of indirect pathways.

  14. Emergency CT for assessment and management of blunt traumatic splenic injuries at a Level 1 Trauma Center: 13-year study.

    PubMed

    Margari, Sergio; Garozzo Velloni, Fernanda; Tonolini, Massimo; Colombo, Ettore; Artioli, Diana; Allievi, Niccolò Ettore; Sammartano, Fabrizio; Chiara, Osvaldo; Vanzulli, Angelo

    2018-05-12

    To determine the relationship between multidetector computed tomography (MDCT) findings, management strategies, and ultimate clinical outcomes in patients with splenic injuries secondary to blunt trauma. This Institutional Review Board-approved study collected 351 consecutive patients admitted at the Emergency Department (ED) of a Level I Trauma Center with blunt splenic trauma between October 2002 and November 2015. Their MDCT studies were retrospectively and independently reviewed by two radiologists to grade splenic injuries according to the American Association for the Surgery of Trauma (AAST) organ injury scale (OIS) and to detect intraparenchymal (type A) or extraparenchymal (type B) active bleeding and/or contained vascular injuries (CVI). Clinical data, information on management, and outcome were retrieved from the hospital database. Statistical analysis relied on Student's t, chi-squared, and Cohen's kappa tests. Emergency multiphase MDCT was obtained in 263 hemodynamically stable patients. Interobserver agreement for both AAST grading of injuries and vascular lesions was excellent (k = 0.77). Operative management (OM) was performed in 160 patients (45.58% of the whole cohort), and high-grade (IV and V) OIS injuries and type B bleeding were statistically significant (p < 0.05) predictors of OM. Nonoperative management (NOM) failed in 23 patients out of 191 (12.04%). In 75% of them, NOM failure occurred within 30 h from the trauma event, without significant increase of mortality. Both intraparenchymal and extraparenchymal active bleeding were predictive of NOM failure (p < 0.05). Providing detection and characterization of parenchymal and vascular traumatic lesions, MDCT plays a crucial role for safe and appropriate guidance of ED management of splenic traumas and contributes to the shift toward NOM in hemodynamically stable patients.

  15. [Treatment practice in patients with isolated blunt splenic injuries. A survey of Swiss traumatologists].

    PubMed

    Schnüriger, B; Martens, F; Eberle, B M; Renzulli, P; Seiler, C A; Candinas, D

    2013-01-01

    The non-operative management (NOM) of blunt splenic injuries has gained widespread acceptance. However, there are still many controversies regarding follow-up of these patients. The purpose of this study was to survey active members of the Swiss Society of General and Trauma Surgery (SGAUC) to determine their practices regarding the NOM of isolated splenic injuries. A survey of active SGAUC members with a written questionnaire was carried out. The questionnaire was designed to elicit information about personal and facility demographics, diagnostic practices, in-hospital management, preferred follow-up imaging and return to activity. Out of 165 SGAUC members 52 (31.5%) completed the survey and 62.8% of all main trauma facilities in Switzerland were covered by the sample. Of the respondents 14 (26.9%) have a protocol in place for treating patients with splenic injuries. For initial imaging in hemodynamically stable patients 82.7% of respondents preferred ultrasonography (US). In cases of suspected splenic injury 19.2% of respondents would abstain from further imaging. In cases of contrast extravasation from the spleen half of the respondents would take no specific action. For low-grade injuries 86.5% chose to admit patients for an average of 1.6 days (range 0-4 days) with a continuously monitored bed. No differences in post-discharge activity restrictions between moderate and high-grade splenic injuries were found. The present survey showed considerable practice variation in several important aspects of the NOM of splenic injuries. Not performing further CT scans in patients with suspected splenic injuries and not intervening in cases of a contrast extravasation were the most important discrepancies to the current literature. Standardization of the NOM of splenic injuries may be of great benefit for both surgeons and patients.

  16. A quarter century experience in liver trauma: a plea for early computed tomography and conservative management for all hemodynamically stable patients.

    PubMed

    Petrowsky, Henrik; Raeder, Susanne; Zuercher, Lucia; Platz, Andreas; Simmen, Hans Peter; Puhan, Milo A; Keel, Marius J; Clavien, Pierre-Alain

    2012-02-01

    Advances in diagnostic imaging and the introduction of damage control strategy in trauma have influenced our approach to treating liver trauma patients. The objective of the present study was to investigate the impact of change in liver trauma management on outcome. A total of 468 consecutive patients with liver trauma treated between 1986 and 2010 at a single level 1 trauma center were reviewed. Mechanisms of injury, diagnostic imaging, hepatic and associated injuries, management (operative [OM] vs. nonoperative [NOM]), and outcome were evaluated. The main outcome analysis compared mortality for the early study period (1986-1996) versus the later study period (1997-2010). 395 patients (84%) presented with blunt liver trauma and 73 (16%) with penetrating liver trauma. Of these, 233 patients were treated with OM (50%) versus 235 with NOM (50%). The mortality rate was 33% for the early period and 20% for the later period (odds ratio 0.19; 95% CI 0.07-0.50, P = 0.001). A significantly increased use of computed tomography (CT) as the initial diagnostic modality was observed in the late period, which almost completely replaced peritoneal lavage and ultrasound. There was a significant shift to NOM in the later period (early 15%, late 63%) with a low conversion rate to OM of 4.2%. Age, degree of hepatic and head injury, injury severity, intubation at admission, and early period were independent predictors of mortality in the multivariate analysis. Integration of CT in early trauma-room management and shift to NOM in hemodynamically stable patients resulted in improved survival and should be the gold standard management for liver trauma.

  17. Ultraviolet irradiation effects incorporation of nitrate and nitrite nitrogen into aquatic natural organic matter

    USGS Publications Warehouse

    Thorn, Kevin A.; Cox, Larry G.

    2012-01-01

    One of the concerns regarding the safety and efficacy of ultraviolet radiation for treatment of drinking water and wastewater is the fate of nitrate, particularly its photolysis to nitrite. In this study, 15N NMR was used to establish for the first time that UV irradiation effects the incorporation of nitrate and nitrite nitrogen into aquatic natural organic matter (NOM). Irradiation of 15N-labeled nitrate in aqueous solution with an unfiltered medium pressure mercury lamp resulted in the incorporation of nitrogen into Suwannee River NOM (SRNOM) via nitrosation and other reactions over a range of pH from approximately 3.2 to 8.0, both in the presence and absence of bicarbonate, confirming photonitrosation of the NOM. The major forms of the incorporated label include nitrosophenol, oxime/nitro, pyridine, nitrile, and amide nitrogens. Natural organic matter also catalyzed the reduction of nitrate to ammonia on irradiation. The nitrosophenol and oxime/nitro nitrogens were found to be susceptible to photodegradation on further irradiation when nitrate was removed from the system. At pH 7.5, unfiltered irradiation resulted in the incorporation of 15N-labeled nitrite into SRNOM in the form of amide, nitrile, and pyridine nitrogen. In the presence of bicarbonate at pH 7.4, Pyrex filtered (cutoff below 290–300 nm) irradiation also effected incorporation of nitrite into SRNOM as amide nitrogen. We speculate that nitrosation of NOM from the UV irradiation of nitrate also leads to production of nitrogen gas and nitrous oxide, a process that may be termed photo-chemodenitrification. Irradiation of SRNOM alone resulted in transformation or loss of naturally abundant heterocyclic nitrogens.

  18. Impacts of inorganic anions and natural organic matter on thermally activated persulfate oxidation of BTEX in water.

    PubMed

    Ma, Jie; Yang, Yongqi; Jiang, Xianchenghao; Xie, Zhuoting; Li, Xiaoxuan; Chen, Changzhao; Chen, Hongkun

    2018-01-01

    The present study investigated the impacts of water matrix constituents (CO 3 2- , HCO 3 - , Cl - , Br - , PO 4 3- , HPO 4 2- , H 2 PO 4 - , NO 3 - , SO 4 2- and natural organic matters (NOM) on the oxidation of a mixture of benzene, toluene, ethylbenzene, and xylenes (BTEX) by thermally activated persulfate (PS). In the absence of matrix constituents, the BTEX oxidation rates decreased in the following order: xylenes > toluene ≈ ethylbenzene > benzene. HCO 3 - /CO 3 2- and NOM inhibited the BTEX oxidation and the inhibiting effects became more pronounced as the HCO 3 - /CO 3 2- /NOM concentration increased. SO 4 2- , NO 3 - , PO 4 3- and H 2 PO 4 - did not affect the BTEX oxidation while HPO 4 2- slightly inhibited the reaction. The impacts of Cl - and Br - were complex. Cl - inhibited the benzene oxidation while 100 mM and 500 mM of Cl - promoted the oxidation of m-xylene and p-xylene. Br - completely suppressed the benzene oxidation while 500 mM of Br - strongly promoted the oxidation of xylenes. Detailed explanations on the influence of each matrix constituent were discussed. In addition, various halogenated degradation byproducts were detected in the treatments containing Cl - and Br - . Overall, this study indicates that some matrix constituents such as NOM, HCO 3 - , CO 3 2- , H 2 PO 4 - , Cl - and Br - may reduce the BTEX removal efficiency of sulfate radical-based advanced oxidation process (SR-AOP) and the presence of Cl - and Br - may even lead to the formation of toxic halogenated byproducts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Probing the roles of Ca(2+) and Mg(2+) in humic acids-induced ultrafiltration membrane fouling using an integrated approach.

    PubMed

    Wang, Long-Fei; He, Dong-Qin; Chen, Wei; Yu, Han-Qing

    2015-09-15

    Membrane fouling induced by natural organic matter (NOM) negatively affects the performance of ultrafiltration (UF) technology in producing drinking water. Divalent cation is found to be an important factor that affects the NOM-induced membrane fouling process. In this work, attenuated total reflection-Fourier transformation infrared spectroscopy (ATR-FTIR) coupled with quartz crystal microbalance (QCM), assisted by isothermal titration calorimetry (ITC), is used to explore the contribution of Mg(2+) and Ca(2+), the two abundant divalent cations in natural water, to the UF membrane fouling caused by humic acid (HA) at a molecular level. The results show that Ca(2+) exhibited superior performance in accelerating fouling compared to Mg(2+). The hydrophobic polyethersulfone (PES) membrane exhibited greater complexation with HA in the presence of Mg(2+) and Ca(2+), compared to the hydrophilic cellulose membrane, as evidenced by the more intense polysaccharide C-O, aromatic C=C and carboxylic C=O bands in the FTIR spectra. The QCM and ITC measurements provide quantitative evidence to support that Ca(2+) was more effective than Mg(2+) in binding with HA and accumulating foulants on the membrane surfaces. The higher charge neutralization capacity and more favorable binding ability of Ca(2+) were found to be responsible for its greater contribution to the NOM-induced membrane fouling than Mg(2+). This work offers a new insight into the mechanism of cation-mediated NOM-induced membrane fouling process, and demonstrates that such an integrated ATR-FTIR/QCM/ITC approach could be a useful tool to explore other complicated interaction processes in natural and engineered environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Impact of air quality in Mexico City due to particles smaller than ten microns (PM10) by wildland fire in "Cumbres del Ajusco Park" for the year 2013

    NASA Astrophysics Data System (ADS)

    Mendoza, A.; Garcia-Reynoso, J. A.; Ruiz-Suárez, L. G.; Torres, R.; Castro, T.; Peralta, O.; Padilla Barrera, Z. V.; Mar, B.; Carbajal, J. N.

    2014-12-01

    A forest fire is a natural process of combustion in a specific geographical area, its occurrence depends on meteorological variables, topography and vegetation type, the wildland fires are potential sources of large amounts of pollutants. The main air pollutants are in a wildland fires particles (PM10 and PM2.5) Carbon Monoxide (CO), nitrogen oxides (NOx), volatile organic compounds (VOC's) and a negligible amount of sulfur dioxide (SO2) (Chow 1995), Was performed a study of the environmental impact on air quality in Mexico city for a wildland fire. The fire was presented in Cumbres del Ajusco Park on April 14 for the year 2013, with a duration of 26 hours and consuming an extension 150 ha of pasture, WRF-Chem and WRF-fire model were used to conduct the study, two modeling scenarios were made, one including emissions from wildfire and other without emission-fire, comparison is made between the two modeling scenarios in order to calculate on air quality in Mexico cityPM10 concentrations have a larger impact on the air quality of Mexico city, when fire emission were included, a plume of PM10 coming from fire increase ambient concentration up to 350ug/m3 and it was obtained by modeling similar to the concentration measured by a monitoring station (320ug/m3).The current limit is 120ug/m3 24 hours average. (Mexican standard NOM-025-SSA1-1993)This system for setting emissions from fire is working properly whoever further development is required.

  1. Accounting for natural organic matter in aqueous chemical equilibrium models: a review of the theories and applications

    NASA Astrophysics Data System (ADS)

    Dudal, Yves; Gérard, Frédéric

    2004-08-01

    Soil organic matter consists of a highly complex and diversified blend of organic molecules, ranging from low molecular weight organic acids (LMWOAs), sugars, amines, alcohols, etc., to high apparent molecular weight fulvic and humic acids. The presence of a wide range of functional groups on these molecules makes them very reactive and influential in soil chemistry, in regards to acid-base chemistry, metal complexation, precipitation and dissolution of minerals and microbial reactions. Out of these functional groups, the carboxylic and phenolic ones are the most abundant and most influential in regards to metal complexation. Therefore, chemical equilibrium models have progressively dealt with organic matter in their calculations. This paper presents a review of six chemical equilibrium models, namely N ICA-Donnan, E Q3/6, G EOCHEM, M INTEQA2, P HREEQC and W HAM, in light of the account they make of natural organic matter (NOM) with the objective of helping potential users in choosing a modelling approach. The account has taken various faces, mainly by adding specific molecules within the existing model databases (E Q3/6, G EOCHEM, and P HREEQC) or by using either a discrete (W HAM) or a continuous (N ICA-Donnan and M INTEQA2) distribution of the deprotonated carboxylic and phenolic groups. The different ways in which soil organic matter has been integrated into these models are discussed in regards to the model-experiment comparisons that were found in the literature, concerning applications to either laboratory or natural systems. Much of the attention has been focused on the two most advanced models, W HAM and N ICA-Donnan, which are able to reasonably describe most of the experimental results. Nevertheless, a better knowledge of the humic substances metal-binding properties is needed to better constrain model inputs with site-specific parameter values. This represents the main axis of research that needs to be carried out to improve the models. In addition to humic substances, more non-humic compounds should also be introduced in model databases, notably the ones that readily interact with the soil microorganisms. Thermodynamic data are generally available for most of these compounds, such as low molecular-weight organic acids. However, the more complex non-humic substances, exhibiting a ratio of hydrophobic versus hydrophilic bonds lower than humic substances, need to be further characterised for a comprehensive implementation in chemical equilibrium models.

  2. Pretreatment and Membrane Hydrophilic Modification to Reduce Membrane Fouling

    PubMed Central

    Sun, Wen; Liu, Junxia; Chu, Huaqiang; Dong, Bingzhi

    2013-01-01

    The application of low pressure membranes (microfiltration/ultrafiltration) has undergone accelerated development for drinking water production. However, the major obstacle encountered in its popularization is membrane fouling caused by natural organic matter (NOM). This paper firstly summarizes the two factors causing the organic membrane fouling, including molecular weight (MW) and hydrophilicity/hydrophobicity of NOM, and then presents a brief introduction of the methods which can prevent membrane fouling such as pretreatment of the feed water (e.g., coagulation, adsorption, and pre-oxidation) and membrane hydrophilic modification (e.g., plasma modification, irradiation grafting modification, surface coating modification, blend modification, etc.). Perspectives of further research are also discussed. PMID:24956947

  3. The Influence of Mixture Distribution on Emissions from an Aircraft Piston Engine.

    DTIC Science & Technology

    1980-10-01

    I rOMMENTS:CARB. BASELINE, CYL. 1 MP(DB) - 89. 50F FUEL RATE- 5. 45:.5#/HR ENGINE RPM( NOM )= 700 RPM tEMP(OP) - 52. OOF AIR RATE - 70. 1649#/HR...5. 4535*/HR ENGINE RPM( NOM )= 700 RPM PIP(DP) - 52. QOF AIR RATE.- 70. 1649*/HR ENGINE RPM(ACT)= 639. RPM tEMP(BAR) = 78. QOF F/.,A RATIO- 0. 0778...0. 335*2 27. 04884 043 . 08.9 0. 0� 0. 0777? 16.5!5:3 MASS/MODE(LBM) 0. 1407391, 0. 00000 0. 00192 0. 0S.354 0. 00000 001oo0 RIJN NO. 6’) 4

  4. Cytokeratin expression in pseudoepitheliomatous hyperplasia of oral paracoccidioidomycosis.

    PubMed

    Kaminagakura, E; Bonan, P R F; Lopes, M A; Almeida, O P; Scully, C

    2006-08-01

    Paracoccidioidomycosis (Pmycosis) is one the most prevalent deep systemic mycoses in Latin America. It is characterized by granulomatous inflammation and pseudoepitheliomatous hyperplasia. Cytokeratins (CKs) are a group of intermediate filaments of epithelial cells and their expression varies according to the epithelium type, differentiation and pathological processes. This study describes cytokeratin expression as examined by immunohistochemistry, in 28 cases of oral Pmycosis involving the buccal mucosa, lip, gingiva and hard palate. Expression of CKs in the basal layer of the epithelium in pseudoepitheliomatous hyperplasia of Pmycosis was similar to that in normal oral mucosa (NOM), but in Pmycosis CK1 and CK10 were not expressed in the spinous and superficial layers of the lip, gingiva or hard palate, and, in the spinous and superficial layers of the lip and buccal mucosa, CK14 was positive in contrast to NOM where it was negative. In Pmycosis, CK6 was more frequently expressed in the spinous layer of the lip, gingiva and hard palate, but nevertheless CK16 expression was decreased in the spinous and superficial layers of the gingiva and hard palate. We conclude that pseudoepitheliomatous hyperplasia in oral Pmycosis shows a different pattern of CK expression, particularly CKs 1, 10 and 14, compared with NOM.

  5. Hepatic trauma: a 21-year experience.

    PubMed

    Zago, Thiago Messias; Pereira, Bruno Monteiro; Nascimento, Bartolomeu; Alves, Maria Silveira Carvalho; Calderan, Thiago Rodrigues Araujo; Fraga, Gustavo Pereira

    2013-01-01

    To evaluate the epidemiological aspects, behavior, morbidity and treatment outcomes for liver trauma. We conducted a retrospective study of patients over 13 years of age admitted to a university hospital from 1990 to 2010, submitted to surgery or nonoperative management (NOM). 748 patients were admitted with liver trauma. The most common mechanism of injury was penetrating trauma (461 cases, 61.6%), blunt trauma occurring in 287 patients (38.4%). According to the degree of liver injury (AAST-OIS) in blunt trauma we predominantly observed Grades I and II and in penetrating trauma, Grade III. NOM was performed in 25.7% of patients with blunt injury. As for surgical procedures, suturing was performed more frequently (41.2%). The liver-related morbidity was 16.7%. The survival rate for patients with liver trauma was 73.5% for blunt and 84.2% for penetrating trauma. Mortality in complex trauma was 45.9%. trauma remains more common in younger populations and in males. There was a reduction of penetrating liver trauma. NOM proved safe and effective, and often has been used to treat patients with penetrating liver trauma. Morbidity was high and mortality was higher in victims of blunt trauma and complex liver injuries.

  6. Impact of anionic ion exchange resins on NOM fractions: Effect on N-DBPs and C-DBPs precursors.

    PubMed

    Bazri, Mohammad Mahdi; Martijn, Bram; Kroesbergen, Jan; Mohseni, Madjid

    2016-02-01

    The formation potential of carbonaceous and nitrogenous disinfection by-products (C-DBPs, N-DBPs) after ion exchange treatment (IEX) of three different water types in multiple consecutive loading cycles was investigated. Liquid chromatography with organic carbon detector (LC-OCD) was employed to gauge the impact of IEX on different natural organic matter (NOM) fractions and data obtained were used to correlate these changes to DBPs Formation Potential (FP) under chlorination. Humic (-like) substances fractions of NOM were mainly targeted by ion exchange resins (40-67% removal), whereas hydrophilic, non-ionic fractions such as neutrals and building blocks were poorly removed during the treatment (12-33% removal). Application of ion exchange resins removed 13-20% of total carbonaceous DBPs FP and 3-50% of total nitrogenous DBPs FP. Effect of the inorganic nitrogen (i.e., Nitrate) presence on N-DBPs FP was insignificant while the presence of dissolved organic nitrogen (DON) was found to be a key parameter affecting the formation of N-DBPs. DON especially the portion affiliated with humic substances fraction, was reduced effectively (∼77%) as a result of IEX treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Fate of natural organic matter at a full-scale Drinking Water Treatment Plant in Greece.

    PubMed

    Papageorgiou, A; Papadakis, N; Voutsa, D

    2016-01-01

    The aim of this study was to investigate the fate of natural organic matter (NOM) and subsequent changes during the various treatment processes at a full-scale Drinking Water Treatment Plant (DWTP). Monthly sampling campaigns were conducted for 1 year at six sites along DWTP of Thessaloniki, Northern Greece including raw water from the Aliakmonas River that supplies DWTP and samples from various treatment processes (pre-ozonation, coagulation, sand filtration, ozonation, and granular activated carbon (GAC) filtration). The concentration of NOM and its characteristics as well as the removal efficiency of various treatment processes on the basis of dissolved organic carbon, UV absorbance, specific ultra-violet absorbance, fluorescence intensity, hydrophobicity, biodegradable dissolved organic carbon, and formation potential of chlorination by-products trihalomethanes (THMs) and haloacetic acids (HAAs) were studied. The concentration of dissolved organic carbon (DOC) in reservoir of the Aliakmonas River ranged from 1.46 to 1.84 mg/L, exhibiting variations regarding UV, fluorescence, and hydrophobic character through the year. Along DWTP, a significant reduction of aromatic, fluorophoric, and hydrophobic character of NOM was observed resulting in significant elimination of THM (63%) and HAAs (75%) precursors.

