Sample records for non-arsenic-exposed urinary transitional

  1. Dimethylarsinic acid in drinking water changed the morphology but not the expression of DNA repair genes of bladder transitional epithelium in F344 rats

    EPA Science Inventory

    Inorganic arsenic increases urinary bladder transitional cell carcinoma in humans. In laboratory animals, it is dimethylarsinic acid [DMA(V)], a major arsenic metabolite in the urine of inorganic arsenic-exposed people, that increases transitional cell carcinoma, namely in F344 r...

  2. Oxidative DNA damage and repair in children exposed to low levels of arsenic in utero and during early childhood: Application of salivary and urinary biomarkers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinhumpatch, Pantip; Navasumrit, Panida; Chulabhorn Graduate Institute, Laksi, Bangkok

    The present study aimed to assess arsenic exposure and its effect on oxidative DNA damage and repair in young children exposed in utero and continued to live in arsenic-contaminated areas. To address the need for biological specimens that can be acquired with minimal discomfort to children, we used non-invasive urinary and salivary-based assays for assessing arsenic exposure and early biological effects that have potentially serious health implications. Levels of arsenic in nails showed the greatest magnitude of difference between exposed and control groups, followed by arsenic concentrations in saliva and urine. Arsenic levels in saliva showed significant positive correlations withmore » other biomarkers of arsenic exposure, including arsenic accumulation in nails (r = 0.56, P < 0.001) and arsenic concentration in urine (r = 0.50, P < 0.05). Exposed children had a significant reduction in arsenic methylation capacity indicated by decreased primary methylation index and secondary methylation index in both urine and saliva samples. Levels of salivary 8-OHdG in exposed children were significantly higher (∼ 4-fold, P < 0.01), whereas levels of urinary 8-OHdG excretion and salivary hOGG1 expression were significantly lower in exposed children (∼ 3-fold, P < 0.05), suggesting a defect in hOGG1 that resulted in ineffective cleavage of 8-OHdG. Multiple regression analysis results showed that levels of inorganic arsenic (iAs) in saliva and urine had a significant positive association with salivary 8-OHdG and a significant negative association with salivary hOGG1 expression. - Highlights: • The effects of arsenic exposure in utero and through early childhood were studied. • Arsenic-exposed children had a reduction in arsenic methylation capacity. • Exposed children had more DNA damage, observed as elevated salivary 8-OHdG. • Lower salivary hOGG1 in exposed children indicated impairment of 8-OHdG repair. • Salivary and urinary 8-OHdG levels were discordant.« less

  3. Urinary porphyrins as biomarkers for arsenic exposure among susceptible populations in Guizhou Province, China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, J.C.; Wang, J.P.; Zheng, B.S.

    2005-08-07

    Coal from some areas in Guizhou Province contains elevated levels of arsenic. This has caused arsenicosis in individuals who use arsenic-contaminated coal for the purposes of heating, cooking and drying of food in poorly ventilated dwellings. The population at risk has been estimated to be approximately 200,000 people. We analyzed the porphyrin excretion profile using a HPLC method in urine samples collected from 113 villagers who lived in Xing Ren district, a coal-borne arsenicosis endemic area and from 30 villagers from Xing Yi where arsenicosis is not prevalent. Urinary porphyrins were higher in the arsenic exposed group than those inmore » the control group. The correlation between urinary arsenic and porphyrin concentrations demonstrated the effect of arsenic on heme biosynthesis resulting in increased porphyrin excretion. Both uroporphyrin and coproporphyrin III showed significant increases in the excretion profile of the younger age ({lt} 20 years) arsenic-exposed group, suggesting that porphyrins could be used as early warning biomarkers of chronic arsenic exposure in humans. Greater increases of urinary arsenic and porphyrins in women, children and older age groups who spend much of their time indoors suggest that they might be at a higher risk. Whether elevated porphyrins could predict adverse health effects associated with both cancer and non-cancer end-points in chronically arsenic-exposed populations need further investigation.« less

  4. Oxidative DNA damage and repair in children exposed to low levels of arsenic in utero and during early childhood: application of salivary and urinary biomarkers.

    PubMed

    Hinhumpatch, Pantip; Navasumrit, Panida; Chaisatra, Krittinee; Promvijit, Jeerawan; Mahidol, Chulabhorn; Ruchirawat, Mathuros

    2013-12-15

    The present study aimed to assess arsenic exposure and its effect on oxidative DNA damage and repair in young children exposed in utero and continued to live in arsenic-contaminated areas. To address the need for biological specimens that can be acquired with minimal discomfort to children, we used non-invasive urinary and salivary-based assays for assessing arsenic exposure and early biological effects that have potentially serious health implications. Levels of arsenic in nails showed the greatest magnitude of difference between exposed and control groups, followed by arsenic concentrations in saliva and urine. Arsenic levels in saliva showed significant positive correlations with other biomarkers of arsenic exposure, including arsenic accumulation in nails (r=0.56, P<0.001) and arsenic concentration in urine (r=0.50, P<0.05). Exposed children had a significant reduction in arsenic methylation capacity indicated by decreased primary methylation index and secondary methylation index in both urine and saliva samples. Levels of salivary 8-OHdG in exposed children were significantly higher (~4-fold, P<0.01), whereas levels of urinary 8-OHdG excretion and salivary hOGG1 expression were significantly lower in exposed children (~3-fold, P<0.05), suggesting a defect in hOGG1 that resulted in ineffective cleavage of 8-OHdG. Multiple regression analysis results showed that levels of inorganic arsenic (iAs) in saliva and urine had a significant positive association with salivary 8-OHdG and a significant negative association with salivary hOGG1 expression. © 2013.

  5. DNA repair gene XPD and susceptibility to arsenic-induced hyperkeratosis.

    PubMed

    Ahsan, Habibul; Chen, Yu; Wang, Qiao; Slavkovich, Vesna; Graziano, Joseph H; Santella, Regina M

    2003-07-20

    Chronic exposure to inorganic arsenic is known to cause non-melanocytic skin and internal cancers in humans. An estimated 50-70 million people in Bangladesh have been chronically exposed to arsenic from drinking water and are at risk of skin and other cancers. We undertook the first study to examine whether genetic susceptibility, as determined by the codon 751 SNP (A-->C) of the DNA repair gene XPD, influences the risk of arsenic-induced hyperkeratotic skin lesions, precursors of skin cancer, in a case-control study of 29 hyperkeratosis cases and 105 healthy controls from the same community in an area of Bangladesh. As expected, there was a monotonic increase in risk of hyperkeratosis in relation to urinary arsenic measures but the XPD genotype was not independently associated with the risk. However, the increase in hyperkeratosis risk in relation to urinary arsenic measures genotype was borderline significant for urinary total arsenic (P for trend=0.06) and statistically significant for urinary creatinine adjusted arsenic (P for trend=0.01) among subjects with the XPD A allele (AA) but not among subjects with the other XPD genotypes. Among AA carriers, the risk for the highest arsenic exposed group compared with the lowest was more than 7-fold for urinary total arsenic and about 11-fold for urinary creatinine adjusted arsenic. In conclusion, our findings suggest that the DNA repair gene XPD may influence the risk of arsenic-induced premalignant hyperkeratotic skin lesions. Future larger studies are needed to confirm this novel finding and investigate how combinations of different candidate genes and/or other host and environmental factors may influence the risk of arsenic induced skin and other cancers.

  6. DETERMINATION OF URINARY TRIVALENT ARSENICALS (MMASIII AND DMASIII) IN INDIVIDUALS CHRONICALLY EXPOSED TO ARSENIC

    EPA Science Inventory

    DETERMINATION OF URINARY TRIVALENT ARSENICALS (MMAsIII and DMAsIII) IN INDIVIDUALS CHRONICALLY EXPOSED TO ARSENIC.
    L. M. Del Razo1, M. Styblo2, W. R. Cullen3, and D.J. Thomas4.
    1Toxicology Section, Cinvestav-IPN, Mexico, D.F., 2Univ. North Carolina, Chapel Hill, NC; 3Uni...

  7. Hypomethylation of inflammatory genes (COX2, EGR1, and SOCS3) and increased urinary 8-nitroguanine in arsenic-exposed newborns and children

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phookphan, Preeyaphan; Navasumrit, Panida

    Early-life exposure to arsenic increases risk of developing a variety of non-malignant and malignant diseases. Arsenic-induced carcinogenesis may be mediated through epigenetic mechanisms and pathways leading to inflammation. Our previous study reported that prenatal arsenic exposure leads to increased mRNA expression of several genes related to inflammation, including COX2, EGR1, and SOCS3. This study aimed to investigate the effects of arsenic exposure on promoter DNA methylation and mRNA expression of these inflammatory genes (COX2, EGR1, and SOCS3), as well as the generation of 8-nitroguanine, which is a mutagenic DNA lesion involved in inflammation-related carcinogenesis. Prenatally arsenic-exposed newborns had promoter hypomethylationmore » of COX2, EGR1, and SOCS3 in cord blood lymphocytes (p < 0.01). A follow-up study in these prenatally arsenic-exposed children showed a significant hypomethylation of these genes in salivary DNA (p < 0.01). In vitro experiments confirmed that arsenite treatment at short-term high doses (10–100 μM) and long-term low doses (0.5–1 μM) in human lymphoblasts (RPMI 1788) caused promoter hypomethylation of these genes, which was in concordance with an increase in their mRNA expression. Additionally, the level of urinary 8-nitroguanine was significantly higher (p < 0.01) in exposed newborns and children, by 1.4- and 1.8-fold, respectively. Arsenic accumulation in toenails was negatively correlated with hypomethylation of these genes and positively correlated with levels of 8-nitroguanine. These results indicated that early-life exposure to arsenic causes hypomethylation of COX2, EGR1, and SOCS3, increases mRNA expression of these genes, and increases 8-nitroguanine formation. These effects may be linked to mechanisms of arsenic-induced inflammation and cancer development later in life. - Highlight: • Early-life arsenic exposure caused promoter hypomethylation of COX2, EGR1 and SOCS3. • Hypomethylation of these genes is associated with increased mRNA expression. • Arsenite treatment in vitro showed hypomethylation and increased mRNA expression. • Arsenic-exposed newborns and children had higher levels of urinary 8-nitroguanine. • Urinary 8-nitroguanine correlated with hypomethylation and mRNA expression.« less

  8. GENE EXPRESSION CAN DIFFERENTIATE CARCINOGENIC FROM NON-CARCINOGENIC DOSES OF DIMETHYLARSINIC ACID (DMAv) IN THE TRANSITIONAL EPITHELIUM OF THE URINARY BLADDER FROM FEMALE F344 RATS

    EPA Science Inventory

    Arsenic is an environmental concern worldwide, and drinking arsenic contaminated water has been associated with increased incidences of skin, lung and bladder cancer. Dimethylarsinic acid (DMAv) is a major metabolite of inorganic arsenic in rodents and humans and is the predomina...

  9. Dimethylarsinic acid in drinking water changed the morphology of urinary bladder but not the expression of DNA repair genes of bladder transitional epithelium in F344 rats.

    PubMed

    Wang, Amy; Wolf, Douglas C; Sen, Banalata; Knapp, Geremy W; Holladay, Steven D; Huckle, William R; Caceci, Thomas; Robertson, John L

    2009-06-01

    Inorganic arsenic increases urinary bladder transitional cell carcinoma in humans. In F344 rats, dimethylarsinic acid (DMA[V]) increases transitional cell carcinoma. Arsenic-induced inhibition of DNA repair has been reported in cultured cell lines and in lymphocytes of arsenic-exposed humans, but it has not been studied in urinary bladder. Should inhibition of DNA damage repair in transitional epithelium occur, it may contribute to carcinogenesis or cocarcinogenesis. We investigated morphology and expression of DNA repair genes in F344 rat transitional cells following up to 100 ppm DMA(V) in drinking water for four weeks. Mitochondria were very sensitive to DMA(V), and swollen mitochondria appeared to be the main source of vacuoles in the transitional epithelium. Real-time reverse transcriptase polymerase chain reaction (Real-Time RT PCR) showed the mRNA levels of tested DNA repair genes, ataxia telangectasia mutant (ATM), X-ray repair cross-complementing group 1 (XRCC1), excision repair cross-complementing group 3/xeroderma pigmentosum B (ERCC3/XPB), and DNA polymerase beta (Polbeta), were not altered by DMA(V). These data suggested that either DMA(V) does not affect DNA repair in the bladder or DMA(V) affects DNA repair without affecting baseline mRNA levels of repair genes. The possibility remains that DMA(V) may lower damage-induced increases in repair gene expression or cause post-translational modification of repair enzymes.

  10. In utero and early childhood exposure to arsenic decreases lung function in children

    PubMed Central

    Recio-Vega, Rogelio; Gonzalez-Cortes, Tania; Olivas-Calderon, Edgar; Lantz, R. Clark; Gandolfi, A. Jay; Gonzalez-De Alba, Cesar

    2016-01-01

    Background The lung is a target organ for adverse health outcomes following exposure to arsenic. Several studies have reported a high prevalence of respiratory symptoms and diseases in subjects highly exposed to arsenic through drinking water, however, most studies to date has been performed in exposed adults, with little information on respiratory effects in children. The objective of the study was to evaluate the association between urinary levels of arsenic and its metabolites with lung function in children exposed in utero and in early childhood to high arsenic levels through drinking water. Methods A total of 358 healthy children were included in our study. Individual exposure was assessed based on urinary concentration of inorganic arsenic. Lung function was assessed by spirometry. Results Participants were exposed since pregnancy until early childhood to an average water As concentration of 152.13 μg/L. The mean urinary arsenic level registered in the studied subjects was 141.2 μg/L and only 16.7% had a urinary concentration below the national concern level. Forced vital capacity was significantly decreased in the studied population and it was negatively associated with the percent of inorganic arsenic. More than 57% of the subjects had a restrictive spirometric pattern. The urinary As level was higher in those children with restrictive lung patterns when compared with the levels registered in subjects with normal spirometric patterns. Conclusion Exposure to arsenic through drinking water during in utero and early life was associated with a decrease in FVC and with a restrictive spirometric pattern in the children evaluated. PMID:25131850

  11. Changes in serum thioredoxin among individuals chronically exposed to arsenic in drinking water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuanyuan; Gao, Yanhui; Zhao, Lijun

    2012-02-15

    It is well known that oxidative damage plays a key role in the development of chronic arsenicosis. There is a complex set of mechanisms of redox cycling in vivo to protect cells from the damage. In this study, we examined the differences in the levels of serum thioredoxin1 (TRX1) among individuals exposed to different levels of arsenic in drinking water and detected early biomarkers of arsenic poisoning before the appearance of skin lesions. A total of 157 subjects from endemic regions of China were selected and divided into arsenicosis group with skin lesions (total intake of arsenic: 8.68–45.71 mg-year) andmore » non-arsenicosis group without skin lesions, which further divided into low (0.00–1.06 mg-year), medium (1.37–3.55 mg-year), and high (4.26–48.13 mg-year) arsenic exposure groups. Concentrations of serum TRX1 were analyzed by an ELISA method. Levels of water arsenic and urinary speciated arsenics, including inorganic arsenic (iAs), monomethylated arsenic (MMA), and dimethylated arsenic (DMA), were determined by hydride generation atomic absorption spectrometry. Our results showed that the levels of serum TRX1 in arsenicosis patients were significantly higher than that of the subjects who were chronically exposed to arsenic, but without skin lesions. A positive correlation was seen between the levels of serum TRX1 and the total water arsenic intake or the levels of urinary arsenic species. The results of this study indicate that arsenic exposure could significantly change the levels of human serum TRX1, which can be detected before arsenic-specific dermatological symptoms occur. This study provides further evidence on revealing the mechanism of arsenic toxicity. -- Highlights: ► Three regions are selected as the areas affected by endemic arsenicosis of China. ► We first examine changes in serum TRX1 among individuals exposed to arsenic. ► A positive correlation was seen between serum TRX1 and total water arsenic intake. ► The same relationship was seen between serum TRX1 and urinary arsenic species. ► TRX as early biomarker of arsenicosis can be detected before skin lesions occur.« less

  12. Assessment of occupational exposure to inorganic arsenic based on urinary concentrations and speciation of arsenic.

    PubMed Central

    Farmer, J G; Johnson, L R

    1990-01-01

    An analytical speciation method, capable of separating inorganic arsenic (As (V), As (III] and its methylated metabolites (MMAA, DMAA) from common, inert, dietary organoarsenicals, was applied to the determination of arsenic in urine from a variety of workers occupationally exposed to inorganic arsenic compounds. Mean urinary arsenic (As (V) + As (III) + MMAA + DMAA) concentrations ranged from 4.4 micrograms/g creatinine for controls to less than 10 micrograms/g for those in the electronics industry, 47.9 micrograms/g for timber treatment workers applying arsenical wood preservatives, 79.4 micrograms/g for a group of glassworkers using arsenic trioxide, and 245 micrograms/g for chemical workers engaged in manufacturing and handling inorganic arsenicals. The maximum recorded concentration was 956 micrograms/g. For the most exposed groups, the ranges in the average urinary arsenic speciation pattern were 1-6% As (V), 11-14% As (III), 14-18% MMAA, and 63-70% DMAA. The highly raised urinary arsenic concentrations for the chemical workers, in particular, and some glassworkers are shown to correspond to possible atmospheric concentrations in the workplace and intakes in excess of, or close to, recommended and statutory limits and those associated with inorganic arsenic related diseases. PMID:2357455

  13. Changes in serum thioredoxin among individuals chronically exposed to arsenic in drinking water.

    PubMed

    Li, Yuanyuan; Gao, Yanhui; Zhao, Lijun; Wei, Yudan; Feng, Hongqi; Wang, Cheng; Wei, Wei; Ding, Yunpeng; Sun, Dianjun

    2012-02-15

    It is well known that oxidative damage plays a key role in the development of chronic arsenicosis. There is a complex set of mechanisms of redox cycling in vivo to protect cells from the damage. In this study, we examined the differences in the levels of serum thioredoxin1 (TRX1) among individuals exposed to different levels of arsenic in drinking water and detected early biomarkers of arsenic poisoning before the appearance of skin lesions. A total of 157 subjects from endemic regions of China were selected and divided into arsenicosis group with skin lesions (total intake of arsenic: 8.68-45.71mg-year) and non-arsenicosis group without skin lesions, which further divided into low (0.00-1.06mg-year), medium (1.37-3.55mg-year), and high (4.26-48.13mg-year) arsenic exposure groups. Concentrations of serum TRX1 were analyzed by an ELISA method. Levels of water arsenic and urinary speciated arsenics, including inorganic arsenic (iAs), monomethylated arsenic (MMA), and dimethylated arsenic (DMA), were determined by hydride generation atomic absorption spectrometry. Our results showed that the levels of serum TRX1 in arsenicosis patients were significantly higher than that of the subjects who were chronically exposed to arsenic, but without skin lesions. A positive correlation was seen between the levels of serum TRX1 and the total water arsenic intake or the levels of urinary arsenic species. The results of this study indicate that arsenic exposure could significantly change the levels of human serum TRX1, which can be detected before arsenic-specific dermatological symptoms occur. This study provides further evidence on revealing the mechanism of arsenic toxicity. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. COMPARISON OF IN VITRO AND IN VIVO RESPONSES TO ARSENIC: GENE EXPRESSION PROFILING IN NORMAL HUMAN EPIDERMAL KERATINOCYTES AND HYPERKERATOSES FROM ARSENIC-EXPOSED HUMANS

    EPA Science Inventory

    Chronic exposure to arsenic is positively associated with skin, urinary bladder, lung, liver and kidney cancer development in humans. Elucidating the mode of action of arsenic carcinogenesis is a complicated issue as target cells are exposed to different toxic species of arsenic....

  15. DIFFERENTIAL MODULATION OF CANCER-RELATED MOLECULAR NETWORKS IN HUMAN AND RAT URINARY BLADDER CELLS EXPOSED TO TRIVALENT ARSENICALS

    EPA Science Inventory

    Arsenic (As) is classified as a known human carcinogen with primary targets of urinary bladder (UB), skin and lung. The most prevalent source of As exposure in humans is drinking water contaminated with inorganic As (iAs), and millions of people worldwide are exposed to drinking ...

  16. Urinary arsenic speciation profile in ethnic group of the Atacama desert (Chile) exposed to variable arsenic levels in drinking water.

    PubMed

    Yáñez, Jorge; Mansilla, Héctor D; Santander, I Paola; Fierro, Vladimir; Cornejo, Lorena; Barnes, Ramón M; Amarasiriwardena, Dulasiri

    2015-01-01

    Ethnic groups from the Atacama Desert (known as Atacameños) have been exposed to natural arsenic pollution for over 5000 years. This work presents an integral study that characterizes arsenic species in water used for human consumption. It also describes the metabolism and arsenic elimination through urine in a chronically exposed population in northern Chile. In this region, water contained total arsenic concentrations up to 1250 μg L(-1), which was almost exclusively As(V). It is also important that this water was ingested directly from natural water sources without any treatment. The ingested arsenic was extensively methylated. In urine 93% of the arsenic was found as methylated arsenic species, such as monomethylarsonic acid [MMA(V)] and dimethylarsinic acid [DMA(V)]. The original ingested inorganic species [As(V)], represent less than 1% of the total urinary arsenic. Methylation activity among individuals can be assessed by measuring primary [inorganic As/methylated As] and secondary methylation [MMA/DMA] indexes. Both methylation indexes were 0.06, indicating a high biological converting capability of As(V) into MMA and then MMA into DMA, compared with the control population and other arsenic exposed populations previously reported.

  17. Correlation of Breastmilk Arsenic With Maternal, Infant Urinary Arsenic and Drinking Water Arsenic in an Arsenic Affected Area of Bangladesh

    NASA Astrophysics Data System (ADS)

    Alauddin, M.; Islam, M. R.; Milton, A. H.; Alauddin, S. T.; Mouly, T.; Behri, E.; Ayesha, A.; Akter, S.; Islam, M. M.

    2016-12-01

    About 97% of population in Bangladesh depend on groundwater as the principle source of drinking water and this water is highly contaminated with inorganic arsenic. Consumption of arsenic contaminated drinking water by pregnant women raises the prospect of early life exposure to inorganic arsenic for newborn which may be lead to adverse health effect in later life. This work was carried out in parts of Gopalganj district in Bangladesh, a region affected by arsenic contamination in groundwater. The objective of the work was to assess potential early life exposure to arsenic for infants through breastfeeding by mothers who were drinking water with arsenic levels ranging from 100 to 300 µg/l. A cohort of 30 mother-baby pairs were selected for the current study. Breastmilk samples from mothers, urine samples from each pair of subjects at 1, 6 and 9 month age of infant were collected and total arsenic were determined in these samples. In addition speciation of urinary arsenic and metabolites were carried out in 12 mother-baby pairs. Median level for breastmilk arsenic were 0.50 µg/l. Urinary arsenic of infants did not correlate with breastmilk arsenic with progressing age of infants. Maternal and infant urinary total arsenic at 1 month age of infant showed some positive correlation (r = 0.39). In infant urine major metabolite were dimethyl arsenic acid (DMA) (approximately 70%) indicating good methylating capacity for infants at 1 and 6 months of age. In conclusion, infants were not exposed to arsenic through breastfeeding even though mothers were exposed to significant levels of arsenic through drinking water.

  18. DNA methylation changes in Mexican children exposed to arsenic from two historic mining areas in San Luis potosí.

    PubMed

    Alegría-Torres, Jorge Alejandro; Carrizales-Yánez, Leticia; Díaz-Barriga, Fernando; Rosso-Camacho, Fernando; Motta, Valeria; Tarantini, Letizia; Bollati, Valentina

    2016-12-01

    Arsenic is a carcinogen and epimutagen that threatens the health of exposed populations worldwide. In this study, we examined the methylation status of Alu and long interspersed nucleotide elements (LINE-1) and their association with levels of urinary arsenic in 84 Mexican children between 6 and 12 years old from two historic mining areas in the State of San Luis Potosí, Mexico. Urinary arsenic levels were determined by atomic absorption spectrophotometry and DNA methylation analysis was performed in peripheral blood leukocytes by bisulfite-pyrosequencing. The geometric mean of urinary arsenic was 26.44 µg/g Cr (range 1.93-139.35). No significant differences in urinary arsenic or methylation patterns due to gender were observed. A positive correlation was found between urinary arsenic and the mean percentage of methylated cytosines in Alu sequences (Spearman correlation coefficient r = 0.532, P < 0.001), and a trend of LINE-1 hypomethylation was also observed (Spearman correlation coefficient r = -0.232, P = 0.038) after adjustment for sex and age. A linear regression model showed an association with log-normalized urinary arsenic for Alu (β = 1.05, 95% CI: 0.67; 1.43, P < 0.001) and LINE-1 (β = -0.703, 95% CI: -1.36; -0.38, P = 0.038). Despite the low-level arsenic exposure, a subtle epigenetic imbalance measured as DNA methylation was detected in the leukocytes of Mexican children living in two historic mining areas. Environ. Mol. Mutagen. 57:717-723, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Effects of biological and behavioral factors on urinary arsenic ...

    EPA Pesticide Factsheets

    Abstract In older men and women who were long-term residents of Churchill County, Nevada, we examined the relation between arsenic exposure from home tap water and urinary levels of inorganic arsenic and its methylated metabolites. Over a wide exposure range (up to 1850 ug of arsenic per liter), urinary concentrations of inorganic, monomethylated, and dimethylated arsenicals strongly correlated with home tap water arsenic concentrations. However, percentages of summed urinary concentrations of inorganic, monomethylated, and dimethylated arsenicals accounted for by each arsenical species were unaffected by arsenic concentration in home tap water, suggesting thc1t capacity for formation and excretion of methylated metabolites was not exceeded. Biological factors (gender, age, body mass index, and genotype) and a behavioral factor (smoking) influenced absolute and relative levels of arsenicals in urine. A multivariate regression model showed that both biological and behavioral factors were significant predictors of absolute and relative concentrations of inorganic arsenic and its methylated metabolites in urine. These findings suggest that analyses of dose-response relations in arsenic-exposed populations should account for these biological and behavioral factors. Furthermore, evidence of significant effects of these factors on arsenic metabolism may support mode of action studies in appropriate experimental models. Running title- Methylated arsenicals as urinary b

  20. Transplacental Arsenic Carcinogenesis in Mice

    PubMed Central

    Waalkes, Michael P.; Liu, Jie; Diwan, Bhalchandra A.

    2007-01-01

    Our work has focused on the carcinogenic effects of in utero arsenic exposure in mice. Our data show a short period of maternal exposure to inorganic arsenic in the drinking water is an effective, multi-tissue carcinogen in the adult offspring. These studies have been reproduced in three temporally separate studies using two different mouse strains. In these studies pregnant mice were treated with drinking water containing sodium arsenite at up to 85 ppm arsenic from day 8 to 18 of gestation, and the offspring were observed for up to two years. The doses used in all these studies were well tolerated by both the dam and offspring. In C3H mice, two separate studies show male offspring exposed to arsenic in utero developed liver carcinoma and adrenal cortical adenoma in a dose-related fashion during adulthood. Prenatally exposed female C3H offspring show dose-related increases in ovarian tumors and lung carcinoma and in proliferative lesions (tumors plus preneoplastic hyperplasia) of the uterus and oviduct. In addition, prenatal arsenic plus postnatal exposure to the tumor promoter, 12-O-tetradecanoyl phorbol-13-acetate (TPA) in C3H mice produces excess lung tumors in both sexes and liver tumors in females. Male CD1 mice treated with arsenic in utero develop tumors of the liver and adrenal and renal hyperplasia while females develop tumors of urogenital system, ovary, uterus and adrenal and hyperplasia of the oviduct. Additional postnatal treatment with diethylstilbestrol or tamoxifen after prenatal arsenic in CD1 mice induces urinary bladder transitional cell proliferative lesions, including carcinoma and papilloma, and enhances the carcinogenic response in the liver of both sexes. Overall this model has provided convincing evidence that arsenic is a transplacental carcinogen in mice with the ability to target tissues of potential human relevance, such as the urinary bladder, lung and liver. Transplacental carcinogenesis clearly occurs with other agents in humans and investigating a potential transplacental component of the human carcinogenic response to arsenic should be a research priority. PMID:17306315

  1. Arsenate and dimethylarsinic acid in drinking water did not affect DNA damage repair in urinary bladder transitional cells or micronuclei in bone marrow

    EPA Science Inventory

    Arsenic is a recognized human skin, lung, and urinary bladder carcinogen, and may act as a cocarcinogen in the urinary bladder (with cigarette smoking) and skin (with UV light exposure). Possible modes of action of arsenic carcinogenesis/cocarcinogenesis include induction of DNA ...

  2. DIMETHYLARSINIC ACID ALTERS EXPRESSION OF OXIDATIVE STRESS AND DNA REPAIR GENES IN A DOSE DEPENDENT MANNER IN THE TRANSITIONAL EPITHELIUM OF THE URINARY BLADDER FROM FEMALE F344 RATS.

    EPA Science Inventory

    Dose-dependent alteration of oxidative stress and DNA repair gene expression by Dimethylarsinic acid [DMA(V)] in transitional epithelium of urinary bladder from female F344 rats.
    Arsenic (As) is a major concern as millions of people are at risk from drinking arsenic contaminat...

  3. Urinary arsenic species, toenail arsenic, and arsenic intake estimates in a Michigan population with low levels of arsenic in drinking water.

    PubMed

    Rivera-Núñez, Zorimar; Meliker, Jaymie R; Meeker, John D; Slotnick, Melissa J; Nriagu, Jerome O

    2012-01-01

    The large disparity between arsenic concentrations in drinking water and urine remains unexplained. This study aims to evaluate predictors of urinary arsenic in a population exposed to low concentrations (≤50 μg/l) of arsenic in drinking water. Urine and drinking water samples were collected from a subsample (n=343) of a population enrolled in a bladder cancer case-control study in southeastern Michigan. Total arsenic in water and arsenic species in urine were determined using ICP-MS: arsenobetaine (AsB), arsenite (As[III]), arsenate (As[V]), methylarsenic acid (MMA[V]), and dimethylarsenic acid (DMA[V]). The sum of As[III], As[V], MMA[V], and DMA[V] was denoted as SumAs. Dietary information was obtained through a self-reported food intake questionnaire. Log(10)-transformed drinking water arsenic concentration at home was a significant (P<0.0001) predictor of SumAs (R(2)=0.18). Associations improved (R(2)=0.29, P<0.0001) when individuals with less than 1 μg/l of arsenic in drinking water were removed and further improved when analyses were applied to individuals who consumed amounts of home drinking water above the median volume (R(2)=0.40, P<0.0001). A separate analysis indicated that AsB and DMA[V] were significantly correlated with fish and shellfish consumption, which may suggest that seafood intake influences DMA[V] excretion. The Spearman correlation between arsenic concentration in toenails and SumAs was 0.36 and between arsenic concentration in toenails and arsenic concentration in water was 0.42. Results show that arsenic exposure from drinking water consumption is an important determinant of urinary arsenic concentrations, even in a population exposed to relatively low levels of arsenic in drinking water, and suggest that seafood intake may influence urinary DMA[V] concentrations.

  4. MEETING AT CAMBRIDGE, MA: GENE EXPRESSION IN NORMAL HUMAN KERATINOCYTES MODULATED BY TRIVALENT ARSENICALS

    EPA Science Inventory

    Arsenic exposure has been correlated with the development of several human cancers including those found in the skin, lung, liver, kidney and urinary bladder. Humans are generally exposed to inorganic forms of arsenic, which may be inhaled or ingested. Arsenic forms mono- and d...

  5. MEETING AT SAN DIEGO, CA: GENE EXPRESSION IN NORMAL HUMAN KERATINOCYTES MODULATED BY TRIVALENT ARSENICALS

    EPA Science Inventory

    Arsenic exposure has been correlated with the development of several human cancers including those found in the skin, lung, liver, kidney and urinary bladder. Humans are generally exposed to inorganic forms of arsenic, which may be inhaled or ingested. Arsenic forms mono- and di-...

  6. Evaluation of Exposure to Arsenic in Residential Soil

    PubMed Central

    Tsuji, Joyce S.; Van Kerkhove, Maria D.; Kaetzel, Rhonda S.; Scrafford, Carolyn G.; Mink, Pamela J.; Barraj, Leila M.; Crecelius, Eric A.; Goodman, Michael

    2005-01-01

    In response to concerns regarding arsenic in soil from a pesticide manufacturing plant, we conducted a biomonitoring study on children younger than 7 years of age, the age category of children most exposed to soil. Urine samples from 77 children (47% participation rate) were analyzed for total arsenic and arsenic species related to ingestion of inorganic arsenic. Older individuals also provided urine (n = 362) and toenail (n = 67) samples. Speciated urinary arsenic levels were similar between children (geometric mean, geometric SD, and range: 4.0, 2.2, and 0.89–17.7 μg/L, respectively) and older participants (3.8, 1.9, 0.91–19.9 μg/L) and consistent with unexposed populations. Toenail samples were < 1 mg/kg. Correlations between speciated urinary arsenic and arsenic in soil (r = 0.137, p = 0.39; n = 41) or house dust (r = 0.049, p = 0.73; n = 52) were not significant for children. Similarly, questionnaire responses indicating soil exposure were not associated with increased urinary arsenic levels. Relatively low soil arsenic exposure likely precluded quantification of arsenic exposure above background. PMID:16330356

  7. Arsenic Methylation, Oxidative Stress and Cancer - Is there a Link?

    EPA Science Inventory

    Arsenic is a multiorgan human carcinogen. The best-known example of this effect occurred in subgroups of the Taiwanese population who were chronically exposed to high levels of naturally occurring arsenic in drinking water and developed cancers of the skin, lung, urinary bladde...

  8. Urinary Trivalent Methylated Arsenic Species in a Population Chronically Exposed to Inorganic Arsenic

    PubMed Central

    Valenzuela, Olga L.; Borja-Aburto, Victor H.; Garcia-Vargas, Gonzalo G.; Cruz-Gonzalez, Martha B.; Garcia-Montalvo, Eliud A.; Calderon-Aranda, Emma S.; Del Razo, Luz M.

    2005-01-01

    Chronic exposure to inorganic arsenic (iAs) has been associated with increased risk of various forms of cancer and of noncancerous diseases. Metabolic conversions of iAs that yield highly toxic and genotoxic methylarsonite (MAsIII) and dimethylarsinite (DMAsIII) may play a significant role in determining the extent and character of toxic and cancer-promoting effects of iAs exposure. In this study we examined the relationship between urinary profiles of MAsIII and DMAsIII and skin lesion markers of iAs toxicity in individuals exposed to iAs in drinking water. The study subjects were recruited among the residents of an endemic region of central Mexico. Drinking-water reservoirs in this region are heavily contaminated with iAs. Previous studies carried out in the local populations have found an increased incidence of pathologies, primarily skin lesions, that are characteristic of arseniasis. The goal of this study was to investigate the urinary profiles for the trivalent and pentavalent As metabolites in both high- and low-iAs–exposed subjects. Notably, methylated trivalent arsenicals were detected in 98% of analyzed urine samples. On average, the major metabolite, DMAsIII, represented 49% of total urinary As, followed by DMAsV (23.7%), iAsV (8.6%), iAsIII (8.5%), MAsIII (7.4%), and MAsV (2.8%). More important, the average MAsIII concentration was significantly higher in the urine of exposed individuals with skin lesions compared with those who drank iAs-contaminated water but had no skin lesions. These data suggest that urinary levels of MAsIII, the most toxic species among identified metabolites of iAs, may serve as an indicator to identify individuals with increased susceptibility to toxic and cancer-promoting effects of arseniasis. PMID:15743710

  9. Urinary Arsenic Metabolites in Children and Adults Exposed to Arsenic in Drinking Water in Inner Mongolia, China

    PubMed Central

    Sun, Guifan; Xu, Yuanyuan; Li, Xin; Jin, Yaping; Li, Bing; Sun, Xiance

    2007-01-01

    Background We report the concentrations and distributions of urinary arsenic (As) metabolites in 233 residents exposed to 20, 90, or 160 μg/L inorganic arsenic (iAs) in drinking water from three villages in Hohhot, Inner Mongolia, China, that formed one control and two exposed groups. Methods We used hydride generation-atomic absorption spectrometry (HGAAS) to determine iAs, monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA). Results The concentrations of each urinary As species in the two exposed groups were significantly higher than in the control group for both children and adults. Both children and adults in exposed groups had higher percent iAs and MMA and lower percent DMA, and low primary and secondary methylation indices (PMI and SMI, respectively) than those in the control group. However, children showed significant increases in percent DMA and the SMI as well as decreases in the percent MMA when the iAs exposure level increased from 90 to 160 μg/L. In addition, children in the two exposed groups showed lower percent MMA but higher percent DMA and higher SMI than adults in the same exposed group. No significant differences in As metabolite concentrations and distributions were found between males and females in each group. A significant correlation was also found in the SMI between 11 pairs of children and their mothers from the 160-μg/L–exposed group. Conclusions Children had higher a capacity for secondary methylation of As than adults when exposed to the same concentrations of iAs in drinking water. Exposure to As may increase the capacity for methylation in children to some extent. PMID:17450238

  10. Arsenic speciation analysis of urine samples from individuals living in an arsenic-contaminated area in Bangladesh.

    PubMed

    Hata, Akihisa; Yamanaka, Kenzo; Habib, Mohamed Ahsan; Endo, Yoko; Fujitani, Noboru; Endo, Ginji

    2012-05-01

    Chronic inorganic arsenic (iAs) exposure currently affects tens of millions of people worldwide. To accurately determine the proportion of urinary arsenic metabolites in residents continuously exposed to iAs, we performed arsenic speciation analysis of the urine of these individuals and determined whether a correlation exists between the concentration of iAs in drinking water and the urinary arsenic species content. The subjects were 165 married couples who had lived in the Pabna District in Bangladesh for more than 5 years. Arsenic species were measured using high-performance liquid chromatography and inductively coupled plasma mass spectrometry. The median iAs concentration in drinking water was 55 μgAs/L (range <0.5-332 μgAs/L). Speciation analysis revealed the presence of arsenite, arsenate, monomethylarsonic acid (MMA), and dimethylarsinic acid in urine samples with medians (range) of 16.8 (7.7-32.3), 1.8 (<0.5-3.3), 13.7 (5.6-25.0), and 88.6 μgAs/L (47.9-153.4 μgAs/L), respectively. No arsenobetaine or arsenocholine was detected. The concentrations of the 4 urinary arsenic species were significantly and linearly related to each other. The urinary concentrations of total arsenic and each species were significantly correlated with the iAs concentration of drinking water. All urinary arsenic species are well correlated with each other and with iAs in drinking water. The most significant linear relationship existed between the iAs concentration in drinking water and urinary iAs + MMA concentration. From these results, combined with the effects of seafood ingestion, the best biomarker of iAs exposure is urinary iAs + MMA concentration.

  11. Fetal-sex dependent genomic responses in the circulating lymphocytes of arsenic-exposed pregnant women in New Hampshire.

    PubMed

    Bommarito, Paige A; Martin, Elizabeth; Smeester, Lisa; Palys, Thomas; Baker, Emily R; Karagas, Margaret R; Fry, Rebecca C

    2017-10-01

    Exposure to inorganic arsenic (iAs) during pregnancy is associated with adverse health outcomes present both at birth and later in life. A biological mechanism may include epigenetic and genomic alterations in fetal genes involved in immune functioning. To investigate the role of the maternal immune response to in utero iAs exposure, we conducted an analysis of the expression of immune-related genes in pregnant women from the New Hampshire Birth Cohort Study. A set of 31 genes was identified with altered expression in association with levels of urinary total arsenic, urinary iAs, urinary monomethylated arsenic and urinary dimethylated arsenic. Notably, maternal gene expression signatures differed when stratified on fetal sex, with a more robust inflammatory response observed in male pregnancies. Moreover, the differentially expressed genes were also related to birth outcomes. These findings highlight the sex-dependent nature of the maternal iAs-induced inflammatory response in relationship to fetal outcomes. Copyright © 2017. Published by Elsevier Inc.

  12. Association between body mass index and arsenic methylation efficiency in adult women from southwest U.S. and northwest Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez-Rubio, Paulina; Roberge, Jason; Arendell, Leslie

    2011-04-15

    Human arsenic methylation efficiency has been consistently associated with arsenic-induced disease risk. Interindividual variation in arsenic methylation profiles is commonly observed in exposed populations, and great effort has been put into the study of potential determinants of this variability. Among the factors that have been evaluated, body mass index (BMI) has not been consistently associated with arsenic methylation efficiency; however, an underrepresentation of the upper BMI distribution was commonly observed in these studies. This study investigated potential factors contributing to variations in the metabolism of arsenic, with specific interest in the effect of BMI where more than half of themore » population was overweight or obese. We studied 624 adult women exposed to arsenic in drinking water from three independent populations. Multivariate regression models showed that higher BMI, arsenic (+ 3 oxidation state) methyltransferase (AS3MT) genetic variant 7388, and higher total urinary arsenic were significantly associated with low percentage of urinary arsenic excreted as monomethylarsonic acid (%uMMA) or high ratio between urinary dimethylarsinic acid and uMMA (uDMA/uMMA), while AS3MT genetic variant M287T was associated with high %uMMA and low uDMA/uMMA. The association between BMI and arsenic methylation efficiency was also evident in each of the three populations when studied separately. This strong association observed between high BMI and low %uMMA and high uDMA/uMMA underscores the importance of BMI as a potential arsenic-associated disease risk factor, and should be carefully considered in future studies associating human arsenic metabolism and toxicity.« less

  13. Evaluation of epigenetic alterations (mir-126 and mir-155 expression levels) in Mexican children exposed to inorganic arsenic via drinking water.

    PubMed

    Pérez-Vázquez, Mónica S; Ochoa-Martínez, Ángeles C; RuÍz-Vera, Tania; Araiza-Gamboa, Yesenia; Pérez-Maldonado, Iván N

    2017-12-01

    Recently, a great number of epidemiological studies have shown evidence that exposure to inorganic arsenic could have harmful effects on the cardiovascular system of humans. However, the underlying mechanisms through which arsenic induces cardiovascular toxic effects remain unclear. In this regard, epigenetic mechanisms have emerged as a probable connection between environment and disease phenotypes, including cardiovascular diseases. Therefore, this study aimed to evaluate epigenetic changes related to cardiotoxicity (miR-126 and miR-155 expression levels) in children from San Luis Potosi, Mexico exposed to inorganic arsenic. From 2014 to 2015, in a cross-sectional study, children (aged 6-12 years; n = 73) attending public schools at the studied sites were enrolled to take part in this study. Urinary arsenic was used as an exposure biomarker and analyzed by an atomic absorption spectrophotometry technique. On the other hand, miR-126 and miR-155 expression levels were evaluated by qRT-PCR. A mean urinary arsenic level of 30.5 ± 25.5 μg/g of creatinine was found. Moreover, the data showed a significant negative association (p < 0.05) between urinary arsenic concentrations and plasma miR-126 levels. However, an association between urinary arsenic concentrations and plasma miR-155 levels was not found (p > 0.05). In this regard, some investigations have shown an association between diminished plasma miR-126 levels and cardiovascular illnesses. The results found in this study are of concern. However, more similar studies including a larger sample size are necessary in order to clarify the real significance of the data.

  14. Arsenic exposure and oral cavity lesions in Bangladesh.

    PubMed

    Syed, Emdadul H; Melkonian, Stephanie; Poudel, Krishna C; Yasuoka, Junko; Otsuka, Keiko; Ahmed, Alauddin; Islam, Tariqul; Parvez, Faruque; Slavkovich, Vesna; Graziano, Joseph H; Ahsan, Habibul; Jimba, Masamine

    2013-01-01

    To evaluate the relationship between arsenic exposure and oral cavity lesions among an arsenic-exposed population in Bangladesh. We carried out an analysis utilizing the baseline data of the Health Effects of Arsenic Exposure Longitudinal Study, which is an ongoing population-based cohort study to investigate health outcomes associated with arsenic exposure via drinking water in Araihazar, Bangladesh. We used multinomial regression models to estimate the risk of oral cavity lesions. Participants with high urinary arsenic levels (286.1 to 5000.0 μg/g) were more likely to develop arsenical lesions of the gums (multinomial odds ratio = 2.90; 95% confidence interval, 1.11 to 7.54), and tongue (multinomial odds ratio = 2.79; 95% confidence interval, 1.51 to 5.15), compared with those with urinary arsenic levels of 7.0 to 134.0 μg/g. Higher level of arsenic exposure was positively associated with increased arsenical lesions of the gums and tongue.

  15. Chronic arsenic exposure increases TGFalpha concentration in bladder urothelial cells of Mexican populations environmentally exposed to inorganic arsenic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valenzuela, Olga L.; Germolec, Dori R.; Borja-Aburto, Victor H.

    Inorganic arsenic (iAs) is a well-established carcinogen and human exposure has been associated with a variety of cancers including those of skin, lung, and bladder. High expression of transforming growth factor alpha (TGF-{alpha}) has associated with local relapses in early stages of urinary bladder cancer. iAs exposures are at least in part determined by the rate of formation and composition of iAs metabolites (MAs{sup III}, MAs{sup V}, DMAs{sup III}, DMAs{sup V}). This study examines the relationship between TGF-{alpha} concentration in exfoliated bladder urothelial cells (BUC) separated from urine and urinary arsenic species in 72 resident women (18-51 years old) frommore » areas exposed to different concentrations of iAs in drinking water (2-378 ppb) in central Mexico. Urinary arsenic species, including trivalent methylated metabolites were measured by hydride generation atomic absorption spectrometry method. The concentration of TGF-{alpha} in BUC was measured using an ELISA assay. Results show a statistically significant positive correlation between TGF-{alpha} concentration in BUC and each of the six arsenic species present in urine. The multivariate linear regression analyses show that the increment of TGF-{alpha} levels in BUC was importantly associated with the presence of arsenic species after adjusting by age, and presence of urinary infection. People from areas with high arsenic exposure had a significantly higher TGF-{alpha} concentration in BUC than people from areas of low arsenic exposure (128.8 vs. 64.4 pg/mg protein; p < 0.05). Notably, exfoliated cells isolated from individuals with skin lesions contained significantly greater amount of TGF-{alpha} than cells from individuals without skin lesions: 157.7 vs. 64.9 pg/mg protein (p = 0.003). These results suggest that TGF-{alpha} in exfoliated BUC may serve as a susceptibility marker of adverse health effects on epithelial tissue in arsenic-endemic areas.« less

  16. EXCRETION OF ARSENIC IN URINE AS A FUNCTION OF EXPOSURE TO ARSENIC IN DRINKING WATER

    EPA Science Inventory

    Urinary arsenic (As) concentrations were evaluated as a biomarker of exposure in a U.S. population chronically exposed to inorganic As (InAs) in their drinking water. Ninety-six individuals who consumed drinking water with As concentrations of 8-620 microg/L provided first mornin...

  17. Treating chronic arsenic toxicity with high selenium lentil diets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sah, Shweta; Vandenberg, Albert; Smits, Judit, E-mail: judit.smits@ucalgary.ca

    2013-10-01

    Arsenic (As) toxicity causes serious health problems in humans, especially in the Indo-Gangetic plains and mountainous areas of China. Selenium (Se), an essential micronutrient is a potential mitigator of As toxicity due to its antioxidant and antagonistic properties. Selenium is seriously deficient in soils world-wide but is present at high, yet non-toxic levels in the great plains of North America. We evaluate the potential of dietary Se in counteracting chronic As toxicity in rats through serum biochemistry, blood glutathione levels, immunotoxicity (antibody response), liver peroxidative stress, thyroid response and As levels in tissues and excreta. To achieve this, we comparemore » diets based on high-Se Saskatchewan (SK) lentils versus low-Se lentils from United States. Rats drank control (0 ppm As) or As (40 ppm As) water while consuming SK lentils (0.3 ppm Se) or northwestern USA lentils (< 0.01 ppm Se) diets for 14 weeks. Rats on high Se diets had higher glutathione levels regardless of As exposure, recovered antibody responses in As-exposed group, higher fecal and urinary As excretion and lower renal As residues. Selenium deficiency caused greater hepatic peroxidative damage in the As exposed animals. Thyroid hormones, triiodothyronine (T3) and thyroxine (T4), were not different. After 14 weeks of As exposure, health indicators in rats improved in response to the high Se lentil diets. Our results indicate that high Se lentils have a potential to mitigate As toxicity in laboratory mammals, which we hope will translate into benefits for As exposed humans. - Highlights: • We reduce chronic arsenic toxicity in rats with a whole food solution. • High selenium lentils decrease liver damage and increase blood glutathione levels. • High selenium lentil diets increase urinary and fecal arsenic excretion. • High selenium lentil diets decrease arsenic levels in kidney, the storage organ. • High selenium lentil diets reverse arsenic suppression of the B cell response.« less

  18. Chronic arsenic exposure increases TGFalpha concentration in bladder urothelial cells of Mexican populations environmentally exposed to inorganic arsenic☆

    PubMed Central

    Valenzuela, Olga L.; Germolec, Dori R.; Borja-Aburto, Víctor H.; Contreras-Ruiz, José; García-Vargas, Gonzalo G.; Del Razo, Luz M.

    2009-01-01

    Inorganic arsenic (iAs) is a well-established carcinogen and human exposure has been associated with a variety of cancers including those of skin, lung, and bladder. High expression of transforming growth factor alpha (TGF-α) has associated with local relapses in early stages of urinary bladder cancer. iAs exposures are at least in part determined by the rate of formation and composition of iAs metabolites (MAsIII, MAsV, DMAsIII, DMAsV). This study examines the relationship between TGF-α concentration in exfoliated bladder urothelial cells (BUC) separated from urine and urinary arsenic species in 72 resident women (18-51 years old) from areas exposed to different concentrations of iAs in drinking water (2-378 ppb) in central Mexico. Urinary arsenic species, including trivalent methylated metabolites were measured by hydride generation atomic absorption spectrometry method. The concentration of TGF-α in BUC was measured using an ELISA assay. Results show a statistically significant positive correlation between TGF-α concentration in BUC and each of the six arsenic species present in urine. The multivariate linear regression analyses show that the increment of TGF-α levels in BUC was importantly associated with the presence of arsenic species after adjusting by age, and presence of urinary infection. People from areas with high arsenic exposure had a significantly higher TGF-α concentration in BUC than people from areas of low arsenic exposure (128.8 vs. 64.4 pg/mg protein; p<0.05). Notably, exfoliated cells isolated from individuals with skin lesions contained significantly greater amount of TGF-α than cells from individuals without skin lesions: 157.7 vs. 64.9 pg/mg protein (p=0.003). These results suggest that TGF-α in exfoliated BUC may serve as a susceptibility marker of adverse health effects on epithelial tissue in arsenic-endemic areas. PMID:17267001

  19. Dose-dependent urinary phenotype of inorganic arsenic methylation in mice with a focus on trivalent methylated metabolites.

    PubMed

    García-Montalvo, Eliud A; Valenzuela, Olga L; Sánchez-Peña, Luz C; Albores, Arnulfo; Del Razo, Luz M

    2011-11-01

    Inorganic arsenic (iAs) exposure has been associated with the increased risk of various forms of cancer and of non-cancerous diseases. Metabolic conversions of iAs that yield highly toxic and genotoxic methylarsonite (MAsIII) and dimethylarsinite (DMAsIII) may play a significant role in determining the extent and character of toxic and cancer-promoting effects of iAs exposure. However, in vivo research involving the production of MAsIII and DMAsIII remains an area of ongoing investigation and debate. The results of metabolic and toxicity studies using mice have been entirely applicable to other species including humans. The goal of this study was to investigate the phenotype for the trivalent and pentavalent arsenic metabolites in relation to arsenite dose via immediate analysis of fresh urine samples, while preventing the oxidation of unstable methylated AsIII-containing metabolites. Female mice (C57BL/6) received sodium arsenite by gavage at doses of 0, 3, 6 or 10 mg As/kg/day for 9 days, after which trivalent methylated arsenicals were detected in 100% of urine samples; these arsenicals were not detected in the urine of control mice. The amount of DMAsIII detected in urine depended on the dose of arsenite administered and was determined to be 50.2%, 31.4% and 16.5% of the total urinary arsenic in mice exposed to 3, 6, or 10 mg/kg/day, respectively. This relationship is consistent with the hypothesis of inhibition or saturation of iAs methylation. Understanding the in vivo production of MAsIII and DMAsIII in mice exposed to iAs could aid in developing a biologically based dose-response model for iAs.

  20. Measurements of Arsenic in the Urine and Nails of Individuals Exposed to Low Concentrations of Arsenic in Drinking Water From Private Wells in a Rural Region of Québec, Canada.

    PubMed

    Gagnon, Fabien; Lampron-Goulet, Eric; Normandin, Louise; Langlois, Marie-France

    2016-01-01

    Chronic exposure to inorganic arsenic leads to an increased risk of cancer. A biological measurement was conducted in 153 private well owners and their families consuming water contaminated by inorganic arsenic at concentrations that straddle 10 μg/L. The relationship between the external dose indicators (concentration of inorganic arsenic in wells and daily well water inorganic arsenic intake) and the internal doses (urinary arsenic--sum of As(III), DMA, and MMA, adjusted for creatinine--and total arsenic in toenails) was evaluated using multiple linear regressions, controlling for age, gender, dietary sources of arsenic, and number of cigarettes smoked. It showed that urinary arsenic was associated with concentration of inorganic arsenic in wells (p < .001) and daily well water inorganic arsenic intake (p < .001) in adults, and with daily well water inorganic arsenic intake (p = .017) and rice consumption (p = .022) in children (n = 43). The authors' study reinforces the drinking-water quality guidelines for inorganic arsenic.

  1. Differences in Urinary Arsenic Metabolites between Diabetic and Non-Diabetic Subjects in Bangladesh

    PubMed Central

    Nizam, Saika; Kato, Masashi; Yatsuya, Hiroshi; Khalequzzaman, Md.; Ohnuma, Shoko; Naito, Hisao; Nakajima, Tamie

    2013-01-01

    Ingestion of inorganic arsenic (iAs) is considered to be related to the development of diabetes mellitus. In order to clarify the possible differences in the metabolism in diabetics, we measured urinary iAs metabolites in diabetic cases and non-diabetic control subjects in Faridpur, an arsenic-contaminated area in Bangladesh. Physician-diagnosed type 2 diabetic cases (140 persons) and non-diabetic controls (180 persons) were recruited. Drinking water and spot urine samples were collected. Mean concentrations of total arsenic in drinking water did not differ between cases (85.1 μg/L) and controls (85.8 μg/L). The percentage of urinary iAs (iAs%) was significantly lower in cases (8.6%) than in controls (10.4%), while that of dimethylarsinic acid (DMA%) was higher in cases (82.6%) than in controls (79.9%). This may have been due to the higher secondary methylation index (SMI) in the former (11.6) rather than the latter (10.0). Adjusting for matching factors (sex and unions), and the additional other covariates (age and water arsenic) significantly attenuated the differences in iAs%, SMI, and DMA%, respectively, though the difference in monomethylarsonic acid% was newly significant in the latter adjustment. Our study did not suggest any significant differences in urinary arsenic metabolites between diabetic and non-diabetic subjects. PMID:23481591

  2. A review on environmental factors regulating arsenic methylation in humans.

    PubMed

    Tseng, Chin-Hsiao

    2009-03-15

    Subjects exposed to arsenic show significant inter-individual variation in urinary patterns of arsenic metabolites but insignificant day-to-day intra-individual variation. The inter-individual variation in arsenic methylation can be partly responsible for the variation in susceptibility to arsenic toxicity. Wide inter-ethnic variation and family correlation in urinary arsenic profile suggest a genetic effect on arsenic metabolism. In this paper the environmental factors affecting arsenic metabolism are reviewed. Methylation capacity might reduce with increasing dosage of arsenic exposure. Furthermore, women, especially at pregnancy, have better methylation capacity than their men counterparts, probably due to the effect of estrogen. Children might have better methylation capacity than adults and age shows inconsistent relevance in adults. Smoking and alcohol consumption might be associated with a poorer methylation capacity. Nutritional status is important in the methylation capacity and folate may facilitate the methylation and excretion of arsenic. Besides, general health conditions and medications might influence the arsenic methylation capacity; and technical problems can cause biased estimates. The consumption of seafood, seaweed, rice and other food with high arsenic contents and the extent of cooking and arsenic-containing water used in food preparation may also interfere with the presentation of the urinary arsenic profile. Future studies are necessary to clarify the effects of the various arsenic metabolites including the trivalent methylated forms on the development of arsenic-induced human diseases with the consideration of the effects of confounding factors and the interactions with other effect modifiers.

  3. Arsenic Exposure and Impaired Lung Function. Findings from a Large Population-based Prospective Cohort Study

    PubMed Central

    Parvez, Faruque; Chen, Yu; Yunus, Mahbub; Olopade, Christopher; Segers, Stephanie; Slavkovich, Vesna; Argos, Maria; Hasan, Rabiul; Ahmed, Alauddin; Islam, Tariqul; Akter, Mahmud M.; Graziano, Joseph H.

    2013-01-01

    Rationale: Exposure to arsenic through drinking water has been linked to respiratory symptoms, obstructive lung diseases, and mortality from respiratory diseases. Limited evidence for the deleterious effects on lung function exists among individuals exposed to a high dose of arsenic. Objectives: To determine the deleterious effects on lung function that exist among individuals exposed to a high dose of arsenic. Methods: In 950 individuals who presented with any respiratory symptom among a population-based cohort of 20,033 adults, we evaluated the association between arsenic exposure, measured by well water and urinary arsenic concentrations measured at baseline, and post-bronchodilator–administered pulmonary function assessed during follow-up. Measurements and Main Results: For every one SD increase in baseline water arsenic exposure, we observed a lower level of FEV1 (−46.5 ml; P < 0.0005) and FVC (−53.1 ml; P < 0.01) in regression models adjusted for age, sex, body mass index, smoking, socioeconomic status, betel nut use, and arsenical skin lesions status. Similar inverse relationships were observed between baseline urinary arsenic and FEV1 (−48.3 ml; P < 0.005) and FVC (−55.2 ml; P < 0.01) in adjusted models. Our analyses also demonstrated a dose-related decrease in lung function with increasing levels of baseline water and urinary arsenic. This association remained significant in never-smokers and individuals without skin lesions, and was stronger in male smokers. Among male smokers and individuals with skin lesions, every one SD increase in water arsenic was related to a significant reduction of FEV1 (−74.4 ml, P < 0.01; and −116.1 ml, P < 0.05) and FVC (−72.8 ml, P = 0.02; and −146.9 ml, P = 0.004), respectively. Conclusions: This large population-based study confirms that arsenic exposure is associated with impaired lung function and the deleterious effect is evident at low- to moderate-dose range. PMID:23848239

  4. METABOLSM OF PENTAVALENT AND TRIVALENT DIMETHYLARSENIC ARSENIC IN THE MOUSE

    EPA Science Inventory

    Dimethylarsinic acid (DMA(V)) is a rat bladder carcinogen after chronic exposure in either drinking water or the diet. DMA(V) is also a major urinary metabolite of mammals exposed to inorganic arsenic. In mice, iv and po administration of [14C]-DMA(V) results in rapi...

