Sample records for non small cell

  1. Impacts of Exercise on Prognostic Biomarkers in Lung Cancer Patients

    ClinicalTrials.gov

    2016-02-18

    Extensive Stage Small Cell Lung Cancer; Healthy, no Evidence of Disease; Limited Stage Small Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Recurrent Small Cell Lung Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  2. Nivolumab, Cisplatin, and Pemetrexed Disodium or Gemcitabine Hydrochloride in Treating Patients With Stage I-IIIA Non-small Cell Lung Cancer That Can Be Removed by Surgery

    ClinicalTrials.gov

    2018-03-02

    Non-Squamous Non-Small Cell Lung Carcinoma; Stage I Non-Small Cell Lung Cancer; Stage IA Non-Small Cell Lung Carcinoma; Stage IB Non-Small Cell Lung Carcinoma; Stage II Non-Small Cell Lung Cancer; Stage IIA Non-Small Cell Lung Carcinoma; Stage IIB Non-Small Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer

  3. Low-Dose Acetylsalicylic Acid in Treating Patients With Stage I-III Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2017-06-29

    Adenocarcinoma of the Lung; Recurrent Non-small Cell Lung Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  4. EF5 in Measuring Tumor Hypoxia in Patients With Stage I-III Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2015-04-10

    Stage IA Non-Small Cell Lung Carcinoma; Stage IB Non-Small Cell Lung Carcinoma; Stage IIA Non-Small Cell Lung Carcinoma; Stage IIB Non-Small Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer

  5. Enhanced Quitline Intervention in Smoking Cessation for Patients With Non-Metastatic Lung Cancer

    ClinicalTrials.gov

    2017-05-25

    Limited Stage Small Cell Lung Cancer; Recurrent Small Cell Lung Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Tobacco Use Disorder

  6. Sirolimus and Auranofin in Treating Patients With Advanced or Recurrent Non-Small Cell Lung Cancer or Small Cell Lung Cancer

    ClinicalTrials.gov

    2017-08-28

    Extensive Stage Small Cell Lung Carcinoma; Lung Adenocarcinoma; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Small Cell Lung Carcinoma; Squamous Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer

  7. PET-Adjusted Intensity Modulated Radiation Therapy and Combination Chemotherapy in Treating Patients With Stage II-IV Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2018-05-24

    Metastatic Malignant Neoplasm in the Brain; Recurrent Non-Small Cell Lung Carcinoma; Stage IIA Non-Small Cell Lung Carcinoma; Stage IIB Non-Small Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer

  8. TG4010 and Nivolumab in Patients With Lung Cancer

    ClinicalTrials.gov

    2018-03-01

    Recurrent Non-Small Cell Lung Carcinoma; Stage I Non-Small Cell Lung Cancer; Stage II Non-Small Cell Lung Cancer; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer

  9. Stereotactic Body Radiation Therapy Followed by Surgery in Treating Patients With Stage I-IIIA Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2017-12-28

    Stage I Non-Small Cell Lung Cancer AJCC v7; Stage IA Non-Small Cell Lung Carcinoma AJCC v7; Stage IB Non-Small Cell Lung Carcinoma AJCC v7; Stage II Non-Small Cell Lung Cancer AJCC v7; Stage IIA Non-Small Cell Lung Carcinoma AJCC v7; Stage IIB Non-Small Cell Lung Carcinoma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7

  10. Palliative Care Intervention in Improving Symptom Control and Quality of Life in Patients With Stage II-IV Non-small Cell Lung Cancer and Their Family Caregivers

    ClinicalTrials.gov

    2017-10-16

    Caregiver; Psychological Impact of Cancer and Its Treatment; Recurrent Non-small Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  11. A Comparison of FLT to FDG PET/CT in the Early Assessment of Chemotherapy Response in Stage IB-IIIA Resectable NSCLC

    ClinicalTrials.gov

    2017-01-27

    Recurrent Non-Small Cell Lung Carcinoma; Stage IB Non-Small Cell Lung Carcinoma; Stage IIA Non-Small Cell Lung Carcinoma; Stage IIB Non-Small Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer

  12. Nintedanib Compared With Placebo in Treating Against Radiation-Induced Pneumonitis in Patients With Non-small Cell Lung Cancer That Cannot Be Removed by Surgery and Are Undergoing Chemoradiation Therapy

    ClinicalTrials.gov

    2017-07-08

    Radiation-Induced Pneumonitis; Stage IIA Non-Small Cell Lung Carcinoma; Stage IIB Non-Small Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer

  13. Image-Guided Hypofractionated Radiation Therapy With Stereotactic Body Radiation Therapy Boost and Combination Chemotherapy in Treating Patients With Stage II-III Non-Small Cell Lung Cancer That Cannot Be Removed By Surgery

    ClinicalTrials.gov

    2017-06-12

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Large Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  14. Study of Ponatinib in Patients With Lung Cancer Preselected Using Different Candidate Predictive Biomarkers

    ClinicalTrials.gov

    2018-01-17

    Adenocarcinoma of the Lung; Extensive Stage Small Cell Lung Cancer; Limited Stage Small Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Recurrent Small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  15. Docetaxel, Cisplatin, Pegfilgrastim, and Erlotinib Hydrochloride in Treating Patients With Stage IIIB or Stage IV Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2018-02-01

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Bronchoalveolar Cell Lung Cancer; Large Cell Lung Cancer; Non-small Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  16. Sirolimus and Gold Sodium Thiomalate in Treating Patients With Advanced Squamous Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2012-12-13

    Recurrent Non-small Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer; Unspecified Adult Solid Tumor, Protocol Specific

  17. Nivolumab After Surgery and Chemotherapy in Treating Patients With Stage IB-IIIA Non-small Cell Lung Cancer (An ALCHEMIST Treatment Trial)

    ClinicalTrials.gov

    2018-06-28

    Stage IB Non-Small Cell Lung Carcinoma AJCC v7; Stage II Non-Small Cell Lung Cancer AJCC v7; Stage IIA Non-Small Cell Lung Carcinoma AJCC v7; Stage IIB Non-Small Cell Lung Carcinoma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7

  18. Osimertinib in Treating Participants With Stage I-IIIA EGFR-mutant Non-small Cell Lung Cancer Before Surgery

    ClinicalTrials.gov

    2018-04-27

    EGFR (Epidermal Growth Factor Receptor) Exon 19 Deletion Mutation; EGFR NP_005219.2:p.L858R; EGFR NP_005219.2:p.T790M; Stage I Non-Small Cell Lung Cancer AJCC (American Joint Committee on Cancer) v7; Stage IA Non-Small Cell Lung Carcinoma AJCC v7; Stage IB Non-Small Cell Lung Carcinoma AJCC v7; Stage II Non-Small Cell Lung Cancer AJCC v7; Stage IIA Non-Small Cell Lung Carcinoma AJCC v7; Stage IIB Non-Small Cell Lung Carcinoma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7

  19. Chemotherapy and Radiation Therapy With or Without Metformin Hydrochloride in Treating Patients With Stage III Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2018-04-30

    Adenosquamous Lung Carcinoma; Bronchioloalveolar Carcinoma; Large Cell Lung Carcinoma; Lung Adenocarcinoma; Non-Small Cell Lung Carcinoma; Recurrent Non-Small Cell Lung Carcinoma; Squamous Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer

  20. Gefitinib in Treating Patients With Stage IB, II, or IIIA Non-small Cell Lung Cancer That Was Completely Removed by Surgery

    ClinicalTrials.gov

    2014-12-19

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Bronchoalveolar Cell Lung Cancer; Large Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer

  1. Pulmonary Rehabilitation in Improving Lung Function in Patients With Locally Advanced Non-Small Cell Lung Cancer Undergoing Chemoradiation

    ClinicalTrials.gov

    2017-04-12

    Cachexia; Fatigue; Pulmonary Complications; Radiation Toxicity; Recurrent Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  2. Fludeoxyglucose F-18-PET in Planning Lung Cancer Radiation Therapy

    ClinicalTrials.gov

    2018-04-19

    Stage I Lung Cancer; Stage I Non-Small Cell Lung Cancer AJCC v7; Stage IA Non-Small Cell Lung Carcinoma AJCC v7; Stage IB Non-Small Cell Lung Carcinoma AJCC v7; Stage II Lung Cancer; Stage II Non-Small Cell Lung Cancer AJCC v7; Stage IIA Non-Small Cell Lung Carcinoma AJCC v7; Stage IIB Non-Small Cell Lung Carcinoma AJCC v7

  3. Anetumab Ravtansine and Atezolizumab in Treating Participants With Advanced Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2018-06-12

    Mesothelin Positive; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IV Non-Small Cell Lung Cancer AJCC v7

  4. Survivorship Care Planning in Patients With Colorectal or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-12-16

    Stage I Colon Cancer; Stage I Rectal Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Colon Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIA Rectal Cancer; Stage IIB Colon Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIB Rectal Cancer; Stage IIC Colon Cancer; Stage IIC Rectal Cancer; Stage IIIA Colon Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIA Rectal Cancer; Stage IIIB Colon Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IIIB Rectal Cancer; Stage IIIC Colon Cancer; Stage IIIC Rectal Cancer

  5. Genetically Modified T Cells in Treating Patients With Stage III-IV Non-small Cell Lung Cancer or Mesothelioma

    ClinicalTrials.gov

    2018-06-07

    Advanced Pleural Malignant Mesothelioma; HLA-A*0201 Positive Cells Present; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Pleural Malignant Mesothelioma; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage III Pleural Malignant Mesothelioma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IV Non-Small Cell Lung Cancer AJCC v7; Stage IV Pleural Malignant Mesothelioma AJCC v7; WT1 Positive

  6. Crizotinib in Treating Patients With Stage IB-IIIA Non-small Cell Lung Cancer That Has Been Removed by Surgery and ALK Fusion Mutations (An ALCHEMIST Treatment Trial)

    ClinicalTrials.gov

    2017-12-07

    ALK Gene Rearrangement; ALK Gene Translocation; ALK Positive; Stage IB Non-Small Cell Lung Carcinoma AJCC v7; Stage II Non-Small Cell Lung Cancer AJCC v7; Stage IIA Non-Small Cell Lung Carcinoma AJCC v7; Stage IIB Non-Small Cell Lung Carcinoma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7

  7. Trametinib, Combination Chemotherapy, and Radiation Therapy in Treating Patients With Stage III Non-small Cell Lung Cancer That Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-05-23

    KRAS Activating Mutation; Recurrent Non-Small Cell Lung Carcinoma; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7

  8. S0536: Cetuximab, Paclitaxel, Carboplatin, and Bevacizumab in Treating Patients With Advanced Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2015-08-11

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Bronchoalveolar Cell Lung Cancer; Large Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  9. Radiation Therapy, Chemotherapy, and Soy Isoflavones in Treating Patients With Stage IIIA-IIIB Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2017-05-23

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Bronchoalveolar Cell Lung Cancer; Large Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  10. Bortezomib in Treating Patients With Stage IIIB or Stage IV Lung Cancer

    ClinicalTrials.gov

    2014-08-04

    Adenocarcinoma of the Lung; Bronchoalveolar Cell Lung Cancer; Non-small Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  11. Erlotinib Hydrochloride in Treating Patients With Stage IB-IIIA Non-small Cell Lung Cancer That Has Been Completely Removed by Surgery (An ALCHEMIST Treatment Trial)

    ClinicalTrials.gov

    2018-06-29

    ALK Gene Rearrangement; EGFR Exon 19 Deletion Mutation; EGFR NP_005219.2:p.L858R; Stage IB Non-Small Cell Lung Carcinoma AJCC v7; Stage II Non-Small Cell Lung Cancer AJCC v7; Stage IIA Non-Small Cell Lung Carcinoma AJCC v7; Stage IIB Non-Small Cell Lung Carcinoma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7

  12. Safety Study of SEA-CD40 in Cancer Patients

    ClinicalTrials.gov

    2018-06-21

    Cancer; Carcinoma; Carcinoma, Non-Small-Cell Lung; Carcinoma, Squamous Cell; Hematologic Malignancies; Hodgkin Disease; Lymphoma; Lymphoma, B-Cell; Lymphoma, Follicular; Lymphoma, Large B-Cell, Diffuse; Melanoma; Neoplasms; Neoplasm Metastasis; Neoplasms, Head and Neck; Neoplasms, Squamous Cell; Non-Small Cell Lung Cancer; Non-Small Cell Lung Cancer Metastatic; Non-small Cell Carcinoma; Squamous Cell Cancer; Squamous Cell Carcinoma; Squamous Cell Carcinoma of the Head and Neck; Squamous Cell Neoplasm; Lymphoma, Non-Hodgkin

  13. Recombinant EphB4-HSA Fusion Protein and Pembrolizumab, MK-3475

    ClinicalTrials.gov

    2018-03-30

    ALK Gene Mutation; BRAF Gene Mutation; EGFR Gene Mutation; Head and Neck Squamous Cell Carcinoma; Metastatic Head and Neck Carcinoma; Recurrent Head and Neck Carcinoma; Recurrent Non-Small Cell Lung Carcinoma; ROS1 Gene Mutation; Stage III Non-Small Cell Lung Cancer; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer

  14. S1415CD, Trial Assessing CSF Prescribing Effectiveness and Risk (TrACER)

    ClinicalTrials.gov

    2018-03-20

    Febrile Neutropenia; Stage 0 Breast Cancer; Stage 0 Colorectal Cancer; Stage 0 Non-Small Cell Lung Cancer; Stage I Colorectal Cancer; Stage IA Breast Cancer; Stage IA Non-Small Cell Lung Carcinoma; Stage IB Breast Cancer; Stage IB Non-Small Cell Lung Carcinoma; Stage IIA Breast Cancer; Stage IIA Colorectal Cancer; Stage IIA Non-Small Cell Lung Carcinoma; Stage IIB Breast Cancer; Stage IIB Colorectal Cancer; Stage IIB Non-Small Cell Lung Carcinoma; Stage IIC Colorectal Cancer; Stage IIIA Breast Cancer; Stage IIIA Colorectal Cancer; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Breast Cancer; Stage IIIB Colorectal Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IIIC Breast Cancer; Stage IIIC Colorectal Cancer; Stage IV Breast Cancer; Stage IV Non-Small Cell Lung Cancer; Stage IVA Colorectal Cancer; Stage IVB Colorectal Cancer

  15. Phase I IGART Study Using Active Breathing Control and Simultaneous Boost for Patients With NSCLC

    ClinicalTrials.gov

    2015-03-18

    Adenocarcinoma of the Lung; Large Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  16. GTI-2040 and Docetaxel in Treating Patients With Recurrent, Metastatic, or Unresectable Locally Advanced Non-Small Cell Lung Cancer, Prostate Cancer, or Other Solid Tumors

    ClinicalTrials.gov

    2013-01-23

    Recurrent Non-small Cell Lung Cancer; Recurrent Prostate Cancer; Stage III Prostate Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Prostate Cancer; Unspecified Adult Solid Tumor, Protocol Specific

  17. Osimertinib and Navitoclax in Treating Patients With EGFR-Positive Previously Treated Advanced or Metastatic Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2018-05-23

    EGFR Activating Mutation; EGFR NP_005219.2:p.T790M; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IV Non-Small Cell Lung Cancer AJCC v7

  18. Methoxyamine, Pemetrexed Disodium, Cisplatin, and Radiation Therapy in Treating Patients With Stage IIIA-IV Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2018-04-24

    Non-Squamous Non-Small Cell Lung Carcinoma; Stage III Large Cell Lung Carcinoma AJCC v7; Stage III Lung Adenocarcinoma AJCC v7; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Large Cell Lung Carcinoma AJCC v7; Stage IIIA Lung Adenocarcinoma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Large Cell Lung Carcinoma AJCC v7; Stage IIIB Lung Adenocarcinoma AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IV Large Cell Lung Carcinoma AJCC v7; Stage IV Lung Adenocarcinoma AJCC v7; Stage IV Non-Small Cell Lung Cancer AJCC v7

  19. Docetaxel With Either Cetuximab or Bortezomib as First-Line Therapy in Treating Patients With Stage III or Stage IV Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-06-03

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Large Cell Lung Cancer; Malignant Pleural Effusion; Recurrent Non-small Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  20. Nivolumab, Cabozantinib S-Malate, and Ipilimumab in Treating Patients With Recurrent Stage IV Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2018-06-28

    c-MET Gene Amplification; MET Exon 14 Mutation; Metastatic Non-Squamous Non-Small Cell Lung Carcinoma; Recurrent Non-Squamous Non-Small Cell Lung Carcinoma; RET/PTC Rearrangement; ROS1 Gene Rearrangement; Stage IV Non-Small Cell Lung Cancer AJCC v7

  1. Genetic Testing in Screening Patients With Stage IB-IIIA Non-Small Cell Lung Cancer That Has Been or Will Be Removed by Surgery (The ALCHEMIST Screening Trial)

    ClinicalTrials.gov

    2018-06-29

    Large Cell Lung Carcinoma; Lung Adenocarcinoma; Stage IB Non-Small Cell Lung Carcinoma AJCC v7; Stage IB Squamous Cell Lung Carcinoma AJCC v7; Stage II Non-Small Cell Lung Cancer AJCC v7; Stage II Squamous Cell Lung Carcinoma AJCC v7; Stage IIA Non-Small Cell Lung Carcinoma AJCC v7; Stage IIA Squamous Cell Lung Carcinoma AJCC v7; Stage IIB Non-Small Cell Lung Carcinoma AJCC v7; Stage IIB Squamous Cell Lung Carcinoma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Squamous Cell Lung Carcinoma AJCC v7

  2. Curcumin increases the sensitivity of Paclitaxel-resistant NSCLC cells to Paclitaxel through microRNA-30c-mediated MTA1 reduction.

    PubMed

    Lu, Yimin; Wang, Jun; Liu, Lei; Yu, Lequn; Zhao, Nian; Zhou, Xingju; Lu, Xudong

    2017-04-01

    Non-small-cell lung cancer is one of the most lethal cancers in the worldwide. Although Paclitaxel-based combinational therapies have long been used as a standard treatment in aggressive non-small-cell lung cancers, Paclitaxel resistance emerges as a major clinical problem. It has been demonstrated that Curcumin from Curcuma longa as a traditional Chinese medicine can inhibit cancer cell proliferation. However, the role of Curcumin in Paclitaxel-resistant non-small-cell lung cancer cells is not clear. In this study, we investigated the effect of Curcumin on the Paclitaxel-resistant non-small-cell lung cancer cells and found that Curcumin treatment markedly increased the sensitivity of Paclitaxel-resistant non-small-cell lung cancer cells to Paclitaxel. Mechanically, the study revealed that Curcumin could reduce the expression of metastasis-associated gene 1 (MTA1) gene through upregulation of microRNA-30c in Paclitaxel-resistant non-small-cell lung cancer cells. During the course, MTA1 reduction sensitized Paclitaxel-resistant non-small-cell lung cancer cells and enhanced the effect of Paclitaxel. Taken together, our studies indicate that Curcumin increases the sensitivity of Paclitaxel-resistant non-small-cell lung cancer cells to Paclitaxel through microRNA-30c-mediated MTA1 reduction. Curcumin might be a potential adjuvant for non-small-cell lung cancer patients during Paclitaxel treatment.

  3. Sapanisertib and Osimertinib in Treating Patients With Stage IV EGFR Mutation Positive Non-small Cell Lung Cancer After Progression on a Previous EGFR Tyrosine Kinase Inhibitor

    ClinicalTrials.gov

    2018-04-25

    EGFR Activating Mutation; EGFR Exon 19 Deletion Mutation; EGFR NP_005219.2:p.G719X; EGFR NP_005219.2:p.L858R; EGFR NP_005219.2:p.L861Q; EGFR T790M Mutation Negative; Recurrent Non-Small Cell Lung Carcinoma; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IV Non-Small Cell Lung Cancer AJCC v7

  4. Adherence to Survivorship Care Guidelines in Health Care Providers for Non-Small Cell Lung Cancer and Colorectal Cancer Survivor Care

    ClinicalTrials.gov

    2017-04-05

    Adenocarcinoma of the Lung; Mucinous Adenocarcinoma of the Colon; Mucinous Adenocarcinoma of the Rectum; Signet Ring Adenocarcinoma of the Colon; Signet Ring Adenocarcinoma of the Rectum; Squamous Cell Lung Cancer; Stage I Colon Cancer; Stage I Rectal Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Colon Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIA Rectal Cancer; Stage IIB Colon Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIB Rectal Cancer; Stage IIC Colon Cancer; Stage IIC Rectal Cancer; Stage IIIA Colon Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIA Rectal Cancer; Stage IIIB Colon Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IIIB Rectal Cancer; Stage IIIC Colon Cancer; Stage IIIC Rectal Cancer

  5. Genomic Sequencing in Determining Treatment in Patients With Metastatic Cancer or Cancer That Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-01-22

    Metastatic Neoplasm; Recurrent Neoplasm; Recurrent Non-Small Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer; Unresectable Malignant Neoplasm

  6. Recombinant Interleukin-15 in Treating Patients With Advanced Melanoma, Kidney Cancer, Non-small Cell Lung Cancer, or Squamous Cell Head and Neck Cancer

    ClinicalTrials.gov

    2017-09-14

    Head and Neck Squamous Cell Carcinoma; Recurrent Head and Neck Carcinoma; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Renal Cell Carcinoma; Recurrent Skin Carcinoma; Stage III Renal Cell Cancer; Stage IIIA Cutaneous Melanoma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Cutaneous Melanoma AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IIIC Cutaneous Melanoma AJCC v7; Stage IV Cutaneous Melanoma AJCC v6 and v7; Stage IV Non-Small Cell Lung Cancer AJCC v7; Stage IV Renal Cell Cancer

  7. Nivolumab and Plinabulin in Treating Patients With Stage IIIB-IV, Recurrent, or Metastatic Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2017-08-29

    ALK Gene Translocation; EGFR Activating Mutation; Recurrent Non-Small Cell Lung Carcinoma; ROS1 Gene Translocation; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IV Non-Small Cell Lung Cancer AJCC v7

  8. Veliparib With or Without Radiation Therapy, Carboplatin, and Paclitaxel in Patients With Stage III Non-small Cell Lung Cancer That Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-06-01

    Large Cell Lung Carcinoma; Lung Adenocarcinoma; Lung Adenocarcinoma, Mixed Subtype; Minimally Invasive Lung Adenocarcinoma; Squamous Cell Lung Carcinoma; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7

  9. Combination Chemotherapy, Radiation Therapy, and Gefitinib in Treating Patients With Stage III Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-06-04

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Bronchoalveolar Cell Lung Cancer; Large Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  10. 76 FR 35450 - Draft Guidance for Industry on Clinical Trial Endpoints for the Approval of Non-Small Cell Lung...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ...] Draft Guidance for Industry on Clinical Trial Endpoints for the Approval of Non-Small Cell Lung Cancer... entitled ``Clinical Trial Endpoints for the Approval of Non-Small Cell Lung Cancer Drugs and Biologics... draft guidance for industry entitled ``Clinical Trial Endpoints for the Approval of Non-Small Cell Lung...

  11. Recombinant EphB4-HSA Fusion Protein With Standard Chemotherapy Regimens in Treating Patients With Advanced or Metastatic Solid Tumors

    ClinicalTrials.gov

    2017-07-15

    Head and Neck Squamous Cell Carcinoma; Metastatic Pancreatic Adenocarcinoma; Non-Resectable Cholangiocarcinoma; Pancreatic Adenocarcinoma; Recurrent Gallbladder Carcinoma; Recurrent Non-Small Cell Lung Carcinoma; Stage III Pancreatic Cancer; Stage IIIA Gallbladder Cancer; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Gallbladder Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Gallbladder Cancer; Stage IV Non-Small Cell Lung Cancer; Stage IV Pancreatic Cancer; Unresectable Gallbladder Carcinoma; Unresectable Pancreatic Cancer

  12. Stages of Non-Small Cell Lung Cancer

    MedlinePlus

    ... Cancer Prevention Lung Cancer Screening Research Non-Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Non-Small Cell Lung Cancer Go to Health Professional Version Key ...

  13. Reduced survival in patients with early-stage non-small-cell lung cancer is associated with high pleural endothelial progenitor cell levels.

    PubMed

    Pirro, Matteo; Cagini, Lucio; Mannarino, Massimo R; Andolfi, Marco; Potenza, Rossella; Paciullo, Francesco; Bianconi, Vanessa; Frangione, Maria Rosaria; Bagaglia, Francesco; Puma, Francesco; Mannarino, Elmo

    2016-12-01

    Endothelial progenitor cells are capable of contributing to neovascularization in tumours. In patients with either malignant or transudative pleural effusion, we tested the presence of pleural endothelial progenitor cells. We also measured the number of endothelial progenitor cells in post-surgery pleural drainage of either patients with early non-small-cell lung cancer or control patients with benign lung disease undergoing pulmonary resection. The prospective influence of post-surgery pleural-drainage endothelial progenitor cells on cancer recurrence/survival was investigated. Pleural endothelial progenitor cell levels were quantified by fluorescence-activated cell sorting analysis in pleural effusion of 15 patients with late-stage non-small-cell lung cancer with pleural involvement and in 15 control patients with congestive heart failure. Also, pleural-drainage endothelial progenitor cells were measured in pleural-drainage fluid 48 h after surgery in 64 patients with early-stage non-small-cell lung cancer and 20 benign lung disease patients undergoing pulmonary resection. Cancer recurrence and survival was evaluated in patients with high pleural-drainage endothelial progenitor cell levels. The number of pleural endothelial progenitor cells was higher in non-small-cell lung cancer pleural effusion than in transudative pleural effusion. Also, pleural-drainage endothelial progenitor cell levels were higher in patients with non-small-cell lung cancer than in patients with benign lung disease undergoing pulmonary resection (P < 0.05). Non-small-cell lung cancer patients with high pleural-drainage endothelial progenitor cell levels had a significantly 4.9 higher rate of cancer recurrence/death than patients with lower pleural-drainage endothelial progenitor cell levels, irrespective of confounders. Endothelial progenitor cells are present in the pleural effusion and are higher in patients with late-stage non-small-cell lung cancer with pleural involvement than in congestive heart failure patients. Endothelial progenitor cell levels are higher in the post-surgery pleural drainage of patients with non-small-cell lung cancer than in non-neoplastic pleural-drainage fluid. High pleural-drainage endothelial progenitor cell levels in patients undergoing pulmonary resection for early non-small-cell lung cancer predict an increased risk of cancer recurrence and death. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  14. Treatment Options by Stage (Non-Small Cell Lung Cancer)

    MedlinePlus

    ... Cancer Prevention Lung Cancer Screening Research Non-Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Non-Small Cell Lung Cancer Go to Health Professional Version Key ...

  15. Veliparib, Cisplatin, and Gemcitabine Hydrochloride in Treating Patients With Advanced Biliary, Pancreatic, Urothelial, or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-07-01

    Advanced Adult Primary Liver Cancer; Localized Unresectable Adult Primary Liver Cancer; Metastatic Transitional Cell Cancer of the Renal Pelvis and Ureter; Regional Transitional Cell Cancer of the Renal Pelvis and Ureter; Stage III Bladder Cancer; Stage III Pancreatic Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Bladder Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Pancreatic Cancer; Transitional Cell Carcinoma of the Bladder; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer

  16. EF5 and Motexafin Lutetium in Detecting Tumor Cells in Patients With Abdominal or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-01-15

    Advanced Adult Primary Liver Cancer; Carcinoma of the Appendix; Fallopian Tube Cancer; Gastrointestinal Stromal Tumor; Localized Extrahepatic Bile Duct Cancer; Localized Gallbladder Cancer; Localized Gastrointestinal Carcinoid Tumor; Localized Resectable Adult Primary Liver Cancer; Localized Unresectable Adult Primary Liver Cancer; Metastatic Gastrointestinal Carcinoid Tumor; Ovarian Sarcoma; Ovarian Stromal Cancer; Primary Peritoneal Cavity Cancer; Recurrent Adult Primary Liver Cancer; Recurrent Adult Soft Tissue Sarcoma; Recurrent Colon Cancer; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Small Intestine Cancer; Recurrent Uterine Sarcoma; Regional Gastrointestinal Carcinoid Tumor; Small Intestine Adenocarcinoma; Small Intestine Leiomyosarcoma; Small Intestine Lymphoma; Stage 0 Non-small Cell Lung Cancer; Stage I Adult Soft Tissue Sarcoma; Stage I Colon Cancer; Stage I Gastric Cancer; Stage I Non-small Cell Lung Cancer; Stage I Ovarian Epithelial Cancer; Stage I Ovarian Germ Cell Tumor; Stage I Pancreatic Cancer; Stage I Rectal Cancer; Stage I Uterine Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage II Colon Cancer; Stage II Gastric Cancer; Stage II Non-small Cell Lung Cancer; Stage II Ovarian Epithelial Cancer; Stage II Ovarian Germ Cell Tumor; Stage II Pancreatic Cancer; Stage II Rectal Cancer; Stage II Uterine Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage III Colon Cancer; Stage III Gastric Cancer; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Stage III Uterine Sarcoma; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Adult Soft Tissue Sarcoma; Stage IV Colon Cancer; Stage IV Gastric Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Pancreatic Cancer; Stage IV Rectal Cancer; Stage IV Uterine Sarcoma; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer

  17. A Study Of Oral PF-02341066, A C-Met/Hepatocyte Growth Factor Tyrosine Kinase Inhibitor, In Patients With Advanced Cancer

    ClinicalTrials.gov

    2018-01-29

    Non-Small Cell Lung Cancer ALK-positive; Non-Small Cell Lung Cancer c-Met Dependent; Non-Small Cell Lung Cancer ROS Marker Positive; Systemic Anaplastic Large-Cell Lymphoma; Advanced Malignancies Except Leukemia

  18. Combination Chemotherapy, Radiation Therapy, and Bevacizumab in Treating Patients With Newly Diagnosed Stage III Non-small Cell Lung Cancer That Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-03-22

    Adenosquamous Lung Carcinoma; Large Cell Lung Carcinoma; Lung Adenocarcinoma; Minimally Invasive Lung Adenocarcinoma; Squamous Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7

  19. Msi2 Regulates the Aggressiveness of Non Small Cell Lung Cancer (NSCLC)

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0192 TITLE: Msi2 Regulates the Aggressiveness of Non -Small Cell Lung Cancer (NSCLC) PRINCIPAL INVESTIGATOR: Yanis...Annual 3. DATES COVERED (From - To) 15 Sep 2015 - 14 Sep 2016 4. TITLE AND SUBTITLE Msi2 Regulates the Aggressiveness of Non -Small Cell Lung Cancer...in vitro and in vivo are ongoing, while immunohistochemistry studies are starting Fall 2016. 15. SUBJECT TERMS Non -small cell lung cancer

  20. Survival improvement in patients with non-small cell lung cancer between 1983 and 2012: Analysis of the Surveillance, Epidemiology, and End Results database.

    PubMed

    Wang, Shuncong; Sun, Tiantian; Sun, Huanhuan; Li, Xiaobo; Li, Jie; Zheng, Xiaobin; Mallampati, Saradhi; Sun, Hongliu; Zhou, Xiuling; Zhou, Cuiling; Zhang, Hongyu; Cheng, Zhibin; Ma, Haiqing

    2017-05-01

    Non-small cell lung cancer is the most common malignancy in males; it constitutes the majority of lung cancer cases and requires massive medical resources. Despite improvements in managing non-small cell lung cancer, long-term survival remains very low. This study evaluated survival improvement in patients with non-small cell lung cancer in each decade between 1983 and 2012 to determine the impact of race, sex, age, and socioeconomic status on the survival rates in these patients. We extracted data on non-small cell lung cancer cases in each decade between 1983 and 2012 from the Surveillance, Epidemiology, and End Results registries. In total, 573,987 patients with non-small cell lung cancer were identified in 18 Surveillance, Epidemiology, and End Results registry regions during this period. The 12-month relative survival rates improved slightly across three decades, from 39.7% to 40.9% to 45.5%, with larger improvement in the last two decades. However, the 5-year-relative survival rates were very low, with 14.3%, 15.5%, and 18.4%, respectively, in three decades, indicating the urgency for novel comprehensive cancer care. In addition, our data demonstrated superiority in survival time among non-small cell lung cancer patients of lower socioeconomic status and White race. Although survival rates of non-small cell lung cancer patients have improved across the three decades, the 5-year-relative survival rates remain very poor. In addition, widening survival disparities among the race, the sex, and various socioeconomic status groups were confirmed. This study will help in predicting future tendencies of incidence and survival of non-small cell lung cancer, will contribute to better clinical trials by balancing survival disparities, and will eventually improve the clinical management of non-small cell lung cancer.

  1. A Phase 2 Study of Cediranib in Combination With Olaparib in Advanced Solid Tumors

    ClinicalTrials.gov

    2018-06-04

    Estrogen Receptor Negative; HER2/Neu Negative; Metastatic Pancreatic Adenocarcinoma; Pancreatic Ductal Adenocarcinoma; Progesterone Receptor Negative; Stage III Breast Cancer AJCC v7; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage III Pancreatic Cancer AJCC v6 and v7; Stage III Small Cell Lung Carcinoma AJCC v7; Stage IIIA Breast Cancer AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Small Cell Lung Carcinoma AJCC v7; Stage IIIB Breast Cancer AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Small Cell Lung Carcinoma AJCC v7; Stage IIIC Breast Cancer AJCC v7; Stage IV Breast Cancer AJCC v6 and v7; Stage IV Non-Small Cell Lung Cancer AJCC v7; Stage IV Pancreatic Cancer AJCC v6 and v7; Stage IV Small Cell Lung Carcinoma AJCC v7; Triple-Negative Breast Carcinoma; Unresectable Pancreatic Carcinoma

  2. A Phase 1 Trial of an Immune Checkpoint Inhibitor plus Stereotactic Ablative Radiotherapy in Patients with Inoperable Stage I Non-Small Cell Lung Cancer

    DTIC Science & Technology

    2017-10-01

    with Inoperable Stage I Non-Small Cell Lung Cancer PRINCIPAL INVESTIGATOR: Karen Kelly, MD CONTRACTING ORGANIZATION: University of California...Inhibitor plus Stereotactic Ablative Radiotherapy in Patients with Inoperable Stage I Non-Small Cell Lung Cancer 5b. GRANT NUMBER W81XWH-15-2-0063...immune checkpoint inhibitor MPDL3280A (atezolizumab) in early stage inoperable non-small cell lung cancer . The trial is comprised of a traditional 3 + 3

  3. Talazoparib in Treating Patients With Advanced or Metastatic Solid Tumors That Cannot Be Removed by Surgery and Liver or Kidney Dysfunction

    ClinicalTrials.gov

    2017-04-20

    Estrogen Receptor Negative; Head and Neck Squamous Cell Carcinoma; HER2/Neu Negative; Hormone-Resistant Prostate Cancer; Metastatic Pancreatic Adenocarcinoma; Progesterone Receptor Negative; Solid Neoplasm; Stage III Mesothelioma; Stage IIIA Gastric Cancer; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Small Cell Lung Carcinoma; Stage IIIB Gastric Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Small Cell Lung Carcinoma; Stage IIIC Gastric Cancer; Stage IIIC Ovarian Cancer; Stage IV Mesothelioma; Stage IV Non-Small Cell Lung Cancer; Stage IV Ovarian Cancer; Stage IV Small Cell Lung Carcinoma; Triple-Negative Breast Carcinoma

  4. 18F-FSPG PET/CT for Cancer Patients on Therapy

    ClinicalTrials.gov

    2017-02-15

    B-Cell Neoplasm; Estrogen Receptor Negative; HER2/Neu Negative; Metastatic Renal Cell Cancer; Progesterone Receptor Negative; Stage III Mesothelioma; Stage III Renal Cell Cancer; Stage IIIA Breast Cancer; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Stage IV Mesothelioma; Stage IV Non-Small Cell Lung Cancer; Stage IV Renal Cell Cancer; Triple-Negative Breast Carcinoma

  5. Vaccine Therapy and Sargramostim With or Without Docetaxel in Treating Patients With Metastatic Lung Cancer or Metastatic Colorectal Cancer

    ClinicalTrials.gov

    2014-03-28

    Extensive Stage Small Cell Lung Cancer; Recurrent Colon Cancer; Recurrent Non-small Cell Lung Cancer; Recurrent Rectal Cancer; Recurrent Small Cell Lung Cancer; Stage IV Colon Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Rectal Cancer

  6. Erlotinib Hydrochloride With or Without Carboplatin and Paclitaxel in Treating Patients With Stage III-IV Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2018-06-01

    Adenosquamous Lung Carcinoma; Lung Adenocarcinoma; Malignant Pericardial Effusion; Malignant Pleural Effusion; Minimally Invasive Lung Adenocarcinoma; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IV Non-Small Cell Lung Cancer AJCC v7

  7. USP7 promotes cell proliferation through the stabilization of Ki-67 protein in non-small cell lung cancer cells.

    PubMed

    Zhang, Chao; Lu, Jing; Zhang, Quan-Wu; Zhao, Wei; Guo, Jia-Hui; Liu, Shan-Ling; Wu, Ying-Li; Jiang, Bin; Gao, Feng-Hou

    2016-10-01

    The Ki-67 antigen (Ki-67) is the most reliable immunohistochemical marker for evaluation of cell proliferation in non-small cell lung cancer. However, the mechanisms underlying the regulation of protein levels of Ki-67 in non-small cell lung cancer have remained elusive. In this study, we found that Ki-67 and ubiquitin-specific processing protease 7 (USP7) protein were highly expressed in the nucleus of non-small cell lung cancer cells. Furthermore, statistical analysis uncovered the existence of a strong correlation between Ki-67 and USP7 levels. We could also show that the protein levels of Ki-67 in non-small cell lung cancer cells significantly decreased after treatment with P22077, a selective chemical inhibitor of USP7, while the Ki-67 mRNA levels were unperturbed. Similar results were obtained by knocking down USP7 using short hairpin RNA (shRNA) in lung cancer cells. Interestingly, we noticed that ubiquitination levels of Ki-67 increased dramatically in USP7-silenced cells. The tests in vitro and vivo showed a significant delay in tumor cell growth upon knockdown of USP7. Additionally, drug sensitivity tests indicated that USP7-silenced A549 cells had enhanced sensitivity to paclitaxel and docetaxel, while there was no significant change in sensitivity toward carboplatin and cisplatin. Taken together, these data strongly suggest that the overexpression of USP7 might promote cell proliferation by deubiquitinating Ki-67 protein, thereby maintaining its high levels in the non-small cell lung cancer. Our study also hints potential for the development of deubiquitinase-based therapies, especially those targeting USP7 to improve the condition of patients diagnosed with non-small cell lung cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Nab-paclitaxel/Rituximab-coated Nanoparticle AR160 in Treating Patients With Relapsed or Refractory B-Cell Non-Hodgkin Lymphoma

    ClinicalTrials.gov

    2018-04-17

    Aggressive Non-Hodgkin Lymphoma; CD20 Positive; Recurrent B-Cell Non-Hodgkin Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory B-Cell Non-Hodgkin Lymphoma; Refractory Small Lymphocytic Lymphoma

  9. Msi2 Regulates the Aggressiveness of Non-Small Cell Lung Cancer (NSCLC)

    DTIC Science & Technology

    2016-12-01

    Non-small cell lung cancer, invasion, metastasis, pro-invasive signaling, RNA binding proteins, Musashi, TGF-beta, epithelial mesenchymal transition...Non-small cell lung cancer, invasion, metastasis, pro-invasive signaling, RNA binding proteins, Musashi, TGF- beta, epithelial mesenchymal...NOTCH-1 RNA and protein expression in 344SQ and 531LN2 cells (NICD protein level was tested in 344SQ cells as well), Fig. 2 D-F. Surprisingly

  10. Genetic and Epigenetic Determinants of Lung Cancer Subtype: Adenocarcinoma to Small Cell Conversion

    DTIC Science & Technology

    2015-08-01

    better understand critical molecular alterations in non -small cell lung cancer (NSCLC) which may lead to the identification of effective therapies...Program Official: Email: kimke@mail.nih.gov; Phone: 301-496-8639; Fax: 301-402-7819 EGFR Mutations in Non Small Cell Lung Cancer The aims of the study...forryscs@mail.nih.gov; Phone: (301) 435-9147; Fax: 301-402-5200 Protein Kinase Therapeutic Targets for Non Small Cell Lung Carcinoma The overall goal

  11. Cyclophosphamide or Denileukin Diftitox Followed By Expanding a Patient's Own T Cells in the Laboratory in Treating Patients With HER-2/Neu Overexpressing Metastatic Breast Cancer, Ovarian Cancer, or Non-Small Cell Lung Cancer Previously Treated With HER-2/Neu Vaccine

    ClinicalTrials.gov

    2014-11-07

    HER2-positive Breast Cancer; Recurrent Breast Cancer; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Stage IV Breast Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor

  12. Trigriluzole With Nivolumab and Pembrolizumab in Treating Patients With Metastatic or Unresectable Solid Malignancies or Lymphoma

    ClinicalTrials.gov

    2018-05-23

    Lymphoma; Metastatic Malignant Solid Neoplasm; Metastatic Melanoma; Metastatic Renal Cell Cancer; Recurrent Bladder Carcinoma; Recurrent Classical Hodgkin Lymphoma; Recurrent Head and Neck Squamous Cell Carcinoma; Recurrent Lymphoma; Recurrent Malignant Solid Neoplasm; Recurrent Renal Cell Carcinoma; Stage III Bladder Cancer; Stage III Lymphoma; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage III Renal Cell Cancer; Stage III Skin Melanoma; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Skin Melanoma; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Skin Melanoma; Stage IIIC Skin Melanoma; Stage IV Bladder Cancer; Stage IV Lymphoma; Stage IV Non-Small Cell Lung Cancer AJCC v7; Stage IV Renal Cell Cancer; Stage IV Skin Melanoma; Stage IVA Bladder Cancer; Stage IVB Bladder Cancer; Unresectable Head and Neck Squamous Cell Carcinoma; Unresectable Solid Neoplasm

  13. Vaccine Therapy in Treating Patients With Colon, Pancreatic, or Lung Cancer

    ClinicalTrials.gov

    2015-04-27

    Recurrent Colon Cancer; Extensive Stage Small Cell Lung Cancer; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Limited Stage Small Cell Lung Cancer; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Stage III Non-small Cell Lung Cancer; Stage I Pancreatic Cancer; Stage II Non-small Cell Lung Cancer; Stage IVB Pancreatic Cancer; Stage II Pancreatic Cancer; Stage III Colon Cancer; Stage IVA Pancreatic Cancer

  14. Small bowel perforation secondary to metastatic non-small cell lung cancer. A rare entity with a dismal prognosis.

    PubMed

    Salemis, Nikolaos S; Nikou, Efstathios; Liatsos, Christos; Gakis, Christos; Karagkiouzis, Grigorios; Gourgiotis, Stavros

    2012-09-01

    The incidence of gastrointestinal metastases from lung cancer is higher than previously thought as they have been reported in 2-14% of the cases in autopsy studies. However, clinically significant metastases are rare. Small bowel perforation secondary to metastatic non-small cell lung cancer is a very rare clinical entity. The aim of this study is to describe a case of ileal perforation in a patient with intestinal metastases of a non-small cell lung cancer, along with a review of the literature. A 57-year-old male with a history of non-small cell lung cancer was referred to our emergency department with signs and symptoms of acute surgical abdomen. A computed tomography scan demonstrated dilated small bowel loops, liver deposits, and signs of perforation of an intra-abdominal hollow viscus. Emergency exploratory laparotomy revealed diffuse purulent peritonitis and a perforated ileal tumor. A segmental small bowel resection and primary anastomosis were performed. Histological and immunohistochemical findings were consistent with a metastatic non-small cell lung carcinoma. Additional evaluation revealed widespread metastatic disease. Unfortunately, despite adjuvant treatment, the patient died of progressive disease 2 months after surgery. Small bowel perforation due to metastatic non-small cell lung cancer is a very rare clinical entity. The possibility of small bowel metastases should be kept in mind in patients with lung cancer presenting with an acute abdomen. Intestinal perforation occurs in advanced stages and is usually a sign of widespread disease. Aggressive surgery can provide effective palliation and may improve short-term survival. The prognosis is however dismal.

  15. Evaluation of Biomarkers Predictive of Benefit From PD-1 Inhibitor MK-3475 in Patients with Non-Small Cell Lung Cancer and Brain Metastases

    DTIC Science & Technology

    2016-07-01

    AWARD NUMBER: W81XWH-15-1-0203 TITLE: Evaluation of Biomarkers Predictive of Benefit From PD-1 Inhibitor MK-3475 in Patients with Non-Small...AND SUBTITLE 5a. CONTRACT NUMBER Evaluation of Biomarkers Predictive of Benefit From PD-1 Inhibitor MK-3475 in Patients with Non-Small Cell Lung...axis can result in dramatic responses and durable benefit in patients with non- small cell lung cancer (NSCLC). However, the overall response rate is

  16. Immunotherapy for non-small cell lung cancer: current concepts and clinical trials

    PubMed Central

    Mayor, Marissa; Yang, Neng; Sterman, Daniel; Jones, David R.; Adusumilli, Prasad S.

    2016-01-01

    Recent successes in immunotherapeutic strategies are being investigated to combat cancers that have less than ideal responses to standard of care treatment, such as non-small-cell lung cancer. In this paper, we summarize concepts and the current status of immunotherapy for non-small cell lung cancer, including salient features of the major categories of immunotherapy—monoclonal antibody therapy, immune checkpoint blockade, immunotoxins, anticancer vaccines, and adoptive cell therapy. PMID:26516195

  17. Erlotinib in Treating Patients With Advanced Non-Small Cell Lung Cancer, Ovarian Cancer, or Squamous Cell Carcinoma of the Head and Neck

    ClinicalTrials.gov

    2013-01-08

    Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage IIIA Non-small Cell Lung Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IIIB Ovarian Epithelial Cancer; Stage IIIC Ovarian Epithelial Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IVA Squamous Cell Carcinoma of the Larynx; Stage IVA Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVA Squamous Cell Carcinoma of the Oropharynx; Stage IVB Squamous Cell Carcinoma of the Larynx; Stage IVB Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVB Squamous Cell Carcinoma of the Oropharynx; Stage IVC Squamous Cell Carcinoma of the Larynx; Stage IVC Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVC Squamous Cell Carcinoma of the Oropharynx

  18. Temsirolimus and Vinorelbine Ditartrate in Treating Patients With Unresectable or Metastatic Solid Tumors

    ClinicalTrials.gov

    2016-06-09

    Extensive Stage Small Cell Lung Cancer; Hereditary Paraganglioma; Male Breast Cancer; Malignant Paraganglioma; Metastatic Gastrointestinal Carcinoid Tumor; Metastatic Pheochromocytoma; Pancreatic Polypeptide Tumor; Recurrent Breast Cancer; Recurrent Cervical Cancer; Recurrent Endometrial Carcinoma; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Islet Cell Carcinoma; Recurrent Neuroendocrine Carcinoma of the Skin; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pheochromocytoma; Recurrent Prostate Cancer; Recurrent Renal Cell Cancer; Recurrent Small Cell Lung Cancer; Recurrent Uterine Sarcoma; Regional Gastrointestinal Carcinoid Tumor; Regional Pheochromocytoma; Stage III Cervical Cancer; Stage III Endometrial Carcinoma; Stage III Neuroendocrine Carcinoma of the Skin; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage III Prostate Cancer; Stage III Renal Cell Cancer; Stage III Uterine Sarcoma; Stage IIIA Breast Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Breast Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Stage IV Endometrial Carcinoma; Stage IV Neuroendocrine Carcinoma of the Skin; Stage IV Non-small Cell Lung Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Prostate Cancer; Stage IV Renal Cell Cancer; Stage IV Uterine Sarcoma; Stage IVA Cervical Cancer; Stage IVB Cervical Cancer; Thyroid Gland Medullary Carcinoma

  19. Palbociclib With Cisplatin or Carboplatin in Advanced Solid Tumors

    ClinicalTrials.gov

    2017-11-22

    Solid Neoplasm; Stage III Pancreatic Cancer; Stage IIIA Breast Cancer; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Breast Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Stage IV Non-Small Cell Lung Cancer; Stage IVA Pancreatic Cancer; Stage IVB Pancreatic Cancer; Sarcoma; Colorectal Cancer; Head and Neck Cancer; Cancer of Unknown Primary; Bladder Cancer; Ovarian Cancer

  20. Evaluation of the Role of Invadopodia in Lung Cancer Cell Growth and Invasion

    DTIC Science & Technology

    2014-11-01

    NSCLC cell lines. We obtained eight such lines: H1975 and H1650 ( non - smoker , mutant EGFr); H1395 and H1573 ( non - smoker , wildtype EGFr); H23 and H1792...Invadopodia are actin-based cellular protrusions found in many invasive cancer cell types. Non small cell lung cancers (NSCLCs) are highly invasive and...Abstract: Invadopodia are actin-based cellular protrusions found in many invasive cancer cell types. Non small cell lung cancers (NSCLCs) are highly

  1. RO4929097 and Whole-Brain Radiation Therapy or Stereotactic Radiosurgery in Treating Patients With Brain Metastases From Breast Cancer

    ClinicalTrials.gov

    2015-01-22

    Estrogen Receptor-negative Breast Cancer; Extensive Stage Small Cell Lung Cancer; HER2-negative Breast Cancer; HER2-positive Breast Cancer; Male Breast Cancer; Recurrent Breast Cancer; Recurrent Melanoma; Recurrent Non-small Cell Lung Cancer; Recurrent Small Cell Lung Cancer; Stage IV Breast Cancer; Stage IV Melanoma; Stage IV Non-small Cell Lung Cancer; Tumors Metastatic to Brain; Unspecified Adult Solid Tumor, Protocol Specific

  2. Small interfering RNA-mediated suppression of serum response factor, E2-promotor binding factor and survivin in non-small cell lung cancer cell lines by non-viral transfection.

    PubMed

    Walker, Tobias; Nolte, Andrea; Steger, Volker; Makowiecki, Christina; Mustafi, Migdat; Friedel, Godehard; Schlensak, Christian; Wendel, Hans-Peter

    2013-03-01

    Serum response factor (SRF), E2F1 and survivin are well-known factors involved in a multitude of cancer-related regulation processes. However, to date, no suitable means has been found to apply their potential in the therapy of non-small cell lung cancer (NSCLC). This study deals with questions of small interfering ribonucleic acid (siRNA) transfection efficiency by a non-viral transfection of NSCLC cell-lines and the power of siRNA to transiently influence cell division by specific silencing. Different NSCLC cell lines were cultured under standard conditions and transfected, with specific siRNA targeting SRF, E2F1 and survivin in a non-viral manner. Cells treated with non-specific siRNA (SCR-siRNA) served as controls. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed for messenger RNA (mRNA) expression levels. Additionally, transfection efficiency was evaluated by flow cytometry. The analysis of cell proliferation was determined with a CASY cell counter 3 days after transfection with SRF or SCR-siRNA. Transfection of the NSCLC cell lines with specific siRNAs against SRF, E2F1 and survivin resulted in a very considerable reduction of the intracellular mRNA concentration. CASY confirmation of cell viability demonstrated an excellent survival of the cell lines treated with non-specific siRNA, in contrast to with application of specific siRNA. This study reports a reliable transfectability of NSCLC-cell lines by siRNA, initially in a non-viral manner, and a reproducible knockdown of the focussed targets, consequently leading to the death of the tumour cells. This constitutes a strong candidate for a new assessment strategy in the therapy of non-small cell lung cancer.

  3. General Information about Non-Small Cell Lung Cancer

    MedlinePlus

    ... Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Non-Small Cell Lung Cancer Go to ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  4. An alternative way to initiate Notch1 signaling in non-small cell lung cancer

    PubMed Central

    Yang, Yi-Lin; Jablons, David

    2014-01-01

    Non-small cell lung cancer (NSCLC) cells activate Notch1 signaling to promote cell proliferation and facilitate their survival. It now emerges that endothelial Delta-like ligand 4 (Dll4) may mediate Notch1 activation and inhibit tumor cell growth. PMID:25806306

  5. Laboratory Treated T Cells in Treating Patients With Relapsed or Refractory Chronic Lymphocytic Leukemia, Non-Hodgkin Lymphoma, or Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2017-10-24

    CD19-Positive Neoplastic Cells Present; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Chronic Lymphocytic Leukemia; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Non-Hodgkin Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Acute Lymphoblastic Leukemia; Refractory Chronic Lymphocytic Leukemia; Refractory Diffuse Large B-Cell Lymphoma; Refractory Mantle Cell Lymphoma; Refractory Non-Hodgkin Lymphoma; Refractory Small Lymphocytic Lymphoma

  6. Pembrolizumab in Treating Patients With HIV and Relapsed, Refractory, or Disseminated Malignant Neoplasms

    ClinicalTrials.gov

    2018-03-22

    AIDS-Related Non-Hodgkin Lymphoma; Classical Hodgkin Lymphoma; HIV Infection; Locally Advanced Malignant Neoplasm; Metastatic Malignant Neoplasm; Recurrent Hepatocellular Carcinoma; Recurrent Hodgkin Lymphoma; Recurrent Kaposi Sarcoma; Recurrent Malignant Neoplasm; Recurrent Melanoma of the Skin; Recurrent Non-Hodgkin Lymphoma; Recurrent Non-Small Cell Lung Carcinoma; Refractory Hodgkin Lymphoma; Refractory Malignant Neoplasm; Solid Neoplasm; Stage IIIA Cutaneous Melanoma AJCC v7; Stage IIIA Hepatocellular Carcinoma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Cutaneous Melanoma AJCC v7; Stage IIIB Hepatocellular Carcinoma AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IIIC Cutaneous Melanoma AJCC v7; Stage IIIC Hepatocellular Carcinoma AJCC v7; Stage IV Cutaneous Melanoma AJCC v6 and v7; Stage IV Non-Small Cell Lung Cancer AJCC v7; Stage IVA Hepatocellular Carcinoma AJCC v7; Stage IVB Hepatocellular Carcinoma AJCC v7

  7. Mechanisms of Idelalisib-Associated Diarrhea in Patients With Relapsed Chronic Lymphocytic Leukemia, Indolent Non-hodgkin Lymphoma, or Small Lymphocytic Lymphoma

    ClinicalTrials.gov

    2017-10-11

    Absence of Signs or Symptoms; B-Cell Non-Hodgkin Lymphoma; Digestive System Signs and Symptoms; Indolent Adult Non-Hodgkin Lymphoma; Recurrent B-Cell Non-Hodgkin Lymphoma; Recurrent Chronic Lymphocytic Leukemia; Recurrent Indolent Adult Non-Hodgkin Lymphoma; Recurrent Small Lymphocytic Lymphoma

  8. Autologous Stem Cell Transplant Followed by Donor Stem Cell Transplant in Treating Patients With Relapsed or Refractory Lymphoma

    ClinicalTrials.gov

    2018-02-12

    Prolymphocytic Leukemia; Recurrent Adult Hodgkin Lymphoma; Recurrent Childhood Hodgkin Lymphoma; Recurrent Childhood Non-Hodgkin Lymphoma; Recurrent Chronic Lymphocytic Leukemia; Recurrent Non-Hodgkin Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hodgkin Lymphoma; Refractory Non-Hodgkin Lymphoma; Refractory Small Lymphocytic Lymphoma; T-Cell Chronic Lymphocytic Leukemia; T-Cell Prolymphocytic Leukemia

  9. Vorinostat in Treating Patients With Metastatic or Unresectable Solid Tumors or Lymphoma and Liver Dysfunction

    ClinicalTrials.gov

    2014-02-21

    Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Primary Central Nervous System Hodgkin Lymphoma; Primary Central Nervous System Non-Hodgkin Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia

  10. A Pooled Analysis on Crizotinib in Treating Chinese Patients with EML4-ALK Positive Non-small-cell Lung Cancer.

    PubMed

    Li, Yang; Huang, Xin-En

    2015-01-01

    This analysis was conducted to evaluate the efficacy and safety of crizotinib based regimens in treating Chinese patients with EML4-ALK positive non-small-cell lung cancer. Clinical studies evaluating the efficacy and safety of crizotinib based regimens on response and safety for Chinese patients with EML4-ALK positive non-small-cell lung cancer were identified by using a predefined search strategy. Pooled response rate (RR) of treatment were calculated. In crizotinib based regimens, 3 clinical studies which including 128 Chinese patients with EML4-ALK positive non-small-cell lung cancer and treated with crizotinib based regimen were considered eligible for inclusion. Pooled analysis suggested that, in all patients, the pooled RR was 59.3% (76/128) in crizotinib based regimens. ALT/AST mild visual disturbances, nausea, and vomiting were the main side effects. No treatment related death occurred in these crizotinib based treatments. This pooled analysis suggests that crizotinib based regimens are associated with good response rate and accepted toxicities in treating Chinese patients with EML4-ALK positive non-small-cell lung cancer.

  11. MicroRNA-1285-5p influences the proliferation and metastasis of non-small-cell lung carcinoma cells via downregulating CDH1 and Smad4.

    PubMed

    Zhou, Shixia; Zhang, Zhongmian; Zheng, Pengyuan; Zhao, Wenchao; Han, Na

    2017-06-01

    Abnormal expression of microRNAs has been reported to regulate gene expression and cancer cell growth, invasion, and migration. Recently, upregulation of hsa-miR-1285 was demonstrated in bronchoalveolar lavage fluid samples from patients with lung cancer and downregulation in plasma level of stage-I lung cancer patients. However, the function and the underlying mechanism of miR-1285 in non-small-cell lung carcinoma have not been elucidated. In this study, we found that miR-1285-5p, the mature form of miR-1285, was significantly upregulated in human non-small-cell lung carcinoma cell lines A549 and SK-MES-1. Additionally, cells transfected with the miR-1285-5p inhibitor LV-anti-miR-1285-5p demonstrated significantly inhibited proliferation and invasion and depressed migration. Further analysis demonstrated that the miR-1285-5p precursor LV-miR-1285-5p attenuated the expression of Smad4 and cadherin-1 (CDH1) but that LV-anti-miR-1285-5p showed opposite results. A luciferase reporter assay confirmed that miR-1285-5p targeted Smad4 and CDH1. Mechanism analyses revealed that silence of Smad4 and CDH1 significantly attenuated the inhibitory effects of LV-anti-miR-1285-5p on non-small-cell lung carcinoma growth and invasion. Taken together, our data suggest that miR-1285-5p functions as a tumor promoter in the development of non-small-cell lung carcinoma by targeting Smad4 and CDH1, indicating a novel therapeutic strategy for non-small-cell lung carcinoma patients.

  12. Lenalidomide With or Without Rituximab in Treating Patients With Progressive or Relapsed Chronic Lymphocytic Leukemia, Small Lymphocytic Lymphoma, Prolymphocytic Leukemia, or Non-Hodgkin Lymphoma Previously Treated With Donor Stem Cell Transplant

    ClinicalTrials.gov

    2017-07-24

    Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Prolymphocytic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenström Macroglobulinemia

  13. Current Treatment Algorithms for Patients with Metastatic Non-Small Cell, Non-Squamous Lung Cancer

    PubMed Central

    Melosky, Barbara

    2017-01-01

    The treatment paradigm for metastatic non-small cell, non-squamous lung cancer is continuously evolving due to new treatment options and our increasing knowledge of molecular signal pathways. As a result of treatments becoming more efficacious and more personalized, survival for selected groups of non-small cell lung cancer (NSCLC) patients is increasing. In this paper, three algorithms will be presented for treating patients with metastatic non-squamous, NSCLC. These include treatment algorithms for NSCLC patients whose tumors have EGFR mutations, ALK rearrangements, or wild-type/wild-type tumors. As the world of immunotherapy continues to evolve quickly, a future algorithm will also be presented. PMID:28373963

  14. Osimertinib and Necitumumab in Treating Patients With EGFR-Mutant Stage IV or Recurrent Non-small Cell Lung Cancer Who Have Progressed on a Previous EGFR Tyrosine Kinase Inhibitor

    ClinicalTrials.gov

    2018-03-07

    EGFR Exon 19 Deletion Mutation; EGFR Exon 20 Insertion Mutation; EGFR NP_005219.2:p.G719X; EGFR NP_005219.2:p.L858R; EGFR NP_005219.2:p.L861Q; EGFR NP_005219.2:p.T790M; EGFR T790M Mutation Negative; Recurrent Non-Small Cell Lung Carcinoma; Stage IV Non-Small Cell Lung Cancer AJCC v7

  15. Methylenetetrahydrofolate reductase gene C677T and A1298C polymorphisms in patients with small cell and non-small cell lung cancer.

    PubMed

    Siemianowicz, Krzysztof; Gminski, Jan; Garczorz, Wojciech; Slabiak, Natalia; Goss, Malgorzata; Machalski, Marek; Magiera-Molendowska, Helena

    2003-01-01

    Two mutations of methylenetetrahydrofolate reductase (MTHFR) gene (C677T and A1298C) may lead to a decreased activity of the enzyme. These mutations may change a risk of some cancers. We evaluated these two polymorphisms of MTHFR in patients with small cell lung cancer (SCLC) and non-small cell lung cancer (NCSCL). All lung cancer patients had statistically significantly higher percentage of MTHFR 677TT genotype in comparison with non-cancer controls. There were no statistically significant differences in the distribution of MTHFR 1298 genotypes. Neither of the polymorphisms presented any statistically significant differences between SCLC and NSCLC.

  16. Pevonedistat and Ibrutinib in Treating Participants With Relapsed or Refractory Chronic Lymphocytic Leukemia or Non-Hodgkin Lymphoma

    ClinicalTrials.gov

    2018-03-20

    B-Cell Prolymphocytic Leukemia; Recurrent Chronic Lymphocytic Leukemia; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Follicular Lymphoma; Recurrent Lymphoplasmacytic Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Non-Hodgkin Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Diffuse Large B-Cell Lymphoma; Refractory Follicular Lymphoma; Refractory Lymphoplasmacytic Lymphoma; Refractory Mantle Cell Lymphoma; Refractory Marginal Zone Lymphoma; Refractory Non-Hodgkin Lymphoma; Refractory Small Lymphocytic Lymphoma; Richter Syndrome

  17. Lung Cancer—Health Professional Version

    Cancer.gov

    Lung cancer appears in two main types. Non-small cell (squamous cell carcinoma, large cell carcinoma, and adenocarcinoma), and small cell lung cancer (oat cell cancer and combined small cell carcinoma). Find evidence-based information on lung cancer treatment, causes and prevention, research, screening, and statistics.

  18. Molecular Modeling, Docking, Dynamics and simulation of Gefitinib and its derivatives with EGFR in Non-Small Cell Lung Cancer.

    PubMed

    Reddy, Pulakuntla Swetha; Lokhande, Kiran Bharat; Nagar, Shuchi; Reddy, Vaddi Damodara; Murthy, P Sushma; Swamy, K Venkateswara

    2018-02-27

    Gefitinib (lressa) is the most prescribed drug, highly effective to treat of non-small cell lung cancer; primarily it was considered targeted therapy is a kinase inhibitor. The non-small cell lung cancer caused by the mutation in the Epithelial Growth Factor Receptor (EGFR) gene, Iressa works by blocking the EGFR protein that helps the cancer cell growth. EGFR protein has lead to the development of anticancer therapeutics directed against EGFR inhibitor including Gefitinib for non-small cell lung cancer. To explore research on Gefitinib and its derivatives interaction with crystal structure EGFR to understand the better molecular insights interaction strategies. Molecular modeling of ligands (Gefitinib and its derivatives) was carried out by Avogadro software till atomic angle stable confirmation obtained. The partial charges for the ligands were assigned as per standard protocol for molecular docking. All docking simulations were performed with AutoDockVina. Virtual screening carried out based on binding energy and hydrogen bonding affinity. Molecular dynamics (MD) and Simulation EGFR was done using GROMACS 5.1.1 software to explore the interaction stability in a cell. The stable conformation for EGFR protein trajectories were captured at various time intervals 0-20ns. Few compounds screen based on high affinity as the inhibitor for EGFR may inhibit the cell cycle signalling in non-small cell lung cancer. These result suggested that a computer aided screening approach of a Gefitinib derivatives compounds with regard to their binding to EGFR for identifying novel drugs for the treatment of non-small cell lung cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. A Continuation Study Using Sunitinib Malate For Patients Leaving Treatment On A Previous Sunitinib Study.