  8. Validation of the videofluoroscopic dysphagia scale in various etiologies.

    PubMed

    Kim, Juyong; Oh, Byung-Mo; Kim, Jung Yoon; Lee, Goo Joo; Lee, Seung Ah; Han, Tai Ryoon

    2014-08-01

    The videofluoroscopic dysphagia scale (VDS) was developed as an objective predictor of the prognosis of dysphagia after stroke. We evaluated the clinical validity of the VDS for various diseases. We reviewed the medical records of 1,995 dysphagic patients (1,222 men and 773 women) who underwent videofluoroscopic studies in Seoul National University Hospital from April 2002 through December 2009. Their American Speech–Language–Hearing Association’s National Outcome Measurement System (ASHA NOMS) swallowing scale, clinical dysphagia scale (CDS), and VDS scores were evaluated on the basis of the clinical and/or videofluoroscopic findings by the consensus of two physiatrists. The correlations between the VDS and the other scales were calculated. The VDS displayed significant correlations with the ASHA NOMS swallowing scale and the CDS in every disease group (p < 0.001 in all groups, including central and peripheral nervous system disorders), and these correlations were more apparent for spinal cord injury, peripheral nerve system disorders, and neurodegenerative diseases (correlation coefficients between the VDS and the ASHA NOMS swallowing scale: −0.603, −0.602, and −0.567, respectively). This study demonstrated that the VDS is applicable to dysphagic patients with numerous etiologies that cause dysphagia

  9. Removal of natural organic matter and arsenic from water by electrocoagulation/flotation continuous flow reactor.

    PubMed

    Mohora, Emilijan; Rončević, Srdjan; Dalmacija, Božo; Agbaba, Jasmina; Watson, Malcolm; Karlović, Elvira; Dalmacija, Milena

    2012-10-15

    The performance of the laboratory scale electrocoagulation/flotation (ECF) reactor in removing high concentrations of natural organic matter (NOM) and arsenic from groundwater was analyzed in this study. An ECF reactor with bipolar plate aluminum electrodes was operated in the horizontal continuous flow mode. Electrochemical and flow variables were optimized to examine ECF reactor contaminants removal efficiency. The optimum conditions for the process were identified as groundwater initial pH 5, flow rate=4.3 l/h, inter electrode distance=2.8 cm, current density=5.78 mA/cm(2), A/V ratio=0.248 cm(-1). The NOM removal according to UV(254) absorbance and dissolved organic matter (DOC) reached highest values of 77% and 71% respectively, relative to the raw groundwater. Arsenic removal was 85% (6.2 μg As/l) relative to raw groundwater, satisfying the drinking water standards. The specific reactor electrical energy consumption was 17.5 kWh/kg Al. The specific aluminum electrode consumption was 66 g Al/m(3). According to the obtained results, ECF in horizontal continuous flow mode is an energy efficient process to remove NOM and arsenic from groundwater. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. [Constitutional analysis of Mexican Official Norm NOM-174-SSA1-1998 for the handling of obesity].

    PubMed

    Cossío Díaz, José Ramón

    2013-01-01

    The First Chamber of the Mexican Supreme Court of Justice decided, by a majority of four votes, on a case where it had to be evaluated if some articles of a Mexican Official Norm (NOM) on obesity violated human rights. The majority in the chamber concluded that the restrictions went against Medics' prescribing or therapeutic rights, and therefore their freedom to work. Justice Cossío Díaz voted against the judgment and wrote a separate opinion where he holds, first of all, that the prescribing right works as a guideline for the medical profession and is not an essential element of the freedom to work. Secondly, he points out that the freedom to work is not an absolute right, for it has certain limits permitted by the Constitution. Consequently, experts' opinions should have been consulted for them to be able to determine if the NOM´s requirements were in accordance with the Constitution. Finally, he considers that the judgment should have introduced a balancing test between freedom to work and the patient's health rights, since this last-mentioned right was what the NOM intended to protect.

  11. Effect of softening precipitate composition and surface characteristics on natural organic matter adsorption.

    PubMed

    Russell, Caroline G; Lawler, Desmond F; Speitel, Gerald E; Katz, Lynn E

    2009-10-15

    Natural organic matter (NOM) removal during water softening is thought to occur through adsorption onto or coprecipitation with calcium and magnesium solids. However, details of precipitate composition and surface chemistry and subsequent interactions with NOM are relatively unknown. In this study, zeta potentiometry analyses of precipitates formed from inorganic solutions under varying conditions (e.g., Ca-only, Mg-only, Ca + Mg, increasing lime or NaOH dose) indicated that both CaCO3 and Mg(OH)2 were positively charged at higher lime (Ca(OH)2) and NaOH doses (associated with pH values above 11.5), potentially yielding a greater affinity for adsorbing negatively charged organic molecules. Environmental scanning electron microscopy (ESEM) images of CaCO3 solids illustrated the rhombohedral shape characteristic of calcite. In the presence of increasing concentrations of magnesium, the CaCO3 rhombs shifted to more elongated crystals. The CaCO3 solids also exhibited increasingly positive surface charge from Mg incorporation into the crystal lattice, potentially creating more favorable conditions for adsorption of organic matter. NOM adsorption experiments using humic substances extracted from Lake Austin and Missouri River water elucidated the role of surface charge and surface area on adsorption.

  12. Uptake mechanism for iodine species to black carbon.

    PubMed

    Choung, Sungwook; Um, Wooyong; Kim, Minkyung; Kim, Min-Gyu

    2013-09-17

    Natural organic matter (NOM) plays an important role in determining the fate and transport of iodine species such as iodide (I(-)) and iodate (IO3(-)) in groundwater system. Although NOM exists as diverse forms in environments, prior iodine studies have mainly focused on uptake processes of iodide and iodate to humic materials. This study was conducted to determine the iodide and iodate uptake potential for a particulate NOM (i.e., black carbon [BC]). A laboratory-produced BC and commercial humic acid were used for batch experiments to compare their iodine uptake properties. The BC exhibited >100 times greater uptake capability for iodide than iodate at low pH of ~3, while iodide uptake was negligible for the humic acid. The uptake properties of both solids strongly depend on the initial iodine aqueous concentrations. After uptake reaction of iodide to the BC, X-ray absorption fine structure spectroscopy results indicated that the iodide was converted to electrophilic species, and iodine was covalently bound to carbon atom in polycyclic aromatic hydrocarbons present in the BC. The computed distribution coefficients (i.e., Kd values) suggest that the BC materials retard significantly the transport of iodide at low pH in environmental systems containing even a small amount of BC.

  13. Assessing Transformations of Algal Organic Matter in the Long-Term: Impacts of Humification-Like Processes

    PubMed Central

    Leloup, Maud; Pallier, Virginie; Nicolau, Rudy; Feuillade-Cathalifaud, Geneviève

    2015-01-01

    Algae and cyanobacteria are important contributors to the natural organic matter (NOM) of eutrophic water resources. The objective of this work is to increase knowledge on the modifications of algal organic matter (AOM) properties in the long term to anticipate blooms footprint in such aquatic environments. The production of AOM from an alga (Euglena gracilis) and a cyanobacteria (Microcystis aeruginosa) was followed up and characterized during the stationary phase and after one year and four months of cultivation, in batch experiments. Specific UV absorbance (SUVA) index, organic matter fractionation according to hydrophobicity and apparent molecular weight were combined to assess the evolution of AOM. A comparison between humic substances (HS) mainly derived from allochthonous origins and AOM characteristics was performed to hypothesize impacts of AOM transformation processes on the water quality of eutrophic water resources. Each AOM fraction underwent a specific evolution pattern, depending on its composition. Impacts of humification-like processes were predominant over release of biopolymers due to cells decay and led to an increase in the hydrophobic compounds part and molecular weights over time. However, the hydrophilic fraction remained the major fraction whatever the growth stage. Organic compounds generated by maturation of these precursors corresponded to large and aliphatic structures. PMID:26251898

  14. Natural colloids are the dominant factor in the sedimentation of nanoparticles.

    PubMed

    Quik, Joris T K; Stuart, Martien Cohen; Wouterse, Marja; Peijnenburg, Willie; Hendriks, A Jan; van de Meent, Dik

    2012-05-01

    Estimating the environmental exposure to manufactured nanomaterials is part of risk assessment. Because nanoparticles aggregate with each other (homoaggregation) and with other particles (heteroaggregation), the main route of the removal of most nanoparticles from water is aggregation, followed by sedimentation. The authors used water samples from two rivers in Europe, the Rhine and the Meuse. To distinguish between small (mainly natural organic matter [NOM]) particles and the remainder of the natural colloids present, both filtered and unfiltered river water was used to prepare the particle suspensions. The results show that the removal of nanoparticles from natural river water follows first-order kinetics toward a residual concentration. This was measured in river water with less than 1 mg L(-1) CeO(2) nanoparticles. The authors inferred that the heteroaggregation with or deposition onto the solid fraction of natural colloids was the main mechanism causing sedimentation in relation to homoaggregation. In contrast, the NOM fraction in filtered river water stabilized the residual nanoparticles against further sedimentation for up to 12 d. In 10 mg L(-1) and 100 mg L(-1) CeO(2) nanoparticle suspensions, homoaggregation is likely the main mechanism leading to sedimentation. The proposed model could form the basis for improved exposure assessment for nanomaterials. Copyright © 2012 SETAC.

  15. Comparative evaluation of humic substances in oral drug delivery.

    PubMed

    Mirza, Mohd Aamir; Ahmad, Niyaz; Agarwal, Suraj Prakash; Mahmood, Danish; Khalid Anwer, M; Iqbal, Z

    2011-05-01

    Major and biologically most explored components of natural organic matter (NOM) are humic acid (HA) and fulvic acid (FA). We have explored rock shilajit as a source of NOM. On the other hand carbamazepine (CBZ) is a well known anticonvulsant drug and has a limited accessibility to brain. Bioavailability and pharmacokinetic profiles of CBZ have been improved by complexation and different techniques also. Present study has assessed the comparative abilities of FA and HA as complexing agent for CBZ in order to enhance pharmacokinetic profile of CBZ and accessibility to the brain. These two complexing agents have been compared on various indices such as their abilities to cause complexation and enhance solubility, permeability and dissolution. The present study also compared pharmacodynamic and biochemical profiles after oral administration of complexes. With the help of various pharmaceutical techniques such as freeze drying, physical mixture, kneading and solvent evaporation, two molar ratios (1:1 and 1:2) were selected for complexation and evaluated for conformational analysis (molecular modeling). Complex formed was further characterized by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), mass spectroscopy and X-ray diffraction (XRD). Preclinical study on rodents with CBZ-HA and CBZ-FA has yielded appreciable results in terms of their anticonvulsant and antioxidants activities. However, CBZ-HA (1:2) demonstrated better result than any other complex.

  16. Effects of Cervical Kyphosis on Recovery From Dysphagia After Stroke

    PubMed Central

    2016-01-01

    Objective To determine the effects of cervical kyphosis on the recovery of swallowing function in subacute stroke patients. Methods Baseline and 1-month follow-up videofluoroscopic swallowing studies (VFSSs) of 51 stroke patients were retrospectively analyzed. The patients were divided into the cervical kyphosis (Cobb's angle <20°, n=27) and control (n=24) groups. The penetration-aspiration scale (PAS), American Speech-Language-Hearing Association National Outcomes Measurement System swallowing scale (ASHA NOMS), and videofluoroscopic dysphagia scale (VDS) were used to determine the severity of dysphagia. Finally, the prevalence of abnormal VFSS findings was compared between the two groups. Results There were no significant differences in baseline PAS, ASHA NOMS, and VDS scores between the two groups. However, the follow-up VDS scores in the cervical kyphosis group were significantly higher than those in the control group (p=0.04), and a follow-up study showed a tendency towards worse ASHA NOMS scores (p=0.07) in the cervical kyphosis group. In addition, the cervical kyphosis group had a higher occurrence of pharyngeal wall coating in both baseline and follow-up studies, as well as increased aspiration in follow-up studies (p<0.05). Conclusion This study showed that stroke patients who had cervical kyphosis at the time of stroke might have impaired recovery from dysphagia after stroke. PMID:27847711

  17. Photoinduced degradation of carbaryl in a wetland surface water.

    PubMed

    Miller, Penney L; Chin, Yu-Ping

    2002-11-06

    The photoinduced degradation of carbaryl (1-naphthyl-N-methyl carbamate) was studied in a wetland's surface water to examine the photochemical processes influencing its transformation. For this particular wetland water, at high pH, it was difficult to delineate the photolytic contribution to the overall degradation of carbaryl. At lower pH values, the extent of the degradation attributable to indirect pathways, that is, in the presence of naturally occurring photosensitizers, increased significantly. Moreover, the photoenhanced degradation at the lower pH values was found to be seasonally and spatially dependent. Analysis of water samples revealed two primary constituents responsible for the observed indirect photolytic processes: nitrate and dissolved natural organic matter (NOM). Nitrate in the wetland appears at high concentrations (> or =1 mM) seasonally after the application of fertilizers in the watershed and promotes contaminant destruction through the photochemical production of the hydroxyl radical (HO*). The extent of the observed indirect photolysis pathway appears to be dependent upon the concentration of nitrates and the presence of HO* scavengers such as dissolved NOM and carbonate alkalinity. Paradoxically, during low-nitrate events (<50 microM), NOM becomes the principal photosensitizer through either the production of HO*, direct energy transfer from the excited triplet state, and/or production of an unidentified transient species.

  18. Peroxidase-mediated removal of a polychlorinated biphenyl using natural organic matter as the sole cosubstrate.

    PubMed

    Colosi, Lisa M; Burlingame, Daniel J; Huang, Qingguo; Weber, Walter J

    2007-02-01

    Natural organic matter (NOM) of hydroxylated aromatic character can undergo catalyst-mediated self-coupling reactions to form larger molecular aggregates. Indeed, such reactions are central to natural humification processes. Nonhydroxylated persistent aromatic contaminants such as polychlorinated biphenyls (PCBs) are, conversely, inert with respect to such reactions. It is here demonstrated however that significant coincidental coupling and removal of a representative aqueous-phase PCB occurs during horseradish peroxidase (HRP)-catalyzed oxidative coupling reactions of a representative aquatic NOM. Experiments with Suwannee River fulvic acid as a reactive cosubstrate indicate that 2,2'-dichlorobiphenyl (PCB-4) is covalently incorporated into aggregating NOM, likely through fortuitous cross-coupling reactions. To develop a better understanding of potential mechanisms by which the observed phenomenon occurs, two hydroxylated monomeric cosubstrates of known molecular structure, phenol and 4-methoxyphenol, were investigated as alternative cosubstrates. PCB-4 removal appears from these experiments to relate to certain molecular characteristics of the native cosubstrate molecule (reactivity with HRP, favorability for radical attack, and hydrophobicity) and its associated phenoxy radical (stability). The findings reveal potential pathways by which PCBs, and perhaps other polyaromatic contaminants, may be naturally transformed and detoxified in nature. The results further provide a foundation for development of enhanced-humification strategies for remediation of PCB-contaminated environmental systems.

  19. Quantifying the adhesion and interaction forces between Pseudomonas aeruginosa and natural organic matter.

    PubMed

    Abu-Lail, Laila I; Liu, Yatao; Atabek, Arzu; Camesano, Terri A

    2007-12-01

    Atomic force microscopy (AFM) was used to characterize interactions between natural organic matter (NOM), and glass or bacteria. Poly(methacrylic acid) (PMA), soil humic Acid (SHA), and Suwannee River humic Acid (SRHA), were adsorbed to silica AFM probes. Adhesion forces (Fadh) for the interaction of organic-probes and glass slides correlated with organic molecular weight (MW), but not with radius of the organic aggregate (R), charge density (Q), or zeta potential (zeta). Two Pseudomonas aeruginosa strains with different lipopolysaccharides (LPS) were chosen: PAO1 (A+B+), whose LPS have common antigen (A-band) + O-antigen (B-band); and mutant AK1401 (A+B-). Fadh between bacteria and organics correlated with organic MW, R, and Q, but not zeta. PAO1 had lower Fadh with silica than NOM, which was attributed to negative charges from the B-band polymers causing electrostatic repulsion. AK1401 adhered stronger to silica than to the organics, perhaps because the absence of the B-band exposed underlying positively charged proteins. DLVO calculations could not explain the differences in the two bacteria or predict qualitative or quantitative trends in interaction forces in these systems. Molecular-level information from AFM studies can bring us closer to understanding the complex nature of bacterial-NOM interactions.

  20. Dispersion of C(60) in natural water and removal by conventional drinking water treatment processes.

    PubMed

    Hyung, Hoon; Kim, Jae-Hong

    2009-05-01

    The first objective of this study is to examine the fate of C(60) under two disposal scenarios through which pristine C(60) is introduced to water containing natural organic matter (NOM). A method based on liquid-liquid extraction and HPLC to quantify nC(60) in water containing NOM was also developed. When pristine C(60) was added to water either in the form of dry C(60) or in organic solvent, it formed water stable aggregates with characteristics similar to nC(60) prepared by other methods reported in the literature. The second objective of this study is to examine the fate of the nC(60) in water treatment processes, which are the first line of defense against ingestion from potable water -- a potential route for direct human consumption. Results obtained from jar tests suggested that these colloidal aggregates of C(60) were efficiently removed by a series of alum coagulation, flocculation, sedimentation and filtration processes, while the efficiency of removal dependent on various parameters such as pH, alkalinity, NOM contents and coagulant dosage. Colloidal aggregates of functionalized C(60) could be well removed by the conventional water treatment processes but with lesser efficiency compared to those made of pristine C(60).

  1. Efficacy of hybrid adsorption/membrane pretreatment for low pressure membrane.

    PubMed

    Malczewska, B; Benjamin, M M

    2016-08-01

    Fouling by natural organic matter (NOM) is a major obstacle when water from natural sources is treated using low-pressure membranes. Prior research by our group has demonstrated that passing natural water through a thin, pre-deposited layer of heated aluminum oxide particles (HAOPs) can remove substantial amounts of NOM from the feed and thereby reduce the fouling rate of downstream membranes. The work reported here explored the technical efficacy of such a pretreatment process under more challenging (and therefore realistic) conditions than reported earlier. Several analytical techniques were applied to the feed and permeate in an attempt to identify the key fouling components. The results demonstrate that a HAOPs layer can be pre-deposited on a stainless steel mesh and then be readily washed off at the end of a filtration cycle with very little irreversible fouling due to residual NOM or HAOPs left on the mesh. In addition, the pretreatment step removes enough foulant to allow a downstream UF membrane to operate at significantly higher fluxes than when conventional pretreatment is applied. HAOPs pretreatment also reduced the formation of chlorinated and brominated trihalomethanes (THM4) by more than 67% and of haloacetic acids (HAA9) by 64%-88% in simulated distribution system (SDS) tests. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Significant role of UV and carbonate radical on the degradation of oxytetracycline in UV-AOPs: Kinetics and mechanism.

    PubMed

    Liu, Yiqing; He, Xuexiang; Duan, Xiaodi; Fu, Yongsheng; Fatta-Kassinos, Despo; Dionysiou, Dionysios D

    2016-05-15

    Carbonate radical (CO3(•-)), a selective oxidant, reacts readily with electron-rich compounds through electron transfer and/or hydrogen abstraction. In this study, the role of CO3(•-) in degrading oxytetracycline (OTC) by UV only, UV/H2O2 and UV/persulfate (UV/PS) advanced oxidation processes (AOPs) in the presence of HCO3(-) or CO3(2-) was investigated. For UV only process, the presence of photosensitizers, i.e., nitrate (NO3(-)) and natural organic matter (NOM), had different impacts on OTC degradation, i.e., an enhancing effect by NO3(-) due to the generation of HO(•) and a slight inhibiting effect by NOM possibly due to a light scattering effect. Differently for UV/H2O2 and UV/PS processes, the presence of NO3(-) hardly influenced the destruction of OTC. Generation of CO3(•-) presented a positive role on OTC degradation by UV/NO3(-)/HCO3(-). Such influence was also observed in the two studied AOPs in the presence of both bicarbonate and other natural water constituents. When various natural water samples from different sources were used as reaction matrices, UV only and UV/H2O2 showed an inhibiting effect while UV/PS demonstrated a comparable or even promoting effect in OTC decomposition. After elucidating the potential contribution of UV direct photolysis via excited state OTC* at an elevated reaction pH condition, putative OTC transformation byproducts via CO3(•-) reaction were identified by ultra-high definition accurate-mass quadrupole time-of-flight tandem mass spectrometry (QTOF/MS). Five different reaction pathways were subsequently proposed, including hydroxylation (+16 Da), quinonization (+14 Da), demethylation (-14 Da), decarbonylation (-28 Da) and dehydration (-18 Da). The significant role of UV at high pH and CO3(•-) on OTC removal from contaminated water was therefore demonstrated both kinetically and mechanistically. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Reduction of N-nitrosodimethylamine formation from ranitidine by ozonation preceding chloramination: influencing factors and mechanisms.

    PubMed

    Zou, Rusen; Liao, Xiaobin; Zhao, Lei; Yuan, Baoling

    2018-05-01

    Formation of toxic N-nitrosodimethylamine (NDMA) by chloramination of ranitidine, a drug to block histamine, was still an ongoing issue and posed a risk to human health. In this study, the effect of ozonation prior to chloramination on NDMA formation and the transformation pathway were determined. Influencing factors, including ozone dosages, pH, hydroxyl radical scavenger, bromide, and NOM, were studied. The results demonstrated that small ozone dosage (0.5 mg/L) could effectively control NDMA formation from subsequent chloramination (from 40 to 0.8%). The NDMA molar conversion was not only influenced by pH but also by ozone dosages at various pre-ozonation pH (reached the highest value of 5% at pH 8 with 0.5 mg/L O 3 but decreased with the increasing pH with 1 mg/L O 3 ). The NDMA molar yield by chloramination of ranitidine without pre-ozonation was reduced by the presence of bromide ion due to the decomposition of disinfectant. However, due to the formation of brominated intermediate substances (i.e., dimethylamine (DMA), dimethyl-aminomethyl furfuryl alcohol (DFUR)) with higher NDMA molar yield than their parent substances, more NDMA was formed than that without bromide ion upon ozonation. Natural organic matter (NOM) and hydroxyl radical scavenger (tert-butyl alcohol, tBA) enhanced NDMA generation because of the competition of ozone and more ranitidine left. The NDMA reduction mechanism by pre-ozonation during chloramination of ranitidine may be due to the production of oxidation products with less NDMA yield (such as DMA) than parent compound. Based on the result of Q-TOF and GC-MS/MS analysis, three possible transformation pathways were proposed. Different influences of oxidation conditions and water quality parameters suggest that strategies to reduce NDMA formation should vary with drinking water sources and choose optimal ozone dosage.

  4. Phosphate Changes Effect of Humic Acids on TiO2 Photocatalysis: From Inhibition to Mitigation of Electron-Hole Recombination.