  5. Maternal arsenic exposure, arsenic methylation efficiency, and birth outcomes in the Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort in Mexico.

    PubMed

    Laine, Jessica E; Bailey, Kathryn A; Rubio-Andrade, Marisela; Olshan, Andrew F; Smeester, Lisa; Drobná, Zuzana; Herring, Amy H; Stýblo, Miroslav; García-Vargas, Gonzalo G; Fry, Rebecca C

    2015-02-01

    Exposure to inorganic arsenic (iAs) from drinking water is a global public health problem, yet much remains unknown about the extent of exposure in susceptible populations. We aimed to establish the Biomarkers of Exposure to ARsenic (BEAR) prospective pregnancy cohort in Gómez Palacio, Mexico, to better understand the effects of iAs exposure on pregnant women and their children. Two hundred pregnant women were recruited for this study. Concentrations of iAs in drinking water (DW-iAs) and maternal urinary concentrations of iAs and its monomethylated and dimethylated metabolites (MMAs and DMAs, respectively) were determined. Birth outcomes were analyzed for their relationship to DW-iAs and to the concentrations and proportions of maternal urinary arsenicals. DW-iAs for the study subjects ranged from < 0.5 to 236 μg As/L. More than half of the women (53%) had DW-iAs that exceeded the World Health Organization's recommended guideline of 10 μg As/L. DW-iAs was significantly associated with the sum of the urinary arsenicals (U-tAs). Maternal urinary concentrations of MMAs were negatively associated with newborn birth weight and gestational age. Maternal urinary concentrations of iAs were associated with lower mean gestational age and newborn length. Biomonitoring results demonstrate that pregnant women in Gómez Palacio are exposed to potentially harmful levels of DW-iAs. The data support a relationship between iAs metabolism in pregnant women and adverse birth outcomes. The results underscore the risks associated with iAs exposure in vulnerable populations.

  6. Characterization of intracellular inclusions in the urothelium of mice exposed to inorganic arsenic.

    PubMed

    Dodmane, Puttappa R; Arnold, Lora L; Muirhead, David E; Suzuki, Shugo; Yokohira, Masanao; Pennington, Karen L; Dave, Bhavana J; Lu, Xiufen; Le, X Chris; Cohen, Samuel M

    2014-01-01

    Inorganic arsenic (iAs) is a known human carcinogen at high exposures, increasing the incidences of urinary bladder, skin, and lung cancers. In most mammalian species, ingested iAs is excreted mainly through urine primarily as dimethylarsinic acid (DMA(V)). In wild-type (WT) mice, iAs, DMA(V), and dimethylarsinous acid (DMA(III)) exposures induce formation of intramitochondrial urothelial inclusions. Arsenite (iAs(III)) also induced intranuclear inclusions in arsenic (+3 oxidation state) methyltransferase knockout (As3mt KO) mice. The arsenic-induced formation of inclusions in the mouse urothelium was dose and time dependent. The inclusions do not occur in iAs-treated rats and do not appear to be related to arsenic-induced urothelial cytotoxicity. Similar inclusions in exfoliated urothelial cells from humans exposed to iAs have been incorrectly identified as micronuclei. We have characterized the urothelial inclusions using transmission electron microscopy (TEM), DNA-specific 4',6-diamidino-2-phenylindole (DAPI), and non-DNA-specific Giemsa staining and determined the arsenical content. The mouse inclusions stained with Giemsa but not with the DAPI stain. Analysis of urothelial mitochondrial- and nuclear-enriched fractions isolated from WT (C57BL/6) and As3mt KO mice exposed to arsenate (iAs(V)) for 4 weeks showed higher levels of iAs(V) in the treated groups. iAs(III) was the major arsenical present in the enriched nuclear fraction from iAs(V)-treated As3mt KO mice. In conclusion, the urothelial cell inclusions induced by arsenicals appear to serve as a detoxifying sequestration mechanism similar to other metals, and they do not represent micronuclei.

  7. Investigation of Health Effects According to the Exposure of Low Concentration Arsenic Contaminated Ground Water

    PubMed Central

    Hong, Young-seoub; Ye, Byeong-jin; Kim, Yu-mi; Kim, Byoung-gwon; Kang, Gyeong-hui; Kim, Jeong-jin; Song, Ki-hoon; Kim, Young-hun

    2017-01-01

    Recent epidemiological studies have reported adverse health effects, including skin cancer, due to low concentrations of arsenic via drinking water. We conducted a study to assess whether low arsenic contaminated ground water affected health of the residents who consumed it. For precise biomonitoring results, the inorganic (trivalent arsenite (As III) and pentavalent arsenate (As V)) and organic forms (monomethylarsonate (MMA) and dimethylarsinate (DMA)) of arsenic were separately quantified by combining high-performance liquid chromatography and inductively coupled plasma mass spectroscopy from urine samples. In conclusion, urinary As III, As V, MMA, and hair arsenic concentrations were significantly higher in residents who consumed arsenic contaminated ground water than control participants who consumed tap water. But, most health screening results did not show a statistically significant difference between exposed and control subjects. We presume that the elevated arsenic concentrations may not be sufficient to cause detectable health effects. Consumption of arsenic contaminated ground water could result in elevated urinary organic and inorganic arsenic concentrations. We recommend immediate discontinuation of ground water supply in this area for the safety of the residents. PMID:29186890

  8. Health Risk Assessment and Urinary Excretion of Children Exposed to Arsenic through Drinking Water and Soils in Sonora, Mexico.

    PubMed

    García-Rico, Leticia; Meza-Figueroa, Diana; Jay Gandolfi, A; Del Rivero, Carlos Ibañez; Martínez-Cinco, Marco A; Meza-Montenegro, Maria M

    2018-05-02

    Environmental arsenic exposure is associated with increased risk of non-cancerous chronic diseases and a variety of cancers in humans. The aims of this study were to carry out for the first time a health risk assessment for two common arsenic exposure routes (drinking water and soil ingestion) in children living in the most important agricultural areas in the Yaqui and Mayo valleys in Sonora, Mexico. Drinking water sampling was conducted in the wells of 57 towns. A cross-sectional study was done in 306 children from 13 villages in the valleys. First morning void urine samples were analyzed for inorganic arsenic (InAs) and monomethyl and dimethyl arsenic (MMA and DMA) by HPLC/ICP-MS. The results showed a wide range of arsenic levels in drinking water between 2.7 and 98.7 μg As/L. Arsenic levels in agricultural and backyard soils were in the range of < 10-27 mg As/kg. The hazard index (HI) = ∑hazard quotient (HQ) for drinking water, agricultural soil, and backyard soil showed values > 1 in 100% of the study towns, and the carcinogenic risk (CR) was greater than 1E-04 in 85%. The average of arsenic excreted in urine was 31.7 μg As/L, and DMA had the highest proportion in urine, with averages of 77.8%, followed by InAs and MMA with 11.4 and 10.9%, respectively, percentages similar to those reported in the literature. Additionally, positive correlations between urinary arsenic levels and HI values were found (r = 0.59, P = 0.000). These results indicated that this population is at high risk of developing chronic diseases including cancer.

  9. Lung inflammation biomarkers and lung function in children chronically exposed to arsenic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olivas-Calderón, Edgar, E-mail: edgar_olivascalderon@hotmail.com; School of Medicine, University Juarez of Durango, Gomez Palacio, Durango; Recio-Vega, Rogelio, E-mail: rrecio@yahoo.com

    Evidence suggests that exposure to arsenic in drinking water during early childhood or in utero has been associated with an increase in respiratory symptoms or diseases in the adulthood, however only a few studies have been carried out during those sensitive windows of exposure. Recently our group demonstrated that the exposure to arsenic during early childhood or in utero in children was associated with impairment in the lung function and suggested that this adverse effect could be due to a chronic inflammation response to the metalloid. Therefore, we designed this cross-sectional study in a cohort of children associating lung inflammatorymore » biomarkers and lung function with urinary As levels. A total of 275 healthy children were partitioned into four study groups according with their arsenic urinary levels. Inflammation biomarkers were measured in sputum by ELISA and the lung function was evaluated by spirometry. Fifty eight percent of the studied children were found to have a restrictive spirometric pattern. In the two highest exposed groups, the soluble receptor for advanced glycation end products' (sRAGE) sputum level was significantly lower and matrix metalloproteinase-9 (MMP-9) concentration was higher. When the biomarkers were correlated to the urinary arsenic species, negative associations were found between dimethylarsinic (DMA), monomethylarsonic percentage (%MMA) and dimethylarsinic percentage (%DMA) with sRAGE and positive associations between %DMA with MMP-9 and with the MMP-9/tissue inhibitor of metalloproteinase (TIMP-1) ratio. In conclusion, chronic arsenic exposure of children negatively correlates with sRAGE, and positively correlated with MMP-9 and MMP-9/TIMP-1 levels, and increases the frequency of an abnormal spirometric pattern. Arsenic-induced alterations in inflammatory biomarkers may contribute to the development of restrictive lung diseases. - Highlights: • First study in children evaluating lung inflammatory biomarkers and As levels • In 275 children chronically exposed to As, 3 biomarkers were measured. • Negative associations were found between DMA, %MMA and %DMA with sRAGE. • Positive associations were found between %DMA with MMP-9 and with the MMP-9/TIMP-1 ratio. • Chronic arsenic exposure-induced alterations in lung inflammatory biomarkers in children.« less

  10. Nutritional Status among the Children of Age Group 5-14 Years in Selected Arsenic Exposed and Non-Exposed Areas of Bangladesh.

    PubMed

    Rezaul Karim, Mohammad; Ahmad, Sk Akhtar

    2014-12-01

    To assess and compare the nutritional status of children aged 5-14 years in arsenic exposed and non- exposed areas. It was a cross sectional study conducted on 600 children of age 5-14 years from arsenic exposed and non-exposed areas in Bangladesh. Designed questionnaire and check list were used for collection of data. To estimate BMI necessary anthropometric measurements of the studied children were done. Dietary intakes of the study children were assessed using 24-hours recall method. The difference of socio-economic conditions between the children of exposed area and non-exposed area was not significant. On an average the body mass index was found to be significantly (p < 0.01) lower among the children of arsenic exposed area (49%) in comparison to that of children in non-exposed area (38%). Stunting (p < 0.01), wasting (p < 0.05) and underweight (p < 0.05) were significantly higher in exposed group in comparison to non-exposed group. No significant difference of nutrition intake was found between exposed and non-exposed children as well as thin and normal children. In this study children exposed to arsenic contaminated water were found to be suffered from lower nutritional status.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Jun; Wanibuchi, Hideki; Waalkes, Michael P.

    Epidemiological studies indicated that human arsenic exposure can induce urinary bladder cancer. Methylation of inorganic arsenic can generate more reactive and toxic organic arsenical species. In this regard, it was recently reported that the methylated arsenical metabolite, dimethylarsinic acid [DMA(V)], induced urinary bladder tumors in rats. However, other methylated metabolites, like monomethylarsonic acid [MMA(V)] and trimethylarsine oxide (TMAO) were not carcinogenic to the urinary bladder. In order to compare the early effects of DMA(V), MMA(V), and TMAO on the urinary bladder transitional cell epithelium at the scanning electron microscope (SEM) level, we investigated the sub-chronic (13 weeks) toxicological effects ofmore » MMA(V) (187 ppm), DMA(V) (184 ppm), TMAO (182 ppm) given in the drinking water to male and female F344 rats with a focus on the urinary bladder in this study. Obvious pathological changes, including ropy microridges, pitting, increased separation of epithelial cells, exfoliation, and necrosis, were found in the urinary bladders of both sexes, but particularly in females receiving carcinogenic doses of DMA(V). Urine arsenical metabolic differences were found between males and females, with levels of MMA(III), a potential genotoxic form, higher in females treated with DMA(V) than in males. Thus, this study provides clear evidence that DMA(V) is more toxic to the female urinary bladder, in accord with sensitivity to carcinogenesis. Important gender-related metabolic differences including enhanced presentation of MMA(III) to the urothelial cells might possibly account for heightened sensitivity in females. However, the potential carcinogenic effects of MMA(III) need to be further elucidated.« less

  12. Urinary arsenic levels influenced by abandoned mine tailings in the Southernmost Baja California Peninsula, Mexico.

    PubMed

    Colín-Torres, Carlos G; Murillo-Jiménez, Janette M; Del Razo, Luz M; Sánchez-Peña, Luz C; Becerra-Rueda, Oscar F; Marmolejo-Rodríguez, Ana J

    2014-10-01

    Gold has been mined at San Antonio-El Triunfo, (Baja California Sur, Mexico) since the 18th century. This area has approximately 5,700 inhabitants living in the San Juan de Los Planes and El Carrizal hydrographic basins, close to more than 100 abandoned mining sites containing tailings contaminated with potentially toxic elements such as arsenic. To evaluate the arsenic exposure of humans living in the surrounding areas, urinary arsenic species, such as inorganic arsenic (iAs) and the metabolites mono-methylated (MMA) and di-methylated arsenic acids (DMA), were evaluated in 275 residents (18-84 years of age). Arsenic species in urine were analyzed by hydride generation-cryotrapping-atomic absorption spectrometry, which excludes the non-toxic forms of arsenic such as those found in seafood. Urinary samples contained a total arsenic concentration (sum of arsenical species) which ranged from 1.3 to 398.7 ng mL(-1), indicating 33% of the inhabitants exceeded the biological exposition index (BEI = 35 ng mL(-1)), the permissible limit for occupational exposure. The mean relative urinary arsenic species were 9, 11 and 80% for iAs, MMA and DMA, respectively, in the Los Planes basin, and 17, 10 and 73%, respectively, in the El Carrizal basin. These data indicated that environmental intervention is required to address potential health issues in this area.

  13. Association between maternal urinary arsenic species and infant cord blood leptin levels in a New Hampshire Pregnancy Cohort.

    PubMed

    Gossai, Anala; Lesseur, Corina; Farzan, Shohreh; Marsit, Carmen; Karagas, Margaret R; Gilbert-Diamond, Diane

    2015-01-01

    Leptin is an important pleiotropic hormone involved in the regulation of nutrient intake and energy expenditure, and is known to influence body weight in infants and adults. High maternal levels of arsenic have been associated with reduced infant birth weight, but the mechanism of action is not yet understood. This study aimed to investigate the association between in utero arsenic exposure and infant cord blood leptin concentrations within 156 mother-infant pairs from the New Hampshire Birth Cohort Study (NHBCS) who were exposed to low to moderate levels of arsenic through well water and diet. In utero arsenic exposure was obtained from maternal second trimester urinary arsenic concentration, and plasma leptin levels were assessed through immunoassay. Results indicate that urinary arsenic species concentrations were predictive of infant cord blood leptin levels following adjustment for creatinine, infant birth weight for gestational age percentile, infant sex, maternal pregnancy-related weight gain, and maternal education level amongst 149 white mother-infant pairs in multivariate linear regression models. A doubling or 100% increase in total urinary arsenic concentration (iAs+MMA+DMA) was associated with a 10.3% (95% CI: 0.8-20.7%) increase in cord blood leptin levels. A 100% increase in either monomethylarsonic acid (MMA) or dimethylarsinic acid (DMA) was also associated with an 8.3% (95% CI: -1.0-18.6%) and 10.3% (95% CI: 1.2-20.2%) increase in cord blood leptin levels, respectively. The association between inorganic arsenic (iAs) and cord blood leptin was of similar magnitude and direction as other arsenic species (a 100% increase in iAs was associated with a 6.5% (95% CI: -3.4-17.5%) increase in cord blood leptin levels), albeit not significant. These results suggest in utero exposure to low levels of arsenic influences cord blood leptin concentration and presents a potential mechanism by which arsenic may impact early childhood growth. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. THE URINARY BLADDER EXHIBITS A U-SHAPED GENOMIC DOSE-RESPONSE FOLLOWING SHORT- AND LONG-TERM EXPOSURE OF MICE TO ARSENATE IN DRINKING WATER

    EPA Science Inventory

    A number of studies have demonstrated increased urinary bladder tumor incidence in populations exposed to inorganic arsenic in drinking water at concentrations on the order of several hundred micrograms per liter, but experimental animal studies at much higher concentrations have...

  15. Micronucleus frequency in copper-mine workers exposed to arsenic is modulated by the AS3MT Met287Thr polymorphism.

    PubMed

    Hernández, Alba; Paiva, Leiliane; Creus, Amadeu; Quinteros, Domingo; Marcos, Ricard

    2014-01-01

    Arsenic(III)methyltransferase (AS3MT) has been demonstrated to be the key enzyme in the metabolism of arsenic as it catalyses the methylation of arsenite and monomethylarsonic acid (MMA) to form methylated arsenic species, which have higher toxic and genotoxic potential than the parent compounds. The aim of this study is to evaluate if genetic variation in the AS3MT gene influences arsenic-induced cytogenetic damage, measured by the micronucleus (MN) assay. AS3MT Met287Thr allele frequencies and MN values were determined for 207 subjects working in the copper-mine industry, who were exposed to variable levels of arsenic. The urinary arsenic profile was used as individual biomarker of arsenic exposure. Results indicate that the MN frequencies found in peripheral blood lymphocytes of the exposed population poorly correlate with the levels of total arsenic content in urine. Nevertheless, when workers were classified according to their AS3MT Met287Thr genotypes, significantly higher MN values were observed for those carrying the variant allele [odds ratio (OR), 3.4 (1.6-5.2); P=0.0003)]. To our knowledge, these results are the first to show that genetic variation in AS3MT, especially the Met287Thr polymorphism, may play a role in modulating the levels of arsenic-induced cytogenetic damage among individuals chronically exposed to arsenic. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. The possible role of direct ingestion on the overall absorption of cadmium or arsenic in workers exposed to CdO or As2O3 dust.

    PubMed

    Roels, H; Buchet, J P; Truc, J; Croquet, F; Lauwerys, R

    1982-01-01

    Six volunteers (two office and four cadmium (Cd)-exposed workers, all nonsmokers) from an electric condenser factory participated in a study involving the measurement of cadmium in air and in dust, the evaluation of hand and mouth contamination by cadmium, and the determination of fecal cadmium. The mean levels of total airborne cadmium measured with static and personal samplers were for the exposed workers 9.5 and 16.7 microgram/m3, respectively, and for the office workers 0.3 and 0.5 microgram/m3, respectively. In the office workers, hand contamination by Cd hardly changes over the workday (less than 10 microgram/hand), whereas in the exposed workers important hand contamination by Cd was observed (up to 1,200 microgram/hand during the workday and up to 300 microgram/hand before lunch or before leaving the factory). Mouth contamination by Cd is rather similar in both groups on Monday morning, but increases 20- to 50-fold on Friday afternoon in the Cd workers against a slight increase for the office workers. The concentration of Cd in the feces was not much different between Sunday and Friday in the office workers, whereas in the exposed workers it was higher on Friday than on Sunday. There is suggestive evidence from a comparative study of fecal cadmium in two Cd-exposed volunteers who carried out their jobs with and without gloves that direct cadmium intake from hand contamination may contribute to the overall Cd absorption. A limited study in a glassware factory (As2O3 exposure) involving the measurement of total airborne arsenic, the determination of urinary arsenic, and the evaluation of hand and mouth contamination by arsenic before and after the workshift suggests that the high urinary arsenic levels (300 microgram/g creatinine) are likely to be more related to an increased oral intake from contaminated hands than to an increased absorption from the lungs.

  17. Binational arsenic exposure survey: methodology and estimated arsenic intake from drinking water and urinary arsenic concentrations.

    PubMed

    Roberge, Jason; O'Rourke, Mary Kay; Meza-Montenegro, Maria Mercedes; Gutiérrez-Millán, Luis Enrique; Burgess, Jefferey L; Harris, Robin B

    2012-04-01

    The Binational Arsenic Exposure Survey (BAsES) was designed to evaluate probable arsenic exposures in selected areas of southern Arizona and northern Mexico, two regions with known elevated levels of arsenic in groundwater reserves. This paper describes the methodology of BAsES and the relationship between estimated arsenic intake from beverages and arsenic output in urine. Households from eight communities were selected for their varying groundwater arsenic concentrations in Arizona, USA and Sonora, Mexico. Adults responded to questionnaires and provided dietary information. A first morning urine void and water from all household drinking sources were collected. Associations between urinary arsenic concentration (total, organic, inorganic) and estimated level of arsenic consumed from water and other beverages were evaluated through crude associations and by random effects models. Median estimated total arsenic intake from beverages among participants from Arizona communities ranged from 1.7 to 14.1 µg/day compared to 0.6 to 3.4 µg/day among those from Mexico communities. In contrast, median urinary inorganic arsenic concentrations were greatest among participants from Hermosillo, Mexico (6.2 µg/L) whereas a high of 2.0 µg/L was found among participants from Ajo, Arizona. Estimated arsenic intake from drinking water was associated with urinary total arsenic concentration (p < 0.001), urinary inorganic arsenic concentration (p < 0.001), and urinary sum of species (p < 0.001). Urinary arsenic concentrations increased between 7% and 12% for each one percent increase in arsenic consumed from drinking water. Variability in arsenic intake from beverages and urinary arsenic output yielded counter intuitive results. Estimated intake of arsenic from all beverages was greatest among Arizonans yet participants in Mexico had higher urinary total and inorganic arsenic concentrations. Other contributors to urinary arsenic concentrations should be evaluated.

  18. Binational Arsenic Exposure Survey: Methodology and Estimated Arsenic Intake from Drinking Water and Urinary Arsenic Concentrations

    PubMed Central

    Roberge, Jason; O’Rourke, Mary Kay; Meza-Montenegro, Maria Mercedes; Gutiérrez-Millán, Luis Enrique; Burgess, Jefferey L.; Harris, Robin B.

    2012-01-01

    The Binational Arsenic Exposure Survey (BAsES) was designed to evaluate probable arsenic exposures in selected areas of southern Arizona and northern Mexico, two regions with known elevated levels of arsenic in groundwater reserves. This paper describes the methodology of BAsES and the relationship between estimated arsenic intake from beverages and arsenic output in urine. Households from eight communities were selected for their varying groundwater arsenic concentrations in Arizona, USA and Sonora, Mexico. Adults responded to questionnaires and provided dietary information. A first morning urine void and water from all household drinking sources were collected. Associations between urinary arsenic concentration (total, organic, inorganic) and estimated level of arsenic consumed from water and other beverages were evaluated through crude associations and by random effects models. Median estimated total arsenic intake from beverages among participants from Arizona communities ranged from 1.7 to 14.1 µg/day compared to 0.6 to 3.4 µg/day among those from Mexico communities. In contrast, median urinary inorganic arsenic concentrations were greatest among participants from Hermosillo, Mexico (6.2 µg/L) whereas a high of 2.0 µg/L was found among participants from Ajo, Arizona. Estimated arsenic intake from drinking water was associated with urinary total arsenic concentration (p < 0.001), urinary inorganic arsenic concentration (p < 0.001), and urinary sum of species (p < 0.001). Urinary arsenic concentrations increased between 7% and 12% for each one percent increase in arsenic consumed from drinking water. Variability in arsenic intake from beverages and urinary arsenic output yielded counter intuitive results. Estimated intake of arsenic from all beverages was greatest among Arizonans yet participants in Mexico had higher urinary total and inorganic arsenic concentrations. Other contributors to urinary arsenic concentrations should be evaluated. PMID:22690182

  19. Environmental exposure to arsenic, AS3MT polymorphism and prevalence of diabetes in Mexico

    PubMed Central

    Drobná, Zuzana; Del Razo, Luz M.; García-Vargas, Gonzalo G.; Sánchez-Peña, Luz C.; Barrera-Hernández, Angel; Stýblo, Miroslav; Loomis, Dana

    2014-01-01

    Exposure to arsenic in drinking water is associated with increased prevalence of diabetes. We previously reported an association of diabetes and urinary concentration of dimethylarsinite (DMAsIII), a toxic product of arsenic methylation by arsenic ( +3 oxidation state) methyltransferase (AS3MT). Here we examine associations between AS3MT polymorphism, arsenic metabolism and diabetes. Fasting blood glucose, oral glucose tolerance and self-reported diagnoses were used to identify diabetic individuals. Inorganic arsenic and its metabolites were measured in urine. Genotyping analysis focused on six polymorphic sites of AS3MT. Individuals with M287T and G4965C polymorphisms had higher levels of urinary DMAsIII and were more frequently diabetic than the respective wild-type carriers, although the excess was not statistically significant. Odds ratios were 11.4 (95% confidence interval (CI) 2.2–58.8) and 8.8 (95% CI 1.6–47.3) for the combined effects of arsenic exposure >75th percentile and 287T and 4965C genotypes, respectively. Carriers of 287T and 4965C may produce more DMAsIII and be more likely to develop diabetes when exposed to arsenic. PMID:23093101

  20. Maternal Arsenic Exposure, Arsenic Methylation Efficiency, and Birth Outcomes in the Biomarkers of Exposure to ARsenic (BEAR) Pregnancy Cohort in Mexico

    PubMed Central

    Laine, Jessica E.; Bailey, Kathryn A.; Rubio-Andrade, Marisela; Olshan, Andrew F.; Smeester, Lisa; Drobná, Zuzana; Herring, Amy H.; Stýblo, Miroslav; García-Vargas, Gonzalo G.

    2014-01-01

    Background: Exposure to inorganic arsenic (iAs) from drinking water is a global public health problem, yet much remains unknown about the extent of exposure in susceptible populations. Objectives: We aimed to establish the Biomarkers of Exposure to ARsenic (BEAR) prospective pregnancy cohort in Gómez Palacio, Mexico, to better understand the effects of iAs exposure on pregnant women and their children. Methods: Two hundred pregnant women were recruited for this study. Concentrations of iAs in drinking water (DW-iAs) and maternal urinary concentrations of iAs and its monomethylated and dimethylated metabolites (MMAs and DMAs, respectively) were determined. Birth outcomes were analyzed for their relationship to DW-iAs and to the concentrations and proportions of maternal urinary arsenicals. Results: DW-iAs for the study subjects ranged from < 0.5 to 236 μg As/L. More than half of the women (53%) had DW-iAs that exceeded the World Health Organization’s recommended guideline of 10 μg As/L. DW-iAs was significantly associated with the sum of the urinary arsenicals (U-tAs). Maternal urinary concentrations of MMAs were negatively associated with newborn birth weight and gestational age. Maternal urinary concentrations of iAs were associated with lower mean gestational age and newborn length. Conclusions: Biomonitoring results demonstrate that pregnant women in Gómez Palacio are exposed to potentially harmful levels of DW-iAs. The data support a relationship between iAs metabolism in pregnant women and adverse birth outcomes. The results underscore the risks associated with iAs exposure in vulnerable populations. Citation: Laine JE, Bailey KA, Rubio-Andrade M, Olshan AF, Smeester L, Drobná Z, Herring AH, Stýblo M, García-Vargas GG, Fry RC. 2015. Maternal arsenic exposure, arsenic methylation efficiency, and birth outcomes in the Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort in Mexico. Environ Health Perspect 123:186–192; http://dx.doi.org/10.1289/ehp.1307476 PMID:25325819

  1. INDUCTION OF URINARY BLADDER PATHOLOGY IN MALE AND FEMALE C3H MICE EXPOSED TO SODIUM ARSENITE FROM GESTATION THROUGH YOUNG ADULTHOOD

    EPA Science Inventory

    Epidemiology studies suggest that chronic exposure to inorganic arsenic is associated with cancer of the skin, urinary bladder and lung as well as the kidney and liver. Recently, an in utero animal model was developed to characterize the carcinogenic properties of inorganic arsen...

  2. Chronic early childhood exposure to arsenic is associated with a TNF-mediated proteomic signaling response.

    PubMed

    Smeester, Lisa; Bommarito, Paige A; Martin, Elizabeth M; Recio-Vega, Rogelio; Gonzalez-Cortes, Tania; Olivas-Calderon, Edgar; Lantz, R Clark; Fry, Rebecca C

    2017-06-01

    Exposure to inorganic arsenic (iAs) in drinking water is a global public health concern and is associated with a range of health outcomes, including immune dysfunction. Children are a particularly sensitive population to the effects of inorganic arsenic, yet the biological mechanisms underlying adverse health outcomes are understudied. Here we used a proteomic approach to examine the effects of iAs exposure on circulating serum protein levels in a cross-sectional children's cohort in Mexico. To identify iAs-associated proteins, levels of total urinary arsenic (U-tAs) and its metabolites were determined and serum proteins assessed for differences in expression. The results indicate an enrichment of Tumor Necrosis Factor-(TNF)-regulated immune and inflammatory response proteins that displayed decreased expression levels in relation to increasing U-tAs. Notably, when analyzed in the context of the proportions of urinary arsenic metabolites in children, the most robust response was observed in relation to the monomethylated arsenicals. This study is among the first serum proteomics assessment in children exposed to iAs. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Association Between Variants in Arsenic (+3 Oxidation State) Methyltranserase (AS3MT) and Urinary Metabolites of Inorganic Arsenic: Role of Exposure Level

    PubMed Central

    Xu, Xiaofan; Drobná, Zuzana; Voruganti, V. Saroja; Barron, Keri; González-Horta, Carmen; Sánchez-Ramírez, Blanca; Ballinas-Casarrubias, Lourdes; Cerón, Roberto Hernández; Morales, Damián Viniegra; Terrazas, Francisco A. Baeza; Ishida, María C.; Gutiérrez-Torres, Daniela S.; Saunders, R. Jesse; Crandell, Jamie; Fry, Rebecca C.; Loomis, Dana; García-Vargas, Gonzalo G.; Del Razo, Luz M.; Stýblo, Miroslav; Mendez, Michelle A.

    2016-01-01

    Abstract Variants in AS3MT, the gene encoding arsenic (+3 oxidation state) methyltranserase, have been shown to influence patterns of inorganic arsenic (iAs) metabolism. Several studies have suggested that capacity to metabolize iAs may vary depending on levels of iAs exposure. However, it is not known whether the influence of variants in AS3MT on iAs metabolism also vary by level of exposure. We investigated, in a population of Mexican adults exposed to drinking water As, whether associations between 7 candidate variants in AS3MT and urinary iAs metabolites were consistent with prior studies, and whether these associations varied depending on the level of exposure. Overall, associations between urinary iAs metabolites and AS3MT variants were consistent with the literature. Referent genotypes, defined as the genotype previously associated with a higher percentage of urinary dimethylated As (DMAs%), were associated with significant increases in the DMAs% and ratio of DMAs to monomethylated As (MAs), and significant reductions in MAs% and iAs%. For 3 variants, associations between genotypes and iAs metabolism were significantly stronger among subjects exposed to water As >50 versus ≤50 ppb (water As X genotype interaction P < .05). In contrast, for 1 variant (rs17881215), associations were significantly stronger at exposures ≤50 ppb. Results suggest that iAs exposure may influence the extent to which several AS3MT variants affect iAs metabolism. The variants most strongly associated with iAs metabolism—and perhaps with susceptibility to iAs-associated disease—may vary in settings with exposure level. PMID:27370415

  4. SNPs of GSTM1, T1, P1, epoxide hydrolase and DNA repair enzyme XRCC1 and risk of urinary transitional cell carcinoma in southwestern Taiwan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, L.-I; Chiu, Allen W.; Huan, Steven K.

    A hospital-based case-control study was conducted near a former black-foot disease (BFD)-endemic area in southwestern Taiwan to examine the possible risk factors and genetic susceptibility for urinary transitional cell carcinoma (TCC). A total of 221 patients with pathologically confirmed TCC and 223 age-sex-matched control subjects from urology outpatient clinics were recruited between 1998 and 2002. The results showed that residency in the BFD area and consumption of well water for more than 10 years was a strong factor on urinary cancer risk (odds ratio [OR],8.16, 95% confidence interval [CI],3.34-19.90, p < 0.0001). Dose response relationship between average arsenic concentration inmore » well water and TCC risk was also observed. Cigarette smoking played a relatively minor role in urinary carcinogenesis in this study. The GSTP1 Ile105Val A {yields} G polymorphism was significantly associated with cancer risk (A/G + G/G: OR = 0.60, 95%CI = 0.39-0.94, p = 0.02), and the effect of Val105 allele was largely confined to the subjects diagnosed earlier than 55 years old (A/G + G/G: OR,0.29; 95% CI, 0.09-0.87, p = 0.03). The results suggest that GSTP1 is a candidate for susceptibility locus and Ile105 allele may predispose individuals to early-onset urinary TCC. The GSTM1 null genotype was associated with tumors of high-invasiveness (OR,2.21; 95% CI, 1.34-4.73) as well as with early-onset TCC risk (OR,2.53; 95% CI, 0.97-6.59). Our preliminary results showed the XRCC1 Arg194Trp were associated with arsenic-related urinary TCC and the interaction between the genotype and the exposure was statistically significant. The modulating effect of the GSTM1, GSTT1, GSTP1 Ile105Val, EPHX Tyr113His and XRCC1 Arg280His on arsenic-related TCC risk was also suggestive. These observations implied that impaired metabolism of carcinogenic exposure as well as impaired DNA repair function play an important role in arsenic-related urinary transitional cell carcinogenesis.« less

  5. Urinary arsenic and porphyrin profile in C57BL/6J mice chronically exposed to monomethylarsonous acid (MMAIII) for two years.

    PubMed

    Krishnamohan, Manonmanii; Qi, Lixia; Lam, Paul K S; Moore, Michael R; Ng, Jack C

    2007-10-01

    Arsenicals are proven carcinogens in humans and it imposes significant health impacts on both humans and animals. Recently monomethylarsonous acid (MMA(III)), the toxic metabolite of arsenic has been identified in human urine and believed to be more acutely toxic than arsenite and arsenate. Arsenic also affects the activity of a number of haem biosynthesis enzymes. As a part of 2-year arsenic carcinogenicity study, young female C57BL/6J mice were given drinking water containing 0, 100, 250 and 500 microg/L arsenic as MMA(III)ad libitum. 24 h urine samples were collected at 0, 1, 2, 4, 8 weeks and every 8 weeks for up to 104 weeks. Urinary arsenic speciation and porphyrins were measured using HPLC-ICP-MS and HPLC with fluorescence detection respectively. DMA(V) was a major urinary metabolite detected. Significant dose-response relationship was observed between control and treatment groups after 1, 4, 24, 32, 48, 56, 88, 96 and 104 weeks. The level of uroporphyrin in 250 and 500 microg As/L group is significantly different from the control group after 4, 8, 16, 32, 56, 72, 80, 96 and 104 weeks. Coproporphyrin I level in 500 microAs/L group is significantly different from control group after 8, 24, 32, 40, 56, 72, 80, 88 and 104 weeks. After 4 weeks the level of coproporphyrin III concentration significantly increased in all the treatment groups compared to the control except week 16 and 48. Our results show urinary DMA(V) and porphyrin profile can be used as an early warning biomarker for chronic MMA(III) exposure before the onset of cancer.

  6. Specific histone modification responds to arsenic-induced oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Lu

    To explore whether specific histone modifications are associated with arsenic-induced oxidative damage, we recruited 138 arsenic-exposed and arsenicosis subjects from Jiaole Village, Xinren County of Guizhou province, China where the residents were exposed to arsenic from indoor coal burning. 77 villagers from Shang Batian Village that were not exposed to high arsenic coal served as the control group. The concentrations of urine and hair arsenic in the arsenic-exposure group were 2.4-fold and 2.1-fold (all P < 0.001) higher, respectively, than those of the control group. Global histone modifications in human peripheral lymphocytes (PBLCs) were examined by ELISA. The results showedmore » that altered global levels of H3K18ac, H3K9me2, and H3K36me3 correlated with both urinary and hair-arsenic levels of the subjects. Notably, H3K36me3 and H3K18ac modifications were associated with urinary 8-OHdG (H3K36me3: β = 0.16; P = 0.042, H3K18ac: β = − 0.24; P = 0.001). We also found that the modifications of H3K18ac and H3K36me3 were enriched in the promoters of oxidative stress response (OSR) genes in human embryonic kidney (HEK) cells and HaCaT cells, providing evidence that H3K18ac and H3K36me3 modifications mediate transcriptional regulation of OSR genes in response to NaAsO{sub 2} treatment. Particularly, we found that reduced H3K18ac modification correlated with suppressed expression of OSR genes in HEK cells with long term arsenic treatment and in PBLCs of all the subjects. Taken together, we reveal a critical role for specific histone modification in response to arsenic-induced oxidative damage. - Highlights: • H3K18ac, H3K9me2 and H3K36me3 were associated with arsenic exposed levels. • H3K18ac and H3K36me3 were correlated with oxidative damage induced by arsenic. • H3K18ac and H3K36me3 might involve in transcriptional regulation of OSR genes. • Dysregulation of H3K18ac and H3K36me3 might be biomarkers of arsenic toxicity.« less

  7. Arsenic Exposure From Drinking Water and the Incidence of CKD in Low to Moderate Exposed Areas of Taiwan: A 14-Year Prospective Study.

    PubMed

    Hsu, Ling-I; Hsieh, Fang-I; Wang, Yuan-Hung; Lai, Tai-Shuan; Wu, Meei-Maan; Chen, Chien-Jen; Chiou, Hung-Yi; Hsu, Kuang-Hung

    2017-12-01

    Arsenic exposure is associated with decreased kidney function. The association between low to moderate arsenic exposure and kidney disease has not been fully clarified. The association between arsenic exposure from drinking water and chronic kidney disease (CKD) was examined in a long-term prospective observational study. 6,093 participants 40 years and older were recruited from arseniasis-endemic areas in northeastern Taiwan. Arsenic levels were 28.0, 92.8, and 295.7μg/L at the 50th, 75th, and 90th percentiles, respectively. Well-water arsenic and urinary total arsenic (inorganic plus methylated arsenic species) concentrations, adjusted for urinary creatinine concentration. Kidney diseases (ICD-9 codes: 250.4, 274.1, 283.11, 403.*1, 404.*2, 404.*3, 440.1, 442.1, 447.3, or 580-589) and CKD (ICD-9 code: 585) ascertained using Taiwan's National Health Insurance database 1998 to 2011. HRs contrasting CKD risk across arsenic exposure levels were estimated using Cox regression. Prevalence ORs for proteinuria (protein excretion ≥ 200mg/g) comparing quartiles of total urinary arsenic concentrations were estimated using logistic regression. We identified 1,104 incident kidney disease cases, including 447 CKD cases (incidence rates, 166.5 and 67.4 per 10 4 person-years, respectively). A dose-dependent association between well-water arsenic concentrations and kidney diseases was observed after adjusting for age, sex, education, body mass index, cigarette smoking, alcohol consumption, and analgesic use. Using arsenic concentration ≤ 10.0μg/L as reference, multivariable-adjusted HRs for incident CKD were 1.12 (95% CI, 0.88-1.42), 1.33 (95% CI, 1.03-1.72), and 1.33 (95% CI, 1.00-1.77) for arsenic concentrations of 10.1 to 49.9, 50.0 to 149.9, and ≥150.0μg/L, respectively (P for trend=0.02). The association between arsenic concentration and kidney diseases was stronger for women (P for interaction=0.06). Arsenic values in the range of 50th to 75th and 75th to 100th percentiles of total urinary arsenic concentrations were associated with 50% and 67% higher prevalences, respectively, of proteinuria. Kidney diseases and CKD outcomes were based on diagnostic codes. Glomerular filtration rates were not available. Other heavy metals were not measured. This study describes the temporal relationship between arsenic concentrations ≥ 10μg/L in drinking water and CKD. A dose-dependent association between well-water arsenic concentration and kidney diseases was observed. Higher creatinine-adjusted urinary total arsenic concentrations were associated with a higher prevalence of proteinuria. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  8. Indigenous American ancestry is associated with arsenic methylation efficiency in an admixed population of northwest Mexico

    PubMed Central

    Gomez-Rubio, Paulina; Klimentidis, Yann C.; Cantu-Soto, Ernesto; Meza-Montenegro, Maria M.; Billheimer, Dean; Lu, Zhenqiang; Chen, Zhao; Klimecki, Walter T.

    2013-01-01

    Many studies provide evidence relating lower human arsenic (As) methylation efficiency, represented by high % urinary monomethylarsonic acid (MMA(V)), with several arsenic-induced diseases, possibly due to the fact that MMA(V) serves as a proxy for MMA(III), the most toxic arsenic metabolite. Some epidemiological studies have suggested that indigenous Americans (AME) methylate As more efficiently, however data supporting this have been equivocal. The aim of this study was to characterize the association between AME ancestry and arsenic methylation efficiency using a panel of ancestry informative genetic markers to determine individual ancestry proportions in an admixed population (composed of two or more isolated ancestral populations) of 746 individuals environmentally exposed to arsenic in northwest Mexico. Total urinary As (TAs) mean and range were 170.4 and 2.3–1053.5 μg/L, while %AME mean and range were 72.4 and 23–100. Adjusted (gender, age, AS3MT 7388/M287T haplotypes, body mass index (BMI), and TAs) multiple regression model showed that higher AME ancestry is associated with lower %uMMA excretion in this population (p <0.01). The data also showed a significant interaction between BMI and gender indicating negative association between BMI and %uMMA, stronger in women than men (p <0.01). Moreover age and the AS3MT variants 7388 (intronic) and M287T (non-synonymous) were also significantly associated with As methylation efficiency (p = 0.01). This study highlights the importance of BMI and indigenous American ancestry in some of the observed variability in As methylation efficiency, underscoring the need to be considered in epidemiology studies, particularly those carried out in admixed populations. PMID:22047162

  9. Arsenic exposure from drinking water is associated with decreased gene expression and increased DNA methylation in peripheral blood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ameer, Syeda Shegufta

    Background: Exposure to inorganic arsenic increases the risk of cancer and non-malignant diseases. Inefficient arsenic metabolism is a marker for susceptibility to arsenic toxicity. Arsenic may alter gene expression, possibly by altering DNA methylation. Objectives: To elucidate the associations between arsenic exposure, gene expression, and DNA methylation in peripheral blood, and the modifying effects of arsenic metabolism. Methods: The study participants, women from the Andes, Argentina, were exposed to arsenic via drinking water. Arsenic exposure was assessed as the sum of arsenic metabolites in urine (U-As), using high performance liquid-chromatography hydride-generation inductively-coupled-plasma-mass-spectrometry, and arsenic metabolism efficiency was assessed by themore » urinary fractions (%) of the individual metabolites. Genome-wide gene expression (N = 80 women) and DNA methylation (N = 93; 80 overlapping with gene expression) in peripheral blood were measured using Illumina DirectHyb HumanHT-12 v4.0 and Infinium Human-Methylation 450K BeadChip, respectively. Results: U-As concentrations, ranging 10–1251 μg/L, was associated with decreased gene expression: 64% of the top 1000 differentially expressed genes were down-regulated with increasing U-As. U-As was also associated with hypermethylation: 87% of the top 1000 CpGs were hypermethylated with increasing U-As. The expression of six genes and six individual CpG sites were significantly associated with increased U-As concentration. Pathway analyses revealed enrichment of genes related to cell death and cancer. The pathways differed somewhat depending on arsenic metabolism efficiency. We found no overlap between arsenic-related gene expression and DNA methylation for individual genes. Conclusions: Increased arsenic exposure was associated with lower gene expression and hypermethylation in peripheral blood, but with no evident overlap. - Highlights: • Women exposed to inorganic arsenic were studied for molecular responses in blood. • Arsenic is associated with decreased gene expression and increased DNA methylation. • Arsenic related pathways differed to some extent due to arsenic metabolism efficiency.« less

  10. Serum levels of the extracellular domain of the epidermal growth factor receptor in individuals exposed to arsenic in drinking water in Bangladesh.

    PubMed

    Li, Y; Chen, Y; Slavkovic, V; Ahsan, H; Parvez, F; Graziano, J H; Brandt-Rauf, P W

    2007-01-01

    Epidermal growth factor receptor-dependent mechanisms have been implicated in growth signal transduction pathways that contribute to cancer development, including dermal carcinogenesis. Detection of the extracellular domain of the epidermal growth factor receptor (EGFR ECD) in serum has been suggested as a potential biomarker for monitoring this effect in vivo. Arsenic is a known human carcinogen, producing skin and other malignancies in populations exposed through their drinking water. One such exposed population, which we have been studying for a number of years, is in Bangladesh. The purpose of this study was to examine the EGFR ECD as a potential biomarker of arsenic exposure and/or effect in this population. Levels of the EGFR ECD were determined by enzyme-linked immunosorbent assay in the serum samples from 574 individuals with a range of arsenic exposures from drinking water in the Araihazar area of Bangladesh. In multiple regression analysis, serum EGFR ECD was found to be positively associated with three different measures of arsenic exposure (well water arsenic, urinary arsenic and a cumulative arsenic index) at statistically significant levels (p

  11. Urinary arsenic levels in the French adult population: the French National Nutrition and Health Study, 2006-2007.

    PubMed

    Saoudi, Abdessattar; Zeghnoun, Abdelkrim; Bidondo, Marie-Laure; Garnier, Robert; Cirimele, Vincent; Persoons, Renaud; Fréry, Nadine

    2012-09-01

    The French Nutrition and Health Survey (ENNS) was conducted to describe dietary intakes, nutritional status, physical activity, and levels of various biomarkers for environmental chemicals (heavy metals and pesticides) in the French population (adults aged 18-74 years and children aged 3-17 years living in continental France in 2006-2007). The aim of this paper was to describe the distributions of total arsenic and the sum of iAs+MMA+DMA in the general adult population, and to present their main risk factors. In the arsenic study, 1500 and 1515 adults (requested to avoid seafood intake in the previous 3 days preceding urine collection) were included respectively for the analysis of the sum of inorganic arsenic (iAs) and its two metabolites, monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), and for the total arsenic. Results were presented as geometric means and selected percentiles of urinary arsenic concentrations (μg/L) and creatinine-adjusted urinary arsenic (μg/g of creatinine) for total arsenic, and the sum of inorganic arsenic and metabolites (iAs+MMA+DMA). The geometric mean concentration of the sum of iAs+MMA+DMA in the adult population living in France was 3.34 μg/g of creatinine [3.23-3.45] (3.75 μg/L [3.61-3.90]) with a 95th percentile of 8.9 μg/g of creatinine (10.68 μg/L). The geometric mean concentration of total arsenic was 11.96 μg/g of creatinine [11.41-12.53] (13.42 μg/L [12.77-14.09]) with a 95th percentile of 61.29 μg/g of creatinine (72.75 μg/L). Urinary concentrations of total arsenic and iAS+MMA+DMA were influenced by sociodemographic and economic factors, and by risk factors such as consumption of seafood products and of wine. In our study, covariate-adjusted geometric means demonstrated several slight differences, due to consumption of fish, shellfish/crustaceans or wine. This study provides the first reference value for arsenic in a representative sample of the French population not particularly exposed to high levels of arsenic (10 μg/g of creatinine). It shows that urinary arsenic concentrations in the French adult population (in particular concentrations of iAs+MMA+DMA) were relatively low compared with foreign data. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Association of cadmium and arsenic exposure with salivary telomere length in adolescents in Terai, Nepal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fillman, Toki, E-mail: tokif@humeco.m.u-tokyo.ac.jp; Shimizu-Furusawa, Hana, E-mail: hana-shimizu@umin.ac.jp; Ng, Chris Fook Sheng, E-mail: chrisng-tky@umin.ac.jp

    Background: Cadmium and arsenic are ubiquitous metals commonly found in the environment which can harm human health. A growing body of research shows telomere length as a potential biomarker of future disease risk. Few studies have examined the effects of metals on telomere length and none have focused on adolescents. Objectives: In this study, the impact of cadmium and arsenic on salivary telomere length was studied in adolescents in Terai, Nepal. Methods: Adolescents aged 12–16 years old (n=351)were recruited where questionnaire interviews and both saliva and urine collection took place. Telomere length was determined by quantitative polymerase chain reaction usingmore » DNA extracted from saliva. Urinary cadmium and arsenic concentration were measured by inductively coupled plasma mass spectrometry. Multivariable linear regression was used to examine associations between urinary metals and salivary telomere length. Results: The geometric means and standard deviations of cadmium and arsenic were 0.33±0.33 μg/g creatinine and 196.0±301.1 μg/g creatinine, respectively. Urinary cadmium concentration was negatively associated with salivary telomere length after adjustment for confounders (β=−0.24, 95% CI −0.42,−0.07). Arsenic showed positive associations with telomere length but did not reach statistical significance. Conclusions: This is the first study to demonstrate that cadmium may shorten adolescent telomeres, even at exposure levels that may be considered low. These results agree with prior experimental and adult epidemiological studies, and also help identify the mechanism of DNA damage by cadmium. This study expanded current evidence on the harmful effects of cadmium exposure on telomere length even to adolescents. - Highlights: • This is the first study examining metal exposure on telomere length in adolescents. • Urinary cadmium levels were similar to non-industrially polluted levels in Asia. • Urinary arsenic levels were as high as groundwater arsenic polluted areas in Asia. • Urinary cadmium was negatively associated with salivary telomere length. • Urinary arsenic was not significantly associated with salivary telomere length.« less

  13. Urinary total arsenic and 8-hydroxydeoxyguanosine are associated with renal cell carcinoma in an area without obvious arsenic exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Chao-Yuan; Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan; Su, Chien-Tien

    2012-08-01

    8-Hydroxydeoxyguanosine (8-OHdG) is one of the most reliable and abundant markers of DNA damage. The study was designed to explore the relationship between urinary 8-OHdG and renal cell carcinoma (RCC) and to investigate whether individuals with a high level of 8-OHdG would have a modified odds ratio (OR) of arsenic-related RCC. This case–control study was conducted with 132 RCC patients and 245 age- and sex-matched controls from a hospital-based pool between November 2006 and May 2009. Pathological verification of RCC was completed by image-guided biopsy or surgical resection of renal tumors. Urinary 8-OHdG levels were determined using liquid chromatography withmore » tandem mass spectrometry (LC–MS/MS). Concentrations of urinary arsenic species, including inorganic arsenic, monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), were determined by a high performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. Level of urinary 8-OHdG was significantly associated with the OR of RCC in a dose–response relationship after multivariate adjustment. Urinary 8-OHdG was significantly related to urinary total arsenic. The greatest OR (3.50) was seen in the individuals with high urinary 8-OHdG and high urinary total arsenic. A trend test indicated that the OR of RCC was increased with one of these factors and was further increased with both (p = 0.002). In conclusion, higher urinary 8-OHdG was a strong predictor of the RCC. High levels of 8-OHdG combined with urinary total arsenic might be indicative of arsenic-induced RCC. -- Highlights: ► Urinary 8-OHdG was significantly related to urinary total arsenic. ► Higher urinary 8-OHdG was a strong predictor of RCC risk. ► Urinary 8-OHdG may modify arsenic related RCC risk.« less

  14. Preliminary analysis of in utero low-level arsenic exposure and fetal growth using biometric measurements extracted from fetal ultrasound reports.

    PubMed

    Davis, Matthew A; Higgins, John; Li, Zhigang; Gilbert-Diamond, Diane; Baker, Emily R; Das, Amar; Karagas, Margaret R

    2015-03-30

    Early life exposure to arsenic is associated with decreased birth weight in highly exposed populations but little is known about effects of low-level arsenic exposure on growth in utero. Using a sample of 272 pregnancies from New Hampshire we obtained biometric measurements directly from fetal ultrasound reports commonly found in electronic medical records. We used information extraction methods to develop and validate an automated approach for mining biometric measurements from the text of clinical reports. As a preliminary analysis, we examined associations between in utero low-level arsenic exposure (as measured by maternal urinary arsenic concentration) and fetal growth measures (converted to Z-scores based on reference populations for estimated fetal weight, head, and other body measures) at approximately 18 weeks of gestation. In a preliminary cross-sectional analysis of 223 out of 272 pregnancies, maternal urinary arsenic concentration (excluding arsenobetaine) was associated with a reduction in head circumference Z-score (Spearman correlation coefficient, rs = -0.08, p-value = 0.21) and a stronger association was observed among female fetuses at approximately 18 weeks of gestation (rs = - 0.21, p-value < 0.05). Although, associations were attenuated in adjusted analyses - among female fetuses a 1 μg/L increase in maternal urinary arsenic concentration was associated with a decrease of 0.047 (95% CI: -0.115, 0.021) in head circumference and 0.072 (95% CI: -0.151, 0.007) decrease in biparietal head diameter Z-score. Our study demonstrates that useful data can be extracted directly from electronic medical records for epidemiologic research. We also found evidence that exposure to low-level arsenic may be associated with reduced head circumference in a sex dependent manner that warrants further investigation.

  15. Biological monitoring of occupational exposure to inorganic arsenic

    PubMed Central

    Apostoli, P.; Bartoli, D.; Alessio, L.; Buchet, J. P.

    1999-01-01

    OBJECTIVES: This study was undertaken to assess reliable biological indicators for monitoring the occupational exposure to inorganic arsenic (iAs), taking into account the possible confounding role of arsenicals present in food and of the element present in drinking water. METHODS: 51 Glass workers exposed to As trioxide were monitored by measuring dust in the breathing zone, with personal air samplers. Urine samples at the end of work shift were analysed for biological monitoring. A control group of 39 subjects not exposed to As, and eight volunteers who drank water containing about 45 micrograms/l iAs for a week were also considered. Plasma mass spectrometry (ICP-MS) was used for the analysis of total As in air and urine samples, whereas the urinary As species (trivalent, As3; pentavalent, As5; monomethyl arsonic acid, MMA; dimethyl arsinic acid, DMA; arsenobetaine, AsB) were measured by liquid chromatography coupled with plasma mass spectrometry (HPLC-MS) RESULTS: Environmental concentrations of As in air varied widely (mean 84 micrograms/m3, SD 61, median 40) and also the sum of urinary iAs MMA and DMA, varied among the groups of exposed subjects (mean 106 micrograms/l, SD 84, median 65). AsB was the most excreted species (34% of total As) followed by DMA (28%), MMA (26%), and As3 + As5 (12%). In the volunteers who drank As in the water the excretion of MMA and DMA increased (from a median of 0.5 to 5 micrograms/day for MMA and from 4 to 13 micrograms/day for DMA). The best correlations between As in air and its urinary species were found for total iAs and As3 + As5. CONCLUSIONS: To avoid the effect of As from sources other than occupation on urinary species of the element, in particular on DMA, it is proposed that urinary As3 + As5 may an indicator for monitoring the exposure to iAs. For concentrations of 10 micrograms/m3 the current environmental limit for iAs, the limit for urinary As3 + As5 was calculated to be around 5 micrograms/l, even if the wide variation of values needs critical evaluation and application of data. The choice of this indicator might be relevant also from a toxicological point of view. Trivalent arsenic is in fact the most active species and its measure in urine could be the best indicator of some critical effects of the element, such as cancer.   PMID:10658539

  16. Biological monitoring of occupational exposure to inorganic arsenic.

    PubMed

    Apostoli, P; Bartoli, D; Alessio, L; Buchet, J P

    1999-12-01

    This study was undertaken to assess reliable biological indicators for monitoring the occupational exposure to inorganic arsenic (iAs), taking into account the possible confounding role of arsenicals present in food and of the element present in drinking water. 51 Glass workers exposed to As trioxide were monitored by measuring dust in the breathing zone, with personal air samplers. Urine samples at the end of work shift were analysed for biological monitoring. A control group of 39 subjects not exposed to As, and eight volunteers who drank water containing about 45 micrograms/l iAs for a week were also considered. Plasma mass spectrometry (ICP-MS) was used for the analysis of total As in air and urine samples, whereas the urinary As species (trivalent, As3; pentavalent, As5; monomethyl arsonic acid, MMA; dimethyl arsinic acid, DMA; arsenobetaine, AsB) were measured by liquid chromatography coupled with plasma mass spectrometry (HPLC-MS) RESULTS: Environmental concentrations of As in air varied widely (mean 84 micrograms/m3, SD 61, median 40) and also the sum of urinary iAs MMA and DMA, varied among the groups of exposed subjects (mean 106 micrograms/l, SD 84, median 65). AsB was the most excreted species (34% of total As) followed by DMA (28%), MMA (26%), and As3 + As5 (12%). In the volunteers who drank As in the water the excretion of MMA and DMA increased (from a median of 0.5 to 5 micrograms/day for MMA and from 4 to 13 micrograms/day for DMA). The best correlations between As in air and its urinary species were found for total iAs and As3 + As5. To avoid the effect of As from sources other than occupation on urinary species of the element, in particular on DMA, it is proposed that urinary As3 + As5 may an indicator for monitoring the exposure to iAs. For concentrations of 10 micrograms/m3 the current environmental limit for iAs, the limit for urinary As3 + As5 was calculated to be around 5 micrograms/l, even if the wide variation of values needs critical evaluation and application of data. The choice of this indicator might be relevant also from a toxicological point of view. Trivalent arsenic is in fact the most active species and its measure in urine could be the best indicator of some critical effects of the element, such as cancer.

  17. Association of glutathione S-transferase Ω 1-1 polymorphisms (A140D and E208K) with the expression of interleukin-8 (IL-8), transforming growth factor beta (TGF-β), and apoptotic protease-activating factor 1 (Apaf-1) in humans chronically exposed to arsenic in drinking water.