    ClinicalTrials.gov

    2015-10-07

    Metastatic Breast Cancer [F]; Advanced Breast Cancer; Metastatic Castration Resistant Prostate Cancer; Metastatic Renal Cell Cancer; Non-Small Cell Lung Cancer; Thyroid Cancer; Advanced/Metastatic Non-Small Cell Lung Cancer; Advanced Gastric Cancer; Gastrointestinal Stromal Tumor; Hepatocellular Carcinoma; Pancreatic Islet Cell Carcinoma; Pancreatic Neuroendocrine Tumor

  20. Autologous Peripheral Blood Stem Cell Transplant Followed by Donor Bone Marrow Transplant in Treating Patients With High-Risk Hodgkin Lymphoma, Non-Hodgkin Lymphoma, Multiple Myeloma, or Chronic Lymphocytic Leukemia

    ClinicalTrials.gov

    2017-12-26

    B-Cell Prolymphocytic Leukemia; Hypodiploidy; Loss of Chromosome 17p; Plasma Cell Leukemia; Progression of Multiple Myeloma or Plasma Cell Leukemia; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Non-Hodgkin Lymphoma; Recurrent Childhood Hodgkin Lymphoma; Recurrent Childhood Non-Hodgkin Lymphoma; Recurrent Chronic Lymphocytic Leukemia; Recurrent Plasma Cell Myeloma; Recurrent Small Lymphocytic Lymphoma; Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Non-Hodgkin Lymphoma; Refractory Plasma Cell Myeloma; Refractory Small Lymphocytic Lymphoma; t(14;16); t(4;14); T-Cell Prolymphocytic Leukemia; Waldenstrom Macroglobulinemia

  1. Dendritic Cell Therapy, Cryosurgery, and Pembrolizumab in Treating Patients With Non-Hodgkin Lymphoma

    ClinicalTrials.gov

    2018-05-15

    Aggressive Non-Hodgkin Lymphoma; Indolent Non-Hodgkin Lymphoma; Recurrent Adult Non-Hodgkin Lymphoma; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mediastinal (Thymic) Large B-Cell Cell Lymphoma; Recurrent T-Cell Non-Hodgkin Lymphoma; Small Lymphocytic Lymphoma

  2. Paranuclear blue inclusions in metastatic undifferentiated small cell carcinoma in the bone marrow.

    PubMed

    Wittchow, R; Laszewski, M; Walker, W; Dick, F

    1992-09-01

    Paranuclear blue inclusions (PBIs) are frequently identified within metastatic undifferentiated small cell carcinoma (SCC) cells on air-dried bone marrow aspirates stained with Wright's stain. To determine the sensitivity and specificity of this finding, 116 bone marrow aspirates containing metastatic neoplasms were evaluated for the presence and frequency of PBIs. Bone marrow specimens included 47 cases of metastatic SCC of the lung, 13 cases of large cell lymphoma, 19 cases of neuroblastoma, five cases of small, noncleaved cell lymphoma, seven cases of rhabdomyosarcoma, three cases of Ewing's sarcoma, three cases of other sarcomas, and 19 cases of non-small cell carcinoma (adenocarcinoma). PBIs were identified in 40 of 47 (85%) cases of SCC and their frequency varied from 0 to 24% of tumor cells among different cases. In approximately half the cases of SCC, PBIs were identified in 1 to 4% tumor cells; and in eight cases, PBIs were present in 5% or more of tumor cells. PBIs were also identified in two of seven (29%) cases of rhabdomyosarcoma and one case of malignant peripheral nerve sheath tumor, but they were not seen in Ewing's sarcoma, small non-cleaved cell lymphoma, large cell lymphoma, neuroblastoma, or non-small cell carcinoma. In addition, PBIs were not seen in alcohol-fixed, Papanicolaou-stained cytology specimens containing SCC. Ultrastructurally, PBIs may represent phagocytized nuclear/cellular material. PBIs are a feature of small cell carcinoma on air-dried, cytologic material stained with Romanowsky type stains. Their presence may provide diagnostic information with regard to the differential diagnosis of metastatic SCC in the bone marrow. Future studies evaluating non-bone marrow Wright's stained fine-needle aspiration specimens are needed to determine if PBIs are useful in distinguishing SCC from other poorly differentiated tumors in the cytology laboratory.

  3. Dasatinib in Treating Patients With Solid Tumors or Lymphomas That Are Metastatic or Cannot Be Removed By Surgery

    ClinicalTrials.gov

    2015-06-30

    Adult Acute Lymphoblastic Leukemia in Remission; Adult B Acute Lymphoblastic Leukemia; Adult Hepatocellular Carcinoma; Adult Nasal Type Extranodal NK/T-Cell Lymphoma; Adult Solid Neoplasm; Adult T Acute Lymphoblastic Leukemia; Advanced Adult Hepatocellular Carcinoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-Cell Lymphoma; Chronic Lymphocytic Leukemia; Cutaneous B-Cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone Lymphoma of Mucosa-Associated Lymphoid Tissue; Hepatosplenic T-Cell Lymphoma; Intraocular Lymphoma; Localized Non-Resectable Adult Liver Carcinoma; Localized Resectable Adult Liver Carcinoma; Lymphomatous Involvement of Non-Cutaneous Extranodal Site; Mature T-Cell and NK-Cell Non-Hodgkin Lymphoma; Nodal Marginal Zone Lymphoma; Progressive Hairy Cell Leukemia Initial Treatment; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Lymphoma; Recurrent Adult Liver Carcinoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-Cell Leukemia/Lymphoma; Recurrent Cutaneous T-Cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides and Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Small Intestinal Lymphoma; Splenic Marginal Zone Lymphoma; Stage II Small Lymphocytic Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-Cell Leukemia/Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-Cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IIIA Mycosis Fungoides and Sezary Syndrome; Stage IIIB Mycosis Fungoides and Sezary Syndrome; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-Cell Leukemia/Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-Cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Stage IVA Mycosis Fungoides and Sezary Syndrome; Stage IVB Mycosis Fungoides and Sezary Syndrome; T-Cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Hairy Cell Leukemia; Waldenstrom Macroglobulinemia

  4. Bioequivalence & Food Effect Study in Patients With Solid Tumor or Hematologic Malignancies

    ClinicalTrials.gov

    2018-04-30

    Hematological Neoplasms; Non-Hodgkin's Lymphoma; Hodgkin's Lymphoma; Lymphoma; Multiple Myeloma; Acute Myeloid Leukemia; Leukemia; Myelodysplastic Syndromes; Neoplasms; Melanoma; Breast Cancer; Metastatic Breast Cancer; Non-Small Cell Lung Cancer; Small Cell Lung Cancer; Renal Cell Carcinoma; Glioblastoma Multiforme; Osteosarcoma; Sarcoma; Thyroid Cancer; Genitourinary

  5. The chimeric transcript RUNX1-GLRX5: a biomarker for good postoperative prognosis in Stage IA non-small-cell lung cancer.

    PubMed

    Ishikawa, Rie; Amano, Yosuke; Kawakami, Masanori; Sunohara, Mitsuhiro; Watanabe, Kousuke; Kage, Hidenori; Ohishi, Nobuya; Yatomi, Yutaka; Nakajima, Jun; Fukayama, Masashi; Nagase, Takahide; Takai, Daiya

    2016-02-01

    Stage IA non-small-cell lung cancer cases have been recognized as having a low risk of relapse; however, occasionally, relapse may occur. To predict clinical outcome in Stage IA non-small-cell lung cancer patients, we searched for chimeric transcripts that can be used as biomarkers and identified a novel chimeric transcript, RUNX1-GLRX5, comprising RUNX1, a transcription factor, and GLRX5. This chimera was detected in approximately half of the investigated Stage IA non-small-cell lung cancer patients (44/104 cases, 42.3%). Although there was no significant difference in the overall survival rate between RUNX1-GLRX5-positive and -negative cases (P = 0.088), a significantly lower relapse rate was observed in the RUNX1-GLRX5-positive cases (P = 0.039), indicating that this chimera can be used as a biomarker for good prognosis in Stage IA patients. Detection of the RUNX1-GLRX5 chimeric transcript may therefore be useful for the determination of a postoperative treatment plan for Stage IA non-small-cell lung cancer patients. © The Author 2015. Published by Oxford University Press.

  6. Gamma-Secretase Inhibitor RO4929097 and Cediranib Maleate in Treating Patients With Advanced Solid Tumors

    ClinicalTrials.gov

    2014-12-22

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Adult Solid Neoplasm; Male Breast Carcinoma; Recurrent Adult Brain Neoplasm; Recurrent Breast Carcinoma; Recurrent Colon Carcinoma; Recurrent Melanoma; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Carcinoma; Recurrent Rectal Carcinoma; Recurrent Renal Cell Carcinoma; Stage III Pancreatic Cancer; Stage III Renal Cell Cancer; Stage IIIA Colon Cancer; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIA Rectal Cancer; Stage IIIA Skin Melanoma; Stage IIIB Breast Cancer; Stage IIIB Colon Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIB Rectal Cancer; Stage IIIB Skin Melanoma; Stage IIIC Breast Cancer; Stage IIIC Colon Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Ovarian Germ Cell Tumor; Stage IIIC Rectal Cancer; Stage IIIC Skin Melanoma; Stage IV Breast Cancer; Stage IV Non-Small Cell Lung Cancer; Stage IV Ovarian Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Pancreatic Cancer; Stage IV Renal Cell Cancer; Stage IV Skin Melanoma; Stage IVA Colon Cancer; Stage IVA Rectal Cancer; Stage IVB Colon Cancer; Stage IVB Rectal Cancer

  7. Non-Small Cell Lung Cancer Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Non-small cell lung cancer (NSCLC) treatment options include surgery, chemotherapy, radiation therapy, targeted therapy, and immunotherapy. Get detailed information about newly diagnosed and recurrent NSCLC in this summary for clinicians.

  8. Genetically Modified Peripheral Blood Stem Cell Transplant in Treating Patients With HIV-Associated Non-Hodgkin or Hodgkin Lymphoma

    ClinicalTrials.gov

    2015-05-06

    Adult Nasal Type Extranodal NK/T-cell Lymphoma; AIDS-related Diffuse Large Cell Lymphoma; AIDS-related Diffuse Mixed Cell Lymphoma; AIDS-related Diffuse Small Cleaved Cell Lymphoma; AIDS-related Immunoblastic Large Cell Lymphoma; AIDS-related Lymphoblastic Lymphoma; AIDS-related Peripheral/Systemic Lymphoma; AIDS-related Small Noncleaved Cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; HIV-associated Hodgkin Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage I AIDS-related Lymphoma; Stage II AIDS-related Lymphoma; Stage III AIDS-related Lymphoma; Stage IV AIDS-related Lymphoma; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenström Macroglobulinemia

  9. Effects of retinoic acid-inducible gene-I-like receptors activations and ionizing radiation cotreatment on cytotoxicity against human non-small cell lung cancer in vitro.

    PubMed

    Yoshino, Hironori; Iwabuchi, Miyu; Kazama, Yuka; Furukawa, Maho; Kashiwakura, Ikuo

    2018-04-01

    Retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) are pattern-recognition receptors that recognize pathogen-associated molecular patterns and induce antiviral immune responses. Recent studies have demonstrated that RLR activation induces antitumor immunity and cytotoxicity against different types of cancer, including lung cancer. However a previous report has demonstrated that ionizing radiation exerts a limited effect on RLR in human monocytic cell-derived macrophages, suggesting that RLR agonists may be used as effective immunostimulants during radiation therapy. However, it is unclear whether ionizing radiation affects the cytotoxicity of RLR agonists against cancer cells. Therefore, in the present study the effects of cotreatment with ionizing radiation and RLR agonists on cytotoxicity against human non-small cell lung cancer cells A549 and H1299 was investigated. Treatment with RLR agonist poly(I:C)/LyoVec™ [poly(I:C)] exerted cytotoxic effects against human non-small cell lung cancer. The cytotoxic effects of poly(I:C) were enhanced by cotreatment with ionizing radiation, and poly(I:C) pretreatment resulted in the radiosensitization of non-small cell lung cancer. Furthermore, cotreatment of A549 and H1299 cells with poly(I:C) and ionizing radiation effectively induced apoptosis in a caspase-dependent manner compared with treatment with poly(I:C) or ionizing radiation alone. These results indicate that RLR agonists and ionizing radiation cotreatment effectively exert cytotoxic effects against human non-small cell lung cancer through caspase-mediated apoptosis.

  10. TRIM28, a new molecular marker predicting metastasis and survival in early-stage non-small cell lung cancer.

    PubMed

    Liu, Lei; Zhao, Enhong; Li, Chunhui; Huang, Liang; Xiao, Lijun; Cheng, Luyang; Huang, Xu; Song, Youxin; Xu, Dawei

    2013-02-01

    TRIM28 is a universal corepressor for Kruppel-associated box zinc finger proteins. In this study, we demonstrated the expression of TRIM28 gene was significantly higher in cancerous tissues than in noncancerous tissues (P < 0.001). TRIM28 knockdown resulted in a decrease in cell proliferation in liquid media as well as in soft agar. The proliferation rate was impaired and the cell cycle progression was inhibited after knockdown of TRIM28 in non-small cell lung cancer cell lines PAa and SK-MES-1. We used real-time polymerase chain reaction to detect circulating cancer cells in 138 non-small cell lung cancer patients. The overall positive detection rate was 30.4% (42 of 138) in peripheral blood of NSCLC patients and was 29.9% (29 of 97) in early-stage patients. In a 70-month follow-up study, 20 of 29 patients (69.0%) in TRIM28 positive group had recurrence and/or metastasis, significantly higher (P = 0.004) than in the TRIM28 negative group (25 of 68, 36.8%). In addition, non-small cell lung cancer patients whose circulating cancer cells expressed TRIM28 suffered shorter tumor-specific survival compared with those with absent TRIM28 expression (P < 0.001). Results of our study showed that TRIM28 provides a survival advantage to lung cancer cells and may be a new marker to predict metastasis and prognosis in early-stage non-small cell lung cancer patients. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Ipilimumab and Local Radiation Therapy in Treating Patients With Recurrent Melanoma, Non-Hodgkin Lymphoma, Colon, or Rectal Cancer

    ClinicalTrials.gov

    2017-01-12

    Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Colon Cancer; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Melanoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Rectal Cancer; Recurrent Small Lymphocytic Lymphoma; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenström Macroglobulinemia

  12. Methoxyamine, Cisplatin, and Pemetrexed Disodium in Treating Patients With Advanced Solid Tumors or Mesothelioma That Cannot Be Removed by Surgery or Mesothelioma That Is Refractory to Pemetrexed Disodium and Cisplatin or Carboplatin

    ClinicalTrials.gov

    2018-04-23

    Advanced Malignant Solid Neoplasm; Advanced Peritoneal Malignant Mesothelioma; Advanced Pleural Malignant Mesothelioma; Recurrent Peritoneal Malignant Mesothelioma; Recurrent Pleural Malignant Mesothelioma; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage III Ovarian Cancer AJCC v6 and v7; Stage III Pleural Malignant Mesothelioma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Ovarian Cancer AJCC v6 and v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Ovarian Cancer AJCC v6 and v7; Stage IIIC Ovarian Cancer AJCC v6 and v7; Stage IV Non-Small Cell Lung Cancer AJCC v7; Stage IV Ovarian Cancer AJCC v6 and v7; Stage IV Pleural Malignant Mesothelioma AJCC v7; Thymoma; Unresectable Solid Neoplasm

  13. Bevacizumab-induced chronic interstitial pneumonia during maintenance therapy in non-small cell lung cancer.

    PubMed

    Sekimoto, Yasuhito; Kato, Motoyasu; Shukuya, Takehiko; Koyama, Ryo; Nagaoka, Tetsutaro; Takahashi, Kazuhisa

    2016-04-01

    Bevacizumab is a monoclonal antibody targeting the vascular endothelial growth factor receptor and a key drug for advanced non-small cell lung cancer. There are few reports describing bevacizumab-induced chronic interstitial pneumonia. A 62-year-old man with advanced non-small cell lung cancer was admitted to our hospital with dyspnea. He previously received four courses of carboplatin plus paclitaxel with bevacizumab combination therapy and thereafter received four courses of maintenance bevacizumab monotherapy. A chest-computed tomography scan on admission revealed diffuse ground glass opacity. He had not received any other drugs and did not have pneumonia. Thus, he was diagnosed with bevacizumab-induced chronic interstitial pneumonia and was treated with a high dose of corticosteroids. After steroid treatment, his dyspnea and radiological findings improved. This case report is the first description of bevacizumab-induced chronic interstitial pneumonia during maintenance therapy in a patient with non-small cell lung cancer.

  14. Histone Deacetylase Inhibitors as a Novel Targeted Therapy Against Non-small Cell Lung Cancer: Where Are We Now and What Should We Expect?

    PubMed

    Damaskos, Christos; Tomos, Ioannis; Garmpis, Nikolaos; Karakatsani, Anna; Dimitroulis, Dimitrios; Garmpi, Anna; Spartalis, Eleftherios; Kampolis, Christos F; Tsagkari, Eleni; Loukeri, Angeliki A; Margonis, Georgios-Antonios; Spartalis, Michael; Andreatos, Nikolaos; Schizas, Dimitrios; Kokkineli, Stefania; Antoniou, Efstathios A; Nonni, Afroditi; Tsourouflis, Gerasimos; Markatos, Konstantinos; Kontzoglou, Konstantinos; Kostakis, Alkiviadis; Tomos, Periklis

    2018-01-01

    Non-small cell lung cancer constitutes the most common type of lung cancer, accounting for 85-90% of lung cancer, and is a leading cause of cancer-related death. Despite the progress during the past years, poor prognosis remains a challenge and requires further research and development of novel antitumor treatment. Recently, the role of histone deacetylases in gene expression has emerged showing their regulation of the acetylation of histone proteins and other non-histone protein targets and their role in chromatin organization, while their inhibitors, the histone deacetylase inhibitors, have been proposed to have a potential therapeutic role in diverse malignancies, including non-small cell lung cancer. This review article focuses on the role of histone deacetylase inhibitors in the treatment of non-small cell lung cancer and the major molecular mechanisms underlying their antitumor activity recognized so far. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  15. Drug development for breast, colorectal, and non-small cell lung cancers from 1979 to 2014.

    PubMed

    Nixon, Nancy A; Khan, Omar F; Imam, Hasiba; Tang, Patricia A; Monzon, Jose; Li, Haocheng; Sun, Gavin; Ezeife, Doreen; Parimi, Sunil; Dowden, Scot; Tam, Vincent C

    2017-12-01

    Understanding the drug development pathway is critical for streamlining the development of effective cancer treatments. The objective of the current study was to delineate the drug development timeline and attrition rate of different drug classes for common cancer disease sites. Drugs entering clinical trials for breast, colorectal, and non-small cell lung cancer were identified using a pharmaceutical business intelligence database. Data regarding drug characteristics, clinical trials, and approval dates were obtained from the database, clinical trial registries, PubMed, and regulatory Web sites. A total of 411 drugs met the inclusion criteria for breast cancer, 246 drugs met the inclusion criteria for colorectal cancer, and 315 drugs met the inclusion criteria for non-small cell lung cancer. Attrition rates were 83.9% for breast cancer, 87.0% for colorectal cancer, and 92.0% for non-small cell lung cancer drugs. In the case of non-small cell lung cancer, there was a trend toward higher attrition rates for targeted monoclonal antibodies compared with other agents. No tumor site-specific differences were noted with regard to cytotoxic chemotherapy, immunomodulatory, or small molecule kinase inhibitor drugs. Drugs classified as "others" in breast cancer had lower attrition rates, primarily due to the higher success of hormonal medications. Mean drug development times were 8.9 years for breast cancer, 6.7 years for colorectal cancer, and 6.6 years for non-small cell lung cancer. Overall oncologic drug attrition rates remain high, and drugs are more likely to fail in later-stage clinical trials. The refinement of early-phase trial design may permit the selection of drugs that are more likely to succeed in the phase 3 setting. Cancer 2017;123:4672-4679. © 2017 American Cancer Society. © 2017 American Cancer Society.

  16. Inhibition of protein kinase C α/βII and activation of c-Jun NH2-terminal kinase mediate glycyrrhetinic acid induced apoptosis in non-small cell lung cancer NCI-H460 cells.

    PubMed

    Song, Junho; Ko, Hyun-suk; Sohn, Eun Jung; Kim, Bonglee; Kim, Jung Hyo; Kim, Hee Jeong; Kim, Chulwoo; Kim, Jai-eun; Kim, Sung-Hoon

    2014-02-15

    Though glycyrrhetinic acid (GA) from Glycyrrhiza glabra was known to exert antioxidant, antifilarial, hepatoprotective, anti-inflammatory and anti-tumor effects, the antitumor mechanism of GA was not clearly elucidated in non-small cell lung cancer cells (NSCLCCs). Thus, in the present study, the underlying apoptotic mechanism of GA was examined in NCI-H460 NSCLCCs. GA significantly suppressed the viability of NCI-H460 and A549 non-small lung cancer cells. Also, GA significantly increased the sub G1 population by cell cycle analysis and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cells in a concentration dependent manner in NCI-H460 non-small lung cancer cells. Consistently, GA cleaved poly (ADP-ribosyl) polymerase (PARP), caspase 9/3, attenuated the expression of Bcl-XL, Bcl-2, Cyclin D1 and Cyclin E in NCI-H460 cells. Interestingly, GA attenuated the phosphorylation of protein kinase C (PKC) α/βII and extracellular activated protein kinase (ERK) as well as activated the phosphorylation of PKC δ and c-Jun NH2-terminal kinase in NCI-H460 cells. Conversely, PKC promoter phorbol 12-myristate 13-acetate (PMA) and JNK inhibitor SP600125 reversed the cleavages of caspase 3 and PARP induced by GA in NCI-H460 cells. Overall, our findings suggest that GA induces apoptosis via inhibition of PKC α/βII and activation of JNK in NCI-H460 non-small lung cancer cells as a potent anticancer candidate for lung cancer treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Genetic Testing Plus Irinotecan in Treating Patients With Solid Tumors or Lymphoma

    ClinicalTrials.gov

    2013-01-23

    AIDS-related Peripheral/Systemic Lymphoma; AIDS-related Primary CNS Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Primary Central Nervous System Non-Hodgkin Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific

  18. Non-Small Cell Lung Cancer Treatment (PDQ®)—Patient Version

    Cancer.gov

    Non-small cell lung cancer (NSCLC) treatment options include surgery, chemotherapy, radiation therapy, targeted therapy, and immunotherapy. Laser therapy, photodynamic therapy, cryosurgery, and electrocautery may be used. Learn more about NSCLC in this expert-reviewed summary.

  19. Fusion Protein Cytokine Therapy After Rituximab in Treating Patients With B-Cell Non-Hodgkin Lymphoma

    ClinicalTrials.gov

    2015-06-03

    Anaplastic Large Cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Marginal Zone Lymphoma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Testicular Lymphoma; Waldenstrom Macroglobulinemia

  20. Circulating Tumor DNA in Predicting Outcomes in Patients With Stage IV Head and Neck Cancer or Stage III-IV Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2018-01-12

    Metastatic Squamous Neck Cancer With Occult Primary Squamous Cell Carcinoma; Salivary Gland Squamous Cell Carcinoma; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IVA Salivary Gland Cancer; Stage IVA Squamous Cell Carcinoma of the Larynx; Stage IVA Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVA Squamous Cell Carcinoma of the Oropharynx; Stage IVA Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVA Verrucous Carcinoma of the Larynx; Stage IVA Verrucous Carcinoma of the Oral Cavity; Stage IVB Salivary Gland Cancer; Stage IVB Squamous Cell Carcinoma of the Larynx; Stage IVB Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVB Squamous Cell Carcinoma of the Oropharynx; Stage IVB Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVB Verrucous Carcinoma of the Larynx; Stage IVB Verrucous Carcinoma of the Oral Cavity; Stage IVC Salivary Gland Cancer; Stage IVC Squamous Cell Carcinoma of the Larynx; Stage IVC Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVC Squamous Cell Carcinoma of the Oropharynx; Stage IVC Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVC Verrucous Carcinoma of the Larynx; Stage IVC Verrucous Carcinoma of the Oral Cavity; Tongue Cancer; Untreated Metastatic Squamous Neck Cancer With Occult Primary

  1. Cediranib Maleate and Whole Brain Radiation Therapy in Patients With Brain Metastases From Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-03-07

    Male Breast Cancer; Stage IV Breast Cancer; Stage IV Melanoma; Stage IV Non-small Cell Lung Cancer; Stage IV Renal Cell Cancer; Stage IVA Colon Cancer; Stage IVA Rectal Cancer; Stage IVB Colon Cancer; Stage IVB Rectal Cancer; Tumors Metastatic to Brain

  2. Donor Umbilical Cord Blood Transplant in Treating Patients With Hematologic Cancer

    ClinicalTrials.gov

    2018-01-17

    Acute Lymphoblastic Leukemia; Acute Myeloid Leukemia; Aggressive Non-Hodgkin Lymphoma; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Chronic Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Indolent Non-Hodgkin Lymphoma; Lymphoma; Mixed Phenotype Acute Leukemia; Myelodysplastic Syndrome; Myeloproliferative Neoplasm; Recurrent Chronic Lymphocytic Leukemia; Recurrent Follicular Lymphoma; Recurrent Lymphoplasmacytic Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Plasma Cell Myeloma; Recurrent Small Lymphocytic Lymphoma; Recurrent T-Cell Non-Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Refractory Follicular Lymphoma; Refractory Hodgkin Lymphoma; Refractory Lymphoplasmacytic Lymphoma; Refractory Mantle Cell Lymphoma; Refractory Small Lymphocytic Lymphoma; T-Cell Non-Hodgkin Lymphoma

  3. Peptide ligands targeting integrin alpha3beta1 in non-small cell lung cancer.

    PubMed

    Lau, Derick; Guo, Linlang; Liu, Ruiwu; Marik, Jan; Lam, Kit

    2006-06-01

    Lung cancer is one of the most common cancers and is the leading cause of cancer death. We wish to identify peptide ligands for unique cell surface receptors of non-small lung cancer with the hope of developing these ligands as diagnostic and therapeutic agents. Using the method of 'one-bead one-peptide' combinatorial chemistry, a library of random cyclic octapeptides was synthesized on polystyrene beads. This library was used to screen for peptides that promoted attachment of lung adenocarcinoma cells employing a 'cell-growth-on-bead' assay. Consensus peptide sequences of cNGXGXXc were identified. These peptides promoted cell adhesion by targeting integrin alpha3beta1 over-expressed in non-small lung cancer cells. These peptide beads can be applied to capture cancer cells in malignant pleural fluid for purpose of diagnosis of lung cancer.

  4. Effects of retinoic acid-inducible gene-I-like receptors activations and ionizing radiation cotreatment on cytotoxicity against human non-small cell lung cancer in vitro

    PubMed Central

    Yoshino, Hironori; Iwabuchi, Miyu; Kazama, Yuka; Furukawa, Maho; Kashiwakura, Ikuo

    2018-01-01

    Retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) are pattern-recognition receptors that recognize pathogen-associated molecular patterns and induce antiviral immune responses. Recent studies have demonstrated that RLR activation induces antitumor immunity and cytotoxicity against different types of cancer, including lung cancer. However a previous report has demonstrated that ionizing radiation exerts a limited effect on RLR in human monocytic cell-derived macrophages, suggesting that RLR agonists may be used as effective immunostimulants during radiation therapy. However, it is unclear whether ionizing radiation affects the cytotoxicity of RLR agonists against cancer cells. Therefore, in the present study the effects of cotreatment with ionizing radiation and RLR agonists on cytotoxicity against human non-small cell lung cancer cells A549 and H1299 was investigated. Treatment with RLR agonist poly(I:C)/LyoVec™ [poly(I:C)] exerted cytotoxic effects against human non-small cell lung cancer. The cytotoxic effects of poly(I:C) were enhanced by cotreatment with ionizing radiation, and poly(I:C) pretreatment resulted in the radiosensitization of non-small cell lung cancer. Furthermore, cotreatment of A549 and H1299 cells with poly(I:C) and ionizing radiation effectively induced apoptosis in a caspase-dependent manner compared with treatment with poly(I:C) or ionizing radiation alone. These results indicate that RLR agonists and ionizing radiation cotreatment effectively exert cytotoxic effects against human non-small cell lung cancer through caspase-mediated apoptosis. PMID:29541243

  5. HYPAZ: Hypertension Induced by Pazopanib

    ClinicalTrials.gov

    2016-01-04

    Renal Cell Carcinoma; Soft Tissue Sarcoma; Glioblastoma; Ovarian Cancer; Cervical Cancer; Breast Cancer; Non-small Cell Lung Cancer; Small Cell Lung Cancer; Pancreatic Cancer; Melanoma; Gastrointestinal Cancer

  6. Fabrication method for small-scale structures with non-planar features

    DOEpatents

    Burckel, David Bruce; Ten Eyck, Gregory A.

    2016-09-20

    The fabrication of small-scale structures is disclosed. A unit-cell of a small-scale structure with non-planar features is fabricated by forming a membrane on a suitable material. A pattern is formed in the membrane and a portion of the substrate underneath the membrane is removed to form a cavity. Resonators are then directionally deposited on the wall or sides of the cavity. The cavity may be rotated during deposition to form closed-loop resonators. The resonators may be non-planar. The unit-cells can be formed in a layer that includes an array of unit-cells.

  7. Fabrication of small-scale structures with non-planar features

    DOEpatents

    Burckel, David B.; Ten Eyck, Gregory A.

    2015-11-19

    The fabrication of small-scale structures is disclosed. A unit-cell of a small-scale structure with non-planar features is fabricated by forming a membrane on a suitable material. A pattern is formed in the membrane and a portion of the substrate underneath the membrane is removed to form a cavity. Resonators are then directionally deposited on the wall or sides of the cavity. The cavity may be rotated during deposition to form closed-loop resonators. The resonators may be non-planar. The unit-cells can be formed in a layer that includes an array of unit-cells.

  8. [Suppression of WIFI transcript and protein in non-small cell lung carcinomas].

    PubMed

    Korobko, E V; Kalinichenko, S V; Shepelev, M V; Zborovskaia, I B; Allakhverdiev, A K; Zinov'eva, M V; Vinogradova, T V; Sverdlov, E D; Korobko, I V

    2007-01-01

    Changes in WIFI expression, an extracellular inhibitor of Wnt pathway, in non-small cell lung carcinomas were analyzed. Frequent (67% cases) suppression of WIFI transcript in non-small cell lung carcinomas were found. Our results, together with previously published data, suggest that inhibition of WIFI expression often occurs in squamous cell carcinomas and is less typical of adenocarcinomas. It was also found that a decrease in the WIFI transcript in tumors is parallel to concomitant suppression of the WIFI protein level. Our results provide further evidence that the WIFI suppression is a frequent event in the lung carcinogenesis, which might lead to disregulation of Wnt signaling pathway and contribute to tumor progression.

  9. [Recent Advances in Immunotherapy for Non-Small Cell Lung Cancer].

    PubMed

    Muto, Satoshi; Suzuki, Hiroyuki

    2018-02-01

    Cancer immunotherapy for non-small cell lung cancer began around 1970 with nonspecific immunomodulators and cytokine therapies. This has since developed into cell therapy including lymphokine-activated killer cells(LAK)and tumor infiltrating lymphocytes(TIL), as well as cancer vaccine therapy. However, no clear indication of effectiveness has been reported. Despite the high expectation over the effectiveness of cancer vaccine therapy, the treatment strategy was deemed unsuccessful, and focus turned to the study of immune escape mechanism, which is now regarded as standard treatment for non-small cell lung cancer. With the advent of immune checkpoint inhibitors, cancer immunotherapy has finally become a standard treatment for non-small cell lung cancer. There are still several obstacles to overcome including the identification of a predictive biomarker for improved efficacy, as well as the establishment of multidrug or multimodality combination therapy. PD-L1 expression is currently used as a predictive biomarker for anti-PD-1 therapy, but does not meet the expectations of the aimed results. Although tumor mutation burden is considered another promising biomarker, there remain clinical problems, for example the need of next generation sequencer. It was reported that combination therapy of immune checkpoint inhibitor after chemoradiation therapy was also effective. However, it remains unclear of what is required to further improve the clinical effects. In this article, we will review the history of cancer immunotherapy for non-small cell lung cancer and discuss the future prospects.

  10. Lenalidomide Maintenance Therapy After High Dose BEAM With or Without Rituximab

    ClinicalTrials.gov

    2018-01-13

    Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Splenic Marginal Zone Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Waldenström Macroglobulinemia

  11. Ph I/II Study of Subcutaneously Administered Veltuzumab (hA20) in NHL and CLL

    ClinicalTrials.gov

    2013-03-25

    NHL; Lymphoma, Non-Hodgkin; Lymphoma, B-Cell; Lymphoma, Follicular; Lymphoma, Intermediate-Grade; Lymphoma, Large-Cell; Lymphoma, Low-Grade; Lymphoma, Mixed-Cell; Lymphoma, Small-Cell; Leukemia, Lymphocytic, Chronic; Leukemia, B-Cell, Chronic; Leukemia, Prolymphocytic; Leukemia, Small Lymphocytic; Lymphoma, Small Lymphocytic; Lymphoma, Lymphoplasmacytoid, CLL; Lymphoplasmacytoid Lymphoma, CLL; CLL; SLL

  12. RO4929097 and Capecitabine in Treating Patients With Refractory Solid Tumors

    ClinicalTrials.gov

    2014-11-06

    Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; AIDS-related Diffuse Large Cell Lymphoma; AIDS-related Diffuse Mixed Cell Lymphoma; AIDS-related Diffuse Small Cleaved Cell Lymphoma; AIDS-related Immunoblastic Large Cell Lymphoma; AIDS-related Lymphoblastic Lymphoma; AIDS-related Peripheral/Systemic Lymphoma; AIDS-related Primary CNS Lymphoma; AIDS-related Small Noncleaved Cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; HER2-negative Breast Cancer; HIV-associated Hodgkin Lymphoma; Intraocular Lymphoma; Male Breast Cancer; Nodal Marginal Zone B-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Primary Central Nervous System Hodgkin Lymphoma; Primary Central Nervous System Non-Hodgkin Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Breast Cancer; Recurrent Colon Cancer; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Rectal Cancer; Recurrent Small Lymphocytic Lymphoma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Colon Cancer; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Rectal Cancer; Stage III Small Lymphocytic Lymphoma; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Breast Cancer; Stage IV Colon Cancer; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Rectal Cancer; Stage IV Small Lymphocytic Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia

  13. Everolimus and Vatalanib in Treating Patients With Advanced Solid Tumors

    ClinicalTrials.gov

    2018-01-12

    Gastrinoma; Glucagonoma; Insulinoma; Metastatic Gastrointestinal Carcinoid Tumor; Metastatic Pheochromocytoma; Pancreatic Polypeptide Tumor; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Islet Cell Carcinoma; Recurrent Melanoma; Recurrent Neuroendocrine Carcinoma of the Skin; Recurrent Non-small Cell Lung Cancer; Recurrent Pheochromocytoma; Recurrent Renal Cell Cancer; Somatostatinoma; Stage III Neuroendocrine Carcinoma of the Skin; Stage IV Melanoma; Stage IV Non-small Cell Lung Cancer; Stage IV Renal Cell Cancer; Thyroid Gland Medullary Carcinoma; Unspecified Adult Solid Tumor, Protocol Specific

  14. Etoposide, Filgrastim, and Plerixafor in Improving Stem Cell Mobilization in Treating Patients With Non-Hodgkin Lymphoma

    ClinicalTrials.gov

    2016-12-06

    Adult Acute Lymphoblastic Leukemia in Remission; Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenström Macroglobulinemia

  15. MS-275 and Isotretinoin in Treating Patients With Metastatic or Advanced Solid Tumors or Lymphomas

    ClinicalTrials.gov

    2013-01-23

    Adult Grade III Lymphomatoid Granulomatosis; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Primary Central Nervous System Non-Hodgkin Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia

  16. Dose Monitoring of Busulfan and Combination Chemotherapy in Hodgkin or Non-Hodgkin Lymphoma Undergoing Stem Cell Transplant

    ClinicalTrials.gov

    2015-08-12

    Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Childhood Burkitt Lymphoma; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Hodgkin Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Childhood Small Noncleaved Cell Lymphoma; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage IA Mycosis Fungoides/Sezary Syndrome; Stage IB Mycosis Fungoides/Sezary Syndrome; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Hodgkin Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Childhood Small Noncleaved Cell Lymphoma; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IIA Mycosis Fungoides/Sezary Syndrome; Stage IIB Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Hodgkin Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Childhood Small Noncleaved Cell Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IIIA Mycosis Fungoides/Sezary Syndrome; Stage IIIB Mycosis Fungoides/Sezary Syndrome; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Hodgkin Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Childhood Small Noncleaved Cell Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Stage IVA Mycosis Fungoides/Sezary Syndrome; Stage IVB Mycosis Fungoides/Sezary Syndrome; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenström Macroglobulinemia

  17. Alisertib in Combination With Vorinostat in Treating Patients With Relapsed or Recurrent Hodgkin Lymphoma, B-Cell Non-Hodgkin Lymphoma, or Peripheral T-Cell Lymphoma

    ClinicalTrials.gov

    2018-04-10

    Adult B Acute Lymphoblastic Leukemia; Adult T Acute Lymphoblastic Leukemia; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-Cell Lymphoma; Chronic Lymphocytic Leukemia; Extranodal Marginal Zone Lymphoma of Mucosa-Associated Lymphoid Tissue; Hepatosplenic T-Cell Lymphoma; Intraocular Lymphoma; Lymphomatous Involvement of Non-Cutaneous Extranodal Site; Mature T-Cell and NK-Cell Non-Hodgkin Lymphoma; Nodal Marginal Zone Lymphoma; Primary Cutaneous B-Cell Non-Hodgkin Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-Cell Leukemia/Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides and Sezary Syndrome; Recurrent Non-Hodgkin Lymphoma; Recurrent Primary Cutaneous T-Cell Non-Hodgkin Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Small Intestinal Lymphoma; Splenic Marginal Zone Lymphoma; T-Cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenstrom Macroglobulinemia

  18. High-definition imaging of circulating tumor cells and associated cellular events in non-small cell lung cancer patients: a longitudinal analysis.

    PubMed

    Nieva, Jorge; Wendel, Marco; Luttgen, Madelyn S; Marrinucci, Dena; Bazhenova, Lyudmila; Kolatkar, Anand; Santala, Roger; Whittenberger, Brock; Burke, James; Torrey, Melissa; Bethel, Kelly; Kuhn, Peter

    2012-02-01

    Sampling circulating tumor cells (CTCs) from peripheral blood is ideally accomplished using assays that detect high numbers of cells and preserve them for downstream characterization. We sought to evaluate a method using enrichment free fluorescent labeling of CTCs followed by automated digital microscopy in patients with non-small cell lung cancer. Twenty-eight patients with non-small cell lung cancer and hematogenously seeded metastasis were analyzed with multiple blood draws. We detected CTCs in 68% of analyzed samples and found a propensity for increased CTC detection as the disease progressed in individual patients. CTCs were present at a median concentration of 1.6 CTCs ml⁻¹ of analyzed blood in the patient population. Higher numbers of detected CTCs were associated with an unfavorable prognosis.

  19. Brentuximab Vedotin + Rituximab as Frontline Therapy for Pts w/ CD30+ and/or EBV+ Lymphomas

    ClinicalTrials.gov

    2015-04-28

    Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Epstein-Barr Virus Infection; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Progressive Hairy Cell Leukemia, Initial Treatment; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage IA Mycosis Fungoides/Sezary Syndrome; Stage IB Mycosis Fungoides/Sezary Syndrome; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IIA Mycosis Fungoides/Sezary Syndrome; Stage IIB Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IIIA Mycosis Fungoides/Sezary Syndrome; Stage IIIB Mycosis Fungoides/Sezary Syndrome; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Stage IVA Mycosis Fungoides/Sezary Syndrome; Stage IVB Mycosis Fungoides/Sezary Syndrome; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Untreated Hairy Cell Leukemia; Waldenström Macroglobulinemia

  20. Synergistic effect of phenformin in non-small cell lung cancer (NSCLC) ionizing radiation treatment.

    PubMed

    Wang, Jia; Xia, Shi'an; Zhu, Zhizhen

    2015-03-01

    Biguanides, used for anti-diabetic drugs, bring more attention in cancer research for their beneficial effects. Phenformin is more potent than metformin. However its potential application as a anti-cancer regent is far behind metformin. In order to investigate any beneficial effect of combination of Phenformin and radiotherapy, non-small cell lung cancer cell lines A549 and H1299 were exposure under different dose of ionizing radiation with or without Phenformin. Results indicated Phenformin showed synergistic effect and could induce more cancer cell apoptosis and inhibition of tumor growth compared with ionizing radiation alone. Furthermore, this synergistic effect may be through different pathway according to cancer cell genotype background. Our results showed Phenformin induced AMPK activation in A549 but not H1299. However, Phenformin activated eIF2α in both cell lines. Our findings implicated Phenformin may be used as radiosensitizer for non-small cell lung cancer therapy.

  1. Alemtuzumab, Fludarabine Phosphate, and Low-Dose Total Body Irradiation Before Donor Stem Cell Transplantation in Treating Patients With Hematological Malignancies

    ClinicalTrials.gov

    2018-05-24

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Peripheral T-cell Lymphoma; Previously Treated Myelodysplastic Syndromes; Progressive Hairy Cell Leukemia, Initial Treatment; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Splenic Marginal Zone Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Mycosis Fungoides/Sezary Syndrome; Stage I Small Lymphocytic Lymphoma; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Mycosis Fungoides/Sezary Syndrome; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; T-cell Large Granular Lymphocyte Leukemia; Waldenström Macroglobulinemia

  2. Genetically Modified T-cell Infusion Following Peripheral Blood Stem Cell Transplant in Treating Patients With Recurrent or High-Risk Non-Hodgkin Lymphoma

    ClinicalTrials.gov

    2018-01-26

    Adult Grade III Lymphomatoid Granulomatosis; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Testicular Lymphoma; Waldenström Macroglobulinemia

  3. Pembrolizumab in Untreated B-Cell Non-Hodgkin Lymphoproliferative Diseases

    ClinicalTrials.gov

    2018-04-06

    B-Cell Non-Hodgkin Lymphoma; Waldenstrom Macroglobulinemia; Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma; Lymphoplasmacytic Lymphoma; Follicular Lymphoma; Indolent Non-Hodgkin Lymphoma; Marginal Zone Lymphoma

  4. Inhibition of autophagy by andrographolide resensitizes cisplatin-resistant non-small cell lung carcinoma cells via activation of the Akt/mTOR pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mi, Shanwei; Xiang, Gang

    Resistance to cisplatin is a major obstacle for the success of non-small cell lung cancer therapy. The mechanisms underlying cisplatin resistance are not fully understood. In this study, we found that the increase of basal auotophagy accompanied the development of cisplatin resistance. Meanwhile the blockade of the Akt/mTOR pathway occurred in the process. Inhibition of this pathway was induced by cisplatin treatment in the resistant non-small cell lung carcinoma cells. Andrographolide, a natural diterpenoid, promoted the activation of the Akt/mTOR signaling by downregulating PTEN and suppressed autophagy, which subsequently resensitized the resistant cells to cisplatin-mediated apoptosis. Cisplatin treatment in combinationmore » with andrographolide significantly prevented the growth of the resistant cells in vivo. These results highlight the involvement of autophagy in cisplatin-resistance development and suggest that inhibition of autophagy via tuning the Akt/mTOR signaling could be a promising strategy in the therapy for cisplatin-resistant non-small cell lung cancer. - Highlights: • The increase of basal auotophagy accompanied the development of cisplatin resistance in NSCLC cells. • Cisplatin induced the blockade of the Akt/mTOR pathway. • Andrographolide promoted the activation of the Akt/mTOR signaling. • Andrographolide downregulated PTEN expression. • Cisplatin treatment in combination with andrographolide resensitized the resistant cells to cisplatin.« less

  5. [Arf6, RalA and BIRC5 protein expression in non small cell lung cancer].

    PubMed

    Knizhnik, A V; Kovaleva, O B; Laktionov, K K; Mochal'nikova, V V; Komel'kov, A V; Chevkina, E M; Zborovskaia, I B

    2011-01-01

    Evaluation of tumor markers expression pattern which determines individual progression parameters is one of the major topics in molecular oncopathology research. This work presents research on expression analysis of several Ras-Ral associated signal transduction pathway proteins (Arf6, RalA and BIRC5) in accordance with clinical criteria in non small cell lung cancer patients. Using Western-blot analysis and RT-PCR Arf6, RalA and BIRC5 expression has been analyzed in parallel in 53 non small cell lung cancer samples of different origin. Arf6 protein expression was elevated in 55% non small cell lung cancer tumor samples in comparison with normal tissue. In the group of squamous cell lung cancer Arf6 expression elevation was observed more often. RalA protein expression was decreased in comparison to normal tissue samples in 64% of non small cell lung cancer regardless to morphological structure. Correlation between RalA protein expression decrease and absence of regional metastases was revealed for squamous cell lung cancer. BIRC5 protein expression in tumor samples versus corresponding normal tissue was 1.3 times more often elevated in the squamous cell lung cancer group (in 76% tumor samples). At the same time elevation of BIRC5 expression was fixed only in 63% of adenocarcinoma tumor samples. A statistically significant decrease (p = 0.0158) of RalA protein expression and increase (p = 0.0498) of Arf6 protein expression in comparison with normal tissue was found for T1-2N0M0 and T1-2N1-2M0 groups of squamous cell lung cancer correspondingly.

  6. Tacrolimus and Mycophenolate Mofetil With or Without Sirolimus in Preventing Acute Graft-Versus-Host Disease in Patients Who Are Undergoing Donor Stem Cell Transplant for Hematologic Cancer

    ClinicalTrials.gov

    2018-02-08

    Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndrome; Refractory Chronic Lymphocytic Leukemia; Refractory Plasma Cell Myeloma; Waldenstrom Macroglobulinemia; Accelerated Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blast Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Lymphoma; Childhood Myelodysplastic Syndrome; Stage II Contiguous Adult Burkitt Lymphoma; Stage II Contiguous Adult Diffuse Large Cell Lymphoma; Stage II Contiguous Adult Diffuse Mixed Cell Lymphoma; Stage II Contiguous Adult Diffuse Small Cleaved Cell Lymphoma; Stage II Adult Contiguous Immunoblastic Lymphoma; Stage II Contiguous Adult Lymphoblastic Lymphoma; Stage II Grade 1 Contiguous Follicular Lymphoma; Stage II Grade 2 Contiguous Follicular Lymphoma; Stage II Grade 3 Contiguous Follicular Lymphoma; Stage II Contiguous Mantle Cell Lymphoma; Stage II Non-Contiguous Adult Burkitt Lymphoma; Stage II Non-Contiguous Adult Diffuse Large Cell Lymphoma; Stage II Non-Contiguous Adult Diffuse Mixed Cell Lymphoma; Stage II Non-Contiguous Adult Diffuse Small Cleaved Cell Lymphoma; Stage II Adult Non-Contiguous Immunoblastic Lymphoma; Stage II Non-Contiguous Adult Lymphoblastic Lymphoma; Stage II Grade 1 Non-Contiguous Follicular Lymphoma; Stage II Grade 2 Non-Contiguous Follicular Lymphoma; Stage II Grade 3 Non-Contiguous Follicular Lymphoma; Stage II Non-Contiguous Mantle Cell Lymphoma; Stage II Small Lymphocytic Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Burkitt Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Recurrent Childhood Hodgkin Lymphoma; Recurrent Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Secondary Myelodysplastic Syndrome; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Immunoblastic Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Childhood Burkitt Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Childhood Burkitt Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Childhood Burkitt Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Childhood Burkitt Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma

  7. Early Palliative Care With Standard Care or Standard Care Alone in Improving Quality of Life of Patients With Incurable Lung or Non-colorectal Gastrointestinal Cancer and Their Family Caregivers

    ClinicalTrials.gov

    2017-04-19

    Liver Cancer; Anxiety Disorder; Depression; Small Cell Lung Cancer; Extrahepatic Bile Duct Cancer; Malignant Mesothelioma; Pancreatic Cancer; Esophageal Cancer; Gastric Cancer; Non-small Cell Lung Cancer

  8. Phase 1 Study of CK-301 as a Single Agent in Subjects With Advanced Cancers

    ClinicalTrials.gov

    2018-01-02

    Lung Neoplasms; Carcinoma, Non-Small-Cell Lung; Carcinoma, Small Cell; Malignant Mesothelioma, Advanced; Head and Neck Cancer; Melanoma; Merkel Cell Carcinoma; Renal Cell Carcinoma; Urothelial Carcinoma; Classical Hodgkin Lymphoma

  9. Characterization of side population in thyroid cancer cell lines: cancer stem-like cells are enriched partly but not exclusively.

    PubMed

    Mitsutake, Norisato; Iwao, Atsuhiko; Nagai, Kazuhiro; Namba, Hiroyuki; Ohtsuru, Akira; Saenko, Vladimir; Yamashita, Shunichi

    2007-04-01

    There is increasing evidence that cancers contain their own stem-like cells called cancer stem cells (CSCs). A small subset of cells, termed side population (SP), has been identified using flow cytometric analysis. The SP cells have the ability to exclude the DNA binding dye, Hoechst33342, and are highly enriched for stem cells in many kinds of normal tissues. Because CSCs are thought to be drug resistant, SP cells in cancers might contain CSCs. We initially examined the presence of SP cells in several human thyroid cancer cell lines. A small percentage of SP cells were found in ARO (0.25%), FRO (0.1%), NPA (0.06%), and WRO (0.02%) cells but not TPC1 cells. After sorting, the SP cells generated both SP and non-SP cells in culture. The clonogenic ability of SP cells was significantly higher than that of non-SP cells. Moreover, the SP prevalence was dependent on cell density in culture, suggesting that SP cells preferentially survived at lower cell density. Microarray experiment revealed differential gene expression profile between SP and non-SP cells, and several genes related to stemness were up-regulated. However, non-SP population also contained cells that were tumorigenic in nude mice, and non-SP cells generated a small number of SP cells. These results suggest that cancer stem-like cells are partly, but not exclusively, enriched in SP population. Clarifying the key tumorigenic population might contribute to the establishment of a novel therapy for thyroid cancer.

  10. CPI-613, Bendamustine Hydrochloride, and Rituximab in Treating Patients With Relapsed or Refractory B-Cell Non-Hodgkin Lymphoma

    ClinicalTrials.gov

    2017-05-25

    B-cell Adult Acute Lymphoblastic Leukemia; B-cell Chronic Lymphocytic Leukemia; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Testicular Lymphoma; Waldenström Macroglobulinemia

  11. Phase 0 Trial of Itraconazole for Early-Stage Non-Small Cell Lung Cancer

    DTIC Science & Technology

    2015-10-01

    63 Male Caucasian T1bN0M0 Stage IA Undifferentiated carcinoma , favor Large cell 63 Female Caucasian T1aN0N0 Stage IA squamous cell carcinoma ... carcinoma ; and possibly prolongs survival in advanced non-small cell lung cancer (NSCLC). Insight into itraconazole mechanism and biomarkers will...study team members in which itraconazole resulted in tumor regression and Hh pathway antagonism in basal cell carcinoma ; and (3) a clinical trial in

  12. Fludarabine Phosphate, Cyclophosphamide, Total-Body Irradiation, and Donor Bone Marrow Transplant Followed by Donor Natural Killer Cell Therapy, Mycophenolate Mofetil, and Tacrolimus in Treating Patients With Hematologic Cancer

    ClinicalTrials.gov

    2017-11-08

    Acute Lymphoblastic Leukemia; Acute Myeloid Leukemia; Aggressive Non-Hodgkin Lymphoma; Diffuse Large B-Cell Lymphoma; Previously Treated Myelodysplastic Syndrome; Recurrent Chronic Lymphocytic Leukemia; Recurrent Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Recurrent Indolent Adult Non-Hodgkin Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Plasma Cell Myeloma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hodgkin Lymphoma; Refractory Plasma Cell Myeloma; Refractory Small Lymphocytic Lymphoma; Waldenstrom Macroglobulinemia

  13. Adenosquamous carcinoma of the lung diagnosed by cytology?: a diagnostic dilemma.

    PubMed

    Shelton, David A; Rana, Durgesh N; Holbrook, Miles; Taylor, Paul; Bailey, Simon

    2012-09-01

    Adenosquamous cell carcinomas of the lung are rare tumours and are associated with a poor prognosis compared to other non-small cell carcinomas. We report a case of a solitary lung carcinoma evaluated by bronchial brush and lavage cytology, bronchial biopsy and pleural fluid cytology. Cytological assessment of the pleural fluid demonstrated non-small cell carcinoma and immunohistochemical staining confirmed a metastatic lung adenocarcinoma. The bronchial brush and lavage specimens, however, demonstrated the cytomorphological features of squamous cell carcinoma, which was confirmed by the bronchial biopsy. The finding of a mixed squamous and glandular component predicts a poor prognosis for this patient. The identification of a squamous component with the non-small cell carcinoma is important as this excludes the patient from anti-VEGF monoclonal antibody treatment due to the increased risk of haemorrhage. Copyright © 2011 Wiley Periodicals, Inc.

  14. Gemcitabine Hydrochloride, Carboplatin, Dexamethasone, and Rituximab in Treating Patients With Previously Treated Lymphoid Malignancies

    ClinicalTrials.gov

    2017-05-28

    Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Testicular Lymphoma; Waldenstrom Macroglobulinemia

  15. Chest radiation - discharge

    MedlinePlus

    ... Hodgkin lymphoma Lung cancer - non-small cell Lung cancer - small cell Mastectomy Patient Instructions Drinking water safely during cancer treatment Dry mouth during cancer treatment Eating extra ...

  16. Low-Dose Total Body Irradiation and Donor Peripheral Blood Stem Cell Transplant Followed by Donor Lymphocyte Infusion in Treating Patients With Non-Hodgkin Lymphoma, Chronic Lymphocytic Leukemia, or Multiple Myeloma

    ClinicalTrials.gov

    2017-10-23

    Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage II Multiple Myeloma; Stage III Multiple Myeloma; Testicular Lymphoma; Waldenström Macroglobulinemia

  17. Interleukin-12 in Treating Patients With Previously Treated Non-Hodgkin's Lymphoma or Hodgkin's Disease

    ClinicalTrials.gov

    2015-04-14

    Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Splenic Marginal Zone Lymphoma; Waldenström Macroglobulinemia

  18. High p-Smad2 expression in stromal fibroblasts predicts poor survival in patients with clinical stage I to IIIA non-small cell lung cancer.

    PubMed

    Chen, Yongbing; Xing, Pengfei; Chen, Yuanyuan; Zou, Li; Zhang, Yongsheng; Li, Feng; Lu, Xueguan

    2014-11-05

    Increasing evidence indicates that the TGFβ/Smad signaling pathway plays a prominent role in tumor initiation, progression, and metastasis. Therefore, we investigate the expression of p-Smad2 in surgical resection specimens from non-small cell lung cancer, and evaluate the prognostic significance of p-Smad2 expression in stromal fibroblasts and cancer cells for patients with clinical stage I to IIIA non-small cell lung cancer. The immunohistochemical expression of p-Smad2 was evaluated in 78 formalin-fixed paraffin-embedded surgical resection specimens from clinical stage I to IIIA non-small cell lung cancer. Correlations between p-Smad2 expression and clinicopathologic characteristics were determined by Chi-square test. The prognostic significance of p-Smad2 expression in stromal fibroblasts and cancer cells with regard to overall survival was determined by Kaplan-Meier. There were 38.5% (30/78) and 92.3% (72/78) patients with high p-Smad2 expression in stromal fibroblasts and cancer cells, respectively. There was a positive correlation between the p-Smad2 expression level in stromal fibroblasts and the p-Smad2 expression level in cancer cells (χ2=4.176, P=0.045). No significant correlation of p-Smad2 expression in stromal fibroblasts or cancer cells with any of clinicopathologic characteristics was found. The 3-year overall survival rates with low and high p-Smad2 expression in stromal fibroblasts were 53.7% and 37.7%, respectively (χ2=3.86, P=0.049). No significant association was found between low and high p-Smad2 expression in cancer cells with respect to overall survival, respectively (χ2=0.34, P=0.562). The results suggested that high p-Smad2 expression in stromal fibroblasts predicted poor survival in patients with clinical stage I to IIIA non-small cell lung cancer.

  19. Ibrutinib in Treating Relapsed or Refractory B-Cell Non-Hodgkin Lymphoma in Patients With HIV Infection

    ClinicalTrials.gov

    2015-08-18

    Adult B Acute Lymphoblastic Leukemia; Chronic Lymphocytic Leukemia; Cutaneous B-Cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone Lymphoma of Mucosa-Associated Lymphoid Tissue; HIV Infection; Intraocular Lymphoma; Multicentric Angiofollicular Lymphoid Hyperplasia; Nodal Marginal Zone Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Plasma Cell Myeloma; Small Intestinal Lymphoma; Splenic Marginal Zone Lymphoma; Testicular Lymphoma; Waldenstrom Macroglobulinemia

  20. Tanespimycin and Bortezomib in Treating Patients With Advanced Solid Tumors or Lymphomas

    ClinicalTrials.gov

    2014-02-21

    Adult Grade III Lymphomatoid Granulomatosis; AIDS-related Peripheral/Systemic Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia

  1. Combination therapy for advanced or metastatic non-small cell lung cancer will be tested in new clinical trial | Center for Cancer Research

    Cancer.gov

    Non-small cell lung cancer (NSCLC) develops when abnormal lung cells begin to grow out of control. These cells can form into a tumor and spread to other areas of the body. David Schrump, M.D., of the Thoracic and Gastrointestinal Oncology Branch is leading a clinical trial of a new combination treatment for patients with advanced or metastatic NSCLC that cannot be treated

  2. Monoclonal Antibody Therapy in Treating Patients With Ovarian Epithelial Cancer, Melanoma, Acute Myeloid Leukemia, Myelodysplastic Syndrome, or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-01-09

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Recurrent Melanoma; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Stage IV Melanoma; Stage IV Non-small Cell Lung Cancer

  3. AR-42 in Treating Patients With Advanced or Relapsed Multiple Myeloma, Chronic Lymphocytic Leukemia, or Lymphoma

    ClinicalTrials.gov

    2017-02-21

    Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Peripheral T-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Prolymphocytic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Multiple Myeloma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Testicular Lymphoma; Waldenstrom Macroglobulinemia

  4. Multifunctional gold nanocomposites designed for targeted CT/MR/optical trimodal imaging of human non-small cell lung cancer cells

    NASA Astrophysics Data System (ADS)

    Chen, Jingwen; Sun, Yingqi; Chen, Qian; Wang, Le; Wang, Suhe; Tang, Yun; Shi, Xiangyang; Wang, Han

    2016-07-01

    Multifunctional gold nanocomposites, which were designed as dendrimer-entrapped gold nanoparticles functionalized with gadolinium, cyanine dye (Cy5.5), and folic acid, were synthesized to be used as the first dendrimer-based clinical nanoprobes for targeted X-ray computed tomography/magnetic resonance/optical trimodal imaging in vitro and in vivo of human non-small cell cancer cells.Multifunctional gold nanocomposites, which were designed as dendrimer-entrapped gold nanoparticles functionalized with gadolinium, cyanine dye (Cy5.5), and folic acid, were synthesized to be used as the first dendrimer-based clinical nanoprobes for targeted X-ray computed tomography/magnetic resonance/optical trimodal imaging in vitro and in vivo of human non-small cell cancer cells. Electronic supplementary information (ESI) available: Synthesis and characterization data of the nanoprobes; biocompatibility results; confirmation of the tumor cell uptake of the nanoprobes in vitro and in vivo; biodistribution results in vivo. See DOI: 10.1039/c6nr03143a

  5. PXD101 and 17-N-Allylamino-17-Demethoxygeldanamycin in Treating Patients With Metastatic or Unresectable Solid Tumors or Lymphoma

    ClinicalTrials.gov

    2013-05-15

    Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia

  6. Combination therapy for non-small cell lung cancer studied in new clinical trial | Center for Cancer Research

    Cancer.gov

    Non-small cell lung cancer (NSCLC), the most common type of lung cancer, is slow growing and can affect smokers and non-smokers alike. David S. Schrump, M.D., Surgical Chief of the Thoracic and Gastrointestinal Oncology Branch, is leading the NCI’s participation in a multicenter trial of a combination drug therapy in patients with NSCLC. Read more...

  7. The potential predictive value of circulating immune cell ratio and tumor marker in atezolizumab treated advanced non-small cell lung cancer patients.

    PubMed

    Zhuo, Minglei; Chen, Hanxiao; Zhang, Tianzhuo; Yang, Xue; Zhong, Jia; Wang, Yuyan; An, Tongtong; Wu, Meina; Wang, Ziping; Huang, Jing; Zhao, Jun

    2018-05-04

    The PD-L1 antibody atezolizumab has shown promising efficacy in patients with advanced non-small cell lung cancer. But the predictive marker of clinical benefit has not been identified. This study aimed to search for potential predictive factors in circulating blood of patients receiving atezolizumab. Ten patients diagnosed with advanced non-small cell lung cancer were enrolled in this open-label observing study. Circulating immune cells and plasma tumor markers were examined in peripheral blood from these patients before and after atezolizumab treatment respectively. Relation between changes in circulating factors and anti-tumor efficacy were analyzed. Blood routine test showed that atezolizumab therapy induced slightly elevation of white blood cells count generally. The lymphocyte ratio was increased slightly in disease controlled patients but decreased prominently in disease progressed patients in response to atezolizumab therapy. Flow cytometric analysis revealed changes in percentage of various immune cell types, including CD4+ T cell, CD8+ T cell, myeloid-derived suppressor cell, regulatory T cell and PD-1 expressing T cell after atezolizumab. Levels of plasma tumor marker CEA, CA125 and CA199 were also altered after anti-PD-L1 therapy. In comparison with baseline, the disease progressed patients showed sharp increase in tumor marker levels, while those disease controlled patients were seen with decreased regulatory T cell and myeloid-derived suppressor cell ratios. The circulating immune cell ratios and plasma tumor marker levels were related with clinical efficacy of atezolizumab therapy. These factors could be potential predictive marker for anti-PD-L1 therapy in advanced non-small cell lung cancer.

  8. The CXCR4/SDF-1 chemokine receptor axis: a new target therapeutic for non-small cell lung cancer.

    PubMed

    Otsuka, Shannon; Bebb, Gwyn

    2008-12-01

    Chemokines are proinflammatory chemoattractant cytokines that regulate cell trafficking and adhesion. The CXCR4 chemokine receptor and its ligand, stromal cell derived factor (SDF-1), constitute a chemokine/receptor axis that has attracted great interest because of an increasing understanding of its role in cancer, including lung cancer. The CXCR4/SDF-1 complex activates several pathways that mediate chemotaxis, migration and secretion of angiopoietic factors. Neutralization of SDF-1 by anti-SDF-1 or anti-CXCR4 monoclonal antibody in preclinical in vivo studies results in a significant decrease of non-small cell lung cancer metastases. Since anti-SDF-1/CXCR4 strategies have already been developed for use in combating human immunodeficiency virus infections, it is likely that these approaches will be used in clinical trials in non-small cell lung cancer in the very near future.

  9. Effectiveness of local therapy for stage I non-small-cell lung cancer in nonagenarians.

    PubMed

    Arnold, Brian N; Thomas, Daniel C; Rosen, Joshua E; Salazar, Michelle C; Detterbeck, Frank C; Blasberg, Justin D; Boffa, Daniel J; Kim, Anthony W

    2017-09-01

    Stage I non-small-cell lung cancer is potentially curable, yet older patients undergo treatment at lower rates than younger patients. This analysis sought to describe the treatment outcomes of nonagenarians with stage I non-small-cell lung cancer to better guide treatment decisions in this population. The National Cancer DataBase was queried for patients age ≥90 years old with stage I non-small-cell lung cancer (tumors ≤4 cm). Patients were divided into 3 groups: local therapy, other therapy, or no treatment. The primary outcomes were 5-year overall and relative survival. Of the 616 patients identified, 33% (202) were treated with local therapy, 34% (207) were treated with other therapy, and 34% (207) underwent no treatment. Compared with local therapy, overall mortality was significantly higher with no treatment (hazard ratio 2.50, 95% confidence interval, 1.95-3.21) and other therapy (hazard ratio 1.43, 95% confidence interval, 1.11-1.83). The 5-year relative survival was 81% for local therapy, 49% for other therapy, and 32% for no treatment (P < .0001). Nonagenarians managed with local therapy for stage I non-small-cell lung cancer (tumors ≤4 cm) have better overall survival than those receiving other therapy or no treatment and should be considered for treatment with either operation or stereotactic body radiation therapy if able to tolerate treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The safety and efficacy of carboplatin plus nanoparticle albumin-bound paclitaxel in the treatment of non-small cell lung cancer patients with interstitial lung disease.