    PubMed

    Long, Mingce; Brame, Jonathon; Qin, Fan; Bao, Jiming; Li, Qilin; Alvarez, Pedro J J

    2017-01-03

    A major challenge for photocatalytic water purification with TiO 2 is the strong inhibitory effect of natural organic matter (NOM), which can scavenge photogenerated holes and radicals and occlude ROS generation sites upon adsorption. This study shows that phosphate counteracts the inhibitory effect of humic acids (HA) by decreasing HA adsorption and mitigating electron-hole recombination. As a measure of the inhibitory effect of HA, the ratios of first-order reaction rate constants between photocatalytic phenol degradation in the absence versus presence of HA were calculated. This ratio was very high, up to 5.72 at 30 mg/L HA and pH 4.8 without phosphate, but was decreased to 0.76 (5 mg/L HA, pH 8.4) with 2 mM phosphate. The latter ratio indicates a surprising favorable effect of HA on TiO 2 photocatalysis. FTIR analyses suggest that this favorable effect is likely due to a change in the conformation of adsorbed HA, from a multiligand exchange arrangement to a complexation predominantly between COOH groups in HA and the TiO 2 surface in the presence of phosphate. This configuration can reduce hole consumption and facilitate electron transfer to O 2 by the adsorbed HA (indicated by linear sweep voltammetry), which mitigates electron-hole recombination and enhances contaminant degradation. A decrease in HA surface adsorption and hole scavenging (the predominant inhibitory mechanisms of HA) by phosphate (2 mM) was indicated by a 50% decrease in the photocatalytic degradation rate of HA and 80% decrease in the decay rate coefficient of interfacial-related photooxidation in photocurrent transients. These results, which were validated with other compounds (FFA and cimetidine), indicate that anchoring phosphate - or anions that exert similar effects on the TiO 2 surface - might be a feasible strategy to counteract the inhibitory effect of NOM during photocatalytic water treatment.

  5. Iron dynamics: Transformation of Fe(II)/Fe(III) during injection of natural organic matter in a sandy aquifer

    NASA Astrophysics Data System (ADS)

    Liang, Liyuan; McCarthy, John F.; Jolley, Louwanda W.; McNabb, J. Andrew; Mehlhorn, Tonia L.

    1993-05-01

    The dynamics of dissolved, colloidal, and deposited iron phases were examined during a forced-gradient field experiment. The experiment involved the injection of oxygenated water containing high levels of natural organic matter (NOM) into a sandy aquifer. The initial redox potential of the aquifer favored Fe(II) in the groundwater. The changes in the concentrations of Fe(II) and Fe(III) were observed in sampling wells. Under the increased dissolved oxygen (DO) conditions, Fe(II) oxygenation was rapid, resulting in the formation of Fe(III) (hydr) oxide colloids. The oxidation follows the rate law as given in STUMM and MORGAN (1981): d[ Fe(II)] /dt = - k obs[ O2( aq)] /[ H+] 2[ Fe(II)] , with a rate constant, kobs to be 1.9 × 10 -12 M min -1. For an averaged pH and DO of the groundwater, the half time of Fe(II) oxidation is 49 h. The NOM was postulated to stabilize the newly formed colloids, thereby increasing the turbidity in the groundwater. The additional increase in the colloidal fraction of Fe(III) oxide suggested that transport of the colloidal particles was occurring. At those locations where DO remained constantly low, the turbidity increase was moderate, and up to 80% of Fe(III) was in the dissolved phase (< 3000 mol. wt). The latter observation was attributed to the presence of NOM, forming Fe(III)-organic complexes. In addition, NOM may play a role in the oxygen consumption through a Fe(II)/Fe(III) catalyzed oxidation of organic matter as outlined by STUMM and MORGAN (1981, p. 469). In this mechanism, Fe(II) oxidation is slow, maintaining a near constant Fe(II) concentration, in agreement with field data. The overall increase in Fe(III) under low DO conditions was postulated to be a combination of (1) slow oxidation, (2) ligand-promoted and catalytic dissolution of deposited iron phases, and (3) the transport of newly formed iron oxide colloids along flow paths.

  6. A new performance measurement system for maternal and child health in the United States.

    PubMed

    Kogan, Michael D; Dykton, Christopher; Hirai, Ashley H; Strickland, Bonnie B; Bethell, Christina D; Naqvi, Iran; Cano, Carlos E; Downing-Futrell, Sheri L; Lu, Michael C

    2015-05-01

    The Title V Maternal and Child Health (MCH) Block Grant is the linchpin for US MCH services. The first national performance measures (NPMs) for MCH were instituted in 1997. Changing trends in MCH risk factors, outcomes, health services, data sources, and advances in scientific knowledge, in conjunction with budgetary constraints led the Maternal and Child Health Bureau (MCHB) to design a new performance measurement system. A workgroup was formed to develop a new system. The following guiding principles were used: (1) Afford States more flexibility and reduce the overall reporting burden; (2) Improve accountability to better document Title V's impact; (3) Develop NPMs that encompass measures in: maternal and women's health, perinatal health, child health, children with special health care needs, adolescent health, and cross-cutting areas. A three-tiered performance measurement system was proposed with national outcome measures (NOMs), NPMs and evidence-based/informed strategy measures (ESMs). NOMs are the ultimate goals that MCHB and States are attempting to achieve. NPMs are measures, generally associated with processes or programs, shown to affect NOMs. ESMs are evidence-based or informed measures that each State Title V program develops to affect the NPMs. There are 15 NPMs from which States select eight, with at least one from each population area. MCHB will provide the data for the NOMs and NPMs, when possible. The new performance measurement system increases the flexibility and reduces the reporting burden for States by allowing them to choose 8 NPMs to target, and increases accountability by having States develop actionable ESMs. The new national performance measure framework for maternal and child health will allow States more flexibility to address their areas of greatest need, reduce their data reporting burden by having the Maternal and Child Health Bureau provide data for the National Outcome and Performance Measures, yet afford States the opportunity to develop measurable strategies to address their selected performance measures.

  7. A nomenclator of Pacific oceanic island Phyllanthus (Phyllanthaceae), including Glochidion

    PubMed Central

    Wagner, Warren L.; Lorence, David H.

    2011-01-01

    Abstract Recent molecular phylogenetic studies and reevaluation of morphological characters have led to the inclusion of Glochidion within a broader delimitation of Phyllanthus. It is necessary for preparation of the Vascular Flora of the Marquesas Islands to make new combinations for the Marquesan species. We also provide the relevant combinations and listing of all of the currently accepted species of Phyllanthus on Pacific oceanic islands for a total of 69 native species in oceanic Pacific islands. Glochidion tooviianum J. Florenceis here placed into synonymy of Phyllanthus marchionicus (F. Br.) W. L. Wagner & Lorence based on new assessment of recently collected specimens from Nuku Hiva. Glochidion excorticans Fosberg var. calvum Fosberg is placed into synonomy of Phyllanthus ponapense (Hosokawa) W. L. Wagner & Lorenceand Glochidion puberulum Hosokawa and Glochidion excorticans Fosberg are placed in synonymy of Phyllanthus senyavinianus (Glassman)W. L. Wagner & Lorence based on new study of all Micronesian specimens available to us. No infraspecific taxa are recognized within Phyllanthus pacificus of the Marquesas Islands. Species already with valid names in Phyllanthus are also listed for completeness and convenience. Brief distributional comments are given for each species. We propose new names for species for which a new combination is not possible: Phyllanthus florencei W. L. Wagner & Lorence, nom. nov., Phyllanthus mariannensis W.L. Wagner & Lorence, nom. nov., Phyllanthus otobedii W. L. Wagner & Lorence, Phyllanthus raiateaensis W. L. Wagner & Lorence, Phyllanthus st-johnii W. L. Wagner & Lorence, nom. nov., and Phyllanthus vitilevuensis W.L. Wagner & Lorence, nom. nov. We provide information for four additional naturalized species within the region (Phyllanthus amarus, Phyllanthus debilis, Phyllanthus tenellus, and Phyllanthus urinaria). The name Glochidion ramiflorum widely applied to Pacific island populations is here considered to be a species further west in the Pacific with all of the oceanic species here referred to several regional species. PMID:22171182

  8. Prevalence, types, and geographical distribution of Listeria monocytogenes from a survey of retail Queso Fresco and associated cheese processing plants and dairy farms in Sonora, Mexico.

    PubMed

    Moreno-Enriquez, R I; Garcia-Galaz, A; Acedo-Felix, E; Gonzalez-Rios, I H; Call, J E; Luchansky, J B; Diaz-Cinco, M E

    2007-11-01

    In the first part of this study, samples were collected from farms, cheese processing plants (CPPs), and retail markets located in various geographical areas of Sonora, Mexico, over a 12-month period during the summer of 2004 and winter of 2005. Four (all Queso Fresco [QF] from retail markets) of 349 total samples tested positive for Listeria monocytogenes (Lm). Of these four positive samples, three were collected in the northern region and one in the southern region of Sonora. Additionally, two were collected during the winter months, and two were collected during the summer months. For the second part of the study, a total of 39 samples from a farm, a CPP, and retail markets were collected and processed according to a combination of the Norma Oficial Mexicana NOM-143-SSA1-1995.10 method (NOM) and the U.S. Food and Drug Administration (FDA) Bacteriological Analytical Manual method, and 27 samples from these same locations were collected and processed according to the U.S. Department of Agriculture Food Safety and Inspection Service method (USDA-FSIS). The NOM-FDA method recovered the pathogen from 6 (15%) of 39 samples (one cheese and five product contact surfaces), while the USDA-FSIS method recovered the pathogen from 5 (18.5%) of 27 samples (all product contact surfaces). In addition, the 40 isolates recovered from the 15 total samples that tested positive for Lm grouped into five distinct pulsotypes that were ca. 60% related, as determined by pulsed-field gel electrophoresis analysis. The results of this study confirmed a 3.4% prevalence of Lm in QF collected from retail markets located in Sonora and no appreciable difference in the effectiveness of either the NOM-FDA or USDA-FSIS method to recover the pathogen from cheese or environmental samples.

  9. Trauma center variation in splenic artery embolization and spleen salvage: a multicenter analysis.

    PubMed

    Banerjee, Aman; Duane, Therese M; Wilson, Sean P; Haney, Starre; O'Neill, Patrick J; Evans, Heather L; Como, John J; Claridge, Jeffrey A

    2013-07-01

    This study aimed to evaluate if variation in management of blunt splenic injury (BSI) among Level I trauma centers is associated with different outcomes related to the use of splenic artery embolization (SAE). All adult patients admitted for BSI from 2008 to 2010 at 4 Level I trauma centers were reviewed. Use of SAE was determined, and outcomes of spleen salvage and nonoperative management (NOM) failure were evaluated. A priori, a 10% SAE rate was used to group centers into high- or low-use groups. There were 1,275 BSI patients. There were intercenter differences in age, injury severity, and grade of spleen injury (Spleen Injury Scale [SIS]). Mortality was similar by center; however, BSI treatment varied significantly by center. Overall, SAE use was highest at center A compared with B, C, and D (19%, 11%, 1%, and 4%, respectively; p < 0.01). High SAE use centers had significantly higher spleen salvage rates and fewer NOM failures. Differences in the use of SAE (25% vs. 2%, p < 0.01) and salvage rate (67% vs. 56%, p = 0.03) were most dramatic between high- and low-use SAE centers for Grade 3 and 4 injured spleens. In patients who received initial NOM, multivariate logistic regression analysis showed that SAE was an independent predictor of spleen salvage (odds ratio, 5; 95% confidence interval, 1.8-13.5; p < 0.01) as were lower age, lower SIS, and Injury Severity Score (ISS). Patients treated at high SAE use centers were more likely to leave the hospital with their spleen in situ (odds ratio, 3; 95% confidence interval, 1.7-6.3; p < 0.01). Significant practice variation exists in the use of SAE in treating BSI at Level I trauma centers. Centers with higher rates of SAE use have higher spleen salvage and less NOM failure. SAE was shown to be an independent predictor of spleen salvage. Therapeutic study, level IV.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santschi, Peter H.; Xu, Chen; Schwehr, Kathleen A.

    Iodine (I) occurs in multiple oxidation states in aquatic systems in the form of organic and inorganic species (iodide and iodate). This fact leads to complex biogeochemical cycling of Iodine and its long-lived isotope, 129I, a major by-product of nuclear fission. Results from our newly developed, sensitive and rapid method for speciated isotopic ratios ( 129I/ 127I) via GC-MS, which compare favorably with Accelerator Mass Spectroscopy, demonstrate that the mobility of 129I species greatly depends on the type of I species and its concentration, pH, and sediment redox state. At ambient concentrations (~10 7 M), I- and IO -3 aremore » significantly retarded by sorption to mineral surfaces and covalent binding to aromatic moieties in natural organic matter (NOM), even when NOM is present at low concentrations such as occur at Hanford. At concentrations traditionally examined in sorption studies (≥ 10 -4 M), I- travels along with the water. Iodate removal can also occur through incorporation into CaCO 3 crystal lattice, e.g., at the Hanford Site. Removal of iodine from the groundwater through interaction with NOM is complicated by the release of mobile organo-I species, as was observed at SRS and Hanford. A small fraction of NOM that is bound to iodine can behave as a mobile organo-I source, a process that we were able to numerically simulate. Field and laboratory studies evaluating the cause for steady increases in 129I concentrations (up to 1000 pCi L-1) emanating from radiological basins at SRS indicate that an increase of 0.7 pH units in groundwater over 17 years can account for the observed increased groundwater 129I concentrations. Bacteria from a 129I-contaminated aerobic aquifer at the F-area of SRS can accumulate I- at environmentally relevant concentrations (10 -7 M), and enzymatically oxidize I-, which together with microbially produced MnO 2 and superoxide or organic acids can significantly contribute to organo-iodine formation.« less

  11. Ultrafiltration and nanofiltration membrane fouling by natural organic matter: Mechanisms and mitigation by pre-ozonation and pH.

    PubMed

    Yu, Wenzheng; Liu, Teng; Crawshaw, John; Liu, Ting; Graham, Nigel

    2018-08-01

    The fouling of ultrafiltration (UF) and nanofiltration (NF) membranes during the treatment of surface waters continues to be of concern and the particular role of natural organic matter (NOM) requires further investigation. In this study the effect of pH and surface charge on membrane fouling during the treatment of samples of a representative surface water (Hyde Park recreational lake) were evaluated, together with the impact of pre-ozonation. While biopolymers in the surface water could be removed by the UF membrane, smaller molecular weight (MW) fractions of NOM were poorly removed, confirming the importance of membrane pore size. For NF membranes the removal of smaller MW fractions (800 Da-10 kDa) was less than expected from their pore size; however, nearly all of the hydrophobic, humic-type substances could be removed by the hydrophilic NF membranes for all MW distributions (greater than 90%). The results indicated the importance of the charge and hydrophilic nature of the NOM. Thus, the hydrophilic NF membrane could remove the hydrophobic organic matter, but not the hydrophilic substances. Increasing charge effects (more negative zeta potentials) with increasing solution pH were found to enhance organics removal and reduce fouling (flux decline), most likely through greater membrane surface repulsion. Pre-ozonation of the surface water increased the hydrophilic fraction and anionic charge of NOM and altered their size distributions. This resulted in a decreased fouling (less flux decline) for the UF and smaller pore NF, but a slight increase in fouling for the larger pore NF. The differences in the NF behavior are believed to relate to the relative sizes of ozonated organic fractions and the NF pores; a similar size of ozonated organic fractions and the NF pores causes significant membrane fouling. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Distribution of mercury species and mercury isotope ratios in soils and river suspended matter of a mercury mining area.

    PubMed

    Baptista-Salazar, Carluvy; Hintelmann, Holger; Biester, Harald

    2018-04-25

    Mercury (Hg) released by mining activities can be dispersed in the environment, where it is subject to species transformations. Hg isotope ratios have been used to track sources in Hg contaminated areas, although it is unclear to what extent variations in δ-values are attributed to distinct Hg species. Hg was mined as Hg sulphide (cinnabar) in Idrija, Slovenia for centuries. Sediments are loaded with mining-residues (cinnabar and calcine), whereas contaminated soils mainly contain Hg bound to natural organic matter (NOM-Hg) related to atmospheric Hg deposition. Hg released from soils and sediments is transported as suspended matter (SM) in the Idrijca river to the Gulf of Trieste (GT), Italy. We determine Hg isotope ratios in river SM, sediments and soils from the Idrijca-catchment to decipher the Hg isotope ratio variability related to Hg species distribution in different grain-size fractions. δ202Hg values of SM collected from tributaries corresponded to those found in soils ranging from -2.58 to 0.19‰ and from -2.27 to -0.88‰, respectively. Speciation measurements reveal that fine fractions (0.45-20 μm) are dominated by NOM-Hg, while larger fractions contain more cinnabar. More negative δ202Hg values were related to higher proportions of NOM-Hg, which are predominant in soils and SM. Rain events increase SM-loads in the river, mainly due to resuspension of coarse grain-size fractions of bottom sediments bearing larger proportions of cinnabar, which leads to more positive δ202Hg values. The large magnitude of variation in δ202Hg and the smaller magnitude of variation in Δ199Hg (-0.37 to 0.09‰) are likely related to fractionation during ore roasting. Soil samples with high NOM-Hg content show more negative δ202Hg values and larger variation of Δ199Hg. More negative δ202Hg values in GT sediments were rather linked to distant sedimentation of soil derived NOM-Hg than to sedimentation of autochthonous marine material. Heterogeneity in the Idrija ore and ore processing likely produce large variations in the Hg isotopic composition of cinnabar and released metallic Hg, which complicate the differentiation of Hg sources. Combining Hg isotope measurements with solid phase Hg speciation reveals that Hg isotope ratios rather indicate different Hg species and are not necessarily symptomatic for Hg pollution sources.

  13. The ant genus Carebara Westwood (Hymenoptera, Formicidae): synonymisation of Pheidologeton Mayr under Carebara, establishment and revision of the C. polita species group

    PubMed Central

    Fischer, Georg; Azorsa, Frank; Fisher, Brian L.

    2014-01-01

    Abstract In this paper the genus Pheidologeton Mayr, 1862 is synonymized under Carebara Westwood, 1840 and the Carebara polita group is established and revised. This species group currently includes six species from the Afrotropical region (C. madibai, C. nicotianae, C. perpusilla, C. polita, C. silvestrii, and C. villiersi) and two species from the Neotropical region (C. brevipilosa and C. urichi). The polita group clearly links Carebara and Pheidologeton, and, due to a lack of autapomorphic characters for the latter, a separation of the two genera is no longer justified. As a result Carebara is presented as a monophyletic and better defined genus that can be separated from other genera with more confidence. We present an overview of the distribution and biology of Carebara as well as images from the various genera currently in synonymy under Carebara, and discuss the characters they share. The polymorphism present in Afrotropical and Malagasy Carebara is discussed and one new species from Africa, C. madibai sp. n., is described. The subspecies Carebara perpusilla arnoldiana syn. n., Carebara perpusilla concedens syn. n., and Carebara perpusilla spinosa syn. n. are new synonyms of Carebara perpusilla. Oligomyrmex politus nicotianae is re-elevated to species level and transferred into Carebara, C. nicotianae comb. n., stat. rev.; C. punctata is a new synonym of C. silvestrii comb. n. and C. pygmaea albipes comb. n., syn n., C. pygmaea bugnioni comb. n., syn. n., and C. simularensis syn. n. are new synonyms of C. pygmaea comb. n.. The following names are transferred from Pheidologeton to Carebara as new combinations (with the species epithets adjusted to female endings where necessary): aberrans, affinis, affinis javana, affinis minor, affinis spinosior, affinis sumatrensis, ceylonensis, dentiviris, diversa, diversa draco, diversa ficta, diversa laotina, diversa macgregori, diversa philippina, diversa standfussi, diversa taprobanae, diversa tenuirugosa, diversa williamsi, hammoniae, hostilis, kunensis, latinoda, maccus, mayri, melanocephala, melasolena, nana, nanningensis, obscura, petulens, pullata, pungens, pygmaea, rubra, rugiceps, rugosa, schossnicensis, silena, silvestrii, solitaria, transversalis, trechideros, varia, vespilla, volsellata, yanoi, and zengchengensis. Three new combinations are creating secondary junior homonyms and are here replaced with new names: C. mayri (Santschi, 1928) = C. gustavmayri nom. n., C. rugosa (Karavaiev, 1935) = C. rugoflabella nom. n., and C. silvestrii (Wheeler, 1929b) = C. luzonensis nom. n. Two new combinations are creating secondary junior homonyms among species already in Carebara: C. taprobanae (Forel, 1911a) = C. sinhala nom. n., and C. nana Santschi, 1919 = C. pumilia nom. n. PMID:25197219

  14. Natural organic matter differently modulates growth of two closely related coccal green algal species.

    PubMed

    Karasyova, Tatyana A; Klose, Edgar O; Menzel, Ralph; Steinberg, Christian E W

    2007-03-01

    Humic substances (HS) comprise the majority of dead and living organic carbon, including organisms. In the environment, they are considered to be chemically inert or at least refractory. Recent papers, however, show that HS (including natural organic matter-NOM, isolated by reverse osmosis) are natural chemicals which interact with aquatic organisms. They are taken up and cause a variety of stress defense reactions which are well known from man-made chemicals. These reactions include chaperon activation, induction and modulation of biotrans-formation enzymes, or induction of antioxidant defense enzymes. One specific reaction with freshwater plants is the reduction of photosynthetic oxygen release. In this contribution, we compare the susceptibilities (cell yield) of two closely related coccal green algae, Monoraphidium convolutum and M. minutum, towards various NOM isolates. Cultures of M. convolutum and M. minutum were obtained from the algal collection of the Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, and from the Culture Collection of Algae, Göttingen, and maintained in a common medium. The cultures were non-axenic. The algae were exposed to 5 mg L(-1) DOC of each humic material, an environmentally realistic concentration. Cell numbers were counted microscopically in Neugebauer cuvettes in 5 replicates on days 1, 4, 7, 10, 14, and 21. Almost all NOM isolates modulated the growth of the algae. Only the NOM of a Norwegian raised peat bog lake did not reveal any significant effect with M. convolutuim. In general, the results with two algal species are by no means uniform. For instance, Suwannee River NOM causes a decrease in cell density with M. minutum, but temporarily stimulates the growth of M. convolutum. The opposite applies to Aurevann NOM: Growth increase in M. minutum, but a bi-phasic response in M. convolutum. Different responses of both Monoraphidium species must be attributed to intrinsic factors of the algae rather than only to chemical features of the exposed materials, because the exposures were identical with both algal species. The reduction in growth yields can be explained as a herbicide-like mode of action that affects the photosystem II most prevalently. The growth promoting effect remains somewhat obscure. It may be due to (1) an increase in bioavailability of some trace nutrients in the presence of HS, (2) the release of some growth promoting substances by microbial or photochemical processing of the humic materials, and (3) a hormetic effect upon the exposure of HS. Hormesis means stimulation of organisms or metabolic activities when exposed to noxes in low concentrations. However, it is still open to discussion why the growth promotion only applies to one or the other, but not simultaneously to both Monoraphidium species. Exposure of the closely related coccal green algal species to humic material changes their growth characteristics. Since the reactions are not consistent within the two species and the various humic materials, it seems that the less sensitive species is favored by HS exposure. The environmental relevance, however, is subject to future studies.

  15. Superfine powdered activated carbon (S-PAC) coatings on microfiltration membranes: Effects of milling time on contaminant removal and flux.

