Science.gov

Sample records for non-affine rubber elasticity

  1. Non-affine elasticity in jammed systems

    NASA Astrophysics Data System (ADS)

    Maloney, Craig

    2006-03-01

    Symmetry dictates that perfect crystals should deform homogeneously, or affinely, under external load, and computing the elastic moduli from the underlying interaction potential is then straightforward. For disordered materials no such simple procedure exists, and recent numerical works have demonstrated that non-affine corrections can dramatically reduce the naive expectation for the shear modulus in a broad class of disordered systems and may control rigidity loss in the zero pressure limit in purely repulsive systems, i.e. the unjamming transition (c.f. [O'Hern et. al. PRE 68, 011306 (2003)]). We present numerical results and an analytical framework for the study of these non-affine corrections to the elastic response of disordered packings.

  2. Elastic Fluctuations and Rubber Elasticity

    NASA Astrophysics Data System (ADS)

    Xing, Xiangjun; Goldbart, Paul; Rradzihovsky, Leo

    2006-03-01

    A coarse-grained phenomenological model is constructed to describe both phonon fluctuations and elastic heterogeneities in rubbery materials. It is a nonlocal, spatially heterogeneous generalization of the classical model of rubber elasticity, and with a tunable repulsion interaction. This model can also be derived from the Vulcanization theory. The residual stress and the non-affine deformation field, as well as their correlations, are calculated perturbatively, to the leading order of quenched randomness. It is explicitly shown that the interplay between the repulsive interaction and quenched randomness induces non- affine deformation. The spatial correlations of the non- affine deformation field and residual stress exhibit power-law scaling, with no characteristic length scale. We also calculate the contributions to the elastic free energy from both thermal and quenched fluctuations for arbitrary deformation. We find that they naturally explain the universal features in the Mooney-Rivlin plot of the stress-strain curve for rubbery materials. The (disorder averaged) thermal fluctuation of monomers is shown to depend on deformation, and becomes anisotropic upon shear deformation, as long as the repulsive interaction is finite.

  3. Thermodynamics of Rubber Elasticity

    NASA Astrophysics Data System (ADS)

    Pellicer, J.; Manzanares, J. A.; Zúñiga, J.; Utrillas, P.; Fernández, J.

    2001-02-01

    A thermodynamic study of an isotropic rubber band under uniaxial stress is presented on the basis of its equation of state. The behavior of the rubber band is compared with both that of an ideal elastomer and that of an ideal gas, considering the generalized Joule's law as the ideality criterion. First, the thermal expansion of rubber at constant stress and the change in the stress with temperature at constant length are described. Thermoelastic inversion is then considered, and the experimental observations are easily rationalized. Finally, the temperature changes observed in the adiabatic stretching of a rubber band are evaluated from the decrease of entropy with length.

  4. Thermal Fluctuations and Rubber Elasticity

    NASA Astrophysics Data System (ADS)

    Xing, Xiangjun; Goldbart, Paul M.; Radzihovsky, Leo

    2007-02-01

    The effects of thermal elastic fluctuations in rubbery materials are examined. It is shown that, due to their interplay with the incompressibility constraint, these fluctuations qualitatively modify the large-deformation stress-strain relation, compared to that of classical rubber elasticity. To leading order, this mechanism provides a simple and generic explanation for the peak structure of Mooney-Rivlin stress-strain relation and shows good agreement with experiments. It also leads to the prediction of a phonon correlation function that depends on the external deformation.

  5. Thermal fluctuations and rubber elasticity.

    PubMed

    Xing, Xiangjun; Goldbart, Paul M; Radzihovsky, Leo

    2007-02-16

    The effects of thermal elastic fluctuations in rubbery materials are examined. It is shown that, due to their interplay with the incompressibility constraint, these fluctuations qualitatively modify the large-deformation stress-strain relation, compared to that of classical rubber elasticity. To leading order, this mechanism provides a simple and generic explanation for the peak structure of Mooney-Rivlin stress-strain relation and shows good agreement with experiments. It also leads to the prediction of a phonon correlation function that depends on the external deformation.

  6. Rubber Elasticity in Highly Crosslinked Polyesters.

    DTIC Science & Technology

    Esters, *Polymers, *Elastic properties, Rubber, Propylene glycol , Maleic acid, Anhydrides, Phthalic acids, Mechanical properties, Molecular structure, Crosslinking(Chemistry), Polymerization, Styrenes, Temperature, Transition temperature, Molecular weight

  7. Rubber elasticity: From topology to filled elastomers

    SciTech Connect

    Heinrich, G.; Vilgis, T.A.

    1993-12-31

    Various new aspects in the elasticity of rubbers and statistics of unfilled and filled elastomers, together with various consequences for practical application are discussed. It is shown that the role of network topology is crucial in the statistics of rubbers. This is seen mostly on the influence of heterogeneities of crosslink density which determine the elastic modulus, ultimate properties as well as the dynamical behavior. The filler effects, entanglements in filled rubbers, and the filler/bound rubber/mobile rubber problem are discussed from a novel point of view. A localization model is adopted, where it can be shown that on a rough (filler) surface more polymer can be adsorbed compared to a flat surface with similar energetic properties. The role of carbon black networking and fractal properties of the filler are discussed in relation to the dynamic-mechanical properties of the elastomer.

  8. Microscopic theory of rubber elasticity.

    PubMed

    Oyerokun, Folusho T; Schweizer, Kenneth S

    2004-05-15

    A microscopic integral equation theory of elasticity in polymer liquids and networks is developed which addresses the nonclassical problem of the consequences of interchain repulsive interactions and packing correlations on mechanical response. The theory predicts strain induced softening, and a nonclassical intermolecular contribution to the linear modulus. The latter is of the same magnitude as the classical single chain entropy contribution at low polymer concentrations, but becomes much more important in the melt state, and dominant as the isotropic-nematic liquid crystal phase transition is approached. Comparison of the calculated stress-strain curve and induced nematic order parameter with computer simulations show good agreement. A nearly quadratic dependence of the linear elastic modulus on segmental concentration is found, as well as a novel fractional power law dependence on degree of polymerization. Quantitative comparison of the theory with experiments on polydimethylsiloxane networks are presented and good agreement is found. However, a nonzero modulus in the long chain limit is not predicted since quenched chemical crosslinks and trapped entanglements are not explicitly taken into account. The theory is generalizable to treat the structure, thermodynamics and mechanical response of nematic elastomers.

  9. On a molecular statistical basis for Ogden's model of rubber elasticity

    NASA Astrophysics Data System (ADS)

    Ehret, Alexander E.

    2015-05-01

    In this paper, a link is established between the statistical theory of long chain molecules and Ogden's phenomenological model of rubber elasticity. It has been shown by several authors in the past that many invariant-based phenomenological models for rubber-like materials are related to the classical statistical theories. The essential means to reach this reconciliation were methods to account for a non-affine deformation of polymer chains in the network, appropriate techniques to calculate their averaged response, and an approximation of the inverse Langevin function appearing in the non-Gaussian statistical theory. It is shown in this paper that the very same approach, if appropriately implemented, allows to express the strain-energy function of Ogden's material in terms of physical constants characterising the polymer chain and network, together with few additional parameters that account for the non-affine deformation of the polymer chains. Particularly, it is shown that Ogden's model can be represented as a non-affine non-Gaussian 3-chain model with topological constraints.

  10. The role of pressure in rubber elasticity

    NASA Astrophysics Data System (ADS)

    Bower, A. F.; Weiner, J. H.

    2004-06-01

    We describe a series of molecular dynamics computations that reveal an intimate connection at the atomic scale between difference stress (which resists stretches) and pressure (which resists volume changes) in an idealized elastomer, in contrast to the classical theory of rubber elasticity. Our simulations idealize the elastomer as a "pearl necklace," in which the covalent bonds are stiff linear springs, while nonbonded atoms interact through a Lennard-Jones potential with energy εLJ and radius σLJ. We calculate the difference stress t11-(t22+t33)/2 and mean stress (t11+t22+t33)/3 induced by a constant volume extension in the x1 direction, as a function of temperature T and reduced density ρ*=NσIJ3/ν. Here, N is the number of atoms in the simulation cell and ν is the cell volume. Results show that for ρ*<1, the difference stress is purely entropic and is in good agreement with the classical affine network model of rubber elasticity, which neglects nonbonded interactions. However, data presented by van Krevelen [Properties of Polymers, 3rd ed. (Elsevier, Amsterdam, 1990), p. 79] indicate that rubber at standard conditions corresponds to ρ*=1.2. For ρ*>1, the system is entropic for kT/εLJ>2, but at lower temperatures the difference stress contains an additional energy component, which increases as ρ* increases and temperature decreases. Finally, the model exhibits a glass transition for ρ*=1.2 and kT/εLJ≈2. The atomic-scale processes responsible for generating stress are explored in detail. Simulations demonstrate that the repulsive portion of the Lennard-Jones potential provides a contribution σnbr>0 to the difference stress, the attractive portion provides σnba≈0, while the covalent bonds provide σb<0. In contrast, their respective contributions to the mean stress satisfy Πnbr<0, Πnba>0, and Πb<0. Analytical calculations, together with simulations, demonstrate that mean and difference stresses are related by σnbr=-AΠnbr,

  11. Analysis of Rubber Elasticity in Terms of Crosslinks and Entanglement Contributions

    NASA Astrophysics Data System (ADS)

    Yoo, Seong Hyun; Cohen, Claude

    2008-07-01

    End-linked poly(dimethylsiloxane) (PDMS) networks synthesized from telechelic precursor chains of different molar mass were prepared with varying volume fractions of non-reactive chains acting as solvent. Uni-axial extension and compression measurements were performed on these networks to investigate their stress-strain behavior and examine the role of cross-links and entanglements on their properties. The measurements were carried out for both the swollen networks (as prepared) and the dried networks (after extraction of the non-reactive solvent chains). Deviations from ideal rubber elasticity increased with both molar mass of the precursor chains and the reactive polymer concentration of the networks. Analysis of the data in terms of the two components of the modulus (Gc and Ge) of the non-affine slip tube model are presented.

  12. A new paradigm for the molecular basis of rubber elasticity

    SciTech Connect

    Hanson, David E.; Barber, John L.

    2015-02-19

    The molecular basis for rubber elasticity is arguably the oldest and one of the most important questions in the field of polymer physics. The theoretical investigation of rubber elasticity began in earnest almost a century ago with the development of analytic thermodynamic models, based on simple, highly-symmetric configurations of so-called Gaussian chains, i.e. polymer chains that obey Markov statistics. Numerous theories have been proposed over the past 90 years based on the ansatz that the elastic force for individual network chains arises from the entropy change associated with the distribution of end-to-end distances of a free polymer chain. There are serious philosophical objections to this assumption and others, such as the assumption that all network nodes undergo affine motion and that all of the network chains have the same length. Recently, a new paradigm for elasticity in rubber networks has been proposed that is based on mechanisms that originate at the molecular level. Using conventional statistical mechanics analyses, quantum chemistry, and molecular dynamics simulations, the fundamental entropic and enthalpic chain extension forces for polyisoprene (natural rubber) have been determined, along with estimates for the basic force constants. Concurrently, the complex morphology of natural rubber networks (the joint probability density distributions that relate the chain end-to-end distance to its contour length) has also been captured in a numerical model. When molecular chain forces are merged with the network structure in this model, it is possible to study the mechanical response to tensile and compressive strains of a representative volume element of a polymer network. As strain is imposed on a network, pathways of connected taut chains, that completely span the network along strain axis, emerge. Although these chains represent only a few percent of the total, they account for nearly all of the elastic stress at high strain. Here we provide a brief

  13. Non-affine deformations in flexible and semi-flexible polymer gels

    NASA Astrophysics Data System (ADS)

    Basu, Anindita; Wen, Qi; Mao, Xiaoming; Lubensky, Tom; Janmey, Paul; Yodh, Arjun

    2011-03-01

    We test the validity of affine deformation assumption in flexible and semi-flexible polymer networks by embedding different-sized fluorescent tracer beads within model polymer networks and quantifying their displacements under shear. A conventional rheometer is used with a confocal microscope for this purpose. Non-affinity is quantified as a function of applied strain, polymer chain density, cross-link concentration, network morphology, reaction kinetics and size of probe particles used. ~Non-affinity measurements in flexible polymer gels are in qualitative agreement with current theories in rubber elasticity. ~For semi-flexible bio-polymer gels, measurements indicate that non-affine deformations are small for networks of thinner, relatively flexible filaments and get smaller as strain increases into non-linear elastic regime. These small measures are consistent with the entropic model for non-linear elasticity of semi-flexible gels. However, as filament stiffness and mesh size increase, the deformations become more non-affine, as predicted by the enthalpic bending and stretching models of non-linear elasticity. MRSEC DMR-0520020, DMR-0505048, and DMR- 0079909. Done...processed 7726 records...17:54:11 Beginning APS data extraction...17:54:12

  14. Nonaffine rubber elasticity for stiff polymer networks.

    PubMed

    Heussinger, Claus; Schaefer, Boris; Frey, Erwin

    2007-09-01

    We present a theory for the elasticity of cross-linked stiff polymer networks. Stiff polymers, unlike their flexible counterparts, are highly anisotropic elastic objects. Similar to mechanical beams, stiff polymers easily deform in bending, while they are much stiffer with respect to tensile forces ("stretching"). Unlike in previous approaches, where network elasticity is derived from the stretching mode, our theory properly accounts for the soft bending response. A self-consistent effective medium approach is used to calculate the macroscopic elastic moduli starting from a microscopic characterization of the deformation field in terms of "floppy modes"-low-energy bending excitations that retain a high degree of nonaffinity. The length scale characterizing the emergent nonaffinity is given by the "fiber length" lf, defined as the scale over which the polymers remain straight. The calculated scaling properties for the shear modulus are in excellent agreement with the results of recent simulations obtained in two-dimensional model networks. Furthermore, our theory can be applied to rationalize bulk rheological data in reconstituted actin networks.

  15. Rubber elasticity for incomplete polymer networks

    NASA Astrophysics Data System (ADS)

    Nishi, Kengo; Chijiishi, Masashi; Katsumoto, Yukiteru; Nakao, Toshio; Fujii, Kenta; Chung, Ung-il; Noguchi, Hiroshi; Sakai, Takamasa; Shibayama, Mitsuhiro

    2012-12-01

    We investigated the relationship between the elastic modulus, G and the reaction probability, p for polymer networks. First, we pointed out that the elastic modulus is expressed by G = {(fp/2 - 1) + O((p - 1)2)} NkBT/V (percolated network law), which does not depend on the local topology of the network structure or the existence of the loops. Here, N is the number of lattice point, V is the system volume, f is the functionality of the cross-link, kB is the Boltzmann constant, and T is the absolute temperature. We also conducted simulations for polymer networks with triangular and diamond lattices, and mechanical testing experiments on tetra-poly(ethylene glycol) (PEG) gel with systematically tuning the reaction probability. Here, the tetra-PEG gel was confirmed to be a potential candidate for ideal polymer networks consisting of unimodal strands free from defects and entanglements. From the results of simulations and experiments, it was revealed, for the first time, that the elastic modulus obeys this law in the wide range of p (pc ≪ p ≤ 1), where pc is the reaction probability at gelation threshold.

  16. A new paradigm for the molecular basis of rubber elasticity

    DOE PAGES

    Hanson, David E.; Barber, John L.

    2015-02-19

    The molecular basis for rubber elasticity is arguably the oldest and one of the most important questions in the field of polymer physics. The theoretical investigation of rubber elasticity began in earnest almost a century ago with the development of analytic thermodynamic models, based on simple, highly-symmetric configurations of so-called Gaussian chains, i.e. polymer chains that obey Markov statistics. Numerous theories have been proposed over the past 90 years based on the ansatz that the elastic force for individual network chains arises from the entropy change associated with the distribution of end-to-end distances of a free polymer chain. There aremore » serious philosophical objections to this assumption and others, such as the assumption that all network nodes undergo affine motion and that all of the network chains have the same length. Recently, a new paradigm for elasticity in rubber networks has been proposed that is based on mechanisms that originate at the molecular level. Using conventional statistical mechanics analyses, quantum chemistry, and molecular dynamics simulations, the fundamental entropic and enthalpic chain extension forces for polyisoprene (natural rubber) have been determined, along with estimates for the basic force constants. Concurrently, the complex morphology of natural rubber networks (the joint probability density distributions that relate the chain end-to-end distance to its contour length) has also been captured in a numerical model. When molecular chain forces are merged with the network structure in this model, it is possible to study the mechanical response to tensile and compressive strains of a representative volume element of a polymer network. As strain is imposed on a network, pathways of connected taut chains, that completely span the network along strain axis, emerge. Although these chains represent only a few percent of the total, they account for nearly all of the elastic stress at high strain. Here we provide

  17. A new paradigm for the molecular basis of rubber elasticity

    NASA Astrophysics Data System (ADS)

    Hanson, David E.; Barber, John L.

    2015-07-01

    The molecular basis for rubber elasticity is arguably the oldest and one of the most important questions in the field of polymer physics. The theoretical investigation of rubber elasticity began in earnest almost a century ago with the development of analytic thermodynamic models, based on simple, highly-symmetric configurations of so-called Gaussian chains, i.e. polymer chains that obey Markov statistics. Numerous theories have been proposed over the past 90 years based on the ansatz that the elastic force for individual network chains arises from the entropy change associated with the distribution of end-to-end distances of a free polymer chain. There are serious conceptual objections to this assumption and others, such as the assumption that all network nodes undergo a simple volume-preserving linear motion and that all of the network chains have the same length. Recently, a new paradigm for elasticity in rubber networks has been proposed that is based on mechanisms that originate at the molecular level. Using conventional statistical mechanics analyses, Quantum Chemistry, and Molecular Dynamics simulations, the fundamental entropic and enthalpic chain extension forces for polyisoprene (natural rubber) have been determined, along with estimates for the basic force constants. Concurrently, the complex morphology of natural rubber networks (the joint probability density distributions that relate the chain end-to-end distance to its contour length) has also been captured in a numerical model (EPnet). When molecular chain forces are merged with the network structure in this model, it is possible to study the mechanical response to tensile and compressive strains of a representative volume element of a polymer network. As strain is imposed on a network, pathways of connected taut chains, that completely span the network along strain axis, emerge. Although these chains represent only a few percent of the total, they account for nearly all of the elastic stress at high

  18. Finite element methods for nonlinear elastostatic problems in rubber elasticity

    NASA Technical Reports Server (NTRS)

    Oden, J. T.; Becker, E. B.; Miller, T. H.; Endo, T.; Pires, E. B.

    1983-01-01

    A number of finite element methods for the analysis of nonlinear problems in rubber elasticity are outlined. Several different finite element schemes are discussed. These include the augmented Lagrangian method, continuation or incremental loading methods, and associated Riks-type methods which have the capability of incorporating limit point behavior and bifurcations. Algorithms for the analysis of limit point behavior and bifurcations are described and the results of several numerical experiments are presented. In addition, a brief survey of some recent work on modelling contact and friction in elasticity problems is given. These results pertain to the use of new nonlocal and nonlinear friction laws.

  19. Topological rubber elasticity theory. II. SCL networks

    NASA Astrophysics Data System (ADS)

    Iwata, Kazuyoshi

    1982-06-01

    The theory presented in part I [Iwata, J. Chem. Phys. 76, 6363 (1982)] is applied to networks having a simple-cubic-lattice (SCL) regular connection pattern, for which the projection matrix Γ* is computed easily. Derivatives of elastic free energies in regard to parameter λ for macroscopic deformation ∂F˜e/∂λ are computed numerically for isotropic deformations (swelling or deswelling) and for simple deformations (extension or contraction under swelling by α times). The initial arrangement of junction points r0 is assumed to be exactly SCL, and δ = d0/√νb is chosen as one of parameters in the calculation, where d0 is an end-to-end distance of the strands at the time of network formation, ν is a degree of polymerization in regard to the strands, and b is a statistical length per monomer. A repeating cell is chosen as a cube composed of 3×3×3 ( = 27) junction points and 3×27 ( = 81) strands. The following are found in this work. (1) Among four terms ∂F0,ph/∂λ, ∂F˜0,top/∂λ, ∂F˜1/∂λ, and ∂F˜2/∂λ of the derivative of the elastic free energy, the principal term is ∂F˜0,top/∂λ, which comes from the topological interaction among the strands; the phantom network term ∂F0,ph/∂λ is only a small correction to the net stress. (2) In isotropic deformations, the elastic free energy takes a minimum at λ0, a little below λ = 1; for compression below λ0, a strong postitive inner pressure, which comes from the topological repulsive forces among the strands, arises. (3) In simple deformations, the Mooney-Rivlin term appears for unswollen systems and it disappears as swelling of the network proceeds. Experimental plans are proposed which will reveal the existence of the topological repulsive interactions in the networks.

  20. Disorder, pre-stress and non-affinity in polymer 8-chain models

    NASA Astrophysics Data System (ADS)

    Cioroianu, Adrian R.; Spiesz, Ewa M.; Storm, Cornelis

    2016-04-01

    To assess the role of single-chain elasticity, non-affine strain fields and pre-stressed reference states we present and discuss the results of numerical and analytical analyses of a modified 8-chain Arruda-Boyce model for cross-linked polymer networks. This class of models has proved highly successful in modeling the finite-strain response of flexible rubbers. We extend it to include the effects of spatial disorder and the associated non-affinity, and use it to assess the validity of replacing the constituent chain's nonlinear elastic response with equivalent linear, Hookean springs. Surprisingly, we find that even in the regime of linear response, the full polymer model gives very different results from its linearized counterpart, even though none of the chains are stretched beyond their linear regime. We demonstrate that this effect is due to the fact that the polymer models are under considerable pre-stress in their ground state. We show that pre-stress strongly suppresses non-affinity in these unit cell models, resulting in a marked stiffening of the bulk response. Polymer networks with some degree of flexibility are thus intrinsically prestressed, and one effect of such prestresses is to reduce non-affine deformations. Combined, these findings may help explain why fully affine mechanical models, in many cases, predict the bulk mechanical response of disordered polymer networks so well.

  1. Mechanistic Constitutive Models for Rubber Elasticity and Viscoelasticity

    SciTech Connect

    Puso, M

    2003-01-21

    Physically based models which describe the finite strain behavior of vulcanized rubber are developed. Constitutive laws for elasticity and viscoelasticity are derived by integrating over orientation space the forces due to each individual polymer chain. A novel scheme is presented which effectively approximates these integrals in terms of strain and strain invariants. In addition, the details involving the implementation of such models into a quasi-static large strain finite element formulation are provided. In order to account for the finite extensibility of a molecular chain, Langevin statistics is used to model the chain response. The classical statistical model of rubber assumes that polymer chains interact only at the chemical crosslinks. It is shown that such model when fitted for uniaxial tension data cannot fit compression or equibiaxial data. A model which incorporates the entanglement interactions of surrounding chains, in addition to the finite extensibility of the chains, is shown to give better predictions than the classical model. The technique used for approximating the orientation space integral was applied to both the classical and entanglement models. A viscoelasticity model based on the force equilibration process as described by Doi and Edwards is developed. An assumed form for the transient force in the chain is postulated. The resulting stress tensor is composed of an elastic and a viscoelastic portion with the elastic stress given by the proposed entanglement model. In order to improve the simulation of experimental data, it was found necessary to include the effect of unattached or dangling polymer chains in the viscoelasticity model. The viscoelastic effect of such chains is the manifestation of a disengagement process. This disengagement model for unattached polymer chains motivated an empirical model which was very successful in simulating the experimental results considered.

  2. Reinforcement in Natural Rubber Elastomer Nanocomposites: Breakdown of Entropic Elasticity

    NASA Astrophysics Data System (ADS)

    Sotta, Paul; Perez-Aparicio, Roberto; Vieyres, Arnaud; Albouy, Pierre-Antoine; Vanel, Loic; Long, Didier R.; Sanseau, Olivier

    2014-03-01

    Understanding reinforcement mechanisms, which are responsible for the remarkable mechanical properties of elastomers filled with nanometric particles, implies combining complementary techniques. Here, we propose an approach based on the combination of different experiments in order to discriminate various reinforcement effects in elastomers filled with carbon black or silica: mechanical response, independent measurements of the crosslink density by multiple-quantum proton NMR and of chain segment orientation under stretching by X-ray scattering, in unfilled and filled vulcanized natural rubbers with various crosslink densities. In unfilled materials, all measurements are nicely correlated, in agreement with rubber elasticity theory. In filled materials, analyzing the deviations with respect to the behavior of the pure unfilled elastomer matrix allows discriminating various physical mechanisms. We demonstrate that the mechanical response at medium/large strains is essentially driven by strain amplification effects, while, in the linear regime, there is a strong additional reinforcement which is not related to the properties of the elastomer matrix. [R. Perez-Aparicio et al., Macromolecules 2013].

  3. Rubber

    NASA Astrophysics Data System (ADS)

    Graves, D. F.

    The word "rubber" immediately brings to mind materials that are highly flexible and will snap back to their original shape after being stretched. In this chapter a variety of materials are discussed that possess this odd characteristics. There will also be a discussion on the mechanism of this "elastic retractive force." Originally, rubber meant the gum collected from a tree growing in Brazil. The term "rubber" was coined for this material by the English chemist Joseph Priestley, who noted that it was effective for removing pencil marks from paper. Today, in addition to Priestley's natural product, many synthetic materials are made that possess these characteristics and many other properties. The common features of these materials are that they are made up of long-chain molecules that are amorphous (not crystalline), and the chains are above their glass transition temperature at room temperature.

  4. The molecular kink paradigm for rubber elasticity: numerical simulations of explicit polyisoprene networks at low to moderate tensile strains.

    PubMed

    Hanson, David E

    2011-08-07

    Based on recent molecular dynamics and ab initio simulations of small isoprene molecules, we propose a new ansatz for rubber elasticity. We envision a network chain as a series of independent molecular kinks, each comprised of a small number of backbone units, and the strain as being imposed along the contour of the chain. We treat chain extension in three distinct force regimes: (Ia) near zero strain, where we assume that the chain is extended within a well defined tube, with all of the kinks participating simultaneously as entropic elastic springs, (II) when the chain becomes sensibly straight, giving rise to a purely enthalpic stretching force (until bond rupture occurs) and, (Ib) a linear entropic regime, between regimes Ia and II, in which a force limit is imposed by tube deformation. In this intermediate regime, the molecular kinks are assumed to be gradually straightened until the chain becomes a series of straight segments between entanglements. We assume that there exists a tube deformation tension limit that is inversely proportional to the chain path tortuosity. Here we report the results of numerical simulations of explicit three-dimensional, periodic, polyisoprene networks, using these extension-only force models. At low strain, crosslink nodes are moved affinely, up to an arbitrary node force limit. Above this limit, non-affine motion of the nodes is allowed to relax unbalanced chain forces. Our simulation results are in good agreement with tensile stress vs. strain experiments.

  5. Elastic waves in particulate glass-rubber mixture: experimental and numerical investigations/studies

    NASA Astrophysics Data System (ADS)

    Taghizadeh, Kianoosh; Steeb, Holger; Magnanimo, Vanessa; Luding, Stefan

    2017-06-01

    In this paper we study by wave propagation the elastic response of granular mixtures made of soft and stiff particles subjected under hydrostatic pressure/stress. This allows inferring fundamental properties of granular materials such as elastic moduli and dissipation mechanisms. We compare physical experiments in a triaxial cell equipped with piezoelectric wave transducers and Discrete Element Method simulations (DEM). In the experimental part, dense, static packings made of monodisperse glass and rubber beads are prepared at various levels of hydrostatic stress and species fractions. Small perturbations are generated on one side and the time of flight through the glass-rubber mixtures are measured to quantify the effect of the mixture composition on the elastic moduli. Interestingly, the experiments show that the behavior is non-linear and nonmonotonic with increasing percentage of rubber particles. Wave velocity and modulus remain fairly constant when increasing the fraction of rubber to 30%, while they experience a sudden drop between 30% and 60%, to become again constant between 60% to 100%. DEM simulations offer deeper insights into the micromechanics in and at the transition between the glass- and rubber-dominated regimes. The simplest analysis with Hertzian spherical particles of different stiffness is performed as a preliminary step. The behavior of mixtures with high glass content is very well captured by the simulations, without need of any additional calibration, whereas the complex interaction between rubber and glass leave open questions for further study.

  6. Elastic rubber strips to heal large wounds of the body wall.

    PubMed

    Petroianu, Andy

    2013-12-01

    Closure of large wounds is a difficult surgical challenge. This article reports on the effective closure of large surgical wounds using elastic rubber strips. One to 3 circular elastic rubber strips were sutured by applying moderate tension to the opposite edges of 30 large wounds in 28 patients. The strips were sutured in a successive "X" fashion by crossing one over the other. These rubber strips were replaced when they ruptured or after their tension had reduced because of the closure of the wounds. Complete closure of the wounds was achieved with no further need for any surgical procedure or device. One patient with laparostomy and colostomy presented with difficulty on adapting the colostomic bag, and the rubber strips were removed. The rubber strip had little effect on a large wound of the skull. In the late postoperative follow-up, 3 of the 15 closed laparostomies developed incisional hernias, and all these patients were subjected to hernioplasties with good results. The use of circular elastic rubber strips maintained at moderate tension is a simple, effective, and inexpensive surgical option for healing large wounds. It is readily available at any hospital and requires no extensive surgical experience.

  7. The effect of elastic modulus and friction coefficient on rubber tube sealing performance

    NASA Astrophysics Data System (ADS)

    Li, Zhimiao; Xu, Siyuan; Ren, Fushen; Liu, Jubao

    2015-03-01

    The packer is the key element in separating geosphere layers of water injection, water plugging and fracturing operations in the oilfield. The sealing ability of the packer is depending on the contact pressure between rubber tube and the casing. The circumferential strain of casing wall was tested by the strain gauge to get the contact pressure distribution along axial direction of the tube. The friction force between the casing and the rubber tube was taken by the pressure sensor in compression process. Under the 20,60 and 100 degrees Celsius conditions, the friction forces and the contact pressure distribution were taken in work condition of single rubber tube, double rubber tubes and combination rubber tubes after oil immersion .The result shows that elastic modulus of rubber tube has little effect on the friction force and contact pressure. With elastic modulus decreasing, the friction forces has gradually decreasing trend; The friction coefficient has much impact on friction force: the friction forces under the condition of dry friction and wet friction are respectively equivalent to 48.27% and 5.38% axial compression forces. At wet friction condition, the contact pressure distribution is more uniform and the sealing effect is better.

  8. Full elastic characterization of absorptive rubber using laser excited guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Verstraeten, Bert; Xu, Xiadong; Martinez, Loïc; Glorieux, Christ

    2012-05-01

    Because of the highly damping nature of rubber, it is difficult to characterize its dynamic elastic properties using classical methods. In this paper, an experimental approach employing laser excited guided acoustic waves is proposed to accurately determine the real and imaginary part of the longitudinal and shear elastic modulus of a rubber layer. From the spatiotemporal evolution of a propagating laser excited Lamb wave measured by a laser Doppler vibrometer, which is scanning along a line perpendicular to a line of excitation, the phase velocity dispersion curves in the wave number - frequency domain are obtained. The results are interpreted in the framework of a detailed semianalytical study, analyzing the influence of elastic damping on the Lamb dispersion curves. This analysis is exploited to adequately fit the experimental dispersion curves and thus extract information about the elastic moduli and absorption coefficients of the rubber plate. The results are validated by a pulse-echo measurement, and by guided wave propagation results with the rubber layer connected in a bi-layer plate configuration to non-damping plates.

  9. Rubber elasticity: Solution of the James-Guth model

    NASA Astrophysics Data System (ADS)

    Eichinger, B. E.

    2015-05-01

    The solution of the many-body statistical mechanical theory of elasticity formulated by James and Guth in the 1940s [H. M. James, J. Chem. Phys. 15, 651 (1947)], 10.1063/1.1746624 is presented. The remarkable aspect of the solution is that it gives an elastic free energy that is essentially equivalent to that developed by Flory over a period of several decades.

  10. Rubber.

    ERIC Educational Resources Information Center

    Krishen, Anoop

    1989-01-01

    This review covers methods for identification, characterization, and determination of rubber and materials in rubber. Topics include: general information, nuclear magnetic resonance spectroscopy, infrared spectroscopy, thermal methods, gel permeation chromatography, size exclusion chromatography, analysis related to safety and health, and…

  11. Rubber elasticity for percolation network consisting of Gaussian chains

    SciTech Connect

    Nishi, Kengo E-mail: sakai@tetrapod.t.u-tokyo.ac.jp Noguchi, Hiroshi; Shibayama, Mitsuhiro E-mail: sakai@tetrapod.t.u-tokyo.ac.jp; Sakai, Takamasa E-mail: sakai@tetrapod.t.u-tokyo.ac.jp

    2015-11-14

    A theory describing the elastic modulus for percolation networks of Gaussian chains on general lattices such as square and cubic lattices is proposed and its validity is examined with simulation and mechanical experiments on well-defined polymer networks. The theory was developed by generalizing the effective medium approximation (EMA) for Hookian spring network to Gaussian chain networks. From EMA theory, we found that the ratio of the elastic modulus at p, G to that at p = 1, G{sub 0}, must be equal to G/G{sub 0} = (p − 2/f)/(1 − 2/f) if the position of sites can be determined so as to meet the force balance, where p is the degree of cross-linking reaction. However, the EMA prediction cannot be applicable near its percolation threshold because EMA is a mean field theory. Thus, we combine real-space renormalization and EMA and propose a theory called real-space renormalized EMA, i.e., REMA. The elastic modulus predicted by REMA is in excellent agreement with the results of simulations and experiments of near-ideal diamond lattice gels.

  12. Rubber elasticity for percolation network consisting of Gaussian chains.

    PubMed

    Nishi, Kengo; Noguchi, Hiroshi; Sakai, Takamasa; Shibayama, Mitsuhiro

    2015-11-14

    A theory describing the elastic modulus for percolation networks of Gaussian chains on general lattices such as square and cubic lattices is proposed and its validity is examined with simulation and mechanical experiments on well-defined polymer networks. The theory was developed by generalizing the effective medium approximation (EMA) for Hookian spring network to Gaussian chain networks. From EMA theory, we found that the ratio of the elastic modulus at p, G to that at p = 1, G0, must be equal to G/G0 = (p - 2/f)/(1 - 2/f) if the position of sites can be determined so as to meet the force balance, where p is the degree of cross-linking reaction. However, the EMA prediction cannot be applicable near its percolation threshold because EMA is a mean field theory. Thus, we combine real-space renormalization and EMA and propose a theory called real-space renormalized EMA, i.e., REMA. The elastic modulus predicted by REMA is in excellent agreement with the results of simulations and experiments of near-ideal diamond lattice gels.

  13. Rubber Elasticity for percolation network consisting of Gaussian Chains

    NASA Astrophysics Data System (ADS)

    Nishi, Kengo; Shibayama, Mitsuhiro; Sakai, Takamasa

    A theory describing the elastic modulus for percolation networks of Gaussian chains on general lattices such as square and cubic lattices is proposed and its validity is examined with simulation and mechanical experiments on well-defined polymer networks. The theory was developed by generalizing the effective medium approximation for Hookian spring network (EMA) to Gaussian chain networks. From EMA theory, we found that the ratio of the elastic modulus at p, G to that at p = 1 ,G0, must be equal to G /G0 = (p - 2 / f) / (1 - 2 / f) if the position of sites can be determined so as to meet the force balance, where p is the degree of cross-linking reaction. However, the EMA prediction cannot be applicable near its percolation threshold because EMA is a mean field theory. Thus, we combine real-space renormalization and EMA, and propose a theory called real-space renormalized EMA, i.e., REMA. The elastic modulus predicted by REMA is in excellent agreement with the results of simulations and experiments of near-ideal diamond lattice gels.

  14. Rubber elasticity for percolation network consisting of Gaussian chains

    NASA Astrophysics Data System (ADS)

    Nishi, Kengo; Noguchi, Hiroshi; Sakai, Takamasa; Shibayama, Mitsuhiro

    2015-11-01

    A theory describing the elastic modulus for percolation networks of Gaussian chains on general lattices such as square and cubic lattices is proposed and its validity is examined with simulation and mechanical experiments on well-defined polymer networks. The theory was developed by generalizing the effective medium approximation (EMA) for Hookian spring network to Gaussian chain networks. From EMA theory, we found that the ratio of the elastic modulus at p, G to that at p = 1, G0, must be equal to G/G0 = (p - 2/f)/(1 - 2/f) if the position of sites can be determined so as to meet the force balance, where p is the degree of cross-linking reaction. However, the EMA prediction cannot be applicable near its percolation threshold because EMA is a mean field theory. Thus, we combine real-space renormalization and EMA and propose a theory called real-space renormalized EMA, i.e., REMA. The elastic modulus predicted by REMA is in excellent agreement with the results of simulations and experiments of near-ideal diamond lattice gels.

  15. Biaxial deformations of rubber: a comparison between entanglement theory and elastic fluctuation theory.

    PubMed

    Xing, Xiangjun

    2011-08-01

    The classical theory of rubber elasticity fails in the regime of large deformation. The underlying physical mechanism has been under debate for a long time. In this work, we test the recently proposed mechanism of thermal elastic fluctuations by Xing, Goldbart, and Radzihovsky (XGR) against the biaxial stress-strain data of three distinct polymer networks with very different network structures, synthesized by Urayama and Kawabata, respectively. We find that both the two-parameter version and the one-parameter version of the XGR theory provide a satisfactory description of the elasticity in whole deformation range. For comparison, we also fit the same sets of data using the slip-link model by Edwards and Vilgis with four parameters. The fitting qualities of two theories are found to be comparable.

  16. Control of the low-frequency vibrations of elastic metamaterial shafts with discretized arc-rubber layers

    NASA Astrophysics Data System (ADS)

    Lixia, Li; Anjiang, Cai

    2016-06-01

    We propose a new kind of elastic metamaterial (EM) shaft with discretized arc-shaped rubber layers, which shows excellent low-frequency vibration properties. The band gaps of the shaft structure were analyzed by employing the finite element method. The proposed EM shaft exhibits much lower band gaps than the corresponding structures with the whole rubber ring. Furthermore, the band gaps can be modulated by tuning the arc angle and the number of the arc-shaped rubbers. Additionally, we observed that the first complete band gap tends to disappear when the arc angle of each arc-shaped rubber section is decreased but the arc number remains fixed because the arc angle more strongly affects the rotational stiffness than the transverse stiffness of the rubber layers. This new type of EM shafts could find potential application as a means to control the low-frequency vibrations of rotor shafts in mechanical engineering.

  17. Rubber

    SciTech Connect

    Krishen, A.

    1987-01-01

    This review covers methods for identification, characterization, and determination of rubber and materials in rubber. Techniques discussed include: nuclear magnetic resonance; Fourier transform infrared spectroscopy; UV spectroscopy; differential scanning calorimetry; thermogravimetric analysis; thermomechanical analysis; gel permeation chromatography; size exclusion chromatography; gas chromatography; mass spectrometry; pyrolysis; extraction; scanning selectron microscopy; polarization microscopy; x-ray fluorescence; x-ray scattering; angular light scattering; acoustic scattering; and vapor pressure osmometry.

  18. Analysis of adhesive elastic contact between a silica glass lens and silicone rubber using the JKR theory

    NASA Astrophysics Data System (ADS)

    Baek, Dooyoung; Hemthavy, Pasomphone; Takahashi, Kunio

    2014-08-01

    Contact between a silica glass lens and silicone rubber is experimentally investigated by simultaneously measuring displacement, force and contact radius. The relationship between these three parameters is derived using elastic theory. The discrepancy between the theoretical relationship and the experimental results is observed to increase as the deformation of the silicone rubber increases. Under smaller deformation conditions, the elastic theory shows good agreement with the experimental results, although infinite stress on the edge of the contact area is predicted in the theory, and time dependence and adhesion hysteresis are observed in all experiments. It is suggested that time dependence and adhesion hysteresis in contact are not induced by the deformation of the bulk of the silicone rubber, but are induced by surface effects. The result suggests that the applicability limit of the elastic theory must be carefully considered in the JKR analysis of point contact for polymers.

  19. Using Rubber-Elastic Material-Ideal Gas Analogies To Teach Introductory Thermodynamics. Part I: Equations of State.

    ERIC Educational Resources Information Center

    Smith, Brent

    2002-01-01

    Describes equations of state as a supplement to an introductory thermodynamics undergraduate course. Uses rubber-elastic materials (REM) which have strong analogies to the concept of an ideal gas and explains the molar basis of REM. Provides examples of the analogies between ideal gas and REM and mathematical analogies. (Contains 22 references.)…

  20. Using Rubber-Elastic Material-Ideal Gas Analogies To Teach Introductory Thermodynamics. Part II: The Laws of Thermodynamics.

    ERIC Educational Resources Information Center

    Smith, Brent

    2002-01-01

    Describes the laws of thermodynamics as a supplement to an introductory thermodynamics undergraduate course. Uses rubber-elastic materials (REM) which have strong analogies to the concept of ideal gas. Provides examples of the analogies between ideal gas and REM and mathematical analogies. (YDS)

  1. Using Rubber-Elastic Material-Ideal Gas Analogies To Teach Introductory Thermodynamics. Part II: The Laws of Thermodynamics.

    ERIC Educational Resources Information Center

    Smith, Brent

    2002-01-01

    Describes the laws of thermodynamics as a supplement to an introductory thermodynamics undergraduate course. Uses rubber-elastic materials (REM) which have strong analogies to the concept of ideal gas. Provides examples of the analogies between ideal gas and REM and mathematical analogies. (YDS)

  2. Using Rubber-Elastic Material-Ideal Gas Analogies To Teach Introductory Thermodynamics. Part I: Equations of State.

    ERIC Educational Resources Information Center

    Smith, Brent

    2002-01-01

    Describes equations of state as a supplement to an introductory thermodynamics undergraduate course. Uses rubber-elastic materials (REM) which have strong analogies to the concept of an ideal gas and explains the molar basis of REM. Provides examples of the analogies between ideal gas and REM and mathematical analogies. (Contains 22 references.)…

  3. N-nitrosodibenzylamine in boneless hams processed in elastic rubber nettings.

    PubMed

    Fiddler, W; Pensabene, J W; Gates, R A; Custer, C; Yoffe, A; Phillipo, T

    1997-01-01

    Boneless hams processed in elastic rubber nettings contain high levels of nitrosamines in the outermost layer. The precursors of the nitrosamines are zinc dibutyl- or dibenzyldithlocarbamate used as a vulcanizing agent in the formulation of the rubber. The outermost layer from 59 commercial hams was analyzed for 11 volatile nitrosamines including N-nitrosodibutylamine (NDBA) and N-nitrosodibenzylamine (NDBzA). The principal nitrosamine, NDBzA, was detected in 32 (54%) ham samples at the 10-100 ppb range; it exceeded 100 ppb in 18 (30%) samples, with the highest at 512.2 ppb. No nitrosamine was detected in 7 of 59 ham samples. To determine the cause of the high NDBzA values, various types of unused nettings (from different manufacturers) accompanying the samples were analyzed for nitrosamines. No correlation was found between the NDBzA content of the hams and the nettings. The results suggest that the problem of nitrosamine formation in these products has not yet been resolved.

  4. Supercritical fluid extraction of N-nitrosamines in hams processed in elastic rubber nettings.

    PubMed

    Pensabene, J W; Fiddler, W; Maxwell, R J; Lightfield, A R; Hampson, J W

    1995-01-01

    A method for analysing N-nitrosamines in hams processed in elastic rubber nettings by supercritical fluid extraction (SFE) is described. The study was carried out with the prototype of a commercial extractor with a silica gel adsorption cartridge integrally attached to the variable restrictor. The SFE method was compared with a solid-phase extraction procedure currently used for ham analysis. Both methods used the same gas chromatographic-chemiluminescence detection conditions. No significant difference (p < 0.05) was found between results obtained with the 2 methods. Repeatability standard deviation of the SFE method was 1.7 ppb, with a coefficient of variation (CV) of 2.7%, compared with 2.2 ppb, with a CV of 3.5%, for solid-phase extraction. SFE permits minimal use of solvent and more rapid analysis of nitrosamines.

  5. Influence of Waste Tyre Crumb Rubber on Compressive Strength, Static Modulus of Elasticity and Flexural Strength of Concrete

    NASA Astrophysics Data System (ADS)

    Haridharan, M. K.; Bharathi Murugan, R.; Natarajan, C.; Muthukannan, M.

    2017-07-01

    In this paper, the experimental investigations was carried out to find the compressive strength, static modulus of elasticity and flexural strength of concrete mixtures, in which natural sand was partially replaced with Waste Tyre Crumb Rubber (WTCR). River sand was replaced with five different percentages (5%, 10%, 15%, 20% and 25%) of WTCR by volume. The main objective of the experimental investigation is to find the relationship between static modulus of elasticity and flexural strength with compressive strength of concrete with WTCR. The experimentally obtainedstatic modulus of elasticity and flexural strength results comparing with the theoretical values (various country codes recommendations).

  6. Rejuvenation of metallic glasses by non-affine thermal strain.

    PubMed

    Ketov, S V; Sun, Y H; Nachum, S; Lu, Z; Checchi, A; Beraldin, A R; Bai, H Y; Wang, W H; Louzguine-Luzgin, D V; Carpenter, M A; Greer, A L

    2015-08-13

    When a spatially uniform temperature change is imposed on a solid with more than one phase, or on a polycrystal of a single, non-cubic phase (showing anisotropic expansion-contraction), the resulting thermal strain is inhomogeneous (non-affine). Thermal cycling induces internal stresses, leading to structural and property changes that are usually deleterious. Glasses are the solids that form on cooling a liquid if crystallization is avoided--they might be considered the ultimate, uniform solids, without the microstructural features and defects associated with polycrystals. Here we explore the effects of cryogenic thermal cycling on glasses, specifically metallic glasses. We show that, contrary to the null effect expected from uniformity, thermal cycling induces rejuvenation, reaching less relaxed states of higher energy. We interpret these findings in the context that the dynamics in liquids become heterogeneous on cooling towards the glass transition, and that there may be consequent heterogeneities in the resulting glasses. For example, the vibrational dynamics of glassy silica at long wavelengths are those of an elastic continuum, but at wavelengths less than approximately three nanometres the vibrational dynamics are similar to those of a polycrystal with anisotropic grains. Thermal cycling of metallic glasses is easily applied, and gives improvements in compressive plasticity. The fact that such effects can be achieved is attributed to intrinsic non-uniformity of the glass structure, giving a non-uniform coefficient of thermal expansion. While metallic glasses may be particularly suitable for thermal cycling, the non-affine nature of strains in glasses in general deserves further study, whether they are induced by applied stresses or by temperature change.

  7. Thermodynamic description of performance characteristics pneumatic elastic elements with rubber-cord envelopes

    NASA Astrophysics Data System (ADS)

    Korneev, S. A.; Korneev, V. S.; Adonin, V. A.

    2017-08-01

    The thermodynamic computational method of pneumatic elements with rubber-cord envelopes geometrical and power characteristics of the different designs used in a buffer systems and the industrial facilities vibro protection, including, petrochemical and oil and gas production is explained. The record of rubber-cord envelope resilient deformation allowed to obtain the valid data having important applied meaning. Temperature effect is reflected in the received defining ratios.

  8. Pre-Yield Non-Affine Fluctuations and A Hidden Critical Point in Strained Crystals

    PubMed Central

    Das, Tamoghna; Ganguly, Saswati; Sengupta, Surajit; Rao, Madan

    2015-01-01

    A crystalline solid exhibits thermally induced localised non-affine droplets in the absence of external stress. Here we show that upon an imposed shear, the size of these droplets grow until they percolate at a critical strain, well below the value at which the solid begins to yield. This critical point does not manifest in most thermodynamic or mechanical properties, but is hidden and reveals itself in the onset of inhomogeneities in elastic moduli, marked changes in the appearance and local properties of non-affine droplets and a sudden enhancement in defect pair concentration. Slow relaxation of stress and an-elasticity appear as observable dynamical consequences of this hidden criticality. Our results may be directly verified in colloidal crystals with video microscopy techniques but are expected to have more general validity. PMID:26039380

  9. Gas chromatographic/thermal energy analyzer method for N-nitrosodibenzylamine in hams processed in elastic rubber netting.

    PubMed

    Pensabene, J W; Fiddler, W

    1994-01-01

    We previously described a solid-phase extraction (SPE) procedure for determining volatile nitrosamines in hams processed in elastic rubber nettings. This same procedure was found to successfully isolate N-nitrosodibenzylamine (NDBzA), a semivolatile nitrosamine. This nitrosamine may form as a result of the reformulated rubber now used in nettings. Reformulation became necessary because of the reported presence of N-nitrosodibutylamine in both the old nettings and on the exterior portion of commercial hams. After SPE, NDBzA was quantitated by using a gas chromatographic (GC) system interfaced to a nitrosamine-specific chemiluminescence detector [thermal energy analyzer (TEA)]. The GC system was equipped with a heated interface external to the TEA furnace to facilitate quantitation of NDBzA. With separation on a packed column, the method can be used to analyze 10 volatile nitrosamines and NDBzA. Repeatability of the method for NDBzA was found to be 2.1 ppb, and the coefficient of variation (CV) was 10.6%. Analysis of 18 commercial hams from 9 different producers, purchased from local retailers, indicated that 12 were positive for NDBzA (range, 2.6-128.5 ppb). NDBzA was confirmed by GC/mass spectrometry.

  10. The nonlinear elastic response of suspensions of rigid inclusions in rubber: II—A simple explicit approximation for finite-concentration suspensions

    NASA Astrophysics Data System (ADS)

    Lopez-Pamies, Oscar; Goudarzi, Taha; Danas, Kostas

    2013-01-01

    In Part I, an exact solution was determined for the problem of the overall nonlinear elastic response of Gaussian (or Neo-Hookean) rubber reinforced by a dilute isotropic distribution of rigid particles. Here, this fundamental result is utilized to construct an approximate solution for non-Gaussian rubber reinforced by an isotropic distribution of rigid particles at finite concentration. This is accomplished by means of two different techniques in two successive steps. First, the dilute solution is utilized together with a differential scheme in finite elasticity to generate a solution for Neo-Hookean rubber filled with an isotropic distribution of rigid particles of polydisperse sizes and finite concentration. This non-dilute result is then employed within the context of a new comparison medium method — derived as an extension of Talbot-Willis (1985) variational framework to the non-convex realm of finite elasticity — to generate in turn a corresponding solution for filled non-Gaussian rubber wherein the underlying elastomeric matrix is characterized by any I1-based stored-energy function Ψ(I1) of choice. The solution is fully explicit and remarkably simple. Its key theoretical and practical merits are discussed in detail. Additionally, the constructed analytical solution is confronted to 3D finite-element simulations of the large-deformation response of Neo-Hookean and non-Gaussian rubber reinforced by isotropic distributions of rigid spherical particles with the same size, as well as with different sizes. Good agreement is found among all three sets of results. The implications of this agreement are discussed.

  11. Rubber and gel origami: visco- and poro-elastic behavior of folded structures

    NASA Astrophysics Data System (ADS)

    Evans, Arthur; Bende, Nakul; Na, Junhee; Hayward, Ryan; Santangelo, Christian

    2014-11-01

    The Japanese art of origami is rapidly becoming a platform for material design, as researchers develop systematic methods to exploit the purely geometric rules that allow paper to folded without stretching. Since any thin sheet couples mechanics strongly to geometry, origami provides a natural template for generating length-scale independent structures from a variety of different materials. In this talk I discuss some of the implications of using polymeric sheets and shells over many length scales to create folded materials with tunable shapes and properties. These implications include visco-elastic snap-through transitions and poro-elastically driven micro origami. In each case, mechanical response, dynamics, and reversible folding is tuned through a combination of geometry and constitutive properties, demonstrating the efficacy of using origami principles for designing functional materials.

  12. Rubber-like elasticity and volume changes in the isolated spasmoneme of giant Zoothamnium sp. under Ca2+-induced contraction.

    PubMed Central

    Moriyama, Y; Okamoto, H; Asai, H

    1999-01-01

    Using glycerinated spasmoneme of giant Zoothamnium sp., the physical properties of spasmoneme before and after Ca2+-induced contraction (pCa 4.5) were investigated. The volume change of spasmoneme contraction was measured under zero tension. The length and diameter decreased by about 50% of their initial value as a result of contraction, which means that contraction is nearly isotropic. Thus the volume of spasmoneme decreased drastically by 86% of its original value. The swollen ratio of extended and contracted spasmoneme were 0.07 and 0.37, respectively. Tension-extension relationships of extended and contracted spasmonemes were measured. By applying the theory of rubber elasticity, the number of segments of a chain in originally extended spasmoneme was only 3.3, i.e., the chain was almost a straight one. On the other hand, the number of segments of a chain in contracted spasmoneme was more than 100, i.e., the chain was essentially a random one. Furthermore, the total number of chains in single spasmoneme was the same in extended and contracted spasmoneme. This means that the interchain cross-links of chains were not influenced by addition or removal of Ca2+. Moreover, the molecular weight of a chain is estimated to be at most about 50 kd. By considering all these results, it is concluded that the contractile mechanism of spasmoneme originates in the intramolecular folding and unfolding induced by Ca2+ binding and detaching. PMID:9916030

  13. The rigidity (unjamming) transition of disordered solids is caused by non-affinity

    NASA Astrophysics Data System (ADS)

    Zaccone, Alessio

    2012-02-01

    I will present a theoretical framework which allows one to account for the non-affinity of particle displacements due to disorder within a statistical mechanical description of the elasticity of disordered solids (1). A few important results can be derived analytically from first principles for disordered harmonic packings/lattices. First of all, the theory successfully recovers the unjamming or rigidity transition G (z-2d), where G is the shear modulus and z the coordination number, in excellent quantitative agreement with the numerical simulations of Ref. (2). Secondly, the theory explains this scaling law, which was hitherto enigmatic, in terms of the competition between the elastic (bonding) energy of the solid and the non-affine relaxations which are a consequence of structural disorder and contribute a dissipative term to the free energy of the solid. Potential applications to unsolved issues related to transport and vibrational properties of disordered solids will be briefly discussed. References (1) A. Zaccone and E. Scossa-Romano, Phys. Rev. B 83, 184205 (2011) (2) C.S. O'Hern, et al. Phys. Rev. E 68, 011306 (2003).

  14. A new hyper-elastic model for predicting multi-axial behaviour of rubber-like materials: formulation and computational aspects

    NASA Astrophysics Data System (ADS)

    Yaya, Kamel; Bechir, Hocine

    2017-08-01

    We propose a new hyper-elastic model that is based on the standard invariants of Green-Cauchy. Experimental data reported by Treloar (Trans. Faraday Soc. 40:59, 1944) are used to identify the model parameters. To this end, the data of uni-axial tension and equi-bi-axial tension are used simultaneously. The new model has four material parameters, their identification leads to linear optimisation problem and it is able to predict multi-axial behaviour of rubber-like materials. We show that the response quality of the new model is equivalent to that of the well-known Ogden six parameters model. Thereafter, the new model is implemented in FE code. Then, we investigate the inflation of a rubber balloon with the new model and Ogden models. We compare both the analytic and numerical solutions derived from these models.

  15. Non-affine fields in solid-solid transformations: the structure and stability of a product droplet.

    PubMed

    Paul, Arya; Sengupta, Surajit; Rao, Madan

    2014-01-08

    We describe the microstructure, morphology, and dynamics of growth of a droplet of martensite nucleating in a parent austenite during a solid-solid transformation, using a Landau theory written in terms of both conventional affine elastic deformations and non-affine deformations. Non-affineness, φ, serves as a source of strain incompatibility and screens long-ranged elastic interactions. It is produced wherever the local stress exceeds a threshold and anneals diffusively thereafter. Using a variational calculation, we find three types of stable solution (labeled I, II, and III) for the structure of the product droplet, depending on the stress threshold and the scaled mobilities of φ parallel and perpendicular to the parent-product interface. The profile of the non-affine field φ is different in these three solutions: I is characterized by a vanishingly small φ, II admits large values of φ localized in regions of high stress within the parent-product interface, and III is a structure in which φ completely wets the parent-product interface. The width l and size W of the twins follow the relation l is proportional to √W in solution I; this relation does not hold for II or III. We obtain a dynamical phase diagram featuring these solutions, and argue that they represent specific solid-state microstructures.

  16. The entropy of the rotational conformations of (poly)isoprene molecules and its relationship to rubber elasticity and temperature increase for moderate tensile or compressive strains.