    PubMed

    Yasuda, Yuichiro; Hattori, Yoshihiro; Tohnai, Rie; Ito, Shoichi; Kawa, Yoshitaka; Kono, Yuko; Urata, Yoshiko; Nogami, Munenobu; Takenaka, Daisuke; Negoro, Shunichi; Satouchi, Miyako

    2018-01-01

    The optimal chemotherapy regimen for non-small cell lung cancer patients with interstitial lung disease is unclear. We therefore investigated the safety and efficacy of carboplatin plus nab-paclitaxel as a first-line regimen for non-small cell lung cancer in patients with interstitial lung disease. We retrospectively reviewed advanced non-small cell lung cancer patients with interstitial lung disease who received carboplatin plus nab-paclitaxel as a first-line chemotherapy regimen at Hyogo Cancer Center between February 2013 and August 2016. interstitial lung disease was diagnosed according to the findings of pretreatment chest high-resolution computed tomography. Twelve patients were included (male, n = 11; female, n = 1). The overall response rate was 67% and the disease control rate was 100%. The median progression free survival was 5.1 months (95% CI: 2.9-8.3 months) and the median overall survival was 14.9 months (95% CI: 4.8-not reached). A chemotherapy-related acute exacerbation of interstitial lung disease was observed in one patient; the extent of this event was Grade 2. There were no treatment-related deaths. Carboplatin plus nab-paclitaxel, as a first-line chemotherapy regimen for non-small cell lung cancer, showed favorable efficacy and safety in patients with preexisting interstitial lung disease. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  11. 17-N-Allylamino-17-Demethoxygeldanamycin in Treating Patients With Advanced Epithelial Cancer, Malignant Lymphoma, or Sarcoma

    ClinicalTrials.gov

    2013-02-06

    AIDS-related Peripheral/Systemic Lymphoma; AIDS-related Primary CNS Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Chondrosarcoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Metastatic Osteosarcoma; Nodal Marginal Zone B-cell Lymphoma; Ovarian Sarcoma; Primary Central Nervous System Non-Hodgkin Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult Soft Tissue Sarcoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Osteosarcoma; Recurrent Small Lymphocytic Lymphoma; Recurrent Uterine Sarcoma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult Soft Tissue Sarcoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Stage IV Uterine Sarcoma; Unspecified Adult Solid Tumor, Protocol Specific

  12. Combination of Near Infrared Light-Activated Photodynamic Therapy Mediated by Indocyanine Green with Etoposide to Treat Non-Small-Cell Lung Cancer

    PubMed Central

    Luo, Ting; Zhang, Qinrong; Lu, Qing-Bin

    2017-01-01

    Indocyanine green (ICG) has been reported as a potential near-infrared (NIR) photosensitizer for photodynamic therapy (PDT) of cancer. However the application of ICG-mediated PDT is both intrinsically and physiologically limited. Here we report a combination of ICG-PDT with a chemotherapy drug etoposide (VP-16), aiming to enhance the anticancer efficacy, to circumvent limitations of PDT using ICG, and to reduce side effects of VP-16. We found in controlled in vitro cell-based assays that this combination is effective in killing non-small-cell lung cancer cells (NSCLC, A549 cell line). We also found that the combination of ICG-PDT and VP-16 exhibits strong synergy in killing non-small-cell lung cancer cells partially through inducing more DNA double-strand breaks (DSBs), while it has a much weaker synergy in killing human normal cells (GM05757). Furthermore, by studying the treatment sequence dependence and the cytotoxicity of laser-irradiated mixtures of ICG and VP-16, we found that the observed synergy involves direct/indirect reactions between ICG and VP-16. We further propose that there exists an electron transfer reaction between ICG and VP-16 under irradiation. This study therefore shows the anticancer efficacy of ICG-PDT combined with VP-16. These findings suggest that ICG-mediated PDT may be applied in combination with the chemotherapy drug VP-16 to treat some cancers, especially the non-small-cell lung cancer. PMID:28587258

  13. 18F FPPRGD2 PET/CT or PET/MRI in Predicting Early Response in Patients With Cancer Receiving Anti-Angiogenesis Therapy

    ClinicalTrials.gov

    2017-03-12

    Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Male Breast Cancer; Metastatic Squamous Neck Cancer With Occult Primary Squamous Cell Carcinoma; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Adult Brain Tumor; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Breast Cancer; Recurrent Colon Cancer; Recurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Recurrent Hypopharyngeal Cancer; Recurrent Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Recurrent Laryngeal Cancer; Recurrent Lip and Oral Cavity Cancer; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Nasopharyngeal Cancer; Recurrent Non-small Cell Lung Cancer; Recurrent Oropharyngeal Cancer; Recurrent Pancreatic Cancer; Recurrent Paranasal Sinus and Nasal Cavity Cancer; Recurrent Rectal Cancer; Recurrent Renal Cell Cancer; Recurrent Salivary Gland Cancer; Stage IIIA Breast Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Breast Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Pancreatic Cancer; Stage IV Renal Cell Cancer; Stage IVA Colon Cancer; Stage IVA Rectal Cancer; Stage IVA Salivary Gland Cancer; Stage IVB Colon Cancer; Stage IVB Salivary Gland Cancer; Stage IVC Salivary Gland Cancer; Tongue Cancer; Unspecified Adult Solid Tumor, Protocol Specific

  14. Combination therapy for advanced or metastatic non-small cell lung cancer will be tested in new clinical trial | Center for Cancer Research

    Cancer.gov

    Non-small cell lung cancer (NSCLC) develops when abnormal lung cells begin to grow out of control. These cells can form into a tumor and spread to other areas of the body. David Schrump, M.D., of the Thoracic and Gastrointestinal Oncology Branch is leading a clinical trial of a new combination treatment for patients with advanced or metastatic NSCLC that cannot be treated surgically. Read more... 

  15. Venom present in sea anemone (Heteractis magnifica) induces apoptosis in non-small-cell lung cancer A549 cells through activation of mitochondria-mediated pathway.

    PubMed

    Ramezanpour, Mahnaz; da Silva, Karen Burke; Sanderson, Barbara J S

    2014-03-01

    Lung cancer is a major cause of cancer deaths throughout the world and the complexity of apoptosis resistance in lung cancer is apparent. Venom from Heteractis magnifica caused dose-dependent decreases in survival of the human non-small-cell lung cancer cell line, as determined by the MTT and Crystal Violet assays. The H. magnifica venom induced cell cycle arrest and induced apoptosis of A549 cells, as confirmed by annexin V/propidium iodide staining. The venom-induced apoptosis in A549 cells was characterized by cleavage of caspase-3 and a reduction in the mitochondrial membrane potential. Interestingly, crude extracts from H. magnifica had less effect on the survival of non-cancer cell lines. In the non-cancer cells, the mechanism via which cell death occurred was through necrosis not apoptosis. These findings are important for future work using H. magnifica venom for pharmaceutical development to treat human lung cancer.

  16. Neutrophils dominate the immune cell composition in non-small cell lung cancer. | Office of Cancer Genomics

    Cancer.gov

    The response rate to immune checkpoint inhibitor therapy for non-small-cell lung cancer (NSCLC) is just 20%. To improve this figure, several early phase clinical trials combining novel immunotherapeutics with immune checkpoint blockade have been initiated. Unfortunately, these trials have been designed without a strong foundational knowledge of the immune landscape present in NSCLC. Here, we use a flow cytometry panel capable of measuring 51 immune cell populations to comprehensively identify the immune cell composition and function in NSCLC.

  17. Monoclonal Antibody Therapy Before Stem Cell Transplant in Treating Patients With Relapsed or Refractory Lymphoid Malignancies

    ClinicalTrials.gov

    2017-10-10

    Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenström Macroglobulinemia

  18. Health Care Coach Support in Reducing Acute Care Use and Cost in Patients With Cancer

    ClinicalTrials.gov

    2017-05-12

    Acute Myeloid Leukemia; Brain Glioblastoma; Estrogen Receptor Negative; Extensive Stage Small Cell Lung Carcinoma; Head and Neck Carcinoma; HER2/Neu Negative; Hormone-Resistant Prostate Cancer; Limited Stage Small Cell Lung Carcinoma; Myelodysplastic Syndrome; Progesterone Receptor Negative; Progressive Disease; Recurrent Carcinoma; Stage II Pancreatic Cancer; Stage II Rectal Cancer; Stage IIA Pancreatic Cancer; Stage IIA Rectal Cancer; Stage IIB Pancreatic Cancer; Stage IIB Rectal Cancer; Stage IIC Rectal Cancer; Stage III Colon Cancer; Stage III Esophageal Cancer; Stage III Gastric Cancer; Stage III Non-Small Cell Lung Cancer; Stage III Ovarian Cancer; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Stage III Skin Melanoma; Stage IIIA Colon Cancer; Stage IIIA Esophageal Cancer; Stage IIIA Gastric Cancer; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Rectal Cancer; Stage IIIA Skin Melanoma; Stage IIIB Colon Cancer; Stage IIIB Esophageal Cancer; Stage IIIB Gastric Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Rectal Cancer; Stage IIIB Skin Melanoma; Stage IIIC Colon Cancer; Stage IIIC Esophageal Cancer; Stage IIIC Gastric Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Rectal Cancer; Stage IIIC Skin Melanoma; Stage IV Bladder Cancer; Stage IV Bone Sarcoma; Stage IV Breast Cancer; Stage IV Colon Cancer; Stage IV Esophageal Cancer; Stage IV Gastric Cancer; Stage IV Non-Small Cell Lung Cancer; Stage IV Ovarian Cancer; Stage IV Pancreatic Cancer; Stage IV Rectal Cancer; Stage IV Renal Cell Cancer; Stage IV Skin Melanoma; Stage IV Soft Tissue Sarcoma; Stage IVA Bone Sarcoma; Stage IVA Colon Cancer; Stage IVA Rectal Cancer; Stage IVB Bone Sarcoma; Stage IVB Colon Cancer; Stage IVB Rectal Cancer; Triple-Negative Breast Carcinoma

  19. Evaluation of Shape and Textural Features from CT as Prognostic Biomarkers in Non-small Cell Lung Cancer.

    PubMed

    Bianconi, Francesco; Fravolini, Mario Luca; Bello-Cerezo, Raquel; Minestrini, Matteo; Scialpi, Michele; Palumbo, Barbara

    2018-04-01

    We retrospectively investigated the prognostic potential (correlation with overall survival) of 9 shape and 21 textural features from non-contrast-enhanced computed tomography (CT) in patients with non-small-cell lung cancer. We considered a public dataset of 203 individuals with inoperable, histologically- or cytologically-confirmed NSCLC. Three-dimensional shape and textural features from CT were computed using proprietary code and their prognostic potential evaluated through four different statistical protocols. Volume and grey-level run length matrix (GLRLM) run length non-uniformity were the only two features to pass all four protocols. Both features correlated negatively with overall survival. The results also showed a strong dependence on the evaluation protocol used. Tumour volume and GLRLM run-length non-uniformity from CT were the best predictor of survival in patients with non-small-cell lung cancer. We did not find enough evidence to claim a relationship with survival for the other features. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  20. Lenalidomide and Blinatumomab in Treating Patients With Relapsed Non-Hodgkin Lymphoma

    ClinicalTrials.gov

    2018-06-11

    CD19 Positive; Mediastinal Lymphoma; Recurrent B-Cell Lymphoma, Unclassifiable, With Features Intermediate Between Diffuse Large B-Cell Lymphoma and Classic Hodgkin Lymphoma; Recurrent Burkitt Lymphoma; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Non-Hodgkin Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory B-Cell Lymphoma, Unclassifiable, With Features Intermediate Between Diffuse Large B-Cell Lymphoma and Classic Hodgkin Lymphoma; Refractory Burkitt Lymphoma; Refractory Diffuse Large B-Cell Lymphoma; Refractory Follicular Lymphoma; Refractory Mantle Cell Lymphoma; Refractory Small Lymphocytic Lymphoma

  1. Massage Therapy Given by Caregiver in Treating Quality of Life of Young Patients Undergoing Treatment for Cancer

    ClinicalTrials.gov

    2018-05-24

    Accelerated Phase Chronic Myelogenous Leukemia; Acute Undifferentiated Leukemia; Angioimmunoblastic T-cell Lymphoma; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blastic Phase Chronic Myelogenous Leukemia; Burkitt Lymphoma; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Mantle Cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Essential Thrombocythemia; Extramedullary Plasmacytoma; Intraocular Lymphoma; Isolated Plasmacytoma of Bone; Juvenile Myelomonocytic Leukemia; Mast Cell Leukemia; Meningeal Chronic Myelogenous Leukemia; Noncontiguous Stage II Mantle Cell Lymphoma; Polycythemia Vera; Post-transplant Lymphoproliferative Disorder; Primary Myelofibrosis; Primary Systemic Amyloidosis; Progressive Hairy Cell Leukemia, Initial Treatment; Prolymphocytic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Stage 0 Chronic Lymphocytic Leukemia; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Hodgkin Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Childhood Small Noncleaved Cell Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Multiple Myeloma; Stage I Mycosis Fungoides/Sezary Syndrome; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Hodgkin Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Childhood Small Noncleaved Cell Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage II Mycosis Fungoides/Sezary Syndrome; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Hodgkin Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Childhood Small Noncleaved Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Multiple Myeloma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Hodgkin Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Childhood Small Noncleaved Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; T-cell Large Granular Lymphocyte Leukemia; Unspecified Childhood Solid Tumor, Protocol Specific

  2. SMARCA4-inactivating mutations increase sensitivity to Aurora kinase A inhibitor VX-680 in non-small cell lung cancers. | Office of Cancer Genomics

    Cancer.gov

    Mutations in the SMARCA4/BRG1 gene resulting in complete loss of its protein (BRG1) occur frequently in non-small cell lung cancer (NSCLC) cells. Currently, no single therapeutic agent has been identified as synthetically lethal with SMARCA4/BRG1 loss. We identify AURKA activity as essential in NSCLC cells lacking SMARCA4/BRG1. In these cells, RNAi-mediated depletion or chemical inhibition of AURKA induces apoptosis and cell death in vitro and in xenograft mouse models.

  3. Safety and tolerability of combination therapy vs. standard treatment alone for patients with previously treated non-small cell lung cancer | Center for Cancer Research

    Cancer.gov

    Dr. James Gulley is leading a team to test the safety and tolerability of the combination of nivolumab and CV301 to see if it can improve the survival for patientis with metastatic non-small cell lung cancer.  Learn more...

  4. [Mechanism and Prospect of Radiotherapy Combined with Apotatinib
in the Treatment of Non-small Cell Lung Cancer].

    PubMed

    Liu, Guohui; Wang, Chunbo; E, Mingyan

    2017-12-20

    Non-small cell lung cancer is one of the most commom malignant tumor being harmful to people's life and health. Most of the patients have developed to the last stage which not suitable for surgical indications, so radiation and chemotherapy is the main treatment strategy. In recent years, with the theory of anti-angiogenesis therapy for malignant tumors, apatinib as a promising novel medicine to treat malignant tumors, represents synergistic antitumor effects in combination with radiotherapy. The underlying mechanisms may include make blood vessel normalization, alleviating inner hypoxia, and angiogenic factors regulation. Apatinib in combination with radiotherapy may become a new and effective treatment strategy of non-small cell lung cancer.

  5. Evaluation of EML4-ALK Fusion Proteins in Non-Small Cell Lung Cancer Using Small Molecule Inhibitors12

    PubMed Central

    Li, Yongjun; Ye, Xiaofen; Liu, Jinfeng; Zha, Jiping; Pei, Lin

    2011-01-01

    The echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK) fusion gene resulting from an inversion within chromosome 2p occurs in approximately 5% of non-small cell lung cancer and is mutually exclusive with Ras and EGFR mutations. In this study, we have used a potent and selective ALK small molecule inhibitor, NPV-TAE684, to assess the oncogenic role of EML4-ALK in non-small cell lung cancer (NSCLC). We show here that TAE684 inhibits proliferation and induces cell cycle arrest, apoptosis, and tumor regression in two NSCLC models that harbor EML4-ALK fusions. TAE684 inhibits EML4-ALK activation and its downstream signaling including ERK, AKT, and STAT3. We used microarray analysis to carry out targeted pathway studies of gene expression changes in H2228 NSCLC xenograft model after TAE684 treatment and identified a gene signature of EML4-ALK inhibition. The gene signature represents 1210 known human genes, and the top biologic processes represented by these genes are cell cycle, DNA synthesis, cell proliferation, and cell death. We also compared the effect of TAE684 with PF2341066, a c-Met and ALK small molecule inhibitor currently in clinical trial in cancers harboring ALK fusions, and demonstrated that TAE684 is a much more potent inhibitor of EML4-ALK. Our data demonstrate that EML4-ALK plays an important role in the pathogenesis of a subset of NSCLC and provides insight into the mechanism of EML4-ALK inhibition by a small molecule inhibitor. PMID:21245935

  6. Lenalidomide And Rituximab as Maintenance Therapy in Treating Patients With B-Cell Non-Hodgkin Lymphoma

    ClinicalTrials.gov

    2015-11-25

    Adult Non-Hodgkin Lymphoma; Adult Grade III Lymphomatoid Granulomatosis; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Waldenstrom Macroglobulinemia

  7. Reverse of non-small cell lung cancer drug resistance induced by cancer-associated fibroblasts via a paracrine pathway.

    PubMed

    Zhang, Quanhui; Yang, Junping; Bai, Jie; Ren, Jianzhuang

    2018-04-01

    The tumor microenvironment orchestrates the sustained growth, metastasis and recurrence of cancer. As an indispensable component of the tumor microenvironment, cancer-associated fibroblasts (CAF) are considered as an essential synthetic machine producing various tumor components, leading to cancer sustained stemness, drug resistance and tumor recurrence. Here, we developed a sustainable primary culture of lung cancer cells fed with lung cancer-associated fibroblasts, resulting in enrichment and acquisition of drug resistance in cancer cells. Moreover, IGF2/AKT/Sox2/ABCB1 signaling activation in cancer cells was observed in the presence of CAF, which induces upregulation of P-glycoprotein expression and the drug resistance of non-small cell lung cancer cells. Our results demonstrated that CAF cells constitute a mechanism for cancer drug resistance. Thus, traditional chemotherapy combined with insulin-like growth factor 2 (IGF2) signaling inhibitor may present an innovative therapeutic strategy for non-small cell lung cancer therapy. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  8. Bendamustine Hydrochloride, Etoposide, Dexamethasone, and Filgrastim For Peripheral Blood Stem Cell Mobilization in Treating Patients With Refractory or Recurrent Lymphoma or Multiple Myeloma

    ClinicalTrials.gov

    2017-04-14

    Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Multiple Myeloma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Waldenström Macroglobulinemia

  9. Methoxyamine and Fludarabine Phosphate in Treating Patients With Relapsed or Refractory Hematologic Malignancies

    ClinicalTrials.gov

    2015-08-12

    Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage III Chronic Lymphocytic Leukemia; Testicular Lymphoma; Waldenström Macroglobulinemia

  10. Oblimersen and Gemcitabine in Treating Patients With Advanced Solid Tumor or Lymphoma

    ClinicalTrials.gov

    2013-01-24

    Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Splenic Marginal Zone Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific

  11. Study of ADCT-301 in Patients With Relapsed or Refractory Hodgkin and Non-Hodgkin Lymphoma

    ClinicalTrials.gov

    2018-05-07

    Hodgkin Lymphoma; Non-Hodgkin Lymphoma; Burkitt's Lymphoma; Chronic Lymphocytic Leukemia; Small Lymphocytic Lymphoma; Lymphoma, Large B-Cell, Diffuse; Lymphoma, Follicular; Lymphoma, Mantle-Cell; Lymphoma, Marginal Zone; Waldenstrom's Macroglobulinaemia; Lymphoma,T-cell Cutaneous; Lymphoma, T-Cell, Peripheral

  12. Withaferin A induces mitochondrial-dependent apoptosis in non-small cell lung cancer cells via generation of reactive oxygen species.

    PubMed

    Liu, Xi; Chen, Lei; Liang, Tao; Tian, Xiao-Dong; Liu, Yang; Zhang, Tao

    2017-01-01

    Withaferin A (WA) is a bioactive lactone, isolated from natural sources, mainly found in Withania somnifera, and was known to be highly effective against a variety of tumor cells both in vitro and in vivo. Accumulating experimental evidence suggests the involvement of reactive oxygen species (ROS) in WA-mediated cytotoxicity against cancer cells. Hence, the purpose of this study was to investigate the effect of WA in non-small cell lung cancer (NSCLC) cells and also the role of ROC in WA-mediated cytotoxicity. In the present study we investigated the cytotoxic potential of WA against NSCLC cell line A549 and also highlighted the mechanism of cytotoxicity of this compound. Non-carcinoma WI-38 and PBMC cell lines were used as controls. WA treatment resulted in a dose-dependent cytotoxicity in A549 cells, while the non-carcinoma cells WI-38 and PBMC were unaffected. Further experimental approaches revealed that ROS plays a major role in WAinduced apoptosis in NSCLC cells. WA induces oxidative damage to NSCLC cells with minimum toxicity to normal cells.

  13. A Phase I Study of iPS Cell Generation From Patients With COPD

    ClinicalTrials.gov

    2018-03-20

    Thoracic Diseases; Respiratory Tract Diseases; Cancer of Lung; Cancer of the Lung; Lung Cancer; Lung Diseases, Obstructive; COPD; Pulmonary Emphysema; Neoplasms, Lung; Neoplasms, Pulmonary; Pulmonary Cancer; Pulmonary Neoplasms; Carcinoma, Non-Small-Cell Lung; Carcinoma, Small Cell

  14. A Study Evaluating MM-310 in Patients With Solid Tumors

    ClinicalTrials.gov

    2018-02-26

    Solid Tumors; Urothelial Carcinoma; Gastric Carcinoma; Squamous Cell Carcinoma of the Head and Neck; Ovarian Cancer; Pancreatic Ductal Adenocarcinoma; Prostate Adenocarcinoma; Non-small Cell Lung Cancer; Small Cell Lung Cancer; Triple Negative Breast Cancer; Endometrial Carcinoma; Soft Tissue Sarcoma

  15. Non-small cell lung cancer in never smokers: a clinical entity to be identified.

    PubMed

    Santoro, Ilka Lopes; Ramos, Roberta Pulcheri; Franceschini, Juliana; Jamnik, Sergio; Fernandes, Ana Luisa Godoy

    2011-01-01

    It has been recognized that patients with non-small cell lung cancer who are lifelong never-smokers constitute a distinct clinical entity. The aim of this study was to assess clinical risk factors for survival among never-smokers with non-small cell lung cancer. All consecutive non-small cell lung cancer patients diagnosed (n = 285) between May 2005 and May 2009 were included. The clinical characteristics of never-smokers and ever-smokers (former and current) were compared using chi-squared or Student's t tests. Survival curves were calculated using the Kaplan-Meier method, and log-rank tests were used for survival comparisons. A Cox proportional hazards regression analysis was evaluated by adjusting for age (continuous variable), gender (female vs. male), smoking status (never- vs. ever-smoker), the Karnofsky Performance Status Scale (continuous variable), histological type (adenocarcinoma vs. non-adenocarcinoma), AJCC staging (early vs. advanced staging), and treatment (chemotherapy and/or radiotherapy vs. the best treatment support). Of the 285 non-small cell lung cancer patients, 56 patients were never-smokers. Univariate analyses indicated that the never-smoker patients were more likely to be female (68% vs. 32%) and have adenocarcinoma (70% vs. 51%). Overall median survival was 15.7 months (95% CI: 13.2 to 18.2). The never-smoker patients had a better survival rate than their counterpart, the ever-smokers. Never-smoker status, higher Karnofsky Performance Status, early staging, and treatment were independent and favorable prognostic factors for survival after adjusting for age, gender, and adenocarcinoma in multivariate analysis. Epidemiological differences exist between never- and ever-smokers with lung cancer. Overall survival among never-smokers was found to be higher and independent of gender and histological type.

  16. Efficacy and pharmacokinetics of a modified acid-labile docetaxel-PRINT(®) nanoparticle formulation against non-small-cell lung cancer brain metastases.

    PubMed

    Sambade, Maria; Deal, Allison; Schorzman, Allison; Luft, J Christopher; Bowerman, Charles; Chu, Kevin; Karginova, Olga; Swearingen, Amanda Van; Zamboni, William; DeSimone, Joseph; Anders, Carey K

    2016-08-01

    Particle Replication in Nonwetting Templates (PRINT(®)) PLGA nanoparticles of docetaxel and acid-labile C2-dimethyl-Si-Docetaxel were evaluated with small molecule docetaxel as treatments for non-small-cell lung cancer brain metastases. Pharmacokinetics, survival, tumor growth and mice weight change were efficacy measures against intracranial A549 tumors in nude mice. Treatments were administered by intravenous injection. Intracranial tumor concentrations of PRINT-docetaxel and PRINT-C2-docetaxel were 13- and sevenfold greater, respectively, than SM-docetaxel. C2-docetaxel conversion to docetaxel was threefold higher in intracranial tumor as compared with nontumor tissues. PRINT-C2-docetaxel increased median survival by 35% with less toxicity as compared with other treatments. The decreased toxicity of the PRINT-C2-docetaxel improved treatment efficacy against non-small-cell lung cancer brain metastasis.

  17. Rituximab in Preventing Acute Graft-Versus-Host Disease in Patients Undergoing a Donor Stem Cell Transplant for Hematologic Cancer

    ClinicalTrials.gov

    2017-09-29

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Blastic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Graft Versus Host Disease; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Mycosis Fungoides/Sezary Syndrome; Stage I Small Lymphocytic Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia; Waldenström Macroglobulinemia

  18. Interleukin-12, Paclitaxel, and Trastuzumab in Treating Patients With Solid Tumors

    ClinicalTrials.gov

    2013-06-03

    Male Breast Cancer; Recurrent Breast Cancer; Recurrent Endometrial Carcinoma; Recurrent Gastric Cancer; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Small Cell Lung Cancer

  19. Non-invasive diagnostic platforms in management of non-small cell lung cancer: opportunities and challenges

    PubMed Central

    Pennell, Nathan A.

    2017-01-01

    Several non-invasive diagnostic platforms are already being incorporated in routine clinical practice in the work up and monitoring of patients with lung cancer. These approaches have great potential to improve patient selection and monitor patients while on therapy, however several challenges exist in clinical validation and standardization of such platforms. In this review, we summarize the current technologies available for non-invasive diagnostic evaluation from the blood of patients with non-small cell lung cancer (NSCLC), and discuss the technical and logistical challenges associated incorporating such testing in clinical practice. PMID:29057238

  20. Particle Therapy for Non-Small Cell Lung Tumors: Where Do We Stand? A Systematic Review of the Literature

    PubMed Central

    Wink, Krista C. J.; Roelofs, Erik; Solberg, Timothy; Lin, Liyong; Simone, Charles B.; Jakobi, Annika; Richter, Christian; Lambin, Philippe; Troost, Esther G. C.

    2014-01-01

    This review article provides a systematic overview of the currently available evidence on the clinical effectiveness of particle therapy for the treatment of non-small cell lung cancer and summarizes findings of in silico comparative planning studies. Furthermore, technical issues and dosimetric uncertainties with respect to thoracic particle therapy are discussed. PMID:25401087

  1. Overexpression of SAMD9 suppresses tumorigenesis and progression during non small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Qing; Yu, Tao; Ren, Yao-Yao

    2014-11-07

    Highlights: • SAMD9 is down-regulated in human non-small cell lung cancer (NSCLC). • Knockdown of SAMD9 expression is increased the invasion, migration and proliferation in H1299 cells in vitro. • Overexpression of SAMD9 suppressed proliferation and invasion in A549 cells in vitro. • Depletion of SAMD9 increases tumor formation in vivo. - Abstract: The Sterile Alpha Motif Domain-containing 9 (SAMD9) gene has been recently emphasized during the discovery that it is expressed at a lower level in aggressive fibromatosis and some cases of breast and colon cancer, however, the underlying mechanisms are poorly understood. Here, we found that SAMD9 ismore » down-regulated in human non-small cell lung cancer (NSCLC). Furthermore, knockdown of SAMD9 expression is increased the invasion, migration and proliferation in H1299 cells in vitro and overexpression of SAMD9 suppressed proliferation and invasion in A549 cells. Finally, depletion of SAMD9 increases tumor formation in vivo. Our results may provide a strategy for blocking NSCLC tumorigenesis and progression.« less

  2. Evaluation of somatostatin and nucleolin receptors for therapeutic delivery in non-small cell lung cancer stem cells applying the somatostatin-analog DOTATATE and the nucleolin-targeting aptamer AS1411.

    PubMed

    Holmboe, Sif; Hansen, Pernille Lund; Thisgaard, Helge; Block, Ines; Müller, Carolin; Langkjær, Niels; Høilund-Carlsen, Poul Flemming; Olsen, Birgitte Brinkmann; Mollenhauer, Jan

    2017-01-01

    Cancer stem cells represent the putative tumor-driving subpopulation thought to account for drug resistance, relapse, and metastatic spread of epithelial and other cancer types. Accordingly, cell surface markers for therapeutic delivery to cancer stem cells are subject of intense research. Somatostatin receptor 2 and nucleolin are known to be overexpressed by various cancer types, which have elicited comprehensive efforts to explore their therapeutic utilization. Here, we evaluated somatostatin receptor 2 targeting and nucleolin targeting for therapeutic delivery to cancer stem cells from lung cancer. Nucleolin is expressed highly but not selectively, while somatostatin receptor 2 is expressed selectively but not highly by cancer cells. The non-small cell lung cancer cell lines A549 and H1299, displayed average levels of both surface molecules as judged based on analysis of a larger cell line panel. H1299 compared to A549 cells showed significantly elevated sphere-forming capacity, indicating higher cancer stem cell content, thus qualifying as suitable test system. Nucleolin-targeting 57Co-DOTA-AS1411 aptamer showed efficient internalization by cancer cells and, remarkably, at even higher efficiency by cancer stem cells. In contrast, somatostatin receptor 2 expression levels were not sufficiently high in H1299 cells to confer efficient uptake by either non-cancer stem cells or cancer stem cells. The data provides indication that the nucleolin-targeting AS1411 aptamer might be used for therapeutic delivery to non-small cell lung cancer stem cells.

  3. Computational discovery of pathway-level genetic vulnerabilities in non-small-cell lung cancer | Office of Cancer Genomics

    Cancer.gov

    Novel approaches are needed for discovery of targeted therapies for non-small-cell lung cancer (NSCLC) that are specific to certain patients. Whole genome RNAi screening of lung cancer cell lines provides an ideal source for determining candidate drug targets. Unsupervised learning algorithms uncovered patterns of differential vulnerability across lung cancer cell lines to loss of functionally related genes. Such genetic vulnerabilities represent candidate targets for therapy and are found to be involved in splicing, translation and protein folding.

  4. Study of Akt Inhibitor MK2206 in Patients With Relapsed Lymphoma

    ClinicalTrials.gov

    2015-10-09

    Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; B-cell Adult Acute Lymphoblastic Leukemia; B-cell Chronic Lymphocytic Leukemia; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenström Macroglobulinemia

  5. Deferasirox in Treating Iron Overload Caused By Blood Transfusions in Patients With Hematologic Malignancies

    ClinicalTrials.gov

    2017-12-22

    Acute Undifferentiated Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Grade III Lymphomatoid Granulomatosis; Adult Langerhans Cell Histiocytosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Mast Cell Leukemia; Myelodysplastic Syndrome With Isolated Del(5q); Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Myeloid/NK-cell Acute Leukemia; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Anemia; Refractory Multiple Myeloma; Secondary Acute Myeloid Leukemia; Secondary Myelofibrosis; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage I Mycosis Fungoides/Sezary Syndrome; Stage I Small Lymphocytic Lymphoma; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage II Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Testicular Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia; Waldenstrom Macroglobulinemia

  6. Driver genes in non-small cell lung cancer: Characteristics, detection methods, and targeted therapies

    PubMed Central

    He, Bing; Zhang, Hu-Qin

    2017-01-01

    Lung cancer is one of the most common causes of cancer-related death in the world. The large number of lung cancer cases is non-small cell lung cancer (NSCLC), which approximately accounting for 75% of lung cancer. Over the past years, our comprehensive knowledge about the molecular biology of NSCLC has been rapidly enriching, which has promoted the discovery of driver genes in NSCLC and directed FDA-approved targeted therapies. Of course, the targeted therapies based on driver genes provide a more exact option for advanced non-small cell lung cancer, improving the survival rate of patients. Now, we will review the landscape of driver genes in NSCLC including the characteristics, detection methods, the application of target therapy and challenges. PMID:28915704

  7. Etoposide Injection

    MedlinePlus

    ... medications to treat a certain type of lung cancer (small cell lung cancer; SCLC). Etoposide is in a class of medications ... organs where eggs are formed), another type of lung cancer (non-small cell lung cancer; NSCLC), and Kaposi's ...

  8. Lung surgery - discharge

    MedlinePlus

    ... Read More Bronchiectasis Chronic obstructive pulmonary disease Lung cancer Lung cancer - non-small cell Lung cancer - small cell ... team. Related MedlinePlus Health Topics COPD Emphysema Lung Cancer Lung Diseases Pleural Disorders Browse the Encyclopedia A.D. ...

  9. Homo sapiens Systemic RNA Interference-defective-1 Transmembrane Family Member 1 (SIDT1) Protein Mediates Contact-dependent Small RNA Transfer and MicroRNA-21-driven Chemoresistance*

    PubMed Central

    Elhassan, Mohamed O.; Christie, Jennifer; Duxbury, Mark S.

    2012-01-01

    Locally initiated RNA interference (RNAi) has the potential for spatial propagation, inducing posttranscriptional gene silencing in distant cells. In Caenorhabditis elegans, systemic RNAi requires a phylogenetically conserved transmembrane channel, SID-1. Here, we show that a human SID-1 orthologue, SIDT1, facilitates rapid, contact-dependent, bidirectional small RNA transfer between human cells, resulting in target-specific non-cell-autonomous RNAi. Intercellular small RNA transfer can be both homotypic and heterotypic. We show SIDT1-mediated intercellular transfer of microRNA-21 to be a driver of resistance to the nucleoside analog gemcitabine in human adenocarcinoma cells. Documentation of a SIDT1-dependent small RNA transfer mechanism and the associated phenotypic effects on chemoresistance in human cancer cells raises the possibility that conserved systemic RNAi pathways contribute to the acquisition of drug resistance. Mediators of non-cell-autonomous RNAi may be tractable targets for novel therapies aimed at improving the efficacy of current cytotoxic agents. PMID:22174421

  10. Immunological classification of high grade non-Hodgkin's lymphomas (NHL) in children.

    PubMed

    Pituch-Noworolska, A; Miezyński, W

    1994-01-01

    The immunological classification of 28 high grade non-Hodgkin's lymphomas (NHL) in children was shown. The morphological classification was based on Working Formulation, the immunological classification--on acute lymphoblastic leukemia subtypes. The phenotypes were assayed cytofluorometrically with monoclonal antibodies and compared to ontogenic stages in B and T cell development. Small non-cleaved cell lymphoma (Burkitt's type) was seen in 13 patients, lymphoblastic lymphoma in 12 patients, low differentiated in 3 patients. Immunological classification showed B-lymphocyte origin of blast cells in 15 patients including 11 small non-cleaved Burkitt's lymphoma (mature B and cALL phenotype), 3 undifferentiated cases (pro-B and mature B cell) and 1 case of lymphoblastic lymphoma (cALL type). T-cell origin of blast cells was demonstrated in 13 patients. The immunological classification used routinely was helpful in selection of patients with unfavourable prognosis. The more precise description of blast cells was valuable for better adjustment of therapy and better prognosis.

  11. A clinicopathologic prediction model for postoperative recurrence in stage Ia non-small cell lung cancer.

    PubMed

    Zhang, Yang; Sun, Yihua; Xiang, Jiaqing; Zhang, Yawei; Hu, Hong; Chen, Haiquan

    2014-10-01

    Controversy remains over the appropriate postoperative management for patients with stage Ia non-small cell lung cancer who underwent complete surgical resection as a result of a heterogeneous prognosis. We aimed to identify the predictive factors for recurrence in these patients to aid in the decision making. We reviewed 344 patients with stage Ia non-small cell lung cancer to analyze the associations between recurrence-free survival and the following clinicopathologic variables: age, gender, smoking history, family history, preoperative serum carcinoembryonic antigen level, type of surgical resection, tumor location, tumor histology, lymphovascular invasion, tumor differentiation, and pathologic T status. Cox multivariate survival analysis revealed that central tumor location (P=.019), stage T1b (P=.006), high histologic grade (including large cell carcinoma, solid predominant, micropapillary predominant, and invasive mucinous adenocarcinoma, P=.007), poor differentiation (P=.022), and lymphovascular invasion (P=.035) were independently associated with recurrence-free survival. A nomogram for predicting the probability of 3-year recurrence-free survival was developed using the 5 variables. This model shows good calibration, reasonable discrimination (concordance index=0.733), and small overfitting (2.6%) demonstrated by bootstrapping. We developed a clinicopathologic prediction model for postoperative recurrence in stage Ia non-small cell lung cancer. This model can help with the selection of appropriate postoperative therapeutic strategies for these patients. Copyright © 2014 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  12. Blood Sample Markers of Reproductive Hormones in Assessing Ovarian Reserve in Younger Patients With Newly Diagnosed Lymphomas

    ClinicalTrials.gov

    2018-03-02

    Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Childhood Burkitt Lymphoma; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Progressive Hairy Cell Leukemia, Initial Treatment; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage 0 Chronic Lymphocytic Leukemia; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Hodgkin Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Childhood Small Noncleaved Cell Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage IA Mycosis Fungoides/Sezary Syndrome; Stage IB Mycosis Fungoides/Sezary Syndrome; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Hodgkin Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Childhood Small Noncleaved Cell Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IIA Mycosis Fungoides/Sezary Syndrome; Stage IIB Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Hodgkin Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Childhood Small Noncleaved Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IIIA Mycosis Fungoides/Sezary Syndrome; Stage IIIB Mycosis Fungoides/Sezary Syndrome; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Hodgkin Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Childhood Small Noncleaved Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Stage IVA Mycosis Fungoides/Sezary Syndrome; Stage IVB Mycosis Fungoides/Sezary Syndrome; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia; Untreated Hairy Cell Leukemia; Waldenström Macroglobulinemia

  13. University of Texas Southwestern Medical Center: U01 Natural Products Screening | Office of Cancer Genomics

    Cancer.gov

    The goal of this project was to enlarge the chemical space probed by Project 1 (High-Throughput siRNA Screening of a Non-Small Cell Lung Cancer Cell Line Panel) by screening an expanded natural products library (~40,000) in an effort to further define vulnerabilities and therapeutic targets in non-small cell lung cancer. This new library is derived from a diverse collection of marine bacteria (prepared by Dr. John MacMillan, University of Texas Southwestern).

  14. University of Texas Southwestern Medical Center (UTSW): U01 Natural Products Screening | Office of Cancer Genomics

    Cancer.gov

    The goal of this project was to enlarge the chemical space probed by Project 1 (High-Throughput siRNA Screening of a Non-Small Cell Lung Cancer Cell Line Panel) by screening an expanded natural products library (~40,000) in an effort to further define vulnerabilities and therapeutic targets in non-small cell lung cancer. This new library is derived from a diverse collection of marine bacteria (prepared by Dr. John MacMillan, University of Texas Southwestern).

  15. Combination Therapy Targeting BCL6 and Phospho-STAT3 Defeats Intratumor Heterogeneity in a Subset of Non-Small Cell Lung Cancers. | Office of Cancer Genomics

    Cancer.gov

    Oncogene-specific changes in cellular signaling have been widely observed in lung cancer. Here, we investigated how these alterations could affect signaling heterogeneity and suggest novel therapeutic strategies. We compared signaling changes across six human bronchial epithelial cell (HBEC) strains that were systematically transformed with various combinations of TP53, KRAS, and MYC-oncogenic alterations commonly found in non-small cell lung cancer (NSCLC).

  16. Lung cancer

    MedlinePlus

    Cancer - lung ... lung cancer than of breast, colon, and prostate cancers combined. Lung cancer is more common in older adults. It ... Horn L, Eisenberg R, Gius D, et al. Cancer of the lung: non-small cell lung cancer and small cell ...

  17. MORAb-004 in Treating Young Patients With Recurrent or Refractory Solid Tumors or Lymphoma

    ClinicalTrials.gov

    2016-01-07

    Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Childhood Burkitt Lymphoma; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific; Unspecified Childhood Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia

  18. Intravenous Chemotherapy or Oral Chemotherapy in Treating Patients With Previously Untreated Stage III-IV HIV-Associated Non-Hodgkin Lymphoma

    ClinicalTrials.gov

    2018-06-20

    AIDS-related Diffuse Large Cell Lymphoma; AIDS-related Diffuse Mixed Cell Lymphoma; AIDS-related Diffuse Small Cleaved Cell Lymphoma; AIDS-related Immunoblastic Large Cell Lymphoma; AIDS-related Lymphoblastic Lymphoma; AIDS-related Peripheral/Systemic Lymphoma; AIDS-related Small Noncleaved Cell Lymphoma; Stage III AIDS-related Lymphoma; Stage IV AIDS-related Lymphoma

  19. New positron emission tomography derived parameters as predictive factors for recurrence in resected stage I non-small cell lung cancer.

    PubMed

    Melloni, G; Gajate, A M S; Sestini, S; Gallivanone, F; Bandiera, A; Landoni, C; Muriana, P; Gianolli, L; Zannini, P

    2013-11-01

    The recurrence rate for stage I non-small cell lung cancer is high, with 20-40% of patients that relapse after surgery. The aim of this study was to evaluate new F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) derived parameters, such as standardized uptake value index (SUVindex), metabolic tumor volume (MTV) and total lesion glycolysis (TLG), as predictive factors for recurrence in resected stage I non-small cell lung cancer. We retrospectively reviewed 99 resected stage I non-small cell lung cancer patients that were grouped by SUVindex, TLG and MTV above or below their median value. Disease free survival was evaluated as primary end point. The 5-year overall survival and the 5-year disease free survival rates were 62% and 73%, respectively. The median SUVindex, MTL and TLG were 2.73, 2.95 and 9.61, respectively. Patients with low SUVindex, MTV and TLG were more likely to have smaller tumors (p ≤ 0.001). Univariate analysis demonstrated that SUVindex (p = 0.027), MTV (p = 0.014) and TLG (p = 0.006) were significantly related to recurrence showing a better predictive performance than SUVmax (p = 0.031). The 5-year disease free survival rates in patients with low and high SUVindex, MTV and TLG were 84% and 59%, 86% and 62% and 88% and 60%, respectively. The multivariate analysis showed that only TLG was an independent prognostic factor (p = 0.014) with a hazard ratio of 4.782. Of the three PET-derived parameters evaluated, TLG seems to be the most accurate in stratifying surgically treated stage I non-small cell lung cancer patients according to their risk of recurrence. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Retrospective analysis of bevacizumab-induced hypertension and clinical outcome in patients with colorectal cancer and lung cancer.

    PubMed

    Nakaya, Aya; Kurata, Takayasu; Yokoi, Takashi; Iwamoto, Shigeyoshi; Torii, Yoshitaro; Katashiba, Yuichi; Ogata, Makoto; Hamada, Madoka; Kon, Masanori; Nomura, Shosaku

    2016-07-01

    Bevacizumab(Avastin(®) ), a humanized therapeutic monoclonal antibody that targets vascular endothelial growth factor, is widely used in cancer treatment. Patients who are treated with bevacizumab have an increased risk of developing systemic hypertension. However, the relationship between bevacizumab-induced hypertension and clinical outcome remains unclear. We aimed to evaluate the effect of bevacizumab-induced hypertension in terms of prognosis in patients with colorectal cancer and non-small cell lung cancer. The study included 632 patients, 317 patients with non-small cell lung cancer and 315 patients with colorectal cancer. All patients were treated with bevacizumab in combination with standard chemotherapy protocols, between April 2007 and December 2014. Blood pressure was measured before each treatment cycle. In the patient group with colorectal cancer, treated with bevacizumab, Grade 2-3 hypertension was present in 27.6%. In hypertensive patients with colorectal cancer, median overall survival was 42.6 months, compared with 20.6 months for normotensive patients in this group (P = 0.00071). In the patient group with non-small cell lung cancer, treated with bevacizumab, Grade 2-3 hypertension was present in 20.5%. In hypertensive patients with non-small cell lung cancer, median overall survival was 43.0 months, compared with 26.3 months for normotensive patients in this group (P = 0.00451). Patients who developed hypertension during treatment with bevacizumab for colorectal cancer and non-small cell lung cancer had significantly prolonged overall survival when compared with normotensive patients. Bevacizumab-induced hypertension may represent a biomarker for clinical benefit in cancer patients treated with bevacizumab. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  1. Entospletinib and Obinutuzumab in Treating Patients With Relapsed Chronic Lymphocytic Leukemia, Small Lymphocytic Lymphoma, or Non-Hodgkin Lymphoma

    ClinicalTrials.gov

    2018-03-05

    Anemia; B-Cell Prolymphocytic Leukemia; Fatigue; Fever; Grade 1 Follicular Lymphoma; Grade 2 Follicular Lymphoma; Grade 3a Follicular Lymphoma; Hairy Cell Leukemia; Lymphadenopathy; Lymphocytosis; Lymphoplasmacytic Lymphoma; Mantle Cell Lymphoma; Marginal Zone Lymphoma; Night Sweats; Recurrent Chronic Lymphocytic Leukemia; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Small Lymphocytic Lymphoma; Richter Syndrome; Splenomegaly; Thrombocytopenia; Weight Loss

  2. Molecular evidence of viral DNA in non-small cell lung cancer and non-neoplastic lung

    DOE PAGES

    Robinson, Lary A.; Jaing, Crystal J.; Campbell, Christine Pierce; ...

    2016-07-14

    Although ~20% of human cancers are caused by microorganisms, only suspicion exists for a microbial cause of lung cancer. Potential infectious agents were investigated in non-small cell lung cancer (NSCLC) and non-neoplastic lung. Seventy NSCLC tumours (33 squamous cell carcinomas, 17 adenocarcinomas, 10 adenocarcinomas with lepidic spread, and 10 oligometastases) and 10 non-neoplastic lung specimens were evaluated for molecular evidence of microorganisms. Tissues were subjected to the Lawrence Livermore Microbial Detection Array, an oncovirus panel of the International Agency for Research on Cancer, and human papillomavirus (HPV) genotyping. Associations were examined between microbial prevalence, clinical characteristics, and p16 and EGFRmore » expression. Retroviral DNA was observed in 85% squamous cell carcinomas, 47% adenocarcinomas, and 10% adenocarcinomas with lepidic spread. Human papillomavirus DNA was found in 69% of squamous cell carcinomas with 30% containing high-risk HPV types. No significant viral DNA was detected in non-neoplastic lung. Patients with tumours containing viral DNA experienced improved long-term survival compared with patients with viral DNA-negative tumours. Lastly, most squamous cell carcinomas and adenocarcinomas contained retroviral DNA and one-third of squamous cell carcinomas contained high-risk HPV DNA. Viral DNA was absent in non-neoplastic lung. Trial results encourage further study of the viral contribution to lung carcinogenesis.« less

  3. Molecular evidence of viral DNA in non-small cell lung cancer and non-neoplastic lung

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Lary A.; Jaing, Crystal J.; Campbell, Christine Pierce

    Although ~20% of human cancers are caused by microorganisms, only suspicion exists for a microbial cause of lung cancer. Potential infectious agents were investigated in non-small cell lung cancer (NSCLC) and non-neoplastic lung. Seventy NSCLC tumours (33 squamous cell carcinomas, 17 adenocarcinomas, 10 adenocarcinomas with lepidic spread, and 10 oligometastases) and 10 non-neoplastic lung specimens were evaluated for molecular evidence of microorganisms. Tissues were subjected to the Lawrence Livermore Microbial Detection Array, an oncovirus panel of the International Agency for Research on Cancer, and human papillomavirus (HPV) genotyping. Associations were examined between microbial prevalence, clinical characteristics, and p16 and EGFRmore » expression. Retroviral DNA was observed in 85% squamous cell carcinomas, 47% adenocarcinomas, and 10% adenocarcinomas with lepidic spread. Human papillomavirus DNA was found in 69% of squamous cell carcinomas with 30% containing high-risk HPV types. No significant viral DNA was detected in non-neoplastic lung. Patients with tumours containing viral DNA experienced improved long-term survival compared with patients with viral DNA-negative tumours. Lastly, most squamous cell carcinomas and adenocarcinomas contained retroviral DNA and one-third of squamous cell carcinomas contained high-risk HPV DNA. Viral DNA was absent in non-neoplastic lung. Trial results encourage further study of the viral contribution to lung carcinogenesis.« less

  4. Comprehensive profiling and quantitation of oncogenic mutations in non-small cell lung carcinoma using single-molecule amplification and re-sequencing technology.

    PubMed

    Shi, Jian; Yuan, Meng; Wang, Zhan-Dong; Xu, Xiao-Li; Hong, Lei; Sun, Shenglin

    2017-02-01

    The carcinogenesis of non-small cell lung carcinoma has been found to associate with activating and resistant mutations in the tyrosine kinase domain of specific oncogenes. Here, we assessed the type, frequency, and abundance of epithelial growth factor receptor, KRAS, BRAF, and ALK mutations in 154 non-small cell lung carcinoma specimens using single-molecule amplification and re-sequencing technology. We found that epithelial growth factor receptor mutations were the most prevalent (44.2%), followed by KRAS (18.8%), ALK (7.8%), and BRAF (5.8%) mutations. The type and abundance of the mutations in tumor specimens appeared to be heterogeneous. Thus, we conclude that identification of clinically significant oncogenic mutations may improve the classification of patients and provide valuable information for determination of the therapeutic strategies.

  5. Erlotinib plus parenteral nutrition: an opportunity to get through the hardest days of advanced non-small cell lung cancer with cancer anorexia-cachexia syndrome.

    PubMed

    Zang, Yuan-Sheng; Fang, Zheng; Li, Bing

    2013-03-01

    This case study details the poor performance status of a patient with non-small cell lung cancer and cancer anorexia-cachexia syndrome got through the hardest days of high tumor burden and malnutrition, by using a combined therapy of lung cancer-targeted therapy drug and parenteral nutrition. The related literatures were reviewed.

  6. Epidermal growth factor receptor in non-small cell lung cancer

    PubMed Central

    2015-01-01

    Following the identification of a group of patients in the initial tyrosine kinase inhibitor (TKI) trials for lung cancer, there has been detailed focus on which patients may benefit from inhibitor therapy. This article reviews the background, genetics and prevalence of epidermal growth factor mutations in non-small cell lung cancer (NSCLC). Additionally, the prevalence in unselected patients is compared against various other reviews. PMID:25870793

  7. MicroRNA-429 induces tumorigenesis of human non-small cell lung cancer cells and targets multiple tumor suppressor genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, Yaoguo; Xu, Shidong; Ma, Jianqun

    2014-07-18

    Highlights: • MiR-429 expression is upregulated in non-small cell lung cancer (NSCLC). • MiR-429 inhibits PTEN, RASSF8 and TIMP2 expression. • MiR-429 promotes metastasis and proliferation. • We report important regulatory mechanisms involved in NSCLC progression. • MiR-429 is a potential therapeutic target and diagnostic marker. - Abstract: Lung cancer is the major cause of cancer death globally. MicroRNAs are evolutionally conserved small noncoding RNAs that are critical for the regulation of gene expression. Aberrant expression of microRNA (miRNA) has been implicated in cancer initiation and progression. In this study, we demonstrated that the expression of miR-429 are often upregulatedmore » in non-small cell lung cancer (NSCLC) compared with normal lung tissues, and its expression level is also increased in NSCLC cell lines compared with normal lung cells. Overexpression of miR-429 in A549 NSCLC cells significantly promoted cell proliferation, migration and invasion, whereas inhibition of miR-429 inhibits these effects. Furthermore, we demonstrated that miR-429 down-regulates PTEN, RASSF8 and TIMP2 expression by directly targeting the 3′-untranslated region of these target genes. Taken together, our results suggest that miR-429 plays an important role in promoting the proliferation and metastasis of NSCLC cells and is a potential target for NSCLC therapy.« less

  8. The role of immunohistochemistry in the analysis of the spectrum of small round cell tumours at a tertiary care centre.

    PubMed

    D'cruze, Lawrence; Dutta, Ruma; Rao, Shalinee; R, Anuradha; Varadarajan, Suresh; Kuruvilla, Sarah

    2013-07-01

    The term, "Small Round - Cell Tumours" (SRCT) describes a group of highly aggressive malignant neoplasms which are composed predominantly of small and monotonous undifferentiated cells with high nucleocytoplasmic ratios. Immunohistochemistry (IHC) plays a crucial role in catagorizing the small round - cell tumours. This study was done to analyse the spectrum of small round cell tumours over a period of five years at a tertiary care centre and to study the relevance of immunohistochemistry in making precise diagnoses of the small round cell tumours. Formalin - fixed, paraffin - embedded sections of tumours which were diagnosed as small round cell tumours on small biopsies and resected specimens were retrieved from the files of the Department of Pathology of Sri Ramachandra Medical College and Research institute, in the period from January 2005 to December 2009. This study was confined to the bone and the soft tissues. Decalcification was performed on the bony tissues before the routine processing was done. The patients belonging to all age groups were included in this study. The small round cell tumours of the bone marrow, the spleen and the lymph node was excluded from our study. Immunohistochemical stains were performed to differentiate and categorise the small round blue cell tumours. The immunomarkers which were utilised in this study included CD45/LCA (the lymphocyte common antigen), CD20, CD3, CD99 (cluster of differentiation 99 also known as MIC2), desmin, EMA (epithelial membrane antigen), CK(cytokeratin), synaptophysin, chromogranin and GFAP (Glial fibrillary acidic protein). Forty three cases of small round cell tumours were analysed, which included 19 cases of NHL (non Hodgkin's lymphoma), 6 cases of Ewing/PNETs (primitive neuroectodermal tumours), 3 cases of atypical carcinoid, 3 cases of olfactory neuroblastoma, 2 cases each of rhabdomyosarcoma, Wilms tumour, neuroblastoma and synovial sarcoma and 1 case each of small cell osteosarcoma, small (oat) cell carcinoma, medulloblastoma and hepatoblastoma. By using a panel of monoclonal antibodies, we could arrive at a final diagnosis for all the 40 cases in which immunohistochemistry was performed. Our study showed that the use of immunohistochemistry was extremely beneficial. A majority of the small round cell tumours occurred between the ages of 15-45 years and the most common small round cell tumour was Non-Hodgkins lymphoma (extra lymphoreticular).

  9. Identification of a Novel Protein Arginine Methyltransferase 5 Inhibitor in Non-small Cell Lung Cancer by Structure-Based Virtual Screening

    PubMed Central

    Wang, Qianqian; Xu, Jiahui; Li, Ying; Huang, Jumin; Jiang, Zebo; Wang, Yuwei; Liu, Liang; Leung, Elaine Lai Han; Yao, Xiaojun

    2018-01-01

    Protein arginine methyltransferase 5 (PRMT5) is able to regulate gene transcription by catalyzing the symmetrical dimethylation of arginine residue of histone, which plays a key role in tumorigenesis. Many efforts have been taken in discovering small-molecular inhibitors against PRMT5, but very few were reported and most of them were SAM-competitive. EPZ015666 is a recently reported PRMT5 inhibitor with a new binding site, which is different from S-adenosylmethionine (SAM)-binding pocket. This new binding site provides a new clue for the design and discovery of potent and specific PRMT5 inhibitors. In this study, the structure-based virtual screening targeting this site was firstly performed to identify potential PRMT5 inhibitors. Then, the bioactivity of the candidate compound was studied. MTT results showed that compound T1551 decreased cell viability of A549 and H460 non-small cell lung cancer cell lines. By inhibiting the methyltransferase activity of PRMT5, T1551 reduced the global level of H4R3 symmetric dimethylation (H4R3me2s). T1551 also downregulated the expression of oncogene FGFR3 and eIF4E, and disturbed the activation of related PI3K/AKT/mTOR and ERK signaling in A549 cell. Finally, we investigated the conformational spaces and identified collective motions important for description of T1551/PRMT5 complex by using molecular dynamics simulation and normal mode analysis methods. This study provides a novel non-SAM-competitive hit compound for developing small molecules targeting PRMT5 in non-small cell lung cancer. PMID:29545752

  10. Identification of a Novel Protein Arginine Methyltransferase 5 Inhibitor in Non-small Cell Lung Cancer by Structure-Based Virtual Screening.

    PubMed

    Wang, Qianqian; Xu, Jiahui; Li, Ying; Huang, Jumin; Jiang, Zebo; Wang, Yuwei; Liu, Liang; Leung, Elaine Lai Han; Yao, Xiaojun

    2018-01-01

    Protein arginine methyltransferase 5 (PRMT5) is able to regulate gene transcription by catalyzing the symmetrical dimethylation of arginine residue of histone, which plays a key role in tumorigenesis. Many efforts have been taken in discovering small-molecular inhibitors against PRMT5, but very few were reported and most of them were SAM-competitive. EPZ015666 is a recently reported PRMT5 inhibitor with a new binding site, which is different from S-adenosylmethionine (SAM)-binding pocket. This new binding site provides a new clue for the design and discovery of potent and specific PRMT5 inhibitors. In this study, the structure-based virtual screening targeting this site was firstly performed to identify potential PRMT5 inhibitors. Then, the bioactivity of the candidate compound was studied. MTT results showed that compound T1551 decreased cell viability of A549 and H460 non-small cell lung cancer cell lines. By inhibiting the methyltransferase activity of PRMT5, T1551 reduced the global level of H4R3 symmetric dimethylation (H4R3me2s). T1551 also downregulated the expression of oncogene FGFR3 and eIF4E, and disturbed the activation of related PI3K/AKT/mTOR and ERK signaling in A549 cell. Finally, we investigated the conformational spaces and identified collective motions important for description of T1551/PRMT5 complex by using molecular dynamics simulation and normal mode analysis methods. This study provides a novel non-SAM-competitive hit compound for developing small molecules targeting PRMT5 in non-small cell lung cancer.

  11. Expression of metastasis-associated lung adenocarcinoma transcript 1 long non-coding RNA in vitro and in patients with non-small cell lung cancer.

    PubMed

    Lin, Ling; Li, Haiyan; Zhu, Yefei; He, Susu; Ge, Hongfei

    2018-06-01

    The present study aimed to investigate the association between the expression of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) long non-coding RNA (lncRNA) and the recurrence of non-small cell lung cancer (NSCLC) and to elucidate the potential mechanisms of MALAT1 in vitro . Between 1 June 1, 2010 and December 30, 2016, NSCLC tumor tissues and adjacent non-cancerous tissues were obtained from 120 patients with NSCLC, who had undergone surgical resection at Taizhou Hospital of Wenzhou Medical University (Linhai, China). The total RNA of tissues and cells were extracted and the expression of MALAT1 was determined using a wound healing assay and reverse transcription quantitative polymerase chain reaction. In addition, MALAT1 expression in A549 cells was silenced using small interfering RNA. The proliferation, migration and invasion of cells were then assessed using a CellTiter 96 kit and Transwell assays. MALAT1 expression was significantly increased in NSCLC samples compared with expression in adjacent non-cancerous tissues. Furthermore, the expression of MALAT1 in patients with NSCLC that exhibited recurrence was markedly higher than in those that did not. The results of the present study also demonstrated significant associations between high expression of MALAT1 and female sex, Tumor-Node-Metastasis advanced stage, vessel invasion, pathological differentiation and recurrence of patients with NSCLC. The proliferative, migratory and invasive abilities of MALAT1-silenced A549 cells were significantly decreased compared with those of control cells. MALAT1 expression was significantly increased in NSCLC tissues and was revealed to serve a role in the progression of NSCLC.

  12. TLR9 Agonist SD-101, Anti-OX40 Antibody BMS 986178, and Radiation Therapy in Treating Patients With Low-Grade B-Cell Non-Hodgkin Lymphomas

    ClinicalTrials.gov

    2018-04-18

    B-Cell Non-Hodgkin Lymphoma; Grade 1 Follicular Lymphoma; Grade 2 Follicular Lymphoma; Grade 3a Follicular Lymphoma; Lymphoplasmacytic Lymphoma; Mantle Cell Lymphoma; Marginal Zone Lymphoma; Small Lymphocytic Lymphoma

  13. [Advanced and Metastatic Lung Cancer – What is new in the Diagnosis and Therapy?].

    PubMed

    Rothschild, Sacha I

    2015-07-01

    Lung cancer is one of the most common types of malignancies worldwide. The majority of patients are diagnosed with an incurable advanced/metastatic stage disease. Palliative treatment approaches improve the survival and the quality of life of these patients. Lung cancer is subdivided according to histology and molecular biology. The most important classification separates small cell from non-small cell lung cancer. In the subgroup of non-small cell lung cancer novel treatment approaches coming along with an improved prognosis have been established during the last decade. The current manuscript provides an overview on current treatment options for metastatic lung cancer. Furthermore, an outlook on promising future treatment options is provided.

  14. Urgent Chemotherapy for Life-Threatening Complications Related to Solid Neoplasms.

    PubMed

    Zerbib, Yoann; Rabbat, Antoine; Fartoukh, Muriel; Bigé, Naïke; Andréjak, Claire; Mayaux, Julien; De Prost, Nicolas; Misset, Benoît; Lemiale, Virginie; Bruneel, Fabrice; Maizel, Julien; Ricome, Sylvie; Jacobs, Frédéric; Bornstain, Caroline; Dupont, Hervé; Baudin, François; Azoulay, Elie; Pène, Frédéric

    2017-07-01

    Solid neoplasms can be directly responsible for organ failures at the time of diagnosis or relapse. The management of such specific complications relies on urgent chemotherapy and eventual instrumental or surgical procedures, combined with advanced life support. We conducted a multicenter study to address the prognosis of this condition. A multicenter retrospective (2001-2015) chart review. Medical and respiratory ICUs. Adult patients who received urgent chemotherapy in the ICU for organ failure related to solid neoplasms were included. The modalities of chemotherapy, requirements of adjuvant instrumental or surgical procedures, and organ supports were collected. Endpoints were short- and long-term survival rates. None. One hundred thirty-six patients were included. Lung cancer was the most common malignancy distributed into small cell lung cancer (n = 57) and non-small cell lung cancer (n = 33). The main reason for ICU admission was acute respiratory failure in 111 patients (81.6%), of whom 89 required invasive mechanical ventilation. Compression and tissue infiltration by tumor cells were the leading mechanisms resulting in organ involvement in 78 (57.4%) and 47 (34.6%) patients. The overall in-ICU, in-hospital, 6-month, and 1-year mortality rates were 37%, 58%, 74%, and 88%, respectively. Small cell lung cancer was identified as an independent predictor of hospital survival. However, this gain in survival was not sustained since the 1-year survival rates of small cell lung cancer, non-small cell lung cancer, and non-lung cancer patients all dropped below 20%. Urgent chemotherapy along with aggressive management of organ failures in the ICU can be lifesaving in very selected cancer patients, most especially with small cell lung cancer, although the long-term survival is hardly sustainable.

  15. Prognostic significance of blood coagulation tests in carcinoma of the lung and colon.

    PubMed

    Wojtukiewicz, M Z; Zacharski, L R; Moritz, T E; Hur, K; Edwards, R L; Rickles, F R

    1992-08-01

    Blood coagulation test results were collected prospectively in patients with previously untreated, advanced lung or colon cancer who entered into a clinical trial. In patients with colon cancer, reduced survival was associated (in univariate analysis) with higher values obtained at entry to the study for fibrinogen, fibrin(ogen) split products, antiplasmin, and fibrinopeptide A and accelerated euglobulin lysis times. In patients with non-small cell lung cancer, reduced survival was associated (in univariate analysis) with higher fibrinogen and fibrin(ogen) split products, platelet counts and activated partial thromboplastin times. In patients with small cell carcinoma of the lung, only higher activated partial thromboplastin times were associated (in univariate analysis) with reduced survival in patients with disseminated disease. In multivariate analysis, higher activated partial thromboplastin times were a significant independent predictor of survival for patients with non-small cell lung cancer limited to one hemithorax and with disseminated small cell carcinoma of the lung. Fibrin(ogen) split product levels were an independent predictor of survival for patients with disseminated non-small cell lung cancer as were both the fibrinogen and fibrinopeptide A levels for patients with disseminated colon cancer. These results suggest that certain tests of blood coagulation may be indicative of prognosis in lung and colon cancer. The heterogeneity of these results suggests that the mechanism(s), intensity, and pathophysiological significance of coagulation activation in cancer may differ between tumour types.