    PubMed

    Escobar-García, D M; Del Razo, L M; Sanchez-Peña, L C; Mandeville, P B; Lopez-Campos, C; Escudero-Lourdes, Claudia

    2012-06-01

    Human exposure to arsenicals is associated with inflammatory-related diseases including different kinds of cancer as well as non-cancerous diseases like neuro-degenerative diseases, atherosclerosis, hypertension, and diabetes. Interindividual susceptibility has been mainly addressed by evaluating the role of genetic polymorphism in metabolic enzymes in inorganic arsenic (iAs) metabolism. Glutathione S-transferase omega 1-1 (GSTO1-1), which had been associated with iAs metabolism, is also known to participate in inflammatory and apoptotic cellular responses. The polymorphism A140D of GSTO1-1 has been not only associated with distinct urinary profile of arsenic metabolites in populations chronically exposed to iAs in drinking water, but also with higher risk of childhood leukemia and lung disease in non-exposed populations, suggesting that GSTO1-1 involvement in other physiologic processes different from toxics metabolism could be more relevant than is thought. We evaluated the association of the presence of A140D and E208K polymorphisms of GSTO1-1 gene with the expression of genes codifying for proteins involved in the inflammatory and apoptotic response in a human population chronically exposed to iAs through drinking water. A140D polymorphism was associated with higher expression of genes codifying for IL-8 and Apaf-1 mainly in heterozygous individuals, while E208K was associated with higher expression of IL-8 and TGF- gene, in both cases, the association was independently of iAs exposure level; however, the exposure to iAs increased slightly but significantly the influence of A140D and E208K polymorphisms on such genes expression. These results suggest an important role of GSTO1-1 in the inflammatory response and the apoptotic process and indicate that A140D and E208K polymorphisms could increase the risk of developing inflammatory and apoptosis-related diseases in As-exposed populations.

  18. Role of linoleic acid in arsenical palmar keratosis.

    PubMed

    Ahmed, Tarafder S; Misbahuddin, Mir

    2016-03-01

    Chronic arsenic exposure can lead to palmoplantar keratosis. In the stratum corneum of skin, linoleic acid is of the utmost importance to the inflammation, keratinization, and regeneration processes. The aims of this study were: (i) to present quantitative information on the linoleic acid fraction of intercorneocyte lipids, and (ii) to elucidate the role of linoleic acid in the pathophysiology of arsenical keratosis. Lipid extracts were collected from keratotic lesions in seven patients, seven arsenic-exposed subjects, and seven non-exposed control subjects. Linoleic acid levels of the specimens were estimated by reverse-phase high-performance liquid chromatography (RP-HPLC). There was a significant (P < 0.001) increase in mean ± standard error (SE) linoleic acid levels in arsenical keratosis patients (palm: 25.66 ± 4.95 μg/cm(2); dorsum: 28.25 ± 6.20 μg/cm(2)) compared with arsenic-exposed (palm: 2.75 ± 0.85 μg/cm(2); dorsum: 1.96 ± 0.64 μg/cm(2)) and non-exposed (palm: 1.52 ± 0.61 μg/cm(2); dorsum: 1.28 ± 0.39 μg/cm(2)) control subjects. There was no significant difference (P = 0.556) in linoleic acid concentration in the non-affected skin of the dorsum of the hand (28.25 ± 6.20 μg/cm(2)) compared with that in the palmar sites (25.66 ± 4.95 μg/cm(2)) in the patient group. The change in linoleic acid levels in the arsenic-exposed control group did not differ from that in non-exposed controls (P = 1.000). Linoleic acid concentration is elevated in arsenical keratosis; this finding warrants further investigation to ascertain whether linoleic acid plays a direct role in the pathophysiology of arsenical keratosis. © 2015 The International Society of Dermatology.

  19. Concentration-and time-dependent genomic changes in the mouse urinary bladder following exposure to arsenate in drinking water for up to twelve weeks

    EPA Science Inventory

    Inorganic arsenic (AsD is a known human bladder carcinogen. The objective of this study was to examine the concentration dependence of the genomic response to ASi in the urinary bladders of mice. C57BL/6J mice were exposed for 1 or 12 weeks to arsenate in drinking water at concen...

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Songbo; Wu, Jie; Li, Yuanyuan

    To investigate the differences in urinary arsenic metabolism patterns of individuals exposed to a high concentration of inorganic arsenic (iAs) in drinking water, an epidemiological investigation was conducted with 155 individuals living in a village where the arsenic concentration in the drinking water was 969 μg/L. Blood and urine samples were collected from 66 individuals including 51 cases with skin lesions and 15 controls without skin lesions. The results showed that monomethylated arsenic (MMA), the percentage of MMA (%MMA) and the ratio of MMA to iAs (MMA/iAs) were significantly increased in patients with skin lesions as compared to controls, whilemore » dimethylated arsenic (DMA), the percentage of DMA (%DMA) and the ratio of DMA to MMA (DMA/MMA) were significantly reduced. The percent DMA of individuals with the Ala/Asp genotype of glutathione S-transferase omega 1 (GSTO1) was significantly lower than those with Ala/Ala. The percent MMA of individuals with the A2B/A2B genotype of arsenic (+ 3 oxidation state) methyltransferase (AS3MT) was significantly lower than those with AB/A2B. The iAs and total arsenic (tAs) content in the urine of a Tibetan population were significantly higher than that of Han and Hui ethnicities, whereas MMA/iAs was significantly lower than that of Han and Hui ethnicities. Our results showed that when exposed to the same arsenic environment, different individuals exhibited different urinary arsenic metabolism patterns. Gender and ethnicity affect these differences and above polymorphisms may be effectors too. - Highlights: • We first survey a village with high iAs content in the drinking water (969 μg/L). • 90 villagers suffered typical skin lesions with a morbidity rate of 58%. • Cases exhibited higher %MMA and MMA/iAs, and lower %DMA and DMA/MMA than controls. • Gender and ethnicity affect the differences of iAs methylation metabolism levels. • GSTO1 and AS3MT gene polymorphisms may be factors too.« less

  1. Urinary Arsenic Speciation in Children and Pregnant Women from Spain.

    PubMed

    Signes-Pastor, Antonio J; Carey, Manus; Vioque, Jesus; Navarrete-Muñoz, Eva M; Rodríguez-Dehli, Cristina; Tardón, Adonina; Begoña-Zubero, Miren; Santa-Marina, Loreto; Vrijheid, Martine; Casas, Maribel; Llop, Sabrina; Gonzalez-Palacios, Sandra; Meharg, Andrew A

    2017-01-01

    Inorganic arsenic (i-As) is a non-threshold human carcinogen that has been associated with several adverse health outcomes. Exposure to i-As is of particular concern among pregnant women, infants and children, as they are specifically vulnerable to the adverse health effects of i-As, and in utero and early-life exposure, even low to moderate levels of i-As, may have a marked effect throughout the lifespan. Ion chromatography-mass spectrometry detection (IC-ICP-MS) was used to analyse urinary arsenic speciation, as an exposure biomarker, in samples of 4-year-old children with relatively low-level arsenic exposure living in different regions in Spain including Asturias, Gipuzkoa, Sabadell and Valencia. The profile of arsenic metabolites in urine was also determined in samples taken during pregnancy (1st trimester) and in the children from Valencia of 7 years old. The median of the main arsenic species found in the 4-year-old children was 9.71 μg/l (arsenobetaine-AsB), 3.97 μg/l (dimethylarsinic acid-DMA), 0.44 μg/l (monomethylarsonic acid-MMA) and 0.35 μg/l (i-As). Statistically significant differences were found in urinary AsB, MMA and i-As according to the study regions in the 4-year-old, and also in DMA among pregnant women and their children. Spearman's correlation coefficient among urinary arsenic metabolites was calculated, and, in general, a strong methylation capacity to methylate i-As to MMA was observed.

  2. Trends in urinary arsenic among the U.S. population by drinking water source: Results from the National Health and Nutritional Examinations Survey 2003-2014.

    PubMed

    Welch, Barrett; Smit, Ellen; Cardenas, Andres; Hystad, Perry; Kile, Molly L

    2018-04-01

    In 2001, the United States revised the arsenic maximum contaminant level for public drinking water systems from 50µg/L to 10µg/L. This study aimed to examine temporal trends in urinary arsenic concentrations in the U.S. population from 2003 to 2014 by drinking water source among individuals aged 12 years and older who had no detectable arsenobetaine - a biomarker of arsenic exposure from seafood intake. We examined data from 6 consecutive cycles of the National Health and Nutrition Examination Survey (2003-2014; N=5848). Total urinary arsenic (TUA) was calculated by subtracting arsenobetaine's limit of detection and detectable arsenocholine from total arsenic. Additional sensitivity analyses were conducted using a second total urinary arsenic index (TUA2, calculated by adding arsenite, arsenate, monomethylarsonic acid, dimethylarsinic acid). We classified drinking water source using 24-h dietary questionnaire data as community supply (n=3427), well or rain cistern (n=506), and did not drink tap water (n=1060). Geometric means (GM) of survey cycles were calculated from multivariate regression models adjusting for age, gender, race/ethnicity, BMI, income, creatinine, water source, type of water consumed, recent smoking, and consumption of seafood, rice, poultry, and juice. Compared to 2003-2004, adjusted TUA was 35.5% lower in 2013-2014 among the general U.S. Stratified analysis by smoking status indicated that the trend in lower TUA was only consistent among non-smokers. Compared to 2003-2004, lower adjusted TUA was observed in 2013-2014 among non-smoking participants who used community water supplies (1.98 vs 1.16µg/L, p<0.001), well or rain cistern users (1.54 vs 1.28µg/L, p<0.001) and who did not drink tap water (2.24 vs 1.53µg/L, p<0.001). Sensitivity analyses showed consistent results for participants who used a community water supplier and to a lesser extent those who did not drink tap water. However, the sensitivity analysis showed overall exposure stayed the same or was higher among well or rain cistern users. Finally, the greatest decrease in TUA was among participants within the highest exposure percentiles (e.g. 95th percentile had 34% lower TUA in 2013/2014 vs 2003/2004, p<0.001). Overall, urinary arsenic levels in the U.S. population declined over a 12-year period that encompassed the adoption of the revised Arsenic Rule. The most consistent trends in declining exposure were observed among non-smoking individuals using public community water systems. These results suggest regulation and prevention strategies to reduce arsenic exposures in the U.S. may be succeeding. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. DNA methylation of extracellular matrix remodeling genes in children exposed to arsenic.

    PubMed

    Gonzalez-Cortes, Tania; Recio-Vega, Rogelio; Lantz, Robert Clark; Chau, Binh T

    2017-08-15

    Several novel mechanistic findings regarding to arsenic's pathogenesis has been reported and some of them suggest that the etiology of some arsenic induced diseases are due in part to heritable changes to the genome via epigenetic processes such as DNA methylation, histone maintenance, and mRNA expression. Recently, we reported that arsenic exposure during in utero and early life was associated with impairment in the lung function and abnormal receptor for advanced glycation endproducts (RAGE), matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) sputum levels. Based on our results and the reported arsenic impacts on DNA methylation, we designed this study in our cohort of children exposed in utero and early childhood to arsenic with the aim to associate DNA methylation of MMP9, TIMP1 and RAGE genes with its protein sputum levels and with urinary and toenail arsenic levels. The results disclosed hypermethylation in MMP9 promotor region in the most exposed children; and an increase in the RAGE sputum levels among children with the mid methylation level; there were also positive associations between MMP9 DNA methylation with arsenic toenail concentrations; RAGE DNA methylation with iAs, and %DMA; and finally between TIMP1 DNA methylation with the first arsenic methylation. A negative correlation between MMP9 sputum levels with its DNA methylation was registered. In conclusion, arsenic levels were positive associated with the DNA methylation of extracellular matrix remodeling genes;, which in turn could modifies the biological process in which they are involved causing or predisposing to lung diseases. Copyright © 2017. Published by Elsevier Inc.

  4. Arsenic levels in the groundwater of Korea and the urinary excretion among contaminated area.

    PubMed

    Park, Jung-Duck; Choi, Seong-Jin; Choi, Byung-Sun; Lee, Choong-Ryeol; Kim, Heon; Kim, Yong-Dae; Park, Kyung-Soo; Lee, Young-Jo; Kang, Seojin; Lim, Kyung-Min; Chung, Jin-Ho

    2016-09-01

    Drinking water is a main source of human exposure to arsenic. Hence, the determination of arsenic in groundwater is essential to assess its impact on public health. Here, we report arsenic levels in the groundwater of 722 sites covering all six major provinces of Korea. Water was sampled in two occasions (summer, 722 sites and winter, 636 sites) and the arsenic levels were measured with highly sensitive inductively coupled plasma-mass spectrometry method (limit of detection, 0.1 μg/l) to encompass the current drinking water standard (<10 μg/l). Seasonal variation was negligible, but the geographical difference was prominent. Total arsenic in groundwater ranged from 0.1 to 48.4 μg/l. A 88.0-89.0% of sites were <2.0 μg/l and the remaining ones generally did not exceed 10 μg/l (6.4-7.0%, 2.0-4.9 μg/l; 2.4-3.0%, 5.0-9.9 μg/l). However, some areas (1.0-9.2%) exhibited >10 μg/l. Notably, urinary arsenic excretion of people around these regions was markedly higher compared with non-contaminated areas (<5 μg/l) (79.7±5.2 μg/g (N=122) vs 68.4±5.4 μg/g (N=65) creatinine, P=0.052). All stratified analysis also revealed higher urinary excretion, where a statistically significant difference was noted for non-smokers (85.9±12.7 vs 54.0±6.3, P=0.030), suggesting that arsenic-contaminated groundwater may contribute to its systemic exposure.

  5. Association between arsenic exposure from drinking water and hematuria: Results from the Health Effects of Arsenic Longitudinal Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClintock, Tyler R.; Department of Environmental Medicine, New York University School of Medicine, New York, NY; Department of Urology, New York University School of Medicine, New York, NY

    2014-04-01

    Arsenic (As) exposure has been associated with both urologic malignancy and renal dysfunction; however, its association with hematuria is unknown. We evaluated the association between drinking water As exposure and hematuria in 7843 men enrolled in the Health Effects of Arsenic Longitudinal Study (HEALS). Cross-sectional analysis of baseline data was conducted with As exposure assessed in both well water and urinary As measurements, while hematuria was measured using urine dipstick. Prospective analyses with Cox proportional regression models were based on urinary As and dipstick measurements obtained biannually since baseline up to six years. At baseline, urinary As was significantly relatedmore » to prevalence of hematuria (P-trend < 0.01), with increasing quintiles of exposure corresponding with respective prevalence odds ratios of 1.00 (reference), 1.29 (95% CI: 1.04–1.59), 1.41 (95% CI: 1.15–1.74), 1.46 (95% CI: 1.19–1.79), and 1.56 (95% CI: 1.27–1.91). Compared to those with relatively little absolute urinary As change during follow-up (− 10.40 to 41.17 μg/l), hazard ratios for hematuria were 0.99 (95% CI: 0.80–1.22) and 0.80 (95% CI: 0.65–0.99) for those whose urinary As decreased by > 47.49 μg/l and 10.87 to 47.49 μg/l since last visit, respectively, and 1.17 (95% CI: 0.94–1.45) and 1.36 (95% CI: 1.10–1.66) for those with between-visit increases of 10.40 to 41.17 μg/l and > 41.17 μg/l, respectively. These data indicate a positive association of As exposure with both prevalence and incidence of dipstick hematuria. This exposure effect appears modifiable by relatively short-term changes in drinking water As. - Highlights: • Hematuria is the most common symptom of urinary tract disease. • Arsenic exposure is associated with renal dysfunction and urologic malignancy. • Water arsenic was positively associated with prevalence and incidence of hematuria. • Reduction in exposure lowered hematuria risk especially in low-to-moderate exposed. • Arsenic-related hematuria may represent nonmalignant or premalignant condition.« less

  6. Ground water arsenic contamination in West Bengal, India: a risk of sub-clinical toxicity in cattle as evident by correlation between arsenic exposure, excretion and deposition.

    PubMed

    Bera, Asit Kumar; Rana, Tanmoy; Das, Subhshree; Bhattacharya, Debasis; Bandyopadhyay, Subhasish; Pan, Diganta; De, Sumanta; Samanta, Srikanta; Chowdhury, Atalanta Narayan; Mondal, Tapan Kumar; Das, Subrata Kumar

    2010-11-01

    Arsenic contamination of ground water in West Bengal, India, is a great concern for both human and livestock populations. Our study investigated and correlated the arsenic concentration in the drinking water, urinary excretion and deposition of total arsenic in hair of cattle at an arsenic contaminated zone in West Bengal. The results of our study indicated that the average concentration of arsenic in tube well water in contaminated villages ranged from 0.042 to 0.251 ppm and a statistical significant (p < 0.01) difference was seen when compared to samples from a non-contaminated zone. The arsenic concentration in urine and hair of cattle ranged between 0.245-0.691 ppm and 0.461-0.984 ppm, respectively. A close relationship was found between the total arsenic in drinking water urinary excretion (r² = 0.03664, p < 0.05) and the arsenic concentration in hair (r² = 0.03668, p < 0.05). Our findings indicate that quantification of arsenic concentration in cattle urine and hair can serve as biomarkers for both present and past exposure in cattle population.

  7. Creatinine, diet, micronutrients, and arsenic methylation in West Bengal, India.

    PubMed

    Basu, Arin; Mitra, Soma; Chung, Joyce; Guha Mazumder, D N; Ghosh, Nilima; Kalman, David; von Ehrenstein, Ondine S; Steinmaus, Craig; Liaw, Jane; Smith, Allan H

    2011-09-01

    Ingested inorganic arsenic (InAs) is methylated to monomethylated (MMA) and dimethylated metabolites (DMA). Methylation may have an important role in arsenic toxicity, because the monomethylated trivalent metabolite [MMA(III)] is highly toxic. We assessed the relationship of creatinine and nutrition--using dietary intake and blood concentrations of micronutrients--with arsenic metabolism, as reflected in the proportions of InAS, MMA, and DMA in urine, in the first study that incorporated both dietary and micronutrient data. We studied methylation patterns and nutritional factors in 405 persons who were selected from a cross-sectional survey of 7,638 people in an arsenic-exposed population in West Bengal, India. We assessed associations of urine creatinine and nutritional factors (19 dietary intake variables and 16 blood micronutrients) with arsenic metabolites in urine. Urinary creatinine had the strongest relationship with overall arsenic methylation to DMA. Those with the highest urinary creatinine concentrations had 7.2% more arsenic as DMA compared with those with low creatinine (p < 0.001). Animal fat intake had the strongest relationship with MMA% (highest tertile animal fat intake had 2.3% more arsenic as MMA, p < 0.001). Low serum selenium and low folate were also associated with increased MMA%. Urine creatinine concentration was the strongest biological marker of arsenic methylation efficiency, and therefore should not be used to adjust for urine concentration in arsenic studies. The new finding that animal fat intake has a positive relationship with MMA% warrants further assessment in other studies. Increased MMA% was also associated, to a lesser extent, with low serum selenium and folate.

  8. Individual differences in arsenic metabolism and lung cancer in a case-control study in Cordoba, Argentina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinmaus, Craig, E-mail: craigs@berkeley.ed; School of Public Health, University of California, Berkeley, CA; Yuan Yan

    2010-09-01

    In humans, ingested inorganic arsenic is metabolized to monomethylarsenic (MMA) then to dimethylarsenic (DMA), although in most people this process is not complete. Previous studies have identified associations between the proportion of urinary MMA (%MMA) and increased risks of several arsenic-related diseases, although none of these reported on lung cancer. In this study, urinary arsenic metabolites were assessed in 45 lung cancer cases and 75 controls from arsenic-exposed areas in Cordoba, Argentina. Folate has also been linked to arsenic-disease susceptibility, thus an exploratory assessment of associations between single nucleotide polymorphisms in folate metabolizing genes, arsenic methylation, and lung cancer wasmore » also conducted. In analyses limited to subjects with metabolite concentrations above detection limits, the mean %MMA was higher in cases than in controls (17.5% versus 14.3%, p = 0.01). The lung cancer odds ratio for subjects with %MMA in the upper tertile compared to those in the lowest tertile was 3.09 (95% CI, 1.08-8.81). Although the study size was too small for a definitive conclusion, there was an indication that lung cancer risks might be highest in those with a high %MMA who also carried cystathionine {beta}-synthase (CBS) rs234709 and rs4920037 variant alleles. This study is the first to report an association between individual differences in arsenic metabolism and lung cancer, a leading cause of arsenic-related mortality. These results add to the increasing body of evidence that variation in arsenic metabolism plays an important role in arsenic-disease susceptibility.« less

  9. Changes in Serum Adiponectin in Mice Chronically Exposed to Inorganic Arsenic in Drinking Water.

    PubMed

    Song, Xuanbo; Li, Ying; Liu, Junqiu; Ji, Xiaohong; Zhao, Lijun; Wei, Yudan

    2017-09-01

    Cardiovascular disease and diabetes mellitus are prominent features of glucose and lipid metabolism disorders. Adiponectin is a key adipokine that is largely involved in glucose and lipid metabolism processes. A growing body of evidence suggests that chronic exposure to inorganic arsenic is associated with cardiovascular disease and diabetes mellitus. We hypothesized that arsenic exposure may increase the risk of cardiovascular disease and diabetes mellitus by affecting the level of adiponectin. In this study, we examined serum adiponectin levels, as well as serum levels of metabolic measures (including fasting blood glucose, insulin, total cholesterol, triglyceride, and high-density lipoprotein (HDL)-cholesterol) in C57BL/6 mice exposed to inorganic arsenic in drinking water (5 and 50 ppm NaAsO 2 ) for 18 weeks. Body mass and adiposity were monitored throughout the study. We found no significant changes in serum insulin and glucose levels in mice treated with arsenic for 18 weeks. However, arsenic exposure decreased serum levels of adiponectin, triglyceride, and HDL-cholesterol. Further, an inverse relationship was observed between urinary concentrations of total arsenic and serum levels of adiponectin. This study suggests that arsenic exposure could disturb the metabolism of lipids and increase the risk of cardiovascular disease by reducing the level of adiponectin.

  10. Speciation of arsenic in exfoliated urinary bladder epithelial cells from individuals exposed to arsenic in drinking water.

    PubMed

    Hernández-Zavala, Araceli; Valenzuela, Olga L; Matousek, Tomás; Drobná, Zuzana; Dĕdina, Jirí; García-Vargas, Gonzalo G; Thomas, David J; Del Razo, Luz M; Stýblo, Miroslav

    2008-12-01

    The concentration of arsenic in urine has been used as a marker of exposure to inorganic As (iAs). Relative proportions of urinary metabolites of iAs have been identified as potential biomarkers of susceptibility to iAs toxicity. However, the adverse effects of iAs exposure are ultimately determined by the concentrations of iAs metabolites in target tissues. In this study we examined the feasibility of analyzing As species in cells that originate in the urinary bladder, a target organ for As-induced cancer in humans. Exfoliated bladder epithelial cells (BECs) were collected from urine of 21 residents of Zimapan, Mexico, who were exposed to iAs in drinking water. We determined concentrations of iAs, methyl-As (MAs), and dimethyl-As (DMAs) in urine using conventional hydride generation-cryotrapping-atomic absorption spectrometry (HG-CT-AAS). We used an optimized HG-CT-AAS technique with detection limits of 12-17 pg As for analysis of As species in BECs. All urine samples and 20 of 21 BEC samples contained detectable concentrations of iAs, MAs, and DMAs. Sums of concentrations of these As species in BECs ranged from 0.18 to 11.4 ng As/mg protein and in urine from 4.8 to 1,947 ng As/mL. We found no correlations between the concentrations or ratios of As species in BECs and in urine. These results suggest that urinary levels of iAs metabolites do not necessarily reflect levels of these metabolites in the bladder epithelium. Thus, analysis of As species in BECs may provide a more effective tool for risk assessment of bladder cancer and other urothelial diseases associated with exposures to iAs.

  11. Lifetime exposure to arsenic in drinking water and bladder cancer: a population-based case–control study in Michigan, USA

    PubMed Central

    Slotnick, Melissa J.; AvRuskin, Gillian A.; Schottenfeld, David; Jacquez, Geoffrey M.; Wilson, Mark L.; Goovaerts, Pierre; Franzblau, Alfred; Nriagu, Jerome O.

    2014-01-01

    Objective Arsenic in drinking water has been linked with the risk of urinary bladder cancer, but the dose–response relationships for arsenic exposures below 100 µg/L remain equivocal. We conducted a population-based case–control study in southeastern Michigan, USA, where approximately 230,000 people were exposed to arsenic concentrations between 10 and 100 µg/L. Methods This study included 411 bladder cancer cases diagnosed between 2000 and 2004, and 566 controls recruited during the same period. Individual lifetime exposure profiles were reconstructed, and residential water source histories, water consumption practices, and water arsenic measurements or modeled estimates were determined at all residences. Arsenic exposure was estimated for 99% of participants’ person-years. Results Overall, an increase in bladder cancer risk was not found for time-weighted average lifetime arsenic exposure >10 µg/L when compared with a reference group exposed to <1 µg/L (odds ratio (OR) = 1.10; 95% confidence interval (CI): 0.65, 1.86). Among ever-smokers, risks from arsenic exposure >10 µg/L were similarly not elevated when compared to the reference group (OR = 0.94; 95% CI: 0.50, 1.78). Conclusions We did not find persuasive evidence of an association between low-level arsenic exposure and bladder cancer. Selecting the appropriate exposure metric needs to be thoughtfully considered when investigating risk from low-level arsenic exposure. PMID:20084543

  12. Lung inflammation biomarkers and lung function in children chronically exposed to arsenic

    PubMed Central

    Olivas-Calderón, Edgar; Recio-Vega, Rogelio; Gandolfi, A. Jay; Lantz, R. Clark; González-Cortes, Tania; Alba, Cesar Gonzalez-De; Froines, John R.; Espinosa-Fematt, Jorge A.

    2016-01-01

    Evidence suggests that exposure to arsenic in drinking water during early childhood or in utero is associated with an increase in respiratory symptoms and diseases in adulthood, however only a few studies have been carried out during those sensitive windows of exposure. Recently our group demonstrated that exposure to arsenic during early childhood or in utero was associated with impairment in the lung function in children and suggested that this adverse effect could be due to a chronic inflammatory response to the metalloid. Therefore, a cross-sectional study was designed in a cohort of children associating lung inflammatory biomarkers and lung function with urinary As levels. A total of 275 healthy children were partitioned into four study groups according with their As levels. Inflammation biomarkers were measured in sputum by ELISA and the lung function was evaluated by spirometry. Fifty eight percent of the studied children were found to have a restrictive spirometric pattern. In the two highest exposed groups, the Soluble Receptor for Advanced Glycation Endproducts (sRAGE) sputum level was significantly lower and Matrix Metalloproteinase-9 (MMP-9) concentration was higher. When the biomarkers were correlated to the urinary arsenic species, negative associations were found between dimethylarsinic (DMA), monomethylarsenic percentage (%MMA) and dimethylarsinic percentage (%DMA) with sRAGE and positive associations between %DMA with MMP-9 and with the MMP-9/Tissue Inhibitor of Metalloproteinase (TIMP-1) ratio. In conclusion, chronic arsenic exposure of children negatively correlates with sRAGE, and positively correlated with MMP-9 and MMP-9/TIMP-1 levels, and increases the frequency of an abnormal spirometric pattern. PMID:26048584

  13. COMPARISON OF THE URINARY METABOLITES OF RATS, MICE, AND HUMANS AFTER ORAL ARSENIC EXPOSURE FOCUSING ON THIOARSENICALS

    EPA Science Inventory

    Urinary metabolites of arsenic are useful as biomarkers of exposure because ingested arsenic is excreted primarily in urine1. Complete urinary arsenic speciation can provide insight into possible metabolic pathways as well as potential exposure sources. The pattern of excreted me...

  14. Evaluation of urinary speciated arsenic in NHANES: Issues in interpretation in the context of potential inorganic arsenic exposure

    EPA Science Inventory

    Urinary dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) are among the commonly used biomarkers for inorganic arsenic (iAs) exposure, but may also arise from seafood consumption and organoarsenical pesticide applications. We examined speciated urinary arsenic data from...

  15. GSTO and AS3MT genetic polymorphisms and differences in urinary arsenic concentrations among residents in Bangladesh.

    PubMed

    Rodrigues, Ema G; Kile, Molly; Hoffman, Elaine; Quamruzzaman, Quazi; Rahman, Mahmuder; Mahiuddin, Golam; Hsueh, Yumei; Christiani, David C

    2012-05-01

    We determined whether single nucleotide polymorphisms (SNPs) in the glutathione S-transferase omega (GSTO) and arsenic(III)methyltransferase (AS3MT) genes were associated with concentrations of urinary arsenic metabolites among 900 individuals without skin lesions in Bangladesh. Four SNPs were assessed in these genes. A pathway analysis evaluated the association between urinary arsenic metabolites and SNPs. GSTO1 rs4925 homozygous wild type was significantly associated with higher monomethylarsonic acid (MMA) and dimethylarsinic acid urinary concentrations, whereas wild-type AS3MT rs11191439 had significantly lower levels of As(III) and MMA. Genetic polymorphisms GSTO and As3MT modify arsenic metabolism as evidenced by altered urinary arsenic excretion.

  16. DIETARY ARSENIC EXPOSURE ASSESSMENT USING ENZYMATIC BASED EXTRACTION CONDITIONS AND DETECTION OF URINARY THIO-ARSENICALS AS METABOLITES OF EXPOSURE - MCEARD2

    EPA Science Inventory

    Inorganic arsenic is classified as a carcinogen and has been linked to lung and bladder cancer as well as other non-cancerous health effects. Because of these health effects the U.S. EPA has set a Maximum Contaminant Level (MCL) at 10ppb based on a linear extrapolation of risk an...

  17. Urinary and dietary analysis of 18,470 bangladeshis reveal a correlation of rice consumption with arsenic exposure and toxicity.

    PubMed

    Melkonian, Stephanie; Argos, Maria; Hall, Megan N; Chen, Yu; Parvez, Faruque; Pierce, Brandon; Cao, Hongyuan; Aschebrook-Kilfoy, Briseis; Ahmed, Alauddin; Islam, Tariqul; Slavcovich, Vesna; Gamble, Mary; Haris, Parvez I; Graziano, Joseph H; Ahsan, Habibul

    2013-01-01

    We utilized data from the Health Effects of Arsenic Longitudinal Study (HEALS) in Araihazar, Bangladesh, to evaluate the association of steamed rice consumption with urinary total arsenic concentration and arsenical skin lesions in the overall study cohort (N=18,470) and in a subset with available urinary arsenic metabolite data (N=4,517). General linear models with standardized beta coefficients were used to estimate associations between steamed rice consumption and urinary total arsenic concentration and urinary arsenic metabolites. Logistic regression models were used to estimate prevalence odds ratios (ORs) and their 95% confidence intervals (CIs) for the associations between rice intake and prevalent skin lesions at baseline. Discrete time hazard models were used to estimate discrete time (HRs) ratios and their 95% CIs for the associations between rice intake and incident skin lesions. Steamed rice consumption was positively associated with creatinine-adjusted urinary total arsenic (β=0.041, 95% CI: 0.032-0.051) and urinary total arsenic with statistical adjustment for creatinine in the model (β=0.043, 95% CI: 0.032-0.053). Additionally, we observed a significant trend in skin lesion prevalence (P-trend=0.007) and a moderate trend in skin lesion incidence (P-trend=0.07) associated with increased intake of steamed rice. This study suggests that rice intake may be a source of arsenic exposure beyond drinking water.

  18. Arsenic Methylation and Lung and Bladder Cancer in a Case-control Study in Northern Chile

    PubMed Central

    Melak, Dawit; Ferreccio, Catterina; Kalman, David; Parra, Roxana; Acevedo, Johanna; Pérez, Liliana; Cortés, Sandra; Smith, Allan H; Yuan, Yan; Liaw, Jane; Steinmaus, Craig

    2014-01-01

    In humans, ingested inorganic arsenic is metabolized to monomethylarsenic (MMA) then to dimethylarsenic (DMA), although this process is not complete in most people. The trivalent form of MMA is highly toxic in vitro and previous studies have identified associations between the proportion of urinary arsenic as MMA (%MMA) and several arsenic-related diseases. To date, however, relatively little is known about its role in lung cancer, the most common cause of arsenic-related death, or about its impacts on people drinking water with lower arsenic concentrations (e.g., <200 μg/L). In this study, urinary arsenic metabolites were measured in 94 lung and 117 bladder cancer cases and 347 population-based controls from areas in northern Chile with a wide range of drinking water arsenic concentrations. Lung cancer odds ratios adjusted for age, sex, and smoking by increasing tertiles of %MMA were 1.00, 1.91 (95% confidence interval (CI), 0.99–3.67), and 3.26 (1.76–6.04) (p-trend <0.001). Corresponding odds ratios for bladder cancer were 1.00, 1.81 (1.06–3.11), and 2.02 (1.15–3.54) (p-trend <0.001). In analyses confined to subjects only with arsenic water concentrations <200 μg/L (median=60 μg/L), lung and bladder cancer odds ratios for subjects in the upper tertile of %MMA compared to subjects in the lower two tertiles were 2.48 (1.08–5.68) and 2.37 (1.01–5.57), respectively. Overall, these findings provide evidence that inter-individual differences in arsenic metabolism may be an important risk factor for arsenic-related lung cancer, and may play a role in cancer risks among people exposed to relatively low arsenic water concentrations. PMID:24296302

  19. Arsenic exposure levels in relation to different working departments in a copper mining and smelting plant

    NASA Astrophysics Data System (ADS)

    Sun, Qingshan; Song, Yingli; Liu, Shengnan; Wang, Fei; Zhang, Lin; Xi, Shuhua; Sun, Guifan

    2015-10-01

    The investigation was carried out to evaluate arsenic exposure and the urine metabolite profiles of workers with different working departments, including administration (Group1), copper ore mining (Group2), copper ore grinding (Group3), electrolytic procession (Group4) and copper smelting (Group5) in a Copper mining and processing plant in China. Information about characteristics of each subject was obtained by questionnaire and inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) in urine were determined. The highest urinary levels of iAs, MMA and DMA all were found in the Group 5. Group 4 workers had a higher iAs% and a lower PMI compared to Group 3. The urinary total As (TAs) levels of 54.7% subjects exceeded 50 μg/g Cr, and the highest percentage (93.3%) was found in Group 5, smelters. The results of the present study indicate that workers in copper production plant indeed exposed to As, especially for smelters and workers of electrolytic process.

  20. Urinary and Dietary Analysis of 18,470 Bangladeshis Reveal a Correlation of Rice Consumption with Arsenic Exposure and Toxicity

    PubMed Central

    Melkonian, Stephanie; Argos, Maria; Hall, Megan N.; Chen, Yu; Parvez, Faruque; Pierce, Brandon; Cao, Hongyuan; Aschebrook-Kilfoy, Briseis; Ahmed, Alauddin; Islam, Tariqul; Slavcovich, Vesna; Gamble, Mary; Haris, Parvez I.; Graziano, Joseph H.; Ahsan, Habibul

    2013-01-01

    Background We utilized data from the Health Effects of Arsenic Longitudinal Study (HEALS) in Araihazar, Bangladesh, to evaluate the association of steamed rice consumption with urinary total arsenic concentration and arsenical skin lesions in the overall study cohort (N=18,470) and in a subset with available urinary arsenic metabolite data (N=4,517). Methods General linear models with standardized beta coefficients were used to estimate associations between steamed rice consumption and urinary total arsenic concentration and urinary arsenic metabolites. Logistic regression models were used to estimate prevalence odds ratios (ORs) and their 95% confidence intervals (CIs) for the associations between rice intake and prevalent skin lesions at baseline. Discrete time hazard models were used to estimate discrete time (HRs) ratios and their 95% CIs for the associations between rice intake and incident skin lesions. Results Steamed rice consumption was positively associated with creatinine-adjusted urinary total arsenic (β=0.041, 95% CI: 0.032-0.051) and urinary total arsenic with statistical adjustment for creatinine in the model (β=0.043, 95% CI: 0.032-0.053). Additionally, we observed a significant trend in skin lesion prevalence (P-trend=0.007) and a moderate trend in skin lesion incidence (P-trend=0.07) associated with increased intake of steamed rice. Conclusions This study suggests that rice intake may be a source of arsenic exposure beyond drinking water. PMID:24260455

  1. Biological and behavioral factors modify urinary arsenic metabolic profiles in a U.S. population.

    PubMed

    Hudgens, Edward E; Drobna, Zuzana; He, Bin; Le, X C; Styblo, Miroslav; Rogers, John; Thomas, David J

    2016-05-26

    Because some adverse health effects associated with chronic arsenic exposure may be mediated by methylated arsenicals, interindividual variation in capacity to convert inorganic arsenic into mono- and di-methylated metabolites may be an important determinant of risk associated with exposure to this metalloid. Hence, identifying biological and behavioral factors that modify an individual's capacity to methylate inorganic arsenic could provide insights into critical dose-response relations underlying adverse health effects. A total of 904 older adults (≥45 years old) in Churchill County, Nevada, who chronically used home tap water supplies containing up to 1850 μg of arsenic per liter provided urine and toenail samples for determination of total and speciated arsenic levels. Effects of biological factors (gender, age, body mass index) and behavioral factors (smoking, recent fish or shellfish consumption) on patterns of arsenicals in urine were evaluated with bivariate analyses and multivariate regression models. Relative contributions of inorganic, mono-, and di-methylated arsenic to total speciated arsenic in urine were unchanged over the range of concentrations of arsenic in home tap water supplies used by study participants. Gender predicted both absolute and relative amounts of arsenicals in urine. Age predicted levels of inorganic arsenic in urine and body mass index predicted relative levels of mono- and di-methylated arsenic in urine. Smoking predicted both absolute and relative levels of arsenicals in urine. Multivariate regression models were developed for both absolute and relative levels of arsenicals in urine. Concentration of arsenic in home tap water and estimated water consumption were strongly predictive of levels of arsenicals in urine as were smoking, body mass index, and gender. Relative contributions of arsenicals to urinary arsenic were not consistently predicted by concentrations of arsenic in drinking water supplies but were more consistently predicted by gender, body mass index, age, and smoking. These findings suggest that analyses of dose-response relations in arsenic-exposed populations should account for biological and behavioral factors that modify levels of inorganic and methylated arsenicals in urine. Evidence of significant effects of these factors on arsenic metabolism may also support mode of action studies in appropriate experimental models.

  2. DEVELOPMENT OF A NOVEL METHOD FOR ANALYSIS OF TRANSCRIPTIONAL CHANGES IN TRANSITIONAL EPITHELIUM FROM URINARY BLADDERS OF RATS EXPOSED TO DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory


    Development of a Novel Method for Analysis of Transcriptional Changes in Transitional Epithelium from Urinary Bladders of Rats Exposed to Drinking Water Disinfection By- products.

    Epidemiologic studies in human populations that drink chemically disinfected drinking wa...

  3. Urinary 8-hydroxydeoxyguanosine and urothelial carcinoma risk in low arsenic exposure area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, C.-J.; Huang, C.-J.; Pu, Y.-S.

    2008-01-01

    Arsenic is a well-documented human carcinogen and is known to cause oxidative stress in cultured cells and animals. A hospital-based case-control study was conducted to evaluate the relationship among the levels of urinary 8-hydroxydeoxyguanosine (8-OHdG), the arsenic profile, and urothelial carcinoma (UC). Urinary 8-OHdG was measured by using high-sensitivity enzyme-linked immunosorbent assay (ELISA) kits. The urinary species of inorganic arsenic and their metabolites were analyzed by high-performance liquid chromatography (HPLC) and hydride generator-atomic absorption spectrometry (HG-AAS). This study showed that the mean urinary concentration of total arsenics was significantly higher, at 37.67 {+-} 2.98 {mu}g/g creatinine, for UC patients thanmore » for healthy controls of 21.10 {+-} 0.79 {mu}g/g creatinine (p < 0.01). Urinary 8-OHdG levels correlated with urinary total arsenic concentrations (r = 0.19, p < 0.01). There were significantly higher 8-OHdG levels, of 7.48 {+-} 0.97 ng/mg creatinine in UC patients, compared to healthy controls of 5.95 {+-} 0.21 ng/mg creatinine. Furthermore, female UC patients had higher 8-OHdG levels of 9.22 {+-} 0.75 than those of males at 5.76 {+-} 0.25 ng/mg creatinine (p < 0.01). Multiple linear regression analyses revealed that high urinary 8-OHdG levels were associated with increased total arsenic concentrations, inorganic arsenite, monomethylarsonic acid (MMA), and dimethylarsenate (DMA) as well as the primary methylation index (PMI) even after adjusting for age, gender, and UC status. The results suggest that oxidative DNA damage was associated with arsenic exposure, even at low urinary level of arsenic.« less

  4. A Potential Synergy between Incomplete Arsenic Methylation Capacity and Demographic Characteristics on the Risk of Hypertension: Findings from a Cross-Sectional Study in an Arsenic-Endemic Area of Inner Mongolia, China

    PubMed Central

    Li, Yongfang; Wang, Da; Li, Xin; Zheng, Quanmei; Sun, Guifan

    2015-01-01

    Inefficient arsenic methylation capacity has been associated with various health hazards induced by arsenic. In this study, we aimed to explore the interaction effect of lower arsenic methylation capacity with demographic characteristics on hypertension risk. A total of 512 adult participants (126 hypertension subjects and 386 non-hypertension subjects) residing in an arsenic-endemic area in Inner Mongolia, China were included. Urinary levels of inorganic arsenic (iAs), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) were measured for all subjects. The percentage of urinary arsenic metabolites (iAs%, MMA%, and DMA%), primary methylation index (PMI) and secondary methylation index (SMI) were calculated to assess arsenic methylation capacity of individuals. Results showed that participants carrying a lower methylation capacity, which is characterized by lower DMA% and SMI, have a higher risk of hypertension compared to their corresponding references after adjusting for multiple confounders. A potential synergy between poor arsenic methylation capacity (higher MMA%, lower DMA% and SMI) and older age or higher BMI were detected. The joint effects of higher MMA% and lower SMI with cigarette smoking also suggest some evidence of synergism. The findings of present study indicated that inefficient arsenic methylation capacity was associated with hypertension and the effect might be enhanced by certain demographic factors. PMID:25837203

  5. A concurrent exposure to arsenic and fluoride from drinking water in Chihuahua, Mexico.

    PubMed

    González-Horta, Carmen; Ballinas-Casarrubias, Lourdes; Sánchez-Ramírez, Blanca; Ishida, María C; Barrera-Hernández, Angel; Gutiérrez-Torres, Daniela; Zacarias, Olga L; Saunders, R Jesse; Drobná, Zuzana; Mendez, Michelle A; García-Vargas, Gonzalo; Loomis, Dana; Stýblo, Miroslav; Del Razo, Luz M

    2015-04-24

    Inorganic arsenic (iAs) and fluoride (F-) are naturally occurring drinking water contaminants. However, co-exposure to these contaminants and its effects on human health are understudied. The goal of this study was examined exposures to iAs and F- in Chihuahua, Mexico, where exposure to iAs in drinking water has been associated with adverse health effects. All 1119 eligible Chihuahua residents (>18 years) provided a sample of drinking water and spot urine samples. iAs and F- concentrations in water samples ranged from 0.1 to 419.8 µg As/L and from 0.05 to 11.8 mg F-/L. Urinary arsenic (U-tAs) and urinary F- (U-F-) levels ranged from 0.5 to 467.9 ng As/mL and from 0.1 to 14.4 µg F-/mL. A strong positive correlation was found between iAs and F- concentrations in drinking water (rs = 0.741). Similarly, U-tAs levels correlated positively with U-F- concentrations (rs = 0.633). These results show that Chihuahua residents exposed to high iAs concentrations in drinking water are also exposed to high levels of F-, raising questions about possible contribution of F- exposure to the adverse effects that have so far been attributed only to iAs exposure. Thus, investigation of possible interactions between iAs and F- exposures and its related health risks deserves immediate attention.

  6. Transient and permanent changes in DNA methylation patterns in inorganic arsenic-mediated epithelial-to-mesenchymal transition

    PubMed Central

    Eckstein, Meredith; Rea, Matthew; Fondufe-Mittendorf, Yvonne N.

    2017-01-01

    Chronic low dose inorganic arsenic exposure causes cells to take on an epithelial-to-mesenchymal phenotype, which is a crucial process in carcinogenesis. Inorganic arsenic is not a mutagen and thus epigenetic alterations have been implicated in this process. Indeed, during the epithelial-to-mesenchymal transition, morphologic changes to cells correlate with changes in chromatin structure and gene expression, ultimately driving this process. However, studies on the effects of inorganic arsenic exposure/withdrawal on the epithelial-to-mesenchymal transition and the impact of epigenetic alterations in this process are limited. In this study we used high-resolution microarray analysis to measure the changes in DNA methylation in cells undergoing inorganic arsenic-induced epithelial-to-mesenchymal transition, and on the reversal of this process, after removal of the inorganic arsenic exposure. We found that cells exposed to chronic, low-dose inorganic arsenic exposure showed 30,530 sites were differentially methylated, and with inorganic arsenic withdrawal several differential methylated sites were reversed, albeit not completely. Furthermore, these changes in DNA methylation mainly correlated with changes in gene expression at most sites tested but not at all. This study suggests that DNA methylation changes on gene expression are not clear-cut and provide a platform to begin to uncover the relationship between DNA methylation and gene expression, specifically within the context of inorganic arsenic treatment. PMID:28336213

  7. Airborne arsenic and urinary excretion of arsenic metabolites during boiler cleaning operations in a Slovak coal-fired power plant.

    PubMed Central

    Yager, J W; Hicks, J B; Fabianova, E

    1997-01-01

    Little information is available on the relationship between occupational exposure to inorganic arsenic in coal fly ash and urinary excretion of arsenic metabolites. This study ws undertaken in a coal-fired power plant in Slovakia during a routine maintenance outage. Arsenic was measured in the breathing zone of workers during 5 consecutive workdays, and urine samples were obtained for analysis of arsenic metabolites--inorganic arsenic (Asi), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA)--prior to the start of each shift. Results from a small number of cascade impactor air samples indicated that approximately 90% of total particle mass and arsenic was present in particle size fractions >/= 3.5 micron. The 8-hr time-weighted average (TWA) mean arsenic air concentration was 48.3 microg/m3 (range 0.17-375.2) and the mean sum of urinary arsenic (SigmaAs) metabolites was 16.9 microg As/g creatinine (range 2.6-50.8). For an 8-hr TWA of 10 microg/m3 arsenic from coal fly ash, the predicted mean concentration of the SigmaAs urinary metabolites was 13.2 microg As/G creatinine [95% confidence interval (CI), 10.1-16.3). Comparisons with previously published studies of exposure to arsenic trioxide vapors and dusts in copper smelters suggest that bioavailability of arsenic from airborne coal fly ash (as indicated by urinary excretion) is about one-third that seen in smelters and similar settings. Arsenic compound characteristics, matrix composition, and particle size distribution probably play major roles in determining actual uptake of airborne arsenic. Images Figure 1. A Figure 1. B Figure 2. PMID:9347899

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Ya-Tang; Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taiwan; Genomics Research Center, Academia Sinica, Taiwan

    Arsenic ingestion has been linked to increasing global prevalence of and mortality from cardiovascular disease (CVD); arsenic can be removed from drinking water to reduce related health effects. Lactate dehydrogenase (LDH) is used for the evaluation of acute arsenic toxicity in vivo and in vitro, but it is not validated for the evaluation of long-term, chronic arsenic exposure. The present study examined the long-term effect of chronic arsenic exposure on CVD and serum LDH levels, after consideration of arsenic metabolism capacity. A total of 380 subjects from an arseniasis-endemic area and 303 from a non-endemic area of southwestern Taiwan weremore » recruited in 2002. Various urinary arsenic species were analyzed using high-performance liquid chromatography (HPLC) and hydride generation systems. Fasting serum was used for quantitative determination of the total LDH activity. A significant dose–response relationship was observed between arsenic exposure and LDH elevation, independent of urinary arsenic profiles (P < 0.001). Furthermore, abnormal LDH elevation was associated with CVD mortality after adjustment for Framingham risk scores for 10-year CVD and arsenic exposure (hazard ratio, 3.98; 95% confidence interval, 1.07–14.81). LDH was elevated in subjects with arsenic exposure in a dose-dependent manner. LDH is a marker of arsenic toxicity associated with CVD mortality. Results of this study have important implications for use in ascertaining long-term arsenic exposure risk of CVD. -- Highlights: ► We showed that arsenic exposure was correlated with LDH elevation. ► LDH elevation was related to arsenic methylation capacity. ► Abnormal LDH elevation can be a marker of susceptibility to CVD mortality.« less

  9. Polymorphic trial in oxidative damage of arsenic exposed Vietnamese.

    PubMed

    Fujihara, Junko; Soejima, Mikiko; Yasuda, Toshihiro; Koda, Yoshiro; Kunito, Takashi; Iwata, Hisato; Tanabe, Shinsuke; Takeshita, Haruo

    2011-10-15

    Arsenic causes DNA damage and changes the cellular capacity for DNA repair. Genes in the base excision repair (BER) pathway influence the generation and repair of oxidative lesions. Single nucleotide polymorphisms (SNPs) in human 8-oxoguanine DNA glycosylase (hOGG1) Ser326Cys; apurinic/apyrimidinic endonuclease (APE1) Asp148Glu; X-ray and repair and cross-complementing group 1 (XRCC1) Arg280His and Arg399Gln in the BER genes were analyzed, and the relationship between these 4 SNPs and the urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentrations of 100 Vietnamese population exposed to arsenic was investigated. Individuals with hOGG1 326Cys/Cys showed significantly higher urinary 8-OHdG concentrations than did those with 326 Ser/Cys and Ser/Ser. As for APE1 Asp148Glu, heterozygous subjects showed significantly higher urinary 8-OHdG concentrations than did those homozygous for Asp/Asp. Moreover, global ethnic comparison of the allelic frequencies of the 4SNPs was performed in 10 population and previous reported data. The mutant allele frequencies of hOGG1 Ser326Cys in the Asian populations were higher than those in the African and Caucasian populations. As for APE1 Asp148Glu, Caucasians showed higher mutant frequencies than those shown by African and Asian populations. Among Asian populations, the Bangladeshi population showed relatively higher mutant allele frequencies of the APE1 Asp148Glu polymorphism. This study is the first to demonstrate the existence of genetic heterogeneity in a worldwide distribution of SNPs (hOGG1 Ser326Cys, APE1 Asp148Glu, XRCC1 Arg280His, and XRCC1 Arg399Gln) in the BER genes. Published by Elsevier Inc.

  10. Genotoxicity surveillance programme in workers dismantling World War I chemical ammunition.

    PubMed

    Mateuca, R A; Carton, C; Roelants, M; Roesems, S; Lison, D; Kirsch-Volders, M

    2010-06-01

    To evaluate the effectiveness of personal protective measures in a dismantling plant for chemical weapons from World War I of the Belgian Defence. Seventeen NIOSH level B-equipped plant workers exposed to arsenic trichloride (AsCl(3)) in combination with phosgene or hydrogen cyanide (HCN) were compared to 24 NIOSH level C-protected field workers occasionally exposed to genotoxic chemicals (including AsCl(3)-phosgene/HCN) when collecting chemical ammunition, and 19 matched referents. Chromosomal aberrations (CA), micronuclei (MNCB and MNMC), sister chromatid exchanges (SCE) and high frequency cells (HFC) were analysed in peripheral blood lymphocytes. Urinary arsenic levels and genetic polymorphisms in major DNA repair enzymes (hOGG1(326), XRCC1(399), XRCC3(241)) were also assessed. SCE and HFC levels were significantly higher in plant-exposed versus referent subjects, but MNCB and MNMC were not different. MNCB, SCE and HFC levels were significantly higher and MNMC levels significantly lower in field-exposed workers versus referents. AsCl(3) exposure was not correlated with genotoxicity biomarkers. Protective measures for plant-exposed workers appear adequate, but protection for field-exposed individuals could be improved.

  11. Correlation of arsenic exposure through drinking groundwater and urinary arsenic excretion among adults in Pakistan.

    PubMed

    Ahmed, Mubashir; Fatmi, Zafar; Ali, Arif

    2014-01-01

    Long-term exposure to arsenic has been associated with manifestation of skin lesions (melanosis/keratosis) and increased risk of internal cancers (lung/bladder). The objective of the study described here was to determine the relationship between exposure of arsenic through drinking groundwater and urinary arsenic excretion among adults > or =15 years of age living in Khairpur district, Pakistan. Total arsenic was determined in drinking groundwater and in spot urine samples of 465 randomly selected individuals through hydride generation-atomic absorption spectrometry. Spearman's rank correlation coefficient was calculated between arsenic in drinking groundwater and arsenic excreted in urine. The median arsenic concentration in drinking water was 2.1 microg/L (range: 0.1-350), and in urine was 28.5 microg/L (range: 0.1-848). Positive correlation was found between total arsenic in drinking water and in urine (r = .52, p < .01). Urinary arsenic may be used as a biomarker of arsenic exposure through drinking water.

  12. INFLUENCE OF DIETARY ARSENIC ON URINARY ARSENIC METABOLITE EXCRETION

    EPA Science Inventory

    Influence of Dietary Arsenic on Urinary Arsenic Metabolite Excretion

    Cara L. Carty, M.S., Edward E. Hudgens, B.Sc., Rebecca L. Calderon, Ph.D., M.S.P.H., Richard Kwok, M.S.P.H., Epidemiology and Biomarkers Branch/HSD, NHEERL/US EPA; David J. Thomas, Ph.D., Pharmacokinetics...

  13. Human exposure to arsenic from drinking water in Vietnam.

    PubMed

    Agusa, Tetsuro; Trang, Pham Thi Kim; Lan, Vi Mai; Anh, Duong Hong; Tanabe, Shinsuke; Viet, Pham Hung; Berg, Michael

    2014-08-01

    Vietnam is an agricultural country with a population of about 88 million, with some 18 million inhabitants living in the Red River Delta in Northern Vietnam. The present study reports the chemical analyses of 68 water and 213 biological (human hair and urine) samples conducted to investigate arsenic contamination in tube well water and human arsenic exposure in four districts (Tu Liem, Dan Phuong, Ly Nhan, and Hoai Duc) in the Red River Delta. Arsenic concentrations in groundwater in these areas were in the range of <1 to 632 μg/L, with severe contamination found in the communities Ly Nhan, Hoai Duc, and Dan Phuong. Arsenic concentrations were markedly lowered in water treated with sand filters, except for groundwater from Hoai Duc. Human hair samples had arsenic levels in the range of 0.07-7.51 μg/g, and among residents exposed to arsenic levels ≥50 μg/L, 64% of them had hair arsenic concentrations higher than 1 μg/g, which is a level that can cause skin lesions. Urinary arsenic concentrations were 4-435 μg/g creatinine. Concentrations of arsenic in hair and urine increased significantly with increasing arsenic content in drinking water, indicating that drinking water is a significant source of arsenic exposure for these residents. The percentage of inorganic arsenic (IA) in urine decreased with age, whereas the opposite trend was observed for monomethylarsonic acid (MMA) in urine. Significant co-interactions of age and arsenic exposure status were also detected for concentrations of arsenic in hair and the sum of IA, MMA, and dimethylarsinic acid (DMA) in urine and %MMA. In summary, this study demonstrates that a considerable proportion of the Vietnamese population is exposed to arsenic levels of chronic toxicity, even if sand filters reduce exposure in many households. Health problems caused by arsenic ingestion through drinking water are increasingly reported in Vietnam. © 2013 Elsevier B.V. All rights reserved.

  14. Walk-through survey report: Control technology for integrated circuit fabrication, Xerox Corporation, El Segundo, California

    NASA Astrophysics Data System (ADS)

    Mihlan, G. J.; Ungers, L. J.; Smith, R. K.; Mitchell, R. I.; Jones, J. H.

    1983-05-01

    A preliminary control technology assessment survey was conducted at the facility which manufactures N-channel metal oxide semiconductor (NMOS) integrated circuits. The facility has industrial hygiene review procedures for evaluating all new and existing process equipment. Employees are trained in safety, use of personal protective equipment, and emergency response. Workers potentially exposed to arsenic are monitored for urinary arsenic levels. The facility should be considered a candidate for detailed study based on the diversity of process operations encountered and the use of state-of-the-art technology and process equipment.

  15. Methylation of inorganic arsenic in different mammalian species and population groups.

    PubMed

    Vahter, M

    1999-01-01

    Thousands of people in different parts of the world are exposed to arsenic via drinking water or contaminated soil or food. The high general toxic of arsenic has been known for centuries, and research during the last decades has shown that arsenic is a potent human carcinogen. However, most experimental cancer studies have failed to demonstrate carcinogenicity in experimental animals, indicating marked variation in sensitivity towards arsenic toxicity between species. It has also been suggested that there is a variation in susceptibility among human individuals. One reason for such variability in toxic response may be variation in metabolism. Inorganic arsenic is methylated in humans as well as animals and micro-organisms, but there are considerable differences between species and individuals. In many, but not all, mammalian species, inorganic arsenic is methylated to methylarsonic acid (MMA) and dimethylarsinic acid (DMA), which are more rapidly excreted in urine than is the inorganic arsenic, especially the trivalent form (AsIII, arsenite) which is highly reactive with tissue components. Absorbed arsenate (AsV) is reduced to trivalent arsenic (AsIII) before the methyl groups are attached. It has been estimated that as much as 50-70% of absorbed AsV is rapidly reduced to AsIII, a reaction which seems to be common for most species. In most experimental animal species, DMA is the main metabolite excreted in urine. Compared to human subjects, very little MMA is produced. However, the rate of methylation varies considerably between species, and several species, e.g. the marmoset monkey and the chimpanzee have been shown not to methylate inorganic arsenic at all. In addition, the marmoset monkey accumulates arsenic in the liver. The rat, on the other hand, has an efficient methylation of arsenic but the formed DMA is to a large extent accumulated in the red blood cells. As a result, the rat shows a low rate of excretion of arsenic. In both human subjects and rodents exposed to DMA, about 5% of the dose is excreted in the urine as trimethylarsine oxide. It is obvious from studies on human volunteers exposed to specified doses of inorganic arsenic that the rate of excretion increases with the methylation efficiency, and there are large inter-individual variations in the methylation of arsenic. Recent studies on people exposed to arsenic via drinking water in northern Argentina have shown unusually low urinary excretion of MMA. Furthermore, children had a lower degree of methylation of arsenic than adults. Some studies indicate a lower degree of arsenic methylation in men than in women, especially during pregnancy. Whether the observed differences in methylation of arsenic are associated with variations in the susceptibility of arsenic remains to be investigated.