    PubMed

    Amaral, Pauline; Partlan, Erin; Li, Mengfei; Lapolli, Flavio; Mefford, O Thompson; Karanfil, Tanju; Ladner, David A

    2016-09-01

    In microfiltration processes for drinking water treatment, one method of removing trace contaminants is to add powdered activated carbon (PAC). Recently, a version of PAC called superfine PAC (S-PAC) has been under development. S-PAC has a smaller particle size and thus faster adsorption kinetics than conventionally sized PAC. Membrane coating performance of various S-PAC samples was evaluated by measuring adsorption of atrazine, a model micropollutant. S-PACs were created in-house from PACs of three different materials: coal, wood, and coconut shell. Milling time was varied to produce S-PACs pulverized with different amounts of energy. These had different particles sizes, but other properties (e.g. oxygen content), also differed. In pure water the coal based S-PACs showed superior atrazine adsorption; all milled carbons had over 90% removal while the PAC had only 45% removal. With addition of calcium and/or NOM, removal rates decreased, but milled carbons still removed more atrazine than PAC. Oxygen content and specific external surface area (both of which increased with longer milling times) were the most significant predictors of atrazine removal. S-PAC coatings resulted in loss of filtration flux compared to an uncoated membrane and smaller particles caused more flux decline than larger particles; however, the data suggest that NOM fouling is still more of a concern than S-PAC fouling. The addition of calcium improved the flux, especially for the longer-milled carbons. Overall the data show that when milling S-PAC with different levels of energy there is a tradeoff: smaller particles adsorb contaminants better, but cause greater flux decline. Fortunately, an acceptable balance may be possible; for example, in these experiments the coal-based S-PAC after 30 min of milling achieved a fairly high atrazine removal (overall 80%) with a fairly low flux reduction (under 30%) even in the presence of NOM. This suggests that relatively short duration (low energy) milling is viable for creating useful S-PAC materials applied in tandem with microfiltration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Influence of ionic strength, anions, cations, and natural organic matter on the adsorption of pharmaceuticals to silica.

    PubMed

    Bui, Tung Xuan; Choi, Heechul

    2010-08-01

    The adsorption of four wide-use pharmaceuticals (carbamazepine, diclofenac, ibuprofen, and ketoprofen) onto a porous silica was investigated under varied ionic strengths, different anions, divalent cations (Ca(2+) and Mg(2+)), trivalent cations (Al(3+) and Fe(3+)), and natural organic matter (NOM). The experiments demonstrated that at a given pH the adsorption was most affected by ionic strength, trivalent cations, and properties of pharmaceuticals. The increase of ionic strength resulted in an increase in the adsorption of ketoprofen, but a decrease in the adsorption of carbamazepine. Trivalent metal cations made intense increases in the adsorption of three acidic pharmaceuticals, which could be due to the formation of inner-sphere complex of the cations on the surface and/or complexation of the pharmaceuticals with both surface and aqueous metal species. It was found that the adsorption of carbamazepine was not affected by divalent and trivalent cations, whereas the adsorption of diclofenac was solely impacted by the presence of Al(3+). Moreover, divalent cations at low concentration could slightly enhance the adsorption of ibuprofen and ketoprofen, whereas NOM caused a reduction in the adsorption of the tested pharmaceuticals except for diclofenac. These results suggest that ionic strength, divalent cations, trivalent cations, and NOM are notable factors affecting the adsorption of pharmaceuticals and thus the ultimate fate of pharmaceuticals in the aqueous environment. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Biological Uptake, Distribution, and Depuration of Radio-Labeled Graphene in Adult Zebrafish: Effects of Graphene Size and Natural Organic Matter.

    PubMed

    Lu, Kun; Dong, Shipeng; Petersen, Elijah J; Niu, Junfeng; Chang, Xiaofeng; Wang, Peng; Lin, Sijie; Gao, Shixiang; Mao, Liang

    2017-03-28

    The exciting commercial application potential of graphene materials may inevitably lead to their increasing release into the environment where they may pose ecological risks. This study focused on using carbon-14-labeled few-layer graphene (FLG) to determine whether the size of graphene plays a role in its uptake, depuration, and biodistribution in adult zebrafish. After 48 h exposure to larger FLG (L-FLG) at 250 μg/L, the amount of graphene in the organism was close to 48 mg/kg fish dry mass, which was more than 170-fold greater than the body burden of those exposed to the same concentration of smaller FLG (S-FLG). The amount of uptake for both L-FLG and S-FLG increased by a factor of 2.5 and 16, respectively, when natural organic matter (NOM) was added in the exposure suspension. While the L-FLG mainly accumulated in the gut of adult zebrafish, the S-FLG was found in both the gut and liver after exposure with or without NOM. Strikingly, the S-FLG was able to pass through the intestinal wall and enter the intestinal epithelial cells and blood. The presence of NOM increased the quantity of S-FLG in these cells. Exposure to L-FLG or S-FLG also had a significantly different impact on the intestinal microbial community structure.

  18. Thoracic computed tomography is an effective screening modality in patients with penetrating injuries to the chest.

    PubMed

    Strumwasser, Aaron; Chong, Vincent; Chu, Eveline; Victorino, Gregory P

    2016-09-01

    The precise role of thoracic CT in penetrating chest trauma remains to be defined. We hypothesized that thoracic CT effectively screens hemodynamically normal patients with penetrating thoracic trauma to surgery vs. expectant management (NOM). A ten-year review of all penetrating torso cases was retrospectively analyzed from our urban University-based trauma center. We included hemodynamically normal patients (systolic blood pressure ≥90) with penetrating chest injuries that underwent screening thoracic CT. Hemodynamically unstable patients and diaphragmatic injuries were excluded. The sensitivity, specificity, positive predictive value and negative predictive value were calculated. A total of 212 patients (mean injury severity score=24, Abbreviated Injury Score for Chest=3.9) met inclusion criteria. Of these, 84.3% underwent NOM, 9.1% necessitated abdominal exploration, 6.6% underwent exploration for retained hemothorax/empyema, 6.6% underwent immediate thoracic exploration for significant injuries on chest CT, and 1.0% underwent delayed thoracic exploration for missed injuries. Thoracic CT had a sensitivity of 82%, specificity of 99%, positive predictive value of 90%, a negative predictive value of 99%, and an accuracy of 99% in predicting surgery vs. NOM. Thoracic CT has a negative predictive value of 99% in triaging hemodynamically normal patients with penetrating chest trauma. Screening thoracic CT successfully excludes surgery in patients with non-significant radiologic findings. Copyright © 2016. Published by Elsevier Ltd.

  19. Management of pediatric blunt splenic injuries in Canada--practices and opinions.

    PubMed

    Li, Debbie; Yanchar, Natalie

    2009-05-01

    The aim of the study was to compare the self-reported practice patterns of Canadian general surgeons (GSs) and pediatric general surgeons (PGSs) in treating blunt splenic injuries (BSIs) in children. Forty-five PGSs and 690 GSs were surveyed (internet and hard copy). chi(2) was used to compare groups; logistic regression was performed to determine independent factors influencing management variables. Thirty-three PGSs and 191 GSs completed the survey, for a response rate of 30%. Pediatric general surgeons are more likely than GSs to follow American Pediatric Surgical Association guidelines (52% vs 11%; P < .0001). In diagnosing BSIs, PGSs and GSs are equally likely to use computed tomography (CT) over ultrasound for initial imaging. Pediatric general surgeons are less likely to consider CT injury grade in deciding on nonoperative management (NOM) (odds ratio [OR], 0.2; confidence interval [CI], 0.07-0.5; P = .002) and are more likely to continue NOM for patients with contrast blush on CT (OR, 6.5; CI, 2.5-17; P = .0002). Pediatric general surgeons report more selective intensive care unit use, hospital stay, follow-up imaging, and activity restrictions. No differences were found in the management of splenic artery pseudoaneurysms. Differences exist between PGSs and GSs in the management of pediatric BSIs, resulting in higher operative rates, use of resources, and radiation exposure. Further education of GSs in NOM and establishment of management guidelines are indicated.

  20. Further Insights into Metal-DOM Interaction: Consideration of Both Fluorescent and Non-Fluorescent Substances

    PubMed Central

    Xu, Huacheng; Zhong, Jicheng; Yu, Guanghui; Wu, Jun; Jiang, Helong; Yang, Liuyan

    2014-01-01

    Information on metal binding with fluorescent substances has been widely studied. By contrast, information on metal binding with non-fluorescent substances remains lacking despite the dominance of these substances in aquatic systems. In this study, the metal binding properties of both fluorescent and non-fluorescent substances were investigated by using metal titration combined with two-dimensional correlation spectroscopy (2D–COS) analysis. The organic matters in the eutrophic algae-rich lake, including natural organic matters (NOM) and algae-induced extracellular polymeric substances (EPS), both contained fluorescent and non-fluorescent substances. The peaks in the one-dimensional spectra strongly overlapped, while 2D–COS can decompose the overlapped peaks and thus enhanced the spectral resolution. Moreover, 2D FTIR COS demonstrated that the binding susceptibility of organic ligands in both NOM and algal EPS matrices followed the order: 3400>1380>1650 cm−1, indicative the significant contribution of non-fluorescent ligands in metal binding. The modified Stern-Volmer equation also revealed a substantial metal binding potential for the non-fluorescent substances (logKM: 3.57∼4.92). As for the effects of organic ligands on metal binding, EPS was characterized with higher binding ability than NOM for both fluorescent and non-fluorescent ligands. Algae-induced EPS and the non-fluorescent substances in eutrophic algae-rich lakes should not be overlooked because of their high metal binding potential. PMID:25380246

  1. Higher incidence of major complications after splenic embolization for blunt splenic injuries in elderly patients.

    PubMed

    Wu, Shih-Chi; Fu, Chih-Yuan; Chen, Ray-Jade; Chen, Yung-Fang; Wang, Yu-Chun; Chung, Ping-Kuei; Yu, Shu-Fen; Tung, Cheng-Cheng; Lee, Kun-Hua

    2011-02-01

    Nonoperative management (NOM) of blunt splenic injuries has been widely accepted, and the application of splenic artery embolization (SAE) has become an effective adjunct to NOM. However, complications do occur after SAE. In this study, we assess the factors leading to the major complications associated with SAE. Focusing on the major complications after SAE, we retrospectively studied patients who received SAE and were admitted to 2 major referral trauma centers under the same established algorithm for management of blunt splenic injuries. The demographics, angiographic findings, and factors for major complications after SAE were examined. Major complications were considered to be direct adverse effects arising from SAE that were potentially fatal or were capable of causing disability. There were a total of 261 patients with blunt splenic injuries in this study. Of the 261 patients, 53 underwent SAE, 11 (21%) of whom were noted to have 12 major complications: 8 cases of postprocedural bleeding, 2 cases of total infarction, 1 case of splenic abscess, and 1 case of splenic atrophy. Patients older than 65 years were more susceptible to major complications after SAE. Splenic artery embolization is considered an effective adjunct to NOM in patients with blunt splenic injuries. However, risks of major complications do exist, and being elderly is, in part, associated with a higher major complication incidence. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Effect of Natural Organic Matter on Lincomycin Transport in Saturated Porous Media

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Zhao, Y.; Lin, K.; Ding, Y.; Tian, Y.; Li, H.

    2012-12-01

    Antibiotics such as lincomycin are often administered in animal feeding operations and secreted into animal manure, and therefore are becoming contaminants of emerging concerns. Once released into the environment, antibiotics are very likely exposed to natural organic matter (NOM). Considering elevated environmental concentrations of antibiotics and the spreading of antibiotic resistance among microorganisms, understanding antibiotics transport processes becomes very important to assessing environmental impact of pharmaceutical release and protecting human and ecological health. This study aims to investigate how NOM influences the transport of lincomycin in saturated Ottawa sand through column experiments with and without the presence of Na- or Ca-saturated Elliott Soil Humic Acid (ESHA) at three pH levels (i.e., 4, 7, 9). Our preliminary results indicated that at near neutral pH lincomycin was more retained in the presence of 7 mg C/L Na-saturated ESHA compared to the experiments in the deionized water of pH 7. Since the Na-saturated ESHA was less retained compared to lincomycin, it is likely that the ESHA adsorbed on the sand surface facilitated the lincomycin retention due to lincomyin-NOM interaction. Future study will examine the effect of solution pH and the different type of saturating cations (Na or Ca). This study will help better understand the fate and transport of lincomycin in the subsurface environment.

  3. Removal of Intermediate Aromatic Halogenated DBPs by Activated Carbon Adsorption: A New Approach to Controlling Halogenated DBPs in Chlorinated Drinking Water.

    PubMed

    Jiang, Jingyi; Zhang, Xiangru; Zhu, Xiaohu; Li, Yu

    2017-03-21

    During chlorine disinfection of drinking water, chlorine may react with natural organic matter (NOM) and bromide ion in raw water to generate halogenated disinfection byproducts (DBPs). To mitigate adverse effects from DBP exposure, granular activated carbon (GAC) adsorption has been considered as one of the best available technologies for removing NOM (DBP precursor) in drinking water treatment. Recently, we have found that many aromatic halogenated DBPs form in chlorination, and they act as intermediate DBPs to decompose and form commonly known DBPs including trihalomethanes and haloacetic acids. In this work, we proposed a new approach to controlling drinking water halogenated DBPs by GAC adsorption of intermediate aromatic halogenated DBPs during chlorination, rather than by GAC adsorption of NOM prior to chlorination (i.e., traditional approach). Rapid small-scale column tests were used to simulate GAC adsorption in the new and traditional approaches. Significant reductions of aromatic halogenated DBPs were observed in the effluents with the new approach; the removals of total organic halogen, trihalomethanes, and haloacetic acids by the new approach always exceeded those by the traditional approach; and the effluents with the new approach were considerably less developmentally toxic than those with the traditional approach. Our findings indicate that the new approach is substantially more effective in controlling halogenated DBPs than the traditional approach.

  4. Effects of gamma-sterilization on the physico-chemical properties of natural sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bank, Tracy L.; Kukkadapu, Ravi K.; Madden, Andrew S.

    2008-06-30

    A series of experiments were completed to determine the effects of soil sterilization on various soil chemical properties including U(VI) sorption, soil pH, natural organic matter (NOM), cation exchange capacity (CEC), and iron oxidation state. Soils under investigation were a saprolitic sequence of interbedded weathered shale and limestone collected from the Oak Ridge Reservation (ORR). Sediments were sterilized by either steam sterilization at 121oC or by γ-irradiation using a cobalt-60 source. Subsamples of sediments were pretreated with dithionate-citrate-bicarbonate (DCB) and/or H2O2 to remove reducible Fe(III) oxides and NOM. Results from aerobic U(VI) sorption experiments indicated that γ-sterilized sediments sorbed moremore » U(VI) compared to non-sterile sediments. Results from sorption experiments completed using DCB and H2O2-treated samples indicated that the iron oxide and NOM fractions of the sediment accounted for the majority of U(VI) sorption and that γ-irradiation of these phases resulted in increased sorption of U(VI). Mössbauer spectra of γ-sterilized sedimentsdisplayed a decrease in the amount of ferric iron associated with goethite and a small increase in the amount of reduced iron in silicate minerals compared to spectra from non-sterile samples. Our results suggest that sterilization by γ-irradiation induced iron reduction that may have increased sorption of U(VI) on these sediments.« less

  5. Rapid removal of bacterial endotoxin and natural organic matter in water by dielectric barrier discharge plasma: Efficiency and toxicity assessment.

    PubMed

    Zhang, Can; Fang, Zhendong; Liu, Wenjun; Tian, Fang; Bai, Miao

    2016-11-15

    Low-temperature plasma was used to control bacteria, endotoxins and natural organic matter (NOM) in water by a dielectric barrier discharge (DBD) device. Results indicate that DBD plasma has an obvious inactivation effect on various bacteria in water. The degree of inactivation from difficult to easy is as follows: Bacillus subtilis>Escherichia coli>Staphylococcus aureus. Activated ultrapure water treated using DBD plasma exhibited a sustained sterilization effect, but this sterilization effect decreased gradually after 1h. The total-endotoxin (free-endotoxin and bound-endotoxin) released by Escherichia coli during inactivation, as well as artificially simulated endotoxin in a control solution, was significantly controlled by DBD plasma. Both the metabolites that appeared after inactivation of microorganisms by plasma treatment, and the NOM in filtration effluent of a water treatment plant were well removed by DBD plasma if the treatment duration was sufficiently long. However, the acute toxicity increased significantly, and persisted for at least 2h, indicating that some long-life active substances were generated during the DBD process. Therefore, the removal of bacteria, endotoxins or NOM does not mean a safe water is produced. It is also important to eliminate the toxicity and byproducts produced during water treatment for the continuous promotion and industrial application of DBD plasma. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Oxidation of manganese(II) with ferrate: Stoichiometry, kinetics, products and impact of organic carbon.

    PubMed

    Goodwill, Joseph E; Mai, Xuyen; Jiang, Yanjun; Reckhow, David A; Tobiason, John E

    2016-09-01

    Manganese is a contaminant of concern for many drinking water utilities, and future regulation may be pending. An analysis of soluble manganese (Mn(II)) oxidation by ferrate (Fe(VI)) was executed at the bench-scale, in a laboratory matrix, both with and without the presence of natural organic matter (NOM) and at two different pH values, 6.2 and 7.5. In the matrix without NOM, the oxidation of Mn(II) by Fe(VI) followed a stoichiometry of 2 mol Fe(VI) to 3 mol Mn(II). The presence of NOM did not significantly affect the stoichiometry of the oxidation reaction, indicating relative selectivity of Fe(VI) for Mn(II). The size distribution of resulting particles included significant amounts of nanoparticles. Resulting manganese oxide particles were confirmed to be MnO2 via X-ray photoelectron spectroscopy. The rate of the Mn(II) oxidation reaction was fast relative to typical time scales in drinking water treatment, with an estimated second order rate constant of approximately 1 × 10(4) M(-1) s(-1) at pH 9.2 and > 9 × 10(4) M(-1) s(-1) at pH 6.2. In general, ferrate is a potential option for Mn(II) oxidation in water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Characterization of dissolved and particulate natural organic matter (NOM) in Neversink Reservoir, New York

    USGS Publications Warehouse

    Wershaw, Robert L.; Leenheer, Jerry A.; Cox, Larry G.

    2005-01-01

    Natural organic matter (NOM) was isolated from the water of the Neversink Reservoir, part of the New York City water supply, located in the Catskill Mountains of New York. The NOM was fractionated into the following nine different fractions by the isolation procedure: (1) coarse particulates, (2) fine-particulate organics, (3) solvent-extractable organics, (4) hydrophobic neutrals (HPON fraction), (5) dissolved colloids, (6) bases, (7) hydrophobic acids (HPOA), (8) transphilic acids + neutrals (TPI-A+N), and (9) hydrophilic acids + neutrals (HPI-A+N). Each of these fractions, with exception of the first and the third which were too small for the complete series of analyses, was characterized by elemental, carbohydrate, and amino acid analyses, and by nuclear magnetic resonance and infrared spectrometry. The data obtained from these analyses indicate (1) that the fine-particulate organics and colloids are mainly composed of peptidoglycans, and lipopolysaccharides derived from algal, bacterial, and fungal cell walls, (2) that the HPO-N fraction most likely consists of a mixture of alicyclic terpenes and carbohydrates, (3) that the HPOA fraction consists mainly of lignin components conjugated to carbohydrates, (4) that the TPI-A+N and the HPI-A+N fractions most likely represent complex mixtures of relatively low molecular weight carboxylic acids derived from terpenes, carbohydrates, and peptides, and (5) that the base fraction is composed of free amino acids, browning reaction products, and peptide fragments.

  8. Transport and retention of zinc oxide nanoparticles in porous media: effects of natural organic matter versus natural organic ligands at circumneutral pH.

    PubMed

    Jones, Edward H; Su, Chunming

    2014-06-30

    The potential toxicity of nanoparticles (NPs) has received considerable attention, but there is little knowledge relating to the fate and transport of engineered ZnO NPs in the environment. Column experiments were performed at pH 7.3-7.6 to generate effluent concentrations and retention profiles for assessing the fate and transport of ZnO NPs (PZC=9.3, nominal size 20 nm) in saturated quartz sands (256 μm) in the presence of low natural organic matter (NOM) concentrations (1 mg/L humic and fulvic acids) and millimolar natural organic ligands (NOL) levels (formic, oxalic, and citric acids). At circumneutral pHs, ZnO NPs were positively charged and immobile in sand. The presence of NOM decreased the attachment efficiency facilitating ZnO transport through sand columns. Conversely, ZnO transport in the presence of formic and oxalic acids was only slightly improved when compared to ZnO in DI water; whereas, citric acid showed no improvement. The distinct difference between NOM and NOL may have important implications with regard to ZnO transport in the subsurface environment. Experimental results suggested the presence of both favorable and unfavorable nanoparticle interactions causes significant deviations from classical colloid filtration theory (CFT). Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Conservative and surgical management of pancreatic trauma in adult patients

    PubMed Central

    Menahem, Benjamin; Lim, Chetana; Lahat, Eylon; Salloum, Chady; Osseis, Michael; Lacaze, Laurence; Compagnon, Philippe; Pascal, Gerard

    2016-01-01

    Background The management of pancreatic trauma is complex. The aim of this study was to report our experience in the management of pancreatic trauma. Methods All patients hospitalized between 2005 and 2013 for pancreatic trauma were included. Traumatic injuries of the pancreas were classified according to the American Association for Surgery of Trauma (AAST) in five grades. Mortality and morbidity were analyzed. Results A total of 30 patients were analyzed (mean age: 38±17 years). Nineteen (63%) patients had a blunt trauma and 12 (40%) had pancreatic injury ≥ grade 3. Fifteen patients underwent exploratory laparotomy and the other 15 patients had nonoperative management (NOM). Four (13%) patients had a partial pancreatectomy [distal pancreatectomy (n=3) and pancreaticoduodenectomy (n=1)]. Overall, in hospital mortality was 20% (n=6). Postoperative mortality was 27% (n=4/15). Mortality of NOM group was 13% (n=2/15) in both cases death was due to severe head injury. Among the patients who underwent NOM, three patients had injury ≥ grade 3, one patient had a stent placement in the pancreatic duct and two patients underwent endoscopic drainage of a pancreatic pseudocyst. Conclusions Operative management of pancreatic trauma leads to a higher mortality. This must not be necessarily related to the pancreas injury alone but also to the associated injuries including liver, spleen and vascular trauma which may cause impaired outcome more than pancreas injury. PMID:28124001

  10. Comparative evaluation of humic substances in oral drug delivery

    PubMed Central

    Mirza, Mohd. Aamir; Ahmad, Niyaz; Agarwal, Suraj Prakash; Mahmood, Danish; Khalid Anwer, M.; Iqbal, Z.