    PubMed

    Hanson, David E; Barber, John L; Subramanian, Gopinath

    2013-12-14

    Molecular networks comprised of crosslinked cis-1,4 polyisoprene, often referred to as "natural rubber," are one of the most common systems for the study of rubber elasticity. Under moderate tensile or compressive strain, network chains begin to assume straighter paths, as local molecular kinks are removed. Isoprene units along the chain backbone are mechanically forced from their equilibrium distributions of 18 possible rotational states into a smaller subset of states, restricted to more linear conformations with the greatest end-to-end distances. There are two consequences to this change: both the configurational entropy and average internal energy decrease. We find that the change in entropy, and resulting change in free energy, gives rise to an elastic force. We derive an expression for a chain extension force constant that we have incorporated in an explicit, three-dimensional meso-scale network simulation code. Using this force model, our simulations predict a macroscopic stress-strain relationship that closely matches published experimental values. We also predict a slight increase in temperature resulting from the change in average internal energy in the affected isoprene units that is consistent with experiments.

  17. The entropy of the rotational conformations of (poly)isoprene molecules and its relationship to rubber elasticity and temperature increase for moderate tensile or compressive strains

    NASA Astrophysics Data System (ADS)

    Hanson, David E.; Barber, John L.; Subramanian, Gopinath

    2013-12-01

    Molecular networks comprised of crosslinked cis-1,4 polyisoprene, often referred to as "natural rubber," are one of the most common systems for the study of rubber elasticity. Under moderate tensile or compressive strain, network chains begin to assume straighter paths, as local molecular kinks are removed. Isoprene units along the chain backbone are mechanically forced from their equilibrium distributions of 18 possible rotational states into a smaller subset of states, restricted to more linear conformations with the greatest end-to-end distances. There are two consequences to this change: both the configurational entropy and average internal energy decrease. We find that the change in entropy, and resulting change in free energy, gives rise to an elastic force. We derive an expression for a chain extension force constant that we have incorporated in an explicit, three-dimensional meso-scale network simulation code. Using this force model, our simulations predict a macroscopic stress-strain relationship that closely matches published experimental values. We also predict a slight increase in temperature resulting from the change in average internal energy in the affected isoprene units that is consistent with experiments.

  18. Tough Rubber.

    ERIC Educational Resources Information Center

    Schmid, Sue

    1994-01-01

    Describes the benefits of using rubber floor coverings in a gym's free-weight and cardiovascular equipment areas. Tips on purchasing a rubber floor are highlighted as is an annotated list of suppliers and their rubber flooring products. (GR)

  19. Tough Rubber.

    ERIC Educational Resources Information Center

    Schmid, Sue

    1994-01-01

    Describes the benefits of using rubber floor coverings in a gym's free-weight and cardiovascular equipment areas. Tips on purchasing a rubber floor are highlighted as is an annotated list of suppliers and their rubber flooring products. (GR)

  20. Rubber linings answer to many problems

    SciTech Connect

    Mehra, L.

    1998-12-31

    The uses of rubber linings in different fields industries are discussed.The physical properties of rubber both natural and synthetic rubber are listed and their importance is evaluated. The aging of rubber is discussed in detail, including effects of temperature on aging of rubber. By virtue of its inherent elasticity and chemical resistance, rubber linings have found many uses in the protection of mining equipment, water treatment tanks and vessels, flue gas desulfurization equipment in power plants and varied process and storage vessels in chemical industries. Rubber has found extensive use in civil engineering field as expansion joints and bladders in dams. Electrical resistance of rubber is useful for its application as an insulating material. Rubber is chemically resistant to acids, alkalies and many salt solutions. Rubber linings are therefore used for protection of steel against these acids, alkalies or salt solutions. The extreme elasticity of rubber has been found useful in its application as a lining material in areas subject to high abrasion. Frequently rubber linings are the linings of choice when a combination of abrasion and chemical attack are to be protected against. Constantly, new formulations of rubber lining compounds are being developed just as new chemical processes are being made. The flexibility of compounding and the relative ease of putting layers of different rubber formulations together in multilayered formulations of rubber lining compounds is leading to new uses of this lining material.

  1. Elastic protectors for ultrasound injection

    SciTech Connect

    Barkhatov, V.A.; Nesterova, L.A.

    1995-07-01

    A new material has been developed for elastic protectors on ultrasonic probes: sonar rubber. This combines low ultrasonic absorption, high strength, and wear resistance, and so the rubber can be used in sensor designs.

  2. Marked drag reduction in non-affine viscoelastic turbulence in homogeneous isotropic and pipe flows

    NASA Astrophysics Data System (ADS)

    Horiuti, K.; Matsumoto, K.; Adati, M.

    2011-12-01

    Effect of non-affinity of the molecular motions to the macroscopic deformation in the polymer-diluted flow on turbulent drag reduction (DR) is studied using the DNS data for homogeneous isotropic turbulence and pipe flow. The polymer stress is obtained by solving the non-affine Johnson-Segalman constitutive equation. In both flows, DR is maximal when non-affinity is either minimum or maximum, but the largest reduction is achieved when non-affinity is maximum. As an extreme case, in pipe flow, the mean velocity profile exceeds the Virk's maximum DR limit and almost complete relaminarization of turbulent state is achieved. The normal-stress difference (NSD) is obtained on the basis of new eigenvectors which span the isosurfaces of vortex tube and sheet. It is shown that the first NSD is predominantly positive, while the second NSD is negative along the sheets and tubes. Thus, an extra tension is exerted on the sheet and tube. With an increase of effective viscosity by an addition of elongation viscosity, resistance of the sheet and tube to their stretching is enhanced. The principal mechanism for DR when non-affinity is maximum is that the transformation of the sheet into the tube is restrained because the sheet tends to snap back to the original flat form. When non-affinity is minimum, the tubes are created but its stretching is suppressed by annihilation of lowering of the pressure in the tube-core region. In both cases, cascade of the energy into the small scales is diminished leading to the reduction of drag.

  3. Rubber Reclamation

    ERIC Educational Resources Information Center

    Williams, Kathryn R.

    2007-01-01

    The safety and health hazards related to recycling of used rubber, due to the scarcity and high price of virgin rubber are reported. Various threats like stagnant water pools trapped in tires leading to diseases and ignited tires, which become very difficult to extinguish and generating smoke that is extremely detrimental to the environment, have…

  4. Rubber Reclamation

    ERIC Educational Resources Information Center

    Williams, Kathryn R.

    2007-01-01

    The safety and health hazards related to recycling of used rubber, due to the scarcity and high price of virgin rubber are reported. Various threats like stagnant water pools trapped in tires leading to diseases and ignited tires, which become very difficult to extinguish and generating smoke that is extremely detrimental to the environment, have…

  5. Prehistoric polymers: rubber processing in ancient mesoamerica

    PubMed

    Hosler; Burkett; Tarkanian

    1999-06-18

    Ancient Mesoamerican peoples harvested latex from Castilla elastica, processed it using liquid extracted from Ipomoea alba (a species of morning glory vine), and fashioned rubber balls, hollow rubber figurines, and other rubber artifacts from the resulting material. Chemical and mechanical analyses of the latex and of the processed rubber indicate that the enhanced elastic behavior of the rubber relative to the unprocessed latex is due to purification of the polymer component and to an increase in the strength and number of interchain interactions that are induced by organic compounds present in I. alba. These ancient peoples' control over the properties of latex and processed rubber gave rise to the Mesoamerican ball game, a central ritual element in all ancient Mesoamerican societies.

  6. Direct adaptive fuzzy control of a class of MIMO non-affine nonlinear systems

    NASA Astrophysics Data System (ADS)

    Doudou, Sofiane; Khaber, Farid

    2012-06-01

    An adaptive fuzzy control approach is proposed for a class of multiple-input-multiple-output (MIMO) nonlinear systems with completely unknown non-affine functions. The global implicit function theorem is first used to prove the existence of an unknown ideal implicit controller that can achieve the control objectives. Within this scheme, fuzzy systems are employed the approximate the unknown ideal implicit controller, and robustifying control terms are used to compensate the approximation errors and external disturbances. The adjustable parameters of the used fuzzy systems are deduced from the stability analysis of the closed-loop system in the sense of Lyapunov. To show the efficiency of the proposed controllers, two simulation examples are presented.

  7. How far can a rubber molecule stretch before breaking? Ab initio study of tensile elasticity and failure in single-molecule polyisoprene

    SciTech Connect

    Hanson, David E

    2008-01-01

    We present ab initio calculations of the internal C-C bond dissociation curve for single molecules of (cis 1,4) polyisoprene, polybutadiene, and polyethylene, all of comparable length. We define 'bond rupture' as that point on the reaction coordinate where the unrestricted Kohn-Sham, or diradical, solution falls below the restricted, or closed-shell, solution. Using this well-defined though crude approximation, we find that rupture occurs at a tensile force of 6.8 nN for poly isoprene and 7.2 nN for polybutadiene. Their respective rupture strains are 45% and 42%. Our calculations show that the energy density vs. extension is not sensitive to the length of the molecule, i.e., it is essentially independent of the number of isoprene units contained. These relatively large rupture strains have important implications for understanding the failure mechanism in rubber, and imply that purely enthalpic chain stretching must commence well before tensile failure occurs.

  8. Alternative sources of natural rubber.

    PubMed

    Mooibroek, H; Cornish, K

    2000-04-01

    Rubber (cis-1,4-polyisoprene) is one of the most important polymers naturally produced by plants because it is a strategic raw material used in more than 40,000 products, including more than 400 medical devices. The sole commercial source, at present, is natural rubber harvested from the Brazilian rubber tree, Hevea brasiliensis. Primarily due to its molecular structure and high molecular weight (> 1 million daltons) this rubber has high performance properties that cannot easily be mimicked by artificially produced polymers, such as those derived from, e.g., bacterial poly-hydroxyalkanoates (PHAs). These high performance properties include resilience, elasticity, abrasion resistance, efficient heat dispersion (minimizing heat build-up under friction), and impact resistance. Medical rubber gloves need to fit well, be break-resistant, allow the wearer to retain fine tactile sensation, and provide an effective barrier against pathogens. The sum of all these characteristics cannot yet be achieved using synthetic gloves. The lack of biodiversity in natural rubber production renders continuity of supply insecure, because of the risk of crop failure, diminishing acreage, and other disadvantages outlined below. A search for alternative sources of natural rubber production has already resulted in a large number of interesting plants and prospects for immediate industrial exploitation of guayule (Parthenium argentatum) as a source of high quality latex. Metabolic engineering will permit the production of new crops designed to accumulate new types of valued isoprenoid metabolites, such as rubber and carotenoids, and new combinations extractable from the same crop. Currently, experiments are underway to genetically improve guayule rubber production strains in both quantitative and qualitative respects. Since the choice for gene activities to be introduced or changed is under debate, we have set up a complementary approach to guayule with yeast species, which may more quickly

  9. Reinforcement Effect of Corn Flour in Rubber Composites

    USDA-ARS?s Scientific Manuscript database

    Corn flour is an economical renewable material and investigated in this study as filler for rubber composites. The composites were prepared by mixing an aqueous dispersion of corn flour with rubber latex, followed by freeze-drying and compression molding. The small strain elastic modulus and the str...

  10. The Functional Identification of Rubber Biosynthetic Genes in Plants

    USDA-ARS?s Scientific Manuscript database

    Natural rubber (cis-1,4-polyisoprene) is an essential plant derived raw material required for the manufacture of numerous industrial and medical related products. This elastic polymer is synthesized and sequestered within cytosolic vesicles known as rubber particles. When provided with farnesyl-pyro...

  11. Elastic and Inelastic Collisions

    ERIC Educational Resources Information Center

    Gluck, Paul

    2010-01-01

    There have been two articles in this journal that described a pair of collision carts used to demonstrate vividly the difference between elastic and inelastic collisions. One cart had a series of washers that were mounted rigidly on a rigid wooden framework, the other had washers mounted on rubber bands stretched across a framework. The rigidly…

  12. Elastic and Inelastic Collisions

    ERIC Educational Resources Information Center

    Gluck, Paul

    2010-01-01

    There have been two articles in this journal that described a pair of collision carts used to demonstrate vividly the difference between elastic and inelastic collisions. One cart had a series of washers that were mounted rigidly on a rigid wooden framework, the other had washers mounted on rubber bands stretched across a framework. The rigidly…

  13. Classification of Non-Affine Non-Hecke Dynamical R-Matrices

    NASA Astrophysics Data System (ADS)

    Avan, Jean; Billaud, Baptiste; Rollet, Geneviève

    2012-09-01

    A complete classification of non-affine dynamical quantum R-matrices obeying the Gl_n({C})-Gervais-Neveu-Felder equation is obtained without assuming either Hecke or weak Hecke conditions. More general dynamical dependences are observed. It is shown that any solution is built upon elementary blocks, which individually satisfy the weak Hecke condition. Each solution is in particular characterized by an arbitrary partition {{I}(i),; iin\\{1,dots,n}} of the set of indices {1,dots,n} into classes, {I}(i) being the class of the index i, and an arbitrary family of signs (ɛ_{I})_{{I}in{{I}(i), ; iin{1,dots,n}}} on this partition. The weak Hecke-type R-matrices exhibit the analytical behaviour R_{ij,ji}=f(ɛ_{{I}(i)}Λ_{{I}(i)}-ɛ_{{I}(j)}Λ_{{I}(j)}), where f is a particular trigonometric or rational function, Λ_{{I}(i)}=sumlimits_{jin{I}(i)}λ_j, and (λ_i)_{iin{1,dots,n}} denotes the family of dynamical coordinates.

  14. On the response of rubbers at high strain rates.

    SciTech Connect

    Niemczura, Johnathan Greenberg

    2010-02-01

    In this report, we examine the propagation of tensile waves of finite deformation in rubbers through experiments and analysis. Attention is focused on the propagation of one-dimensional dispersive and shock waves in strips of latex and nitrile rubber. Tensile wave propagation experiments were conducted at high strain-rates by holding one end fixed and displacing the other end at a constant velocity. A high-speed video camera was used to monitor the motion and to determine the evolution of strain and particle velocity in the rubber strips. Analysis of the response through the theory of finite waves and quantitative matching between the experimental observations and analytical predictions was used to determine an appropriate instantaneous elastic response for the rubbers. This analysis also yields the tensile shock adiabat for rubber. Dispersive waves as well as shock waves are also observed in free-retraction experiments; these are used to quantify hysteretic effects in rubber.

  15. Thermoviscoplastic behaviors of anisotropic shape memory elastomeric composites for cold programmed non-affine shape change

    NASA Astrophysics Data System (ADS)

    Mao, Yiqi; Robertson, Jaimee M.; Mu, Xiaoming; Mather, Patrick T.; Jerry Qi, H.

    2015-12-01

    Shape memory polymers (SMPs) can fix a temporary shape and recover their permanent shape upon activation by an external stimulus. Most SMPs require programming at above their transition temperatures, normally well above the room temperature. In addition, most SMPs are programmed into shapes that are affine to the high temperature deformation. Recently, a cold-programmed anisotropic shape memory elastomeric composite was developed and showed interesting low temperature stretching induced shape memory behavior. There, simple, uniaxial stretching at low temperature transformed the composites into curled temporary shapes upon unloading. The exact geometry of the curled state depended on the microstructure of the composite, and the curled shape showed no affinity to the deformed shape. Heating the sample recovered the sample back to its original shape. This new composite consisted of an elastomeric matrix reinforced by aligned amorphous polymer fibers. By utilizing the plastic-like behavior of the amorphous polymer phase at low temperatures, a temporary shape could be fixed upon unloading since the induced plastic-like strain resists the recovery of the elastomer matrix. After heating to a high temperature, the permanent shape was recovered when the amorphous polymer softened and the elastomer matrix contracted. To set a theoretical foundation for capturing the cold-programmed shape memory effects and the dramatic non-affine shape change of this composite, a 3D anisotropic thermoviscoelastic constitutive model is developed in this paper. In this model, the matrix is modeled as a hyperelastic solid, and the amorphous phase of the fibrous mat is considered as a nonlinear thermoviscoplastic solid, whose viscous flow resistance is sensitive to both temperature and stress. The plastic-deformation like behavior demonstrated in the fiber is treated as nonlinear viscoplasticity with extremely high viscosity or long relaxation time at zero-stress state at low temperature. The

  16. Material and Flexural Properties of Fiber-reinforced Rubber Concrete

    NASA Astrophysics Data System (ADS)

    Helminger, Nicholas P.

    The purpose of this research is to determine the material properties of rubber concrete with the addition of fibers, and to determine optimal mixture dosages of rubber and fiber in concrete for structural applications. Fiber-reinforced concrete and rubberized concrete have been researched separately extensively, but this research intends to combine both rubber and fiber in a concrete matrix in order to create a composite material, fiber-reinforced rubber concrete (FRRC). Sustainability has long been important in engineering design, but much of the previous research performed on sustainable concrete does not result in a material that can be used for practical purposes. While still achieving a material that can be used for structural applications, economical considerations were given when choosing the proportions and types of constituents in the concrete mix. Concrete mixtures were designed, placed, and tested in accordance with common procedures and standards, with an emphasis on practicality. Properties that were investigated include compressive strength, tensile strength, modulus of elasticity, toughness, and ductility. The basis for determining the optimal concrete mixture is one that is economical, practical, and exhibits ductile properties with a significant strength. Results show that increasing percentages of rubber tend to decrease workability, unit weight, compressive strength, split tensile strength, and modulus of elasticity while the toughness is increased. The addition of steel needle fibers to rubber concrete increases unit weight, compressive strength, split tensile strength, modulus of elasticity, toughness, and ductility of the composite material.

  17. Vulcanization and the mechanical response of rubber

    NASA Astrophysics Data System (ADS)

    Kundurthi, S.; Mythravaruni, P.; Ravindran, P.

    2015-06-01

    Hyperelastic models are widely used to describe the mechanical response of rubber. However, purely mechanical models cannot account for changes in the material due to chemical reactions such as those that take place during vulcanization. Here, we present a model developed within a thermodynamic framework accounting for chemical reactions. A mixture theory approach that allows for the existence of multiple species and their interconversion is followed. The existence of a Helmholtz potential and a rate of entropy production function for the mixture as a whole are posited. Following the multiple natural configuration approach, the rate of entropy production is maximized to obtain constitutive equations. The viscoelastic model is then specialized to the elastic case. The model is calibrated using data available in the literature for rubber. A simulation of the stress-strain curve of rubber as vulcanization progresses is presented.

  18. Mechanism of Resilin Elasticity

    PubMed Central

    Qin, Guokui; Hu, Xiao; Cebe, Peggy; Kaplan, David L.

    2012-01-01

    Resilin is critical in the flight and jumping systems of insects as a polymeric rubber-like protein with outstanding elasticity. However, insight into the underlying molecular mechanisms responsible for resilin elasticity remains undefined. Here we report the structure and function of resilin from Drosophila CG15920. A reversible beta-turn transition was identified in the peptide encoded by exon III and for full length resilin during energy input and release, features that correlate to the rapid deformation of resilin during functions in vivo. Micellar structures and nano-porous patterns formed after beta-turn structures were present via changes in either the thermal or mechanical inputs. A model is proposed to explain the super elasticity and energy conversion mechanisms of resilin, providing important insight into structure-function relationships for this protein. Further, this model offers a view of elastomeric proteins in general where beta-turn related structures serve as fundamental units of the structure and elasticity. PMID:22893127

  19. Mechanochemical modification of natural rubber

    NASA Astrophysics Data System (ADS)

    Mikhaylov, I. A.; Sukhareva, K. V.; Andriasyan, Yu. O.; Popov, A. A.; Vorontsov, N. V.

    2016-11-01

    Thermomechanochemical changes of SVR 3L natural rubber after the treatment in the internal rubber mixer in the self-heating mode were studied. The effect of the molecular mass and content of the gel fraction of natural rubber is shown. Properties of rubber compounds and vulcanized rubber are presented. Taking into account modern requirements, a new alternative technology of obtaining halogenated elastomers based on the solid-phase (mechanochemical) halide modification is created. New halogen-containing natural rubber produced by this technology proves themselves in the conditions of rubber production. New fluorinated natural rubber produced by this technology proves themselves in the conditions of rubber production.

  20. Nonaqueous ozonation of vulcanized rubber

    DOEpatents

    Serkiz, Steven M.

    1999-01-01

    A process and resulting product is provided in which a solid particulate, such as vulcanized crumb rubber, has the surface functional groups oxidized by ozonation using a nonpolar solvent. The ozonation process renders the treated crumb rubber more suitable for use in new rubber formulations. As a result, larger loading levels of the treated crumb rubber can be used in new rubber mixtures.

  1. Nonaqueous ozonation of vulcanized rubber

    SciTech Connect

    Serkiz, S.M.

    1999-12-07

    A process and resulting product are provided in which a solid particulate, such as vulcanized crumb rubber, has the surface functional groups oxidized by ozonation using a nonpolar solvent. The ozonation process renders the treated crumb rubber more suitable for use in new rubber formulations. As a result, larger loading levels of the treated crumb rubber can be used in new rubber mixtures.

  2. Rubberized asphalt emulsion

    SciTech Connect

    Wilkes, E.

    1986-09-02

    A method is described of making a rubberized asphalt composition which comprises the steps of: (a) combining asphalt with a hydrocarbon oil having a flash point of 300/sup 0/F. or more to provide a homogenous asphalt-oil mixture or solution, (b) then combining the asphalt-oil mixture with a particulate rubber at a temperature sufficient to provide a homogenous asphalt-rubber-oil gel, and (c) emulsifying the asphalt-rubber-oil gel by passing the gel, water, and an emulsifying agent through a colloid mill to provide an emulsion.

  3. Rubber friction directional asymmetry

    NASA Astrophysics Data System (ADS)

    Tiwari, A.; Dorogin, L.; Steenwyk, B.; Warhadpande, A.; Motamedi, M.; Fortunato, G.; Ciaravola, V.; Persson, B. N. J.

    2016-12-01

    In rubber friction studies it is usually assumed that the friction force does not depend on the sliding direction, unless the substrate has anisotropic properties, like a steel surface grinded in one direction. Here we will present experimental results for rubber friction, where we observe a strong asymmetry between forward and backward sliding, where forward and backward refer to the run-in direction of the rubber block. The observed effect could be very important in tire applications, where directional properties of the rubber friction could be induced during braking.

  4. Flow properties of natural rubber composites filled with defatted soy flour

    USDA-ARS?s Scientific Manuscript database

    The linear and nonlinear viscoelastic properties of natural rubber composites reinforced with defatted soy flour were studied. Defatted soy flour is an abundant, renewable commodity, and its rigid nature makes it suitable as a reinforcement phase in rubber composites. At small strain, the elastic ...

  5. Influence of Rubber Size on Properties of Crumb Rubber Mortars

    PubMed Central

    Yu, Yong; Zhu, Han

    2016-01-01

    Studies on the properties and applications of rubber cement-based materials are well documented. The sizes of rubbers used in these materials varied. However, information about the effects of rubber size on the properties of rubber cement-based materials, especially pore structure, mechanical strengths, and drying shrinkage properties, remains limited. Three groups of rubber with major particle sizes of 2–4 mm, 1–3 mm, and 0–2 mm were selected in this study. This paper presents experimental studies on the effects of rubber size on the consistency, fresh density, pore structure, mechanical properties, and drying shrinkage properties of crumb rubber mortars (CRMs). Results demonstrated that the consistency and fresh density of CRMs decreased with the rubber size. As to the pore structure, the total pore volume increased with the decrease of the rubber size. By contrast, the influence of the rubber size on the mesopore (<50 nm) volume is not as significant as that of the rubber content. The mechanical properties of CRMs decreased with the rubber size. Low rubber stiffness and large pore volumes, especially those of small sized rubbers, contribute to the reduction of CRMs strength. The drying shrinkage of CRM increases as the rubber size decreases. The influences of rubber size on capillary tension are not significant. Thus, the shrinkage increases with the decrease of rubber size mainly because of its function in the deformation modulus reduction of CRMs. PMID:28773649

  6. Influence of Rubber Size on Properties of Crumb Rubber Mortars.

    PubMed

    Yu, Yong; Zhu, Han

    2016-06-29

    Studies on the properties and applications of rubber cement-based materials are well documented. The sizes of rubbers used in these materials varied. However, information about the effects of rubber size on the properties of rubber cement-based materials, especially pore structure, mechanical strengths, and drying shrinkage properties, remains limited. Three groups of rubber with major particle sizes of 2-4 mm, 1-3 mm, and 0-2 mm were selected in this study. This paper presents experimental studies on the effects of rubber size on the consistency, fresh density, pore structure, mechanical properties, and drying shrinkage properties of crumb rubber mortars (CRMs). Results demonstrated that the consistency and fresh density of CRMs decreased with the rubber size. As to the pore structure, the total pore volume increased with the decrease of the rubber size. By contrast, the influence of the rubber size on the mesopore (<50 nm) volume is not as significant as that of the rubber content. The mechanical properties of CRMs decreased with the rubber size. Low rubber stiffness and large pore volumes, especially those of small sized rubbers, contribute to the reduction of CRMs strength. The drying shrinkage of CRM increases as the rubber size decreases. The influences of rubber size on capillary tension are not significant. Thus, the shrinkage increases with the decrease of rubber size mainly because of its function in the deformation modulus reduction of CRMs.

  7. Mechanical properties of concrete containing a high volume of tire-rubber particles.

    PubMed

    Khaloo, Ali R; Dehestani, M; Rahmatabadi, P

    2008-12-01

    Due to the increasingly serious environmental problems presented by waste tires, the feasibility of using elastic and flexible tire-rubber particles as aggregate in concrete is investigated in this study. Tire-rubber particles composed of tire chips, crumb rubber, and a combination of tire chips and crumb rubber, were used to replace mineral aggregates in concrete. These particles were used to replace 12.5%, 25%, 37.5%, and 50% of the total mineral aggregate's volume in concrete. Cylindrical shape concrete specimens 15 cm in diameter and 30 cm in height were fabricated and cured. The fresh rubberized concrete exhibited lower unit weight and acceptable workability compared to plain concrete. The results of a uniaxial compressive strain control test conducted on hardened concrete specimens indicate large reductions in the strength and tangential modulus of elasticity. A significant decrease in the brittle behavior of concrete with increasing rubber content is also demonstrated using nonlinearity indices. The maximum toughness index, indicating the post failure strength of concrete, occurs in concretes with 25% rubber content. Unlike plain concrete, the failure state in rubberized concrete occurs gently and uniformly, and does not cause any separation in the specimen. Crack width and its propagation velocity in rubberized concrete are lower than those of plain concrete. Ultrasonic analysis reveals large reductions in the ultrasonic modulus and high sound absorption for tire-rubber concrete.

  8. Robust adaptive control for a class of uncertain non-affine nonlinear systems using affine-type neural networks

    NASA Astrophysics Data System (ADS)

    Zhao, Shitie; Gao, Xianwen

    2016-08-01

    A robust adaptive control is proposed for a class of single-input single-output non-affine nonlinear systems. In order to approximate the unknown nonlinear function, a novel affine-type neural network is used, and then to compensate the approximation error and external disturbance a robust control term is employed. By Lyapunov stability analysis for the closed-loop system, it is proved that tracking errors asymptotically converge to zero. Moreover, an observer is designed to estimate the system states because all the states may not be available for measurements. Furthermore, the adaptation laws of neural networks and the robust controller are given out based on the Lyapunov stability theory. Finally, two simulation examples are presented to demonstrate the effectiveness of the proposed control method.

  9. ℒ1 adaptive controller for a class of non-affine multi-input multi-output nonlinear systems

    NASA Astrophysics Data System (ADS)

    Luo, Jie; Cao, Chengyu; Yang, Qinmin

    2013-02-01

    In this article, an extension of the ℒ1 adaptive control design is introduced for a class of non-affine Multi-Input Multi-Output nonlinear systems with unknown dynamics and unmeasured states. The system dynamics is represented in the normal form with the bounded-input-bounded-output internal dynamics. At first, a stable virtual reference counterpart is constructed. Thereafter, a piece-wise continuous adaptive law is introduced to the actual system along with a low-pass filtered control signal that allows for achieving arbitrarily close tracking of the input and the output signals of the reference system. Rigorous mathematical proof is provided, and the theoretical results are verified with the simulation.

  10. Rubber Band Science

    ERIC Educational Resources Information Center

    Cowens, John

    2005-01-01

    Not only are rubber bands great for binding objects together, but they can be used in a simple science experiment that involves predicting, problem solving, measuring, graphing, and experimenting. In this article, the author describes how rubber bands can be used to teach the force of mass.

  11. Nitrosamines and rubber.

    PubMed

    Spiegelhalder, B; Preussmann, R

    1982-01-01

    Occupational exposure to N-nitrosamines in the rubber industry was first reported by Fajen et al. (1979). In order to study the origin and formation of nitrosamines in this industry, chemicals and industrial products, as well as the air in various working areas, were analysed (Spiegelhalder et al., 1980). All chemicals used for rubber compounding contain nitrosamines if they are derivatives of secondary amines; e.g., tetramethylthiurame, zinc-diethyldithiocarbamate or N-oxydiethylene benzothiazolylsulfenamide. All rubber products containing these dialkyl amine derivatives exhibited considerable levels of the corresponding nitrosamines. Accordingly, variable concentrations of airborne nitrosamines could be detected at places where rubber products are manufactured or stored. The nitrosamines found correspond to the compounded chemicals. The original nitrosamine level in rubber chemicals is not high enough to explain the amounts found in rubber products and in air, so that additional nitrosation must occur. The responsible nitrosating agents are described. Preliminary results show that, in most cases, the elimination of nitrosating agents or the use of different rubber chemicals can drastically reduce nitrosamine levels in rubber products and in working areas.

  12. Rubber Band Science

    ERIC Educational Resources Information Center

    Cowens, John

    2005-01-01

    Not only are rubber bands great for binding objects together, but they can be used in a simple science experiment that involves predicting, problem solving, measuring, graphing, and experimenting. In this article, the author describes how rubber bands can be used to teach the force of mass.

  13. Natural rubber biosynthesis in plants: rubber transferase.

    PubMed

    Cornish, Katrina; Xie, Wenshuang

    2012-01-01

    Rubber biosynthesis in plants is a fascinating biochemical system, which evolved at the dawn of the dicotyledoneae and is present in at least four of the dictolydonous superorders. Rubber biosynthesis is catalyzed by a membrane complex in a monolayer membrane envelope, requires two distinct substrates and a divalent cation cofactor, and produces a high-molecular-weight isoprenoid polymer. A solid understanding of this system underpins valuable papers in the literature. However, the published literature is rife with unreliable reports in which the investigators have fallen into traps created by the current incomplete understanding of the biochemistry of rubber synthesis. In this chapter, we attempt to guide both new and more established researchers around these pitfalls.

  14. Estimation of Rubber Material Property by Successive Zooming Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Kwon, Young-Doo; Kwon, Hyun-Wook; Kim, Wha-Jung; Yeo, Sim-Dong

    The industrial use of various kinds of rubber-like (hyper-elastic) material is rapidly increasing and growing in importance, especially in automobiles, trains, and machinery(1). In the past, rubber engineers and designers have predicted the behavior of rubber-like materials using analytic methods for limited problems or approximate methods for general problems. Yet, with the progress of digital computers, finite element methods(2), represented by the Mooney-Rivlin model, are now widely used to analyze hyper-elastic as well as isotropic materials. The conventional method used to evaluate the properties of rubber-like materials is the least square method (LSM), however, this method has a low precision and involves a tedious pre-solving process. Accordingly, this study proposes a simple yet powerful method for estimating the properties of rubber-like materials using a successive zooming genetic algorithm (SZGA). The proposed method results in dependable and precise rubber-like properties for various Mooney-Rivlin models based on simply changing the objective function. To demonstrate the effectiveness of the proposed method, it is compared with Haines & Wilson's method (LSM) and other commercial packages.

  15. Failure studies on rubber and rubber composites

    NASA Astrophysics Data System (ADS)

    Tao, Zhenghong

    A research study has been conducted to investigate selected failure processes in rubber and rubbery composites. Specific failure modes and materials considered included mechanical tearing of rubber-coated fabrics and mechanical/thermal fatigue of carbon black-filled elastomers. Experimental efforts developed novel evaluation techniques that were used to access failure resistance of the materials, as well as to elucidate molecular structure/physical properties relationships. Results are presented in multi-monograph format consisting of a series of four interdependent papers published in peer-reviewed journals. The first monograph measures the tear resistance of a series of polyester fabrics, of controlled fill-yarn size, coated with a compounded butyl rubber resin. A constrained trouser tear test is used to quantify the role of yarn mobility on crack-tip development and the resultant tear strength. As the area around a propagating crack is constrained, tear strength decreases by several orders of magnitude, indicating that the ability of the composite structure to dissipate energy away from the crack tip contributes more to tear resistance than the intrinsic strength of the concomitant materials. Monograph number two continues the work of the first by developing a novel cutting technique to monitor the role of the fiber/rubber interphase during tear propagation. This approach was applied to five different elastomers coated onto one of the polyester yarns. These data show a threefold increase in strength is possible by proper optimization of the fiber/rubber bond. In the third monograph, five different rubber bushing compounds were evaluated for mechanical/thermal fatigue resistance. Samples were dynamically excited in combined compression and shear loadings using a specially designed test fixture. Results indicated that heat build-up was a major contributing factor to the eventual failure of the materials via a complex fracture mechanism, with epoxidized natural

  16. Equipment for shredding rubber scrap

    SciTech Connect

    Rozhkov, V.F.; Golikov, V.N.; Kurglov, V.I.; Cherepkova, R.V.

    1987-07-01

    The authors describe a range of machines developed for shredding rubber scrap and discarded rubber articles into crumbs. Technical characteristics of the machine for shredding vulcanized pressed-rubber parts, used rubber articles and scrap from the shoe industry are presented. A machine for shredding rubber scrap from plants making rubber products and from the shoe industry is shown, as is one for producing rubber crumbs from the scrap during the roughing of tires. Another machine is examined which cuts tires with metallic cords.

  17. The Isolation of Rubber from Milkweed Leaves. An Introductory Organic Chemistry Lab

    NASA Astrophysics Data System (ADS)

    Volaric, Lisa; Hagen, John P.

    2002-01-01

    We present an introductory organic chemistry lab in which students isolate rubber from the leaves of milkweed plants (Asclepias syriaca). Students isolated rubber with a recovery of 2.4 ± 1.8% and 1.8 ± 0.7% for the microscale and macroscale procedures, respectively. Infrared spectra of their products were compared with the spectrum of synthetic rubber, cis-polyisoprene. Students tested for elasticity of their product by twisting it on a spatula and pulling; all students found some degree of elasticity.

  18. Rubber Impact on 3D Textile Composites

    NASA Astrophysics Data System (ADS)

    Heimbs, Sebastian; Van Den Broucke, Björn; Duplessis Kergomard, Yann; Dau, Frederic; Malherbe, Benoit

    2012-06-01

    A low velocity impact study of aircraft tire rubber on 3D textile-reinforced composite plates was performed experimentally and numerically. In contrast to regular unidirectional composite laminates, no delaminations occur in such a 3D textile composite. Yarn decohesions, matrix cracks and yarn ruptures have been identified as the major damage mechanisms under impact load. An increase in the number of 3D warp yarns is proposed to improve the impact damage resistance. The characteristic of a rubber impact is the high amount of elastic energy stored in the impactor during impact, which was more than 90% of the initial kinetic energy. This large geometrical deformation of the rubber during impact leads to a less localised loading of the target structure and poses great challenges for the numerical modelling. A hyperelastic Mooney-Rivlin constitutive law was used in Abaqus/Explicit based on a step-by-step validation with static rubber compression tests and low velocity impact tests on aluminium plates. Simulation models of the textile weave were developed on the meso- and macro-scale. The final correlation between impact simulation results on 3D textile-reinforced composite plates and impact test data was promising, highlighting the potential of such numerical simulation tools.

  19. Multilayer graphene rubber nanocomposites

    NASA Astrophysics Data System (ADS)

    Schartel, Bernhard; Frasca, Daniele; Schulze, Dietmar; Wachtendorf, Volker; Krafft, Bernd; Morys, Michael; Böhning, Martin; Rybak, Thomas

    2016-05-01

    Multilayer Graphene (MLG), a nanoparticle with a specific surface of BET = 250 m2/g and thus made of only approximately 10 graphene sheets, is proposed as a nanofiller for rubbers. When homogenously dispersed, it works at low loadings enabling the replacement of carbon black (CB), increase in efficiency, or reduction in filler concentration. Actually the appropriate preparation yielded nanocomposites in which just 3 phr are sufficient to significantly improve the rheological, curing and mechanical properties of different rubbers, as shown for Chlorine-Isobutylene-Isoprene Rubber (CIIR), Nitrile-Butadiene Rubber (NBR), Natural Rubber (NR), and Styrene-Butadiene Rubber (SBR). A mere 3 phr of MLG tripled the Young's modulus of CIIR, an effect equivalent to 20 phr of carbon black. Similar equivalents are observed for MLG/CB mixtures. MLG reduces gas permeability, increases thermal and electrical conductivities, and retards fire behavior. The later shown by the reduction in heat release rate in the cone calorimeter. The higher the nanofiller concentration is (3 phr, 5 phr, and 10 phr was investigated), the greater the improvement in the properties of the nanocomposites. Moreover, the MLG nanocomposites improve stability of mechanical properties against weathering. An increase in UV-absorption as well as a pronounced radical scavenging are proposed and were proved experimentally. To sum up, MLG is interesting as a multifunctional nanofiller and seems to be quite ready for rubber development.

  20. A global Implicit Function Theorem without initial point and its applications to control of non-affine systems of high dimensions

    NASA Astrophysics Data System (ADS)

    Zhang, Weinian; Ge, Shuzhi Sam

    2006-01-01

    Control system design for non-affine systems is a difficult problem because of the lack of mathematical tools. The key to the problem is solving for an implicit function but the known results for implicit functions are not applicable for higher dimensional systems except for single-input and single-output systems. In this paper, a new version of a global implicit function theorem in higher dimension is presented and proved. This result can be applied to show the controllability of a class of non-affine multi-input and multi-output (MIMO) system so that approximation based control system design can be applied with ease.

  1. New application of crystalline cellulose in rubber composites

    NASA Astrophysics Data System (ADS)

    Bai, Wen

    Rubber without reinforcement has limited applications. The strength of reinforced rubber composites can be ten times stronger than that of unreinforced rubbers. Therefore, rubber composites are widely used in various applications ranging from automobile tires to seals, valves, and gaskets because of their excellent mechanical elastic properties. Silica and carbon black are the two most commonly used reinforcing materials in rubber tires. They are derived from non-renewable materials and are expensive. Silica also contributes to a large amount of ash when used tires are disposed of by incineration. There is a need for a new reinforcing filler that is inexpensive, renewable and easily disposable. Cellulose is the most abundant natural polymer. Native cellulose includes crystalline regions and amorphous regions. Crystalline cellulose can be obtained by removing the amorphous regions with the acid hydrolysis of cellulose because the amorphous cellulose can be hydrolyzed faster than crystalline cellulose. We recently discovered that the partial replacement of silica with microcrystalline cellulose (MCC) provided numerous benefits: (1) low energy consumption for compounding, (2) good processability, (3) strong tensile properties, (4) good heat resistance, and (5) potential for good fuel efficiency in the application of rubber tires. Strong bonding between fillers and a rubber matrix is essential for imparting rubber composites with the desired properties for many specific applications. The bonding between hydrophilic MCC and the hydrophobic rubber matrix is weak and can be improved by addition of a coupling agent or surface modifications of MCC. In this study, MCC was surface-modified with acryloyl chloride or alkenyl ketene dimer (AnKD) to form acrylated MCC (A-MCC) and AnKD-modified MCC (AnKD-MCC). The surface modifications of MCC did not change the integrity and mechanical properties of MCC, but provided functional groups that were able to form covalent linkages with

  2. Ericameria Nauseosa (rubber rabbitbrush): a complementary rubber feedstock to augment the guayule rubber production stream

    USDA-ARS?s Scientific Manuscript database

    Ericameria nauseosa (rubber rabbitbrush) is a highly prolific desert shrub that produces high quality natural rubber. Over the past several years we have investigated rabbitbrush’s potential as a commercial rubber feedstock. Like guayule, rabbitbrush produces natural rubber within its bark tissues a...

  3. Another Demo of the Unusual Thermal Properties of Rubber

    ERIC Educational Resources Information Center

    Liff, Mark I.

    2010-01-01

    The unusual thermal behavior of rubbers, though discovered a long time ago, can still be mind-boggling for students and teachers who encounter this class of polymeric systems. Unlike other solids, stretched elastic polymers shrink upon heating. This is a manifestation of the Gough-Joule (G-J) effect. Joule in the 1850s studied the thermal behavior…

  4. Another Demo of the Unusual Thermal Properties of Rubber

    ERIC Educational Resources Information Center

    Liff, Mark I.

    2010-01-01

    The unusual thermal behavior of rubbers, though discovered a long time ago, can still be mind-boggling for students and teachers who encounter this class of polymeric systems. Unlike other solids, stretched elastic polymers shrink upon heating. This is a manifestation of the Gough-Joule (G-J) effect. Joule in the 1850s studied the thermal behavior…

  5. On the response of rubbers at high strain rates—I. Simple waves

    NASA Astrophysics Data System (ADS)

    Niemczura, J.; Ravi-Chandar, K.

    2011-02-01

    In this series of papers, we examine the propagation of waves of finite deformation in rubbers through experiments and analysis; in the present paper, Part I, attention is focused on the propagation of one-dimensional waves in strips of natural, latex and synthetic, nitrile rubber. Tensile wave propagation experiments were conducted at high strain rates by holding one end fixed and displacing the other end at a constant velocity. A high-speed video camera was used to monitor the motion and to determine the evolution of strain and particle velocity in rubber strips. Analysis of the response through the theory of finite waves indicated a need for an appropriate constitutive model for rubber; by quantitative matching between the experimental observations and analytical predictions, an appropriate instantaneous elastic response for the rubbers was obtained. This matching process suggested that a simple power-law constitutive model was capable of representing the high strain-rate response for both rubbers used.

  6. Rubberized, Brominated Epoxies

    NASA Technical Reports Server (NTRS)

    Gilwee, W.; Kourtides, D.; Parker, J.; Nir, Z.

    1985-01-01

    Graphite/epoxy composite materials made with resins containing bromine and rubber additives. New composites tougher and more resistant to fire. Flame resistance increased by introducing bromine via commercial brominated flame-retartant polymeric additives.

  7. Improved rubber nanofillers

    SciTech Connect

    Boyle, T. J.

    2012-03-01

    During this task, Silane functionalized TiO2 and HK3Ti4O4(SiO4)3 were sent to Goodyear (GY) for testing. These materials were characterized based on their interaction with the model elastomer, squalene. The Van der Waals interactions and Hamaker Constants for ZnO particles in squalene and rubber materials were characterized and it was determined that a 10-20 nm spacing was necessary between primary filler particles to maintain a stable nanocomposite. Contact angle measurements on the ZnO and ZnO-silane materials indicated that the solvent should wet the particles, and solvophobic attractions should not be present. These studies showed that the surface modification with sulfosilane coupling agents was successful, and high levels of dispersion of the particles remained possible. Further, a novel surface charging phenomenon where negative surface charging is developed in the squalene environment was observed and corroborated by measurements of particle size and of the surface modified materials in squalene. This impacts the dispersion of the particles according to the traditional colloidal interpretation of electrostatic repulsive forces between particles. Additionally, thin nanocomposite fibers were developed using electrospinning. The size and shape of the oxides did not change during the electrospinning process, although the shape of the fiber and the distribution of the particles, particularly for ZnO, was not ideal. There was an obvious increase in elastic modulus and hardness from the addition of the oxides, but differentiating the oxides, and particularly the surfactants, was difficult. The A-1289 lead to the greatest dispersion of the filler particles, while the A-1589 and the NXT produced clustered particle aggregates. This agrees with previous study of these materials in low molecular weight squalene solvent studies reported earlier. The behavior of the nanoparticle ZnO and the microparticle silica is different as well, with the ZnO being contained within

  8. Microwave treatment of vulcanized rubber

    DOEpatents

    Wicks, George G.; Schulz, Rebecca L.; Clark, David E.; Folz, Diane C.

    2002-07-16

    A process and resulting product is provided in which a vulcanized solid particulate, such as vulcanized crumb rubber, has select chemical bonds broken by microwave radiation. The direct application of microwaves in combination with uniform heating of the crumb rubber renders the treated crumb rubber more suitable for use in new rubber formulations. As a result, larger particle sizes and/or loading levels of the treated crumb rubber can be used in new rubber mixtures to produce recycled composite products with good properties.

  9. Effect of processing methods on the mechanical properties of natural rubber filled with stearic acid modified soy protein particles

    USDA-ARS?s Scientific Manuscript database

    Natural rubber was reinforced with stearic acid modified soy protein particles prepared with a microfluidizing and ball milling process. Longer ball milling time tends to increase tensile strength of the rubber composites. Elastic modulus of the composites increased with the increasing filler concen...

  10. Application of asphalt rubber technology to recreational trails

    NASA Astrophysics Data System (ADS)

    Ni, Haifeng

    Crumb rubber aggregate was employed instead of stone/sand aggregate in asphalt pavement that was modified by fine rubber particles. Crumb rubber aggregate forms an elastic network in the asphalt, which improves the pavement's susceptibility to low-temperature cracking, and absorb more stress at the crack tips than the conventional asphalt pavement. Laboratory tests were conducted to evaluate the tension/compression performance of a blend of asphalt rubber with rubber aggregate (ARRA). An optimum design methodology was introduced by examining the effect of asphalt source, curing temperature, curing time, rubber content, aggregate size, compaction pressure, and the effect of certain additives. At ambient temperature, the ARRA with equal amount of binder and aggregate exhibits good mechanical properties. Vestenamer helps improve the pavement's strength, stiffness, and fracture resistance to low temperature cracking. It was demonstrated that such pavement meets the mechanical requirements for recreational trails, such as bicycle, or pedestrian trails. ARRA is a viscoelastic material which exhibits time-dependent and loading rate-dependent behavior. Temperature is a key issue to its response to an external load. Both temperature and rate dependences were investigated. A series of uniaxial compression relaxation tests on ARRA or Vestenamer modified ARRA were conducted at room temperature to study the time-dependent performance of ARRA. Schapery's theory was applied to characterize the nonlinear viscoelastic behavior of ARRA.

  11. Dermatitis in rubber manufacturing industries

    SciTech Connect

    White, I.R.

    1988-01-01

    This review describes the history of rubber technology and the manufacturing techniques used in rubber manufacturing industries. The important aspects of the acquisition of allergic and irritant contact dermatitis within the industry are presented for the reader.

  12. Modeling mechanical properties of core-shell rubber-modified epoxies

    SciTech Connect

    Wang, X.; Xiao, K.; Ye, L.; Mai, Y.W.; Wang, C.H.; Rose, L.R.F.

    2000-01-24

    Experiments have been carried out to quantify the effects of rubber content and strain rate on the elastic and plastic deformation behavior of core-shell rubber-modified epoxies. Both the Young's modulus and the yield stress were found to be slightly dependent on strain rate, but very sensitive to the volume fraction of rubber particles. Finite element analyses have also been performed to determine the influences of rubber content on the bulk elasticity modulus and the yield stress. By comparing with experimental results, it is found that the Young's modulus of rubber-toughened epoxies can be accurately estimated using the Mori-Tanaka method, provided that the volume fraction of rubber particles is appropriately evaluated. A yield function is provided that the volume fraction of rubber particles is appropriately evaluated. A yield function is proposed to quantify the effects of hydrostatic stress on the plastic yielding behaviors of rubber-modified epoxies. Agreement with experimental results is good. Also, a visco-plastic model is developed to simulate the strain-rate-dependent stress-strain relations.

  13. Biodesulfurization of rubber materials

    SciTech Connect

    Torma, A.E. ); Raghavan, D. . Dept. of Materials Science and Engineering)

    1990-01-01

    One of the most challenging problems in municipal waste treatment is the recycling of polymeric waste materials. The present study has demonstrated the applicability of biotechnological principles in the desulfurization of rubber using shake flask and Warburg respirometric techniques. In terms of oxygen uptake and specific rate of oxygen uptake, it was found that the mixed culture of Thiobacillus ferrooxidans and Thiobacillus thiooxidans was more efficient in this process than the individual pure cultures of these bacteria. Furthermore, the mixed cultures resulted in ten times higher sulfur removals from rubber relative to those of sterile controls. Additional studies are needed to elucidate the mechanisms of biodesulfurization of rubber. It is expected that the development of this process may provide a solution to recycling of car tire materials. 32 refs., 4 figs., 3 tabs.

  14. Smart damper using the combination of magnetic friction and pre-compressed rubber springs

    NASA Astrophysics Data System (ADS)

    Choi, Eunsoo; Choi, Gyuchan; Kim, Hong-Taek; Youn, Heejung

    2015-09-01

    This paper proposes a new concept of a smart damper using the combination of magnetic friction and rubber springs. The magnet provides energy dissipation, and the rubber springs with precompression contribute to increasing the recentering capacity of the damper. To verify their performance, dynamic tests of magnet frictional dampers and precompressed rubber springs were conducted. For this purpose, hexahedron neodymium (NdFeB) magnets and polyurethane rubber cylinders were used. In the dynamic tests, the loading frequency was varied from 0.1 to 2.0 Hz. The magnets showed almost perfect rectangular behavior in the force-deformation curve, and the frictional coefficient of the magnets was estimated through averaging and regression. The rubber springs were tested with and without precompression. The rubber springs showed different loading path from the second cycle and residual deformation that was not recovered immediately. The rubber springs showed greater rigid force with increasing precompression. Finally, this paper discusses the combination of rigid-elastic behavior and friction to generate 'flag-shaped' behavior for a smart damper and suggests how to combine magnets and rubber springs to obtain flag-shaped behavior. The performance of the magnets and precompressed rubber springs was verified through analytical models.

  15. Nonlinear Viscoelastic Mechanics of Cross-linked Rubbers

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.; Leonov, Arkady I.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    The paper develops a general theory for finite rubber viscoelasticity, and specifies it in the form, convenient for solving problems important for rubber, tire and space industries. Based on the quasi-linear approach of non-equilibrium thermodynamics, a general nonlinear theory has been developed for arbitrary nonisothermal deformations of viscoelastic solids. In this theory, the constitutive equations are presented as the sum of known equilibrium (rubber elastic) and non-equilibrium (liquid polymer viscoelastic) terms. These equations are then simplified using several modeling arguments. Stability constraints for the proposed constitutive equations are also discussed. It is shown that only strong ellipticity criteria are applicable for assessing stability of the equations governing viscoelastic solids.

  16. Draft genome sequence of the rubber tree Hevea brasiliensis

    PubMed Central

    2013-01-01

    Background Hevea brasiliensis, a member of the Euphorbiaceae family, is the major commercial source of natural rubber (NR). NR is a latex polymer with high elasticity, flexibility, and resilience that has played a critical role in the world economy since 1876. Results Here, we report the draft genome sequence of H. brasiliensis. The assembly spans ~1.1 Gb of the estimated 2.15 Gb haploid genome. Overall, ~78% of the genome was identified as repetitive DNA. Gene prediction shows 68,955 gene models, of which 12.7% are unique to Hevea. Most of the key genes associated with rubber biosynthesis, rubberwood formation, disease resistance, and allergenicity have been identified. Conclusions The knowledge gained from this genome sequence will aid in the future development of high-yielding clones to keep up with the ever increasing need for natural rubber. PMID:23375136

  17. Recycling rubber products sensibly

    SciTech Connect

    Fesus, E.M.; Eggleton, R.W.

    1991-03-01

    This article examines processes for surface treating ground rubber from tires and other sources to enhance its ability to chemically bond with an uncured elastomer matrix during vulcanization. The topics discussed are environmental effects, processing and physical and chemical properties, mesh size, compounding, loading study, mineral fillers, and applications.

  18. Study on the Aging Behaviors of Rubber Materials in Tension and Compression Loads

    NASA Astrophysics Data System (ADS)

    Jiang, Can; Wang, Hongyu; Ma, Xiaobing

    Rubber materials are widely used in aviation, aerospace, shipbuilding, automobile and other military field. However, rubber materials are easy to aging, which largely restricts its using life. In working environment, due to the combined effect of heat and oxygen, vulcanized rubber will undergo degradation and crosslinking reaction which will cause elasticity decease and permanent deformation, so mostly rubber products are used under stress state. Due to the asymmetric structure and asymmetric stress distribution, mechanical stress may cause serious damage to molecular structure; therefore, this paper is aimed to analyze the aging behavior of rubber materials under tensile and compressive loadings, through analyzing experiment data, and adopting Gauss function to describe stress relaxation coefficient, to build an aging equation containing compression ratio parameter and aging time.

  19. Effect of adding rubber powder to poplar particles on composite properties.

    PubMed

    Xu, Min; Li, Jian

    2012-08-01

    The effect of adding rubber powder derived from waste tires to poplar wood particles on mechanical and water-resistant properties of particleboards was examined. Sixty panels were made with rubber contents of 0-40% at hot-pressing temperatures of 140-180 °C, methylene diphenyl diisocyanate resin contents of 2-6% and panel densities of 0.6 to 1 g cm(-3). Although the modulus of rupture (MOR), modulus of elasticity (MOE), internal bond (IB) strength were reduced by adding rubber powder, the thickness swelling (TS) was reduced by 7.3-61% when 10-40% rubber powder was added. Four regression equations (rubber content, pressing temperature, resin content and target panel density as functions of MOR, MOE, IB and TS) were developed and a nonlinear programing model was derived with operation research theory to obtain the most desirable panel properties under some production constraints. Copyright © 2012. Published by Elsevier Ltd.

  20. On cavitation and macroscopic behaviour of amorphous polymer-rubber blends.

    PubMed

    Belayachi, Naima; Benseddiq, Noureddine; Naït-Abdelaziz, Moussa; Hamdi, Adel

    2008-04-01

    The macroscopic behaviour of rubber-modified polymethyl methacrylate (PMMA) was investigated by taking into account the microdeformation mechanisms of rubber cavitation. The dependence of the macroscopic stress-strain behaviour of matrix deformation on the cavitation of rubber particles was discussed. A phenomenological elastic-viscoplastic model was used to model the behaviour of the matrix material, while the rubber particles were modelled with the hyperelasticity theory. A two-phase composite material with a periodic arrangement of reinforcing particles of a circular unit cell section was considered. Finite-element analysis was used to determine the local stresses and strains in the two-phase composite. In order to describe the cavitation of the rubber particles, a criterion of void nucleation is implemented in the finite-element (FE) code. A comparison of the numerically predicted response with experimental result indicates that the numerical homogenisation analysis gives satisfactory prediction results.

  1. On cavitation and macroscopic behaviour of amorphous polymer-rubber blends

    PubMed Central

    Belayachi, Naima; Benseddiq, Noureddine; Naït-Abdelaziz, Moussa; Hamdi, Adel

    2008-01-01

    The macroscopic behaviour of rubber-modified polymethyl methacrylate (PMMA) was investigated by taking into account the microdeformation mechanisms of rubber cavitation. The dependence of the macroscopic stress–strain behaviour of matrix deformation on the cavitation of rubber particles was discussed. A phenomenological elastic-viscoplastic model was used to model the behaviour of the matrix material, while the rubber particles were modelled with the hyperelasticity theory. A two-phase composite material with a periodic arrangement of reinforcing particles of a circular unit cell section was considered. Finite-element analysis was used to determine the local stresses and strains in the two-phase composite. In order to describe the cavitation of the rubber particles, a criterion of void nucleation is implemented in the finite-element (FE) code. A comparison of the numerically predicted response with experimental result indicates that the numerical homogenisation analysis gives satisfactory prediction results. PMID:27877983

  2. Thermomechanical analysis of Natural Rubber behaviour stressed at room temperature.

    NASA Astrophysics Data System (ADS)

    Caborgan, R.; Muracciole, J. M.; Wattrisse, B.; Chrysochoos, A.