  16. A COMPARISON OF URINARY ARSENIC SPECIATION VIA DIRECT NEBULIZATION AND ON-LINE PHOTOOXIDATION-HYDRIDE GENERATION WITH DETECTION BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY

    EPA Science Inventory

    Arsenic speciation continues to be important in assessing human and environmental exposure risk. Urinary arsenic analysis provides information on recent arsenic exposure. In this study, two sample introduction pathways: direct nebulization (DN) and hydride generation (HG) were ut...

  17. XRCC1 Arg194Trp and Arg399Gln polymorphisms and arsenic methylation capacity are associated with urothelial carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, Chien-I; Huang, Ya-Li; Chen, Wei-Jen

    The association between DNA repair gene polymorphisms and bladder cancer has been widely studied. However, few studies have examined the correlation between urothelial carcinoma (UC) and arsenic or its metabolites. The aim of this study was to examine the association between polymorphisms of the DNA repair genes, XRCC1 Arg194Trp, XRCC1 Arg399Gln, XRCC3 Thr241Met, and XPD Lys751Gln, with urinary arsenic profiles and UC. To this end, we conducted a hospital-based case–control study with 324 UC patients and 647 age- and gender-matched non-cancer controls. Genomic DNA was used to examine the genotype of XRCC1 Arg194Trp, XRCC1 Arg399Gln, XRCC3 Thr241Met, and XPD Lys751Glnmore » by PCR-restriction fragment length polymorphism analysis (PCR-RFLP). Urinary arsenic profiles were measured by high performance liquid chromatography (HPLC) linked with hydride generator and atomic absorption spectrometry. The XRCC1 399 Gln/Gln and 194 Arg/Trp and Trp/Trp genotypes were significantly related to UC, and the odds ratio (OR) and 95% confidence interval (95%CI) were 1.68 (1.03–2.75) and 0.66 (0.48–0.90), respectively. Participants with higher total urinary arsenic levels, a higher percentage of inorganic arsenic (InAs%) and a lower percentage of dimethylarsinic acid (DMA%) had a higher OR of UC. Participants carrying XRCC1 risk diplotypes G-C/G-C, A-C/A-C, and A-T/G-T, and who had higher total arsenic levels, higher InAs%, or lower DMA% compared to those with other XRCC1 diplotypes had a higher OR of UC. Our results suggest that the XRCC1 399 Gln/Gln and 194 Arg/Arg DNA repair genes play an important role in poor arsenic methylation capacity, thereby increasing the risk of UC in non-obvious arsenic exposure areas. - Highlights: • The XRCC1 399Gln/Gln genotype was significantly associated with increased OR of UC. • The XRCC1 194 Arg/Trp and Trp/Trp genotype had a significantly decreased OR of UC. • Combined effect of the XRCC1 genotypes and poor arsenic methylation capacity on UC.« less

  18. Transient and permanent changes in DNA methylation patterns in inorganic arsenic-mediated epithelial-to-mesenchymal transition.

    PubMed

    Eckstein, Meredith; Rea, Matthew; Fondufe-Mittendorf, Yvonne N

    2017-09-15

    Chronic low dose inorganic arsenic exposure causes cells to take on an epithelial-to-mesenchymal phenotype, which is a crucial process in carcinogenesis. Inorganic arsenic is not a mutagen and thus epigenetic alterations have been implicated in this process. Indeed, during the epithelial-to-mesenchymal transition, morphologic changes to cells correlate with changes in chromatin structure and gene expression, ultimately driving this process. However, studies on the effects of inorganic arsenic exposure/withdrawal on the epithelial-to-mesenchymal transition and the impact of epigenetic alterations in this process are limited. In this study we used high-resolution microarray analysis to measure the changes in DNA methylation in cells undergoing inorganic arsenic-induced epithelial-to-mesenchymal transition, and on the reversal of this process, after removal of the inorganic arsenic exposure. We found that cells exposed to chronic, low-dose inorganic arsenic exposure showed 30,530 sites were differentially methylated, and with inorganic arsenic withdrawal several differential methylated sites were reversed, albeit not completely. Furthermore, these changes in DNA methylation mainly correlated with changes in gene expression at most sites tested but not at all. This study suggests that DNA methylation changes on gene expression are not clear-cut and provide a platform to begin to uncover the relationship between DNA methylation and gene expression, specifically within the context of inorganic arsenic treatment. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Arsenic methylation and lung and bladder cancer in a case-control study in northern Chile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melak, Dawit; Ferreccio, Catterina; Kalman, David

    2014-01-15

    In humans, ingested inorganic arsenic is metabolized to monomethylarsenic (MMA) then to dimethylarsenic (DMA), although this process is not complete in most people. The trivalent form of MMA is highly toxic in vitro and previous studies have identified associations between the proportion of urinary arsenic as MMA (%MMA) and several arsenic-related diseases. To date, however, relatively little is known about its role in lung cancer, the most common cause of arsenic-related death, or about its impacts on people drinking water with lower arsenic concentrations (e.g., < 200 μg/L). In this study, urinary arsenic metabolites were measured in 94 lung andmore » 117 bladder cancer cases and 347 population-based controls from areas in northern Chile with a wide range of drinking water arsenic concentrations. Lung cancer odds ratios adjusted for age, sex, and smoking by increasing tertiles of %MMA were 1.00, 1.91 (95% confidence interval (CI), 0.99–3.67), and 3.26 (1.76–6.04) (p-trend < 0.001). Corresponding odds ratios for bladder cancer were 1.00, 1.81 (1.06–3.11), and 2.02 (1.15–3.54) (p-trend < 0.001). In analyses confined to subjects only with arsenic water concentrations < 200 μg/L (median = 60 μg/L), lung and bladder cancer odds ratios for subjects in the upper tertile of %MMA compared to subjects in the lower two tertiles were 2.48 (1.08–5.68) and 2.37 (1.01–5.57), respectively. Overall, these findings provide evidence that inter-individual differences in arsenic metabolism may be an important risk factor for arsenic-related lung cancer, and may play a role in cancer risks among people exposed to relatively low arsenic water concentrations. - Highlights: • Urine arsenic metabolites were measured in cancer cases and controls from Chile. • Higher urine %MMA values were associated with increased lung and bladder cancer. • %MMA-cancer associations were seen at drinking water arsenic levels < 200 μg/L.« less

  20. Associations between arsenic (+3 oxidation state) methyltransferase (AS3MT) and N-6 adenine-specific DNA methyltransferase 1 (N6AMT1) polymorphisms, arsenic metabolism, and cancer risk in a chilean population.

    PubMed

    de la Rosa, Rosemarie; Steinmaus, Craig; Akers, Nicholas K; Conde, Lucia; Ferreccio, Catterina; Kalman, David; Zhang, Kevin R; Skibola, Christine F; Smith, Allan H; Zhang, Luoping; Smith, Martyn T

    2017-07-01

    Inter-individual differences in arsenic metabolism have been linked to arsenic-related disease risks. Arsenic (+3) methyltransferase (AS3MT) is the primary enzyme involved in arsenic metabolism, and we previously demonstrated in vitro that N-6 adenine-specific DNA methyltransferase 1 (N6AMT1) also methylates the toxic inorganic arsenic (iAs) metabolite, monomethylarsonous acid (MMA), to the less toxic dimethylarsonic acid (DMA). Here, we evaluated whether AS3MT and N6AMT1 gene polymorphisms alter arsenic methylation and impact iAs-related cancer risks. We assessed AS3MT and N6AMT1 polymorphisms and urinary arsenic metabolites (%iAs, %MMA, %DMA) in 722 subjects from an arsenic-cancer case-control study in a uniquely exposed area in northern Chile. Polymorphisms were genotyped using a custom designed multiplex, ligation-dependent probe amplification (MLPA) assay for 6 AS3MT SNPs and 14 tag SNPs in the N6AMT1 gene. We found several AS3MT polymorphisms associated with both urinary arsenic metabolite profiles and cancer risk. For example, compared to wildtypes, individuals carrying minor alleles in AS3MT rs3740393 had lower %MMA (mean difference = -1.9%, 95% CI: -3.3, -0.4), higher %DMA (mean difference = 4.0%, 95% CI: 1.5, 6.5), and lower odds ratios for bladder (OR = 0.3; 95% CI: 0.1-0.6) and lung cancer (OR = 0.6; 95% CI: 0.2-1.1). Evidence of interaction was also observed for both lung and bladder cancer between these polymorphisms and elevated historical arsenic exposures. Clear associations were not seen for N6AMT1. These results are the first to demonstrate a direct association between AS3MT polymorphisms and arsenic-related internal cancer risk. This research could help identify subpopulations that are particularly vulnerable to arsenic-related disease. Environ. Mol. Mutagen. 58:411-422, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Urinary arsenic profiles and the risks of cancer mortality: A population-based 20-year follow-up study in arseniasis-endemic areas in Taiwan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Chi-Jung; Department of Medical Research, China Medical Hospital, Taichung, Taiwan; Huang, Ya-Li

    2013-04-15

    Few studies investigated the association between chronic arsenic exposure and the mortality of cancers by estimating individual urinary arsenic methylation profiles. Therefore, we compared with the general population in Taiwan to calculate the standardized mortality ratio (SMR) in arseniasis-endemic area of Taiwan from 1996 to 2010 and evaluated the dose-response relationships between environmental arsenic exposure indices or urinary arsenic profiles and the mortality of cause-specific cancer. A cohort of 1563 residents was conducted and collected their urine sample and information regarding arsenic exposure from a questionnaire. All-cause death was identified using the National Death Registry of Taiwan. Urinary arsenic profilesmore » were measured using high performance liquid chromatography–hydride generator–atomic absorption spectrometry. We used Cox proportional hazard models to evaluate the mortality risks. In results, 193 all-site cancer deaths, and 29, 71, 43 deaths respectively for liver, lung and bladder cancers were ascertained. The SMRs were significantly high in arseniasis-endemic areas for liver, lung, and bladder cancers. People with high urinary InAs% or low DMA% or low secondary methylation index (SMI) were the most likely to suffer bladder cancer after adjusting other risk factors. Even stopping exposure to arsenic from the artesian well water, the mortality rates of the residents were higher than general population. Finally, urinary InAs%, DMA% and SMI could be the potential biomarkers to predict the mortality risk of bladder cancer. -- Highlights: ► The SMRs were significantly high in arseniasis-endemic areas for liver, lung, and bladder cancers. ► People with high urinary InAs% were the most likely to suffer bladder cancer. ► People with low DMA% or low SMI were the most likely to suffer bladder cancer.« less

  2. Arsenic Metabolites and Methylation Capacity Among Individuals Living in a Rural Area with Endemic Arseniasis in Inner Mongolia, China.

    PubMed

    Wei, Binggan; Yu, Jiangping; Li, Hairong; Yang, Linsheng; Xia, Yajuan; Wu, Kegong; Gao, Jianwei; Guo, Zhiwei; Cui, Na

    2016-04-01

    More than 0.3 million individuals are subject to chronic exposure to arsenic via their drinking water in Inner Mongolia, China. To determine arsenic methylation capacity profiles for such individuals, concentrations of urinary arsenic metabolites were measured for 548 subjects using high-performance liquid chromatography and a hydride generator combined with inductively coupled plasma-mass spectrometry. Mean urinary concentrations of dimethylarsonic acid (DMA), monomethylarsonic acid (MMA), inorganic arsenic (iAs), and total arsenic (TAs) were 200.50, 46.71, 52.96, and 300.17 μg/L, respectively. The %iAs, %DMA, and %MMA were 15.98, 69.72, and 14.29%. Mean urinary %iAs and %MMA were higher in males, while urinary %DMA was higher in females. There was a strong positive correlation between %iAs and %MMA, with negative correlations between %iAs and %DMA, and %iAs and %MMA. In addition, %iAs and %MMA were positively associated with total arsenic in drinking water (WAs), while %DMA was negatively related with WAs. Regression analysis indicated that the primary methylation index (PMI) and secondary methylation index (SMI) generally decreased with increasing WAs. Females had a higher arsenic methylation capacity compared to males. Younger subjects had lower primary arsenic methylation capacity. However, the secondary arsenic methylation capacity was hardly affected by age. Moreover, both primary and secondary arsenic methylation capacities were negatively related to WAs.

  3. A Concurrent Exposure to Arsenic and Fluoride from Drinking Water in Chihuahua, Mexico

    PubMed Central

    González-Horta, Carmen; Ballinas-Casarrubias, Lourdes; Sánchez-Ramírez, Blanca; Ishida, María C.; Barrera-Hernández, Angel; Gutiérrez-Torres, Daniela; Zacarias, Olga L.; Saunders, R. Jesse; Drobná, Zuzana; Mendez, Michelle A.; García-Vargas, Gonzalo; Loomis, Dana; Stýblo, Miroslav; Del Razo, Luz M.

    2015-01-01

    Inorganic arsenic (iAs) and fluoride (F−) are naturally occurring drinking water contaminants. However, co-exposure to these contaminants and its effects on human health are understudied. The goal of this study was examined exposures to iAs and F− in Chihuahua, Mexico, where exposure to iAs in drinking water has been associated with adverse health effects. All 1119 eligible Chihuahua residents (>18 years) provided a sample of drinking water and spot urine samples. iAs and F− concentrations in water samples ranged from 0.1 to 419.8 µg As/L and from 0.05 to 11.8 mg F−/L. Urinary arsenic (U-tAs) and urinary F− (U-F−) levels ranged from 0.5 to 467.9 ng As/mL and from 0.1 to 14.4 µg F−/mL. A strong positive correlation was found between iAs and F− concentrations in drinking water (rs = 0.741). Similarly, U-tAs levels correlated positively with U-F− concentrations (rs = 0.633). These results show that Chihuahua residents exposed to high iAs concentrations in drinking water are also exposed to high levels of F−, raising questions about possible contribution of F− exposure to the adverse effects that have so far been attributed only to iAs exposure. Thus, investigation of possible interactions between iAs and F− exposures and its related health risks deserves immediate attention. PMID:25918912

  4. Association between Arsenic Exposure from Drinking Water and Longitudinal Change in Blood Pressure among HEALS Cohort Participants.

    PubMed

    Jiang, Jieying; Liu, Mengling; Parvez, Faruque; Wang, Binhuan; Wu, Fen; Eunus, Mahbub; Bangalore, Sripal; Newman, Jonathan D; Ahmed, Alauddin; Islam, Tariqul; Rakibuz-Zaman, Muhammad; Hasan, Rabiul; Sarwar, Golam; Levy, Diane; Slavkovich, Vesna; Argos, Maria; Scannell Bryan, Molly; Farzan, Shohreh F; Hayes, Richard B; Graziano, Joseph H; Ahsan, Habibul; Chen, Yu

    2015-08-01

    Cross-sectional studies have shown associations between arsenic exposure and prevalence of high blood pressure; however, studies examining the relationship of arsenic exposure with longitudinal changes in blood pressure are lacking. We evaluated associations of arsenic exposure in relation to longitudinal change in blood pressure in 10,853 participants in the Health Effects of Arsenic Longitudinal Study (HEALS). Arsenic was measured in well water and in urine samples at baseline and in urine samples every 2 years after baseline. Mixed-effect models were used to estimate the association of baseline well and urinary creatinine-adjusted arsenic with annual change in blood pressure during follow-up (median, 6.7 years). In the HEALS population, the median water arsenic concentration at baseline was 62 μg/L. Individuals in the highest quartile of baseline water arsenic or urinary creatinine-adjusted arsenic had a greater annual increase in systolic blood pressure compared with those in the reference group (β = 0.48 mmHg/year; 95% CI: 0.35, 0.61, and β = 0.43 mmHg/year; 95% CI: 0.29, 0.56 for water arsenic and urinary creatinine-adjusted arsenic, respectively) in fully adjusted models. Likewise, individuals in the highest quartile of baseline arsenic exposure had a greater annual increase in diastolic blood pressure for water arsenic and urinary creatinine-adjusted arsenic, (β = 0.39 mmHg/year; 95% CI: 0.30, 0.49, and β = 0.45 mmHg/year; 95% CI: 0.36, 0.55, respectively) compared with those in the lowest quartile. Our findings suggest that long-term arsenic exposure may accelerate age-related increases in blood pressure. These findings may help explain associations between arsenic exposure and cardiovascular disease.

  5. Metals exposure and risk of small-for-gestational age birth in a Canadian birth cohort: The MIREC study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Shari; Arbuckle, Tye E., E-mail: Tye.Arbuckle@hc-sc.gc.ca; Fisher, Mandy

    Background: Lead, mercury, cadmium and arsenic are some of the most common toxic metals to which Canadians are exposed. The effect of exposure to current low levels of toxic metals on fetal growth restriction is unknown. Objective: The aim of this study was to examine relationships between exposure to lead, mercury, cadmium and arsenic during pregnancy, and risk of small for gestational age (SGA) birth. Methods: Lead, mercury, cadmium and arsenic levels were measured in blood samples from the first and third trimesters in 1835 pregnant women from across Canada. Arsenic species in first trimester urine were also assessed. Relativemore » risks and 95% confidence intervals were estimated using log binomial multivariate regression. Important covariates including maternal age, parity, pre-pregnancy BMI, and smoking, were considered in the analysis. An exploratory analysis was performed to examine potential effect modification of these relationships by single nucleotide polymorphisms (SNPs) in GSTP1 and GSTO1 genes. Results: No association was found between blood lead, cadmium or arsenic and risk for SGA. We observed an increased risk for SGA for the highest compared to the lowest tertile of exposure for mercury (>1.6 µg/L, RR=1.56.; 95% CI=1.04–2.58) and arsenobetaine (>2.25 µg/L, RR=1.65; 95% CI=1.10–2.47) after adjustment for the effects of parity and smoking. A statistically significant interaction was observed in the relationship between dimethylarsinic acid (DMA) levels in urinary arsenic and SGA between strata of GSTO1 A104A (p for interaction=0.02). A marginally significant interaction was observed in the relationship between blood lead and SGA between strata of GSTP1 A114V (p for interaction=0.06). Conclusions: These results suggest a small increase in risk for SGA in infants born to women exposed to mercury and arsenic. Given the conflicting evidence in the literature this warrants further investigation in other pregnant populations. - Highlights: • Metals measured in blood or urine of pregnant women. • No association between blood lead, cadmium or arsenic and SGA. • Small increased risk for highest tertile of blood mercury. • Small increased risk for highest tertile of urinary arsenobetaine. • Further research needed to confirm observed associations.« less

  6. The effect of association between inefficient arsenic methylation capacity and demographic characteristics on the risk of skin lesions.

    PubMed

    Rasheed, Hifza; Kay, Paul; Slack, Rebecca; Gong, Yun Yun

    2018-01-15

    This study was conducted in rural Pakistan to assess the dose-response relationship between skin lesions and arsenic exposure and their variation by demographic characteristics. The study included 398 participants (66 participants with skin lesions and 332 without) residing in six previously unstudied villages exposed to ground water arsenic in the range of <1 to 3090μgL -1 . The skin lesions identification process involved interview and physical examinations of participants followed by confirmation by a physician according to UNICEF criteria. Urinary inorganic arsenic (iAs), total arsenic (tAs), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) were analysed to determine methylation capacity, methylation efficiency and the dose-response relationship with skin lesions. Study participants with skin lesions were found to be exposed to arsenic >10μgL -1 with a daily arsenic intake of 3.23±3.75mgday -1 from household ground water sources for an exposure duration of 10-20years. The participants with skin lesions compared to those without skin lesions showed higher levels of urinary iAs (133.40±242.48 vs. 44.24±86.48μgg -1 Cr), MMA (106.38±135.04 vs. 35.43±39.97μgg -1 Cr), MMA% (15.26±6.31 vs.12.11±4.68) and lower levels of DMA% (66.99±13.59 vs. 73.39±10.44) and secondary methylation index (SMI) (0.81±0.11 vs. 0.86±0.07). Study participants carrying a lower methylation capacity characterized by higher MMA% (OR 5.06, 95% CI: 2.09-12.27), lower DMA% (OR 0.64, 95% CI: 0.33-1.26), primary methylation index (PMI) (OR 0.56, 95% CI: 0.28-1.12) and SMI (OR 0.43, 95% CI: 0.21-0.88) had a significantly higher risk of skin lesions compared to their corresponding references after adjusting for occupation categories. The findings confirmed that inefficient arsenic methylation capacity was significantly associated with increased skin lesion risks and the effect might be modified by labour intensive occupations. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  7. Levels of plasma selenium and urinary total arsenic interact to affect the risk for prostate cancer.

    PubMed

    Hsueh, Yu-Mei; Su, Chien-Tien; Shiue, Horng-Sheng; Chen, Wei-Jen; Pu, Yeong-Shiau; Lin, Ying-Chin; Tsai, Cheng-Shiuan; Huang, Chao-Yuan

    2017-09-01

    This study investigated whether plasma selenium levels modified the risk for prostate cancer (PC) related to arsenic exposure. We conducted a case-control study that included 318 PC patients and 318 age-matched, healthy control subjects. Urinary arsenic profiles were examined using HPLC-HG-AAS and plasma selenium levels were measured by ICP-MS. We found that plasma selenium levels displayed a significant dose-dependent inverse association with PC. The odds ratio (OR) and 95% confidence interval (CI) for PC was 0.07 (0.04-0.13) among participants with a plasma selenium level >28.06 μg/dL vs. ≤19.13 μg/dL. A multivariate analysis showed that participants with a urinary total arsenic concentration >29.28 μg/L had a significantly higher OR (1.75, 1.06-2.89) for PC than participants with ≤29.89 μg/L. The combined presence of a low plasma selenium level and a high urinary total arsenic concentration exponentially increased the OR for PC, and additively interacted with PSA at levels ≥20 ng/mL. This is the first epidemiological study to examine the combined effects of plasma selenium and urinary total arsenic levels on the OR for PC. Our data suggest a low plasma selenium level coupled with a high urinary total arsenic concentration creates a significant risk for aggressive PC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Blood Pressure Changes in Relation to Arsenic Exposure in a U.S. Pregnancy Cohort

    PubMed Central

    Farzan, Shohreh F.; Chen, Yu; Wu, Fen; Jiang, Jieying; Liu, Mengling; Baker, Emily; Korrick, Susan A.

    2015-01-01

    Background Inorganic arsenic exposure has been related to the risk of increased blood pressure based largely on cross-sectional studies conducted in highly exposed populations. Pregnancy is a period of particular vulnerability to environmental insults. However, little is known about the cardiovascular impacts of arsenic exposure during pregnancy. Objectives We evaluated the association between prenatal arsenic exposure and maternal blood pressure over the course of pregnancy in a U.S. population. Methods The New Hampshire Birth Cohort Study is an ongoing prospective cohort study in which > 10% of participant household wells exceed the arsenic maximum contaminant level of 10 μg/L established by the U.S. EPA. Total urinary arsenic measured at 24–28 weeks gestation was measured and used as a biomarker of exposure during pregnancy in 514 pregnant women, 18–45 years of age, who used a private well in their household. Outcomes were repeated blood pressure measurements (systolic, diastolic, and pulse pressure) recorded during pregnancy. Results Using linear mixed effects models, we estimated that, on average, each 5-μg/L increase in urinary arsenic was associated with a 0.15-mmHg (95% CI: 0.02, 0.29; p = 0.022) increase in systolic blood pressure per month and a 0.14-mmHg (95% CI: 0.02, 0.25; p = 0.021) increase in pulse pressure per month over the course of pregnancy. Conclusions In our U.S. cohort of pregnant women, arsenic exposure was associated with greater increases in blood pressure over the course of pregnancy. These findings may have important implications because even modest increases in blood pressure impact cardiovascular disease risk. Citation Farzan SF, Chen Y, Wu F, Jiang J, Liu M, Baker E, Korrick SA, Karagas MR. 2015. Blood pressure changes in relation to arsenic exposure in a U.S. pregnancy cohort. Environ Health Perspect 123:999–1006; http://dx.doi.org/10.1289/ehp.1408472 PMID:25793356

  9. Dietary administration of sodium arsenite to rats: Relations between dose and urinary concentrations of methylated and thio-metabolites and effects on the rat urinary bladder epithelium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Shugo; Arnold, Lora L.; Pennington, Karen L.

    2010-04-15

    Based on epidemiological data, chronic exposure to high levels of inorganic arsenic in drinking water is carcinogenic to humans, inducing skin, urinary bladder and lung tumors. In vivo, inorganic arsenic is metabolized to organic methylated arsenicals including the highly toxic dimethylarsinous acid (DMA{sup III}) and monomethylarsonous acid (MMA{sup III}). Short-term treatment of rats with 100 mug/g trivalent arsenic (As{sup III}) as sodium arsenite in the diet or in drinking water induced cytotoxicity and necrosis of the urothelial superficial layer, with increased cell proliferation and hyperplasia. The objectives of this study were to determine if these arsenic-induced urothelial effects are dosemore » responsive, the dose of arsenic at which urothelial effects are not detected, and the urinary concentrations of the arsenical metabolites. We treated female F344 rats for 5 weeks with sodium arsenite at dietary doses of 0, 1, 10, 25, 50, and 100 ppm. Cytotoxicity, cell proliferation and hyperplasia of urothelial superficial cells were increased in a dose-responsive manner, with maximum effects found at 50 ppm As{sup III}. There were no effects at 1 ppm As{sup III}. The main urinary arsenical in As{sup III}-treated rats was the organic arsenical dimethylarsinic acid (DMA{sup V}). The thio-metabolites dimethylmonothioarsinic acid (DMMTA{sup V}) and monomethylmonothioarsinic acid (MMMTA{sup V}) were also found in the urine of As{sup III}-treated rats. The LC{sub 50} concentrations of DMMTA{sup V} for rat and human urothelial cells in vitro were similar to trivalent oxygen-containing arsenicals. These data suggest that dietary As{sup III}-induced urothelial cytotoxicity and proliferation are dose responsive, and the urothelial effects have a threshold corresponding to the urinary excretion of measurable reactive metabolites.« less

  10. Biological and behavioral modifiers of urinary arsenic metabolic profiles in a U.S. population

    EPA Science Inventory

    Biological and behavioral modifiers of urinary arsenic metabolic profiles in a U.S. population David J. Thomas – ISTD, NHEERL Edward F. Hudgens – EHPD, NHEERL John Rogers - Westat Relations between intensity of arsenic exposure from home tap water and levels of inorganic As ...

  11. Environmental arsenic exposure and serum matrix metalloproteinase-9.

    PubMed

    Burgess, Jefferey L; Kurzius-Spencer, Margaret; O'Rourke, Mary Kay; Littau, Sally R; Roberge, Jason; Meza-Montenegro, Maria Mercedes; Gutiérrez-Millán, Luis Enrique; Harris, Robin B

    2013-03-01

    The objective of this study was to evaluate the relationship between environmental arsenic exposure and serum matrix metalloproteinase (MMP)-9, a biomarker associated with cardiovascular disease and cancer. In a cross-sectional study of residents of Arizona, USA (n=215) and Sonora, Mexico (n=163), drinking water was assayed for total arsenic, and daily drinking water arsenic intake was estimated. Urine was speciated for arsenic, and concentrations were adjusted for specific gravity. Serum was analyzed for MMP-9 using ELISA. Mixed model linear regression was used to assess the relation among drinking water arsenic concentration, drinking water arsenic intake, urinary arsenic sum of species (the sum of arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid), and MMP-9, controlling for autocorrelation within households. Drinking water arsenic concentration and intake were positively associated with MMP-9, both in crude analysis and after adjustment for gender, country/ethnicity, age, body mass index, current smoking, and diabetes. Urinary arsenic sum of species was positively associated with MMP-9 in multivariable analysis only. Using Akaike's Information Criterion, arsenic concentration in drinking water provided a better fitting model of MMP-9 than either urinary arsenic or drinking water arsenic intake. In conclusion, arsenic exposure evaluated using all three exposure metrics was positively associated with MMP-9.

  12. Environmental arsenic exposure and serum matrix metalloproteinase-9

    PubMed Central

    Burgess, Jefferey L.; Kurzius-Spencer, Margaret; O’Rourke, Mary Kay; Littau, Sally R.; Roberge, Jason; Meza-Montenegro, Maria Mercedes; Gutiérrez-Millán, Luis Enrique; Harris, Robin B.

    2014-01-01

    The objective of this study was to evaluate the relationship between environmental arsenic exposure and serum matrix metalloproteinase (MMP)-9, a biomarker associated with cardiovascular disease and cancer. In a cross-sectional study of residents of Arizona, USA (n=215) and Sonora, Mexico (n=163), drinking water was assayed for total arsenic, and daily drinking water arsenic intake estimated. Urine was speciated for arsenic and concentrations were adjusted for specific gravity. Serum was analyzed for MMP-9 using ELISA. Mixed model linear regression was used to assess the relation among drinking water arsenic concentration, drinking water arsenic intake, urinary arsenic sum of species (the sum of arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid), and MMP-9, controlling for autocorrelation within households. Drinking water arsenic concentration and intake were positively associated with MMP-9, both in crude analysis and after adjustment for gender, country/ethnicity, age, body mass index, current smoking and diabetes. Urinary arsenic sum of species was positively associated with MMP-9 in multivariable analysis only. Using Akaike’s Information Criterion, arsenic concentration in drinking water provided a better fitting model of MMP-9, than either urinary arsenic or drinking water arsenic intake. In conclusion, arsenic exposure was positively associated with MMP-9 using all three exposure metrics evaluated. PMID:23232971

  13. Arsenic exposure and type 2 diabetes: results from the 2007-2009 Canadian Health Measures Survey.

    PubMed

    Feseke, S K; St-Laurent, J; Anassour-Sidi, E; Ayotte, P; Bouchard, M; Levallois, P

    2015-06-01

    Inorganic arsenic and its metabolites are considered dangerous to human health. Although several studies have reported associations between low-level arsenic exposure and diabetes mellitus in the United States and Mexico, this association has not been studied in the Canadian population. We evaluated the association between arsenic exposure, as measured by total arsenic concentration in urine, and the prevalence of type 2 diabetes (T2D) in 3151 adult participants in Cycle 1 (2007-2009) of the Canadian Health Measures Survey (CHMS). All participants were tested to determine blood glucose and glycated hemoglobin. Urine analysis was also performed to measure total arsenic. In addition, participants answered a detailed questionnaire about their lifestyle and medical history. We assessed the association between urinary arsenic levels and T2D and prediabetes using multivariate logistic regression while adjusting for potential confounders. Total urinary arsenic concentration was positively associated with the prevalence of T2D and prediabetes: adjusted odds ratios were 1.81 (95% CI: 1.12-2.95) and 2.04 (95% CI: 1.03-4.05), respectively, when comparing the highest (fourth) urinary arsenic concentration quartile with the lowest (first) quartile. Total urinary arsenic was also associated with glycated hemoglobin levels in people with untreated diabetes. We found significant associations between arsenic exposure and the prevalence of T2D and prediabetes in the Canadian population. Causal inference is limited due to the cross-sectional design of the study and the absence of long-term exposure assessment.

  14. Species Specific Bio-accessibility Estimates of Arsenic in US Consumed Rice

    EPA Science Inventory

    Inorganic arsenic (iAs) has been classified as a Class I carcinogen by the International Agency for Research on Cancer (IARC). For non-occupationally exposed individuals, the two predominant exposure routes for arsenic are drinking water and diet. Drinking water exposures conta...

  15. Environmental arsenic exposure of schoolchildren in a former tin mining and smelting community of southern Thailand.

    PubMed

    Vitayavirasak, Banjong; Rakwong, Kittiya; Chatchawej, Warangkana

    2005-01-01

    Risk behavior and environmental sources of exposure to arsenic for 10-year-old schoolchildren were studied in a high exposure area and a low exposure area of Ron Phibun Subdistrict, Ron Phibun District, Nakhon Si Thammarat Province and compared to those in a control area. Arsenic concentrations of surface soil, ambient air and drinking water to which subjects in the high exposure group, the low exposure group and the control group were exposed, were significantly different (p < 0.05). Similarly, urinary concentrations of total arsenic and the sum of inorganic arsenic and its metabolites were significantly higher in the study groups than the control group. The arsenic content of locally grown agricultural produce was small with the exception of freshwater snails (Sinotaia ingallsiana). Drinking water and surface soil were found to be the main sources of exposure. The exposure was mediated by the subjects' risk behavior, such as playing with soil and no hand-washing before eating. The estimated cancer risk from arsenic for the schoolchildren in the study area was between 10(-5)-10(-6) which meant that their risk of developing cancer was probable. Measures to reduce the cancer risk are recommended.

  16. Effects of biological and behavioral factors on urinary arsenic metabolic profiles in a U.S. population

    EPA Science Inventory

    Abstract In older men and women who were long-term residents of Churchill County, Nevada, we examined the relation between arsenic exposure from home tap water and urinary levels of inorganic arsenic and its methylated metabolites. Over a wide exposure range (up to 1850 ug of a...

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Nrashant; Department of Medical Elementology and Toxicology, Jamia Hamdard; Kumar, D.

    Populations of villages of eastern India and Bangladesh and many other parts of the world are exposed to arsenic mainly through drinking water. Due to non-availability of safe drinking water they are compelled to depend on arsenic-contaminated water. Generally, poverty level is high in those areas and situation is compounded by the lack of proper nutrition. The hypothesis that the deleterious health effects of arsenic can be prevented by modification of dietary factors with the availability of an affordable and indigenous functional food jaggery (sugarcane juice) has been tested in the present study. Jaggery contains polyphenols, vitamin C, carotene andmore » other biologically active components. Arsenic as sodium-m-arsenite at low (0.05 ppm) and high (5 ppm) doses was orally administered to Swiss male albino mice, alone and in combination with jaggery feeding (250 mg/mice), consecutively for 180 days. The serum levels of total antioxidant, glutathione peroxidase and glutathione reductase were substantially reduced in arsenic-exposed groups, while supplementation of jaggery enhanced their levels in combined treatment groups. The serum levels of interleukin-1beta, interleukin-6 and TNF-alpha were significantly increased in arsenic-exposed groups, while in the arsenic-exposed and jaggery supplemented groups their levels were normal. The comet assay in bone marrow cells showed the genotoxic effects of arsenic, whereas combination with jaggery feeding lessened the DNA damage. Histopathologically, the lung of arsenic-exposed mice showed the necrosis and degenerative changes in bronchiolar epithelium with emphysema and thickening of alveolar septa which was effectively antagonized by jaggery feeding. These results demonstrate that jaggery, a natural functional food, effectively antagonizes many of the adverse effects of arsenic.« less

  18. In utero and early childhood exposure to arsenic decreases lung function in children.

    PubMed

    Recio-Vega, Rogelio; Gonzalez-Cortes, Tania; Olivas-Calderon, Edgar; Lantz, R Clark; Gandolfi, A Jay; Gonzalez-De Alba, Cesar

    2015-04-01

    The lung is a target organ for adverse health outcomes following exposure to As. Several studies have reported a high prevalence of respiratory symptoms and diseases in subjects highly exposed to As through drinking water; however, most studies to date has been performed in exposed adults, with little information on respiratory effects in children. The objective of the study was to evaluate the association between urinary levels of As and its metabolites with lung function in children exposed in utero and in early childhood to high As levels through drinking water. A total of 358 healthy children were included in our study. Individual exposure was assessed based on urinary concentration of inorganic As. Lung function was assessed by spirometry. Participants were exposed since pregnancy until early childhood to an average water As concentration of 152.13 µg l⁻¹. The mean urinary As level registered in the studied subjects was 141.2 µg l⁻¹ and only 16.7% had a urinary concentration below the national concern level. Forced vital capacity was significantly decreased in the studied population and it was negatively associated with the percentage of inorganic As. More than 57% of the subjects had a restrictive spirometric pattern. The urinary As level was higher in those children with restrictive lung patterns when compared with the levels registered in subjects with normal spirometric patterns. Exposure to As through drinking water during in utero and early life was associated with a decrease in forced vital capacity and with a restrictive spirometric pattern in the children evaluated. Copyright © 2014 John Wiley & Sons, Ltd.

  19. A Population-based Case–Control Study of Urinary Arsenic Species and Squamous Cell Carcinoma in New Hampshire, USA

    PubMed Central

    Li, Zhigang; Perry, Ann E.; Spencer, Steven K.; Gandolfi, A. Jay; Karagas, Margaret R.

    2013-01-01

    Background: Chronic high arsenic exposure is associated with squamous cell carcinoma (SCC) of the skin, and inorganic arsenic (iAs) metabolites may play an important role in this association. However, little is known about the carcinogenicity of arsenic at levels commonly observed in the United States. Objective: We estimated associations between total urinary arsenic and arsenic species and SCC in a U.S. population. Methods: We conducted a population-based case–control SCC study (470 cases, 447 controls) in a U.S. region with moderate arsenic exposure through private well water and diet. We measured urinary iAs, monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA), and summed these arsenic species (ΣAs). Because seafood contains arsenolipids and arsenosugars that metabolize into DMA through alternate pathways, participants who reported seafood consumption within 2 days before urine collection were excluded from the analyses. Results: In adjusted logistic regression analyses (323 cases, 319 controls), the SCC odds ratio (OR) was 1.37 for each ln-transformed microgram per liter increase in ln-transformed ΣAs concentration [ln(ΣAs)] (95% CI: 1.04, 1.80). Urinary ln(MMA) and ln(DMA) also were positively associated with SCC (OR = 1.34; 95% CI: 1.04, 1.71 and OR = 1.34; 95% CI: 1.03, 1.74, respectively). A similar trend was observed for ln(iAs) (OR = 1.20; 95% CI: 0.97, 1.49). Percent iAs, MMA, and DMA were not associated with SCC. Conclusions: These results suggest that arsenic exposure at levels common in the United States relates to SCC and that arsenic metabolism ability does not modify the association. Citation: Gilbert-Diamond D, Li Z, Perry AE, Spencer SK, Gandolfi AJ, Karagas MR. 2013. A population-based case–control study of urinary arsenic species and squamous cell carcinoma in New Hampshire, USA. Environ Health Perspect 121:1154–1160; http://dx.doi.org/10.1289/ehp.1206178 PMID:23872349

  20. Adverse health effects due to arsenic exposure: modification by dietary supplementation of jaggery in mice.

    PubMed

    Singh, Nrashant; Kumar, D; Lal, Kewal; Raisuddin, S; Sahu, Anand P

    2010-02-01

    Populations of villages of eastern India and Bangladesh and many other parts of the world are exposed to arsenic mainly through drinking water. Due to non-availability of safe drinking water they are compelled to depend on arsenic-contaminated water. Generally, poverty level is high in those areas and situation is compounded by the lack of proper nutrition. The hypothesis that the deleterious health effects of arsenic can be prevented by modification of dietary factors with the availability of an affordable and indigenous functional food jaggery (sugarcane juice) has been tested in the present study. Jaggery contains polyphenols, vitamin C, carotene and other biologically active components. Arsenic as sodium-m-arsenite at low (0.05 ppm) and high (5 ppm) doses was orally administered to Swiss male albino mice, alone and in combination with jaggery feeding (250 mg/mice), consecutively for 180 days. The serum levels of total antioxidant, glutathione peroxidase and glutathione reductase were substantially reduced in arsenic-exposed groups, while supplementation of jaggery enhanced their levels in combined treatment groups. The serum levels of interleukin-1beta, interleukin-6 and TNF-alpha were significantly increased in arsenic-exposed groups, while in the arsenic-exposed and jaggery supplemented groups their levels were normal. The comet assay in bone marrow cells showed the genotoxic effects of arsenic, whereas combination with jaggery feeding lessened the DNA damage. Histopathologically, the lung of arsenic-exposed mice showed the necrosis and degenerative changes in bronchiolar epithelium with emphysema and thickening of alveolar septa which was effectively antagonized by jaggery feeding. These results demonstrate that jaggery, a natural functional food, effectively antagonizes many of the adverse effects of arsenic. Copyright 2009 Elsevier Inc. All rights reserved.

  1. Relationship between arsenic skin lesions and the age of natural menopause.

    PubMed

    Yunus, Fakir Md; Rahman, Musarrat Jabeen; Alam, Md Zahidul; Hore, Samar Kumar; Rahman, Mahfuzar

    2014-05-02

    Chronic exposure to arsenic is associated with neoplastic, cardiovascular, endocrine, neuro-developmental disorders and can have an adverse effect on women's reproductive health outcomes. This study examined the relationship between arsenic skin lesions (a hallmark sign of chronic arsenic poisoning) and age of natural menopause (final menopausal period) in populations with high levels of arsenic exposure in Bangladesh. We compared menopausal age in two groups of women--with and without arsenic skin lesions; and presence of arsenic skin lesions was used as an indicator for chronic arsenic exposure. In a cross-sectional study, a total of 210 participants were randomly identified from two ongoing studies--participants with arsenic skin lesions were identified from an ongoing clinical trial and participants with no arsenic skin lesions were identified from an ongoing cohort study. Mean age of menopause between these two groups were calculated and compared. Multivariable linear regression was used to estimate the relationship between the status of the arsenic skin lesions and age of natural menopause in women. Women with arsenic skin lesions were 1.5 years younger (p <0.001) at the time of menopause compared to those without arsenic skin lesions. After adjusting with contraceptive use, body mass index, urinary arsenic level and family history of premature menopause, the difference between the groups' age at menopause was 2.1 years earlier (p <0.001) for respondents with arsenic skin lesions. The study showed a statistically significant association between chronic exposure to arsenic and age at menopause. Heavily exposed women experienced menopause two years earlier than those with lower or no exposure.

  2. Severe systemic toxicity and urinary bladder cytotoxicity and regenerative hyperplasia induced by arsenite in arsenic (+3 oxidation state) methyltransferase knockout mice. A preliminary report

    EPA Science Inventory

    Arsenic (+3 oxidation state) methyltransferase (As3mt) catalyzes reactions which convert inorganic arsenic to methylated metabolites. This study determined whether the As3mt null genotype in the mouse modifies cytotoxic and proliferative effects seen in urinary bladders of wild t...

  3. Arsenic Exposure in Relation to Ischemic Stroke: The Reasons for Geographic and Racial Differences in Stroke Study.

    PubMed

    Tsinovoi, Cari L; Xun, Pengcheng; McClure, Leslie A; Carioni, Vivian M O; Brockman, John D; Cai, Jianwen; Guallar, Eliseo; Cushman, Mary; Unverzagt, Frederick W; Howard, Virginia J; He, Ka

    2018-01-01

    The purpose of this case-cohort study was to examine urinary arsenic levels in relation to incident ischemic stroke in the United States. We performed a case-cohort study nested within the REGARDS (REasons for Geographic and Racial Differences in Stroke) cohort. A subcohort (n=2486) of controls was randomly sampled within region-race-sex strata while all incident ischemic stroke cases from the full REGARDS cohort (n=671) were included. Baseline urinary arsenic was measured by inductively coupled plasma-mass spectrometry. Arsenic species, including urinary inorganic arsenic and its metabolites monomethylarsonic acid and dimethylarsinic acid, were measured in a random subset (n=199). Weighted Cox's proportional hazards models were used to calculate hazard ratios and 95% confidence intervals of ischemic stroke by arsenic and its species. The average follow-up was 6.7 years. Although incident ischemic stroke showed no association with total arsenic or total inorganic arsenic, for each unit higher level of urinary monomethylarsonic acid on a log-scale, after adjustment for potential confounders, ischemic stroke risk increased ≈2-fold (hazard ratio=1.98; 95% confidence interval: 1.12-3.50). Effect modification by age, race, sex, or geographic region was not evident. A metabolite of arsenic was positively associated with incident ischemic stroke in this case-cohort study of the US general population, a low-to-moderate exposure area. Overall, these findings suggest a potential role for arsenic methylation in the pathogenesis of stroke, having important implications for future cerebrovascular research. © 2017 American Heart Association, Inc.

  4. HPLC-ICP-MS speciation analysis of arsenic in urine of Japanese subjects without occupational exposure.

    PubMed

    Hata, Akihisa; Endo, Yoko; Nakajima, Yoshiaki; Ikebe, Maiko; Ogawa, Masanori; Fujitani, Noboru; Endo, Ginji

    2007-05-01

    The toxicity and carcinogenicity of arsenic depend on its species. Individuals living in Japan consume much seafood that contains high levels of organoarsenics. Speciation analysis of urinary arsenic is required to clarify the health risks of arsenic intake. There has been no report of urinary arsenic analysis in Japan using high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS). We performed speciation analysis of urinary arsenic for 210 Japanese male subjects without occupational exposure using HPLC-ICP-MS. The median values of urinary arsenics were as follows: sodium arsenite (AsIII), 3.5; sodium arsenate (AsV), 0.1; monomethylarsonic acid (MMA), 3.1; dimethylarsinic acid (DMA), 42.6; arsenobetaine (AsBe), 61.3; arsenocholine, trimethylarsine oxide, and unidentified arsenics (others), 5.2; and total arsenic (total As), 141.3 microgAs/l. The median creatinine-adjusted values were as follows: AsIII, 3.0; AsV, 0.1; MMA, 2.6; DMA, 35.9; AsBe, 52.1; others 3.5; and total As, 114.9 microgAs/g creatinine. Our findings indicate that DMA and AsBe levels in Japan are much higher than those found in Italian and American studies. It appears that the high levels of DMA and AsBe observed in Japan may be due in part to seafood intake. ACGIH and DFG set the BEI and BAT values for occupational arsenic exposure as 35 microgAs/l and 50 microgAs/l, respectively, using the sum of inorganic arsenic (iAs), MMA, and DMA. In the general Japanese population, the sums of these were above 50 microgAs/l in 115 (55%) samples. We therefore recommend excluding DMA concentration in monitoring of iAs exposure.

  5. Low-level inorganic arsenic exposure and neuropsychological functioning in American Indian elders.

    PubMed

    Carroll, Clint R; Noonan, Carolyn; Garroutte, Eva M; Navas-Acien, Ana; Verney, Steven P; Buchwald, Dedra

    2017-07-01

    Inorganic arsenic at high and prolonged doses is highly neurotoxic. Few studies have evaluated whether long-term, low-level arsenic exposure is associated with neuropsychological functioning in adults. To investigate the association between long-term, low-level inorganic arsenic exposure and neuropsychological functioning among American Indians aged 64-95. We assessed 928 participants in the Strong Heart Study by using data on arsenic species in urine samples collected at baseline (1989-1991) and results of standardized tests of global cognition, executive functioning, verbal learning and memory, fine motor functioning, and speed of mental processing administered during comprehensive follow-up evaluations in 2009-2013. We calculated the difference in neuropsychological functioning for a 10% increase in urinary arsenic with adjustment for sex, age, education, and study site. The sum of inorganic and methylated arsenic species (∑As) in urine was associated with limited fine motor functioning and processing speed. A 10% increase in ∑As was associated with a .10 (95% CI -.20, -.01) decrease on the Finger Tapping Test for the dominant hand and a .13 decrease (95% CI -.21, -.04) for the non-dominant hand. Similarly, a 10% increase in ∑As was associated with a .15 (95% CI -.29, .00) decrease on the Wechsler Adult Intelligence Scale-Fourth Edition Coding Subtest. ∑As was not associated with other neuropsychological functions. Findings indicate an adverse association between increased urinary arsenic fine motor functioning and processing speed, but not with other neuropsychological functioning, among elderly American Indians. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Concentrations of urinary arsenic species in relation to rice and seafood consumption among children living in Spain.

    PubMed

    Signes-Pastor, Antonio J; Vioque, Jesus; Navarrete-Muñoz, Eva M; Carey, Manus; García de la Hera, Manoli; Sunyer, Jordi; Casas, Maribel; Riaño-Galán, Isolina; Tardón, Adonina; Llop, Sabrina; Amorós, Rubén; Amiano, Pilar; Bilbao, José R; Karagas, Margaret R; Meharg, Andrew A

    2017-11-01

    Inorganic arsenic (i-As) has been related to wide-ranging health effects in children, leading to lifelong concerns. Proportionally, dietary i-As exposure dominates in regions with low arsenic drinking water. This study aims to investigate the relation between rice and seafood consumption and urinary arsenic species during childhood and to assess the proportion of urinary i-As metabolites. Urinary arsenic species concentration in 400 4-year-old children living in four geographical areas of Spain, in addition to repeated measures from 100 children at 7 years of age are included in this study. Rice and seafood products intake was collected from children's parents using a validated food frequency questionnaire (FFQ). At 4 years of age, children's urine i-As and monomethylarsonic acid (MMA) concentrations increased with rice product consumption (p-value = 0.010 and 0.018, respectively), and urinary arsenobetaine (AsB) with seafood consumption (p = 0.002). Four-year-old children had a higher consumption of both rice and seafood per body weight and a higher urinary %MMA (p-value = 0.001) and lower % dimethylarsinic acid (DMA) (p-value = 0.017). This study suggests increased dietary i-As exposure related to rice product consumption among children living in Spain, and the younger ones may be especially vulnerable to the health impacts of this exposure also considering that they might have a lower i-As methylation capacity than older children. In contrast, seafood consumption did not appear to influence the presence of potentially toxic arsenic species in this population of children. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Relation between in Utero Arsenic Exposure and Birth Outcomes in a Cohort of Mothers and Their Newborns from New Hampshire

    PubMed Central

    Gilbert-Diamond, Diane; Emond, Jennifer A.; Baker, Emily R.; Korrick, Susan A.; Karagas, Margaret R.

    2016-01-01

    Background: Studies suggest that arsenic exposure influences birth outcomes; however, findings are mixed. Objective: We assessed in utero arsenic exposure in relation to birth outcomes and whether maternal prepregnancy weight and infant sex modified the associations. Methods: Among 706 mother–infant pairs exposed to low levels of arsenic through drinking water and diet, we assessed in utero arsenic exposure using maternal second-trimester urinary arsenic, maternal prepregnancy weight through self-report, and birth outcomes from medical records. Results: Median (interquartile range) of total urinary arsenic [tAs; inorganic arsenic (iAs) + monomethylarsonic acid (MMA) + dimethylarsinic acid (DMA)] was 3.4 μg/L (1.7–6.0). In adjusted linear models, each doubling of tAs was associated with a 0.10-cm decrease (95% CI: –0.19, –0.01) in head circumference. Results were similar for MMA and DMA. Ln(tAs) and ln(DMA) were positively associated with birth length in infant males only; among males, each doubling of tAs was associated with a 0.28-cm increase (95% CI: 0.09, 0.46) in birth length (pinteraction = 0.04). Results were similar for DMA. Additionally, arsenic exposure was inversely related to ponderal index, and associations differed by maternal weight. Each ln(tAs) doubling of tAs was associated with a 0.55-kg/m3 lower (95% CI: –0.82, –0.28, p < 0.001) ponderal index for infants of overweight/obese, but not normal-weight, mothers (pinteraction < 0.01). Finally, there was a significant interaction between maternal weight status, infant sex, and arsenic exposure on birth weight (pinteraction = 0.03). In girls born of overweight/obese mothers, each doubling of tAs was associated with a 62.9-g decrease (95% CI: –111.6, –14.2) in birth weight, though the association was null in the other strata. Conclusions: Low-level arsenic exposure may affect fetal growth, and the associations may be modified by maternal weight status and infant sex. Citation: Gilbert-Diamond D, Emond JA, Baker ER, Korrick SA, Karagas MR. 2016. Relation between in utero arsenic exposure and birth outcomes in a cohort of mothers and their newborns from New Hampshire. Environ Health Perspect 124:1299–1307; http://dx.doi.org/10.1289/ehp.1510065 PMID:26955061

  8. Relation between in Utero Arsenic Exposure and Birth Outcomes in a Cohort of Mothers and Their Newborns from New Hampshire.

    PubMed

    Gilbert-Diamond, Diane; Emond, Jennifer A; Baker, Emily R; Korrick, Susan A; Karagas, Margaret R

    2016-08-01

    Studies suggest that arsenic exposure influences birth outcomes; however, findings are mixed. We assessed in utero arsenic exposure in relation to birth outcomes and whether maternal prepregnancy weight and infant sex modified the associations. Among 706 mother-infant pairs exposed to low levels of arsenic through drinking water and diet, we assessed in utero arsenic exposure using maternal second-trimester urinary arsenic, maternal prepregnancy weight through self-report, and birth outcomes from medical records. Median (interquartile range) of total urinary arsenic [tAs; inorganic arsenic (iAs) + monomethylarsonic acid (MMA) + dimethylarsinic acid (DMA)] was 3.4 μg/L (1.7-6.0). In adjusted linear models, each doubling of tAs was associated with a 0.10-cm decrease (95% CI: -0.19, -0.01) in head circumference. Results were similar for MMA and DMA. Ln(tAs) and ln(DMA) were positively associated with birth length in infant males only; among males, each doubling of tAs was associated with a 0.28-cm increase (95% CI: 0.09, 0.46) in birth length (pinteraction = 0.04). Results were similar for DMA. Additionally, arsenic exposure was inversely related to ponderal index, and associations differed by maternal weight. Each ln(tAs) doubling of tAs was associated with a 0.55-kg/m3 lower (95% CI: -0.82, -0.28, p < 0.001) ponderal index for infants of overweight/obese, but not normal-weight, mothers (pinteraction < 0.01). Finally, there was a significant interaction between maternal weight status, infant sex, and arsenic exposure on birth weight (pinteraction = 0.03). In girls born of overweight/obese mothers, each doubling of tAs was associated with a 62.9-g decrease (95% CI: -111.6, -14.2) in birth weight, though the association was null in the other strata. Low-level arsenic exposure may affect fetal growth, and the associations may be modified by maternal weight status and infant sex. Gilbert-Diamond D, Emond JA, Baker ER, Korrick SA, Karagas MR. 2016. Relation between in utero arsenic exposure and birth outcomes in a cohort of mothers and their newborns from New Hampshire. Environ Health Perspect 124:1299-1307; http://dx.doi.org/10.1289/ehp.1510065.

  9. An investigation of the health effects caused by exposure to arsenic from drinking water and coal combustion: arsenic exposure and metabolism.

    PubMed

    Wei, Binggan; Yu, Jiangping; Kong, Chang; Li, Hairong; Yang, Linsheng; Guo, Zhiwei; Cui, Na; Xia, Yajuan; Wu, Kegong

    2017-11-01

    Few studies have been conducted to compare arsenic exposure, metabolism, and methylation in populations exposed to arsenic in drinking water and from coal combustion. Therefore, arsenic concentrations in the environment and arsenic speciation in the urine of subjects exposed to arsenic as a consequence of coal combustion in a rural area in Shaanxi province (CCA) and in drinking water in a rural area in Inner Mongolia (DWA) were investigated. The mean arsenic concentrations in drinking water, indoor air, and soil in CCA were 4.52 μg/L, 0.03 mg/m 3 , and 14.93 mg/kg, respectively. The mean arsenic concentrations in drinking water and soil in DWA were 144.71 μg/L and 10.19 mg/kg, respectively, while the level in indoor air was lower than the limit of detection. The total daily intakes of arsenic in DWA and CCA were 4.47 and 3.13 μg/day·kg, respectively. The mean urinary concentrations of inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsenic acid (DMA), and total arsenic (TAs) for subjects with skin lesions in DWA were 50.41, 47.01, 202.66, and 300.08 μg/L. The concentrations for subjects without skin lesions were 49.76, 44.20, 195.60, and 289.56 μg/L, respectively. The %iAs, %MMA, and %DMA in the TAs in the urine of subjects from CCA were 12.24, 14.73, and 73.03%, while the corresponding values from DWA were 17.54, 15.57, and 66.89%, respectively. The subjects in DWA typically had a higher %iAs and %MMA, and a lower %DMA, and primary and secondary methylation index (PMI and SMI) than the subjects in CCA. It was concluded that the arsenic methylation efficiency of subjects in DWA and CCA was significantly influenced by chronic exposure to high levels of arsenic in the environment. The lower PMI and SMI values in DWA revealed lower arsenic methylation capacity due to ingestion of arsenic in drinking water. However, it remained unclear if the differences in arsenic metabolism between the two groups were due to differences in exposure levels or in exposure route.

  10. Arsenic drinking water exposure and urinary excretion among adults in the Yaqui Valley, Sonora, Mexico.

    PubMed

    Meza, Maria Mercedes; Kopplin, Michael J; Burgess, Jefferey L; Gandolfi, A Jay

    2004-10-01

    The objective of this study was to determine arsenic exposure via drinking water and to characterize urinary arsenic excretion among adults in the Yaqui Valley, Sonora, Mexico. A cross-sectional study was conducted from July 2001 to May 2002. Study subjects were from the Yaqui Valley, Sonora, Mexico, residents of four towns with different arsenic concentrations in their drinking water. Arsenic exposure was estimated through water intake over 24 h. Arsenic excretion was assessed in the first morning void urine. Total arsenic concentrations and their species arsenate (As V), arsenite (As III), monomethyl arsenic (MMA), and dimethyl arsenic (DMA) were determined by HPLC/ICP-MS. The town of Esperanza with the highest arsenic concentration in water had the highest daily mean intake of arsenic through drinking water, the mean value was 65.5 microg/day. Positive correlation between total arsenic intake by drinking water/day and the total arsenic concentration in urine (r = 0.50, P < 0.001) was found. Arsenic excreted in urine ranged from 18.9 to 93.8 microg/L. The people from Esperanza had the highest geometric mean value of arsenic in urine, 65.1 microg/L, and it was statistically significantly different from those of the other towns (P < 0.005). DMA was the major arsenic species in urine (47.7-67.1%), followed by inorganic arsenic (16.4-25.4%), and MMA (7.5-15%). In comparison with other reports the DMA and MMA distribution was low, 47.7-55.6% and 7.5-9.7%, respectively, in the urine from the Yaqui Valley population (except the town of Cocorit). The difference in the proportion of urinary arsenic metabolites in those towns may be due to genetic polymorphisms in the As methylating enzymes of these populations.