  16. CCDC106 promotes non-small cell lung cancer cell proliferation.

    PubMed

    Zhang, Xiupeng; Zheng, Qin; Wang, Chen; Zhou, Haijing; Jiang, Guiyang; Miao, Yuan; Zhang, Yong; Liu, Yang; Li, Qingchang; Qiu, Xueshan; Wang, Enhua

    2017-04-18

    Coiled-coil domain containing (CCDC) family members enhance tumor cell proliferation, and high CCDC protein levels correlate with unfavorable prognoses. Limited research demonstrated that CCDC106 may promote the degradation of p53/TP53 protein and inhibit its transactivity. The present study demonstrated that CCDC106 expression correlates with advanced TNM stage (P = 0.008), positive regional lymph node metastasis (P < 0.001), and poor overall survival (P < 0.001) in 183 non-small cell lung cancer cases. A549 and H1299 cells were selected as representative of CCDC106-low and CCDC106-high expressing cell lines, respectively. CCDC106 overexpression promoted A549 cell proliferation and xenograft tumor growth in nude mice, while siRNA-mediated CCDC106 knockdown inhibited H1299 cell proliferation. CCDC106 promoted AKT phosphorylation and upregulated the cell cycle-regulating proteins Cyclin A2 and Cyclin B1. Cell proliferation promoted by CCDC106 via Cyclin A2 and Cyclin B1 was rescued by treatment with the AKT inhibitor, LY294002. Our studies revealed that CCDC106 is associated with non-small cell lung cancer progression and unfavorable prognosis. CCDC106 enhanced Cyclin A2 and Cyclin B1 expression and promoted A549 and H1299 cell proliferation, which depended on AKT signaling. These results suggest that CCDC106 may be a novel target for lung cancer treatment.

  17. Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers

    PubMed Central

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T.; Aftab, Blake T.; Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M.; Wong, John; Rudin, Charles M.; Tran, Phuoc T.; Hales, Russell K.

    2012-01-01

    Purpose Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of KrasG12D-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radio-sensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer. PMID:23182391

  18. Hedgehog pathway inhibition radiosensitizes non-small cell lung cancers.

    PubMed

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T; Aftab, Blake T; Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M; Wong, John; Rudin, Charles M; Tran, Phuoc T; Hales, Russell K

    2013-05-01

    Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of Kras(G12D)-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T.

    2013-05-01

    Purpose: Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials: We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntagmore » and radiation. In a transgenic mouse model of Kras{sup G12D}-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results: In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions: Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer.« less

  20. $6 Million in Awards to Advance Solar Cell Research

    Science.gov Websites

    five companies for high tech research into non-conventional, photovoltaic technologies for creating can have significant cost advantages over conventional technologies. This non-conventional solar , Newbury Park, $498,000 (small business) Project Title: Non-Vacuum Processing of CIGS Solar Cells Project

  1. Phase I/II Study of IMMU-132 in Patients With Epithelial Cancers

    ClinicalTrials.gov

    2018-04-23

    Colorectal Cancer; Gastric Adenocarcinoma; Esophageal Cancer; Hepatocellular Carcinoma; Non-small Cell Lung Cancer; Small Cell Lung Cancer; Ovarian Epithelial Cancer; Carcinoma Breast Stage IV; Hormone-refractory Prostate Cancer; Pancreatic Ductal Adenocarcinoma; Head and Neck Cancers- Squamous Cell; Renal Cell Cancer; Urinary Bladder Neoplasms; Cervical Cancer; Endometrial Cancer; Follicular Thyroid Cancer; Glioblastoma Multiforme; Triple Negative Breast Cancer

  2. [Advances in Liquid Biopsy and its Clinical Application in the Diagnosis 
and Treatment of Non-small Cell Lung Cancer].

    PubMed

    Zheng, Difan; Chen, Haiquan

    2016-06-20

    With the advances of technology, great progresses have been made in liquid biopsy in recent years. Liquid biopsy is currently playing a more and more important role in early diagnosis and treatment of cancer. Compared with traditional tissue biopsy, liquid biopsy is more popular in clinical practice due to its non-invasiveness, convenience and high repeatability. It has huge potential in the future. This review introduces circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) as the most important objects in liquid biopsy, mainly focusing on their history, biological characteristics, detection technologies, limitations and applications in non-small cell lung cancer.

  3. Singapore Cancer Network (SCAN) Guidelines for Adjuvant Chemotherapy in Resected Non-Small Cell Lung Cancer.

    PubMed

    2015-10-01

    The SCAN lung cancer workgroup aimed to develop Singapore Cancer Network (SCAN) clinical practice guidelines for the use of adjuvant systemic therapy for non-small cell lung cancer in Singapore. The workgroup utilised a modified ADAPTE process to calibrate high quality international evidence-based clinical practice guidelines to our local setting. Five international guidelines were evaluated- those developed by the National Comprehensive Cancer Network (2014), European Society of Medical Oncology (2014), National Institute of Clinical Excellence (2012), Scottish Intercollegiate Guidelines Network (2014), and the Cancer Care Council Australia (2012). Recommendations on the selection of patients, chemotherapy regimen, treatment for stage I disease, treatment for positive margins and treatment options for pN2 disease with negative margins were produced. These adapted guidelines form the SCAN Guidelines 2015 for adjuvant systemic therapy of non-small cell lung cancer.

  4. Social factors, treatment, and survival in early-stage non-small cell lung cancer.

    PubMed Central

    Greenwald, H P; Polissar, N L; Borgatta, E F; McCorkle, R; Goodman, G

    1998-01-01

    OBJECTIVES: This study assessed the importance of socioeconomic status, race, and likelihood of receiving surgery in explaining mortality among patients with stage-I non-small cell lung cancer. METHODS: Analyses focused on Black and White individuals 75 years of age and younger (n = 5189) diagnosed between 1980 and 1982 with stage-I non-small cell lung cancer in Detroit, San Francisco, and Seattle. The main outcome measure was months of survival after diagnosis. RESULTS: Patients in the highest income decile were 45% more likely to receive surgical treatment and 102% more likely to attain 5-year survival than those in the lowest decile. Whites were 20% more likely to undergo surgery than Blacks and 31% more likely to survive 5 years. Multivariate procedures controlling for age and sex confirmed these observations. CONCLUSIONS: Socioeconomic status and race appear to independently influence likelihood of survival. Failure to receive surgery explains much excess mortality. PMID:9807536

  5. Indications and limitations of chemotherapy and targeted agents in non-small cell lung cancer brain metastases.

    PubMed

    Zimmermann, Stefan; Dziadziuszko, Rafal; Peters, Solange

    2014-07-01

    Lung cancer is characterized by the highest incidence of solid tumor-related brain metastases, which are reported with a growing incidence during the last decade. Prognostic assessment may help to identify subgroups of patients that could benefit from more aggressive therapy of metastatic disease, in particular when central nervous system is involved. The recent sub-classification of non-small cell lung cancer (NSCLC) into molecularly-defined "oncogene-addicted" tumors, the emergence of effective targeted treatments in molecularly defined patient subsets, global improvement of advanced NSCLC survival as well as the availability of refined new radiotherapy techniques are likely to impact on outcomes of patients with brain dissemination. The present review focuses on key evidence and research strategies for systemic treatment of patients with central nervous system involvement in non-small cell lung cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Haploidentical Donor Bone Marrow Transplant in Treating Patients With High-Risk Hematologic Cancer

    ClinicalTrials.gov

    2017-04-10

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hematopoietic/Lymphoid Cancer; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Peripheral T-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Myelodysplastic Syndromes; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage II Multiple Myeloma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Childhood Hodgkin Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Childhood Hodgkin Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Testicular Lymphoma; Waldenström Macroglobulinemia

  7. Cholecalciferol in Improving Survival in Patients With Newly Diagnosed Cancer With Vitamin D Insufficiency

    ClinicalTrials.gov

    2017-07-06

    Aggressive Non-Hodgkin Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-Cell Lymphoma; Chronic Lymphocytic Leukemia; Diffuse Large B-Cell Lymphoma; Enteropathy-Associated T-Cell Lymphoma; Hepatosplenic T-Cell Lymphoma; Mature T-Cell and NK-Cell Non-Hodgkin Lymphoma; Mediastinal (Thymic) Large B-Cell Lymphoma; Nasal Type Extranodal NK/T-Cell Lymphoma; Peripheral T-Cell Lymphoma, Not Otherwise Specified; Primary Cutaneous Anaplastic Large Cell Lymphoma; Refractory Anaplastic Large Cell Lymphoma; Small Lymphocytic Lymphoma; Subcutaneous Panniculitis-Like T-Cell Lymphoma

  8. Long noncoding RNA SNHG1 promotes non-small cell lung cancer progression by up-regulating MTDH via sponging miR-145-5p.

    PubMed

    Lu, Qingchun; Shan, Shan; Li, Yanyan; Zhu, Dongyi; Jin, Wenjing; Ren, Tao

    2018-02-21

    Long noncoding RNAs participate in the progression and initiation of non-small cell lung cancer (NSCLC), although the mechanism remains unknown. The lncRNA identified as small nucleolar RNA host gene 1 ( SNHG1) is a novel lncRNA that is increased in multiple human cancers; however, the regulatory mechanism requires further investigation. In this study, we discovered that SNHG1 was markedly up-regulated in NSCLC tissues and cells and that SNHG1 silencing decreased tumor volumes. Moreover, we explored its regulatory mechanism and found that SNHG1 directly bound to microRNA (miRNA)-145-5p, isolating miR-145-5p from its target gene MTDH. Inhibition of SNHG1 suppressed NSCLC cell viability, proliferation, migration, and invasion in vitro, but its effect was rescued by miR-145-5p inhibition. These results demonstrate that SNHG1 contributes to NSCLC progression by modulating the miR-145-5p/ MTDH axis, and it could potentially be a therapeutic target as well as a diagnostic marker.-Lu, Q., Shan, S., Li, Y., Zhu, D., Jin, W., Ren, T. Long noncoding RNA SNHG1 promotes non-small cell lung cancer progression by up-regulating MTDH via sponging miR-145-5p.

  9. A High-Sensitivity Hydraulic Load Cell for Small Kitchen Appliances

    PubMed Central

    Pačnik, Roman; Novak, Franc

    2010-01-01

    In this paper we present a hydraulic load cell made from hydroformed metallic bellows. The load cell was designed for a small kitchen appliance with the weighing function integrated into the composite control and protection of the appliance. It is a simple, low-cost solution with small dimensions and represents an alternative to the existing hydraulic load cells in industrial use. A good non-linearity and a small hysteresis were achieved. The influence of temperature leads to an error of 7.5%, which can be compensated for by software to meet the requirements of the target application. PMID:22163665

  10. A high-sensitivity hydraulic load cell for small kitchen appliances.

    PubMed

    Pačnik, Roman; Novak, Franc

    2010-01-01

    In this paper we present a hydraulic load cell made from hydroformed metallic bellows. The load cell was designed for a small kitchen appliance with the weighing function integrated into the composite control and protection of the appliance. It is a simple, low-cost solution with small dimensions and represents an alternative to the existing hydraulic load cells in industrial use. A good non-linearity and a small hysteresis were achieved. The influence of temperature leads to an error of 7.5%, which can be compensated for by software to meet the requirements of the target application.

  11. A Safety and Tolerability Study of INCAGN02385 in Select Advanced Malignancies

    ClinicalTrials.gov

    2018-05-15

    Cervical Cancer; Microsatellite Instability (MSI)-High Endometrial Cancer; Gastric Cancer (Including Stomach and Gastroesophageal Junction [GEJ]); Esophageal Cancer; Hepatocellular Carcinoma; Melanoma (Uveal Melanoma Excluded); Merkel Cell Carcinoma; Mesothelioma; MSI-high Colorectal Cancer; Non-small Cell Lung Cancer (NSCLC); Ovarian Cancer; Squamous Cell Carcinoma of the Head and Neck (SCCHN); Small Cell Lung Cancer (SCLC); Renal Cell Carcinoma (RCC); Triple-negative Breast Cancer; Urothelial Carcinoma; Diffuse Large B-cell Lymphoma

  12. Sociogenomics of self vs. non-self cooperation during development of Dictyostelium discoideum.

    PubMed

    Li, Si I; Buttery, Neil J; Thompson, Christopher R L; Purugganan, Michael D

    2014-07-21

    Dictyostelium discoideum, a microbial model for social evolution, is known to distinguish self from non-self and show genotype-dependent behavior during chimeric development. Aside from a small number of cell-cell recognition genes, however, little is known about the genetic basis of self/non-self recognition in this species. Based on the key hypothesis that there should be differential expression of genes if D. discoideum cells were interacting with non-clone mates, we performed transcriptomic profiling study in this species during clonal vs. chimeric development. The transcriptomic profiles of D. discoideum cells in clones vs. different chimeras were compared at five different developmental stages using a customized microarray. Effects of chimerism on global transcriptional patterns associated with social interactions were observed. We find 1,759 genes significantly different between chimera and clone, 1,144 genes associated significant strain differences, and 6,586 genes developmentally regulated over time. Principal component analysis showed a small amount of the transcriptional variance to chimerism-related factors (Chimerism: 0.18%, Chimerism × Timepoint: 0.03%). There are 162 genes specifically regulated under chimeric development, with continuous small differences between chimera vs. clone over development. Almost 60% of chimera-associated differential genes were differentially expressed at the 4 h aggregate stage, which corresponds to the initial transition of D. discoideum from solitary life to a multicellular phase. A relatively small proportion of over-all variation in gene expression is explained by differences between chimeric and clonal development. The relatively small modifications in gene expression associated with chimerism is compatible with the high level of cooperation observed among different strains of D. discoideum; cells of distinct genetic backgrounds will co-aggregate indiscriminately and co-develop into fruiting bodies. Chimeric development may involve re-programming of the transcriptome through small modifications of the developmental genetic network, which may also indicate that response to social interaction involves many genes with individually small transcriptional effect.

  13. Anti-proliferative and anti-angiogenic effects of CB2R agonist (JWH-133) in non-small lung cancer cells (A549) and human umbilical vein endothelial cells: an in vitro investigation.

    PubMed

    Vidinský, B; Gál, P; Pilátová, M; Vidová, Z; Solár, P; Varinská, L; Ivanová, L; Mojžíš, J

    2012-01-01

    Non-small cell lung cancer has one of the highest mortality rates among cancer-suffering patients. It is well known that the unwanted psychotropic effects of cannabinoids (CBs) are mediated via the CB(1) receptor (R), and selective targeting of the CB(2)R would thus avoid side effects in cancer treatment. Therefore, the aim of our study was to evaluate the effect of selective CB(2)R agonist, JWH-133, on A549 cells (non-small lung cancer) and human umbilical vein endothelial cells (HUVECs). Cytotoxicity assay and DNA fragmentation assay were employed to evaluate the influence of JWH-133 (3-(1,1-dimethylbutyl)- 1-deoxy-Δ8-tetrahydrocannabinol) on investigated cancer cells. In addition, migration assay and gelatinase zymography were performed in HUVECs to asses JWH-133 anti-angiogenic activity. Our study showed that JWH-133 exerted cytotoxic effect only at the highest concentration used (10(-4) mol/l), while inhibition of colony formation was also detected at the non-toxic concentrations (10(-5)-10(-8) mol/l). JWH-133 was also found to be able to induce weak DNA fragmentation in A549 cells. Furthermore, JWH-133 at non-toxic concentrations inhibited some steps in the process of angiogenesis. It significantly inhibited endothelial cell migration after 17 h of incubation at concentrations of 10(-4)-10(-6) mol/l. In addition, JWH-133 inhibited MMP-2 secretion as assessed by gelatinase zymography. The present study demonstrates the in vitro anti-proliferative and anti-angiogenic potential of CB(2)R agonist, JWH-133, in nonsmall lung cancer cells and HUVECs. Our results generate a rationale for further in vivo efficacy studies with this compound in preclinical cancer models.

  14. SU-E-T-427: Cell Surviving Fractions Derived From Tumor-Volume Variation During Radiotherapy for Non-Small Cell Lung Cancer: Comparison with Predictive Assays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chvetsov, A; Schwartz, J; Mayr, N

    2014-06-01

    Purpose: To show that a distribution of cell surviving fractions S{sub 2} in a heterogeneous group of patients can be derived from tumor-volume variation curves during radiotherapy for non-small cell lung cancer. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage (MV) computed tomography (CT). Statistical distributions of cell surviving fractions S{sup 2} and cell clearance half-lives of lethally damaged cells T1/2 have been reconstructed in eachmore » patient group by using a version of the two-level cell population tumor response model and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Non-small cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S{sub 2} for non-small cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sup 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Comparison of the reconstructed cell surviving fractions with patient survival data shows that the patient survival time decreases as the cell surviving fraction increases. Conclusion: The data obtained in this work suggests that the cell surviving fractions S{sub 2} can be reconstructed from the tumor volume variation curves measured during radiotherapy with conventional fractionation. The proposed method can be used for treatment evaluation and adaptation.« less

  15. Tacrolimus and Mycophenolate Mofetil in Preventing Graft-Versus-Host Disease in Patients Who Have Undergone Total-Body Irradiation With or Without Fludarabine Phosphate Followed by Donor Peripheral Blood Stem Cell Transplant for Hematologic Cancer

    ClinicalTrials.gov

    2017-12-05

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Polycythemia Vera; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Prolymphocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Childhood Small Noncleaved Cell Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage I Small Lymphocytic Lymphoma; Stage IA Mycosis Fungoides/Sezary Syndrome; Stage IB Mycosis Fungoides/Sezary Syndrome; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Childhood Small Noncleaved Cell Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage IIA Mycosis Fungoides/Sezary Syndrome; Stage IIB Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Childhood Small Noncleaved Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Small Lymphocytic Lymphoma; Stage IIIA Mycosis Fungoides/Sezary Syndrome; Stage IIIB Mycosis Fungoides/Sezary Syndrome; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Childhood Small Noncleaved Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Stage IVA Mycosis Fungoides/Sezary Syndrome; Stage IVB Mycosis Fungoides/Sezary Syndrome; Testicular Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies; Waldenström Macroglobulinemia

  16. Evaluation of a low density DNA microarray for small B-cell non-Hodgkin lymphoma differential diagnosis.

    PubMed

    Gillet, Jean-Pierre; Molina, Thierry Jo; Jamart, Jacques; Gaulard, Philippe; Leroy, Karen; Briere, Josette; Theate, Ivan; Thieblemont, Catherine; Bosly, Andre; Herin, Michel; Hamels, Jacques; Remacle, Jose

    2009-03-01

    Lymphomas are classified according to the World Health Organisation (WHO) classification which defines subtypes on the basis of clinical, morphological, immunophenotypic, molecular and cytogenetic criteria. Differential diagnosis of the subtypes is sometimes difficult, especially for small B-cell lymphoma (SBCL). Standardisation of molecular genetic assays using multiple gene expression analysis by microarrays could be a useful complement to the current diagnosis. The aim of the present study was to develop a low density DNA microarray for the analysis of 107 genes associated with B-cell non-Hodgkin lymphoma and to evaluate its performance in the diagnosis of SBCL. A predictive tool based on Fisher discriminant analysis using a training set of 40 patients including four different subtypes (follicular lymphoma n = 15, mantle cell lymphoma n = 7, B-cell chronic lymphocytic leukemia n = 6 and splenic marginal zone lymphoma n = 12) was designed. A short additional preliminary analysis to gauge the accuracy of this signature was then performed on an external set of nine patients. Using this model, eight of nine of those samples were classified successfully. This pilot study demonstrates that such a microarray tool may be a promising diagnostic approach for small B-cell non-Hodgkin lymphoma.

  17. Biological Evaluation of 99mTc-HYNIC-EDDA/tricine-(Ser)-D4 Peptide for Tumor Targeting.

    PubMed

    Kazemi, Ziba; Zahmatkesh, Mona Haddad; Abedi, Seyed Mohammad; Hosseinimehr, Seyed Jalal

    2017-08-24

    D4 small peptide (Leu-Ala-Arg-Leu-Leu-Thr) was selected as an appropriate agent for specific targeting of epidermal growth factor receptor (EGFR). The aim of study was to investigate the 99mTc-labeled D4 peptide for non-small cell lung tumor targeting. HYNIC-(Ser)3-D4 peptide was labeled with 99mTc using mixture of tricine and ethylenediamine diacetic acid (EDDA) as co-ligands. The in vitro cellular uptake of radiolabeled peptide was evaluated by blocking test on human non-small cell lung cancer (A-549) cell line and its biodistribution was evaluated in A-549 xenografted nude mice. This conjugated peptide was labeled with 99mTc in high radiochemical purity and it was highly stable in buffer and serum. The un-blocked to blocked cellular radioactivity ratio was 4- fold that showed a specific binding of this radiolabeled peptide on A-549 cell. Animal biodistribution in A-549 xenografted nude mice showed rapid clearance from blood and other non-target organs. Tumor uptake values as %ID/g (percentage of injection dose per gram of tissue) were 2.47% and 1.30% at 1 and 4 h after injection. This study showed the 99mTc-EDDA/tricine-HYNIC-(Ser)3-D4 peptide had tumor targeting on the non-small cell lung tumor. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. A Novel Inhibitor Of Topoisomerase I is Selectively Toxic For A Subset of Non-Small Cell Lung Cancer Cell Lines | Office of Cancer Genomics

    Cancer.gov

    SW044248, identified through a screen for chemicals that are selectively toxic for NSCLC cell lines, was found to rapidly inhibit macromolecular synthesis in sensitive, but not in insensitive cells. SW044248 killed approximately 15% of a panel of 74 NSCLC cell lines and was non-toxic to immortalized human bronchial cell lines.

  19. Obatoclax Mesylate, Vincristine Sulfate, Doxorubicin Hydrochloride, and Dexrazoxane Hydrochloride in Treating Young Patients With Relapsed or Refractory Solid Tumors, Lymphoma, or Leukemia

    ClinicalTrials.gov

    2014-04-30

    Acute Leukemias of Ambiguous Lineage; Acute Undifferentiated Leukemia; Angioimmunoblastic T-cell Lymphoma; Blastic Phase Chronic Myelogenous Leukemia; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Small Intestine Lymphoma; Unspecified Childhood Solid Tumor, Protocol Specific

  20. 6-Shogaol, an active constituent of dietary ginger, induces autophagy by inhibiting the AKT/mTOR pathway in human non-small cell lung cancer A549 cells.

    PubMed

    Hung, Jen-Yu; Hsu, Ya-Ling; Li, Chien-Te; Ko, Ying-Chin; Ni, Wen-Chiu; Huang, Ming-Shyan; Kuo, Po-Lin

    2009-10-28

    This study is the first study to investigate the anticancer effect of 6-shogaol in human non-small cell lung cancer A549 cells. 6-Shogaol inhibited cell proliferation by inducing autophagic cell death, but not, predominantly, apoptosis. Pretreatment of cells with 3-methyladenine (3-MA), an autophagy inhibitor, suppressed 6-shogaol mediated antiproliferation activity, suggesting that induction of autophagy by 6-shogaol is conducive to cell death. We also found that 6-shogaol inhibited survival signaling through the AKT/mTOR signaling pathway by blocking the activation of AKT and downstream targets, including the mammalian target of rapamycin (mTOR), forkhead transcription factors (FKHR) and glycogen synthase kinase-3beta (GSK-3beta). Phosphorylation of both of mTOR's downstream targets, p70 ribosomal protein S6 kinase (p70S6 kinase) and 4E-BP1, was also diminished. Overexpression of AKT by AKT cDNA transfection decreased 6-shogaol mediated autophagic cell death, supporting inhibition of AKT beneficial to autophagy. Moreover, reduction of AKT expression by siRNA potentiated 6-shogaol's effect, also supporting inhibition of AKT beneficial to autophagy. Taken together, these findings suggest that 6-shogaol may be a promising chemopreventive agent against human non-small cell lung cancer.

  1. Infection Prophylaxis and Management in Treating Cytomegalovirus (CMV) Infection in Patients With Hematologic Malignancies Previously Treated With Donor Stem Cell Transplant

    ClinicalTrials.gov

    2015-06-03

    Hematopoietic/Lymphoid Cancer; Accelerated Phase Chronic Myelogenous Leukemia; Acute Undifferentiated Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Aplastic Anemia; Atypical Chronic Myeloid Leukemia, BCR-ABL Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Cytomegalovirus Infection; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Extramedullary Plasmacytoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Isolated Plasmacytoma of Bone; Mast Cell Leukemia; Meningeal Chronic Myelogenous Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Polycythemia Vera; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Primary Systemic Amyloidosis; Progressive Hairy Cell Leukemia, Initial Treatment; Prolymphocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Secondary Myelofibrosis; Splenic Marginal Zone Lymphoma; Stage 0 Chronic Lymphocytic Leukemia; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage I Mycosis Fungoides/Sezary Syndrome; Stage I Small Lymphocytic Lymphoma; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage II Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; T-cell Large Granular Lymphocyte Leukemia; Waldenstrom Macroglobulinemia

  2. Enrichment and characterization of cancer stem cells from a human non-small cell lung cancer cell line.

    PubMed

    Zhao, Changhong; Setrerrahmane, Sarra; Xu, Hanmei

    2015-10-01

    Tumor cells from the same origin comprise different cell populations. Among them, cancer stem cells (CSCs) have higher tumorigenicity. It is necessary to enrich CSCs to determine an effective way to suppress and eliminate them. In the present study, using the non-adhesive culture system, tumor spheres were successfully generated from human A549 non-small cell lung cancer (NSCLC) cell line within 2 weeks. Compared to A549 adherent cells, sphere cells had a higher self-renewal ability and increased resistance to cytotoxic drugs. Sphere cells were more invasive and expressed stem cell markers including octamer‑binding transcription factor 4 (Oct4) and sex-determining region Y-box 2 (Sox2) at high levels. CD133, a disputed marker of lung CSCs, was also upregulated. Tumor sphere cells showed higher tumorigenic ability in vivo, indicating that more CSCs were enriched in the sphere cells. More blood vessels were formed in the tumor generated by sphere cells suggesting the interaction between CSCs and blood vessel. A reliable model of enriching CSCs from the human A549 NSCLC cell line was established that was simple and cost-effective compared to other methods.

  3. Antitumor activity of EGFR-specific CAR T cells against non-small-cell lung cancer cells in vitro and in mice.

    PubMed

    Li, He; Huang, Yao; Jiang, Du-Qing; Cui, Lian-Zhen; He, Zhou; Wang, Chao; Zhang, Zhi-Wei; Zhu, Hai-Li; Ding, Yong-Mei; Li, Lin-Fang; Li, Qiang; Jin, Hua-Jun; Qian, Qi-Jun

    2018-02-07

    Effective control of non-small-cell lung cancer (NSCLC) remains clinically challenging, especially during advanced stages of the disease. This study developed an adoptive T-cell treatment through expression of a chimeric antigen receptor (CAR) to target human epidermal growth factor receptor (EGFR) in NSCLC. We optimized the non-viral piggyBac transposon system to engineer human T cells for the expression of EGFR-CAR, consisting of EGFR scFv, transmembrane domain, and intracellular 4-1BB-CD3ζ signaling domains. The modified CAR T cells exhibited expansion capability and anticancer efficacy in a time- and antigen-dependent manner in vitro as well as regression of EGFR-positive human lung cancer xenografts in vivo. EGFR-CAR T therapy is a promising strategy to improve the efficacy and potency of the adoptive immunotherapy in NSCLC. Moreover, EGFR-CAR T therapy could become a clinical application for NSCLC patients in the future.

  4. Combined treatment of curcumin and small molecule inhibitors suppresses proliferation of A549 and H1299 human non-small-cell lung cancer cells.

    PubMed

    Lin, Hui-Ping; Kuo, Li-Kuo; Chuu, Chih-Pin

    2012-01-01

    Curcumin (diferuloylmethane) is a phenolic compound present in turmeric and is ingested daily in many parts of the world. Curcumin has been reported to cause inhibition on proliferation and induction of apoptosis in many human cancer cell lines, including non-small cell lung cancer cells (NSCLC). However, the clinical application of curcumin is restricted by its low bioavailability. In this report, it was observed that combined treatment of a low dosage of curcumin (5-10 µM) with a low concentration (0.1-2.5 µM) of small molecule inhibitors, including AG1478, AG1024, PD173074, LY294002 and caffeic acid phenethyl ester (CAPE) increased the growth inhibition in two human NSCLC cell lines: A549 and H1299 cells. The observation suggested that combined treatment of a low dosage of curcumin with inhibitors against epidermal growth factor receptor (EGFR), insulin-like growth factor 1 (IGF-1R), fibroblast growth factors receptor (FGFR), phosphatidylinositol 3-kinases (PI3K) or NF-κB signaling pathway may be a potential adjuvant therapy beneficial to NSCLC patients. Copyright © 2011 John Wiley & Sons, Ltd.

  5. Prevalence and natural history of ALK positive non-small-cell lung cancer and the clinical impact of targeted therapy with ALK inhibitors

    PubMed Central

    Chia, Puey Ling; Mitchell, Paul; Dobrovic, Alexander; John, Thomas

    2014-01-01

    Improved understanding of molecular drivers of carcinogenesis has led to significant progress in the management of lung cancer. Patients with non-small-cell lung cancer (NSCLC) with anaplastic lymphoma kinase (ALK) gene rearrangements constitute about 4%–5% of all NSCLC patients. ALK+ NSCLC cells respond well to small molecule ALK inhibitors such as crizotinib; however, resistance invariably develops after several months of treatment. There are now several newer ALK inhibitors, with the next generation of agents targeting resistance mutations. In this review, we will discuss the prevalence and clinical characteristics of ALK+ lung cancer, current treatment options, and future directions in the management of this subset of NSCLC patients. PMID:25429239

  6. Antitumor effect of the integrin α4 signaling inhibitor JK273 in non-small cell lung cancer NCI-H460 cells.

    PubMed

    Lu, Thien Nhan; Ganganna, Bogonda; Pham, Thuy Trang; Vo, Anh Van; Lu, Thien Phuc; Nguyen, Huong-Giang Thi; Nguyen, My-Nuong Thi; Huynh, Phuong Nguyen; Truong, Ngoc Tuyen; Lee, Jongkook

    2017-09-16

    Lung cancer accounts for the highest death rate among cancers worldwide, with most patients being diagnosed with non-small cell lung cancer (NSCLC), urging more effective therapies. We report that JK273, a pyrrolo[2,3-d]pyrimidine analog, which inhibits α4 integrin signaling, showed a selective cytotoxic effect against HCI-H460 NSCLC cells, with an IC 50 of 0.98 ± 0.15 μM, but showed less sensitivity to fibroblasts with a selectivity index (SI) greater than 30. This effect was attributed to cell cycle arrest at S phase by JK273 treatment, resulting in the apoptosis of NCI-H460 cells, further confirmed by exposing phosphatidylserine and morphological changes. Taken together with the previous study of JK273 inhibiting cell migration, we propose that JK273 could serve as an antitumor compound to specifically target cancer cells but not non-cancerous cells by triggering programmed cell death, in addition to anti-metastatic effects in cancer therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. [Mechanism of Chlorogenic Acid in Apoptotic Regulation through Notch1 
Pathway in Non-small Cell Lung Carcinoma in Animal Level].

    PubMed

    Li, Wei; Liu, Xu; Zhang, Guoqian; Zhang, Linlin

    2017-08-20

    It has been proven that chlorogenic acids can produce anticancer effects by regulating cell cycle, inducing apoptosis, inhibiting cell growth, Notch signaling pathways are closely related to many human tumors. The aim of this study is to study the mechanism of chlorogenic acid on apoptosis of non-small lung cancer through Notch1 pathway in animal level, and hope to provide theory basis on clinical treatment and research aimed at targeting Notch1 signaling in non-small cell carcinoma (NSCLC). MTT assay was used to evaluate the A549 cell proliferation under the treatment of chlorogenic acid. The effect of chlorogenic acid on apoptotic and cell cycle were detected by flow cytometry. The animal model of A549 cell transplanted in nude was established, tumer size and weight were detected. The mRNA level of Notch1 signal pathway related facter were detected by RT-PCR; the expression of Notch1 signal pathway related facter in tumor tissue was detected by western blot. Chlorogenic acid inhibited the A549 cell proliferation. incresed cell apoptotic and cell percentagein G2/M (P<0.05), and in a dose-dependent manner. In animal model, tumer size and weight were lower than control group, the difference was statistically significant (P<0.05). The relative expression of mRNA of Notch1, VEGF, Delta4, HES1 and HEY1 were decreaced (P<0.05) in tumor tissue which treated with chlorogenic. The expression of Notch1 were decreaced, PTEN, p-PTEN, p-AKT were increced significantly in tumor tissue which treated with chlorogenic (P<0.05). Chlorogenic acid can regulate theapoptosis of non-small lung cancer through Notch pathway in animal level, which may be associated with the down-regulating the expression of VEGF and Delta4. Notch pathway may cross talk with PI3K/AKT pathway through PTEN in NSCLC.

  8. Epidermal growth factor receptor mutations in 510 Finnish non--small-cell lung cancer patients.

    PubMed

    Mäki-Nevala, Satu; Rönty, Mikko; Morel, Mike; Gomez, Maria; Dawson, Zoe; Sarhadi, Virinder Kaur; Telaranta-Keerie, Aino; Knuuttila, Aija; Knuutila, Sakari

    2014-06-01

    Among the driver gene mutations in non-small-cell lung cancer, mutations in epidermal growth factor receptor (EGFR) are the most important because of their predictive role in selecting patients eligible for targeted therapy. Our aim was to study EGFR mutations in a Finnish non-small-cell lung cancer cohort of 528 patients. Mutation testing was conducted on DNA extracted from paraffin-embedded, formalin-fixed tumor material using the following real-time polymerase chain reaction-based kits: Therascreen EGFR PCR Kit and cobas EGFR Mutation Test. EGFR mutation frequency was 11.4% and all positive cases were adenocarcinomas, of which a majority had an acinar predominant pattern. Mutations were seen significantly more often in females and never-smokers than in males and smokers. The most frequent mutations were L858R in exon 21 and deletions in exon 19. Overall survival of the patients, not treated with EGFR inhibitor, did not differ between EGFR mutation-positive and EGFR mutation-negative patients. EGFR mutation profile in this Finnish non-small-cell lung cancer cohort resembles in many respect with that of other Western European cohorts, even though the overall frequency of mutations is slightly higher. We show the occurrence of EGFR mutations in patients with occupational asbestos exposure and also in those diagnosed with chronic obstructive pulmonary disease who have not been often investigated before.

  9. Alternating sequential chemotherapy with high-dose ifosfamide and doxorubicin/cyclophosphamide for adult non-small round cell soft tissue sarcomas.

    PubMed

    Kawai, Akira; Umeda, Toru; Wada, Takuro; Ihara, Koichiro; Isu, Kazuo; Abe, Satoshi; Ishii, Takeshi; Sugiura, Hideshi; Araki, Nobuhito; Ozaki, Toshifumi; Yabe, Hiroo; Hasegawa, Tadashi; Tsugane, Shoichiro; Beppu, Yasuo

    2005-05-01

    Doxorubicin and ifosfamide are the two most active agents used to treat soft tissue sarcomas. However, because of their overlapping side effects, concurrent administration to achieve optimal doses of each agent is difficult. We therefore conducted a Phase II trial to investigate the efficacy and feasibility of a novel alternating sequential chemotherapy regimen consisting of high dose ifosfamide and doxorubicin/cyclophosphamide in advanced adult non-small round cell soft tissue sarcomas. Adult patients with non-small round cell soft tissue sarcomas were enrolled. The treatment consisted of four sequential courses of chemotherapy that was planned for every 3 weeks. Cycles 1 and 3 consisted of ifosfamide (14 g/m(2)), and cycles 2 and 4 consisted of doxorubicin (60 mg/m(2)) and cyclophosphamide (1200 mg/m(2)). Forty-two patients (median age 47 years) were enrolled. Of the 36 assessable patients, 1 complete response and 16 partial responses were observed, for a response rate of 47.2%. Responses were observed in 57% of patients who had received no previous chemotherapy and 13% of those who had previously undergone chemotherapy. Grade 3-4 neutropenia was observed during 70% of all cycles. Sequential administration of high-dose ifosfamide and doxorubicin/cyclophosphamide has promising activity with manageable side effects in patients with advanced adult non-small round cell soft tissue sarcomas.

  10. Lung Cancer—Patient Version

    Cancer.gov

    The two main types of lung cancer are non-small cell lung cancer and small cell lung cancer. Smoking causes most lung cancers, but nonsmokers can also develop lung cancer. Start here to find information on lung cancer treatment, causes and prevention, screening, research, and statistics on lung cancer.

  11. Serum levels of the angiogenic factor pleiotrophin in relation to disease stage in lung cancer patients

    PubMed Central

    Jäger, R; List, B; Knabbe, C; Souttou, B; Raulais, D; Zeiler, T; Wellstein, A; Aigner, A; Neubauer, A; Zugmaier, G

    2002-01-01

    Pleiotrophin is a heparin-binding growth factor involved in the differentiation and proliferation of neuronal tissue during embryogenesis, and also secreted by melanoma and breast carcinoma cells. Pleiotrophin exhibits mitogenic and angiogenic properties and has been shown to influence the vascular supply, expansion and metastasis of tumour cells. Our aim was to study the serum and plasma concentrations of pleiotrophin and the classical angiogenic growth factor vascular endothelial growth factor. Using a specific ELISA-test we studied patients with small cell lung cancer (n=63), and patients with non-small cell lung cancer (n=22) in comparison to healthy control subjects (n=41). In most of the lung cancer patients (81%), we found serum levels of pleiotrophin above those of control subjects (P<0.001). Of the 63 small cell lung cancer patients in the study pleiotrophin serum levels were elevated in 55 cases (87%) and in 14 cases (63%) of the 22 non-small cell lung cancer patients. Pleiotrophin mean serum concentrations were 10.8-fold higher in the tumour patient group as compared to the control group (P<0.001). Furthermore, pleiotrophin serum levels correlated positively with the stage of disease and inversely with the response to therapy. Plasma vascular endothelial growth factor concentrations were elevated in only in 28.6% of small cell lung cancer and 45.5% of non-small cell lung cancer patients by an average of 2.3-fold. Quite strikingly, there was no apparent correlation between the plasma vascular endothelial growth factor concentration and the stage of disease. Our study suggests that pleiotrophin may be an early indicator of lung cancer and might be of use in monitoring the efficacy of therapy, which needs to be confirmed by larger studies. British Journal of Cancer (2002) 86, 858–863. DOI: 10.1038/sj/bjc/6600202 www.bjcancer.com © 2002 Cancer Research UK PMID:11953815

  12. Bryostatin 1 Plus Vincristine in Treating Patients With Progressive or Relapsed Non-Hodgkin's Lymphoma After Bone Marrow or Stem Cell Transplantation

    ClinicalTrials.gov

    2013-01-09

    Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Splenic Marginal Zone Lymphoma

  13. Effects of icotinib, a novel epidermal growth factor receptor tyrosine kinase inhibitor, in EGFR-mutated non-small cell lung cancer.

    PubMed

    Yang, Guangdie; Yao, Yinan; Zhou, Jianya; Zhao, Qiong

    2012-06-01

    Epidermal growth factor receptor (EGFR) is one of the most promising targets for non-small cell lung cancer (NSCLC). Our study demonstrated the antitumor effects of icotinib hydrochloride, a highly selective epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI), in two EGFR-mutated lung cancer cell lines compared to A549, a cell line without EGFR mutations. We incubated PC-9 and HCC827 human lung cancer cell lines both with (E746-A750) mutations with various concentrations of icotinib and gefitinib for 48 h. Cell proliferation and migration were determined using a real-time cell invasion and migration assay and cytotoxicity assay. Apoptosis was assessed by measuring Annexin V staining using flow cytometry. The antitumor effects of icotinib compared to gefitinib were similar and were most effective in reducing the proliferation of EGFR-mutated cells compared to non-mutated controls. Our results suggest the possibility of icotinib as a new therapeutic agent of EGFR-mutated cancer cells, which has the potential to be used in the first-line treatment of EGFR-mutated NSCLC.

  14. Why are enteric ganglia so small? Role of differential adhesion of enteric neurons and enteric neural crest cells.

    PubMed Central

    Rollo, Benjamin N.; Zhang, Dongcheng; Simkin, Johanna E.; Menheniott, Trevelyan R.; Newgreen, Donald F.

    2015-01-01

    The avian enteric nervous system (ENS) consists of a vast number of unusually small ganglia compared to other peripheral ganglia. Each ENS ganglion at mid-gestation has a core of neurons and a shell of mesenchymal precursor/glia-like enteric neural crest (ENC) cells. To study ENS cell ganglionation we isolated midgut ENS cells by HNK-1 fluorescence-activated cell sorting (FACS) from E5 and E8 quail embryos, and from E9 chick embryos. We performed cell-cell aggregation assays which revealed a developmentally regulated functional increase in ENS cell adhesive function, requiring both Ca 2+ -dependent and independent adhesion. This was consistent with N-cadherin and NCAM labelling. Neurons sorted to the core of aggregates, surrounded by outer ENC cells, showing that neurons had higher adhesion than ENC cells. The outer surface of aggregates became relatively non-adhesive, correlating with low levels of NCAM and N-cadherin on this surface of the outer non-neuronal ENC cells. Aggregation assays showed that ENS cells FACS selected for NCAM-high and enriched for enteric neurons formed larger and more coherent aggregates than unsorted ENS cells. In contrast, ENS cells of the NCAM-low FACS fraction formed small, disorganised aggregates.  This suggests a novel mechanism for control of ENS ganglion morphogenesis where i) differential adhesion of ENS neurons and ENC cells controls the core/shell ganglionic structure and ii) the ratio of neurons to ENC cells dictates the equilibrium ganglion size by generation of an outer non-adhesive surface. PMID:26064478

  15. Erlotinib Hydrochloride and Cetuximab in Treating Patients With Advanced Gastrointestinal Cancer, Head and Neck Cancer, Non-Small Cell Lung Cancer, or Colorectal Cancer

    ClinicalTrials.gov

    2015-09-28

    Adenocarcinoma of the Colon; Adenocarcinoma of the Rectum; Advanced Adult Primary Liver Cancer; Carcinoma of the Appendix; Gastrointestinal Stromal Tumor; Metastatic Gastrointestinal Carcinoid Tumor; Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Adult Primary Liver Cancer; Recurrent Anal Cancer; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Colon Cancer; Recurrent Esophageal Cancer; Recurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Non-small Cell Lung Cancer; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Salivary Gland Cancer; Recurrent Small Intestine Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Small Intestine Adenocarcinoma; Small Intestine Leiomyosarcoma; Small Intestine Lymphoma; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Anal Cancer; Stage IV Basal Cell Carcinoma of the Lip; Stage IV Colon Cancer; Stage IV Esophageal Cancer; Stage IV Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage IV Gastric Cancer; Stage IV Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Lymphoepithelioma of the Oropharynx; Stage IV Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage IV Mucoepidermoid Carcinoma of the Oral Cavity; Stage IV Non-small Cell Lung Cancer; Stage IV Pancreatic Cancer; Stage IV Rectal Cancer; Stage IV Salivary Gland Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IV Verrucous Carcinoma of the Larynx; Stage IV Verrucous Carcinoma of the Oral Cavity; Tongue Cancer; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer

  16. Heterogeneity of porcine alveolar macrophages in experimental pneumonia.

    PubMed

    Berndt, A; Müller, G

    1997-07-01

    The aim of the study was the morphological and the phenotypic characterization of the porcine non-lymphocytic bronchoalveolar lavage (BAL) cell population of unaffected- and intrabronchial with Pasteurella multocida- (P.m.) infected swine using flow cytometry. Three non-lymphocytic cell populations of the porcine bronchoalveolar lavage could be differentiated: (1) large, high autofluorescent cells, (LHC); (2) small, high autofluorescent cells, (SHC); (3) small, low autofluorescent cells, (SLC). In comparison with the control animals, the percentage of the LHC and SHC within the whole non-lymphocytic cell population was decreased, whereas the SLC was significantly enhanced after infection. In order to investigate the phenotype of these cell populations, monoclonal antibodies against porcine antigens (SWC1, SWC3a, MHC class II, 2G6 (against macrophages)) were used. The results showed that the cells of the SLC seem to belong to the granulocytes, whereas the LHC and the SHC are lung macrophages. After the infection of the animals the percentage of the SWC1 positive cells of LHC and SHC were significantly increased, indicating an entrance of more immature macrophages. The percentage of the MHC class II antibody binding cells of all three non-lymphocytic populations was-decreased after infection, indicating a restricted MHC class II dependent antigen recognition in P.m. pneumonia.

  17. Effects of icotinib on advanced non-small cell lung cancer with different EGFR phenotypes.

    PubMed

    Pan, Huiyun; Liu, Rong; Li, Shengjie; Fang, Hui; Wang, Ziwei; Huang, Sheng; Zhou, Jianying

    2014-09-01

    Icotinib is the first oral epidermal growth factor receptor (EGFR) tyrosine kinase receptor inhibitor, which has been proven to exert significant inhibitory effects on non-small cell lung cancer in vitro. Clinical evidence has showed that the efficacy of Icotinib on retreating advanced non-small cell lung cancer is comparable to Gefitinib. However, different phenotypes of EGFR can affect the therapeutic outcomes of EGFR tyrosine kinase receptor inhibitor. Therefore, our study focused on efficacy and safety of Icotinib in patients with advanced non-small cell lung cancer of different EGPR phenotypes. Clinical data of patients with advanced non-small cell lung cancer who received Icotinib treatment from August, 2011 to May, 2013 were retrospectively analyzed. Kaplan-Meier analysis was used for survival analysis and comparison. 18 wild-type EGFR and 51 mutant type were found in a total of 69 patients. Objective response rate of patients with mutant type EGFR was 54.9 % and disease control rate was 86.3 %. Objective response rate of wild-type patients was 11.1 % (P = 0.0013 vs mutant type), disease control rate was 50.0 % (P = 0.0017). Median progression-free survival (PFS) of mutant type and wild-type patients were 9.7 and 2.6 months, respectively (P < 0.001). Median PFS of exon 19 mutated mutant patients was 11.3 months, mean PFS of exon 21 L858R mutated mutant patients was 8.7 months (P = 0.3145). Median overall survival (OS) of EGFR mutated patients had not reached. OS time of 13 wild-type patients was 12.9 months (P < 0.001). The common adverse reactions of Icotinib included rash, diarrhea, itching skin with occurrence rates of 24.6 % (17/69), 13.0 % (9/69), and 11.6 % (8/69), respectively. Most adverse reactions were grade I-II. Icotinib has great efficacy in EGFR mutated patients, making it an optimal regimen to treat EGFR mutated patients. Furthermore, most of adverse reactions associated with Icotinib treatment were tolerable.

  18. Obatoclax and Bortezomib in Treating Patients With Aggressive Relapsed or Recurrent Non-Hodgkin Lymphoma

    ClinicalTrials.gov

    2015-12-03

    Adult Non-Hodgkin Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma

  19. CD10/NEP in non-small cell lung carcinomas. Relationship to cellular proliferation.

    PubMed Central

    Ganju, R K; Sunday, M; Tsarwhas, D G; Card, A; Shipp, M A

    1994-01-01

    The cell surface metalloproteinase CD10/neutral endopeptidase 24.11 (NEP) hydrolyzes a variety of peptide substrates and reduces cellular responses to specific peptide hormones. Because CD10/NEP modulates peptide-mediated proliferation of small cell carcinomas of the lung (SCLC) and normal fetal bronchial epithelium, we evaluated the enzyme's expression in non-small cell lung carcinomas (NSCLC). Bronchoalveolar and large cell carcinoma cell lines had low levels of CD10/NEP expression whereas squamous, adenosquamous, and adenocarcinoma cell lines had higher and more variable levels of the cell surface enzyme. Regional variations in CD10/NEP immunostaining in primary NSCLC specimens prompted us to correlate CD10/NEP expression with cell growth. In primary carcinomas of the lung, clonal NSCLC cell lines and SV40-transformed fetal airway epithelium, subsets of cells expressed primarily CD10/NEP or the proliferating cell nuclear antigen (PCNA). Cultured airway epithelial cells had the lowest levels of CD10/NEP expression when the highest percentage of cells were actively dividing; in addition, these cells grew more rapidly when cell surface CD10/NEP was inhibited. NSCLC cell lines had receptors for a variety of mitogenic peptides known to be CD10/NEP substrates, underscoring the functional significance of growth-related variability in CD10/NEP expression. Images PMID:7962523

  20. Do EBV Encoded Small RNAs Interfere with Tumor Suppressor APC in EBV Associated Breast Cancers

    DTIC Science & Technology

    2006-08-01

    acute infectious mononucleosis but ultimately establishes persistent lifetime latent infection. In all latently infected cells EBVexpresses two small non...human initially causes acute infectious mononucleosis and later establishes persistent lifetime latent infection. In all latently EBV-infected cells, only

  1. Robot-assisted Extracranial Stereotactic Radiotherapy of Adrenal Metastases in Oligometastatic Non-small Cell Lung Cancer.

    PubMed

    Celik, Eren; Semrau, Robert; Baues, Christian; Trommer-Nestler, Maike; Baus, Wolfgang; Marnitz, Simone

    2017-09-01

    The aim of this study was to evaluate the efficacy and toxicity of stereotactic body radiation therapy (SBRT) in the treatment of patients with adrenal metastases in oligometastatic non-small-cell lung cancer (NSCLC). Between November 2012 and May 2015, fifteen patients with oligometastatic non-small cell lung cancer and adrenal metastases were treated with the Cyberknife® system. The primary endpoint was local control. The 1-year and 2-year local control rates were 60% and 46.6%, respectively. The differences in local control for patients with metachronous and synchronous metastases reached statistical significance (p=0.00028). Two-year overall survival of 91.2% for patients with metachronous metastases was also more favourable compared to patients with synchronous adrenal metastases with 42.8%. Extracranial stereotactic radiotherapy with the Cyberknife® is a safe and non-invasive technique that extends the therapeutic spectrum in the treatment of patients with adrenal metastases in oligometastatic NSCLC. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  2. Progressive changes in non-coding RNA profile in leucocytes with age

    PubMed Central

    Muñoz-Culla, Maider; Irizar, Haritz; Gorostidi, Ana; Alberro, Ainhoa; Osorio-Querejeta, Iñaki; Ruiz-Martínez, Javier; Olascoaga, Javier; de Munain, Adolfo López; Otaegui, David

    2017-01-01

    It has been observed that immune cell deterioration occurs in the elderly, as well as a chronic low-grade inflammation called inflammaging. These cellular changes must be driven by numerous changes in gene expression and in fact, both protein-coding and non-coding RNA expression alterations have been observed in peripheral blood mononuclear cells from elder people. In the present work we have studied the expression of small non-coding RNA (microRNA and small nucleolar RNA -snoRNA-) from healthy individuals from 24 to 79 years old. We have observed that the expression of 69 non-coding RNAs (56 microRNAs and 13 snoRNAs) changes progressively with chronological age. According to our results, the age range from 47 to 54 is critical given that it is the period when the expression trend (increasing or decreasing) of age-related small non-coding RNAs is more pronounced. Furthermore, age-related miRNAs regulate genes that are involved in immune, cell cycle and cancer-related processes, which had already been associated to human aging. Therefore, human aging could be studied as a result of progressive molecular changes, and different age ranges should be analysed to cover the whole aging process. PMID:28448962

  3. Routine clinical use of circulating tumor cells for diagnosis of mutations and chromosomal rearrangements in non-small cell lung cancer—ready for prime-time?

    PubMed Central

    Pailler, Emma; Faugeroux, Vincent; Oulhen, Marianne; Catelain, Cyril

    2017-01-01

    In non-small cell lung cancer (NSCLC), diagnosis of predictive biomarkers for targeted therapies is currently done in small tumor biopsies. However, tumor biopsies can be invasive, in some cases associated with risk, and tissue adequacy, both in terms of quantity and quality is often insufficient. The development of efficient and non-invasive methods to identify genetic alterations is a key challenge which circulating tumor cells (CTCs) have the potential to be exploited for. CTCs are extremely rare and phenotypically diverse, two characteristics that impose technical challenges and impact the success of robust molecular analysis. Here we introduce the clinical needs in this disease that mainly consist of the diagnosis of epidermal growth factor receptor (EGFR) activating alterations and anaplastic lymphoma kinase (ALK) rearrangement. We present the proof-of-concept studies that explore the detection of these genetic alterations in CTCs from NSCLC patients. Finally, we discuss steps that are still required before CTCs are routinely used for diagnosis of EGFR-mutations and ALK-rearrangements in this disease. PMID:28904888

  4. Routine clinical use of circulating tumor cells for diagnosis of mutations and chromosomal rearrangements in non-small cell lung cancer-ready for prime-time?

    PubMed

    Pailler, Emma; Faugeroux, Vincent; Oulhen, Marianne; Catelain, Cyril; Farace, Françoise

    2017-08-01

    In non-small cell lung cancer (NSCLC), diagnosis of predictive biomarkers for targeted therapies is currently done in small tumor biopsies. However, tumor biopsies can be invasive, in some cases associated with risk, and tissue adequacy, both in terms of quantity and quality is often insufficient. The development of efficient and non-invasive methods to identify genetic alterations is a key challenge which circulating tumor cells (CTCs) have the potential to be exploited for. CTCs are extremely rare and phenotypically diverse, two characteristics that impose technical challenges and impact the success of robust molecular analysis. Here we introduce the clinical needs in this disease that mainly consist of the diagnosis of epidermal growth factor receptor ( EGFR ) activating alterations and anaplastic lymphoma kinase ( ALK ) rearrangement. We present the proof-of-concept studies that explore the detection of these genetic alterations in CTCs from NSCLC patients. Finally, we discuss steps that are still required before CTCs are routinely used for diagnosis of EGFR -mutations and ALK -rearrangements in this disease.

  5. Rituximab, Romidepsin, and Lenalidomide in Treating Patients With Recurrent or Refractory B-cell Non-Hodgkin Lymphoma

    ClinicalTrials.gov

    2016-08-09

    B-cell Adult Acute Lymphoblastic Leukemia; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Testicular Lymphoma; Waldenström Macroglobulinemia

  6. Recent advances in the biology and treatment of brain metastases of non-small cell lung cancer: summary of a multidisciplinary roundtable discussion

    PubMed Central

    Preusser, Matthias; Winkler, Frank; Valiente, Manuel; Manegold, Christian; Moyal, Elizabeth; Widhalm, Georg; Tonn, Jörg-Christian; Zielinski, Christoph

    2018-01-01

    This article is the result of a round table discussion held at the European Lung Cancer Conference (ELCC) in Geneva in May 2017. Its purpose is to explore and discuss the advances in the knowledge about the biology and treatment of brain metastases originating from non-small cell lung cancer. The authors propose a series of recommendations for research and treatment within the discussed context. PMID:29387475

  7. The efficacy of ceritinib in patients with ALK-positive non-small cell lung cancer.

    PubMed

    Kaczmar, John; Mehra, Ranee

    2015-10-01

    Research over the last decade has determined that the gene rearrangement involving the anaplastic lymphoma kinase (ALK) gene is an oncogenic driver in approximately 5% of patients with non-small cell lung carcinoma (NSCLC). This review describes the discovery of the ALK translocation, development of ALK directed therapy, and acquired resistance to ALK directed therapy with a focus on the clinical data and efficacy of the most recently approved ALK inhibitor, ceritinib. © The Author(s), 2015.

  8. LATS2 tumour specific mutations and down-regulation of the gene in non-small cell carcinoma.

    PubMed

    Strazisar, Mojca; Mlakar, Vid; Glavac, Damjan

    2009-06-01

    LATS2 is a new member of the LATS tumour suppressor family. The human LATS2 gene is located at chromosome 13q11-12, a hot spot (67%) for loss of heterozygosity (LOH) in non-small cell lung cancer (NSCLC). We screened 129 non-small cell lung cancer samples and 13 lung cancer cell lines, initially for mutations in the LATS2 gene and subsequently for mutations in P53 and K-RAS genes. Either polymorphisms or mutations were identified in over 50 percent of analysed tumours. A novel missense mutation, S1073R, and a large deletion of 8 amino acids in the PAPA-repeat region were detected in 9 and 2 NSCLC tumours, respectively. Those mutations were not identified in the 13 lung cancer cell lines. Mutations were tumour specific and were absent from adjacent normal tissue and healthy controls. Down-regulation of the LATS2 gene was observed in most NSCLC tumours but was not related to any mutation or polymorphism. Tumours with a LATS2 mutation often also harbour a P53 but not K-RAS gene mutation and were mostly in an advanced stage of development, with regional lymph node involvement.

  9. Beclomethasone Dipropionate in Preventing Acute Graft-Versus-Host Disease in Patients Undergoing a Donor Stem Cell Transplant for Hematologic Cancer

    ClinicalTrials.gov

    2015-03-05

    Hematopoietic/Lymphoid Cancer; Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Extramedullary Plasmacytoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Graft Versus Host Disease; Isolated Plasmacytoma of Bone; Juvenile Myelomonocytic Leukemia; Meningeal Chronic Myelogenous Leukemia; Myelodysplastic/Myeloproliferative Disease, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Myelodysplastic Syndromes; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Childhood Hodgkin Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage I Mycosis Fungoides/Sezary Syndrome; Stage I Small Lymphocytic Lymphoma; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage II Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma

  10. Safety and Tolerability Study of PCI-32765 in B Cell Lymphoma and Chronic Lymphocytic Leukemia

    ClinicalTrials.gov

    2018-04-03

    B-cell Chronic Lymphocytic Leukemia; Small Lymphocytic Lymphoma; Diffuse Well-differentiated Lymphocytic Lymphoma; B Cell Lymphoma; Follicular Lymphoma; Mantle Cell Lymphoma; Non-Hodgkin's Lymphoma; Waldenstrom Macroglobulinemia; Burkitt Lymphoma; B-Cell Diffuse Lymphoma

  11. Donor Atorvastatin Treatment in Preventing Severe Acute GVHD After Nonmyeloablative Peripheral Blood Stem Cell Transplant in Patients With Hematological Malignancies

    ClinicalTrials.gov

    2018-02-08

    Aggressive Non-Hodgkin Lymphoma; Blasts Under 5 Percent of Bone Marrow Nucleated Cells; Chronic Lymphocytic Leukemia; Loss of Chromosome 17p; Myelodysplastic/Myeloproliferative Neoplasm; Non-Hodgkin Lymphoma; Prolymphocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Aggressive Adult Non-Hodgkin Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Chronic Lymphocytic Leukemia; Recurrent Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Hodgkin Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Non-Hodgkin Lymphoma; Recurrent Plasma Cell Myeloma; Recurrent Small Lymphocytic Lymphoma; Waldenstrom Macroglobulinemia

  12. Correlation of cancer stem cell markers and immune cell markers in resected non-small cell lung cancer.

    PubMed

    Huang, Zhaoqin; Yu, Haining; Zhang, Jianbo; Jing, Haiyan; Zhu, Wanqi; Li, Xiaolin; Kong, Lingling; Xing, Ligang; Yu, Jinming; Meng, Xiangjiao

    2017-01-01

    Background: Recent studies confirmed that immunotherapy showed prominent efficacy in non-small cell lung cancer (NSCLC). Cancer stem cells/cancer initiating cells are resistant to anticancer treatment. The purpose of the study was to analyze the correlation of cancer stem cells/cancer initiating cells and tumor-infiltrating immune cells in NSCLC. Methods: CD133, octamer 4 (OCT-4), CD8, CD56, human leukocyte antigen (HLA) class I and programmed death ligand-1 (PD-L1) were assessed in 172 resected NSCLC samples. The staining was analyzed and scored by the pathologist who was blinded to the clinical pathological data of the patients. Results: High CD8+ T cell infiltration was correlated significantly with squamous cell carcinoma histology (p=0.008). High PD-L1 expression (≥10%) was associated with high tumor status (p=0.043). Pearson's correlation test showed that CD56+ cells were negatively correlated with CD133 expression (r=-0.361, p<0.001) and weakly correlated with negative OCT-4 expression (r=-0.180, p=0.018). There was a strong positive correlation between CD8 and HLA class I (r=0.573, p<0.001). In the survival analysis, high CD8+ T cell infiltration is an independent predictor of improved disease-free survival and overall survival. Patients with low CD133 expression and high CD56 expression had a longer overall survival than those with high CD133 expression and/or low CD56 expression (p=0.013). Conclusion: There is a negative correlation between CD56+ cells and cancer stem cell markers. This correlation may confirm the possibility that natural killer cells can target CD133+ cancer stem cells/cancer initiating cells in non-small cell lung cancer.

  13. Genetically Engineered Lymphocyte Therapy After Peripheral Blood Stem Cell Transplant in Treating Patients With High-Risk, Intermediate-Grade, B-cell Non-Hodgkin Lymphoma

    ClinicalTrials.gov

    2018-02-09

    Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma

  14. Cationic lipid-assisted polymeric nanoparticle mediated GATA2 siRNA delivery for synthetic lethal therapy of KRAS mutant non-small-cell lung carcinoma.

    PubMed

    Shen, Song; Mao, Chong-Qiong; Yang, Xian-Zhu; Du, Xiao-Jiao; Liu, Yang; Zhu, Yan-Hua; Wang, Jun

    2014-08-04

    Synthetic lethal interaction provides a conceptual framework for the development of wiser cancer therapeutics. In this study, we exploited a therapeutic strategy based on the interaction between GATA binding protein 2 (GATA2) downregulation and the KRAS mutation status by delivering small interfering RNA targeting GATA2 (siGATA2) with cationic lipid-assisted polymeric nanoparticles for treatment of non-small-cell lung carcinoma (NSCLC) harboring oncogenic KRAS mutations. Nanoparticles carrying siGATA2 (NPsiGATA2) were effectively taken up by NSCLC cells and resulted in targeted gene suppression. NPsiGATA2 selectively inhibited cell proliferation and induced cell apoptosis in KRAS mutant NSCLC cells. However, this intervention was harmless to normal KRAS wild-type NSCLC cells and HL7702 hepatocytes, confirming the advantage of synthetic lethality-based therapy. Moreover, systemic delivery of NPsiGATA2 significantly inhibited tumor growth in the KRAS mutant A549 NSCLC xenograft murine model, suggesting the therapeutic promise of NPsiGATA2 delivery in KRAS mutant NSCLC therapy.

  15. Diagnosis of B-Cell Non-Hodgkin Lymphomas with Small-/Intermediate-Sized Cells in Cytopathology

    PubMed Central

    Schwock, Joerg; Geddie, William R.

    2012-01-01

    Fine needle sampling is a fast, safe, and potentially cost-effective method of obtaining tissue for cytomorphologic assessment aimed at both initial triage and, in some cases, complete diagnosis of patients that present clinically with lymphadenopathy. The cytologic diagnosis of B-cell non-Hodgkin lymphomas composed of small-/intermediate-sized cells, however, has been seen as an area of great difficulty even for experienced observers due to the morphologic overlap between lymphoma and reactive lymphadenopathies as well as between the lymphoma entities themselves. Although ancillary testing has improved diagnostic accuracy, the results from these tests must be interpreted within the morphological and clinical context to avoid misinterpretation. Importantly, the recognition of specific cytologic features is crucial in guiding the appropriate selection of ancillary tests which will either confirm or refute a tentative diagnosis. For these reasons, we here review the cytologic characteristics particular to five common B-cell non-Hodgkin lymphomas which typically cause the most diagnostic confusion based on cytological assessment alone: marginal zone lymphoma, follicular lymphoma, mantle cell lymphoma, chronic lymphocytic leukemia/small lymphocytic lymphoma, and lymphoplasmacytic lymphoma. We summarize the most pertinent cytomorphologic features for each entity as well as for reactive lymphoid hyperplasia, contrast them with each other to facilitate their recognition, and highlight common diagnostic pitfalls. PMID:22693682

  16. Curcumin inhibits interferon-{alpha} induced NF-{kappa}B and COX-2 in human A549 non-small cell lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jeeyun; Im, Young-Hyuck; Jung, Hae Hyun

    2005-08-26

    The A549 cells, non-small cell lung cancer cell line from human, were resistant to interferon (IFN)-{alpha} treatment. The IFN-{alpha}-treated A549 cells showed increase in protein expression levels of NF-{kappa}B and COX-2. IFN-{alpha} induced NF-{kappa}B binding activity within 30 min and this increased binding activity was markedly suppressed with inclusion of curcumin. Curcumin also inhibited IFN-{alpha}-induced COX-2 expression in A549 cells. Within 10 min, IFN-{alpha} rapidly induced the binding activity of a {gamma}-{sup 32}P-labeled consensus GAS oligonucleotide probe, which was profoundly reversed by curcumin. Taken together, IFN-{alpha}-induced activations of NF-{kappa}B and COX-2 were inhibited by the addition of curcumin in A549more » cells.« less

  17. Present and future treatment of advanced non-small cell lung cancer.

    PubMed

    Crinò, Lucio; Cappuzzo, Federico

    2002-06-01

    Platinum-based chemotherapy is considered the standard treatment for advanced non-small cell lung cancer (NSCLC). Several phase II trials using cisplatin in combination with new chemotherapeutic agents, such as gemcitabine, the taxanes, vinorelbine, and irinotecan, showed impressive response rates and suggested an improvement in overall survival. Large phase III trials comparing these second-generation cisplatin regimens indicated a substantial equivalence of new combinations, marginally improving the outcome of patients over the first-generation platinum-based regimens. Phase III trials have not yet shown dramatic advantages for either multiple-drug regimens, with nonoverlapping mechanisms of action and toxicity, or nonplatinum doublets, with efficacy and/or toxicity profiles superior to those of platinum-based chemotherapy. Chemotherapy in advanced non-small cell lung cancer has reached a plateau, and it is clear that new approaches are required. These should include prevention, screening, and early detection, and the use of novel treatments based on our understanding of the biology and molecular biology of this disease. Copyright 2002, Elsevier Science (USA). All rights reserved.