    2011-01-01

    Major and biologically most explored components of natural organic matter (NOM) are humic acid (HA) and fulvic acid (FA). We have explored rock shilajit as a source of NOM. On the other hand carbamazepine (CBZ) is a well known anticonvulsant drug and has a limited accessibility to brain. Bioavailability and pharmacokinetic profiles of CBZ have been improved by complexation and different techniques also. Present study has assessed the comparative abilities of FA and HA as complexing agent for CBZ in order to enhance pharmacokinetic profile of CBZ and accessibility to the brain. These two complexing agents have been compared on various indices such as their abilities to cause complexation and enhance solubility, permeability and dissolution. The present study also compared pharmacodynamic and biochemical profiles after oral administration of complexes. With the help of various pharmaceutical techniques such as freeze drying, physical mixture, kneading and solvent evaporation, two molar ratios (1:1 and 1:2) were selected for complexation and evaluated for conformational analysis (molecular modeling). Complex formed was further characterized by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), mass spectroscopy and X-ray diffraction (XRD). Preclinical study on rodents with CBZ–HA and CBZ–FA has yielded appreciable results in terms of their anticonvulsant and antioxidants activities. However, CBZ–HA (1:2) demonstrated better result than any other complex. PMID:25755978

  11. Partitioning of uranyl between ferrihydrite and humic substances at acidic and circum-neutral pH

    DOE PAGES

    Dublet, Gabrielle; Lezama Pacheco, Juan; Bargar, John R.; ...

    2017-07-14

    As part of a larger study of the reactivity and mobility of uranyl (U(VI)O 2 2+) cations in subsurface environments containing natural organic matter (NOM) and hydrous ferric oxides, we have examined the effect of reference humic and fulvic substances on the sorption of uranyl on 2-line ferrihydrite (Fh), a common, naturally occurring nano-Fe(III)-hydroxide. Uranyl was reacted with Fh at pH 4.6 and 7.0 in the presence and absence of Elliott Soil Humic Acid (ESHA) (0–835 ppm) or Suwanee River Fulvic Acid (SRFA) (0–955 ppm). Here, no evidence was found for reduction of uranyl by either form of NOM aftermore » 24 h of exposure.« less

  12. Partitioning of uranyl between ferrihydrite and humic substances at acidic and circum-neutral pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dublet, Gabrielle; Lezama Pacheco, Juan; Bargar, John R.

    As part of a larger study of the reactivity and mobility of uranyl (U(VI)O 2 2+) cations in subsurface environments containing natural organic matter (NOM) and hydrous ferric oxides, we have examined the effect of reference humic and fulvic substances on the sorption of uranyl on 2-line ferrihydrite (Fh), a common, naturally occurring nano-Fe(III)-hydroxide. Uranyl was reacted with Fh at pH 4.6 and 7.0 in the presence and absence of Elliott Soil Humic Acid (ESHA) (0–835 ppm) or Suwanee River Fulvic Acid (SRFA) (0–955 ppm). Here, no evidence was found for reduction of uranyl by either form of NOM aftermore » 24 h of exposure.« less

  13. Nonlinear optical memory for manipulation of orbital angular momentum of light.

    PubMed

    de Oliveira, R A; Borba, G C; Martins, W S; Barreiro, S; Felinto, D; Tabosa, J W R

    2015-11-01

    We report on the demonstration of a nonlinear optical memory (NOM) for storage and on-demand manipulation of orbital angular momentum (OAM) of light via higher-order nonlinear processes in cold cesium atoms. A spatially resolved phase-matching technique is used to select each order of the nonlinear susceptibility associated, respectively, with time-delayed four-, six-, and eight-wave mixing processes. For a specific configuration of the stored OAM of the incident beams, we demonstrated that the OAM of the retrieved beam can be manipulated according to the order of the nonlinear process chosen by the operator for reading out the NOM. This demonstration indicates new pathways for applications in classical and quantum information processing where OAM of light is used to encode optical information.

  14. Natural organic matter properties in Swedish agricultural streams

    NASA Astrophysics Data System (ADS)

    Bieroza, Magdalena; Kyllmar, Katarina; Bergström, Lars; Köhler, Stephan

    2016-04-01

    We have analysed natural organic matter (NOM) properties in 18 agricultural streams in Sweden covering a broad range of environmental (climate, soil type), land use and water quality (nutrient and concentrations, pH, alkalinity) characteristics. Stream water samples collected every two weeks within an ongoing Swedish Monitoring Programme for Agriculture have been analysed for total/dissolved organic carbon, absorbance and fluorescence spectroscopy. A number of quantitative and qualitative spectroscopic parameters was calculated to help to distinguish between terrestrially-derived, refractory organic material and autochthonous, labile material indicative of biogeochemical transformations of terrestrial NOM and recent biological production. The study provides insights into organic matter properties and carbon budgets in agricultural streams and improves understanding of how agricultural catchments transform natural and anthropogenic fluxes of organic matter and nutrients to signals observed in receiving waters.

  15. Influence of alumina coating on characteristics and effects of SiO2 nanoparticles in algal growth inhibition assays at various pH and organic matter contents.

    PubMed

    Van Hoecke, Karen; De Schamphelaere, Karel A C; Ramirez-Garcia, Sonia; Van der Meeren, Paul; Smagghe, Guy; Janssen, Colin R

    2011-08-01

    Silica nanoparticles (NPs) belong to the industrially most important NP types. In a previous study it was shown that amorphous SiO(2) NPs of 12.5 and 27.0 nm are stable in algal growth inhibition assays and that their ecotoxic effects are related to NP surface area. Here, it was hypothesized and demonstrated that an alumina coating completely alters the particle-particle, particle-test medium and particle-algae interactions of SiO(2) NPs. Therefore, stability and surface characteristics, dissolution, nutrient adsorption and effects on algal growth rate of both alumina coated SiO(2) NPs and bare SiO(2) NPs in OECD algal test medium as a function of pH (6.0-8.6) and natural organic matter (NOM) contents (0-12 mg C/l) were investigated. Alumina coated SiO(2) NPs aggregated in all media and adsorbed phosphate depending on pH and NOM concentration. On the other hand, no aggregation or nutrient adsorption was observed for the bare SiO(2) NPs. Due to their positive surface charge, alumina coated SiO(2) NPs agglomerated with Pseudokirchneriella subcapitata. Consequently, algal cell density measurements based on cell counts were unreliable and hence fluorescent detection of extracted chlorophyll was the preferred method. Alumina coated SiO(2) NPs showed lower toxicity than bare SiO(2) NPs at concentrations ≥46 mg/l, except at pH 6.0. At low concentrations, no clear pH effect was observed for alumina coated SiO(2) NPs, while at higher concentrations phosphate deficiency could have contributed to the higher toxicity of those particles at pH 6.0-6.8 compared to higher pH values. Bare SiO(2) NPs were not toxic at pH 6.0 up to 220 mg/l. Addition of NOM decreased toxicity of both particles. For SiO(2) NPs the 48 h 20% effect concentration of 21.8 mg/l increased 2.6-21 fold and a linear relationship was observed between NOM concentration and effective concentrations. No effect was observed for alumina coated SiO(2) NPs in presence of NOM up to 1000 mg/l. All experiments point out that the alumina coating completely altered NP interactions. Due to the difference in surface composition the SiO(2) NPs, which had the smallest surface area, were more toxic to the alga than the alumina coated SiO(2) NPs. Hence, surface modification can dominate the effect of surface area on toxicity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Seasonal variation of organic matter characteristics and fluoride concentration in the Maji ya Chai River (Tanzania): Impact on treatability by nanofiltration/reverse osmosis.

    PubMed

    Jeihanipour, Azam; Shen, Junjie; Abbt-Braun, Gudrun; Huber, Stefan A; Mkongo, Godfrey; Schäfer, Andrea I

    2018-10-01

    The Maji ya Chai River in Northern Tanzania, a fluoride-rich tropical area, shows a seasonal variation of natural organic matter (NOM) and fluoride concentration. Water samples collected monthly during one year from two locations of the River were characterized. High levels of precipitation in the rainy seasons increased the total organic carbon (TOC) concentration to as high as 36 mgC L -1 and diluted the fluoride concentration from a dry season high of 24 mg L -1 to <4 mg L -1 . A black water swamp in the Maji ya Chai River catchment was confirmed as the main source of NOM, fluoride, salinity, and inorganic carbon entering the River in the rainy season. The water samples were filtered by a number of nanofiltration/reverse osmosis (NF/RO) membranes to identify the retention mechanisms and the impact of varying water quality on treatability. While the denser membranes removed fluoride due to size exclusion, for the membranes with bigger pore radius charge repulsion was the dominant mechanism of fluoride retention. Regardless of the seasonal conditions a TOC concentration <2 mgC L -1 was achieved by all membranes at 50% recovery, as NF/RO membranes remove TOC mainly by size exclusion. Two swamp water samples, containing high TOC (79 and 183 mgC L -1 ), were filtered to determine the characteristics of NOM which permeate the NF/RO membranes. Liquid chromatography organic carbon detection (LC-OCD) was used to characterize the fractions in the permeates, consisting of about 1% of the original NOM. The average molecular weight of the permeate humic substances (HS) was more than four times larger than the membrane molecular weight cut-off. This suggests that large HS can permeate the NF/RO membranes through diffusion. Moreover, the relatively high aromaticity of the permeate HS (1.7-5.2 L mg -1  m -1 ) indicated the high content of hydrophobic-aromatic fractions. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 2: 2D NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Deshmukh, Ashish P.; Pacheco, Carlos; Hay, Michael B.; Myneni, Satish C. B.

    2007-07-01

    Carboxyl groups are abundant in natural organic molecules (NOM) and play a major role in their reactivity. The structural environments of carboxyl groups in IHSS soil and river humic samples were investigated using 2D NMR (heteronuclear and homonuclear correlation) spectroscopy. Based on the 1H- 13C heteronuclear multiple-bond correlation (HMBC) spectroscopy results, the carboxyl environments in NOM were categorized as Type I (unsubstituted and alkyl-substituted aliphatic/alicyclic), Type II (functionalized carbon substituted), Type IIIa, b (heteroatom and olefin substituted), and Type IVa, b (5-membered heterocyclic aromatic and 6-membered aromatic). The most intense signal in the HMBC spectra comes from the Type I carboxyl groups, including the 2JCH and 3JCH couplings of unsubstituted aliphatic and alicyclic acids, though this spectral region also includes the 3JCH couplings of Type II and III structures. Type II and III carboxyls have small but detectable 2JCH correlations in all NOM samples except for the Suwannee River humic acid. Signals from carboxyls bonded to 5-membered aromatic heterocyclic fragments (Type IVa) are observed in the soil HA and Suwannee River FA, while correlations to 6-membered aromatics (Type IVb) are only observed in Suwannee River HA. In general, aromatic carboxylic acids may be present at concentrations lower than previously imagined in these samples. Vibrational spectroscopy results for these NOM samples, described in an accompanying paper [Hay M. B. and Myneni S. C. B. (2007) Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: Infrared spectroscopy. Geochim. Cosmochim. Acta (in press)], suggest that Type II and Type III carboxylic acids with α substituents (e.g., -OH, -OR, or -CO 2H) constitute the majority of carboxyl structures in all humic substances examined. Furoic and salicylic acid structures (Type IV) are also feasible fragments, albeit as minor constituents. The vibrational spectroscopy results also suggest that much of the "Type I" signal observed in the HMBC spectrum is due to carboxylic acid esters and possibly α-substituted alicyclic acids.

  18. Management of severe blunt hepatic injury in the era of computed tomography and transarterial embolization: A systematic review and critical appraisal of the literature.

    PubMed

    Melloul, Emmanuel; Denys, Alban; Demartines, Nicolas

    2015-09-01

    During the last decade, the management of blunt hepatic injury has considerably changed. Three options are available as follows: nonoperative management (NOM), transarterial embolization (TAE), and surgery. We aimed to evaluate in a systematic review the current practice and outcomes in the management of Grade III to V blunt hepatic injury. The MEDLINE database was searched using PubMed to identify English-language citations published after 2000 using the key words blunt, hepatic injury, severe, and grade III to V in different combinations. Liver injury was graded according to the American Association for the Surgery of Trauma classification on computed tomography (CT). Primary outcome analyzed was success rate in intention to treat. Critical appraisal of the literature was performed using the validated National Institute for Health and Care Excellence "Quality Assessment for Case Series" system. Twelve articles were selected for critical appraisal (n = 4,946 patients). The median quality score of articles was 4 of 8 (range, 2-6). Overall, the median Injury Severity Score (ISS) at admission was 26 (range, 0.6-75). A median of 66% (range, 0-100%) of patients was managed with NOM, with a success rate of 94% (range, 86-100%). TAE was used in only 3% of cases (range, 0-72%) owing to contrast extravasation on CT with a success rate of 93% (range, 81-100%); however, 9% to 30% of patients required a laparotomy. Thirty-one percent (range, 17-100%) of patients were managed with surgery owing to hemodynamic instability in most cases, with 12% to 28% requiring secondary TAE to control recurrent hepatic bleeding. Mortality was 5% (range, 0-8%) after NOM and 51% (range, 30-68%) after surgery. NOM of Grade III to V blunt hepatic injury is the first treatment option to manage hemodynamically stable patients. TAE and surgery are considered in a highly selective group of patients with contrast extravasation on CT or shock at admission, respectively. Additional standardization of the reports is necessary to allow accurate comparisons of the various management strategies. Systematic review, level IV.

  19. Donnan membrane speciation of Al, Fe, trace metals and REEs in coastal lowland acid sulfate soil-impacted drainage waters.

    PubMed

    Jones, Adele M; Xue, Youjia; Kinsela, Andrew S; Wilcken, Klaus M; Collins, Richard N

    2016-03-15

    Donnan dialysis has been applied to forty filtered drainage waters collected from five coastal lowland acid sulfate soil (CLASS) catchments across north-eastern NSW, Australia. Despite having average pH values<3.9, 78 and 58% of Al and total Fe, respectively, were present as neutral or negatively-charged species. Complementary isotope dilution experiments with (55)Fe and (26)Al demonstrated that only soluble (i.e. no colloidal) species were present. Trivalent rare earth elements (REEs) were also mainly present (>70%) as negatively-charged complexes. In contrast, the speciation of the divalent trace metals Co, Mn, Ni and Zn was dominated by positively-charged complexes and was strongly correlated with the alkaline earth metals Ca and Mg. Thermodynamic equilibrium speciation calculations indicated that natural organic matter (NOM) complexes dominated Fe(III) speciation in agreement with that obtained by Donnan dialysis. In the case of Fe(II), however, the free cation was predicted to dominate under thermodynamic equilibrium, whilst our results indicated that Fe(II) was mainly present as neutral or negatively-charged complexes (most likely with sulfate). For all other divalent metals thermodynamic equilibrium speciation calculations agreed well with the Donnan dialysis results. The proportion of Al and REEs predicted to be negatively-charged was also grossly underestimated, relative to the experimental results, highlighting possible inaccuracies in the stability constants developed for these trivalent Me(SO4)2(-) and/or Me-NOM complexes and difficulties in modeling complex environmental samples. These results will help improve metal mobility and toxicity models developed for CLASS-affected environments, and also demonstrate that Australian CLASS environments can discharge REEs at concentrations an order of magnitude greater than previously reported. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Ciprofloxacin adsorption on graphene and granular activated carbon: kinetics, isotherms, and effects of solution chemistry.

    PubMed

    Zhu, Xuan; Tsang, Daniel C W; Chen, Feng; Li, Shiyu; Yang, Xin

    2015-01-01

    Ciprofloxacin (CIP) is a commonly used antibiotic and widely detected in wastewaters and farmlands nowadays. This study evaluated the efficacy of next-generation adsorbent (graphene) and conventional adsorbent (granular activated carbon, GAC) for CIP removal. Batch experiments and characterization tests were conducted to investigate the adsorption kinetics, equilibrium isotherms, thermodynamic properties, and the influences of solution chemistry (pH, ionic strength, natural organic matter (NOM), and water sources). Compared to GAC, graphene showed significantly faster adsorption and reached equilibrium within 3 min, confirming the rapid access of CIP into the macroporous network of high surface area of graphene as revealed by the Brunner-Emmet-Teller measurements analysis. The kinetics was better described by a pseudo-second-order model, suggesting the importance of the initial CIP concentration related to surface site availability of graphene. The adsorption isotherm on graphene followed Langmuir model with a maximum adsorption capacity of 323 mg/g, which was higher than other reported carbonaceous adsorbents. The CIP adsorption was thermodynamically favourable on graphene and primarily occurred through π - π interaction, according to the FTIR spectroscopy. While the adsorption capacity of graphene decreased with increasing solution pH due to the speciation change of CIP, the adverse effects of ionic strength (0.01-0.5 mol L(-1)), presence of NOM (5 mg L⁻¹), and different water sources (river water or drinking water) were less significant on graphene than GAC. These results indicated that graphene can serve as an alternative adsorbent for CIP removal in commonly encountered field conditions, if proper separation and recovery is available in place.

  1. Comparison of dechlorination rates for field DNAPL vs synthetic samples: effect of sample matrix

    NASA Astrophysics Data System (ADS)

    O'Carroll, D. M.; Sakulchaicharoen, N.; Herrera, J. E.

    2015-12-01

    Nanometals have received significant attention in recent years due to their ability to rapidly destroy numerous priority source zone contaminants in controlled laboratory studies. This has led to great optimism surrounding nanometal particle injection for insitu remediation. Reported dechlorination rates vary widely among different investigators. These differences have been ascribed to differences in the iron types (granular, micro, or nano-sized iron), matrix solution chemistry and the morphology of the nZVI surface. Among these, the effects of solution chemistry on rates of reductive dechlorination of various chlorinated compounds have been investigated in several short-term laboratory studies. Variables investigated include the effect of anions or groundwater solutes such as SO4-2, Cl-, NO3-, pH, natural organic matters (NOM), surfactant, and humic acid on dechlorination reaction of various chlorinated compounds such as TCE, carbon tetrachloride (CT), and chloroform (CF). These studies have normally centered on the assessment of nZVI reactivity toward dechlorination of an isolated individual contaminant spiked into a ground water sample under ideal conditions, with limited work conducted using real field samples. In this work, the DNAPL used for the dechlorination study was obtained from a contaminatied site. This approach was selected to adequately simulate a condition where the nZVI suspension was in direct contact with DNAPL and to isolate the dechlorination activity shown by the nZVI from the groundwater matrix effects. An ideal system "synthetic DNAPL" composed of a mixture of chlorinated compounds mimicking the composition of the actual DNAPL was also dechlorinated to evaluate the DNAPL "matrix effect" on NZVI dechlorination activity. This approach allowed us to evaluate the effect of the presence of different types of organic compounds (volatile fatty acids and humic acids) found in the actual DNAPL on nZVI dechlorination activity. This presentation will help provide insights into the degradation kinetics that can be expected in the field and help with field scale implementation of nZVI.

  2. Splenic abscess after splenic blunt injury angioembolization.

    PubMed

    Tartaglia, Dario; Galatioto, Christian; Lippolis, Piero Vincenzo; Modesti, Matteo; Gianardi, Desirée; Bertolucci, Andrea; Cucinotta, Monica; Zocco, Giuseppe; Seccia, Massimo

    2014-11-03

    Splenic Angioembolization (SAE), during Nonoperative Management (NOM) of Blunt Splenic Injury (BSI), is an effective therapy for hemodynamically stable patients with grade III, IV, and V OIS splenic injuries. We report a case of a patient with a blunt abdominal trauma due to an accidental fall, who presented splenic abscess a week after SAE and a review of the literature. A 38-year-old male arrived at Emergency after an accidental fall with contusion of the left upper quadrant of the abdomen. Abdominal CT scan revealed the fracture of the lower splenic pole with intraparenchymal pseudoaneurysms (OIS spleen injury scale IV). Considering the hemodynamic stability, NOM was undertaken and SAE was performed. After a week, the patient developed a splenic abscess confirmed by Abdominal CT; therefore, splenectomy was performed. There was no evidence of bacterial growing in the perisplenic hematoma cultures but the histological examination showed multiple abscess and hemorrhagic areas in the spleen. Splenic abscess after SAE during NOM of BSI is a rare major complication. The most frequently cultured organisms include Clostridium perfringens, Alpha-Hemoliticus Streptococcus, gram-positive Staphylococcus, gram-negative Salmonella, Candida, and Aspergillus. This case represents our first reported splenic abscess after SAE. SAE is a very useful tool for BSI managing; splenic abscess can occur in a short time, even if it is a rare major complication, so it may be useful to monitor patients undergoing SAE, focusing not only on the hemodynamic parameters but also on the inflammatory and infectious aspects.

  3. Trihalomethanes formed from natural organic matter isolates: Using isotopic and compositional data to help understand sources

    USGS Publications Warehouse

    Bergamaschi, Brian A.; Fram, Miranda S.; Fujii, Roger; Aiken, George R.; Kendall, Carol; Silva, Steven R.

    2000-01-01

    Over 20 million people drink water from the Sacramento-San Joaquin Delta despite problematic levels of natural organic matter (NOM) and bromide in Delta water, which can form trihalomethanes (THMs) during the treatment process. It is widely believed that NOM released from Delta peat islands is a substantial contributor to the pool of THM precursors present in Delta waters. Dissolved NOM was isolated from samples collected at five channel sites within the Sacramento-San Joaquin Rivers and Delta, California, USA, and from a peat island agricultural drain. To help understand the sources of THM precursors, samples were analyzed to determine their chemical and isotopic composition, their propensity to form THMs, and the isotopic composition of the THMs.The chemical composition of the isolates was quite variable, as indicated by significant differences in carbon-13 nuclear magnetic resonance spectra and carbon-to-nitrogen concentration ratios. The lowest propensity to form THMs per unit of dissolved organic carbon was observed in the peat island agricultural drain isolate, even though it possessed the highest fraction of aromatic material and the highest specific ultraviolet absorbance. Changes in the chemical and isotopic composition of the isolates and the isotopic composition of the THMs suggest that the source of the THMs precursors was different between samples and between isolates. The pattern of variability in compositional and isotopic data for these samples was not consistent with simple mixing of river- and peat-derived organic material.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlies, C. H. van der, E-mail: c.h.vandervlies@amc.uva.nl; Hoekstra, J.; Ponsen, K. J.