    2010-06-01

    Owing to their high molecular mobility, stressed rubber chains can easily change their conformations and get orientated. This phenomena leads to so high reversible draw ratio that this behaviour is called rubber elasticity [1-3]. The analogy with ideal gases leads to an internal energy independent of elongation, the stress being attributed to a so-called configuration entropy. However, this analysis cannot take thermal expansion into account and moreover prohibits predicting standard thermo-elastic effect noticed at small elongations and the thermoelastic inversion effects [4]. This paper aims at : observing and quantifying dissipative and coupling effects associated with deformation energy, generated when Natural Rubber is stretched. re-examine the thermomechanical behaviour model of rubberlike materials, under the generalised standard material concept. From an experimental viewpoint, energy balance is created using infrared and quantitative imaging techniques. Digital Image Correlation (DIC) provides in-the-plane displacement fields and, after derivation, strain and strain-rate fields. We have used those techniques to evidence the thermoelastic inversion effect as shown on Figure 1 where different weights have been fixed to warmed specimen and we monitored the sample deformation while it recovers room temperature. But we have also used those techniques to perform energy balance : analysis of the mechanical equilibrium allows estimates of the stress pattern and computation of deformation energy rates under a plane stress hypothesis [5]. Infrared Thermography (IRT) gives the surface temperature of the sample. To estimate the distribution of heat sources, image processing with a local heat equation and a minimal set of approximation functions (image filtering) was used. The time courses of deformation energy and heat associated with cyclic process are plotted in

  3. On split Hopkinson pressure bar testing of rubbers

    NASA Astrophysics Data System (ADS)

    Harrigan, John

    2011-06-01

    Split Hopkinson pressure bar (SHPB) studies of rubber materials are difficult due to their ability to undergo large deformations at low levels of stress. Analytical, numerical and experimental investigations are reported. The tests were performed using polymer bars. A key stage in this is the experimental determination of the propagation coefficient. An analytical investigation of the experimental arrangements used to ascertain the propagation coefficient is reported. A finite element (FE) simulation of longitudinal stress waves in solid, circular, polymer bars is presented also. The viscoelastic material definition employed in the FE simulations is obtained by curve fitting Prony series expansions to the experimentally derived elastic modulus. In order to assess the accuracy of the experimental arrangement, an FE model of the full viscoelastic SHPB set-up is then used to simulate tests on hyper-elastic materials with specified properties. Finally, experimental data for rubber materials at strain rates of the order of 1000 s-1 are presented.

  4. Elastic proteins: biological roles and mechanical properties.

    PubMed Central

    Gosline, John; Lillie, Margo; Carrington, Emily; Guerette, Paul; Ortlepp, Christine; Savage, Ken

    2002-01-01

    The term 'elastic protein' applies to many structural proteins with diverse functions and mechanical properties so there is room for confusion about its meaning. Elastic implies the property of elasticity, or the ability to deform reversibly without loss of energy; so elastic proteins should have high resilience. Another meaning for elastic is 'stretchy', or the ability to be deformed to large strains with little force. Thus, elastic proteins should have low stiffness. The combination of high resilience, large strains and low stiffness is characteristic of rubber-like proteins (e.g. resilin and elastin) that function in the storage of elastic-strain energy. Other elastic proteins play very different roles and have very different properties. Collagen fibres provide exceptional energy storage capacity but are not very stretchy. Mussel byssus threads and spider dragline silks are also elastic proteins because, in spite of their considerable strength and stiffness, they are remarkably stretchy. The combination of strength and extensibility, together with low resilience, gives these materials an impressive resistance to fracture (i.e. toughness), a property that allows mussels to survive crashing waves and spiders to build exquisite aerial filters. Given this range of properties and functions, it is probable that elastic proteins will provide a wealth of chemical structures and elastic mechanisms that can be exploited in novel structural materials through biotechnology. PMID:11911769

  5. Crumb rubber feasibility report

    SciTech Connect

    1985-11-01

    The Cumberland County supply region generates approximately 58,000 tons of scrap tires each year, equivalent to 45,000 tons of rubber after processing. Approximately 8,000 tons per year are in concentrated locations and can be easily collected. The costs of collection for the remainder vary significantly. Given current markets, economically feasible processes (ambient technology) can reprocess approximately 65 to 75 percent of the 37,000 tons into a marketable product. A processing plant sized for this supply would process 120 tons per day, a viable plant by industry standards. The end uses for whole tires constitute a negligible market, aside from the retreader market. Crumbed rubber is the major development efforts, there are potentially large opportunities in North Carolina.

  6. 69 FR 61403 - Polychloroprene Rubber From Japan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2004-10-18

    ... COMMISSION Polychloroprene Rubber From Japan AGENCY: United States International Trade Commission. ACTION... on polychloroprene rubber from Japan. SUMMARY: The Commission hereby gives notice that it will...)) to determine whether revocation of the antidumping finding on polychloroprene rubber from Japan...

  7. Shape memory rubber bands & supramolecular ionic copolymers

    NASA Astrophysics Data System (ADS)

    Brostowitz, Nicole

    The primary focus of this dissertation is to understand the thermo-mechanical properties that govern shape memory in rubber blends. An ideal shape memory polymer (SMP) has a large entropic component that drives shape recovery with a distinct transition mechanism to control the recovery conditions. Polyisoprene rubber is highly elastic and shows shape memory behavior through strain induced crystallization above its glass transition temperature. However, this transition temperature is below 0°C and not suitable for most applications. Shape memory blends can tailor the transition temperature through selection of the switching phase. Most SMP blends require complicated synthesis routes or intensive compounding which would be inhibitive for production. A facile method was developed for fabrication of a robust shape memory polymer by swelling cross-linked natural rubber with stearic acid. Thermal, microscopic studies showed that stearic acid formed a percolated network of crystalline platelets within the natural rubber. Further investigation of the material interactions was carried out with a low molecular weight polyisoprene analog, squalene, and stearic acid gel. Tensile tests on the rubber band demonstrated the thermo-mechanical effect of swelling with stearic acid. Low hysteresis was observed under cyclic loading which indicated viability for the stearic acid swollen rubber band as an SMP. The microscopic crystals and the cross-linked rubber produce a temporary network and a permanent network, respectively. These two networks allow thermal shape memory cycling with deformation and recovery above the melting point of stearic acidand fixation below that point. Under manual, strain-controlled tensile deformation, the shape memory rubber bands exhibited fixity and recovery of 100% +/- 10%. The recovery properties of the SMP were studied under various loading conditions and a model was fit to describe the potential recovery with relation to the fixation. An additional

  8. A numerical investigation on mechanical property improvement of styrene butadine rubber by static straight blade indentation

    NASA Astrophysics Data System (ADS)

    Setiyana, B.; Ismail, R.; Jamari, J.; Schipper, D. J.

    2016-04-01

    Mechanical property improvement of rubber is widely carried out by adding carbon black or silica as a filler in rubber. In general, this improvement aims on the increase of stiffness and abrasion resistance. By means of the static straight blade indentation technique, this paper studies the mechanical properties of Unfilled Styrene Butadiene Rubber (SBR-0) and Filled Styrene Butadiene Rubber that is compounded with carbon black (SBR-25). The numerical method applied was Finite Element Analysis (FEA) in which the rubber was modeled as a hyper-elastic material and indented by a blade indenter with various wedge angles i.e. 30, 45 and 60 degrees. At the same depth of indentation, the results showed that there was an increase in both rubber stiffness and maximum stress if the rubber was compounded. However, it is found that the rubber stiffness showed a regular slight increase, while the maximum stress experienced an irregularly significant increase. Especially for the 30 degree wedge angle, the maximum stress extremely increased at a certain depth of indentation.

  9. QENS investigation of filled rubbers

    NASA Astrophysics Data System (ADS)

    Triolo, A.; Lo Celso, F.; Negroni, F.; Arrighi, V.; Qian, H.; Lechner, R. E.; Desmedt, A.; Pieper, J.; Frick, B.; Triolo, R.

    The polymer segmental dynamics is investigated in a series of silica-filled rubbers. The presence of inert fillers in polymers greatly affects the mechanical and physical performance of the final materials. For example, silica has been proposed as a reinforcing agent of elastomers in tire production. Results from quasielastic neutron scattering and Dynamic Mechanical Thermal Analysis (DMTA) measurements are presented on styrene-ran-butadiene rubber filled with silica. A clear indication is obtained of the existence of a bimodal dynamics, which can be rationalized in terms of the relaxation of bulk rubber and the much slower relaxation of the rubber adsorbed on the filler surface.

  10. Oscillatory instability in slow crack propagation in rubber under large deformation

    NASA Astrophysics Data System (ADS)

    Endo, Daiki; Sato, Katsuhiko; Hayakawa, Yoshinori

    2012-07-01

    We performed experiments to investigate slow fracture in thin rubber films under uniaxial tension using high-viscosity oils. In this system we observed an oscillating instability in slowly propagating cracks for small applied strains. The transition between oscillatory and straight patterns occurred near the characteristic strain at which rubber exhibits a nonlinear stress-strain relation. This suggests that nonlinear elasticity plays an important role in the formation of the observed pattern. This was confirmed by numerical simulation for neo-Hookean and linear elasticity models.

  11. Modeling the high-frequency complex modulus of silicone rubber using standing Lamb waves and an inverse finite element method.

    PubMed

    Jonsson, Ulf; Lindahl, Olof; Andersson, Britt

    2014-12-01

    To gain an understanding of the high-frequency elastic properties of silicone rubber, a finite element model of a cylindrical piezoelectric element, in contact with a silicone rubber disk, was constructed. The frequency-dependent elastic modulus of the silicone rubber was modeled by a fourparameter fractional derivative viscoelastic model in the 100 to 250 kHz frequency range. The calculations were carried out in the range of the first radial resonance frequency of the sensor. At the resonance, the hyperelastic effect of the silicone rubber was modeled by a hyperelastic compensating function. The calculated response was matched to the measured response by using the transitional peaks in the impedance spectrum that originates from the switching of standing Lamb wave modes in the silicone rubber. To validate the results, the impedance responses of three 5-mm-thick silicone rubber disks, with different radial lengths, were measured. The calculated and measured transitional frequencies have been compared in detail. The comparison showed very good agreement, with average relative differences of 0.7%, 0.6%, and 0.7% for the silicone rubber samples with radial lengths of 38.0, 21.4, and 11.0 mm, respectively. The average complex elastic moduli of the samples were (0.97 + 0.009i) GPa at 100 kHz and (0.97 + 0.005i) GPa at 250 kHz.

  12. The relation of bifurations in a biaxially loaded rubber sheet and the constitutive modeling of rubber

    SciTech Connect

    Haslach, H.W. Jr.

    1995-12-31

    Treloar`s experiments on a thin rubber sheet under in-plane biaxial tensile loads produced asymmetric as well as equal in-plane stretches. At two loads, the two stretches differed by 7.5% and 12.4% respectively. At an intermediate load, there was a stable equal stretches state. Treloar later said that relaxation was negligible since the results were reproducible and independent of the order of force application. Specimen anisotropy and lack of strain uniformity were also eliminated as a cause. Kearsely first pointed out the significance of these experiments to studies of elastic stability of rubber models. The predictability of this result is a test for the validity of the various constitutive models for rubber. First, Ogden`s plane stress stability and bifurcation criteria are reviewed. A coordinate transformation of a generalized energy function for the biaxially loaded sheet makes it possible to describe the Mooney-Rivlin bifurcation as a cusp catastrophe and to verify that the neo-Hookean and other classical models have no bifurcations. The Mooney-Rivlin model predicts unstable equal stretch states above the bifurcation value, but Treloar`s experiments contradict this. These models cannot, then, be the correct constitutive models for rubber. Preliminary ideas on the conditions that an isothermal constitutive model must satisfy to reproduce Treloar`s experiments are proposed. A thermoelastic generalization of the Mooney-Rivlin model, developed with N. N. Zeng, predicts that raising the temperature slightly lowers the value of the bifurcation load. Nonequilibrium processes such as relaxation or sinusoidal loading are modeled using a generalized energy function in place of classical viscoelastic constitutive relations.

  13. Rubber composition compatible with hydrazine

    NASA Technical Reports Server (NTRS)

    Repar, J.

    1973-01-01

    Formulation improves compatibility of butyl rubbers with hydrazine while reducing permeation to low levels necessary for prolonged storage in space. This is accomplished by replacing carbon-black filler with inert materials such as hydrated silica or clay. Pressure increases suggest that hydrazine is decomposed only slightly by new type of rubber.

  14. Guayule rubber for South Africa

    SciTech Connect

    Not Available

    1981-06-17

    It is reported that Agtec together with South Africa's Council for Scientific and Industrial Research, is investigating the possibility of large-scale production of guayule. The rubber-yielding shrub grows in semi-arid climates and may be the source of a $35-million natural rubber industry in South Africa.

  15. NN-adaptive output feedback tracking control for a class of discrete-time non-affine systems with a dynamic compensator

    NASA Astrophysics Data System (ADS)

    Zhang, Lijun; Zhao, Jiemei; Qi, Xue; Jia, Heming

    2013-06-01

    The problem of tracking control for a class of uncertain non-affine discrete-time nonlinear systems with internal dynamics is addressed. The fixed point theorem is first employed to ensure the control problem in question is solvable and well-defined. Based on it, an adaptive output feedback control scheme based on neural network (NN) is presented. The proposed control algorithm consists of two parts: a dynamic compensator is introduced to stabilise the linear portion of the tracking error system; a single-hidden-layer neural network (SHL NN) approximation mechanism is introduced to cancel the uncertainties resulting from the non-affine function, where the recursive weight update rules of NN estimation are derived from the discrete-time version of Lyapunov control theory. Ultimate boundedness of the error signals is shown through Lyapunov's direct method and the discrete-time version of input-to-state stability (ISS) theory. Finally, a model of automatical underwater vehicle (AUV) is considered to show the effectiveness of the proposed control scheme.

  16. Adaptive robust control of a class of non-affine variable-speed variable-pitch wind turbines with unmodeled dynamics.

    PubMed

    Bagheri, Pedram; Sun, Qiao

    2016-07-01

    In this paper, a novel synthesis of Nussbaum-type functions, and an adaptive radial-basis function neural network is proposed to design controllers for variable-speed, variable-pitch wind turbines. Dynamic equations of the wind turbine are highly nonlinear, uncertain, and affected by unknown disturbance sources. Furthermore, the dynamic equations are non-affine with respect to the pitch angle, which is a control input. To address these problems, a Nussbaum-type function, along with a dynamic control law are adopted to resolve the non-affine nature of the equations. Moreover, an adaptive radial-basis function neural network is designed to approximate non-parametric uncertainties. Further, the closed-loop system is made robust to unknown disturbance sources, where no prior knowledge of disturbance bound is assumed in advance. Finally, the Lyapunov stability analysis is conducted to show the stability of the entire closed-loop system. In order to verify analytical results, a simulation is presented and the results are compared to both a PI and an existing adaptive controllers.

  17. Saga of synthetic rubber

    SciTech Connect

    Solo, R.A.

    1980-04-01

    The proposal to establish an Energy Mobilization Board and a synthetic fuels industry is reminiscent of World War II efforts to produce synthetic rubber. To avoid the mistakes made in the earlier effort, Mr. Solo suggests that the synthetic-fuel program should (1) use a more-successful technological development project as a model; (2) commit public funding and not rely on profit-oriented private enterprise; and (3) avoid entrusting social planning to single-purpose entities that have not been sensitive to social values. (DCK)

  18. Down-regulation of small rubber particle protein expression affects integrity of rubber particles and rubber content in Taraxacum brevicorniculatum.

    PubMed

    Hillebrand, Andrea; Post, Janina J; Wurbs, David; Wahler, Daniela; Lenders, Malte; Krzyzanek, Vladislav; Prüfer, Dirk; Gronover, Christian Schulze

    2012-01-01

    The biosynthesis of rubber is thought to take place on the surface of rubber particles in laticifers, highly specialized cells that are present in more than 40 plant families. The small rubber particle protein (SRPP) has been supposed to be involved in rubber biosynthesis, and recently five SRPPs (TbSRPP1-5) were identified in the rubber-producing dandelion species Taraxacum brevicorniculatum. Here, we demonstrate by immunogold labeling that TbSRPPs are localized to rubber particles, and that rubber particles mainly consist of TbSRPP3, 4 and 5 as shown by high-resolution two-dimensional gel electrophoresis and mass spectrometric analysis. We also carried out an RNA-interference approach in transgenic plants to address the function of TbSRPPs in rubber biosynthesis as well as rubber particle morphology and stability. TbSRPP-RNAi transgenic T. brevicorniculatum plants showed a 40-50% reduction in the dry rubber content, but neither the rubber weight average molecular mass nor the polydispersity of the rubber were affected. Although no phenotypical differences to wild-type particles could be observed in vivo, rubber particles from the TbSRPP-RNAi transgenic lines were less stable and tend to rapidly aggregate in expelling latex after wounding of laticifers. Our results prove that TbSRPPs are very crucial for rubber production in T. brevicorniculatum, probably by contributing to a most favourable and stable rubber particle architecture for efficient rubber biosynthesis and eventually storage.

  19. Down-Regulation of Small Rubber Particle Protein Expression Affects Integrity of Rubber Particles and Rubber Content in Taraxacum brevicorniculatum

    PubMed Central

    Hillebrand, Andrea; Post, Janina J.; Wurbs, David; Wahler, Daniela; Lenders, Malte; Krzyzanek, Vladislav; Prüfer, Dirk; Gronover, Christian Schulze

    2012-01-01

    The biosynthesis of rubber is thought to take place on the surface of rubber particles in laticifers, highly specialized cells that are present in more than 40 plant families. The small rubber particle protein (SRPP) has been supposed to be involved in rubber biosynthesis, and recently five SRPPs (TbSRPP1–5) were identified in the rubber-producing dandelion species Taraxacum brevicorniculatum. Here, we demonstrate by immunogold labeling that TbSRPPs are localized to rubber particles, and that rubber particles mainly consist of TbSRPP3, 4 and 5 as shown by high-resolution two-dimensional gel electrophoresis and mass spectrometric analysis. We also carried out an RNA-interference approach in transgenic plants to address the function of TbSRPPs in rubber biosynthesis as well as rubber particle morphology and stability. TbSRPP-RNAi transgenic T. brevicorniculatum plants showed a 40–50% reduction in the dry rubber content, but neither the rubber weight average molecular mass nor the polydispersity of the rubber were affected. Although no phenotypical differences to wild-type particles could be observed in vivo, rubber particles from the TbSRPP-RNAi transgenic lines were less stable and tend to rapidly aggregate in expelling latex after wounding of laticifers. Our results prove that TbSRPPs are very crucial for rubber production in T. brevicorniculatum, probably by contributing to a most favourable and stable rubber particle architecture for efficient rubber biosynthesis and eventually storage. PMID:22911861

  20. The effect of carbon black loading and structure on tensile property of natural rubber composite

    NASA Astrophysics Data System (ADS)

    Savetlana, S.; Zulhendri; Sukmana, I.; Saputra, F. A.

    2017-07-01

    Natural rubber composite has been continuously developed due to its advantages such as a good combination of strength and damping property. Most of carbon black (CB)/Natural Rubber (NR) composite were used as material in tyre industry. The addition of CB in natural rubber is very important to enhance the strength of natural rubber. The particle loading and different structure of CB can affect the composite strength. The effects of CB particle loading of 20, 25 and 30 wt% and the effects of CB structures of N220, N330, N550 and N660 series on tensile property of composite were investigated. The result shows that the tensile strength and elastic modulus of natural rubber/CB composite was higher than pure natural rubber. From SEM observation the agglomeration of CB aggregate increases with particle loading. It leads to decrease of tensile strength of composite as more particle was added. High structure of CB particle i.e. N220 resulted in highest tensile stress. In fact, composite reinforced by N660 CB particle shown a comparable tensile strength and elastic modulus with N220 CB particle. SEM observation shows that agglomeration of CB aggregates of N330 and N550 results in lower stress of associate NR/CB composite.

  1. Robotically enhanced rubber hand illusion.

    PubMed

    Arata, Jumpei; Hattori, Masashi; Ichikawa, Shohei; Sakaguchi, Masamichi

    2014-01-01

    The rubber hand illusion is a well-known multisensory illusion. In brief, watching a rubber hand being stroked by a paintbrush while one's own unseen hand is synchronously stroked causes the rubber hand to be attributed to one's own body and to "feel like it's my hand." The rubber hand illusion is thought to be triggered by the synchronized tactile stimulation of both the subject's hand and the fake hand. To extend the conventional rubber hand illusion, we introduce robotic technology in the form of a master-slave telemanipulator. The developed one degree-of-freedom master-slave system consists of an exoskeleton master equipped with an optical encoder that is worn on the subject's index finger and a motor-actuated index finger on the rubber hand, which allows the subject to perform unilateral telemanipulation. The moving rubber hand illusion has been studied by several researchers in the past with mechanically connected rigs between the subject's body and the fake limb. The robotic instruments let us investigate the moving rubber hand illusion with less constraints, thus behaving closer to the classic rubber hand illusion. In addition, the temporal delay between the body and the fake limb can be precisely manipulated. The experimental results revealed that the robotic instruments significantly enhance the rubber hand illusion. The time delay is significantly correlated with the effect of the multisensory illusion, and the effect significantly decreased at time delays over 100 ms. These findings can potentially contribute to the investigations of neural mechanisms in the field of neuroscience and of master-slave systems in the field of robotics.

  2. Tear rotation in reinforced natural rubber

    NASA Astrophysics Data System (ADS)

    Sotta, Paul; Gabrielle, Brice; Vieyres, Arnaud; Vanel, Loic; Long, Didier; Sanseau, Olivier; Albouy, Pierre-Antoine

    2012-02-01

    We analyze the impact of tear rotation, that is, an abrupt instability in the direction of propagation of a notch, on the tensile strength of natural rubber elastomers reinforced with carbon black or precipitated silica, in single edge notched samples stretched at constant velocity. As a consequence of tear rotation, the energy at break increases by a factor of 6 to 8 in some cases. We show how the tensile strength of a test sample is related to the presence of tear rotations and analyze semi-quantitatively this increase in tensile strength, based on energetic arguments, without entering into a detailed description of the elastic strain field in the vicinity of the tear tip. The proposed interpretation is based on the idea that tear rotations creates a macroscopic tip radius, which relaxes the local strain (or stress) at the tear tip. Materials reinforced with carbon black or precipitated silica aggregates show similar behavior. The relation to strain-induced crystallization is discussed.

  3. Chlorinolysis reclaims rubber of waste tires

    NASA Technical Reports Server (NTRS)

    Dufresne, E. R.; Tervet, J. H.; Hull, G. G.

    1981-01-01

    Process reclaims rubber and reduces sulfur content by using chlorine gas to oxidize sulfur bonds in preference to other bonds. Rubber does not have poor hysteresis and abrasion resistance like conventionally reclaimed rubber and is suitable for premium radial tires. Chlorinated rubber is less susceptible to swelling by oils and may be used as paint ingredient.

  4. Chlorinolysis reclaims rubber of waste tires

    NASA Technical Reports Server (NTRS)

    Dufresne, E. R.; Tervet, J. H.; Hull, G. G.

    1981-01-01

    Process reclaims rubber and reduces sulfur content by using chlorine gas to oxidize sulfur bonds in preference to other bonds. Rubber does not have poor hysteresis and abrasion resistance like conventionally reclaimed rubber and is suitable for premium radial tires. Chlorinated rubber is less susceptible to swelling by oils and may be used as paint ingredient.

  5. Recycling, production and use of reprocessed rubbers

    SciTech Connect

    Klingensmith, B. )

    1991-03-01

    This article examines the various methods used to produce recycled rubber and to compare their characteristics and application. The topics discussed include reclaiming by chemical digestion, devulcanization by the severing of sulfur bonds, ambient temperature and cryogenically ground rubber, processing and mixing of ground rubber, and properties of reclaimed rubbers by reclamation method.

  6. Investigating Low Temperature Properties of Rubber Seals - 13020

    SciTech Connect

    Jaunich, M.; Wolff, D.; Stark, W.

    2013-07-01

    To achieve the required tightness levels of containers for low and intermediate level radioactive wastes rubbers are widely applied as main sealing materials. The save encapsulation of the radioactive container contents has to be guaranteed according to legislation and appropriate guidelines for long storage periods as well as down to temperatures of -40 deg. C during transportation. Therefore the understanding of failure mechanisms that lead to leakage at low temperatures is of high importance. It is known that the material properties of rubbers are strongly influenced by temperature. At low temperatures this is caused by the rubber-glass transition (abbr. glass transition). During continuous cooling the material changes from rubber-like entropy-elastic to stiff energy-elastic behaviour, that allows nearly no strain or retraction. Therefore, rubbers are normally used above their glass transition but the minimum working temperature limit is not defined precisely, what can cause problems during application. The temperature range where full functionality is possible is strongly dependent on the application conditions and the material. For this investigation mainly ethylene propylene diene (EPDM) and fluorocarbon rubbers (FKM) were selected as they are often used for radioactive waste containers. Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) are typically used for the determination of the temperature range of the glass transition process. The standardized compression set measurement according to ISO 815 is common for investigation of rubber sealing materials as the test simulates the seal behaviour after release. To reduce the test time of the standard tests a faster technique giving the same information was developed. Additionally, the breakdown temperature of the sealing function of complete O-ring seals is measured in a component test setup to compare it with the results of the other tests. The experimental setup is capable of

  7. In vitro biocompatibility of EPM and EPDM rubbers.

    PubMed

    Mast, F; Hoschtitzky, J A; Van Blitterswijk, C A; Huysmans, H A

    1997-01-01

    The in vitro toxicity of two EPDM rubbers (K 778 and K 4802) and one EPM rubber (K 740) was tested using human fibroblasts. The modulus of elasticity of each rubber was varied by exposure to different amounts of electron-beam radiation (0, 5 and 10 Mrad). The short-term in vitro toxicity was tested by culturing cells on polymer films. The long-term effect of ageing was simulated by growing fibroblasts in nutrient media prepared from extracts of heat-exposed materials. Cell cultures were studied both quantitatively and (ultra) structurally. Growth curves obtained in the toxicity test did not differ significantly from control values at any day of observation, and also showed that electron-beam radiation did not alter the biocompatibility. The same results were found for all but one material in the artificial ageing test. The number of cells in the K4802/10 Mrad extraction medium was decreased. Ultrastructurally no gross deviations from normal morphology were observed, either in the direct contact test or in the artificial ageing test. The most characteristic feature was a somewhat dilated endoplasmic reticulum. In summary, the in vitro biocompatibility of EPDM-rubbers as observed in this study is satisfactory and motivates further investigation of their biocompatibility in animal experiments.

  8. Linear motion feed through with thin wall rubber sealing element

    NASA Astrophysics Data System (ADS)

    Mikhailov, V. P.; Deulin, E. A.

    2017-07-01

    The patented linear motion feedthrough is based on elastic thin rubber walls usage being reinforced with analeptic string fixed in the middle part of the walls. The pneumatic or hydro actuators create linear movement of stock. The length of this movement is two times more the rubber wall length. This flexible wall is a sealing element of feedthrough. The main advantage of device is negligible resistance force that is less then mentioned one in sealing bellows that leads to positioning error decreasing. Nevertheless, the thin wall rubber sealing element (TRE) of the feedthrough is the main unreliable element that was the reason of this element longevity research. The theory and experimental results help to create equation for TRE longevity calculation under vacuum or extra high pressure difference action. The equation was used for TRE longevity determination for hydraulic or vacuum equipment realization also as it helps for gas flow being leaking through the cracks in thin walls of rubber sealing element of linear motion feedthrough calculation.

  9. Stress-Strain Relation and strain-Induced Crystallization in Rubber

    SciTech Connect

    Toki,S.

    2006-01-01

    Rubber is composed of flexible chains and network points. Theory of rubber elasticity succeeds to elucidate stress-strain relation of rubber using the inverse Langevin equation of entropy modulus. However, actual rubber is much different from ideal networks composed of ideal rubber chains. Network points may not distribute homogeneously and the molecular weight between two network points may show wide distribution. Flexible chains show strain-induced crystallization. Recent synchrotron X-ray and simultaneous stress-strain measurements reveal that strain-induced crystallization reduces the stress by increasing the length of molecules along the stretching direction. Also, strain-induced crystals are created not at the middle of the network points, but at the close location to the network points. The hybrid structure of strain-induced crystallites and network points may be stronger than network points alone. Therefore, strain induced crystallization may increase the tensile strength of rubber by two mechanisms, they are, increase of elongation at break and reinforcement of network points. Natural rubber has biotic network points in nature. After vulcanization, the biotic network may contribute the superior toughness of NR, comparing to IR. Carbon filled NR also shows strain induced crystallization. In order to acquire high tensile strength, molecules should have higher flexibility to perform strain induced crystallization by selecting a kind of carbon blacks, an accelerator and a curing condition.

  10. Correlating local structure with inhomogeneous elastic deformation in a metallic glass

    NASA Astrophysics Data System (ADS)

    Ding, J.; Cheng, Y. Q.; Ma, E.

    2012-09-01

    The elastic response of metallic glasses (MGs) is inhomogeneous, due to the wide variation of local structural arrangements. Here, we present molecular dynamics simulations on a one-million-atoms sample of a Cu64Zr36 model MG, correlating the atomic strain and non-affine displacement with short-range order. Cu atoms in full icosahedra experience less atomic relaxation and behave stiffer, while the rest of Cu atoms contribute more to anelasticity on the timescale of simulation.

  11. Characterization of Hexsyn, a polyolefin rubber.

    PubMed

    McMillin, C R

    1987-07-01

    Hexsyn is the Goodyear Tire and Rubber Company tradename for a polyolefin rubber synthesized from 1-hexene with 3-5% methylhexadiene as the source of residual double bonds for vulcanization. Under license from Goodyear, this same polymer has been manufactured by Lord Corporation for the hinge portion of finger joint prostheses using the tradename Bion. This rubber is currently licensed to the University of Akron and to the Cleveland Clinic Foundation for use in biomedical applications, and is being used primarily for biocompatible and highly fatigue resistant rubber components in ventricular assist and artificial heart systems. Results are presented from the physical, mechanical, and biological characterization of Hexsyn. Procedures are described for the synthesis, compounding, and post-molding extraction for Hexsyn. The physical testing of Hexsyn reported includes determinations of its density at 23 and 37 degrees C, initial hardness and hardness after aging in oxygen, blood, pseudoextracellular fluid and polyethylene glycol 600, typical molecular weights determined by gel permeation chromatography/low angle laser light scattering and intrinsic viscosity, thermal analyses by differential scanning calorimetry of Hexsyn gum, and vulcanized Hexsyn after exposure to blood and blood/fatigue conditions. Also reported are results of differential thermal analyses, thermomechanical analyses of virgin and annealed samples, and thermogravimetric analyses conducted in helium and in air. Dynamic mechanical analyses of Hexsyn include Clash-Berg and Rheovibron tests. Swelling was conducted to determine lot-to-lot and sheet-to-sheet variation for quality control and also a number of solvents were used so that the polymer-solvent interaction parameters could be determined. The permeability of Hexsyn to water, water vapor, and a variety of gases is reported. The permeability by contact angle measurements, refractive index, residual solvent analyses, migration of blood components

  12. Functional buckling behavior of silicone rubber shells for biomedical use.

    PubMed

    van der Houwen, E B; Kuiper, L H; Burgerhof, J G M; van der Laan, B F A M; Verkerke, G J

    2013-12-01

    The use of soft elastic biomaterials in medical devices enables substantial function integration. The consequent increased simplification in design can improve reliability at a lower cost in comparison to traditional (hard) biomaterials. Functional bi-stable buckling is one of the many new mechanisms made possible by soft materials. The buckling behavior of shells, however, is typically described from a structural failure point of view: the collapse of arches or rupture of steam vessels, for example. There is little or no literature about the functional elastic buckling of small-sized silicone rubber shells, and it is unknown whether or not theory can predict their behavior. Is functional buckling possible within the scale, material and pressure normally associated with physiological applications? An automatic speech valve is used as an example application. Silicone rubber spherical shells (diameter 30mm) with hinged and double-hinged boundaries were subjected to air pressure loading. Twelve different geometrical configurations were tested for buckling and reverse buckling pressures. Data were compared with the theory. Buckling pressure increases linearly with shell thickness and shell height. Reverse buckling shows these same relations, with pressures always below normal buckling pressure. Secondary hinges change normal/reverse buckling pressure ratios and promote symmetrical buckling. All tested configurations buckled within or closely around physiological pressures. Functional bi-stable buckling of silicone rubber shells is possible with adjustable properties in the physiological pressure range. Results can be predicted using the proposed relations and equations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Microstructure of Purified Rubber Particles.

    PubMed

    Wood; Cornish

    2000-05-01

    Purified rubber particles from Hevea brasiliensis (Brazilian rubber tree), Parthenium argentatum (guayule), Ficus elastica (Indian rubber tree), and Euphorbia lactiflua were examined and compared using conventional scanning electron microscopy (SEM), field-emission SEM, cryo-SEM, and transmission electron microscopy (TEM). Rubber particles of all four species were spherical; they varied in size and had a uniform homogeneous material, the rubber core, surrounded by a contiguous monolayer (half-unit) membrane. Frozen-hydrated and/or untreated particles from H. brasiliensis and P. argentatum deformed and fused readily, whereas those from F. elastica and E. lactiflua retained their spherical shapes. These results indicate that the surface components of the H. brasiliensis and P. argentatum particles are more fluid than those of F. elastica or E. lactiflua. When fixed in aldehyde, F. elastica particles retained their spherical exterior shapes but had hollow centers, whereas H. brasiliensis and P. argentatum particles completely collapsed. In aldehyde-osmium tetroxide-fixed material, the rubber core of F. elastica was poorly preserved in some particles in which only a small amount of the rubber core remained adhering to the monolayer membrane, leaving a hollow center. Euphorbia lactiflua particles were well preserved in terms of retaining the rubber core; however, the membrane was not as easily discernible as it was in the other three species. Both H. brasiliensis and P. argentatum were well preserved following fixation; their cores remained filled with rubber, and their monolayer membranes were defined. The addition of potassium permanganate to the fixation-staining regime resulted in higher-contrast micrographs and more well defined monolayer membranes.

  14. Styrene-butadiene rubber/halloysite nanotubes composites modified by epoxidized natural rubber.

    PubMed

    Jia, Zhixin; Luo, Yuanfang; Yang, Shuyan; Du, Mingliang; Guo, Baochun; Jia, Demin

    2011-12-01

    The reinforcement effects of halloysite nanotubes on styrene-butadiene rubber and the modification effect of epoxidized natural rubber on styrene-butadiene rubber/halloysite nanotubes composites were studied. The structure, morphology and properties of styrene-butadiene rubber/halloysite nanotubes composites before and after the incorporation of epoxidized natural rubber were investigated. The results indicated that epoxidized natural rubber can promote the dispersion and orientation of halloysite nanotubes in styrene-butadiene rubber matrix at nanoscale and strengthen interfacial combination between halloysite nanotubes and styrene-butadiene rubber by the formation of covalent bonds and hydrogen bonds between epoxidized natural rubber and halloysite nanotubes. Consequently epoxidized natural rubber can improve the mechanical properties of the vulcanizates of styrene-butadiene rubber/halloysite nanotubes composites. Besides epoxidized natural rubber can decrease the rolling resistance of the vulcanizates and increase the wet grip property of the vulcanizates.

  15. 'Rubber Duck' on Ceres

    NASA Image and Video Library

    2017-10-12

    This image from NASA's Dawn spacecraft shows a group of craters, left of center, that resembles a rubber duck. Halki Crater, the "head," is 12 miles (20 kilometers) in diameter, while Telepinu Crater, the "body," is 19 miles (31 kilometers) across. They can be found in the global map of Ceres' names. The "beak" crater is unnamed. Halki and Telepinu have both been recently added to the list of official names for Ceres' geological features. They are both named after Hittite (Asia Minor) deities: the goddess of grain and the god of fertility and vegetation, respectively. Dawn acquired this picture on August 20, 2015, from its high-altitude mapping orbit at about 915 miles (1,470 kilometers) above the surface. The center coordinates of this image are 26 degrees north latitude, 339 degrees east longitude. https://photojournal.jpl.nasa.gov/catalog/PIA21909

  16. Rubber stopper remover

    DOEpatents

    Stitt, Robert R.

    1994-01-01

    A device for removing a rubber stopper from a test tube is mountable to an upright wall, has a generally horizontal splash guard, and a lower plate spaced parallel to and below the splash guard. A slot in the lower plate has spaced-apart opposing edges that converge towards each other from the plate outer edge to a narrowed portion, the opposing edges shaped to make engagement between the bottom of the stopper flange and the top edge of the test tube to wedge therebetween and to grasp the stopper in the slot narrowed portion to hold the stopper as the test tube is manipulated downwardly and pulled from the stopper. The opposing edges extend inwardly to adjoin an opening having a diameter significantly larger than that of the stopper flange.

  17. Identification of a Taraxacum brevicorniculatum rubber elongation factor protein that is localized on rubber particles and promotes rubber biosynthesis.

    PubMed

    Laibach, Natalie; Hillebrand, Andrea; Twyman, Richard M; Prüfer, Dirk; Schulze Gronover, Christian

    2015-05-01

    Two protein families required for rubber biosynthesis in Taraxacum brevicorniculatum have recently been characterized, namely the cis-prenyltransferases (TbCPTs) and the small rubber particle proteins (TbSRPPs). The latter were shown to be the most abundant proteins on rubber particles, where rubber biosynthesis takes place. Here we identified a protein designated T. brevicorniculatum rubber elongation factor (TbREF) by using mass spectrometry to analyze rubber particle proteins. TbREF is homologous to the TbSRPPs but has a molecular mass that is atypical for the family. The promoter was shown to be active in laticifers, and the protein itself was localized on the rubber particle surface. In TbREF-silenced plants generated by RNA interference, the rubber content was significantly reduced, correlating with lower TbCPT protein levels and less TbCPT activity in the latex. However, the molecular mass of the rubber was not affected by TbREF silencing. The colloidal stability of rubber particles isolated from TbREF-silenced plants was also unchanged. This was not surprising because TbREF depletion did not affect the abundance of TbSRPPs, which are required for rubber particle stability. Our findings suggest that TbREF is an important component of the rubber biosynthesis machinery in T. brevicorniculatum, and may play a role in rubber particle biogenesis and influence rubber production.

  18. A three-level non-deterministic modeling methodology for the NVH behavior of rubber connections

    NASA Astrophysics Data System (ADS)

    Stenti, A.; Moens, D.; Sas, P.; Desmet, W.

    2010-03-01

    Complex built-up structures such as vehicles have a variety of joint types, such as spot-welds, bolted joints, rubber joints, etc. Rubber joints highly contribute to the nonlinear level of the structure and are a major source of uncertainties and variability. In the general framework of developing engineering tools for virtual prototyping and product refinement, the modeling of the NVH behavior of rubber joints involve the computational burden of including a detailed nonlinear model of the joint and the uncertainties and variability typical of that joint in a full-scale system model. However, in an engineering design phase the knowledge on the joint rubber material properties is typically poor, and the working conditions a rubber joint will experience are generally not known in detail. This lack of knowledge often do not justify the computational burden and the modeling effort of including detailed nonlinear models of the joint in a full-scale system model. Driven by these issues a non-deterministic numerical methodology based on a three-level modeling approach is being developed. The methodology aims at evaluating directly in the frequency domain the sensitivity of the NVH behavior of a full-scale system model to the rubber joint material properties when nonlinear visco-elastic rubber material behavior is considered. Rather than including directly in the model a representation of the rubber nonlinear visco-elastic behavior, the methodology proposes to model the material nonlinear visco-elastic behavior by using a linear visco-elastic material model defined in an interval sense, from which the scatter on the full-scale system NVH response is evaluated. Furthermore the development of a multi-level solution scheme allows to reduce the computational burden introduced by the non-deterministic approach by allowing the definition of an equivalent linear interval parametric rubber joint model, ready to be assembled in a full-scale system model at a reasonable

  19. Silicone-Rubber Stitching Seal

    NASA Technical Reports Server (NTRS)

    Wang, D. S.

    1985-01-01

    Fabric products protected from raveling by coating threads and filling stitching holes with silicone rubber. Uncored silicone rubber applied to stitching lines with air-pressurized sealant gun. Next, plastic release film placed on coated side, and blanket flipped over so release film lies underneath. Blanket then bagged and adhesive cured under partial vacuum of about 3.5 psi or under pressure. Applications include balloons, parachutes, ultralight aircraft, sails, rescue harnesses, tents, or other fabric products highly stressed in use.

  20. Wear of steel by rubber

    NASA Technical Reports Server (NTRS)

    Gent, A. N.; Pulford, C. T. R.

    1978-01-01

    Wear of a steel blade used as a scraper to abrade rubber surfaces has been found to take place much more rapidly on a cis-polyisoprene (natural rubber) surface than on a cis-polybutadiene surface, and much more rapidly in an inert atmosphere than in air. These observations are attributed to the direct attack upon steel of free-radical species generated by mechanical rupture of elastomer molecules during abrasion.

  1. Wear of steel by rubber

    NASA Technical Reports Server (NTRS)

    Gent, A. N.; Pulford, C. T. R.

    1978-01-01

    Wear of a steel blade used as a scraper to abrade rubber surfaces has been found to take place much more rapidly on a cis-polyisoprene (natural rubber) surface than on a cis-polybutadiene surface, and much more rapidly in an inert atmosphere than in air. These observations are attributed to the direct attack upon steel of free-radical species generated by mechanical rupture of elastomer molecules during abrasion.

  2. Rubber elasticity. June 15, 1981-June 14, 1981. [Polydimethylsiloxane

    SciTech Connect

    Eichinger, B.E.

    1981-01-01

    Progress on the following three projects are described: swelling of elastomers by diluents; theoretical analysis of the dynamics and thermodynamics of random networks; and synthesis of elastomers with metal-chelate crosslinkages. Five elastomer-solvent systems were investigated. In all cases polydimethylsiloxane was used with either cyclohexane or benzene or both. The comparison established the general validity of Flory's new constrained junction theory. However a slight revision of the theory was required. Theoretical work on amorphorus systems centered on evaluation of the density states for models (constructed by others) of amorphorus silicon, As/sub 2/O/sub 3/, etc. The utility of these models are being assessed. A batch of styrene-isoprene elastomer was prepared and is undergoing stress-strain measurements.

  3. Rubber mixing process and its relationship with bound rubber and crosslink density

    NASA Astrophysics Data System (ADS)

    Hasan, A.; Rochmadi; Sulistyo, H.; Honggokusumo, S.

    2017-06-01

    This research studied the relationship between bound rubber and crosslink density based on rubber mixing process. Bound rubber was obtained after natural rubber was masticated and mixed with rubber chemicals and filler while crosslink density was collected after rubber compound was vulcanized. Four methods are used and each method refers to four ways of incorporating carbon black during mixing. The first method, after rubber was masticated for 5 minutes, the addition of rubber chemicals and filler was done simultaneously. Rubber was masticated for 1 minute and continued mixing of rubber chemicals and filler where mixing was different from first method. This was the second method. The third method was the same as the second method but the filler used N 660 while in the second method N 330. The last method is not the same as the first and second, the rubber is only masticated for 3 minutes and then mixed with filler and followed by rubber chemicals sequentially. The results showed that bound rubber and crosslink density were influenced by mixing and mastication process. Bound rubber dropped and crosslink density was relatively stable in the first three mixing methods for increasing carbon black at the beginning of the mixing process. Bound rubber and crosslink density stated opposite results in the fourth mixing method. The higher the bound rubber the lower the crosslink density. Without regard to mixing methods, there is a non-linear relationship between bound rubber formation and crosslink density determination

  4. A polymeric flame retardant additive for rubbers

    SciTech Connect

    Ghosh, S.N.; Maiti, S.

    1993-12-31

    Synthesis of a polyphosphonate by the interfacial polymerization of bisphenol-A (BPA) and dichloro-phenyl phosphine oxide (DCPO) using cetyltrimethyl ammonium chloride (TMAC) as phase transfer catalyst (PTC) was reported. The polyphosphonate was characterized by elemental analysis, IR, TGA, DSC and 1H-NMR spectroscopy. The flame retardancy of the polymer was done by OI study. The polymer was used as a fire retardant additive to rubbers such as natural rubber (NR), styrene-butadiene rubber(SBR), nitrile rubber (NBR) and chloroprene rubber (CR). The efficiency of the fire retardant property of this additive was determined by LOI measurements of the various rubber samples.

  5. Rubber: new allergens and preventive measures.

    PubMed

    Crepy, Marie-Noëlle

    2016-12-01

    Natural rubber latex (NRL) and rubber accelerators are well-known causes of occupational skin diseases. The latest epidemiological data on rubber allergy show that rubber additives are still among the allergens most strongly associated with occupational contact dermatitis, however, a decrease in NRL allergy has been confirmed. A review of recent publications on rubber allergens based on the Pubmed database is presented. New glove manufacturing processes have been developed, such as low-protein natural rubber gloves, vulcanisation accelerator-free gloves, or specific-purpose gloves containing antimicrobial agents or moisturisers. Several websites provide information on allergens found in gloves and/or glove choice according to occupation.

  6. Experimental Investigation on Mechanical Property of Metal Rubber Used in Lunar Rover at High or Low Temperature

    NASA Astrophysics Data System (ADS)

    Tao, J.; Deng, Z.; Gao, H.; Wang, S.; Hu, M.; Meng, X.

    Metal rubber is a kind of elastic damping material for aerospace environment It can keep its capacity even in some extreme environment such as high temperature high pressure high vacuum ultra-low temperature and violent vibration where traditional rubber can t deal with so it can be used in space craft as vibration reduction filter element and sealing element On the prototype of a lunar rover developed by Harbin Institute of Technology metal rubber is firstly used for the vibration dampers in the rover wheels In this paper the experimental investigation on rigidity and damping characteristic of metal rubber is carried out at high temperature and ultra-low temperature that corresponds to lunar environment The quasi-statics property of the samples made of metal rubber is tested at desired temperatures by the universal tensile testing machine model Y-71 The low temperatures down to -175° were realized by liquid nitrogen and the high temperatures up to 130° were realized by flexible electrical heater band Based on the method of least squares some curves to curve fit the experimental data on rigidity of the metal rubber samples at simulated temperatures to lunar environment were given The damping ratios of metal rubber at ordinary temperatures have been mentioned in some documents But there are hardly any reports about them at simulated temperatures to lunar environment Because it is difficult to know directly the exact damping mechanism of the metal rubber the free attenuation method is feasible to test its damping

  7. Silicone-Rubber Microvalves Actuated by Paraffin

    NASA Technical Reports Server (NTRS)

    Svelha, Danielle; Feldman, Sabrina; Barsic, David

    2004-01-01

    Microvalves containing silicone-rubber seals actuated by heating and cooling of paraffin have been proposed for development as integral components of microfluidic systems. In comparison with other microvalves actuated by various means (electrostatic, electromagnetic, piezoelectric, pneumatic, and others), the proposed valves (1) would contain simpler structures that could be fabricated at lower cost and (2) could be actuated by simpler (and thus less expensive) control systems. Each valve according to the proposal would include a flow channel bounded on one side by a flat surface and on the other side by a curved surface defined by an arched-cross-section, elastic seal made of silicone rubber [polydimethylsilane (PDMS)]. The seal would be sized and shaped so that the elasticity of the PDMS would hold the channel open except when the seal was pressed down onto the flat surface to close the channel. The principle of actuation would exploit the fact that upon melting or freezing, the volume of a typical paraffin increases or decreases, respectively, by about 15 percent. In a valve according to the proposal, the seal face opposite that of the channel would be in contact with a piston-like plug of paraffin. In the case of a valve designed to be normally open at ambient temperature, one would use a paraffin having a melting temperature above ambient. The seal would be pushed against the flat surface to close the channel by heating the paraffin above its melting temperature. In the case of a valve designed to be normally closed at ambient temperature, one would use a paraffin having a melting temperature below ambient. The seal would be allowed to spring away from the flat surface to open the channel by cooling the paraffin below its melting temperature. The availability of paraffins that have melting temperatures from 70 to +80 C should make it possible to develop a variety of normally closed and normally open valves. The figure depicts examples of prototype normally

  8. Natural rubber latex allergy.

    PubMed

    Deval, Ravi; Ramesh, V; Prasad, G B K S; Jain, Arun Kumar

    2008-01-01

    Natural rubber latex (NRL) is a ubiquitous allergen as it is a component of > 40,000 products in everyday life. Latex allergy might be attributed to skin contact or inhalation of latex particles. Latex allergy is an IgE-mediated hypersensitivity to NRL, presenting a wide range of clinical symptoms such as angioedema, swelling, cough, asthma, and anaphylactic reactions. Until 1979, latex allergy appeared only as type IV delayed hypersensitivity; subsequently, the proportion of different allergy types drifted towards type IV contact allergy reactions. Several risk factors for sensitization to NRL are already known and well documented. Some authors have established a positive correlation between a history of multiple surgical interventions, atopy, spina bifida malformation, and latex allergy incidence. We suspect an increase in latex allergy incidence in association with increased atopy and sensitivity to environmental allergens in the industrial population. It is often postulated in literature that the groups of workers at risk for this allergy are essentially workers in the latex industry and healthcare professionals. In this population, direct internal and mucosal contact with NRL medical devices may be the route of sensitization as factors such as the number of procedures and use of NRL materials (catheters and tubes) were associated with increased risk of latex sensitization and allergy.

  9. Rolling tires into rubber

    SciTech Connect

    Malloy, M.G.

    1997-06-01

    For Envirotire (Lillington, North Carolina), producing quality crumb rubber this summer is all in a night`s work. The tire recycling facility has operated in Lillington, which is about an hour south of Raleigh, North Carolina, for about a year and a half, since October 1995. In the summer, the plant runs at night to save money in electricity costs by operating during off-peak hours; in the winter, daytime hours also can be off-peak. In contrast to the cryogenic systems used elsewhere to recycle tires, Envirotire`s system works on mechanical principles. Before the tires are even shredded, a worker cuts the white-walls out of the tires manually, so the white does not contaminate the black end-product. A worker places the tires manually on a conveyor, which feed them up to an initial shredder that sections them quickly into pieces. While the tires are on the conveyor, dividing strips on the conveyor mark off a place for each tire. The system takes nine new tires per minute.

  10. Incompressibility, fluctuations, and elasticity in random solids

    NASA Astrophysics Data System (ADS)

    Xing, Xiangjun

    2007-03-01

    Rubbers and elastomers are usually characterized by two common properties: entropic elasticity and incompressibility. At short length-scales, these systems behave as incompressible liquids. Nevertheless, macroscopic shear deformations reduce the entropy of the polymer network, and therefore cost an elastic free energy that is proportional to temperature. In this talk I shall discuss the role of incompressibility in the elasticity of rubbery materials, and its interplay with the long wave-length fluctuations. Rubbers gain shear rigidity through the vulcanization transition, a second-order phase transition driven by cross-link density and closely related to percolation. The scaling of shear modulus as a critical phenomenon sensitively depends on the incompressibility. We have recently discovered that the vulcanization theory naturally exhibits two universality classes: phantom systems and incompressible systems. Each class exhibits distinct scaling exponent for the shear modulus near the transition. Incompressibility also crucially affects the nonlinear elasticity of rubbery materials. As we have shown recently, a subtle interplay between incompressibility and long wave-length fluctuations leads to a qualitative modification of the stress-strain relation predicted by the classical theory. To leading order, this mechanism provides a simple and generic explanation for the peak structure of Mooney-Rivlin stress-strain relation, and shows good agreement with experiments. It also leads to the prediction of a phonon correlation function that depends on the strain deformation. If time permits, I will also address incompressibility and fluctuations in liquid crystalline elastomers.

  11. Combined effects of microwaves, electron beams and polyfunctional monomers on rubber vulcanization.

    PubMed

    Manaila, Elena; Martin, Diana; Stelescu, Daniela Zuga; Craciun, Gabriela; Ighigeanu, Daniel; Matei, Constantin

    2009-01-01

    This paper presents comparative results obtained by conventional vulcanization with benzoyl peroxide (CV-BP), separate electron beam vulcanization (EB-V) and simultaneous electron beam and microwave vulcanization (EB+MW-V) applied to two kind of rubber samples: EVA (ethylene vinyl acetate) rubber-sample (EVA-sample) and EPDM (ethylene-propylene terpolymer) rubber-sample (EPDM-sample). The EVA-samples contain 61.54% EVA Elvax 260, 30.77% carbon black, 1.85% TAC (triallylcyanurate) polyfunctional monomer and 5.84% filler (zinc oxide, stearic acid, polyethylene glycol and antioxidant). The EPDM-samples contain 61.54% EPDM Nordel 4760, 30.77% carbon black, 1.85% TMPT (trimethylopropane trimethacrylate) polyfunctional monomer and 5.84% filler (zinc oxide, stearic acid, polyethylene glycol and antioxidant). The rubber samples designed for different vulcanization methods were obtained from raw rubber mixtures, as compressed sheets of 2 mm in the polyethylene foils to minimize oxidation. For EB and EB + MW treatments the sheets were cut in rectangular shape 0.15 x 0.15 m2. The physical properties of samples obtained by CV-BP EV-Vand EB + MW-V methods were evaluated by measuring the tearing strength, residual elongation, elongation at break, tensile strength, 300% modulus, 100% modulus, elasticity and hardness. The obtained results demonstrate an improvement of rubber several properties obtained by EB and EB + MW processing as compared to classical procedure using benzoyl peroxide.

  12. Evaluation of mix ingredients on the performance of rubber-modified asphalt mixtures

    SciTech Connect

    Takallou, H.B.

    1987-01-01

    In rubber-modified asphalt pavements ground recycled tire particles are added to a gap-graded aggregate and then mixed with hot asphalt cement. In view of the significant reductions in wintertime stopping distances under icy or frosty road surface conditions, the use of coarse rubber in asphalt pavements should be seriously considered. This research project consisted of a laboratory study of mix properties as a function of variables such as rubber gradation and content, void content, aggregate graduation, mix process, temperature, and asphalt content. Twenty different mix combinations were evaluated for diametral modulus and fatigue at two different temperatures. Also, five different mix combinations were evaluated for static creep and permanent deformation. The findings of the laboratory study indicate that the rubber gradation and content, aggregate gradation, and use of surcharge during sample preparation have considerable effect on modulus and fatigue life of the mix. The results of static creep and permanent deformation tests indicate that the rubber asphalt mixes had low stability and high elasticity. Also, due to greater allowable tensile strain in rubber-modified mixtures, the thickness of the modified mixture can be reduced, using a layer equivalency of 1.4 to 1.0

  13. Effect of crumb-rubber particle size on mechanical response of polyurethane foam composites

    NASA Astrophysics Data System (ADS)

    Sanjay, Omer Sheik

    The compression properties of foam are governed by by three factors: i) cell edge bending ii) compression of cell fluid iii) membrane stresses in the cell faces. The effect of reinforcement, granular form of scrap tire rubber on contribution of each of these effects along with the physical properties of polyurethane foam is investigated. It is seen that the addition of crumb-rubber hinders the formation of cell membranes during the foaming process. Four different sizes of particles were chosen to closely study the effect of particle size on the physical properties of the foam composite. There is a definite pattern seen in each of the physical property of the composite with change in the particle size. Addition of crumb-rubber decreases the compressive strength but in turn increases the elastic modulus of the composite. The rubber particles act as the sites for stress concentration and hence the inclusion of rubber particles induces the capability to transfer the axial load laterally along the surface of the foam. Also, the filler material induces porosity into the foam, which is seen in the SEM images, and hence the addition of rubber particles induces brittleness, which makes the foam composites extensively applicable for structural application in sandwich components. The lightweight composite therefore is a potential substitute to the heavier metal foams and honeycombs as a protective layer.

  14. Enhancement of MCF Rubber Utilizing Electric and Magnetic Fields, and Clarification of Electrolytic Polymerization.

    PubMed

    Shimada, Kunio

    2017-04-04

    Many sensors require mechanical durability to resist immense or impulsive pressure and large elasticity, so that they can be installed in or assimilated into the outer layer of artificial skin on robots. Given these demanding requirements, we adopted natural rubber (NR-latex) and developed a new method (NM) for curing NR-latex by the application of a magnetic field under electrolytic polymerization. The aim of the present work is to clarify the new manufacturing process for NR-latex embedded with magnetic compound fluid (MCF) as a conductive filler, and the contribution of the optimization of the new process for sensor. We first clarify the effect of the magnetic field on the enhancement of the NR-latex MCF rubber created by the alignment of magnetic clusters of MCF. Next, SEM, XRD, Raman spectroscopy, and XPS are used for morphological and microscopic observation of the electrolytically polymerized MCF rubber, and a chemical approach measuring pH and ORP of the MCF rubber liquid was used to investigate the process of electrolytic polymerization with a physical mode. We elucidate why the MCF rubber produced by the NM is enhanced with high sensitivity and long-term stability. This process of producing MCF rubber by the NM is closely related to the development of a highly sensitive sensor.