  18. Concomitant EML4-ALK rearrangement and EGFR mutation in non-small cell lung cancer patients: a literature review of 100 cases.

    PubMed

    Lo Russo, Giuseppe; Imbimbo, Martina; Corrao, Giulia; Proto, Claudia; Signorelli, Diego; Vitali, Milena; Ganzinelli, Monica; Botta, Laura; Zilembo, Nicoletta; de Braud, Filippo; Garassino, Marina Chiara

    2017-08-29

    The discovery of EGFR mutations and EML4-ALK gene rearrangements has radically changed the therapeutic scenario for patients with advanced non-small cell lung cancer. ALK and EGFR tyrosine-kinase inhibitors showed better activity and efficacy than standard chemotherapy in the first and second line treatment settings, leading to a clear advantage in overall survival of advanced non-small cell lung cancer patients harboring these genetic alterations. Historically the coexistence of EGFR mutations and EML4-ALK rearrangements in the same tumor has been described as virtually impossible. Nevertheless many recent observations seem to show that it is not true in all cases. In this review we will discuss the available literature data regarding this rare group of patients in order to give some suggestions useful for their clinical management. Furthermore we report here two cases of concomitant presence of both alterations that will help us in the development of discussion.

  19. [Construction of 2-dimensional tumor microvascular architecture phenotype in non-small cell lung cancer].

    PubMed

    Liu, Jin-kang; Wang, Xiao-yi; Xiong, Zeng; Zhou, Hui; Zhou, Jian-hua; Fu, Chun-yan; Li, Bo

    2008-08-01

    To construct a technological platform of 2-dimensional tumor microvascular architecture phenotype (2D-TAMP) expression. Thirty samples of non-small cell lung cancer (NSCLC) were collected after surgery. The corresponding sections of tumor tissue specimens to the slice of CT perfusion imaging were selected. Immunohistochemical staining,Gomori methenamine silver stain, and electron microscope observation were performed to build a technological platform of 2D-TMAP expression by detecting the morphology and the integrity of basement membrane of microvasculature, microvascular density, various microvascular subtype, the degree of the maturity and lumenization of microvasculature, and the characteristics of immunogenetics of microvasculature. The technological platform of 2D-TMAP expression was constructed successfully. There was heterogeneity in 2D-TMAP expression of non-small cell lung cancer. The microvascular of NSCLC had certain characteristics. 2D-TMAP is a key technology that can be used to observe the overall state of micro-environment in tumor growth.

  20. A Case of Metachronous Metastasis to the Breast from Non-Small Cell Lung Carcinoma

    PubMed Central

    Yoon, Min Yong; Song, Chang Seok; Seo, Mi Hae; Kim, Min Jae; Oh, Tae Yun; Jang, Un Ha; Kwag, Hyon Joo; Kim, Hee Sung; Lim, Si Young; Lim, Seong Yong

    2010-01-01

    Breast metastases from an extramammary primary tumor are very rare and the prognosis for such patients is generally poor. We report here on a case of a 42-year-old female with metastasis of non-small cell lung cancer to the breast, and she is now being followed up on an outpatient basis. In 2004, she presented with a solitary pulmonary nodule in the left lung, and this lesion had been noted to have gradually increased in size over time. The final pathological diagnosis was adenocarcinoma, and the diagnosis was made by performing percutaneous needle aspiration and lobectomy of the left upper lobe. Adjuvant chemotherapy and radiotherapy were given. Unfortunately, a nodule in the left breast was noted three years later, and metastatic non-small-cell lung cancer to the breast was diagnosed by excisional biopsy. Making the correct diagnosis to distinguish a primary breast carcinoma from a metastatic one is important, because the therapeutic plan and outcome for these two types of cancer are quite different. PMID:20948923

  1. Clinical Utility of Circulating Tumor Cells in ALK-Positive Non-Small-Cell Lung Cancer.

    PubMed

    Faugeroux, Vincent; Pailler, Emma; Auger, Nathalie; Taylor, Melissa; Farace, Françoise

    2014-01-01

    The advent of rationally targeted therapies such as small-molecule tyrosine kinase inhibitors (TKIs) has considerably transformed the therapeutic management of a subset of patients with non-small-cell lung cancer (NSCLC) harboring defined molecular abnormalities. When such genetic molecular alterations are detected the use of specific TKI has demonstrated better results (overall response rate, progression free survival) compared to systemic therapy. However, the detection of such molecular abnormalities is complicated by the difficulty in obtaining sufficient tumor material, in terms of quantity and quality, from a biopsy. Here, we described how circulating tumor cells (CTCs) can have a clinical utility in anaplastic lymphoma kinase (ALK) positive NSCLC patients to diagnose ALK-EML4 gene rearrangement and to guide therapeutic management of these patients. The ability to detect genetic abnormalities such ALK rearrangement in CTCs shows that these cells could offer new perspectives both for the diagnosis and the monitoring of ALK-positive patients eligible for treatment with ALK inhibitors.

  2. Clinical Utility of Circulating Tumor Cells in ALK-Positive Non-Small-Cell Lung Cancer

    PubMed Central

    Faugeroux, Vincent; Pailler, Emma; Auger, Nathalie; Taylor, Melissa; Farace, Françoise

    2014-01-01

    The advent of rationally targeted therapies such as small-molecule tyrosine kinase inhibitors (TKIs) has considerably transformed the therapeutic management of a subset of patients with non-small-cell lung cancer (NSCLC) harboring defined molecular abnormalities. When such genetic molecular alterations are detected the use of specific TKI has demonstrated better results (overall response rate, progression free survival) compared to systemic therapy. However, the detection of such molecular abnormalities is complicated by the difficulty in obtaining sufficient tumor material, in terms of quantity and quality, from a biopsy. Here, we described how circulating tumor cells (CTCs) can have a clinical utility in anaplastic lymphoma kinase (ALK) positive NSCLC patients to diagnose ALK-EML4 gene rearrangement and to guide therapeutic management of these patients. The ability to detect genetic abnormalities such ALK rearrangement in CTCs shows that these cells could offer new perspectives both for the diagnosis and the monitoring of ALK-positive patients eligible for treatment with ALK inhibitors. PMID:25414829

  3. Bortezomib and Fludarabine With or Without Rituximab in Treating Patients With Relapsed or Refractory Indolent Non-Hodgkin's Lymphoma or Chronic Lymphocytic Leukemia

    ClinicalTrials.gov

    2013-09-27

    Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hematopoietic/Lymphoid Cancer; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Splenic Marginal Zone Lymphoma; Waldenström Macroglobulinemia

  4. [Construction of lentiviral mediated CyPA siRNA and its functions in non-small cell lung cancer].

    PubMed

    FENG, Yan-ming; WU, Yi-ming; TU, Xin-ming; XU, Zheng-shun; WU, Wei-dong

    2010-02-01

    To construct a lentiviral-vector-mediated CyPA small interference RNA (siRNA) and study its function in non-small cell lung cancer. First, four target sequences were selected according to CyPA mRNA sequence, the complementary DNA contained both sense and antisense oligonucleotides were designed, synthesized and cloned into the pGCL-GFP vector, which contained U6 promoter and green fluorescent protein (GFP). The resulting lentiviral vector containing CyPA shRNA was named Lv-shCyPA, and it was confirmed by PCR and sequencing. Next, it was cotransfected by Lipofectamine 2000 along with pHelper1.0 and pHelper 2.0 into 293T cells to package lentivirus particles. At the same time, the packed virus infected non-small cell lung cancer cell (A549), the level of CyPA protein at 5 d after infection was detected by Western Blot to screen the target of CyPA. A549 were infected with Lv-shCyPA and grown as xenografts in severe combined immunodeficient mice. Cell cycle and apoptosis were measured by FCM. It was confirmed by PCR and DNA sequencing that lentiviral-vector-mediated CyPA siRNA (Lv-shCyPA) producing CyPA shRNA was constructed successfully. The titer of concentrated virus were 1 x 10(7) TU/ml. Flow cytometric analysis demonstrated G2-M phase (11.40% +/- 0.68%) was decreased relatively in A549/LvshCyPA compared with control groups (14.52% +/- 1.19%) (P<0.05). The apoptosis rate of A549/Lv-shCyPA (5.01% +/- 0.5%) was higher than control groups (0.35% +/- 0.17%) (P<0.05). Visible tumors were only detectable at 6th day after inoculated by A549/Lv-shCyPA. The xenograft tumors of A549/Lv-shCyPA remarkably delayed tumor growth and remained at a similarly small average size at 38th days after inoculation compared with the control group (P < 0.05). Lentiviral-vector-mediated siRNA technique effectively inhibits the expression of CyPA, induces the NSCLC cell apoptosis, inhibits the tumor growth. Elucidation of the precise role of CypA in these pathways may lead to new targeted therapies for non-small cell lung cancer.

  5. Characterization of CD133+ parenchymal cells in the liver: histology and culture.

    PubMed

    Yoshikawa, Seiichi; Zen, Yoh; Fujii, Takahiko; Sato, Yasunori; Ohta, Tetsuo; Aoyagi, Yutaka; Nakanuma, Yasuni

    2009-10-21

    To reveal the characteristics of CD133(+) cells in the liver. This study examined the histological characteristics of CD133(+) cells in non-neoplastic and neoplastic liver tissues by immunostaining, and also analyzed the biological characteristics of CD133(+) cells derived from human hepatocellular carcinoma (HCC) or cholangiocarcinoma cell lines. Immunostaining revealed constant expression of CD133 in non-neoplastic and neoplastic biliary epithelium, and these cells had the immunophenotype CD133(+)/CK19(+)/HepPar-1(-). A small number of CD133(+)/CK19(-)/HepPar-1(+) cells were also identified in HCC and combined hepatocellular and cholangiocarcinoma. In addition, small ductal structures, resembling the canal of Hering, partly surrounded by hepatocytes were positive for CD133. CD133 expression was observed in three HCC (HuH7, PLC5 and HepG2) and two cholangiocarcinoma cell lines (HuCCT1 and CCKS1). Fluorescence-activated cell sorting (FACS) revealed that CD133(+) and CD133(-) cells derived from HuH7 and HuCCT1 cells similarly produced CD133(+) and CD133(-) cells during subculture. To examine the relationship between CD133(+) cells and the side population (SP) phenotype, FACS was performed using Hoechst 33342 and a monoclonal antibody against CD133. The ratios of CD133(+)/CD133(-) cells were almost identical in the SP and non-SP in HuH7. In addition, four different cellular populations (SP/CD133(+), SP/CD133(-), non-SP/CD133(+), and non-SP/CD133(-)) could similarly produce CD133(+) and CD133(-) cells during subculture. This study revealed that CD133 could be a biliary and progenitor cell marker in vivo. However, CD133 alone is not sufficient to detect tumor-initiating cells in cell lines.

  6. [A Paired Case Controlled Study Comparing the Short-term Outcomes of Da Vinci RATS and VATS Approach for Non-small Cell Lung Cancer].

    PubMed

    Dai, Feng; Xu, Shiguang; Xu, Wei; Ding, Renquan; Liu, Bo; Meng, Hao; Kang, Yunteng; Meng, Xiangrui; Lin, Jie; Wang, Shumin

    2018-03-20

    Da Vinci Surgical System is one of the greatest inventions of the 20th century, which represents the development direction of the precise minimally invasive surgical techniques, the aim of this study was to comparing the short-term outcomes between da Vinci robot-assisted lobectomy and video-assisted thoracic surgery (VATS) lobectomy for non-small cell lung cancer. 45 pairs of non-small cell lung cancer patients underwent pulmonary lobectomy with da Vinci Robotic assisted thoracoscopic (RATS) and VATS approach during the same period from January 2014 to January 2017. The operative time, estimated blood loss (EBL), total number and total groups of dissected lymph nodes, postoperative duration of drainage, the first day volume of drainage, total volume of drainage were compared. No perioperative death and convertion to thoracotomy occured in both groups. There were significant difference between RATS group and VATS group in EBL [(50.30±32.33) mL vs (208.60±132.63) mL], the first day volume of drainage [(275.00±145.42) mL vs (347.60±125.80) mL], the dissected total number [(22.67±9.67) vs (15.51±5.41)] and total team [(6.31±1.43) vs (4.91±1.04)] of lymph node. There were no significant difference in other outcomes. RATS is safe and effective and took better short-outcomes than VATS in non-small cell lung cancer.

  7. Assessment of Erythroid and Granulocytic Hematopoietic Lineages in Patients with Non-Small-Cell Lung Carcinoma.

    PubMed

    Goldberg, V E; Polyakova, T Yu; Popova, N O; Vysotskaya, V V; Simolina, E I; Belevich, Yu V; Tuzikova, T P; Goldberg, A V; Zhdanov, V V; Miroshnichenko, L A; Udut, E V; Simanina, E V; Dygai, A M; Zyuz'kov, G N

    2017-08-01

    The toxic effects of combined cisplatin/docetaxel therapy cycles on erythroid and granulocytic hematopoietic lineages as well as their intercycle recovery were examined in patients with stage III-IV non-small-cell lung carcinoma. Responsiveness of the blood system to this therapy remained at a high level. Combined therapy pronouncedly activated the key elements of the erythroid and granulocytic hematopoietic lineages leading to accumulation of immature and mature myelokaryocytes in the bone marrow, enlargement of the medullary pool of mature neutrophils, and increase in the count of medullary erythroid and granulocytic precursor cells under conditions of their accelerated maturation.

  8. Oncogenic drivers, targeted therapies, and acquired resistance in non-small-cell lung cancer.

    PubMed

    Gower, Arjan; Wang, Yisong; Giaccone, Giuseppe

    2014-07-01

    In the past decade, a shift toward targeted therapies in non-small-cell lung cancer following molecular profiling has dramatically changed the way advanced adenocarcinoma is treated. However, tumor cells inevitably acquire resistance to such therapies, circumventing any sustained clinical benefit. As the genomic classification of lung cancer continues to evolve and as the mechanisms of acquired resistance to targeted therapies become elucidated and more improved target-specific drugs come into sight, the future will see more promising results from the clinic through the development of new therapeutic strategies to overcome, or prevent the development of, resistance for lung cancer patients.

  9. A Safety Study of SGN-2FF for Patients With Advanced Solid Tumors

    ClinicalTrials.gov

    2018-05-31

    Carcinoma, Non-Small-Cell Lung; Carcinoma, Renal Cell; Breast Neoplasms; Urinary Bladder Neoplasm; Carcinoma, Squamous Cell of Head and Neck; Colorectal Neoplasms; Gastric Adenocarcinoma; Gastroesophageal Junction Adenocarcinoma

  10. Epigenetic silencing of MicroRNA-503 regulates FANCA expression in non-small cell lung cancer cell.

    PubMed

    Li, Ning; Zhang, Fangfang; Li, Suyun; Zhou, Suzhen

    2014-02-21

    It is reported that MicroRNA-503 (miR-503) regulates cell apoptosis, and thus modulates the resistance of non-small cell lung cancer cells (NSCLC) to cisplatin. However, the exact role of miR-503 in NSCLC remains unknown. In the present study, the level of miR-503 expression in NSCLC was evaluated using realtime PCR, and the DNA methylation status within miR-503 promoter was analyzed by Combined Bisulfite Restriction Analysis (COBRA) or bisulfite-treated DNA sequencing assays (BSP). We found that the expression of miR-503 was significantly decreased in NSCLC tissues compared to normal tissues. A statistically significant inverse association was found between miR-503 methylation status and expression of the miR-503 in tumor tissues (P<0.001), and expression of miR-503 was restored by the demethylating agent 5-aza-2'-deoxycytidine, suggesting that methylation was associated with the transcriptional silencing. Then, we show that miR-503 targets a homologous DNA region in the 3'-UTR region of the Fanconi anemia complementation group A protein (FANCA) gene and represses its expression at the transcriptional level. Taken together, our results suggest that miR-503 regulates the resistance of non-small cell lung cancer cells to cisplatin at least in part by targeting FANCA. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. The long non-coding RNA LSINCT5 promotes malignancy in non-small cell lung cancer by stabilizing HMGA2.

    PubMed

    Tian, Yuheng; Zhang, Lina; Chen, Shuwen; Ma, Yuan; Liu, Yanyan

    2018-06-08

    Long non-coding RNAs (lncRNAs) can actively participate in tumorigenesis in various cancers. However, the involvement of lncRNA long stress induced non-coding transcripts 5 (LSINCT5) in non-small cell lung cancer (NSCLC) remains largely unknown. Here we showed a novel lncRNA signature in NSCLC through lncRNA profiling. Increased LSINCT5 expression positively correlates with malignant clinicopathological features and poor survival. LSINCT5 can promote migration and viability of various NSCLC cells in vitro and also enhance lung cancer progression in vivo. RNA immunoprecipitation followed by mass spectrometry has identified that LSINCT5 interacts with HMGA2. This physical interaction can increase the stability of HMGA2 by inhibiting proteasome-mediated degradation. Therefore, LSINCT5 may possibly contribute to NSCLC tumorigenesis by stabilizing the oncogenic factor of HMGA2. This novel LSINCT5/HMGA2 axis can modulate lung cancer progression and might be a promising target for pharmacological intervention.

  12. Graft-Versus-Host Disease Prophylaxis in Treating Patients With Hematologic Malignancies Undergoing Unrelated Donor Peripheral Blood Stem Cell Transplant

    ClinicalTrials.gov

    2018-02-13

    Acute Lymphoblastic Leukemia; Acute Myeloid Leukemia; Aggressive Non-Hodgkin Lymphoma; Chronic Lymphocytic Leukemia; Diffuse Large B-Cell Lymphoma; Hematopoietic and Lymphoid Cell Neoplasm; Indolent Non-Hodgkin Lymphoma; Mantle Cell Lymphoma; Myelodysplastic Syndrome; Myeloproliferative Neoplasm; Prolymphocytic Leukemia; Recurrent Chronic Lymphocytic Leukemia; Recurrent Plasma Cell Myeloma; Refractory Chronic Lymphocytic Leukemia; Refractory Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Refractory Hodgkin Lymphoma; Small Lymphocytic Lymphoma; T-Cell Chronic Lymphocytic Leukemia; Waldenstrom Macroglobulinemia

  13. Lenalidomide After Donor Bone Marrow Transplant in Treating Patients With High-Risk Hematologic Cancers

    ClinicalTrials.gov

    2017-09-22

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21); (q22; q22.1); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22.3;q23.3); MLLT3-KMT2A; Adult Acute Promyelocytic Leukemia With PML-RARA; Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-Cell Lymphoma; Alkylating Agent-Related Acute Myeloid Leukemia; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-Cell Lymphoma; Extranodal Marginal Zone Lymphoma of Mucosa-Associated Lymphoid Tissue; Hepatosplenic T-Cell Lymphoma; Intraocular Lymphoma; Lymphomatous Involvement of Non-Cutaneous Extranodal Site; Mature T-Cell and NK-Cell Non-Hodgkin Lymphoma; Nodal Marginal Zone Lymphoma; Post-Transplant Lymphoproliferative Disorder; Primary Cutaneous B-Cell Non-Hodgkin Lymphoma; Prolymphocytic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-Cell Leukemia/Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides and Sezary Syndrome; Recurrent Non-Hodgkin Lymphoma; Recurrent Primary Cutaneous T-Cell Non-Hodgkin Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Richter Syndrome; Small Intestinal Lymphoma; Splenic Marginal Zone Lymphoma; T-Cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenstrom Macroglobulinemia

  14. APS8, a Polymeric Alkylpyridinium Salt Blocks α7 nAChR and Induces Apoptosis in Non-Small Cell Lung Carcinoma

    PubMed Central

    Zovko, Ana; Viktorsson, Kristina; Lewensohn, Rolf; Kološa, Katja; Filipič, Metka; Xing, Hong; Kem, William R.; Paleari, Laura; Turk, Tom

    2013-01-01

    Naturally occurring 3-alkylpyridinium polymers (poly-APS) from the marine sponge Reniera sarai, consisting of monomers containing polar pyridinium and nonpolar alkyl chain moieties, have been demonstrated to exert a wide range of biological activities, including a selective cytotoxicity against non-small cell lung cancer (NSCLC) cells. APS8, an analog of poly-APS with defined alkyl chain length and molecular size, non-competitively inhibits α7 nicotinic acetylcholine receptors (nAChRs) at nanomolar concentrations that are too low to be acetylcholinesterase (AChE) inhibitory or generally cytotoxic. In the present study we show that APS8 inhibits NSCLC tumor cell growth and activates apoptotic pathways. APS8 was not toxic for normal lung fibroblasts. Furthermore, in NSCLC cells, APS8 reduced the adverse anti-apoptotic, proliferative effects of nicotine. Our results suggest that APS8 or similar compounds might be considered as lead compounds to develop antitumor therapeutic agents for at least certain types of lung cancer. PMID:23880932

  15. CT Radiogenomic Characterization of EGFR, K-RAS, and ALK Mutations in Non-Small Cell Lung Cancer.

    PubMed

    Rizzo, Stefania; Petrella, Francesco; Buscarino, Valentina; De Maria, Federica; Raimondi, Sara; Barberis, Massimo; Fumagalli, Caterina; Spitaleri, Gianluca; Rampinelli, Cristiano; De Marinis, Filippo; Spaggiari, Lorenzo; Bellomi, Massimo

    2016-01-01

    To assess the association between CT features and EGFR, ALK, KRAS mutations in non-small cell lung cancer. Patients undergoing chest CT and testing for the above gene mutations were included. Qualitative evaluation of CTs included: lobe; lesion diameter; shape; margins; ground-glass opacity; density; cavitation; air bronchogram; pleural thickening; intratumoral necrosis; nodules in tumour lobe; nodules in non-tumour lobes; pleural retraction; location; calcifications; emphysema; fibrosis; pleural contact; pleural effusion. Statistical analysis was performed to assess association of features with each gene mutation. ROC curves for gene mutations were drawn; the corresponding area under the curve was calculated. P-values <0.05 were considered significant. Of 285 patients, 60/280 (21.43 %) were positive for EGFR mutation; 31/270 (11.48 %) for ALK rearrangement; 64/240 (26.67 %) for KRAS mutation. EGFR mutation was associated with air bronchogram, pleural retraction, females, non-smokers, small lesion size, and absence of fibrosis. ALK rearrangements were associated with age and pleural effusion. KRAS mutation was associated with round shape, nodules in non-tumour lobes, and smoking. This study disclosed associations between CT features and alterations of EGFR (air bronchogram, pleural retraction, small lesion size, absence of fibrosis), ALK (pleural effusion) and KRAS (round lesion shape, nodules in non-tumour lobes). Air bronchogram, pleural retraction, small size relate to EGFR mutation in NSCLC. Pleural effusion and younger age relate to ALK mutation. Round lesion shape, nodules in non-tumour lobes relate to KRAS mutation.

  16. Interleukin-12 and Trastuzumab in Treating Patients With Cancer That Has High Levels of HER2/Neu

    ClinicalTrials.gov

    2013-02-27

    Advanced Adult Primary Liver Cancer; Anaplastic Thyroid Cancer; Bone Metastases; Carcinoma of the Appendix; Distal Urethral Cancer; Fallopian Tube Cancer; Gastrinoma; Glucagonoma; Inflammatory Breast Cancer; Insulinoma; Liver Metastases; Localized Unresectable Adult Primary Liver Cancer; Lung Metastases; Male Breast Cancer; Malignant Pericardial Effusion; Malignant Pleural Effusion; Metastatic Gastrointestinal Carcinoid Tumor; Metastatic Parathyroid Cancer; Metastatic Transitional Cell Cancer of the Renal Pelvis and Ureter; Newly Diagnosed Carcinoma of Unknown Primary; Occult Non-small Cell Lung Cancer; Pancreatic Polypeptide Tumor; Primary Peritoneal Cavity Cancer; Proximal Urethral Cancer; Pulmonary Carcinoid Tumor; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Adrenocortical Carcinoma; Recurrent Adult Primary Liver Cancer; Recurrent Anal Cancer; Recurrent Bladder Cancer; Recurrent Breast Cancer; Recurrent Carcinoma of Unknown Primary; Recurrent Cervical Cancer; Recurrent Colon Cancer; Recurrent Endometrial Carcinoma; Recurrent Esophageal Cancer; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Islet Cell Carcinoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Pancreatic Cancer; Recurrent Parathyroid Cancer; Recurrent Prostate Cancer; Recurrent Rectal Cancer; Recurrent Renal Cell Cancer; Recurrent Salivary Gland Cancer; Recurrent Small Intestine Cancer; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Thyroid Cancer; Recurrent Transitional Cell Cancer of the Renal Pelvis and Ureter; Recurrent Urethral Cancer; Recurrent Vaginal Cancer; Recurrent Vulvar Cancer; Skin Metastases; Small Intestine Adenocarcinoma; Somatostatinoma; Stage III Adenoid Cystic Carcinoma of the Oral Cavity; Stage III Adrenocortical Carcinoma; Stage III Bladder Cancer; Stage III Cervical Cancer; Stage III Colon Cancer; Stage III Endometrial Carcinoma; Stage III Esophageal Cancer; Stage III Follicular Thyroid Cancer; Stage III Gastric Cancer; Stage III Malignant Testicular Germ Cell Tumor; Stage III Mucoepidermoid Carcinoma of the Oral Cavity; Stage III Ovarian Epithelial Cancer; Stage III Pancreatic Cancer; Stage III Papillary Thyroid Cancer; Stage III Prostate Cancer; Stage III Rectal Cancer; Stage III Renal Cell Cancer; Stage III Salivary Gland Cancer; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Vaginal Cancer; Stage III Vulvar Cancer; Stage IIIA Anal Cancer; Stage IIIA Breast Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Anal Cancer; Stage IIIB Breast Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Adrenocortical Carcinoma; Stage IV Anal Cancer; Stage IV Bladder Cancer; Stage IV Breast Cancer; Stage IV Colon Cancer; Stage IV Endometrial Carcinoma; Stage IV Esophageal Cancer; Stage IV Follicular Thyroid Cancer; Stage IV Gastric Cancer; Stage IV Mucoepidermoid Carcinoma of the Oral Cavity; Stage IV Non-small Cell Lung Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Pancreatic Cancer; Stage IV Papillary Thyroid Cancer; Stage IV Prostate Cancer; Stage IV Rectal Cancer; Stage IV Renal Cell Cancer; Stage IV Salivary Gland Cancer; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IVA Cervical Cancer; Stage IVA Vaginal Cancer; Stage IVB Cervical Cancer; Stage IVB Vaginal Cancer; Stage IVB Vulvar Cancer; Thyroid Gland Medullary Carcinoma; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer; Urethral Cancer Associated With Invasive Bladder Cancer; WDHA Syndrome

  17. The potential diagnostic power of circulating tumor cell analysis for non-small-cell lung cancer.

    PubMed

    Ross, Kirsty; Pailler, Emma; Faugeroux, Vincent; Taylor, Melissa; Oulhen, Marianne; Auger, Nathalie; Planchard, David; Soria, Jean-Charles; Lindsay, Colin R; Besse, Benjamin; Vielh, Philippe; Farace, Françoise

    2015-01-01

    In non-small-cell lung cancer (NSCLC), genotyping tumor biopsies for targetable somatic alterations has become routine practice. However, serial biopsies have limitations: they may be technically difficult or impossible and could incur serious risks to patients. Circulating tumor cells (CTCs) offer an alternative source for tumor analysis that is easily accessible and presents the potential to identify predictive biomarkers to tailor therapies on a personalized basis. Examined here is our current knowledge of CTC detection and characterization in NSCLC and their potential role in EGFR-mutant, ALK-rearranged and ROS1-rearranged patients. This is followed by discussion of the ongoing issues such as the question of CTC partnership as diagnostic tools in NSCLC.

  18. 78 FR 40485 - Lung Cancer Patient-Focused Drug Development; Extension of Comment Period

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-05

    ... patients' perspectives for the two main types of lung cancer (small-cell and non-small cell lung cancer) on..., because of lung cancer? (Examples may include sleeping through the night, climbing stairs, household...] Lung Cancer Patient-Focused Drug Development; Extension of Comment Period AGENCY: Food and Drug...

  19. A unique cell-surface protein phenotype distinguishes human small-cell from non-small-cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baylin, S.B.; Gazdar, A.F.; Minna, J.D.

    1982-08-01

    Radioiodination (/sup 125/I) and two-dimensional polyacrylamide gel electrophoresis was used to determine that small-(oat) cell lung carcinoma (SCC)-a tumor with neuroedocrine features-possesses a surface protein pattern distinct from the other types of lung cancer cells (squamous, adeno-, and large-cell undifferentiated carcinoma). Twelve distinguishing proteins, 40 to 70 kilodaltons (kDal), characterized four separate lines of SCC; three of these, designated E (60 kDal; pI = 7.3), S (30 kDal; pI = 6.0), and U 57 kDal; pI = 5.6), may be unique SCC gene products and were identified only in (/sup 35/S)methionine labeling of SCC and not in non-SCC or humanmore » fibroblasts. Two lines of adeno-, one of squamous, and one of undifferentiated large-cell lung carcinoma exhibited similar surface protein patterns to one another. Nine distinguishing proteins (40 to 100 kDal) and at least five large proteins (>100 kDal) were unique to these lines. The surface protein phenotypes for SCC and non-SCC were distinct from those for human lymphoblastoid cells and fibroblasts. However, the neuroendocrine features of SCC were further substantiated because 6 of the 12 distinguishing SCC surface proteins, including E and U, were identified on human neuroblastoma cells. The proteins identified should (i) help define differentiation steps for normal and neoplastic bronchial epithelial cells, (ii) prove useful in better classifying lung cancers, and (iii) be instrumental in tracing formation of neuroendocrine cells.« less

  20. Paclitaxel and the dietary flavonoid fisetin: a synergistic combination that induces mitotic catastrophe and autophagic cell death in A549 non-small cell lung cancer cells.

    PubMed

    Klimaszewska-Wisniewska, Anna; Halas-Wisniewska, Marta; Tadrowski, Tadeusz; Gagat, Maciej; Grzanka, Dariusz; Grzanka, Alina

    2016-01-01

    The use of the dietary polyphenols as chemosensitizing agents to enhance the efficacy of conventional cytostatic drugs has recently gained the attention of scientists and clinicians as a plausible approach for overcoming the limitations of chemotherapy (e.g. drug resistance and cytotoxicity). The aim of this study was to investigate whether a naturally occurring diet-based flavonoid, fisetin, at physiologically attainable concentrations, could act synergistically with clinically achievable doses of paclitaxel to produce growth inhibitory and/or pro-death effects on A549 non-small cell lung cancer cells, and if it does, what mechanisms might be involved. The drug-drug interactions were analyzed based on the combination index method of Chou and Talalay and the data from MTT assays. To provide some insights into the mechanism underlying the synergistic action of fisetin and paclitaxel, selected morphological, biochemical and molecular parameters were examined, including the morphology of cell nuclei and mitotic spindles, the pattern of LC3-II immunostaining, the formation of autophagic vacuoles at the electron and fluorescence microscopic level, the disruption of cell membrane asymmetry/integrity, cell cycle progression and the expression level of LC3-II, Bax, Bcl-2 and caspase-3 mRNA. Here, we reported the first experimental evidence for the existence of synergism between fisetin and paclitaxel in the in vitro model of non-small cell lung cancer. This synergism was, at least partially, ascribed to the induction of mitotic catastrophe. The switch from the cytoprotective autophagy to the autophagic cell death was also implicated in the mechanism of the synergistic action of fisetin and paclitaxel in the A549 cells. In addition, we revealed that the synergism between fisetin and paclitaxel was cell line-specific as well as that fisetin synergizes with arsenic trioxide, but not with mitoxantrone and methotrexate in the A549 cells. Our results provide rationale for further testing of fisetin in the combination with paclitaxel or arsenic trioxide to obtain detailed insights into the mechanism of their synergistic action as well as to evaluate their toxicity towards normal cells in an animal model in vivo. We conclude that this study is potentially interesting for the development of novel chemotherapeutic approach to non-small cell lung cancer.

  1. Computational discovery of pathway-level genetic vulnerabilities in non-small-cell lung cancer

    PubMed Central

    Young, Jonathan H.; Peyton, Michael; Seok Kim, Hyun; McMillan, Elizabeth; Minna, John D.; White, Michael A.; Marcotte, Edward M.

    2016-01-01

    Motivation: Novel approaches are needed for discovery of targeted therapies for non-small-cell lung cancer (NSCLC) that are specific to certain patients. Whole genome RNAi screening of lung cancer cell lines provides an ideal source for determining candidate drug targets. Results: Unsupervised learning algorithms uncovered patterns of differential vulnerability across lung cancer cell lines to loss of functionally related genes. Such genetic vulnerabilities represent candidate targets for therapy and are found to be involved in splicing, translation and protein folding. In particular, many NSCLC cell lines were especially sensitive to the loss of components of the LSm2-8 protein complex or the CCT/TRiC chaperonin. Different vulnerabilities were also found for different cell line subgroups. Furthermore, the predicted vulnerability of a single adenocarcinoma cell line to loss of the Wnt pathway was experimentally validated with screening of small-molecule Wnt inhibitors against an extensive cell line panel. Availability and implementation: The clustering algorithm is implemented in Python and is freely available at https://bitbucket.org/youngjh/nsclc_paper. Contact: marcotte@icmb.utexas.edu or jon.young@utexas.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26755624

  2. Computational discovery of pathway-level genetic vulnerabilities in non-small-cell lung cancer.

    PubMed

    Young, Jonathan H; Peyton, Michael; Seok Kim, Hyun; McMillan, Elizabeth; Minna, John D; White, Michael A; Marcotte, Edward M

    2016-05-01

    Novel approaches are needed for discovery of targeted therapies for non-small-cell lung cancer (NSCLC) that are specific to certain patients. Whole genome RNAi screening of lung cancer cell lines provides an ideal source for determining candidate drug targets. Unsupervised learning algorithms uncovered patterns of differential vulnerability across lung cancer cell lines to loss of functionally related genes. Such genetic vulnerabilities represent candidate targets for therapy and are found to be involved in splicing, translation and protein folding. In particular, many NSCLC cell lines were especially sensitive to the loss of components of the LSm2-8 protein complex or the CCT/TRiC chaperonin. Different vulnerabilities were also found for different cell line subgroups. Furthermore, the predicted vulnerability of a single adenocarcinoma cell line to loss of the Wnt pathway was experimentally validated with screening of small-molecule Wnt inhibitors against an extensive cell line panel. The clustering algorithm is implemented in Python and is freely available at https://bitbucket.org/youngjh/nsclc_paper marcotte@icmb.utexas.edu or jon.young@utexas.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  3. MicroRNA-944 Affects Cell Growth by Targeting EPHA7 in Non-Small Cell Lung Cancer.

    PubMed

    Liu, Minxia; Zhou, Kecheng; Cao, Yi

    2016-09-26

    MicroRNAs (miRNAs) have critical roles in lung tumorigenesis and development. To determine aberrantly expressed miRNAs involved in non-small cell lung cancer (NSCLC) and investigate pathophysiological functions and mechanisms, we firstly carried out small RNA deep sequencing in NSCLC cell lines (EPLC-32M1, A549 and 801D) and a human immortalized cell line 16HBE, we then studied miRNA function by cell proliferation and apoptosis. cDNA microarray, luciferase reporter assay and miRNA transfection were used to investigate interaction between the miRNA and target gene. miR-944 was significantly down-regulated in NSCLC and had many putative targets. Moreover, the forced expression of miR-944 significantly inhibited the proliferation of NSCLC cells in vitro. By integrating mRNA expression data and miR-944-target prediction, we disclosed that EPHA7 was a potential target of miR-944, which was further verified by luciferase reporter assay and microRNA transfection. Our data indicated that miR-944 targets EPHA7 in NSCLC and regulates NSCLC cell proliferation, which may offer a new mechanism underlying the development and progression of NSCLC.

  4. The Immune Landscape of Non-Small Cell Lung Cancer: Utility of Cytologic and Histologic Samples Obtained Through Minimally Invasive Pulmonary Procedures.

    PubMed

    Beattie, Jason; Yarmus, Lonny; Wahidi, Momen M; Rivera, M Patricia; Gilbert, Christopher; Maldonado, Fabien; Czarnecka, Kasia; Argento, Angela; Chen, Alexander; Herth, Felix; Sterman, Daniel H

    2018-05-14

    The success of immune checkpoint inhibitors and the discovery of useful biomarkers to predict response to these agents is shifting much of the focus of personalized care for non-small cell lung cancer towards harnessing the immune response. With further advancement, more effective immunotherapy options will emerge along with more useful biomarkers. Paradoxically, minimally invasive small biopsy and cytology specimens have become the primary method for diagnosis of patients with advanced disease, as well for initial diagnosis and staging in earlier stage disease. For the benefit of these patients, we will continue to learn how to do more with less. In this perspective, we review aspects of immunobiology that underlie the current state of the art of existing and emerging immunologic biomarkers that hold potential to enhance the care of patients with non-small cell lung cancer. We address practical considerations for acquiring patient samples that accurately reflect disease immune status. We also propose a paradigm shift wherein the most important sample types that need to be proven in pioneering basic science and translation work and subsequent clinical trials are the specimens most often obtained clinically.

  5. Malignant histiocytic lymphoma with large lacunar cells.

    PubMed

    Leahu, S; Dobrea, M

    1997-01-01

    A case of lymph node biopsy with a peculiar histological aspect is described. The clinical data suggest a malignant lymphoid disease. The histological picture is that of a malignant histiocytosis but, among the majority of small histiocytes, there are some large cells like the large lacunar cells from Hodgkin's disease. These large cells (and some small cells) contain the CD 30 antigen of Reed-Sternberg cells. It is discussed whether the appropriate diagnosis is Hodgkin's disease, malignant histiocytosis, or non-Hodgkin's malignant lymphoma. Our diagnosis is Hodgkin's disease, the nodular sclerosing form.

  6. Fludarabine and Total-Body Irradiation Followed By Donor Stem Cell Transplant and Cyclosporine and Mycophenolate Mofetil in Treating HIV-Positive Patients With or Without Cancer

    ClinicalTrials.gov

    2017-04-17

    Accelerated Phase Chronic Myelogenous Leukemia; Acute Undifferentiated Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Aggressive NK-cell Leukemia; AIDS-related Diffuse Large Cell Lymphoma; AIDS-related Diffuse Mixed Cell Lymphoma; AIDS-related Diffuse Small Cleaved Cell Lymphoma; AIDS-related Immunoblastic Large Cell Lymphoma; AIDS-related Lymphoblastic Lymphoma; AIDS-related Peripheral/Systemic Lymphoma; AIDS-related Primary CNS Lymphoma; AIDS-related Small Noncleaved Cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Essential Thrombocythemia; Extramedullary Plasmacytoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; HIV Infection; HIV-associated Hodgkin Lymphoma; Intraocular Lymphoma; Isolated Plasmacytoma of Bone; Juvenile Myelomonocytic Leukemia; Mast Cell Leukemia; Meningeal Chronic Myelogenous Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Myeloid/NK-cell Acute Leukemia; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Polycythemia Vera; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Primary Central Nervous System Lymphoma; Primary Myelofibrosis; Primary Systemic Amyloidosis; Progressive Hairy Cell Leukemia, Initial Treatment; Prolymphocytic Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage 0 Chronic Lymphocytic Leukemia; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Hodgkin Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Childhood Small Noncleaved Cell Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage I Small Lymphocytic Lymphoma; Stage IA Mycosis Fungoides/Sezary Syndrome; Stage IB Mycosis Fungoides/Sezary Syndrome; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Hodgkin Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Childhood Small Noncleaved Cell Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage IIA Mycosis Fungoides/Sezary Syndrome; Stage IIB Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Hodgkin Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Childhood Small Noncleaved Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Small Lymphocytic Lymphoma; Stage IIIA Mycosis Fungoides/Sezary Syndrome; Stage IIIB Mycosis Fungoides/Sezary Syndrome; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Hodgkin Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Childhood Small Noncleaved Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Stage IVA Mycosis Fungoides/Sezary Syndrome; Stage IVB Mycosis Fungoides/Sezary Syndrome; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific; Unspecified Childhood Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia

  7. [Prospect and Current Situation of Immune Checkpoint Inhibitors 
in First-line Treatment in Advanced Non-small Cell Lung Cancer Patients].

    PubMed

    Wang, Haiyang; Yu, Xiaoqing; Fan, Yun

    2017-06-20

    With the breakthroughs achieved of programmed death-1 (PD-1)/PD-L1 inhibitors monotherapy as first-line and second-line treatment in advanced non-small cell lung cancer (NSCLC), the treatment strategy is gradually evolving and optimizing. Immune combination therapy expands the benefit population and improves the curative effect. A series of randomized phase III trials are ongoing. In this review, we discuss the prospect and current situation of immune checkpoint inhibitors in first-line treatment in advanced NSCLC patients.

  8. [Progress of treatments in non-small cell lung cancer with brain metastases].

    PubMed

    Ma, Chunhua; Jiang, Rong

    2012-05-01

    Brain metastases is one of the most common complications of non-small cell lung cancer, whole brain radiotherapy (WBRT), stereotactic radiosurgery (SRS), surgery and chemotherapy are standard methods in the treatment of brain metastases. But the effect of those treatments are still sad. Comprehensive treatment can prolong the survival and improve the quality of life. Recently, the improvement of technology, targeted therapy, survival time and the quality of life are in increasingly concerned. The paper make a summary of current situation and progress for comprehensive therapy of brain metastases.

  9. Safety Study of MGD009 in B7-H3-expressing Tumors

    ClinicalTrials.gov

    2017-10-04

    Mesothelioma; Bladder Cancer; Melanoma; Squamous Cell Carcinoma of the Head and Neck; Non Small Cell Lung Cancer; Clear Cell Renal Cell Carcinoma; Ovarian Cancer; Thyroid Cancer; Breast Cancer; Pancreatic Cancer; Prostate Cancer; Colon Cancer; Soft Tissue Sarcoma

  10. Carfilzomib demonstrates broad anti-tumor activity in pre-clinical non-small cell and small cell lung cancer models.

    PubMed

    Baker, Amanda F; Hanke, Neale T; Sands, Barbara J; Carbajal, Liliana; Anderl, Janet L; Garland, Linda L

    2014-12-31

    Carfilzomib (CFZ) is a proteasome inhibitor that selectively and irreversibly binds to its target and has been approved in the US for treatment of relapsed and refractory multiple myeloma. Phase 1B studies of CFZ reported signals of clinical activity in solid tumors, including small cell lung cancer (SCLC). The aim of this study was to investigate the activity of CFZ in lung cancer models. A diverse panel of human lung cancer cell lines and a SHP77 small cell lung cancer xenograft model were used to investigate the anti-tumor activity of CFZ. CFZ treatment inhibited both the constitutive proteasome and the immunoproteasome in lung cancer cell lines. CFZ had marked anti-proliferative activity in A549, H1993, H520, H460, and H1299 non-small cell lung cancer (NSCLC) cell lines, with IC50 values after 96 hour exposure from <1.0 nM to 36 nM. CFZ had more variable effects in the SHP77 and DMS114 SCLC cell lines, with IC50 values at 96 hours from <1 nM to 203 nM. Western blot analysis of CFZ-treated H1993 and SHP77 cells showed cleavage of poly ADP ribose polymerase (PARP) and caspase-3, indicative of apoptosis, and induction of microtubule-associated protein-1 light chain-3B (LC3B), indicative of autophagy. In SHP77 flank xenograft tumors, CFZ monotherapy inhibited tumor growth and prolonged survival, while no additive or synergistic anti-tumor efficacy was observed for CFZ + cisplatin (CDDP). CFZ demonstrated anti-proliferative activity in lung cancer cell lines in vitro and resulted in a significant survival advantage in mice with SHP77 SCLC xenografts, supporting further pre-clinical and clinical investigations of CFZ in NSCLC and SCLC.

  11. Lipidomic Profiling of Lung Pleural Effusion Identifies Unique Metabotype for EGFR Mutants in Non-Small Cell Lung Cancer.

    PubMed

    Ho, Ying Swan; Yip, Lian Yee; Basri, Nurhidayah; Chong, Vivian Su Hui; Teo, Chin Chye; Tan, Eddy; Lim, Kah Ling; Tan, Gek San; Yang, Xulei; Yeo, Si Yong; Koh, Mariko Si Yue; Devanand, Anantham; Takano, Angela; Tan, Eng Huat; Tan, Daniel Shao Weng; Lim, Tony Kiat Hon

    2016-10-14

    Cytology and histology forms the cornerstone for the diagnosis of non-small cell lung cancer (NSCLC) but obtaining sufficient tumour cells or tissue biopsies for these tests remains a challenge. We investigate the lipidome of lung pleural effusion (PE) for unique metabolic signatures to discriminate benign versus malignant PE and EGFR versus non-EGFR malignant subgroups to identify novel diagnostic markers that is independent of tumour cell availability. Using liquid chromatography mass spectrometry, we profiled the lipidomes of the PE of 30 benign and 41 malignant cases with or without EGFR mutation. Unsupervised principal component analysis revealed distinctive differences between the lipidomes of benign and malignant PE as well as between EGFR mutants and non-EGFR mutants. Docosapentaenoic acid and Docosahexaenoic acid gave superior sensitivity and specificity for detecting NSCLC when used singly. Additionally, several 20- and 22- carbon polyunsaturated fatty acids and phospholipid species were significantly elevated in the EGFR mutants compared to non-EGFR mutants. A 7-lipid panel showed great promise in the stratification of EGFR from non-EGFR malignant PE. Our data revealed novel lipid candidate markers in the non-cellular fraction of PE that holds potential to aid the diagnosis of benign, EGFR mutation positive and negative NSCLC.

  12. CCI-779 in Treating Patients With Recurrent or Refractory B-Cell Non-Hodgkin's Lymphoma or Chronic Lymphocytic Leukemia

    ClinicalTrials.gov

    2014-05-07

    B-cell Chronic Lymphocytic Leukemia; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Malignant Neoplasm; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Splenic Marginal Zone Lymphoma; Waldenström Macroglobulinemia

  13. Yttrium Y 90 Ibritumomab Tiuxetan, Fludarabine, Radiation Therapy, and Donor Stem Cell Transplant in Treating Patients With Relapsed or Refractory Non-Hodgkin's Lymphoma

    ClinicalTrials.gov

    2017-04-17

    B-cell Chronic Lymphocytic Leukemia; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Splenic Marginal Zone Lymphoma; Waldenström Macroglobulinemia

  14. The impact of coexisting lung diseases on outcomes in patients with pathological Stage I non-small-cell lung cancer.

    PubMed

    Tao, Hiroyuki; Onoda, Hideko; Okabe, Kazunori; Matsumoto, Tsuneo

    2018-06-01

    Cigarette smoking is a well-known cause of interstitial lung disease (ILD), pulmonary emphysema and lung cancer. Coexisting pulmonary disease can affect prognosis in patients with lung cancer. The aim of this study was to determine the influence of pulmonary disease on outcomes in patients with a smoking history who had undergone surgery for pathological Stage I non-small-cell lung cancer. Medical records of 257 patients with a smoking history who underwent surgery for pathological Stage I non-small-cell lung cancer between June 2009 and December 2014 were reviewed. Coexisting ILDs were evaluated using high-resolution computed tomography. The degree of pulmonary emphysema was determined using image analysis software according to the Goddard classification. The impact of clinicopathological factors on outcome was evaluated. Among the 257 patients, ILDs were detected via high-resolution computed tomography in 60 (23.3%) patients; of these, usual interstitial pneumonia (UIP) patterns and non-UIP patterns were seen in 25 (9.7%) and 35 (13.6%) patients, respectively. The degree of pulmonary emphysema was classified as none, mild and moderate and included 50 (19.5%), 162 (63.0%) and 45 (17.5%) patients, respectively. The 5-year overall survival, cancer-specific survival and relapse-free survival were 80.7%, 88.0% and 74.9%, respectively, during a median follow-up period of 50.5 months. In multivariate analysis, the presence of a UIP pattern was shown to be an independent risk factor for poor outcome. The presence of a UIP-pattern ILD on high-resolution computed tomography images was shown to be a risk factor for poor outcome in patients with a smoking history who had undergone surgery for pathological Stage I non-small-cell lung cancer.

  15. Bortezomib and Filgrastim in Promoting Stem Cell Mobilization in Patients With Non-Hodgkin Lymphoma or Multiple Myeloma Undergoing Stem Cell Transplant

    ClinicalTrials.gov

    2017-05-23

    Adult Grade III Lymphomatoid Granulomatosis; B-cell Chronic Lymphocytic Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Progressive Hairy Cell Leukemia, Initial Treatment; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage I Small Lymphocytic Lymphoma; Stage II Multiple Myeloma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Untreated Hairy Cell Leukemia; Waldenström Macroglobulinemia

  16. Autocrine activity of BDNF induced by the STAT3 signaling pathway causes prolonged TrkB activation and promotes human non-small-cell lung cancer proliferation

    PubMed Central

    Chen, Bo; Liang, Yan; He, Zheng; An, Yunhe; Zhao, Weihong; Wu, Jianqing

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin superfamily, which has been implicated in the pathophysiology of the nervous system. Recently, several studies have suggested that BDNF and/or its receptor, tropomyosin related kinase B (TrkB), are involved in tumor growth and metastasis in several cancers, including prostate cancer, neuroblastoma, pancreatic ductal carcinoma, hepatocellular carcinoma, and lung cancer. Despite the increasing emphasis on BDNF/TrkB signaling in human tumors, how it participates in primary tumors has not yet been determined. Additionally, little is known about the molecular mechanisms that elicit signaling downstream of TrkB in the progression of non-small-cell lung cancer (NSCLC). In this study, we report the significant expression of BDNF in NSCLC samples and show that BDNF stimulation increases the synthesis of BDNF itself through activation of STAT3 in lung cancer cells. The release of BDNF can in turn activate TrkB signaling. The activation of both TrkB and STAT3 contribute to downstream signaling and promote human non-small-cell lung cancer proliferation. PMID:27456333

  17. Gene amplification-associated overexpression of the RNA editing enzyme ADAR1 enhances human lung tumorigenesis.

    PubMed

    Anadón, C; Guil, S; Simó-Riudalbas, L; Moutinho, C; Setien, F; Martínez-Cardús, A; Moran, S; Villanueva, A; Calaf, M; Vidal, A; Lazo, P A; Zondervan, I; Savola, S; Kohno, T; Yokota, J; Ribas de Pouplana, L; Esteller, M

    2016-08-18

    The introduction of new therapies against particular genetic mutations in non-small-cell lung cancer is a promising avenue for improving patient survival, but the target population is small. There is a need to discover new potential actionable genetic lesions, to which end, non-conventional cancer pathways, such as RNA editing, are worth exploring. Herein we show that the adenosine-to-inosine editing enzyme ADAR1 undergoes gene amplification in non-small cancer cell lines and primary tumors in association with higher levels of the corresponding mRNA and protein. From a growth and invasion standpoint, the depletion of ADAR1 expression in amplified cells reduces their tumorigenic potential in cell culture and mouse models, whereas its overexpression has the opposite effects. From a functional perspective, ADAR1 overexpression enhances the editing frequencies of target transcripts such as NEIL1 and miR-381. In the clinical setting, patients with early-stage lung cancer, but harboring ADAR1 gene amplification, have poor outcomes. Overall, our results indicate a role for ADAR1 as a lung cancer oncogene undergoing gene amplification-associated activation that affects downstream RNA editing patterns and patient prognosis.

  18. Albumin nanocapsules containing fenretinide: pre-clinical evaluation of cytotoxic activity in experimental models of human non-small cell lung cancer.

    PubMed

    Pignatta, Sara; Orienti, Isabella; Falconi, Mirella; Teti, Gabriella; Arienti, Chiara; Medri, Laura; Zanoni, Michele; Carloni, Silvia; Zoli, Wainer; Amadori, Dino; Tesei, Anna

    2015-02-01

    The present study deals with the preparation of albumin nanocapsules containing fenretinide and their evaluation in experimental models of human non-small cell lung cancer. These nanocapsules showed enhanced antitumor activity with respect to free fenretinide due to the solubilization effect of albumin on the hydrophobic drug, known to improve bioavailability. The high expression of caveolin-1 on the A549 cell surface further enhanced the antitumor activity of the nanoencapsulated fenretinide. Caveolin-1 favored albumin uptake and improved the efficacy of the fenretinide-loaded albumin nanocapsules, especially in 3-D cultures where the densely packed 3-D structures impaired drug diffusibility and severely reduced the activity of the free drug. The efficacy of the fenretinide albumin nanocapsules was further confirmed in tumor xenograft models of A549 by the significant delay in tumor progression observed with respect to control after intravenous administration of the novel formulation. This study describes the preparation of fenretinide containing albumin nanocapsules and their evaluation in experimental models of non-small cell lung cancer, showing enhanced antitumor activity compared to free fenretinide. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Comparison of small biopsy specimens and surgical specimens for the detection of EGFR mutations and EML4-ALK in non-small-cell lung cancer.

    PubMed

    Xiao, DeSheng; Lu, Can; Zhu, Wei; He, QiuYan; Li, Yong; Fu, ChunYan; Zhou, JianHua; Liu, Shuang; Tao, YongGuang

    2016-09-13

    Epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) fusion genes represent novel oncogenes that are associated with non-small-cell lung cancers (NSCLC). The feasibility of detecting EGFR mutations and ALK fusion genes in small biopsy specimens or surgical specimens was determined. Of the 721 NSCLC patients, a total of 305 cases were positive for EGFR mutations (42.3%). The rate of EGFR mutations in women was significantly higher than that in men. Histologically, the EGFR mutation rate in adenocarcinomas was significantly higher than that in squamous cell carcinomas. No difference in the EGFR mutation rate was observed between surgical specimens (42.1%) and small biopsy specimens (42.4%), which indicated that the EGFR mutation ratios in surgical specimens and small biopsy specimens were not different. In 385 NSCLC patients, 26 cases were positive for EML4-ALK (6.8%). However, 11.7% of the surgical specimens were EML4-ALK-positive, whereas the positive proportion in the small biopsy specimens was only 4.7%, which indicated that EML4-ALK-positive rate in the surgical specimens was significantly higher than that in the small biopsy specimens. Detection of EGFR gene mutations was feasible in small biopsy specimens, and screening for EML4-ALK expression in small biopsy specimens can be used to guide clinical treatments.

  20. Myeloablative Allo HSCT With Related or Unrelated Donor for Heme Disorders

    ClinicalTrials.gov

    2018-05-18

    Acute Leukemia; Acute Myeloid Leukemia; Acute Lymphoblastic Leukemia; Lymphoma; Chronic Myelogenous Leukemia; Plasma Cell Leukemia; Myeloproliferative Neoplasms; Myelofibrosis; Myelodysplasia; Refractory Anemia; High Risk Anemia; Chronic Lymphocytic Leukemia; Small Lymphocytic Lymphoma; Marginal Zone B-Cell Lymphoma; Follicular Lymphoma; Lymphoplasmacytic Lymphoma; Mantle-Cell Lymphoma; Prolymphocytic Leukemia; Diffuse Large Cell Non Hodgkins Lymphoma; Lymphoblastic Lymphoma; Burkitt Lymphoma; High Grade Non-Hodgkin's Lymphoma, Adult; Multiple Myeloma; Juvenile Myelomonocytic Leukemia; Biphenotypic/Undifferentiated/Prolymphocytic Leukemias; MRD Positive Leukemia; Natural Killer Cell Malignancies; Acquired Bone Marrow Failure Syndromes

  1. S0819: Carboplatin and Paclitaxel With or Without Bevacizumab and/or Cetuximab in Treating Patients With Stage IV or Recurrent Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2017-10-03

    Recurrent Large Cell Lung Carcinoma; Recurrent Lung Adenocarcinoma; Recurrent Squamous Cell Lung Carcinoma; Stage IV Large Cell Lung Carcinoma; Stage IV Lung Adenocarcinoma; Stage IV Squamous Cell Lung Carcinoma

  2. A Study of Varlilumab and Atezolizumab in Patients With Advanced Cancer

    ClinicalTrials.gov

    2018-04-26

    Carcinoma, Renal Cell; Kidney Diseases; Kidney Neoplasms; Urogenital Neoplasms; Urologic Diseases; Urologic Neoplasms; Neoplasms by Histologic Type; Neoplasms; Clear-cell Metastatic Renal Cell Carcinoma; Melanoma; Triple Negative Breast Cancer; Bladder Cancer; Head and Neck Cancer; Non-small Cell Lung Cancer

  3. Detection of Gene Rearrangements in Circulating Tumor Cells: Examples of ALK-, ROS1-, RET-Rearrangements in Non-Small-Cell Lung Cancer and ERG-Rearrangements in Prostate Cancer.

    PubMed

    Catelain, Cyril; Pailler, Emma; Oulhen, Marianne; Faugeroux, Vincent; Pommier, Anne-Laure; Farace, Françoise

    2017-01-01

    Circulating tumor cells (CTCs) hold promise as biomarkers to aid in patient treatment stratification and disease monitoring. Because the number of cells is a critical parameter for exploiting CTCs for predictive biomarker's detection, we developed a FISH (fluorescent in situ hybridization) method for CTCs enriched on filters (filter-adapted FISH [FA-FISH]) that was optimized for high cell recovery. To increase the feasibility and reliability of the analyses, we combined fluorescent staining and FA-FISH and developed a semi-automated microscopy method for optimal FISH signal identification in filtration-enriched CTCs . Here we present these methods and their use for the detection and characterization of ALK-, ROS1-, RET-rearrangement in CTCs from non-small-cell lung cancer and ERG-rearrangements in CTCs from prostate cancer patients.

  4. Dynamics of multiple resistance mechanisms in plasma DNA during EGFR-targeted therapies in non-small cell lung cancer.

    PubMed

    Tsui, Dana Wai Yi; Murtaza, Muhammed; Wong, Alvin Seng Cheong; Rueda, Oscar M; Smith, Christopher G; Chandrananda, Dineika; Soo, Ross A; Lim, Hong Liang; Goh, Boon Cher; Caldas, Carlos; Forshew, Tim; Gale, Davina; Liu, Wei; Morris, James; Marass, Francesco; Eisen, Tim; Chin, Tan Min; Rosenfeld, Nitzan

    2018-06-01

    Tumour heterogeneity leads to the development of multiple resistance mechanisms during targeted therapies. Identifying the dominant driver(s) is critical for treatment decision. We studied the relative dynamics of multiple oncogenic drivers in longitudinal plasma of 50 EGFR -mutant non-small-cell lung cancer patients receiving gefitinib and hydroxychloroquine. We performed digital PCR and targeted sequencing on samples from all patients and shallow whole-genome sequencing on samples from three patients who underwent histological transformation to small-cell lung cancer. In 43 patients with known EGFR mutations from tumour, we identified them accurately in plasma of 41 patients (95%, 41/43). We also found additional mutations, including EGFR T790M (31/50, 62%), TP53 (23/50, 46%), PIK3CA (7/50, 14%) and PTEN (4/50, 8%). Patients with both TP53 and EGFR mutations before treatment had worse overall survival than those with only EGFR Patients who progressed without T790M had worse PFS during TKI continuation and developed alternative alterations, including small-cell lung cancer-associated copy number changes and TP53 mutations, that tracked subsequent treatment responses. Longitudinal plasma analysis can help identify dominant resistance mechanisms, including non-druggable genetic information that may guide clinical management. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  5. Efficacy of chemotherapy after first-line gefitinib therapy in EGFR mutation-positive advanced non-small cell lung cancer-data from a randomized Phase III study comparing gefitinib with carboplatin plus paclitaxel (NEJ002).

    PubMed

    Miyauchi, Eisaku; Inoue, Akira; Kobayashi, Kunihiko; Maemondo, Makoto; Sugawara, Shunichi; Oizumi, Satoshi; Isobe, Hiroshi; Gemma, Akihiko; Saijo, Yasuo; Yoshizawa, Hirohisa; Hagiwara, Koichi; Nukiwa, Toshihiro

    2015-07-01

    Epidermal growth factor receptor tyrosine kinase inhibitors are effective as first-line therapy for advanced non-small cell lung cancer patients harboring epidermal growth factor receptor mutations. However, it is unknown whether second-line platinum-based chemotherapy after epidermal growth factor receptor tyrosine kinase inhibitor therapy could lead to better outcomes. We evaluated the efficacy of second-line platinum-based chemotherapy after gefitinib for advanced non-small cell lung cancers harboring epidermal growth factor receptor mutations (the NEJ002 study). Seventy-one non-small cell lung cancers, treated with gefitinib as first-line therapy and then receiving platinum-based chemotherapy as second-line therapy were evaluated in NEJ002. Patients were evaluated for antitumor response to second-line chemotherapy by computed tomography according to the criteria of the Response Evaluation Criteria in Solid Tumors group (version 1.0). Of the 71 patients receiving platinum-based chemotherapy after first-line gefitinib, a partial response was documented in 25.4% (18/71), stable disease in 43.7% (31/71) and progression of disease in 21.1% (15/71). The objective response and disease control rates were 25.4% (18/71) and 69% (49/71), respectively. There was no significant difference between first- and second-line chemotherapy in objective response and disease control rates for advanced non-small cell lung cancer harboring activating epidermal growth factor receptor mutations. In the analysis of epidermal growth factor receptor mutation types, the objective responses of deletions in exon 19 and a point mutation in exon 21 (L858R) were 27.3% (9/33) and 28.1% (9/32), respectively, but these differences between objective response rates were not significant. The efficacy of second-line platinum-based chemotherapy followed at progression by gefitinib was similar to first-line platinum-based chemotherapy, and epidermal growth factor receptor mutation types did not influence the efficacy of second-line platinum-based chemotherapy. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. De novo activating epidermal growth factor mutations (EGFR) in small-cell lung cancer.

    PubMed

    Thai, Alesha; Chia, Puey L; Russell, Prudence A; Do, Hongdo; Dobrovic, Alex; Mitchell, Paul; John, Thomas

    2017-09-01

    In Australia, mutations in epidermal growth factor mutations (EGFR) occur in 15% of patients diagnosed with non-small-cell lung cancer and are found with higher frequency in female, non-smokers of Asian ethnicity. Activating mutations in the EGFR gene are rarely described in SCLC. We present two cases of de novo EGFR mutations in patients with SCLC detected in tissue and in plasma cell free DNA, both of whom were of Asian ethnicity and never-smokers. These two cases add to the growing body of evidence suggesting that screening for EGFR mutations in SCLC should be considered in patients with specific clinical features. © 2017 Royal Australasian College of Physicians.

  7. Doxepin Hydrochloride in Treating Esophageal Pain in Patients With Thoracic Cancer Receiving Radiation Therapy to the Thorax With or Without Chemotherapy

    ClinicalTrials.gov

    2017-11-30

    Esophageal Carcinoma; Hypopharyngeal Carcinoma; Laryngeal Carcinoma; Lymphoma; Mesothelioma; Metastatic Malignant Neoplasm in the Lung; Metastatic Malignant Neoplasm in the Pleura; Metastatic Malignant Neoplasm in the Spinal Cord; Non-Small Cell Lung Carcinoma; Sarcoma; Small Cell Lung Carcinoma; Thymic Carcinoma; Thymoma; Thyroid Gland Carcinoma

  8. Non-Small-Cell Lung Cancer Molecular Signatures Recapitulate Lung Developmental Pathways

    PubMed Central

    Borczuk, Alain C.; Gorenstein, Lyall; Walter, Kristin L.; Assaad, Adel A.; Wang, Liqun; Powell, Charles A.