    Introduction: Nonoperative management (NOM) has become the treatment of choice for hemodynamically stable patients with blunt splenic injury. Results of outcome after NOM are predominantly based on large-volume studies from level 1 trauma centers in the United States. This study was designed to assess the results of NOM in a relatively low-volume Dutch level 1 trauma center. Methods: An analysis of a prospective trauma registry was performed for a 6-year period before (period 1) and after the introduction and implementation of splenic artery embolization (SAE) (period 2). Primary outcome was the failure rate of initial treatment. Results: A total ofmore » 151 patients were reviewed. An increased use of SAE and a reduction of splenic operations during the second period was observed. Compared with period 1, the failure rate after observation in period 2 decreased from 25% to 10%. The failure rate after SAE in period 2 was 18%. The splenic salvage rate (SSR) after observation increased from 79% in the first period to 100% in the second period. During the second period, all patients with failure after observation were successfully treated with SAE. The SSR after SAE in periods 1 and 2 was respectively 100% and 86%. Conclusions: SAE of patients with blunt splenic injuries is associated with a reduction in splenic operations. The failure and splenic salvage rates in this current study were comparable with the results from large-volume studies of level 1 trauma centers. Nonoperative management also is feasible in a relatively low-volume level 1 trauma center outside the United States.« less

  5. The removal characteristics of natural organic matter in the recycling of drinking water treatment sludge: Role of solubilized organics.

    PubMed

    Zhou, Zhiwei; Yang, Yanling; Li, Xing; Ji, Siyang; Zhang, Hao; Wang, Shuai; Zeng, Qingping; Han, Xinghang

    2016-01-01

    To clarify the role of solubilized organics derived from drinking water treatment sludge (DWTS) in the elimination of natural organic matter (NOM) in the DWTS recycling process, a probe sonoreactor at a frequency of 25 kHz was used to solubilize the organics at varied specific energies. The coagulation behavior related to NOM removal in recycling the sonicated DWTS with and without solubilized organics was evaluated, and the effect on organic fractionations in coagulated water was determined. The study results could provide useful implications in designing DWTS recycling processes that avoid the enrichment of organic matter. Our results indicate that DWTS was disrupted through a low release of soluble chemical oxygen demand (SCOD) and proteins, which could deteriorate the coagulated water quality under the specific energy of 37.87-1212.1 kW h/kg TS. The optimal coagulation behavior for NOM removal was achieved by recycling the sonicated DWTS without solubilized organics at 151.5 kW h/kg TS specific energy. Recycling the sonicated DWTS could increase the enrichment potential of weakly hydrophobic acid, hydrophilic matter, and <3 kDa fractions; the enrichment risks could be reduced by discharging the solubilized organics. Fluorescent characteristic analysis indicated that when recycling the sonicated DWTS without solubilized organics, the removal of humic-like substances was limited, whereas removal of protein-like substances was enhanced, lowering the enrichment potential of protein-like substances. Copyright © 2015. Published by Elsevier B.V.

  6. Natural organic matter as electron acceptor: experimental evidence for its important role in anaerobic respiration

    NASA Astrophysics Data System (ADS)

    Lau, Maximilian Peter; Sander, Michael; Gelbrecht, Jörg; Hupfer, Michael

    2014-05-01

    Microbial respiration is a key driver of element cycling in oxic and anoxic environments. Upon depletion of oxygen as terminal electron acceptor (TEA), a number of anaerobic bacteria can employ alternative TEA for intracellular energy generation. Redox active quinone moieties in dissolved organic matter (DOM) are well known electron acceptors for microbial respiration. However, it remains unclear whether quinones in adsorbed and particulate OM accept electrons in a same way. In our studies we aim to understand the importance of natural organic matter (NOM) as electron acceptors for microbial energy gain and its possible implications for methanogenesis. Using a novel electrochemical approach, mediated electrochemical reduction and -oxidation, we can directly quantify reduced hydroquinone and oxidized quionone moieties in dissolved and particulate NOM samples. In a mesocosm experiment, we rewetted sediment and peat soil and followed electron transfer to the inorganic and organic electron acceptors over time. We found that inorganic and organic electron acceptor pools were depleted over the same timescales. More importantly, we showed that organic, NOM-associated electron accepting moieties represent as much as 21 40% of total TEA inventories. These findings support earlier studies that propose that the reduction of quinone moieties in particulate organic matter competitively suppresses methanogenesis in wetland soils. Our results indicate that electron transfer to organic, particulate TEA in inundated ecosystems has to be accounted for when establishing carbon budgets in and projecting greenhouse gas emissions from these systems.

  7. Influence of particle coating and matrix constituents on the cloud point extraction efficiency of silver nanoparticles (Ag-NPs) and application for monitoring the formation of Ag-NPs from Ag(+).

    PubMed

    Hartmann, Georg; Baumgartner, Tanja; Schuster, Michael

    2014-01-07

    For the quantification of silver nanoparticles (Ag-NPs) in environmental samples using cloud point extraction (CPE) for selective enrichment, surface modification of the Ag-NPs and matrix effects can play a key role. In this work we validate CPE with respect to the influence of different coatings and naturally occurring matrix components. The Ag-NPs tested were functionalized with inorganic and organic compounds as well as with biomolecules. Commercially available NPs and NPs synthesized according to methods published in the literature were used. We found that CPE can extract almost all Ag-NPs tested with very good efficiencies (82-105%). Only Ag-NPs functionalized with BSA (bovine serum albumin), which is a protein with the function to keep colloids in solution, cannot be extracted. No or little effect of environmentally relevant salts, organic matter, and inorganic colloids on the CPE of AgNPs was found. Additionally we used CPE to observe the in situ formation of Ag-NPs produced by the reduction of Ag(+) with natural organic matter (NOM).

  8. Species Identification and Virulence Attributes of Saccharomyces boulardii (nom. inval.)

    PubMed Central

    McCullough, Michael J.; Clemons, Karl V.; McCusker, John H.; Stevens, David A.

    1998-01-01

    Saccharomyces boulardii (nom. inval.) has been used for the treatment of several types of diarrhea. Recent studies have confirmed that S. boulardii is effective in the treatment of diarrhea, in particular chronic or recurrent diarrhea, and furthermore that it is a safe and well-tolerated treatment. The aim of the present study was to identify strains of S. boulardii to the species level and assess their virulence in established murine models. Three strains of S. boulardii were obtained from commercially available products in France and Italy. The three S. boulardii strains did not form spores upon repeated testing. Therefore, classical methods used for the identification of Saccharomyces spp. could not be undertaken. Typing by using the restriction fragment length polymorphisms (RFLPs) of the PCR-amplified intergenic transcribed spacer regions (including the 5.8S ribosomal DNA) showed that the three isolates of S. boulardii were not separable from authentic isolates of Saccharomyces cerevisiae with any of the 10 restriction endonucleases assessed, whereas 9 of the 10 recognized species of Saccharomyces could be differentiated. RFLP analysis of cellular DNA with EcoRI showed that all three strains of S. boulardii had identical patterns and were similar to other authentic S. cerevisiae isolates tested. Therefore, the commercial strains of S. boulardii available to us cannot be genotypically distinguished from S. cerevisiae. Two S. boulardii strains were tested in CD-1 and DBA/2N mouse models of systemic disease and showed intermediate virulence compared with virulent and avirulent strains of S. cerevisiae. The results of the present study show that these S. boulardii strains are asporogenous strains of the species S. cerevisiae, not representatives of a distinct and separate species, and possess moderate virulence in murine models of systemic infection. Therefore, caution should be advised in the clinical use of these strains in immunocompromised patients until further study is undertaken. PMID:9705402

  9. Effects of physical and chemical aspects on membrane fouling and cleaning using interfacial free energy analysis in forward osmosis.

    PubMed

    Zhang, Wanzhu; Dong, Bingzhi

    2018-05-20

    Natural organic matter (NOM) in micro-polluted water purification using membranes is a critical issue to handle. Understanding the fouling mechanism in the forward osmosis (FO) process, particularly identifying the predominant factor that controls membrane fouling, could have significant effects on exerting the advantages of FO technique. Cellulose triacetate no-woven (CTA-NW) membrane is applied to experiments with a high removal efficiency (> 99%) for the model foulant. Tannic acid (TA) is used as a surrogate foulant for NOM in the membrane fouling process, thus enabling the analysis of the effects of physical and chemical aspects of water flux, retention, and adsorption. The membrane fouling behavior is affected mainly by the combined effects of the osmotic dragging force and the interaction of the pH in the working solution, foulants, and calcium ions, as demonstrated by the water flux loss and the changes of membrane retention and adsorption. The fouled CTA-NW membrane (in PRO mode) could be flux-recovered by > 85% through physical cleaning methods. The interfacial free energy analysis theory was used to analyze the membrane fouling behavior with calculating the interfacial cohesion and adhesion free energies. The cohesion free energy refers to the deposition of foulants (TA or TA combined with calcium ions) on a fouled membrane. In addition, the adhesion free energy could be used to evaluate the interaction between foulants and a clean membrane.

  10. The influence of dissolved and surface-bound humic acid on the toxicity of TiO₂ nanoparticles to Chlorella sp.

    PubMed

    Lin, Daohui; Ji, Jing; Long, Zhifeng; Yang, Kun; Wu, Fengchang

    2012-09-15

    NOM is likely to coat TiO₂ nanoparticles (nano-TiO₂) discharged into the aquatic environment and influence the nanotoxicity to aquatic organisms, which however has not been well investigated. This study explored the influence of nanoparticle surface-bound humic acid (HA, as a model NOM) as well as dissolved HA on the toxicity of nano-TiO₂ to Chlorella sp., with a specific focus on adhesion of the nanoparticles to the algae. Results showed that nano-TiO₂ and the dissolved HA could inhibit the algal growth with an IC₅₀ of 4.9 and 8.4 mg L⁻¹, respectively, while both dissolved and nanoparticle surface-bound HA could significantly alleviate the algal toxicity of nano-TiO₂. IC₅₀ of nano-TiO₂ increased to 18 mg L⁻¹ in the presence of 5 mg L⁻¹ of the dissolved HA and to 48 mg L⁻¹ as the result of surface-saturation by HA. Co-precipitation experiment and transmission electron microscopy observation revealed that both dissolved and nanoparticle surface-bound HA prevented the adhesion of nano-TiO₂ to the algal cells due to the increased electrosteric repulsion. The generation of intracellular reactive oxygen species (ROS) was significantly limited by the dissolved and nanoparticle surface-bound HA. The prevention of adhesion and inhibition of ROS generation could account for the HA-mitigated nanotoxicity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Characterization, origin and aggregation behavior of colloids in eutrophic shallow lake.

    PubMed

    Xu, Huacheng; Xu, Mengwen; Li, Yani; Liu, Xin; Guo, Laodong; Jiang, Helong

    2018-05-31

    Stability of colloidal particles contributes to the turbidity in the water column, which significantly influences water quality and ecological functions in aquatic environments especially shallow lakes. Here we report characterization, origin and aggregation behavior of aquatic colloids, including natural colloidal particles (NCPs) and total inorganic colloidal particles (TICPs), in a highly turbid shallow lake, via field observations, simulation experiments, ultrafiltration, spectral and microscopic, and light scattering techniques. The colloidal particles were characterized with various shapes (spherical, polygonal and elliptical) and aluminum-, silicon-, and ferric-containing mineralogical structures, with a size range of 20-200 nm. The process of sediment re-suspension under environmentally relevant conditions contributed 78-80% of TICPs and 54-55% of NCPs in Lake Taihu, representing an important source of colloids in the water column. Both mono- and divalent electrolytes enhanced colloidal aggregation, while a reverse trend was observed in the presence of natural organic matter (NOM). The influence of NOM on colloidal stability was highly related to molecular weight (MW) properties with the high MW fraction exhibiting higher stability efficiency than the low MW counterparts. However, the MW-dependent aggregation behavior for NCPs was less significant than that for TICPs, implying that previous results on colloidal behavior using model inorganic colloids alone should be reevaluated. Further studies are needed to better understand the mobility/stability and transformation of aquatic colloids and their role in governing the fate and transport of pollutants in natural waters. Copyright © 2018. Published by Elsevier Ltd.

  12. Removal of organic matter from a variety of water matrices by UV photolysis and UV/H2O2 method.

    PubMed

    Vilhunen, Sari; Vilve, Miia; Vepsäläinen, Mikko; Sillanpää, Mika

    2010-07-15

    A re-circulated flow-through photoreactor was used to evaluate the ultraviolet (UV) photolysis and UV/H(2)O(2) oxidation process in the purification of three different water matrices. Chemically coagulated and electrocoagulated surface water, groundwater contaminated with creosote wood preservative and 1,2-dichloroethane (DCE) containing washing water from the plant manufacturing tailor-made ion-exchange resins were used as sample waters. The organic constituents of creosote consist mainly of harmful polycyclic aromatic hydrocarbons (PAH) whereas 1,2-DCE is a toxic volatile organic compound (VOC). Besides analyzing the specific target compounds, total organic carbon (TOC) analysis and measurement of change in UV absorbance at 254 nm (UV(254)) were performed. Initial TOC, UV(254) and pH varied significantly among treated waters. Initial H(2)O(2) concentrations 0-200 mg/l were used. The UV/H(2)O(2) treatment was efficient in removing the hazardous target pollutants (PAHs and 1,2-DCE) and natural organic matter (NOM). In addition, high removal efficiency for TOC was achieved for coagulated waters and groundwater. Also, the efficiency of direct photolysis in UV(254) removal was significant except in the treatment of 1,2-DCE containing washing water. Overall, UV(254) and TOC removal rates were high, except in case of washing water, and the target pollutants were efficiently decomposed with the UV/H(2)O(2) method. 2010 Elsevier B.V. All rights reserved.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwin S. Olson; Kurt E. Eylands; Daniel J. Stepan

    New federal drinking water regulations have been promulgated to restrict the levels of disinfection by-products (DBPs) in finished public water supplies. DBPs are suspected carcinogens and are formed when organic material is partially oxidized by disinfectants commonly used in the water treatment industry. Additional federal mandates are expected in the near future that will also affect public water suppliers with respect to DBPs. These new federal drinking water regulations may require public water suppliers to adjust treatment practices or incorporate additional treatment operations into their existing treatment trains. Many options have been identified, including membrane processes, granular activated carbon, poweredmore » activated carbon (PAC), enhanced coagulation and/or softening, and alternative disinfectants (e.g., chlorine dioxide, ozone, and chloramines). Of the processes being considered, PAC appears to offer an attractive benefit-to-cost advantage for many water treatment plants, particularly small systems (those serving fewer than 10,000 customers). PAC has traditionally been used by the water treatment industry for the removal of compounds contributing to taste and odor problems. PAC also has the potential to remove naturally occurring organic matter (NOM) from raw waters prior to disinfection, thus controlling the formation of regulated DBPs. Many small water systems are currently using PAC for taste and odor control and have the potential to use PAC for controlling DBPs. Activated carbons can be produced from a variety of raw materials, including wood, peat, coconut husks, and numerous types of coal. The Energy & Environmental Research Center (EERC) has been working on the development of a PAC product to remove NOM from surface water supplies to prevent the formation of carcinogenic DBPs during chlorination. During that study, the sodium and calcium content of the lignites showed a significant effect on the sorption capacity of the activated carbon product. As much as a 130% increase in the humic acid sorption capacity of a PAC produced from a high-sodium-content lignite was observed. We hypothesize that the sodium and calcium content of the coal plays a significant role in the development of pore structures and pore-size distribution, ultimately producing activated carbon products that have greater sorption capacity for specific contaminants, depending on molecular size.« less

  14. Changes in redox properties of humic acids upon sorption to alumina

    NASA Astrophysics Data System (ADS)

    Subdiaga, Edisson; Orsetti, Silvia; Jindal, Sharmishta; Haderlein, Stefan B.

    2016-04-01

    1. Introduction A prominent role of Natural Organic Matter (NOM) in biogeochemical processes is its ability to act as an electron shuttle, accelerating rates between a bulk electron donor and an acceptor. The underlying processes are reversible redox reactions of quinone moieties.1 This shuttling effect has been studied in two major areas: transformation of redox active pollutants and microbial respiration.2-3 Previous studies primarily compared effects in the presence or absence of NOM without addressing the redox properties of NOM nor its speciation. The interaction between humic acids (HA) and minerals might change properties and reactivity of organic matter. Specifically, we investigate whether changes in the redox properties of a HA occur upon sorption to redox inactive minerals. Since fractionation and conformational rearrangements of NOM moieties upon sorption are likely to happen, the redox properties of the NOM fractions upon sorption might differ as well. 2. Materials and methods Elliot Soil Humic Acid (ESHA), Pahokee Peat Humic Acid (PPHA) and Suwannee River Humic Acid (SRHA) were used as received from IHSS. Aluminum oxide (Al2O3) was suspended in 0.1M KCl. Sorption was studied at pH 7.0 in duplicate batch experiments for several HA/Al2O3 ratios. For the suspension (mineral + sorbed HA, plus dissolved HA), the filtrate (0.45μm) and the HA stock solution, the electron donating and accepting capacities (EDC and EAC) were determined following established procedures.4 3. Results All studied HA-Al2O3 systems showed similar behavior with regard to changes in redox properties. There was a significant increase in the EDC of the whole suspension compared to the stock solutions and the non-sorbed HA in the filtrate (up to 300% for PPHA). This effect was more pronounced with increasing amounts of sorbed HA in the suspension. Although ESHA had the highest sorption capacity on Al2O3 (~ 6 times higher than PPHA & SRHA), it showed the smallest changes in redox properties upon sorption. Considering the total electron exchange capacities, significant changes were found mainly at higher amounts of sorbed PPHA and SRHA. 4. Conclusions Overall, our results suggest a change in the redox properties of sorbed HA but not for the dissolved fraction. The sorbed fraction showed a higher redox capacity than the stock samples. Given the absence of redox transfer between the HA and the redox inert aluminum oxide, such changes might be due to conformational changes in the humic substances. 5. References [1] Scott D., Mcknight, D., Blunt-Harris, E., Kolesar, S., Lovley, A. Environ. Sci. Technol. 1998, 32, 2984-2989. [2] Dunnivant, F. Schwarzenbach, R., Macalady, D. Environ. Sci. Technol. 1992, 26(11), 2133-2141. [3] Jiang, J. & Kappler, A. Environ. Sci. Technol. 2008, 42(10), 3562-3569. [4] Aeschbacher, M., Sander M., Schwarzenbach, R. Environ. Sci. Technol. 2010, 44(1), 87-93.

  15. Use of a New Simltaneous Absorbance-Fluorescene Instrument to Monitor Hydraluic Fracture Mining Waste Water to Prevent Drinking Water Contamination

    NASA Astrophysics Data System (ADS)

    Gilmore, A. M.

    2013-05-01

    Recently, the issue of waste water effuse from oil and gas mining, especially that including hydraulic fracturing, has resurfaced on the news and the political atmosphere as an area of concern. One of the key concerns is drinking water contamination from the hydraulic fracturing chemicals and chemicals contained in the water introduced into the well at high-pressure and the flowback and produced water associate with the petroleum product extraction. The key to successfully meeting drinking water safety requirements lies in the drinking water treatment plant's ability to deal with often dramatic source-water variations in natural organic matter (NOM) content that can react during disinfection with high levels of chloride and bromide found in hydraulic facture waste water to form toxc disinfection by-products (DBPs). Importantly, the brominated DBP species are particularly dangerous. Whereas the regulated levels of NOM can roughly determined by measuring total organic carbon (TOC), often this parameter does not provide rapid or cost-effective qualitative or quantitative assessment of the various humic, fulvic and other aromatic NOM components associated with DBP formation. However, two main optical techniques namely UV absorbance and fluorescence excitation-emission mapping can be used for rapid assessment with precise identification of humic and fulvic components that cause DBPs. This study presents data from a new type of instrument which simultaneously measures the UV-VIS absorbance spectrum and EEM. The rapid absorbance-EEM is facilitated by a single system that is more than 100 time faster than conventional scanning absorbance and fluorescence optical benches. The new system can continuously collect EEMs and absorbance spectra at a rate often greater than 1 per min with the extra capacity to monitor the UV254 absorbance and fluorescence emission spectrum excited at 254 nm in 4 ms intervals (an equivalent scan rate of 5.5 million nm/min). The EEM spectral data is corrected for all instrumental response factors including concentration dependent inner-filter effects. The accumulated EEM data sets can be modeled using conventional peak identification, PARAFAC and or PCA analysis of the fractionated samples to predict the trihalomethane forming potential (THMFP). Moreover, the instrument and methods can be used to identify and quantify hundreds of chemicals including oils, PAHs and other key chemicals of concern from hydraulic fracturing practices.

  16. Cloud Properties from Satellite Infrared and Visible Measurements

    DTIC Science & Technology

    1976-12-07

    Rudiometer Veta. NOM Teen - nical Memorandum WESS 52. Deiruendjian, D., 1969: Electromagnetic Scatter- ing on Spherical Polydispersions. American...asu m ents, Cloud mass liquid water content, Cloud altitudes, Hydrometeor * erosion DOI PORN 1473 NOV *11’.

  17. NRL 324-cu m Chamber Pressurization Experiment: Pressurant Concentration Histories with and without Obstacles to Flow.

    DTIC Science & Technology

    1982-03-15

    N N N N N NN N, .0 . . . .en ~ ~ ~ ~ ~ ,’, m Nom N5%N5% 05% a,,O. 5 5 f5 070)5 - - - 00%0’. 0550 7% % 5’~ 5 0 5 5%5%55%00 5%. 5 0 55%5%% 55%55%55%5...O NOM N O O@0 ~ ~ ~ ~ ~ ~ ~ . aMO O O 00 0N UO0 I’foJV~~~~fl~~~. 1 @0 *N WN N MM -allWO OO V WV W Cl 0 16 - ON Wi.O~miNO 00 OM MNN 0NO N M N3M STONE...020 .03? .055 .059 .075 .041 .050 .065 .032 .050 .067 .55 .650 .039 .013 .02? .046 .050 .063 .032 .030 .064 .039 .056 .056 .60 . 043 .026 .014 .021 .036

  18. Cleaner production in a remanufacturing process of air compressors.

    PubMed

    Esquer, Javier; Arvayo, Jose Angel; Alvarez-Chavez, Clara Rosalia; Munguia-Vega, Nora Elba; Velazquez, Luis

    2017-03-01

    This article provides relevant results of a cleaner production program conducted in a company dedicated to remanufacturing air compressors in the city of Hermosillo, Sonora, Mexico. The overall study design was based on an integration of acknowledged cleaner production and pollution prevention programs. Although this kind of program also involves environmental issues, this study focused on occupational health and safety by addressing different aspects of the work environment: ergonomic, physical (noise and lighting), and chemical. Particularly, ergonomic aspects were evaluated through the Modular Arrangement of Predetermined Time Standards (MODAPTS) method. For physical aspects, noise and lighting were addressed through Standard No. NOM-011-STPS-2001 and Standard No. NOM-025-STPS-2008 respectively. In addition, chemical aspects were analyzed through material safety data sheets and different search tools. Root causes of each risk were identified, and options to prevent, eliminate, and/or reduce each risk have been provided.

  19. [Overweight and obesity in indigenous nahuas from Ixtaczoquitlán, Veracruz, Mexico].