  15. Enhancement of MCF Rubber Utilizing Electric and Magnetic Fields, and Clarification of Electrolytic Polymerization

    PubMed Central

    Shimada, Kunio

    2017-01-01

    Many sensors require mechanical durability to resist immense or impulsive pressure and large elasticity, so that they can be installed in or assimilated into the outer layer of artificial skin on robots. Given these demanding requirements, we adopted natural rubber (NR-latex) and developed a new method (NM) for curing NR-latex by the application of a magnetic field under electrolytic polymerization. The aim of the present work is to clarify the new manufacturing process for NR-latex embedded with magnetic compound fluid (MCF) as a conductive filler, and the contribution of the optimization of the new process for sensor. We first clarify the effect of the magnetic field on the enhancement of the NR-latex MCF rubber created by the alignment of magnetic clusters of MCF. Next, SEM, XRD, Raman spectroscopy, and XPS are used for morphological and microscopic observation of the electrolytically polymerized MCF rubber, and a chemical approach measuring pH and ORP of the MCF rubber liquid was used to investigate the process of electrolytic polymerization with a physical mode. We elucidate why the MCF rubber produced by the NM is enhanced with high sensitivity and long-term stability. This process of producing MCF rubber by the NM is closely related to the development of a highly sensitive sensor. PMID:28375182

  16. Elasticity reconstructive imaging by means of stimulated echo MRI.

    PubMed

    Chenevert, T L; Skovoroda, A R; O'Donnell, M; Emelianov, S Y

    1998-03-01

    A method is introduced to measure internal mechanical displacement and strain by means of MRI. Such measurements are needed to reconstruct an image of the elastic Young's modulus. A stimulated echo acquisition sequence with additional gradient pulses encodes internal displacements in response to an externally applied differential deformation. The sequence provides an accurate measure of static displacement by limiting the mechanical transitions to the mixing period of the simulated echo. Elasticity reconstruction involves definition of a region of interest having uniform Young's modulus along its boundary and subsequent solution of the discretized elasticity equilibrium equations. Data acquisition and reconstruction were performed on a urethane rubber phantom of known elastic properties and an ex vivo canine kidney phantom using <2% differential deformation. Regional elastic properties are well represented on Young's modulus images. The long-term objective of this work is to provide a means for remote palpation and elasticity quantitation in deep tissues otherwise inaccessible to manual palpation.

  17. 75 FR 57980 - Polychloroprene Rubber From Japan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-23

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Polychloroprene Rubber From Japan AGENCY: United States International Trade Commission. ACTION... whether revocation of the antidumping duty finding on polychloroprene rubber from Japan would be likely to...

  18. Advances in rubber/halloysite nanotubes nanocomposites.

    PubMed

    Jia, Zhixin; Guo, Baochun; Jia, Demin

    2014-02-01

    The research advances in rubber/halloysite nanotubes (rubber/HNTs) nanocomposites are reviewed. HNTs are environmentally-friendly natural nanomaterials, which could be used to prepare the rubber-based nanocomposites with high performance and low cost. Unmodified HNTs could be adopted to prepare the rubber/HNTs composites with improved mechanical properties, however, the rubber/HNTs nanocomposites with fine morphology and excellent properties were chiefly prepared with various modifiers by in situ mixing method. A series of rubber/HNTs nanocomposites containing several rubbers (SBR, NR, xSBR, NBR, PU) and different modifiers (ENR, RH, Si69, SA, MAA, ILs) have been investigated. The results showed that all the rubber/HNTs nanocomposites achieved strong interfacial interaction via interfacial covalent bonds, hydrogen bonds or multiple interactions, realized significantly improved dispersion of HNTs at nanoscale and exhibited excellent mechanical performances and other properties.

  19. Electrospinning of PVC with natural rubber

    NASA Astrophysics Data System (ADS)

    Othman, Muhammad Hariz; Mohamed, Mahathir; Abdullah, Ibrahim

    2013-11-01

    Polyvinyl chloride (PVC) was mixed with natural rubbers which are liquid natural rubber (LNR), liquid epoxidised natural rubber (LENR) and liquid epoxidised natural rubber acrylate (LENRA) for a preparation of a fine non-woven fiber's mat. PVC and each natural rubbers(PVC:LENR, PVC:LNR and PVC:LENRA) were mixed based on ratio of 70:30. Electrospinning method was used to prepare the fiber. The results show that the spinnable concentration of PVC/ natural rubber/THF solution is 16 wt%. The morphology, diameter, structure and degradation temperature of electrospun fibers were investigated by scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). SEM photos showed that the morphology and diameter of the fibers were mainly affected by the addition of natural rubber. TGA results suggested that PVC electrospun fiber has higher degradation temperature than those electrospun fibers that contain natural rubber.

  20. Electrospinning of PVC with natural rubber

    SciTech Connect

    Othman, Muhammad Hariz; Abdullah, Ibrahim; Mohamed, Mahathir

    2013-11-27

    Polyvinyl chloride (PVC) was mixed with natural rubbers which are liquid natural rubber (LNR), liquid epoxidised natural rubber (LENR) and liquid epoxidised natural rubber acrylate (LENRA) for a preparation of a fine non-woven fiber’s mat. PVC and each natural rubbers(PVC:LENR, PVC:LNR and PVC:LENRA) were mixed based on ratio of 70:30. Electrospinning method was used to prepare the fiber. The results show that the spinnable concentration of PVC/ natural rubber/THF solution is 16 wt%. The morphology, diameter, structure and degradation temperature of electrospun fibers were investigated by scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). SEM photos showed that the morphology and diameter of the fibers were mainly affected by the addition of natural rubber. TGA results suggested that PVC electrospun fiber has higher degradation temperature than those electrospun fibers that contain natural rubber.

  1. Characterizing guayule rubber transferase activity

    SciTech Connect

    Cornish, K.; Backhaus, R.A. )

    1989-04-01

    Rubber transferase (RuT) activity, measured as incorporation of {sup 14}C(isopentenyl pyrophosphate) (IPP) into rubber, was assayed in suspensions of rubber particles purified from bark tissue of Parthenium argentatum, Gray. Rubber particle suspensions (RSP) have high RuT activity which is not diminished by repeated washing of the particles, demonstrating the firm association of the enzyme system with the particles. RuT activity varied with line: 11591 yielded more rubber particles with a greater activity per particle, than did other lines tested. Variation in activity also varied with bark age and season. Activity rapidly declined at temperatures above 16{degree}C in line 593, but was more stable in RSP isolated form line 11591. IPP-incorporation depends upon the concentration of two substrates, IPP and the starter molecule farnesyl pyrophosphate (FPP). In lines 593 and 11591, 20 uM FPP saturated the enzyme present in 6 {times} 10{sup 10} particles {times} cm{sup {minus}3}, whereas about 1 mM IPP was required for saturation. Under saturating FPP, the apparent K{sub m} of RuT was about 250 uM.

  2. Hugoniot-based equations of state for two filled EPDM rubbers

    NASA Astrophysics Data System (ADS)

    Pacheco, A. H.; Dattelbaum, D. M.; Orler, E. B.; Bartram, B. D.; Gustavsen, R. L.

    2014-05-01

    Particle-filled elastomers are commonly used as engineering components due to their ability to provide structural support via their elastic mechanical response. Even small amounts of particle fillers are known to increase the mechanical strength of elastomers due to polymer-filler interactions. In this work, the shock response of two filled (SiO2 or silica and KevlarTMfillers) ethylene-propylene-diene (EPDM) rubbers were studied using single and two-stage gas gun-driven plate impact experiments. Hugoniot states were determined using standard plate impact methods. Both filled-EPDM elastomers exhibit high compressibility under shock loading and have a response similar to adiprene rubber.

  3. 75 FR 38119 - Polychloroprene Rubber From Japan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ... COMMISSION Polychloroprene Rubber From Japan AGENCY: United States International Trade Commission. ACTION: Institution of a five-year review concerning the antidumping duty finding on polychloroprene rubber from Japan... antidumping duty finding on polychloroprene rubber from Japan would be likely to lead to continuation or...

  4. 63 FR 41284 - Polychloroprene Rubber From Japan

    Federal Register 2010, 2011, 2012, 2013, 2014

    1998-08-03

    ... COMMISSION Polychloroprene Rubber From Japan AGENCY: United States International Trade Commission. ACTION: Institution of a five-year review concerning the antidumping duty order on polychloroprene rubber from Japan... antidumping duty order on polychloroprene rubber from Japan would be likely to lead to continuation...

  5. World synthetic rubber consumption is growing

    SciTech Connect

    Not Available

    1987-03-04

    Worldwide consumption of new rubber, both synthetic and natural, has increased. This report includes a prediction of even more growth in the rubber market which was made by the International Institute of Synthetic Rubber Producers (IISRP), based in Houston. Figures are given for worldwide consumption.

  6. Guayule - natural rubber from the desert

    SciTech Connect

    Bucks, D.A.

    1984-11-01

    Guayule is the most likely source of home grown natural rubber in the United States and research is currently underway on methods of increasing rubber content, seed germination and survival, climate and soil requirements and rubber content determination by solvent extraction.

  7. Rotational elasticity

    NASA Astrophysics Data System (ADS)

    Vassiliev, Dmitri

    2017-04-01

    We consider an infinite three-dimensional elastic continuum whose material points experience no displacements, only rotations. This framework is a special case of the Cosserat theory of elasticity. Rotations of material points are described mathematically by attaching to each geometric point an orthonormal basis that gives a field of orthonormal bases called the coframe. As the dynamical variables (unknowns) of our theory, we choose the coframe and a density. We write down the general dynamic variational functional for our rotational theory of elasticity, assuming our material to be physically linear but the kinematic model geometrically nonlinear. Allowing geometric nonlinearity is natural when dealing with rotations because rotations in dimension three are inherently nonlinear (rotations about different axes do not commute) and because there is no reason to exclude from our study large rotations such as full turns. The main result of the talk is an explicit construction of a class of time-dependent solutions that we call plane wave solutions; these are travelling waves of rotations. The existence of such explicit closed-form solutions is a non-trivial fact given that our system of Euler-Lagrange equations is highly nonlinear. We also consider a special case of our rotational theory of elasticity which in the stationary setting (harmonic time dependence and arbitrary dependence on spatial coordinates) turns out to be equivalent to a pair of massless Dirac equations. The talk is based on the paper [1]. [1] C.G.Boehmer, R.J.Downes and D.Vassiliev, Rotational elasticity, Quarterly Journal of Mechanics and Applied Mathematics, 2011, vol. 64, p. 415-439. The paper is a heavily revised version of preprint https://arxiv.org/abs/1008.3833

  8. Pressure sensitive conductive rubber blends

    SciTech Connect

    Hassan, H.H. ); Abdel-Bary, E.M. ); El-Mansy, M.K.; Khodair, H.A. )

    1989-12-01

    Butadiene-acrylonitrile rubber (NBR) was blended with polychloroprene (CR) according to standard techniques. The blend was mixed with different concentrations of ZnO. The vulcanized sample was subjected to electrical conductivity ({sigma}) measurements while different values of static pressure were applied on the sample. It was found that samples containing 7.5 phr ZnO showed a reasonable pressure sensitive increase of {sigma}. Furthermore, the {sigma} vs pressure relationship of rubber blend mixed with different concentrations of Fast Extrusion Furnace black (FEF) was investigated. It was found that rubber vulcanizate containing 40 phr FEF resulted in a negative value of the pressure coefficient of conductivity {approx equal} {minus} 4.5 KPa{sup {minus}1}.

  9. Rubber friction and tire dynamics.

    PubMed

    Persson, B N J

    2011-01-12

    We propose a simple rubber friction law, which can be used, for example, in models of tire (and vehicle) dynamics. The friction law is tested by comparing numerical results to the full rubber friction theory (Persson 2006 J. Phys.: Condens. Matter 18 7789). Good agreement is found between the two theories. We describe a two-dimensional (2D) tire model which combines the rubber friction model with a simple mass-spring description of the tire body. The tire model is very flexible and can be used to accurately calculate μ-slip curves (and the self-aligning torque) for braking and cornering or combined motion (e.g. braking during cornering). We present numerical results which illustrate the theory. Simulations of anti-blocking system (ABS) braking are performed using two simple control algorithms.

  10. Piezoelectric rubber films for highly sensitive impact measurement

    NASA Astrophysics Data System (ADS)

    Wang, Jhih-Jhe; Tsai, Jui-Wei; Su, Yu-Chuan

    2013-07-01

    We have successfully demonstrated the microfabrication of piezoelectric rubber films and their application in impact measurement. To realize the desired piezoelectricity and stretchability, cellular polydimethylsiloxane (PDMS) structures with micrometer-sized voids are internally implanted with bipolar charges, which function as dipoles and respond promptly to electromechanical stimuli. In the prototype demonstration, 300 µm thick cellular PDMS films are fabricated and internally coated with a thin polytetrafluoroethylene (PTFE) layer to secure the implanted charges. Meanwhile, the top and bottom surfaces of the cellular PDMS films are deposited with stretchable gold electrodes. An electric field up to 35 MV m-1 is applied across the gold electrodes to ionize the air in the voids and to implant charges on the inner surfaces. The resulting composite structures behave like rubber (with an elastic modulus of about 300 kPa) and show strong piezoelectricity (with a piezoelectric coefficient d33 higher than 1000 pC N-1). While integrated with a wide bandwidth and large dynamic-range charge amplifier, highly sensitive impact measurement (with a stress sensitivity of about 10 mV Pa-1) is demonstrated. As such, the demonstrated piezoelectric rubber films could potentially serve as a sensitive electromechanical material for low-frequency stimuli, and fulfill the needs of a variety of physiological monitoring and wearable electronics applications.

  11. Self-healing and thermoreversible rubber from supramolecular assembly.

    PubMed

    Cordier, Philippe; Tournilhac, François; Soulié-Ziakovic, Corinne; Leibler, Ludwik

    2008-02-21

    Rubbers exhibit enormous extensibility up to several hundred per cent, compared with a few per cent for ordinary solids, and have the ability to recover their original shape and dimensions on release of stress. Rubber elasticity is a property of macromolecules that are either covalently cross-linked or connected in a network by physical associations such as small glassy or crystalline domains, ionic aggregates or multiple hydrogen bonds. Covalent cross-links or strong physical associations prevent flow and creep. Here we design and synthesize molecules that associate together to form both chains and cross-links via hydrogen bonds. The system shows recoverable extensibility up to several hundred per cent and little creep under load. In striking contrast to conventional cross-linked or thermoreversible rubbers made of macromolecules, these systems, when broken or cut, can be simply repaired by bringing together fractured surfaces to self-heal at room temperature. Repaired samples recuperate their enormous extensibility. The process of breaking and healing can be repeated many times. These materials can be easily processed, re-used and recycled. Their unique self-repairing properties, the simplicity of their synthesis, their availability from renewable resources and the low cost of raw ingredients (fatty acids and urea) bode well for future applications.

  12. Quantitative rubber sheet models of gravitation wells using Spandex

    NASA Astrophysics Data System (ADS)

    White, Gary

    2008-04-01

    Long a staple of introductory treatments of general relativity, the rubber sheet model exhibits Wheeler's concise summary---``Matter tells space-time how to curve and space-time tells matter how to move''---very nicely. But what of the quantitative aspects of the rubber sheet model: how far can the analogy be pushed? We show^1 that when a mass M is suspended from the center of an otherwise unstretched elastic sheet affixed to a circular boundary it exhibits a distortion far from the center given by h = A*(M*r^2)^1/3 . Here, as might be expected, h and r are the vertical and axial distances from the center, but this result is not the expected logarithmic form of 2-D solutions to LaPlace's equation (the stretched drumhead). This surprise has a natural explanation and is confirmed experimentally with Spandex as the medium, and its consequences for general rubber sheet models are pursued. ^1``The shape of `the Spandex' and orbits upon its surface'', American Journal of Physics, 70, 48-52 (2002), G. D. White and M. Walker. See also the comment by Don S. Lemons and T. C. Lipscombe, also in AJP, 70, 1056-1058 (2002).

  13. Dynamic homogenization in the Nonlocal and Local regimes for a phononic superlattice: Resonant elastic metamaterial

    NASA Astrophysics Data System (ADS)

    Flores Méndez, J.; Salazar Villanueva, M.; Hernández-Rodríguez, Selene; Rodríguez Mora, J. I.

    In this paper, we shall propose an elastic metamaterial based on a specific rubber/aluminum superlattice. We will calculate the frequency-dependent effective mass density and transverse elastic constant in the Local and Nonlocal homogenization regimes. Using the effective dynamic parameters, the phononic dispersion calculations of the homogenized elastic crystal show a second pass band for transverse modes where the superlattice behaves as a double-negative elastic metamaterial having simultaneously negative effective mass density and shear modulus. Which is very useful for designing resonant elastic metamaterials.

  14. Higher modulus compositions incorporating particulate rubber

    DOEpatents

    McInnis, E.L.; Bauman, B.D.; Williams, M.A.

    1996-04-09

    Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles. 2 figs.

  15. Higher modulus compositions incorporating particulate rubber

    DOEpatents

    McInnis, Edwin L.; Scharff, Robert P.; Bauman, Bernard D.; Williams, Mark A.

    1995-01-01

    Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles.

  16. Higher modulus compositions incorporating particulate rubber

    DOEpatents

    McInnis, E.L.; Scharff, R.P.; Bauman, B.D.; Williams, M.A.

    1995-01-17

    Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles. 2 figures.

  17. Higher modulus compositions incorporating particulate rubber

    DOEpatents

    Bauman, Bernard D.; Williams, Mark A.; Bagheri, Reza

    1997-12-02

    Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles.

  18. Higher modulus compositions incorporating particulate rubber

    DOEpatents

    McInnis, Edwin L.; Bauman, Bernard D.; Williams, Mark A.

    1996-04-09

    Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles.

  19. Higher modulus compositions incorporating particulate rubber

    DOEpatents

    Bauman, B.D.; Williams, M.A.; Bagheri, R.

    1997-12-02

    Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles. 2 figs.

  20. General contact mechanics theory for randomly rough surfaces with application to rubber friction.

    PubMed

    Scaraggi, M; Persson, B N J

    2015-12-14

    We generalize the Persson contact mechanics and rubber friction theory to the case where both surfaces have surface roughness. The solids can be rigid, elastic, or viscoelastic and can be homogeneous or layered. We calculate the contact area, the viscoelastic contribution to the friction force, and the average interface separation as a function of the sliding speed and the nominal contact pressure. We illustrate the theory with numerical results for the classical case of a rubber block sliding on a road surface. We find that with increasing sliding speed, the influence of the roughness on the rubber block decreases to the extent that only the roughness of the stiff counter face needs to be considered.

  1. Mechanical properties and mophology natural rubber blend with bentonit and carbon black

    NASA Astrophysics Data System (ADS)

    Ginting, E. M.; Bukit, N.; Muliani; Frida, E.

    2017-07-01

    Purpose of this study was to determine the mechanical properties and morphology of composite natural rubber and natural bentonite with addition of Na-bentonite filler and carbon black to natural rubber. The method is carried material mixed with filler composition variations (0,10,20,30) phr using open mill for 6 min. Results of the open mill is vulcanized at a temperature of 170°C. Further testing mechanical properties and morphology. Results showed that the addition of Na-bentonite filler and carbon black influence on the mechanical properties of tensile strength, elongation at break, modulus of elasticity, hardness, and strong tear. Morphological results showed cavities in the rubber compound and the occurrence agglomeration.

  2. Sprayed Coating Renews Butyl Rubber

    NASA Technical Reports Server (NTRS)

    Martin, R. B.

    1982-01-01

    Damaged butyl rubber products are renewed by spray technique originally developed for protective suits worn by NASA workers. A commercial two-part adhesive is mixed with Freon-113 (or equivalent) trichlorotrifluoroethane to obtain optimum viscosity for spraying. Mix is applied with an external-air-mix spray gun.

  3. Rubber lining for FGD scrubbers for waste incinerator plants

    SciTech Connect

    Rullmann, H.E.

    1999-11-01

    Flue gas desulfurization scrubbers for waste incineration plants can be lined with soft rubber or hard rubber for corrosion protection. Hard rubber is cured under high temperature and pressure in an autoclave. The advantage of hard rubber is the excellent temperature and chemical resistance. The authors have experience with hard rubber lined scrubbers that are in service without failures for over 20 years.

  4. Morphological explanation of high tear resistance of EPDM/NR rubber blends.

    PubMed

    Gögelein, Christoph; Beelen, Henri Jacob Hubert; van Duin, Martin

    2017-06-14

    The fatigue properties of cross-linked blends of ethylene propylene diene rubber (EPDM) with low natural rubber (NR) content and reinforced with carbon black (CB) are studied. It is found that such EPDM/NR compounds have superior crack growth resistance and fatigue lifetime. For low NR contents, transmission electron microscopy reveals that the NR phase forms small droplets of 20-50 nm. Remarkably, these droplets are even smaller than the primary CB particles. Atomic force microscopy shows that the the NR phase droplets have a higher loss factor and a smaller elastic modulus than the surrounding EPDM matrix. Rheometer measurements are used to study the effect of the phase morphology on the rubber mechanical properties. These rheological data are compared with the prediction of the Eshelby model describing the effect of elastic inclusions on solids. A complex interplay between the rubber phase morphology and the solubility of both the sulfur cross-linking system and CB is observed, which cannot be predicted theoretically. It is proposed that the soft NR droplets effectively inhibit the crack propagation in the EPDM matrix.

  5. In-depth proteome analysis of the rubber particle of Hevea brasiliensis (para rubber tree).

    PubMed

    Dai, Longjun; Kang, Guijuan; Li, Yu; Nie, Zhiyi; Duan, Cuifang; Zeng, Rizhong

    2013-05-01

    The rubber particle is a special organelle in which natural rubber is synthesised and stored in the laticifers of Hevea brasiliensis. To better understand the biological functions of rubber particles and to identify the candidate rubber biosynthesis-related proteins, a comprehensive proteome analysis was performed on H. brasiliensis rubber particles using shotgun tandem mass spectrometry profiling approaches-resulting in a thorough report on the rubber particle proteins. A total of 186 rubber particle proteins were identified, with a range in relative molecular mass of 3.9-194.2 kDa and in isoelectric point values of 4.0-11.2. The rubber particle proteins were analysed for gene ontology and could be categorised into eight major groups according to their functions: including rubber biosynthesis, stress- or defence-related responses, protein processing and folding, signal transduction and cellular transport. In addition to well-known rubber biosynthesis-related proteins such as rubber elongation factor (REF), small rubber particle protein (SRPP) and cis-prenyl transferase (CPT), many proteins were firstly identified to be on the rubber particles, including cyclophilin, phospholipase D, cytochrome P450, small GTP-binding protein, clathrin, eukaryotic translation initiation factor, annexin, ABC transporter, translationally controlled tumour protein, ubiquitin-conjugating enzymes, and several homologues of REF, SRPP and CPT. A procedure of multiple reaction monitoring was established for further protein validation. This comprehensive proteome data of rubber particles would facilitate investigation into molecular mechanisms of biogenesis, self-homeostasis and rubber biosynthesis of the rubber particle, and might serve as valuable biomarkers in molecular breeding studies of H. brasiliensis and other alternative rubber-producing species.

  6. The enzymatic synthesis of rubber polymer

    SciTech Connect

    Venkatachalam, K.V.; Wooten, L.; Benedict, C.R. )

    1990-05-01

    Washed rubber particles (WRP) isolated from stem homogenates of Parthenium argentatum by ultracentrifugation and gel filtration on columns of LKB Ultrogel AcA34 contain a tightly bound rubber transferase which catalyzes the polymerization of IPP into rubber polymer. The polymerization reaction requires Mg{sup 2+}, IPP and an allylic-PP. The Km values for Mg{sup 2+}, IPP and DMAPP are 5.2{times}10{sup {minus}4}M, 8.3{times}10{sup {minus}5} M and 9.6{times}10{sup {minus}5}M respectively. Gel permeation chromatography of the enzymatic polymer product on 3 linear columns of 1{times}10{sup 6} to 500 {angstrom} Ultrastyragel shows that the in vitro formed polymer has a similar mol wt to natural rubber. Over 90% of the in vitro formation of the rubber polymer was a de novo polymerization reaction from DMAPP initiator and IPP monomers. The bound rubber polymerase substantially differs from cytosolic rubber transferase which catalyzes only chain lengthening reactions. Treatment of the WRP with Chaps solubilized the bound rubber transferase which was further purified by DEAE-cellulose chromatography. The purified preparation primarily consists of a 52 kD polypeptide which binds to a photolabile substrate analog. The soluble rubber transferase catalyzes the synthesis of a 1{times}10{sup 5} mol wt rubber polymer from Mg{sup 2+}, DMAPP, IPP and detergent.

  7. Supersensitive linear piezoresistive property in carbon nanotubes/silicone rubber nanocomposites

    NASA Astrophysics Data System (ADS)

    Dang, Zhi-Min; Jiang, Mei-Juan; Xie, Dan; Yao, Sheng-Hong; Zhang, Li-Qun; Bai, Jinbo

    2008-07-01

    High-elasticity carbon nanotube/methylvinyl silicone rubber (CNT/VMQ) nanocomposite with a markedly sensitive linear piezoresistive behavior is fabricated by dispersing conductive multiwall carbon nanotubes (MWCNTs) with different aspect ratios (AR =50 and 500) into rubber matrix homogeneously. We disclose that the percolation threshold of the nanocomposites with MWCNTs at AR =50 is abnormally lower than that at AR =500; extremely sensitive positive-pressure coefficient effect of the resistance and excellent cyclic compression under low pressure are also observed in the MWCNT/VMQ nanocomposite with AR =50 MWCNTs at relatively low loading. These properties might originate from the special microstructure in the nanocomposites with AR =50 MWCNTs. The high-elasticity nanocomposite is very attracting for online compression stress monitoring in future engineering applications.

  8. Experimental Investigation of Stiffness Characteristics and Damping Properties of a Metallic Rubber Material

    NASA Astrophysics Data System (ADS)

    Lu, Ch. Zh.; Li, Jingyuan; Zhou, Bangyang; Li, Shuang

    2017-09-01

    The static stiffness and dynamic damping properties of a metallic rubber material (MR) were investigated, which exhibited a nonlinear deformation behavior. Its static stiffness is analyzed and discussed. The effects of structural parameters of MR and experimental conditions on its shock absorption capacity were examined by dynamic tests. Results revealed excellent elastic and damping properties of the material. Its stiffness increased with density, but decreased with thickness. The damping property of MR varied with its density, thickness, loading frequency, and amplitude.

  9. Comparison of claw health and milk yield in dairy cows on elastic or concrete flooring.

    PubMed

    Kremer, P V; Nueske, S; Scholz, A M; Foerster, M

    2007-10-01

    This article reports on the effects of elastic (rubber) flooring compared with concrete flooring on claw health and milk yield in dairy cows. Milk yield and activity data of 53 complete lactations from 49 cows were recorded by an automatic milking system in the University of Munich Livestock Center dairy herd. Cows were kept in a loose housing system on concrete-slatted or rubber-matted slatted flooring. Claws were trimmed and measured linearly in combination with claw lesion diagnosis 3 times during one lactation period (including the transition phase). An automatic milking system recorded milk yield and activity. The net horn growth of the claws increased on elastic flooring. Therefore, correct and frequent claw trimming is at least as important for claw health in dairy herds kept on rubber flooring as for those on concrete-slatted flooring. Cows housed on rubber had an increased incidence of sole ulcers. Sole hemorrhages (except for hemorrhages associated with sole ulcers) occurred less frequently on rubber than on concrete. Results concerning digital dermatitis were difficult to assess, because manual manure scraping on rubber required sprinkling the flooring twice daily, which additionally moistened the digital skin of the cows. This might explain the greater incidence of digital dermatitis on elastic flooring. The incidence of clinically lame cows did not differ between flooring types. Cows showed greater activity on rubber, most likely caused by the more comfortable walking surface compared with the concrete-slatted flooring. The greater activity may indicate better overall health of high-yielding dairy cows on rubber flooring. Milk yield, however, did not differ between flooring types.

  10. Thermomechanical characterisation of cellular rubber

    NASA Astrophysics Data System (ADS)

    Seibert, H.; Scheffer, T.; Diebels, S.

    2016-09-01

    This contribution discusses an experimental possibility to characterise a cellular rubber in terms of the influence of multiaxiality, rate dependency under environmental temperature and its behaviour under hydrostatic pressure. In this context, a mixed open and closed cell rubber based on an ethylene propylene diene monomer is investigated exemplarily. The present article intends to give a general idea of the characterisation method and the considerable effects of this special type of material. The main focus lies on the experimental procedure and the used testing devices in combination with the analysis methods such as true three-dimensional digital image correlation. The structural compressibility is taken into account by an approach for a material model using the Theory of Porous Media with additional temperature dependence.

  11. Compatibilizer for crumb rubber modified asphalt

    SciTech Connect

    Labib, M.E.; Memon, G.M.; Chollar, B.H.

    1996-12-31

    The United States of America discards more than 300 million tires each year, and out of that a large fraction of the tires is dumped into stock piles. This large quantity of tires creates an environmental problem. The use of scrap tires is limited. There is a usage potential in such fields as fuel for combustion and Crumb Rubber-Modified Asphalt binder (CRMA). The use of crumb rubber in modifying asphalt is not a new technique; it is been used since early 1960 by pavement engineers. Crumb rubber is a composite of different blends of natural and synthetic rubber (natural rubber, processing oils, polybutadiene, polystyrene butadiene, and filler). Prior research had concluded that the performance of crumb rubber modified asphalt is asphalt dependent. In some cases it improves the Theological properties and in some cases it degrades the properties of modified asphalt.

  12. Adding crumb rubber into exterior wall materials.

    PubMed

    Zhu, Han; Thong-On, Norasit; Zhang, Xiong

    2002-10-01

    In Arizona US, most houses are built with walls covered by stuccos/coatings/mortars. This paper presents an explorative investigation of adding crumb rubber into stuccos/coatings/mortars. A series of experiments are conducted to examine the thermal and mechanical performance of the crumb rubber mixes. The results show that, the mixes with crumb rubber do exhibit more desirable performances like being high in crack-resistance and thermal insulation, and low in thermal expansion/contraction. The drawback for the crumb rubber mixes is the reduction in compressive strength, but which can be compensated by other means. As a site experiment, an area of 100 square-feet of crumb rubber coatings for two mix designs is sprayed on a tire-adobe wall. After being sprayed more than 14 months, the coatings apparently are in good condition. Significance of this study is that this practice, if accepted, will yield improved products that consume large quantities of crumb rubber.

  13. Identification of natural rubber and characterization of rubber biosynthetic activity in fig tree.

    PubMed

    Kang, H; Kang, M Y; Han, K H

    2000-07-01

    Natural rubber was extracted from the fig tree (Ficus carica) cultivated in Korea as part of a survey of rubber producing plants. Fourier transform infrared and (13)C nuclear magnetic resonance analysis of samples prepared by successive extraction with acetone and benzene confirmed that the benzene-soluble residues are natural rubber, cis-1,4-polyisoprene. The rubber content in the latex of fig tree was about 4%, whereas the rubber content in the bark, leaf, and fruit was 0.3%, 0.1%, and 0.1%, respectively. Gel-permeation chromatography revealed that the molecular size of the natural rubber from fig tree is about 190 kD. Similar to rubber tree (Hevea brasiliensis) and guayule (Parthenium argentatum Gray), rubber biosynthesis in fig tree is tightly associated with rubber particles. The rubber transferase in rubber particles exhibited a higher affinity for farnesyl pyrophosphate than for isopentenyl pyrophosphate, with apparent K(m) values of 2.8 and 228 microM, respectively. Examination of latex serum from fig tree by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed major proteins of 25 and 48 kD in size, and several proteins with molecular mass below 20 and above 100 kD. Partial N-terminal amino acid sequencing and immunochemical analyses revealed that the 25- and 48-kD proteins were novel and not related to any other suggested rubber transferases. The effect of EDTA and Mg(2+) ion on in vitro rubber biosynthesis in fig tree and rubber tree suggested that divalent metal ion present in the latex serum is an important factor in determining the different rubber biosynthetic activities in fig tree and rubber tree.

  14. Identification of Natural Rubber and Characterization of Rubber Biosynthetic Activity in Fig Tree1

    PubMed Central

    Kang, Hunseung; Kang, Min Young; Han, Kyung-Hwan

    2000-01-01

    Natural rubber was extracted from the fig tree (Ficus carica) cultivated in Korea as part of a survey of rubber producing plants. Fourier transform infrared and 13C nuclear magnetic resonance analysis of samples prepared by successive extraction with acetone and benzene confirmed that the benzene-soluble residues are natural rubber, cis-1,4-polyisoprene. The rubber content in the latex of fig tree was about 4%, whereas the rubber content in the bark, leaf, and fruit was 0.3%, 0.1%, and 0.1%, respectively. Gel-permeation chromatography revealed that the molecular size of the natural rubber from fig tree is about 190 kD. Similar to rubber tree (Hevea brasiliensis) and guayule (Parthenium argentatum Gray), rubber biosynthesis in fig tree is tightly associated with rubber particles. The rubber transferase in rubber particles exhibited a higher affinity for farnesyl pyrophosphate than for isopentenyl pyrophosphate, with apparent Km values of 2.8 and 228 μm, respectively. Examination of latex serum from fig tree by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed major proteins of 25 and 48 kD in size, and several proteins with molecular mass below 20 and above 100 kD. Partial N-terminal amino acid sequencing and immunochemical analyses revealed that the 25- and 48-kD proteins were novel and not related to any other suggested rubber transferases. The effect of EDTA and Mg2+ ion on in vitro rubber biosynthesis in fig tree and rubber tree suggested that divalent metal ion present in the latex serum is an important factor in determining the different rubber biosynthetic activities in fig tree and rubber tree. PMID:10889262

  15. 'Silicone rubber' lenses in aphakia.

    PubMed

    Ruben, M; Guillon, M

    1979-07-01

    Tesicon, one of the commercially available 'silicone rubber' lenses, was used in the correction of aphakic patients. In 74% of cases the lenses were considered successful for a daily wear regimen by the patient. Furthermore, a small number of patients could wear this lens without interruption for 3 to 6 days at a time. Despite this good acceptance by patients, corneal problems (mainly staining) and lens problems (dry surfaces) were frequently encountered.

  16. Blow molding of melt processible rubber

    SciTech Connect

    Abell, W.R.; Stuart, R.E.; Myrick, R.E.

    1991-07-01

    This article discusses the advantages of making hollow rubber parts by blow molding thermoplastic elastomers (TPEs) versus conventional rubber processing. It describes the various types of blow molding processes and it provides some insight into the rheological properties of melt processible rubber (MPR) and how MPR should be molded by each of these processes. A number of blow molded applications for MPR are also discussed.

  17. Chemistry of rubber processing and disposal.

    PubMed

    Bebb, R L

    1976-10-01

    The major chemical changes during the processing of rubber occur with the breakdown in mastication and during vulcanization of the molded tire. There is little chemical change during the compounding, calendering, extrusion, and molding steps. Reclaiming is the process of converting scrap rubber into an unsaturated, processible product that can be vulcanized with sulfur. Pyrolysis of scrap rubber yields a complex mixture of liquids, gas, and residue in varying ratios dependent on the nature of the scrap and the conditions of pyrolysis.

  18. Rubber friction: comparison of theory with experiment.

    PubMed

    Lorenz, B; Persson, B N J; Dieluweit, S; Tada, T

    2011-12-01

    We have measured the friction force acting on a rubber block slid on a concrete surface. We used both unfilled and filled (with carbon black) styrene butadiene (SB) rubber and have varied the temperature from -10 °C to 100 °C and the sliding velocity from 1 μm/s to 1000 μm/s. We find that the experimental data at different temperatures can be shifted into a smooth master-curve, using the temperature-frequency shifting factors obtained from measurements of the bulk viscoelastic modulus. The experimental data has been analyzed using a theory which takes into account the contributions to the friction from both the substrate asperity-induced viscoelastic deformations of the rubber, and from shearing the area of real contact. For filled SB rubber the frictional shear stress σ(f) in the area of real contact results mainly from the energy dissipation at the opening crack on the exit side of the rubber-asperity contact regions. For unfilled rubber we instead attribute σ(f) to shearing of a thin rubber smear film, which is deposited on the concrete surface during run in. We observe very different rubber wear processes for filled and unfilled SB rubber, which is consistent with the different frictional processes. Thus, the wear of filled SB rubber results in micrometer-sized rubber particles which accumulate as dry dust, which is easily removed by blowing air on the concrete surface. This wear process seams to occur at a steady rate. For unfilled rubber a smear film forms on the concrete surface, which cannot be removed even using a high-pressure air stream. In this case the wear rate appears to slow down after some run in time period.

  19. Optimization of aqueous degassing of rubber solutions

    SciTech Connect

    Rotenberg, E.B.; Slutsman, N.N.

    1983-02-01

    The optimality criterion of the aqueous degassing process of rubber solutions is proposed. The limitation system for the variables of the process is formulated. The problems of determination of the optimal temperature and average residence time of a rubber crumb in each degasifier, the number of degasifiers, and the total average residence time of a rubber crumb in the system at the planning and control stages are solved.

  20. Ionic Modification Turns Commercial Rubber into a Self-Healing Material.

    PubMed

    Das, Amit; Sallat, Aladdin; Böhme, Frank; Suckow, Marcus; Basu, Debdipta; Wiessner, Sven; Stöckelhuber, Klaus Werner; Voit, Brigitte; Heinrich, Gert

    2015-09-23

    Invented by Charles Goodyear, chemical cross-linking of rubbers by sulfur vulcanization is the only method by which modern automobile tires are manufactured. The formation of these cross-linked network structures leads to highly elastic properties, which substantially reduces the viscous properties of these materials. Here, we describe a simple approach to converting commercially available and widely used bromobutyl rubber (BIIR) into a highly elastic material with extraordinary self-healing properties without using conventional cross-linking or vulcanising agents. Transformation of the bromine functionalities of BIIR into ionic imidazolium bromide groups results in the formation of reversible ionic associates that exhibit physical cross-linking ability. The reversibility of the ionic association facilitates the healing processes by temperature- or stress-induced rearrangements, thereby enabling a fully cut sample to retain its original properties after application of the self-healing process. Other mechanical properties, such as the elastic modulus, tensile strength, ductility, and hysteresis loss, were found to be superior to those of conventionally sulfur-cured BIIR. This simple and easy approach to preparing a commercial rubber with self-healing properties offers unique development opportunities in the field of highly engineered materials, such as tires, for which safety, performance, and longer fatigue life are crucial factors.

  1. Dynamic Elasticity Model of Resilin Biopolymers

    NASA Astrophysics Data System (ADS)

    Hu, Xiao; Duki, Solomon

    2013-03-01

    Resilin proteins are `super elastic rubbers' in the flight and jumping systems of most insects, and can extend and retract millions of times. Natural resilin exhibits high resilience (> 95%) under high-frequency conditions, and could be stretched to over 300% of its original length with a low elastic modulus of 0.1-3 MPa. However, insight into the underlying molecular mechanisms responsible for resilin elasticity remains undefined. We report on the dynamic structure transitions and functions of full length resilin from fruit fly (D. melanogaster CG15920) and its different functional domains. A dynamic computational model is proposed to explain the super elasticity and energy conversion mechanisms of resilin, providing important insight into structure-function relationships for resilins, as well as other elastomeric proteins. A strong beta-turn transition was experimentally identified in the full length resilin and its non-elastic domains (Exon III). Changes in periodic long-range order were demonstrated during this transition, induced either by thermal or mechanical inputs, to confirm the universality of proposed mechanism. Further, this model offers new options for designing protein-based biopolymers with tunable material applications.

  2. Recycling rubber wastes. (Latest citations from the Rubber and Plastics Research Association database). Published Search

    SciTech Connect

    1995-02-01

    The bibliography contains citations concerning research and innovations in the recycling of rubber wastes. Recycling methods and equipment, applications of recycled rubber, and energy recovery systems and performance are among the topics discussed. Recycling methods compared and contrasted with various rubber waste disposal techniques are also included. (Contains a minimum of 96 citations and includes a subject term index and title list.)

  3. Recycling rubber wastes. (Latest citations from the rubber and plastics research association database). Published Search

    SciTech Connect

    Not Available

    1994-05-01

    The bibliography contains citations concerning research and innovations in the recycling of rubber wastes. Recycling methods and equipment, applications of recycled rubber, and energy recovery systems and performance are among the topics discussed. Recycling methods compared and contrasted with various rubber waste disposal techniques are also included. (Contains a minimum of 89 citations and includes a subject term index and title list.)

  4. Method for the addition of vulcanized waste rubber to virgin rubber products

    DOEpatents

    Romine, R.A.; Snowden-Swan, L.J.

    1997-01-28

    The invention is a method of using enzymes from thiophyllic microbes for selectively breaking the sulfur rubber cross-link bonds in vulcanized rubber. The process is halted at the sulfoxide or sulfone step so that a devulcanized layer is reactive with virgin rubber. 8 figs.

  5. Method for the addition of vulcanized waste rubber to virgin rubber products

    DOEpatents

    Romine, Robert A.; Snowden-Swan, Lesley J.

    1997-01-01

    The invention is a method of using enzymes from thiophyllic microbes for selectively breaking the sulfur rubber cross-link bonds in vulcanized rubber. The process is halted at the sulfoxide or sulfone step so that a devulcanized layer is reactive with virgin rubber.

  6. Effect of non-rubber constituents on Guayule and Hevea rubber intrinsic properties

    USDA-ARS?s Scientific Manuscript database

    To meet the increasing demand for natural rubber (NR), currently sourced from the tropical rubber tree Hevea brasiliensis, and address price volatility and steadily increasing labor costs, alternate rubber-producing species are in commercial development. One of these, guayule (Parthenium argentatum)...

  7. The functional analyses of the cis-prenyltransferase and the rubber elongation factor in rubber biosynthesis

    USDA-ARS?s Scientific Manuscript database

    Natural rubber (cis-1,4-polyisoprene) is an essential plant derived commodity required for the manufacture of numerous industrial, medical and household items. Rubber is synthesized and sequestered on cytsolic vesicles known as rubber particles. When provided with farnesyl pyrophosphate (FPP) and is...

  8. Chemical modifications of liquid natural rubber

    NASA Astrophysics Data System (ADS)

    Azhar, Nur Hanis Adila; Rasid, Hamizah Md; Yusoff, Siti Fairus M.

    2016-11-01

    Liquid natural rubber (LNR) was synthesized via photosentisized degradation of natural rubber (NR). LNR was modified into epoxidized liquid natural rubber (LENR) and hydroxylated liquid natural rubber (LNR-OH) using Na2WO4/CH3COOH/H2O2 catalytic system. Chemical structures of LNR and modified LNRs were characterized using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) and 1H Nuclear Magnetic Resonance (NMR) spectroscopies. Integration of 1H NMR was used to calculate the epoxy content (%) of LENR. 1H NMR detected the formation of LNR-OH after prolonged heating and increased of catalyst in oxidation reaction.

  9. Malaria-associated rubber plantations in Thailand.

    PubMed

    Bhumiratana, Adisak; Sorosjinda-Nunthawarasilp, Prapa; Kaewwaen, Wuthichai; Maneekan, Pannamas; Pimnon, Suntorn

    2013-01-01

    Rubber forestry is intentionally used as a land management strategy. The propagation of rubber plantations in tropic and subtropic regions appears to influence the economical, sociological and ecological aspects of sustainable development as well as human well-being and health. Thailand and other Southeast Asian countries are the world's largest producers of natural rubber products; interestingly, agricultural workers on rubber plantations are at risk for malaria and other vector-borne diseases. The idea of malaria-associated rubber plantations (MRPs) encompasses the complex epidemiological settings that result from interactions among human movements and activities, land cover/land use changes, agri-environmental and climatic conditions and vector population dynamics. This paper discusses apparent issues pertaining to the connections between rubber plantations and the populations at high risk for malaria. The following questions are addressed: (i) What are the current and future consequences of rubber plantations in Thailand and Southeast Asia relative to malaria epidemics or outbreaks of other vector-borne diseases? (ii) To what extent is malaria transmission in Thailand related to the forest versus rubber plantations? and (iii) What are the vulnerabilities of rubber agricultural workers to malaria, and how contagious is malaria in these areas?

  10. Rate type method for large deformation problems of nonlinear elasticity

    NASA Astrophysics Data System (ADS)

    Liang, Fei; Zhang, Shanyuan

    1994-02-01

    Firstly, the rate type constitutive expressions of the nonlinear isotropic elasticity by using the Jaumann, Truesdell, and Green-Naghdi stress rate are obtained respectively. Then, through analyzing the simple shear deformation for Mooney-Rivlin material, three kinds of rate type constitutive equations are verified to be equivalent to the original equation. Finally, the rate type variational principles are also presented and the Ritz method is used to obtain the numerical solution of a rectangular rubber membrane under uniaxial stretch.

  11. Crystalline liquid and rubber-like behavior in Cu nanowires.

    PubMed

    Yue, Yonghai; Chen, Nianke; Li, Xianbin; Zhang, Shengbai; Zhang, Ze; Chen, Mingwei; Han, Xiaodong

    2013-08-14

    Via in situ TEM tensile tests on single crystalline copper nanowires with an advanced tensile device, we report here a crystalline-liquid-rubber-like (CRYS-LIQUE-R) behavior in fracturing crystalline metallic nanowires. A retractable strain of the fractured crystalline Cu nanowires can approach over 35%. This astonishing CRYS-LIQUE-R behavior of the fracturing highly strained single crystalline Cu nanowires originates from an instant release of the stored ultralarge elastic energy in the crystalline nanowires. The release of the ultralarge elastic energy was estimated to generate a huge reverse stress as high as ~10 GPa. The effective diffusion coefficient (D(eff)) increased sharply due to the consequent pressure gradient. In addition, due to the release of ultrahigh elastic energy, the estimated concomitant temperature increase was estimated as high as 0.6 Tm (Tm is the melting point of nanocrystalline Cu) on the fractured tip of the nanowires. These factors greatly enhanced the atomic diffusion process. Molecular dynamic simulations revealed that the very high reverse stress triggered dislocation nucleation and exhaustion.

  12. In vitro synthesis of high molecular weight rubber by Hevea small rubber particles.

    PubMed

    Rojruthai, Porntip; Sakdapipanich, Jitladda Tangpakdee; Takahashi, Seiji; Hyegin, Lee; Noike, Motoyoshi; Koyama, Tanetoshi; Tanaka, Yasuyuki

    2010-02-01

    Hevea brasiliensis is one of few higher plants producing the commercial natural rubber used in many significant applications. The biosynthesis of high molecular weight rubber molecules by the higher plants has not been clarified yet. Here, the in vitro rubber biosynthesis was performed by using enzymatically active small rubber particles (SRP) from Hevea. The mechanism of the in vitro rubber synthesis was investigated by the molecular weight distribution (MWD). The highly purified SRP prepared by gel filtration and centrifugation in the presence of Triton((R)) X-100 showed the low isopentenyl diphosphate (IPP) incorporation for the chain extension mechanism of pre-existing rubber. The MWD of in vitro rubber elongated from the pre-existing rubber chains in SRP was analyzed for the first time in the case of H. brasiliensis by incubating without the addition of any initiator. The rubber transferase activity of 70% incorporation of the added IPP (w/w) was obtained when farnesyl diphosphate was present as the allylic diphosphate initiator. The in vitro synthesized rubber showed a typical bimodal MWD of high and low molecular weight fractions in GPC analysis, which was similar to that of the in vivo rubber with peaks at around 10(6) and 10(5) Da or lower. The reaction time independence and dependence of molecular weight of high and low molecular weight fractions, respectively, indicated that the high molecular weight rubber was synthesized from the chain extension of pre-existing rubber molecules whereas the lower one was from the chain elongation of rubber molecules newly synthesized from the added allylic substrates.

  13. Roughness Perception during the Rubber Hand Illusion

    ERIC Educational Resources Information Center

    Schutz-Bosbach, Simone; Tausche, Peggy; Weiss, Carmen

    2009-01-01

    Watching a rubber hand being stroked by a paintbrush while feeling identical stroking of one's own occluded hand can create a compelling illusion that the seen hand becomes part of one's own body. It has been suggested that this so-called rubber hand illusion (RHI) does not simply reflect a bottom-up multisensory integration process but that the…

  14. Cotton-Fiber-Filled Rubber Insulation

    NASA Technical Reports Server (NTRS)

    Anderson, Floyd A.

    1987-01-01

    Carbonization of fibers at high temperatures improves strength and erosion resistance. Cotton linters tested as replacement for asbestos filler currently used in rubber insulation in solid rocket motors. Cotton-filled rubber insulation has industrial uses; in some kinds of chemical- or metal-processing equipment, hoses, and protective clothing.

  15. 69 FR 78474 - Polychloroprene Rubber From Japan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2004-12-30

    ... COMMISSION Polychloroprene Rubber From Japan AGENCY: United States International Trade Commission. ACTION... Japan. SUMMARY: The Commission hereby gives notice of the scheduling of a full review pursuant to... revocation of the antidumping duty order on polychloroprene rubber from Japan would be likely to lead...

  16. RADIATION INDUCED VULCANIZATION OF RUBBER LATEX

    DOEpatents

    Mesrobian, R.B.; Ballantine, D.S.; Metz, D.J.

    1964-04-28

    A method of vulcanizing rubber latex by exposing a mixture containing rubber latex and from about 15 to about 21.3 wt% of 2,5-dichlorostyrene to about 1.1 megarads of gamma radiation while maintaining the temperature of the mixture at a temperature ranging between from about 56 to about 59 deg C is described. (AEC)

  17. Zinc leaching from tire crumb rubber.

    PubMed

    Rhodes, Emily P; Ren, Zhiyong; Mays, David C

    2012-12-04

    Because tires contain approximately 1-2% zinc by weight, zinc leaching is an environmental concern associated with civil engineering applications of tire crumb rubber. An assessment of zinc leaching data from 14 studies in the published literature indicates that increasing zinc leaching is associated with lower pH and longer leaching times, but the data display a wide range of zinc concentrations, and do not address the effect of crumb rubber size or the dynamics of zinc leaching during flow through porous crumb rubber. The present study was undertaken to investigate the effect of crumb rubber size using the synthetic precipitation leaching procedure (SPLP), the effect of exposure time using quiescent batch leaching tests, and the dynamics of zinc leaching using column tests. Results indicate that zinc leaching from tire crumb rubber increases with smaller crumb rubber and longer exposure time. Results from SPLP and quiescent batch leaching tests are interpreted with a single-parameter leaching model that predicts a constant rate of zinc leaching up to 96 h. Breakthrough curves from column tests displayed an initial pulse of elevated zinc concentration (~3 mg/L) before settling down to a steady-state value (~0.2 mg/L), and were modeled with the software package HYDRUS-1D. Washing crumb rubber reduces this initial pulse but does not change the steady-state value. No leaching experiment significantly reduced the reservoir of zinc in the crumb rubber.

  18. Amino acid modifiers in guayule rubber compounds

    USDA-ARS?s Scientific Manuscript database

    Tire producers are increasingly interested in biobased materials, including rubber but also as compounding chemicals. An alternative natural rubber for tire use is produced by guayule, a woody desert shrub native to North America. Alternative compounding chemicals include naturally-occurring amino a...

  19. Guayule: Culture, breeding and rubber production

    USDA-ARS?s Scientific Manuscript database

    Pressure on worldwide Hevea rubber supplies and other factors are renewing interest in guayule rubber. The objective of this chapter is to review recent and past research dealing with guayule production, breeding, and product development. Production research continues to show that although guayule i...

  20. Cotton-Fiber-Filled Rubber Insulation

    NASA Technical Reports Server (NTRS)

    Anderson, Floyd A.

    1987-01-01

    Carbonization of fibers at high temperatures improves strength and erosion resistance. Cotton linters tested as replacement for asbestos filler currently used in rubber insulation in solid rocket motors. Cotton-filled rubber insulation has industrial uses; in some kinds of chemical- or metal-processing equipment, hoses, and protective clothing.

  1. Rubber transferase in guayule plants. [Parthenium argentatum

    SciTech Connect

    Rosenfield, C.L.; Foster, M.A.; Benedict, C.R.

    1986-04-01

    Rubber transferase catalyzes the transfer of cis-1,4-polyprenyl-PP to isopentenyl-PP (IPP) with the elimination of PP/sub i/. Rubber transferase activity in guayule (Parthenium argentatum Gray) stems was localized in the lipid fraction of the homogenate following centrifugation in buffer and 0.4M Mannitol. Washed rubber particles were obtained by the chromatography of the lipid fraction on Ultrogel columns with an exclusion limit of 750,000 daltons by the procedure of B.G. Audley (private communication). The rubber particles catalyzed the incorporation of /sup 14/C-IPP into cis-polyisoprene. The radioactive cis-polyisoprene was identified by ozonolysis and chromatography of the resulting /sup 14/C-levulinic acid. The synthesis of cis-polyisoprene in the rubber particles required Mg/sup 2 +/ and IPP and was stimulated 2-fold with the addition of DMAPP. Rubber synthesis in guayule plants growing in the Permian Basin of West Texas does not occur during summer months but is induced by the cold night temperatures of the fall and winter. From August to December individual plants (which were transplanted in May) accumulated from 66mg to 11,800mg or rubber. During this period there was a 4-fold increase in rubber transferase activity in stem homogenates induced by the low temperatures.

  2. Roughness Perception during the Rubber Hand Illusion

    ERIC Educational Resources Information Center

    Schutz-Bosbach, Simone; Tausche, Peggy; Weiss, Carmen

    2009-01-01

    Watching a rubber hand being stroked by a paintbrush while feeling identical stroking of one's own occluded hand can create a compelling illusion that the seen hand becomes part of one's own body. It has been suggested that this so-called rubber hand illusion (RHI) does not simply reflect a bottom-up multisensory integration process but that the…

  3. Unraveling the Mystery of Natural Rubber Biosynthesis

    USDA-ARS?s Scientific Manuscript database

    Natural rubber (NR) is primarily obtained from Hevea brasiliensis, commonly known as the Brazilian rubber tree. As this species contains little genetic variation, it is susceptible to pathogen-based eradication. Consequently, it is imperative that a biomimetic pathway for NR production be developed....

  4. Physical-biopolymer characterization of polyhydroxybutyrate-co-hydroxyvalerate (PHBV) blended with natural rubber latex

    NASA Astrophysics Data System (ADS)

    Kuntanoo, K.; Promkotra, S.; Kaewkannetra, P.

    2015-03-01

    A biopolymer of polyhydroxybutyrate-co-hydroxyvalerate (PHBV) is blended with bio-based materials, natural rubber latex, to improve their microstructures. The various ratios between PHBV and natural rubber latex are examined to develop their mechanical properties. In general, physical properties of PHBV are hard, brittle and low flexible while natural rubber (NR) is presented itself as high elastic materials. Concentrations of the PHBV solution are constituted at 1%, 2% and 3% (w/v). The mixtures of their PHBV solutions to natural rubber latex are produced the blended films in three different ratios of 4:6, 5:5 and 6:4, respectively. They are characterized by appearance analyses which are the scanning electron microscope (SEM), universal testing machine (UTM) and differential scanning calorimetry (DSC). The SEM photomicrographs of the blended films and the controlled PHBV can provide the void distribution in the range of 12-14% and 19-21%, respectively. For mechanical properties of the blended films, the various elastic moduli of 1%, 2% and 3% (w/v) PHBV are the average of 773, 956 and 1,007 kPa, respectively. The tensile strengths of the blends increase with the increased concentrations of PHBV, similarly trend to the elastic modulus. The crystallization and melting behavior of unmixed PHBV and the blends are determined by DSC. Melting transition temperatures (Tm) of the unmixed PHBV are stated two melting peak at 154°C and 173°C. Besides, the melting peaks of the blends alter in the range of 152-156°C and 168-171°C, respectively. According to morphology of the blends, the void distribution decreases twice compared to the unmixed PHBV. The results of mechanical properties and thermal analysis indicate that the blended PHBV can be developed their properties by more resilient and wide range of temperature than usual.

  5. Physical-biopolymer characterization of polyhydroxybutyrate-co-hydroxyvalerate (PHBV) blended with natural rubber latex

    SciTech Connect

    Kuntanoo, K.; Promkotra, S.; Kaewkannetra, P.

    2015-03-30

    A biopolymer of polyhydroxybutyrate-co-hydroxyvalerate (PHBV) is blended with bio-based materials, natural rubber latex, to improve their microstructures. The various ratios between PHBV and natural rubber latex are examined to develop their mechanical properties. In general, physical properties of PHBV are hard, brittle and low flexible while natural rubber (NR) is presented itself as high elastic materials. Concentrations of the PHBV solution are constituted at 1%, 2% and 3% (w/v). The mixtures of their PHBV solutions to natural rubber latex are produced the blended films in three different ratios of 4:6, 5:5 and 6:4, respectively. They are characterized by appearance analyses which are the scanning electron microscope (SEM), universal testing machine (UTM) and differential scanning calorimetry (DSC). The SEM photomicrographs of the blended films and the controlled PHBV can provide the void distribution in the range of 12-14% and 19-21%, respectively. For mechanical properties of the blended films, the various elastic moduli of 1%, 2% and 3% (w/v) PHBV are the average of 773, 956 and 1,007 kPa, respectively. The tensile strengths of the blends increase with the increased concentrations of PHBV, similarly trend to the elastic modulus. The crystallization and melting behavior of unmixed PHBV and the blends are determined by DSC. Melting transition temperatures (T{sub m}) of the unmixed PHBV are stated two melting peak at 154°C and 173°C. Besides, the melting peaks of the blends alter in the range of 152-156°C and 168-171°C, respectively. According to morphology of the blends, the void distribution decreases twice compared to the unmixed PHBV. The results of mechanical properties and thermal analysis indicate that the blended PHBV can be developed their properties by more resilient and wide range of temperature than usual.