    2003-01-01

    Current paradigms hold that lung carcinomas arise from pleuripotent stem cells capable of differentiation into one or several histological types. These paradigms suggest lung tumor cell ontogeny is determined by consequences of gene expression that recapitulate events important in embryonic lung development. Using oligonucleotide microarrays, we acquired gene profiles from 32 microdissected non-small-cell lung tumors. We determined the 100 top-ranked marker genes for adenocarcinoma, squamous cell, large cell, and carcinoid using nearest neighbor analysis. Results were validated by immunostaining for 11 selected proteins using a tissue microarray representing 80 tumors. Gene expression data of lung development were accessed from a publicly available dataset generated with the murine Mu11k genome microarray. Self-organized mapping identified two temporally distinct clusters of murine orthologues. Supervised clustering of lung development data showed large-cell carcinoma gene orthologues were in a cluster expressed in pseudoglandular and canalicular stages whereas adenocarcinoma homologues were predominantly in a cluster expressed later in the terminal sac and alveolar stages of murine lung development. Representative large-cell genes (E2F3, MYBL2, HDAC2, CDK4, PCNA) are expressed in the nucleus and are associated with cell cycle and proliferation. In contrast, adenocarcinoma genes are associated with lung-specific transcription pathways (SFTPB, TTF-1), cell adhesion, and signal transduction. In sum, non-small-cell lung tumors histology gene profiles suggest mechanisms relevant to ontogeny and clinical course. Adenocarcinoma genes are associated with differentiation and glandular formation whereas large-cell genes are associated with proliferation and differentiation arrest. The identification of developmentally regulated pathways active in tumorigenesis provides insights into lung carcinogenesis and suggests early steps may differ according to the eventual tumor morphology. PMID:14578194

  9. Monoclonal Antibody Therapy and Peripheral Stem Cell Transplant in Treating Patients With Non-Hodgkin's Lymphoma

    ClinicalTrials.gov

    2013-01-08

    Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Waldenström Macroglobulinemia

  10. Sampling versus systematic full lymphatic dissection in surgical treatment of non-small cell lung cancer.

    PubMed

    Koulaxouzidis, Georgios; Karagkiouzis, Grigorios; Konstantinou, Marios; Gkiozos, Ioannis; Syrigos, Konstantinos

    2013-04-22

    The extent of mediastinal lymph node assessment during surgery for non-small cell cancer remains controversial. Different techniques are used, ranging from simple visual inspection of the unopened mediastinum to an extended bilateral lymph node dissection. Furthermore, different terms are used to define these techniques. Sampling is the removal of one or more lymph nodes under the guidance of pre-operative findings. Systematic (full) nodal dissection is the removal of all mediastinal tissue containing the lymph nodes systematically within anatomical landmarks. A Medline search was conducted to identify articles in the English language that addressed the role of mediastinal lymph node resection in the treatment of non-small cell lung cancer. Opinions as to the reasons for favoring full lymphatic dissection include complete resection, improved nodal staging and better local control due to resection of undetected micrometastasis. Arguments against routine full lymphatic dissection are increased morbidity, increase in operative time, and lack of evidence of improved survival. For complete resection of non-small cell lung cancer, many authors recommend a systematic nodal dissection as the standard approach during surgery, and suggest that this provides both adequate nodal staging and guarantees complete resection. Whether extending the lymph node dissection influences survival or recurrence rate is still not known. There are valid arguments in favor in terms not only of an improved local control but also of an improved long-term survival. However, the impact of lymph node dissection on long-term survival should be further assessed by large-scale multicenter randomized trials.

  11. [The Comparison of Clinical Effect of Rh-endostar on Retreated Non-Small Cell Lung Cancer and Colorectal Cancer.].

    PubMed

    Yang, Xueqin; Wang, Dong; Zhong, Zhaoyang; Jin, Feng; Shan, Jinlu; Wang, Ge; Wang, Zhengbo; Shen, Yibo

    2009-11-20

    Antiangiogenesis has become the fourth module of cancer therapy nowadays. However, its clinical effect varies from cancer to cancer. The aim of this study is to compare the clinical efficacy of rh-endostatin (YH-16, Endostar) on retreated non-small cell lung cancer and colorectal cancer. The patients including 17 cases of retreated non-small cell lung cancer (NSCLC) and 15 cases of retreated colorectal cancer were confirmed by histopathology or cytopathology. All the cases were administrated with rh-endostatin combining chemotherapy and radiotherapy. 7.5 mg/m(2) rhendostatin solved in 500 mL of normal saline was slow intravenously dropped from day 1 to day 14. The efficacy was evaluated strictly according to RECIST criteria and the quality of life (QOL) was based on the Karnofsky performance (KPS). The response rate (RR) of 17 cases of retreated NSCLC was 11.8% (2/17), and the disease control rate (DCR) was 41.2% (7/17). However, the RR and DCR of the 15 cases of retreated colorectal cancer were up to 40% (6/15) and 86.6% (13/15). There was significant difference between these two tumors (P<0.05). Moreover, significant difference was also found on the QOL of these two tumors [The improving and stable QOL was 41.2% (7/17) and 86.6% (13/15), respectively (P<0.05)]. The clinical efficacy of rh-endostatin on retreated colorectal cancer was better than on retreated non-small cell lung cancer, which suggested that it was necessary to perform more clinical observations on the digestive tumors.

  12. Lung dose and the potential risk of death in postoperative radiation therapy for non-small cell lung cancer: A study using the method of stratified grouping.

    PubMed

    Heo, Jaesung; Noh, O Kyu; Kim, Hwan-Ik; Chun, Mison; Cho, Oyeon; Park, Rae Woong; Yoon, Dukyong; Oh, Young-Taek

    2018-04-19

    Postoperative radiation therapy may have a detrimental effect on survival in patients with non-small cell lung cancer. We investigated the association of the lung radiation dose with the risk of death in patients treated with postoperative radiation therapy. We analyzed 178 patients with non-small cell lung cancer who received postoperative radiation therapy. The mean lung dose was calculated from dose-volume data, and we categorized patients into the high and low lung dose groups using 2 different methods; (1) simple grouping using the median lung dose of all patients, and (2) stratified grouping using the median lung dose of each subgroup sharing the same confounders. We compared clinical variables, and survival between the high and low lung dose groups. In the simple grouping, there were no significant differences in survivals between the high and low lung dose groups. After stratification, the overall survival of low lung dose group was significantly longer than that of high lung dose group (5-year survival, 60.1% vs. 35.3%, p = 0.039). On multivariable analyses, the lung dose remained a significant prognostic factor for overall survival (hazard ratio, HR = 2.08, p = 0.019). The lung dose was associated with the risk of death in patients with non-small cell lung cancer having the same confounders. Further studies evaluating the risk of death according to the lung dose will be helpful to administer more precise and individualized postoperative radiation therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Clinical usefulness of 99mTc-EDDA/HYNIC-TOC scintigraphy in oncological diagnostics: a preliminary communication.

    PubMed

    Płachcińska, Anna; Mikołajczak, Renata; Maecke, Helmut R; Młodkowska, Ewa; Kunert-Radek, Jolanta; Michalski, Andrzej; Rzeszutek, Katarzyna; Kozak, Józef; Kuśmierek, Jacek

    2003-10-01

    This study assessed the clinical usefulness of a new technetium-99m labelled somatostatin analogue from the standpoint of oncological diagnostics. The study group comprised 40 patients in whom malignant neoplasms (32 primary and 8 metastatic) had been diagnosed. Among the primary tumours there were 21 cases of lung cancer (2 small cell and 19 non-small cell), seven pituitary adenomas (five hormonally active and two inactive), one liposarcoma, two carcinoids and one breast carcinoma. The metastatic tumours consisted of three malignant melanomas, one phaeochromocytoma, one prostatic cancer, one leiomyosarcoma, one pancreatic carcinoma ectopically secreting ACTH and one carcinoid of the thymus. The radiopharmaceutical 99mTc-EDDA/HYNIC-Tyr3-octreotide was administered i.v. at an activity of 740-925 MBq. The imaging comprised a whole-body scan and a single-photon emission tomography acquisition. Positive scintigrams were obtained in all cases of small cell and non-small cell lung cancer, four out of five hormonally active pituitary adenomas, one out of two cases of carcinoid, the liposarcoma and the breast cancer. Neoplastic metastases were visualised in two out of three patients with melanoma and in patients with phaeochromocytoma, ACTH-secreting pancreatic carcinoma and thymic carcinoid. Scintigrams were negative in both hormonally inactive pituitary adenomas, in one case of metastatic malignant melanoma, in the leiomyosarcoma and in the case of metastasis from prostatic carcinoma. The results of this pilot study indicate that 99mTc-EDDA/HYNIC-TOC is a potentially useful radiopharmaceutical for imaging of a wide range of primary and metastatic tumours. Special attention should be paid to the successful imaging of all cases of non-small cell lung cancer.

  14. Epigenetic therapy potential of suberoylanilide hydroxamic acid on invasive human non-small cell lung cancer cells.

    PubMed

    Zhang, Shirong; Wu, Kan; Feng, Jianguo; Wu, Zhibing; Deng, Qinghua; Guo, Chao; Xia, Bing; Zhang, Jing; Huang, Haixiu; Zhu, Lucheng; Zhang, Ke; Shen, Binghui; Chen, Xufeng; Ma, Shenglin

    2016-10-18

    Metastasis is the reason for most cancer death, and a crucial primary step for cancer metastasis is invasion of the surrounding tissue, which may be initiated by some rare tumor cells that escape the heterogeneous primary tumor. In this study, we isolated invasive subpopulations of cancer cells from human non-small cell lung cancer (NSCLC) H460 and H1299 cell lines, and determined the gene expression profiles and the responses of these invasive cancer cells to treatments of ionizing radiation and chemotherapeutic agents. The subpopulation of highly invasive NSCLC cells showed epigenetic signatures of epithelial-mesenchymal transition, cancer cell stemness, increased DNA damage repair and cell survival signaling. We also investigated the epigenetic therapy potential of suberoylanilide hydroxamic acid (SAHA) on invasive cancer cells, and found that SAHA suppresses cancer cell invasiveness and sensitizes cancer cells to treatments of IR and chemotherapeutic agents. Our results provide guidelines for identification of metastatic predictors and for clinical management of NSCLC. This study also suggests a beneficial clinical potential of SAHA as a chemotherapeutic agent for NSCLC patients.

  15. The ratio of cancer cells to stroma after induction therapy in the treatment of non-small cell lung cancer.

    PubMed

    Goto, Masaki; Naito, Masahito; Saruwatari, Koichi; Hisakane, Kakeru; Kojima, Motohiro; Fujii, Satoshi; Kuwata, Takeshi; Ochiai, Atsushi; Nomura, Shogo; Aokage, Keiju; Hishida, Tomoyuki; Yoshida, Junji; Yokoi, Kohei; Tsuboi, Masahiro; Ishii, Genichiro

    2017-02-01

    Induction therapy induces degenerative changes of various degrees in both cancerous and non-cancerous cells of non-small cell lung cancer (NSCLC). The effect of induction therapy on histological characteristics, in particular the ratio of residual cancer cells to non-cancerous components, is unknown. Seventy-four NSCLC patients treated with induction therapy followed by surgery were enrolled. Residual cancer cells were identified using anti-pan-cytokeratin antibody (AE1/AE3). We analyzed and quantified the following three factors via digital image analysis; (1) the tumor area containing cancer cells and non-cancerous components (TA), (2) the total area of AE1/AE3 positive cancer cells (TACC), (3) the percentage of TACC to TA (%TACC). These factors were also analyzed in a matched control group (surgery alone, n = 80). The median TACC of the induction therapy group was significantly lower than that of the control group (p < 0.01). In addition, the median %TACC of the induction therapy group (5.9 %) was significantly lower than that of the control group (58.6 %) (p < 0.01). TACC had a strong positive correlation with TA in the control group (r = 0.93), but not in the induction therapy group. Conversely, TACC had a strong positive correlation with %TACC in the induction therapy group (r = 0.95), but not in the control group. Unlike the control group, the smaller the total area of residual cancer cells, the higher residual tumor contained non-cancerous components in the induction group, which may be the characteristic histological feature of NSCLC after induction therapy.

  16. MMPP Attenuates Non-Small Cell Lung Cancer Growth by Inhibiting the STAT3 DNA-Binding Activity via Direct Binding to the STAT3 DNA-Binding Domain.

    PubMed

    Son, Dong Ju; Zheng, Jie; Jung, Yu Yeon; Hwang, Chul Ju; Lee, Hee Pom; Woo, Ju Rang; Baek, Song Yi; Ham, Young Wan; Kang, Min Woong; Shong, Minho; Kweon, Gi Ryang; Song, Min Jong; Jung, Jae Kyung; Han, Sang-Bae; Kim, Bo Yeon; Yoon, Do Young; Choi, Bu Young; Hong, Jin Tae

    2017-01-01

    Rationale: Signal transducer and activator of transcription-3 (STAT3) plays a pivotal role in cancer biology. Many small-molecule inhibitors that target STAT3 have been developed as potential anticancer drugs. While designing small-molecule inhibitors that target the SH2 domain of STAT3 remains the leading focus for drug discovery, there has been a growing interest in targeting the DNA-binding domain (DBD) of the protein. Methods: We demonstrated the potential antitumor activity of a novel, small-molecule (E)-2-methoxy-4-(3-(4-methoxyphenyl)prop-1-en-1-yl)phenol (MMPP) that directly binds to the DBD of STAT3, in patient-derived non-small cell lung cancer (NSCLC) xenograft model as well as in NCI-H460 cell xenograft model in nude mice. Results: MMPP effectively inhibited the phosphorylation of STAT3 and its DNA binding activity in vitro and in vivo . It induced G1-phase cell cycle arrest and apoptosis through the regulation of cell cycle- and apoptosis-regulating genes by directly binding to the hydroxyl residue of threonine 456 in the DBD of STAT3. Furthermore, MMPP showed a similar or better antitumor activity than that of docetaxel or cisplatin. Conclusion: MMPP is suggested to be a potential candidate for further development as an anticancer drug that targets the DBD of STAT3.

  17. Human RNA polymerase II associated factor 1 complex promotes tumorigenesis by activating c-MYC transcription in non-small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhi, Xiuyi; Giroux-Leprieur, Etienne; Respiratory Diseases and Thoracic Oncology Department, Ambroise Pare Hospital – APHP, Versailles Saint Quentin en Yvelines University, 9 Avenue Charles de Gaulle, 92100, Boulogne-Billancourt

    2015-10-02

    Human RNA polymerase II (RNAPII)-associated factor 1 complex (hPAF1C) plays a crucial role in protein-coding gene transcription. Overexpression of hPAF1C has been implicated in the initiation and progression of various human cancers. However, the molecular pathways involved in tumorigenesis through hPAF1C remain to be elucidated. The current study suggested hPAF1C expression as a prognostic biomarker for early stage non-small cell lung cancer (NSCLC) and patients with low hPAF1C expression levels had significantly better overall survival. Furthermore, the expression of hPAF1C was found to be positively correlated with c-MYC expression in patient tumor samples and in cancer cell lines. Mechanistic studiesmore » indicated that hPAF1C could promote lung cancer cell proliferation through regulating c-MYC transcription. These results demonstrated the prognostic value of hPAF1C in early-stage NSCLC and the role of hPAF1C in the transcriptional regulation of c-MYC oncogene during NSCLC tumorigenesis. - Highlights: • hPAF1C expression is a prognostic biomarker for early stage non-small cell lung cancer. • The expression of hPAF1C was positively correlated with c-MYC in tumor samples of patients and in several NSCLC cell lines. • hPAF1C could promote lung cancer cell proliferation through regulating c-MYC transcription.« less

  18. Vorinostat, Tacrolimus, and Methotrexate in Preventing GVHD After Stem Cell Transplant in Patients With Hematological Malignancies

    ClinicalTrials.gov

    2015-10-13

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Grade III Lymphomatoid Granulomatosis; B-cell Chronic Lymphocytic Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Chronic Myelomonocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Graft Versus Host Disease; Intraocular Lymphoma; Myelodysplastic Syndrome With Isolated Del(5q); Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Post-transplant Lymphoproliferative Disorder; Primary Central Nervous System Hodgkin Lymphoma; Primary Central Nervous System Non-Hodgkin Lymphoma; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Ringed Sideroblasts; Refractory Chronic Lymphocytic Leukemia; Refractory Cytopenia With Multilineage Dysplasia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Central Nervous System Hodgkin Lymphoma; Secondary Central Nervous System Non-Hodgkin Lymphoma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage II Adult Hodgkin Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Testicular Lymphoma; Waldenström Macroglobulinemia

  19. ROS1 rearrangement and response to crizotinib in Stage IV non-small cell lung cancer

    PubMed Central

    Suryavanshi, Moushumi; Panigrahi, Manoj Kumar; Kumar, Dushyant; Verma, Haristuti; Saifi, Mumtaz; Dabas, Bharti; Batra, Ullas; Doval, Dinesh; Mehta, Anurag

    2017-01-01

    Background: The frequency of ROS1 rearrangement in non-small cell lung cancers has been reported from 1.6% to 2.3%. Materials and Methods: We examined 105 lung adenocarcinoma patients for ROS1 rearrangement which were negative for EGFR and anaplastic lymphoma kinase. Clinical characteristics of ROS1 rearranged patients and their responses to crizotinib therapy were studied. Results: Of the 105 patients, three cases were positive for ROS1 rearrangement by fluorescence in situ hybridization analysis. All of them showed heterogeneous pattern. All the 3 ROS1-positive patients were females in their forties and started on crizotinib. All of them responded to treatment. One of them developed resistance after 3 months. Another one showed marked systemic response but central nervous system lesions progressed. The third case is doing well till date with inactive lesions on positron emission tomography scan. Conclusions: The frequency of ROS1 rearrangement is low in non-small cell lung carcinoma, but their diagnosis offers patients an opportunity to receive highly effective targeted therapies. PMID:28869223

  20. Rituximab and Interleukin-12 in Treating Patients With B-Cell Non-Hodgkin's Lymphoma

    ClinicalTrials.gov

    2013-08-23

    Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Small Lymphocytic Lymphoma; Splenic Marginal Zone Lymphoma

  1. Spotlight on necitumumab in the treatment of non-small-cell lung carcinoma

    PubMed Central

    Thakur, Manish K; Wozniak, Antoinette J

    2017-01-01

    The treatment options for metastatic non-small-cell lung cancer (NSCLC) have expanded dramatically in the last 10 years with the discovery of newer drugs and targeted therapy. Epidermal growth factor receptor (EGFR), when aberrantly activated, promotes cell growth and contributes in various ways to the malignant process. EGFR has become an important therapeutic target in a variety of malignancies. Small-molecule tyrosine kinase inhibitors (TKIs) of EGFR are being used to treat advanced NSCLC and are particularly effective in the presence of EGFR mutations. Monoclonal antibodies have also been developed that block the EGFR at the cell surface and work in conjunction with chemotherapy. Necitumumab is a second-generation fully human IgG1 monoclonal antibody that has shown promise in metastatic NSCLC. The benefit has mostly been restricted to squamous cell lung cancer in the frontline setting. Considering that the survival advantage for these patients was modest, there is a need to discover biomarkers that will predict which patients will likely have the best outcomes. This review focuses on the development and clinical trial experience with necitumumab in NSCLC. PMID:28293124

  2. Selective and cell-active inhibitors of the USP1/UAF1 deubiquitinase complex reverse cisplatin resistance in non-small cell lung cancer cells

    PubMed Central

    Chen, Junjun; Dexheimer, Thomas S.; Ai, Yongxing; Liang, Qin; Villamil, Mark A.; Inglese, James; Maloney, David J; Jadhav, Ajit; Simeonov, Anton; Zhuang, Zhihao

    2012-01-01

    Ubiquitin-specific proteases (USPs) have in recent years emerged as a promising therapeutic target class. We identified selective small-molecule inhibitors against a deubiquitinase complex, the human USP1/UAF1, through quantitative high throughput screening (qHTS) of a collection of bioactive molecules. The top inhibitors, pimozide and GW7647, inhibited USP1/UAF1 noncompetitively with a Ki of 0.5 and 0.7 μM respectively, and displayed selectivity against a number of deubiquitinases, deSUMOylase and cysteine proteases. The USP1/UAF1 inhibitors act synergistically with cisplatin in inhibiting cisplatin-resistant non-small cell lung cancer (NSCLC) cell proliferation. USP1/UAF1 represents a promising target for drug intervention because of its involvement in translesion synthesis and Fanconi anemia pathway important for normal DNA damage response. Our results support USP1/UAF1 as a potential therapeutic target and provide the first example of targeting the USP/WD40 repeat protein complex for inhibitor discovery. PMID:22118673

  3. A potential oral anticancer drug candidate, Moringa oleifera leaf extract, induces the apoptosis of human hepatocellular carcinoma cells

    PubMed Central

    JUNG, IL LAE; LEE, JU HYE; KANG, SE CHAN

    2015-01-01

    It has previously been reported that cold water-extracts of Moringa oleifera leaf have anticancer activity against various human cancer cell lines, including non-small cell lung cancer. In the present study, the anticancer activity of M. oleifera leaf extracts was investigated in human hepatocellular carcinoma HepG2 cells. By the analysis of apoptotic signals, including the induction of caspase or poly(ADP-ribose) polymerase cleavage, and the Annexin V and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assays, it was demonstrated that M. oleifera leaf extracts induce the apoptosis of HepG2 cells. In the hollow fiber assay, oral administration of the leaf extracts significantly reduced (44–52%) the proliferation of the HepG2 cells and A549 non-small cell lung cancer cells. These results support the potential of soluble extracts of M. oleifera leaf as orally administered therapeutics for the treatment of human liver and lung cancers. PMID:26622717

  4. Coiled-coil domain-containing protein 8 inhibits the invasiveness and migration of non-small cell lung cancer cells.

    PubMed

    Jiang, Gui-Yang; Zhang, Xiu-Peng; Zhang, Yong; Xu, Hong-Tao; Wang, Liang; Li, Qing-Chang; Wang, En-Hua

    2016-10-01

    Lung cancer has always been the leading cause of death among patients with malignant tumors, and the majority of these patients die because of cancer cell invasion and metastasis. Previous studies have implicated coiled-coil domain-containing protein 8 (CCDC8) as a tumor suppressor in several types of cancer, such as breast and prostate cancers. However, the expression levels or functions of CCDC8 in lung cancer have not been elucidated. Here, we used immunohistochemical staining to measure CCDC8 expression in 147 samples from tumors and 30 samples from the adjacent normal lung tissues of patients with non-small cell lung cancer. CCDC8 was shown to be located predominantly in the cytoplasm and partially on the cell membrane, and its expression level was significantly lower in lung cancer samples than that in the adjacent normal lung tissues (P=.001). CCDC8 expression was closely related to tumor differentiation (P=.039), tumor-node-metastasis stage (P=.009), lymph node metastasis (P=.038), and prognosis (P=.043) of lung cancer. Transfection of A549 cells with CCDC8 significantly reduced cell invasion and migration (P<.05), whereas the invasiveness and migration capacity in CCDC8-knockdown A549 cells were significantly increased in comparison with the control cells (P<.05). Furthermore, we demonstrated that CCDC8 can downregulate the expression of Snail and upregulate the expression of E-cadherin by inhibiting p-P38 and p-IκBα. Collectively, CCDC8 may suppress the invasion and metastasis of lung cancer cells, and it may represent a promising therapeutic target for non-small cell lung cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Downregulation of long non-coding RNA LET predicts poor prognosis and increases Notch signaling in non-small cell lung cancer

    PubMed Central

    Li, Shengwen; Zhao, Hui; Li, Jianqiang; Zhang, Aizheng; Wang, Haibin

    2018-01-01

    Long non-coding RNAs (lncRNAs) have been found to be dysregulated in a variety of tumors. The lncRNA-Low Expression in Tumor (LET) is a recently identified lncRNA, but its expression pattern and biological significance in human non-small cell lung cancer (NSCLC) are still largely unknown. In this study, we found that lncRNA-LET was significantly downregulated in human NSCLC lung tissues and cell lines. Decreased lncRNA-LET expression was strongly associated with advanced tumor stages and poorer overall survival of NSCLC patients. Functionally, overexpression of lncRNA-LET in NSCLC H292 cells significantly suppressed cell proliferation, migration and invasion, and promoted cell cycle arrest and apoptosis, while knockdown of lncRNA-LET in NSCLC H1975 cells showed an opposite effect, pointing to a tumor-suppressive role for lncRNA-LET in NSCLC. Mechanistically, we demonstrated that lncRNA-LET overexpression significantly reduced the expression of Notch1 intracellular Domain (NICD1) in H292 cells while knockdown of lncRNA-LET increased NICD1 expression in H1975 cells. Similarly, NSCLC lung tissues with high levels of lncRNA-LET had lower NICD1 expression. Thus, our results provide a strong rationale for lncRNA-LET to be used as a prognostic indicator and a potent therapeutic target for NSCLC patients, and highlight a novel lncRNA-LET/Notch axis in regulating NSCLC cell fate and tumor progression. PMID:29416684

  6. Maintenance or non-maintenance therapy in the treatment of advanced non-small cell lung cancer: that is the question.

    PubMed

    Galetta, D; Rossi, A; Pisconti, S; Millaku, A; Colucci, G

    2010-11-01

    Lung cancer is the most common cancer worldwide with non-small cell lung cancer (NSCLC), including squamous carcinoma, adenocarcinoma and large cell carcinoma, accounting for about 85% of all lung cancer types with most of the patients presenting with advanced disease at the time of diagnosis. In this setting first-line platinum-based chemotherapy for no more than 4-6 cycles are recommended. After these cycles of treatment, non-progressing patients enter in the so called "watch and wait" period in which no further therapy is administered until there is disease progression. In order to improve the advanced NSCLC outcomes, the efficacy of further treatment in the "watch and wait" period was investigated. This is the "maintenance therapy". Recently, the results coming from randomized phase III trials investigating two new agents, pemetrexed and erlotinib, in this setting led to their registration for maintenance therapy. Here, we report and discuss these results. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Prolongation of life by adoptive cell therapy with cascade primed immune cells in four patients with non-small cell lung cancer stages IIIB and IV and a pancoast tumor: a case series

    PubMed Central

    2013-01-01

    Introduction Despite newer treatment modalities, few patients with non-small cell lung cancer in stages IIIB and IV survive the median of one year. We present four patients with non-small cell lung cancer treated with an adjuvant therapy with cascade primed immune cells. The in vitro stimulated expression of cancer information on the patients’ monocytes matures and activates T lymphocytes to destroy cancer cells. The cascade primed immune cell therapy significantly improved the quality of life and the lifespan of all four patients; thus far, three patients survived 40, 55 and 120 months, respectively; and one patient died 39 months after diagnosis. Case presentation Patient 1, stage IV (T4N2M1): The adenocarcinoma of the 67-year-old German Caucasian man infiltrated into the mediastinal lymph nodes and iliosacral bones. Chemotherapy modalities were started immediately after diagnosis of cancer, and cascade primed immune cell therapy one year later. The patient survived 39 months. Patient 2, stage IV (T3N3M1a): The 62-year-old German Caucasian woman presented with adenocarcinoma of the lower lobe with infiltrated lymph nodes of the mediastinum and malignant pleural effusion. Chemotherapy, radiation and the cascade primed immune cell therapy were administered together. The patient is still alive after 40 months. Patient 3, stage IIIB (T4N1-2M0): The 75-year-old German Caucasian woman presented with an undifferentiated tumor and a separate tumor nodule in the ipsilateral lobe. The patient received only cascade primed immune cell therapy after tumor resection and has survived for the last 55 months. Patient 4, pancoast tumor (IIIB, T3N3M0): The 77-year-old German Caucasian man presented with an undifferentiated tumor that infiltrated the lymph nodes, the clavicle, one rib and the plexus brachialis. In addition to chemotherapy and radiation, cascade primed immune cells were administered every weekday for one year. After four months, no living tumor cell was detected in the resected lung, the lymph nodes or the bone material. The patient is still alive after 120 months. Conclusions The novel adoptive cell therapy with cascade primed immune cells significantly increased the survival rate and maintained the quality of life for four patients with non-small cell lung cancer in stages IIIB and IV. Our findings indicate that tumor resection, chemotherapy and radiation appear to support the cascade primed immune cell therapy. PMID:24330627

  8. Clinical outcomes using carbon-ion radiotherapy and dose-volume histogram comparison between carbon-ion radiotherapy and photon therapy for T2b-4N0M0 non-small cell lung cancer-A pilot study.

    PubMed

    Shirai, Katsuyuki; Kawashima, Motohiro; Saitoh, Jun-Ichi; Abe, Takanori; Fukata, Kyohei; Shigeta, Yuka; Irie, Daisuke; Shiba, Shintaro; Okano, Naoko; Ohno, Tatsuya; Nakano, Takashi

    2017-01-01

    The safety and efficacy of carbon-ion radiotherapy for advanced non-small cell lung cancer have not been established. We evaluated the clinical outcomes and dose-volume histogram parameters of carbon-ion radiotherapy compared with photon therapy in T2b-4N0M0 non-small cell lung cancer. Twenty-three patients were treated with carbon-ion radiotherapy between May 2011 and December 2015. Seven, 14, and 2 patients had T2b, T3, and T4, respectively. The median age was 78 (range, 53-91) years, with 22 male patients. There were 12 adenocarcinomas, 8 squamous cell carcinomas, 1 non-small cell lung carcinoma, and 2 clinically diagnosed lung cancers. Eleven patients were operable, and 12 patients were inoperable. Most patients (91%) were treated with carbon-ion radiotherapy of 60.0 Gy relative biological effectiveness (RBE) in 4 fractions or 64.0 Gy (RBE) in 16 fractions. Local control and overall survival rates were calculated. Dose-volume histogram parameters of normal lung and tumor coverages were compared between carbon-ion radiotherapy and photon therapies, including three-dimensional conformal radiotherapy (3DCRT) and intensity-modulated radiotherapy (IMRT). The median follow-up of surviving patients was 25 months. Three patients experienced local recurrence, and the 2-year local control rate was 81%. During follow-up, 5 patients died of lung cancer, and 1 died of intercurrent disease. The 2-year overall survival rate was 70%. Operable patients had a better overall survival rate compared with inoperable patients (100% vs. 43%; P = 0.04). There was no grade ≥2 radiation pneumonitis. In dose-volume histogram analysis, carbon-ion radiotherapy had a significantly lower dose to normal lung and greater tumor coverage compared with photon therapies. Carbon-ion radiotherapy was effectively and safely performed for T2b-4N0M0 non-small cell lung cancer, and the dose distribution was superior compared with those for photon therapies. A Japanese multi-institutional study is ongoing to prospectively evaluate these patients and establish the use of carbon-ion radiotherapy.

  9. Long non-coding RNA LINC00339 facilitates the tumorigenesis of non-small cell lung cancer by sponging miR-145 through targeting FOXM1.

    PubMed

    Yuan, Yuan; Haiying, Gao; Zhuo, Li; Ying, Lu; Xin, He

    2018-06-12

    Non-small cell lung cancer (NSCLC) is one of leading causes of cancer-related death worldwide. Long noncoding RNAs (lncRNAs) has been identified to modulate the tumorigenesis of NSCLC. However, the precise molecular mechanism of lncRNAs in the course is still unclear. Results showed that LINC00339 was significantly up-regulated in NSCLC tissue and cells, which indicated the poor prognosis of NSCLC patients. Loss-of-function experiments showed that LINC00339 silencing inhibited the proliferation and invasion, accelerated the apoptosis, and suppressed the tumor growth of NSCLC cells in vitro and in vivo. Luciferase reporter assay and RNA immunoprecipitation (RIP) revealed that LINC00339 promoted the NSCLC progression via FOXM1 via targeting miR-145. In conclusion, our results identify the important role of the LINC00339/miR-145/FOXM1 axis in the NSCLC tumorigenesis, providing neoteric mechanism for the NSCLC tumorigenesis. Copyright © 2018. Published by Elsevier Masson SAS.

  10. Detection of human cytomegalovirus DNA replication in non-permissive Vero and 293 cells.

    PubMed

    Ellsmore, Victoria; Reid, G Gordon; Stow, Nigel D

    2003-03-01

    Human cytomegalovirus (HCMV) displays an exceptionally restricted host range in tissue culture with human fibroblasts being the principal fully permissive system. Nevertheless, immediate early (IE) proteins are expressed following infection of many non-permissive cell types of human, simian and murine origin, and viral origin-dependent DNA synthesis has been reconstituted by transfection of plasmids into Vero cells, a non-permissive line from African green monkey. We have examined the accumulation of HCMV strain AD169 DNA, and the replication of transfected HCMV origin-containing plasmids, in infected Vero and human embryonic kidney 293 cells, which were previously reported to express the major IE protein in a small proportion of infected cells but to be non-permissive for viral DNA synthesis. In Vero cells accumulation of origin-containing plasmid but not viral DNA occurred, whilst in 293 cells both DNAs accumulated. Immunofluorescence experiments indicated that following infection with 3 p.f.u. per cell, a small fraction of both cell types expressed the UL44 DNA replication protein. Neither cell line, however, supported the generation of infectious progeny virus. These results suggest that IE proteins expressed in Vero and 293 cells can induce the synthesis of early proteins capable of functioning in viral DNA replication, but there is a failure in later events on the pathway to infectious virus production. This provides further support for transfected Vero cells being a valid system in which to study HCMV DNA synthesis, and suggests that 293 cells may also prove useful in similar experiments.

  11. Fludarabine Phosphate, Low-Dose Total-Body Irradiation, and Donor Stem Cell Transplant Followed by Cyclosporine, Mycophenolate Mofetil, Donor Lymphocyte Infusion in Treating Patients With Hematopoietic Cancer

    ClinicalTrials.gov

    2017-08-09

    Acute Undifferentiated Leukemia; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Childhood Burkitt Lymphoma; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Myelomonocytic Leukemia; Cutaneous B-cell Non-Hodgkin Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Juvenile Myelomonocytic Leukemia; Mast Cell Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Myeloid/NK-cell Acute Leukemia; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Primary Systemic Amyloidosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Renal Cell Cancer; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage II Multiple Myeloma; Stage III Multiple Myeloma; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenström Macroglobulinemia

  12. Review of the use of pretest probability for molecular testing in non-small cell lung cancer and overview of new mutations that may affect clinical practice.

    PubMed

    Martin, Petra; Leighl, Natasha B

    2017-06-01

    This article considers the use of pretest probability in non-small cell lung cancer (NSCLC) and how its use in EGFR testing has helped establish clinical guidelines on selecting patients for EGFR testing. With an ever-increasing number of molecular abnormalities being identified and often limited tissue available for testing, the use of pretest probability will need to be increasingly considered in the future for selecting investigations and treatments in patients. In addition we review new mutations that have the potential to affect clinical practice.

  13. In vitro optimization of non-small cell lung cancer activity with troxacitabine, L-1,3-dioxolane-cytidine, prodrugs.

    PubMed

    Radi, Marco; Adema, Auke D; Daft, Jonathan R; Cho, Jong H; Hoebe, Eveline K; Alexander, Lou-Ella M M; Peters, Godefridus J; Chu, Chung K

    2007-05-03

    l-1,3-Dioxolane-cytidine, a potent anticancer agent against leukemia, has limited efficacy against solid tumors, perhaps due to its hydrophilicity. Herein, a library of prodrugs were synthesized to optimize in vitro antitumor activity against non-small cell lung cancer. N4-Substituted fatty acid amide prodrugs of 10-16 carbon chain length demonstrated significantly improved antitumor activity over l-1,3-dioxolane-cytidine. These in vitro results suggest that the in vivo therapeutic efficacy of l-1,3-dioxolane-cytidine against solid tumors may be improved with prodrug strategies.

  14. Dabrafenib

    MedlinePlus

    ... to treat a certain type of non-small cell lung cancer (NSCLC) that has spread to nearby tissues or ... the action of an abnormal protein that signals cancer cells to multiply. This helps stop the spread of ...

  15. Trametinib

    MedlinePlus

    ... to treat a certain type of non-small-cell lung cancer (NSCLC) that has spread to nearby tissues or ... the action of an abnormal protein that signals cancer cells to multiply. This helps stop the spread of ...

  16. Brigatinib

    MedlinePlus

    ... to treat a certain type of non-small cell lung cancer (NSCLC) that has spread to other parts of ... the action of an abnormal protein that signals cancer cells to multiply. This helps slow or stop the ...

  17. Alectinib

    MedlinePlus

    ... to treat a certain type of non-small-cell lung cancer (NSCLC) that has spread to other parts of ... the action of an abnormal protein that signals cancer cells to multiply. This helps slow or stop the ...

  18. Erlotinib

    MedlinePlus

    ... used to treat certain types of non-small cell lung cancer that has spread to nearby tissues or to ... the action of an abnormal protein that signals cancer cells to multiply. This helps slow or stop the ...

  19. [Stereotactic lung radiotherapy: Technical setting up on Novalis Tx® and single centre prospective study of the 100 first malignant pulmonary nodules treated at centre Jean-Perrin].

    PubMed

    Bellière-Calandry, A; Dupic, G; Magnier, F; Chassin, V; Dedieu, V; Lapeyre, M

    2017-06-01

    Description of the treatment technique of stereotactic lung radiotherapy on Novalis Tx ® and prospective study of the first 100 pulmonary nodules treated at centre Jean-Perrin (France). From October 2012 to December 2015, 100 inoperable pulmonary nodules (62 stage I non-small-cell lung cancer and 38 metastases) of 90 patients with a mean age of 68.2 years (range: 46-89 years) were prospectively treated with dynamic arctherapy on Novalis Tx ® . Mean gross tumour and planning target volumes were respectively 6.9 cm 3 (range: 0.2-31.4 cm 3 ) and 38.7 cm 3 (range: 1.7-131 cm 3 ), which correspond to diameters equal to 2.3cm and 4.2cm. Prescribed doses to the 80% isodose line were 54Gy in three fractions for peripheral non-small-cell lung cancer, 50Gy in five fractions for central non-small-cell lung cancer and 45Gy in three fractions for lung metastases. Clinical and radiological follow-up was done every three months with RECIST criteria for efficacy and NCI-CTCAE v4 scale for toxicity. Median follow-up was 12.5 months. Complete response was observed in 23.8% of cases. Local control rates were 100% and 90.7% respectively at 12 and 24 months, with 96% at 24 months for stage I non-small-cell lung cancer. Overall survival rates of patients with stage I non-small-cell lung cancer were 77.4% and 73.5% at 12 and 24 months (median overall survival was 32 months). Diffusing capacity of the lungs for carbon monoxide corrected for alveolar volume below 40% was significantly associated to a poor prognostic factor on univariate analysis (P=0.00013). At least three deaths were due to an acute respiratory failure, which correspond to about 4.8% of grade 5 radiation pneumonitis. Overall survival rate for metastatic patients were 95.2% and 59.5% respectively at 12 and 24 months (median overall survival was 25 months); 23.3% of grade 2 or less radiation pneumonitis, 7.8% of grade 2 or less radiation dermatitis, 2.2% of asymptomatic ribs fracture and 3.3% of chest pains were observed. Stereotactic lung radiotherapy is an effective treatment for inoperable stage I non-small-cell lung cancer and lung oligometastases of well informed and selected patients. Initial respiratory state, and especially the diffusing capacity of the lungs for carbon monoxide corrected for alveolar volume, seems to be important for tolerance. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  20. Iodine I 131 Tositumomab, Etoposide and Cyclophosphamide Followed by Autologous Stem Cell Transplant in Treating Patients With Relapsed or Refractory Non-Hodgkin's Lymphoma

    ClinicalTrials.gov

    2017-07-21

    Anaplastic Large Cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Splenic Marginal Zone Lymphoma; Waldenström Macroglobulinemia

  1. Overlapping DNA Methylation Dynamics in Mouse Intestinal Cell Differentiation and Early Stages of Malignant Progression

    PubMed Central

    Forn, Marta; Díez-Villanueva, Anna; Merlos-Suárez, Anna; Muñoz, Mar; Lois, Sergi; Carriò, Elvira; Jordà, Mireia; Bigas, Anna; Batlle, Eduard; Peinado, Miguel A.

    2015-01-01

    Mouse models of intestinal crypt cell differentiation and tumorigenesis have been used to characterize the molecular mechanisms underlying both processes. DNA methylation is a key epigenetic mark and plays an important role in cell identity and differentiation programs and cancer. To get insights into the dynamics of cell differentiation and malignant transformation we have compared the DNA methylation profiles along the mouse small intestine crypt and early stages of tumorigenesis. Genome-scale analysis of DNA methylation together with microarray gene expression have been applied to compare intestinal crypt stem cells (EphB2high), differentiated cells (EphB2negative), ApcMin/+ adenomas and the corresponding non-tumor adjacent tissue, together with small and large intestine samples and the colon cancer cell line CT26. Compared with late stages, small intestine crypt differentiation and early stages of tumorigenesis display few and relatively small changes in DNA methylation. Hypermethylated loci are largely shared by the two processes and affect the proximities of promoter and enhancer regions, with enrichment in genes associated with the intestinal stem cell signature and the PRC2 complex. The hypermethylation is progressive, with minute levels in differentiated cells, as compared with intestinal stem cells, and reaching full methylation in advanced stages. Hypomethylation shows different signatures in differentiation and cancer and is already present in the non-tumor tissue adjacent to the adenomas in ApcMin/+ mice, but at lower levels than advanced cancers. This study provides a reference framework to decipher the mechanisms driving mouse intestinal tumorigenesis and also the human counterpart. PMID:25933092

  2. MiR-21 suppresses the anticancer activities of curcumin by targeting PTEN gene in human non-small cell lung cancer A549 cells.

    PubMed

    Zhang, W; Bai, W; Zhang, W

    2014-08-01

    Curcumin, a natural phytochemical, exhibits potent anticancer activities. Here, we sought to determine the molecular mechanisms underlying the cytotoxic effects of curcumin against human non-small cell lung cancer (NSCLC) cells. MTT assay and annexin-V/PI staining were used to analyze the effects of curcumin on the proliferation and apoptosis of A549 cells. The expression of microRNA-21 in curcumin-treated A549 cells was measured by quantitative real-time polymerase chain reaction assay. The protein level of phosphatase and tensin homolog (PTEN), a putative target of microRNA-21, was determined by Western blot analysis. Transfection of A549 cells with microRNA-21 mimic or PTEN small interfering RNA was performed to modulate the expression of microRNA-21 and PTEN under the treatment of curcumin. Curcumin at 20-40 μM inhibited cell proliferation and induced apoptosis in A549 cells. Curcumin treatment produced a dose-dependent and significant (P < 0.05) suppression of microRNA-21 expression, compared to untreated A549 cells. Moreover, the protein level of PTEN, a putative target of microRNA-21, was significantly elevated in curcumin-treated A549 cells, as determined by Western blot analysis. Transfection of A549 cells with microRNA-21 mimic or PTEN small interfering RNA significantly (P < 0.05) reversed the growth suppression and apoptosis induction by curcumin, compared to corresponding controls. Our data suggest a novel molecular mechanism in which inhibition of microRNA-21 and upregulation of PTEN mediate the anticancer activities of curcumin in NSCLC cells. Suppression of microRNA-21 may thus have therapeutic benefits against this malignancy.

  3. Designing Polyamide Inhibitors of TWIST 1 for Prosenescence Therapy

    DTIC Science & Technology

    2014-09-01

    Pyrrole -Imidazole Polyamides; TWIST1; KRAS; non-small cell lung cancer (NSCLC); senescence 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF... Pyrrole -Imidazole Polyamides (PIP) are a class of cell permeable programmable small-molecule heterocyclic amino acid oligomers that can be designed...The original specific aims are below: Specific Aim#1. Design and synthesize a TWIST1-inhibitory specific Pyrrole -Imidazole Polyamides (PIP

  4. University of Texas Southwestern Medical Center (UTSW): Lung Cancer Oncogenotype-Selective Drug Target Discovery (Natural Products Focus) | Office of Cancer Genomics

    Cancer.gov

    The goal of this project is to use small molecules and RNAi to functionally define subtypes of non-small cell lung cancer (NSCLC) using a panel of cell lines prepared and molecularly annotated by Drs. John Minna and Adi Gazdar. Experimental Approaches Lung Cancer Natural Products Screening/Chemical Library Screening

  5. University of Texas Southwestern Medical Center: Lung Cancer Oncogenotype-Selective Drug Target Discovery (Natural Products Focus) | Office of Cancer Genomics

    Cancer.gov

    The goal of this project is to use small molecules and RNAi to functionally define subtypes of non-small cell lung cancer (NSCLC) using a panel of cell lines prepared and molecularly annotated by Drs. John Minna and Adi Gazdar. Experimental Approaches Lung Cancer Natural Products Screening/Chemical Library Screening

  6. Spared pre-irradiated area in pustular lesions induced by icotinib showing decreased expressions of CD1a+ langerhans cells and FGFR2.

    PubMed

    Zhao, Qiong; Wang, Yi Na; Wang, Bo

    2013-02-01

    Icotinib hydrochloride, a novel inhibitor of epidermal growth factor receptor tyrosine kinase, has been approved by the State Food and Drug Administration for the treatment of advanced non-small-cell lung cancer. Up to date, cutaneous response to icotinib is largely unknown. Here we report an uncommon lesional phenomenon in a 56-year-old Chinese male with non-small-cell lung cancer, who received icotinib as a second-line treatment. Characteristic papulopustular rash on the chest and back was observed 4 days later. Interestingly, the rash completely spares a pre-irradiated area. The immunohistochemical study in the lesional skin area and spared skin area revealed a significant decrease in CD1a(+) Langerhans cells, Ki-67 as well as FGFR2 in the spared area than in the lesional area. Thus, the present case indicated that loss of the basal layer of proliferative cells and antigen-presenting cells (Langerhans cell), as well as the down-regulation of FGFR2 signaling in the pre-irradiated skin area, may join forces in inhibiting icotinib-associated cutaneous reactions. To our knowledge, this is the first report of both lesional area and lesion-spared area in a Chinese male receiving treatment with a new epidermal growth factor receptor-tyrosine kinase inhibitor (icotinib). The immunohistochemical reactions described here also provide new insight into the pathogenesis of epidermal growth factor receptor-tyrosine kinase inhibitor-related skin toxicities, and the role that other tyrosine kinase receptors (including FGFR) played in non-small-cell lung cancer.

  7. [Clinical value of serum TPS, CEA, Pro-GRP and CYFRA21-1 in patients with lung cancer].

    PubMed

    Wang, Jinghui; Shi, Guangli; Zhang, Shucai; Wang, Qunhui; Yang, Xinjie; Li, Xi; Wang, Haiyong; Zhang, Hui; Song, Changxing

    2010-05-01

    Serum tumor markers play important roles in diagnosis, response and prognosis monitoring for lung cancer. The clinical significance of serum level of tissue polypeptide specific antigen (TPS) was investigated in diagnosis, response monitoring and prognosis in patients with lung cancer, compared with carcinoembryonic antigen (CEA), precursor of gastrin-releasing peptide (Pro-GRP) and cytokeratin-19-fragments (CYFRA21-1). Blood samples of eighty-two patients with lung cancer before treatment and some after chemotherapy were measured by ELISA for four tumor markers. Compared with lung benign diseases group and health control group, the positive rates and levels of TPS, CEA and Pro-GRP in patients with lung cancer were higher, with statistically significant difference. TPS in extensive-small cell lung cancer was significant higher than that in limited-small cell lung cancer. The positive rates and levels of TPS, CEA and Pro-GRP in patients after treatment had significant decreases compared with before treatment. TPS was an independent prognostic factor of non-small cell lung cancer. TPS is valuable to diagnosis, response monitoring for patients with lung cancer, moreover, it maybe a useful factor of prognosis of non-small cell lung cancer.

  8. Study of the Glutaminase Inhibitor CB-839 in Solid Tumors

    ClinicalTrials.gov

    2016-08-18

    Solid Tumors; Triple-Negative Breast Cancer; Non Small Cell Lung Cancer; Renal Cell Carcinoma; Mesothelioma; Fumarate Hydratase (FH)-Deficient Tumors; Succinate Dehydrogenase (SDH)-Deficient Gastrointestinal Stromal Tumors (GIST); Succinate Dehydrogenase (SDH)-Deficient Non-gastrointestinal Stromal Tumors; Tumors Harboring Isocitrate Dehydrogenase-1 (IDH1) and IDH2 Mutations; Tumors Harboring Amplifications in the cMyc Gene

  9. NKX2.2 is a useful immunohistochemical marker for Ewing sarcoma.

    PubMed

    Yoshida, Akihiko; Sekine, Shigeki; Tsuta, Koji; Fukayama, Masashi; Furuta, Koh; Tsuda, Hitoshi

    2012-07-01

    Ewing sarcoma is a high-grade round cell sarcoma that affects bones and soft tissues in children and young adults. Its diagnosis can be challenging, and the differential diagnoses include a wide variety of small round cell tumors. CD99 and FLI-1 are the currently accepted immunohistochemical markers for Ewing sarcoma, but their accuracy has been controversial. NKX2.2 is a homeodomain-containing transcription factor that plays a critical role in neuroendocrine/glial differentiation. The NKX2.2 gene was recently identified as a target of EWS-FLI-1, the fusion protein specific to Ewing sarcoma, and was shown to be differentially upregulated in Ewing sarcoma on the basis of array-based gene expression analysis. However, the immunohistochemical diagnostic potential of this marker has not been tested. We immunostained representative sections of 30 genetically confirmed Ewing sarcomas and 130 non-Ewing small round cell tumors by using an antibody to NKX2.2. Nuclear staining in at least 5% of the cells was deemed positive. Twenty-eight (93%) of the 30 Ewing sarcomas were positive for NKX2.2. The staining was diffuse (>50%) in all the positive cases and was moderate or strong in intensity for most cases (25 of 28). NKX2.2 was also positive in 14 non-Ewing tumors, including all the olfactory neuroblastomas and a minor subset of small cell carcinomas, synovial sarcomas, mesenchymal chondrosarcomas, and malignant melanomas. All the other non-Ewing tumors tested were negative for this marker. NKX2.2 is a valuable marker for Ewing sarcoma, with a sensitivity of 93% and a specificity of 89%, and aids in the differential diagnosis of small round cell tumors.

  10. MDX-010 in Treating Patients With Recurrent or Refractory Lymphoma

    ClinicalTrials.gov

    2014-05-22

    Adult Grade III Lymphomatoid Granulomatosis; B-cell Chronic Lymphocytic Leukemia; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Testicular Lymphoma; Waldenström Macroglobulinemia

  11. Alemtuzumab, Fludarabine Phosphate, and Total-Body Irradiation Followed by Cyclosporine and Mycophenolate Mofetil in Treating Patients Who Are Undergoing Donor Stem Cell Transplant for Hematologic Cancer

    ClinicalTrials.gov

    2017-04-25

    Acute Undifferentiated Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Myelomonocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Juvenile Myelomonocytic Leukemia; Mast Cell Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Myelodysplastic Syndromes; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Testicular Lymphoma; Waldenström Macroglobulinemia

  12. Rituximab in Treating Patients Undergoing Donor Peripheral Blood Stem Cell Transplant for Relapsed or Refractory B-cell Lymphoma

    ClinicalTrials.gov

    2017-12-05

    B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; B-cell Chronic Lymphocytic Leukemia; Childhood Burkitt Lymphoma; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Testicular Lymphoma; Waldenström Macroglobulinemia

  13. Exosomes derived from mesenchymal non-small cell lung cancer cells promote chemoresistance.

    PubMed

    Lobb, Richard J; van Amerongen, Rosa; Wiegmans, Adrian; Ham, Sunyoung; Larsen, Jill E; Möller, Andreas

    2017-08-01

    Non-small cell lung cancer (NSCLC) is the most common lung cancer type and the most common cause of mortality in lung cancer patients. NSCLC is often associated with resistance to chemotherapeutics and together with rapid metastatic spread, results in limited treatment options and poor patient survival. NSCLCs are heterogeneous, and consist of epithelial and mesenchymal NSCLC cells. Mesenchymal NSCLC cells are thought to be responsible for the chemoresistance phenotype, but if and how this phenotype can be transferred to other NSCLC cells is currently not known. We hypothesised that small extracellular vesicles, exosomes, secreted by mesenchymal NSCLC cells could potentially transfer the chemoresistance phenotype to surrounding epithelial NSCLC cells. To explore this possibility, we used a unique human bronchial epithelial cell (HBEC) model in which the parental cells were transformed from an epithelial to mesenchymal phenotype by introducing oncogenic alterations common in NSCLC. We found that exosomes derived from the oncogenically transformed, mesenchymal HBECs could transfer chemoresistance to the parental, epithelial HBECs and increase ZEB1 mRNA, a master EMT transcription factor, in the recipient cells. Additionally, we demonstrate that exosomes from mesenchymal, but not epithelial HBECs contain the ZEB1 mRNA, thereby providing a potential mechanism for the induction of a mesenchymal phenotype in recipient cells. Together, this work demonstrates for the first time that exosomes derived from mesenchymal, oncogenically transformed lung cells can transfer chemoresistance and mesenchymal phenotypes to recipient cells, likely via the transfer of ZEB1 mRNA in exosomes. © 2017 UICC.

  14. Changes in cross-sectional area of pulmonary vessels on chest computed tomography after chemotherapy in patients with advanced non-squamous non-small-cell lung cancer.

    PubMed

    Karayama, Masato; Inui, Naoki; Kusagaya, Hideki; Suzuki, Seiichiro; Inoue, Yusuke; Enomoto, Noriyuki; Fujisawa, Tomoyuki; Nakamura, Yutaro; Suda, Takafumi

    2016-05-01

    Chemotherapy is associated with a risk of vascular damage. Novel anti-angiogenic agents, which can directly affect tumor angiogenesis, are increasingly being used. However, the effects of these agents on normal vasculature are not well understood. Here, we evaluated the effects of chemotherapy in general, and the anti-angiogenic agent bevacizumab, more specifically, on the pulmonary vasculature in patients with advanced non-squamous non-small-cell lung cancer (NSCLC). For this, we used the cross-sectional area of pulmonary vessels (CSA), which is an easily measurable indicator of small pulmonary vasculature on non-contrast chest computed tomography (CT). We retrospectively reviewed CT scans of the lungs of 75 chemo-naïve patients with advanced non-squamous NSCLC, for measurement of CSA, before and after first-line platinum-based chemotherapy, using a semi-automatic image-processing program. Measured vessels were classified in two groups: small vessels with CSA <5 mm(2) and large vessels with CSA between 5 and 10 mm(2). The CSAs for each group of vessels were calculated and summed separately, and expressed as a percentage of the total lung area (%CSA<5 and %CSA5-10). Chemotherapy was associated with a selective decrease in small-diameter vessels, with a significant decrease in %CSA<5, but not %CSA5-10. When comparing chemotherapy with bevacizumab (n = 38) and without bevacizumab (n = 37), there was no significant difference in the reduction of %CSA<5. Platinum-based chemotherapy might induce small pulmonary vascular damage. Use of bevacizumab does not enhance the reduction in area of pulmonary vessels.

  15. Apigenin potentiates TRAIL therapy of non-small cell lung cancer via upregulating DR4/DR5 expression in a p53-dependent manner

    PubMed Central

    Chen, Minghui; Wang, Xueshi; Zha, Daolong; Cai, Fangfang; Zhang, Wenjing; He, Yan; Huang, Qilai; Zhuang, Hongqin; Hua, Zi-Chun

    2016-01-01

    Apigenin (APG) is an edible plant-derived flavonoid that shows modest antitumor activities in vitro and in vivo. APG treatment results in cell growth arrest and apoptosis in various types of tumors by modulating several signaling pathways. In the present study, we evaluated interactions between APG and TRAIL in non-small cell lung cancer (NSCLC) cells. We observed a synergistic effect between APG and TRAIL on apoptosis of NSCLC cells. A549 cells and H1299 cells were resistant to TRAIL treatment alone. The presence of APG sensitized NSCLC cells to TRAIL-induced apoptosis by upregulating the levels of death receptor 4 (DR4) and death receptor 5 (DR5) in a p53-dependent manner. Consistently, the pro-apoptotic proteins Bad and Bax were upregulated, while the anti-apoptotic proteins Bcl-xl and Bcl-2 were downregulated. Meanwhile, APG suppressed NF-κB, AKT and ERK activation. Treatment with specific small-molecule inhibitors of these pathways enhanced TRAIL-induced cell death, mirroring the effect of APG. Furthermore, using a mouse xenograft model, we demonstrated that the combined treatment completely suppressed tumor growth as compared with APG or TRAIL treatment alone. Our results demonstrate a novel strategy to enhance TRAIL-induced antitumor activity in NSCLC cells by APG via inhibition of the NF-κB, AKT and ERK prosurvival regulators. PMID:27752089

  16. Apigenin potentiates TRAIL therapy of non-small cell lung cancer via upregulating DR4/DR5 expression in a p53-dependent manner.

    PubMed

    Chen, Minghui; Wang, Xueshi; Zha, Daolong; Cai, Fangfang; Zhang, Wenjing; He, Yan; Huang, Qilai; Zhuang, Hongqin; Hua, Zi-Chun

    2016-10-18

    Apigenin (APG) is an edible plant-derived flavonoid that shows modest antitumor activities in vitro and in vivo. APG treatment results in cell growth arrest and apoptosis in various types of tumors by modulating several signaling pathways. In the present study, we evaluated interactions between APG and TRAIL in non-small cell lung cancer (NSCLC) cells. We observed a synergistic effect between APG and TRAIL on apoptosis of NSCLC cells. A549 cells and H1299 cells were resistant to TRAIL treatment alone. The presence of APG sensitized NSCLC cells to TRAIL-induced apoptosis by upregulating the levels of death receptor 4 (DR4) and death receptor 5 (DR5) in a p53-dependent manner. Consistently, the pro-apoptotic proteins Bad and Bax were upregulated, while the anti-apoptotic proteins Bcl-xl and Bcl-2 were downregulated. Meanwhile, APG suppressed NF-κB, AKT and ERK activation. Treatment with specific small-molecule inhibitors of these pathways enhanced TRAIL-induced cell death, mirroring the effect of APG. Furthermore, using a mouse xenograft model, we demonstrated that the combined treatment completely suppressed tumor growth as compared with APG or TRAIL treatment alone. Our results demonstrate a novel strategy to enhance TRAIL-induced antitumor activity in NSCLC cells by APG via inhibition of the NF-κB, AKT and ERK prosurvival regulators.

  17. Non-contact temperature measurements for biotechnology discipline working group

    NASA Technical Reports Server (NTRS)

    Snyder, Robert S.

    1988-01-01

    In the biotechnology research areas, there is interest in measuring temperature changes over very small dimensions, such as the surface of a 10-micrometer diameter biological cell immersed in cell culture fluid. Non-interference measurements of other properties, such as chemical constituents and their concentrations, are also needed. Contacting probes for pH have recently been developed to penetrate a cell but questions have been raised about their accuracy and net value.

  18. Pulmonary Sarcoidosis Activation following Neoadjuvant Pembrolizumab plus Chemotherapy Combination Therapy in a Patient with Non-Small Cell Lung Cancer: A Case Report.

    PubMed

    Fakhri, Ghina; Akel, Reem; Salem, Ziad; Tawil, Ayman; Tfayli, Arafat

    2017-01-01

    Pembrolizumab is a humanized monoclonal antibody which serves to enhance the antitumor immune response by targeting programmed cell death 1 receptor. The use of pembrolizumab plus carboplatin/pemetrexed combination therapy results in improvement in overall survival and progression-free survival rates for non-small cell lung cancer (NSCLC) patients as compared to chemotherapy alone. However, numerous immune-mediated toxicities of pembrolizumab have been reported. We report the case of a 74-year-old male patient diagnosed with stage IIIA programmed death-ligand 1-positive non-small cell lung adenocarcinoma treated with 4 cycles of carboplatin/pemetrexed plus pembrolizumab combination therapy followed by 2 cycles of pembrolizumab treatment. Follow-up PET-CT scanning showed a very good response at the level of the tumor but new-onset activity in bilateral hilar and mediastinal lymph nodes. Biopsy of these lymph nodes revealed a benign pathology with noncaseating granulomas consistent with immune-mediated sarcoidosis. The pathogenesis of immunotherapy-induced sarcoidosis is not yet known but has been reported in different cancers and using different checkpoint inhibitors. To our knowledge, this case is the first in the literature displaying pulmonary sarcoidosis in a patient with NSCLC 4 months after having initiated chemotherapy plus pembrolizumab combination therapy.

  19. Pulmonary Sarcoidosis Activation following Neoadjuvant Pembrolizumab plus Chemotherapy Combination Therapy in a Patient with Non-Small Cell Lung Cancer: A Case Report

    PubMed Central

    Fakhri, Ghina; Akel, Reem; Salem, Ziad; Tawil, Ayman; Tfayli, Arafat

    2017-01-01

    Background Pembrolizumab is a humanized monoclonal antibody which serves to enhance the antitumor immune response by targeting programmed cell death 1 receptor. The use of pembrolizumab plus carboplatin/pemetrexed combination therapy results in improvement in overall survival and progression-free survival rates for non-small cell lung cancer (NSCLC) patients as compared to chemotherapy alone. However, numerous immune-mediated toxicities of pembrolizumab have been reported. Case Presentation We report the case of a 74-year-old male patient diagnosed with stage IIIA programmed death-ligand 1-positive non-small cell lung adenocarcinoma treated with 4 cycles of carboplatin/pemetrexed plus pembrolizumab combination therapy followed by 2 cycles of pembrolizumab treatment. Follow-up PET-CT scanning showed a very good response at the level of the tumor but new-onset activity in bilateral hilar and mediastinal lymph nodes. Biopsy of these lymph nodes revealed a benign pathology with noncaseating granulomas consistent with immune-mediated sarcoidosis. Conclusion The pathogenesis of immunotherapy-induced sarcoidosis is not yet known but has been reported in different cancers and using different checkpoint inhibitors. To our knowledge, this case is the first in the literature displaying pulmonary sarcoidosis in a patient with NSCLC 4 months after having initiated chemotherapy plus pembrolizumab combination therapy. PMID:29515398

  20. Trametinib with or without Vemurafenib in BRAF Mutated Non-Small Cell Lung Cancer

    PubMed Central

    Joshi, Monika; Rice, Shawn J.; Liu, Xin; Miller, Bruce; Belani, Chandra P.

    2015-01-01

    V-Raf Murine Sarcoma Viral Oncogene Homolog B (BRAF) mutated lung cancer is relatively aggressive and is resistant to currently available therapies. In a recent phase II study for patients with BRAF-V600E non-small cell lung cancer (NSCLC), BRAF V600E inhibitor demonstrated evidence of activity, but 30% of this selected group progressed while on treatment, suggesting a need for developing alternative strategies. We tested two different options to enhance the efficacy of vemurafenib (BRAF V600E inhibitor) in BRAF mutated NSCLC. The first option was the addition of erlotinib to vemurafenib to see whether the combination provided synergy. The second was to induce MEK inhibition (downstream of RAF) with trametinib (MEK inhibitor). We found that the combination of vemurafenib and erlotinib was not synergistic to the inhibition of p-ERK signaling in BRAF-V600E cells. Vemurafenib caused significant apoptosis, G1 arrest and upregulation of BIM in BRAF-V600 cells. Trametinib was effective as a single agent in BRAF mutated cells, either V600E or non-V600E. Finally, the combination of vemurafenib and trametinib caused a small but significant increase in apoptosis as well as a significant upregulation of BIM when compared to either single agent. Thus, hinting at the possibility of utilizing a combinational approach for the management of this group of patients. Importantly, trametinib alone caused upregulation of p-AKT in BRAF non-V600 mutated cells, while this effect was nullified with the combination. This finding suggests that, the combination of a MEK inhibitor with a BRAF inhibitor will be more efficacious in the clinical setting for patients with BRAF mutated NSCLC. PMID:25706985

  1. Clinical aspects of ECL-cell abnormalities.

    PubMed Central

    Hirschowitz, B. I.