    PubMed

    Herrera-Huerta, Emma V; García-Montalvo, Eliud A; Méndez-Bolaina, Enrique; López-López, José G; Valenzuela, Olga L

    2012-01-01

    The study was aimed at determining the prevalence of overweight and obesity in indigenous nahuas from Ixtaczoquitlán, Veracruz, Mexico. For this purpose, a cross-cut study was conducted between 2010 and 2011, in which the body mass index (BMI) was calculated. To define overweight and obesity, the categories of the World Health Organization (WHO) and the Mexican Official Standard (NOM, Spanish acronym) were used. 227 nahuas (77,5% women) were included. According to WHO’s guidelines, the rate for overweight among nahuas was 41%, and 36.5% for obesity; according to NOM, it was 11.4 and 69.2% respectively. In conclusion, the prevalence of overweight and obesity among indigenous nahuas is high. Studies should be conducted to determine the prevalence and risk factors in order to develop prevention strategies based on this information to improve the health quality of these populations.

  20. In-situ electrochemical Fe(VI) for removal of microcystin-LR from drinking water: comparing dosing of the ferrate ion by electrochemical and chemical means.

    PubMed

    Dubrawski, K L; Cataldo, M; Dubrawski, Z; Mazumder, A; Wilkinson, D P; Mohseni, M

    2018-06-01

    Harmful algal blooms (HAB) release microtoxins that contaminate drinking water supplies and risk the health of millions annually. Crystalline ferrate(VI) is a powerful oxidant capable of removing algal microtoxins. We investigate in-situ electrochemically produced ferrate from common carbon steel as an on-demand alternative to crystalline ferrate for the removal of microcystin-LR (MC-LR) and compare the removal efficacy for both electrochemical (EC) and chemical dosing methodologies. We report that a very low dose of EC-ferrate in deionized water (0.5 mg FeO 4 2- L -1 ) oxidizes MC-LR (MC-LR 0 = 10 μg L -1 ) to below the guideline limit (1.0 μg L -1 ) within 10 minutes' contact time. With bicarbonate or natural organic matter (NOM), doses of 2.0-5.0 mg FeO 4 2- L -1 are required, with lower efficacy of EC-ferrate than crystalline ferrate due to loss of EC-ferrate by water oxidation. To evaluate the EC-ferrate process to concurrently oxidize micropollutants, coagulate NOM, and disinfect drinking water, we spiked NOM-containing real water with MC-LR and Escherichia coli, finding that EC-ferrate is effective at 10.0 mg FeO 4 2- L -1 under normal operation or 2.0 mg FeO 4 2- L -1 if the test water has initial pH optimized. We suggest in-situ EC-ferrate may be appropriate for sporadic HAB events in small water systems as a primary or back-up technology.

  1. Management of pediatric splenic injuries in Canada.

    PubMed

    McDonald, Lindsay A; Yanchar, Natalie L

    2012-03-01

    Nonoperative management (NOM) of blunt splenic injuries has become the standard of care in hemodynamically stable children. This study compares the management of these injuries between pediatric and nonpediatric hospitals in Canada. Data were obtained from the Canadian Institute of Health Information trauma database on all patients aged 2 to 16 years, admitted to a Canadian hospital with a diagnosis of splenic injury between May 2002 and April 2004. Variables included age, sex, associated major injuries, splenic procedures, intensive care unit (ICU) admissions, blood transfusions, and length of stay. Hospitals were coded as pediatric or nonpediatric. Univariate analysis and logistic regression were used to determine associations between hospital type and outcomes. Of 1284 cases, 654 were managed at pediatric hospitals and 630 at nonpediatric centers. Patients at pediatric centers tended to be younger and more likely to have associated major injuries. Controlling for covariates, including associated major injuries, patients managed at pediatric centers were less likely to undergo splenectomy compared with those managed at nonpediatric centers (odds ratio [OR], 0.2; 95% confidence interval, 0.1-0.4). The risk of receiving blood products, admission to the ICU, and staying in hospital for more than 5 days was associated only with having associated major injuries. Even in the presence of other major injuries, successful NOM of blunt splenic injuries occurs more frequently in pediatric hospitals in Canada. This has policy relevance regarding education of adult surgeons about the appropriateness of NOM in children and developing guidelines on appropriate regional triaging of pediatric patients with splenic injury in Canada. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. USING METHANOL-WATER SYSTEMS TO INVESTIGATE PHENANTHRENE SORPTION-DESORPTION ON SEDIMENT

    EPA Science Inventory

    Sorption isotherm nonlinearity, sorption-desorption hysteresis, slow desorption kinetics, and other nonideal phenomena have been attributed to the differing sorptive characteristics of the natural organic matter (NOM) polymers associated with soils and sediments. A conceptualizat...

  3. Renewable energy powered membrane technology: Impact of pH and ionic strength on fluoride and natural organic matter removal.

    PubMed

    Owusu-Agyeman, Isaac; Shen, Junjie; Schäfer, Andrea Iris

    2018-04-15

    Real water pH and ionic strength vary greatly, which influences the performance of membrane processes such as nanofiltration (NF) and reverse osmosis (RO). Systematic variation of pH (3-12) and ionic strength (2-10g/L as total dissolved solids (TDS)) was undertaken with a real Tanzanian water to investigate how water quality affects retention mechanisms of fluoride (F) and natural organic matter (NOM). An autonomous solar powered NF/RO system driven by a solar array simulator was supplied with constant power from a generator. An open NF (NF270) and a brackish water RO (BW30) membrane were used. A surface water with a very high F (59.7mg/L) and NOM (110mgC/L) was used. Retention of F by NF270 was <20% at pH <6, increased to 40% at pH6, and 60-70% at pH7-12, indicating a dominance of charge repulsion while being ineffective in meeting the guideline of 1.5mg/L. Increase in ionic strength led to a significant decline in retention of F (from 70 to 50%) and electrical conductivity (from 60 to 10%) by NF270, presumably due to charge screening. In contrast, BW30 retained about 50% of F at pH3, >80% at pH4, and about 99% at pH >5, due to the smaller pore size and hence a more dominant size exclusion. In consequence, only little impact of ionic strength increase was observed for BW30. The concentration of NOM in permeates of both NF270 and BW30 were typically <2mg/L. This was not affected by pH or ionic strength due to the fact that the bulk of NOM was rejected by both membranes through size exclusion. The research is carried out in the context of providing safe drinking water for rural and remote communities where infrastructure is lacking, and water quality varies significantly. While other studies focus on energy fluctuations, this research emphasises on feed water quality that affects system performance and may alter due to a number of environmental factors. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Retention of pesticide Endosulfan by nanofiltration: influence of organic matter-pesticide complexation and solute-membrane interactions.

    PubMed

    De Munari, Annalisa; Semiao, Andrea Joana Correia; Antizar-Ladislao, Blanca

    2013-06-15

    Nanofiltration (NF) is a well-established process used in drinking water production to effectively remove Natural Organic Matter (NOM) and organic micropollutants. The presence of NOM has been shown to have contrasting results on micropollutant retention by NF membranes and removal mechanisms are to date poorly understood. The permeate water quality can therefore vary during operation and its decrease would be an undesired outcome for potable water treatment. It is hence important to establish the mechanisms involved in the removal of organic micropollutants by NF membranes in the presence of NOM. In this study, the retention mechanisms of pesticide Endosulfan (ES) in the presence of humic acids (HA) by two NF membranes, TFC-SR2 and TFC-SR3, a "loose" and a "tight" membrane, respectively, were elucidated. The results showed that two mechanisms were involved: (1) the formation of ES-HA complexes (solute-solute interactions), determined from solid-phase micro-extraction (SPME), increased ES retention, and (2) the interactions between HA and the membrane (solute-membrane interactions) increased membrane molecular weight cut-off (MWCO) and decreased ES retention. HA concentration, pH, and the ratio between micropollutant molecular weight (MW) and membrane MWCO were shown to influence ES retention mechanisms. In the absence of HA-membrane interactions at pH 4, an increase of HA concentration increased ES retention from 60% to 80% for the TFC-SR2 and from 80% to 95% for the TFC-SR3 due to ES-HA complex formation. At pH 8, interactions between HA and the loose TFC-SR2 increased the membrane MWCO from 460 to 496 g/mol and ES retention decreased from 55% to 30%, as HA-membrane interactions were the dominant mechanism for ES retention. In contrast, for the "tight" TFC-SR3 membrane the increase in the MWCO (from 165 to 179 g/mol), was not sufficient to decrease ES retention which was dominated by ES-HA interactions. Quantification of the contribution of both solute-solute interactions and solute-membrane interactions is hence fundamental in understanding the removal mechanisms of micropollutant by NF membranes in the presence of NOM in order to optimize the treatment process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Nanoscale Titanium Dioxide (nTiO2) Transport in Water-Saturated Natural Sediments: Influence of Soil Organic Matter and Fe/Al Oxyhydroxides

    NASA Astrophysics Data System (ADS)

    Fisher-Power, L.; Cheng, T.

    2017-12-01

    Transport of engineered nanoparticles (ENP) in subsurface environments has important implications to water quality and soil contamination. Although extensive research has been conducted to understand the effects of water chemistry on ENP transport, less attention has been paid to influences from the transport medium/matrix. The objective of this research is to investigate the effects of natural organic matter (NOM) and Fe/Al oxyhydroxides in a natural sediment on ENP transport. A sediment was collected and separated into four portions, one of which was unmodified, and the others treated to remove specific components (organic matter, Fe/Al oxyhydroxides, or both organic matter and Fe/Al oxyhydroxides). Transport of nanoscale titanium dioxide (nTiO2) in columns packed with quartz sand and each of the four types of the sediment under water-saturated conditions was studied. Our results showed that nTiO2 transport was strongly influenced by pH and sediment composition. When influent pH = 5, nTiO2 transport in all the sediments was low, as positively-charged nTiO2 was attracted to negatively charged NOM, quartz, and other minerals. nTiO2 transport was slightly enhanced in columns packed with untreated sediment or Fe/Al oxyhydroxides removed sediment due to dissolved organic matter generated by the partial dissolution of NOM, which adsorbed onto nTiO2 surface and reversed its zeta potential to negative. When influent pH = 9, nTiO2 transport was generally high since negatively-charged nTiO2 was repelled by negatively charged transport medium. However, in columns packed with the organic matter removed sediment or the Fe/Al oxyhydroxides removed sediment, nTiO2 transport was low. This was attributable to pH buffering by the sediment, which decreased pore water pH in the column, resulting in zeta potential change and electrostatic attraction between Fe/Al oxyhydroxides and nTiO2. This research demonstrates that electrostatic forces between nTiO2 and mineral/organic components in natural sediments is a key factor that controls nTiO2 retention and transport, and that both NOM and Fe/Al oxyhydroxides may substantially influence nTiO2 transport.

  6. 76 FR 35930 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-20

    ... Proposed Rule Change To Adopt a Market Order Spread Protection Feature June 14, 2011. Pursuant to Section... Market (``NOM'') to amend Chapter VI, Trading Systems, Section 1, Definitions, to adopt a Market Order...

  7. Photoproduction of Carbon Monoxide from Natural Organic Matter

    EPA Science Inventory

    Pioneering studies by Valentine provided early kinetic results that used carbon monoxide (CO) production to evaluate the photodecomposition of aquatic natural organic matter (NOM) . (ES&T 1993 27 409-412). Comparatively few kinetic studies have been conducted of the photodegradat...

  8. EVALUATION OF BIODEGRADABILITY OF NOM AFTER OZONATION. (R826829)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  9. Multiwalled Carbon Nanotube Dispersion Methods Affect Their Aggregation, Deposition, and Biomarker Response

    EPA Science Inventory

    To systematically evaluate how dispersion methods affect the environmental behaviors of multiwalled carbon nanotubes (MWNTs), MWNTs were dispersed in various solutions (e.g., surfactants, natural organic matter (NOM), and etc.) via ultrasonication (SON) and long-term stirring (LT...

  10. Lyophilization and Reconstitution of Reverse Osmosis Concentrated Natural Organic Matter

    EPA Science Inventory

    Disinfection by-product (DBP) research can be complicated by difficulties in shipping large water quantities and changing natural organic matter (NOM) characteristics over time. To overcome these issues, it is advantageous to have a reliable method for concentrating and preservin...

  11. 77 FR 57175 - Self-Regulatory Organizations; NASDAQ OMX PHLX LLC; Notice of Filing and Immediate Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-17

    ... routing and executing certain orders in equity options to NOM, specifically, options on Facebook, Inc... Reference Room, 100 F Street NE., Washington, DC 20549, on official business days between the hours of 10:00...

  12. A replacement name for Dalodesmus  sakalava (de Saussure Zehntner, 1901) (Diplopoda: Polydesmida: Dalodesmidae).

    PubMed

    Mesibov, Robert; Wesener, Thomas; Hollier, John

    2018-04-23

    Polydesmus (Pterodesmus) voeltzkowi nom. nov. is proposed as a replacement name for Polydesmus (Pterodesmus) sakalava de Saussure Zehntner, 1901, now Dalodesmus sakalava (de Saussure Zehntner, 1901), a junior primary homonym of Polydesmus sakalava de Saussure Zehntner, 1897.

  13. Nomenclatural changes in Cicadellidae: Typhlocybinae and Delphacidae (Homoptera).

    USDA-ARS?s Scientific Manuscript database

    New replacement names are proposed for seven species of the subfamily Typhlocybinae; one new synonym is recognized in the family Delphacidae. The following changes are proposed: Empoasca (Empoasca) angustata nom.nov. for Empoasca angusta Linnavuori & DeLong (not Dworakowska); Empoasca (Empoasca) ch...

  14. AQUEOUS CHLORINATION OF CHLORPYRIFOS IN THE PRESENCE OF BROMIDE AND NOM

    EPA Science Inventory

    The rates and pathways for pesticide transformation under drinking water treatment conditions are known for only a few pesticides and only under limited conditions. For example, it is known that chlorine reacting with organophosphate (OP) pesticides that contain the thiophosphate...

  15. Application of portable in situ UV fluorescence sensors in natural and engineered aquatic systems.

    NASA Astrophysics Data System (ADS)

    Fox, Bethany; Rushworth, Cathy; Atrridge, John

    2016-04-01

    Natural organic matter (NOM) is ubiquitous throughout aquatic systems. This heterogeneous mixture of organic matter is central for aquatic ecosystems and, both local and global, biogeochemical cycling. Improvements in technology and data analysis has allowed for advances in the understanding and characterisation of aquatic organic matter. However, much of the technological expansions have focussed on benchtop instruments. In recent years, there has been interest in the continued development of portable in situ sensors for monitoring NOM characteristics within a wide range of applications, spanning both natural and engineered systems. The UviLux (Chelsea Technologies Group Ltd., UK) is an in situ portable UV fluorescence sensor that can be configured to monitor a range of NOM in aquatic systems, as well as anthropogenic inputs such as polycyclic aromatic hydrocarbons (PAH) and optical brighteners. Here we will focus on the use of the Tryptophan and CDOM UviLux sensors across a variety of applications in both natural systems, such as rivers and leachate into groundwater, and engineered systems, including drinking water and waste water treatment. Recent work has focused on standardising the fluorescence output across the UviLux range of sensors, reporting data in quinine sulphate units (QSU), which enables the output from two different fluorometers to be directly compared both to each other, and to bench-top data. A key advantage of deploying multiple sensors is the ability to fingerprint the fluorescence, by providing, for example, a Tryptophan/CDOM ratio. From the data collected, the ratio of the different fluorescence regions has been shown to provide more robust in situ data and help identify true temporal variations and patterns across multiple applications and sampling locations.

  16. Expert Financial Advice Neurobiologically “Offloads” Financial Decision-Making under Risk

    PubMed Central

    Engelmann, Jan B.; Capra, C. Monica; Noussair, Charles; Berns, Gregory S.

    2009-01-01

    Background Financial advice from experts is commonly sought during times of uncertainty. While the field of neuroeconomics has made considerable progress in understanding the neurobiological basis of risky decision-making, the neural mechanisms through which external information, such as advice, is integrated during decision-making are poorly understood. In the current experiment, we investigated the neurobiological basis of the influence of expert advice on financial decisions under risk. Methodology/Principal Findings While undergoing fMRI scanning, participants made a series of financial choices between a certain payment and a lottery. Choices were made in two conditions: 1) advice from a financial expert about which choice to make was displayed (MES condition); and 2) no advice was displayed (NOM condition). Behavioral results showed a significant effect of expert advice. Specifically, probability weighting functions changed in the direction of the expert's advice. This was paralleled by neural activation patterns. Brain activations showing significant correlations with valuation (parametric modulation by value of lottery/sure win) were obtained in the absence of the expert's advice (NOM) in intraparietal sulcus, posterior cingulate cortex, cuneus, precuneus, inferior frontal gyrus and middle temporal gyrus. Notably, no significant correlations with value were obtained in the presence of advice (MES). These findings were corroborated by region of interest analyses. Neural equivalents of probability weighting functions showed significant flattening in the MES compared to the NOM condition in regions associated with probability weighting, including anterior cingulate cortex, dorsolateral PFC, thalamus, medial occipital gyrus and anterior insula. Finally, during the MES condition, significant activations in temporoparietal junction and medial PFC were obtained. Conclusions/Significance These results support the hypothesis that one effect of expert advice is to “offload” the calculation of value of decision options from the individual's brain. PMID:19308261

  17. Immunohistochemical study of integrin α₅β₁, fibronectin, and Bcl-2 in normal oral mucosa, inflammatory fibroepithelial hyperplasia, oral epithelial dysplasia, and oral squamous cell carcinoma.

    PubMed

    Núñez, Manuel Antonio Gordón; de Matos, Felipe Rodrigues; Freitas, Roseana de Almeida; Galvão, Hébel Cavalcanti

    2013-07-01

    The objective of this study was to compare the immunoexpression of integrin α₅β₁, fibronectin, and the Bcl-2 protein in normal oral mucosa (NOM), inflammatory fibroepithelial hyperplasia (IFH), oral epithelial dysplasia (OED), and oral squamous cell carcinoma (OSCC). Eleven cases of NOM, 16 IFH, 20 OED, and 27 OSCC were selected for analysis of the immunoexpression of integrin α₅β₁, fibronectin, and bcl-2 protein. There was an association between the intensity and location of the integrin α₅β₁ expression, especially in the OSCC, that 48.1% of cases showed weak immunoreactivity and 40.7% in the suprabasal layer (P < 0.05). There was an association between the pattern and distribution of fibronectin expression in basement membrane, where 90% of NOM showed a pattern of linear continuous and 80% of OED exhibited focal distribution (P < 0.05). The fibronectin expression in connective tissue was predominantly intense with an association of staining pattern among the different specimens, where 37% of OSCC showed a reticular pattern (P < 0.05). There was an association of bcl-2 protein among the types of specimens, especially in IFH and OSCC, where 100% of the cases exhibited scores 1 of staining (P < 0.05). Within this context, the interaction of integrin α₅β₁ with its main ligand in the extracellular matrix, fibronectin, is suggested to influence the survival of tumor cells and to favor their proliferation by modulating apoptosis through the upregulation of antiapoptotic proteins or the suppression of apoptotic mediators.

  18. Nitrosation and nitration of fulvic acid, peat and coal with nitric acid

    USGS Publications Warehouse

    Thorn, Kevin A.; Cox, Larry G.

    2016-01-01

    Nitrohumic acids, produced from base extraction of coals and peats oxidized with nitric acid, have received considerable attention as soil ammendments in agriculture. The nitration chemistry however is incompletely understood. Moreover, there is a need to understand the reaction of nitric acid with natural organic matter (NOM) in general, in the context of a variety of environmental and biogeochemical processes. Suwannee River NOM, Suwannee River fulvic acid, and Pahokee Peat fulvic acid were treated with 15N-labeled nitric acid at concentrations ranging from 15% to 22% and analyzed by liquid and solid state 15N NMR spectroscopy. Bulk Pahokee peat and Illinois #6 coal were also treated with nitric acid, at 29% and 40% respectively, and analyzed by solid state 15N NMR spectroscopy. In addition to nitro groups from nitration of aromatic carbon, the 15N NMR spectra of all five samples exhibited peaks attributable to nitrosation reactions. These include nitrosophenol peaks in the peat fulvic acid and Suwannee River samples, from nitrosation of phenolic rings, and N-nitroso groups in the peat samples, from nitrosation of secondary amides or amines, the latter consistent with the peat samples having the highest naturally abundant nitrogen contents. Peaks attributable to Beckmann and secondary reactions of the initially formed oximes were present in all spectra, including primary amide, secondary amide, lactam, and nitrile nitrogens. The degree of secondary reaction product formation resulting from nitrosation reactions appeared to correlate inversely with the 13C aromaticities of the samples. The nitrosation reactions are most plausibly effected by nitrous acid formed from the reduction of nitric acid by oxidizable substrates in the NOM and coal samples.

  19. Nitrosation and Nitration of Fulvic Acid, Peat and Coal with Nitric Acid

    PubMed Central

    Thorn, Kevin A.; Cox, Larry G.

    2016-01-01

    Nitrohumic acids, produced from base extraction of coals and peats oxidized with nitric acid, have received considerable attention as soil ammendments in agriculture. The nitration chemistry however is incompletely understood. Moreover, there is a need to understand the reaction of nitric acid with natural organic matter (NOM) in general, in the context of a variety of environmental and biogeochemical processes. Suwannee River NOM, Suwannee River fulvic acid, and Pahokee Peat fulvic acid were treated with 15N-labeled nitric acid at concentrations ranging from 15% to 22% and analyzed by liquid and solid state 15N NMR spectroscopy. Bulk Pahokee peat and Illinois #6 coal were also treated with nitric acid, at 29% and 40% respectively, and analyzed by solid state 15N NMR spectroscopy. In addition to nitro groups from nitration of aromatic carbon, the 15N NMR spectra of all five samples exhibited peaks attributable to nitrosation reactions. These include nitrosophenol peaks in the peat fulvic acid and Suwannee River samples, from nitrosation of phenolic rings, and N-nitroso groups in the peat samples, from nitrosation of secondary amides or amines, the latter consistent with the peat samples having the highest naturally abundant nitrogen contents. Peaks attributable to Beckmann and secondary reactions of the initially formed oximes were present in all spectra, including primary amide, secondary amide, lactam, and nitrile nitrogens. The degree of secondary reaction product formation resulting from nitrosation reactions appeared to correlate inversely with the 13C aromaticities of the samples. The nitrosation reactions are most plausibly effected by nitrous acid formed from the reduction of nitric acid by oxidizable substrates in the NOM and coal samples. PMID:27175784

  20. Concentration and diversity of uncultured Legionella spp. in two unchlorinated drinking water supplies with different concentrations of natural organic matter.