  6. Temperature field in rubber vibration isolators

    NASA Astrophysics Data System (ADS)

    Abdulhadi, M. Issa

    1985-02-01

    The temperature field inside a vibrating rubber solid cylinder is investigated. The rubber cylinder, a specimen of a vibration isolator rubber (Neoprene GR), is subjected to a repeatedly cyclic compressive force by means of an electrodynamic shaker. In the experimental investigation the temperatures at 16 different locations inside the cylinder have been measured by means of copper-constantan thermocouples. After the estimation of the heat generated per unit volume per unit time with the help of the estimated damping and stiffness coefficients of rubber, one can attempt the solution of the heat conduction equation describing the temperature field inside the rubber specimen. The values of the temperature found from the analytical investigation compare fairly well with the experimental measurements.

  7. Rubber rolling over a sphere

    NASA Astrophysics Data System (ADS)

    Koiller, J.; Ehlers, K.

    2007-04-01

    “Rubber” coated bodies rolling over a surface satisfy a no-twist condition in addition to the no slip condition satisfied by “marble” coated bodies [1]. Rubber rolling has an interesting differential geometric appeal because the geodesic curvatures of the curves on the surfaces at corresponding points are equal. The associated distribution in the 5 dimensional configuration space has 2 3 5 growth (these distributions were first studied by Cartan; he showed that the maximal symmetries occurs for rubber rolling of spheres with 3:1 diameters ratio and materialize the exceptional group G 2). The 2 3 5 nonholonomic geometries are classified in a companion paper [2] via Cartan’s equivalence method [3]. Rubber rolling of a convex body over a sphere defines a generalized Chaplygin system [4 8] with SO(3) symmetry group, total space Q = SO(3) × S 2 and base S 2, that can be reduced to an almost Hamiltonian system in T* S 2 with a non-closed 2-form ωNH. In this paper we present some basic results on the sphere-sphere problem: a dynamically asymmetric but balanced sphere of radius b (unequal moments of inertia I j but with center of gravity at the geometric center), rubber rolling over another sphere of radius a. In this example ωNH is conformally symplectic [9]: the reduced system becomes Hamiltonian after a coordinate dependent change of time. In particular there is an invariant measure, whose density is the determinant of the reduced Legendre transform, to the power p = 1/2( b/a - 1). Using sphero-conical coordinates we verify the result by Borisov and Mamaev [10] that the system is integrable for p = -1/2 (ball over a plane). They have found another integrable case [11] corresponding to p = -3/2 (rolling ball with twice the radius of a fixed internal ball). Strikingly, a different set of sphero-conical coordinates separates the Hamiltonian in this case. No other integrable cases with different I j are known.

  8. Rubber band ligation of hemorrhoids: A guide for complications

    PubMed Central

    Albuquerque, Andreia

    2016-01-01

    Rubber band ligation is one of the most important, cost-effective and commonly used treatments for internal hemorrhoids. Different technical approaches were developed mainly to improve efficacy and safety. The technique can be employed using an endoscope with forward-view or retroflexion or without an endoscope, using a suction elastic band ligator or a forceps ligator. Single or multiple ligations can be performed in a single session. Local anaesthetic after ligation can also be used to reduce the post-procedure pain. Mild bleeding, pain, vaso-vagal symptoms, slippage of bands, priapism, difficulty in urination, anal fissure, and chronic longitudinal ulcers are normally considered minor complications, more frequently encountered. Massive bleeding, thrombosed hemorrhoids, severe pain, urinary retention needing catheterization, pelvic sepsis and death are uncommon major complications. Mild pain after rubber band ligation is the most common complication with a high frequency in some studies. Secondary bleeding normally occurs 10 to 14 d after banding and patients taking anti-platelet and/or anti-coagulant medication have a higher risk, with some reports of massive life-threatening haemorrhage. Several infectious complications have also been reported including pelvic sepsis, Fournier’s gangrene, liver abscesses, tetanus and bacterial endocarditis. To date, seven deaths due to these infectious complications were described. Early recognition and immediate treatment of complications are fundamental for a favourable prognosis. PMID:27721924

  9. Rubber-like materials derived from biosourced phenolic resins

    NASA Astrophysics Data System (ADS)

    Amaral-Labat, G.; Grishechko, L. I.; Silva, G. F. B. Lenz e.; Kuznetsov, B. N.; Fierro, V.; Pizzi, A.; Celzard, A.

    2017-07-01

    The present work describes new gels derived from cheap, abundant and non-toxic wood bark extracts of phenolic nature, behaving like elastomers. Especially, we show that these materials might be used as rubber springs. Such amazing properties were obtained by a quite simple synthesis based on the autocondensation of flavonoid tannins in water at low pH in the presence of a plasticizer. After gelation and drying, the materials presented elastic properties that could be tuned from hard and brittle to quite soft and deformable, depending on the amount of plasticizer in the starting formulation. Not only the materials containing the relevant amount of plasticizer had stress-strain characteristics in quasi-static and cyclic compression similar to most commercial rubber springs, but they presented outstanding fire retardance, surviving 5 min in a flame at 1000°C in air. Neither flame propagation nor drips were noticed during the fire test, and the materials were auto-extinguishable. These excellent features make these materials potential substitutes to usual organic elastomers.

  10. High breakdown-strength composites from liquid silicone rubbers

    NASA Astrophysics Data System (ADS)

    Vudayagiri, Sindhu; Zakaria, Shamsul; Yu, Liyun; Sager Hassouneh, Suzan; Benslimane, Mohamed; Ladegaard Skov, Anne

    2014-10-01

    In this paper we investigate the performance of liquid silicone rubbers (LSRs) as dielectric elastomer transducers. Commonly used silicones in this application include room-temperature vulcanisable (RTV) silicone elastomers and composites thereof. Pure LSRs and their composites with commercially available fillers (an anatase TiO2, a core-shell TiO2-SiO2 and a CaCu3Ti4O12 filler) are evaluated with respect to dielectric permittivity, elasticity (Young’s modulus) and electrical breakdown strength. Film formation properties are also evaluated. The best-performing formulations are those with anatase TiO2 nanoparticles, where the highest relative dielectric permittivity of 5.6 is obtained, and with STX801, a core-shell morphology TiO2-SiO2 filler from Evonik, where the highest breakdown strength of 173 V μm-1 is obtained.

  11. Extraction and characterization of latex and natural rubber from rubber-bearing plants.

    PubMed

    Buranov, Anvar U; Elmuradov, Burkhon J

    2010-01-27

    Consecutive extraction of latex and natural rubber from the roots of rubber-bearing plants such as Taraxacum kok-saghyz (TKS), Scorzonera tau-saghyz (STS), and Scorzonera Uzbekistanica (SU) were carried out. Latex extraction was carried via two methods: Blender method and Flow method. The results of latex extraction were compared. Cultivated rubber-bearing plants contained slightly higher latex contents compared to those from wild fields. Several creaming agents for latex extraction were compared. About 50% of total natural rubber was extracted as latex. The results of the comparative studies indicated that optimum latex extraction can be achieved with Flow method. The purity of latex extracted by Blender method ( approximately 75%) was significantly lower than that extracted by Flow method (99.5%). When the latex particles were stabilized with casein, the latex was concentrated significantly. Through concentrating latex by flotation, the latex concentration of 35% was obtained. Bagasse contained mostly solid natural rubber. The remaining natural rubber in the bagasse (left after the latex extraction) was extracted using sequential solvent extraction first with acetone and then with several nonpolar solvents. Solid natural rubber was analyzed for gel content and characterized by size exclusion chromatography (SEC) for molecular weight determinations. SEC of solid natural rubber has shown that the molecular weight is about 1.8E6 and they contain less gel compared to TSR20 (Grade 20 Technically Specified Rubber), a commercial natural rubber from Hevea brasiliensis.

  12. Exposure to rubber fume and rubber process dust in the general rubber goods, tyre manufacturing and retread industries.

    PubMed

    Dost, A A; Redman, D; Cox, G

    2000-08-01

    This study assesses the current patterns and levels of exposure to rubber fume and rubber process dust in the British rubber industry and compares and contrasts the data obtained from the general rubber goods (GRG), retread tire (RT) and new tire (NT) sectors. A total of 179 rubber companies were visited and data were obtained from 52 general rubber goods, 29 retread tire and 7 new tire manufacturers. The survey was conducted using a questionnaire and included a walk-through inspection of the workplace to assess the extent of use of control measures and the nature of work practices being employed. The most recent (predominantly 1995-97) exposure monitoring data for rubber fume and rubber process dust were obtained from these companies; no additional sampling was conducted for the purpose of this study. In addition to the assessment of exposure data, evaluation of occupational hygiene reports for the quality of information and advice was also carried out.A comparison of the median exposures for processes showed that the order of exposure to rubber fume (E, in mg m(-3)) is: E(moulding) (0.40) approximately E(extrusion) (0.33)>E(milling) (0.18) for GRG; E(press) (0. 32)>E(extrusion) (0.19)>E(autoclave) (0.10) for RT; and E(press) (0. 22) approximately E(all other) (0.22) for NT. The order of exposure to rubber fume between sectors was E(GRG) (0.40)>E(RT) (0.32)>E(NT) (0.22). Median exposures to rubber process dust in the GRG was E(weighing) (4.2)>E(mixing) (1.2) approximately E(milling) (0.8) approximately E(extrusion) (0.8) and no significant difference (P=0. 31) between GRG and NT sectors. The findings compare well with the study carried out in the Netherlands [Kromhout et al. (1994), Annals of Occupational Hygiene 38(1), 3-22], and it is suggested that the factors governing the significant differences noted between the three sectors relate principally to the production and task functions and also to the extent of controls employed. Evaluation of occupational

  13. Damage of Elastomeric Matrix Composites (EMC-rubbers) Under Static Loading Conditions: Experimental and Numerical Study

    SciTech Connect

    Ayari, F.

    2011-01-17

    Elastomeric matrix composites (EMC-rubbers) are considered as isotropic hyper elastic incompressible materials under static loading conditions. As a rubber material element cannot be extended to an infinite stretch ratio, a damage mechanism at large strain is considered. The phenomenon of cavitation plays an important role in the damage of EMCs and influences the toughening mechanism of rubber-modified plastics. Indeed, cavitation in elastomers is thought to be initiated from flaws, which grow primarily due to a hydrostatic tensile stress and ahead of the crack; there will not only be a high stress perpendicular to the plane of the crack but also significant stress components in the other direction. However, there exists historically much discussion on the evolution of the cavitation in elastomers under monotonic and/or static solicitation. Mainly, cavitation instability occurs when the stress levels are sufficiently high so that the void expansion rate becomes infinitely large. Many research works have been performed to understand the effects of rubber cavitation on toughening of plastics. In fact, the cavitation phenomenon is not well known in detail. The most popular idea states that the cavitation is related to the existence of the gas bubbles trapped in the material during the production stage and the growing of the cavities would then be the result of the growing gas bubbles. Further, instable failure mechanism at the end of the cavitation is not well known too.

  14. Damage of Elastomeric Matrix Composites (EMC-rubbers) Under Static Loading Conditions: Experimental and Numerical Study

    NASA Astrophysics Data System (ADS)

    Ayari, F.; Bayraktar, E.; Zghal, A.

    2011-01-01

    Elastomeric matrix composites (EMC-rubbers) are considered as isotropic hyper elastic incompressible materials under static loading conditions. As a rubber material element cannot be extended to an infinite stretch ratio, a damage mechanism at large strain is considered. The phenomenon of cavitation plays an important role in the damage of EMCs and influences the toughening mechanism of rubber-modified plastics. Indeed, cavitation in elastomers is thought to be initiated from flaws, which grow primarily due to a hydrostatic tensile stress and ahead of the crack; there will not only be a high stress perpendicular to the plane of the crack but also significant stress components in the other direction. However, there exists historically much discussion on the evolution of the cavitation in elastomers under monotonic and/or static solicitation. Mainly, cavitation instability occurs when the stress levels are sufficiently high so that the void expansion rate becomes infinitely large. Many research works have been performed to understand the effects of rubber cavitation on toughening of plastics. In fact, the cavitation phenomenon is not well known in detail. The most popular idea states that the cavitation is related to the existence of the gas bubbles trapped in the material during the production stage and the growing of the cavities would then be the result of the growing gas bubbles. Further, instable failure mechanism at the end of the cavitation is not well known too.

  15. Zinc Leaching from Tire Crumb Rubber

    NASA Astrophysics Data System (ADS)

    Rhodes, E. P.; Ren, J.; Mays, D. C.

    2010-12-01

    Recent estimates indicate that more than 2 billion scrap tires are currently stockpiled in the United States and approximately 280 million more tires are added annually. Various engineering applications utilize recycled tires in the form of shredded tire crumb rubber. However, the use of tire crumb rubber may have negative environmental impacts, especially when the rubber comes into contact with water. A review of the literature indicates that leaching of zinc from tire crumb rubber is the most significant water quality concern associated with using this material. Zinc is generally used in tire manufacturing, representing approximately 1.3% of the final product by mass. This study will report results from the U.S. Environmental Protection Agency’s (EPA’s) Synthetic Precipitation Leaching Procedure, batch leaching tests, and column leaching tests performed to quantify the process by which zinc leaches from tire crumb rubber into water. Results are interpreted with a first-order kinetic attachment/detachment model, implemented with the U.S. Agricultural Research Service software HYDRUS-1D, in order to determine the circumstances when zinc leaching from tire crumb rubber would be expected to comply with the applicable discharge limits. One potential application for recycled tires is replacing sand with tire crumb rubber in granular media filters used for stormwater pollution control. For this to be a viable application, the total zinc in the stormwater discharge must be below the EPA’s benchmark value of 0.117 mg/L.

  16. History of Rubber and Its Use

    NASA Astrophysics Data System (ADS)

    Müller, Ingo; Strehlow, Peter

    Despite its spectacular properties rubber was not much good for anything before the latter part of the 19th century. To be sure the Aztecs had used it to make balls for their ceremonial ball games - or so we are told. But those games died along with the Aztec culture in the 16th century and there is no record of other useful applications until the late 18th century. But then, after that, rubber took off in a small way. After the American inventor Samuel Peal had obtained a patent in 1791 for the production of rubber-coated watertight textiles, the Scottish chemist Charles Macintosh (1766-1843) used such textiles for making rain-coats, and Thomas Hancock (1786-1865) produced rubber boots. At that time it was not really appropriate to speak of a rubber industry. What little material the evil-smelling workshops in New York and London needed, could be satisfied with the import of 30 tons of Caoutchouc1 annually - extracted from the sap of the tree Hevea brasiliensis - and most of that went for making erasers. Indeed, it had been reported by the English minister and scientist Joseph Priestley (1733-1804) that pieces of rubber are well-suited to rub out (sic!) pencil marks. Even today there is nothing better for the purpose and rubber became the English word for Caoutchouc.

  17. Use of Scrap Rubber in Asphalt Pavement Surfaces

    DTIC Science & Technology

    1991-12-01

    DEVELOPMENT OF method is conducted by applying compressive loads RUBBER -AGGREGATE with a prescribed sinusoidal waveform and can be used ASPHALT CONCRETE...evaluation program of rubber -aggregate as- 104 phalt surfaces with rubber contents from I to 3% rubber by weight is currently being conducted by the California...Transportation reports using as- men. However, no relationship between the modulus of phalt containing up to 25% crumb rubber (Civil Engi- resiliency and the

  18. Crumb Rubber-Concrete Panels Under Blast Loads

    DTIC Science & Technology

    2010-05-01

    AFRL-RX-TY-TP-2010-0052 CRUMB RUBBER -CONCRETE PANELS UNDER BLAST LOADS PREPRINT Bryan T. Bewick Air Force Research Laboratory 139...JAN-2009 -- 12-MAY-2010 Crumb Rubber -Concrete Panels Under Blast Loads FA4819-09-C-0032 62102F 4918 F0 Q210FA72 *Bewick, Bryan T.; #Salim, Hani A...those without any rubber . concrete; crumb rubber ; energy absorption; static resistance; blast U U U UU 14 Paul Sheppard Reset 1 Crumb Rubber

  19. Structural characterization of rubber from jackfruit and euphorbia as a model of natural rubber.

    PubMed

    Mekkriengkrai, Dararat; Ute, Koiichi; Swiezewska, Ewa; Chojnacki, Tadeusz; Tanaka, Yasuyuki; Sakdapipanich, Jitladda T

    2004-01-01

    A structural study of low molecular weight rubbers from Jackfruit (Artocarpus heterophyllus) and Painted spurge (Euphorbia heterophylla) was carried out as model compounds of natural rubber from Hevea brasiliensis. The rubber content of latex from Jackfruit was 0.4-0.7%, which is very low compared with that of 30-35% in the latex from Hevea tree. The rubber from Jackfruit latex was low molecular weight with narrow unimodal molecular weight distribution (MWD), whereas that obtained from E. heterophylla showed very broad MWD. The 1H and 13C NMR analyses showed that Jackfruit rubber consists of a dimethylallyl group and two trans-isoprene units connected to a long sequence of cis-isoprene units. The alpha-terminal group of Jackfruit rubber was presumed to be composed of a phosphate group based on the presence of 1H NMR signal at 4.08 ppm corresponding to the terminal =CH-CH2OP group.

  20. Wear Resistant Rubber Tank Track Pads

    DTIC Science & Technology

    1975-10-01

    100 lignin: rubber latex coprecipitates (National Research Council of Canada), Duoform 3/4 inch fiber wire (National Standards Co.)» brass-plated...i • {■ «IT \\£P»* ■ . R-TR-T6-028 WEAR RESISTANT RUBBER TANK TRACK PADS \\ ■ ■ ■. by EDWARD W. BERGSTROM OCTOBER 1975 D D C...im»>nii»> WEAR RESISTANT RUBBER TANK TRACK PADS.j ’■ ? - » * .s. ————— A Edward W./Bergstrom 9. PERFORMING ORGANIZATION

  1. Analysis of rubber supply in Sri Lanka

    SciTech Connect

    Hartley, M.J.; Nerlove, M.; Peters, R.K. Jr.

    1987-11-01

    An analysis of the supply response for perennial crops is undertaken for rubber in Sir Lanka, focusing on the uprooting-replanting decision and disaggregating the typical reduced-form supply response equation into several structural relationships. This approach is compared and contrasted with Dowling's analysis of supply response for rubber in Thailand, which is based upon a sophisticated reduced-form supply function developed by Wickens and Greenfield for Brazilian coffee. Because the uprooting-replanting decision is central to understanding rubber supply response in Sri Lanka and for other perennial crops where replanting activities dominate new planting, the standard approaches do not adequately capture supply response.

  2. Chemistry of rubber processing and disposal.

    PubMed Central

    Bebb, R L

    1976-01-01

    The major chemical changes during the processing of rubber occur with the breakdown in mastication and during vulcanization of the molded tire. There is little chemical change during the compounding, calendering, extrusion, and molding steps. Reclaiming is the process of converting scrap rubber into an unsaturated, processible product that can be vulcanized with sulfur. Pyrolysis of scrap rubber yields a complex mixture of liquids, gas, and residue in varying ratios dependent on the nature of the scrap and the conditions of pyrolysis. PMID:799964

  3. Thermal properties of hydrogenated liquid natural rubber

    NASA Astrophysics Data System (ADS)

    Jamaluddin, Naharullah; Abdullah, Ibrahim; Yusoff, Siti Fairus M.

    2015-09-01

    Natural rubber (NR) was modified to form liquid natural rubber (LNR) via photooxidative degradation. Hydrogenated liquid natural rubber (HLNR) was synthesized by using diimide as source of hydrogen which the diimide is produced by thermolysis of p-toluenesulfonyl hydrazide (TSH). The structure of HLNR was characterized by determining the changes of main peaks in Fourier Transform infrared and nuclear magnetic resonance spectra after hydrogenation. Thermogravimetric analysis showed that the HLNR had higher decomposition temperature compared to LNR and the decomposition temperature is directly proportional to the percentage of conversion.

  4. Fatigue life of automotive rubber jounce bumper

    NASA Astrophysics Data System (ADS)

    Sidhu, R. S.; Ali, Aidy

    2010-05-01

    It is evident that most rubber components in the automotive industry are subjected to repetitive loading. Vigorous research is needed towards improving the safety and reliability of the components. The study was done on an automotive rubber jounce bumper with a rubber hardness of 60 IRHD. The test was conducted in displacement-controlled environment under compressive load. The existing models by Kim, Harbour, Woo and Li were adopted to predict the fatigue life. The experimental results show strong similarities with the predicted models.

  5. Thermal properties of hydrogenated liquid natural rubber

    SciTech Connect

    Jamaluddin, Naharullah; Abdullah, Ibrahim; Yusoff, Siti Fairus M.

    2015-09-25

    Natural rubber (NR) was modified to form liquid natural rubber (LNR) via photooxidative degradation. Hydrogenated liquid natural rubber (HLNR) was synthesized by using diimide as source of hydrogen which the diimide is produced by thermolysis of p-toluenesulfonyl hydrazide (TSH). The structure of HLNR was characterized by determining the changes of main peaks in Fourier Transform infrared and nuclear magnetic resonance spectra after hydrogenation. Thermogravimetric analysis showed that the HLNR had higher decomposition temperature compared to LNR and the decomposition temperature is directly proportional to the percentage of conversion.

  6. Recycling rubber wastes. (Latest citations from the Rubber and Plastics Research Association database). Published Search

    SciTech Connect

    1996-04-01

    The bibliography contains citations concerning research and innovations in the recycling of rubber wastes. Recycling methods and equipment, applications of recycled rubber, and energy recovery systems and performance are among the topics discussed. Recycling methods compared and contrasted with various rubber waste disposal techniques are also included. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  7. Contributions crumb rubber in hot mix asphalt to the resilient modulus

    NASA Astrophysics Data System (ADS)

    Ariyapijati, Raden Hendra; Hadiwardoyo, Sigit Pranowo; Sumabrata, R. Jachrizal

    2017-06-01

    indicated that by the addition of crumb rubber, the pavement material becomes more elastic, so it can reduce the level of damage in the form of cracks on roads, but it also declines the ability of the pavement to withstand the loads.

  8. Pseudo-Casimir stresses and elasticity of a confined elastomer film.

    PubMed

    Lu, Bing-Sui; Naji, Ali; Podgornik, Rudolf

    2016-05-11

    Investigations of the elastic behavior of bulk elastomers have traditionally proceeded on the basis of classical rubber elasticity, which regards chains as thermally fluctuating but disregards the thermal fluctuations of the cross-links. Herein, we consider an incompressible and flat elastomer film of an axisymmetric shape confined between two large hard co-planar substrates, with the axis of the film perpendicular to the substrates. We address the impact that thermal fluctuations of the cross-links have on the free energy of elastic deformation of the system, subject to the requirement that the fluctuating elastomer cannot detach from the substrates. We examine the behavior of the deformation free energy for one case where a rigid pinning boundary condition is applied to a class of elastic fluctuations at the confining surfaces, and another case where the same elastic fluctuations are subjected to soft "gluing" potentials. We find that there can be significant departures (both quantitative and qualitative) from the prediction of classical rubber elasticity theory when elastic fluctuations are included. Finally, we compare the character of the attractive part of the elastic fluctuation-induced, or pseudo-Casimir, stress with the standard thermal Casimir stress in confined but non-elastomeric systems, finding the same power law decay behavior when a rigid pinning boundary condition is applied; for the case of the gluing potential, we find that the leading order correction to the attractive part of the fluctuation stress decays inversely with the inter-substrate separation.

  9. Pseudo-Casimir stresses and elasticity of a confined elastomer film

    NASA Astrophysics Data System (ADS)

    Lu, Bing-Sui; Naji, Ali; Podgornik, Rudolf

    Investigations of the elastic behavior of bulk elastomers have traditionally proceeded on the basis of classical rubber elasticity, which regards chains as thermally fluctuating but disregards the thermal fluctuations of the cross-links. Here, we consider an incompressible and flat elastomer film of an axisymmetric shape confined between two large hard co-planar substrates, with the axis of the film perpendicular to the substrates. We address the impact that thermal fluctuations of the cross-links have on the free energy of elastic deformation of the system, subject to the requirement that the fluctuating elastomer cannot detach from the substrates. We examine the behavior of the deformation free energy for one case where a rigid pinning boundary condition is applied to a class of elastic fluctuations at the confining surfaces, and another case where the same elastic fluctuations are subjected to soft "gluing" potentials. We find that there can be significant departures (both quantitative and qualitative) from the prediction of classical rubber elasticity theory when elastic fluctuations are included. Finally, we compare the character of the attractive part of the elastic fluctuation-induced, or pseudo-Casimir, stress with the standard thermal Casimir stress in confined but non-elastomeric systems, finding the same power law decay behavior when a rigid pinning boundary condition is applied, for the case of the gluing potential, we find that the leading order correction to the attractive part of the fluctuation stress decays inversely with the inter-substrate separation.

  10. Micromorphological characterization and label-free quantitation of small rubber particle protein in natural rubber latex.

    PubMed

    Wang, Sai; Liu, Jiahui; Wu, Yanxia; You, Yawen; He, Jingyi; Zhang, Jichuan; Zhang, Liqun; Dong, Yiyang

    2016-04-15

    Commercial natural rubber is traditionally supplied by Hevea brasiliensis, but now there is a big energy problem because of the limited resource and increasing demand. Intensive study of key rubber-related substances is urgently needed for further research of in vitro biosynthesis of natural rubber. Natural rubber is biosynthesized on the surface of rubber particles. A membrane protein called small rubber particle protein (SRPP) is a key protein associated closely with rubber biosynthesis; however, SRPP in different plants has been only qualitatively studied, and there are no quantitative reports so far. In this work, H. brasiliensis was chosen as a model plant. The microscopic distribution of SRPP on the rubber particles during the washing process was investigated by transmission electron microscopy-immunogold labeling. A label-free surface plasmon resonance (SPR) immunosensor was developed to quantify SRPP in H. brasiliensis for the first time. The immunosensor was then used to rapidly detect and analyze SRPP in dandelions and prickly lettuce latex samples. The label-free SPR immunosensor can be a desirable tool for rapid quantitation of the membrane protein SRPP, with excellent assay efficiency, high sensitivity, and high specificity. The method lays the foundation for further study of the functional relationship between SRPP and natural rubber content.

  11. Characterization of rubber particles and rubber chain elongation in Taraxacum koksaghyz

    PubMed Central

    2010-01-01

    Background Natural rubber is a biopolymer with exceptional qualities that cannot be completely replaced using synthetic alternatives. Although several key enzymes in the rubber biosynthetic pathway have been isolated, mainly from plants such as Hevea brasiliensis, Ficus spec. and the desert shrub Parthenium argentatum, there have been no in planta functional studies, e.g. by RNA interference, due to the absence of efficient and reproducible protocols for genetic engineering. In contrast, the Russian dandelion Taraxacum koksaghyz, which has long been considered as a potential alternative source of low-cost natural rubber, has a rapid life cycle and can be genetically transformed using a simple and reliable procedure. However, there is very little molecular data available for either the rubber polymer itself or its biosynthesis in T. koksaghyz. Results We established a method for the purification of rubber particles - the active sites of rubber biosynthesis - from T. koksaghyz latex. Photon correlation spectroscopy and transmission electron microscopy revealed an average particle size of 320 nm, and 13C nuclear magnetic resonance (NMR) spectroscopy confirmed that isolated rubber particles contain poly(cis-1,4-isoprene) with a purity >95%. Size exclusion chromatography indicated that the weight average molecular mass (w) of T. koksaghyz natural rubber is 4,000-5,000 kDa. Rubber particles showed rubber transferase activity of 0.2 pmol min-1 mg-1. Ex vivo rubber biosynthesis experiments resulted in a skewed unimodal distribution of [1-14C]isopentenyl pyrophosphate (IPP) incorporation at a w of 2,500 kDa. Characterization of recently isolated cis-prenyltransferases (CPTs) from T. koksaghyz revealed that these enzymes are associated with rubber particles and are able to produce long-chain polyprenols in yeast. Conclusions T. koksaghyz rubber particles are similar to those described for H. brasiliensis. They contain very pure, high molecular mass poly(cis-1,4-isoprene) and

  12. Identification and subcellular localization analysis of two rubber elongation factor isoforms on Hevea brasiliensis rubber particles.

    PubMed

    Dai, Longjun; Nie, Zhiyi; Kang, Guijuan; Li, Yu; Zeng, Rizhong

    2017-02-01

    Rubber elongation factor (REF) is the most abundant protein found on the rubber particles or latex from Hevea brasiliensis (the Para rubber tree) and is considered to play important roles in natural rubber (cis-polyisoprene) biosynthesis. 16 BAC (benzyldimethyl-n-hexadecylammonium chloride)/SDS-PAGE separations and mass spectrometric identification had revealed that two REF isoforms shared similar amino acid sequences and common C-terminal sequences. In this study, the gene sequences encoding these two REF isoforms (one is 23.6 kDa in size with 222 amino acid residues and the other is 27.3 kDa in size with 258 amino acid residues) were obtained. Their proteins were relatively enriched by sequential extraction of the rubber particle proteins and separated by 16 BAC/SDS-PAGE. The localization of these isoforms on the surfaces of rubber particles was further verified by western blotting and immunogold electron microscopy, which demonstrated that these two REF isoforms are mainly located on the surfaces of larger rubber particles and that they bind more tightly to rubber particles than the most abundant REF and SRPP (small rubber particle protein).

  13. Rubber compositions for hydrazine service

    NASA Technical Reports Server (NTRS)

    Repar, J.

    1973-01-01

    Forty-three compounds were formulated and tested for physical properties and hydrazine compatibility. Variables introduced include silicon dioxide filler loading level and particle size. Both butyl and ethylene-propylene rubbers were employed as well as various vulcanization systems. The data showed that compounds containing butyl and butyl blended with ethylene propylene could not be distinguished from ethylene propylene alone as far as chemical properties were concerned. A trend noted was that a filler level with higher silicon dioxide loading exhibited better hydrazine compatibility. Particle size variation did not show any consistent trends. Any of the vulcanization systems employed appeared to be satisfactory. A refined technique for dissolving aluminum cores from EPT-10 bladders was also tested.

  14. Frictional contact of two rotating elastic disks

    NASA Astrophysics Data System (ADS)

    Ostrik, V. I.; Ulitko, A. F.

    2007-10-01

    We study the problem of constrained uniform rotation of two precompressed elastic disks made of different materials with friction forces in the contact region taken into account. The exact solution of the problem is obtained by the Wiener-Hopf method. An important stage in the study of rolling of elastic bodies is the Hertz theory [1] of contact interaction of elastic bodies with smoothly varying curvature in the contact region under normal compression. Friction in the contact region is assumed to be negligible. If there are tangential forces and the friction in the contact region is taken into account, then the picture of contact interaction of elastic bodies changes significantly. Although the normal contact stress distribution strictly follows the Hertz theory for bodies with identical elastic properties and apparently slightly differs from the Hertz diagram for bodies made of different materials, the presence of tangential stresses results in the splitting of the contact region into the adhesion region and the slip region. This phenomenon was first established by Reynolds [2], who experimentally discovered slip regions near points of material entry in and exit from the contact region under constrained rolling of an aluminum cylinder on a rubber base. The theoretical justification of the partial slip phenomenon in the contact region, discovered by Reynolds [2], can be found in Carter [3] and Fromm [4]. Moreover, Fromm presents a complete solution of the problem of constrained uniform rotation of two identical disks. Apparently, Fromm was the first to consider the so-called "clamped" strain and postulated that slip is absent at the point at which the disk materials enter the contact region. Ishlinskii [5, 6] gave an engineering solution of the problem on slip in the contact region under rolling friction. Considering the problem on a rigid disk rolling on an elastic half-plane, we model this problem by an infinite set of elastic vertical rods using Winkler

  15. An Approximate Dissipation Function for Large Strain Rubber Thermo-Mechanical Analyses

    NASA Technical Reports Server (NTRS)

    Johnson, Arthur R.; Chen, Tzi-Kang

    2003-01-01

    Mechanically induced viscoelastic dissipation is difficult to compute. When the constitutive model is defined by history integrals, the formula for dissipation is a double convolution integral. Since double convolution integrals are difficult to approximate, coupled thermo-mechanical analyses of highly viscous rubber-like materials cannot be made with most commercial finite element software. In this study, we present a method to approximate the dissipation for history integral constitutive models that represent Maxwell-like materials without approximating the double convolution integral. The method requires that the total stress can be separated into elastic and viscous components, and that the relaxation form of the constitutive law is defined with a Prony series. Numerical data is provided to demonstrate the limitations of this approximate method for determining dissipation. Rubber cylinders with imbedded steel disks and with an imbedded steel ball are dynamically loaded, and the nonuniform heating within the cylinders is computed.

  16. Mechanical and Antifrictional Properties of Elastomeric Composites Based on a Rubber for Sealing Elements

    NASA Astrophysics Data System (ADS)

    Popov, A. N.; Kazachenko, V. P.; Popova, M. A.; Shil'ko, S. V.; Ryabchenko, T. V.

    2017-09-01

    The tribomechanical functionality of a layered elastomeric composite in the form of a rubber substrate with a thin, nanoscale-thickness carbon (diamond-like) coating deposited on it was investigated. By the methods of dynamic contact indentation and tribotesting, it is established that, with increase in coating thickness, the Shore A hardness, viscosity, and relaxation time of the composite increase if the static and sliding friction coefficients decrease. The coating changes the classic wear mechanism of rubber from destruction by rolling down towards the less intense fatigue wear, which is characteristic of materials with a low friction coefficient. By calculating, it is shown that a change in coating thickness leads to a significant change in its stiffness from an insignificant flexural stiffness of membrane at h = 22 nm (in this case, the distribution of displacements practically coincides with deflection of an elastic half-space) to that of an almost nondeformable plate at h = 180 nm.

  17. Natural rubber nanocomposites using polystyrene-encapsulated nanosilica prepared by differential microemulsion polymerization

    NASA Astrophysics Data System (ADS)

    Chuayjuljit, Saowaroj; Boonmahitthisud, Anyaporn

    2010-09-01

    In this study, nanocomposites of natural rubber (NR) and polystyrene (PS)-encapsulated nanosilica were prepared by latex compounding method. The nanolatex of PS-encapsulated silica was synthesized via in situ differential microemulsion polymerization. The resulted hybrid nanoparticles showed core-shell morphology with an average diameter of 40 nm. The silica hybrid nanoparticles were subsequently used as filler for the NR nanocomposite. The properties of NR were found to be improved as a result of the incorporation of PS-encapsulated nanosilica at 3 and 3-9 parts per hundred rubber (phr) for tensile strength and modulus at 300% strain, respectively, except the elongation at break, and up to 9 phr for flammability. The results from dynamic mechanical analyzer showed that the elastic properties of NR near the glass transition temperature increased with the inclusion of increasing concentration of the PS-encapsulated nanosilica, causing by the semi-interpenetrating nanostructure in the NR nanocomposites.

  18. Biomimetic surface-conducting silicone rubber obtained by physical deposition of MWCNT

    NASA Astrophysics Data System (ADS)

    Zylka, Pawel

    2015-06-01

    The paper presents a minimal approach to produce superhydrophobic, surface-conducting silicone rubber with a strongly developed surface modified with multiwall carbon nanotubes partially embedded in the silicone elastic matrix. The modification was achieved by physical deposition of carbon nanotube powder on a semi-liquid silicone rubber surface prior to its cross-linking. The resulting biomimetic material displayed superhydrophobic properties (static wetting angle >160°, sliding angle ∼10°), as well as elevated electric surface resistance (surface resistivity approx 18 kΩ). A piezoresistive hysteretic response with nonmonotonic change of the surface resistance accompanying substantial linear stretching was also demonstrated in the developed specimens displaying negative resistance change in a broad range of extension ratios, making them applicable as highly compliant, large-specific-area electrodes.

  19. High frequency testing of rubber mounts.

    PubMed

    Vahdati, Nader; Saunders, L Ken Lauderbaugh

    2002-04-01

    Rubber and fluid-filled rubber engine mounts are commonly used in automotive and aerospace applications to provide reduced cabin noise and vibration, and/or motion accommodations. In certain applications, the rubber mount may operate at frequencies as high as 5000 Hz. Therefore, dynamic stiffness of the mount needs to be known in this frequency range. Commercial high frequency test machines are practically nonexistent, and the best high frequency test machine on the market is only capable of frequencies as high as 1000 Hz. In this paper, a high frequency test machine is described that allows test engineers to study the high frequency performance of rubber mounts at frequencies up to 5000 Hz.

  20. Oils and rubber from arid land plants

    NASA Astrophysics Data System (ADS)

    Johnson, J. D.; Hinman, C. W.

    1980-05-01

    In this article the economic development potentials of Cucurbita species (buffalo gourd and others), Simmondsia chinensis (jojoba), Euphorbia lathyris (gopher plant), and Parthenium argentatum (guayule) are discussed. All of these plants may become important sources of oils or rubber.

  1. Visual evoked potentials in rubber factory workers.

    PubMed

    Tandon, O P; Kumar, V

    1997-01-01

    Pattern reversal visual evoked potentials (pVEP) were studied in 39 male rubber factory workers in the age range of 18-55 years and 20 control subjects (aged 18-46 years) not exposed to the rubber factory environment. Results revealed that 20 (51%) rubber factory workers had abnormal latencies of wave P1 (dominant component of pVEP) as per accepted criteria of 99% tolerance limit set for the control group (i.e. any value above mean +3 SD of control was considered abnormal). The section-wise per cent distribution of abnormalities was vulcanization (83%), tubing (75%), calendering (60%), loading (38%) and mixing (14%). This study provides electrophysiological evidence that rubber factory environments affect the conduction processes in optical pathways from their origin in the retina to striate cortex. However, this study has its limitations in not identifying the specific chemical(s) causing these changes in VEP.

  2. Plastics and Rubber Products Manufacturing (NAICS 326)

    EPA Pesticide Factsheets

    Find environmental regulatory and compliance information for plastics and rubber products manufacturing (which includes the manufacture of cellulose and other fibers) including information about NESHAPs and effluent guidelines for wastewater discharges

  3. Allergic reaction after rubber dam placement.

    PubMed

    de Andrade, E D; Ranali, J; Volpato, M C; de Oliveira, M M

    2000-03-01

    In the last few years allergic reactions to natural rubber latex (NRL) have increased in dental practice affecting both the dental team and patients. Some case reports discuss the potential risks of hypersensitivity to NRL products. An adverse patient reaction after dental rubber dam placement is reported. About 1 min after the isolation of the tooth with a rubber dam the patient presented signs and symptoms of hypersensitivity. Oxygen and intravenous hydrocortisone were administered and the patient kept under observation. After 2 h she had stable vital signs and no more allergics symptoms. It is unclear whether components of the NRL dam or the cornstarch powder incorporated with the rubber dam was responsible for the allergic reaction. Dentists must be aware of the health problem and be prepared for an adequate management in dental practice.

  4. [Total analysis of organic rubber additives].

    PubMed

    He, Wen-Xuan; Robert, Shanks; You, Ye-Ming

    2010-03-01

    In the present paper, after middle pressure chromatograph separation using both positive phase and reversed-phase conditions, the organic additives in ethylene-propylene rubber were identified by infrared spectrometer. At the same time, by using solid phase extraction column to maintain the main component-fuel oil in organic additves to avoid its interfering with minor compounds, other organic additves were separated and analysed by GC/Ms. In addition, the remaining active compound such as benzoyl peroxide was identified by CC/Ms, through analyzing acetone extract directly. Using the above mentioned techniques, soften agents (fuel oil, plant oil and phthalte), curing agent (benzoylperoxide), vulcanizing accelerators (2-mercaptobenzothiazole, ethyl thiuram and butyl thiuram), and antiagers (2, 6-Di-tert-butyl-4-methyl phenol and styrenated phenol) in ethylene-propylene rubber were identified. Although the technique was established in ethylene-propylene rubber system, it can be used in other rubber system.

  5. Adaptive Process Control in Rubber Industry.

    PubMed

    Brause, Rüdiger W; Pietruschka, Ulf

    1998-01-01

    This paper describes the problems and an adaptive solution for process control in rubber industry. We show that the human and economical benefits of an adaptive solution for the approximation of process parameters are very attractive. The modeling of the industrial problem is done by the means of artificial neural networks. For the example of the extrusion of a rubber profile in tire production our method shows good resuits even using only a few training samples.

  6. [Detection of pentachlorophenol in natural rubber latex].

    PubMed

    Jaworska, E

    1976-01-01

    The method of detection of pentachlorophenol in natural rubber latex is proposed. Pentachlorophenol is isolated from other nonrubber-like substances by thin-layer chromatography and identified by spectroscopic method in UV-light. Isolation of pentachlorophenol is carried out from water extracts obtained from the dry caoutchouc films, so the same method can be used for examination of the rubber articles designed for the medicinetoo.

  7. Fatigue, Fracture and Wear Properties of Rubber

    DTIC Science & Technology

    1989-01-19

    gregates and rubber molecules: Wc-[ -ACPcr (filled)/ ACpa m (filled)]*(1-v), (6) where v is the fraction of bound rubber which could be determined by20 v - 1...ACPcr / ACPa m ) *(l-0) (A Tic /AH TIC , o ) +( AHSIC /AHsI C 1 4 )( in which AH TIC oo- 64.1 J/gm (15.3 cal/gm)2 ., AHTIC (Figure 4b), AHSI C (Figure 5

  8. Methodical fitting for mathematical models of rubber-like materials

    NASA Astrophysics Data System (ADS)

    Destrade, Michel; Saccomandi, Giuseppe; Sgura, Ivonne

    2017-02-01

    A great variety of models can describe the nonlinear response of rubber to uniaxial tension. Yet an in-depth understanding of the successive stages of large extension is still lacking. We show that the response can be broken down in three steps, which we delineate by relying on a simple formatting of the data, the so-called Mooney plot transform. First, the small-to-moderate regime, where the polymeric chains unfold easily and the Mooney plot is almost linear. Second, the strain-hardening regime, where blobs of bundled chains unfold to stiffen the response in correspondence to the `upturn' of the Mooney plot. Third, the limiting-chain regime, with a sharp stiffening occurring as the chains extend towards their limit. We provide strain-energy functions with terms accounting for each stage that (i) give an accurate local and then global fitting of the data; (ii) are consistent with weak nonlinear elasticity theory and (iii) can be interpreted in the framework of statistical mechanics. We apply our method to Treloar's classical experimental data and also to some more recent data. Our method not only provides models that describe the experimental data with a very low quantitative relative error, but also shows that the theory of nonlinear elasticity is much more robust that seemed at first sight.

  9. Establishment of new crops for the production of natural rubber.

    PubMed

    van Beilen, Jan B; Poirier, Yves

    2007-11-01

    Natural rubber is a unique biopolymer of strategic importance that, in many of its most significant applications, cannot be replaced by synthetic alternatives. The rubber tree Hevea brasiliensis is the almost exclusive commercial source of natural rubber currently and alternative crops should be developed for several reasons, including: a disease risk to the rubber tree that could potentially decimate current production, a predicted shortage of natural rubber supply, increasing allergic reactions to rubber obtained from the Brazilian rubber tree and a general shift towards renewables. This review summarizes our knowledge of plants that can serve as alternative sources of natural rubber, of rubber biosynthesis and the scientific gaps that must be filled to bring the alternative crops into production.

  10. Rubber linings -- Overview and new technology

    SciTech Connect

    Mehra, L.; Polaski, E.L.; Lewis, R.K.; Mauri, A.

    1995-12-01

    The authors have covered at some length the basic steps involved in rubber lining. They have talked about the progress made in adhesives for lining. The new system in use now is far superior to previous systems. The new systems and the developments going on towards water-based adhesives are discussed. The authors briefly brought up the various types of rubber materials and new developments in terms of chlorobutyl-faced three-ply rubbers as well as development of EPDM-based compounds in Europe. The methods of vulcanization used have been discussed, including hot air vulcanizing which is prevalent in Europe. The development of self-vulcanizing rubber and the advantages in use of pre-cured rubber have been described. The development of new methods, techniques and products for rubber lining has been slow but sure. As can be expected, new product development costs are huge, requiring expert attention and participation. The possibilities are limitless and effort is forthcoming from various sources. There is a need for an interchange of ideas, and the involvement of NACE International and other professional bodies is acknowledged and appreciated.

  11. Controlled Fragmentation. 31. The Development of Rubber Liners for the Grooved-Charge Method of Controlling Fragmentation

    DTIC Science & Technology

    1952-01-01

    development of a process whereby the former is covered by a uniform thin skin of elastic material which can be peeled off without distortion of its shape...the former) with a thin skin of plain rubber sheeting secured with a rubberised adhesive - in this way to add to the strength of the liner and to...into the dispersion of fragments (to be reported later, Ref.6) casings, with their axes vertical, are fragmented in a x<* yout of upright strawboard

  12. Use of waste rubber as concrete additive.

    PubMed

    Chou, Liang Hsing; Lu, Chun-Ku; Chang, Jen-Ray; Lee, Maw Tien

    2007-02-01

    For resource reutilization, scrap tyres have long been investigated as an additive to concrete to form 'Rubcrete' for various applications and have shown promising results. However, the addition of rubber particles leads to the degradation of physical properties, particularly, the compressive strength of the concrete. In this study, a theoretical model was proposed to shed light on the mechanisms of decrease in compressive strength due to the addition of rubber particles as well as improvement in compressive strength through modification of particle surfaces. The literature suggests that the compressive strength can be improved by soaking the rubber particles in alkaline solution first to increase the inter-phase bonding between the rubber particles and cement. Instead, we discovered that the loss in compressive strength was due to local imperfections in the hydration of cement, induced by the addition of heterogeneous and hydrophobic rubber particles. Microscopic studies showed that the rubber particles disturbed the water transfer to create channels, which were prone to cracking and led to a loss in the compressive strength. Unexpectedly, no cracking was found along the surfaces of the rubber particles, indicating that the bonding strength between the rubber particles and cement phases was not the critical factor in determining the compressive strength. Therefore, a theoretical model was proposed to describe the water transfer in the Rubcrete specimens to explain the experimental data. In the model, the local water available for hydration (Q) is: Q = -A(slv)/6piv, where Q, A(slv), and v are mass flow rate (kg s(-1)), Hamaker constant (J), and dynamic viscosity (m2 s(-1)), respectively. By maximizing the quantity Q and, in turn, the Hamaker constant A(slv), the compressive strength could be improved. The Hamaker constant A(slv) for water film on rubber particle surfaces was smaller than that for the hydrated cement particles; the water transfer rate was lower in

  13. Sericin-binded-deprotenized natural rubber film containing chitin whiskers as elasto-gel dressing.

    PubMed

    Watthanaphanit, Anyarat; Rujiravanit, Ratana

    2017-03-18

    Here, we aims to demonstrate a simple concept in biomaterials design by using natural resources solely as raw materials to fabricate elastic wound care dressing. Elasto-gel films comprise of silk sericin (SRC), natural rubber (NR), and chitin whisker (CTW) were developed. A glue-like protein SRC found in silk cocoons is beneficial for the treatment of wounds due to its superior skin moisturizing ability. However, the pure SRC film is generally difficult to be fabricated because of its weak structural feature. This limitation was overcome by using NR as a binder which consecutively rendered elasticity and strength of the films. CTW was chosen as another component to promote ability of the films for tissue restoration. Before the film formation, protein in the natural rubber latex (NRL) was removed to avoid allergic and cytotoxic problems. The enzyme-treated NR/SRC (ETNR/SRC) films having different blend compositions were fabricated by solution casting technique. The highest amount of the SRC to gain an easy to handle ETNR/SRC film was 30%. The ETNR/SRC/CTW films having 20% SRC were fabricated and studied in comparison. Essential properties of the films as elastic wound care dressings were investigated and effect of the materials chemistry on the observed properties were discussed.

  14. Preliminary validation of Sm-Fe-N magnetic silicone rubber for a flexible magnetic actuator

    NASA Astrophysics Data System (ADS)

    Fukushi, Takanori; Kim, Sung Hoon; Hashi, Shuichiro; Ishiyama, Kazushi

    2014-06-01

    In this paper, we present a new approach for a flexible magnetic actuator (FMA) using Sm-Fe-N magnetic silicone rubber (MSR) that has a higher degree of freedom (DOF) in shape, flexibility, ease of fabrication and combinative ability than permanent magnets. To verify its potential for use in an FMA, we examined its magnetic and elastic properties and focused on magnetic torque control within a uniform rotating magnetic field. Silicone rubber liquid and hardener were mixed with Sm-Fe-N powder and poured into a mold. The fabricated Sm-Fe-N MSR included Sm-Fe-N powder of 13.5, 17.3, and 21.2 vol% ratio. The physical and elastic properties were determined by a vibrating sample magnetometer (VSM) and elastic load, respectively. Furthermore, we fabricated two FMAs (multiple-magnetic anisotropy type and spiral-type), and evaluated the suitability of the Sm-Fe-N MSR for magnetic wireless actuators based on magnetic torque control.

  15. Effect of non-rubber constituents on guayule and Hevea rubber intrinsic properties

    USDA-ARS?s Scientific Manuscript database

    To meet the increasing demand for natural rubber (NR), and address price volatility and steadily increasing labor costs, alternate rubber-producing species are in commercial development. One of these, guayule (Parthenium argentatum), has emerged on the market as a sustainable commercial source of h...

  16. Euphorbia characias latex: micromorphology of rubber particles and rubber transferase activity.

    PubMed

    Spanò, Delia; Pintus, Francesca; Esposito, Francesca; Loche, Danilo; Floris, Giovanni; Medda, Rosaria

    2015-02-01

    We have recently characterized a natural rubber in the latex of Euphorbia characias. Following that study, we here investigated the rubber particles and rubber transferase in that Mediterranean shrub. Rubber particles, observed by scanning electron microscopy, are spherical in shape with diameter ranging from 0.02 to 1.2 μm. Washed rubber particles exhibit rubber transferase activity with a rate of radiolabeled [(14)C]IPP incorporation of 4.5 pmol min(-1)mg(-1). Denaturing electrophoresis profile of washed rubber particles reveals a single protein band of 37 kDa that is recognized in western blot analysis by antibodies raised against the synthetic peptide whose sequence, DVVIRTSGETRLSNF, is included in one of the five regions conserved among cis-prenyl chain elongation enzymes. The cDNA nucleotide sequence of E. characias rubber transferase (GenBank JX564541) and the deduced amino acid sequence appear to be highly homologous to the sequence of several plant cis-prenyltransferases.

  17. A calculation method for torsional vibration of a crankshafting system with a conventional rubber damper by considering rubber form

    SciTech Connect

    Kodama, Tomoaki; Honda, Yasuhiro; Wakabayashi, Katsuhiko; Iwamoto, Shoichi

    1996-09-01

    The cheap and compact rubber dampers of shear-type have been widely employed as the torsional vibration control of the crankshaft system of high-speed, automobile diesel engines. The conventional rubber dampers have various rubber forms owing to the thorough investigation of optimum dampers in the design stage. Their rubber forms can be generally grouped into three classes such as the disk type, the bush type and the composite type. The disk type and the bush type rubber dampers are called the basic-pattern rubber dampers hereafter. The composite type rubber part is supposed to consist of the disk type and the bush type parts, regarded respectively as the basic patterns of the rubber part, at large. The dynamic characteristics of the vibration isolator rubber depend generally on temperature, frequency, strain amplitude, shape and size effect,s so it is difficult to estimate accurately their characteristics. With the present technical level, it is also difficult to determine the suitable rubber geometry which optimizes the vibration control effect. The study refers to the calculation method of the torsional vibration of a crankshaft system with a shear-type rubber damper having various rubber forms in order to offer the useful method for optimum design. In this method, the rheological formula of the three-element Maxwell model, from which the torsional stiffness and the damping coefficient of the damper rubber part in the equivalent vibration system are obtained, are adopted in order to decide the dynamic characteristics of the damper rubber part.

  18. Combination biological and microwave treatments of used rubber products

    DOEpatents

    Fliermans, Carl B.; Wicks, George G.

    2002-01-01

    A process and resulting product is provided in which a vulcanized solid particulate, such as vulcanized crumb rubber, has select chemical bonds altered by biotreatment with thermophillic microorganisms selected from natural isolates from hot sulfur springs. Following the biotreatment, microwave radiation is used to further treat the surface and to treat the bulk interior of the crumb rubber. The resulting combined treatments render the treated crumb rubber more suitable for use in new rubber formulations. As a result, larger loading levels and sizes of the treated crumb rubber can be used in new rubber mixtures and good properties obtained from the new recycled products.

  19. Self Assembly and Elasticity of Nuclear Pasta

    NASA Astrophysics Data System (ADS)

    Caplan, Matthew; Horowitz, Chuck; Berry, Don; da Silva Schneider, Andre

    2015-10-01

    While the outer crust of a neutron star is likely a solid ion lattice, the core consists of uniform nuclear matter at or above saturation density. In between, nuclei adopt exotic non-spherical geometries called ``nuclear pasta'' in order to minimize the nuclear attraction and Coulomb repulsion between protons. These structures have been well studied with both classical and quantum molecular dynamics, and their geometry can be predicted from the density, temperature, and proton fraction. Recent classical molecular dynamics simulations find evidence for a phase transition at T ~ 0 . 5 MeV, where simulations with low proton fractions undergo a solid-liquid phase transition, while simulations with high proton fractions under a glass-rubber phase transition. This is expected to have nontrivial consequences for the elastic properties of the pasta. Additionally, recent observations indicate that the structure of nuclear pasta may be related to structures observed in biophysics, specifically self assembling lipid membranes.

  20. Effect of an electric field on the bifurcation of a biaxially stretched incompressible slab rubber.

    PubMed

    Díaz-Calleja, R; Sanchis, M J; Riande, E

    2009-12-01

    This paper describes the effect of an electrical field on the bifurcation phenomenon that appears in a biaxially stretched slab of Mooney-Rivlin material (M. Mooney, J. Appl. Phys. 11, 582 (1940)) subjected to equal dead loads. The main conclusion of the analysis is that the stretch ratio at which the bifurcation phenomenon appears crucially depends on the configuration of the system rubber slab-electrodes. The theoretical foundations of the present study are based on a recent formulation on this subject carried out by Dorfmann and Ogden (A. Dorfmann, R.W. Ogden, Acta Mech. 174, 167 (2005); J. Elasticity 82, 99 (2006)).

  1. Insulation of nonlinear and random vibrations in the mining industry. [elastodynamic response of rubber insulator

    NASA Technical Reports Server (NTRS)

    Zeveleanu, C.

    1974-01-01

    The insulation of nonlinear and random vibrations is considered for some ore preparing and sorting implements: rotary crushers, resonance screens, hammer mills, etc. The appearance of subharmonic vibrations is analyzed, and the conditions for their appearance are determined. A method is given for calculating the insulation of these vibrations by means of elastic elements made of rubber. The insulation of the random vibrations produced by Symons crushers is calculated by determining the transmissability and deformation of the insulation system for a narrow band random response.

  2. Experimental and Numerical Assessment of Vibro-Acoustic Behavior of Rubber-Damped Railway Wheels

    NASA Astrophysics Data System (ADS)

    Pešek, Luděk; Půst, Ladislav

    The reduction of noise and vibrations is very important task in many industrial and transport applications. The sources of intensive noise and vibrations are also tram and railway wheels at high speeds. Therefore the modern types of steel railway wheels contain the visco-elastic paddings. The first problem treated in this contribution is concerned with the theoretical and experimental investigation of the thermo-mechanical properties of rubber-like damping elements loaded with prestress by harmonic force. The dynamic modal and spectral properties of the whole railway wheel with damping elements will be investigated by the 3-D FEM model as the second problem.