  11. Combined effects of DNA methyltransferase 1 and 3A polymorphisms and urinary total arsenic levels on the risk for clear cell renal cell carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shu-Mei

    Our previous study showed that high urinary total arsenic levels were associated with higher odds ratio (OR) for renal cell carcinoma (RCC). Single nucleotide polymorphisms (SNPs) of DNA methyltransferases (DNMTs) might influence DNMT enzyme activity associated with tumorigenesis. In this study, we investigated the association of five SNPs from DNMT1 (rs8101626 and rs2228611), DNMT3A (rs34048824 and rs1550117), and DNMT3B (rs1569686) with the risk of clear cell renal cell carcinoma (ccRCC). We also examined the combined effects of DNMT genotypes and urinary arsenic levels on ccRCC risk. We conducted a hospital-based case-control study, which included 293 subjects with ccRCC and 293more » age- and gender-matched controls. The urinary arsenic species were determined by a high performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. Genotypes were investigated using polymerase chain reaction and restriction fragment length polymorphism analyses. We observed that the DNMT1 rs8101626 G/G genotype was significantly associated with reduced odds ratio (OR) of ccRCC [OR = 0.38, 95% confidence interval (CI) 0.14–0.99]. Subjects with concurrent DNMT1 rs8101626 A/A + A/G and DNMT3A rs34048824 T/T + T/C genotypes had significantly higher OR for ccRCC [OR = 2.88, 95% CI 1.44–5.77]. Participants with the high-risk genotype of DNMT1 rs8101626 and DNMT3A rs34048824 with concurrently high urinary total arsenic levels had even higher OR of ccRCC in a dose-response manner. This is the first study to evaluate variant DNMT1 rs8101626 and DNMT3A rs34048824 genotypes that modify the arsenic-related ccRCC risk in a geographic area without significant arsenic exposure in Taiwan. - Highlights: • High urinary total arsenic level or polymorphism of DNMT1 increased the OR of ccRCC. • High risk genotypes of combination of DNMT1 and DNMT3A increased the OR of ccRCC. • A joint effect of urinary total arsenic level and DNMTs genotypes may affect ccRCC.« less

  12. Polymorphism of inflammatory genes and arsenic methylation capacity are associated with urothelial carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chia-Chang; Department of Urology, Taipei Medical University—Shuang Ho Hospital, Taipei, Taiwan; Huang, Yung-Kai

    2013-10-01

    Chronic exposure to arsenic can generate reactive oxidative species, which can induce certain proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and interleukin-8 (IL-8). TNF-α, IL-6 and IL-8 have been shown to be involved in the development and progression of various cancers, including bladder cancer. This study aimed to investigate the joint effect of the polymorphism of TNF-α − 308 G/A, IL-6 − 174 G/C, IL-8 − 251 T/A and urinary arsenic profiles on urothelial carcinoma (UC) risk. This study evaluated 300 pathologically-confirmed cases of UC and 594 cancer-free controls. Urinary arsenic species were detected using high-performance liquidmore » chromatography-linked hydride generator and atomic absorption spectrometry. The polymorphism of TNF-α − 308 G/A, IL-6 − 174 G/C and IL-8 − 251 T/A was determined using polymerase chain reaction-restriction fragment length polymorphism. The joint effects on UC risk were estimated by odds ratios and 95% confidence intervals using unconditional logistic regression. We found that the TNF-α − 308 A/A and IL-8 − 251 T/T polymorphisms were significantly associated with UC. Moreover, significant dose–response joint effect of TNF-α − 308 A/A or IL-8 − 251 T/T genotypes and arsenic methylation indices were seen to affect UC risk. The present results also showed a significant increase in UC risk in subjects with the IL-8 − 251 T/T genotype for each SD increase in urinary total arsenic and MMA%. In contrast, a significant decrease in UC risk was found in subjects who carried the IL-8 − 251 T/T genotype for each SD increase in DMA%. - Highlights: • Joint effect of the TNF-α -308 A/A genotype and urinary total arsenic affected UC. • Joint effect of the IL-8 -251 T/T genotype and urinary total arsenic affected UC. • Urinary total arsenic level, TNF-α -308 A/A and IL-8 -251 T/T genotype affected UC.« less

  13. Relationship between arsenic skin lesions and the age of natural menopause

    PubMed Central

    2014-01-01

    Background Chronic exposure to arsenic is associated with neoplastic, cardiovascular, endocrine, neuro-developmental disorders and can have an adverse effect on women’s reproductive health outcomes. This study examined the relationship between arsenic skin lesions (a hallmark sign of chronic arsenic poisoning) and age of natural menopause (final menopausal period) in populations with high levels of arsenic exposure in Bangladesh. Methods We compared menopausal age in two groups of women – with and without arsenic skin lesions; and presence of arsenic skin lesions was used as an indicator for chronic arsenic exposure. In a cross-sectional study, a total of 210 participants were randomly identified from two ongoing studies— participants with arsenic skin lesions were identified from an ongoing clinical trial and participants with no arsenic skin lesions were identified from an ongoing cohort study. Mean age of menopause between these two groups were calculated and compared. Multivariable linear regression was used to estimate the relationship between the status of the arsenic skin lesions and age of natural menopause in women. Results Women with arsenic skin lesions were 1.5 years younger (p <0.001) at the time of menopause compared to those without arsenic skin lesions. After adjusting with contraceptive use, body mass index, urinary arsenic level and family history of premature menopause, the difference between the groups’ age at menopause was 2.1 years earlier (p <0.001) for respondents with arsenic skin lesions. Conclusions The study showed a statistically significant association between chronic exposure to arsenic and age at menopause. Heavily exposed women experienced menopause two years earlier than those with lower or no exposure. PMID:24886424

  14. Novel urinary biomarkers and their association with urinary heavy metals in chronic kidney disease of unknown aetiology in Sri Lanka: a pilot study

    PubMed

    Wanigasuriya, K; Jayawardene, I; Amarasiriwardena, C; Wickremasinghe, R

    2017-12-26

    Chronic kidney disease of unknown etiology (CKDu) has emerged as a significant public health problem in Sri Lanka. The role of environmental exposure to cadmium and arsenic in the aetiology of CKDu is still unclear. Identification of a panel of novel urinary biomarkers would be invaluable in the study of toxin mediated damage postulated to be the aetiology of CKDu. The aims of this study were to evaluate the profile of novel urinary biomarkers in CKDu patients and identify any association with environmental exposure to heavy metals. Thirty seven randomly selected CKDu patients attending a renal clinic in the North Central Province and two control groups namely a farmer group (n=39) and a non-farmer group (n=40) from a non-endemic area were included in this comparative cross sectional study. Urine samples were analyzed for heavy metals and five urinary biomarkers. CKDu patients had significantly elevated urinary levels of fibrinogen (198.2 ng/mg creatinine p<0.001), clusterin (3479 ng/mg creatinine p<0.001), cystatin-C (5124.8 ng/mg creatinine p<0.001) and β2-microglobulin (9913.4 ng/mg creatinine p<0.001) compared to the control groups. Fibrinogen and β2-microglobulin were the best to discriminate CKDu patients from normal individuals with the receiver operator areas under the curve being 0.867 and 0.853, respectively. Urinary fibrinogen and KIM-1 levels correlated positively with urinary arsenic levels. KIM-1 levels correlated positively with urinary mercury and lead levels but no correlation was seen with urinary cadmium levels. Fibrinogen and β2-microglobulin have the potential of being a screening tool for detection of CKDu and may aid the early diagnosis of toxin mediated tubular injury in CKDu. Their usefulness need to be further validated in a larger epidemiological study of patients with early stages of CKDu.

  15. A population-based case-control study of urinary arsenic species and squamous cell carcinoma in New Hampshire, USA.

    PubMed

    Gilbert-Diamond, Diane; Li, Zhigang; Perry, Ann E; Spencer, Steven K; Gandolfi, A Jay; Karagas, Margaret R

    2013-10-01

    Chronic high arsenic exposure is associated with squamous cell carcinoma (SCC) of the skin, and inorganic arsenic (iAs) metabolites may play an important role in this association. However, little is known about the carcinogenicity of arsenic at levels commonly observed in the United States. We estimated associations between total urinary arsenic and arsenic species and SCC in a U.S. population. We conducted a population-based case-control SCC study (470 cases, 447 controls) in a U.S. region with moderate arsenic exposure through private well water and diet. We measured urinary iAs, monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA), and summed these arsenic species (ΣAs). Because seafood contains arsenolipids and arsenosugars that metabolize into DMA through alternate pathways, participants who reported seafood consumption within 2 days before urine collection were excluded from the analyses. In adjusted logistic regression analyses (323 cases, 319 controls), the SCC odds ratio (OR) was 1.37 for each ln-transformed microgram per liter increase in ln-transformed ΣAs concentration [ln(ΣAs)] (95% CI: 1.04, 1.80). Urinary ln(MMA) and ln(DMA) also were positively associated with SCC (OR = 1.34; 95% CI: 1.04, 1.71 and OR = 1.34; 95% CI: 1.03, 1.74, respectively). A similar trend was observed for ln(iAs) (OR = 1.20; 95% CI: 0.97, 1.49). Percent iAs, MMA, and DMA were not associated with SCC. These results suggest that arsenic exposure at levels common in the United States relates to SCC and that arsenic metabolism ability does not modify the association.

  16. Treating chronic arsenic toxicity with high selenium lentil diets.

    PubMed

    Sah, Shweta; Vandenberg, Albert; Smits, Judit

    2013-10-01

    Arsenic (As) toxicity causes serious health problems in humans, especially in the Indo-Gangetic plains and mountainous areas of China. Selenium (Se), an essential micronutrient is a potential mitigator of As toxicity due to its antioxidant and antagonistic properties. Selenium is seriously deficient in soils world-wide but is present at high, yet non-toxic levels in the great plains of North America. We evaluate the potential of dietary Se in counteracting chronic As toxicity in rats through serum biochemistry, blood glutathione levels, immunotoxicity (antibody response), liver peroxidative stress, thyroid response and As levels in tissues and excreta. To achieve this, we compare diets based on high-Se Saskatchewan (SK) lentils versus low-Se lentils from United States. Rats drank control (0ppm As) or As (40ppm As) water while consuming SK lentils (0.3ppm Se) or northwestern USA lentils (<0.01ppm Se) diets for 14weeks. Rats on high Se diets had higher glutathione levels regardless of As exposure, recovered antibody responses in As-exposed group, higher fecal and urinary As excretion and lower renal As residues. Selenium deficiency caused greater hepatic peroxidative damage in the As exposed animals. Thyroid hormones, triiodothyronine (T3) and thyroxine (T4), were not different. After 14weeks of As exposure, health indicators in rats improved in response to the high Se lentil diets. Our results indicate that high Se lentils have a potential to mitigate As toxicity in laboratory mammals, which we hope will translate into benefits for As exposed humans. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Arsenic exposures alter clinical indicators of anemia in a male population of smokers and non-smokers in Bangladesh.

    PubMed

    Parvez, Faruque; Medina, Sebastian; Santella, Regina M; Islam, Tariqul; Lauer, Fredine T; Alam, Nur; Eunus, Mahbubul; Rahman, Mizanour; Factor-Litvak, Pam; Ahsan, Habib; Graziano, Joseph H; Liu, Ke Jian; Burchiel, Scott W

    2017-09-15

    Drinking water arsenic (WAs) exposure has been linked to a number of detrimental health outcomes including anemia, primarily among pregnant women. Little is known about the effects of arsenic (As) on hematological disorders among men. We have examined the role of As exposure on hematological indicators of anemia in a group of men exposed to a wide range of As in their drinking water. We conducted a cross-sectional investigation among 119 healthy men in the Health Effects of As Longitudinal Study (HEALS) cohort, in rural Bangladesh. The participants are part of an ongoing study focused on evaluating the influence of As and smoking on immune function. Samples were collected at recruitment and analyzed for water As, urinary As (UAs) and UAs metabolites to assess As exposure. Blood samples were also collected at recruitment and assayed immediately for hematological parameters. We found that increased WAs levels were associated with decreased red blood cell counts [β=-0.13, p<0.0001] as well as hematocrit packed cell volumes [β=-0.68, p=0.008] following adjustment for age, smoking, body mass index and polycyclic aromatic hydrocarbon-DNA adducts. Other measures of As exposure (UAs and its metabolites) demonstrated similar associations. Slightly stronger effects were observed among smokers. We also observed an effect of As on hemoglobin among smokers in relation to UAs [β=-0.54, p<0.05]. Our analysis revealed effects of As exposure on hematological indicators of anemia in a group of healthy male smokers and non-smokers. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Total arsenic concentrations in Chinese children's urine by different geographic locations, ages, and genders.

    PubMed

    Zhang, Xuan; Wang, Beibei; Cui, Xiaoyong; Lin, Chunye; Liu, Xitao; Ma, Jin

    2018-06-01

    Little is known about the variation of Chinese children's exposure to arsenic by geography, age, gender, and other potential factors. The main objective of this study was to investigate the total arsenic concentration in Chinese children's urine by geographic locations, ages, and genders. In total, 259 24-h urine samples were collected from 210 2- to 12-year-old children in China and analyzed for total arsenic and creatinine concentrations. The results showed that the upper limit (upper limit of the 90% confidence interval for the 97.5 fractile) was 27.51 µg/L or 55.88 µg/g creatinine for Chinese children. The total urinary arsenic levels were significantly different for children in Guangdong, Hubei, and Gansu provinces (P < 0.05), where the upper limits were 24.29, 58.70, and 44.29 µg/g creatinine, respectively. In addition, the total urinary arsenic levels were higher for 2- to 7-year-old children than for 7- to 12-year-old children (P < 0.05; the upper limits were 59.06 and 44.29 µg/g creatinine, respectively) and higher for rural children than for urban children (P < 0.05; the upper limits were 59.06 and 50.44 µg/g creatinine, respectively). The total urinary arsenic levels for boys were not significantly different from those for girls (P > 0.05), although the level for boys (the upper limit was 59.30 µg/g) was slightly higher than that for girls (the upper limit was 58.64 µg/g creatinine). Because the total urinary arsenic concentrations are significantly different for general populations of children in different locations and age groups, the reference level of total urinary arsenic might be dependent on the geographic site and the child's age.

  19. Urinary Arsenic in Human Samples from Areas Characterized by Natural or Anthropogenic Pollution in Italy.

    PubMed

    Minichilli, Fabrizio; Bianchi, Fabrizio; Ronchi, Anna Maria; Gorini, Francesca; Bustaffa, Elisa

    2018-02-09

    Arsenic is ubiquitous and has a potentially adverse impact on human health. We compared the distribution of concentrations of urinary inorganic arsenic plus methylated forms (uc(iAs+MMA+DMA)) in four Italian areas with other international studies, and we assessed the relationship between uc(iAs+MMA+DMA) and various exposure factors. We conducted a human biomonitoring study on 271 subjects (132 men) aged 20-44, randomly sampled and stratified by area, gender, and age. Data on environmental and occupational exposure and dietary habits were collected through a questionnaire. Arsenic was speciated using chromatographic separation and inductively coupled mass spectrometry. Associations between uc(iAs+MMA+DMA) and exposure factors were evaluated using the geometric mean ratio (GMR) with a 90% confidence interval by stepwise multiple regression analysis. The 95th percentile value of uc(iAs+MMA+DMA) for the whole sample (86.28 µg/L) was higher than other national studies worldwide. A statistical significant correlation was found between uc(iAs+MMA+DMA) and occupational exposure (GMR: 2.68 [1.79-4.00]), GSTT gene (GMR: 0.68 [0.52-0.80]), consumption of tap water (GMR: 1.35 [1.02-1.77]), seafood (GMR: 1.44 [1.11-1.88]), whole milk (GMR: 1.34 [1.04-1.73]), and fruit/vegetables (GMR: 1.37 [1.03-1.82]). This study demonstrated the utility of uc(iAs+MMA+DMA) as a biomarker to assess environmental exposure. In a public health context, this information could be used to support remedial action, to prevent individuals from being further exposed to environmental arsenic sources.

  20. Urinary Arsenic in Human Samples from Areas Characterized by Natural or Anthropogenic Pollution in Italy

    PubMed Central

    Minichilli, Fabrizio; Bianchi, Fabrizio; Ronchi, Anna Maria; Gorini, Francesca; Bustaffa, Elisa

    2018-01-01

    Arsenic is ubiquitous and has a potentially adverse impact on human health. We compared the distribution of concentrations of urinary inorganic arsenic plus methylated forms (uc(iAs+MMA+DMA)) in four Italian areas with other international studies, and we assessed the relationship between uc(iAs+MMA+DMA) and various exposure factors. We conducted a human biomonitoring study on 271 subjects (132 men) aged 20–44, randomly sampled and stratified by area, gender, and age. Data on environmental and occupational exposure and dietary habits were collected through a questionnaire. Arsenic was speciated using chromatographic separation and inductively coupled mass spectrometry. Associations between uc(iAs+MMA+DMA) and exposure factors were evaluated using the geometric mean ratio (GMR) with a 90% confidence interval by stepwise multiple regression analysis. The 95th percentile value of uc(iAs+MMA+DMA) for the whole sample (86.28 µg/L) was higher than other national studies worldwide. A statistical significant correlation was found between uc(iAs+MMA+DMA) and occupational exposure (GMR: 2.68 [1.79–4.00]), GSTT gene (GMR: 0.68 [0.52–0.80]), consumption of tap water (GMR: 1.35 [1.02–1.77]), seafood (GMR: 1.44 [1.11–1.88]), whole milk (GMR: 1.34 [1.04–1.73]), and fruit/vegetables (GMR: 1.37 [1.03–1.82]). This study demonstrated the utility of uc(iAs+MMA+DMA) as a biomarker to assess environmental exposure. In a public health context, this information could be used to support remedial action, to prevent individuals from being further exposed to environmental arsenic sources. PMID:29425136

  1. Arsenic Exposure through Drinking Water Is Associated with Longer Telomeres in Peripheral Blood

    PubMed Central

    2012-01-01

    Inorganic arsenic is a strong carcinogen, possibly by interaction with the telomere length. The aim of the study was to evaluate how chronic arsenic exposure from drinking water as well as the arsenic metabolism efficiency affect the individual telomere length and the expression of telomere-related genes. Two hundred two women with a wide range in exposure to arsenic via drinking water (3.5–200 μg/L) were recruited. Concentrations of arsenic metabolites in urine [inorganic arsenic (iAs), methylarsonic acid (MMA), and dimethylarsinic acid (DMA)] were measured. The relative telomere length in blood was measured by quantitative real-time polymerase chain reaction. Genotyping (N = 172) for eight SNPs in AS3MT and gene expression of telomere-related genes (in blood; N = 90) were performed. Urinary arsenic (sum of metabolites) was positively associated with telomere length (β = 0.65 × 10–4, 95% CI = 0.031 × 10–4–1.3 × 10–4, adjusted for age and BMI). Individuals with above median fractions of iAs and MMA showed significantly longer telomeres by increasing urinary arsenic (β = 1.0 × 10–4, 95% CI = 0.21 × 10–4–1.8 × 10–4 at high % iAs; β = 0.88 × 10–4 95% CI = 0.12 × 10–4–1.6 × 10–4 at high % MMA) than those below the median (p = 0.80 and 0.44, respectively). Similarly, carriers of the slow and more toxic metabolizing AS3MT haplotype showed stronger positive associations between arsenic exposure and telomere length, as compared to noncarriers (interaction urinary arsenic and haplotype p = 0.025). Urinary arsenic was positively correlated with the expression of telomerase reverse transcriptase (TERT, Spearman r = 0.22, p = 0.037), but no association was found between TERT expression and telomere length. Arsenic in drinking water influences the telomere length, and this may be a mechanism for its carcinogenicity. A faster and less toxic arsenic metabolism diminishes arsenic-related telomere elongation. PMID:22917110

  2. Arsenic metabolism efficiency has a causal role in arsenic toxicity: Mendelian randomization and gene-environment interaction.

    PubMed

    Pierce, Brandon L; Tong, Lin; Argos, Maria; Gao, Jianjun; Farzana, Jasmine; Roy, Shantanu; Paul-Brutus, Rachelle; Rahaman, Ronald; Rakibuz-Zaman, Muhammad; Parvez, Faruque; Ahmed, Alauddin; Quasem, Iftekhar; Hore, Samar K; Alam, Shafiul; Islam, Tariqul; Harjes, Judith; Sarwar, Golam; Slavkovich, Vesna; Gamble, Mary V; Chen, Yu; Yunus, Mohammad; Rahman, Mahfuzar; Baron, John A; Graziano, Joseph H; Ahsan, Habibul

    2013-12-01

    Arsenic exposure through drinking water is a serious global health issue. Observational studies suggest that individuals who metabolize arsenic efficiently are at lower risk for toxicities such as arsenical skin lesions. Using two single nucleotide polymorphisms(SNPs) in the 10q24.32 region (near AS3MT) that show independent associations with metabolism efficiency, Mendelian randomization can be used to assess whether the association between metabolism efficiency and skin lesions is likely to be causal. Using data on 2060 arsenic-exposed Bangladeshi individuals, we estimated associations for two 10q24.32 SNPs with relative concentrations of three urinary arsenic species (representing metabolism efficiency): inorganic arsenic (iAs), monomethylarsonic acid(MMA) and dimethylarsinic acid (DMA). SNP-based predictions of iAs%, MMA% and DMA% were tested for association with skin lesion status among 2483 cases and 2857 controls. Causal odds ratios for skin lesions were 0.90 (95% confidence interval[CI]: 0.87, 0.95), 1.19 (CI: 1.10, 1.28) and 1.23 (CI: 1.12, 1.36)for a one standard deviation increase in DMA%, MMA% and iAs%,respectively. We demonstrated genotype-arsenic interaction, with metabolism-related variants showing stronger associations with skin lesion risk among individuals with high arsenic exposure (synergy index: 1.37; CI: 1.11, 1.62). We provide strong evidence for a causal relationship between arsenic metabolism efficiency and skin lesion risk. Mendelian randomization can be used to assess the causal role of arsenic exposure and metabolism in a wide array of health conditions.exposure and metabolism in a wide array of health conditions.Developing interventions that increase arsenic metabolism efficiency are likely to reduce the impact of arsenic exposure on health.

  3. Inorganic arsenic exposure increased expression of Fas and Bax gene in vivo and vitro.

    PubMed

    He, Yuefeng; Zhang, Ruobing; Xiaoxiao, Song; Li, Shang; Xinan, Wu; Huang, Dahai

    2018-06-01

    Accumulating evidences have shown that apoptosis plays an important role in mediating the therapeutic effects and toxicity of arsenic. Fas and Bax genes are critical regulatory genes for apoptosis. In this study, we investigated the association between levels of Fas and Bax expression and the three arsenic species (inorganic arsenic (iAs), monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA)) in vivo and vitro. Three arsenic species in urine were measured and levels of Fas and Bax expression were examined by the quantitative real-time PCR (qPCR) for all subjects. We found that Fas and Bax mRNA expression in the exposed group were significantly higher than that in the control group. The levels of gene expression were positively correlated with the concentrations of urinary iAs, MMA and DMA in all subjects. Sodium arsenite induced Fas and Bax mRNA expression, then MMA and DMA did not induce mRNA expression in MDA-MB-231 and XWLC-05 cells. The findings of the present study indicated that iAs, MMA, and DMA had different effects on expression of Bax and Fas gene. Copyright © 2017. Published by Elsevier B.V.

  4. Strong positive associations between seafood, vegetables, and alcohol with blood mercury and urinary arsenic levels in the Korean adult population.

    PubMed

    Park, Sunmin; Lee, Byung-Kook

    2013-01-01

    Blood mercury and urinary arsenic levels are more than fivefold greater in the Korean population compared with those of the United States. This may be related to the foods people consumed. Therefore, we examined the associations between food categories and mercury and arsenic exposure in the Korean adult population. Data regarding nutritional, biochemical, and health-related parameters were obtained from a cross-sectional study, the 2008-2009 Korean National Health and Nutrition Examination Survey (3,404 men and women age ≥ 20 years). The log-transformed blood mercury and urinary arsenic levels were regressed against the frequency tertiles of each food group after covariate adjustment for sex, age, residence area, education level, smoking status, and drinking status using food-frequency data. Blood mercury levels in the high consumption groups compared to the low consumption groups were elevated by about 20 percents with salted fish, shellfish, whitefish, bluefish, and alcohol, and by about 9-14 percents with seaweeds, green vegetables, fruits and tea, whereas rice did not affect blood mercury levels. Urinary arsenic levels were markedly increased with consumption of rice, bluefish, salted fish, shellfish, whitefish, and seaweed, whereas they were moderately increased with consumption of grains, green and white vegetables, fruits, coffee, and alcohol. The remaining food categories tended to lower these levels only minimally. In conclusion, the typical Asian diet, which is high in rice, salted fish, shellfish, vegetables, alcoholic beverages, and tea, may be associated with greater blood mercury and urinary arsenic levels. This study suggests that mercury and arsenic contents should be monitored and controlled in soil and water used for agriculture to decrease health risks from heavy-metal contamination.

  5. Carotid Intima-Media Thickness and Plasma Asymmetric Dimethylarginine in Mexican Children Exposed to Inorganic Arsenic

    PubMed Central

    Osorio-Yáñez, Citlalli; Ayllon-Vergara, Julio C.; Aguilar-Madrid, Guadalupe; Arreola-Mendoza, Laura; Hernández-Castellanos, Erika; Barrera-Hernández, Angel; De Vizcaya-Ruiz, Andrea

    2013-01-01

    Background: Arsenic exposure is a risk factor for atherosclerosis in adults, but there is little information on arsenic and early risk biomarkers for atherosclerosis in children. Carotid intima-media thickness (cIMT) is an indicator of subclinical atherosclerotic burden that has been associated with plasma asymmetric dimethylarginine (ADMA), a predictor of cardiovascular disease risk. Objectives: The aim of this study was to investigate associations of arsenic exposure with cIMT, ADMA, and endothelial adhesion molecules [soluble intercellular cell adhesion molecule-1 (sICAM-1); soluble vascular cell adhesion molecule-1 (sVCAM-1)] in children who had been exposed to environmental inorganic arsenic (iAs). Methods: We conducted a cross-sectional study in 199 children 3–14 years of age who were residents of Zimapan, México. We evaluated cIMT using ultrasonography, and plasma lipid profiles by standard methods. We analyzed ADMA, sICAM-1, and sVCAM-1 by ELISA, and measured the concentrations of total speciated arsenic (tAs) in urine using hydride generation cryotrapping atomic absorption spectrometry. Results: In the multiple linear regression model for cIMT, tAs categories were positively associated with cIMT increase. The estimated cIMT diameter was greater in 35- to 70-ng/mL and > 70-ng/mL groups (0.035 mm and 0.058 mm per 1-ng/mL increase in urinary tAs, respectively), compared with the < 35-ng/mL group. In addition to tAs level, plasma ADMA was a significant predictor of cIMT. In the adjusted regression model, cIMT, percent iAs, and plasma sVCAM-1 were significant predictors of ADMA levels (e.g., 0.419-μmol/L increase in ADMA per 1-mm increase in cIMT). Conclusions: Arsenic exposure and plasma ADMA levels were positively associated with cIMT in a population of Mexican children with environmental arsenic exposure through drinking water. Citation: Osorio-Yáñez C, Ayllon-Vergara JC, Aguilar-Madrid G, Arreola-Mendoza L, Hernández-Castellanos E, Barrera-Hernández A, De Vizcaya-Ruíz A, Del Razo LM. 2013. Carotid intima-media thickness and plasma asymmetric dimethylarginine in Mexican children exposed to inorganic arsenic. Environ Health Perspect 121:1090–1096; http://dx.doi.org/10.1289/ehp.1205994 PMID:23757599

  6. Long-term exposure of immortalized keratinocytes to arsenic induces EMT, impairs differentiation in organotypic skin models and mimics aspects of human skin derangements.

    PubMed

    Weinmuellner, R; Kryeziu, K; Zbiral, B; Tav, K; Schoenhacker-Alte, B; Groza, D; Wimmer, L; Schosserer, M; Nagelreiter, F; Rösinger, S; Mildner, M; Tschachler, E; Grusch, M; Grillari, J; Heffeter, P

    2018-01-01

    Arsenic is one of the most important human carcinogens and environmental pollutants. However, the evaluation of the underlying carcinogenic mechanisms is challenging due to the lack of suitable in vivo and in vitro models, as distinct interspecies differences in arsenic metabolism exist. Thus, it is of high interest to develop new experimental models of arsenic-induced skin tumorigenesis in humans. Consequently, aim of this study was to establish an advanced 3D model for the investigation of arsenic-induced skin derangements, namely skin equivalents, built from immortalized human keratinocytes (NHEK/SVTERT3-5). In contrast to spontaneously immortalized HACAT cells, NHEK/SVTERT3-5 cells more closely resembled the differentiation pattern of primary keratinocytes. With regard to arsenic, our results showed that while our new cell model was widely unaffected by short-time treatment (72 h) with low, non-toxic doses of ATO (0.05-0.25 µM), chronic exposure (6 months) resulted in distinct changes of several cell characteristics. Thus, we observed an increase in the G2 fraction of the cell cycle accompanied by increased nucleus size and uneven tubulin distribution. Moreover, cells showed strong signs of de-differentiation and upregulation of several epithelial-to-mesenchymal transition markers. In line with these effects, chronic contact to arsenic resulted in impaired skin-forming capacities as well as localization of ki67-positive (proliferating) cells at the upper layers of the epidermis; a condition termed Bowen's disease. Finally, chronically arsenic-exposed cells were characterized by an increased tumorigenicity in SCID mice. Taken together, our study presents a new model system for the investigation of mechanisms underlying the tumor-promoting effects of chronic arsenic exposure.

  7. Proteomic profiling reveals candidate markers for arsenic-induced skin keratosis.

    PubMed

    Guo, Zhiling; Hu, Qin; Tian, Jijing; Yan, Li; Jing, Chuanyong; Xie, Heidi Qunhui; Bao, Wenjun; Rice, Robert H; Zhao, Bin; Jiang, Guibin

    2016-11-01

    Proteomics technology is an attractive biomarker candidate discovery tool that can be applied to study large sets of biological molecules. To identify novel biomarkers and molecular targets in arsenic-induced skin lesions, we have determined the protein profile of arsenic-affected human epidermal stratum corneum by shotgun proteomics. Samples of palm and foot sole from healthy subjects were analyzed, demonstrating similar protein patterns in palm and sole. Samples were collected from the palms of subjects with arsenic keratosis (lesional and adjacent non-lesional samples) and arsenic-exposed subjects without lesions (normal). Samples from non-exposed healthy individuals served as controls. We found that three proteins in arsenic-exposed lesional epidermis were consistently distinguishably expressed from the unaffected epidermis. One of these proteins, the cadherin-like transmembrane glycoprotein, desmoglein 1 (DSG1) was suppressed. Down-regulation of DSG1 may lead to reduced cell-cell adhesion, resulting in abnormal epidermal differentiation. The expression of keratin 6c (KRT6C) and fatty acid binding protein 5 (FABP5) were significantly increased. FABP5 is an intracellular lipid chaperone that plays an essential role in fatty acid metabolism in human skin. This raises a possibility that overexpression of FABP5 may affect the proliferation or differentiation of keratinocytes by altering lipid metabolism. KRT6C is a constituent of the cytoskeleton that maintains epidermal integrity and cohesion. Abnormal expression of KRT6C may affect its structural role in the epidermis. Our findings suggest an important approach for future studies of arsenic-mediated toxicity and skin cancer, where certain proteins may represent useful biomarkers of early diagnoses in high-risk populations and hopefully new treatment targets. Further studies are required to understand the biological role of these markers in skin pathogenesis from arsenic exposure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Polymorphisms in arsenic(+III oxidation state) methyltransferase (AS3MT) predict gene expression of AS3MT as well as arsenic metabolism.

    PubMed

    Engström, Karin; Vahter, Marie; Mlakar, Simona Jurkovic; Concha, Gabriela; Nermell, Barbro; Raqib, Rubhana; Cardozo, Alejandro; Broberg, Karin

    2011-02-01

    Arsenic (As) occurs as monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) in humans, and the methylation pattern demonstrates large interindividual differences. The fraction of urinary MMA is a marker for susceptibility to As-related diseases. We evaluated the impact of polymorphisms in five methyltransferase genes on As metabolism in two populations, one in South America and one in Southeast Asia. The methyltransferase genes were arsenic(+III oxidation state) methyltransferase (AS3MT), DNA-methyltransferase 1a and 3b (DNMT1a and DNMT3b, respectively), phosphatidylethanolamine N-methyltransferase (PEMT), and betaine-homocysteine methyltransferase (BHMT). AS3MT expression was analyzed in peripheral blood. Subjects were women exposed to As in drinking water in the Argentinean Andes [n = 172; median total urinary As (U-As), 200 µg/L] and in rural Bangladesh (n = 361; U-As, 100 µg/L; all in early pregnancy). Urinary As metabolites were measured by high-pressure liquid chromatography/inductively coupled plasma mass spectrometry. Polymorphisms (n = 22) were genotyped with Sequenom, and AS3MT expression was measured by quantitative real-time polymerase chain reaction using TaqMan expression assays. Six AS3MT polymorphisms were significantly associated with As metabolite patterns in both populations (p ≤ 0.01). The most frequent AS3MT haplotype in Bangladesh was associated with a higher percentage of MMA (%MMA), and the most frequent haplotype in Argentina was associated with a lower %MMA and a higher percentage of DMA. Four polymorphisms in the DNMT genes were associated with metabolite patterns in Bangladesh. Noncoding AS3MT polymorphisms affected gene expression of AS3MT in peripheral blood, demonstrating that one functional impact of AS3MT polymorphisms may be altered levels of gene expression. Polymorphisms in AS3MT significantly predicted As metabolism across these two very different populations, suggesting that AS3MT may have an impact on As metabolite patterns in populations worldwide.

  9. Effect of Dietary Treatment with Dimethylarsinous Acid (DMAIII) on the Urinary Bladder Epithelium of Arsenic (+3 Oxidation State) Methyltransferase (As3mt) Knockout and C57BL/6 Wild Type Female Mice

    EPA Science Inventory

    Abstract Chronic exposure to inorganic arsenic (iAs) is carcinogenic to the human urinary bladder. It produces urothelial cytotoxicity and proliferation in rats and mice. DMAv, a major methylated urinary metabolite of iAs, is a rat bladder carcinogen, but without effects on the...

  10. PEPTIDE BINDING AS A MODE OF ACTION FOR THE CARCINOGENICITY AND TOXICITY OF ARSENIC

    EPA Science Inventory

    Arsenic exposure leads to tumors in human skin, lung, urinary bladder, kidney and liver. Three likely initial stages of arsenical-macromolecular interaction are (1) binding of trivalent arsenicals to the sulfhydryl groups of peptides and proteins, (2) arsenical-induced generation...

  11. PROPOSED CARCINOGENIC MECHANISMS FOR ARSENIC

    EPA Science Inventory

    PROPOSED CARCINOGENIC MECHANISMS FOR ARSENIC.

    Arsenic is a human carcinogen in skin, lung, liver, urinary bladder and kidney. In contrast,
    there is no accepted experimental animal model of inorganic arsenic carcinogenesis.
    Proposed mechanisms/modes of action for a...

  12. Availability of arsenic in human milk in women and its correlation with arsenic in urine of breastfed children living in arsenic contaminated areas in Bangladesh.

    PubMed

    Islam, Md Rafiqul; Attia, John; Alauddin, Mohammad; McEvoy, Mark; McElduff, Patrick; Slater, Christine; Islam, Md Monirul; Akhter, Ayesha; d'Este, Catherine; Peel, Roseanne; Akter, Shahnaz; Smith, Wayne; Begg, Stephen; Milton, Abul Hasnat

    2014-12-04

    Early life exposure to inorganic arsenic may be related to adverse health effects in later life. However, there are few data on postnatal arsenic exposure via human milk. In this study, we aimed to determine arsenic levels in human milk and the correlation between arsenic in human milk and arsenic in mothers and infants urine. Between March 2011 and March 2012, this prospective study identified a total of 120 new mother-baby pairs from Kashiani (subdistrict), Bangladesh. Of these, 30 mothers were randomly selected for human milk samples at 1, 6 and 9 months post-natally; the same mother baby pairs were selected for urine sampling at 1 and 6 months. Twelve urine samples from these 30 mother baby pairs were randomly selected for arsenic speciation. Arsenic concentration in human milk was low and non-normally distributed. The median arsenic concentration in human milk at all three time points remained at 0.5 μg/L. In the mixed model estimates, arsenic concentration in human milk was non-significantly reduced by -0.035 μg/L (95% CI: -0.09 to 0.02) between 1 and 6 months and between 6 and 9 months. With the progression of time, arsenic concentration in infant's urine increased non-significantly by 0.13 μg/L (95% CI: -1.27 to 1.53). Arsenic in human milk at 1 and 6 months was not correlated with arsenic in the infant's urine at the same time points (r = -0.13 at 1 month and r = -0.09 at 6 month). Arsenite (AsIII), arsenate (AsV), monomethyl arsonic acid (MMA), dimethyl arsinic acid (DMA) and arsenobetaine (AsB) were the constituents of total urinary arsenic; DMA was the predominant arsenic metabolite in infant urine. We observed a low arsenic concentration in human milk. The concentration was lower than the World Health Organization's maximum permissible limit (WHO Permissible Limit 15 μg/kg-bw/week). Our findings support the safety of breastfeeding even in arsenic contaminated areas.

  13. MODES OF ACTION FOR THE CARCINOGENICITY AND TOXICITY OF ARSENIC - MOVING TOWARDS A MORE QUANTITATIVE RISK ASSESSMENT

    EPA Science Inventory

    Arsenic exposures can lead to human tumors in skin, lung, urinary bladder, kidney and liver. Three likely initial stages of arsenical¬macromolecular interaction are (1) binding of trivalent arsenicals to sulfhydryl groups of peptides and proteins, (2) arsenical-induced generation...

  14. Interaction of plasma glutathione redox and folate deficiency on arsenic methylation capacity in Bangladeshi adults

    PubMed Central

    Niedzwiecki, Megan M.; Hall, Megan N.; Liu, Xinhua; Slavkovich, Vesna; Ilievski, Vesna; Levy, Diane; Alam, Shafiul; Siddique, Abu B.; Parvez, Faruque; Graziano, Joseph H.; Gamble, Mary V.

    2014-01-01

    Inorganic arsenic (InAs) is metabolized through a series of methylation reactions catalyzed by arsenic(III)-methyltransferase (AS3MT), resulting in the generation of monomethylarsonic (MMAs) and dimethylarsinic acids (DMAs). AS3MT activity requires the presence of the methyl donor S-adenosylmethionine (SAM), a product of folate-dependent one-carbon metabolism, and a reductant. Although glutathione (GSH), the primary endogenous antioxidant, is not required for As methylation, GSH stimulates As methylation rates in vitro. However, the relationship between GSH redox and As methylation capacity in humans is unknown. We wished to test the hypothesis that a more oxidized plasma GSH redox status is associated with decreased As methylation capacity, and examine whether these associations are modified by folate nutritional status. Concentrations of plasma GSH and GSSG, plasma folate, total blood As (bAs), total urinary As (uAs), and uAs metabolites were assessed in a cross-sectional study of n = 376 Bangladeshi adults who were chronically exposed to As in drinking water. We observed that a decreased plasma GSH/GSSG ratio (reflecting a more oxidized redox state) was significantly associated with increased urinary %MMA, decreased urinary %DMA, and increased total bAs in folate-deficient individuals (plasma folate ≤ 9.0 nmol/L). Concentrations of plasma GSH and GSSG were independently associated with increased and decreased As methylation capacity, respectively. No significant associations were observed in folate-sufficient individuals, and interactions by folate status were statistically significant. Our findings suggest that GSH/GSSG redox regulation might contribute to the large interindividual variation in As methylation capacity observed in human populations. PMID:24726863

  15. A Prospective Study of Arsenic Exposure, Arsenic Methylation Capacity, and Risk of Cardiovascular Disease in Bangladesh

    PubMed Central

    Wu, Fen; Liu, Mengling; Parvez, Faruque; Slavkovich, Vesna; Eunus, Mahbub; Ahmed, Alauddin; Argos, Maria; Islam, Tariqul; Rakibuz-Zaman, Muhammad; Hasan, Rabiul; Sarwar, Golam; Levy, Diane; Graziano, Joseph

    2013-01-01

    Background: Few prospective studies have evaluated the influence of arsenic methylation capacity on cardiovascular disease (CVD) risk. Objective: We evaluated the association of arsenic exposure from drinking water and arsenic methylation capacity with CVD risk. Method: We conducted a case–cohort study of 369 incident fatal and nonfatal cases of CVD, including 211 cases of heart disease and 148 cases of stroke, and a subcohort of 1,109 subjects randomly selected from the 11,224 participants in the Health Effects of Arsenic Longitudinal Study (HEALS). Results: The adjusted hazard ratios (aHRs) for all CVD, heart disease, and stroke in association with a 1-SD increase in baseline well-water arsenic (112 µg/L) were 1.15 (95% CI: 1.01, 1.30), 1.20 (95% CI: 1.04, 1.38), and 1.08 (95% CI: 0.90, 1.30), respectively. aHRs for the second and third tertiles of percentage urinary monomethylarsonic acid (MMA%) relative to the lowest tertile, respectively, were 1.27 (95% CI: 0.85, 1.90) and 1.55 (95% CI: 1.08, 2.23) for all CVD, and 1.65 (95% CI: 1.05, 2.60) and 1.61 (95% CI: 1.04, 2.49) for heart disease specifically. The highest versus lowest ratio of urinary dimethylarsinic acid (DMA) to MMA was associated with a significantly decreased risk of CVD (aHR = 0.54; 95% CI: 0.34, 0.85) and heart disease (aHR = 0.54; 95% CI: 0.33, 0.88). There was no significant association between arsenic metabolite indices and stroke risk. The effects of incomplete arsenic methylation capacity—indicated by higher urinary MMA% or lower urinary DMA%—with higher levels of well-water arsenic on heart disease risk were additive. There was some evidence of a synergy of incomplete methylation capacity with older age and cigarette smoking. Conclusions: Arsenic exposure from drinking water and the incomplete methylation capacity of arsenic were adversely associated with heart disease risk. PMID:23665672

  16. Case-control study of arsenic in drinking water and kidney cancer in uniquely exposed Northern Chile.

    PubMed

    Ferreccio, Catterina; Smith, Allan H; Durán, Viviana; Barlaro, Teresa; Benítez, Hugo; Valdés, Rodrigo; Aguirre, Juan José; Moore, Lee E; Acevedo, Johanna; Vásquez, María Isabel; Pérez, Liliana; Yuan, Yan; Liaw, Jane; Cantor, Kenneth P; Steinmaus, Craig

    2013-09-01

    Millions of people worldwide are exposed to arsenic in drinking water. The International Agency for Research on Cancer has concluded that ingested arsenic causes lung, bladder, and skin cancer. However, a similar conclusion was not made for kidney cancer because of a lack of research with individual data on exposure and dose-response. With its unusual geology, high exposures, and good information on past arsenic water concentrations, northern Chile is one of the best places in the world to investigate the carcinogenicity of arsenic. We performed a case-control study in 2007-2010 of 122 kidney cancer cases and 640 population-based controls with individual data on exposure and potential confounders. Cases included 76 renal cell, 24 transitional cell renal pelvis and ureter, and 22 other kidney cancers. For renal pelvis and ureter cancers, the adjusted odds ratios by average arsenic intakes of <400, 400-1,000, and >1,000 µg/day (median water concentrations of 60, 300, and 860 µg/L) were 1.00, 5.71 (95% confidence interval: 1.65, 19.82), and 11.09 (95% confidence interval: 3.60, 34.16) (Ptrend < 0.001), respectively. Odds ratios were not elevated for renal cell cancer. With these new findings, including evidence of dose-response, we believe there is now sufficient evidence in humans that drinking-water arsenic causes renal pelvis and ureter cancer.

  17. High-Resolution Computed Tomography and Pulmonary Function Findings of Occupational Arsenic Exposure in Workers.

    PubMed

    Ergün, Recai; Evcik, Ender; Ergün, Dilek; Ergan, Begüm; Özkan, Esin; Gündüz, Özge

    2017-05-05

    The number of studies where non-malignant pulmonary diseases are evaluated after occupational arsenic exposure is very few. To investigate the effects of occupational arsenic exposure on the lung by high-resolution computed tomography and pulmonary function tests. Retrospective cross-sectional study. In this study, 256 workers with suspected respiratory occupational arsenic exposure were included, with an average age of 32.9±7.8 years and an average of 3.5±2.7 working years. Hair and urinary arsenic levels were analysed. High-resolution computed tomography and pulmonary function tests were done. In workers with occupational arsenic exposure, high-resolution computed tomography showed 18.8% pulmonary involvement. In pulmonary involvement, pulmonary nodule was the most frequently seen lesion (64.5%). The other findings of pulmonary involvement were 18.8% diffuse interstitial lung disease, 12.5% bronchiectasis, and 27.1% bullae-emphysema. The mean age of patients with pulmonary involvement was higher and as they smoked more. The pulmonary involvement was 5.2 times higher in patients with skin lesions because of arsenic. Diffusing capacity of lung for carbon monoxide was significantly lower in patients with pulmonary involvement. Besides lung cancer, chronic occupational inhalation of arsenic exposure may cause non-malignant pulmonary findings such as bronchiectasis, pulmonary nodules and diffuse interstitial lung disease. So, in order to detect pulmonary involvement in the early stages, workers who experience occupational arsenic exposure should be followed by diffusion test and high-resolution computed tomography.

  18. Relation of dietary inorganic arsenic exposure and urinary inorganic arsenic metabolites excretion in Japanese subjects.

    PubMed

    Oguri, Tomoko; Yoshinaga, Jun; Suzuki, Yayoi; Tao, Hiroaki; Nakazato, Tetsuya

    2017-06-03

    Inorganic arsenic (InAs) is a ubiquitous metalloid that has been shown to exert multiple adverse health outcomes. Urinary InAs and its metabolite concentration has been used as a biomarker of arsenic (As) exposure in some epidemiological studies, however, quantitative relationship between daily InAs exposure and urinary InAs metabolites concentration has not been well characterized. We collected a set of 24-h duplicated diet and spot urine sample of the next morning of diet sampling from 20 male and 19 female subjects in Japan from August 2011 to October 2012. Concentrations of As species in duplicated diet and urine samples were determined by using liquid chromatography-ICP mass spectrometry with a hydride generation system. Sum of the concentrations of urinary InAs and methylarsonic acid (MMA) was used as a measure of InAs exposure. Daily dietary InAs exposure was estimated to be 0.087 µg kg -1 day -1 (Geometric mean, GM), and GM of urinary InAs+MMA concentrations was 3.5 ng mL -1 . Analysis of covariance did not find gender-difference in regression coefficients as significant (P > 0.05). Regression equation Log 10 [urinary InAs+MMA concentration] = 0.570× Log 10 [dietary InAs exposure level per body weight] + 1.15 was obtained for whole data set. This equation would be valuable in converting urinary InAs concentration to daily InAs exposure, which will be important information in risk assessment.

  19. Estimation of Inorganic Arsenic Exposure in Populations With Frequent Seafood Intake: Evidence From MESA and NHANES

    PubMed Central

    Jones, Miranda R.; Tellez-Plaza, Maria; Vaidya, Dhananjay; Grau, Maria; Francesconi, Kevin A.; Goessler, Walter; Guallar, Eliseo; Post, Wendy S.; Kaufman, Joel D.; Navas-Acien, Ana

    2016-01-01

    The sum of urinary inorganic arsenic (iAs) and methylated arsenic (monomethylarsonate and dimethylarsinate (DMA)) species is the main biomarker of iAs exposure. Assessing iAs exposure, however, is difficult in populations with moderate-to-high seafood intakes. In the present study, we used subsamples from the Multi-Ethnic Study of Atherosclerosis (2000–2002) (n = 310) and the 2003–2006 National Health and Nutrition Examination Survey (n = 1,175). We calibrated urinary concentrations of non–seafood-derived iAs, DMA, and methylarsonate, as well as the sum of inorganic and methylated arsenic species, in the Multi-Ethnic Study of Atherosclerosis and of DMA in the National Health and Nutrition Examination Survey by regressing their original concentrations by arsenobetaine and extracting model residuals. To confirm that calibrated biomarkers reflected iAs exposure but not seafood intake, we compared urinary arsenic concentrations by levels of seafood and rice intakes. Self-reported seafood intakes, estimated n-3 polyunsaturated fatty acid levels, and measured n-3 polyunsaturated fatty acid levels were positively associated with the original urinary arsenic biomarkers. Using the calibrated arsenic biomarkers, we found a marked attenuation of the associations with self-reported seafood intake and estimated or measured n-3 fatty acids, whereas associations with self-reported rice intake remained similar. Our residual-based method provides estimates of iAs exposure and metabolism for each participant that no longer reflect seafood intake and can facilitate research about low-to-moderate levels of iAs exposure in populations with high seafood intakes. PMID:27702745

  20. COMPARISON OF GENE EXPRESSION IN KIDNEY AND URINARY BLADDER FROM RATS TREATED WITH DIMETHYLARSINIC ACID

    EPA Science Inventory

    Arsenic is widespread in the environment and a human carcinogen. A major metabolite of inorganic arsenic (iAs) in most species, including humans, is dimethylarsinic acid (DMA), which is also used as a pesticide. Unlike iAs, DMA induces urinary bladder tumors in rats. DMA is belie...

  1. Arsenic Exposure Is Associated with Decreased DNA Repair in Vitro and in Individuals Exposed to Drinking Water Arsenic

    PubMed Central

    Andrew, Angeline S.; Burgess, Jefferey L.; Meza, Maria M.; Demidenko, Eugene; Waugh, Mary G.; Hamilton, Joshua W.; Karagas, Margaret R.

    2006-01-01

    The mechanism(s) by which arsenic exposure contributes to human cancer risk is unknown; however, several indirect cocarcinogenesis mechanisms have been proposed. Many studies support the role of As in altering one or more DNA repair processes. In the present study we used individual-level exposure data and biologic samples to investigate the effects of As exposure on nucleotide excision repair in two study populations, focusing on the excision repair cross-complement 1 (ERCC1) component. We measured drinking water, urinary, or toenail As levels and obtained cryopreserved lymphocytes of a subset of individuals enrolled in epidemiologic studies in New Hampshire (USA) and Sonora (Mexico). Additionally, in corroborative laboratory studies, we examined the effects of As on DNA repair in a cultured human cell model. Arsenic exposure was associated with decreased expression of ERCC1 in isolated lymphocytes at the mRNA and protein levels. In addition, lymphocytes from As-exposed individuals showed higher levels of DNA damage, as measured by a comet assay, both at baseline and after a 2-acetoxyacetylaminofluorene (2-AAAF) challenge. In support of the in vivo data, As exposure decreased ERCC1 mRNA expression and enhanced levels of DNA damage after a 2-AAAF challenge in cell culture. These data provide further evidence to support the ability of As to inhibit the DNA repair machinery, which is likely to enhance the genotoxicity and mutagenicity of other directly genotoxic compounds, as part of a cocarcinogenic mechanism of action. PMID:16882524

  2. [Health risk for the vulnerable population exposed to arsenic in the province of Buenos Aires, Argentina].

    PubMed

    Navoni, Julio A; De Pietri, Diana; Garcia, Susana; Villaamil Lepori, Edda C

    2012-01-01

    To analyze the concentration of arsenic in water collected in localities of the province of Buenos Aires, Argentina, and the epidemiological relationship of that concentration to factors of susceptibility and associated pathologies. In 152 samples from 52 localities of Buenos Aires from 2003-2008, the concentration of arsenic was quantified through the generation of hydride spectrophotometry of atomic absorption. A composite index of health (CIH) was constructed using the content of arsenic and the percentages of households with unmet basic needs and dwellings without access to the potable water. Through the CIH, risk areas associated with mortality from malignant neoplasms related to arsenic were defined. Concentrations of arsenic spanned a broad range from 0.3 to 187 mg/L, with a median of 40 mg/L. Of the samples, 82% presented levels of arsenic higher than the acceptable limit of 10 mg/L, and more than half of those came from households with potable water connections. In the departments studied, the average mortality (deaths/100 000 inhabitants) from tumors was greater in men than in women: respiratory tract (310 versus 76), urinary tract (44 versus 11), and skin (21 versus 11), respectively. The regions with greater concentrations of arsenic and of poverty, together with the lack of potable water connections, had a two-to-four times greater risk. The findings from the composite index of health summarized the health risk from exposure to arsenic for lower socioeconomic levels of the population for a broad area of the province of Buenos Aires.

  3. THE REACTIVE OXYGEN SPECIES (ROS) THEORY OF ARSENIC CARCINOGENESIS

    EPA Science Inventory



    Arsenic is a human carcinogen in skin, lung, liver, urinary bladder
    and kidney. At this time, there is not a scientific consensus on the
    mechanisms/modes of action for arsenic carcinogenesis. Proposed
    mechanisms/modes of action for arsenic carcinogenesi...

  4. Low-to-Moderate Arsenic Exposure and Respiratory Health in American Indian Communities.

    PubMed

    Powers, Martha; Sanchez, Tiffany R; Grau-Perez, Maria; Yeh, Fawn; Francesconi, Kevin; Goessler, Walter; George, Christine M; Heaney, Christopher; Best, Lyle G; Umans, Jason; Brown, Robert H; Navas-Acien, Ana

    2018-04-01

    Exposure to inorganic arsenic, through drinking naturally-contaminated water, is an established cause of lung cancer. Evidence on the impact of arsenic exposure on lung function, however, is less conclusive. The evidence available, mostly from populations exposed to water arsenic levels >100 μg/L, suggests that arsenic exposure is associated with lower lung function. Prospective studies and studies examining low-to-moderate levels of water arsenic exposure (<50 μg/L) the level relevant for U.S. populations, are very limited. We evaluated the association between chronic low-to-moderate arsenic exposure with lung function and disease in an American Indian population. The Strong Heart Study is a multicenter prospective study of cardiovascular disease and its risk factors among American Indian adults. The present analysis, in 2,166 adults, used urinary arsenic measurements at baseline (1989-1991) and lung symptoms and function assessment by standardized spirometry at the second examination (1993-1995). We evaluated associations between arsenic exposure and airflow obstruction, defined as ratio of forced expiratory volume in 1 second (FEV 1 ) to forced vital capacity (FVC) of less than 0.70, and restrictive pattern, defined as FEV 1 /FVC ratio greater than 0.70 and FVC less than 80% predicted; respiratory symptoms; and self-reported physician diagnosis of nonmalignant respiratory disease. The prevalence of airflow obstruction between 1993 and 1995 was 21.4% (463/2,166); restrictive pattern was 14.5% (314/2,166). Median urinary arsenic concentrations were higher in participants with airflow obstruction (11.0 μg/g creatinine) compared to those without obstruction (9.8 μg/g creatinine), and higher in those with restrictive pattern (12.0 μg/g) compared to those without restrictive pattern (9.4 μg/g). The odds ratio (95% confidence interval) for obstructive and restrictive patterns comparing the 75th to 25th percentile of arsenic was 1.13 (0.96-1.32) and 1.27 (1.01-1.60), respectively, after adjustment for age, sex, education, study site, smoking status, smoking pack-year, estimated glomerular filtration rate, tuberculosis, and body mass index. Emphysema, cough 4-6 times a day, phlegm, and stopping for breath were also positively associated with arsenic. In this American Indian population, exposure to low-to-moderate levels of inorganic arsenic, as measured in urine, was positively associated with restrictive pattern as measured by spirometry, self-reported emphysema diagnosis, self-reported shortness of breath, and more frequent cough and phlegm among those with cough, independent of smoking status. These findings suggest that low-to-moderate arsenic exposure can contribute to nonmalignant lung disease, and may be associated with restrictive lung disease.

  5. Associations between Methylated Metabolites of Arsenic and Selenium in Urine of Pregnant Bangladeshi Women and Interactions between the Main Genes Involved.

    PubMed

    Skröder, Helena; Engström, Karin; Kuehnelt, Doris; Kippler, Maria; Francesconi, Kevin; Nermell, Barbro; Tofail, Fahmida; Broberg, Karin; Vahter, Marie

    2018-02-01

    It has been proposed that interactions between selenium and arsenic in the body may affect their kinetics and toxicity. However, it is unknown how the elements influence each other in humans. We aimed to investigate potential interactions in the methylation of selenium and arsenic. Urinary selenium (U-Se) and arsenic (U-As) were measured using inductively coupled plasma mass spectrometry (ICPMS) in samples collected from pregnant women ( n =226) in rural Bangladesh at gestational weeks (GW) 8, 14, 19, and 30. Urinary concentrations of trimethyl selenonium ion (TMSe) were measured by HPLC-vapor generation-ICPMS, as were inorganic arsenic (iAs), methylarsonic acid (MMA), and dimethylarsinic acid (DMA). Methylation efficiency was assessed based on relative amounts (%) of arsenic and selenium metabolites in urine. Genotyping for the main arsenite and selenium methyltransferases, AS3MT and INMT, was performed using TaqMan probes or Sequenom. Multivariable-adjusted linear regression analyses indicated that %TMSe (at GW8) was positively associated with %MMA (β=1.3, 95% CI: 0.56, 2.0) and U-As, and inversely associated with %DMA and U-Se in producers of TMSe ( INMT rs6970396 AG+AA, n =74), who had a wide range of urinary TMSe (12-42%). Also, %TMSe decreased in parallel to %MMA during pregnancy, especially in the first trimester (-0.58 %TMSe per gestational week). We found a gene-gene interaction for %MMA ( p -interaction=0.076 for haplotype 1). In analysis stratified by INMT genotype, the association between %MMA and both AS3MT haplotypes 1 and 3 was stronger in women with the INMT GG (TMSe nonproducers, 5th-95th percentile: 0.2-2%TMSe) vs. AG+AA genotype. Our findings for Bangladeshi women suggest a positive association between urinary %MMA and %TMSe. Genes involved in the methylation of selenium and arsenic may interact on associations with urinary %MMA. https://doi.org/10.1289/EHP1912.