    PubMed

    Wullings, Bart A; Bakker, Geo; van der Kooij, Dick

    2011-01-01

    Two unchlorinated drinking water supplies were investigated to assess the potential of water treatment and distribution systems to support the growth of Legionella spp. The treatment plant for supply A distributed treated groundwater with a low concentration (<0.5 ppm of C) of natural organic matter (NOM), and the treatment plant for supply B distributed treated groundwater with a high NOM concentration (8 ppm of C). In both supplies, the water temperature ranged from about 10°C after treatment to 18°C during distribution. The concentrations of Legionella spp. in distributed water, analyzed with quantitative PCR (Q-PCR), averaged 2.9 (± 1.9) × 10(2) cells liter(-1) in supply A and 2.5 (± 1.6) × 10(3) cells liter(-1) in supply B. No Legionella was observed with the culture method. A total of 346 clones (96 operational taxonomical units [OTUs] with ≥97% sequence similarity) were retrieved from water and biofilms of supply A and 251 (43 OTUs) from supply B. The estimation of the average value of total species richness (Chao1) in supply A (153) was clearly higher than that for supply B (58). In each supply, about 77% of the sequences showed <97% similarity to described species. Sequences related to L. pneumophila were only incidentally observed. The Legionella populations of the two supplies are divided into two distinct clusters based on distances in the phylogenetic tree as fractions of the branch length. Thus, a large variety of mostly yet-undescribed Legionella spp. proliferates in unchlorinated water supplies at temperatures below 18°C. The lowest concentration and greatest diversity were observed in the supply with the low NOM concentration.

  1. Using fluorescence-parallel factor analysis for assessing disinfection by-product formation and natural organic matter removal efficiency in secondary treated synthetic drinking waters.

    PubMed

    Watson, Kalinda; Farré, Maria José; Leusch, Frederic D L; Knight, Nicole

    2018-05-28

    Parallel factor (PARAFAC) analysis of fluorescence excitation-emission matrices (EEMs) was used to investigate the organic matter and DBP formation characteristics of untreated, primary treated (enhanced coagulation; EC) and secondary treated synthetic waters prepared using a Suwannee River natural organic matter (SR-NOM) isolate. The organic matter was characterised by four different fluorescence components; two humic acid-like (C1 and C2) and two protein-like (C3 and C4). Secondary treatment methods tested, following EC treatment, were; powdered activated carbon (PAC), granular activated carbon (GAC), 0.1% silver-impregnated activated carbon (SIAC), and MIEX® resin. Secondary treatments were more effective at removing natural organic matter (NOM) and fluorescent DBP-precursor components than EC alone. The formation of a suite of 17 DBPs including chlorinated, brominated and iodinated trihalomethanes (THMs), dihaloacetonitriles (DHANs), chloropropanones (CPs), chloral hydrate (CH) and trichloronitromethane (TCNM) was determined after chlorinating water sampled before and after each treatment step. Regression analysis was used to investigate the relationship between peak component fluorescence intensity (F MAX ), DBP concentration and speciation, and more commonly used aggregate parameters such as DOC, UV 254 and SUVA 254 . PARAFAC component 1 (C1) was in general a better predictor of DBP formation than other aggregate parameters, and was well correlated (R ≥ 0.80) with all detected DBPs except dibromochloromethane (DBCM) and dibromoacetonitrile (DBAN). These results indicate that the fluorescence-PARAFAC approach could provide a robust analytical tool for predicting DBP formation, and for evaluating the removal of NOM fractions relevant to DBP formation during water treatment. Copyright © 2018. Published by Elsevier B.V.

  2. Asymmetric flow field flow fractionation with light scattering detection - an orthogonal sensitivity analysis.

    PubMed

    Galyean, Anne A; Filliben, James J; Holbrook, R David; Vreeland, Wyatt N; Weinberg, Howard S

    2016-11-18

    Asymmetric flow field flow fractionation (AF 4 ) has several instrumental factors that may have a direct effect on separation performance. A sensitivity analysis was applied to ascertain the relative importance of AF 4 primary instrument factor settings for the separation of a complex environmental sample. The analysis evaluated the impact of instrumental factors namely, cross flow, ramp time, focus flow, injection volume, and run buffer concentration on the multi-angle light scattering measurement of natural organic matter (NOM) molar mass (MM). A 2 (5-1) orthogonal fractional factorial design was used to minimize analysis time while preserving the accuracy and robustness in the determination of the main effects and interactions between any two instrumental factors. By assuming that separations resulting in smaller MM measurements would be more accurate, the analysis produced a ranked list of effects estimates for factors and interactions of factors based on their relative importance in minimizing the MM. The most important and statistically significant AF 4 instrumental factors were buffer concentration and cross flow. The least important was ramp time. A parallel 2 (5-2) orthogonal fractional factorial design was also employed on five environmental factors for synthetic natural water samples containing silver nanoparticles (NPs), namely: NP concentration, NP size, NOM concentration, specific conductance, and pH. None of the water quality characteristic effects or interactions were found to be significant in minimizing the measured MM; however, the interaction between NP concentration and NP size was an important effect when considering NOM recovery. This work presents a structured approach for the rigorous assessment of AF 4 instrument factors and optimal settings for the separation of complex samples utilizing efficient orthogonal factional factorial design and appropriate graphical analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Factors affecting the roles of reactive species in the degradation of micropollutants by the UV/chlorine process.

    PubMed

    Wu, Zihao; Guo, Kaiheng; Fang, Jingyun; Yang, Xueqin; Xiao, Hong; Hou, Shaodong; Kong, Xiujuan; Shang, Chii; Yang, Xin; Meng, Fangang; Chen, Liwei

    2017-12-01

    The UV/chlorine process is an emerging advanced oxidation process (AOP) that produces various reactive species, such as hydroxyl radicals (HO) and reactive chlorine species (RCS). The effects of the treatment conditions, such as chlorine dosage and pH, and the water matrix components of natural organic matter (NOM), alkalinity, ammonia and halides, on the kinetics and reactive species in the degradation of four micropollutants, metronidazole (MDZ), nalidixic acid (NDA), diethyltoluamide (DEET) and caffeine (CAF), by the UV/chlorine process were investigated. The degradation of MDZ and CAF was primarily attributable to HO and ClO, respectively, while that of NDA was primarily attributable to both ClO and CO 3 - . HO, Cl and CO 3 - are important for the degradation of DEET. The second-order rate constants for ClO with CAF and CO 3 - with NDA were determined to be 5.1 (±0.2) × 10 7  M -1 s -1 and 1.4 (±0.1) × 10 7  M -1 s -1 , respectively. Increasing chlorine dosage slightly changed the contribution of HO but linearly increased that of ClO to micropollutant degradation. Increasing pH decreased the contribution of either HO or Cl but not that of ClO. Both NOM and bicarbonate decreased the contributions of HO and Cl, whereas NOM but not bicarbonate significantly decreased that of ClO. The contribution of either HO or Cl first rose and then fell as the molar ratio of ammonia to chlorine increased from 0 to 1:1, while that of ClO decreased. The co-presence of high concentrations of Cl - and Br - enhanced the contribution of ClBr - and BrCl. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Free-Living Protozoa in Two Unchlorinated Drinking Water Supplies, Identified by Phylogenic Analysis of 18S rRNA Gene Sequences▿ †

    PubMed Central

    Valster, Rinske M.; Wullings, Bart A.; Bakker, Geo; Smidt, Hauke; van der Kooij, Dick

    2009-01-01

    Free-living protozoan communities in water supplies may include hosts for Legionella pneumophila and other undesired bacteria, as well as pathogens. This study aimed at identifying free-living protozoa in two unchlorinated groundwater supplies, using cultivation-independent molecular approaches. For this purpose, samples (<20°C) of treated water, distributed water, and distribution system biofilms were collected from supply A, with a low concentration of natural organic matter (NOM) (<0.5 ppm of C), and from supply B, with a high NOM concentration (7.9 ppm of C). Eukaryotic communities were studied using terminal restriction fragment length polymorphism and clone library analyses of partial 18S rRNA gene fragments and a Hartmannella vermiformis-specific quantitative PCR (qPCR). In both supplies, highly diverse eukaryotic communities were observed, including free-living protozoa, fungi, and metazoa. Sequences of protozoa clustered with Amoebozoa (10 operational taxonomic units [OTUs]), Cercozoa (39 OTUs), Choanozoa (26 OTUs), Ciliophora (29 OTUs), Euglenozoa (13 OTUs), Myzozoa (5 OTUs), and Stramenopiles (5 OTUs). A large variety of protozoa were present in both supplies, but the estimated values for protozoan richness did not differ significantly. H. vermiformis was observed in both supplies but was not a predominant protozoan. One OTU with the highest similarity to Acanthamoeba polyphaga, an opportunistic human pathogen and a host for undesired bacteria, was observed in supply A. The high level of NOM in supply B corresponded with an elevated level of active biomass and with elevated concentrations of H. vermiformis in distributed water. Hence, the application of qPCR may be promising in elucidating the relationship between drinking water quality and the presence of specific protozoa. PMID:19465529

  5. Computer vision approach to morphometric feature analysis of basal cell nuclei for evaluating malignant potentiality of oral submucous fibrosis.

    PubMed

    Muthu Rama Krishnan, M; Pal, Mousumi; Paul, Ranjan Rashmi; Chakraborty, Chandan; Chatterjee, Jyotirmoy; Ray, Ajoy K

    2012-06-01

    This research work presents a quantitative approach for analysis of histomorphometric features of the basal cell nuclei in respect to their size, shape and intensity of staining, from surface epithelium of Oral Submucous Fibrosis showing dysplasia (OSFD) to that of the Normal Oral Mucosa (NOM). For all biological activity, the basal cells of the surface epithelium form the proliferative compartment and therefore their morphometric changes will spell the intricate biological behavior pertaining to normal cellular functions as well as in premalignant and malignant status. In view of this, the changes in shape, size and intensity of staining of the nuclei in the basal cell layer of the NOM and OSFD have been studied. Geometric, Zernike moments and Fourier descriptor (FD) based as well as intensity based features are extracted for histomorphometric pattern analysis of the nuclei. All these features are statistically analyzed along with 3D visualization in order to discriminate the groups. Results showed increase in the dimensions (area and perimeter), shape parameters and decreasing mean nuclei intensity of the nuclei in OSFD in respect to NOM. Further, the selected features are fed to the Bayesian classifier to discriminate normal and OSFD. The morphometric and intensity features provide a good sensitivity of 100%, specificity of 98.53% and positive predicative accuracy of 97.35%. This comparative quantitative characterization of basal cell nuclei will be of immense help for oral onco-pathologists, researchers and clinicians to assess the biological behavior of OSFD, specially relating to their premalignant and malignant potentiality. As a future direction more extensive study involving more number of disease subjects is observed.

  6. A SIFT study of the reactions of H2ONO+ ions with several types of organic molecules

    NASA Astrophysics Data System (ADS)

    Smith, David; Wang, Tianshu; Spanel, Patrik

    2003-11-01

    A selected ion flow tube (SIFT) study has been carried out of the reactions of hydrated nitrosonium ions, NO+H2O, which theory has equated to protonated nitrous acid ions, H2ONO+. One objective of this study was to investigate if this ion exhibits the properties of both a cluster ion and a protonated acid in their reactions with a variety of organic molecules. The chosen reactant molecules comprise two each of the following types--amines, terpenes, aromatic hydrocarbons, esters, carboxylic acids, ketones, aldehydes and alcohols. The reactant H2ONO+ (NO+H2O) ions are formed in a discharge ion source and injected into helium carrier gas where they are partially vibrationally excited and partially dissociated to NO+ ions. Hence, the reactions of the H2ONO+ ions had to be studies simultaneously with NO+ ions, the reactions of the latter ions readily being studied by selectively injecting NO+ ions into the carrier gas. The results of this study indicate that the H2ONO+ ions undergo a wide variety of reaction processes that depend on the properties of the reactant molecules such as their ionisation energies and proton affinities. These processes include charge transfer with compounds, M, that have low ionisation energies (producing M+), proton transfer with compounds possessing large proton affinities (MH+), hydride ion transfer (M---H+), alkyl radical (M---R+), alkoxide radical transfer (M---OR+), ion-molecule association (NO+H2OM) and ligand switching (NO+M), producing the ions given in parentheses.

  7. Comparison of Bacteria and Color Removal in Two Surface Waters using Nanofiltration

    EPA Science Inventory

    Small communities typically have small budgets, but big issues to deal with in providing safe drinking water and protecting public health. Communities in remote locations are frequently faced with elevated levels of naturally-occurring organic matter (NOM) that combine with chlo...

  8. Comparison of Bacteria and Color Removal in Two Surface Waters using Nanofiltration

    EPA Science Inventory

    Small communities typically have small budgets, but big issues to deal with in providing safe drinking water and protecting public health. Communities in remote locations are frequently faced with elevated levels of naturally-occurring organic matter (NOM) that combine with chlor...

  9. 77 FR 59425 - Self-Regulatory Organizations; BATS Exchange, Inc.; Notice of Filing and Immediate Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-27

    ... Facebook (``FB''), Google (``GOOG'') and Groupon (``GRPN''). As announced by NOM, the fee to remove...., Washington, DC 20549, on official business days between the hours of 10 a.m. and 3 p.m. Copies of the filing...

  10. Thermally activated persulfate oxidation regeneration of NOM- and MTBE- spent granular activated carbon

    EPA Science Inventory

    Chemical oxidation is a developing technology used to regenerate contaminant-spent GAC. Chemical regeneration of GAC represents a viable option to thermal regeneration methods that are energy intensive resulting in significant consumption of fossil fuels and production of greenho...

  11. Health Risk Estimation for Unregulated DBPs in Chloraminated Drinking Water

    EPA Science Inventory

    Disinfection by-products (DBPs) are formed when natural organic matter (NOM) reacts with chemical oxidants in the water disinfection process. Halogenated DBPs are both cytotoxic and genotoxic, which have the potential to cause adverse health effects (1). Currently, 4 species of t...

  12. Chloramination of Concentrated Drinking Water for Disinfection Byproduct Mixtures Creation- Indianapolis

    EPA Science Inventory

    Complex mixtures of disinfection by-products (DBPs) are formed when the disinfectant oxidizes constituents (e.g., natural organic matter (NOM) and organic pollutants) found in the source water. Since 1974, over 600 DBPs have been identified in drinking water. Despite intense iden...

  13. Light-Induced Transformations of the C60 Derivative, Fullerenol: Interactions with Natural Organic Matter

    EPA Science Inventory

    Recent studies have indicated that fullerenes, an important class of nanomaterials, are photodegraded by solar radiation and can sensitize the photoproduction of reactive oxygen species such as singlet oxygen. Because natural organic matter (NOM) can retard photoreactions that a...

  14. Application of carbon nanotube technology for removal of contaminants in drinking water: a review.

    PubMed

    Upadhyayula, Venkata K K; Deng, Shuguang; Mitchell, Martha C; Smith, Geoffrey B

    2009-12-15

    Carbon nanotube (CNT) adsorption technology has the potential to support point of use (POU) based treatment approach for removal of bacterial pathogens, natural organic matter (NOM), and cyanobacterial toxins from water systems. Unlike many microporous adsorbents, CNTs possess fibrous shape with high aspect ratio, large accessible external surface area, and well developed mesopores, all contribute to the superior removal capacities of these macromolecular biomolecules and microorganisms. This article provides a comprehensive review on application of CNTs as adsorbent media to concentrate and remove pathogens, NOM, and cyanobacterial (microcystin derivatives) toxins from water systems. The paper also surveys on consideration of CNT based adsorption filters for removal of these contaminants from cost, operational and safety standpoint. Based on the studied literature it appears that POU based CNT technology looks promising, that can possibly avoid difficulties of treating biological contaminants in conventional water treatment plants, and thereby remove the burden of maintaining the biostability of treated water in the distribution systems.

  15. X-ray fluorescence mapping of mercury on suspended mineral particles and diatoms in a contaminated freshwater system

    NASA Astrophysics Data System (ADS)

    Gu, B.; Mishra, B.; Miller, C.; Wang, W.; Lai, B.; Brooks, S. C.; Kemner, K. M.; Liang, L.

    2014-09-01

    Mercury (Hg) bioavailability and geochemical cycling is affected by its partitioning between the aqueous and particulate phases. We applied a synchrotron-based X-ray fluorescence (XRF) microprobe to visualize and quantify directly the spatial localization of Hg and its correlations with other elements of interest on suspended particles from a Hg-contaminated freshwater system. Up to 175 μg g-1 Hg is found on suspended particles, but less than 0.01% is in the form of methylmercury. Mercury is heterogeneously distributed among phytoplankton (e.g., diatoms) and mineral particles that are rich in iron oxides and natural organic matter (NOM). The diatom-bound Hg is mostly found on outer surfaces of the cells, suggesting passive sorption of Hg on diatoms. Our results indicate that localized sorption of Hg onto suspended particles, including diatoms and NOM-coated oxide minerals, may play an important role in affecting the partitioning, reactivity, and biogeochemical cycling of Hg in natural aquatic environments.

  16. Reclassification of Flexibacter tractuosus (Lewin 1969) Leadbetter 1974 and 'Microscilla sericea' Lewin 1969 in the genus Marivirga gen. nov. as Marivirga tractuosa comb. nov. and Marivirga sericea nom. rev., comb. nov.

    PubMed

    Nedashkovskaya, Olga I; Vancanneyt, Marc; Kim, Seung Bum; Bae, Kyung Sook

    2010-08-01

    The taxonomic position of the misclassified strains [Flexibacter] tractuosus KCTC 2958T and '[Microscilla] sericea' LMG 13021 was studied using a polyphasic approach. The two strains shared 99.1% 16S rRNA gene sequence similarity and 28% DNA-DNA relatedness. On the basis of the phylogenetic evidence supported by genotypic and phenotypic data [Flexibacter] tractuosus KCTC 2958T and '[Microscilla] sericea' LMG 13021 are classified as two distinct species in a novel genus, Marivirga, in the family 'Flammeovirgaceae', as Marivirga tractuosa comb. nov. and Marivirga sericea nom. rev., comb. nov., with strains KCTC 2958T (=ATCC 23168T =CIP 106410T =DSM 4126T =NBRC 15989T =NCIMB 1408T =VKM B-1430T) and LMG 13021T (=ATCC 23182T =NBRC 15983T =NCIMB 1403T), respectively, as the type strains. The type species is Marivirga tractuosa.

  17. Checklist and identification key of Anomalini (Coleoptera, Scarabaeidae, Rutelinae) of Costa Rica

    PubMed Central

    Filippini, Valentina; Micó, Estefanía; Galante, Eduardo

    2016-01-01

    Abstract A checklist and identification key for the species of the tribe Anomalini in Costa Rica are presented. The Anomalini species are important economically, as they have larvae that are or can become agricultural pests, as well as ecologically, having potential as bioindicators. In spite of their importance and richness, identification tools for the group in the Neotropics remain scarce. The Costa Rican fauna comprises six genera (Anomala, Anomalorhina, Callistethus, Epectinaspis, Moroniella, and Strigoderma) and a total of 120 species. Anomala contusa Filippini, Micó, Galante, 2015 is proposed as a synonym of Anomala inbio (Ramírez-Ponce, Bitar, Curoe 2014); Anomala limon nom. n. is proposed as a new name for Anomala inbio Filippini, Galante, Micó, 2015, a homonym of Anomala inbio (Ramírez-Ponce, Bitar, Curoe, 2014); Anomala cinaedias nom. n. is proposed as a new name for Anomala chloropyga Ohaus, 1897, a homonym of Anomala chloropyga Burmeister, 1844; and Anomala chrysomelina is moved to the genus Callistethus. PMID:27833420

  18. Monitoring the process of pulmonary melanoma metastasis using large area and label-free nonlinear optical microscopy

    NASA Astrophysics Data System (ADS)

    Hua, Daozhu; Qi, Shuhong; Li, Hui; Zhang, Zhihong; Fu, Ling

    2012-06-01

    We performed large area nonlinear optical microscopy (NOM) for label-free monitoring of the process of pulmonary melanoma metastasis ex vivo with subcellular resolution in C57BL/6 mice. Multiphoton autofluorescence (MAF) and second harmonic generation (SHG) images of lung tissue are obtained in a volume of ~2.2 mm×2.2 mm×30 μm. Qualitative differences in morphologic features and quantitative measurement of pathological lung tissues at different time points are characterized. We find that combined with morphological features, the quantitative parameters, such as the intensity ratio of MAF and SHG between pathological tissue and normal tissue and the MAF to SHG index versus depth clearly shows the tissue physiological changes during the process of pulmonary melanoma metastasis. Our results demonstrate that large area NOM succeeds in monitoring the process of pulmonary melanoma metastasis, which can provide a powerful tool for the research in tumor pathophysiology and therapy evaluation.

  19. Transcatheter Embolization for Delayed Hemorrhage Caused by Blunt Splenic Trauma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krohmer, Steven J., E-mail: Steven.J.Krohmer@hitchcock.org; Hoffer, Eric K., E-mail: eric.k.hoffer@hitchcock.or; Burchard, Kenneth W., E-mail: Kenneth.W.Burchard@hitchcock.or

    2010-08-15

    Although the exact benefit of adjunctive splenic artery embolization (SAE) in the nonoperative management (NOM) of patients with blunt splenic trauma has been debated, the role of transcatheter embolization in delayed splenic hemorrhage is rarely addressed. The purpose of this study was to evaluate the effectiveness of SAE in the management of patients who presented at least 3 days after initial splenic trauma with delayed hemorrhage. During a 24-month period 4 patients (all male; ages 19-49 years) presented with acute onset of pain 5-70 days after blunt trauma to the left upper quadrant. Two had known splenic injuries that hadmore » been managed nonoperatively. All had computed axial tomography evidence of active splenic hemorrhage or false aneurysm on representation. All underwent successful SAE. Follow-up ranged from 28 to 370 days. These cases and a review of the literature indicate that SAE is safe and effective for NOM failure caused by delayed manifestations of splenic arterial injury.« less

  20. [Laboratory animals and official Mexican norms (NOM-062-ZOO-1999)].

    PubMed

    de Aluja, Aline S

    2002-01-01

    This article concerns animal experimentation and official Mexican norm Nom 0062-Zoo-1999 entitled Technical specifications for the production, care and use of laboratory animals. The history of animal experimentation is briefly resumed. During the nineteenth century, doubts arose as to the right to expose animals to experimental procedures that frequently cause pain and suffering. The first law which protected animals against cruelty was passed in Great Britain in 1876; subsequently, other nations approved similar legislation. During the second part of the twentieth century, opposition to animal experimentation grew. Other groups, mainly scientists and pharmaceutical concerns, defended the right to use animals in research. New knowledge concerning the neurophysiology, cognitive capacity, and the animal faculty to experience pain is briefly mentioned. Guidelines on care and use of animals used in research published in several countries are listed. Finally, the recently published Mexican legislation (Norm) referring to production, care and use of laboratory animals is discussed and its benefits are stressed.

Top