  3. Rubber Tree (Hevea brasiliensis Muell. Arg).

    PubMed

    Venkatachalam, Perumal; Jayashree, Radha; Rekha, Karumamkandathil; Sushmakumari, Sreedharannair; Sobha, Sankaren; Kumari Jayasree, Parukkuttyamma; Kala, Radha Gopikkuttanunithan; Thulaseedharan, Arjunan

    2006-01-01

    Rubber tree (Hevea brasiliensis Muell. Arg.) is an important industrial crop for natural rubber production. At present, more than 9.5 million hectares in about 40 countries are devoted to rubber tree cultivation with a production about 6.5 million tons of dry rubber each year. The world supply of natural rubber is barely keeping up with a global demand for 12 million tons of natural rubber in 2020. Tapping panel dryness (TPD) is a complex physiological syndrome widely found in rubber tree plantations, which causes severe yield and crop losses in natural rubber producing countries. Currently, there is no effective prevention or treatment for this serious malady. As it is a perennial tree crop, the integration of specific desired traits through conventional breeding is both time-consuming and labour-intensive. Genetic transformation with conventional breeding is certainly a more promising tool for incorporation of agronomically important genes that could improve existing Hevea genotype. This chapter provides an Agrobacterium-mediated transformation protocol for rubber tree using immature anther-derived calli as initial explants. We have applied this protocol to generate genetically engineered plants from a high yielding Indian clone RRII 105 of Hevea brasiliensis (Hb). Calli were co-cultured with Agrobacterium tumefaciens harboring a plasmid vector containing the Hb superoxide dismutase (SOD) gene and the reporter gene used was beta-glucuronidase (GUS) gene (uidA). The selectable marker gene used was neomycin phosphotransferase (nptII) and kanamycin was used as selection agent. We found that a suitable transformation protocol for Hevea consists of a 3-d co-cultivation with Agrobacterium in the presence of 20 mM acetosyringone, 15 mM betaine HCl, and 11.55 mM proline followed by selection on medium containing 300 mg/L kanamycin. Transformed calli surviving on medium containing 300 mg/L kanamycin showed a strong GUS-positive reaction. Upon subsequent subculture into

  4. On Optimizing an Archibald Rubber-Band Heat Engine.

    ERIC Educational Resources Information Center

    Mullen, J. G.; And Others

    1978-01-01

    Discusses the criteria and procedure for optimizing the performance of Archibald rubber-band heat engines by using the appropriate choice of dimensions, minimizing frictional torque, maximizing torque and balancing the rubber band system. (GA)

  5. Evaluation of synergy in tire rubber-coal coprocessing

    SciTech Connect

    Mastral, A.M.; Mayoral, M.C.; Murillo, R.; Callen, M.; Garcia, T.; Tejero, M.P.; Torres, N.

    1998-09-01

    The tire rubber-coal synergy is evaluated through the different roles that rubber can have in coprocessing systems. For that, two different experimental designs were used: a swept fixed-bed reactor and tubing bomb minireactors. In this way, coal was coprocessed with rubber liquids from rubber pyrolysis and rubber hydrogenation, in a hydrogen atmosphere at 400 C. Coal was mixed as well with rubber in different proportions and hydrogenated at 375, 400, and 425 C, and oils obtained were characterized by thin-layer chromatography to obtain hydrocarbon type composition. Rubber behavior was compared to each of the main components of tires, and all the results indicated that the slight synergy found can be due to the small free radicals from vulcanized rubber decomposition, which are able to stabilize coal radicals to light products.

  6. On Optimizing an Archibald Rubber-Band Heat Engine.

    ERIC Educational Resources Information Center

    Mullen, J. G.; And Others

    1978-01-01

    Discusses the criteria and procedure for optimizing the performance of Archibald rubber-band heat engines by using the appropriate choice of dimensions, minimizing frictional torque, maximizing torque and balancing the rubber band system. (GA)

  7. Radiation degradation of spent butyl rubbers

    NASA Astrophysics Data System (ADS)

    Telnov, A. V.; Zavyalov, N. V.; Khokhlov, Yu. A.; Sitnikov, N. P.; Smetanin, M. L.; Tarantasov, V. P.; Shadrin, D. N.; Shorikov, I. V.; Liakumovich, A. L.; Miryasova, F. K.

    2002-03-01

    Radiation methods of materials modification applied in technological chains can have significant economical and ecological advantages as compared to the established chemical, thermal and mechanical methods. Each year the problems of nature resources economy through the use of production and consumption wastes acquire a more significant value, as it allows to solve also ecological issues along with economical ones. This is mostly acute in relation to polymeric systems based on saturated rubbers, for example butyl rubber (BR) used in the tyre industry, as due to their high resistance to the action of oxygen, ozone, solar radiation and bacteria, they contaminate the environment for rather a long period. At VNIIEF and KSPU experiments were carried out on application of electron beams with energy from 6 to 10 MeV for radiation destruction of spent rubber based on BR. The radiation-degraded material was tested for re-use in the formulation of initial diaphragm mixture, rubber mixture for producing rubberized fabric and roofing.

  8. New rubber qualification for the igniter adapter

    NASA Technical Reports Server (NTRS)

    Humpherys, Mark A.

    1994-01-01

    Kirkhill Rubber Company (KRC) has informed Thiokol Corporation that two raw materials used in the asbestos and silica filled acrylonitrile butadience rubber (NBR) formulation per STW 2621 are no longer available from their vendors. Agerite White (Di-beta-naphthyl-paraphenylene diamine), manufactured by B. F. Goodrich, is an antioxidant used in NBR. This raw material makes up roughly 1-2 percent of the finished product. KRC proposed that this raw material be replaced by Agerite Stalite S (mixture of octylated diphenylamines) distributed by R. T. Vanderbilt Co. Protox-166 zinc oxide, manufactured by Zinc Corporation of America, is an activator currently used in NBR. This material also makes up about 1-2 percent of the finished material. Protox-166 is an American process grade zinc oxide. It is proposed by KRC to replace Protox-166 with Kadox-930C, a French process grade zinc oxide. American process grades have an ASTM minimum purity of 99.0 percent; the French process grades have a minimum purity of 99.5 percent. Previous testing per WTP-0270 has demonstrated that the mechanical and thermal properties of the rubber with the new ingredients are comparable to the 'old' rubber. The test results are reported in TWR-61790. One igniter adapter, Part no. 7U77562-02 serial no. 2 was insulated per ETP-1206 using the new rubber formulation and a modified lay up and cure method to demonstrate that there is no impact on this process. The results of this demonstration are reported.

  9. Investigation of natural latex rubber gloves

    SciTech Connect

    Vessel, E.M.

    1993-03-19

    Seventy five percent of natural latex rubber gloves used in laboratories at the Savannah River Site are not reused. A cost analysis performed by the SRS Procurement Department determined that a net savings of $1,092,210 could be achieved annually by recycling latex rubber gloves. The Materials Technology Section, at the request of the Procurement Department, examined some mechanical and chemical properties of latex rubber gloves manufactured by Ansell Edmont, which had been purchased by the site specifications for protective clothing. It also examined mechanical properties of re-cycled gloves purchased by specifications and of {open_quotes}off the shelf{close_quotes} gloves manufactured by North Brothers Company. Finally, water vapor transmission studies, simulating tritium permeation, were performed on gloves from both manufacturers. These studies were performed to determine whether latex rubber gloves can be recycled or whether using only new, unwashed gloves is required in areas where tritium exposure is a possibility. The results of these studies indicate that the acceptable glove characteristics, required in the WSRC Manual 5Q1.11, Protective Clothing Specifications, are not adversely affected after washing and drying the gloves manufactured by Ansell Edmont for seven cycles. Results also indicate that natural latex rubber gloves manufactured by North Brothers comply with most of the acceptable glove characteristics specified in the WSRC Manual 5Q1.11. Statistical analysis of the water vapor permeation data show that there is no correlation between permeation rates and the manufacturer.

  10. Rubber tubes in the sea.

    PubMed

    Farley, F J M; Rainey, R C T; Chaplin, J R

    2012-01-28

    A long tube with elastic walls containing water is immersed in the sea aligned in the direction of wave travel. The waves generate bulges that propagate at a speed determined by the distensibility of the tube. If the bulge speed is close to the phase velocity of the waves, there is a resonant transfer of energy from the sea wave to the bulge. At the end of the tube, useful energy can be extracted. This paper sets out the theory of bulge tubes in the sea, and describes some experiments on the model scale and practical problems. The potential of a full-scale device is assessed.

  11. Effects of preparation process on performance of rubber modified asphalt

    NASA Astrophysics Data System (ADS)

    Liu, Hanbing; Luo, Guobao; Wang, Xianqiang; Jiao, Yubo

    2015-06-01

    The rational utilization of waste rubber tire is essential for the environmental protection. Utilizing rubber particles to modify asphalt can not only improve asphalt performance, but also help the recycling of waste materials. Considering the effect of different preparation process parameters on the performance of rubber modified asphalt, this paper analyzes the effects of the shear temperature, shear time and shear rate on the performance of rubber modified asphalt, and provided a reference for its preparation.

  12. Estimating the Degree of Cross-Linking in Rubber

    NASA Technical Reports Server (NTRS)

    Fedors, R. F.

    1983-01-01

    Degree of cross-linking or network chain concentration of rubber estimated with aid of new method. Quantity is needed in studies of mechanical behavior of rubber. New method is based on finding rubber follows different stress/ strain relationships in extension and retraction. When rubber specimen is stretched to given extension ration and released. Stress-vs-strain curve follows two paths: one for extension and other for retraction.

  13. Use of scrap rubber in asphalt pavement surfaces. Special report

    SciTech Connect

    Eaton, R.A.; Roberts, R.J.; Blackburn, R.R.

    1991-12-01

    Scrap tire rubber was mixed into an asphalt concrete wearing course to study the effect of ice disbonding from the pavement surface under traffic. Rubber contents of 0, 3, 6, and 12% by weight were studied. Initial laboratory ice disbonding test results led to the development of a new paving material, Chunk Rubber Asphalt Concrete (CRAC), that uses larger pieces of rubber in a much denser asphalt concrete mix. Strength values doubled and ice disbonding performance was enhanced.

  14. Evaluation of Asphalt Rubber Binders in Porous Friction Courses

    DTIC Science & Technology

    1992-05-01

    5RE, AC-5R, and AC-20R for all tests in this study. The crumb rubber used in each asphalt rubber blend was made of 100 percent reclaimed waste tires ...binder’s tendency to age harden at the asphalt plant . The exception to this statement may be when an extender oil is added with the crumb rubber such as...equipment ......................... 40 21 Crumb rubber after milling .......................................... 43 22 Absolute viscosity test results

  15. Anaerobic desulfurization of ground rubber with the thermophilic archaeon Pyrococcus furiosus--a new method for rubber recycling.

    PubMed

    Bredberg, K; Persson, J; Christiansson, M; Stenberg, B; Holst, O

    2001-01-01

    The anaerobic sulfur-reducing archaeon Pyrococcus furiosus was investigated regarding its capacity to desulfurize rubber material. The microorganism's sensitivity towards common rubber elastomers and additives was tested and several were shown to be toxic to P. furiosus. The microorganism was shown to utilize sulfur in vulcanized natural rubber and an increase in cell density was obtained when cultivated in the presence of spent tire rubber. Ethanol-leached cryo-ground tire rubber treated with P. furiosus for 10 days was vulcanized together with virgin rubber material (15% w/w) and the mechanical properties of the resulting material were determined. The increase in the stress at break value and the decrease in swell ratio and stress relaxation rate obtained for material containing microbially treated rubber (compared to untreated material) show the positive effects of microbial desulfurization on rubber.

  16. 30 CFR 77.606-1 - Rubber gloves; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Rubber gloves; minimum requirements. 77.606-1... COAL MINES Trailing Cables § 77.606-1 Rubber gloves; minimum requirements. (a) Rubber gloves (lineman's... be used and tested in accordance with the provisions of §§ 77.704-6 through 77.704-8. (b)...

  17. 21 CFR 872.6300 - Rubber dam and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Rubber dam and accessories. 872.6300 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6300 Rubber dam and accessories. (a) Identification. A rubber dam and accessories is a device composed of a thin sheet of latex with a hole in...

  18. 21 CFR 872.6300 - Rubber dam and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Rubber dam and accessories. 872.6300 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6300 Rubber dam and accessories. (a) Identification. A rubber dam and accessories is a device composed of a thin sheet of latex with a hole in...

  19. 30 CFR 77.606-1 - Rubber gloves; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Rubber gloves; minimum requirements. 77.606-1... COAL MINES Trailing Cables § 77.606-1 Rubber gloves; minimum requirements. (a) Rubber gloves (lineman's... be used and tested in accordance with the provisions of §§ 77.704-6 through 77.704-8. (b)...

  20. Bonding soft rubber or plasticized elastomers to metal

    NASA Technical Reports Server (NTRS)

    Clemons, J. M.; Ledbetter, F. E., III; White, W. T.

    1980-01-01

    Approach using bond-cover coat of unplasticized rubber between soft rubber and adhesive eliminates diffusion problem. Approach is useful in making improved seals in automobile engines, industrial and public plumbing, and in other areas using soft-rubber-to-metal bonds. Seals and gaskets made this way would not have to be replaced very often, reducing cost of maintenance.

  1. 21 CFR 872.6300 - Rubber dam and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rubber dam and accessories. 872.6300 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6300 Rubber dam and accessories. (a) Identification. A rubber dam and accessories is a device composed of a thin sheet of latex with a hole in...

  2. 21 CFR 872.6300 - Rubber dam and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Rubber dam and accessories. 872.6300 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6300 Rubber dam and accessories. (a) Identification. A rubber dam and accessories is a device composed of a thin sheet of latex with a hole in...

  3. Modified Silicone-Rubber Tooling For Molding Composite Parts

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.; Snoha, John J.; Weiser, Erik S.

    1995-01-01

    Reduced-thermal-expansion, reduced-bulk-modulus silicone rubber for use in mold tooling made by incorporating silica powder into silicone rubber. Pressure exerted by thermal expansion reduced even further by allowing air bubbles to remain in silicone rubber instead of deaerating it. Bubbles reduce bulk modulus of material.

  4. 30 CFR 77.606-1 - Rubber gloves; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Rubber gloves; minimum requirements. 77.606-1... COAL MINES Trailing Cables § 77.606-1 Rubber gloves; minimum requirements. (a) Rubber gloves (lineman's... be used and tested in accordance with the provisions of §§ 77.704-6 through 77.704-8. (b)...

  5. 30 CFR 77.606-1 - Rubber gloves; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Rubber gloves; minimum requirements. 77.606-1... COAL MINES Trailing Cables § 77.606-1 Rubber gloves; minimum requirements. (a) Rubber gloves (lineman's... be used and tested in accordance with the provisions of §§ 77.704-6 through 77.704-8. (b)...

  6. 30 CFR 77.606-1 - Rubber gloves; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Rubber gloves; minimum requirements. 77.606-1... COAL MINES Trailing Cables § 77.606-1 Rubber gloves; minimum requirements. (a) Rubber gloves (lineman's... be used and tested in accordance with the provisions of §§ 77.704-6 through 77.704-8. (b)...

  7. 21 CFR 872.6300 - Rubber dam and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Rubber dam and accessories. 872.6300 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6300 Rubber dam and accessories. (a) Identification. A rubber dam and accessories is a device composed of a thin sheet of latex with a hole in...

  8. A sustainability review of domestic rubber from the guayule plant

    USDA-ARS?s Scientific Manuscript database

    Guayule (Parthenium argentatum Gray) is an arid-adapted, low-input perennial shrub native to Mexico and southern Texas that has received considerable attention as an alternative source of natural rubber. It has potential to replace the most common types of rubbers, including synthetic rubber derived...

  9. Interface interactions of natural rubber and protein/fiber aggregates

    USDA-ARS?s Scientific Manuscript database

    Mechanical properties of natural rubber are improved with a renewable filler for rubber applications. Aggregates of protein and fiber that constitute soy protein concentrate were shear-reduced and used to enhance the tensile modulus of the natural rubber. The aqueous dispersion of the shear-reduced ...

  10. Guayule and Russian dandelion as alternative sources of natural rubber.

    PubMed

    van Beilen, Jan B; Poirier, Yves

    2007-01-01

    Natural rubber, obtained almost exclusively from the Para rubber tree (Hevea brasiliensis), is a unique biopolymer of strategic importance that, in many of its most significant applications, cannot be replaced by synthetic rubber alternatives. Several pressing motives lead to the search for alternative sources of natural rubber. These include increased evidence of allergenic reactions to Hevea rubber, the danger that the fungal pathogen Microcyclus ulei, causative agent of South American Leaf Blight (SALB), might spread to Southeast Asia, which would severely disrupt rubber production, potential shortages of supply due to increasing demand and changes in land use, and a general trend towards the replacement of petroleum-derived chemicals with renewables. Two plant species have received considerable attention as potential alternative sources of natural rubber: the Mexican shrub Guayule (Parthenium argentatum Gray) and the Russian dandelion (Taraxacum koksaghyz). This review will summarize the current production methods and applications of natural rubber (dry rubber and latex), the threats to the production of natural rubber from the rubber tree, and describe the current knowledge of the production of natural rubber from guayule and Russian dandelion.

  11. 27 CFR 21.125 - Rubber hydrocarbon solvent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Rubber hydrocarbon solvent. 21.125 Section 21.125 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU....125 Rubber hydrocarbon solvent. (a) Rubber hydrocarbon solvent is a petroleum derivative. (b...

  12. 27 CFR 21.125 - Rubber hydrocarbon solvent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Rubber hydrocarbon solvent. 21.125 Section 21.125 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU....125 Rubber hydrocarbon solvent. (a) Rubber hydrocarbon solvent is a petroleum derivative. (b...

  13. 27 CFR 21.125 - Rubber hydrocarbon solvent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Rubber hydrocarbon solvent. 21.125 Section 21.125 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU....125 Rubber hydrocarbon solvent. (a) Rubber hydrocarbon solvent is a petroleum derivative. (b...

  14. 27 CFR 21.125 - Rubber hydrocarbon solvent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Rubber hydrocarbon solvent. 21.125 Section 21.125 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU....125 Rubber hydrocarbon solvent. (a) Rubber hydrocarbon solvent is a petroleum derivative. (b...

  15. 27 CFR 21.125 - Rubber hydrocarbon solvent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Rubber hydrocarbon solvent. 21.125 Section 21.125 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU....125 Rubber hydrocarbon solvent. (a) Rubber hydrocarbon solvent is a petroleum derivative. (b...

  16. Development of crops to produce industrially useful natural rubber

    USDA-ARS?s Scientific Manuscript database

    Natural rubber, cis-1,4-polyisoprene, is an essential industrial commodity that most developed countries have to import. Hevea brasiliensis (Hevea), grown in tropical and subtropical areas is the primary source of natural rubber. The high quality and quantity of the rubber cause us to focus on und...

  17. Immediate reactions to rubber products.

    PubMed

    Fuchs, T; Wahl, R

    1992-01-01

    There is an increasing incidence of contact urticaria (CU) and systemic reactions to rubber products. Thirty-one patients are presented: most were atopic (20/31) and women (26/31); 71% worked in the medical field; 32.2% (10/31) showed signs of hand dermatitis. In 28 patients (90.3%), rub and/or prick tests with liquid latex in different dilutions and with latex gloves led to an immediate type of positive reaction. The allergen(s) appear in part to be water soluble: 20 of 28 patients (71.4%) revealed positive test reactions to an aqueous glove extract. In two patients, urticarial test reactions to tetramethylthiuram disulfide (TMTD), mercapto mix, and p-phenylenediamine (PPD mix) were considered as possible contributing factors of CU. Cornstarch was negative in all patients (scratch). Sixteen of 27 sera (59.2%) showed radioallergosorbent (RAST) class 0 using latex allergen disks. Sodium dodecyl sulfate-polyacoyl-amide (SDS-PAGE) determined protein bands of less than or equal to 14 kD (not allergen specific) and approx 28 kD. The Western blot detected the 28 kD protein as allergen in the sera of three patients. Isoelectric focusing (IEF) proved no protein bands. Immunoprinting performed with sera of five patients presented allergen bands in a pH range between 3.8 and 4.55. This shows the radio staining (immunoprint) is more sensitive than is the Coomassie blue staining. Although three sera showed RAST class 0, immunoblotting detected allergen bands. In this case the immunoblot appears to be more sensitive than the RAST. A cross reactivity between latex and banana could not be established. Alternative gloves are Neolon (neoprene) or Elastyren (styrene-butadiene polymer).

  18. Coatings for rubber bonding and paint adhesion

    NASA Astrophysics Data System (ADS)

    Boulos, M. S.; Petschel, M.

    1997-08-01

    Conversion coatings form an important base for the adhesion of paint to metal substrates and for the bonding of rubber to metal parts. Four types of conversion coatings were assessed as base treatments for the bonding of rubber to steel and for the corrosion protection of metal substrates under paint: amorphous iron phosphate, heavy zinc phosphate, and three types of modified zinc phosphates that utilized one or more metal cations in addition to zinc. When applied, these conversion coatings formed a thin film over the metal substrate that was characterized by scanning electron microscopy, x-ray diffraction, and chemical methods. The performance of the coatings was assessed using physical methods such as dry adhesion, conical mandrel, impact, and stress adhesion for the rubber-bonded parts, and by corrosion resistance methods such as humidity, salt spray, and cyclic corrosion. Coating characterization and performance were correlated.

  19. Elastically Decoupling Dark Matter.

    PubMed

    Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai

    2016-06-03

    We present a novel dark matter candidate, an elastically decoupling relic, which is a cold thermal relic whose present abundance is determined by the cross section of its elastic scattering on standard model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross section with electrons, photons and/or neutrinos in the 10^{-3}-1  fb range.

  20. Oxygen exchange in silicone rubber capillaries.

    PubMed

    Heineken, F G; Predecki, P K; Filley, G F

    1978-06-01

    Capillaries of 7 and 12.5 mu diameter have been fabricated in silicone rubber. Whole blood treated with heparin has been perfused through these capillaries. Under flowing conditions, no clotting or other clumping effects have been observed and red cells appear to maintain a constant velocity. Oxygen transfer data to and from saline perfusing the 12.5 mu diameter capillaries have been obtained in order to determine how rapidly O2 will permeate the silicone rubber film. The data indicate that the capillaries simulate lung tissue oxygen exchange and will allow for the first time the experimental determination of oxygen exchange kinetics in flowing whole blood.

  1. Elastic internal flywheel gimbal

    SciTech Connect

    Rabenhorst, D.W.

    1981-01-13

    An elastic joint mounting and rotatably coupling a rotary inertial energy storage device or flywheel, to a shaft, the present gimbal structure reduces vibration and shock while allowing precession of the flywheel without the need for external gimbal mounts. The present elastic joint usually takes the form of an annular elastic member either integrally formed into the flywheel as a centermost segment thereof or attached to the flywheel or flywheel hub member at the center thereof, the rotary shaft then being mounted centrally to the elastic member.

  2. The role of the small rubber particle protein in determining rubber yields and polymer length in Russian dandelion

    USDA-ARS?s Scientific Manuscript database

    Several proteins have been identified and implicated in natural rubber biosynthesis, one of which, the small rubber particle protein (SRPP), was originally identified in Hevea brasiliensis as an abundant protein associated with cytosolic vesicles known as rubber particles. While previous in vitro s...

  3. Kinetics of zinc release from ground tire rubber and rubber ash in a calcareous soil as alternatives to Zn fertilizers

    USDA-ARS?s Scientific Manuscript database

    Ground rubber contains 15-20 g Zn/kg but very low levels of Cd and could serve as an inexpensive byproduct Zn fertilizer. The aim of this investigation was to test the kinetics of Zn release in a soil treated with ground tire rubber and rubber ash compared with commercial Zn fertilizer and a labora...

  4. Criteria for Asphalt-Rubber Concrete in Civil Airport Pavements: Mixture Design.

    DTIC Science & Technology

    1986-07-01

    8217s. These early experiments included the introduction of various forms of rubber (including latex, devulcanized or reclaimed rubber, raw and ground...addition to rubber morphology, the size of the rubber particles and whether the rubber has been processed after grinding, i.e., devulcanized , both...Method B. Method A uses ground reclaimed " devulcanized " rubber and an extender oil whereas Method B uses ground reclaimed vulcanized rubber and a kerosene

  5. Radiation-induced vulcanisation of natural rubber latex in presence of styrene-butadiene rubber latex

    NASA Astrophysics Data System (ADS)

    Chaudhari, C. V.; Bhardwaj, Y. K.; Patil, N. D.; Dubey, K. A.; Kumar, Virendra; Sabharwal, S.

    2005-04-01

    Radiation vulcanisation of natural rubber latex in presence of styrene butadiene rubber latex (SBRL) has been investigated. The cast films were characterised for their swelling properties, tensile strength and thermal stability as a function of radiation dose as well as SBRL content. The gel content, tensile strength and thermal stability of the copolymer films were found to increase with increasing the SBRL content in the feed solution and radiation dose.

  6. Enzymatic synthesis of rubber polymer in Hevea brasiliensis

    SciTech Connect

    Tang, F.; Hu, S.; Benedict, C.R. )

    1991-05-01

    Light and Dennis purified serum soluble rubber transferase from Hevea latex to homogeneity. Prenyl transferase co-purified with rubber transferase. In the absence of washed rubber particles (WRP) the prenyl transferase catalyzed the formation of trans FPP from DMAPP and IPP. In the presence of WRP the transferase catalyzed cis additions of IPP to pre-existing rubber chains. Control mixtures of WRP, Mg{sup 2+} and FPP were not included to test for the contributions of the bound rubber transferase on WRP to the incorporation of IPP into polyisoprene. Bound rubber transferase catalyzes the repetitive addition of IPP to allylic-PP starter molecules to form polyisoprene. The order of utilization of allylic-PP starters was GGPP > FPP > GPP > DMAPP. The authors have shown that the polyisoprene enzymatically synthesized on WRP is a bimodal polymer consisting of different mol wt rubber chains similar to the polymeric characteristics of natural rubber. The bound rubber transferase was solubilized with Chaps and purified on DEAE-cellulose. The polymerization reaction catalyzed by the purified preparation showed a 98% requirement for pre-existing rubber chains. Results suggest that the prenyl transferase from Hevea serum may be part of the polymer starter system furnishing allylic-PP for the bound rubber transferase.

  7. The use of rubber dam among Czech dental practitioners.

    PubMed

    Kapitán, Martin; Sustová, Zdenka

    2011-01-01

    Rubber dam is considered an ideal device for tooth isolation. Nevertheless, its usage is quite rare in the Czech Republic. The aim of this study was: firstly, to gather and evaluate information regarding the use of rubber dam by dentists in the Czech Republic and to compare it with other countries; secondly to find out whether there are any influencing factors as to rubber dam usage; and finally to find out frequency of rubber dam use separately in endodontic treatment and in placing fillings of different materials. A questionnaire-based survey was conducted. Dentists filled in the questionnaires during dental conventions, educational events, conferences and congresses. Rubber dam was routinely used by less than eight per cent of the respondents (n = 35); less than twenty-two per cent of the respondents (n = 97) used rubber dam occasionally, and more than seventy per cent of the respondents (n = 317) has never use it. The results showed that rubber dam is not used frequently in the Czech Republic. If rubber dam is used, then it is typically for endodontic treatment or composite fillings. There were several factors with a statistically significant influence on the usage of rubber dam, such as gender, length of professional career, percentage of direct payments, previous experience in using rubber dam, and undergraduate training in rubber dam use.

  8. Structural aspects of elastic deformation of a metallic glass

    SciTech Connect

    Hufnagel, T. C.; Ott, R. T.; Almer, J.

    2006-02-01

    We report the use of high-energy x-ray scattering to measure strain in a Zr{sub 57}Ti{sub 5}Cu{sub 20}Ni{sub 8}Al{sub 10} bulk metallic glass in situ during uniaxial compression in the elastic regime up to stresses of approximately 60% of the yield stress. The strains extracted in two ways--directly from the normalized scattering data and from the pair correlation functions--are in good agreement with each other for length scales greater than 4 A. The elastic modulus calculated on the basis of this strain is in good agreement with that reported for closely related amorphous alloys based on macroscopic measurements. The strain measured for atoms in the nearest-neighbor shell, however, is smaller than that for more distant shells, and the effective elastic modulus calculated from the strain on this scale is therefore larger, comparable to crystalline alloys of similar composition. These observations are in agreement with previously proposed models in which the nominally elastic deformation of a metallic glass has a significant anelastic component due to atomic rearrangements in topologically unstable regions of the structure. We also observe that the distribution of the atomic-level stresses in the glass becomes more uniform during loading. This implies that the stiffness of metallic glasses may have an entropic contribution, analogous to the entropic contribution in rubber elasticity.

  9. Submillisecond Elastic Recoil Reveals Molecular Origins of Fibrin Fiber Mechanics

    PubMed Central

    Hudson, Nathan E.; Ding, Feng; Bucay, Igal; O’Brien, E. Timothy; Gorkun, Oleg V.; Superfine, Richard; Lord, Susan T.; Dokholyan, Nikolay V.; Falvo, Michael R.

    2013-01-01

    Fibrin fibers form the structural scaffold of blood clots. Thus, their mechanical properties are of central importance to understanding hemostasis and thrombotic disease. Recent studies have revealed that fibrin fibers are elastomeric despite their high degree of molecular ordering. These results have inspired a variety of molecular models for fibrin’s elasticity, ranging from reversible protein unfolding to rubber-like elasticity. An important property that has not been explored is the timescale of elastic recoil, a parameter that is critical for fibrin’s mechanical function and places a temporal constraint on molecular models of fiber elasticity. Using high-frame-rate imaging and atomic force microscopy-based nanomanipulation, we measured the recoil dynamics of individual fibrin fibers and found that the recoil was orders of magnitude faster than anticipated from models involving protein refolding. We also performed steered discrete molecular-dynamics simulations to investigate the molecular origins of the observed recoil. Our results point to the unstructured αC regions of the otherwise structured fibrin molecule as being responsible for the elastic recoil of the fibers. PMID:23790375

  10. Natural rubber (NR) biosynthesis: perspectives from polymer chemistry

    SciTech Connect

    Barkakaty, Balaka

    2014-01-01

    Natural rubber is an important strategic raw material for manufacturing a wide variety of industrial products. There are at least 2,500 different latex-producing plant species; however, only Hevea brasiliensis (the Brazilian rubber tree) is a commercial source. The chemical structure of natural rubber is cis-1,4-polyisoprene, but the exact structure of the head and end groups remains unknown. Since synthetic cis-1,4-polyisoprenes cannot match the superior properties of natural rubber, understanding the chemistry behind the biosynthetic process is key to finding a possible replacement. T his chapter summarizes our current understandings from the perspective of a polymer scientist by comparing synthetic polyisoprenes to natural rubber. The chapter also highlights biomimetic polymerization, research towards a synthetic match of natural rubber and the role of natural rubber in health care.

  11. Thermal cracking of rubber modified pavements, May 1995. Final report

    SciTech Connect

    Raad, L.; Yuan, X.; Saboundjian, S.

    1995-05-01

    In accordance with the original ISTEA mandate (1991) to use crumb tire rubber in pavements, Alaska would be required to use about 250 tons of used tire rubber starting in 1994 and increasing to about 1,000 tons of rubber in 1997 and each year thereafter. A number of pavements using crumb rubber modifiers have been built in the state and have been in service for periods of 8 to 15 years. Knowledge of the behavior of these rubber-modified pavements under extreme climate conditions, particularly in relation to their low temperature cracking resistance, is necessary for future design and construction of rubberized pavements in Alaska. This report presents results of a study to determine the low temperature cracking resistance of rubber modified pavements in Alaska in comparison with conventional asphalt concrete pavements.

  12. Microlenses Fabricated on Silicone Rubber Using F2 Laser

    NASA Astrophysics Data System (ADS)

    Takao, Hiromitsu; Miyagami, Hideyuki; Okoshi, Masayuki; Inoue, Narumi

    2005-04-01

    Microlenses are fabricated on silicone rubber surfaces employing phenomena in which silicone rubber swells and is modified to SiO2 by F2 laser irradiation at a laser fluence lower than the ablation threshold. In this method, silicone rubber is irradiated using a F2 laser beam through a mask which has circular apertures 10, 20, and 25 μm in diameter. Since silicone rubber swells by laser irradiation, it is necessary to separate the mask from the silicone rubber surface. The swelling is spherical and its surface becomes smooth when the distance between the mask and the silicone rubber surface is very small. The focal lengths of the microlenses are 10-170 μm, which are controlled by adjusting the number of irradiated pulses. Additionally, a 790 nm femtosecond laser beam is focused by the fabricated microlenses, and enables the microdrilling of fluorinated rubber.

  13. The rubber tree genome shows expansion of gene family associated with rubber biosynthesis

    PubMed Central

    Lau, Nyok-Sean; Makita, Yuko; Kawashima, Mika; Taylor, Todd D.; Kondo, Shinji; Othman, Ahmad Sofiman; Shu-Chien, Alexander Chong; Matsui, Minami

    2016-01-01

    Hevea brasiliensis Muell. Arg, a member of the family Euphorbiaceae, is the sole natural resource exploited for commercial production of high-quality natural rubber. The properties of natural rubber latex are almost irreplaceable by synthetic counterparts for many industrial applications. A paucity of knowledge on the molecular mechanisms of rubber biosynthesis in high yield traits still persists. Here we report the comprehensive genome-wide analysis of the widely planted H. brasiliensis clone, RRIM 600. The genome was assembled based on ~155-fold combined coverage with Illumina and PacBio sequence data and has a total length of 1.55 Gb with 72.5% comprising repetitive DNA sequences. A total of 84,440 high-confidence protein-coding genes were predicted. Comparative genomic analysis revealed strong synteny between H. brasiliensis and other Euphorbiaceae genomes. Our data suggest that H. brasiliensis’s capacity to produce high levels of latex can be attributed to the expansion of rubber biosynthesis-related genes in its genome and the high expression of these genes in latex. Using cap analysis gene expression data, we illustrate the tissue-specific transcription profiles of rubber biosynthesis-related genes, revealing alternative means of transcriptional regulation. Our study adds to the understanding of H. brasiliensis biology and provides valuable genomic resources for future agronomic-related improvement of the rubber tree. PMID:27339202

  14. Hardness and compression resistance of natural rubber and synthetic rubber mixtures

    NASA Astrophysics Data System (ADS)

    Arguello, J. M.; Santos, A.

    2016-02-01

    This project aims to mechanically characterize through compression resistance and shore hardness tests, the mixture of hevea brasiliensis natural rubber with butadiene synthetic rubber (BR), styrene-butadiene rubber (SBR) and ethylene-propylene-diene monomer rubber (EPDM). For each of the studied mixtures were performed 10 tests, each of which increased by 10% the content of synthetic rubber in the mixture; each test consisted of carrying out five tests of compression resistance and five tests of shore hardness. The specimens were vulcanized on a temperature of 160°C, during an approximate time of 15 minutes, and the equipment used in the performance of the mechanical tests were a Shimadzu universal machine and a digital durometer. The results show that the A shore hardness increases directly proportional, with a linear trend, with the content of synthetic BR, SBR or EPDM rubber present in the mixture, being the EPDM the most influential. With respect to the compression resistance is observed that the content of BR or SBR increase this property directly proportional through a linear trend; while the EPDM content also increases but with a polynomial trend.

  15. Carboxy terminated rubber based on natural rubber grafted with acid anhydrides and its adhesion properties

    NASA Astrophysics Data System (ADS)

    Klinpituksa, P.; Kongkalai, P.; Kaesaman, A.

    2014-08-01

    The chemical modification of natural rubber by grafting of various polar functional molecules is an essential method, improving the versatility of rubber in applications. This research investigated the preparation of natural rubber-graft-citraconic anhydride (NR-g-CCA), natural rubber-graft-itaconic anhydride (NR-g-ICA), and natural rubber-graft-maleic anhydride (NR-g-MA), with the anhydrides grafted to natural rubber in toluene using benzoyl peroxide as an initiator. Variations of monomer content, initiator content, temperature and reaction time of the grafting copolymerization were investigated. The maximum degrees of grafting were 1.06% for NR-g-CCA, 4.66% for NR-g-ICA, and 5.03% for NR-g-MA, reached using 10 phr citraconic anhydride, 10 phr of itaconic anhydride, or 8 phr of maleic anhydride, 3 phr benzoyl peroxide, at 85, 80 and 80°C for 2, 2 and 3 hrs, respectively. Solvent-based wood adhesives were formulated from these copolymers with various contents of wood resin in the range 10-40 phr. The maximal 289 N/in cleavage peel and 245.7 KPa shear strength for NR-g-MA (5.03% grafting) were obtained at 40 phr wood resin.

  16. Preparation of sulfonic acid-containing rubbers from natural rubber vulcanizates

    NASA Astrophysics Data System (ADS)

    Poonsawat, Worapong; Poompradub, Sirilux; Ngamcharussrivichai, Chawalit

    2014-06-01

    In this work, a series of sulfonic acid-containing rubbers were prepared by aqueous phase oxidation of natural rubber vulcanizates in the presence of hydrogen peroxide (H2O2) and formic acid (HCOOH). The starting vulcanizates were neatly prepared via an efficient vulcanization (EV) system by varying mass ratio of N-cyclohexyl-2-benzothiazole sulfonamide (CBS), as an accelerator, to sulfur. The oxidation conditions were controlled at the molar ratio of H2O2: HCOOH = 1:1, the concentration of H2O2 = 15 wt.%, the temperature = 50 °C, and the reaction time = 3 h. The rubber materials before and after the oxidation were characterized for their physicochemical properties by using Fourier transform infrared spectroscopy, bomb calorimetry, acid-base titration and swelling measurements. The results indicated the presence of sulfonic acid group in the oxidized rubbers, generated by the oxidative cleaves of sulfide crosslinks in the rubber vulcanizates. The oxidation decreased the sulfur content of the rubber in which the level of sulfur loss was determined by the CBS/sulfur ratio. Moreover, the acidity of the oxidized products was correlated with the amount of sulfur remaining.

  17. The rubber tree genome shows expansion of gene family associated with rubber biosynthesis.

    PubMed

    Lau, Nyok-Sean; Makita, Yuko; Kawashima, Mika; Taylor, Todd D; Kondo, Shinji; Othman, Ahmad Sofiman; Shu-Chien, Alexander Chong; Matsui, Minami

    2016-06-24

    Hevea brasiliensis Muell. Arg, a member of the family Euphorbiaceae, is the sole natural resource exploited for commercial production of high-quality natural rubber. The properties of natural rubber latex are almost irreplaceable by synthetic counterparts for many industrial applications. A paucity of knowledge on the molecular mechanisms of rubber biosynthesis in high yield traits still persists. Here we report the comprehensive genome-wide analysis of the widely planted H. brasiliensis clone, RRIM 600. The genome was assembled based on ~155-fold combined coverage with Illumina and PacBio sequence data and has a total length of 1.55 Gb with 72.5% comprising repetitive DNA sequences. A total of 84,440 high-confidence protein-coding genes were predicted. Comparative genomic analysis revealed strong synteny between H. brasiliensis and other Euphorbiaceae genomes. Our data suggest that H. brasiliensis's capacity to produce high levels of latex can be attributed to the expansion of rubber biosynthesis-related genes in its genome and the high expression of these genes in latex. Using cap analysis gene expression data, we illustrate the tissue-specific transcription profiles of rubber biosynthesis-related genes, revealing alternative means of transcriptional regulation. Our study adds to the understanding of H. brasiliensis biology and provides valuable genomic resources for future agronomic-related improvement of the rubber tree.

  18. Elastic properties of minerals

    SciTech Connect

    Aleksandrov, K.S.; Prodaivoda, G.T.

    1993-09-01

    Investigations of the elastic properties of the main rock-forming minerals were begun by T.V. Ryzhova and K.S. Aleksandrov over 30 years ago on the initiative of B.P. Belikov. At the time, information on the elasticity of single crystals in general, and especially of minerals, was very scanty. In the surveys of that time there was information on the elasticity of 20 or 30 minerals. These, as a rule, did not include the main rock-forming minerals; silicates were represented only by garnets, quartz, topaz, tourmaline, zircon, beryl, and staurolite, which are often found in nature in the form of large and fairly high-quality crystals. Then and even much later it was still necessary to prove a supposition which now seems obvious: The elastic properties of rocks, and hence the velocities of elastic (seismic) waves in the earth`s crust, are primarily determined by the elastic characteristics of the minerals composing these rocks. Proof of this assertion, with rare exceptions of mono-mineralic rocks (marble, quartzite, etc.) cannot be obtained without information on the elasticities of a sufficiently large number of minerals, primarily framework, layer, and chain silicates which constitute the basis of most rocks. This also served as the starting point and main problem of the undertakings of Aleksandrov, Ryzhova, and Belikov - systematic investigations of the elastic properties of minerals and then of various rocks. 108 refs., 7 tabs.

  19. Chemical changes in rubber allergens during vulcanization.

    PubMed

    Bergendorff, Ola; Persson, Christina; Lüdtke, Anna; Hansson, Christer

    2007-09-01

    Allergic contact dermatitis to rubber is caused by residues of chemicals used in manufacturing a rubber product. Several different additives are used to achieve a final product of the desired characteristics. Accelerators such as thiurams, dithiocarbamates, and mercaptobenzothiazoles are often among the additives responsible for allergic reactions recognized by dermatologists. The chemistry of the vulcanization process is complicated; as it occurs at an elevated temperature with a mixture of reactive chemicals, the compositions of the initial and final products differ. This paper investigates the changes in composition of common allergens during vulcanization, doing so by chemically analysing various rubber formulations at different stages of the process. Major changes were found in which added chemicals were consumed and new ones produced. An important observation is that thiuram disulfides rarely appear in the final rubber although they may have been used as additives. Instead, thiurams are often converted to dithiocarbamates or to products formed by addition to mercaptobenzothiazole structures, if these have been used together with thiurams as accelerators.

  20. Beta Backscatter Measures the Hardness of Rubber

    NASA Technical Reports Server (NTRS)

    Morrissey, E. T.; Roje, F. N.

    1986-01-01

    Nondestructive testing method determines hardness, on Shore scale, of room-temperature-vulcanizing silicone rubber. Measures backscattered beta particles; backscattered radiation count directly proportional to Shore hardness. Test set calibrated with specimen, Shore hardness known from mechanical durometer test. Specimen of unknown hardness tested, and radiation count recorded. Count compared with known sample to find Shore hardness of unknown.

  1. Why Do Calculators Have Rubber Feet?

    ERIC Educational Resources Information Center

    Heavers, Richard M.

    2007-01-01

    Our students like using the covers of their TI graphing calculators in an inquiry-based extension of a traditional exercise that challenges their preconceived ideas about friction. Biology major Fiona McGraw (Fig. 1) is obviously excited about the large coefficient of static friction ([mu][subscript s] = 1.3) for the four little rubber feet on her…

  2. Rubber valve seal with tough skin

    NASA Technical Reports Server (NTRS)

    Martin, J. W.

    1979-01-01

    Curing technique for producing variable viscosity seal has hard sealing surface supported by softer rubber. Valve seal is clamped between two jaws for curing with hotter jaw at temperature of approximately 350 F and lower at room temperature. Result is durable tight valve-seat.

  3. Reinforcement of graphene in natural rubber nanocomposite

    NASA Astrophysics Data System (ADS)

    Azira, A. A.; Kamal, M. M.; Rusop, M.

    2016-07-01

    In the present work, we report the use of graphene as multi-functional nanofiller for natural rubber (NR). Dispersion of reduced graphene into natural rubber (NR) was found to enhance the mechanical and electrical properties of NR. Through a facile approach rubber molecules are successfully grafted onto the surface of graphene. Stable graphene suspension with NR afforded a weblike morphology consisting of platelet networks between the rubber particles, while internal mixer processing broke down this structure, yielding a homogeneous and improved dispersion. The resulting graphene can be dispersed in NR via dry mixing. It is found that graphene is prominent in improving the mechanical properties of NR at low filler loading. The percolation point of graphene in the nanocomposites takes place at a content of less than 0.1 wt%. With incorporation of as low as 0.1 wt% of graphene, an increase in the tensile strength and improvement in the tensile modulus achieved. The improvement in the mechanical properties of NR nanocomposites at such low filler loading is attributed to the strong interfacial interaction and the molecular-level dispersion of graphene in the NR matrix. .

  4. Microbial Degradation of Natural Rubber Vulcanizates

    PubMed Central

    Tsuchii, Akio; Suzuki, Tomoo; Takeda, Kiyoshi

    1985-01-01

    An actinomycete, Nocardia sp. strain 835A, grows well on unvulcanized natural rubber and synthetic isoprene rubber, but not on other types of synthetic rubber. Not only unvulcanized but also various kinds of vulcanized natural rubber products were more or less utilized by the organism as the sole source of carbon and energy. The thin film from a latex glove was rapidly degraded, and the weight loss reached 75% after a 2-week cultivation period. Oligomers with molecular weights from 104 to 103 were accumulated during microbial growth on the latex glove. The partially purified oligomers were examined by infrared and 1H nuclear magnetic resonance and 13C nuclear magnetic resonance spectroscopy, and the spectra were those expected of cis-1, 4-polyisoprene with the structure, OHC—CH2—[—CH2—C(—CH3)=CH —CH2—]n—CH2—C(=O)— CH3, with average values of n of about 114 and 19 for the two oligomers. PMID:16346923

  5. Why Do Calculators Have Rubber Feet?

    ERIC Educational Resources Information Center

    Heavers, Richard M.

    2007-01-01

    Our students like using the covers of their TI graphing calculators in an inquiry-based extension of a traditional exercise that challenges their preconceived ideas about friction. Biology major Fiona McGraw (Fig. 1) is obviously excited about the large coefficient of static friction ([mu][subscript s] = 1.3) for the four little rubber feet on her…

  6. Double Jeopardy: The Rubber Ball Bounces Twice.

    PubMed

    Arbiser, Jack L; Gilbert, Linda C

    2017-01-01

    Soblet et al. describe cis mutations in TEK/Tie-2 in blue rubber bleb nevus and sporadic vascular malformations. This suggests that the remaining normal allele is required for the phenotype. Second, it suggests therapeutic approaches to treatment signal transduction inhibition.

  7. Identification and Waste Reduction on Rubber Industry

    NASA Astrophysics Data System (ADS)

    Syahputri, K.; Sari, R. M.; Rizkya, I.; Siregar, I.

    2017-03-01

    Lots of activities in production process can be lead to waste activities. The waste may cause a degree of efficiency of an industry to be low. This research was conducted in the rubber industry. In the rubber industry has been a decline in the level of efficiency. Decreased levels of efficiency occurs because many inefficient activities that take place during the production process. Activities that were not contributed to the value of the product lead to waste during the production process. Identification by the activity is a way to minimize the waste that occurs so that the efficiency of the production process can be improved. Process activity mapping in the rubber industry used to identify the activities that take place on the floor of production in order to reduce waste and propose improvements that can be done to improve efficiency. The total waste that occurs in crumb rubber industry amounted to 94 minutes or 1.56 hours. For the proposed improvements in order to reduce waste are based on two activities, such as transport and unnecessary motion. Transport activities proposed use of material handling in their daily activities and to unnecessary motion by doing a variety of work on the operator.

  8. Wettability of silicone rubber maxillofacial prosthetic materials.

    PubMed

    Waters, M G; Jagger, R G; Polyzois, G L

    1999-04-01

    Maxillofacial prosthetic materials that contact skin or mucosa should have good wettability. A material that is easily wetted will form a superior lubricating layer between the supporting tissues and, thus, reduce friction and patient discomfort. The surface energy of a maxillofacial prosthetic material will give an indication of the amount of energy available for adhesion and of the susceptibility of the material to bacterial adhesion. This study evaluated the wettability and surface energies of a range of commercially available silicone rubber maxillofacial prosthetic materials. Contact angles and surface energies were measured by using a dynamic contact angle measuring technique. Four commonly used silicone maxillofacial materials were tested and their properties compared with those of an acrylic resin denture base material and a widely used denture soft lining material. There were no significant differences in the wettability of the silicone rubber materials. All materials were significantly less wetted than the denture acrylic resin material. There were no significant differences in the surface energies of the silicone rubber materials, but all were significantly lower than denture acrylic resin material. The Cahn dynamic contact angle analyzer was a quick and reproducible method for determining the contact angles and surface energies of maxillofacial materials. Further work is needed to improve the wettability of silicone rubber materials used for maxillofacial prostheses, thus, reducing their potential to produce friction with tissues.

  9. Beta Backscatter Measures the Hardness of Rubber

    NASA Technical Reports Server (NTRS)

    Morrissey, E. T.; Roje, F. N.

    1986-01-01

    Nondestructive testing method determines hardness, on Shore scale, of room-temperature-vulcanizing silicone rubber. Measures backscattered beta particles; backscattered radiation count directly proportional to Shore hardness. Test set calibrated with specimen, Shore hardness known from mechanical durometer test. Specimen of unknown hardness tested, and radiation count recorded. Count compared with known sample to find Shore hardness of unknown.

  10. Boron-Loaded Silicone Rubber Scintillators

    SciTech Connect

    Bell, Z.W.; Maya, L.; Brown, G.M.; Sloop, F.V.Jr

    2003-05-12

    Silicone rubber received attention as an alternative to polyvinyltoluene in applications in which the scintillator is exposed to high doses because of the increased resistance of the rubber to the formation of blue-absorbing color centers. Work by Bowen, et al., and Harmon, et al., demonstrated their properties under gamma/x-ray irradiation, and Bell, et al. have shown their response to thermal neutrons. This last work, however, provided an example of a silicone in which both the boron and the scintillator were contained in the rubber as solutes, a formulation which led to the precipitation of solids and sublimation of the boron component. In the present work we describe a scintillator in which the boron is chemically bonded to the siloxane and so avoids the problem of precipitation and loss of boron to sublimation. Material containing up to 18% boron, by weight, was prepared, mounted on photomultipliers, and exposed to both neutron and gamma fluxes. Pulse height spectra showing the neutron and photon response were obtained, and although the light output was found to be much poorer than from samples in which boron was dissolved, the higher boron concentrations enabled essentially 100% neutron absorption in only a few millimeters' thickness of rubber.

  11. Tensile Properties and Swelling Behavior of Sealing Rubber Materials Exposed to High-Pressure Hydrogen Gas

    NASA Astrophysics Data System (ADS)

    Yamabe, Junichiro; Nishimura, Shin

    Rubber O-rings exposed to high-pressure hydrogen gas swell, and the volume increase induced by swelling influences tensile properties of the O-rings. Samples of nonfilled (NF), carbon black-filled (CB), and silica-filled (SC) sulfur-vulcanized acrylonitrile-butadiene rubber were exposed to hydrogen at 30 °C and pressures of up to 100 MPa, and the effect of hydrogen exposure on the volume increase, hydrogen content, and tensile properties was investigated. The residual hydrogen content, measured 35 minutes after decompression, increased with increasing hydrogen pressure in the range 0.7-100 MPa for all three samples. In contrast, the volumes of NF, CB, and SC barely changed at pressures below 10 MPa, whereas they increased at pressures above 10 MPa. This nonlinear volume increase is probably related to the free volume of the rubber structure. The volume increase of the CB and SC samples was smaller than that of the NF samples, possibly because of the superior tensile properties of CB and SC. As the volumes of the NF, CB, and SC samples increased, their tensile elastic moduli decreased as a result of a decrease in crosslink density and elongation by volume increase. Although the true fracture stress of NF was barely dependent on the volume of the specimen, those of CB and SC clearly decreased as the volume increased. The decrease in the true fracture stress of CB and SC was related to the volume increase by swelling, showing that the boundary structure between the filler and the rubber matrix was changed by the volume increase.

  12. Composite Piezoelectric Rubber Band for Energy Harvesting from Breathing and Limb Motion

    NASA Astrophysics Data System (ADS)

    Wang, Jhih-Jhe; Su, Huan-Jan; Hsu, Chang-I.; Su, Yu-Chuan

    2014-11-01

    We have successfully demonstrated the design and microfabrication of piezoelectric rubber bands and their application in energy harvesting from human motions. Composite polymeric and metallic microstructures with embedded bipolar charges are employed to realize the desired stretchability and electromechanical sensitivity. In the prototype demonstration, multilayer PDMS cellular structures coated with PTFE films and stretchable gold electrodes are fabricated and implanted with bipolar charges. The composite structures show elasticity of 300~600 kPa and extreme piezoelectricity of d33 >2000 pC/N and d31 >200 pC/N. For a working volume of 2.5cm×2.5cm×0.3mm, 10% (or 2.5mm) stretch results in effective d31 of >17000 pC/N. It is estimated that electric charge of >0.2 μC can be collected and stored per breath (or 2.5cm deformation). As such, the composite piezoelectric rubber bands (with spring constants of ~200 N/m) can be mounted on elastic waistbands to harvest the circumferential stretch during breathing, or on pads around joints to harvest the elongation during limb motion. Furthermore, the wearable piezoelectric structures can be spread, stacked and connected to charge energy storages and power micro devices.

  13. Electromechanical characterization of a new synthetic rubber membrane for dielectric elastomer transducers

    NASA Astrophysics Data System (ADS)

    Vertechy, R.; Fontana, M.

    2015-04-01

    Dielectric Elastomers (DE) are incompressible polymeric solids that experience finite elastic deformations and are electrically non-conductive. Stacking multiple DE films separated by compliant electrodes makes a deformable capacitor transducer, namely a DE Transducer (DET), which can expand in area while shrinking in thickness and vice versa. DETs can be used as solid-state actuators, sensors and generators. The development of an effective DET requires the accurate knowledge of the constitutive behavior of the employed DE material. In this context, this paper reports the experimental results of the electromechanical characterization of a new synthetic rubber membrane (TheraBanTM Latex Free Resistance Band Yellow (P/N #11726), or TheraBand LFRB-Y in short) to be used as elastic dielectric in DETs. Comparison of the obtained results with those of the best quoted Natural Rubber membrane (OPPO BAND 8003) is also provided that shows the superior performances of TheraBand LFRB-Y both in terms of reduced mechanical hysteresis and of higher dielectric strength stability to ambient wetness conditions.

  14. Effects of Cryogenic Temperature on Fracture Toughness of Core-Shell Rubber (CSR) Toughened Epoxy Nanocomposites

    NASA Technical Reports Server (NTRS)

    Wang, J.; Cannon, S. A.; Magee, D.; Schneider, J. A.

    2008-01-01

    This study investigated the effects of core-shell rubber (CSR) nanoparticles on the mechanical properties and fracture toughness of an epoxy resin at ambient and liquid nitrogen (LN2) temperatures. Varying amounts of Kane Ace MX130 toughening agent were added to a commercially available EPON 862/Epikure W epoxy resin. Elastic modulus was calculated using quasi-static tensile data. Fracture toughness was evaluated by the resulting breaking energy measured in Charpy impact tests conducted on an instrumented drop tower. The size and distribution of the CSR nanoparticles were characterized using Transmission Electron Microscopy (TEM) and Small Angle X-ray Scattering (SAXS). Scanning Electron Microscopy (SEM) was used to study the fracture surface morphology. The addition of the CSR nanoparticles increased the breaking energy with negligible change in elastic modulus and ultimate tensile stress (UTS). At ambient temperature the breaking energy increased with increasing additions of the CSR nanoparticles, while at LN2 temperatures, it reached a maximum at 5 wt% CSR concentration. KEY WORDS: liquid nitrogen (LN2) properties, fracture toughness, core-shell rubber (CSR).

  15. Effects of Cryogenic Temperature on Fracture Toughness of Core-Shell Rubber (CSR) Toughened Epoxy Nanocomposites

    NASA Technical Reports Server (NTRS)

    Wang, J.; Cannon, S. A.; Magee, D.; Schneider, J. A.

    2008-01-01

    This study investigated the effects of core-shell rubber (CSR) nanoparticles on the mechanical properties and fracture toughness of an epoxy resin at ambient and liquid nitrogen (LN2) temperatures. Varying amounts of Kane Ace MX130 toughening agent were added to a commercially available EPON 862/Epikure W epoxy resin. Elastic modulus was calculated using quasi-static tensile data. Fracture toughness was evaluated by the resulting breaking energy measured in Charpy impact tests conducted on an instrumented drop tower. The size and distribution of the CSR nanoparticles were characterized using Transmission Electron Microscopy (TEM) and Small Angle X-ray Scattering (SAXS). Scanning Electron Microscopy (SEM) was used to study the fracture surface morphology. The addition of the CSR nanoparticles increased the breaking energy with negligible change in elastic modulus and ultimate tensile stress (UTS). At ambient temperature the breaking energy increased with increasing additions of the CSR nanoparticles, while at LN2 temperatures, it reached a maximum at 5 wt% CSR concentration. KEY WORDS: liquid nitrogen (LN2) properties, fracture toughness, core-shell rubber (CSR).

  16. Quantification of fibronectin adsorption to silicone-rubber cell culture substrates.

    PubMed

    Cunningham, James J; Nikolovski, Janeta; Linderman, Jennifer J; Mooney, David J

    2002-04-01

    As the role of mechanical force in cellular signaling gained recognition, investigators designed a number of devices to deliver controlled regimens of mechanical force to cultured cells. One type of device uses thin silicone-rubber membranes to support monolayer cell adhesion and to transmit mechanical force in the form of biaxial strain. We have observed that cell attachment and spreading are impaired on these membranes compared to polystyrene, even when both are passively coated with identical amounts of extracellular matrix. The purpose of these studies was to quantify the efficiency and stability of passive matrix adsorption onto commercially available elastic culture substrates. A theoretically saturating density (1 microg/cm2) of fibronectin was added to each well, and the initial efficiency of adsorption to the walls and elastic membranes was found to be 31 +/- 2% of the protein added. Strikingly, when the protein adsorbed specifically to the membranes was quantified after seven days, only 10-26 ng/cm2 fibronectin were present, revealing that most of the adsorption is to the sides of the wells. These results indicate that the adsorption of matrix proteins to silicone-rubber substrates is relatively inefficient and that investigators who use these systems must be aware of this fact and design their experiments accordingly.