  6. Renal, hepatic, pulmonary and adrenal tumors induced by prenatal inorganic arsenic followed by dimethylarsinic acid in adulthood in CD1 mice

    PubMed Central

    Tokar, Erik J.; Diwan, Bhalchandra A.; Waalkes, Michael P.

    2012-01-01

    Inorganic arsenic, an early life carcinogen in humans and mice, can initiate lesions promotable by other agents in later life. The biomethylation product of arsenic, dimethylarsinic acid (DMA), is a multi-site tumor promoter. Thus, pregnant CD1 mice were given drinking water (0 or 85 ppm arsenic) from gestation day 8 to 18 and after weaning male offspring received DMA (0 or 200 ppm; drinking water) for up to 2 years. No renal tumors occurred in controls or DMA alone treated mice while gestational arsenic exposure plus later DMA induced a significant renal tumor incidence of 17% (primarily renal cell carcinoma). Arsenic plus DMA or arsenic alone also increased renal hyperplasia over control but DMA alone did not. Arsenic alone, DMA alone and arsenic plus DMA all induced urinary bladder hyperplasia (33–35%) versus control (2%). Compared to control (6%), arsenic alone tripled hepatocellular carcinoma (20%), and arsenic plus DMA doubled this rate again (43%), but DMA alone had no effect. DMA alone, arsenic alone, and arsenic plus DMA increased lung adenocarcinomas and adrenal adenomas versus control. Overall, DMA in adulthood promoted tumors/lesions initiated by prenatal arsenic in the kidney and liver, but acted independently in the urinary bladder, lung and adrenal. PMID:22230260

  7. The Investigation of Unexpected Arsenic Compounds Observed in Routine Biological Monitoring Urinary Speciation Analysis

    PubMed Central

    Leese, Elizabeth; Clench, Malcolm; Morton, Jackie; Gardiner, Philip H.E.; Carolan, Vikki A.

    2017-01-01

    This study investigates the identity of two unexpected arsenic species found separately in a number of urine samples sent to the Health and Safety Executive’s Health and Safety Laboratory for arsenic speciation (arsenobetaine, AB; arsenite, As3+; arsenate, As5+; monomethylarsonic acid, MMA5+; and dimethylarsinic acid, DMA5+). Micro liquid chromatography coupled to inductively coupled plasma mass spectrometry (µLC-ICP-MS) and electrospray time of flight tandem mass spectrometry (ESI-QqTOF-MS/MS) were used to identify the two arsenic peaks by comparison to several characterized arsenicals: arsenocholine, AC; trimethyl arsine oxide, TMAO; dimethylarsenoacetate, DMAA; dimethylarsenoethanol, DMAE; thio-dimethylarsinate, thio-DMA; thio-dimethylarsenoacetate, thio-DMAA and thio-dimethylarsenoethanol, thio-DMAE. The results from both the ICP-MS and ESI-QqTOF-MS/MS investigations indicate that the unexpected arsenic species termed peak 1 was thio-DMA. While the unexpected arsenic species termed peak 2 has yet to be identified, this investigation shows that it was not AC, TMAO, DMAA, DMAE, thio-DMA, thio-DMAA or thio-DMAE. This study demonstrates the incidence of unexpected arsenic species in both routine and non-routine urine samples from both workers and hospital patients. PMID:29051444

  8. Tissue-specific distributions of inorganic arsenic and its methylated metabolites, especially in cerebral cortex, cerebellum and hippocampus of mice after a single oral administration of arsenite.

    PubMed

    Li, Jinlong; Duan, Xiaoxu; Dong, Dandan; Zhang, Yang; Zhao, Lu; Li, Wei; Chen, Jinli; Sun, Guifan; Li, Bing

    2017-09-01

    Groundwater contaminated with inorganic arsenic (iAs) is the main source of human exposure to arsenic and generates a global health issue. In this study, the urinary excretion, as well as the time-course distributions of various arsenic species in murine tissues, especially in different brain regions were determined after a single oral administration of 2.5, 5, 10 and 20mg/kg sodium arsenite (NaAsO 2 ). Our data showed that the peak times of urinary, hepatic and nephritic total arsenic (TAs) were happened at about 1h, then TAs levels decreased gradually and almost could not be observed after 72h. On contrast, the time course of TAs in lung, urinary bladder and different brain regions exhibited an obvious process of accumulation and elimination,and the peak times were nearly at 6h to 9h. TAs levels of 10 and 20mg/kg NaAsO 2 groups were significantly higher than 2.5 and 5mg/kg groups, and the amounts of TAs in 5mg/kg groups were in the order of liver>lung>kidney>urinary bladder>hippocampus>cerebral cortex>cerebellum. In addition, iAs was the most abundant species in liver and kidney, while lung and urinary bladder accumulated the highest concentrations of dimethylated arsenicals (DMA). What's more, the distributions of arsenic species were not homogeneous among different brain regions, as DMA was the sole species in cerebral cortex and cerebellum, while extremely high concentrations and percentages of monomethylated arsenicals (MMA) were found in hippocampus. These results demonstrated that distributions of iAs and its methylated metabolites were tissue-specific and even not homogeneous among different brain regions, which must be considered as to the tissue- and region-specific toxicity of iAs exposure. Our results thus provide useful information for clarifying and reducing the uncertainty in the risk assessment for this metalloid. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. ARSENIC URINARY METABOLITES: BIOMARKER STUDY

    EPA Science Inventory

    A population of adults and children with ranges of 10 to 300 g/l of arsenic in their drinking water will have their urine analyzed for total and speciated arsenic. A sample of 30 families will be selected based on tap water analyses for arsenic. This sample will comprise 50% adul...

  10. IDENTIFICATION OF INTERSPECIES CONCORDANCE OF MECHANISMS OF ARSENIC INDUCED BLADDER CANCER BY GENE EXPRESSION.

    EPA Science Inventory

    Arsenic is a human carcinogen that induces urinary bladder cancer. Several mechanisms have been proposed for arsenic-induced cancer. Although inorganic arsenic (iAs) does not induce tumors in adult rodents, dimethylarsinic acid (DMA), a major metabolite of iAs, is a rat bladder c...

  11. PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    EPA Science Inventory

    Plasmid DNA damage caused by methylated arsenicals, ascorbic acid and human liver ferritin.

    Arsenic causes cancer in human skin, urinary bladder, lung, liver and kidney and is a significant world-wide public health problem. Although the metabolism of inorganic arsenic is ...

  12. Arsenic methylation and skin lesions in migrant and native adult women with chronic exposure to arsenic from drinking groundwater.

    PubMed

    Wei, Binggan; Yu, Jiangping; Yang, Linsheng; Li, Hairong; Chai, Yuanqing; Xia, Yajuan; Wu, Kegong; Gao, Jianwei; Guo, Zhiwei; Cui, Na

    2017-02-01

    In order to figure out the prevalence of skin lesions and methylation capacity for migrant and native adult women in an endemic area for arsenic poisoning in Inner Mongolia, China, 207 adult women were selected for study subjects. The results showed that the prevalence of skin lesions for the external group, provincial group and native group was 36.54, 26.15 and 35.56 %, respectively. The nail content of arsenic and urinary concentrations of dimethylarsenic (DMA), monomethylarsenic (MMA) and inorganic arsenic (iAs) were significantly higher in women with skin lesions than in those without skin lesions. The highest urinary concentrations of DMA, MMA and iAs were 213.93, 45.72 and 45.01 μg/L in the native group. The arsenic methylation capacity index revealed that the external group had the greatest capacity, while the native group had the lowest. The odds ratios of skin lesions in relation to arsenic metabolites and arsenic methylation capacity varied widely among the three groups. Urinary MMA and iAs concentrations were positively associated with risk of skin lesions in the three groups of adult women, while primary and secondary methylation capacities were negatively related to risk of skin lesions in native and provincial groups. The external group might be more susceptible to MMA and iAs, while the provincial and native groups were more tolerance to MMA and iAs. Lower primary and secondary arsenic methylation capacities increased the risk of skin lesions in native and provincial groups. Moreover, higher nail arsenic concentration increased the risk of skin lesions of adult women.

  13. Blood Pressure Associated with Arsenic Methylation and Arsenic Metabolism Caused by Chronic Exposure to Arsenic in Tube Well Water.

    PubMed

    Wei, Bing Gan; Ye, Bi Xiong; Yu, Jiang Ping; Yang, Lin Sheng; Li, Hai Rong; Xia, Ya Juan; Wu, Ke Gong

    2017-05-01

    The effects of arsenic exposure from drinking water, arsenic metabolism, and arsenic methylation on blood pressure (BP) were observed in this study. The BP and arsenic species of 560 participants were determined. Logistic regression analysis was applied to estimate the odds ratios of BP associated with arsenic metabolites and arsenic methylation capability. BP was positively associated with cumulative arsenic exposure (CAE). Subjects with abnormal diastolic blood pressure (DBP), systolic blood pressure (SBP), and pulse pressure (PP) usually had higher urinary iAs (inorganic arsenic), MMA (monomethylated arsenic), DMA (dimethylated arsenic), and TAs (total arsenic) than subjects with normal DBP, SBP, and PP. The iAs%, MMA%, and DMA% differed slightly between subjects with abnormal BP and those with normal BP. The PMI and SMI were slightly higher in subjects with abnormal PP than in those with normal PP. Our findings suggest that higher CAE may elevate BP. Males may have a higher risk of abnormal DBP, whereas females have a higher risk of abnormal SBP and PP. Higher urinary iAs may increase the risk of abnormal BP. Lower PMI may elevate the BP. However, higher SMI may increase the DBP and SBP, and lower SMI may elevate the PP. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  14. Toxic Risk Assessment of Arsenic in Males Through Drinking Water in Tharparkar Region of Sindh, Pakistan.

    PubMed

    Brahman, Kapil Dev; Kazi, Tasneem Gul; Afridi, Hassan Imran; Arain, Sadaf Sadia; Kazi, Atif Gul; Talpur, Farah Naz; Baig, Jameel Ahmed; Panhwar, Abdul Haleem; Arain, Mariam Shezadi; Ali, Jamshed; Arain, Mohammad Balal; Naeemullah

    2016-07-01

    Humans are exposed to arsenic (As) through air, drinking water, and food. The arsenic (As) hazardous quotient was calculated on the basis of its concentration in drinking water of different origin and scalp hair of male subjects (n = 313), residents of different exposed and non-exposed areas of Sindh, Pakistan. The total As was determined in water and scalp hair samples, while As species were determined in water samples by advance extraction methodologies. The total As concentrations in drinking water of less-exposed (LE) and high-exposed (HE) areas was found to be 2.63 to 4.46 and 52 to 235, fold higher than the permissible limit, respectively, than recommended by World Health Organization (2004) for drinking water. While the levels of As in drinking water of non-exposed (NE) areas was within the permissible limit. The resulted data indicated that the dominant species was As(+5) in groundwater samples. The levels of As in scalp hair samples of male subjects of two age groups (18-30 and 31-50 years), belonging to NE, LE, and HE areas, ranged from 0.26 to 0.69, 0.58 to 1.34, and 15.6 to 60.9 μg/g, respectively. A significant correlation between As levels in drinking water and scalp hair was observed in HE area (r = 0.86-0.90, p < 0.001) as compared to those subjects belonging to LE area. A toxicity risk assessment was calculated as hazard quotient (HQ), which indicates that the study subjects of HE area have significantly higher values of HQ than LE. The population of As exposed areas is at high risk of non-carcinogenic and carcinogenesis effects.

  15. RECENT ADVANCES IN ARSENIC CARCINOGENESIS: MODES OF ACTION, ANIMAL MODEL SYSTEMS AND METHYLATED ARSENIC METABOLITES

    EPA Science Inventory


    Abstract:

    Recent advances in our knowledge of arsenic carcinogenesis include the development of rat or mouse models for all human organs in which inorganic arsenic is known to cause cancer -skin, lung, urinary bladder, liver and kidney. Tumors can be produced from eit...

  16. The impact of BMI on non-malignant respiratory symptoms and lung function in arsenic exposed adults of Northern Chile.

    PubMed

    Nardone, Anthony; Ferreccio, Catterina; Acevedo, Johanna; Enanoria, Wayne; Blair, Alden; Smith, Allan H; Balmes, John; Steinmaus, Craig

    2017-10-01

    Elevated body mass index (BMI) and arsenic are both associated with cancer and with non-malignant lung disease. Using a unique exposure situation in Northern Chile with data on lifetime arsenic exposure, we previously identified the first evidence of an interaction between arsenic and BMI for the development of lung cancer. We examined whether there was an interaction between arsenic and BMI for the development of non-malignant lung disease. Data on lifetime arsenic exposure, respiratory symptoms, spirometry, BMI, and smoking were collected from 751 participants from cities in Northern Chile with varying levels of arsenic water concentrations. Spirometry values and respiratory symptoms were compared across subjects in different categories of arsenic exposure and BMI. Adults with both a BMI above the 90th percentile (>33.9kg/m 2 ) and arsenic water concentrations ≥11µg/L exhibited high odds ratios (ORs) for cough (OR = 10.7, 95% confidence interval (CI): 3.03, 50.1), shortness of breath (OR = 14.2, 95% CI: 4.79, 52.4), wheeze (OR = 14.4, 95% CI: 4.80, 53.7), and the combined presence of any respiratory symptom (OR = 9.82, 95% CI: 4.22, 24.5). In subjects with lower BMIs, respiratory symptom ORs for arsenic water concentrations ≥11µg/L were markedly lower. In never-smokers, reductions in forced vital capacity associated with arsenic increased as BMI increased. Analysis of the FEV 1 /FVC ratio in never-smokers significantly increased as BMI and arsenic concentrations increased. Similar trends were not observed for FEV 1 alone or in ever-smokers. This study provides preliminary evidence that BMI may increase the risk for arsenic-related non-malignant respiratory disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Lung function in adults following in utero and childhood exposure to arsenic in drinking water: preliminary findings.

    PubMed

    Dauphiné, David C; Ferreccio, Catterina; Guntur, Sandeep; Yuan, Yan; Hammond, S Katharine; Balmes, John; Smith, Allan H; Steinmaus, Craig

    2011-08-01

    Evidence suggests that arsenic in drinking water causes non-malignant lung disease, but nearly all data concern exposed adults. The desert city of Antofagasta (population 257,976) in northern Chile had high concentrations of arsenic in drinking water (>800 μg/l) from 1958 until 1970, when a new treatment plant was installed. This scenario, with its large population, distinct period of high exposure, and accurate data on past exposure, is virtually unprecedented in environmental epidemiology. We conducted a pilot study on early-life arsenic exposure and long-term lung function. We present these preliminary findings because of the magnitude of the effects observed. We recruited a convenience sample consisting primarily of nursing school employees in Antofagasta and Arica, a city with low drinking water arsenic. Lung function and respiratory symptoms in 32 adults exposed to >800 μg/l arsenic before age 10 were compared to 65 adults without high early-life exposure. Early-life arsenic exposure was associated with 11.5% lower forced expiratory volume in 1 s (FEV(1)) (P = 0.04), 12.2% lower forced vital capacity (FVC) (P = 0.04), and increased breathlessness (prevalence odds ratio = 5.94, 95% confidence interval 1.36-26.0). Exposure-response relationships between early-life arsenic concentration and adult FEV(1) and FVC were also identified (P trend = 0.03). Early-life exposure to arsenic in drinking water may have irreversible respiratory effects of a magnitude similar to smoking throughout adulthood. Given the small study size and non-random recruitment methods, further research is needed to confirm these findings.

  18. Aldehyde dehydrogenase induction in arsenic-exposed rat bladder epithelium.

    PubMed

    Huang, Ya-Chun; Yu, Hsin-Su; Chai, Chee-Yin

    2016-01-01

    Arsenic is widely distributed in the environment. Many human cancers, including urothelial carcinoma (UC), show a dose-dependent relationship with arsenic exposure in the south-west coast of Taiwan (also known as the blackfoot disease (BFD) areas). However, the molecular mechanisms of arsenic-mediated UC carcinogenesis has not yet been defined. In vivo study, the rat bladder epithelium were exposed with arsenic for 48 h. The proteins were extracted from untreated and arsenic-treated rat bladder cells and utilized two-dimensional gel electrophoresis and mass spectrometry. Selected peptides were extracted from the gel and identified by quadrupole-time of flight (Q-TOF) Ultima-Micromass spectra. The significantly difference expression of proteins in arsenic-treated groups as compared with untreated groups was confirmed by immunohistochemistry (IHC) and western blotting. We found that thirteen proteins were down-regulated and nine proteins were up-regulated in arsenic-treated rat bladder cells when compared with untreated groups. The IHC and western blotting results confirmed that aldehyde dehydrogenase (ALDH) protein was up-regulated in arsenic-treated rat bladder epithelium. Expression of ALDH protein was significantly higher in UC patients from BFD areas than those from non-BFD areas using IHC (p=0.018). In conclusion, the ALDH protein expression could be used as molecular markers for arsenic-induced transformation. Copyright © 2015 Elsevier GmbH. All rights reserved.

  19. Polymorphisms in Arsenic(+III Oxidation State) Methyltransferase (AS3MT) Predict Gene Expression of AS3MT as Well as Arsenic Metabolism

    PubMed Central

    Engström, Karin; Vahter, Marie; Mlakar, Simona Jurkovic; Concha, Gabriela; Nermell, Barbro; Raqib, Rubhana; Cardozo, Alejandro; Broberg, Karin

    2011-01-01

    Background Arsenic (As) occurs as monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) in humans, and the methylation pattern demonstrates large interindividual differences. The fraction of urinary MMA is a marker for susceptibility to As-related diseases. Objectives We evaluated the impact of polymorphisms in five methyltransferase genes on As metabolism in two populations, one in South America and one in Southeast Asia. The methyltransferase genes were arsenic(+III oxidation state) methyltransferase (AS3MT), DNA-methyltransferase 1a and 3b (DNMT1a and DNMT3b, respectively), phosphatidylethanolamine N-methyltransferase (PEMT), and betaine-homocysteine methyltransferase (BHMT). AS3MT expression was analyzed in peripheral blood. Methods Subjects were women exposed to As in drinking water in the Argentinean Andes [n = 172; median total urinary As (U-As), 200 μg/L] and in rural Bangladesh (n = 361; U-As, 100 μg/L; all in early pregnancy). Urinary As metabolites were measured by high-pressure liquid chromatography/inductively coupled plasma mass spectrometry. Polymorphisms (n = 22) were genotyped with Sequenom, and AS3MT expression was measured by quantitative real-time polymerase chain reaction using TaqMan expression assays. Results Six AS3MT polymorphisms were significantly associated with As metabolite patterns in both populations (p ≤ 0.01). The most frequent AS3MT haplotype in Bangladesh was associated with a higher percentage of MMA (%MMA), and the most frequent haplotype in Argentina was associated with a lower %MMA and a higher percentage of DMA. Four polymorphisms in the DNMT genes were associated with metabolite patterns in Bangladesh. Noncoding AS3MT polymorphisms affected gene expression of AS3MT in peripheral blood, demonstrating that one functional impact of AS3MT polymorphisms may be altered levels of gene expression. Conclusions Polymorphisms in AS3MT significantly predicted As metabolism across these two very different populations, suggesting that AS3MT may have an impact on As metabolite patterns in populations worldwide. PMID:21247820

  20. Risk assessment on mixture toxicity of arsenic, zinc and copper intake from consumption of milkfish, Chanos chanos (Forsskål), cultured using contaminated groundwater in Southwest Taiwan.

    PubMed

    Lin, Ming-Chao

    2009-07-01

    Studies on bioaccumulation of arsenic, zinc, and copper in freshwater-cultured milkfish were carried out to assess the risks on human health. The arsenic, zinc, and copper levels in milkfish showed significant positive correlations to the arsenic, zinc, and copper concentrations in pond water. The hazard index of arsenic, zinc, and copper mixture for intake of milkfish (1.75 +/- 0.65) demonstrated that intake of in this way contaminated milkfish will result in non-carcinogenic risk. The target cancer risk of arsenic for intake of the milkfish (2.74 x 10(-4) +/- 1.18 x 10(-4)) indicated that the inhabitants were exposed to arsenic pollution with carcinogenic risk.

  1. Renin–angiotensin–aldosterone system related gene polymorphisms and urinary total arsenic is related to chronic kidney disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wei-Jen; Huang, Ya-Li; Shiue, Horng-Sheng

    A recent study demonstrated that an increased risk of chronic kidney disease (CKD) was associated with high urinary total arsenic levels. However, whether genomic instability is related to CKD remains unclear. An association between CKD and genetic polymorphisms of regulation enzymes of the renin–angiotensin–aldosterone system (RAAS), such as angiotensin-converting enzyme (ACE), angiotensinogen (AGT), angiotensin II type I receptor (AT1R), and aldosterone synthase (CYP11B2) has not been shown. The aim of the present study was to investigate the relationship between arsenic, genetic polymorphisms of RAAS enzymes and CKD. A total of 233 patients and 449 age- and gender-matched controls were recruitedmore » from the Taipei Medical University Hospital, Taipei Municipal Wan Fang Hospital and the Shin Kong Wu Ho-Su Memorial Hospital. Concentrations of urinary arsenic were determined by a high-performance liquid chromatography-linked hydride generator, and atomic absorption spectrometry. Polymorphisms of ACE(I/D), AGT(A[− 20]C), (T174M), (M235T), AT1R(A1166C) and CYP11B2(C[− 344]T) were examined by polymerase chain reaction and restriction fragment length polymorphism. Subjects carrying the CYP11B2 TT genotype had a higher odds ratio (OR), 1.39 (0.96–2.01), of CKD; while those with the AGT(A[− 20]C) CC genotype had an inverse OR of CKD (0.20 (0.05–0.81)), and a high-risk genotype was defined as A/A + A/C for AGT(A[− 20C]) and T/T for CYP11B2(C[− 344]T). The trend test showed a higher OR for CKD in patients who had either high urinary total arsenic levels or carried the high-risk genotype, or both, compared to patients with low urinary total arsenic levels, who carried the low-risk genotype, and could also be affected by the hypertension or diabetes status. - Highlights: • AGT(− 20 C) and CYP11B2(− 344 T) genotypes were significantly associated with CKD. • Combined effect of high-risk genotypes and high urinary total arsenic on OR of CKD. • Combined effect on the CKD was modified by the hypertension and diabetes status.« less

  2. COMPARATIVE TISSUE DISTRIBUTION AND URINARY EXCRETION OF INORGANIC ARSENIC (IAS) AND ITS METHYLATED METABOLITES IN MICE FOLLOWING ORAL ADMINISTRATION OF ARSENATE (ASV) AND ARSENITE (ASIII)

    EPA Science Inventory

    COMPARATIVE TISSUE DISTRIBUTION AND URINARY EXCRETION OF INORGANIC ARSENIC (iAs) AND ITS METHYLATED METABOLITES IN MICE FOLLOWING ORAL ADMINISTRATION OF ARSENATE (AsV) AND ARSENITE (AsIII). E M Kenyon, L M Del Razo and M F Hughes. U.S. EPA, ORD, NHEERL, ETD, PKB, RTP, NC, USA; ...

  3. A STUDY OF THE INTERCONVERSION OF METHYLATED ARSENIC OXIDES TO METHYLATED ARSENIC SULFIDES IN SOLUTIONS CONTAINING FREE SULFIDE

    EPA Science Inventory

    Evidence suggests that thiolated arsenicals are urinary metabolites in both humans and rats. These thiolated species may be formed in the digestive system or as metabolites within the body. The role they may play in the overall toxicity of arsenic is an active area of research....

  4. Arsenic Metabolism in Children Differs From That in Adults

    PubMed Central

    Skröder Löveborn, Helena; Lu, Ying; Ahmed, Sultan; Kuehnelt, Doris; Raqib, Rubhana; Vahter, Marie

    2016-01-01

    Arsenic toxicity in adults is associated with methylation efficiency, influenced by factors such as gender, genetics, and nutrition. The aim of this study was to evaluate influencing factors for arsenic metabolism in children. For 488 children (9 years), whose mothers participated in a study on arsenic exposure during pregnancy (nested into the MINIMat trial) in rural Bangladesh, we measured urinary concentrations of inorganic arsenic (iAs) and its metabolites methylarsonic acid (MMA) and dimethylarsinic acid (DMA) by HPLC-HG-ICPMS. Methylation efficiency was assessed by relative amounts (%) of the metabolites. We evaluated the impact of factors such as maternal urinary metabolite pattern, arsenic exposure, gender, socioeconomic status, season of sampling, and nutritional factors, including erythrocyte selenium (Ery-Se), and plasma folate and vitamin B12. Children had higher %DMA and lower %iAs in urine compared to their mothers, unrelated to their lower exposure [median urinary arsenic (U-As) 53 vs 78 µg/l]. Surprisingly, selenium status (Ery-Se) was strongly associated with children’s arsenic methylation; an increase in Ery-Se from the 5–95th percentile was associated with: +1.8 percentage points (pp) for %iAs (P  =  .001), +1.4 pp for %MMA (P  =  .003), and −3.2 pp for %DMA (P  <  .001). Despite this, Ery-Se was positively associated with U-As (5–95th percentile: +41 µg/l, P  =  .026). As expected, plasma folate was inversely associated with %iAs (5–95th percentile: −1.9 pp, P  =  .001) and positively associated with %DMA (5–95th percentile: +2.2 pp, P  =  .008). Children methylated arsenic more efficiently than their mothers. Also influencing factors, mainly selenium and folate, differed. This warrants further research. PMID:27056082

  5. Whole-house arsenic water treatment provided more effective arsenic exposure reduction than point-of-use water treatment at New Jersey homes with arsenic in well water

    PubMed Central

    Spayd, Steven E.; Robson, Mark G.; Buckley, Brian T.

    2014-01-01

    A comparison of the effectiveness of whole house (point-of-entry) and point-of-use arsenic water treatment systems in reducing arsenic exposure from well water was conducted. The non-randomized observational study recruited 49 subjects having elevated arsenic in their residential home well water in New Jersey. The subjects obtained either point-of-entry or point-of-use arsenic water treatment. Prior ingestion exposure to arsenic in well water was calculated by measuring arsenic concentrations in the well water and obtaining water-use histories for each subject, including years of residence with the current well and amount of water consumed from the well per day. A series of urine samples were collected from the subjects, some starting before water treatment was installed and continuing for at least nine months after treatment had begun. Urine samples were analyzed and speciated for inorganic-related arsenic concentrations. A two-phase clearance of inorganic-related arsenic from urine and the likelihood of a significant body burden from chronic exposure to arsenic in drinking water were identified. After nine months of water treatment the adjusted mean of the urinary inorganic-related arsenic concentrations were significantly lower (p < 0.0005) in the point-of-entry treatment group (2.5 μg/g creatinine) than in the point-of-use treatment group (7.2 μg/g creatinine). The results suggest that whole house arsenic water treatment systems provide a more effective reduction of arsenic exposure from well water than that obtained by point-of-use treatment. PMID:24975493

  6. AS3MT, GSTO, and PNP polymorphisms: impact on arsenic methylation and implications for disease susceptibility.

    PubMed

    Antonelli, Ray; Shao, Kan; Thomas, David J; Sams, Reeder; Cowden, John

    2014-07-01

    Oral exposure to inorganic arsenic (iAs) is associated with adverse health effects. Epidemiological studies suggest differences in susceptibility to these health effects, possibly due to genotypic variation. Genetic polymorphisms in iAs metabolism could lead to increased susceptibility by altering urinary iAs metabolite concentrations. To examine the impact of genotypic polymorphisms on iAs metabolism. We screened 360 publications from PubMed and Web of Science for data on urinary mono- and dimethylated arsenic (MMA and DMA) percentages and polymorphic genes encoding proteins that are hypothesized to play roles in arsenic metabolism. The genes we examined were arsenic (+3) methyltransferase (AS3MT), glutathione-s-transferase omega (GSTO), and purine nucleoside phosphorylase (PNP). Relevant data were pooled to determine which polymorphisms are associated across studies with changes in urinary metabolite concentration. In our review, AS3MT polymorphisms rs3740390, rs11191439, and rs11191453 were associated with statistically significant changes in percent urinary MMA. Studies of GSTO polymorphisms did not indicate statistically significant associations with methylation, and there are insufficient data on PNP polymorphisms to evaluate their impact on metabolism. Collectively, these data support the hypothesis that AS3MT polymorphisms alter in vivo metabolite concentrations. Preliminary evidence suggests that AS3MT genetic polymorphisms may impact disease susceptibility. GSTO polymorphisms were not associated with iAs-associated health outcomes. Additional data are needed to evaluate the association between PNP polymorphisms and iAs-associated health outcomes. Delineation of these relationships may inform iAs mode(s) of action and the approach for evaluating low-dose health effects for iAs. Genotype impacts urinary iAs metabolite concentrations and may be a potential mechanism for iAs-related disease susceptibility. Published by Elsevier Inc.

  7. Interaction between arsenic exposure from drinking water and genetic susceptibility in carotid intima–media thickness in Bangladesh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Fen; Department of Environmental Medicine, New York University School of Medicine, New York, NY; Jasmine, Farzana

    Epidemiologic studies that evaluated genetic susceptibility for the effects of arsenic exposure from drinking water on subclinical atherosclerosis are limited. We conducted a cross-sectional study of 1078 participants randomly selected from the Health Effects of Arsenic Longitudinal Study in Bangladesh to evaluate whether the association between arsenic exposure and carotid artery intima–media thickness (cIMT) differs by 207 single-nucleotide polymorphisms (SNPs) in 18 genes related to arsenic metabolism, oxidative stress, inflammation, and endothelial dysfunction. Although not statistically significant after correcting for multiple testing, nine SNPs in APOE, AS3MT, PNP, and TNF genes had a nominally statistically significant interaction with well-water arsenicmore » in cIMT. For instance, the joint presence of a higher level of well-water arsenic (≥ 40.4 μg/L) and the GG genotype of AS3MT rs3740392 was associated with a difference of 40.9 μm (95% CI = 14.4, 67.5) in cIMT, much greater than the difference of cIMT associated with the genotype alone (β = − 5.1 μm, 95% CI = − 31.6, 21.3) or arsenic exposure alone (β = 7.2 μm, 95% CI = − 3.1, 17.5). The pattern and magnitude of the interactions were similar when urinary arsenic was used as the exposure variable. Additionally, the at-risk genotypes of the AS3MT SNPs were positively related to the proportion of monomethylarsonic acid (MMA) in urine, which is indicative of arsenic methylation capacity. The findings provide novel evidence that genetic variants related to arsenic metabolism may play an important role in arsenic-induced subclinical atherosclerosis. Future replication studies in diverse populations are needed to confirm the findings. - Highlights: • Nine SNPs had a nominally significant interaction with well-water arsenic in cIMT. • Three SNPs in AS3MT showed nominally significant interactions with urinary arsenic. • cIMT was much higher among subjects with higher arsenic exposure and AS3MT SNPs. • The at-risk genotypes of AS3MT SNPs were positively related to urinary MMA%.« less

  8. DNA damage in Mexican children living in high-risk contaminated scenarios.

    PubMed

    Jasso-Pineda, Yolanda; Díaz-Barriga, Fernando; Yáñez-Estrada, Leticia; Pérez-Vázquez, Francisco Javier; Pérez-Maldonado, Ivan Nelinho

    2015-06-15

    The aim of this study was to evaluate the deoxyribonucleic acid (DNA) damage (as a biomarker of biological effects) in children living in areas at high risk of contamination in Mexico using the comet assay. The alkaline comet assay was performed in order to assess DNA damage levels in blood cells of 276 children living in eleven communities in four states of Mexico. Moreover, levels of arsenic and 1-hydroxypyrene (1-OHP) in urine and lead and total DDT [sum of 1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene (DDE) and 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane (DDT)] in blood were quantified. We found urinary 1-OHP levels between

  9. Proteomic Analysis of Arsenic-Induced Oxidative Stress in Human Epidermal Keratinocytes

    EPA Science Inventory

    Chronic exposure to inorganic arsenic (IAs) has been associated with the development of several human cancers, including those found in the skin, lung, urinary bladder, liver, prostate and kidney. The precise mechanisms by which arsenic causes cancer are unknown. Defining the mod...

  10. Individual variability in the human metabolism of an arsenic-containing carbohydrate, 2',3'-dihydroxypropyl 5-deoxy-5-dimethylarsinoyl-beta-D-riboside, a naturally occurring arsenical in seafood.

    PubMed

    Raml, Reingard; Raber, Georg; Rumpler, Alice; Bauernhofer, Thomas; Goessler, Walter; Francesconi, Kevin A

    2009-09-01

    We report studies on the variability in human metabolism of an oxo-arsenosugar involving the ingestion of a chemically synthesized arsenosugar and quantitative determination of the arsenic metabolites in urine and serum by HPLC coupled with arsenic-selective mass spectrometric detection (ICPMS, inductively coupled plasma mass spectrometry). The total, four-day, urinary excretion of arsenic for six volunteers ranged widely from ca. 4-95%. The arsenic metabolites present in the urine also showed great variability: high arsenic excretion was accompanied by almost complete biotransformation of the ingested oxo-arsenosugar into a multitude of metabolites (>10), whereas the subjects that excreted low amounts of arsenic produced low quantities of metabolites relative to unchanged oxo-arsenosugar and its thio-analogue. Major arsenic urinary metabolites were dimethylarsinate (DMA) and possible intermediates in the degradation of arsenosugar to DMA, namely, dimethylarsinoylethanol (DMAE) and dimethylarsinoylacetate (DMAA) present both as their oxo- and thio-analogues. Thio-DMAE and thio-DMAA were also found in blood serum indicating that these species were formed in the liver rather than on storage of the urine in the bladder. The large variability in the way individuals metabolize arsenosugars has implications for risk assessment of arsenic intake from seafood.

  11. Arsenic in Mexican children exposed to contaminated well water.

    PubMed

    Monroy-Torres, Rebeca; Macías, Alejandro E; Gallaga-Solorzano, Juan Carlos; Santiago-García, Enrique Javier; Hernández, Isabel

    2009-01-01

    This cross-sectional study measures the arsenic level in school children exposed to contaminated well water in a rural area in México. Arsenic was measured in hair by hydride generation atomic absorption spectrophotometry. Overall, 110 children were included (average 10 years-old). Among 55 exposed children, mean arsenic level on hair was 1.3 mg/kg (range <0.006-5.9). All unexposed children had undetectable arsenic levels. The high level of arsenic in water was associated to the level in hair. However, exposed children drank less well water at school or at home than unexposed children, suggesting that the use of contaminated water to cook beans, broths or soups may be the source of arsenic exposure.

  12. Differential toxicity of arsenic on renal oxidative damage and urinary metabolic profiles in normal and diabetic mice.

    PubMed

    Yin, Jinbao; Liu, Su; Yu, Jing; Wu, Bing

    2017-07-01

    Diabetes is a common metabolic disease, which might influence susceptibility of the kidney to arsenic toxicity. However, relative report is limited. In this study, we compared the influence of inorganic arsenic (iAs) on renal oxidative damage and urinary metabolic profiles of normal and diabetic mice. Results showed that iAs exposure increased renal lipid peroxidation in diabetic mice and oxidative DNA damage in normal mice, meaning different effects of iAs exposure on normal and diabetic individuals. Nuclear magnetic resonance (NMR)-based metabolome analyses found that diabetes significantly changed urinary metabolic profiles of mice. Oxidative stress-related metabolites, such as arginine, glutamine, methionine, and β-hydroxybutyrate, were found to be changed in diabetic mice. The iAs exposure altered amino acid metabolism, lipid metabolism, carbohydrate metabolism, and energy metabolism in normal and diabetic mice, but had higher influence on metabolic profiles of diabetic mice than normal mice, especially for oxidative stress-related metabolites and metabolisms. Above results indicate that diabetes increased susceptibility to iAs exposure. This study provides basic information on differential toxicity of iAs on renal toxicity and urinary metabolic profiles in normal and diabetic mice and suggests that diabetic individuals should be considered as susceptible population in toxicity assessment of arsenic.

  13. Folate and Cobalamin Modify Associations between S-adenosylmethionine and Methylated Arsenic Metabolites in Arsenic-Exposed Bangladeshi Adults123

    PubMed Central

    Howe, Caitlin G.; Niedzwiecki, Megan M.; Hall, Megan N.; Liu, Xinhua; Ilievski, Vesna; Slavkovich, Vesna; Alam, Shafiul; Siddique, Abu B.; Graziano, Joseph H.; Gamble, Mary V.

    2014-01-01

    Chronic exposure to inorganic arsenic (InAs) through drinking water is a major problem worldwide. InAs undergoes hepatic methylation to form mono- and dimethyl arsenical species (MMA and DMA, respectively), facilitating arsenic elimination. Both reactions are catalyzed by arsenic (+3 oxidation state) methyltransferase (AS3MT) using S-adenosylmethionine (SAM) as the methyl donor, yielding the methylated product and S-adenosylhomocysteine (SAH), a potent product-inhibitor of AS3MT. SAM biosynthesis depends on folate- and cobalamin-dependent one-carbon metabolism. With the use of samples from 353 participants in the Folate and Oxidative Stress Study, our objective was to test the hypotheses that blood SAM and SAH concentrations are associated with arsenic methylation and that these associations differ by folate and cobalamin nutritional status. Blood SAM and SAH were measured by HPLC. Arsenic metabolites in blood and urine were measured by HPLC coupled to dynamic reaction cell inductively coupled plasma MS. In linear regression analyses, SAH was not associated with any of the arsenic metabolites. However, log(SAM) was negatively associated with log(% urinary InAs) (β: −0.11; 95% CI: −0.19, −0.02; P = 0.01), and folate and cobalamin nutritional status significantly modified associations between SAM and percentage of blood MMA (%bMMA) and percentage of blood DMA (%bDMA) (P = 0.02 and P = 0.01, respectively). In folate- and cobalamin-deficient individuals, log(SAM) was positively associated with %bMMA (β: 6.96; 95% CI: 1.86, 12.05; P < 0.01) and negatively associated with %bDMA (β: −6.19; 95% CI: −12.71, 0.32; P = 0.06). These findings suggest that when exposure to InAs is high, and methyl groups are limiting, SAM is used primarily for MMA synthesis rather than for DMA synthesis, contributing additional evidence that nutritional status may explain some of the interindividual differences in arsenic metabolism and, consequently, susceptibility to arsenic toxicity. PMID:24598884

  14. Tissue, Dosimetry, Metabolism and Excretion of Pentavalent and Trivalent Dimethylated Arsenic in Mice after Oral Administration

    EPA Science Inventory

    Dimethylarsinic acid (DMA(V)) is a rat bladder carcinogen and the major urinary metabolite of administered inorganic arsenic in most mammals. This study examined the disposition of pentavalent and trivalent dimethylated arsenic inmice after acute oral administration. Adult fema...

  15. Gene-Specific Differential DNA Methylation and Chronic Arsenic Exposure in an Epigenome-Wide Association Study of Adults in Bangladesh

    PubMed Central

    Argos, Maria; Chen, Lin; Jasmine, Farzana; Tong, Lin; Pierce, Brandon L.; Roy, Shantanu; Paul-Brutus, Rachelle; Gamble, Mary V.; Harper, Kristin N.; Parvez, Faruque; Rahman, Mahfuzar; Rakibuz-Zaman, Muhammad; Slavkovich, Vesna; Baron, John A.; Graziano, Joseph H.; Kibriya, Muhammad G.

    2014-01-01

    Background: Inorganic arsenic is one of the most common naturally occurring contaminants found in the environment. Arsenic is associated with a number of health outcomes, with epigenetic modification suggested as a potential mechanism of toxicity. Objective: Among a sample of 400 adult participants, we evaluated the association between arsenic exposure, as measured by blood and urinary total arsenic concentrations, and epigenome-wide white blood cell DNA methylation. Methods: We used linear regression models to examine the associations between arsenic exposure and methylation at each CpG site, adjusted for sex, age, and batch. Differentially methylated loci were subsequently examined in relation to corresponding gene expression for functional evidence of gene regulation. Results: In adjusted analyses, we observed four differentially methylated CpG sites with urinary total arsenic concentration and three differentially methylated CpG sites with blood arsenic concentration, based on the Bonferroni-corrected significance threshold of p < 1 × 10–7. Methylation of PLA2G2C (probe cg04605617) was the most significantly associated locus in relation to both urinary (p = 3.40 × 10–11) and blood arsenic concentrations (p = 1.48 × 10–11). Three additional novel methylation loci—SQSTM1 (cg01225779), SLC4A4 (cg06121226), and IGH (cg13651690)—were also significantly associated with arsenic exposure. Further, there was evidence of methylation-related gene regulation based on gene expression for a subset of differentially methylated loci. Conclusions: We observed significant associations between arsenic exposure and gene-specific differential white blood cell DNA methylation, suggesting that epigenetic modifications may be an important pathway underlying arsenic toxicity. The specific differentially methylated loci identified may inform potential pathways for future interventions. Citation: Argos M, Chen L, Jasmine F, Tong L, Pierce BL, Roy S, Paul-Brutus R, Gamble MV, Harper KN, Parvez F, Rahman M, Rakibuz-Zaman M, Slavkovich V, Baron JA, Graziano JH, Kibriya MG, Ahsan H. 2015. Gene-specific differential DNA methylation and chronic arsenic exposure in an epigenome-wide association study of adults in Bangladesh. Environ Health Perspect 123:64–71; http://dx.doi.org/10.1289/ehp.1307884 PMID:25325195

  16. Association between arsenic exposure from a coal-burning power plant and urinary arsenic concentrations in Prievidza District, Slovakia.

    PubMed

    Ranft, Ulrich; Miskovic, Peter; Pesch, Beate; Jakubis, Pavel; Fabianova, Elenora; Keegan, Tom; Hergemöller, Andre; Jakubis, Marian; Nieuwenhuijsen, Mark J

    2003-06-01

    To assess the arsenic exposure of a population living in the vicinity of a coal-burning power plant with high arsenic emission in the Prievidza District, Slovakia, 548 spot urine samples were speciated for inorganic As (Asinorg), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and their sum (Assum). The urine samples were collected from the population of a case-control study on nonmelanoma skin cancer (NMSC). A total of 411 samples with complete As speciations and sufficient urine quality and without fish consumption were used for statistical analysis. Although current environmental As exposure and urinary As concentrations were low (median As in soil within 5 km distance to the power plant, 41 micro g/g; median urinary Assum, 5.8 microg/L), there was a significant but weak association between As in soil and urinary Assum(r = 0.21, p < 0.01). We performed a multivariate regression analysis to calculate adjusted regression coefficients for environmental As exposure and other determinants of urinary As. Persons living in the vicinity of the plant had 27% higher Assum values (p < 0.01), based on elevated concentrations of the methylated species. A 32% increase of MMA occurred among subjects who consumed homegrown food (p < 0.001). NMSC cases had significantly higher levels of Assum, DMA, and Asinorg. The methylation index Asinorg/(MMA + DMA) was about 20% lower among cases (p < 0.05) and in men (p < 0.05) compared with controls and females, respectively.

  17. Association between arsenic exposure from a coal-burning power plant and urinary arsenic concentrations in Prievidza District, Slovakia.

    PubMed Central

    Ranft, Ulrich; Miskovic, Peter; Pesch, Beate; Jakubis, Pavel; Fabianova, Elenora; Keegan, Tom; Hergemöller, Andre; Jakubis, Marian; Nieuwenhuijsen, Mark J

    2003-01-01

    To assess the arsenic exposure of a population living in the vicinity of a coal-burning power plant with high arsenic emission in the Prievidza District, Slovakia, 548 spot urine samples were speciated for inorganic As (Asinorg), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and their sum (Assum). The urine samples were collected from the population of a case-control study on nonmelanoma skin cancer (NMSC). A total of 411 samples with complete As speciations and sufficient urine quality and without fish consumption were used for statistical analysis. Although current environmental As exposure and urinary As concentrations were low (median As in soil within 5 km distance to the power plant, 41 micro g/g; median urinary Assum, 5.8 microg/L), there was a significant but weak association between As in soil and urinary Assum(r = 0.21, p < 0.01). We performed a multivariate regression analysis to calculate adjusted regression coefficients for environmental As exposure and other determinants of urinary As. Persons living in the vicinity of the plant had 27% higher Assum values (p < 0.01), based on elevated concentrations of the methylated species. A 32% increase of MMA occurred among subjects who consumed homegrown food (p < 0.001). NMSC cases had significantly higher levels of Assum, DMA, and Asinorg. The methylation index Asinorg/(MMA + DMA) was about 20% lower among cases (p < 0.05) and in men (p < 0.05) compared with controls and females, respectively. PMID:12782488

  18. Association Between Arsenic Exposure From Drinking Water and Plasma Levels of Cardiovascular Markers

    PubMed Central

    Wu, Fen; Jasmine, Farzana; Kibriya, Muhammad G.; Liu, Mengling; Wójcik, Oktawia; Parvez, Faruque; Rahaman, Ronald; Roy, Shantanu; Paul-Brutus, Rachelle; Segers, Stephanie; Slavkovich, Vesna; Islam, Tariqul; Levy, Diane; Mey, Jacob L.; van Geen, Alexander; Graziano, Joseph H.; Ahsan, Habibul; Chen, Yu

    2012-01-01

    The authors conducted a cross-sectional study to assess the relation between arsenic exposure from drinking water and plasma levels of markers of systemic inflammation and endothelial dysfunction (matrix metalloproteinase-9, myeloperoxidase, plasminogen activator inhibitor-1, soluble E-selectin, soluble intercellular adhesion molecule-1 (ICAM-1), and soluble vascular adhesion molecule-1 (VCAM-1)) using baseline data from 668 participants (age, >30 years) in the Health Effects of Arsenic Longitudinal Study in Bangladesh (2007–2008). Both well water arsenic and urinary arsenic were positively associated with plasma levels of soluble VCAM-1. For every 1-unit increase in log-transformed well water arsenic (ln μg/L) and urinary arsenic (ln μg/g creatinine), plasma soluble VCAM-1 was 1.02 (95% confidence interval: 1.01, 1.03) and 1.04 (95% confidence interval: 1.01, 1.07) times greater, respectively. There was a significant interaction between arsenic exposure and higher body mass index, such that the increased levels of plasminogen activator inhibitor-1 and soluble VCAM-1 associated with arsenic exposure were stronger among people with higher body mass index. The findings indicate an effect of chronic arsenic exposure from drinking water on vascular inflammation and endothelial dysfunction that could be modified by body mass index and also suggest a potential mechanism underlying the association between arsenic exposure and cardiovascular disease. PMID:22534204

  19. Association between arsenic exposure from drinking water and plasma levels of cardiovascular markers.

    PubMed

    Wu, Fen; Jasmine, Farzana; Kibriya, Muhammad G; Liu, Mengling; Wójcik, Oktawia; Parvez, Faruque; Rahaman, Ronald; Roy, Shantanu; Paul-Brutus, Rachelle; Segers, Stephanie; Slavkovich, Vesna; Islam, Tariqul; Levy, Diane; Mey, Jacob L; van Geen, Alexander; Graziano, Joseph H; Ahsan, Habibul; Chen, Yu

    2012-06-15

    The authors conducted a cross-sectional study to assess the relation between arsenic exposure from drinking water and plasma levels of markers of systemic inflammation and endothelial dysfunction (matrix metalloproteinase-9, myeloperoxidase, plasminogen activator inhibitor-1, soluble E-selectin, soluble intercellular adhesion molecule-1 (ICAM-1), and soluble vascular adhesion molecule-1 (VCAM-1)) using baseline data from 668 participants (age, >30 years) in the Health Effects of Arsenic Longitudinal Study in Bangladesh (2007-2008). Both well water arsenic and urinary arsenic were positively associated with plasma levels of soluble VCAM-1. For every 1-unit increase in log-transformed well water arsenic (ln μg/L) and urinary arsenic (ln μg/g creatinine), plasma soluble VCAM-1 was 1.02 (95% confidence interval: 1.01, 1.03) and 1.04 (95% confidence interval: 1.01, 1.07) times greater, respectively. There was a significant interaction between arsenic exposure and higher body mass index, such that the increased levels of plasminogen activator inhibitor-1 and soluble VCAM-1 associated with arsenic exposure were stronger among people with higher body mass index. The findings indicate an effect of chronic arsenic exposure from drinking water on vascular inflammation and endothelial dysfunction that could be modified by body mass index and also suggest a potential mechanism underlying the association between arsenic exposure and cardiovascular disease.

  20. Relationship between arsenic and selenium in workers occupationally exposed to inorganic arsenic.

    PubMed

    Janasik, Beata; Zawisza, Anna; Malachowska, Beata; Fendler, Wojciech; Stanislawska, Magdalena; Kuras, Renata; Wasowicz, Wojciech

    2017-07-01

    The interaction between arsenic (As) and selenium (Se) has been one of the most extensively studied. The antagonism between As and Se suggests that low Se status plays an important role in aggravating arsenic toxicity in diseases development. The objective of this study was to assess the Se contents in biological samples of inorganic As exposed workers (n=61) and in non-exposed subjects (n=52). Median (Me) total arsenic concentration in urine of exposed workers was 21.83μg/g creat. (interquartile range (IQR) 15.49-39.77) and was significantly higher than in the control group - (Me 3.75μg/g creat. (IQR 2.52-9.26), p<0.0001). The median serum Se concentrations in the study group and the control were: 54.20μg/l (IQR 44.2-73.10μg/l) and 55.45μg/l (IQR 38.5-69.60μg/l) respectively and did not differ significantly between the groups. In the exposed group we observed significantly higher urine concentrations of selenosugar 1 (SeSug 1) and selenosugar 3 (SeSug3) than in the control group Me: 1.68μg/g creat. (IQR 1.25-2.97 vs Me: 1.07μg/g creat. (IQR 0.86-1.29μg/g), p<0.0001 for SeSug1; Me: 0.45μg/g creat. (IQR 0.26-0.69) vs Me: 0.28μg/g creat. (IQR 0.17-0.45μg/g), p=0.0021). In the multivariate model, after adjusting to cofounders (age, BMI, job seniority time, consumption of fish and seafood and smoking habits) the high rate of arsenic urine wash out (measured as a sum of iAs+MMA+DMA) was significantly associated with the high total selenium urine excretion (B=0.14 (95%CI (confidence interval) 0.05-0.23)). Combination of both arsenic and selenium status to assess the risk of arsenic-induced diseases requires more studies with regard to both the analysis of speciation, genetics and the influence of factors such as nutritional status. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. GENE EXPRESSION PROFILING OF RESPONSES TO DIMETHYLARSINIC ACID IN FEMALE F344 RAT UROTHELIUM

    EPA Science Inventory

    Arsenic is a human carcinogen and epidemiologic evidence implicates it in the development of urinary bladder cancer. Even though several mechanisms have been proposed for arsenic carcinogenicity, the mode of action of inorganic arsenic (iAs) is confounded by the limited availabil...

  2. TISSUE DOSIMETRY, METABOLISM AND EXCRETION OF PENTAVALENT AND TRIVALENT DIMETHYLATED ARSENIC IN MICE AFTER ORAL ADMINISTRATION

    EPA Science Inventory

    Dimethylarsinic acid (DMA(V)) is a rat bladder carcinogen and the major urinary metabolite of inorganic arsenic in most mammals. This study examined the disposition of pentavalent and trivalent dimethylated arsenic in mice after acute oral administration. Adult female mice were...

  3. Supplementation with Folic Acid, but Not Creatine, Increases Plasma Betaine, Decreases Plasma Dimethylglycine, and Prevents a Decrease in Plasma Choline in Arsenic-Exposed Bangladeshi Adults.

    PubMed

    Hall, Megan N; Howe, Caitlin G; Liu, Xinhua; Caudill, Marie A; Malysheva, Olga; Ilievski, Vesna; Lomax-Luu, Angela M; Parvez, Faruque; Siddique, Abu B; Shahriar, Hasan; Uddin, Mohammad N; Islam, Tariqul; Graziano, Joseph H; Gamble, Mary V

    2016-05-01

    Folic acid (FA) supplementation facilitates urinary excretion of arsenic, a human carcinogen. A better understanding of interactions between one-carbon metabolism intermediates may improve the ability to design nutrition interventions that further facilitate arsenic excretion. The objective was to determine if FA and/or creatine supplementation increase choline and betaine and decrease dimethylglycine (DMG). We conducted a secondary analysis of the Folic Acid and Creatine Trial, a randomized trial in arsenic-exposed Bangladeshi adults (n = 605, aged 24-55 y, 50.3% male) who received arsenic-removal water filters. We examined treatment effects of FA and/or creatine supplementation on plasma choline, betaine, and DMG concentrations, measured by LC-tandem mass spectrometry at baseline and at week 12. Group comparisons were between 1) 400 and 800 μg FA/d (FA400 and FA800, respectively) compared with placebo, 2) creatine (3 g/d) compared with placebo, and 3) creatine plus FA400 compared with FA400. Choline decreased in the placebo group (-6.6%; 95% CI: -10.2%, -2.9%) but did not change in the FA groups (FA400: 2.5%; 95% CI: -0.9%, 6.1%; FA800: 1.4%; 95% CI: -2.5%, 5.5%; P < 0.05). Betaine did not change in the placebo group (-3.5%; 95% CI: -9.3%, 2.6%) but increased in the FA groups (FA400: 14.1%; 95% CI: 9.4%, 19.0%; FA800: 13.0%; 95% CI: 7.2%, 19.1%; P < 0.01). The decrease in DMG was greater in the FA groups (FA400: -26.7%; 95% CI: -30.9%, -22.2%; FA800: -27.8%; 95% CI: -31.8%, -23.4%) than in the placebo group (-12.3%; 95% CI: -18.1%, -6.2%; P < 0.01). The percentage change in choline, betaine, and DMG did not differ between creatine treatment arms and their respective reference groups. Supplementation for 12 wk with FA, but not creatine, increases plasma betaine, decreases plasma DMG, and prevents a decrease in plasma choline in arsenic-exposed Bangladeshi adults. This trial was registered at clinicaltrials.gov as NCT01050556. © 2016 American Society for Nutrition.

  4. Supplementation with Folic Acid, but Not Creatine, Increases Plasma Betaine, Decreases Plasma Dimethylglycine, and Prevents a Decrease in Plasma Choline in Arsenic-Exposed Bangladeshi Adults123

    PubMed Central

    Hall, Megan N; Liu, Xinhua; Caudill, Marie A; Malysheva, Olga; Ilievski, Vesna; Lomax-Luu, Angela M; Parvez, Faruque; Siddique, Abu B; Shahriar, Hasan; Uddin, Mohammad N; Islam, Tariqul; Graziano, Joseph H; Gamble, Mary V

    2016-01-01

    Background: Folic acid (FA) supplementation facilitates urinary excretion of arsenic, a human carcinogen. A better understanding of interactions between one-carbon metabolism intermediates may improve the ability to design nutrition interventions that further facilitate arsenic excretion. Objective: The objective was to determine if FA and/or creatine supplementation increase choline and betaine and decrease dimethylglycine (DMG). Methods: We conducted a secondary analysis of the Folic Acid and Creatine Trial, a randomized trial in arsenic-exposed Bangladeshi adults (n = 605, aged 24–55 y, 50.3% male) who received arsenic-removal water filters. We examined treatment effects of FA and/or creatine supplementation on plasma choline, betaine, and DMG concentrations, measured by LC–tandem mass spectrometry at baseline and at week 12. Group comparisons were between 1) 400 and 800 μg FA/d (FA400 and FA800, respectively) compared with placebo, 2) creatine (3 g/d) compared with placebo, and 3) creatine plus FA400 compared with FA400. Results: Choline decreased in the placebo group (−6.6%; 95% CI: −10.2%, −2.9%) but did not change in the FA groups (FA400: 2.5%; 95% CI: −0.9%, 6.1%; FA800: 1.4%; 95% CI: −2.5%, 5.5%; P < 0.05). Betaine did not change in the placebo group (−3.5%; 95% CI: −9.3%, 2.6%) but increased in the FA groups (FA400: 14.1%; 95% CI: 9.4%, 19.0%; FA800: 13.0%; 95% CI: 7.2%, 19.1%; P < 0.01). The decrease in DMG was greater in the FA groups (FA400: −26.7%; 95% CI: −30.9%, −22.2%; FA800: −27.8%; 95% CI: −31.8%, −23.4%) than in the placebo group (−12.3%; 95% CI: −18.1%, −6.2%; P < 0.01). The percentage change in choline, betaine, and DMG did not differ between creatine treatment arms and their respective reference groups. Conclusion: Supplementation for 12 wk with FA, but not creatine, increases plasma betaine, decreases plasma DMG, and prevents a decrease in plasma choline in arsenic-exposed Bangladeshi adults. This trial was registered at clinicaltrials.gov as NCT01050556. PMID:27052531

  5. Urinary arsenic, pesticides, heavy metals, phthalates, polyaromatic hydrocarbons, and polyfluoroalkyl compounds are associated with sleep troubles in adults: USA NHANES, 2005-2006.

    PubMed

    Shiue, Ivy

    2017-01-01

    Links between environmental chemicals and human health have emerged, but the effects on sleep health were less studied. Therefore, the aim of the present study was to investigate the relationships of different sets of environmental chemicals and common sleep troubles in a national and population-based setting. Data were retrieved from the United States National Health and Nutrition Examination Surveys, 2005-2006 including demographics, serum measurements, lifestyle factors, self-reported sleep troubles, and urinary environmental chemical concentrations. Statistical analyses including descriptive statistics, t-test, chi-square test, and survey-weighted logistic regression models were performed. Of all 5563 Americans aged 18-85, 2331 (42.0%) had wake-up at night, 2914 (52.5%) felt unrested during the day, 740 (13.4%) had leg jerks while sleeping, and 1059 (19.1%) had leg cramps for 2+ times a month. Higher levels of urinary arsenic, phthalates, and polyfluoroalkyl compounds were associated with wake-up at night. Higher levels of urinary 4-tert-octylphenol and polyfluoroalkyl compounds were associated with being unrested during the day. Higher levels of urinary arsenic, polyaromatic hydrocarbons, and polyfluoroalkyl compounds were associated with leg jerks while sleeping. Higher levels of urinary pesticides, heavy metals, phthalates, and polyaromatic hydrocarbons were associated with leg cramps while sleeping. However, there were no significant associations with other environmental chemicals such as parabens, bisphenol A, benzophenone-3, triclosan, perchlorate, nitrate, or thiocyanate. Eliminating arsenic, heavy metals, phthalate, pesticides, polyaromatic hydrocarbons, and polyfluoroalkyl compounds to improve sleep health might be considered while understanding the biological pathway with a longitudinal or experimental approach in future research would be suggested.