    1998-01-01

    ECL cell hyperplasia results from hypergastrinemia, and in man this occurs due to achlorhydria in atrophic gastritis (pernicious anemia [PA]) and gastrinoma (Zollinger-Ellison syndrome [ZES]). Progression to neoplasia, i.e., ECL cell carcinoids (usually small, multicentric and non-functional), occurs in some five to 10 percent of patients with PA where they remain gastrin-dependent and reversible by normalization of serum gastrin by antrectomy. Even if untreated, the carcinoids are almost invariably benign and do not cause death. In ZES, ECL cell hyperplasia is progressive due to hypergastrinemia. However, carcinoids develop only in the MEN-I subtype but pose no additional threat of malignancy. A conservative approach is recommended for small multicentric carcinoids, and the tumors do not need removal. By contrast, single, large, non-gastrin-dependent carcinoids represent a different biological and clinical problem and are frequently malignant. PMID:10461361

  2. Usefulness of circulating free DNA for monitoring epidermal growth factor receptor mutations in advanced non-small cell lung cancer patients: a case report

    PubMed Central

    Gonzalez-Cao, Maria; Ramirez, Santiago Viteri; Ariza, Nuria Jordana; Balada, Ariadna; Garzón, Mónica; Teixidó, Cristina; Karachaliou, Niki; Morales-Espinosa, Daniela; Molina-Vila, Miguel Ángel; Rosell, Rafael

    2016-01-01

    Genomic analysis of circulating tumor DNA (ctDNA) released from cancer cells into the bloodstream has been proposed as a useful method to capture dynamic changes during the course of the disease. In particular, the ability to monitor epidermal growth factor receptor (EGFR) mutation status in cell-free circulating DNA (cfDNA) isolated from advanced non-small cell lung cancer (NSCLC) patients EGFR can help to the correct management of the disease and overcome the challenges associated with tumor heterogeneity and insufficient biopsied material to perform key molecular diagnosis. Here, we report a case of long term monitorization of EGFR mutation status in cfDNA from peripheral blood in an NSCLC patient in, with excellent correlation with clinical evolution. PMID:27826535

  3. Advances in the Treatment of Non-small Cell Lung Cancer: Focus on Nivolumab, Pembrolizumab, and Atezolizumab.

    PubMed

    Leventakos, Konstantinos; Mansfield, Aaron S

    2016-10-01

    Immunotherapy is revolutionizing the treatment of non-small cell lung cancer (NSCLC). Immune checkpoint inhibitors, including programmed cell death protein 1 (PD-1) and programmed cell death ligand 1 (PD-L1) monoclonal antibodies, are being introduced to routine clinical practice. This review summarizes clinical trials of nivolumab, pembrolizumab, and atezolizumab in patients with NSCLC. These agents have efficacy against NSCLC and a unique toxicity profile. The role of PD-L1 as a predictive biomarker is still unclear, partially because of the nuances of PD-L1 testing. These novel therapies also challenge our existing methodologies of radiologic assessment and efficacy analysis. This new era of immunotherapy has ushered in as much hope for patients as questions from physicians that need to be answered to clarify the optimal use of these agents.

  4. Derivation of highly purified cardiomyocytes from human induced pluripotent stem cells using small molecule-modulated differentiation and subsequent glucose starvation.

    PubMed

    Sharma, Arun; Li, Guang; Rajarajan, Kuppusamy; Hamaguchi, Ryoko; Burridge, Paul W; Wu, Sean M

    2015-03-18

    Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have become an important cell source to address the lack of primary cardiomyocytes available for basic research and translational applications. To differentiate hiPSCs into cardiomyocytes, various protocols including embryoid body (EB)-based differentiation and growth factor induction have been developed. However, these protocols are inefficient and highly variable in their ability to generate purified cardiomyocytes. Recently, a small molecule-based protocol utilizing modulation of Wnt/β-Catenin signaling was shown to promote cardiac differentiation with high efficiency. With this protocol, greater than 50%-60% of differentiated cells were cardiac troponin-positive cardiomyocytes were consistently observed. To further increase cardiomyocyte purity, the differentiated cells were subjected to glucose starvation to specifically eliminate non-cardiomyocytes based on the metabolic differences between cardiomyocytes and non-cardiomyocytes. Using this selection strategy, we consistently obtained a greater than 30% increase in the ratio of cardiomyocytes to non-cardiomyocytes in a population of differentiated cells. These highly purified cardiomyocytes should enhance the reliability of results from human iPSC-based in vitro disease modeling studies and drug screening assays.

  5. Sulphur alters NFκB-p300 cross-talk in favour of p53-p300 to induce apoptosis in non-small cell lung carcinoma.

    PubMed

    Saha, Shilpi; Bhattacharjee, Pushpak; Guha, Deblina; Kajal, Kirti; Khan, Poulami; Chakraborty, Sreeparna; Mukherjee, Shravanti; Paul, Shrutarshi; Manchanda, Rajkumar; Khurana, Anil; Nayak, Debadatta; Chakrabarty, Rathin; Sa, Gaurisankar; Das, Tanya

    2015-08-01

    Adverse side effects of chemotherapy during cancer treatment have shifted considerable focus towards therapies that are not only targeted but are also devoid of toxic side effects. We evaluated the antitumorigenic activity of sulphur, and delineated the molecular mechanisms underlying sulphur-induced apoptosis in non-small cell lung carcinoma (NSCLC) cells. A search for the underlying mechanism revealed that the choice between the two cellular processes, NFκBp65-mediated survival and p53-mediated apoptosis, was decided by the competition for a limited pool of transcriptional coactivator protein p300 in NSCLC cells. In contrast, sulphur inhibited otherwise upregulated survival signaling in NSCLC cells by perturbing the nuclear translocation of p65NFκB, its association with p300 histone acetylase, and subsequent transcription of Bcl-2. Under such anti-survival condition, induction of p53-p300 cross-talk enhanced the transcriptional activity of p53 and intrinsic mitochondrial death cascade. Overall, the findings of this preclinical study clearly delineated the molecular mechanism underlying the apoptogenic effect of the non-toxic homeopathic remedy, sulphur, in NSCLC cells.

  6. [Recent Advances and Prospect of Advanced Non-small Cell Lung Cancer Targeted 
Therapy: Focus on Small Molecular Tyrosine Kinase Inhibitors].

    PubMed

    Zhang, Guowei; Wang, Huijuan; Ma, Zhiyong

    2017-04-20

    At present the treatment of advanced non-small cell lung cancer enters a targeted era and develops rapidly. New drugs appear constantly. Small molecular tyrosine kinase inhibitors have occupied the biggest piece of the territory, which commonly have a clear biomarker as predictor, and show remarkable effect in specific molecular classification of patients. The epidermal growth factor tyrosine kinase inhibitors such as gefitinib, erlotinib, icotinib and anaplastic lymphoma kinase tyrosine kinase inhibitors crizotinib have brought a milestone advance. In recent years new generations of tyrosine kinase inhibitors have achieved a great success in patients with acquired resistance to the above two kinds of drugs. At the same time new therapeutic targets are constantly emerging. So in this paper, we reviewed and summarized the important drugs and clinical trails on this topic, and made a prospect of the future development.

  7. Late steps of egg cell differentiation are accelerated by pollination in Zea mays L.

    PubMed

    Mól, R; Idzikowska, K; Dumas, C; Matthys-Rochon, E

    2000-04-01

    Egg cells were analysed cytologically during the female receptivity period in maize (Zea mays L., line A 188). Three classes of egg cell were distinguished: type A--small, non-vacuolated cells with a central nucleus; type B--larger cells with small vacuoles surrounding the perinuclear cytoplasm located in the middle of the cell; type C--big cells with a large apical vacuole and the mid-basal perinuclear cytoplasm. The less-dense cytoplasm of the vacuolated egg cells usually contained numerous cup- or bell-shaped mitochondria. The three egg types appear to correspond to three late stages of egg cell differentiation. The frequencies of each of the three egg types were monitored in developing maize ears before and after pollination. In young ears, with the silks just extending out of the husks, small A-type cells were found in about 86% of ovules. Their frequency decreased to about 58% at the optimum silk length, remained unchanged in non-pollinated ears, and fell to 16% at the end of the female receptivity period. However, after pollination and before fertilisation the frequency of these cells decreased to about 33%, and the larger vacuolated egg cells (types B and C) prevailed. At various stages of the receptivity period, pollination accelerated changes in the egg population, increasing the number of ovules bearing larger, vacuolated egg cells. Experiments with silk removal demonstrated that putative pollination signals act immediately after pollen deposition and are not species-specific.

  8. Comparison of EGFR signaling pathway somatic DNA mutations derived from peripheral blood and corresponding tumor tissue of patients with advanced non-small-cell lung cancer using liquidchip technology.

    PubMed

    Zhang, Hui; Liu, Deruo; Li, Shanqing; Zheng, Yongqing; Yang, Xinjie; Li, Xi; Zhang, Quan; Qin, Na; Lu, Jialin; Ren-Heidenreich, Lifen; Yang, Huiyi; Wu, Yuhua; Zhang, Xinyong; Nong, Jingying; Sun, Yifen; Zhang, Shucai

    2013-11-01

    Somatic DNA mutations affecting the epidermal growth factor receptor (EGFR) signaling pathway are known to predict responsiveness to EGFR-tyrosine kinase inhibitor drugs in patients with advanced non-small-cell lung cancers. We evaluated a sensitive liquidchip platform for detecting EGFR, KRAS (alias Ki-ras), proto-oncogene B-Raf, and phosphatidylinositol 3-kinase CA mutations in plasma samples, which were highly correlated with matched tumor tissues from 86 patients with advanced non-small-cell lung cancers. Either EGFR exon 19 or 21 mutations were detected in 36 patients: 23 of whom had identical mutations in both their blood and tissue samples; whereas mutations in the remaining 13 were found only in their tumor samples. These EGFR mutations occurred at a significantly higher frequency in females, never-smokers, and in patients with adenocarcinomas (P ≤ 0.001). The EGFR exon 20 T790M mutation was detected in only one of the paired samples [100% (95% CI, 96% to 100%) agreement]. For KRAS, proto-oncogene B-Raf, and phosphatidylinositol 3-kinase CA mutations, the overall agreements were 97% (95% CI, 90% to 99%), 98% (95% CI, 92% to 99%), and 97% (95% CI, 90% to 99%), respectively, and these were not associated with age, sex, smoking history, or histopathologic type. In conclusion, mutations detected in plasma correlated strongly with mutation profiles in each respective tumor sample, suggesting that this liquidchip platform may offer a rapid and noninvasive method for predicting tumor responsiveness to EGFR-tyrosine kinase inhibitor drugs in patients with advanced non-small-cell lung cancers. Copyright © 2013 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  9. Mature Follow-Up for High-Risk Stage I Non-Small-Cell Lung Carcinoma Treated With Sublobar Resection and Intraoperative Iodine-125 Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colonias, Athanasios, E-mail: acolonia@wpahs.or; Drexel University College of Medicine, Allegheny Campus, Pittsburgh, PA; Betler, James

    2011-01-01

    Purpose: To update the Allegheny General Hospital experience of high-risk Stage I non-small-cell lung cancer patients treated with sublobar resection and intraoperative {sup 125}I Vicryl mesh brachytherapy. Methods and Materials: Between January 5, 1996 and February 19, 2008, 145 patients with Stage I non-small-cell lung cancer who were not lobectomy candidates because of cardiopulmonary compromise underwent sublobar resection and placement of {sup 125}I seeds along the resection line. The {sup 125}I seeds embedded in Vicryl suture were attached with surgical clips to a sheet of Vicryl mesh, inserted over the target area, and prescribed to a 0.5-cm planar margin. Results:more » The mean target area, total activity, number of seeds implanted, and prescribed total dose was 33.3 cm{sup 2} (range, 18.0-100.8), 20.2 mCi (range, 11.1-29.7), 46 (range, 30-100), and 117 Gy (range, 80-180), respectively. The median length of the surgical stay was 6 days (range, 1-111), with a perioperative mortality rate of 3.4%. At a median follow-up of 38.3 months (range, 1-133), 6 patients had developed local recurrence (4.1%), 9 had developed regional failure (6.2%), and 25 had distant failure (17.2%). On multivariate analysis, no patient- or tumor-specific factors or surgical or dosimetric factors were predictive of local recurrence. The overall median survival was 30.5 months with a 3- and 5-year overall survival rate of 65% and 35%, respectively. Conclusion: {sup 125}I brachytherapy for high-risk, Stage I non-small-cell lung cancer after sublobar resection is well tolerated and associated with a low local failure rate.« less

  10. Genetic polymorphisms in pre-miRNAs predict the survival of non-small-cell lung cancer in Chinese population: a cohort study and a meta-analysis

    PubMed Central

    Xia, Lingzi; Yin, Zhihua; Li, Xuelian; Ren, Yangwu; Zhang, Haibo; Zhao, Yuxia; Zhou, Baosen

    2017-01-01

    Background To explore the association of genetic polymorphisms in pre-miRNA 30c-1 rs928508 and pre-miRNA 27a rs895819 with non-small-cell lung cancer prognosis. Materials and Methods 480 patients from five hospitals were enrolled in this prospective cohort study. They were followed up for five years. The association between genotypes and overall survival was assessed by Cox proportional hazards regression models. A meta-analysis was conducted to provide evidence for the effect of microRNA 27a rs895819 on cancer survival. Results G-allele containing genotypes of microRNA 30c-1 polymorphisms and C-allele containing genotypes of microRNA 27a were significantly associated with poorer overall survival. Multivariate Cox regression models indicated that these genetic polymorhpisms were independently predictive factors of poorer overall survival. In stratified analysis, the effect was observed in many strata. The significant joint effect was also observed in our study. Patients with G allele of microRNA 30c-1 rs928508 and C allele of microRNA 27a rs895819 had the poorer overall survival than patients with C allele of rs928508 and T allele of rs895819. The effect of the microRNA 27a rs895819 on non-small cell lung cancer overall survival was supported by the meta-analysis results. Conclusions The two single nucleotide polymorphisms in microRNA 30c-1 and microRNA 27a can predict the outcome of non-small cell lung cancer patients and they may decrease the sensitivity to anti-cancer drugs. PMID:29100439

  11. Fusion positron emission/computed tomography underestimates the presence of hilar nodal metastases in patients with resected non-small cell lung cancer.

    PubMed

    Carrillo, Sergio A; Daniel, Vincent C; Hall, Nathan; Hitchcock, Charles L; Ross, Patrick; Kassis, Edmund S

    2012-05-01

    The 5-year survival for patients with resected stage II (N1) non-small cell lung cancer ranges from 40% to 55%. No data exist addressing the benefit of neoadjuvant therapy for patients with stage II disease. This is largely in part due to the lack of a reliable, minimally invasive method to assess hilar nodes. This study is aimed at determining the ability of fusion positron emission/computed tomography (PET/CT) to identify hilar metastases in patients with resected non-small cell lung cancer. A retrospective review of surgically resected patients with fusion PET/CT within 30 days of resection was performed. The sensitivity, specificity, positive predictive value, and negative predictive value for PET/CT in detecting hilar nodal metastases was calculated for a range of maximum standardized uptake values (SUVmax). Hilar nodes from patients with falsely positive PET/CT scans were analyzed for the presence of histoplasmosis. Additionally, the impact of hilar node size greater than 1 centimeter on the calculated values was assessed. There were 119 patients evaluated. The number of lymph nodes resected ranged from 1 to 12 (X=2.98). There was decreased sensitivity and increased specificity with higher SUVmax cutoff values. At the standard SUVmax value of 2.5, the sensitivity and specificity were only 48.5% and 80.2%. The addition of size of hilar node by CT led to a modest improvement in sensitivity at all SUVmax cutoff values. Fusion PET/CT lacks sensitivity and specificity in identifying hilar nodal metastasis in patients with resected non-small cell lung cancer. Further prospective studies assessing the utility of PET/CT versus alternative sampling techniques are warranted. Copyright © 2012 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  12. The concentration of erlotinib in the cerebrospinal fluid of patients with brain metastasis from non-small-cell lung cancer

    PubMed Central

    DENG, YANMING; FENG, WEINENG; WU, JING; CHEN, ZECHENG; TANG, YICONG; ZHANG, HUA; LIANG, JIANMIAO; XIAN, HAIBING; ZHANG, SHUNDA

    2014-01-01

    It has been demonstrated that erlotinib is effective in treating patients with brain metastasis from non-small-cell lung cancer. However, the number of studies determining the erlotinib concentration in these patients is limited. The purpose of this study was to measure the concentration of erlotinib in the cerebrospinal fluid of patients with brain metastasis from non-small-cell lung carcinoma. Six patients were treated with the standard recommended daily dose of erlotinib (150 mg) for 4 weeks. All the patients had previously received chemotherapy, but no brain radiotherapy. At the end of the treatment period, blood plasma and cerebrospinal fluid samples were collected and the erlotinib concentration was determined by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The average erlotinib concentration in the blood plasma and the cerebrospinal fluid was 717.7±459.7 and 23.7±13.4 ng/ml, respectively. The blood-brain barrier permeation rate of erlotinib was found to be 4.4±3.2%. In patients with partial response (PR), stable disease (SD) and progressive disease (PD), the average concentrations of erlotinib in the cerebrospinal fluid were 35.5±19.0, 19.1±8.7 and 16.4±5.9 ng/ml, respectively. In addition, the efficacy rate of erlotinib for metastatic brain lesions was 33.3%, increasing to 50% in patients with EGFR mutations. However, erlotinib appeared to be ineffective in cases with wild-type EGFR. In conclusion, a relatively high concentration of erlotinib was detected in the cerebrospinal fluid of patients with brain metastases from non-small-cell lung cancer. Thus, erlotinib may be considered as a treatment option for this patient population. PMID:24649318

  13. Clinical Outcomes and Prognostic Factors of High-Dose Proton Beam Therapy for Peripheral Stage I Non-Small-Cell Lung Cancer.

    PubMed

    Hatayama, Yoshiomi; Nakamura, Tatsuya; Suzuki, Motohisa; Azami, Yusuke; Ono, Takashi; Yabuuchi, Tomonori; Hayashi, Yuichiro; Kimura, Kanako; Hirose, Katsumi; Wada, Hitoshi; Hareyama, Masato; Kikuchi, Yasuhiro; Takai, Yoshihiro

    2016-09-01

    The efficacy, toxicity, and prognostic factors of high-dose proton beam therapy (PBT) for peripheral stage I non-small-cell lung cancer were assessed in this retrospective study. Fifty patients with peripheral stage I non-small-cell lung cancer, two of whom had heterochronic multiple lung cancers, underwent high-dose PBT between January 2009 and September 2014. The relative biological effectiveness of the proton beam was defined as 1.1. The beam energy and spread-out Bragg peak were fine-tuned for the 90% isodose volume of the prescribed dosage to encompass the planning target volume. The cumulative survival curves were calculated using the Kaplan-Meier method. Treatment toxicities were evaluated using version 4 of the Common Terminology Criteria for Adverse Events, version 4. The study included 35 males and 15 females with a median age of 72.5 years. The median follow-up period was 22.8 months. The clinical stage was IA in 44 (85%) and IB in eight (15%) tumors. The total dose of PBT was 66 GyE in 10 fractions in all tumors. Three-year overall survival rate among all patients was 87.9% (95% confidence interval [CI], 94.8%-73.2%). Forty-five patients were alive, and 5 were dead. Three-year local control and progression-free survival rates were 95.7% (95% CI, 98.9%-83.8%) and 76.3% (95% CI, 86.9%-59.3%), respectively. Only one patient experienced Grade 2 pneumonitis. High-dose PBT may be an effective and safe treatment option for patients with stage I non-small-cell lung cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Clinical Prognosis of Superior Versus Basal Segment Stage I Non-Small Cell Lung Cancer.

    PubMed

    Handa, Yoshinori; Tsutani, Yasuhiro; Tsubokawa, Norifumi; Misumi, Keizo; Hanaki, Hideaki; Miyata, Yoshihiro; Okada, Morihito

    2017-12-01

    Despite its extensive size, variations in the clinicopathologic features of tumors in the lower lobe have been little studied. The present study investigated the prognostic differences in tumors originating from the superior and basal segments of the lower lobe in patients with non-small cell lung cancer. Data of 134 patients who underwent lobectomy or segmentectomy with systematic nodal dissection for clinical stage I, radiologically solid-dominant, non-small cell lung cancer in the superior segment (n = 60) or basal segment (n = 74) between April 2007 and December 2015 were retrospectively reviewed. Factors affecting survival were assessed by the Kaplan-Meier method and Cox regression analyses. Prognosis in the superior segment group was worse than that in the basal segment group (5-year overall survival rates 62.6% versus 89.9%, p = 0.0072; and 5-year recurrence-free survival rates 54.4% versus 75.7%, p = 0.032). In multivariable Cox regression analysis, a superior segment tumor was an independent factor for poor overall survival (hazard ratio 3.33, 95% confidence interval: 1.22 to 13.5, p = 0.010) and recurrence-free survival (hazard ratio 2.90, 95% confidence interval: 1.20 to 7.00, p = 0.008). The superior segment group tended to have more pathologic mediastinal lymph node metastases than the basal segment group (15.0% versus 5.4%, p = 0.080). Tumor location was a prognostic factor for clinical stage I non-small cell lung cancer in the lower lobe. Patients with superior segment tumors had worse prognosis than patients with basal segment tumors, with more metastases in mediastinal lymph nodes. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  15. [Clinical efficacy and adverse effects of taxol plus carboplatin or gemcitabine plus carboplatin in patients with advanced non-small-cell lung carcinoma].

    PubMed

    Wang, Xiao-Yun; Zhao, Yu-Liang

    2010-12-21

    To observe the clinical efficacy and adverse effects of taxol plus carboplatin (TP) or gemcitabine plus carboplatin (GP) in patients with advanced non-small-cell lung carcinoma. A total of 86 patients with advanced non-small-cell lung carcinoma with a histologically confirmed diagnosis at our department were treated with at least two cycles of drug therapy according to the WHO standard. There were 43 cases in TP group and 43 cases in GP group. TP group: taxol 150 mg/m(2), d1, carboplatin 300 mg/m(2) in d1; GP group: gemcitabine 1000 mg/m(2), 30 min, d1, 8, carboplatin 300 mg/m(2) in d1, 3 weeks a cycle. The efficacy and side effects were analyzed after two cycles of chemotherapy. When TP and GP groups were compared, the effective rate was 44.2% vs 39.5%; disease control rate (CR + PR + SD): 81.4% vs 74.4%; median time to progress (TTP): 4.6 vs 4.5 months; medium survivals: 8.6 vs 8.8 months; 1-year survival rates: 17.2% vs 18.1%; 2-year survival rates: 8% vs 10%. The statistic analysis showed that the two groups had no significant difference. The main cytotoxicities of GP and TP groups were predominantly thrombocytopenia and leucopenia respectively. The two groups had no significant statistical difference. The incidences of allergen, alopecia and peripheral neurotoxicity were higher in the TP group. The two groups had statistical difference. Tolerance was excellent in both groups. The therapeutic effect and tolerance are excellent for advanced non-small cell lung carcinoma. The efficacy and survival rate of two groups show no statistical difference.

  16. Surgical and survival outcomes of lung cancer patients with intratumoral lung abscesses.

    PubMed

    Yamanashi, Keiji; Okumura, Norihito; Takahashi, Ayuko; Nakashima, Takashi; Matsuoka, Tomoaki

    2017-05-26

    Intratumoral lung abscess is a secondary lung abscess that is considered to be fatal. Therefore, surgical procedures, although high-risk, have sometimes been performed for intratumoral lung abscesses. However, no studies have examined the surgical outcomes of non-small cell lung cancer patients with intratumoral lung abscesses. The aim of this study was to investigate the surgical and survival outcomes of non-small cell lung cancer patients with intratumoral lung abscesses. Eleven consecutive non-small cell lung cancer patients with intratumoral lung abscesses, who had undergone pulmonary resection at our institution between January 2007 and December 2015, were retrospectively analysed. The post-operative prognoses were investigated and prognostic factors were evaluated. Ten of 11 patients were male and one patient was female. The median age was 64 (range, 52-80) years. Histopathologically, 4 patients had Stage IIA, 2 patients had Stage IIB, 2 patients had Stage IIIA, and 3 patients had Stage IV tumors. The median operative time was 346 min and the median amount of bleeding was 1327 mL. The post-operative morbidity and mortality rates were 63.6% and 0.0%, respectively. Recurrence of respiratory infections, including lung abscesses, was not observed in all patients. The median post-operative observation period was 16.1 (range, 1.3-114.5) months. The 5-year overall survival rate was 43.3%. No pre-operative, intra-operative, or post-operative prognostic factors were identified in the univariate analyses. Surgical procedures for advanced-stage non-small cell lung cancer patients with intratumoral lung abscesses, although high-risk, led to satisfactory post-operative mortality rates and acceptable prognoses.

  17. Clinical significance of preoperative serum albumin level for prognosis in surgically resected patients with non-small cell lung cancer: Comparative study of normal lung, emphysema, and pulmonary fibrosis.

    PubMed

    Miura, Kentaro; Hamanaka, Kazutoshi; Koizumi, Tomonobu; Kitaguchi, Yoshiaki; Terada, Yukihiro; Nakamura, Daisuke; Kumeda, Hirotaka; Agatsuma, Hiroyuki; Hyogotani, Akira; Kawakami, Satoshi; Yoshizawa, Akihiko; Asaka, Shiho; Ito, Ken-Ichi

    2017-09-01

    This study was performed to clarify whether preoperative serum albumin level is related to the prognosis of non-small cell lung cancer patients undergoing surgical resection, and the relationships between serum albumin level and clinicopathological characteristics of lung cancer patients with emphysema or pulmonary fibrosis. We retrospectively evaluated 556 patients that underwent surgical resection for non-small cell lung cancer. The correlation between preoperative serum albumin level and survival was evaluated. Patients were divided into three groups according to the findings on chest high-resolution computed tomography (normal lung, emphysema, and pulmonary fibrosis), and the relationships between serum albumin level and clinicopathological characteristics, including prognosis, were evaluated. The cut-off value of serum albumin level was set at 4.2g/dL. Patients with low albumin levels (albumin <4.2) had significantly poorer prognosis than those with high albumin levels (albumin ≥4.2) with regard to both overall survival and recurrence-free survival. Serum albumin levels in the emphysema group (n=48) and pulmonary fibrosis group (n=45) were significantly lower than that in the normal lung group (n=463) (p=0.009 and <0.001, respectively). Low serum albumin level was a risk factor in normal lung and pulmonary fibrosis groups, but not in the emphysema group. Preoperative serum albumin level was an important prognostic factor for overall survival and recurrence-free survival in patients with resected non-small cell lung cancer. Divided into normal lung, emphysema, and pulmonary fibrosis groups, serum albumin level showed no influence only in patients in the emphysema group. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Protocol Design for the Bench to Bed Trial in Alectinib-Refractory Non-Small-Cell Lung Cancer Patients Harboring the EML4-ALK Fusion Gene (ALRIGHT/OLCSG1405).

    PubMed

    Isozaki, Hideko; Hotta, Katsuyuki; Ichihara, Eiki; Takigawa, Nagio; Ohashi, Kadoaki; Kubo, Toshio; Ninomiya, Takashi; Ninomiya, Kiichiro; Oda, Naohiro; Yoshioka, Hiroshige; Ichikawa, Hirohisa; Inoue, Masaaki; Takata, Ichiro; Shibayama, Takuo; Kuyama, Shoichi; Sugimoto, Keisuke; Harada, Daijiro; Harita, Shingo; Sendo, Toshiaki; Tanimoto, Mitsune; Kiura, Katsuyuki

    2016-11-01

    Based on our preclinical study results, which showed that the activation of the hepatocyte growth factor/MET pathway is a potential mechanism of acquired resistance to alectinib, we launched the ALRIGHT (OLCSG1405 [alectinib-refractory non-small-cell lung cancer patients harboring the EML4-ALK fusion gene]), a phase II trial of the anaplastic lymphoma kinase (ALK)/MET inhibitor crizotinib in patients with non-small-cell lung cancer refractory to alectinib and harboring the echinoderm microtubule-associated protein-like 4 (EML4)-ALK fusion gene. Patients with ALK-rearranged tumors who have developed disease progression during alectinib treatment will receive crizotinib monotherapy until disease progression or the occurrence of unacceptable toxicity. The primary endpoint is set as the objective response rate, assuming that a response in 50% of eligible patients will indicate potential usefulness and that 15% would be the lower limit of interest (1-sided α of 0.05, β of 0.20). The estimated accrual number of patients is 9. The secondary endpoints include progression-free survival, overall survival, adverse events, and patient-reported outcomes. We will also take tissue samples before crizotinib monotherapy to conduct an exploratory analysis of ALK and hepatocyte growth factor/MET expression levels and gene alterations (eg, mutations, amplifications, and translocations). We will obtain information regarding whether crizotinib, which targets not only ALK, but also MET, can truly produce efficacy with acceptable safety profiles in ALK + non-small-cell lung cancer even in the alectinib-refractory setting. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer

    PubMed Central

    2012-01-01

    Background G-protein-coupled estrogen receptor (GPER/GPR30) was reported to bind 17β-estradiol (E2), tamoxifen, and ICI 182,780 (fulvestrant) and promotes activation of epidermal growth factor receptor (EGFR)-mediated signaling in breast, endometrial and thyroid cancer cells. Although lung adenocarcinomas express estrogen receptors α and β (ERα and ERβ), the expression of GPER in lung cancer has not been investigated. The purpose of this study was to examine the expression of GPER in lung cancer. Methods The expression patterns of GPER in various lung cancer lines and lung tumors were investigated using standard quantitative real time PCR (at mRNA levels), Western blot and immunohistochemistry (IHC) methods (at protein levels). The expression of GPER was scored and the pairwise comparisons (cancer vs adjacent tissues as well as cancer vs normal lung tissues) were performed. Results Analysis by real-time PCR and Western blotting revealed a significantly higher expression of GPER at both mRNA and protein levels in human non small cell lung cancer cell (NSCLC) lines relative to immortalized normal lung bronchial epithelial cells (HBECs). The virally immortalized human small airway epithelial cell line HPL1D showed higher expression than HBECs and similar expression to NSCLC cells. Immunohistochemical analysis of tissue sections of murine lung adenomas as well as human lung adenocarcinomas, squamous cell carcinomas and non-small cell lung carcinomas showed consistently higher expression of GPER in the tumor relative to the surrounding non-tumor tissue. Conclusion The results from this study demonstrate increased GPER expression in lung cancer cells and tumors compared to normal lung. Further evaluation of the function and regulation of GPER will be necessary to determine if GPER is a marker of lung cancer progression. PMID:23273253

  20. The nitric oxide prodrug JS-K is effective against non-small-cell lung cancer cells in vitro and in vivo: involvement of reactive oxygen species.

    PubMed

    Maciag, Anna E; Chakrapani, Harinath; Saavedra, Joseph E; Morris, Nicole L; Holland, Ryan J; Kosak, Ken M; Shami, Paul J; Anderson, Lucy M; Keefer, Larry K

    2011-02-01

    Non-small-cell lung cancer is among the most common and deadly forms of human malignancies. Early detection is unusual, and there are no curative therapies in most cases. Diazeniumdiolate-based nitric oxide (NO)-releasing prodrugs are a growing class of promising NO-based therapeutics. Here, we show that O(2)-(2,4-dinitrophenyl)-1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K) is a potent cytotoxic agent against a subset of human non-small-cell lung cancer cell lines both in vitro and as xenografts in mice. JS-K treatment led to 75% reduction in the growth of H1703 lung adenocarcinoma cells in vivo. Differences in sensitivity to JS-K in different lung cancer cell lines seem to be related to their endogenous levels of reactive oxygen species (ROS)/reactive nitrogen species (RNS). Other related factors, levels of peroxiredoxin 1 (PRX1) and 8-oxo-deoxyguanosine glycosylase (OGG1), also correlated with drug sensitivity. Treatment of the lung adenocarcinoma cells with JS-K resulted in oxidative/nitrosative stress in cells with high basal levels of ROS/RNS, which, combined with the arylating properties of the compound, was reflected in glutathione depletion and alteration in cellular redox potential, mitochondrial membrane permeabilization, and cytochrome c release. Inactivation of manganese superoxide dismutase by nitration was associated with increased superoxide and significant DNA damage. Apoptosis followed these events. Taken together, the data suggest that diazeniumdiolate-based NO-releasing prodrugs may have application as a personalized therapy for lung cancers characterized by high levels of ROS/RNS. PRX1 and OGG1 proteins, which can be easily measured, could function as biomarkers for identifying tumors sensitive to the therapy.

  1. Global assessment of small RNAs reveals a non-coding transcript involved in biofilm formation and attachment in Acinetobacter baumannii ATCC 17978

    PubMed Central

    Pérez, Astrid; Gómez, Manuel J.; Gayoso, Carmen; Vallejo, Juan A.; Ohneck, Emily J.; Valle, Jaione; Actis, Luis A.; Beceiro, Alejandro; Bou, Germán

    2017-01-01

    Many strains of Acinetobacter baumannii have been described as being able to form biofilm. Small non-coding RNAs (sRNAs) control gene expression in many regulatory circuits in bacteria. The aim of the present work was to provide a global description of the sRNAs produced both by planktonic and biofilm-associated (sessile) cells of A. baumannii ATCC 17978, and to compare the corresponding gene expression profiles to identify sRNAs molecules associated to biofilm formation and virulence. sRNA was extracted from both planktonic and sessile cells and reverse transcribed. cDNA was subjected to 454-pyrosequencing using the GS-FLX Titanium chemistry. The global analysis of the small RNA transcriptome revealed different sRNA expression patterns in planktonic and biofilm associated cells, with some of the transcripts only expressed or repressed in sessile bacteria. A total of 255 sRNAs were detected, with 185 of them differentially expressed in the different types of cells. A total of 9 sRNAs were expressed only in biofilm cells, while the expression of other 21 coding regions were repressed only in biofilm cells. Strikingly, the expression level of the sRNA 13573 was 120 times higher in biofilms than in planktonic cells, an observation that prompted us to further investigate the biological role of this non-coding transcript. Analyses of an isogenic mutant and over-expressing strains revealed that the sRNA 13573 gene is involved in biofilm formation and attachment to A549 human alveolar epithelial cells. The present work serves as a basis for future studies examining the complex regulatory network that regulate biofilm biogenesis and attachment to eukaryotic cells in A. baumannii ATCC 17978. PMID:28763494

  2. Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer.

    PubMed

    Jala, Venkatakrishna Rao; Radde, Brandie N; Haribabu, Bodduluri; Klinge, Carolyn M

    2012-12-28

    G-protein-coupled estrogen receptor (GPER/GPR30) was reported to bind 17β-estradiol (E2), tamoxifen, and ICI 182,780 (fulvestrant) and promotes activation of epidermal growth factor receptor (EGFR)-mediated signaling in breast, endometrial and thyroid cancer cells. Although lung adenocarcinomas express estrogen receptors α and β (ERα and ERβ), the expression of GPER in lung cancer has not been investigated. The purpose of this study was to examine the expression of GPER in lung cancer. The expression patterns of GPER in various lung cancer lines and lung tumors were investigated using standard quantitative real time PCR (at mRNA levels), Western blot and immunohistochemistry (IHC) methods (at protein levels). The expression of GPER was scored and the pairwise comparisons (cancer vs adjacent tissues as well as cancer vs normal lung tissues) were performed. Analysis by real-time PCR and Western blotting revealed a significantly higher expression of GPER at both mRNA and protein levels in human non small cell lung cancer cell (NSCLC) lines relative to immortalized normal lung bronchial epithelial cells (HBECs). The virally immortalized human small airway epithelial cell line HPL1D showed higher expression than HBECs and similar expression to NSCLC cells. Immunohistochemical analysis of tissue sections of murine lung adenomas as well as human lung adenocarcinomas, squamous cell carcinomas and non-small cell lung carcinomas showed consistently higher expression of GPER in the tumor relative to the surrounding non-tumor tissue. The results from this study demonstrate increased GPER expression in lung cancer cells and tumors compared to normal lung. Further evaluation of the function and regulation of GPER will be necessary to determine if GPER is a marker of lung cancer progression.

  3. Functional Interplay between Small Non-Coding RNAs and RNA Modification in the Brain.

    PubMed

    Leighton, Laura J; Bredy, Timothy W

    2018-06-07

    Small non-coding RNAs are essential for transcription, translation and gene regulation in all cell types, but are particularly important in neurons, with known roles in neurodevelopment, neuroplasticity and neurological disease. Many small non-coding RNAs are directly involved in the post-transcriptional modification of other RNA species, while others are themselves substrates for modification, or are functionally modulated by modification of their target RNAs. In this review, we explore the known and potential functions of several distinct classes of small non-coding RNAs in the mammalian brain, focusing on the newly recognised interplay between the epitranscriptome and the activity of small RNAs. We discuss the potential for this relationship to influence the spatial and temporal dynamics of gene activation in the brain, and predict that further research in the field of epitranscriptomics will identify interactions between small RNAs and RNA modifications which are essential for higher order brain functions such as learning and memory.

  4. Donor Peripheral Stem Cell Transplant in Treating Patients With Hematolymphoid Malignancies

    ClinicalTrials.gov

    2016-11-17

    Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Relapsing Chronic Myelogenous Leukemia; Splenic Marginal Zone Lymphoma; Waldenstrom Macroglobulinemia

  5. HOXB2, an adverse prognostic indicator for stage I lung adenocarcinomas, promotes invasion by transcriptional regulation of metastasis-related genes in HOP-62 non-small cell lung cancer cells.

    PubMed

    Inamura, Kentaro; Togashi, Yuki; Ninomiya, Hironori; Shimoji, Takashi; Noda, Tetsuo; Ishikawa, Yuichi

    2008-01-01

    Previously, using microarray and real-time RT-PCR analysis, we established that HOXB2 is an adverse prognostic indicator for Stage I lung adenocarcinomas. HOXB2 is one of the homeobox master development-controlling genes regulating morphogenesis and cell differentiation. The molecular functions of HOXB2 were analyzed with a small interfering RNA (siRNA) approach in HOP-62 human non-small cell lung cancer (NSCLC) cells featuring high HOXB2 expression. Matrigel invasion assays and microarray gene expression analysis were compared between the HOXB2-siRNA cells and the control cells. The Matrigel invasion assays showed attenuation of HOXB2 expression by siRNA to result in a significant decrease of invasiveness compared to the control cells (p = 0.0013, paired t-test). On microarray gene expression analysis, up-regulation of many metastasis-related genes and others correlating with HOXB2 expression was observed in the control case. With attenuation of HOXB2 expression, downregulation was noted for laminins alpha 4 and 5, involved in enriched signaling, and for Mac-2BP (Mac-2 binding protein) and integrin beta 4 amongst the genes having an enriched glycoprotein ontology. HOXB2 promotes invasion of lung cancer cells through the regulation of metastasis-related genes.

  6. Panobinostat and Everolimus in Treating Patients With Recurrent Multiple Myeloma, Non-Hodgkin Lymphoma, or Hodgkin Lymphoma

    ClinicalTrials.gov

    2018-04-19

    Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; B-cell Adult Acute Lymphoblastic Leukemia; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Primary Central Nervous System Non-Hodgkin Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Multiple Myeloma; Splenic Marginal Zone Lymphoma; T-cell Adult Acute Lymphoblastic Leukemia; Waldenström Macroglobulinemia

  7. Rapid response of brain metastases to alectinib in a patient with non-small-cell lung cancer resistant to crizotinib.

    PubMed

    Ajimizu, Hitomi; Kim, Young Hak; Mishima, Michiaki

    2015-02-01

    Crizotinib is a potent and specific small-molecule inhibitor of both anaplastic lymphoma kinase (ALK) and c-MET tyrosine kinases, and patients with ALK rearrangement tumor benefit from crizotinib treatment; however, its penetration into calculated cerebrospinal fluid (CSF) is considered to be poor. Alectinib is a highly selective, next-generation ALK inhibitor, and both preclinical and clinical studies have indicated that alectinib is also effective in crizotinib-resistant tumors. A recent in vitro study demonstrated significant antitumor activity of alectinib for brain metastases using mouse models of ALK-positive non-small-cell lung cancer. In this paper, we report a first case alectinib was highly effective against brain metastases refractory to crizotinib. Further investigation of alectinib in this setting would be particularly valuable.

  8. Treating advanced non-small-cell lung cancer in Chinese patients: focus on icotinib

    PubMed Central

    Liang, Jun-Li; Ren, Xiao-Cang; Lin, Qiang

    2014-01-01

    Icotinib hydrochloride is an orally administered small-molecule reversible tyrosine kinase inhibitor that has been independently researched and developed and has independent intellectual property rights in the People’s Republic of China. Clinical trials have demonstrated that the response to icotinib among advanced non-small-cell lung cancer (NSCLC) patients who received at least one platinum-based chemotherapy regimen was not inferior to gefitinib. Since being launched August 2011 in the People’s Republic of China, icotinib has been widely used in clinics, and has become an important treatment option for Chinese patients with advanced NSCLC. The present study presents the Phase I, II, and III clinical trials of icotinib and discusses current clinical applications in the People’s Republic of China and future research directions. PMID:24876785

  9. Pharmacoeconomic analysis of consolidation therapy with pemetrexed after first-line chemotherapy for non-small cell lung cancer.

    PubMed

    Tsuchiya, Takanori; Fukuda, Takashi; Furuiye, Masashi; Kawabuchi, Koichi

    2011-12-01

    Prolongation of progression-free survival and overall survival have been reported with consolidation therapy after first-line chemotherapy in non-small cell lung cancer, but only a few pharmacoeconomic analyses have been performed. We performed a pharmacoeconomic analysis to assess the cost-effectiveness of consolidation therapy with pemetrexed compared with non-consolidation therapy. We developed a Markov model to evaluate the incremental cost-effectiveness ratio (ICER) of consolidation therapy with pemetrexed compared with non-consolidation therapy based on previous reports. We analyzed all histology groups together, and individually analyzed non-squamous cell carcinoma, in which pemetrexed has been shown to be more effective, and squamous cell carcinoma, in which pemetrexed has been shown to be less effective. We conducted a Monte-Carlo simulation to assess the uncertainty for our analysis model and the willingness to pay using thresholds. The ICER for consolidation therapy with pemetrexed was about US$ 109,024/life years gained (LYG) (JPY 12.5 million/LYG) and US$ 203,022/quality-adjusted life years (QALY) (JPY 23.3 million/QALY) for all histology. For non-squamous cell carcinoma, respective values were US$ 80,563/LYG (JPY 9.3 million/LYG) and US$ 150,115/QALY (JPY 17.3 million/QALY). Both % of probability at a threshold of JPY 5.0 million (US$ 43,478) for all histology and non-squamous cell carcinoma were less than 0.1%. This result indicates that it is difficult to use consolidation therapy as the standard of care in Japan while being covered by general medical insurance. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Allo HSCT Using RIC for Hematological Diseases

    ClinicalTrials.gov

    2017-12-03

    Acute Myelogenous Leukemia; Acute Lymphocytic Leukemia; Chronic Myelogenous Leukemia; Plasma Cell Leukemia; Myelodysplastic Syndromes; Chronic Lymphocytic Leukemia; Small Lymphocytic Lymphoma; B-Cell Lymphoma; Follicular Lymphoma; Lymphoplasmacytic Lymphoma; Mantle-Cell Lymphoma; Prolymphocytic Leukemia; Lymphoblastic Lymphoma; Burkitt's Lymphoma; Non-Hodgkin's Lymphoma; Multiple Myeloma; Myeloproliferative Syndromes; Hematological Diseases

  11. Identification and Characterization of a Suite of Tumor Targeting Peptides for Non-Small Cell Lung Cancer

    NASA Astrophysics Data System (ADS)

    McGuire, Michael J.; Gray, Bethany Powell; Li, Shunzi; Cupka, Dorothy; Byers, Lauren Averett; Wu, Lei; Rezaie, Shaghayegh; Liu, Ying-Horng; Pattisapu, Naveen; Issac, James; Oyama, Tsukasa; Diao, Lixia; Heymach, John V.; Xie, Xian-Jin; Minna, John D.; Brown, Kathlynn C.

    2014-03-01

    Tumor targeting ligands are emerging components in cancer therapies. Widespread use of targeted therapies and molecular imaging is dependent on increasing the number of high affinity, tumor-specific ligands. Towards this goal, we biopanned three phage-displayed peptide libraries on a series of well-defined human non-small cell lung cancer (NSCLC) cell lines, isolating 11 novel peptides. The peptides show distinct binding profiles across 40 NSCLC cell lines and do not bind normal bronchial epithelial cell lines. Binding of specific peptides correlates with onco-genotypes and activation of particular pathways, such as EGFR signaling, suggesting the peptides may serve as surrogate markers. Multimerization of the peptides results in cell binding affinities between 0.0071-40 nM. The peptides home to tumors in vivo and bind to patient tumor samples. This is the first comprehensive biopanning for isolation of high affinity peptidic ligands for a single cancer type and expands the diversity of NSCLC targeting ligands.

  12. Gene expression analysis of microtubule affinity-regulating kinase 2 in non-small cell lung cancer.

    PubMed

    Marshall, Erin A; Ng, Kevin W; Anderson, Christine; Hubaux, Roland; Thu, Kelsie L; Lam, Wan L; Martinez, Victor D

    2015-12-01

    Lung cancer is the leading cause of cancer death worldwide, and has a five-year survival rate of 18% [1]. MARK2 is a serine/threonine-protein kinase, and is a key component in the phosphorylation of microtubule-associated proteins [2], [3]. A recent study published by Hubaux et al. found that microtubule affinity-regulating kinase 2 (MARK2) showed highly frequent DNA and RNA level disruption in lung cancer cell lines and independent non-small cell lung cancer (NSCLC) cohorts [4]. These alterations result in the acquisition of oncogenic properties in cell lines, such as increased viability and anchorage-independent growth. Furthermore, a microarray-based transcriptome analysis of three short hairpin RNA (shRNA)-mediated MARK2 knockdown lung adenocarcinoma cell lines (GEO#: GSE57966) revealed an association between MARK2 gene expression and cell cycle activation and DNA damage response. Here, we present a detailed description of transcriptome analysis to support the described role of MARK2 in promoting a malignant phenotype.

  13. Identification and Characterization of a Suite of Tumor Targeting Peptides for Non-Small Cell Lung Cancer

    PubMed Central

    McGuire, Michael J.; Gray, Bethany Powell; Li, Shunzi; Cupka, Dorothy; Byers, Lauren Averett; Wu, Lei; Rezaie, Shaghayegh; Liu, Ying-Horng; Pattisapu, Naveen; Issac, James; Oyama, Tsukasa; Diao, Lixia; Heymach, John V.; Xie, Xian-Jin; Minna, John D.; Brown, Kathlynn C.

    2014-01-01

    Tumor targeting ligands are emerging components in cancer therapies. Widespread use of targeted therapies and molecular imaging is dependent on increasing the number of high affinity, tumor-specific ligands. Towards this goal, we biopanned three phage-displayed peptide libraries on a series of well-defined human non-small cell lung cancer (NSCLC) cell lines, isolating 11 novel peptides. The peptides show distinct binding profiles across 40 NSCLC cell lines and do not bind normal bronchial epithelial cell lines. Binding of specific peptides correlates with onco-genotypes and activation of particular pathways, such as EGFR signaling, suggesting the peptides may serve as surrogate markers. Multimerization of the peptides results in cell binding affinities between 0.0071–40 nM. The peptides home to tumors in vivo and bind to patient tumor samples. This is the first comprehensive biopanning for isolation of high affinity peptidic ligands for a single cancer type and expands the diversity of NSCLC targeting ligands. PMID:24670678

  14. Separation of human bone marrow by counterflow centrifugation monitored by DNA-flowcytometry.

    PubMed

    de Witte, T; Plas, A; Koekman, E; Blankenborg, G; Salden, M; Wessels, J; Haanen, C

    1984-10-01

    Human bone marrow was fractionated by counterflow centrifugation into 16 fractions with increasing cell size. Three distinct subpopulations could be recognized: small lymphocytic cells, medium-sized nucleated erythroid cells and large myeloid elements. DNA-flowcytometry and 3H-thymidine uptake showed that within the erythroid and myeloid cell populations counterflow centrifugation separates each population according to the cell cycle phase. Hypotonic treatment of bone marrow for removal of the erythroid nucleated cells resulted in a complete abrogation of the proliferating erythroid cell population. Counterflow centrifugation also separates the small non-proliferating myeloid and erythroid committed stem cells from the larger proliferating stem cells. It appeared feasible to separate the small lymphocytic cells from the majority of BFU-E and CFU-GM, due to the larger size of the proliferating normoblasts and the committed progenitor cells. Elimination of the mature lymphocytes from the haematopoietic stem cells by counterflow centrifugation may offer an alternative approach to the prevention of graft versus host disease (GvHD).

  15. Accuracy of cytology in sub typing non small cell lung carcinomas.

    PubMed

    Patel, Trupti S; Shah, Majal G; Gandhi, Jahnavi S; Patel, Pratik

    2017-07-01

    Sub typing of non small cell lung carcinoma (NSCLC) has an important task in the era of molecular and targeted therapies. Differentiating between squamous cell carcinoma (SQCC) and adenocarcinoma (ADC) is challenging when limited material is available in lung carcinoma. We investigated the accuracy and feasibility of sub typing NSCLCs in cytology and small biopsy material. Concurrent cytology and biopsy material obtained in a single CT- guided procedure in lung carcinoma over a year period retrospectively. Both materials were individually sub typed and analyzed. Immunohistochemistry (IHC) was performed. Accuracy was determined by comparing the results with IHC. Total 107 of 126 cases of NSCLCs were included for analysis, where both cytology and biopsy material were adequate for interpretation. FNAC allowed tumor typing in 83 (77.6%) cases; 36 (33.6%) were ADC, 47 (43.9%) cases were SQCC and 24 (22.4%) cases diagnosed as Non-small cell carcinoma not otherwise specified (NSCLC-NOS). In biopsy, 86 cases (80.4%) were typed, among which 34 (31.8%) were ADC, 52 (48.6%) were SQCC and 21 (19.6%) were of NSCLC-NOS type. The result of Chi-square index was significant. With the aid of IHC, NSCLC-NOS reduced from 14 (13%) cases to 2 (1.9%) cases. Cytology and small biopsy specimens achieved comparable specificity and accuracy in sub-typing NSCLC and optimal results were obtain when findings from both modalities combine. The advantage of paired specimens is to maximize overall diagnostic yield and the remaining material will be available for ancillary technique like IHC or for molecular testing. Diagn. Cytopathol. 2017;45:598-603. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Myeloid Clusters Are Associated with a Pro-Metastatic Environment and Poor Prognosis in Smoking-Related Early Stage Non-Small Cell Lung Cancer

    PubMed Central

    Zhang, Wang; Pal, Sumanta K.; Liu, Xueli; Yang, Chunmei; Allahabadi, Sachin; Bhanji, Shaira; Figlin, Robert A.; Yu, Hua; Reckamp, Karen L.

    2013-01-01

    Background This study aimed to understand the role of myeloid cell clusters in uninvolved regional lymph nodes from early stage non-small cell lung cancer patients. Methods Uninvolved regional lymph node sections from 67 patients with stage I–III resected non-small cell lung cancer were immunostained to detect myeloid clusters, STAT3 activity and occult metastasis. Anthracosis intensity, myeloid cluster infiltration associated with anthracosis and pSTAT3 level were scored and correlated with patient survival. Multivariate Cox regression analysis was performed with prognostic variables. Human macrophages were used for in vitro nicotine treatment. Results CD68+ myeloid clusters associated with anthracosis and with an immunosuppressive and metastasis-promoting phenotype and elevated overall STAT3 activity were observed in uninvolved lymph nodes. In patients with a smoking history, myeloid cluster score significantly correlated with anthracosis intensity and pSTAT3 level (P<0.01). Nicotine activated STAT3 in macrophages in long-term culture. CD68+ myeloid clusters correlated and colocalized with occult metastasis. Myeloid cluster score was an independent prognostic factor (P = 0.049) and was associated with survival by Kaplan-Maier estimate in patients with a history of smoking (P = 0.055). The combination of myeloid cluster score with either lymph node stage or pSTAT3 level defined two populations with a significant difference in survival (P = 0.024 and P = 0.004, respectively). Conclusions Myeloid clusters facilitate a pro-metastatic microenvironment in uninvolved regional lymph nodes and associate with occult metastasis in early stage non-small cell lung cancer. Myeloid cluster score is an independent prognostic factor for survival in patients with a history of smoking, and may present a novel method to inform therapy choices in the adjuvant setting. Further validation studies are warranted. PMID:23717691

  17. Genome-wide interaction study of smoking behavior and non-small cell lung cancer risk in Caucasian population.

    PubMed

    Li, Yafang; Xiao, Xiangjun; Han, Younghun; Gorlova, Olga; Qian, David; Leighl, Natasha; Johansen, Jakob S; Barnett, Matt; Chen, Chu; Goodman, Gary; Cox, Angela; Taylor, Fiona; Woll, Penella; Wichmann, H-Erich; Manz, Judith; Muley, Thomas; Risch, Angela; Rosenberger, Albert; Arnold, Susanne M; Haura, Eric B; Bolca, Ciprian; Holcatova, Ivana; Janout, Vladimir; Kontic, Milica; Lissowska, Jolanta; Mukeria, Anush; Ognjanovic, Simona; Orlowski, Tadeusz M; Scelo, Ghislaine; Swiatkowska, Beata; Zaridze, David; Bakke, Per; Skaug, Vidar; Zienolddiny, Shanbeh; Duell, Eric J; Butler, Lesley M; Houlston, Richard; Soler Artigas, María; Grankvist, Kjell; Johansson, Mikael; Shepherd, Frances A; Marcus, Michael W; Brunnström, Hans; Manjer, Jonas; Melander, Olle; Muller, David C; Overvad, Kim; Trichopoulou, Antonia; Tumino, Rosario; Liu, Geoffrey; Bojesen, Stig E; Wu, Xifeng; Marchand, Loic Le; Albanes, Demetrios; Bickeböller, Heike; Aldrich, Melinda C; Bush, William S; Tardon, Adonina; Rennert, Gad; Teare, M Dawn; Field, John K; Kiemeney, Lambertus A; Lazarus, Philip; Haugen, Aage; Lam, Stephen; Schabath, Matthew B; Andrew, Angeline S; Bertazzi, Pier Alberto; Pesatori, Angela C; Christiani, David C; Caporaso, Neil; Johansson, Mattias; McKay, James D; Brennan, Paul; Hung, Rayjean J; Amos, Christopher I

    2018-03-08

    Non-small cell lung cancer is the most common type of lung cancer. Both environmental and genetic risk factors contribute to lung carcinogenesis. We conducted a genome-wide interaction analysis between single nucleotide polymorphisms (SNPs) and smoking status (never- versus ever-smokers) in a European-descent population. We adopted a two-step analysis strategy in the discovery stage: we first conducted a case-only interaction analysis to assess the relationship between SNPs and smoking behavior using 13336 non-small cell lung cancer cases. Candidate SNPs with P-value <0.001 were further analyzed using a standard case-control interaction analysis including 13970 controls. The significant SNPs with P-value <3.5 × 10-5 (correcting for multiple tests) from the case-control analysis in the discovery stage were further validated using an independent replication dataset comprising 5377 controls and 3054 non-small cell lung cancer cases. We further stratified the analysis by histological subtypes. Two novel SNPs, rs6441286 and rs17723637, were identified for overall lung cancer risk. The interaction odds ratio and meta-analysis P-value for these two SNPs were 1.24 with 6.96 × 10-7 and 1.37 with 3.49 × 10-7, respectively. In addition, interaction of smoking with rs4751674 was identified in squamous cell lung carcinoma with an odds ratio of 0.58 and P-value of 8.12 × 10-7. This study is by far the largest genome-wide SNP-smoking interaction analysis reported for lung cancer. The three identified novel SNPs provide potential candidate biomarkers for lung cancer risk screening and intervention. The results from our study reinforce that gene-smoking interactions play important roles in the etiology of lung cancer and account for part of the missing heritability of this disease.

  18. A Study of CDX-1127 (Varlilumab) in Patients With Select Solid Tumor Types or Hematologic Cancers

    ClinicalTrials.gov

    2018-01-29

    CD27 Expressing B-cell Malignancies for Example Hodgkin's Lymphoma; Chronic Lymphocytic Leukemia; Mantle Cell Lymphoma; Marginal Zone B Cell Lymphoma); Any T-cell Malignancy; Solid Tumors (Metastatic Melanoma, Renal (Clear) Cell Carcinoma; Hormone-refractory Prostate Adenocarcinoma, Ovarian Cancer; Colorectal Adenocarcinoma, Non-small Cell Lung Cancer); Burkett's Lymphoma; Primary Lymphoma of the Central Nervous System

  19. TC-1 Overexpression Promotes Cell Proliferation in Human Non-Small Cell Lung Cancer that Can Be Inhibited by PD173074

    PubMed Central

    Zhang, Na; Bai, Guangzhen; Zhong, Daixing; Su, Kai; Liu, Boya; Li, Xiaofei; Wang, Yunjie; Wang, Xiaoping

    2014-01-01

    Thyroid cancer-1 (TC-1), a natively disordered protein, is widely expressed in vertebrates and overexpressed in many kinds of tumors. However, its exact role and regulation mechanism in human non-small cell lung cancer (NSCLC) are still unclear. In the present study, we found that TC-1 is highly expressed in NSCLC and that its aberrant expression is strongly associated with NSCLC cell proliferation. Exogenous TC-1 overexpression promotes cell proliferation, accelerates the cell G1-to-S-phase transition, and reduces apoptosis in NSCLC. The knockdown of TC-1, however, inhibits NSCLC cell proliferation, cycle transition, and apoptosis resistance. Furthermore, we also demonstrated that PD173074, which functions as an inhibitor of the TC-1 in NSCLC, decreases the expression of TC-1 and inhibits TC-1 overexpression mediated cell proliferation in vitro and in vivo. Nevertheless, the inhibition function of PD173074 on NSCLC cell proliferation was eliminated in cells with TC-1 knockdown. These results suggest that PD173074 plays a significant role in TC-1 overexpression mediated NSCLC cell proliferation and may be a potential intervention target for the prevention of cell proliferation in NSCLC. PMID:24941347

  20. Evaluation of Biomarkers Predictive of Benefit from the PD-1 Inhibitor MK-3475 in Patients with Non-Small Cell Lung Cancer and Brain Metastases

    DTIC Science & Technology

    2017-07-01

    Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Immunotherapies inhibiting the Programmed Death -1 (PD-1) axis can result in dramatic responses and durable...9. Appendices……………………………………………………………14 4 1. INTRODUCTION: Lung cancer is the leading cause of cancer death in the United States, resulting in more...than 160,000 deaths each year. The majority of patients with lung cancer have non-small cell lung cancer (NSCLC) and present with disease at an

  1. The role of positron emission tomography in the diagnosis, staging and response assessment of non-small cell lung cancer

    PubMed Central

    Ali, Jason M.; Tasker, Angela; Peryt, Adam; Aresu, Giuseppe; Coonar, Aman S.

    2018-01-01

    Lung cancer is a common disease and the leading cause of cancer-related mortality, with non-small cell lung cancer (NSCLC) accounting for the majority of cases. Following diagnosis of lung cancer, accurate staging is essential to guide clinical management and inform prognosis. Positron emission tomography (PET) in conjunction with computed tomography (CT)—as PET-CT has developed as an important tool in the multi-disciplinary management of lung cancer. This article will review the current evidence for the role of 18F-fluorodeoxyglucose (FDG) PET-CT in NSCLC diagnosis, staging, response assessment and follow up. PMID:29666818

  2. [Gemcitabine and non small-cell lung cancer].

    PubMed

    Vignot, Stéphane; Besse, Benjamin

    2007-01-01

    Questions raised during gemcitabine development reflect non small-cell lung cancer (NSCLC) history during last 10 years. Third generation therapies (gemcitabine, vinorelbine and taxanes) combined with platinium compounds are now to be prescribed in almost all clinical situations, from surgically removed tumors to metastatic diseases. The 30% response rate usually reported in advanced disease (with a median survival of 10 months) has to be improved and a more global approach is nowadays mandatory, including targeted agents. This review sum-up the clinical situations in which gemcitabine can be prescribed (advanced disease), or shall be prescribed (adjuvant setting, combination with anti-angiogenic agent or EGFR inhibitors), and highlight opening questions.

  3. Review of the use of pretest probability for molecular testing in non-small cell lung cancer and overview of new mutations that may affect clinical practice

    PubMed Central

    Martin, Petra; Leighl, Natasha B.

    2017-01-01

    This article considers the use of pretest probability in non-small cell lung cancer (NSCLC) and how its use in EGFR testing has helped establish clinical guidelines on selecting patients for EGFR testing. With an ever-increasing number of molecular abnormalities being identified and often limited tissue available for testing, the use of pretest probability will need to be increasingly considered in the future for selecting investigations and treatments in patients. In addition we review new mutations that have the potential to affect clinical practice. PMID:28607579

  4. Personalized treatment strategies for non-small-cell lung cancer in Chinese patients: the role of crizotinib

    PubMed Central

    Niu, Fei-Yu; Wu, Yi-Long

    2015-01-01

    Anaplastic lymphoma kinase (ALK) rearrangement is an oncogene targeted with approved drugs second to epidermal growth factor receptor (EGFR) in lung cancer. Crizotinib was developed and introduced into clinical practice rapidly and successfully after the discovery of ALK rearrangement in non-small-cell lung cancer. Chinese and other Asian patients treated with crizotinib seem to have lower toxicity and higher efficacy compared with other ethnicities. Crizotinib showed potent antitumor activity and manageable toxicity in mesenchymal–epithelial transition factor (c-Met)/ROS1-positive non-small-cell lung cancer patients, but prospective clinical trials are still needed to confirm its efficacy and safety. Crizotinib appears to be effective against tumors originating from various organs that harbor ALK abnormalities. In the near future, we would classify the tumors by their genetic information beyond organs, such as ALKoma, EGFRoma, and RAFoma, and a single compound could be used for many different types of cancer in different organs. The major challenge of the widespread use of crizotinib in clinical practice is establishing convenient diagnostic techniques for the detection of ALK/c-Met/ROS1. In the present study, we reviewed the application of crizotinib in Chinese patients. PMID:25999733

  5. Management of Resistance to Crizotinib in Anaplastic Lymphoma Kinase-Positive Non-Small-cell Lung Cancer.

    PubMed

    Matikas, Alexios; Kentepozidis, Nikolaos; Georgoulias, Vassilis; Kotsakis, Athanasios

    2016-11-01

    During the past decade, the recognition of an ever-expanding list of driver oncogenic mutations in non-small-cell lung cancer has resulted in rapid therapeutic advances. Since the first description of the echinoderm microtubule-associated protein-like 4 anaplastic lymphoma kinase (EML4-ALK) rearrangement in 4% of cases of non-small-cell lung cancer in 2007, a highly potent and selective ALK inhibitor, crizotinib, was developed and approved in record time. However, it soon became apparent that although the responses can be dramatic and durable and primary intrinsic resistance to crizotinib is uncommon, the emergence of secondary resistance is inevitable. Efforts to elucidate the specific mechanisms that confer acquired resistance to crizotinib are underway. These have led to the recognition of the role of secondary resistance mutations, of ALK amplification, and of activation of bypass signaling, all of which contribute to resistance to crizotinib. Moreover, the rapid preclinical and clinical development of multiple second-generation ALK inhibitors that exhibit significant clinical activity against crizotinib-resistant disease has provided multiple options to treating physicians, with the ultimate goal the delivery of tailored medicine. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Urinary metabolomic study of non-small cell lung carcinoma based on ultra high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry.

    PubMed

    Wu, Qian; Wang, Yan; Gu, Xue; Zhou, Junyi; Zhang, Huiping; Lv, Wang; Chen, Zhe; Yan, Chao

    2014-07-01

    Metabolic profiles from human urine reveal the significant difference of carnitine and acylcarnitines levels between non-small cell lung carcinoma patients and healthy controls. Urine samples from cancer patients and healthy individuals were assayed in this metabolomic study using ultra high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. The data were normalized by the sum of all intensities and creatinine calibration, respectively, before orthogonal partial least squares discriminant analysis. Twenty differential metabolites were identified based on standard compounds or tandem mass spectrometry fragments. Among them, some medium-/long-chain acylcarnitines, for example, cis-3,4-methylene heptanoylcarnitine, were found to be downregulated while carnitine was upregulated in urine samples from the cancer group compared to the control group. Receiver operating characteristic analysis of the two groups showed that the area under curve for the combination of carnitine and 11 selected acylcarnitines was 0.958. This study suggests that the developed carnitine and acylcarnitines profiling method has the potential to be used for screening non-small cell lung carcinoma. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Green tea extract induces protective autophagy in A549 non-small lung cancer cell line.