  17. Similarities and differences in rubber biochemistry among plant species.

    PubMed

    Cornish, K

    2001-08-01

    This report reviews aspects of the biochemical regulation of rubber yield and rubber quality in three contrasting rubber-producing species, Hevea brasiliensis, Parthenium argentatum and Ficus elastica. Although many similarities are revealed, considerable differences also exist in enzymatic mechanisms regulating biosynthetic rate and the molecular weight of the rubber biopolymers produced. In all three species, rubber molecule initiation, biosynthetic rate and molecular weight, in vitro, are dependent upon substrate concentration and the ratio of isopentenyl pyrophosphate (IPP, the elongation substrate, or monomer) and farnesyl pyrophosphate (FPP, an initiator), but these parameters are affected by intrinsic properties of the rubber transferases as well. All three rubber transferases are capable of producing a wide range of rubber molecular weight, depending upon substrate concentration, clearly demonstrating that the transferases are not the prime determinants of product size in vivo. However, despite these commonalities, considerable differences exist between the species with respect to cosubstrate effects, binding constants, effective concentration ranges, and the role of negative cooperativity in vitro. The P. argentatum rubber transferase appears to exert more control over the molecular weight it produces than the other two species and may, therefore, provide the best prospect for the source of genes for transformation of annual crop species. The kinetic data, from the three contrasting rubber-producing species, also were used to develop a model of the rubber transferase active site in which, in addition to separate IPP and allylic-PP binding sites, there exists a hydrophobic region that interacts with the linear portion of allylic-PP initiator proximal to the pyrophosphate. Substrate affinity increases until the active site is traversed and the rubber interior of the rubber particle is reached. The kinetic data suggest that the hydrophobic region in H

  18. Cancer mortality and morbidity among rubber workers.

    PubMed

    Monson, R R; Fine, L J

    1978-10-01

    Mortality and morbidity from cancer among a cohort of 13,570 white male rubber workers were examined. Each man worked for at least 5 years at the Akron, Ohio, plant of the B. F. Goodrich Company. The potential period of follow-up was from January 1, 1940 to June 30, 1976. Departmental work histories were based primarily on records maintained by Local no. 5, United Rubber Workers. The occurrence of cancer was measured by death certificates and by a survey of Akron-area hospital tumor registries from 1964 to 1974. Two types of analyses were made: 1) an external comparison of mortality rates of rubber workers versus rates of U.S. white males, and 2) an internal comparison of cancer morbidity rates among persons who were employed in various work areas of the plant. Excess cases of specific cancers (observed/expected numbers) among workers in specific work areas included: stomach and intestine: rubber making (30/14.4); lung: tire curing (31/14.1), fuel cells and/or deicers (46/29.1); bladder: chemical plant (6/2.4), and tire building (16/10.7); skin cancer: tire assembly (12/1.9); brain cancer: tire assembly (8/2.0); lymphatic cancer: tire building (8/3.2); and leukemia: calendering (8/2.2), tire curing (8/2.6), tire building (12/7.5), elevators (4/1.4), tubes (4/1.6), and rubber fabrics (4/1.1). Agents that may be responsible for these excesses were considered.

  19. Primitive-chain Brownian simulations of entangled rubbers

    NASA Astrophysics Data System (ADS)

    Oberdisse, J.; Ianniruberto, G.; Greco, F.; Marrucci, G.

    2002-05-01

    We present a new multi-chain Brownian dynamics simulation of a polymeric network containing both crosslinks and slip-links (entanglements). We coarse-grain at the level of chain segments connecting consecutive nodes (cross- or slip-links). Affine displacement of nodes is not imposed; rather, their displacement as well as sliding of monomers through slip-links is governed by force balances. The stress-strain response in uniaxial extension is compared with the slip-link theories of Ball et al. (Polymer, 22 (1981) 1010) and Edwards and Vilgis (Polymer, 27 (1986) 483), and with the molecular-dynamics simulations of Grest et al. (J. Non-Cryst. Solids, 274 (2000) 139). Qualitative agreement both with the Mooney-Rivlin expression and with the stress upturn at large strains confirms the role of entanglements in explaining departure from the classical theory of phantom chain networks. However, quantitative agreement with data is satisfactory at low strains only, and the observed discrepancy at larger strains suggests possible refinements of the model. Additivity of free energy contributions of crosslinks and entanglements used in several molecular theories of rubber elasticity is confirmed by the simulation results.

  20. Initiator-independent and initiator-dependent rubber biosynthesis in Ficus elastica.

    PubMed

    Espy, Stephanie C; Keasling, Jay D; Castillón, Javier; Cornish, Katrina

    2006-04-15

    The rubber-producing tree, Ficus elastica (the Indian rubber tree), requires the same substrates for rubber production as other rubber-producing plants, such as Hevea brasiliensis (the Brazilian or Para rubber tree), the major source of commercial natural rubber in the world, and Parthenium argentatum (guayule), a widely studied alternative for natural rubber production currently under commercial development. Rubber biosynthesis can be studied, in vitro, using purified, enzymatically active rubber particles, an initiator such as FPP, IPP as the source of monomer, and a metal cofactor such as Mg2+. However, unlike H. brasiliensis and P. argentatum, we show that enzymatically active rubber particles purified from F. elastica are able to synthesize rubber, in vitro, in the absence of added initiator. In this paper, we characterize, for the first time, the kinetic differences between initiator-dependent rubber biosynthesis, and initiator-independent rubber biosynthesis, and the effect of cofactor concentration on both of these processes.

  1. Silencing the lettuce homologs of small rubber particle protein does not influence natural rubber biosynthesis in lettuce (Lactuca sativa).

    PubMed

    Chakrabarty, Romit; Qu, Yang; Ro, Dae-Kyun

    2015-05-01

    Natural rubber, cis-1,4-polyisoprene, is an important raw material in chemical industries, but its biosynthetic mechanism remains elusive. Natural rubber is known to be synthesized in rubber particles suspended in laticifer cells in the Brazilian rubber tree (Hevea brasiliensis). In the rubber tree, rubber elongation factor (REF) and its homolog, small rubber particle protein (SRPP), were found to be the most abundant proteins in rubber particles, and they have been implicated in natural rubber biosynthesis. As lettuce (Lactuca sativa) can synthesize natural rubber, we utilized this annual, transformable plant to examine in planta roles of the lettuce REF/SRPP homologs by RNA interference. Among eight lettuce REF/SRPP homologs identified, transcripts of two genes (LsSRPP4 and LsSRPP8) accounted for more than 90% of total transcripts of REF/SRPP homologs in lettuce latex. LsSRPP4 displays a typical primary protein sequence as other REF/SRPP, while LsSRPP8 is twice as long as LsSRPP4. These two major LsSRPP transcripts were individually and simultaneously silenced by RNA interference, and relative abundance, polymer molecular weight, and polydispersity of natural rubber were analyzed from the LsSRPP4- and LsSRPP8-silenced transgenic lettuce. Despite previous data suggesting the implications of REF/SRPP in natural rubber biosynthesis, qualitative and quantitative alterations of natural rubber could not be observed in transgenic lettuce lines. It is concluded that lettuce REF/SRPP homologs are not critically important proteins in natural rubber biosynthesis in lettuce. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. On granular elasticity

    PubMed Central

    Sun, Qicheng; Jin, Feng; Wang, Guangqian; Song, Shixiong; Zhang, Guohua

    2015-01-01

    Mesoscopic structures form in dense granular materials due to the self-organisation of the constituent particles. These structures have internal structural degrees of freedom in addition to the translational degree of freedom. The resultant granular elasticity, which exhibits intrinsic variations and inevitable relaxation, is a key quantity that accounts for macroscopic solid- or fluid-like properties and the transitions between them. In this work, we propose a potential energy landscape (PEL) with local stable basins and low elastic energy barriers to analyse the nature of granular elasticity. A function for the elastic energy density is proposed for stable states and is further calibrated with ultrasonic measurements. Fluctuations in the elastic energy due to the evolution of internal structures are proposed to describe a so-called configuration temperature Tc as a counterpart of the classical kinetic granular temperature Tk that is attributed to the translational degrees of freedom. The two granular temperatures are chosen as the state variables, and a fundamental equation is established to develop non-equilibrium thermodynamics for granular materials. Due to the relatively low elastic energy barrier in the PEL, granular elasticity relaxes more under common mechanical loadings, and a simple model based on mean-field theory is developed to account for this behaviour. PMID:25951049

  3. [Forensic medical assessment of the mechanisms of development of gunshot lesions caused by elastic destructive agents].

    PubMed

    Musin, É Kh; Roman'ko, N A; Makarov, I Iu; Kutsenko, K I

    2012-01-01

    This paper reports the results of analysis of the data obtained in experimental studies and practical expert assessments of body injuries inflicted by rubber balls for traumatic weapons. The causes accounting for the polymorphism of such injuries and the mechanisms of their development were elucidated by means of damage simulation taking into consideration the physical and dynamic properties of elastic ball-type destructive agents and the morphological structure of different anatomical regions of the human body. The results of the study may be of interest for differential diagnostics of gunshot lesions caused by elastic destructive agents.

  4. Elastic membranes in confinement

    NASA Astrophysics Data System (ADS)

    Bostwick, Joshua; Miksis, Michael; Davis, Stephen

    2014-11-01

    An elastic membrane stretched between two walls takes a shape defined by its length and the volume of fluid it encloses. Many biological structures, such as cells, mitochondria and DNA, have finer internal structure in which a membrane (or elastic member) is geometrically ``confined'' by another object. We study the shape stability of elastic membranes in a ``confining'' box and introduce repulsive van der Waals forces to prevent the membrane from intersecting the wall. We aim to define the parameter space associated with mitochondria-like deformations. We compare the confined to `unconfined' solutions and show how the structure and stability of the membrane shapes changes with the system parameters.

  5. Elastic scattering phenomenology

    NASA Astrophysics Data System (ADS)

    Mackintosh, R. S.

    2017-04-01

    We argue that, in many situations, fits to elastic scattering data that were historically, and frequently still are, considered "good", are not justifiably so describable. Information about the dynamics of nucleon-nucleus and nucleus-nucleus scattering is lost when elastic scattering phenomenology is insufficiently ambitious. It is argued that in many situations, an alternative approach is appropriate for the phenomenology of nuclear elastic scattering of nucleons and other light nuclei. The approach affords an appropriate means of evaluating folding models, one that fully exploits available empirical data. It is particularly applicable for nucleons and other light ions.

  6. Neuro-fuzzy estimation of passive robotic joint safe velocity with embedded sensors of conductive silicone rubber

    NASA Astrophysics Data System (ADS)

    Al-Shammari, Eiman Tamah; Petković, Dalibor; Danesh, Amir Seyed; Shamshirband, Shahaboddin; Issa, Mirna; Zentner, Lena

    2016-05-01

    Robotic operations need to be safe for unpredictable contacts. Joints with passive compliance with springs can be used for soft robotic contacts. However the joints cannot measure external collision forces. In this investigation was developed one passive compliant joint which have soft contacts with external objects and measurement capabilities. To ensure it, conductive silicone rubber was used as material for modeling of the compliant segments of the robotic joint. These compliant segments represent embedded sensors. The conductive silicone rubber is electrically conductive by deformations. The main task was to obtain elastic absorbers for the external collision forces. These absorbers can be used for measurement in the same time. In other words, the joint has an internal measurement system. Adaptive neuro fuzzy inference system (ANFIS) was used to estimate the safety level of the robotic joint by head injury criteria (HIC).

  7. On the Evaluation of the Elastic Modulus of Soft Materials Using Beams with Unknown Initial Curvature

    PubMed Central

    Khatam, Hamed; Ravi-Chandar, K.

    2013-01-01

    A nonlinear optimization procedure is established to determine the elastic modulus of slender, soft materials using beams with unknown initial curvature in the presence of large rotations. Specifically, the deflection of clamped-free beams under self-weight – measured at different orientations with respect to gravity – is used to determine the modulus of elasticity and the intrinsic curvature in the unloaded state. The approach is validated with experiments on a number of different materials – steel, polyetherimide, rubber and pig skin. Since the loading is limited to self-weight, the strain levels attained in these tests are small enough to assume a linear elastic material behavior. This nondestructive methodology is also applicable to engineered tissues and extremely delicate materials in order to obtain a quick estimate of the material’s elastic modulus. PMID:24159244

  8. Incorporation of Rubber Powder as Filler in a New Dry-Hybrid Technology: Rheological and 3D DEM Mastic Performances Evaluation

    PubMed Central

    Vignali, Valeria; Mazzotta, Francesco; Sangiorgi, Cesare; Simone, Andrea; Lantieri, Claudio; Dondi, Giulio

    2016-01-01

    In recent years, the use of crumb rubber as modifier or additive within asphalt concretes has allowed obtaining mixtures able to bind high performances to recovery and reuse of discarded tires. To date, the common technologies that permit the reuse of rubber powder are the wet and dry ones. In this paper, a dry-hybrid technology for the production of Stone Mastic Asphalt mixtures is proposed. It allows the use of the rubber powder as filler, replacing part of the limestone one. Fillers are added and mixed with a high workability bitumen, modified with SBS (styrene-butadiene-styrene) polymer and paraffinic wax. The role of rubber powder and limestone filler within the bituminous mastic has been investigated through two different approaches. The first one is a rheological approach, which comprises a macro-scale laboratory analysis and a micro-scale DEM simulation. The second, instead, is a performance approach at high temperatures, which includes Multiple Stress Creep Recovery tests. The obtained results show that the rubber works as filler and it improves rheological characteristics of the polymer modified bitumen. In particular, it increases stiffness and elasticity at high temperatures and it reduces complex modulus at low temperatures. PMID:28773965

  9. Incorporation of Rubber Powder as Filler in a New Dry-Hybrid Technology: Rheological and 3D DEM Mastic Performances Evaluation.

    PubMed

    Vignali, Valeria; Mazzotta, Francesco; Sangiorgi, Cesare; Simone, Andrea; Lantieri, Claudio; Dondi, Giulio

    2016-10-18

    In recent years, the use of crumb rubber as modifier or additive within asphalt concretes has allowed obtaining mixtures able to bind high performances to recovery and reuse of discarded tires. To date, the common technologies that permit the reuse of rubber powder are the wet and dry ones. In this paper, a dry-hybrid technology for the production of Stone Mastic Asphalt mixtures is proposed. It allows the use of the rubber powder as filler, replacing part of the limestone one. Fillers are added and mixed with a high workability bitumen, modified with SBS (styrene-butadiene-styrene) polymer and paraffinic wax. The role of rubber powder and limestone filler within the bituminous mastic has been investigated through two different approaches. The first one is a rheological approach, which comprises a macro-scale laboratory analysis and a micro-scale DEM simulation. The second, instead, is a performance approach at high temperatures, which includes Multiple Stress Creep Recovery tests. The obtained results show that the rubber works as filler and it improves rheological characteristics of the polymer modified bitumen. In particular, it increases stiffness and elasticity at high temperatures and it reduces complex modulus at low temperatures.

  10. Initiation of rubber biosynthesis: In vitro comparisons of benzophenone-modified diphosphate analogues in three rubber-producing species.

    PubMed

    Xie, Wenshuang; McMahan, Colleen M; Degraw, Amanda J; Distefano, Mark D; Cornish, Katrina; Whalen, Maureen C; Shintani, David K

    2008-10-01

    Natural rubber, cis-1,4-polyisoprene, is a vital industrial material synthesized by plants via a side branch of the isoprenoid pathway by the enzyme rubber transferase. While the specific structure of this enzyme is not yet defined, based on activity it is probably a cis-prenyl transferase. Photoactive functionalized substrate analogues have been successfully used to identify isoprenoid-utilizing enzymes such as cis- and trans-prenyltransferases, and initiator binding of an allylic pyrophosphate molecule in rubber transferase has similar features to these systems. In this paper, a series of benzophenone-modified initiator analogues were shown to successfully initiate rubber biosynthesis in vitro in enzymatically-active washed rubber particles from Ficus elastica, Heveabrasiliensis and Parthenium argentatum. Rubber transferases from all three species initiated rubber biosynthesis most efficiently with farnesyl pyrophosphate. However, rubber transferase had a higher affinity for benzophenone geranyl pyrophosphate (Bz-GPP) and dimethylallyl pyrophosphate (Bz-DMAPP) analogues with ether-linkages than the corresponding GPP or DMAPP. In contrast, ester-linked Bz-DMAPP analogues were less efficient initiators than DMAPP. Thus, rubber biosynthesis depends on both the size and the structure of Bz-initiator molecules. Kinetic studies thereby inform selection of specific probes for covalent photolabeling of the initiator binding site of rubber transferase.

  11. Identification and reconstitution of the rubber biosynthetic machinery on rubber particles from Hevea brasiliensis

    PubMed Central

    Yamashita, Satoshi; Yamaguchi, Haruhiko; Waki, Toshiyuki; Aoki, Yuichi; Mizuno, Makie; Yanbe, Fumihiro; Ishii, Tomoki; Funaki, Ayuta; Tozawa, Yuzuru; Miyagi-Inoue, Yukino; Fushihara, Kazuhisa; Nakayama, Toru; Takahashi, Seiji

    2016-01-01

    Natural rubber (NR) is stored in latex as rubber particles (RPs), rubber molecules surrounded by a lipid monolayer. Rubber transferase (RTase), the enzyme responsible for NR biosynthesis, is believed to be a member of the cis-prenyltransferase (cPT) family. However, none of the recombinant cPTs have shown RTase activity independently. We show that HRT1, a cPT from Heveabrasiliensis, exhibits distinct RTase activity in vitro only when it is introduced on detergent-washed HeveaRPs (WRPs) by a cell-free translation-coupled system. Using this system, a heterologous cPT from Lactucasativa also exhibited RTase activity, indicating proper introduction of cPT on RP is the key to reconstitute active RTase. RP proteomics and interaction network analyses revealed the formation of the protein complex consisting of HRT1, rubber elongation factor (REF) and HRT1-REF BRIDGING PROTEIN. The RTase activity enhancement observed for the complex assembled on WRPs indicates the HRT1-containing complex functions as the NR biosynthetic machinery. DOI: http://dx.doi.org/10.7554/eLife.19022.001 PMID:27790974

  12. A computational study of adhesion between rubber and metal sulfides at rubber-brass interface

    NASA Astrophysics Data System (ADS)

    Ling, Chian Ye; Hirvi, Janne T.; Suvanto, Mika; Bazhenov, Andrey S.; Ajoviita, Tommi; Markkula, Katriina; Pakkanen, Tapani A.

    2015-05-01

    Computational study at level of density functional theory has been carried out in order to investigate the adhesion between rubber and brass plated steel cord, which has high importance in tire manufacturing. Adsorption of natural rubber based adsorbate models has been studied on zinc sulfide, ZnS(1 1 0), and copper sulfide, Cu2S(1 1 1) and CuS(0 0 1), surfaces as the corresponding phases are formed in adhesive interlayer during rubber vulcanization. Saturated hydrocarbons exhibited weak interactions, whereas unsaturated hydrocarbons and sulfur-containing adsorbates interacted with the metal atoms of sulfide surfaces more strongly. Sulfur-containing adsorbates interacted with ZnS(1 1 0) surface stronger than unsaturated hydrocarbons, whereras both Cu2S(1 1 1) and CuS(0 0 1) surfaces showed opposite adsorption preference as unsaturated hydrocarbons adsorbed stronger than sulfur-containing adsorbates. The different interaction strength order can play role in rubber-brass adhesion with different relative sulfide concentrations. Moreover, Cu2S(1 1 1) surface exhibits higher adsorption energies than CuS(0 0 1) surface, possibly indicating dominant role of Cu2S in the adhesion between rubber and brass.

  13. Identification and reconstitution of the rubber biosynthetic machinery on rubber particles from Hevea brasiliensis.

    PubMed

    Yamashita, Satoshi; Yamaguchi, Haruhiko; Waki, Toshiyuki; Aoki, Yuichi; Mizuno, Makie; Yanbe, Fumihiro; Ishii, Tomoki; Funaki, Ayuta; Tozawa, Yuzuru; Miyagi-Inoue, Yukino; Fushihara, Kazuhisa; Nakayama, Toru; Takahashi, Seiji

    2016-10-28

    Natural rubber (NR) is stored in latex as rubber particles (RPs), rubber molecules surrounded by a lipid monolayer. Rubber transferase (RTase), the enzyme responsible for NR biosynthesis, is believed to be a member of the cis-prenyltransferase (cPT) family. However, none of the recombinant cPTs have shown RTase activity independently. We show that HRT1, a cPT from Heveabrasiliensis, exhibits distinct RTase activity in vitro only when it is introduced on detergent-washed HeveaRPs (WRPs) by a cell-free translation-coupled system. Using this system, a heterologous cPT from Lactucasativa also exhibited RTase activity, indicating proper introduction of cPT on RP is the key to reconstitute active RTase. RP proteomics and interaction network analyses revealed the formation of the protein complex consisting of HRT1, rubber elongation factor (REF) and HRT1-REF BRIDGING PROTEIN. The RTase activity enhancement observed for the complex assembled on WRPs indicates the HRT1-containing complex functions as the NR biosynthetic machinery.

  14. Deflation of elastic surfaces

    NASA Astrophysics Data System (ADS)

    Quilliet, Catherine; Quemeneur, François; Marmottant, Philippe; Imhof, Arnout; Pépin-Donat, Brigitte; van Blaaderen, Alfons

    2010-03-01

    The deflation of elastic spherical surfaces has been numerically investigated, and show very different types of deformations according the range of elastic parameters, some of them being quantitatively explained through simple calculations. This allows to retrieve various shapes observed on hollow shells (from colloidal to centimeter scale), on lipid vesicles, or on some biological objects. The extension of this process to other geometries allows to modelize vegetal objects such as the ultrafast trap of carnivorous plants.

  15. Trapped rubber processing for advanced composites

    NASA Technical Reports Server (NTRS)

    Marra, P. J.

    1976-01-01

    Trapped rubber processing is a molding technique for composites in which precast silicone rubber is placed within a closed cavity where it thermally expands against the composite's surface supported by the vessel walls. The method has been applied by the Douglas Aircraft Company, under contract to NASA-Langley, to the design and fabrication of 10 DC-10 graphite/epoxy upper aft rudder assemblies. A three-bay development tool form mold die has been designed and manufactured, and tooling parameters have been established. Fabrication procedures include graphite layup, assembly of details in the tool, and a cure cycle. The technique has made it possible for the cocured fabrication of complex primary box structures otherwise impracticable via standard composite material processes.

  16. Occupational disease in the rubber industry.

    PubMed

    Peters, J M; Monson, R R; Burgess, W A; Fine, L J

    1976-10-01

    We have studied mortality patterns in a large cohort of rubber workers. We have examined workers exposed to curing fumes, processing dusts, and industrial talc and have begun to evaluate exposures of these workers in detail. Gastrointestinal (especially stomach) cancer appears in excess in processing workers. Lung cancer is excessive in curing workers. Leukemia is increased generally. All three groups studied for respiratory disease have an increase in disease prevalence which is related to intensity and duration of exposure. Since both an increase in stomach cancer and respiratory disease is seen in processing workers, exposures in this area must be controlled. Since both lung cancer and chronic respiratory disease is excessive in curing rooms, this exposure must be controlled. The leukemia risk is probably related to solvents. Whether this is all explainable by past benzene exposure is unknown. Further studies are planned to refine our knowledge concerning these risks so that occupational disease in the rubber industry can be prevented.

  17. Occupational disease in the rubber industry.

    PubMed Central

    Peters, J M; Monson, R R; Burgess, W A; Fine, L J

    1976-01-01

    We have studied mortality patterns in a large cohort of rubber workers. We have examined workers exposed to curing fumes, processing dusts, and industrial talc and have begun to evaluate exposures of these workers in detail. Gastrointestinal (especially stomach) cancer appears in excess in processing workers. Lung cancer is excessive in curing workers. Leukemia is increased generally. All three groups studied for respiratory disease have an increase in disease prevalence which is related to intensity and duration of exposure. Since both an increase in stomach cancer and respiratory disease is seen in processing workers, exposures in this area must be controlled. Since both lung cancer and chronic respiratory disease is excessive in curing rooms, this exposure must be controlled. The leukemia risk is probably related to solvents. Whether this is all explainable by past benzene exposure is unknown. Further studies are planned to refine our knowledge concerning these risks so that occupational disease in the rubber industry can be prevented. PMID:1026415

  18. Extraction of mercaptobenzothiazole compounds from rubber products.

    PubMed

    Hansson, C; Bergendorff, O; Ezzelarab, M; Sterner, O

    1997-04-01

    At evaluation of contact dermatitis caused by solid material, patch testing is usually performed with the material as such and with extracts of it. In this study, optimization of the extraction technique monitored by quantitative HPLC analysis of the extracted haptens is described for mercaptobenzothiazole derivatives. Several solvents with different properties are included. Acetone has traditionally been a solvent widely used for the extraction of organic haptens from solid products. However, acetone and other ketones are not inert solvents. The rubber accelerators 2-(4-morpholinyl mercapto) benzothiazole (MMBT) and N-cyclohexyl-2-benzothiazyl sulfenamide (CBS) react with acetone, yielding 2 new compounds, which were isolated and characterised by NMR and MS. For the extraction of solid rubber products, methyl tert-butyl ether (MTBE) was found to be a more suitable solvent which is unreactive to most common haptens.

  19. Rubber plantations act as water pumps in tropical China

    NASA Astrophysics Data System (ADS)

    Tan, Zheng-Hong; Zhang, Yi-Ping; Song, Qing-Hai; Liu, Wen-Jie; Deng, Xiao-Bao; Tang, Jian-Wei; Deng, Yun; Zhou, Wen-Jun; Yang, Lian-Yan; Yu, Gui-Rui; Sun, Xiao-Min; Liang, Nai-Shen

    2011-12-01

    Whether rubber plantations have the role of water pumps in tropical Southeast Asia is under active debate. Fifteen years (1994-2008) of paired catchments water observation data and one year paired eddy covariance water flux data in primary tropical rain forest and tropical rubber plantation was used to clarify how rubber plantation affects local water resources of Xishuangbanna, China. Both catchment water observations and direct eddy covariance estimates indicates that more water was evapotranspired from rubber plantation (1137 mm based on catchment water balance, 1125 mm based on eddy covariance) than from the rain forest (969 mm based on catchment water balance, 927 mm based on eddy covariance). Soil water storage during the rainy season is not sufficient to maintain such high evapotranspiration rates, resulting in zero flow and water shortages during the dry season in the rubber plantation. Therefore, this study supports the idea that rubber plantations act as water pumps as suggested by local inhabitants.

  20. Silicone-Rubber Tooling for Hollow Panels

    NASA Technical Reports Server (NTRS)

    Gallimore, F. H.

    1985-01-01

    Wave-free contour surface obtained by using flexible mold. Silicone-rubber layup tool, when used in conjunction with hard plastic laminating mold defining desired contour, produces panel with wave-free surface that accurately reproduces shape of mold. In addition to providing porous hollow-panel wing structure that acts as duct for transporting sucked boundary layer tooling, also used to fabricate high-strength lightweight door panels and any single-or compound-contour panel.

  1. Rubber-Modified Epoxies: Transitions and Morphology.

    DTIC Science & Technology

    1980-09-01

    Table 2. Composition and Cure of Model Resins: Notation. Table 3. Morphology: Summary. FIGURE CAPTIONS Fig. 1. TBA damping curves for unmodified and...temperature of cure and the gelation time. These DD 1473 om~ow* orimv as to .gews ~ 410 3 ? U611111Iry OLASSIPCATSWor TISite Answ IO - ------ AIR- SECURITV...rubber, the temperature of cure and the gelation time. These ideas have been exploited to control the development of morphology of these amorphous

  2. 76 FR 28502 - Cooper Tire & Rubber Tire Company, Receipt of Petition for Decision of Inconsequential Noncompliance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... National Highway Traffic Safety Administration Cooper Tire & Rubber Tire Company, Receipt of Petition for Decision of Inconsequential Noncompliance Cooper Tire & Rubber Tire Company, (Cooper),\\1\\ has determined...\\ Cooper Tire & Rubber Tire Company (Cooper) is a replacement equipment manufacturer incorporated in...

  3. 75 FR 36472 - Goodyear Tire and Rubber Company, Receipt of Petition for Decision of Inconsequential Noncompliance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ... National Highway Traffic Safety Administration Goodyear Tire and Rubber Company, Receipt of Petition for Decision of Inconsequential Noncompliance Goodyear Tire and Rubber Company, (Goodyear),\\1\\ has determined... 573, Defect and Noncompliance Responsibility and Reports. \\1\\ Goodyear Tire and Rubber...

  4. 75 FR 81712 - The Goodyear Tire & Rubber Company, Receipt of Petition for Decision of Inconsequential...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... National Highway Traffic Safety Administration The Goodyear Tire & Rubber Company, Receipt of Petition for Decision of Inconsequential Noncompliance The Goodyear Tire & Rubber Company (Goodyear) \\1\\ has determined... Noncompliance Responsibility and Reports, dated August 12, 2010. \\1\\ The Goodyear Tire & Rubber...

  5. Magnesium affects rubber biosynthesis and particle stability in Ficus elastica, Hevea brasiliensis and Parthenium argentatum

    USDA-ARS?s Scientific Manuscript database

    Natural rubber biosynthesis occurs in laticifers of Ficus elastica and Hevea brasiliensis, and in parenchyma cells of Parthenium argentatum. Natural rubber is synthesized by rubber transferase using allylic pyrophosphates as initiators, isopentenyl pyrophosphate as monomeric substrate and magnesium ...

  6. Effects of Carbon Black Type on Breathable Butyl Rubber Membranes

    DTIC Science & Technology

    2006-11-01

    EFFECTS OF CARBON BLACK TYPE ON BREATHABLE BUTYL RUBBER MEMBRANES P. Threepopnatkul, D. Murphy, and J. Mead Department of Plastics Engineering...the formulation effects of carbon black type and carbon black loading on the physical properties of electrospun butyl rubber nonwoven membranes...can be provided by elastomeric materials. On the other hand, butyl rubber films have the ability to stretch and are utilized in chemical protective

  7. The enzymatic synthesis of rubber polymer in Parthenium argentatum Gray

    SciTech Connect

    Benedict, C.R.; Madhavan, S.; Greenblatt, G.A.; Venkatachalam, K.V.; Foster, M.A. )

    1990-03-01

    Washed rubber particles isolated from stem homogenates of Parthenium argentatum Gray by ultracentrifugation and gel filtration on columns of LKB Ultrogel AcA34 contain rubber transferase which catalyzes the polymerization of isopentenyl pyrophosphate into rubber polymer. The polymerization reaction requires Mg{sup 2+} isopentenyl pyrophosphate, and an allylic pyrophosphate. The K{sub m} values for Mg{sup 2+}, isopentenyl pyrophosphate, and dimethylallyl pyrophosphate were 5.2 {times} 10{sup {minus}4} molar, 8.3 {times} 10{sup {minus}5} molar, and 9.6 {times} 10{sup {minus}5} molar, respectively. The molecular characteristics of the rubber polymer synthesized from ({sup 14}C)isopentenyl pyrophosphate were examined by gel permeation chromatography. The peak molecular weight of the radioactive polymer increased from 70,000 in 15 minutes to 750,000 in 3 hours. The weight average molecular weight of the polymer synthesized over a 3 hour period was 1.17 {times} 10{sup 6} compared to 1.49 {times} 10{sup 6} for the natural rubber polymer extracted from the rubber particles. Over 90% of the in vitro formation of the rubber polymer was de novo from dimethylallyl pyrophosphate and isopentenyl pyrophosphate. Treatment of the washed rubber particles with 3-((3-cholamidopropyl) dimethylammonio) -1-propanesulfonate solubilized the rubber transferase. The solubilized enzyme(s) catalyzed the polymerization of isopentenyl pyrophosphate into rubber polymer with a peak molecular weight of 1 {times} 10{sup 5} after 3 hours of incubation with Mg{sup 2+} and dimethylallyl pyrophosphate. The data support the conclusion that the soluble preparation of rubber transferase is capable of catalyzing the formation of a high molecular weight rubber polymer from an allylic pyrophosphate initiator and isopentenyl pyrophosphate monomer.

  8. Characterization of interaction between natural rubber and silica by FTIR

    NASA Astrophysics Data System (ADS)

    Jarnthong, Methakarn; Liao, Lusheng; Zhang, Fuquan; Wang, Yueqiong; Li, Puwang; Peng, Zheng; Malawet, Chutarat; Intharapat, Punyanich

    2017-05-01

    Blending of natural rubber (NR) and nanosilica (SiO2) was performed in latex state. The mechanical properties of NR/SiO2 nanocomposites at various filler contents were investigated. The interactions of unvulcanized natural rubber and nanosilica filler were characterized using Fourier Transform Infrared (FTIR)-Attenuated Total Reflectance (ATR) spectroscopy. The relationship between mechanical properties and rubber-filler interaction was discussed.

  9. Development of Improved Rubber Compounds for Use in Weapon Applications

    DTIC Science & Technology

    1974-08-01

    product Paracril D. Compound formulations and physical properties are listed Jn Tab s 10 and 11. respectively. The Japanese nitrile rubber was »«T...Fluorosilicone ruDber inserts for use with machine gun springs exhibited better performance than the sllicone rubber now specified. Blends of...failure. Recently introduced Japanese nitrile rubber and two domestic nitriles did not exhibit any highly significant improvement over nitrile

  10. Mortality among rubber workers: V. processing workers.

    PubMed

    Delzell, E; Monson, R R

    1982-07-01

    Cause-specific mortality was evaluated among 2,666 men employed in the processing division of a rubber manufacturing plant. The division was divided into two sections: front processing (compounding, mixing and milling operations) and back processing (extrusion, calendering, cement mixing and rubberized fabrics operations). Mortality rates for all processing workers combined and for men in each section were compared with rates for U.S. White males or for workers employed in other divisions of the same plant. Compared with either referent group, men in the processing division had increased mortality from leukemia, emphysema, and cancers of the stomach, large intestine, and biliary passages and liver. An excess number of deaths from stomach and larger intestine cancer was found predominantly among men in the front processing section (33 observed vs. 17.7 expected deaths, based on rates in nonprocessing workers). Increased mortality from leukemia (14 observed vs. 7.3 expected) and from emphysema (22 observed vs. 11.0 expected) was present among men employed in the back processing section. Examination of mortality from these causes according to age and the year starting work, duration of employment, and years since starting work in the relevant sections of the processing division suggested that observed excesses of stomach cancer, large intestine cancer, leukemia, and emphysema among processing workers are related to occupational exposures. These results are consistent with the findings of studies of other groups of rubber workers.

  11. Cancer mortality in the British rubber industry.

    PubMed Central

    Parkes, H G; Veys, C A; Waterhouse, J A; Peters, A

    1982-01-01

    Although it is over 30 years since an excess of bladder cancer was first identified in British rubber workers, the fear has persisted that this hazard could still be affecting men working in the industry today. Furthermore, suspicions have also arisen that other and hitherto unsuspected excesses of cancer might be occurring. For these reasons 33 815 men, who first started work in the industry between 1 January 1946 and 31 December 1960, have been followed up to 31 December 1975 to ascertain the number of deaths attributable to malignant disease and to compare these with the expected number calculated from the published mortality rates applicable to the male population of England and Wales and Scotland. The findings confirm the absence of any excess mortality from bladder cancer among men entering the industry after 1 January 1951 (the presumed bladder carcinogens were withdrawn from production processes in July 1949), but they confirm also a statistically significant excess of both lung and stomach cancer mortality. A small excess of oesophageal cancer was also observed in both the tyre and general rubber goods manufacturing sectors. American reports of an excess of leukaemia among rubber workers receive only limited support from the present study, where a small numerical excess of deaths from leukaemia is not statistically significant. A special feature of the study is the adoption of an analytical method that permits taking into account the long latent period of induction of occupational cancer. PMID:7093147

  12. High Performance Graphene Oxide Based Rubber Composites

    NASA Astrophysics Data System (ADS)

    Mao, Yingyan; Wen, Shipeng; Chen, Yulong; Zhang, Fazhong; Panine, Pierre; Chan, Tung W.; Zhang, Liqun; Liang, Yongri; Liu, Li

    2013-08-01

    In this paper, graphene oxide/styrene-butadiene rubber (GO/SBR) composites with complete exfoliation of GO sheets were prepared by aqueous-phase mixing of GO colloid with SBR latex and a small loading of butadiene-styrene-vinyl-pyridine rubber (VPR) latex, followed by their co-coagulation. During co-coagulation, VPR not only plays a key role in the prevention of aggregation of GO sheets but also acts as an interface-bridge between GO and SBR. The results demonstrated that the mechanical properties of the GO/SBR composite with 2.0 vol.% GO is comparable with those of the SBR composite reinforced with 13.1 vol.% of carbon black (CB), with a low mass density and a good gas barrier ability to boot. The present work also showed that GO-silica/SBR composite exhibited outstanding wear resistance and low-rolling resistance which make GO-silica/SBR very competitive for the green tire application, opening up enormous opportunities to prepare high performance rubber composites for future engineering applications.

  13. High Performance Graphene Oxide Based Rubber Composites

    PubMed Central

    Mao, Yingyan; Wen, Shipeng; Chen, Yulong; Zhang, Fazhong; Panine, Pierre; Chan, Tung W.; Zhang, Liqun; Liang, Yongri; Liu, Li

    2013-01-01

    In this paper, graphene oxide/styrene-butadiene rubber (GO/SBR) composites with complete exfoliation of GO sheets were prepared by aqueous-phase mixing of GO colloid with SBR latex and a small loading of butadiene-styrene-vinyl-pyridine rubber (VPR) latex, followed by their co-coagulation. During co-coagulation, VPR not only plays a key role in the prevention of aggregation of GO sheets but also acts as an interface-bridge between GO and SBR. The results demonstrated that the mechanical properties of the GO/SBR composite with 2.0 vol.% GO is comparable with those of the SBR composite reinforced with 13.1 vol.% of carbon black (CB), with a low mass density and a good gas barrier ability to boot. The present work also showed that GO-silica/SBR composite exhibited outstanding wear resistance and low-rolling resistance which make GO-silica/SBR very competitive for the green tire application, opening up enormous opportunities to prepare high performance rubber composites for future engineering applications. PMID:23974435

  14. High performance graphene oxide based rubber composites.

    PubMed

    Mao, Yingyan; Wen, Shipeng; Chen, Yulong; Zhang, Fazhong; Panine, Pierre; Chan, Tung W; Zhang, Liqun; Liang, Yongri; Liu, Li

    2013-01-01

    In this paper, graphene oxide/styrene-butadiene rubber (GO/SBR) composites with complete exfoliation of GO sheets were prepared by aqueous-phase mixing of GO colloid with SBR latex and a small loading of butadiene-styrene-vinyl-pyridine rubber (VPR) latex, followed by their co-coagulation. During co-coagulation, VPR not only plays a key role in the prevention of aggregation of GO sheets but also acts as an interface-bridge between GO and SBR. The results demonstrated that the mechanical properties of the GO/SBR composite with 2.0 vol.% GO is comparable with those of the SBR composite reinforced with 13.1 vol.% of carbon black (CB), with a low mass density and a good gas barrier ability to boot. The present work also showed that GO-silica/SBR composite exhibited outstanding wear resistance and low-rolling resistance which make GO-silica/SBR very competitive for the green tire application, opening up enormous opportunities to prepare high performance rubber composites for future engineering applications.

  15. Coupled Thermo-Mechanical Analyses of Dynamically Loaded Rubber Cylinders

    NASA Technical Reports Server (NTRS)

    Johnson, Arthur R.; Chen, Tzi-Kang

    2000-01-01

    A procedure that models coupled thermo-mechanical deformations of viscoelastic rubber cylinders by employing the ABAQUS finite element code is described. Computational simulations of hysteretic heating are presented for several tall and short rubber cylinders both with and without a steel disk at their centers. The cylinders are compressed axially and are then cyclically loaded about the compressed state. The non-uniform hysteretic heating of the rubber cylinders containing a steel disk is presented. The analyses performed suggest that the coupling procedure should be considered for further development as a design tool for rubber degradation studies.

  16. Analysis of residual vulcanization accelerators in baby bottle rubber teats.

    PubMed

    Yamazaki, T; Inoue, T; Yamada, T; Tanimura, A

    1986-01-01

    An analytical method was established for the determination of dialkyldithiocarbamates (DTCs) in chloroform-acetone extracts from rubber teats for baby bottles. DTCs in the extracts were derivatized into ethyl esters and analysed by gas chromatography employing nitrogen-phosphorus detection. Dimethyldithiocarbamate and diethyldithiocarbamate were detected at levels up to 3.2 micrograms/g rubber and up to 4.6 micrograms/g rubber (as dithiocarbamic acid), respectively, in the extracts from commercially available isoprene rubber tests. DTCs can form secondary amines by acid hydrolysis, although the levels of DTCs in the extracts only made a minor contribution to the total level of measured secondary amine precursors.

  17. Amphiphilic semi-interpenetrating polymer networks using pulverized rubber

    NASA Astrophysics Data System (ADS)

    Shahidi, Nima

    Scrap rubber materials provide a significant challenge to either reuse or safe disposal. Every year, millions of tires are discarded to landfills in the United States, consuming a staggering amount of land space, creating a high risk for large fires, breeding mosquitoes that spread diseases, and wasting the planet's natural resources. This situation cannot be sustained. The challenge of reusing scrap rubber materials is mainly due to the crosslinked structure of vulcanized rubber that prevent them from melting and further processing for reuse. The most feasible recycling approach is believed to be a process in which the vulcanized rubber is first pulverized into a fine powder and then incorporated into new products. The production of fine rubber particles is generally accomplished through the use of a cryogenic process that is costly. Therefore, development of a cost effective technology that utilizes a large quantity of the scrap rubber materials to produce high value added materials is an essential element in maintaining a sustainable solution to rubber recycling. In this research, a cost effective pulverization process, solid state shear extrusion (SSSE), was modified and used for continuous pulverization of the rubber into fine particles. In the modified SSSE process, pulverization takes place at high compressive shear forces and a controlled temperature. Furthermore, an innovative particle modification process was developed to enhance the chemical structure and surface properties of the rubber particles for manufacturing of high value added products. Modification of rubber particles was accomplished through the polymerization of a hydrophilic monomer mixture within the intermolecular structure of the hydrophobic rubber particles. The resulting composite particles are considered as amphiphilic particulate phase semi-interpenetrating polymer networks (PPSIPNs). The modified rubber particles are water dispersible and suitable for use in a variety of aqueous media

  18. Influence of ferrous materials on crumb rubber modified asphalts

    NASA Astrophysics Data System (ADS)

    Capelo, M.; Reina, V.; Naranjo, F.; Carrión, L.; Arroyo, Carlos R.; Narváez-Muñoz, C.

    2017-09-01

    This research investigated the properties of crumb rubber modified asphalt mixtures, using a wet process. Different size of crumb rubber particles have been used to analyze their effects on modified asphalt. Moreover, two types of crumb rubber were use; one was used without any change (powder 1), while the other one the ferrous material was removed (powder 2). The tests of chemical compositions and microstructure were performed by Scanning electronic microscope (SEM) and optical microscope, respectively. Finally, the results obtained confirm that the rheology of this modified asphalt depends on the chemical compositions of the crumb rubber at low temperatures.

  19. High temperature performance of scrap tire rubber modified asphalt concrete

    SciTech Connect

    Coomarasamy, A.; Manolis, S.; Hesp, S.

    1996-12-31

    Wheel track rutting tests on mixes modified with 30 mesh, 80 mesh, and very fine colloidal crumb rubber particles show that a very significant improvement in performance occurs with a reduction in the rubber particle size. The SHRP binder test for rutting, which was originally developed for homogeneous systems only, does not predict the performance improvement for smaller rubber particles. If these new scrap rubber binder systems are to be used in pavements then rutting tests on the asphalt-aggregate mixture should be conducted in order to accurately predict high temperature performance.

  20. Radiation vulcanization of natural rubber latex with polyfunctional monomers

    SciTech Connect

    Makuuchi, K.; Hagiwara, M.

    1984-03-01

    Natural rubber latex was irradiated with ..gamma..-rays from Co-60 in the presence of polyfunctional monomers to accelerate crosslinking of rubber molecules. Hydrophobic monomers were more effective in accelerating the vulcanization than were hydrophilic monomers. This was ascribed to high solubility of hydrophobic monomers in rubber particles. Among the hydrophobic monomers, neopentylglycol dimethacrylate (NPG) exhibited the highest efficiency in accelerating the vulcanization. Advantages of using NPG are high colloidal stability of the irradiated latex and high thermal stability of dried rubber film.

  1. Isolation of Microorganisms Able To Metabolize Purified Natural Rubber

    PubMed Central

    Heisey, R. M.; Papadatos, S.

    1995-01-01

    Bacteria able to grow on purified natural rubber in the absence of other organic carbon sources were isolated from soil. Ten isolates reduced the weight of vulcanized rubber from latex gloves by >10% in 6 weeks. Scanning electron microscopy clearly revealed the ability of the microorganisms to colonize, penetrate, and dramatically alter the physical structure of the rubber. The rubber-metabolizing bacteria were identified on the basis of fatty acid profiles and cell wall characteristics. Seven isolates were strains of Streptomyces, two were strains of Amycolatopsis, and one was a strain of Nocardia. PMID:16535106

  2. Characterization of some selected vulcanized and raw silicon rubber materials

    NASA Astrophysics Data System (ADS)

    Sasikala, A.; Kala, A.

    2017-06-01

    Silicone Rubber is a high need of importance of Medical devices, Implants, Aviation and Aerospace wiring applications. Silicone rubbers are widely used in industry, and there are in multiple formulations. A raw and vulcanized silicone rubber Chemical and Physical structures of particles was confirmed and mechanical strength has been analyzed by FTIR spectroscopy. Thermal properties studied from Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) analysis. Activation energy of the rubber materials were calculated using Broido method, Piloyon-Novikova relation and coats-Red fern methods.

  3. [Contamination of solid-cast rubber tires by microscopic fungi].

    PubMed

    Chuienko, A I; Subbota, A H; Olishevs'ka, S V; Zaslavs'kyĭ, V A; Zhdanova, N M

    2010-01-01

    The main peculiarities of fungal resistance of two types of unit cast rubber tires of domestic manufacture have been investigated. Rubber tires which contained synthetic plasticizer were non-resistant to fungal contamination in contrast to ones with natural plasticizer. Using the method of confocal laser-scanning microscopy, it was shown that inner layers of two types of rubber tires were contaminated with fungal mycelium. Our findings indicate that the investigation of microscopic fungi resistance of new materials is necessary for general mechanical rubber goods, especially exported to tropical climate countries.

  4. On Thermophysical Properties of Rubbers and Their Components

    NASA Astrophysics Data System (ADS)

    Danilova-Tret‧yak, S. M.

    2016-11-01

    Results of investigation of the thermophysical properties of commercial carbon of different grades used in the production of tires, and also of rubber mixtures, including those containing karelite, have been presented. A thermal analysis (thermogravimetry, differential thermal analysis) was made of samples of rubber mixtures and powdered fillers, which has enabled the author to establish the distinctive features of thermal stability of materials. The obtained results are important for a better understanding of the problem of critical overheating of supergiant tires, solution of the problem of selecting the optimum compositions of rubber mixtures, and updating the technologies of production and utilization of rubber products.

  5. Effect of pretreatment of rubber material on its biodegradability by various rubber degrading bacteria.

    PubMed

    Berekaa, M M; Linos, A; Reichelt, R; Keller, U; Steinbüchel, A

    2000-03-15

    The effect of pretreatment of several cis-1,4-polyisoprene containing rubbers on their biodegradability was examined. Tests were carried out with six recently isolated and characterized rubber degrading bacteria belonging to the genera Gordonia (strains Kb2, Kd2 and VH2), Mycobacterium, Micromonospora and Pseudomonas. All strains were able to use natural rubber (NR) as well as NR latex gloves as sole carbon source. Extraction of NR latex gloves by organic solvents resulted in an enhancement of growth for three of the selected strains. On the other hand, growth of Gordonia sp. (strain Kb2 and Kd2), Mycobacterium fortuitum NF4 and Micromonospora aurantiaca W2b on synthetic cis-1,4-polyisoprene did only occur after removal of the antioxidants, that are usually added during manufacture to prevent aging of the materials. Detailed degradation studies performed with Gordonia sp. Kb2 revealed an enhanced mineralization of pretreated NR latex gloves and mineralization of purified natural rubber (NR), indicating the actual mineralization of cis-1,4-polyisoprene rubber constituent even after removal of non-rubber constituent that may act as co-metabolic substrate and support microbial growth. Further analysis by scanning electron microscopy (SEM) clearly demonstrated the enhanced colonization efficiency of these bacteria towards pretreated NR latex gloves. Colonization was additionally visualized by staining of overgrown NR latex gloves with Schiff's reagent, and the purple color produced in the area of degradation was an evidence for the accumulation of aldehydes containing oligomers. Further enhancement of latex gloves degradation could be achieved after successive replacement of mineral salts medium during cultivation. Thereby, a rapid disintegration of untreated NR latex gloves material was accomplished by Gordonia sp. strain VH2.

  6. Constitutive modeling and the trousers test for fracture of rubber-like materials

    NASA Astrophysics Data System (ADS)

    Horgan, Cornelius O.; Schwartz, Joseph G.

    2005-03-01

    The classical constitutive modeling of incompressible hyperelastic materials such as vulcanized rubber involves strain-energy densities that depend on the first two invariants of the strain tensor. The most well-known of these is the Mooney-Rivlin model and its specialization to the neo-Hookean form. While each of these models accurately predicts the mechanical behavior of rubber at moderate stretches, they fail to reflect the severe strain-stiffening and effects of limiting chain extensibility observed in experiments at large stretch. In recent years, several constitutive models that capture the effects of limiting chain extensibility have been proposed. Here we confine attention to two such phenomenological models. The first, proposed by Gent in 1996, depends only on the first invariant and involves just two material parameters. Its mathematical simplicity has facilitated the analytic solution of a wide variety of basic boundary-value problems. A modification of this model that reflects dependence on the second invariant has been proposed recently by Horgan and Saccomandi. Here we discuss the stress response of the Gent and HS models for some homogeneous deformations and apply the results to the fracture of rubber-like materials. Attention is focused on a particular fracture test, namely the trousers test where two legs of a cut specimen are pulled horizontally apart. It is shown that the cut position plays a key role in the fracture analysis, and that the effect of the cut position depends crucially on the constitutive model employed. For stiff rubber-like or biological materials, it is shown that the influence of the cut position is diminished. In fact, for linearly elastic materials, the critical driving force for fracture is independent of the cut position. It is also shown that the limiting chain extensibility models predict finite fracture toughness as the cut position approaches the edge of the specimen whereas classical hyperelastic models predict

  7. Elastic Granular Flows

    NASA Astrophysics Data System (ADS)

    Campbell, C. S.

    2014-12-01

    The dry granular flowmap can be broken into two broad categories, the Elastic and the Inertial. Elastic flows are dominated by force chains and stresses are generated by the compression of the interparticle contacts within those chains, and thus are proportional to the stiffness of the contacts. The Elastic zone can be subdivided into two regimes, the Elastic-Quasistatic where forces are independent of the shear rate which at high shear rates transitions to Elastic-Inertial where the particle inertia is reflected in the forces and the stresses increase linearly with the shear rate. In the Inertial regime, the stresses vary with the square of the shear rate. It also is divided into two regimes, the Dense-Inertial where the flow is dominated by clusters of particles, and the Inertial-Collisional where the flow is dominated by binary collisions. Appropriately the elastic theory grew out of an old study of landslides. But like most such studies, all of the above depend on idealized computer simulations of uniform sized spherical particles. Real particles are never round, never of uniform size, and the process of flowing changes surface properties and may even shatter the particles. But all indications are that real systems still fit into the pattern drawn out in the last paragraph. A grave problem facing the field is how to incorporate these effects without losing a fundamental understanding of the internal rheological processes. This talk will begin with an overview of the Elastic flowmap and the behaviors associated with each flow regime. It will then discuss early work to include effects of particle shape and size mixtures and perhaps some effects of particle breakage.

  8. Elasticity of plagioclase feldspars

    NASA Astrophysics Data System (ADS)

    Brown, J. Michael; Angel, Ross J.; Ross, Nancy L.

    2016-02-01

    Elastic properties are reported for eight plagioclase feldspars that span compositions from albite (NaSi3AlO8) to anorthite (CaSi2Al2O8). Surface acoustic wave velocities measured using Impulsive Stimulated Light Scattering and compliance sums from high-pressure X-ray compression studies accurately determine all 21 components of the elasticity tensor for these triclinic minerals. The overall pattern of elasticity and the changes in individual elastic components with composition can be rationalized on the basis of the evolution of crystal structures and chemistry across this solid-solution join. All plagioclase feldspars have high elastic anisotropy; a* (the direction perpendicular to the b and c axes) is the softest direction by a factor of 3 in albite. From albite to anorthite the stiffness of this direction undergoes the greatest change, increasing twofold. Small discontinuities in the elastic components, inferred to occur between the three plagioclase phases with distinct symmetry (C1>¯, I1>¯, and P1>¯), appear consistent with the nature of the underlying conformation of the framework-linked tetrahedra and the associated structural changes. Measured body wave velocities of plagioclase-rich rocks, reported over the last five decades, are consistent with calculated Hill-averaged velocities using the current moduli. This confirms long-standing speculation that previously reported elastic moduli for plagioclase feldspars are systematically in error. The current results provide greater assurance that the seismic structure of the middle and lower crusts can be accurately estimated on the basis of specified mineral modes, chemistry, and fabric.

  9. Buffing dust as a filler of carboxylated butadiene-acrylonitrile rubber and butadiene-acrylonitrile rubber.

    PubMed

    Chronska, K; Przepiorkowska, A

    2008-03-01

    Buffing dust from chrome tanned leather is one of the difficult tannery wastes to manage. It is also hazardous to both human health and the environment. The scientific literature rarely reports studies on dust management, especially on its utilization as a filler for elastomers. In this connection we have made an attempt to use this leather waste as a filler for rubbers such as XNBR and NBR. The addition of the buffing dust to rubber mixes brought improvement in mechanical properties, and increase in resistance to thermal ageing as well as in electric conductivity and crosslink density of vulcalizates.

  10. Ozone Ageing of Silicone Rubber and the Effects of Anti-Oxidants on the Ozone Ageing of Nitrile Rubber.

    DTIC Science & Technology

    1981-04-01

    APR 81 UNCLASSIFIED RAE-TM-MAT-369 DRIC-BR-87489 F/G 11/10 NL mEEns MEOMOEEhMImIIIIIIIIIIIEIIIIII 1.0 SIIIII . ’ + 1.8 11112 1.4 11111_L6 l~y k ~IT N i...graphs follow a characteristic curve of ozone attack on rubber. Table I is a representation of the retention of physical properties of the rubbers...TEST) ozone resistance. Silicone rubber. Nitrile rubber. 17. Abstract Work done by others suggested that a rapid lose of physical properties could occur

  11. Elastic properties of pyrope

    NASA Astrophysics Data System (ADS)

    O'Neill, Bridget; Bass, Jay D.; Rossman, George R.; Geiger, Charles A.; Langer, Klaus

    1991-03-01

    Brillouin spectroscopy was used to measure the single crystal elastic properties of a pure synthetic pyrope and a natural garnet containing 89.9 mol% of the pyrope end member (Mg3Al2Si3O12). The elastic moduli, c ij , of the two samples are entirely consistent and agree with previous estimates of the elastic properties of pyrope based upon the moduli of solid solutions. Our results indicate that the elastic moduli of pyrope end-member are c 11=296.2±0.5, c 12=111.1±0.6, c 44=91.6±0.3, Ks=172.8±0.3, μ=92.0±0.2, all in units of GPa. These results differ by several percent from those reported previously for synthetic pyrope, but are based upon a much larger data set. Although the hydrous components of the two samples from the present study are substantially different, representing both ‘dry’ and ‘saturated’ samples, we find no discernable effect of structurally bound water on the elastic properties. This is due to the small absolute solubility of water in pyrope, as compared with other garnets such as grossular.

  12. Giant dielectric constant and resistance-pressure sensitivity in carbon nanotubes/rubber nanocomposites with low percolation threshold

    NASA Astrophysics Data System (ADS)

    Jiang, Mei-Juan; Dang, Zhi-Min; Xu, Hai-Ping

    2007-01-01

    Nanocomposites consisting of methylvinyl silicone rubber (VMQ) with excellent elasticity as polymer matrix and multiwall carbon nanotube (MWNT) with large slenderness ratio and high conductivity as filler were fabricated by a solution method and subsequently hot pressing technology. Studies on dielectric property and resistance-pressure sensitivity of the MWNT/VMQ composites showed that there was a giant dielectric constant and significant resistance-pressure sensitivity as the concentration of MWNT was near a low percolation threshold, fc≈0.012. After the composite applied an enough pressure for long time, the resistance-pressure sensitivity still shows an excellent reproducibility due to the good dispersion and low loading of MWNT.