  6. Arsenic contamination of groundwater and its induced health effects in Shahpur block, Bhojpur district, Bihar state, India: risk evaluation.

    PubMed

    Chakraborti, Dipankar; Rahman, Mohammad Mahmudur; Ahamed, Sad; Dutta, Rathindra Nath; Pati, Shyamapada; Mukherjee, Subhash Chandra

    2016-05-01

    The objective of this study was to determine the magnitude of groundwater arsenic contamination in Shahpur block of Bhojpur district, Bihar state, India and its health effects such as dermal, neurological, obstetric effects, and cancer risk. The School of Environmental Studies (SOES) collected 4704 tube-well water samples from all 88 villages of Shahpur, which were analyzed for arsenic. We found 40.3 and 21.1 % of the tube-wells had arsenic above 10 and 50 μg/l, respectively, with maximum concentration of 1805 μg/l. The study shows that 75,000, 39,000, and 10,000 people could be exposed to arsenic-contaminated water greater than 10, 50, and 300 μg/l, respectively. Our medical team examined 1422 villagers from Shahpur and registered 161 (prevalence rate, 11.3 %) with arsenical skin lesions. Arsenical skin lesions were also observed in 29 children of 525 screened. We analyzed 579 biological samples (hair, nail, and urine) from Shahpur and found that 82, 89, and 91 % of hair, nail, and urine, respectively, had arsenic above the normal levels, indicating many people in the study area are sub-clinically affected. Arsenical neuropathy was observed in 48 % of 102 arsenicosis patients. The study also found that arsenic exposed women with severe skin lesions had adversely affected their pregnancies. The carcinogenic and non-carcinogenic risks were also estimated based on the generated data. Safe drinking water supply is urgently required to combat arsenic situation in affected villages of Shahpur.

  7. Differences of urinary arsenic metabolites and methylation capacity between individuals with and without skin lesions in Inner Mongolia, Northern China.

    PubMed

    Zhang, Qiang; Li, Yongfang; Liu, Juan; Wang, Da; Zheng, Quanmei; Sun, Guifan

    2014-07-18

    Incomplete arsenic (As) methylation has been considered a risk factor of As-related diseases. This study aimed to examine the difference of urinary As metabolites and the methylation capacity between subjects with and without skin lesions. Urinary inorganic arsenic (iAs), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) were analyzed. The percentage of each As species (iAs%, MMA%, and DMA%), the primary methylation index (PMI) and secondary methylation index (SMI) were calculated. The results showed that subjects with skin lesions have higher levels of urinary iAs (99.08 vs. 70.63 μg/g Cr, p = 0.006) and MMA (69.34 vs. 42.85 μg/g Cr, p = 0.016) than subjects without skin lesions after adjustment for several confounders. Significant differences of urianry MMA% (15.49 vs. 12.11, p = 0.036) and SMI (0.74 vs. 0.81, p = 0.025) were found between the two groups. The findings of the present study suggest that subjects with skin lesions may have a lower As methylation capacity than subjects without skin lesions.

  8. Elevated childhood exposure to arsenic despite reduced drinking water concentrations--A longitudinal cohort study in rural Bangladesh.

    PubMed

    Kippler, Maria; Skröder, Helena; Rahman, Syed Moshfiqur; Tofail, Fahmida; Vahter, Marie

    2016-01-01

    The aim of this study was to evaluate the massive efforts to lower water arsenic concentrations in Bangladesh. In our large mother-child cohort in rural Matlab, we measured the arsenic concentrations (and other elements) in drinking water and evaluated the actual exposure (urinary arsenic), from early gestation to 10 years of age (n=1017). Median drinking water arsenic decreased from 23 (2002-2003) to <2 μg/L (2013), and the fraction of wells exceeding the national standard (50 μg/L) decreased from 58 to 27%. Still, some children had higher water arsenic at 10 years than earlier. Installation of deeper wells (>50 m) explained much of the lower water arsenic concentrations, but increased the manganese concentrations. The highest manganese concentrations (~900 μg/L) appeared in 50-100 m wells. Low arsenic and manganese concentrations (17% of the children) occurred mainly in >100 m wells. The decrease in urinary arsenic concentrations over time was less apparent, from 82 to 58 μg/L, indicating remaining sources of exposure, probably through food (mean 133 μg/kg in rice). Despite decreased water arsenic concentrations in rural Bangladesh, the children still have elevated exposure, largely from food. Considering the known risks of severe health effects in children, additional mitigation strategies are needed. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Selected markers of cardiovascular disease in a population exposed to arsenic from drinking water.

    PubMed

    Bošnjak, Zinka; Cavar, Suzana; Klapec, Tomislav; Milić, Marija; Klapec-Basar, Mirta; Toman, Miroslav

    2008-09-01

    This study examined prevalence and serum levels of selected markers of cardiovascular disease in 34 subjects from a Croatian rural population exposed to high levels of arsenic (As) from drinking water (611.89±10.06μg/l). The prevalences of overweight and obese subjects in the population were 32% and 35%. Half the subjects had hypertension, 29% had increased fasting serum glucose level and two were diabetic. Median total cholesterol (5.82mmol/l) and triglycerides (2.15mmol/l) were above the desirable margins. The median C-reactive protein level (1.20mg/l) was slightly higher than previously reported for healthy subjects. Serum Hsp70 level was significantly higher in nonsmokers. Total urinary As levels were positively correlated with age-adjusted serum levels of cobalamin. Near significance were also serum total bilirubin, antibodies to Hsp60 and folate. Tentative investigation of risk factors among subjects classified by tumor necrosis factor-α -308G/A and interleukin-6-174G/C gene polymorphisms was also performed. Collectively, the results are in agreement with the hypothesis of As-induced and/or compounded cardiovascular disease. Copyright © 2008 Elsevier B.V. All rights reserved.

  10. Biomarkers of oxidative stress in electroplating workers exposed to hexavalent chromium.

    PubMed

    Pan, Chih-Hong; Jeng, Hueiwang Anna; Lai, Ching-Huang

    2018-01-01

    This study evaluates levels of biomarkers of oxidative DNA damage and lipid peroxidation in 105 male workers at 16 electroplating companies who had been exposed to hexavalent chromium (Cr(VI)). The study participants were 230 non-smoking male workers, comprising 105 electroplating workers who had been exposed to chromium and 125 control subjects who performed office tasks. Personal air samples, spot urine samples, hair samples, fingernail samples and questionnaires were used to quantify exposure to Cr(VI), oxidative DNA damage, lipid peroxidation, and environmental pollutants. Both the geometric mean personal concentrations of Cr(VI) of the Cr-exposed workers and the total Cr concentrations in the air to which they were exposed significantly exceeded those for the control subjects. The geometric mean concentrations of Cr in urine, hair and fingernails, and the urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), and malondialdehyde (MDA) levels in the Cr(VI) exposed workers exceeded those in the control subjects. Daily cumulative Cr(VI) exposure and urinary Cr were significantly correlated with urinary 8-OHdG levels following adjustments for covariates. A ten-fold increase in urinary Cr level was associated with a 1.73-fold increase in urinary 8-OHdG level. Daily cumulative Cr(VI) exposure and urinary Cr level were significantly correlated with urinary MDA level following adjustments for covariates. A ten-fold increase in urinary Cr was associated with a 1.45-fold increase in urinary MDA. Exposure to Cr(VI) increased oxidative DNA injury and the oxidative deterioration of lipids in electroplating workers.

  11. Transcriptional Modulation of the ERK1/2 MAPK and NF-kB pathways in Human Urothelial cells after trivalent arsenical exposure: Implications for urinary bladder cancer

    EPA Science Inventory

    Chronic exposure to drinking water contaminated with inorganic arsenic (iAs) is associated with an increased risk ofurinary bladder (DB) cancers in humans. Rodent models administered particular arsenicals have indicated urothelial necrosis followed by regenerative proliferation i...

  12. Urinary arsenic profiles reveal exposures to inorganic arsenic from private drinking water supplies in Cornwall, UK.

    PubMed

    Middleton, D R S; Watts, M J; Hamilton, E M; Ander, E L; Close, R M; Exley, K S; Crabbe, H; Leonardi, G S; Fletcher, T; Polya, D A

    2016-05-09

    Private water supplies (PWS) in Cornwall, South West England exceeded the current WHO guidance value and UK prescribed concentration or value (PCV) for arsenic of 10 μg/L in 5% of properties surveyed (n = 497). In this follow-up study, the first of its kind in the UK, volunteers (n = 207) from 127 households who used their PWS for drinking, provided urine and drinking water samples for total As determination by inductively coupled plasma mass spectrometry (ICP-MS) and urinary As speciation by high performance liquid chromatography ICP-MS (HPLC-ICP-MS). Arsenic concentrations exceeding 10 μg/L were found in the PWS of 10% of the volunteers. Unadjusted total urinary As concentrations were poorly correlated (Spearman's ρ = 0.36 (P < 0.001)) with PWS As largely due to the use of spot urine samples and the dominance of arsenobetaine (AB) from seafood sources. However, the osmolality adjusted sum, U-As(IMM), of urinary inorganic As species, arsenite (As(III)) and arsenate (As(V)), and their metabolites, methylarsonate (MA) and dimethylarsinate (DMA), was found to strongly correlate (Spearman's ρ: 0.62 (P < 0.001)) with PWS As, indicating private water supplies as the dominant source of inorganic As exposure in the study population of PWS users.

  13. Urinary arsenic profiles reveal exposures to inorganic arsenic from private drinking water supplies in Cornwall, UK

    PubMed Central

    Middleton, D. R. S.; Watts, M. J.; Hamilton, E. M.; Ander, E. L.; Close, R. M.; Exley, K. S.; Crabbe, H.; Leonardi, G. S.; Fletcher, T.; Polya, D. A.

    2016-01-01

    Private water supplies (PWS) in Cornwall, South West England exceeded the current WHO guidance value and UK prescribed concentration or value (PCV) for arsenic of 10 μg/L in 5% of properties surveyed (n = 497). In this follow-up study, the first of its kind in the UK, volunteers (n = 207) from 127 households who used their PWS for drinking, provided urine and drinking water samples for total As determination by inductively coupled plasma mass spectrometry (ICP-MS) and urinary As speciation by high performance liquid chromatography ICP-MS (HPLC-ICP-MS). Arsenic concentrations exceeding 10 μg/L were found in the PWS of 10% of the volunteers. Unadjusted total urinary As concentrations were poorly correlated (Spearman’s ρ = 0.36 (P < 0.001)) with PWS As largely due to the use of spot urine samples and the dominance of arsenobetaine (AB) from seafood sources. However, the osmolality adjusted sum, U-AsIMM, of urinary inorganic As species, arsenite (AsIII) and arsenate (AsV), and their metabolites, methylarsonate (MA) and dimethylarsinate (DMA), was found to strongly correlate (Spearman’s ρ: 0.62 (P < 0.001)) with PWS As, indicating private water supplies as the dominant source of inorganic As exposure in the study population of PWS users. PMID:27156998

  14. Urinary arsenic profiles reveal exposures to inorganic arsenic from private drinking water supplies in Cornwall, UK

    NASA Astrophysics Data System (ADS)

    Middleton, D. R. S.; Watts, M. J.; Hamilton, E. M.; Ander, E. L.; Close, R. M.; Exley, K. S.; Crabbe, H.; Leonardi, G. S.; Fletcher, T.; Polya, D. A.

    2016-05-01

    Private water supplies (PWS) in Cornwall, South West England exceeded the current WHO guidance value and UK prescribed concentration or value (PCV) for arsenic of 10 μg/L in 5% of properties surveyed (n = 497). In this follow-up study, the first of its kind in the UK, volunteers (n = 207) from 127 households who used their PWS for drinking, provided urine and drinking water samples for total As determination by inductively coupled plasma mass spectrometry (ICP-MS) and urinary As speciation by high performance liquid chromatography ICP-MS (HPLC-ICP-MS). Arsenic concentrations exceeding 10 μg/L were found in the PWS of 10% of the volunteers. Unadjusted total urinary As concentrations were poorly correlated (Spearman’s ρ = 0.36 (P < 0.001)) with PWS As largely due to the use of spot urine samples and the dominance of arsenobetaine (AB) from seafood sources. However, the osmolality adjusted sum, U-AsIMM, of urinary inorganic As species, arsenite (AsIII) and arsenate (AsV), and their metabolites, methylarsonate (MA) and dimethylarsinate (DMA), was found to strongly correlate (Spearman’s ρ: 0.62 (P < 0.001)) with PWS As, indicating private water supplies as the dominant source of inorganic As exposure in the study population of PWS users.

  15. Dose-Response Relationship between Inorganic Arsenic Exposure and Lung Cancer among Arseniasis Residents with Low Methylation Capacity.

    PubMed

    Hsu, Kuang-Hung; Tsui, Ke-Hung; Hsu, Ling-I; Chiou, Hung-Yi; Chen, Chien-Jen

    2017-05-01

    Background: Exposure to inorganic arsenic (InAs) has been documented as a risk factor for lung cancer. This study examined the association between InAs exposure, its metabolism, and lung cancer occurrence. Methods: We followed 1,300 residents from an arseniasis area in Taiwan, determined urinary InAs metabolites, and identified 39 lung cancer cases. Cox proportional hazards model was performed. Results: The results demonstrated that participants with either the primary methylation index [monomethylarsonic acid (MMA)/InAs] or the secondary methylation index [dimethylarsenic acid (DMA)/MMA] lower than their respective median values were at a higher risk of lung cancer (HRs from 3.41 to 4.66) than those with high methylation capacity. The incidence density of lung cancer increased from 79.9/100,000 (year -1 ) to 467.4/100,000 (year -1 ) for residents with low methylation capacity and from 0 to 158.5/100,000 (year -1 ) for residents with high methylation capacity when the arsenic exposure dose increased from 2 to 10 ppb to ≥200 ppb, respectively. The analyses revealed a dose-response relationship between lung cancer occurrence and increasing arsenic concentrations in drinking water as well as cumulative arsenic exposure (monotonic trend test; P < 0.05 and P < 0.05, respectively) among the residents with low methylation capacity. The relationship between arsenic exposure and lung cancer among high methylators was not statistically significant. Conclusions: Hypomethylation responses to InAs exposure may dose dependently increase lung cancer occurrence. Impact: The high-risk characteristics observed among those exposed should be considered in future preventive medicine and research on arsenic carcinogenesis. Cancer Epidemiol Biomarkers Prev; 26(5); 756-61. ©2016 AACR . ©2016 American Association for Cancer Research.

  16. Arsenic Metabolism in Children Differs From That in Adults.

    PubMed

    Skröder Löveborn, Helena; Kippler, Maria; Lu, Ying; Ahmed, Sultan; Kuehnelt, Doris; Raqib, Rubhana; Vahter, Marie

    2016-07-01

    Arsenic toxicity in adults is associated with methylation efficiency, influenced by factors such as gender, genetics, and nutrition. The aim of this study was to evaluate influencing factors for arsenic metabolism in children. For 488 children (9 years), whose mothers participated in a study on arsenic exposure during pregnancy (nested into the MINIMat trial) in rural Bangladesh, we measured urinary concentrations of inorganic arsenic (iAs) and its metabolites methylarsonic acid (MMA) and dimethylarsinic acid (DMA) by HPLC-HG-ICPMS. Methylation efficiency was assessed by relative amounts (%) of the metabolites. We evaluated the impact of factors such as maternal urinary metabolite pattern, arsenic exposure, gender, socioeconomic status, season of sampling, and nutritional factors, including erythrocyte selenium (Ery-Se), and plasma folate and vitamin B12.Children had higher %DMA and lower %iAs in urine compared to their mothers, unrelated to their lower exposure [median urinary arsenic (U-As) 53 vs 78 µg/l]. Surprisingly, selenium status (Ery-Se) was strongly associated with children's arsenic methylation; an increase in Ery-Se from the 5-95th percentile was associated with: +1.8 percentage points (pp) for %iAs (P  =  .001), +1.4 pp for %MMA (P  =  .003), and -3.2 pp for %DMA (P  <  .001). Despite this, Ery-Se was positively associated with U-As (5-95th percentile: +41 µg/l, P  =  .026). As expected, plasma folate was inversely associated with %iAs (5-95th percentile: -1.9 pp, P  =  .001) and positively associated with %DMA (5-95th percentile: +2.2 pp, P  =  .008). Children methylated arsenic more efficiently than their mothers. Also influencing factors, mainly selenium and folate, differed. This warrants further research. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology.

  17. S-phenyl-N-acetylcysteine in urine of rats and workers after exposure to benzene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jongeneelen, F.J.; Dirven, H.A.; Leijdekkers, C.M.

    1987-05-01

    An HPLC method for the determination of S-phenyl-N-acetylcysteine in urine is described. The sensitivity is 6 mumol/L (CV = 9%) urine. Exposure of rats to six different concentrations of benzene, ranging from 0-30 ppm, was highly associated with urinary excretion of S-phenyl-N-acetylcysteine (r = 0.86) and with total phenol (r = 0.81). A background level of phenol was found in urine of both non-exposed rats and of non-exposed referents. However, no background excretion of S-phenyl-N-acetylcysteine was found, either in rats or in humans. In urine of exposed rats, the level of S-phenyl-N-acetylcysteine was approximately five times lower than the phenolmore » level. Workers occupationally exposed to benzene, showing high levels of urinary phenol, revealed low concentrations of urinary S-phenyl-N-acetylcysteine. The biological monitoring of industrial exposure to benzene by determination of S-phenyl-N-acetylcysteine in urine is not better than the determination of phenol in urine.« less

  18. Inverse association between toenail arsenic and body mass index in a population of welders.

    PubMed

    Grashow, Rachel; Zhang, Jinming; Fang, Shona C; Weisskopf, Marc G; Christiani, David C; Kile, Molly L; Cavallari, Jennifer M

    2014-05-01

    Recent data show that arsenic may play a role in obesity-related diseases. However, urinary arsenic studies report an inverse association between arsenic level and body mass index (BMI). We explored whether toenail arsenic, a long-term exposure measure, was associated with BMI in 74 welders with known arsenic exposure. BMI showed significant inverse associations with toenail arsenic (p=0.01), which persisted in models adjusted for demographics, diet and work history. It is unclear whether low arsenic biomarker concentrations in high BMI subjects truly reflect lower exposures, or instead reflect internal or metabolic changes that alter arsenic metabolism and tissue deposition. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Chi-Jung; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; Huang, Chao-Yuan

    Inter-individual variation in the metabolism of xenobiotics, caused by factors such as cigarette smoking or inorganic arsenic exposure, is hypothesized to be a susceptibility factor for urothelial carcinoma (UC). Therefore, our study aimed to evaluate the role of gene–environment interaction in the carcinogenesis of UC. A hospital-based case–control study was conducted. Urinary arsenic profiles were measured using high-performance liquid chromatography–hydride generator-atomic absorption spectrometry. Genotyping was performed using a polymerase chain reaction-restriction fragment length polymorphism technique. Information about cigarette smoking exposure was acquired from a lifestyle questionnaire. Multivariate logistic regression was applied to estimate the UC risk associated with certain riskmore » factors. We found that UC patients had higher urinary levels of total arsenic, higher percentages of inorganic arsenic (InAs%) and monomethylarsonic acid (MMA%) and lower percentages of dimethylarsinic acid (DMA%) compared to controls. Subjects carrying the GSTM1 null genotype had significantly increased UC risk. However, no association was observed between gene polymorphisms of CYP1A1, EPHX1, SULT1A1 and GSTT1 and UC risk after adjustment for age and sex. Significant gene–environment interactions among urinary arsenic profile, cigarette smoking, and GSTM1 wild/null polymorphism and UC risk were observed after adjustment for potential risk factors. Overall, gene–environment interactions simultaneously played an important role in UC carcinogenesis. In the future, large-scale studies should be conducted using tag-SNPs of xenobiotic-metabolism-related enzymes for gene determination. -- Highlights: ► Subjects with GSTM1 null genotype had significantly increased UC risk. ► UC patients had poor arsenic metabolic ability compared to controls. ► GSTM1 null genotype may modify arsenic related UC risk.« less

  20. Heavy metals exposures among Mexican farmworkers in eastern North Carolina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quandt, Sara A., E-mail: squandt@wfubmc.edu; Jones, Bradley T.; Talton, Jennifer W.

    2010-01-15

    Background: Immigrant farmworkers are a population at risk for numerous environmental and occupational exposures. The metals arsenic, lead, mercury, and cadmium are known neurotoxins to which workers can be exposed both in the US and in their country of origin. Because farmworkers are exposed to neurotoxic pesticides, they may be at risk for adverse health effects from the combined exposure. Objectives: To examine the relationship between exposure to metals, as measured in urine, with personal and work-related characteristics of Mexican migrant and seasonal farmworkers in the US. Methods: We analyzed data on metals found in urine of 258 farmworkers recruitedmore » from 44 camps in eastern North Carolina in 2007. Geometric means and 95% confidence intervals (CI) were used to compare data with data from the National Health and Nutrition Examination Survey (NHANES). We used multivariate regression models fitted for each metal to estimate the association of creatinine-corrected urinary metals and worker characteristics related to environmental and occupational exposures. Results: Geometric mean urinary metals concentrations ({mu}g/g creatinine) exceeded NHANES reference values for arsenic (13.23 [CI 11.11, 15.35] vs. 8.55 [CI 7.23, 9.86]) and lead (1.26 [CI 1.08, 1.43] vs. 0.63 [CI 0.60, 0.66]). Age, being from the central region of Mexico, and pack years of cigarette smoking were significant predictors of metals exposure; being a current smoker and years worked in US agriculture were not. Conclusions: This first study to examine indicators of worker body burdens of metals shows that workers have body burdens related to exposures other than work in the US. Further research should address their risk for adverse health outcomes due to combined exposures to neurotoxins in pesticides.« less

  1. Effect of Sodium Arsenite Dose Administered in the Drinking Water on the Urinary Bladder Epithelium of Female Arsenic (+3 oxidation state) Methyltransferase Knockout Mice

    EPA Science Inventory

    The enzyme arsenic (+3 oxidation state) methyltransferase (As3mt) catalyzes reactions converting inorganic arsenic to methylated metabolites, some of which are highly cytotoxic. In a previous study, we evaluated whether the As3mt null genotype in mice modified cytotoxic and proli...

  2. Arsenic exacerbates atherosclerotic lesion formation and inflammation in ApoE-/- mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Sanjay, E-mail: sanjay@louisville.ed; Center for Environmental Genomics and Integrative Biology, University of Louisville, Louisville, KY 40202; Vladykovskaya, Elena N.

    2009-11-15

    Exposure to arsenic-contaminated water has been shown to be associated with cardiovascular disease, especially atherosclerosis. We examined the effect of arsenic exposure on atherosclerotic lesion formation, lesion composition and nature in ApoE-/- mice. Early post-natal exposure (3-week-old mice exposed to 49 ppm arsenic as NaAsO{sub 2} in drinking water for 7 weeks) increased the atherosclerotic lesion formation by 3- to 5-fold in the aortic valve and the aortic arch, without affecting plasma cholesterol. Exposure to arsenic for 13 weeks (3-week-old mice exposed to 1, 4.9 and 49 ppm arsenic as NaAsO{sub 2} in drinking water) increased the lesion formation andmore » macrophage accumulation in a dose-dependent manner. Temporal studies showed that continuous arsenic exposure significantly exacerbated the lesion formation throughout the aortic tree at 16 and 36 weeks of age. Withdrawal of arsenic for 12 weeks after an initial exposure for 21 weeks (to 3-week-old mice) significantly decreased lesion formation as compared with mice continuously exposed to arsenic. Similarly, adult exposure to 49 ppm arsenic for 24 weeks, starting at 12 weeks of age increased lesion formation by 2- to 3.6-fold in the aortic valve, the aortic arch and the abdominal aorta. Lesions of arsenic-exposed mice displayed a 1.8-fold increase in macrophage accumulation whereas smooth muscle cell and T-lymphocyte contents were not changed. Expression of pro-inflammatory chemokine MCP-1 and cytokine IL-6 and markers of oxidative stress, protein-HNE and protein-MDA adducts were markedly increased in lesions of arsenic-exposed mice. Plasma concentrations of MCP-1, IL-6 and MDA were also significantly elevated in arsenic-exposed mice. These data suggest that arsenic exposure increases oxidative stress, inflammation and atherosclerotic lesion formation.« less

  3. The impact of a rice based diet on urinary arsenic.

    PubMed

    Cascio, Claudia; Raab, Andrea; Jenkins, Richard O; Feldmann, Joerg; Meharg, Andrew A; Haris, Parvez I

    2011-02-01

    Rice is elevated in arsenic (As) compared to other staple grains. The Bangladeshi community living in the United Kingdom (UK) has a ca. 30-fold higher consumption of rice than white Caucasians. In order to assess the impact of this difference in rice consumption, urinary arsenicals of 49 volunteers in the UK (Bangladeshi n = 37; white Caucasians n = 12) were monitored along with dietary habits. Total urinary arsenic (As(t)) and speciation analysis for dimethylarsinic acid (DMA), monomethylarsonic acid (MA) and inorganic arsenic (iAs) was conducted. Although no significant difference was found for As(t) (median: Bangladeshis 28.4 µg L(-1)) and white Caucasians (20.6 µg L(-1)), the sum of medians of DMA, MA and iAs for the Bangladeshi group was found to be over 3-fold higher (17.9 µg L(-1)) than for the Caucasians (3.50 µg L(-1)). Urinary DMA was significantly higher (p < 0.001) in the UK Bangladeshis (median: 16.9 µg DMA L(-1)) than in the white Caucasians (3.16 µg DMA L(-1)) as well as iAs (p < 0.001) with a median of 0.630 µg iAs L(-1) for Bangladeshi and 0.250 µg iAs L(-1) for Caucasians. Cationic compounds were significantly lower in the Bangladeshis (2.93 µg L(-1)) than in Caucasians (14.9 µg L(-1)). The higher DMA and iAs levels in the Bangladeshis are mainly the result of higher rice consumption: arsenic is speciated in rice as both iAs and DMA, and iAs can be metabolized, through MA, to DMA by humans. This study shows that a higher dietary intake of DMA alters the DMA/MA ratio in urine. Consequently, DMA/MA ratio as an indication of methylation capacity in populations consuming large quantities of rice should be applied with caution since variation in the quantity and type of rice eaten may alter this ratio.

  4. Arsenic methylation capability and hypertension risk in subjects living in arseniasis-hyperendemic areas in southwestern Taiwan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Y.-K.; Tseng, C.-H.; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan

    Background: Cumulative arsenic exposure (CAE) from drinking water has been shown to be associated with hypertension in a dose-response pattern. This study further explored the association between arsenic methylation capability and hypertension risk among residents of arseniasis-hyperendemic areas in Taiwan considering the effect of CAE and other potential confounders. Method: There were 871 subjects (488 women and 383 men) and among them 372 were diagnosed as having hypertension based on a positive history or measured systolic blood pressure {>=} 140 mm Hg and/or diastolic blood pressure {>=} 90 mm Hg. Urinary arsenic species were determined by high-performance liquid chromatography-hydride generatormore » and atomic absorption spectrometry. Primary arsenic methylation index [PMI, defined as monomethylarsonic acid (MMA{sup V}) divided by (As{sup III} + As{sup V})] and secondary arsenic methylation index (SMI, defined as dimethylarsinic acid divided by MMA{sup V}) were used as indicators for arsenic methylation capability. Results: The level of urinary arsenic was still significantly correlated with cumulative arsenic exposure (CAE) calculated from a questionnaire interview (p = 0.02) even after the residents stopped drinking the artesian well water for 2-3 decades. Hypertensive subjects had higher percentages of MMA{sup V} and lower SMI than subjects without hypertension. However, subjects having CAE > 0 mg/L-year had higher hypertension risk than those who had CAE = 0 mg/L-year disregard a high or low methylation index. Conclusion: Inefficient arsenic methylation ability may be related with hypertension risk.« less

  5. A biological indicator of inorganic arsenic exposure using the sum of urinary inorganic arsenic and monomethylarsonic acid concentrations

    PubMed Central

    Hata, Akihisa; Kurosawa, Hidetoshi; Endo, Yoko; Yamanaka, Kenzo; Fujitani, Noboru; Endo, Ginji

    2016-01-01

    Objectives: The sum of urinary inorganic arsenic (iAs), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) concentrations is used for the biological monitoring of occupational iAs exposure. Although DMA is a major metabolite of iAs, it is an inadequate index because high DMA levels are present in urine after seafood consumption. We estimated the urinary iAs+MMA concentration corresponding to iAs exposure. Methods: We used data from two arsenic speciation analyses of urine samples from 330 Bangladeshi with oral iAs exposure and 172 Japanese workers without occupational iAs exposure using high-performance liquid chromatography with inductively coupled plasma mass spectrometry. Results: iAs, MMA, and DMA, but not arsenobetaine (AsBe), were detected in the urine of the Bangladeshi subjects. The correlation between iAs+MMA+DMA and iAs+MMA was obtained as log (iAs+MMA) = 1.038 log (iAs+MMA+DMA) -0.658. Using the regression formula, the iAs+MMA value was calculated as 2.15 and 7.5 μg As/l, corresponding to 3 and 10 μg As/m3 of exposures, respectively. In the urine of the Japanese workers, arsenic was mostly excreted as AsBe. We used the 95th percentile of iAs+MMA (12.6 μg As/l) as the background value. The sum of the calculated and background values can be used as a biological indicator of iAs exposure. Conclusion: We propose 14.8 and 20.1 μg As/l of urinary iAs+MMA as the biological indicators of 3 and 10 μg As/m3 iAs exposure, respectively. PMID:27010090

  6. Hormonal Perturbations in Occupationally Exposed Nickel Workers

    PubMed Central

    Beshir, Safia; Ibrahim, Khadiga Salah; Shaheen, Weam; Shahy, Eman M.

    2016-01-01

    BACKGROUND: Nickel exposure is recognized as an endocrine disruptor because of its adverse effects on reproduction. AIM: This study was designed to investigate the possible testiculo-hormonal perturbations on workers occupationally exposed to nickel and to assess its effects on human male sexual function. METHODS: Cross-sectional comparative study, comprising 105 electroplating male non-smoker, non-alcoholic workers exposed to soluble nickel and 60 controls was done. Serum luteinizing hormone, follicle stimulating hormone, testosterone levels and urinary nickel concentrations were determined for the studied groups. RESULTS: Serum luteinizing hormone, follicle stimulating hormone, urinary nickel and the simultaneous incidence of more than one sexual disorder were significantly higher in the exposed workers compared to controls. The occurrence of various types of sexual disorders (decreased libido, impotence and premature ejaculation) in the exposed workers was 9.5, 5.1 and 4.4 folds respectively than the controls. CONCLUSIONS: Exposure to nickel produces possible testiculo-hormonal perturbations in those exposed workers. PMID:27335607

  7. Consumption of arsenic-contaminated drinking water and anemia among pregnant and non-pregnant women in northwestern Romania

    PubMed Central

    Surdu, Simona; Bloom, Michael S.; Neamtiu, Iulia A.; Pop, Cristian; Anastasiu, Doru; Fitzgerald, Edward F.; Gurzau, Eugen S.

    2015-01-01

    Anemia is a global health problem. To evaluate the impact of low-moderate water arsenic exposure (mostly <10 μg/L) on anemia, we conducted a cross-sectional study of 217 Romanian women. The adjusted prevalences for ‘any’ anemia (prevalence proportion ratio (PPR)=1.71, 95% CI 0.75-3.88) and pregnancy anemia (PPR=2.87, 95% CI 0.62-13.26) were higher among drinking water arsenic exposed women than among unexposed women. These preliminary data underscore the need for a more definitive study in this area. PMID:26073204

  8. Multimedia Exposures to Arsenic and Lead for Children Near an Inactive Mine Tailings and Smelter Site

    PubMed Central

    Loh, Miranda M.; Sugeng, Anastasia; Lothrop, Nathan; Klimecki, Walter; Cox, Melissa; Wilkinson, Sarah T.; Lu, Zhenqiang; Beamer, Paloma I.

    2016-01-01

    Children living near contaminated mining waste areas may have high exposures to metals from the environment. This study investigates whether exposure to arsenic and lead is higher in children in a community near a legacy mine and smelter site in Arizona compared to children in other parts of the United States and the relationship of that exposure to the site. Arsenic and lead were measured in residential soil, house dust, tap water, urine, and toenail samples from 70 children in 34 households up to 7 miles from the site. Soil and house dust were sieved, digested, and analyzed via ICP-MS. Tap water and urine were analyzed without digestion, while toenails were washed, digested and analyzed. Blood lead was analyzed by an independent, certified laboratory. Spearman correlation coefficients were calculated between each environmental media and urine and toenails for arsenic and lead. Geometric mean arsenic (standard deviation) concentrations for each matrix were: 22.1 (2.59) ppm and 12.4 (2.27) ppm for soil and house dust (<63 μm), 5.71 (6.55) ppb for tap water, 14.0 (2.01) μg/L for specific gravity-corrected total urinary arsenic, 0.543 (3.22) ppm for toenails. Soil and vacuumed dust lead concentrations were 16.9 (2.03) ppm and 21.6 (1.90) ppm. The majority of blood lead levels were below the limit of quantification. Arsenic and lead concentrations in soil and house dust decreased with distance from the site. Concentrations in soil, house dust, tap water, along with floor dust loading were significantly associated with toenail and urinary arsenic but not lead. Mixed models showed that soil and tap water best predicted urinary arsenic. In our study, despite being present in mine tailings at similar levels, internal lead exposure was not high, but arsenic exposure was of concern, particularly from soil and tap water. Naturally occurring sources may be an additional important contributor to exposures in certain legacy mining areas. PMID:26803211

  9. Urinary excretion of platinum, arsenic and selenium of cancer patients from the Antofagasta region in Chile treated with platinum-based drugs

    PubMed Central

    2012-01-01

    Background Arsenic exposure increases the risk of non-cancerous and cancerous diseases. In the Antofagasta region in Chile, an established relationship exists between arsenic exposure and the risk of cancer of the bladder, lung and skin. Platinum-based drugs are first-line treatments, and many works recognise selenium as a cancer-fighting nutrient. We characterised the short-term urinary excretion amounts of arsenic, selenium and platinum in 24-h urine samples from patients with lung cancer and those with cancer other than lung treated with cisplatin or/and carboplatin. As - Se - Pt inter-element relationships were also investigated. Results The amounts of platinum excreted in urine were not significantly different between patients with lung cancer and those with other cancers treated with cisplatin, despite the significant variation in platinum amounts supplied from platinum-based drugs. In general, the analytical amounts of excreted selenium were greater than those for arsenic, which could imply that platinum favours the excretion of selenium. For other types of cancers treated with drugs without platinum, excretion of selenium was also greater than that of arsenic, suggesting an antagonist selenium-anti-cancer drug relationship. Conclusions Regards the baseline status of patients, the analytical amounts of excreted Se is greater than those for As, particularly, for cisplatin chemotherapy. This finding could imply that for over the As displacement Pt favours the excretion of Se. The analytical amounts of excreted Se were greater than those for As, either with and without Pt-containing drugs, suggesting an antagonist Se-anti-cancer drug relationship. However, it seemed that differences existed between As - Se - Pt inter-element associations in patients treated for lung cancer in comparison with those treated for cancer other than lung. Therefore, knowledge obtained in this work, can contribute to understanding the arsenic cancer mechanism and the As - Se - Pt inter-element association for lung cancer and other types of cancer, which in some cases respond at a linear mathematical model. PMID:22546077

  10. The effect of the Environmental Protection Agency maximum contaminant level on arsenic exposure in the USA from 2003 to 2014: an analysis of the National Health and Nutrition Examination Survey (NHANES).

    PubMed

    Nigra, Anne E; Sanchez, Tiffany R; Nachman, Keeve E; Harvey, David; Chillrud, Steven N; Graziano, Joseph H; Navas-Acien, Ana

    2017-11-01

    The current US Environmental Protection Agency (EPA) maximum contaminant level (MCL) for arsenic in public water systems (10 µg/L) took effect in 2006. Arsenic is not federally regulated in private wells. The impact of the 2006 MCL on arsenic exposure in the US, as confirmed through biomarkers, is presently unknown. We evaluated national trends in water arsenic exposure in the US, hypothesizing that urinary arsenic levels would decrease over time among participants using public water systems but not among those using well water. We further estimated the expected number of avoided lung, bladder, and skin cancer cases. We evaluated 14,127 participants in the National Health and Nutrition Examination Survey (NHANES) 2003-2014 with urinary dimethylarsinate (DMA) and total arsenic available. To isolate water exposure, we expanded a residual-based method to remove tobacco and dietary contributions of arsenic. We applied EPA risk assessment approaches to estimate the expected annual number of avoided cancer cases comparing arsenic exposure in 2013-2014 vs. 2003-2004. Among public water users, fully adjusted geometric means (GMs) of DMA decreased from 3.01 µg/L in 2003-2004 to 2.49 µg/L in 2013-2014 (17% reduction; 95% confidence interval 10%, 24%; p-trend<0.01); no change was observed among well water users (p-trend= 0.35). Assuming these estimated exposure reductions will remain similar across a lifetime, we estimate a reduction of 200 to 900 lung and bladder cancer cases per year depending on the approach used. The decline in urinary arsenic among public water but not private well users in NHANES 2003-2014 indicates that the implementation of the current MCL has reduced arsenic exposure in the US population. Our study supports prior work showing that well water users are inadequately protected against drinking water arsenic, and confirms the critical role of federal drinking water regulations in reducing toxic exposures and protecting human health. This work was supported by the National Institute of Environmental Health Sciences (1R01ES025216, R01ES021367, 5P30ES009089 and P42ES010349). A. E. Nigra was supported by 5T32ES007322.

  11. Arsenic Methylation Capacity and Metabolic Syndrome in the 2013–2014 U.S. National Health and Nutrition Examination Survey (NHANES)

    PubMed Central

    Pace, Clare; Smith-Gagen, Julie

    2018-01-01

    Arsenic methylation capacity is associated with metabolic syndrome and its components among highly exposed populations. However, this association has not been investigated in low to moderately exposed populations. Therefore, we investigated arsenic methylation capacity in relation to the clinical diagnosis of metabolic syndrome in a low arsenic exposure population. Additionally, we compared arsenic methylation patterns present in our sample to those of more highly exposed populations. Using logistic regression models adjusted for relevant biological and lifestyle covariates, we report no association between increased arsenic methylation and metabolic syndrome in a population in which arsenic is regulated at 10 ppb in drinking water. However, we cannot rule out the possibility of a positive association between arsenic methylation and metabolic syndrome in a subsample of women with normal body mass index (BMI). To our knowledge this is the first investigation of arsenic methylation capacity with respect to metabolic syndrome in a low exposure population. We also report that methylation patterns in our sample are similar to those found in highly exposed populations. Additionally, we report that gender and BMI significantly modify the effect of arsenic methylation on metabolic syndrome. Future studies should evaluate the effectiveness of arsenic policy enforcement on subclinical biomarkers of cardiovascular disease. PMID:29361794

  12. Accumulation of iron and arsenic in the Chandina alluvium of the lower delta plain, Southeastern Bangladesh

    USGS Publications Warehouse

    Zahid, A.; Hassan, M.Q.; Breit, G.N.; Balke, K.-D.; Flegr, M.

    2009-01-01

    Accumulations of iron, manganese, and arsenic occur in the Chandina alluvium of southeastern Bangladesh within 2.5 m of the ground surface. These distinctive orange-brown horizons are subhorizontal and consistently occur within 1 m of the contact of the aerated (yellow-brown) and water-saturated (gray) sediment. Ferric oxyhydroxide precipitates that define the horizons form by oxidation of reduced iron in pore waters near the top of the saturated zone when exposed to air in the unsaturated sediment. Hydrous Fe-oxide has a high specific surface area and thus a high adsorption capacity that absorbs the bulk of arsenic also present in the reduced pore water, resulting in accumulations containing as much as 280 ppm arsenic. The steep redox gradient that characterizes the transition of saturated and unsaturated sediment also favors accumulation of manganese oxides in the oxidized sediment. Anomalous concentrations of phosphate and molybdenum also detected in the ferric oxyhydroxide-enriched sediment are attributed to sorption processes. ?? Springer Science+Business Media B.V. 2008.

  13. Increased Mortality Associated with Well-Water Arsenic Exposure in Inner Mongolia, China

    PubMed Central

    Wade, Timothy J.; Xia, Yajuan; Wu, Kegong; Li, Yanhong; Ning, Zhixiong; Le, X Chris; Lu, Xiufen; Feng, Yong; He, Xingzhou; Mumford, Judy L.

    2009-01-01

    We conducted a retrospective mortality study in an Inner Mongolian village exposed to well water contaminated by arsenic since the 1980s. Deaths occurring between January 1, 1997 and December 1, 2004 were classified according to underlying cause and water samples from household wells were tested for total arsenic. Heart disease mortality was associated with arsenic exposure, and the association strengthened with time exposed to the water source. Cancer mortality and all-cause mortality were associated with well-water arsenic exposure among those exposed 10–20 years. This is the first study to document increased arsenic-associated mortality in the Bayingnormen region of Inner Mongolia. PMID:19440436

  14. Betel quid chewing as a source of manganese exposure: total daily intake of manganese in a Bangladeshi population.

    PubMed

    Al-Rmalli, Shaban W; Jenkins, Richard O; Haris, Parvez I

    2011-02-07

    A relationship between betel quid chewing in Bangladeshi populations and the development of skin lesions and tremor has been previously reported, for people exposed to high levels of arsenic (As) through drinking contaminated groundwater. Exposure to manganese (Mn) is also known to induce neurotoxicity and levels of Mn in Bangladeshi groundwater are also high. The present study evaluates betel quid chewing as an overlooked source of Mn exposure in a Bangladeshi population. Inductively coupled plasma mass spectrometry (ICP-MS) was used to determine (1) urinary Mn levels for 15 chewers and 22 non-chewers from the ethnic Bangladeshi community in the United Kingdom, and (2) Mn levels in betel quids, its individual components and other Bangladeshi foods. Betel quid chewers displayed a significantly higher (P = 0.009) mean Mn concentration in urine (1.93 μg L(-1)) compared to non-chewers (0.62 μg L(-1)). High levels of Mn were detected in Piper betel leaves with an overall average of 135 mg kg(-1) (range 26 -518 mg kg(-1)). The mean concentration of Mn in betel quid was 41 mg kg(-1) (SD 27) and the daily intake of Mn in the Bangladeshi population was estimated to be 20.3 mg/day. Chewing six betel quids could contribute up to 18% of the maximum recommended daily intake of Mn. We have demonstrated that Mn in betel quids is an overlooked source of exposure to Mn in humans. Chewers display a 3.1 fold increased urinary Mn concentration compared to non-chewers. The practice of betel quid chewing contributes a high proportion of the maximum recommended daily intake of Mn, which could make chewers in Bangladesh more vulnerable to Mn neurotoxicity.

  15. Betel quid chewing as a source of manganese exposure: total daily intake of manganese in a Bangladeshi population

    PubMed Central

    2011-01-01

    Background A relationship between betel quid chewing in Bangladeshi populations and the development of skin lesions and tremor has been previously reported, for people exposed to high levels of arsenic (As) through drinking contaminated groundwater. Exposure to manganese (Mn) is also known to induce neurotoxicity and levels of Mn in Bangladeshi groundwater are also high. The present study evaluates betel quid chewing as an overlooked source of Mn exposure in a Bangladeshi population. Methods Inductively coupled plasma mass spectrometry (ICP-MS) was used to determine (1) urinary Mn levels for 15 chewers and 22 non-chewers from the ethnic Bangladeshi community in the United Kingdom, and (2) Mn levels in betel quids, its individual components and other Bangladeshi foods. Results Betel quid chewers displayed a significantly higher (P = 0.009) mean Mn concentration in urine (1.93 μg L-1) compared to non-chewers (0.62 μg L-1). High levels of Mn were detected in Piper betel leaves with an overall average of 135 mg kg-1 (range 26 -518 mg kg-1). The mean concentration of Mn in betel quid was 41 mg kg-1 (SD 27) and the daily intake of Mn in the Bangladeshi population was estimated to be 20.3 mg/day. Chewing six betel quids could contribute up to 18% of the maximum recommended daily intake of Mn. Conclusion We have demonstrated that Mn in betel quids is an overlooked source of exposure to Mn in humans. Chewers display a 3.1 fold increased urinary Mn concentration compared to non-chewers. The practice of betel quid chewing contributes a high proportion of the maximum recommended daily intake of Mn, which could make chewers in Bangladesh more vulnerable to Mn neurotoxicity. PMID:21299859

  16. Rapid onset of multiple concurrent squamous cell carcinomas associated with the use of an arsenic-containing traditional medicine for chronic plaque psoriasis.

    PubMed

    Siefring, Mark Louis; Lu, Doanh; States, J Christopher; Van Hoang, Minh

    2018-03-30

    We report a case of a 46-year-old Vietnamese man who developed widespread, numerous and concurrent cutaneous squamous cell carcinomas (SCCs) in non-sun exposed skin areas after taking a traditional medicine (TM) formulation for chronic plaque psoriasis. The SCC lesions began to develop within 12-15 months after beginning the arsenic-containing TM. The patient experienced both acute and chronic symptoms consistent with arsenic exposure. Laboratory investigation of a collected hair sample showed a significant arsenic level. The TM formulation used by the patient was tested and demonstrated an extremely high concentration of arsenic. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Comparison of Arsenic Concentrations in Carcass and Viscera of Swim-up Rainbow Trout Exposed to Dietary and Waterborne Arsenic

    EPA Science Inventory

    Rainbow trout fry were exposed to arsenic in water only, diet only, or both diet and water in 28-d studies evaluating survival and growth. Diets consisted of Lumbriculus variegatus that were exposed to multiple concentrations of waterborne arsenate for 7d and then fed to test fi...

  18. Arsenic Exposure, Dermatological Lesions, Hypertension, and Chromosomal Abnormalities among People in a Rural Community of Northwest Iran

    PubMed Central

    Dastgiri, Saeed; Fizi, Mohammad A.H.; Olfati, Nahid; Zolali, Shahin; Pouladi, Nasser; Azarfam, Parvin

    2010-01-01

    Chronic exposure to arsenic compounds is one of the major public-health problems in many developing and some developed countries. The aim of this study was to investigate the effects of chronic exposure to arsenic on dermatological lesions, hypertension, and chromosomal abnormalities among people in a community in the northwest of Iran. The occurrence of dermatological lesions, hypertension, and chromosomal abnormalities was investigated in two groups: Ghopuz village, including 101 subjects with chronic exposure to arsenic in drinking-water and Mayan village, including 107 subjects with no exposure. Daily/yearly absorbed amounts of arsenic were calculated for all subjects. Cumulative arsenic index for each individual was then estimated on the basis of age, water consumption, and location of residence. Arsenic concentration in drinking-water sources in Ghopuz and Mayan villages was 1031±1103 μg/L and non-detectable respectively. The mean systolic blood pressure in the exposure group [n=137, 95% confidence interval (CI 132–142)] was significantly higher than that in the control group (n=107, 95% CI 99.9–114). A similar significant difference was observed for diastolic blood pressure (exposed: n=82, 95% CI 79–85 vs non-exposed: n=71, 95% CI 66–75). The incidence of hyperkeratosis was 34 times higher among the exposure group compared to the control subjects [odds ratio (OR)=34, p<0.001)]. A significant difference was also observed in the occurrence of skin-pigmentation between the two groups (OR=2.4, p<0.007). Location and severity of the pigmentations were statistically different between the two groups. Twenty-five percent of the subjects in the exposure group showed chromosomal abnormalities (p=0.05). Arsenic exposure was a serious health problem in the region. More studies are needed to investigate the long-term effects and dose-response relationship of arsenic in the region and similar areas. Wide-ranging monitoring programmes for drinking-water sources should be implemented by public-health authorities. PMID:20214082

  19. Risk Assessment for Children Exposed to Arsenic on Baseball Fields with Contaminated Fill Material

    PubMed Central

    Ferguson, Alesia C.; Black, Jennifer C.; Sims, Isaac B.; Welday, Jennifer N.; Elmir, Samir M.; Goff, Kendra F.; Higginbotham, J. Mark

    2018-01-01

    Children can be exposed to arsenic through play areas which may have contaminated fill material from historic land use. The objective of the current study was to evaluate the risk to children who play and/or spend time at baseball fields with soils shown to have arsenic above background levels. Arsenic in soils at the study sites located in Miami, FL, USA showed distinct distributions between infield, outfield, and areas adjacent to the fields. Using best estimates of exposure factors for children baseball scenarios, results show that non-cancer risks depend most heavily upon the age of the person and the arsenic exposure level. For extreme exposure scenarios evaluated in this study, children from 1 to 2 years were at highest risk for non-cancer effects (Hazard Quotient, HQ > 2.4), and risks were higher for children exhibiting pica (HQ > 9.7) which shows the importance of testing fill for land use where children may play. At the study sites, concentration levels of arsenic resulted in a range of computed cancer risks that differed by a factor of 10. In these sites, the child’s play position also affected risk. Outfield players, with a lifetime exposure to these arsenic levels, could have 10 times more increased chance of experiencing cancers associated with arsenic (i.e., lung, bladder, skin) in comparison to infielders. The distinct concentration distributions observed between these portions of the baseball fields emphasize the need to delineate contaminated areas in public property where citizens may spend more free time. This study also showed a need for more tools to improve the risk estimates for child play activities. For instance, more refined measurements of exposure factors for intake (e.g., inhalation rates under rigorous play activities, hand to mouth rates), exposure frequency (i.e., time spent in various activities) and other exposure factors (e.g., soil particulate emission rates at baseball play fields) can help pinpoint risk on baseball fields where arsenic levels may be a concern. PMID:29300352

  20. Expression of cyclooxygenase-2 in transitional cell carcinoma of the urinary bladder in dogs.

    PubMed

    Khan, K N; Knapp, D W; Denicola, D B; Harris, R K

    2000-05-01

    To evaluate expression of cyclooxygenase (COX)-1 and COX-2 in the urinary bladder epithelium of clinically normal dogs and in transitional cell carcinoma cells of dogs. 21 dogs with transitional cell carcinoma of the urinary bladder and 8 dogs with clinically normal urinary bladders. COX-1 and COX-2 were evaluated by use of isoform-specific antibodies with standard immunohistochemical methods. COX-1, but not COX-2, was constitutively expressed in normal urinary bladder epithelium; however, COX-2 was expressed in neoplastic epithelium in primary tumors and in metastatic lesions of all 21 dogs and in new proliferating blood vessels in 3 dogs. Also, COX-1 was expressed in the neoplastic cells. Lack of expression of COX-2 in normal bladder epithelium and its substantial expression in transitional cell carcinoma cells suggest that this isoform may be involved in tumor cell growth. Inhibition of COX-2 is a likely mechanism of the antineoplastic effects of non steroidal antiinflammatory drugs.

  1. Arsenic and the Epigenome: Linked by Methylation(SOT)

    EPA Science Inventory

    Inorganic arsenic (iAs) is an environmental toxicant currently poisoning millions of people worldwide, and chronically-exposed individuals are susceptible to arsenic poisoning, or arsenicosis. In some exposed populations arsenicosis susceptibility is dependent in part on the abil...

  2. Glutathione-S-transferase-omega [MMA(V) reductase] knockout mice: Enzyme and arsenic species concentrations in tissues after arsenate administration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, Uttam K.; Zakharyan, Robert A.; Hernandez, Alba

    Inorganic arsenic is a human carcinogen to which millions of people are exposed via their naturally contaminated drinking water. Its molecular mechanisms of carcinogenicity have remained an enigma, perhaps because arsenate is biochemically transformed to at least five other arsenic-containing metabolites. In the biotransformation of inorganic arsenic, GSTO1 catalyzes the reduction of arsenate, MMA(V), and DMA(V) to the more toxic + 3 arsenic species. MMA(V) reductase and human (hGSTO1-1) are identical proteins. The hypothesis that GST-Omega knockout mice biotransformed inorganic arsenic differently than wild-type mice has been tested. The livers of male knockout (KO) mice, in which 222 bp ofmore » Exon 3 of the GSTO1 gene were eliminated, were analyzed by PCR for mRNA. The level of transcripts of the GSTO1 gene in KO mice was 3.3-fold less than in DBA/1lacJ wild-type (WT) mice. The GSTO2 transcripts were about two-fold less in the KO mouse. When KO and WT mice were injected intramuscularly with Na arsenate (4.16 mg As/kg body weight); tissues removed at 0.5, 1, 2, 4, 8, and 12 h after arsenate injection; and the arsenic species measured by HPLC-ICP-MS, the results indicated that the highest concentration of the recently discovered and very toxic MMA(III), a key biotransformant, was in the kidneys of both KO and WT mice. The highest concentration of DMA(III) was in the urinary bladder tissue for both the KO and WT mice. The MMA(V) reducing activity of the liver cytosol of KO mice was only 20% of that found in wild-type mice. There appears to be another enzyme(s) other than GST-O able to reduce arsenic(V) species but to a lesser extent. This and other studies suggest that each step of the biotransformation of inorganic arsenic has an alternative enzyme to biotransform the arsenic substrate.« less

  3. Chronic Arsenic Poisoning Probably Caused by Arsenic-Based Pesticides: Findings from an Investigation Study of a Household

    PubMed Central

    Li, Yongfang; Ye, Feng; Wang, Anwei; Wang, Da; Yang, Boyi; Zheng, Quanmei; Sun, Guifan; Gao, Xinghua

    2016-01-01

    In addition to naturally occurring arsenic, man-made arsenic-based compounds are other sources of arsenic exposure. In 2013, our group identified 12 suspected arsenicosis patients in a household (32 living members). Of them, eight members were diagnosed with skin cancer. Interestingly, all of these patients had lived in the household prior to 1989. An investigation revealed that approximately 2 tons of arsenic-based pesticides had been previously placed near a well that had supplied drinking water to the family from 1973 to 1989. The current arsenic level in the well water was 620 μg/L. No other high arsenic wells were found near the family’s residence. Based on these findings, it is possible to infer that the skin lesions exhibited by these family members were caused by long-term exposure to well water contaminated with arsenic-based pesticides. Additionally, biochemical analysis showed that the individuals exposed to arsenic had higher levels of aspartate aminotransferase and γ-glutamyl transpeptidase than those who were not exposed. These findings might indicate the presence of liver dysfunction in the arsenic-exposed individuals. This report elucidates the effects of arsenical compounds on the occurrence of high levels of arsenic in the environment and emphasizes the severe human health impact of arsenic exposure. PMID:26784217

  4. Chronic Arsenic Poisoning Probably Caused by Arsenic-Based Pesticides: Findings from an Investigation Study of a Household.

    PubMed

    Li, Yongfang; Ye, Feng; Wang, Anwei; Wang, Da; Yang, Boyi; Zheng, Quanmei; Sun, Guifan; Gao, Xinghua

    2016-01-16

    In addition to naturally occurring arsenic, man-made arsenic-based compounds are other sources of arsenic exposure. In 2013, our group identified 12 suspected arsenicosis patients in a household (32 living members). Of them, eight members were diagnosed with skin cancer. Interestingly, all of these patients had lived in the household prior to 1989. An investigation revealed that approximately 2 tons of arsenic-based pesticides had been previously placed near a well that had supplied drinking water to the family from 1973 to 1989. The current arsenic level in the well water was 620 μg/L. No other high arsenic wells were found near the family's residence. Based on these findings, it is possible to infer that the skin lesions exhibited by these family members were caused by long-term exposure to well water contaminated with arsenic-based pesticides. Additionally, biochemical analysis showed that the individuals exposed to arsenic had higher levels of aspartate aminotransferase and γ-glutamyl transpeptidase than those who were not exposed. These findings might indicate the presence of liver dysfunction in the arsenic-exposed individuals. This report elucidates the effects of arsenical compounds on the occurrence of high levels of arsenic in the environment and emphasizes the severe human health impact of arsenic exposure.

  5. Arsenic levels in ground water and cancer incidence in Idaho: an ecologic study.

    PubMed

    Han, Yueh-Ying; Weissfeld, Joel L; Davis, Devra L; Talbott, Evelyn O

    2009-07-01

    Long-term exposure to arsenic above 50 microg/L in drinking water has been related to multiple types of cancers. Few epidemiologic studies conducted in the US have detected an association between regional exposures below this level in drinking water and corresponding cancer occurrence rates. This county-level ecologic study evaluates arsenic levels in ground water and its association with targeted cancer incidence in Idaho, where some regions have been found to contain higher arsenic levels. Using cancer incidence data (1991-2005) from the Cancer Data Registry of Idaho and arsenic data (1991-2005) from the Idaho Department of Environmental Quality, we calculated the age-adjusted incidence rate for cancers of the urinary bladder, kidney and renal pelvis, liver and bile duct, lung and bronchus, non-Hodgkin's lymphoma (NHL), and all malignant cancers according to arsenic levels in ground water. Multivariate regression analysis was applied to evaluate the relationship between arsenic levels in ground water and cancer incidence. For males, but not for females, age-adjusted incidence for lung cancer and all malignant cancers was significantly higher in the intermediate arsenic counties (2-9 microg/L, n = 16) and the high arsenic counties (>or=10 microg/L, n = 5) compared to the low arsenic counties (<2.0 microg/L, n = 23). When adjusted for race, gender, population density, smoking and body mass index (BMI), no relationship was found between arsenic levels in ground water and cancer incidence. In this ecological design, exposure to low-level arsenic in ground water is not associated with cancer incidence when adjusting for salient variables. For populations residing in southwestern Idaho, where arsenic has been found to exceed 10 microg/L in ground water, individual risk assessment is required in order to determine whether there is a link between long-term arsenic exposure at these levels and cancer risk.