    PubMed

    Izdebska, Magdalena; Klimaszewska-Wiśniewska, Anna; Hałas, Marta; Gagat, Maciej; Grzanka, Alina

    2015-12-31

    For many decades, polyphenols, including green tea extract catechins, have been reported to exert multiple anti-tumor activities. However, to date the mechanisms of their action have not been completely elucidated. Thus, the aim of this study was to assess the effect of green tea extract on non-small lung cancer A549 cells. A549 cells following treatment with GTE were analyzed using the inverted light and fluorescence microscope. In order to evaluate cell sensitivity and cell death, the MTT assay and Tali image-based cytometer were used, respectively. Ultrastructural alterations were assessed using a transmission electron microscope. The obtained data suggested that GTE, even at the highest dose employed (150 μM), was not toxic to A549 cells. Likewise, the treatment with GTE resulted in only a very small dose-dependent increase in the population of apoptotic cells. However, enhanced accumulation of vacuole-like structures in response to GTE was seen at the light and electron microscopic level. Furthermore, an increase in the acidic vesicular organelles and LC3-II puncta formation was observed under the fluorescence microscope, following GTE treatment. The analysis of the functional status of autophagy revealed that GTE-induced autophagy may provide self-protection against its own cytotoxicity, since we observed that the blockage of autophagy by bafilomycin A1 decreased the viability of A549 cells and potentiated necrotic cell death induction in response to GTE treatment. Collectively, our results revealed that A549 cells are insensitive to both low and high concentrations of the green tea extract, probably due to the induction of cytoprotective autophagy. These data suggest that a potential utility of GTE in lung cancer therapy may lie in its synergistic combinations with drugs or small molecules that target autophagy, rather than in monotherapy.

  8. How do surgeons decide to refer patients for adjuvant cancer treatment? Protocol for a qualitative study

    PubMed Central

    2012-01-01

    Background Non-small cell lung cancer, breast cancer, and colorectal cancer are commonly diagnosed cancers in Canada. Patients diagnosed with early-stage non-small cell lung, breast, or colorectal cancer represent potentially curable populations. For these patients, surgery is the primary mode of treatment, with (neo)adjuvant therapies (e.g., chemotherapy, radiotherapy) recommended according to disease stage. Data from our research in Nova Scotia, as well as others’, demonstrate that a substantial proportion of non-small cell lung cancer and colorectal cancer patients, for whom practice guidelines recommend (neo)adjuvant therapy, are not referred for an oncologist consultation. Conversely, surveillance data and clinical experience suggest that breast cancer patients have much higher referral rates. Since surgery is the primary treatment, the surgeon plays a major role in referring patients to oncologists. Thus, an improved understanding of how surgeons make decisions related to oncology services is important to developing strategies to optimize referral rates. Few studies have examined decision making for (neo)adjuvant therapy from the perspective of the cancer surgeon. This study will use qualitative methods to examine decision-making processes related to referral to oncology services for individuals diagnosed with potentially curable non-small cell lung, breast, or colorectal cancer. Methods A qualitative study will be conducted, guided by the principles of grounded theory. The study design is informed by our ongoing research, as well as a model of access to health services. The method of data collection will be in-depth, semi structured interviews. We will attempt to recruit all lung, breast, and/or colorectal cancer surgeons in Nova Scotia (n ≈ 42), with the aim of interviewing a minimum of 34 surgeons. Interviews will be audiotaped and transcribed verbatim. Data will be collected and analyzed concurrently, with two investigators independently coding and analyzing the data. Analysis will involve an inductive, grounded approach using constant comparative analysis. Discussion The primary outcomes will be (1) identification of the patient, surgeon, institutional, and health-system factors that influence surgeons’ decisions to refer non-small cell lung, breast, and colorectal cancer patients to oncology services when consideration for (neo)adjuvant therapy is recommended and (2) identification of potential strategies that could optimize referral to oncology for appropriate individuals. PMID:23098262

  9. Umbilical Cord Blood Transplantation Using a Myeloablative Preparative Regimen for Hematological Diseases

    ClinicalTrials.gov

    2017-12-03

    Acute Myeloid Leukemia (AML); Acute Lymphocytic Leukemia (ALL); Chronic Myelogenous Leukemia; Plasma Cell Leukemia; Myelofibrosis; Myelodysplasia; Chronic Lymphocytic Leukemia; Small Lymphocytic Lymphoma; Marginal Zone B-Cell Lymphoma; Follicular Lymphoma; Lymphoplasmacytic Lymphoma; Mantle-Cell Lymphoma; Prolymphocytic Leukemia; Diffuse Large B Cell Lymphoma; Lymphoblastic Lymphoma; Burkitt's Lymphoma; Non-Hodgkin Lymphoma; Multiple Myeloma

  10. EML4-ALK induces epithelial-mesenchymal transition consistent with cancer stem cell properties in H1299 non-small cell lung cancer cells.

    PubMed

    Guo, Fuchun; Liu, Xiaoke; Qing, Qin; Sang, Yaxiong; Feng, Chengjun; Li, Xiaoyu; Jiang, Li; Su, Pei; Wang, Yongsheng

    2015-04-10

    The echinoderm microtubule-associated protein-like 4(EML4)--anaplastic lymphoma kinase (ALK) fusion gene has been identified as a driver mutation in non-small-cell lung cancer (NSCLC). However, the role of EML4-ALK in malignant transformation is not entirely clear. Here, for the first time, we showed that H1299 NSCLC cells stably expressing EML4-ALK acquire EMT phenotype, associated with enhanced invasive migration and increased expression of EMT-inducing transcription factors. H1299-EML4-ALK cells also displayed cancer stem cell-like properties with a concomitant up-regulation of CD133 and enhanced ability of mammospheres formation. Moreover, we found that inhibition of ERK1/2 reversed EMT induced by EML4-ALK in H1299 cells. Taken together, these results suggested that EML4-ALK induced ERK activation is mechanistically associated with EMT phenotype. Thus, inhibition of ERK signaling pathway could be a potential strategy in treatment of NSCLC patients with EML4-ALK translocation. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. xCT (SLC7A11)-mediated metabolic reprogramming promotes non-small cell lung cancer progression.

    PubMed

    Ji, Xiangming; Qian, Jun; Rahman, S M Jamshedur; Siska, Peter J; Zou, Yong; Harris, Bradford K; Hoeksema, Megan D; Trenary, Irina A; Heidi, Chen; Eisenberg, Rosana; Rathmell, Jeffrey C; Young, Jamey D; Massion, Pierre P

    2018-05-23

    Many tumors increase uptake and dependence on glucose, cystine or glutamine. These basic observations on cancer cell metabolism have opened multiple new diagnostic and therapeutic avenues in cancer research. Recent studies demonstrated that smoking could induce the expression of xCT (SLC7A11) in oral cancer cells, suggesting that overexpression of xCT may support lung tumor progression. We hypothesized that overexpression of xCT occurs in lung cancer cells to satisfy the metabolic requirements for growth and survival. Our results demonstrated that 1) xCT was highly expressed at the cytoplasmic membrane in non-small cell lung cancer (NSCLC), 2) the expression of xCT was correlated with advanced stage and predicted a worse 5-year survival, 3) targeting xCT transport activity in xCT overexpressing NSCLC cells with sulfasalazine decreased cell proliferation and invasion in vitro and in vivo and 4) increased dependence on glutamine was observed in xCT overexpressed normal airway epithelial cells. These results suggested that xCT regulate metabolic requirements during lung cancer progression and be a potential therapeutic target in NSCLC.

  12. Epigenetic modulation with HDAC inhibitor CG200745 induces anti-proliferation in non-small cell lung cancer cells.

    PubMed

    Chun, Sung-Min; Lee, Ji-Young; Choi, Jene; Lee, Je-Hwan; Hwang, Jung Jin; Kim, Chung-Soo; Suh, Young-Ah; Jang, Se Jin

    2015-01-01

    Histone modification plays a pivotal role on gene regulation, as regarded as global epigenetic markers, especially in tumor related genes. Hence, chemical approaches targeting histone-modifying enzymes have emerged onto the main stage of anticancer drug discovery. Here, we investigated the therapeutic potentials and mechanistic roles of the recently developed histone deacetylase inhibitor, CG200745, in non-small cell lung cancer cells. Treatment with CG200745 increased the global level of histone acetylation, resulting in the inhibition of cell proliferation. ChIP-on-chip analysis with an H4K16ac antibody showed altered H4K16 acetylation on genes critical for cell growth inhibition, although decreased at the transcription start site of a subset of genes. Altered H4K16ac was associated with changes in mRNA expression of the corresponding genes, which were further validated in quantitative RT-PCR and western blotting assays. Our results demonstrated that CG200745 causes NSCLC cell growth inhibition through epigenetic modification of critical genes in cancer cell survival, providing pivotal clues as a promising chemotherapeutics against lung cancer.

  13. Epigenetic Modulation with HDAC Inhibitor CG200745 Induces Anti-Proliferation in Non-Small Cell Lung Cancer Cells

    PubMed Central

    Chun, Sung-Min; Lee, Ji-Young; Choi, Jene; Lee, Je-Hwan; Hwang, Jung Jin; Kim, Chung-Soo; Suh, Young-Ah; Jang, Se Jin

    2015-01-01

    Histone modification plays a pivotal role on gene regulation, as regarded as global epigenetic markers, especially in tumor related genes. Hence, chemical approaches targeting histone-modifying enzymes have emerged onto the main stage of anticancer drug discovery. Here, we investigated the therapeutic potentials and mechanistic roles of the recently developed histone deacetylase inhibitor, CG200745, in non-small cell lung cancer cells. Treatment with CG200745 increased the global level of histone acetylation, resulting in the inhibition of cell proliferation. ChIP-on-chip analysis with an H4K16ac antibody showed altered H4K16 acetylation on genes critical for cell growth inhibition, although decreased at the transcription start site of a subset of genes. Altered H4K16ac was associated with changes in mRNA expression of the corresponding genes, which were further validated in quantitative RT-PCR and western blotting assays. Our results demonstrated that CG200745 causes NSCLC cell growth inhibition through epigenetic modification of critical genes in cancer cell survival, providing pivotal clues as a promising chemotherapeutics against lung cancer. PMID:25781604

  14. The role of CD133 in the identification and characterisation of tumour-initiating cells in non-small-cell lung cancer.

    PubMed

    Tirino, Virginia; Camerlingo, Rosa; Franco, Renato; Malanga, Donatella; La Rocca, Antonello; Viglietto, Giuseppe; Rocco, Gaetano; Pirozzi, Giuseppe

    2009-09-01

    Emerging evidence suggests that specific sub-populations of cancer cells with stem cell characteristics within the bulk of tumours are implicated in the pathogenesis of heterogeneous malignant tumours. The cells that drive tumour growth have been denoted cancer-initiating cells or cancer stem cells (hereafter CSCs). CSCs have been isolated initially from leukaemias and subsequently from several solid tumours including brain, breast, prostate, colon and lung cancer. This study aimed at isolating and characterising the population of tumour-initiating cells in non-small-cell lung cancer (NSCLC). Specimens of NSCLC obtained from 89 patients undergoing tumour resection at the Cancer National Institute of Naples were analysed. Three methods to isolate the tumour-initiating cells were used: (1) flow cytometry analysis for identification of positive cells for surface markers such as CD24, CD29, CD31, CD34, CD44, CD133 and CD326; (2) Hoechst 33342 dye exclusion test for the identification of a side-population characteristic for the presence of stem cells; (3) non-adherent culture condition able to form spheres with stem cell-like characteristics. Definition of the tumourigenic potential of the cells through soft agar assay and injection into NOD/SCID mice were used to functionally define (in vitro and in vivo) putative CSCs isolated from NSCLC samples. Upon flow cytometry analysis of NSCLC samples, CD133-positive cells were found in 72% of 89 fresh specimens analysed and, on average, represented 6% of the total cells. Moreover, the number of CD133-positive cells increased markedly when the cells, isolated from NSCLC specimens, were grown as spheres in non-adherent culture conditions. Cells from NSCLC, grown as spheres, when assayed in soft agar, give rise to a 3.8-fold larger number of colonies in culture and are more tumourigenic in non-obese diabetic (NOD)/severe combined immunodeficiency (SCID) mice compared with the corresponding adherent cells. We have isolated and characterised a population of CD133-positive cells from NSCLC that is able to give rise to spheres and can act as tumour-initiating cells.

  15. ALK-rearrangements and testing methods in non-small cell lung cancer: a review

    PubMed Central

    Shackelford, Rodney E.; Vora, Moiz; Mayhall, Kim; Cotelingam, James

    2014-01-01

    The anaplastic lymphoma tyrosine kinase (ALK) gene was first described as a driver mutation in anaplastic non-Hodgkin's lymphoma. Dysregulated ALK expression is now an identified driver mutation in nearly twenty different human malignancies, including 4-9% of non-small cell lung cancers (NSCLC). The tyrosine kinase inhibitor crizotinib is more effective than standard chemotherapeutic agents in treating ALK positive NSCLC, making molecular diagnostic testing for dysregulated ALK expression a necessary step in identifying optimal treatment modalities. Here we review ALKmediated signal transduction pathways and compare the molecular protocols used to identify dysregulated ALK expression in NSCLC. We also discuss the use of crizotinib and second generation ALK tyrosine kinase inhibitors in the treatment of ALK positive NSCLC, and the known mechanisms of crizotinib resistance in NSCLC. PMID:24955213

  16. CPI-006 Alone and in Combination With CPI-444 and With Pembrolizumab for Patients With Advanced Cancers

    ClinicalTrials.gov

    2018-03-27

    Non-Small Cell Lung Cancer; Renal Cell Cancer; Colorectal Cancer; Triple Negative Breast Cancer; Cervical Cancer; Ovarian Cancer; Pancreatic Cancer; Endometrial Cancer; Sarcoma; Squamous Cell Carcinoma of the Head and Neck; Bladder Cancer; Metastatic Castration Resistant Prostate Cancer

  17. Crosstalk between the Notch signaling pathway and non-coding RNAs in gastrointestinal cancers

    PubMed Central

    Pan, Yangyang; Mao, Yuyan; Jin, Rong; Jiang, Lei

    2018-01-01

    The Notch signaling pathway is one of the main signaling pathways that mediates direct contact between cells, and is essential for normal development. It regulates various cellular processes, including cell proliferation, apoptosis, migration, invasion, angiogenesis and metastasis. It additionally serves an important function in tumor progression. Non-coding RNAs mainly include small microRNAs, long non-coding RNAs and circular RNAs. At present, a large body of literature supports the biological significance of non-coding RNAs in tumor progression. It is also becoming increasingly evident that cross-talk exists between Notch signaling and non-coding RNAs. The present review summarizes the current knowledge of Notch-mediated gastrointestinal cancer cell processes, and the effect of the crosstalk between the three major types of non-coding RNAs and the Notch signaling pathway on the fate of gastrointestinal cancer cells. PMID:29285185

  18. Vaccine Therapy in Preventing Cytomegalovirus Infection in Patients With Hematological Malignancies Undergoing Donor Stem Cell Transplant

    ClinicalTrials.gov

    2018-05-16

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Adult Nodular Lymphocyte Predominant Hodgkin Lymphoma; Anaplastic Large Cell Lymphoma; B-cell Adult Acute Lymphoblastic Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cytomegalovirus Infection; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Extramedullary Plasmacytoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Isolated Plasmacytoma of Bone; Monoclonal Gammopathy of Undetermined Significance; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Peripheral T-cell Lymphoma; Polycythemia Vera; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Primary Central Nervous System Hodgkin Lymphoma; Primary Central Nervous System Non-Hodgkin Lymphoma; Primary Myelofibrosis; Progressive Hairy Cell Leukemia, Initial Treatment; Prolymphocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Multiple Myeloma; Stage I Small Lymphocytic Lymphoma; Stage IA Mycosis Fungoides/Sezary Syndrome; Stage IB Mycosis Fungoides/Sezary Syndrome; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage IIA Mycosis Fungoides/Sezary Syndrome; Stage IIB Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Multiple Myeloma; Stage III Small Lymphocytic Lymphoma; Stage IIIA Mycosis Fungoides/Sezary Syndrome; Stage IIIB Mycosis Fungoides/Sezary Syndrome; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Small Lymphocytic Lymphoma; Stage IVA Mycosis Fungoides/Sezary Syndrome; Stage IVB Mycosis Fungoides/Sezary Syndrome; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Large Granular Lymphocyte Leukemia; Untreated Adult Acute Myeloid Leukemia; Untreated Hairy Cell Leukemia; Waldenström Macroglobulinemia

  19. University of Texas Southwestern Medical Center: NSCLC Cell Lines with Loss of SMARCA4 Expression are Hypersensitive to Inhibitors of Aurora Kinase A | Office of Cancer Genomics

    Cancer.gov

    A genome-wide siRNA screen was employed to identify genes that were selectively toxic for a non-small cell lung cancer (NSCLC) cell line that lacked expression of SMARCA4, but were not toxic in non-cancerous immortalized human bronchial epithelial cells lacking SMARCA4 expression. Among the selectively toxic genes were several mapping to the molecular machinery regulating activity of Aurora kinase A on the mitotic spindle.

  20. University of Texas Southwestern Medical Center (UTSW): NSCLC Cell Lines with Loss of SMARCA4 Expression are Hypersensitive to Inhibitors of Aurora Kinase A | Office of Cancer Genomics

    Cancer.gov

    A genome-wide siRNA screen was employed to identify genes that were selectively toxic for a non-small cell lung cancer (NSCLC) cell line that lacked expression of SMARCA4, but were not toxic in non-cancerous immortalized human bronchial epithelial cells lacking SMARCA4 expression. Among the selectively toxic genes were several mapping to the molecular machinery regulating activity of Aurora kinase A on the mitotic spindle.

  1. 76 FR 72950 - Determination That TAXOTERE (Docetaxel) Injection, 40 Milligrams/Milliliter Was Not Withdrawn...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... May 14, 1996. TAXOTERE is indicated for breast cancer, non-small cell lung cancer, hormone refractory prostate cancer, gastric adenocarcinoma, and squamous cell carcinoma of the head and neck cancer as...

  2. Role of long non-coding RNA in drug resistance in non-small cell lung cancer.

    PubMed

    Wang, Leirong; Ma, Leina; Xu, Fei; Zhai, Wenxin; Dong, Shenghua; Yin, Ling; Liu, Jia; Yu, Zhuang

    2018-05-03

    Lung cancer is the leading cause of cancer-associated death, and non-small cell lung cancer (NSCLC) accounts for 85% of all lung cancer cases. Many drugs have been used to treat NSCLC in order to improve patient prognosis. Platinum-based chemotherapy is the first-line treatment for locally advanced or metastatic patients. For patients with activating EGFR mutations, tyrosine kinase inhibitors are the best treatment choice. NSCLC initially exhibits an excellent response to treatment; however, acquired resistance has been observed in many patients, leading to ineffective treatment. Clinical resistance is an impediment in the treatment of patients with advanced NSCLC. Many sequencing technologies have shown that long non-coding RNA (lncRNA) is expressed differently between drug-resistant and drug-sensitive lung cancer cells. We review the literature on lncRNA in drug resistance of NSCLC. The aim of this review is to gain insight into the molecular mechanisms of drug resistance, mainly focusing on the role of lncRNA in NSCLC. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  3. Variation of mutational burden in healthy human tissues suggests non-random strand segregation and allows measuring somatic mutation rates.

    PubMed

    Werner, Benjamin; Sottoriva, Andrea

    2018-06-01

    The immortal strand hypothesis poses that stem cells could produce differentiated progeny while conserving the original template strand, thus avoiding accumulating somatic mutations. However, quantitating the extent of non-random DNA strand segregation in human stem cells remains difficult in vivo. Here we show that the change of the mean and variance of the mutational burden with age in healthy human tissues allows estimating strand segregation probabilities and somatic mutation rates. We analysed deep sequencing data from healthy human colon, small intestine, liver, skin and brain. We found highly effective non-random DNA strand segregation in all adult tissues (mean strand segregation probability: 0.98, standard error bounds (0.97,0.99)). In contrast, non-random strand segregation efficiency is reduced to 0.87 (0.78,0.88) in neural tissue during early development, suggesting stem cell pool expansions due to symmetric self-renewal. Healthy somatic mutation rates differed across tissue types, ranging from 3.5 × 10-9/bp/division in small intestine to 1.6 × 10-7/bp/division in skin.

  4. A case of squamous cell carcinoma of lung presenting with paraneoplastic type of acanthosis nigricans

    PubMed Central

    Mukherjee, Subhasis; Pandit, Sudipta; Deb, Jaydip; Dattachaudhuri, Arunabha; Bhuniya, Sourin; Bhanja, Pulakesh

    2011-01-01

    A 70-years-old male presented with blackening of both hands and face for last six months which was progressive and attended dermatology outpatients department. Dermatologist opined the skin lesions as acanthosis nigricans. He was referred to our department to evaluate for any underlying internal malignancy as he was a smoker. His chest X-ray revealed right sided hilar prominence with a mid zone cavity with fluid level. Fibreoptic bronchoscopy was done, there was one ulcerative growth in right middle lobe bronchus. Biopsy from the ulcer revealed probable squamous cell carcinoma. CT scan of thorax was also done and CT guided FNAC of Rt lung lesion yielded non small cell carcinoma. His skin lesions were also biopsied and diagnosis of acanthosis nigricans was confirmed. Here we report a case of acanthosis nigricans associated with non-small cell cancer of lung. PMID:21654990

  5. Atezolizumab: feasible second-line therapy for patients with non-small cell lung cancer? A review of efficacy, safety and place in therapy.

    PubMed

    Jean, Fanny; Tomasini, Pascale; Barlesi, Fabrice

    2017-12-01

    Advanced non-small cell lung cancer (NSCLC) prognosis is still poor and has recently been reformed by the development of immune checkpoint inhibitors and the approval of anti-PD-1 (programmed cell-death 1) treatments such as nivolumab and pembrolizumab in second line. More recently, atezolizumab (MDPL 3280A), a programmed cell-death-ligand 1 (PD-L1) inhibitor, was also studied in this setting. Here, we report a review of the literature assessing the efficacy, safety, and place of atezolizumab in the second-line treatment of advanced NSCLC. We performed a literature search of PubMed, American Society of Clinical Oncology, European Society of Medical Oncology and World Conference on Lung Cancer meetings. Atezolizumab showed a good tolerance profile and efficacy in comparison with docetaxel for second-line treatment of advanced NSCLC. Potential predictive biomarkers also have to be assessed.

  6. Atezolizumab: feasible second-line therapy for patients with non-small cell lung cancer? A review of efficacy, safety and place in therapy

    PubMed Central

    Jean, Fanny; Tomasini, Pascale; Barlesi, Fabrice

    2017-01-01

    Advanced non-small cell lung cancer (NSCLC) prognosis is still poor and has recently been reformed by the development of immune checkpoint inhibitors and the approval of anti-PD-1 (programmed cell-death 1) treatments such as nivolumab and pembrolizumab in second line. More recently, atezolizumab (MDPL 3280A), a programmed cell-death-ligand 1 (PD-L1) inhibitor, was also studied in this setting. Here, we report a review of the literature assessing the efficacy, safety, and place of atezolizumab in the second-line treatment of advanced NSCLC. We performed a literature search of PubMed, American Society of Clinical Oncology, European Society of Medical Oncology and World Conference on Lung Cancer meetings. Atezolizumab showed a good tolerance profile and efficacy in comparison with docetaxel for second-line treatment of advanced NSCLC. Potential predictive biomarkers also have to be assessed. PMID:29449897

  7. Fluorogenic RNA Mango aptamers for imaging small non-coding RNAs in mammalian cells.

    PubMed

    Autour, Alexis; C Y Jeng, Sunny; D Cawte, Adam; Abdolahzadeh, Amir; Galli, Angela; Panchapakesan, Shanker S S; Rueda, David; Ryckelynck, Michael; Unrau, Peter J

    2018-02-13

    Despite having many key roles in cellular biology, directly imaging biologically important RNAs has been hindered by a lack of fluorescent tools equivalent to the fluorescent proteins available to study cellular proteins. Ideal RNA labelling systems must preserve biological function, have photophysical properties similar to existing fluorescent proteins, and be compatible with established live and fixed cell protein labelling strategies. Here, we report a microfluidics-based selection of three new high-affinity RNA Mango fluorogenic aptamers. Two of these are as bright or brighter than enhanced GFP when bound to TO1-Biotin. Furthermore, we show that the new Mangos can accurately image the subcellular localization of three small non-coding RNAs (5S, U6, and a box C/D scaRNA) in fixed and live mammalian cells. These new aptamers have many potential applications to study RNA function and dynamics both in vitro and in mammalian cells.

  8. LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin

    PubMed Central

    Shackelford, David B.; Abt, Evan; Gerken, Laurie; Vasquez, Debbie S.; Seki, Atsuko; Leblanc, Mathias; Wei, Liu; Fishbein, Michael C.; Czernin, Johannes; Mischel, Paul S.; Shaw, Reuben J.

    2013-01-01

    SUMMARY The LKB1 (also called STK11) tumor suppressor is mutationally inactivated in ~20% of non-small cell lung cancers (NSCLC). LKB1 is the major upstream kinase activating the energy-sensing kinase AMPK, making LKB1-deficient cells unable to appropriately sense metabolic stress. We tested the therapeutic potential of metabolic drugs in NSCLC and identified phenformin, a mitochondrial inhibitor and analog of the diabetes therapeutic metformin, as selectively inducing apoptosis in LKB1-deficient NSCLC cells. Therapeutic trials in Kras-dependent mouse models of NSCLC revealed that tumors with Kras and Lkb1 mutations, but not those with Kras and p53 mutations showed selective response to phenformin as a single agent, resulting in prolonged survival. This study suggests phenformin as a cancer metabolism-based therapeutic to selectively target LKB1-deficient tumors. PMID:23352126

  9. LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin.

    PubMed

    Shackelford, David B; Abt, Evan; Gerken, Laurie; Vasquez, Debbie S; Seki, Atsuko; Leblanc, Mathias; Wei, Liu; Fishbein, Michael C; Czernin, Johannes; Mischel, Paul S; Shaw, Reuben J

    2013-02-11

    The LKB1 (also called STK11) tumor suppressor is mutationally inactivated in ∼20% of non-small cell lung cancers (NSCLC). LKB1 is the major upstream kinase activating the energy-sensing kinase AMPK, making LKB1-deficient cells unable to appropriately sense metabolic stress. We tested the therapeutic potential of metabolic drugs in NSCLC and identified phenformin, a mitochondrial inhibitor and analog of the diabetes therapeutic metformin, as selectively inducing apoptosis in LKB1-deficient NSCLC cells. Therapeutic trials in Kras-dependent mouse models of NSCLC revealed that tumors with Kras and Lkb1 mutations, but not those with Kras and p53 mutations, showed selective response to phenformin as a single agent, resulting in prolonged survival. This study suggests phenformin as a cancer metabolism-based therapeutic to selectively target LKB1-deficient tumors. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. miR-137 inhibits the proliferation of human non-small cell lung cancer cells by targeting SRC3

    PubMed Central

    Chen, Ruilin; Zhang, Yongqing; Zhang, Chengcheng; Wu, Hua; Yang, Shumei

    2017-01-01

    Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. The results of the present study demonstrate that high expression of microRNA (miR)-137 and low expression of steroid receptor coactivator-3 (SRC3) had a significant negative correlation in 40 NSCLC tissue samples. In addition, cell colony formation and proliferation was significantly reduced in miR-137-transfected A549 and NCI-H838 cells compared with scramble-transfected NSCLC cell lines. miR-137 was identified to induce G1/S cell cycle arrest and dysregulate the mRNA expression of cell cycle-associated proteins (proliferating cell nuclear antigen, cyclin E, cyclin A1, cyclin A2 and p21) in NSCLC cells. Notably, miR-137 could significantly suppress SRC3 3′ untranslated region (UTR) luciferase-reporter activity, an effect that was not detectable when the putative 3′-UTR target-site was mutated, further clarifying the molecular mechanisms underlying the role of miR-137 in NSCLC. In conclusion, the results of the present study suggest that miR-137 suppresses NSCLC cell proliferation by partially targeting SRC3. PMID:28521488

  11. Serum long non coding RNA MALAT-1 protected by exosomes is up-regulated and promotes cell proliferation and migration in non-small cell lung cancer.

    PubMed

    Zhang, Rui; Xia, Yuhong; Wang, Zhixin; Zheng, Jie; Chen, Yafei; Li, Xiaoli; Wang, Yu; Ming, Huaikun

    2017-08-19

    Circulating lncRNAs have been defined as a novel biomarker for non-small cell lung cancer (NSCLC), MALAT-1 was first identified lncRNA that was related to lung cancer metastasis. However, the relationship between exosomal lncRNAs and the diagnosis and prognosis of NSCLC was poorly understood. The aim of this study is to evaluate the clinical significance of serum exosomal MALAT-1 as a biomarker in the metastasis of NSCLC. In this study, we firstly isolated the exosomes from healthy subjects and NSCLC patients. Then we measured the expression levels of MALAT-1 contained in exosomes, and found that exosomal MALAT-1 was highly expressed in NSCLC patients, more importantly, the levels of exosomal MALAT-1 were positively associated with tumor stage and lymphatic metastasis. In addition, we decreased MALAT-1 expression by short hairpin RNA and conducted a series of assays including MTT, cell cycle, colony formation, wound-healing scratch and Annexin/V PI by flow cytometry in human lung cancer cell lines. These in vitro studies demonstrated that serum exosome-derived long noncoding RNA MALAT-1 promoted the tumor growth and migration, and prevented tumor cells from apoptosis in lung cancer cell lines. Taken together, this study shed a light on utilizing MALAT-1 in exosomes as a non-invasive serum-based tumor biomarker for diagnosis and prognosis of NSCLC. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. UTSW Researchers Identify Potential Therapeutic Targets for High-grade Neuroendocrine Lung Cancers | Office of Cancer Genomics

    Cancer.gov

    Neuroendocrine specific lung cancers comprise about 10% of non-small cell lung cancer (NSCLC) cases and all small cell lung cancer (SCLC) cases. Studies have previously shown that the transcription factor achaete-scute homolog 1 (ASCL1) is a cancer “lineage” factor required for the development and survival of SCLC, and is highly expressed in neuroendocrine-specific NSCLC (NE-NSCLC).

  13. Increased lipoprotein lipase activity in non-small cell lung cancer tissue predicts shorter patient survival.

    PubMed

    Trost, Zoran; Sok, Miha; Marc, Janja; Cerne, Darko

    2009-07-01

    Cumulative evidence suggests the involvement of lipoprotein lipase (LPL) in tumor progression. We tested the hypothesis that increased LPL activity in resectable non-small cell lung cancer (NSCLC) tissue and the increased LPL gene expression in the surrounding non-cancer lung tissue found in our previous study are predictors of patient survival. Forty two consecutive patients with resected NSCLC were enrolled in the study. Paired samples of lung cancer tissue and adjacent non-cancer lung tissue were collected from resected specimens for baseline LPL activity and gene expression estimation. During a 4-year follow-up, 21 patients died due to tumor progression. One patient died due to a non-cancer reason and was not included in Cox regression analysis. High LPL activity in cancer tissue (relative to the adjacent non-cancer lung tissue) predicted shorter survival, independently of standard prognostic factors (p=0.003). High gene expression in the non-cancer lung tissue surrounding the tumor had no predictive value. Our study further underlines the involvement of cancer tissue LPL activity in tumor progression.

  14. Sorafenib in Treating Patients With Metastatic or Unresectable Solid Tumors, Multiple Myeloma, or Non-Hodgkin's Lymphoma With or Without Impaired Liver or Kidney Function

    ClinicalTrials.gov

    2013-01-04

    Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Multiple Myeloma; Splenic Marginal Zone Lymphoma; Stage II Multiple Myeloma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia

  15. Doublecortin and CaM kinase-like-1 expression in pathological stage I non-small cell lung cancer.

    PubMed

    Tao, Hiroyuki; Tanaka, Toshiki; Okabe, Kazunori

    2017-08-01

    Doublecortin and CaM kinase-like-1 (DCLK1) regulates microtubule polymerization in migrating neurons. Recently, DCLK1 has been reported to act as an intestinal tumor stem cell marker and has been shown to be expressed in cancer cells and in the stroma of breast, colon, pancreatic, and prostate cancers. Here, we studied DCLK1 expression in non-small cell lung cancer (NSCLC) by immunohistochemistry in association with clinicopathological factors and patient prognosis. DCLK1 expression was analyzed by immunohistochemical staining of surgical specimens from 232 patients with pathological stage I NSCLC, including 187 adenocarcinomas. Relationships between the expression status of DCLK1 and clinicopathological factors were examined. The impact of DCLK1 expression status and other clinicopathological factors on survival was evaluated by univariate and multivariate analyses. Thirty-three (14.2%) of 232 patients had DCLK1-positive cancer cells. DCLK1 was also expressed in the tumor stroma in most of the specimens and was significantly associated with DCLK1 expression in cancer cells. DCLK1-positive cancer cells were more common in non-adenocarcinoma tissues (44.4%) than in adenocarcinoma tissues (7.0%). Moreover, positive DCLK1 expression in cancer cells and stromal cells was correlated with a worse prognosis. Histological analyses revealed that the presence of DCLK1-positive cancer cells was an independent risk factor for poor prognosis in adenocarcinoma, but was not significantly associated with prognosis in non-adenocarcinoma. DCLK1 expression was observed in tumor cells in patients with pathological stage I NSCLC and was correlated with adverse prognosis, especially in patients with adenocarcinoma. DCLK1 may be a potential new therapeutic target.

  16. Donor polymer design enables efficient non-fullerene organic solar cells

    PubMed Central

    Li, Zhengke; Jiang, Kui; Yang, Guofang; Lai, Joshua Yuk Lin; Ma, Tingxuan; Zhao, Jingbo; Ma, Wei; Yan, He

    2016-01-01

    To achieve efficient organic solar cells, the design of suitable donor–acceptor couples is crucially important. State-of-the-art donor polymers used in fullerene cells may not perform well when they are combined with non-fullerene acceptors, thus new donor polymers need to be developed. Here we report non-fullerene organic solar cells with efficiencies up to 10.9%, enabled by a novel donor polymer that exhibits strong temperature-dependent aggregation but with intentionally reduced polymer crystallinity due to the introduction of a less symmetric monomer unit. Our comparative study shows that an analogue polymer with a C2 symmetric monomer unit yields highly crystalline polymer films but less efficient non-fullerene cells. Based on a monomer with a mirror symmetry, our best donor polymer exhibits reduced crystallinity, yet such a polymer matches better with small molecular acceptors. This study provides important insights to the design of donor polymers for non-fullerene organic solar cells. PMID:27782112

  17. Rearranged EML4-ALK fusion transcripts sequester in circulating blood platelets and enable blood-based crizotinib response monitoring in non-small-cell lung cancer

    PubMed Central

    Nilsson, R. Jonas A.; Karachaliou, Niki; Berenguer, Jordi; Gimenez-Capitan, Ana; Schellen, Pepijn; Teixido, Cristina; Tannous, Jihane; Kuiper, Justine L.; Drees, Esther; Grabowska, Magda; van Keulen, Marte; Heideman, Danielle A.M.; Thunnissen, Erik; Dingemans, Anne-Marie C.; Viteri, Santiago; Tannous, Bakhos A.; Drozdowskyj, Ana; Rosell, Rafael; Smit, Egbert F.; Wurdinger, Thomas

    2016-01-01

    Purpose: Non-small-cell lung cancers harboring EML4-ALK rearrangements are sensitive to crizotinib. However, despite initial response, most patients will eventually relapse, and monitoring EML4-ALK rearrangements over the course of treatment may help identify these patients. However, challenges associated with serial tumor biopsies have highlighted the need for blood-based assays for the monitoring of biomarkers. Platelets can sequester RNA released by tumor cells and are thus an attractive source for the non-invasive assessment of biomarkers. Methods: EML4-ALK rearrangements were analyzed by RT-PCR in platelets and plasma isolated from blood obtained from 77 patients with non-small-cell lung cancer, 38 of whom had EML4-ALK-rearranged tumors. In a subset of 29 patients with EML4-ALK-rearranged tumors who were treated with crizotinib, EML4-ALK rearrangements in platelets were correlated with progression-free and overall survival. Results: RT-PCR demonstrated 65% sensitivity and 100% specificity for the detection of EML4-ALK rearrangements in platelets. In the subset of 29 patients treated with crizotinib, progression-free survival was 3.7 months for patients with EML4-ALK+ platelets and 16 months for those with EML4-ALK− platelets (hazard ratio, 3.5; P = 0.02). Monitoring of EML4-ALK rearrangements in the platelets of one patient over a period of 30 months revealed crizotinib resistance two months prior to radiographic disease progression. Conclusions: Platelets are a valuable source for the non-invasive detection of EML4-ALK rearrangements and may prove useful for predicting and monitoring outcome to crizotinib, thereby improving clinical decisions based on radiographic imaging alone. PMID:26544515

  18. Rearranged EML4-ALK fusion transcripts sequester in circulating blood platelets and enable blood-based crizotinib response monitoring in non-small-cell lung cancer.

    PubMed

    Nilsson, R Jonas A; Karachaliou, Niki; Berenguer, Jordi; Gimenez-Capitan, Ana; Schellen, Pepijn; Teixido, Cristina; Tannous, Jihane; Kuiper, Justine L; Drees, Esther; Grabowska, Magda; van Keulen, Marte; Heideman, Danielle A M; Thunnissen, Erik; Dingemans, Anne-Marie C; Viteri, Santiago; Tannous, Bakhos A; Drozdowskyj, Ana; Rosell, Rafael; Smit, Egbert F; Wurdinger, Thomas

    2016-01-05

    Non-small-cell lung cancers harboring EML4-ALK rearrangements are sensitive to crizotinib. However, despite initial response, most patients will eventually relapse, and monitoring EML4-ALK rearrangements over the course of treatment may help identify these patients. However, challenges associated with serial tumor biopsies have highlighted the need for blood-based assays for the monitoring of biomarkers. Platelets can sequester RNA released by tumor cells and are thus an attractive source for the non-invasive assessment of biomarkers. EML4-ALK rearrangements were analyzed by RT-PCR in platelets and plasma isolated from blood obtained from 77 patients with non-small-cell lung cancer, 38 of whom had EML4-ALK-rearranged tumors. In a subset of 29 patients with EML4-ALK-rearranged tumors who were treated with crizotinib, EML4-ALK rearrangements in platelets were correlated with progression-free and overall survival. RT-PCR demonstrated 65% sensitivity and 100% specificity for the detection of EML4-ALK rearrangements in platelets. In the subset of 29 patients treated with crizotinib, progression-free survival was 3.7 months for patients with EML4-ALK+ platelets and 16 months for those with EML4-ALK- platelets (hazard ratio, 3.5; P = 0.02). Monitoring of EML4-ALK rearrangements in the platelets of one patient over a period of 30 months revealed crizotinib resistance two months prior to radiographic disease progression. Platelets are a valuable source for the non-invasive detection of EML4-ALK rearrangements and may prove useful for predicting and monitoring outcome to crizotinib, thereby improving clinical decisions based on radiographic imaging alone.

  19. Expression of vascular endothelial growth factor mRNA in non-small-cell lung carcinomas

    PubMed Central

    Fontanini, G; Boldrini, L; Chinè, S; Pisaturo, F; Basolo, F; Calcinai, A; Lucchi, M; Mussi, A; Angeletti, C A; Bevilacqua, G

    1999-01-01

    The vascular endothelial growth factor (VEGF) has been shown to be strictly related to vascular permeability and endothelial cell growth under physiological and pathological conditions. In tumour development and progression, VEGF plays a pivotal role in the development of the tumoral vascular network, and useful information in the progression of human cancer can be obtained by analysing the vascular endothelial growth factor expression of the tumours. In this study, we investigated the vascular endothelial growth factor transcript expression in non-small-cell lung carcinomas to evaluate the significance of this factor in a group of cancers in which the vascular pattern has been shown to significantly affect progression. Surgical samples of 42 patients with NSCLC were studied using reverse transcription polymerase chain reaction (PCR) analysis and in situ hybridization. Thirty-three out of 42 cases (78.6%) showed VEGF transcript expression predominantly as transcripts for the secretory forms of VEGF (isoforms 121 and 165). In situ hybridization, performed on 24 out of 42 samples, showed that the VEGF transcript expression was in several cases present in the cytoplasm both of neoplastic and normal cells, even if the VEGF mRNA was less expressed in the corresponding non-tumoral part. The VEGF 121 expression was associated with hilar and/or mediastinal nodal involvement (P = 0.02), and, taken together, the VEGF isoforms were shown to significantly influence overall (P = 0.02) and disease-free survival (P = 0.03). As a regulator of tumour angiogenesis, VEGF may represent a useful indicator of progression and poor prognosis in non-small-cell lung carcinomas. © 1999 Cancer Research Campaign PMID:9888482

  20. Ph 1 Study in Subjects With Tumors Requiring Arginine to Assess ADI-PEG 20 With Pemetrexed and Cisplatin

    ClinicalTrials.gov

    2018-02-21

    Pleural Mesothelioma Malignant Advanced; Peritoneal Mesothelioma Malignant Advanced; Non-squamous Non-small Cell Lung Carcinoma Stage IIIB/IV (NSCLC); Metastatic Uveal Melanoma; Hepatocellular Carcinoma (HCC); Glioma; Sarcomatoid Cancers

  1. Interleukin-6 and granulocyte-macrophage colony-stimulating factor in apical periodontitis: correlation with clinical and histologic findings of the involved teeth.

    PubMed

    Radics, T; Kiss, C; Tar, I; Márton, I J

    2003-02-01

    Apical periodontitis is characterized by the presence of immunocompetent cells producing a wide variety of inflammatory mediators. Releasing cytokines with long-range action, such as interleukin-6 (IL-6) and granulocyte-macrophage colony-stimulating factor (GM-CSF), apical periodontitis may induce changes in remote organs of the host. This study quantified the levels of IL-6 and GM-CSF in symptomatic and asymptomatic human periradicular lesions. Lesions were also characterized by size and histologic findings. Tissue samples were homogenized and supernatants were assayed using an enzyme-linked immunosorbent assay (ELISA). Correlations between cytokine levels and characteristic features (as single variables) of the lesions were analysed. There was a trend for higher levels of IL-6 and GM-CSF in symptomatic than in asymptomatic lesions, but the difference was not significant. Levels also tended to be higher in large than in small lesions, in polymorphonuclear (PMN) cell-rich than in PMN cell-poor samples, and in epithelialized than in non-epithelialized lesions. Significantly higher levels of IL-6 (778.1 +/- 220.5 pg/microg) and GM-CSF (363.3 +/- 98.4 pg/microg) were found in samples coincidentally possessing symptomatic and epithelialized features than in asymptomatic, small, PMN cell-poor, non-epithelialized lesions (IL-6: 45.2 +/- 13.1 pg/microg and GM-CSF: 135.1 +/- 26.4 pg/microg). These results suggest that symptomatic lesions containing epithelial cells represent an immunologically active stage of apical periodontitis, whereas asymptomatic, small, PMN cell-poor, non-epithelialized lesions represent healing apical lesions.

  2. Efficacy of adjuvant chemotherapy for non-small cell lung cancer assessed by metastatic potential associated with ACTN4.

    PubMed

    Miura, Nami; Kamita, Masahiro; Kakuya, Takanori; Fujiwara, Yutaka; Tsuta, Koji; Shiraishi, Hideaki; Takeshita, Fumitaka; Ochiya, Takahiro; Shoji, Hirokazu; Huang, Wilber; Ohe, Yuichiro; Yamada, Tesshi; Honda, Kazufumi

    2016-05-31

    Although several clinical trials have demonstrated the benefits of platinum-combined adjuvant chemotherapy for resected non-small cell lung cancer (NSCLC), predictive biomarkers for the efficacy of such therapy have not yet been identified. Selection of patients with high metastatic ability in the early stage of non-small cell lung cancer (NSCLC) has the potential to predict clinical benefit of adjuvant chemotherapy (ADJ).In order to develop a predictive biomarker for efficacy of ADJ, we reanalyzed patient data using a public database enrolled by JBR.10, which was a clinical trial to probe the clinical benefits of ADJ in stage-IB/II patients with NSCLC. The patients who were enrolled by JBR.10 were classified into 2 subgroups according to expression of the ACTN4 transcript: ACTN4 positive (ACTN4 (+)) and ACTN4 negative (ACTN4 (-)). In the ACTN4 (+) group, overall survival (OS) was significantly higher in the ADJ subgroup compared with the observation subgroup (OBS), indicating a significant survival benefit of ADJ. However, no difference in OS was found between ADJ and OBS groups in ACTN4 (-). Although ACTN4 expression level did not correlate with the chemosensitivity of cancer cell lines for cytotoxic drugs, the metastatic potential of A549 lung adenocarcinoma cells was significantly reduced by ACTN4 shRNA in in vitro assays and in an animal transplantation model. The clinical and preclinical data suggested that ACTN4 is a potential predictive biomarker for efficacy of ADJ in stage-IB/II patients with NSCLC, by reflecting the metastatic potential of tumor cells.

  3. Non-small cell lung carcinoma therapy using mTOR-siRNA.

    PubMed

    Matsubara, Hirochika; Sakakibara, Kenji; Kunimitsu, Tamo; Matsuoka, Hiroyasu; Kato, Kaori; Oyachi, Noboru; Dobashi, Yoh; Matsumoto, Masahiko

    2012-01-01

    Molecular targeting agents play important roles in non-small-cell lung cancer (NSCLC) therapy. Published studies have investigated new drugs categorized as molecular targeting agents that inhibit the mammalian target of rapamycin (mTOR). We focused on a small interfering RNA (siRNA) that specifically inhibits mTOR and has fewer side effects. To evaluate the antitumor effects of the siRNA, cell proliferation, apoptosis, and migration were assessed. In the study group, the siRNA was transfected into NSCLC cells. The number of cells present after 6 days of culture was counted to determine changes in cell proliferation. The level of apoptosis was evaluated by the detection of DNA-histone complexes in the cytoplasmic fraction using an absorption spectrometer. Changes in migration were evaluated by calculating the number of cells that passed through a specific filter using a commercial chemotaxis assay kit. mTOR-siRNA transfection inhibited cell proliferation as indicated by 37.3% (p = 0.034) decrease in the number of cells compared with the control cells. Analysis of the level of apoptosis in NSCLC cells revealed 16.7% (p = 0.016) increase following mTOR-siRNA transfection, and mTOR-siRNA transfection significantly inhibited cell migration by 39.2% (p = 0.0001). We confirmed that mTOR-siRNA induces apoptosis and inhibits the proliferation and migration of NSCLC cells in vitro. Further studies using mTOR-siRNA may aid in the development of an alternative therapy that maximizes the antineoplastic effect of mTOR inhibition.

  4. Non-small cell lung carcinoma therapy using mTOR-siRNA

    PubMed Central

    Matsubara, Hirochika; Sakakibara, Kenji; Kunimitsu, Tamo; Matsuoka, Hiroyasu; Kato, Kaori; Oyachi, Noboru; Dobashi, Yoh; Matsumoto, Masahiko

    2012-01-01

    Molecular targeting agents play important roles in non-small-cell lung cancer (NSCLC) therapy. Published studies have investigated new drugs categorized as molecular targeting agents that inhibit the mammalian target of rapamycin (mTOR). We focused on a small interfering RNA (siRNA) that specifically inhibits mTOR and has fewer side effects. To evaluate the antitumor effects of the siRNA, cell proliferation, apoptosis, and migration were assessed. In the study group, the siRNA was transfected into NSCLC cells. The number of cells present after 6 days of culture was counted to determine changes in cell proliferation. The level of apoptosis was evaluated by the detection of DNA-histone complexes in the cytoplasmic fraction using an absorption spectrometer. Changes in migration were evaluated by calculating the number of cells that passed through a specific filter using a commercial chemotaxis assay kit. mTOR-siRNA transfection inhibited cell proliferation as indicated by 37.3% (p = 0.034) decrease in the number of cells compared with the control cells. Analysis of the level of apoptosis in NSCLC cells revealed 16.7% (p = 0.016) increase following mTOR-siRNA transfection, and mTOR-siRNA transfection significantly inhibited cell migration by 39.2% (p = 0.0001). We confirmed that mTOR-siRNA induces apoptosis and inhibits the proliferation and migration of NSCLC cells in vitro. Further studies using mTOR-siRNA may aid in the development of an alternative therapy that maximizes the antineoplastic effect of mTOR inhibition. PMID:22400071

  5. FOXD3 suppresses tumor growth and angiogenesis in non-small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Jun-Hai; Zhao, Chun-Liu; Ding, Lan-Bao

    2015-10-09

    The transcription factor forkhead box D3 (FOXD3), widely studied as a transcriptional repressor in embryogenesis, participates in the carcinogenesis of many cancers. However, the expression pattern and role of FOXD3 in non-small cell lung cancer (NSCLC) have not been well characterized. We report that FOXD3 is significantly downregulated in NSCLC cell lines and clinical tissues. FOXD3 overexpression significantly inhibits cell growth and results in G1 cell cycle arrest in NSCLC A549 and H1299 cells. In a xenograft tumor model, FOXD3 overexpression inhibits tumor growth and angiogenesis. Remarkably, expression of vascular endothelial growth factor (VEGF) was reduced in FOXD3 overexpression models bothmore » in vitro and in vivo. These findings suggest that FOXD3 plays a potential tumor suppressor role in NSCLC progression and represents a promising clinical prognostic marker and therapeutic target for this disease. - Highlights: • FOXD3 is downregulated in NSCLC cell lines and tissues. • FOXD3 overexpression inhibited cell proliferation in NSCLC cells. • FOXD3 overexpression led to decreased angiogenesis in NSCLC cells in vitro and in vivo.« less

  6. A novel imidazopyridine PI3K inhibitor with anticancer activity in non-small cell lung cancer cells.

    PubMed

    Lee, Hyunseung; Kim, Soo Jung; Jung, Kyung Hee; Son, Mi Kwon; Yan, Hong Hua; Hong, Sungwoo; Hong, Soon-Sun

    2013-08-01

    Lung cancer is the leading cause of cancer-related mortality in the world, and non-small cell lung cancer (NSCLC) accounts for approximately 85% of all cases. Since more than 60% of NSCLC cases express the epidermal growth factor receptor (EGFR), EGFR tyrosine kinase inhibitors are used to treat NSCLC. However, due to the acquired resistance associated with EGFR-targeted therapy, other strategies for the treatment of NSCLC are urgently needed. Therefore, we investigated the anticancer effects of a novel phosphatidylinositol 3-kinase α (PI3Kα) inhibitor, HS-173, in human NSCLC cell lines. HS-173 demonstrated anti-proliferative effects in NSCLC cells and effectively inhibited the PI3K signaling pathway in a dose‑dependent manner. In addition, it induced cell cycle arrest at G2/M phase as well as apoptosis. Taken together, our results demonstrate that HS-173 exhibits anticancer activities, including the induction of apoptosis, by blocking the PI3K/Akt/mTOR pathway in human NSCLC cell lines. We, therefore, suggest that this novel drug could potentially be used for targeted NSCLC therapy.

  7. Paclitaxel and Carboplatin in Treating Patients With Metastatic or Recurrent Solid Tumors and HIV Infection

    ClinicalTrials.gov

    2017-12-19

    HIV Infection; Recurrent Anal Cancer; Recurrent Breast Cancer; Recurrent Esophageal Cancer; Recurrent Gastric Cancer; Recurrent Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Salivary Gland Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Salivary Gland Squamous Cell Carcinoma; Stage IV Anal Cancer; Stage IV Breast Cancer; Stage IV Esophageal Cancer; Stage IV Gastric Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Salivary Gland Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IV Verrucous Carcinoma of the Larynx; Stage IV Verrucous Carcinoma of the Oral Cavity; Unspecified Adult Solid Tumor, Protocol Specific

  8. Targeted therapy for non-small cell lung cancer: current standards and the promise of the future

    PubMed Central

    Chan, Bryan A.

    2015-01-01

    In recent years, there has been a major paradigm shift in the management of non-small cell lung cancer (NSCLC). NSCLC should now be further sub-classified by histology and driver mutation if one is known or present. Translational research advances now allow such mutations to be inhibited by either receptor monoclonal antibodies (mAb) or small molecule tyrosine kinase inhibitors (TKI). Whilst empirical chemotherapy with a platinum-doublet remains the gold standard for advanced NSCLC without a known driver mutation, targeted therapy is pushing the boundary to significantly improve patient outcomes and quality of life. In this review, we will examine the major subtypes of oncogenic drivers behind NSCLC as well as the development of targeted agents available to treat them both now and in the foreseeable future. PMID:25806345

  9. Expression of pleiotrophin in small cell lung cancer.

    PubMed

    Wang, H Q; Wang, J

    2015-01-01

    Pleiotrophin (PTN) is a kind of heparin binding growth factor closely related to tumor progression. This study aimed to discuss the significance of the expression of PTN in benign and malignant lung cancer tissues, especially small cell lung cancer. Lung cancer samples were collected for study and lung tissue samples with benign lesions were taken as controls. The expression of PTN was detected using tissue chip combined with the immunohistochemical method, and the differences of small cell lung cancer with non-small cell lung cancer and benign lesion tissue were compared. It was found that PTN expression was mainly located in the cytoplasm and membrane of cells; PTN expression in the lung cancer group was higher than that in the control group (p < 0.01), and PTN expression in the small cell cancer group was higher than that in the squamous carcinoma group and glandular cancer group (p < 0.05). In addition, PTN expression quantity in patients with lung cancer were in close correlation with TNM staging, pathological type and tumor differentiation degree (p < 0.05). PTN was found to express abnormally high in lung cancer, especially small cell lung cancer tissue. PTN is most likely to be a new tumor marker for diagnosis and prognosis of lung cancer.

  10. Lung cancer - non-small cell

    MedlinePlus

    ... do develop lung cancer. Research shows that smoking marijuana may help cancer cells grow. But there is no direct link ... LoCicero, MD, private practice specializing in Hematology and Medical Oncology, Longsteet Cancer Center, Gainesville, GA. Review provided by VeriMed Healthcare ...

  11. Isolating and Testing Circulating Tumor DNA and Soluble Immune Markers During the Course of Treatment for Lung Cancer

    ClinicalTrials.gov

    2018-01-08

    Lung Cancer; Lung Neoplasms; Cancer of Lung; Cancer of the Lung; Neoplasms, Lung; Neoplasms, Pulmonary; Pulmonary Cancer; Pulmonary Neoplasms; Carcinoma, Non-small-cell Lung; Adenocarcinoma; Squamous Cell Carcinoma

  12. The potential for crizotinib in non-small cell lung cancer: a perspective review

    PubMed Central

    Bang, Yung-Jue

    2011-01-01

    Tyrosine kinases have a crucial role as key regulators of signaling pathways that influence cell differentiation and growth. Dysregulation of tyrosine kinase-mediated signaling is understood to be an important oncogenic driver. Genetic rearrangements involving the tyrosine kinase anaplastic lymphoma kinase (ALK) gene occur in non-small cell lung cancer (NSCLC), anaplastic large cell lymphomoas, inflammatory myofibroblastic tumors, and other cancers. Cells with abnormal ALK signaling are sensitive to ALK inhibitors such as crizotinib. This review will highlight the discovery of the fusion between echinoderm microtubule-associated protein-like 4 (EML4) and ALK as an oncogenic driver, recognition of other ALK gene rearrangements in NSCLC, and the confirmation that crizotinib is an effective treatment for patients with ALK-positive NSCLC. Work is underway to further define the role for crizotinib in the treatment of ALK-positive lung cancer and other cancers and to investigate the molecular mechanisms for resistance to ALK inhibition with crizotinib. PMID:22084642

  13. Cysts mark the early stage of metastatic tumor development in non-small cell lung cancer

    PubMed Central

    Thakur, Chitra; Rapp, Ulf R.; Rudel, Thomas

    2018-01-01

    Identifying metastatic tumor growth at an early stage has been one of the biggest challenges in the treatment of lung cancer. By genetic lineage tracing approach in a conditional model of Non-Small Cell Lung Cancer (NSCLC) in mice, we demonstrate that cystic lesions represent an early stage of metastatic invasion. We generated a mouse model for NSCLC which incorporated a heritable DsRed fluorescent tag driven by the ubiquitous CAG promoter in the alveolar type II cells of the lung. We found early cystic lesions in a secondary organ (liver) that lacked the expression of bona fide lung makers namely Scgb1a1 and surfactant protein C Sftpc and were DsRed positive hence identifying lung as their source of origin. This demonstrates the significant potential of alveolar type II cells in orchestrating the process of metastasis, rendering it as one of the target cell types of the lung of therapeutic importance in human NSCLC. PMID:29464089

  14. Crizotinib-Resistant Mutants of EML4-ALK Identified Through an Accelerated Mutagenesis Screen

    PubMed Central

    Zhang, Sen; Wang, Frank; Keats, Jeffrey; Zhu, Xiaotian; Ning, Yaoyu; Wardwell, Scott D; Moran, Lauren; Mohemmad, Qurish K; Anjum, Rana; Wang, Yihan; Narasimhan, Narayana I; Dalgarno, David; Shakespeare, William C; Miret, Juan J; Clackson, Tim; Rivera, Victor M

    2011-01-01

    Activating gene rearrangements of anaplastic lymphoma kinase (ALK) have been identified as driver mutations in non-small-cell lung cancer, inflammatory myofibroblastic tumors, and other cancers. Crizotinib, a dual MET/ALK inhibitor, has demonstrated promising clinical activity in patients with non-small-cell lung cancer and inflammatory myofibroblastic tumors harboring ALK translocations. Inhibitors of driver kinases often elicit kinase domain mutations that confer resistance, and such mutations have been successfully predicted using in vitro mutagenesis screens. Here, this approach was used to discover an extensive set of ALK mutations that can confer resistance to crizotinib. Mutations at 16 residues were identified, structurally clustered into five regions around the kinase active site, which conferred varying degrees of resistance. The screen successfully predicted the L1196M, C1156Y, and F1174L mutations, recently identified in crizotinib-resistant patients. In separate studies, we demonstrated that crizotinib has relatively modest potency in ALK-positive non-small-cell lung cancer cell lines. A more potent ALK inhibitor, TAE684, maintained substantial activity against mutations that conferred resistance to crizotinib. Our study identifies multiple novel mutations in ALK that may confer clinical resistance to crizotinib, suggests that crizotinib's narrow selectivity window may underlie its susceptibility to such resistance and demonstrates that a more potent ALK inhibitor may be effective at overcoming resistance. PMID:22034911

  15. Single or Double Donor Umbilical Cord Blood Transplant in Treating Patients With High-Risk Hematologic Malignancies

    ClinicalTrials.gov

    2016-07-13

    Accelerated Phase Chronic Myelogenous Leukemia; Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Blastic Phase Chronic Myelogenous Leukemia; Cutaneous B-cell Non-Hodgkin Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenström Macroglobulinemia

  16. Reduced-Intensity Conditioning Before Donor Stem Cell Transplant in Treating Patients With High-Risk Hematologic Malignancies

    ClinicalTrials.gov

    2018-03-02

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Myelomonocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Cutaneous B-cell Non-Hodgkin Lymphoma; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Juvenile Myelomonocytic Leukemia; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Polycythemia Vera; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Refractory Cytopenia With Multilineage Dysplasia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenström Macroglobulinemia

  17. The omega-3 polyunsaturated fatty acid docosahexaenoic acid inhibits proliferation and progression of non-small cell lung cancer cells through the reactive oxygen species-mediated inactivation of the PI3K /Akt pathway.

    PubMed

    Yin, Yuanqin; Sui, Chengguang; Meng, Fandong; Ma, Ping; Jiang, Youhong

    2017-05-03

    Docosahexaenoic acid(DHA) inhibits tumor growth and progression in various cancers, including lung cancer. However, the mechanisms involved remain unclear. The aim of this study was to identify the mechanism of DHA in inhibiting progression of non-small cell lung cancer (NSCLC) in vitro. The proliferation of A549 was tested by MTT, and cell apoptosis was analysed using flow cytometer. The migration and invasion were examined respectively by wound healing assay and Transwell invasion assay. The level of ROS (reactive oxygen species, ROS) was checked by DCF (dichlorodihydrofluorescein, DCF) production in cells. The apoptosis associated protein (caspase-3, PARP,Bax,Bcl-2 and survivin) and metastases associated proteins including HEF1, MMP9 and VEGF were detected by Western blot, and the same method was used in the expression of PI3K and Akt. DHA inhibited proliferation and induced apoptosis of A549 cells. Moreover, it suppressed the invasion and metastasis of A549 cells, while downregulating the levels of metastasis-associated proteins, including HEF1, matrix metallopeptidase (MMP9), and vascular endothelial growth factor (VEGF), in a dose -dependent manner. In addition, DHA inactivated Akt phosphorylation. All of these responses were associated with the accumulation of intracellular ROS. DHA downregulated the level of antioxidant enzymes such as catalase, while the antioxidant N-acetyl-cysteine (NAC) reversed the effect of DHA, which further validated our findings. The present study demonstrates that DHA inhibits the development of non-small lung tumors through an ROS-mediated inactivation of the PI3K/Akt signaling pathway.

  18. Cancer-associated fibroblasts promote epithelial-mesenchymal transition and EGFR-TKI resistance of non-small cell lung cancers via HGF/IGF-1/ANXA2 signaling.

    PubMed

    Yi, Yanmei; Zeng, Shanshan; Wang, Zhaotong; Wu, Minhua; Ma, Yuanhuan; Ye, Xiaoxia; Zhang, Biao; Liu, Hao

    2018-03-01

    The involvement of the tumor stromal cells in acquired resistance of non-small cell lung cancers (NSCLCs) to tyrosine kinase inhibitors (TKIs) has previously been reported, but the precise mechanism remains unclear. In the present study, we investigated the role and mechanism underlying Cancer-associated fibroblasts (CAFs) in TKI resistance of NSCLCs. In vitro and in vivo experiments showed that HCC827 and PC9 cells, non-small cell lung cancer cells with EGFR-activating mutations, became resistant to the EGFR-TKI gefitinib when cultured with CAFs isolated from NSCLC tissues. Moreover, we showed that CAFs could induce epithelial-mesenchymal transition (EMT) phenotype of HCC827 and PC9 cells, with an associated change in the expression of epithelial to mesenchymal transition markers. Using proteomics-based method, we identified that CAFs significantly increased the expression of the Annexin A2 (ANXA2). More importantly, knockdown of ANXA2 completely reversed EMT phenotype and gefitinib resistance induced by CAFs. Furthermore, we found that CAFs increased the expression and phosphorylation of ANXA2 by secretion of growth factors HGF and IGF-1 and by activation of the corresponding receptors c-met and IGF-1R. Dual inhibition of HGF/c-met and IGF-1/IGF-1R pathways could significantly suppress ANXA2, and markedly reduced CAFs-induced EMT and gefitinib resistance. Taken together, these findings indicate that CAFs promote EGFR-TKIs resistance through HGF/IGF-1/ANXA2/EMT signaling and may be an ideal therapeutic target in NSCLCs with EGFR-activating mutations. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Small Business Innovation Research Award Success Story: Proton Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2011-04-01

    This success story describes Proton Energy Systems, a small business that designs and manufactures proton exchange membrane (PEM) electrolysis sytems to produce hydrogen from water. The U.S. Department of Energy's Fuel Cell Technologies Program has supported much of Proton's technology development through Small Business Innovation Research (SBIR) Awards and other non-SBIR funding.

  20. Results of the First Italian External Quality Assurance Scheme for somatic EGFR mutation testing in non-small-cell lung cancer.

    PubMed

    Normanno, Nicola; Pinto, Carmine; Taddei, Gianluigi; Gambacorta, Marcello; Castiglione, Francesca; Barberis, Massimo; Clemente, Claudio; Marchetti, Antonio

    2013-06-01

    The Italian Association of Medical Oncology (AIOM) and the Italian Society of Pathology and Cytology organized an external quality assessment (EQA) scheme for EGFR mutation testing in non-small-cell lung cancer. Ten specimens, including three small biopsies with known epidermal growth factor receptor (EGFR) mutation status, were validated in three referral laboratories and provided to 47 participating centers. The participants were requested to perform mutational analysis, using their usual method, and to submit results within a 4-week time frame. According to a predefined scoring system, two points were assigned to correct genotype and zero points to false-negative or false-positive results. The threshold to pass the EQA was set at higher than 18 of 20 points. Two rounds were preplanned. All participating centers submitted the results within the time frame. Polymerase chain reaction (PCR)/sequencing was the main methodology used (n = 37 laboratories), although a few centers did use pyrosequencing (n = 8) or real-time PCR (n = 2). A significant number of analytical errors were observed (n = 20), with a high frequency of false-positive results (n = 16). The lower scores were obtained for the small biopsies. Fourteen of 47 centers (30%) that did not pass the first round, having a score less than or equal to 18 points, used PCR/sequencing, whereas 10 of 10 laboratories, using pyrosequencing or real-time PCR, passed the first round. Eight laboratories passed the second round. Overall, 41of 47 centers (87%) passed the EQA. The results of the EQA for EGFR testing in non-small-cell lung cancer suggest that good quality EGFR mutational analysis is performed in Italian laboratories, although differences between testing methods were observed, especially for small biopsies.

Top