  13. An elastic second skin

    NASA Astrophysics Data System (ADS)

    Yu, Betty; Kang, Soo-Young; Akthakul, Ariya; Ramadurai, Nithin; Pilkenton, Morgan; Patel, Alpesh; Nashat, Amir; Anderson, Daniel G.; Sakamoto, Fernanda H.; Gilchrest, Barbara A.; Anderson, R. Rox; Langer, Robert

    2016-08-01

    We report the synthesis and application of an elastic, wearable crosslinked polymer layer (XPL) that mimics the properties of normal, youthful skin. XPL is made of a tunable polysiloxane-based material that can be engineered with specific elasticity, contractility, adhesion, tensile strength and occlusivity. XPL can be topically applied, rapidly curing at the skin interface without the need for heat- or light-mediated activation. In a pilot human study, we examined the performance of a prototype XPL that has a tensile modulus matching normal skin responses at low strain (<40%), and that withstands elongations exceeding 250%, elastically recoiling with minimal strain-energy loss on repeated deformation. The application of XPL to the herniated lower eyelid fat pads of 12 subjects resulted in an average 2-grade decrease in herniation appearance in a 5-point severity scale. The XPL platform may offer advanced solutions to compromised skin barrier function, pharmaceutical delivery and wound dressings.

  14. Elastic properties of HMX.

    SciTech Connect

    Sewell, T. D.; Bedrov, D.; Menikoff, Ralph; Smith, G. D.

    2001-01-01

    Atomistic molecular dynamics simulations have been used to calculate isothermal elastic properties for {beta}-, {alpha}-, and {delta}-HMX. The complete elastic tensor for each polymorph was determined at room temperature and pressure via analysis of microscopic strain fluctuations using formalism due to Rahman and Parrinello [J. Chem. Phys. 76,2662 (1982)]. Additionally, the isothermal compression curve was computed for {beta}-HMX for 0 {le} p {le} 10.6 GPa; the bulk modulus K and its pressure derivative K{prime} were obtained from two fitting forms employed previously in experimental studies of the {beta}-HMX equation of state. Overall, the results indicate good agreement between the bulk modulus predicted from the measured and calculated compression curves. The bulk modulus determined directly from the elastic tensor of {beta}-HMX is in significant disagreement with the compression curve-based results. The explanation for this discrepancy is an area of current research.

  15. Elastic constants of calcite

    USGS Publications Warehouse

    Peselnick, L.; Robie, R.A.

    1962-01-01

    The recent measurements of the elastic constants of calcite by Reddy and Subrahmanyam (1960) disagree with the values obtained independently by Voigt (1910) and Bhimasenachar (1945). The present authors, using an ultrasonic pulse technique at 3 Mc and 25??C, determined the elastic constants of calcite using the exact equations governing the wave velocities in the single crystal. The results are C11=13.7, C33=8.11, C44=3.50, C12=4.82, C13=5.68, and C14=-2.00, in units of 1011 dyncm2. Independent checks of several of the elastic constants were made employing other directions and polarizations of the wave velocities. With the exception of C13, these values substantially agree with the data of Voigt and Bhimasenachar. ?? 1962 The American Institute of Physics.

  16. Elastic model of supercoiling.

    PubMed Central

    Benham, C J

    1977-01-01

    An elastic model for the supercoiling of duplex DNA is developed. The simplest assumptions regarding the elastic properties of double-helical DNA (homogeneous, isotropic, of circular cross section, and remaining straight when unstressed) will generate two orders of superhelicity when stressed. Recent experimental results [Brady, G.W., Fein, D.B. & Brumberger, H. (1976) Nature 264, 231-234] suggest that in supercoiled DNA molecules there are regions where two distinct orders of supercoiling arise, as predicted by this model. PMID:267934

  17. Deflation of elastic surfaces

    NASA Astrophysics Data System (ADS)

    Quilliet, Catherine

    2011-03-01

    The deflation of elastic spherical surfaces has been numerically investigated, and show very different types of deformations according the range of elastic parameters, some of them being quantitatively understood through simple theoretical considerations. In particular, the role of the Poisson ratio is closely investigated. This work allowed to retrieve various shapes observed on hollow deformable shells (from colloidal to centimeter scale), on lipid vesicles, or on some simple biological objects. Conversely, it shows how high deformations can tell observers about mechanical properties of a body. Such investigations have been extended to other geometries, in order to provide clues to understand deformations of vegetal or animal tissues.

  18. Natural Rubber Quantification in Sunflower Using an Automated Solvent Extractor

    USDA-ARS?s Scientific Manuscript database

    Leaves of sunflower (Helianthus annuus) produce a small amount of low molecular weight natural rubber (NR) and this species has potential as a rubber-producing crop plant. Quantifying NR in plant tissue has traditionally been accomplished using Soxhlet or gravimetric methodologies. Accelerated solve...

  19. Mutagenicity of rubber vulcanization gases in Salmonella typhimurium.

    PubMed

    Hedenstedt, A; Ramel, C; Wachtmeister, C A

    1981-01-01

    Gases formed by rubber and rubber additives in the vulcanization process were collected with a laboratory-scale glass apparatus. Mutagenicity testing of the vulcanization gases by the Salmonella/microsome test was conducted with strains TA1535, TA1538, TA98, and TA100 in the absence and presence of a metabolizing system from rat liver homogenates. The mutagenicity of gases derived by heating chloroprene rubber and ethylene propylene rubber was established with both base substitution- and frameshift-sensitive strains and that of a styrene-butadiene rubber was established with the base substitution-sensitive stain TA100. Tests on pyrolysis gases from a butadiene acrylonitrile rubber revealed only toxic effects. Curing systems, additives, and filling materials from various sources were represented in the material. Gases were collected at temperature levels corresponding to both mixing and curing of these particular rubbers in the industrial operations. Attempts were made to correlate the mutagenicity of the gases to the presence of mutagenic components in the rubber mixtures.

  20. Rubber Flooring Impact on Production and Herdlife of Dairy Cows

    USDA-ARS?s Scientific Manuscript database

    Use of rubber flooring in dairies has become popular because of perceived cow comfort. The overall objective of this longitudinal study was to evaluate production, reproduction, and retention of first and second lactations of cows assigned to either rubber (RUB) or concrete (CON) flooring at the fe...

  1. Guayule resin detection and influence on guayule rubber

    USDA-ARS?s Scientific Manuscript database

    Guayule (Parthenium argentatum) is a natural rubber (cis-1,4-polyisoprene) producing crop, native to North America. Guayule also produces organic resins, complex mixtures of terpenes, triglycerides, guayulins, triterpenoids and other components. During natural rubber extraction, guayule resins can b...

  2. Reinforcement of latex rubber by the incorporation of amphiphilic nanoparticles

    USDA-ARS?s Scientific Manuscript database

    Latex rubbers are fabricated from latex suspensions. During the fabrication process, latex particles are bound together while water is removed from the suspension. This report shows the mechanical properties of latex rubbers can be improved by incorporating a small amount of amphiphilic nanoparticle...

  3. Blends of guayule natural rubber latex with commercial latex polymers

    USDA-ARS?s Scientific Manuscript database

    Guayule (Parthenium argentatum) is a woody desert shrub that produces natural rubber, cis-1,4 polyisoprene, by biosynthesis. It is currently cultivated in the southwestern United States as a source of latex and rubber for commercial development. Guayule latex is similar to Hevea latex in polymer mo...

  4. PHA-rubber blends: synthesis, characterization and biodegradation.

    PubMed

    Bhatt, Rachana; Shah, Dishma; Patel, K C; Trivedi, Ujjval

    2008-07-01

    Medium chain length polyhydroxyalkanoates (mcl-PHA) and different rubbers; namely natural rubber, nitrile rubber and butadiene rubber were blended at room temperature using solution blending technique. Blends constituted 5%, 10% and 15% of mcl-PHA in different rubbers. Thermogravimetric analysis of mcl-PHA showed the melting temperature of the polymer around 50 degrees C. Thermal properties of the synthesized blend were studied by Differential Scanning Calorimetry which confirmed effective blending between the polymers. Blending of mcl-PHA with natural rubber led to the synthesis of a different polymer having the melting point of 90 degrees C. Degradation studies of the blends were carried out using a soil isolate, Pseudomonas sp. 202 for 30 days. Extracellular protein concentration as well as OD660 due to the growth of Pseudomonas sp. 202 was studied. The degradation of blended plastic material, as evidenced by % weight loss after degradation and increase in the growth of organism correlated with the amount of mcl-PHA present in the sample. Growth of Pseudomonas sp. 202 resulted in 14.63%, 16.12% and 3.84% weight loss of PHA:rubber blends (natural, nitrile and butadiene rubber). Scanning electron microscopic studies after 30 days of incubation further confirmed biodegradation of the films.

  5. Glass fabric fire barrier for silicone rubber parts

    NASA Technical Reports Server (NTRS)

    Blackmer, K. L.

    1969-01-01

    Preformed knitted glass-fabric covers are placed about silicone rubber items in such a way as to completely isolate them from the effects of adjacent fire. These covers permit retention of the desirable resilient properties of the silicone rubber while forming a very effective fire barrier.

  6. Sealing a rubber bladder between two sections of an accumulator

    NASA Technical Reports Server (NTRS)

    Schartau, G. M.

    1969-01-01

    Leak-free clamping of a two section accumulator is accomplished by a flat metallic ring molded peripherally to the rubber flange of the bladder, and an inset rubber seal bonded to the face of the flange of each section. Method maintains constant torque on the clamping bolts.

  7. Leaching of nitroso rubber material removes uncured polymer

    NASA Technical Reports Server (NTRS)

    Bratfisch, W. A.; Gonzalez, R.

    1972-01-01

    New leaching process removes uncured polymer from nitroso rubber, elastomer used in presence of nitrogen tetroxide. Uncured portion is removed by controlled soaking of polymer slab in Freon TF. Leaching with Freon TF prevents nitroso rubber from adhering to adjoining surfaces and limiting its usefulness in either static or dynamic applications.

  8. Biotechnological possibilities for waste tyre-rubber treatment.

    PubMed

    Holst, O; Stenberg, B; Christiansson, M

    1998-01-01

    Every year large amounts of spent rubber material, mainly from rubber tyres, are discarded. Of the annual total global production of rubber material, which amounts to 16-17 million tonnes, approximately 65% is used for the production of tyres. About 250 millions spent car tyres are generated yearly in USA only. This huge amount of waste rubber material is an environmental problem of great concern. Various ways to remediate the problem have been proposed. Among these are road fillings and combustion in kilns. Spent tyres, however, comprise valuable material that could be recycled if a proper technique can be developed. One way of recycling old tyres is to blend ground spent rubber with virgin material followed by vulcanization. The main obstacle to this recycling is bad adhesion between the crumb and matrix of virgin rubber material due to little formation of interfacial sulphur crosslinks. Micro-organisms able to break sulphur-sulphur and sulphur-carbon bonds can be used to devulcanize waste rubber in order to make polymer chains on the surface more flexible and facilitate increased binding upon vulcanization. Several species belonging to both Bacteria and Archaea have this ability. Mainly sulphur oxidizing species, such as different species of the genus Thiobacillus and thermoacidophiles of the order of Sulfolobales, have been studied in this context. The present paper will give a background to the problem and an overview of the biotechnological possibilities for solutions of waste rubber as an environmental problem, focusing on microbial desulphurization.

  9. The silicone rubber contact lens: clinical indications and fitting technique.

    PubMed

    Visser, E S

    1997-01-01

    Although the silicone rubber contact lens (SRCL) is not used frequently, there area number of clinical indications for its use which include paediatric and adult aphakia, decompensated cornea, dry eye, irregular cornea, eyelid defects, corneal ulcer and corneal perforation. The properties of silicone rubber are reviewed and the fitting technique of the SRCL is described.

  10. Attitudes of Operative Dentistry Faculty toward Rubber Dam Isolation.

    ERIC Educational Resources Information Center

    Brackett, William W.; And Others

    1989-01-01

    Dental faculty responses (N=332) to a survey concerning use of rubber dams for excluding fluids from the working field in operative dentistry procedures indicated students receive adequate instruction in rubber dam use and are proficient at graduation, though motivating students to its use is problematic and patient resistance a factor. (MSE)

  11. A study of amino acid modifiers in guayule natural rubber

    USDA-ARS?s Scientific Manuscript database

    Natural rubber from the Hevea tree is a critical agricultural material vital to United States industry, medicine, and defense, yet the country is dependent on imports to meet domestic needs. Guayule, a desert shrub indigenous to the US, is under development as an alternative source of natural rubber...

  12. Impact of petroleum prices on the natural rubber industry

    SciTech Connect

    Jajri, I.B.

    1987-01-01

    This study is concerned with a quantitative investigation of the natural rubber industry. The objective is to determine the impact of increased petroleum prices on the natural rubber industry. To pursue this objective, an annual equilibrium market model for the world natural rubber industry is developed that consists of three sets of equations that explain consumption, production, and stockholding of natural rubber. The price of natural rubber in the world market is hypothesized to be endogenously determined by the world supply, world demand, and world stockholding of natural rubber. The two-stage least squares procedure was used to estimate the parameters of the behavioral equations in the model. The data were obtained primarily from various issues of the Rubber Statistical Bulletin, International Financial Statistics Yearbook and Malaysia's Quarterly Economics bulletin. The study covers the period of 1962-1984. The model was simulated (1) to determine its predictive performance and stability during the sample period and (2) to examine the impact of increased petroleum prices on the natural rubber industry.

  13. Calibration of force extension and force degradation characteristics of orthodontic latex elastics.

    PubMed

    Kanchana, P; Godfrey, K

    2000-09-01

    The force-extension characteristics of orthodontic elastics made of natural rubber latex by 4 manufacturers were subjected to static testing under dry and wet conditions. The elastics consisted of 3 sizes: 3/16, 1/4, and 5/16 inch lumen sizes, each with forces specified according to the standard extension index of three times the lumen diameter. Most of the elastics did not match the specified index using the dry tests, but this should not be a serious clinical concern as all elastics showed acceptable regularity of force-extension characteristics. There was notable force degradation of all elastics when subject to water immersion, approximating 30% during the hour, but with an average less than 7% further loss up to 3 days. There were significant differences in force extension and force degradation characteristics between different extensions and force magnitudes for the elastics of the different manufacturers. It is suggested that the clinician could use the table of force degradation values for different extensions to select an appropriate elastic.

  14. New type of liquid rubber and compositions based on it.

    PubMed

    Semikolenov, S V; Nartova, A V; Voronchikhin, V D; Dubkov, K A

    2014-11-01

    The new method for producing the functionalized polymers and oligomers containing carbonyl C=O groups is developed. The method is based on the noncatalytic oxidation of unsaturated rubbers by nitrous oxide (N2O) at 180-230 °С. The proposed method allows obtaining the new type of functionalized rubbers-liquid unsaturated polyketones with regulated molecular weight and concentration of C=O groups. The influence of the liquid polyketone addition on properties of rubber-based composites is investigated. The study indicates good prospects of using the liquid polyketones for the improvement of properties and operating characteristics of the various types of rubbers and the rubber-cord systems.

  15. 3D silicone rubber interfaces for individually tailored implants.

    PubMed

    Stieghorst, Jan; Bondarenkova, Alexandra; Burblies, Niklas; Behrens, Peter; Doll, Theodor

    2015-01-01

    For the fabrication of customized silicone rubber based implants, e.g. cochlear implants or electrocortical grid arrays, it is required to develop high speed curing systems, which vulcanize the silicone rubber before it runs due to a heating related viscosity drop. Therefore, we present an infrared radiation based cross-linking approach for the 3D-printing of silicone rubber bulk and carbon nanotube based silicone rubber electrode materials. Composite materials were cured in less than 120 s and material interfaces were evaluated with scanning electron microscopy. Furthermore, curing related changes in the mechanical and cell-biological behaviour were investigated with tensile and WST-1 cell biocompatibility tests. The infrared absorption properties of the silicone rubber materials were analysed with fourier transform infrared spectroscopy in transmission and attenuated total reflection mode. The heat flux was calculated by using the FTIR data, emissivity data from the infrared source manufacturer and the geometrical view factor of the system.

  16. Rubber-toughened cyanate composites - Properties and toughening mechanism

    NASA Technical Reports Server (NTRS)

    Yang, P. C.; Woo, E. P.; Laman, S. A.; Jakubowski, J. J.; Pickelman, D. M.; Sue, H. J.

    1991-01-01

    Earlier work by Young et al. (1990) has shown that Dow experimental cyanate ester resin XU71787.02 is readily toughenable by rubber. A particularly effective rubber for this purpose is an experimental core-shell rubber which toughens the polymer by inducing shear yielding. This paper describes an investigation into the toughening mechanism in the corresponding carbon-fiber composite systems and the effect of fibers on composite properties. Resin-fiber interfacial shear strengths have been successfully correlated to the compressive strengths after impact and other key properties of composites based on rubber-toughened cyanate and several carbon fibers. The differences in the properties are explained by the difference in the functioning of the rubber particles during the fracture process.

  17. Patch testing with natural rubber latex: the Mayo Clinic experience.

    PubMed

    Bendewald, Margo J; Farmer, Sara A; Davis, Mark D P

    2010-01-01

    delayed hypersensitivity reactions to natural rubber latex (NRL) have been recognized. These reactions may contribute to allergic contact dermatitis. We therefore have undertaken patch testing of patients with NRL if they are suspected to have allergic contact dermatitis to rubber. to review results of patch testing with NRL (January 1, 2000, through December 31, 2007). patients suspected of having allergic contact dermatitis from rubber who underwent patch testing with NRL were identified retrospectively. For safety reasons, patients with immediate hypersensitivity to NRL were excluded from patch testing. of 148 patients patch-tested with NRL, 3 (2.0%) had an allergic patch-test reaction. NRL is as common a cause of allergic contact dermatitis as many of the other allergens included in a specialized rubber allergen series. Patients suspected to be allergic to rubber should be patch-tested with NRL (provided they do not have type 1 hypersensitivity to NRL).

  18. Method for co-processing waste rubber and carbonaceous material

    DOEpatents

    Farcasiu, Malvina; Smith, Charlene M.

    1991-01-01

    In a process for the co-processing of waste rubber and carbonaceous material to form a useful liquid product, the rubber and the carbonaceous material are combined and heated to the depolymerization temperature of the rubber in the presence of a source of hydrogen. The depolymerized rubber acts as a liquefying solvent for the carbonaceous material while a beneficial catalytic effect is obtained from the carbon black released on depolymerization the reinforced rubber. The reaction is carried out at liquefaction conditions of 380.degree.-600.degree. C. and 70-280 atmospheres hydrogen pressure. The resulting liquid is separated from residual solids and further processed such as by distillation or solvent extraction to provide a carbonaceous liquid useful for fuels and other purposes.

  19. Crumb rubber filtration: a potential technology for ballast water treatment.

    PubMed

    Tang, Zhijian; Butkus, Michael A; Xie, Yuefeng F

    2006-05-01

    The removal of turbidity, particles, phytoplankton and zooplankton in water by crumb rubber filtration was investigated. A substantial reduction was achieved. Of the three variables, filter depth, media size and filtration rate, media size had the most significant influence. Smaller media size favored higher removal efficiency of all targeted matter. There was no apparent relationship between removal efficiency and filter depth. Higher filtration rate resulted in lower removal efficiency and higher head loss. Compared with conventional granular media filters, crumb rubber filters required less backwash, and developed lower head loss. Consequently crumb rubber filters could be run for a longer time or allow a higher filtration rate. The results also indicate that the crumb rubber filtration alone did not achieve the target removal of invasive species. However, crumb rubber filtration could potentially be used as a primary treatment technology to enhance the efficiency of a secondary treatment process (e.g., disinfection).

  20. [An overview on rubber dam application in dental treatments].

    PubMed

    Zou, Huiru; Wang, Yanan; Zhang, Hongjie; Shen, Jun; Liu, Hao

    2016-02-01

    Rubber dam technique is the a method used in dentistry to isolate the operation field from the rest of mouth with rubber sheet. Rubber dam can protect both patients and dental workers effectively and provide patients with more professional, safe and comfortable experience. In recent years, this technique has gradually gained more and more recognition by dentists. However, the prevalence of using rubber dam technique in our country is still relatively low compared with those in developed countries. This condition involves many factors and need to be paid enough attention. This review summarized the current situation of rubber dam usage in various countries, the technique's application field, the effect analysis, the influencing factors and the modified products.

  1. Method for co-processing waste rubber and carbonaceous material

    SciTech Connect

    Farcasiu, M.; Smith, C.M.

    1990-10-09

    In a process for the co-processing of waste rubber and carbonaceous material to form a useful liquid product, the rubber and the carbonaceous material are combined and heated to the depolymerization temperature of the rubber in the presence of a source of hydrogen. The deploymerized rubber acts as a liquefying solvent for the carbonaceous material while a beneficial catalytic effect is obtained from the carbon black released on deploymerization the reinforced rubber. The reaction is carried out at liquefaction conditions of 380--600{degrees}C and 70--280 atmospheres hydrogen pressure. The resulting liquid is separated from residual solids and further processed such as by distillation or solvent extraction to provide a carbonaceous liquid useful for fuels and other purposes.

  2. Method for co-processing waste rubber and carbonaceous material

    SciTech Connect

    Farcasiu, M.; Smith, C.M.

    1991-10-29

    This patent describes a process for the co-processing of waste rubber and carbonaceous material to form a useful liquid product, the rubber and the carbonaceous material are combined and heated to the depolymerization temperature of the rubber in the presence of a source of hydrogen. The depolymerized rubber acts as a liquefying solvent for the carbonaceous material while a beneficial catalytic effect is obtained from the carbon black released on depolymerization the reinforced rubber. The reaction is carried out at liquefaction conditions of 380[degrees]-600[degrees] C and 70-280 atmospheres hydrogen pressure. The resulting liquid is separated from residual solids and further processed such as by distillation or solvent extraction to provide a carbonaceous liquid useful for fuels and other purposes.

  3. Analysis of impact of suspension rubber mounts on ride comfort

    NASA Astrophysics Data System (ADS)

    Chen, Bao; Chen, Zheming; Lei, Gang

    2017-01-01

    Two multi-body car models with rubber mounts and without rubber mounts have been built up to research how the suspension rubber mounts impact ride comfort. The comfort mount was used to simulate the impact process. Two scenarios have been set up, and time integrations have been performed to get the acceleration-time histories of seat surface in the x-, y-, and z-direction. A MATLAB program was compiled to calculate the weighted RMS acceleration. For the first scenario, the relative difference of weighted RMS acceleration between the car models with rubber mounts and without rubber mounts gradually decreases as the road roughness increases. For the second scenario, the relative difference increases as the driving speed increases. The conclusion shows that the change of driving speed or road roughness impacts ride comfort. Especially for high driving speed this impact is quite obvious.

  4. Reinforcement of rubber by fractal aggregates

    NASA Astrophysics Data System (ADS)

    Witten, T. A.; Rubinstein, M.; Colby, R. H.

    1993-03-01

    Rubber is commonly reinforced with colloidal aggregates of carbon or silica, whose structure has the scale invariance of a fractal object. Reinforced rubbers support large stresses, which often grow faster than linearly with the strain. We argue that under strong elongation the stress arises through lateral compression of the aggregates, driven by the large bulk modulus of the rubber. We derive a power-law relationship between stress and elongation λ when λgg 1. The predicted power p depends on the fractal dimension D and a second structural scaling exponent C. For diffusion-controlled aggregates this power p should lie beween 0.9 and 1.1 ; for reaction-controlled aggregates p should lie between 1.8 and 2.4. For uniaxial compression the analogous powers lie near 4. Practical rubbers filled with fractal aggregates should approach the conditions of validity for these scaling laws. On renforce souvent le caoutchouc avec des agrégats de carbone ou de silice dont la structure a l'invariance par dilatation d'un objet fractal. Les caoutchoucs ainsi renforcés supportent de grandes contraintes qui croissent souvent plus vite que l'élongation. Nous prétendons que, sous élongation forte, cette contrainte apparaît à cause d'une compression latérale des agrégats induite par le module volumique important du caoutchouc. Nous établissons une loi de puissance reliant la contrainte et l'élongation λ quand λgg 1. Cet exposant p dépend de la dimension fractale D et d'un deuxième exposant structural C. Pour des agrégats dont la cinétique de formation est limitée par diffusion, p vaut entre 0,9 et 1,1. Si la cinétique est limitée par le soudage local des particules, p vaut entre 1,8 et 2,4. Sous compression uniaxiale, les puissances homologues valent environ 4. Des caoutchoucs pratiques chargés de tels agrégats devraient approcher des conditions où ces lois d'échelle sont valables.

  5. Rubber Conductors for Aircraft Ignition Cables

    DTIC Science & Technology

    1945-11-01

    of Conduct~Rubber88mples and. II - Tests of’ Exper1mental Cables. The effect of diameter and resistivity of the cable oonductor on vol. tageJ the...detennipation of optimum oonduotc.r diameter for a short length at cable, and the effect of’ conductor diameter on dielectrio strength of’ the cable are...temperatUl~ o~ the strI~. The effect of successive stretches" eaoh of greater amplitude than the preceiling o:.:te" ia 6hown ::’’𔃺. f1b𔃻lI’e 2. The

  6. Natural rubber latex allergy and dental practice.

    PubMed

    Desai, Shalin V

    2007-12-01

    Natural rubber latex (NRL) allergy is a significant clinical problem with potentially life-threatening complications. Oral health care professionals must be able to screen for NRL allergy and refer patients or staff to a specialist for definitive diagnosis. Protocol for its management must be developed and incorporated into daily practice. Practitioners must be able to recognize and treat NRL exposure emergencies. Knowledge of the availability of substitute products and an adequate fresh stock of such products in dental practice can minimise the risk of adverse NRL sensitivity.

  7. Foam-rubber stents for skin grafts.

    PubMed

    Larson, P O

    1990-09-01

    A variety of stents are used to immobilize skin grafts and to hold them firmly to the recipient site. Tie-down stents, the most common type, are constructed from bulky, sterile dressing and are overtied with suture material. These stents are often cumbersome to apply. As an alternative, stents made from foam-rubber pads (Reston, 3M Company, St. Paul, MN) were stapled over skin grafts. These stents could be applied quickly, and they maintain continuous, uniform pressure on the immobilized grafts.

  8. On the inflation of a rubber balloon

    NASA Astrophysics Data System (ADS)

    Vandermarlière, Julien

    2016-12-01

    It is a well-known fact that it is difficult to start a balloon inflating. But after a pressure peak that occurs initially, it becomes far easier to do it! The purpose of this article is to establish the experimental pressure-radius chart for a rubber balloon and to compare it to the theoretical one. We will demonstrate that the barometer of a smartphone is a very suitable tool to reach this goal. We hope that this phenomenon will help students realize that sometimes very simple questions can lead to very interesting and counterintuitive science.

  9. Tactile sensing array based on conductive rubber

    NASA Astrophysics Data System (ADS)

    Qin, Lan; Liu, Ying; Li, Qing

    2006-11-01

    As a very important part in the robot sensory system, tactile sensing, like hearing and vision, is a particular means by which the robot acquires information from outside environment. In this paper, the theory model of intelligent robot tactile sensing costume is demonstrated, and further, according to the piezo-resistive property of conductive rubber the sensing costume made of tactile array is proposed. In the system, a practical system is designed for signal processing, data gathering and displaying. Results got from experiments are satisfactory.

  10. The Law of Elasticity

    ERIC Educational Resources Information Center

    Cocco, Alberto; Masin, Sergio Cesare

    2010-01-01

    Participants estimated the imagined elongation of a spring while they were imagining that a load was stretching the spring. This elongation turned out to be a multiplicative function of spring length and load weight--a cognitive law analogous to Hooke's law of elasticity. Participants also estimated the total imagined elongation of springs joined…

  11. The Calculus of Elasticity

    ERIC Educational Resources Information Center

    Gordon, Warren B.

    2006-01-01

    This paper examines the elasticity of demand, and shows that geometrically, it may be interpreted as the ratio of two simple distances along the tangent line: the distance from the point on the curve to the x-intercept to the distance from the point on the curve to the y-intercept. It also shows that total revenue is maximized at the transition…

  12. Hydrodynamic Elastic Magneto Plastic

    SciTech Connect

    Wilkins, M. L.; Levatin, J. A.

    1985-02-01

    The HEMP code solves the conservation equations of two-dimensional elastic-plastic flow, in plane x-y coordinates or in cylindrical symmetry around the x-axis. Provisions for calculation of fixed boundaries, free surfaces, pistons, and boundary slide planes have been included, along with other special conditions.

  13. Elastic swimming I: Optimization

    NASA Astrophysics Data System (ADS)

    Lauga, Eric; Yu, Tony; Hosoi, Anette

    2006-03-01

    We consider the problem of swimming at low Reynolds number by oscillating an elastic filament in a viscous liquid, as investigated by Wiggins and Goldstein (1998, Phys Rev Lett). In this first part of the study, we characterize the optimal forcing conditions of the swimming strategy and its optimal geometrical characteristics.

  14. Elastic swimming II: Experiments

    NASA Astrophysics Data System (ADS)

    Yu, Tony; Lauga, Eric; Hosoi, Anette

    2006-03-01

    We consider the problem of swimming at low Reynolds number by oscillating an elastic filament in a viscous liquid, as investigated by Wiggins and Goldstein (1998, Phys Rev Lett). In this second part of the study, we present results of a series of experiments characterizing the performance of the propulsive mechanism.

  15. Viscous spread under an elastic lid

    NASA Astrophysics Data System (ADS)

    Lister, John; Neufeld, Jerome; Vella, Dominic

    2011-11-01

    We consider theoretically and experimentally the injection and axisymmetric spread of viscous fluid beneath a flexible elastic lid. In the experiments, glycerol is injected at a constant rate beneath the centre of a 1 cm thick, 50 cm diameter, soft rubber sheet laid on a rigid horizontal surface, which was prewet with an ~ 200 μ m thick fluid film. Measurements of the surface elevation and radial propagation are in good agreement with lubrication calculations incorporating bending stresses and gravity. Remarkably, even this simple system evolves through four asymptotic regimes with successive radial spreading laws r ~t 1 / 6 ,t 7 / 22 ,t 7 / 12 and t 1 / 2. We determine the corresponding prefactors, and confirm the results numerically and experimentally. An alternate problem without the prewetting film is relevant to shallow geological intrusions, called laccoliths, for which we obtain yet more exotic scalings. Our analysis of tip peeling processes in these relatively simple problems gives insight that may find application in more complex problems such as cell adhesion, delamination, and the dynamics of MEMS.

  16. Mechanical Testing of TR-55 Rubber Thermally Aged Under Tensile Strain

    SciTech Connect

    Small IV, W; Alviso, C T; Wilson, T S; Chinn, S C; Maxwell, R S

    2009-03-10

    TR-55 rubber specimens were previously subjected to an aging process consisting of the application of a tensile strain of approximately 67%, 100%, 133%, or 167% elongation for 4, 8, 12, or 16 h at either 250 C or room temperature. Control specimens at the same temperatures/durations were not subjected to tensile strain. The specimens were allowed to recover at room temperature without external stimuli for over 100 days before tensile testing. A single dog bone was cut from each specimen and a stress-strain curve was obtained. The elastic modulus of each specimen was calculated. Specimens aged under tensile strain exhibited rubber-like behavior dependent on the aging elongation and duration. This behavior was not evident in the unstrained controls. For the unstrained controls, exposure to 250 C resulted in an increase in modulus relative to the unheated material independent of the heating duration. The tensile strain applied during the aging process caused a reduction in modulus relative to the controls; lower moduli were observed for the shorter aging durations. Slippage of the specimens in the grips prevented determination of ultimate strength, as all specimens either slipped completely out of the grip before failure or failed at the original grip edge after slipping.

  17. Elastic Granular Flows

    NASA Astrophysics Data System (ADS)

    Campbell, Charles

    2006-03-01

    There is no fundamental understanding of the mechanics of granular solids. Partially this is because granular flows have historically been divided into two very distinct flow regimes, (1) the slow, quasistatic regime, in which the bulk friction coefficient is taken to be a material constant, and (2) the fast, rapid-flow regime, where the particles interact collisionally. But slow hopper flow simulations indicate that the bulk friction coefficient is not a constant. Rapidly moving large scale landslide simulations never entered the collisional regime and operate in a separate intermediate flow regime. In other words, most realistic granular flows are not described by either the quasistatic or rapid flow models and it is high time that the field look beyond those early models. This talk will discuss computer simulation studies that draw out the entire flowmap of shearing granular materials, spanning the quasistatic, rapid and the intermediate regimes. The key was to include the elastic properties of the solid material in the set of rheological parameters; in effect, this puts solid properties back into the rheology of granular solids. The solid properties were previously unnecessary in the plasticity and kinetic theory formalisms that respectively form the foundations of the quasistatic and rapid-flow theories. Granular flows can now be divided into two broad categories, the Elastic Regimes, in which the particles are locked in force chains and interact elastically over long duration contact with their neighbors and the Inertial regimes, where the particles have broken free of the force chains. The Elastic regimes can be further subdivided into the Elastic-Quasistatic regime (the old quasistatic regime) and the Elastic-Inertial regime. The Elastic-Inertial regime is the ``new'' regime observed in the landslide simulations, in which the inertially induced stresses are significant compared to the elastically induced stresses. The Inertial regime can also be sub

  18. Statistical Discrimination of Latex between Healthy and White Root Infected Rubber Tree based on Dry Rubber Content

    NASA Astrophysics Data System (ADS)

    Suhaimi Sulaiman, Mohd; Hashim, Hadzli; Faiz Mohd Sampian, Ahmad; Korlina Madzhi, Nina; Faris Mohd Azmi, Azrie; Aishah Khairuzzaman, Noor; Aima Ismail, Faridatul

    2015-11-01

    Dry rubber content (DRC) is one of main material existing inside latex. It is usually in ranged of 25% - 45% of rubber latex. Statistical analysis are done to determine the discrimination of dry rubber content of latex between healthy and white root infected rubber tree. Based on 150 rubber trees and 10 clones tested, parametric test which include normality test, error-bar plot, and paired samples test are done. The result outcomes have shown that both data of dry rubber content of latex for healthy and white root infected rubber tree are normally distributed. Error-bar plot test is clearly indicated that there is visible discrimination between both cases. Paired samples test are done to reinforce this findings in terms of numerical p- value which is found to be less than 0.05. Thus, this indicate overwhelming evidence that healthy group can be discriminated from white root. Conclusively, changes in DRC content in latex can be correlated with white root disease infections of rubber tree.

  19. Recycling of rubber tires in electric arc furnace steelmaking: simultaneous combustion of metallurgical coke and rubber tyres blends

    SciTech Connect

    Magdalena Zaharia; Veena Sahajwalla; Byong-Chul Kim; Rita Khanna; N. Saha-Chaudhury; Paul O'Kane; Jonathan Dicker; Catherine Skidmore; David Knights

    2009-05-15

    The present study investigates the effect of addition of waste rubber tires on the combustion behavior of its blends with coke for carbon injection in electric arc furnace steelmaking. Waste rubber tires were mixed in different proportions with metallurgical coke (MC) (10:90, 20:80, 30:70) for combustion and pyrolysis at 1473 K in a drop tube furnace (DTF) and thermogravimetric analyzer (TGA), respectively. Under experimental conditions most of the rubber blends indicated higher combustion efficiencies compared to those of the constituent coke. In the early stage of combustion the weight loss rate of the blends is much faster compared to that of the raw coke due to the higher volatile yield of rubber. The presence of rubber in the blends may have had an impact upon the structure during the release and combustion of their high volatile matter (VM) and hence increased char burnout. Measurements of micropore surface area and bulk density of the chars collected after combustion support the higher combustion efficiency of the blends in comparison to coke alone. The surface morphology of the 30% rubber blend revealed pores in the residual char that might be attributed to volatile evolution during high temperature reaction in oxygen atmosphere. Physical properties and VM appear to have a major effect upon the measured combustion efficiency of rubber blends. The study demonstrates that waste rubber tires can be successfully co-injected with metallurgical coke in electric arc furnace steelmaking process to provide additional energy from combustion. 44 refs., 11 figs., 2 tabs.

  20. Calculation and experimental investigation of torsion of all-rubber and rubber-cord clutches under large deformations

    NASA Astrophysics Data System (ADS)

    Akhundov, V. M.

    2010-12-01

    On the basis of a mathematical model of large deformations of homogeneous and fiber-reinforced bodies of revolution, the deformation of all-rubber and rubber-cord clutches made by using the tire technology is investigated. The results of a theoretical and numerical analysis of torsion of the clutches are compared with experimental data.

  1. Tuning the vibration of a rotor with shape memory alloy metal rubber supports

    NASA Astrophysics Data System (ADS)

    Ma, Yanhong; Zhang, Qicheng; Zhang, Dayi; Scarpa, Fabrizio; Liu, Baolong; Hong, Jie

    2015-09-01

    The paper describes a novel smart rotor support damper with variable stiffness made with a new multifunctional material - the shape memory alloy metal rubber (SMA-MR). SMA-MR gives high load bearing capability (yield limit up to 100 MPa and stiffness exceeding 1e8 N/m), high damping (loss factor between 0.15 and 0.3) and variable stiffness (variation of 2.6 times between martensite and austenite phases). The SMA-MR has been used to replace a squeeze film damper and combined with an elastic support. The mechanical performance of the smart support damper has been investigated at room and high temperatures on a rotor test rig. The vibration tuning capabilities of the SMA-MR damper have been evaluated through FEM simulations and experimental tests. The study shows the feasibility of using the SMA-MR material for potential applications of active vibration control at different temperatures in rotordynamics systems.

  2. Air-coupled ultrasound stimulated optical vibrometry for resonance analysis of rubber tubes.

    PubMed

    Zhang, Xiaoming; Kinnick, Randall R; Greenleaf, James F

    2009-01-01

    Air-coupled ultrasound stimulated optical vibrometry is proposed to generate and detect the resonances of a rubber tube in air. Amplitude-modulated (AM) focused ultrasound radiation force from a broadband air-coupled ultrasound transducer with center frequency of 500 kHz is used to generate a low frequency vibration in the tube. The resonances of several modes of the tube are measured with a laser vibrometer of 633 nm wavelength. A wave propagation approach is used to calculate the resonances of the tube from its known material properties. Theoretical and experimental resonance frequencies agree within 5%. This method may be useful in measuring the in vitro elastic properties of arteries from the resonance measurements in air. It may also be helpful to better understand the coupling effects of the surrounding tissue and interior blood on the vessel wall by measuring the resonance of the vessel in vitro and in vivo.

  3. Measurement of elastic resisting forces of intraocular haptic loops of varying geometrical designs and material composition.

    PubMed

    Guthoff, R; Abramo, F; Draeger, J; Chumbley, L

    1990-09-01

    The relationship between experimentally induced intraocular lens (IOL) haptic deformation and resulting elastic haptic counter-resisting forces measured by electronic dynamometry was examined for 34 different IOL haptics of varying material composition and geometrical designs. Poly(methyl methacrylate) (PMMA) and polypropylene loops of similar geometry did not fundamentally differ from one another, although lenses of differing geometry behaved differently. Unlike PMMA and polypropylene loops, soft haptics of poly-HEMA and silicone rubber demonstrated a larger elastic resistance force to the same degree of deformation. This was based upon design characteristics of the lenses and not upon intrinsic properties of the materials, which would have produced the opposite result. By comparative analysis of these dynamometer measurements and considerations of the lens design and elastic properties (including memory) of the component materials, we can calculate the stresses upon the zonular and capsular bag structures during and after IOL implantation.

  4. Printable elastic conductors with a high conductivity for electronic textile applications

    NASA Astrophysics Data System (ADS)

    Matsuhisa, Naoji; Kaltenbrunner, Martin; Yokota, Tomoyuki; Jinno, Hiroaki; Kuribara, Kazunori; Sekitani, Tsuyoshi; Someya, Takao

    2015-06-01

    The development of advanced flexible large-area electronics such as flexible displays and sensors will thrive on engineered functional ink formulations for printed electronics where the spontaneous arrangement of molecules aids the printing processes. Here we report a printable elastic conductor with a high initial conductivity of 738 S cm-1 and a record high conductivity of 182 S cm-1 when stretched to 215% strain. The elastic conductor ink is comprised of Ag flakes, a fluorine rubber and a fluorine surfactant. The fluorine surfactant constitutes a key component which directs the formation of surface-localized conductive networks in the printed elastic conductor, leading to a high conductivity and stretchability. We demonstrate the feasibility of our inks by fabricating a stretchable organic transistor active matrix on a rubbery stretchability-gradient substrate with unimpaired functionality when stretched to 110%, and a wearable electromyogram sensor printed onto a textile garment.

  5. Printable elastic conductors with a high conductivity for electronic textile applications.

    PubMed

    Matsuhisa, Naoji; Kaltenbrunner, Martin; Yokota, Tomoyuki; Jinno, Hiroaki; Kuribara, Kazunori; Sekitani, Tsuyoshi; Someya, Takao

    2015-06-25

    The development of advanced flexible large-area electronics such as flexible displays and sensors will thrive on engineered functional ink formulations for printed electronics where the spontaneous arrangement of molecules aids the printing processes. Here we report a printable elastic conductor with a high initial conductivity of 738 S cm(-1) and a record high conductivity of 182 S cm(-1) when stretched to 215% strain. The elastic conductor ink is comprised of Ag flakes, a fluorine rubber and a fluorine surfactant. The fluorine surfactant constitutes a key component which directs the formation of surface-localized conductive networks in the printed elastic conductor, leading to a high conductivity and stretchability. We demonstrate the feasibility of our inks by fabricating a stretchable organic transistor active matrix on a rubbery stretchability-gradient substrate with unimpaired functionality when stretched to 110%, and a wearable electromyogram sensor printed onto a textile garment.

  6. Printable elastic conductors with a high conductivity for electronic textile applications

    PubMed Central

    Matsuhisa, Naoji; Kaltenbrunner, Martin; Yokota, Tomoyuki; Jinno, Hiroaki; Kuribara, Kazunori; Sekitani, Tsuyoshi; Someya, Takao

    2015-01-01

    The development of advanced flexible large-area electronics such as flexible displays and sensors will thrive on engineered functional ink formulations for printed electronics where the spontaneous arrangement of molecules aids the printing processes. Here we report a printable elastic conductor with a high initial conductivity of 738 S cm−1 and a record high conductivity of 182 S cm−1 when stretched to 215% strain. The elastic conductor ink is comprised of Ag flakes, a fluorine rubber and a fluorine surfactant. The fluorine surfactant constitutes a key component which directs the formation of surface-localized conductive networks in the printed elastic conductor, leading to a high conductivity and stretchability. We demonstrate the feasibility of our inks by fabricating a stretchable organic transistor active matrix on a rubbery stretchability-gradient substrate with unimpaired functionality when stretched to 110%, and a wearable electromyogram sensor printed onto a textile garment. PMID:26109453

  7. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes

    NASA Astrophysics Data System (ADS)

    Matsuhisa, Naoji; Inoue, Daishi; Zalar, Peter; Jin, Hanbit; Matsuba, Yorishige; Itoh, Akira; Yokota, Tomoyuki; Hashizume, Daisuke; Someya, Takao

    2017-08-01

    Printable elastic conductors promise large-area stretchable sensor/actuator networks for healthcare, wearables and robotics. Elastomers with metal nanoparticles are one of the best approaches to achieve high performance, but large-area utilization is limited by difficulties in their processability. Here we report a printable elastic conductor containing Ag nanoparticles that are formed in situ, solely by mixing micrometre-sized Ag flakes, fluorine rubbers, and surfactant. Our printable elastic composites exhibit conductivity higher than 4,000 S cm-1 (highest value: 6,168 S cm-1) at 0% strain, and 935 S cm-1 when stretched up to 400%. Ag nanoparticle formation is influenced by the surfactant, heating processes, and elastomer molecular weight, resulting in a drastic improvement of conductivity. Fully printed sensor networks for stretchable robots are demonstrated, sensing pressure and temperature accurately, even when stretched over 250%.

  8. Elastic modulus and surface tension of a polyurethane rubber in nanometer thick films

    NASA Astrophysics Data System (ADS)

    Zhai, Meiyu; McKenna, Gregory

    2014-03-01

    Estane is a kind of polyurethane with thermodynamically incompatible hard and soft segments. In this study the macro and micro properties of Estane have been characterized and compared. The viscoelastic properties of this material in bulk scale have been determined using dynamic rheometry. Time-temperature superposition was found to be applicable for this material, and a master curve was successfully constructed from the dynamic shear responses of G'(ω) and G''(ω) . Also a novel nano bubble inflation method was used to obtain the creep compliance of the Estane ultrathin films and the results show stiffening in the rubbery region for the Estane over thicknesses ranging from 110nm to 22nm. The dependence of the rubbery stiffening on film thickness is studied and the relative influences of nano confinement and surface tension effect are analyzed using both a direct stress strain analysis and an energy balance method for the membrane. The contributions of surface tension and nano confinement are considered separately. Office of Naval Research under project No.N00014-11-1-0424.

  9. The Determination of the Elastic Modulus of Rubber Mooring Tethers and Their Use in Coastal Moorings

    DTIC Science & Technology

    2005-12-01

    signals from the sensors to the buoy for logging and telemetry. 14 Mast/Antenna/GPS/PAR Radar Reflector/Air Temperature Guard Light Solar Pannels - Wave...Temperature & PAR Steel Buoy with Solar Power 0- SData System with Telemetry -Temperature/Conductivity - Load Cell for Cable Tension < 7 meters 1/2" Chain...and Long Wave Radiation Surlyn Foam Buoy with Solar Panels B tteries/Data System/GOES/ARGOS 0 Sea Surface Temperature -T, C (5) 10 <-- Bio-Optical

  10. Synthesis biolubricant from rubber seed oil

    NASA Astrophysics Data System (ADS)

    Hung, Nguyen Tran Dong; Tuyen, Dang Thi Hong; Viet, Tran Tan

    2017-09-01

    The objective was biolubricant preparation from rubber seed oil (RSO) using polymerization reactor with/without catalyst in batch reactor. Before become reactant in polymerization reaction, a non-edible rubber seed oil was converted into methyl ester by esterification/tranesterification reaction with methanol and acid/base catalyst. The polymerization reaction parameters investigated were reaction time, temperature and weight ratio (catalyst with feed), and their effect on the bio lubricant formation. The result show significant conversion of methyl ester to bio lubricant in the temperature reaction of 160°C, reaction time of 2h min and ratio of super acid catalyst (tetrafluoroboric acid-sHBF4) of 3 %w/w. The resulting products were confirmed by GC-MS, FTIR spectroscopy and also analyzed for the viscosity. The best viscosity value of RSOFAME polymer was 110.6 cSt when the condition polymerization reaction were 160 °C, reaction time 3h, 6 wt% mass ratio of oil:catalyst.

  11. Pyrolysis of Rubber in a Screw Reactor

    NASA Astrophysics Data System (ADS)

    Lozhechnik, A. V.; Savchin, V. V.

    2016-11-01

    On the basis of an analysis of thermal methods described in the literature and from the results of experimental investigations of steam conversion, the authors have developed and created a facility for thermal processing of rubber waste. Rubber crumb was used as the raw material; the temperature in the reactor was 500°C; nitrogen, steam, and a mixture of light hydrocarbons (noncondensable part of pyrolysis products) represented the working medium. The pyrolysis yielded 36-38% of a solid fraction, 54-56% of a liquid hydrocarbon fraction, and 6-9% of noncondensable gases. Changes in the composition of the gas mixture have been determined at different stages of processing. Gas chromatography of pyrolysis gases has shown that the basic gases produced by pyrolysis are H2 and hydrocarbons C2H4, C3H6, C3H8, C4H8, C2H6, C3H6O2, and C4H10, and a small amount of H2S, CO, and CO2. Noncondensable gases will be used as a fuel to heat the reactor and to implement the process.

  12. Chronic diseases in the rubber industry

    PubMed Central

    Tyroler, H. A.; Andjelkovic, Dragana; Harris, Robert; Lednar, Wayne; McMichael, Anthony; Symons, Mike

    1976-01-01

    An overview is presented of epidemiologic studies of chronic diseases in the rubber industry. Analyses of the mortality experience during the period 1964-1972 of workers age 40–64 and retirees age 65–84 of two large rubber and tire manufacturing companies consistently disclosed excesses of deaths attributed to leukemia and lymphosarcoma, and for cancers of the stomach, large intestine, and prostate. The relation of site-specific malignancies to work histories and grouped occupational titles as surrogate measures of work-related exposures to possible carcinogens is described. There was no evidence of company-wide, sizable, consistent excess for the other major chronic diseases causes of death. Although a total cohort deficit in the mortality rate for lung cancer was found, there was a history of increased frequency of exposure to certain work areas among lung cancer decedents. Morbidity studies, including analysis of disability retirements, and ad hoc questionnaire and health testing surveys, disclosed excesses of chronic pulmonary diseases. There was evidence of an interactive effect in the association of work and smoking histories with pulmonary disability retirement. PMID:1026398

  13. Fungal colonisation in digital silicone rubber prostheses.

    PubMed

    Leow, M E; Kour, A K; Inglis, T J; Kumarasinghe, G; Pho, R W

    1997-12-01

    The fungal discolouration of silicone rubber prostheses is reported in four cases. In two of the cases, the discolouration was caused by the fungus Candida tropicalis. In the other two cases, two different fungal organisms, namely Trichoderma sp. and Scedosporium prolificans were incriminated. The non-porous silicone rubber layers create an enclosed environment in the suction cup of the prosthesis and preclude ventilation at the prosthesis-stump interface. The moisture as a result of sweat and body warmth in the stump assists fungal growth. Residual salts from the sweat, sebum from sebaceous glands and the residues from petroleum jelly (Vaseline) applied to facilitate donning, can adhere to the surfaces of the prosthesis and provide the nutrients for fungal growth. Prolonged continuous usages of the prosthesis, the presence of sweaty palms in the users, donning the prosthesis during manual physical activities which induce perspiration, washing of hands with the prosthesis on and warm humid climatic conditions have been identified as factors predisposing the prosthesis to fungal colonisation. The fungal growth caused a black discolouration and marred the aesthetic quality of the prostheses. As a preventative measure, daily immersion of the prostheses in denture cleaner such as benzalkonium chloride, or water at 60 degrees C for 15 minutes, or decontamination with 70% alcohol is recommended. Prior cleaning to remove organic matter before decontamination is emphasised.

  14. Rubber hand illusion affects joint angle perception.

    PubMed

    Butz, Martin V; Kutter, Esther F; Lorenz, Corinna

    2014-01-01

    The Rubber Hand Illusion (RHI) is a well-established experimental paradigm. It has been shown that the RHI can affect hand location estimates, arm and hand motion towards goals, the subjective visual appearance of the own hand, and the feeling of body ownership. Several studies also indicate that the peri-hand space is partially remapped around the rubber hand. Nonetheless, the question remains if and to what extent the RHI can affect the perception of other body parts. In this study we ask if the RHI can alter the perception of the elbow joint. Participants had to adjust an angular representation on a screen according to their proprioceptive perception of their own elbow joint angle. The results show that the RHI does indeed alter the elbow joint estimation, increasing the agreement with the position and orientation of the artificial hand. Thus, the results show that the brain does not only adjust the perception of the hand in body-relative space, but it also modifies the perception of other body parts. In conclusion, we propose that the brain continuously strives to maintain a consistent internal body image and that this image can be influenced by the available sensory information sources, which are mediated and mapped onto each other by means of a postural, kinematic body model.

  15. Radiation graft modification of EPDM rubber

    NASA Astrophysics Data System (ADS)

    Katbab, A. A.; Burford, R. P.; Garnett, J. L.

    N-Vinyl pyrrolidone (NVP), 2-hydroxyethylmethacrylate (HEMA) and acrylamide (AAm) have been grafted to the surface of rubber vulcanizates based on ethylene-propylene-terpolymer (EPDM) using the simultaneous radiation method to alter surface properties such as wettability and therefore biocompatibility. The effect of monomer concentration, solvent and EPDM structural factors on the grafting behavior have been investigated. The inhibitory effect upon homopolymerization of various salts has also been evaluated for the three monomers. NVP and HEMA could be grafted onto EPDM rubber in the presence of aqueous solutions of cupric nitrate at 0.005 M and 1.0 M concentrations respectively. Aqueous solutions of Mohr's salt (ammonium ferrous sulphate) at 0.05 M not only suppressed the homopolymerization of AAm but also increased grafting yield. The percentage grafting also increased with increasing AAm concentration. A mechanism has been proposed to explain the behaviour of these monomers. The inclusion of multifunctional acrylates in additive amounts (1.0 vol%) enhanced the graft degree. Modified samples were able to be efficiently stained, allowing the depth of the graft copolymerization to be determined by light microscopy. Water was found to have an accelerating effect on the polymerization of these monomers, but methanol prevented their polymerization completely. The effect of EPDM structural factors upon degree of grafting was found to vary, depending upon the monomer type.

  16. Hot air vulcanization of rubber profiles

    SciTech Connect

    Gerlach, J.

    1995-07-01

    Elastomer profiles are deployed in quantity by the automobile industry as seals and wateproofing in coachwork. The high standards demanded by the industry; improvement in weather prediction, noise reduction, restriction of tolerances, together with powerful demand for EPDM force the rubber processing industry into development, particularly of elastomers. Complex proofing systems must also be achieved with extremely complicated profile forms. All too often such profiles have an extremely large surface together with a low cross-section density. They frequently consist of two or three rubber compounds and are steel reinforced. Sometimes they are flocked and coated with a low friction finish. Such high-tech seals require an adjustment of the vulcanization method. The consistent trend in the nineties towards lower quantities of elastomer per sealing unit and the dielectric factor, especially with EPDM, has brought an old fashioned vulcanization method once more to the fore, a method developed over the past years to an extremely high standard, namely the hot-air method. This paper describes various vulcanization and curing methods and their relative merits and disadvantages, the Gerlach hot-air concept, the hot air installation concept, and energy saving and efficiency afforded by this technique. 4 figs.

  17. Multiscale physics of rubber-ice friction

    NASA Astrophysics Data System (ADS)

    Tuononen, Ari J.; Kriston, András; Persson, Bo

    2016-09-01

    Ice friction plays an important role in many engineering applications, e.g., tires on icy roads, ice breaker ship motion, or winter sports equipment. Although numerous experiments have already been performed to understand the effect of various conditions on ice friction, to reveal the fundamental frictional mechanisms is still a challenging task. This study uses in situ white light interferometry to analyze ice surface topography during linear friction testing with a rubber slider. The method helps to provide an understanding of the link between changes in the surface topography and the friction coefficient through direct visualization and quantitative measurement of the morphologies of the ice surface at different length scales. Besides surface polishing and scratching, it was found that ice melts locally even after one sweep showing the refrozen droplets. A multi-scale rubber friction theory was also applied to study the contribution of viscoelasticity to the total friction coefficient, which showed a significant level with respect to the smoothness of the ice; furthermore, the theory also confirmed the possibility of local ice melting.

  18. A numerical analysis of contact and limit-point behavior in a class of problems of finite elastic deformation

    NASA Technical Reports Server (NTRS)

    Endo, T.; Oden, J. T.; Becker, E. B.; Miller, T.

    1984-01-01

    Finite element methods for the analysis of bifurcations, limit-point behavior, and unilateral frictionless contact of elastic bodies undergoing finite deformation are presented. Particular attention is given to the development and application of Riks-type algorithms for the analysis of limit points and exterior penalty methods for handling the unilateral constraints. Applications focus on the problem of finite axisymmetric deformations, snap-through, and inflation of thick rubber spherical shells.

  19. 75 FR 51981 - Polychloroprene Rubber from Japan: Final Results of Sunset Review and Revocation of Finding

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ... International Trade Administration Polychloroprene Rubber from Japan: Final Results of Sunset Review and... review of the antidumping finding on polychloroprene rubber from Japan. Because the domestic interested... polychloroprene rubber from Japan. See Polychloroprene Rubber from Japan, 38 FR 33593 (December 6, 1973). On...

  20. 26 CFR 48.4073-3 - Exemption of tread rubber used for recapping nonhighway tires.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 16 2013-04-01 2013-04-01 false Exemption of tread rubber used for recapping..., Tires, Tubes, Tread Rubber, and Taxable Fuel Tires, Tubes, and Tread Rubber § 48.4073-3 Exemption of tread rubber used for recapping nonhighway tires. (a) Sold direct by manufacturer for nontaxable...