  6. DNA DAMAGE IN BUCCAL EPITHELIAL CELLS FROM INDIVIDUALS CHRONICALLY EXPOSED TO ARSENIC VIA DRINKING WATER IN INNER MONGOLIA, CHINA

    EPA Science Inventory

    The purpose of this pilot study was to assess DNA damage in buccal cells from individuals chronically exposed to arsenic via drinking water in Ba Men, Inner Mongolia. Buccal cells were collected from 19 Ba Men residents exposed to arsenic at 527.5 ? 23.7 g/L (mean ? SEM) and ...

  7. Provision of well-water treatment units to 600 households in Bangladesh: A longitudinal analysis of urinary arsenic indicates fading utility.

    PubMed

    Sanchez, Tiffany R; Levy, Diane; Shahriar, Mohammad Hasan; Uddin, Mohammad Nasir; Siddique, Abu B; Graziano, Joseph H; Lomax-Luu, Angela; van Geen, Alexander; Gamble, Mary V

    2016-09-01

    Millions of villagers in Bangladesh remain exposed to high levels of arsenic (As) from drinking untreated well-water even though the scale of the problem was recognized 15years ago. Water treatment at the household-level has been promoted as a viable complement but few longitudinal studies of their efficacy using an objective measure of exposure have been conducted. Participants (N=622) of a nutrition trial in Araihazar, Bangladesh were each provided with READ-F filters at the beginning of the study and encouraged to use them over the 6month duration of the intervention. Well-water As, treated water As, and urinary As were monitored periodically during the trial and measured again one year after the trial ended. The READ-F filters were initially well received and median urinary As levels for participants declined from 117μg/L to 51μg/L within a single week. However, median urinary As levels gradually rose back to 126μg/L by the end of the trial. Fifty filters were replaced over the course of the trial because of insufficient As removal or reduced flow. With these exceptions, most of the treated water met the WHO guideline for As in drinking water of 10μg/L. One year after the nutritional trial ended, 95% of participants had abandoned their filter citing inconvenience as the primary reason. At that time, median urinary As levels for 10 participants who had switched to a nearby low-As well had declined to 63μg/L. Participants were probably no longer using the READ-F filter long before the 6month nutritional intervention ended despite claiming that they were using them. Household-level treatment is likely to continue to play a minor role in the effort to reduce As exposure in Bangladesh. Understanding the limitations of such expensive interventions is important for future policy regarding As mitigation. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Evaluation of toxic risk assessment of arsenic in male subjects through drinking water in southern Sindh Pakistan.

    PubMed

    Baig, Jameel Ahmed; Kazi, Tasneem Gul; Shah, Abdul Qadir; Afridi, Hassan Imran; Khan, Sumaira; Kolachi, Nida Fatima; Kandhro, Ghulam Abbas; Wadhwa, Sham Kumar; Shah, Faheem

    2011-11-01

    The arsenic (As) hazardous quotient was estimated based on concentration of As in drinking water and scalp hair of male subjects of two age groups (n=360) consuming As contaminated water at different levels and non-contaminated drinking water. The total As concentrations in drinking water of less-exposed (LE) and high-exposed (HE) areas was found to be 3- to 30-fold higher than the permissible limit of the World Health Organization (2004) for drinking water, while the levels of As in drinking water of non-exposed (NE) areas was within the permissible limit. The levels of As in scalp hair samples of male subjects of two age groups belonging to NE, LE, and HE areas ranged from 0.01 to 0.27, 0.11-1.31, and 0.36-6.80 μg/g, respectively. A significant correlation between As contents of drinking water and As concentration in scalp hair was observed in sub-district Gambit (r=0.825-0.852, p<0.001) as compared to those subjects belonging to LE sub-district Thari Mirwah. A toxicity risk assessment provides a hazard quotient corresponding to <10 that indicates non-carcinogenic exposure risk of understudy areas.

  9. The relationships between arsenic methylation and both skin lesions and hypertension caused by chronic exposure to arsenic in drinking water.

    PubMed

    Wei, Binggan; Yu, Jiangping; Wang, Jing; Yang, Linsheng; Li, Hairong; Kong, Chang; Xia, Yajuan; Wu, Kegong

    2017-07-01

    The associations between arsenic exposure, arsenic methylation, and the prevalence of skin lesions and hypertension are investigated. The results indicate that the HS (hypertension and skin lesions) group and the S (skin lesions) group have higher urinary concentrations of iAs (inorganic arsenic), MMA (monomethylarsonic acid), DMA (dimethylarsinous acid) and%MMA, and lower SMI (secondary arsenic methylation index) compared to the H (hypertension) and N (without both hypertension and skin lesions) groups. The arsenic content in water which caused H may be lower than that which caused HS and S. In addition, the odds ratios suggest that higher urinary concentrations of iAs and MMA, %iAs, %MMA and PMI elevate the prevalence of only hypertension and skin lesions, and both hypertension and skin lesions. However, higher%DMA and SMI, and lower%MMA increase the prevalence of both hypertension and skin lesions compared to that of only skin lesions. It can be concluded that skin lesions subjects have higher prevalence of hypertension. Hypertension subjects may have higher prevalence of skin lesions. Lower%DMA and SMI, higher%iAs, %MMA and PMI enhance the prevalence of only hypertension and skin lesions, and both hypertension and skin lesions. Moreover, iAs and MMA may have higher toxicity and lead to both hypertension and skin lesions than to only hypertension. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Selenite restores Pax6 expression in neuronal cells of chronically arsenic-exposed Golden Syrian hamsters.

    PubMed

    Aguirre-Vázquez, Alain; Sampayo-Reyes, Adriana; González-Escalante, Laura; Hernández, Alba; Marcos, Ricard; Castorena-Torres, Fabiola; Lozano-Garza, Gerardo; Taméz-Guerra, Reyes; de León, Mario Bermúdez

    2017-01-01

    Arsenic is a worldwide environmental pollutant that generates public health concerns. Various types of cancers and other diseases, including neurological disorders, have been associated with human consumption of arsenic in drinking water. At the molecular level, arsenic and its metabolites have the capacity to provoke genome instability, causing altered expression of genes. One such target of arsenic is the Pax6 gene that encodes a transcription factor in neuronal cells. The aim of this study was to evaluate the effect of two antioxidants, α-tocopheryl succinate (α-TOS) and sodium selenite, on Pax6 gene expression levels in the forebrain and cerebellum of Golden Syrian hamsters chronically exposed to arsenic in drinking water. Animals were divided into six groups. Using quantitative real-time reverse transcriptase (RT)-PCR analysis, we confirmed that arsenic downregulates Pax6 expression in nervous tissues by 53 ± 21% and 32 ± 7% in the forebrain and cerebellum, respectively. In the presence of arsenic, treatment with α-TOS did not modify Pax6 expression in nervous tissues; however, sodium selenite completely restored Pax6 expression in the arsenic-exposed hamster forebrain, but not the cerebellum. Although our results suggest the use of selenite to restore the expression of a neuronal gene in arsenic-exposed animals, its use and efficacy in the human population require further studies.

  11. Association of hypothyroidism with low-level arsenic exposure in rural West Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Gordon, E-mail: gordon.gong@ttuhsc.edu; Basom, Janet; Department of Family and Community Medicine, Texas Tech University Health Sciences Center, Lubbock, TX

    It has been reported recently that a higher airborne arsenic level was correlated with higher urinary arsenic concentration and lower serum thyroxin level among urban policemen and rural highway workmen in Italy. The current study was to determine whether exposure to low-level arsenic groundwater (2–22 µg/L) is associated with hypothyroidism among 723 participants (118 male and 267 female Hispanics; 108 male and 230 female non-Hispanic whites, NHW) living in rural West Texas counties. Arsenic and iodine levels in their groundwater used for drinking and or cooking were estimated by the inverse distance weighted (IDW) interpolation technique. Groundwater arsenic was ≥8more » µg/L in 36% of the subjects' wells while iodine concentration was <1 µg/L in 91% of their wells. Logistic regression analysis showed that arsenic in groundwater ≥8 µg/L and cumulative arsenic exposure (groundwater arsenic concentration multiplied by the number of years living in the current address) but not groundwater iodine concentration were significant predictors for hypothyroidism among Hispanics (p<0.05) but not NHW after adjusting for covariates such as age, gender, annual household income and health insurance coverage. The ethnic difference may be due to a marginally higher percentage of Hispanics (p=0.0622) who lived in areas with groundwater arsenic ≥8 µg/L compared with NHW. The prevalence of hypothyroidism was significantly higher in Hispanics or NHW of this rural cohort than the national prevalence. Measures should be taken to reduce arsenic in drinking water in order to prevent hypothyroidism in rural areas. - Highlights: • We determined if arsenic exposure is associated with hypothyroidism in rural Texas. • Groundwater arsenic level is associated with hypothyroidism among Hispanics only. • The rate of hypothyroidism in rural Texas was higher than the US general population.« less

  12. Blood pressure hyperreactivity: an early cardiovascular risk in normotensive men exposed to low-to-moderate inorganic arsenic in drinking water.

    PubMed

    Kunrath, Julie; Gurzau, Eugen; Gurzau, Anca; Goessler, Walter; Gelmann, Elyssa R; Thach, Thu-Trang; McCarty, Kathleen M; Yeckel, Catherine W

    2013-02-01

    Essential hypertension is associated with chronic exposure to high levels of inorganic arsenic in drinking water. However, early signs of risk for developing hypertension remain unclear in people exposed to chronic low-to-moderate inorganic arsenic. We evaluated cardiovascular stress reactivity and recovery in healthy, normotensive, middle-aged men living in an arsenic-endemic region of Romania. Unexposed (n = 16) and exposed (n = 19) participants were sampled from communities based on WHO limits for inorganic arsenic in drinking water (<10 μg/l). Water sources and urine samples were collected and analyzed for inorganic arsenic and its metabolites. Functional evaluation of blood pressure included clinical, anticipatory, cold pressor test, and recovery measurements. Blood pressure hyperreactivity was defined as a combined stress-induced change in SBP (> 20 mmHg) and DBP (>15 mmHg). Drinking water inorganic arsenic averaged 40.2 ± 30.4 and 1.0 ± 0.2 μg/l for the exposed and unexposed groups, respectively (P < 0.001). Compared to the unexposed group, the exposed group expressed a greater probability of blood pressure hyperreactivity to both anticipatory stress (47.4 vs. 12.5%; P = 0.035) and cold stress (73.7 vs. 37.5%; P = 0.044). Moreover, the exposed group exhibited attenuated blood pressure recovery from stress and a greater probability of persistent hypertensive responses (47.4 vs. 12.5%; P = 0.035). Inorganic arsenic exposure increased stress-induced blood pressure hyperreactivity and poor blood pressure recovery, including persistent hypertensive responses in otherwise healthy, clinically normotensive men. Drinking water containing even low-to-moderate inorganic arsenic may act as a sympathetic nervous system trigger for hypertension risk.

  13. Blood pressure hyperreactivity: an early cardiovascular risk in normotensive men exposed to low-to-moderate inorganic arsenic in drinking water

    PubMed Central

    Kunrath, Julie; Gurzau, Eugen; Gurzau, Anca; Goessler, Walter; Gelmann, Elyssa R.; Thach, Thu-Trang; Mccarty, Kathleen M.; Yeckel, Catherine W.

    2012-01-01

    Essential hypertension is associated with chronic exposure to high levels of inorganic arsenic in drinking water. However, early signs of risk for developing hypertension remain unclear in people exposed to chronic low-to-moderate inorganic arsenic. Objective We evaluated cardiovascular stress reactivity and recovery in healthy, normotensive, middle-aged men living in an arsenic-endemic region of Romania. Methods Unexposed (n=16) and exposed (n=19) participants were sampled from communities based on WHO limits for inorganic arsenic in drinking water (<10 μg/l). Water sources and urine samples were collected and analyzed for inorganic arsenic and its metabolites. Functional evaluation of blood pressure included clinical, anticipatory, cold pressor test, and recovery measurements. Results Blood pressure hyperreactivity was defined as a combined stress-induced change in SBP (>20 mmHg) and DBP (>15 mmHg). Drinking water inorganic arsenic averaged 40.2±30.4 and 1.0±0.2 μg/l for the exposed and unexposed groups, respectively (P<0.001). Compared to the unexposed group, the exposed group expressed a greater probability of blood pressure hyperreactivity to both anticipatory stress (47.4 vs. 12.5%; P=0.035) and cold stress (73.7 vs. 37.5%; P=0.044). Moreover, the exposed group exhibited attenuated blood pressure recovery from stress and a greater probability of persistent hypertensive responses (47.4 vs. 12.5%; P=0.035). Conclusions Inorganic arsenic exposure increased stress-induced blood pressure hyperreactivity and poor blood pressure recovery, including persistent hypertensive responses in otherwise healthy, clinically normotensive men. Drinking water containing even low-to-moderate inorganic arsenic may act as a sympathetic nervous system trigger for hypertension risk. PMID:23203141

  14. Effects of in Utero Exposure to Arsenic during the Second Half of Gestation on Reproductive End Points and Metabolic Parameters in Female CD-1 Mice

    PubMed Central

    Rodriguez, Karina F.; Ungewitter, Erica K.; Crespo-Mejias, Yasmin; Liu, Chang; Nicol, Barbara; Kissling, Grace E.; Yao, Humphrey Hung-Chang

    2015-01-01

    Background Mice exposed to high levels of arsenic in utero have increased susceptibility to tumors such as hepatic and pulmonary carcinomas when they reach adulthood. However, the effects of in utero arsenic exposure on general physiological functions such as reproduction and metabolism remain unclear. Objectives We evaluated the effects of in utero exposure to inorganic arsenic at the U.S. Environmental Protection Agency (EPA) drinking water standard (10 ppb) and at tumor-inducing levels (42.5 ppm) on reproductive end points and metabolic parameters when the exposed females reached adulthood. Methods Pregnant CD-1 mice were exposed to sodium arsenite [none (control), 10 ppb, or 42.5 ppm] in drinking water from gestational day 10 to birth, the window of organ formation. At birth, exposed offspring were fostered to unexposed dams. We examined reproductive end points (age at vaginal opening, reproductive hormone levels, estrous cyclicity, and fertility) and metabolic parameters (body weight changes, hormone levels, body fat content, and glucose tolerance) in the exposed females when they reached adulthood. Results Arsenic-exposed females (10 ppb and 42.5 ppm) exhibited early onset of vaginal opening. Fertility was not affected when females were exposed to the 10-ppb dose. However, the number of litters per female was decreased in females exposed to 42.5 ppm of arsenic in utero. In both 10-ppb and 42.5-ppm groups, arsenic-exposed females had significantly greater body weight gain, body fat content, and glucose intolerance. Conclusion Our findings revealed unexpected effects of in utero exposure to arsenic: exposure to both a human-relevant low dose and a tumor-inducing level led to early onset of vaginal opening and to obesity in female CD-1 mice. Citation Rodriguez KF, Ungewitter EK, Crespo-Mejias Y, Liu C, Nicol B, Kissling GE, Yao HH. 2016. Effects of in utero exposure to arsenic during the second half of gestation on reproductive end points and metabolic parameters in female CD-1 mice. Environ Health Perspect 124:336–343; http://dx.doi.org/10.1289/ehp.1509703 PMID:26295903

  15. Genetic polymorphisms in glutathione S-transferase (GST) superfamily and arsenic metabolism in residents of the Red River Delta, Vietnam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agusa, Tetsuro; Center for Marine Environmental Studies; Iwata, Hisato, E-mail: iwatah@agr.ehime-u.ac.j

    To elucidate the role of genetic factors in arsenic metabolism, we investigated associations of genetic polymorphisms in the members of glutathione S-transferase (GST) superfamily with the arsenic concentrations in hair and urine, and urinary arsenic profile in residents in the Red River Delta, Vietnam. Genotyping was conducted for GST omega1 (GSTO1) Ala140Asp, Glu155del, Glu208Lys, Thr217Asn, and Ala236Val, GST omega2 (GSTO2) Asn142Asp, GST pi1 (GSTP1) Ile105Val, GST mu1 (GSTM1) wild/null, and GST theta1 (GSTT1) wild/null. There were no mutation alleles for GSTO1 Glu208Lys, Thr217Asn, and Ala236Val in this population. GSTO1 Glu155del hetero type showed higher urinary concentration of As{sup V} thanmore » the wild homo type. Higher percentage of DMA{sup V} in urine of GSTM1 wild type was observed compared with that of the null type. Strong correlations between GSTP1 Ile105Val and arsenic exposure level and profile were observed in this study. Especially, heterozygote of GSTP1 Ile105Val had a higher metabolic capacity from inorganic arsenic to monomethyl arsenic, while the opposite trend was observed for ability of metabolism from As{sup V} to As{sup III}. Furthermore, other factors including sex, age, body mass index, arsenic level in drinking water, and genotypes of As (+ 3 oxidation state) methyltransferase (AS3MT) were also significantly co-associated with arsenic level and profile in the Vietnamese. To our knowledge, this is the first study indicating the associations of genetic factors of GST superfamily with arsenic metabolism in a Vietnamese population.« less

  16. Genetic polymorphisms in glutathione S-transferase (GST) superfamily and arsenic metabolism in residents of the Red River Delta, Vietnam.

    PubMed

    Agusa, Tetsuro; Iwata, Hisato; Fujihara, Junko; Kunito, Takashi; Takeshita, Haruo; Minh, Tu Binh; Trang, Pham Thi Kim; Viet, Pham Hung; Tanabe, Shinsuke

    2010-02-01

    To elucidate the role of genetic factors in arsenic metabolism, we investigated associations of genetic polymorphisms in the members of glutathione S-transferase (GST) superfamily with the arsenic concentrations in hair and urine, and urinary arsenic profile in residents in the Red River Delta, Vietnam. Genotyping was conducted for GST omega1 (GSTO1) Ala140Asp, Glu155del, Glu208Lys, Thr217Asn, and Ala236Val, GST omega2 (GSTO2) Asn142Asp, GST pi1 (GSTP1) Ile105Val, GST mu1 (GSTM1) wild/null, and GST theta1 (GSTT1) wild/null. There were no mutation alleles for GSTO1 Glu208Lys, Thr217Asn, and Ala236Val in this population. GSTO1 Glu155del hetero type showed higher urinary concentration of As(V) than the wild homo type. Higher percentage of DMA(V) in urine of GSTM1 wild type was observed compared with that of the null type. Strong correlations between GSTP1 Ile105Val and arsenic exposure level and profile were observed in this study. Especially, heterozygote of GSTP1 Ile105Val had a higher metabolic capacity from inorganic arsenic to monomethyl arsenic, while the opposite trend was observed for ability of metabolism from As(V) to As(III). Furthermore, other factors including sex, age, body mass index, arsenic level in drinking water, and genotypes of As (+3 oxidation state) methyltransferase (AS3MT) were also significantly co-associated with arsenic level and profile in the Vietnamese. To our knowledge, this is the first study indicating the associations of genetic factors of GST superfamily with arsenic metabolism in a Vietnamese population. Copyright 2009 Elsevier Inc. All rights reserved.

  17. Effect of plasma homocysteine level and urinary monomethylarsonic acid on the risk of arsenic-associated carotid atherosclerosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, M.-M.; Graduate Institute of Medicine, College of Medicine, Fu-Jen Catholic University, Taipei, Taiwan; Chiou, H.-Y.

    2006-10-01

    Arsenic-contaminated well water has been shown to increase the risk of atherosclerosis. Because of involving S-adenosylmethionine, homocysteine may modify the risk by interfering with the biomethylation of ingested arsenic. In this study, we assessed the effect of plasma homocysteine level and urinary monomethylarsonic acid (MMA{sup V}) on the risk of atherosclerosis associated with arsenic. In total, 163 patients with carotid atherosclerosis and 163 controls were studied. Lifetime cumulative arsenic exposure from well water for study subjects was measured as index of arsenic exposure. Homocysteine level was determined by high-performance liquid chromatography (HPLC). Proportion of MMA{sup V} (MMA%) was calculated bymore » dividing with total arsenic species in urine, including arsenite, arsenate, MMA{sup V}, and dimethylarsinic acid (DMA{sup V}). Results of multiple linear regression analysis show a positive correlation of plasma homocysteine levels to the cumulative arsenic exposure after controlling for atherosclerosis status and nutritional factors (P < 0.05). This correlation, however, did not change substantially the effect of arsenic exposure on the risk of atherosclerosis as analyzed in a subsequent logistic regression model. Logistic regression analyses also show that elevated plasma homocysteine levels did not confer an independent risk for developing atherosclerosis in the study population. However, the risk of having atherosclerosis was increased to 5.4-fold (95% CI, 2.0-15.0) for the study subjects with high MMA% ({>=}16.5%) and high homocysteine levels ({>=}12.7 {mu}mol/l) as compared to those with low MMA% (<9.9%) and low homocysteine levels (<12.7 {mu}mol/l). Elevated homocysteinemia may exacerbate the formation of atherosclerosis related to arsenic exposure in individuals with high levels of MMA% in urine.« less

  18. CD44v6 expression in human skin keratinocytes as a possible mechanism for carcinogenesis associated with chronic arsenic exposure.

    PubMed

    Huang, S; Guo, S; Guo, F; Yang, Q; Xiao, X; Murata, M; Ohnishi, S; Kawanishi, S; Ma, N

    2013-01-14

    Inorganic arsenic is a well-known human skin carcinogen. Chronic arsenic exposure results in various types of human skin lesions, including squamous cell carcinoma (SCC). To investigate whether mutant stem cells participate in arsenic-associated carcinogenesis, we repeatedly exposed the HaCaT cells line to an environmentally relevant level of arsenic (0.05 ppm) in vitro for 18 weeks. Following sodium arsenic arsenite administration, cell cycle, colony-forming efficiency (CFE), cell tumorigenicity, and expression of CD44v6, NF-κB and p53, were analyzed at different time points (0, 5, 10, 15, 20, 25 and 30 passages). We found that a chronic exposure of HaCaT cells to a low level of arsenic induced a cancer stem- like phenotype. Furthermore, arsenic-treated HaCaT cells also became tumorigenic in nude mice, their growth cycle was predominantly in G2/M and S phases. Relative to nontreated cells, they exhibited a higher growth rate and a significant increase in CFE. Western blot analysis found that arsenic was capable of increasing cell proliferation and sprouting of cancer stem-like phenotype. Additionally, immunohistochemical analysis demonstrated that CD44v6 expression was up-regulated in HaCaT cells exposed to a low level of arsenic during early stages of induction. The expression of CD44v6 in arsenic-treated cells was positively correlated with their cloning efficiency in soft agar (r=0.949, P=0.01). Likewise, the expressions of activating transcription factor NF-κB and p53 genes in the arsenic-treated HaCaT cells were significantly higher than that in non-treated cells. Higher expressions of CD44v6, NF-κB and p53 were also observed in tumor tissues isolated from Balb/c nude mice. The present results suggest that CD44v6 may be a biomarker of arsenic-induced neoplastic transformation in human skin cells, and that arsenic promotes malignant transformation in human skin lesions through a NF-κB signaling pathway-stimulated expression of CD44v6.

  19. Vascular Hyperpermeability Response in Animals Systemically Exposed to Arsenic.

    PubMed

    Chen, Shih-Chieh; Chang, Chao-Yuah; Lin, Ming-Lu

    2018-01-01

    The mechanisms underlying cardiovascular diseases induced by chronic exposure to arsenic remain unclarified. The objectives of this study were to investigate whether increased vascular leakage is induced by inflammatory mustard oil in mice systemically exposed to various doses of arsenic and whether an increased vascular leakage response is still present in arsenic-fed mice after arsenic discontinuation for 2 or 6 months. ICR mice were fed water or various doses of sodium arsenite (10, 15, or 20 mg/kg/day; 5 days/week) for 8 weeks. In separate experiments, the mice were treated with sodium arsenite (20 mg/kg) for 2 or 8 weeks, followed by arsenic discontinuation for 2 or 6 months. Vascular permeability to inflammatory mustard oil was quantified using Evans blue (EB) techniques. Both arsenic-exposed and water-fed (control) mice displayed similar basal levels of EB leakage in the ears brushed with mineral oil, a vehicle of mustard oil. The levels of EB leakage induced by mustard oil in the arsenic groups fed with sodium arsenite (10 or 15 mg/kg) were similar to those of water-fed mice. However, increased levels of EB leakage in response to mustard oil stimulation were significantly higher in mice treated with sodium arsenite (20 mg/kg; high dose) than in arsenic-fed (10 or 15 mg/kg; low and middle doses) or control mice. After arsenic discontinuation for 2 or 6 months, mustard oil-induced vascular EB leakage in arsenic-fed (20 mg/kg) mice was similar to that in control mice. Dramatic increases in mustard oil-induced vascular leakage were only present in mice systemically exposed to the high arsenic dose, indicating the synergistic effects of the high arsenic dose and mustard oil.

  20. Analysis of maternal polymorphisms in arsenic (+3 oxidation state)-methyltransferase AS3MT and fetal sex in relation to arsenic metabolism and infant birth outcomes: Implications for risk analysis.

    PubMed

    Drobná, Zuzana; Martin, Elizabeth; Kim, Kyung Su; Smeester, Lisa; Bommarito, Paige; Rubio-Andrade, Marisela; García-Vargas, Gonzalo G; Stýblo, Miroslav; Zou, Fei; Fry, Rebecca C

    2016-06-01

    Arsenic (+3 oxidation state) methyltransferase (AS3MT) is the key enzyme in the metabolism of inorganic arsenic (iAs). Polymorphisms of AS3MT influence adverse health effects in adults, but little is known about their role in iAs metabolism in pregnant women and infants. The relationships between seven single nucleotide polymorphisms (SNPs) in AS3MT and urinary concentrations of iAs and its methylated metabolites were assessed in mother-infant pairs of the Biomarkers of Exposure to ARsenic (BEAR) cohort. Maternal alleles for five of the seven SNPs (rs7085104, rs3740400, rs3740393, rs3740390, and rs1046778) were associated with urinary concentrations of iAs metabolites, and alleles for one SNP (rs3740393) were associated with birth outcomes/measures. These associations were strongly dependent upon the male sex of the fetus but independent of fetal genotype for AS3MT. These data highlight a potential sex-dependence of the relationships among maternal genotype, iAs metabolism and infant health outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Genetic polymorphisms of PPAR gamma, arsenic methylation capacity and breast cancer risk in Mexican women.

    PubMed

    Pineda-Belmontes, Cristina P; Hernández-Ramírez, Raúl U; Hernández-Alcaraz, César; Cebrián, Mariano E; López-Carrillo, Lizbeth

    2016-04-01

    To evaluate whether the presence of polymorphisms of peroxisome proliferator-activated receptor gamma PPARγ (Pro 1 2Ala) and PPARGC1B (Ala203Pro) modifies the association between the inorganic arsenic (iAs) methylation capacity and breast cancer (BC). Mexican women were interviewed, and blood and urine samples were collected from them (cases/controls= 197/220). The concentration of urinary arsenic species and the polymorphisms of interest were determined by high-performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) and polymerase chain reaction (PCR), respectively. In women with a high %MMA (urinary monomethyl arsenic) and high primary methylation ratio (PM = MMA/iAs), the risk of BC was increased (odds ratio [OR]%MMA T3 vs.T1= 3.60: 95% confidence interval [CI] 2.02-6.41, ORPMI T3 vs.T1= 3.47: 95%CI 1.95-6.17), which was maintained after adjusting for polymorphisms. No significant interactions were observed between the polymorphisms and the arsenic variables on the risk of BC. Pro 12Ala and Ala203Pro polymorphisms did not modify the association between the iAs methylation capacity and BC.

  2. ELUCIDATING THE PATHWAY FOR ARSENIC METHYLATION

    EPA Science Inventory

    Enzymatically-catalyzed methylation of arsenic is part of a metabolic pathway that converts inorganic arsenic into methylated products. Hence, in humans chronically exposed to inorganic arsenic, methyl and dimethyl arsenic account for most of the arsenic that is excreted in the ...

  3. Environmental exposure to arsenic and chromium in children is associated with kidney injury molecule-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cárdenas-González, M.

    Environmental hazards from natural or anthropological sources are widespread, especially in the north-central region of Mexico. Children represent a susceptible population due to their unique routes of exposure and special vulnerabilities. In this study we evaluated the association of exposure to environmental kidney toxicants with kidney injury biomarkers in children living in San Luis Potosi (SLP), Mexico. A cross-sectional study was conducted with 83 children (5–12 years of age) residents of Villa de Reyes, SLP. Exposure to arsenic, cadmium, chromium, fluoride and lead was assessed in urine, blood and drinking water samples. Almost all tap and well water samples hadmore » levels of arsenic (81.5%) and fluoride (100%) above the permissible levels recommended by the World Health Organization. Mean urine arsenic (45.6 ppb) and chromium (61.7 ppb) were higher than the biological exposure index, a reference value in occupational settings. Using multivariate adjusted models, we found a dose-dependent association between kidney injury molecule-1 (KIM-1) across chromium exposure tertiles [(T1: reference, T2: 467 pg/mL; T3: 615 pg/mL) (p-trend=0.001)]. Chromium upper tertile was also associated with higher urinary miR-200c (500 copies/μl) and miR-423 (189 copies/μL). Arsenic upper tertile was also associated with higher urinary KIM-1 (372 pg/mL). Other kidney injury/functional biomarkers such as serum creatinine, glomerular filtration rate, albuminuria, neutrophil gelatinase-associated lipocalin and miR-21 did not show any association with arsenic, chromium or any of the other toxicants evaluated. We conclude that KIM-1 might serve as a sensitive biomarker to screen children for kidney damage induced by environmental toxic agents. - Highlights: • Children living in Mexico had exceedingly high arsenic and chromium exposure. • Arsenic and chromium exposure was significantly associated with urinary KIM-1. • KIM-1 might serve as a sensitive biomarker to evaluate kidney injury in children.« less

  4. THE FEASIBILITY OF EPIDEMIOLOGIC STUDIES OF ARSENIC-RELATED HEALTH EFFECTS IN THE U.S.

    EPA Science Inventory

    The planning of the feasibility studies will rely on existing data on drinking water arsenic-exposed populations. Exposure concentrations of drinking water arsenic will be collected at the state and local levels, and other descriptive information about the populations exposed inc...

  5. Survey on Urinary Levels of Aflatoxins in Professionally Exposed Workers

    PubMed Central

    Ferri, Fulvio; Brera, Carlo; De Santis, Barbara; Fedrizzi, Giorgio; Bacci, Tiziana; Bedogni, Lorena; Capanni, Sauro; Collini, Giorgia; Crespi, Enrica; Debegnach, Francesca; Ferdenzi, Patrizia; Gargano, Angelo; Gattei, Daniela; Luberto, Ferdinando; Magnani, Ines; Magnani, Massimo Giuseppe; Mancuso, Pamela; Menotta, Simonetta; Mozzanica, Stefania; Olmi, Milva; Ombrini, Giuseppe; Sala, Orietta; Soricelli, Sabina; Vicentini, Massimo; Giorgi Rossi, Paolo

    2017-01-01

    Feed mill workers may handle or process maize contaminated with aflatoxins (AFs). This condition may lead to an unacceptable intake of toxins deriving from occupational exposure. This study assessed the serological and urinary levels of AFs in workers exposed to potentially contaminated dusts in two mills. From March to April 2014, blood and urine samples were collected, on Monday and Friday morning of the same working week from 29 exposed workers and 30 non-exposed controls. AFs (M1, G2, G1, B1, B2) and aflatoxicol (AFOH) A were analyzed. Each subject filled in a questionnaire to evaluate potential food-borne exposures to mycotoxins. AFs contamination in environmental dust was measured in both plants. No serum sample was found to be positive. Seventy four percent of urine samples (73.7%) revealed AFM1 presence. AFM1 mean concentration was 0.035 and 0.027 ng/mL in exposed and non-exposed workers, respectively (p = 0.432); the concentration was slightly higher in Friday’s than in Monday’s samples, in exposed workers, 0.040 versus (vs.) 0.031 and non-exposed controls (0.030 vs. 0.024, p = 0.437). Environmental AFs contamination ranged from 7.2 to 125.4 µg/kg. The findings of this study reveal the presence of higher AFs concentration in exposed workers than in non-exposed controls, although these differences are to be considered consistent with random fluctuations. PMID:28338636

  6. Respiratory effects in people exposed to arsenic via the drinking water and tobacco smoking in southern part of Pakistan.

    PubMed

    Arain, Muhammad Balal; Kazi, Tasneem Gul; Baig, Jameel Ahmed; Jamali, Muhammad Khan; Afridi, Hassan Imran; Jalbani, Nusrat; Sarfraz, Raja Adil; Shah, Abdul Qadir; Kandhro, Ghulam Abbas

    2009-10-15

    In this study, a survey has been conducted during 2005-2007 on surface and groundwater arsenic (As) contamination and its impact on the health of local population, of villages located on the banks of Manchar lake, southern part of Sindh, Pakistan. We have also assessed the relationship between arsenic exposure through respiratory disorders in male subjects with drinking water and smoking cigarettes made from tobacco grown in agricultural land irrigated with As contaminated lake water. The biological samples (blood and scalp hair) were collected from As exposed subjects (100% smokers) and age matched healthy male subjects (40.2% smoker and 59.8% non smokers) belong to unexposed areas for comparison purposes. The As concentration in drinking water (surface and underground water), agricultural soil, cigarette tobacco and biological samples were determined by electrothermal atomic absorption spectrometry. The range of As concentrations in lake water was 35.2-158 microg/L (average 97.5 microg/L), which is 3-15 folds higher than permissible limit of World Health Organization (WHO, 2004). While the As level in local cigarette tobacco was found to be 3-6 folds higher than branded cigarettes (0.37-0.79 microg/g). Arsenic exposed subjects (with and without RD) had significantly elevated levels of As in their biological samples as compared to referent male subject of unexposed area. These respiratory effects were more pronounced in individuals who had also As induced skin lesions. The linear regressions showed good correlations between As concentrations in water versus hair and blood samples of exposed subjects with and without respiratory problems.

  7. Association between arsenic exposure from drinking water and hematuria: results from the Health Effects of Arsenic Longitudinal Study.

    PubMed

    McClintock, Tyler R; Chen, Yu; Parvez, Faruque; Makarov, Danil V; Ge, Wenzhen; Islam, Tariqul; Ahmed, Alauddin; Rakibuz-Zaman, Muhammad; Hasan, Rabiul; Sarwar, Golam; Slavkovich, Vesna; Bjurlin, Marc A; Graziano, Joseph H; Ahsan, Habibul

    2014-04-01

    Arsenic (As) exposure has been associated with both urologic malignancy and renal dysfunction; however, its association with hematuria is unknown. We evaluated the association between drinking water As exposure and hematuria in 7843 men enrolled in the Health Effects of Arsenic Longitudinal Study (HEALS). Cross-sectional analysis of baseline data was conducted with As exposure assessed in both well water and urinary As measurements, while hematuria was measured using urine dipstick. Prospective analyses with Cox proportional regression models were based on urinary As and dipstick measurements obtained biannually since baseline up to six years. At baseline, urinary As was significantly related to prevalence of hematuria (P-trend<0.01), with increasing quintiles of exposure corresponding with respective prevalence odds ratios of 1.00 (reference), 1.29 (95% CI: 1.04-1.59), 1.41 (95% CI: 1.15-1.74), 1.46 (95% CI: 1.19-1.79), and 1.56 (95% CI: 1.27-1.91). Compared to those with relatively little absolute urinary As change during follow-up (-10.40 to 41.17 μg/l), hazard ratios for hematuria were 0.99 (95% CI: 0.80-1.22) and 0.80 (95% CI: 0.65-0.99) for those whose urinary As decreased by >47.49 μg/l and 10.87 to 47.49 μg/l since last visit, respectively, and 1.17 (95% CI: 0.94-1.45) and 1.36 (95% CI: 1.10-1.66) for those with between-visit increases of 10.40 to 41.17 μg/l and >41.17 μg/l, respectively. These data indicate a positive association of As exposure with both prevalence and incidence of dipstick hematuria. This exposure effect appears modifiable by relatively short-term changes in drinking water As. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Association between arsenic exposure from drinking water and hematuria: results from the Health Effects of Arsenic Longitudinal Study

    PubMed Central

    McClintock, Tyler R.; Chen, Yu; Parvez, Faruque; Makarov, Danil V.; Ge, Wenzhen; Islam, Tariqul; Ahmed, Alauddin; Rakibuz-Zaman, Muhammad; Hasan, Rabiul; Sarwar, Golam; Slavkovich, Vesna; Bjurlin, Marc A.; Graziano, Joseph H.; Ahsan, Habibul

    2014-01-01

    Arsenic (As) exposure has been associated with both urologic malignancy and renal dysfunction; however, its association with hematuria is unknown. We evaluated the association between drinking water As exposure and hematuria in 7,843 men enrolled in the Health Effects of Arsenic Longitudinal Study (HEALS). Cross-sectional analysis of baseline data was conducted with As exposure assessed in both well water and urinary As measurements, while hematuria was measured using urine dipstick. Prospective analyses with Cox proportional regression models were based on urinary As and dipstick measurements obtained biannually since baseline up to six years. At baseline, urinary As was significantly related to prevalence of hematuria (P-trend < 0.01), with increasing quintiles of exposure corresponding with respective prevalence odds ratios of 1.00 (reference), 1.29 (95% CI: 1.04–1.59), 1.41 (95% CI: 1.15–1.74), 1.46 (95% CI: 1.19–1.79), and 1.56 (95% CI: 1.27–1.91). Compared to those with relatively little absolute urinary As change during follow-up (−10.40 to 41.17 μg/l), hazard ratios for hematuria were 0.99 (95% CI: 0.80–1.22) and 0.80 (95% CI: 0.65–0.99) for those whose urinary As decreased by >47.49 μg/l and 10.87 to 47.49 μg/l since last visit, respectively, and 1.17 (95% CI: 0.94–1.45) and 1.36 (95% CI: 1.10–1.66) for those with between-visit increases of 10.40 to 41.17 μg/l and >41.17 μg/l, respectively. These data indicate a positive association of As exposure with both prevalence and incidence of dipstick hematuria. This exposure effect appears modifiable by short-term changes in drinking water As. PMID:24486435

  9. Association between arsenic exposure from drinking water and proteinuria: results from the Health Effects of Arsenic Longitudinal Study

    PubMed Central

    Chen, Yu; Parvez, Faruque; Liu, Mengling; Pesola, Gene R; Gamble, Mary V; Slavkovich, Vesna; Islam, Tariqul; Ahmed, Alauddin; Hasan, Rabiul; Graziano, Joseph H; Ahsan, Habibul

    2011-01-01

    Background Proteinuria has been recognized as a marker for an increased risk of chronic renal disease. It is unclear whether arsenic (As) exposure from drinking water is associated with proteinuria. Methods We evaluated the association between As exposure from drinking water and proteinuria in 11 122 participants in the Health Effects of Arsenic Longitudinal Study (HEALS). Proteinuria was detected by urinary dipstick tests at baseline and at 2-year intervals. As exposure variables included baseline well As and changes in urinary As during follow-up modelled as time-dependent variables in the analyses. Results At baseline, well As was positively related to prevalence of proteinuria; prevalence odds ratios (PORs) for proteinuria in increasing quintiles of well As (≤7, 8–39, 40–91, 92–179 and 180–864 µg/l) were 1.00 (ref), POR 0.99 [95% confidence interval (CI) 0.77–1.27], POR 1.23 (95% CI 0.97–1.57), POR 1.50 (95% CI 1.18–1.89) and POR 1.59 (95% CI 1.26–2.00) (P for trend <0.01). Hazard ratios for incidence of proteinuria were POR 0.83 (95% CI 0.67–1.03) and POR 0.91 (95% CI 0.74–1.12) for participants with a decreasing level of >70 and 17–70 µg/l in urinary As over time, respectively, and were POR 1.17 (95% CI 0.97–1.42) and POR 1.42 (95% CI 1.16–1.73) for participants with an increasing level of 16–68 and >68 µg/l in urinary As over time, respectively, compared with the group with relatively little changes in urinary As as the reference group (urinary As −16 to 15 µg/l). Conclusion The findings suggest that there are adverse effects of As exposure on the risk of proteinuria and the effects are modifiable by recent changes in As exposure. PMID:21343184

  10. Randomized placebo-controlled trial of 2,3-dimercapto-1-propanesulfonate (DMPS) in therapy of chronic arsenicosis due to drinking arsenic-contaminated water.

    PubMed

    Guha Mazumder, D N; De, B K; Santra, A; Ghosh, N; Das, S; Lahiri, S; Das, T

    2001-01-01

    Chronic arsenic toxicity, producing various clinical manifestations, is currently epidemic in West Bengal, India, Bangladesh, and other regions of the world. 2,3-Dimercapto-1-propanesulfonate, a chelating agent, increases excretion of arsenic in urine to several times the prechelation concentration but the therapeutic efficacy of 2,3-dimercapto-1-propanesulfonate in the management of chronic arsenic toxicity has been incompletely evaluated. We investigated the clinical use of 2,3-dmercapto-1-propanesulfonate in such patients. Twenty-one consecutive patients with chronic arsenicosis were individually randomized into 2 groups: 11 patients (9 males and 2 females, age 30.63+/-11.4 years) received 2,3-dimercapto-1-propanesulfonate 100-mg capsules 4 times a day for 1 week and repeated in the 3rd, 5th, and 7th week with no drug during the intervening period. The other 10 patients (5 males and 5 females, age 34.4+/-14.41 years) were given placebo capsules (resembling 2,3-dimercapto-1-propanesulfonate) in the same schedule. The consumption of arsenic-contaminated water was terminated by all 21 subjects. Initial and posttreatment urinary arsenic excretion was determined in all cases. Sequential excretion of urinary arsenic was determined during the treatment of 2 drug- and 1 placebo-treated cases. The clinical features were evaluated by an objective scoring system before and after treatment. Routine investigation including liver function test and skin biopsy were also done before and after the treatment. Drug-associated toxicity was tabulated. Therapy with 2,3-dimercapto-1-propanesulfonate caused significant improvement in the clinical condition of chronic arsenicosis patients as evidenced by significant reduction of total clinical scores from 8.90+/-2.84 to 3.27+/-1.73; p < 0.0001. Exposure cessation alone with placebo treatment also reduced clinical scores (8.50+/-1.96 to 5.40+/-2.12; p < 0.003), but the posttreatment total clinical score of 2,3-dimercapto-1-propanesulfonate-treated patients (3.27+/-1.73) was significantly lower than that of placebo-treated patients (5.40+/-2.12; p < 0.01). The most significant improvement was noted in regard to the clinical scores of weakness, pigmentation, and lung disease. No difference was noted between groups in the hematological and biochemical parameters (which were normal) and skin histology before and after treatment. No 2,3-dimercapto-1-propanesulfonate-related adverse effects were noted. Total urinary excretion of arsenic in 2,3-dimercapto-1-propanesulfonate-treated cases increased significantly following drug therapy, with no increase in placebo-treated cases. 2,3-Dimercapto-1-propanesulfonate treatment caused significant improvement in the clinical score of patients suffering from chronic arsenic toxicity. Increased urinary excretion of arsenic during the period of therapy is the possible cause of this improvement.

  11. Arsenic in drinking water and urinary tract cancers: a systematic review of 30 years of epidemiological evidence.

    PubMed

    Saint-Jacques, Nathalie; Parker, Louise; Brown, Patrick; Dummer, Trevor Jb

    2014-06-02

    Arsenic in drinking water is a public health issue affecting hundreds of millions of people worldwide. This review summarizes 30 years of epidemiological studies on arsenic exposure in drinking water and the risk of bladder or kidney cancer, quantifying these risks using a meta-analytical framework. Forty studies met the selection criteria. Seventeen provided point estimates of arsenic concentrations in drinking water and were used in a meta-analysis of bladder cancer incidence (7 studies) and mortality (10 studies) and kidney cancer mortality (2 studies). Risk estimates for incidence and mortality were analyzed separately using Generalized Linear Models. Predicted risks for bladder cancer incidence were estimated at 10, 50 and 150 μg/L arsenic in drinking water. Bootstrap randomizations were used to assess robustness of effect size. Twenty-eight studies observed an association between arsenic in drinking water and bladder cancer. Ten studies showed an association with kidney cancer, although of lower magnitude than that for bladder cancer. The meta-analyses showed the predicted risks for bladder cancer incidence were 2.7 [1.2-4.1]; 4.2 [2.1-6.3] and; 5.8 [2.9-8.7] for drinking water arsenic levels of 10, 50, and 150 μg/L, respectively. Bootstrapped randomizations confirmed this increased risk, but, lowering the effect size to 1.4 [0.35-4.0], 2.3 [0.59-6.4], and 3.1 [0.80-8.9]. The latter suggests that with exposures to 50 μg/L, there was an 83% probability for elevated incidence of bladder cancer; and a 74% probability for elevated mortality. For both bladder and kidney cancers, mortality rates at 150 ug/L were about 30% greater than those at 10 μg/L. Arsenic in drinking water is associated with an increased risk of bladder and kidney cancers, although at lower levels (<150 μg/L), there is uncertainty due to the increased likelihood of exposure misclassification at the lower end of the exposure curve. Meta-analyses suggest exposure to 10 μg/L of arsenic in drinking water may double the risk of bladder cancer, or at the very least, increase it by about 40%. With the large number of people exposed to these arsenic concentrations worldwide the public health consequences of arsenic in drinking water are substantial.

  12. Arsenic Promotes NF-Kb-Mediated Fibroblast Dysfunction and Matrix Remodeling to Impair Muscle Stem Cell Function

    PubMed Central

    Zhang, Changqing; Ferrari, Ricardo; Beezhold, Kevin; Stearns-Reider, Kristen; D’Amore, Antonio; Haschak, Martin; Stolz, Donna; Robbins, Paul D.; Barchowsky, Aaron; Ambrosio, Fabrisia

    2016-01-01

    Arsenic is a global health hazard that impacts over 140 million individuals worldwide. Epidemiological studies reveal prominent muscle dysfunction and mobility declines following arsenic exposure; yet, mechanisms underlying such declines are unknown. The objective of this study was to test the novel hypothesis that arsenic drives a maladaptive fibroblast phenotype to promote pathogenic myomatrix remodeling and compromise the muscle stem (satellite) cell (MuSC) niche. Mice were exposed to environmentally relevant levels of arsenic in drinking water before receiving a local muscle injury. Arsenic-exposed muscles displayed pathogenic matrix remodeling, defective myofiber regeneration and impaired functional recovery, relative to controls. When naïve human MuSCs were seeded onto three-dimensional decellularized muscle constructs derived from arsenic-exposed muscles, cells displayed an increased fibrogenic conversion and decreased myogenicity, compared with cells seeded onto control constructs. Consistent with myomatrix alterations, fibroblasts isolated from arsenic-exposed muscle displayed sustained expression of matrix remodeling genes, the majority of which were mediated by NF-κB. Inhibition of NF-κB during arsenic exposure preserved normal myofiber structure and functional recovery after injury, suggesting that NF-κB signaling serves as an important mechanism of action for the deleterious effects of arsenic on tissue healing. Taken together, the results from this study implicate myomatrix biophysical and/or biochemical characteristics as culprits in arsenic-induced MuSC dysfunction and impaired muscle regeneration. It is anticipated that these findings may aid in the development of strategies to prevent or revert the effects of arsenic on tissue healing and, more broadly, provide insight into the influence of the native myomatrix on stem cell behavior. PMID:26537186

  13. Arsenic exposure in pregnant mice disrupts placental vasculogenesis and causes spontaneous abortion.

    PubMed

    He, Wenjie; Greenwell, Robert J; Brooks, Diane M; Calderón-Garcidueñas, Lilian; Beall, Howard D; Coffin, J Douglas

    2007-09-01

    Arsenic is an abundant toxicant in ground water and soil around areas with extractive industries. Human epidemiological studies have shown that arsenic exposure is linked to developmental defects and miscarriage. The placenta is known to utilize vasculogenesis to develop its circulation. The hypothesis tested here states the following: arsenic exposure causes placental dysmorphogenesis and defective placental vasculogenesis resulting in placental insufficiency and subsequent spontaneous abortion. To test this hypothesis, pregnant mice were exposed to sodium arsenite (AsIII) through drinking water from conception through weanling stages. Neonatal assessment of birth rates, pup weights, and litter sizes in arsenic exposed and control mothers revealed that AsIII-exposed mothers had only 40% the fecundity of controls. Preterm analysis at E12.5 revealed a loss of fecundity at E12.5 from either 20 ppm or greater exposures to AsIII. There was no loss of fecundity at E7.5 suggesting that spontaneous abortion occurs during placentation. Histomorphometry on E12.5 placentae from arsenic-exposed mice revealed placental dysplasia especially in the vasculature. These results suggest that arsenic toxicity is causative for mammalian spontaneous abortion by virtue of aberrant placental vasculogenesis and placental insufficiency.

  14. Dietary B Vitamin Intake Is Associated with Lower Urinary Monomethyl Arsenic and Oxidative Stress Marker 15-F2t-Isoprostane among New Hampshire Adults.

    PubMed

    Howe, Caitlin G; Li, Zhigang; Zens, Michael S; Palys, Thomas; Chen, Yu; Channon, Jacqueline Y; Karagas, Margaret R; Farzan, Shohreh F

    2017-12-01

    Background: Arsenic exposure has been associated with an increased risk of cardiovascular disease (CVD). Growing evidence suggests that B vitamins facilitate arsenic metabolism and may protect against arsenic toxicity. However, to our knowledge, few studies have evaluated this in US populations. Objective: Our objective was to examine whether higher B vitamin intake is associated with enhanced arsenic metabolism and lower concentrations of preclinical markers of CVD among New Hampshire adults. Methods: We used weighted quantile sum (WQS) regression to evaluate the collective impact of 6 dietary B vitamins (thiamin, riboflavin, folate, niacin, and vitamins B-6 and B-12) on 1 ) the proportion of arsenic metabolites in urine and 2 ) 6 CVD-related markers [including urinary 15-F 2t -isoprostane (15-F 2t -IsoP)] among 418 participants (26-75 y of age) from the New Hampshire Health Study. Contributions of arsenic metabolites to B vitamin-CVD marker associations were also explored in structural equation models. Results: In WQS models, the weighted sum of B vitamin intakes from food sources was inversely associated with the proportion of monomethyl arsenic species in urine (uMMA) (β: -1.03; 95% CI: -1.91, -0.15; P = 0.02). Thiamin and vitamins B-6 and B-12 contributed the most to this association, whereas riboflavin had a negligible effect. Higher overall B vitamin intake was also inversely associated with 15-F 2t -IsoP (β: -0.21; 95% CI: -0.32, -0.11; P < 0.01), with equal contributions from the 6 B vitamins, which was partially explained by differences in the proportion of uMMA (indirect effect β: -0.01; 95% CI: -0.04, -0.00). Conclusions: Among New Hampshire adults, higher intakes of certain B vitamins (particularly thiamin and vitamins B-6 and B-12 from food sources) may reduce the proportion of uMMA, an intermediate of arsenic metabolism that has been associated with an increased risk of CVD. Higher overall B vitamin intake may also reduce urinary 15-F 2t -IsoP, a marker of oxidative stress and potential risk factor for CVD, in part by reducing the proportion of uMMA. © 2017 American Society for Nutrition.

  15. Occupational exposure to asphalt fume can cause oxidative DNA damage among road paving workers.

    PubMed

    Bal, Ceylan; Ağış, Erol R; Büyükşekerci, Murat; Gündüzöz, Meşide; Tutkun, Lütfiye; Yılmaz, Ömer H

    2018-06-01

    We designed the present study to determine the effect of occupational exposure to asphalt fumes on oxidative status and DNA damage in road paving workers. Sixty road paving workers exposed to asphalt fumes and forty non-exposed control subjects were recruited. Occupational exposure to PAHs was assessed by urinary 1-hydroxypyrene (1-OHP) excretion. Serum thiol disulfide homeostasis (TDH), total oxidant status (TOS) and total antioxidant status (TAS) and urinary 8-hydro-deoxyguanosine (8-OH-dG) level were evaluated by automated colourimetric method. The urinary concentrations of 1-OHP and 8-OH-dG were significantly higher in the exposed group than in the control group (P < 0.001). Disulfide/thiol ratio, TOS, and TAS were also significantly higher for the asphalt workers. A positive correlation existed between urinary 1-OHP and 8-OH-dG, TOS and TAS. Study results indicate that exposure to PAHs induces oxidative stress and causes genotoxic effects in asphalt workers. © 2018 Wiley Periodicals, Inc.

  16. GENE EXPRESSION PROFILING OF HYPERKERATOTIC SKIN FROM INNER MONGOLIANS CHRONICALLY EXPOSED TO ARSENIC

    EPA Science Inventory

    Millions of people worldwide have been chronically exposed to arsenic levels in drinking water that greatly exceed the current World Health Organization¿s recommended limit of 10 µg/ml. The skin is a major target of arsenic toxicity, and some of the first clinical signs of chroni...

  17. Estimated Exposure to Arsenic in Breastfed and Formula-Fed Infants in a United States Cohort

    PubMed Central

    Carignan, Courtney C.; Jackson, Brian P.; Farzan, Shohreh F.; Gandolfi, A. Jay; Punshon, Tracy; Folt, Carol L.; Karagas, Margaret R.

    2015-01-01

    Background: Previous studies indicate that concentrations of arsenic in breast milk are relatively low even in areas with high drinking-water arsenic. However, it is uncertain whether breastfeeding leads to reduced infant exposure to arsenic in regions with lower arsenic concentrations. Objective: We estimated the relative contributions of breast milk and formula to arsenic exposure during early infancy in a U.S. population. Methods: We measured arsenic in home tap water (n = 874), urine from 6-week-old infants (n = 72), and breast milk from mothers (n = 9) enrolled in the New Hampshire Birth Cohort Study (NHBCS) using inductively coupled plasma mass spectrometry. Using data from a 3-day food diary, we compared urinary arsenic across infant feeding types and developed predictive exposure models to estimate daily arsenic intake from breast milk and formula. Results: Urinary arsenic concentrations were generally low (median, 0.17 μg/L; maximum, 2.9 μg/L) but 7.5 times higher for infants fed exclusively with formula than for infants fed exclusively with breast milk (β = 2.02; 95% CI: 1.21, 2.83; p < 0.0001, adjusted for specific gravity). Similarly, the median estimated daily arsenic intake by NHBCS infants was 5.5 times higher for formula-fed infants (0.22 μg/kg/day) than for breastfed infants (0.04 μg/kg/day). Given median arsenic concentrations measured in NHBCS tap water and previously published for formula powder, formula powder was estimated to account for ~ 70% of median exposure among formula-fed NHBCS infants. Conclusions: Our findings suggest that breastfed infants have lower arsenic exposure than formula-fed infants, and that both formula powder and drinking water can be sources of exposure for U.S. infants. Citation: Carignan CC, Cottingham KL, Jackson BP, Farzan SF, Gandolfi AJ, Punshon T, Folt CL, Karagas MR. 2015. Estimated exposure to arsenic in breastfed and formula-fed infants in a United States cohort. Environ Health Perspect 123:500–506; http://dx.doi.org/10.1289/ehp.1408789 PMID:25707031

  18. Genome-Wide Alteration of Histone H3K9 Acetylation Pattern in Mouse Offspring Prenatally Exposed to Arsenic

    PubMed Central

    Cronican, Andrea A.; Fitz, Nicholas F.; Carter, Alexis; Saleem, Muzamil; Shiva, Sruti; Barchowsky, Aaron; Koldamova, Radosveta; Schug, Jonathan; Lefterov, Iliya

    2013-01-01

    Chronic exposure to arsenic in drinking water, especially in utero or perinatal exposure, can initiate neurological and cognitive dysfunction, as well as memory impairment. Several epidemiological studies have demonstrated cognitive and learning deficits in children with early exposure to low to moderate levels of arsenic, but pathogenic mechanisms or etiology for these deficits are poorly understood. Since in vivo studies show a role for histone acetylation in cognitive performance and memory formation, we examined if prenatal exposure to arsenic causes changes in the epigenomic landscape. We exposed C57Bl6/J mice to 100 μg/L arsenic in the drinking water starting 1 week before conception till birth and applied chromatin immunoprecipitation followed by high-throughput massive parallel sequencing (ChIP-seq) to evaluate H3K9 acetylation pattern in the offspring of exposed and control mice. Arsenic exposure during embryonic life caused global hypo-acetylation at H3K9 and changes in functional annotation with highly significant representation of Krüppel associated box (KRAB) transcription factors in brain samples from exposed pups. We also found that arsenic exposure of adult mice impaired spatial and episodic memory, as well as fear conditioning performance. This is the first study to demonstrate: a) genome wide changes in H3K9 acetylation pattern in an offspring prenatally exposed to arsenic, and b) a connection between moderate arsenic exposure and cognitive impairment in adult mice. The results also emphasize the applicability of Next Generation Sequencing methodology in studies aiming to reveal the role of environmental factors, other than dietary restriction, in developmental reprogramming through histone modifications during embryonic development. PMID:23405071

  19. Arsenic in drinking water and peripheral nerve conduction velocity among residents of a chronically arsenic-affected area in Inner Mongolia.

    PubMed

    Fujino, Yoshihisa; Guo, Xiaojuan; Shirane, Kiyoyumi; Liu, Jun; Wu, Kegong; Miyatake, Munetoshi; Tanabe, Kimiko; Kusuda, Tetsuya; Yoshimura, Takesumi

    2006-09-01

    It remains unclear whether chronic ingestion of arsenic in drinking water affects the peripheral nervous system. We examined the effects of arsenic exposure on nerve conduction velocity using electromyography. A cross-sectional study was conducted of a population living in an arsenic-affected village in Hetao Plain, Inner Mongolia, China. A total of 134 (93.7%) of 143 inhabitants took part in the study, and 36 (76.6%) of 47 inhabitants in a low-arsenic exposed village were recruited as a control group. Of the participants, 109 inhabitants in the arsenic-affected village and 32 in the low-arsenic exposed village aged > or =18 years were used for the analyses. An expert physician performed skin examinations, and median nerve conduction velocity was examined by electromyography. Arsenic levels in tube-well water and urine were measured. A mean level of arsenic in tube-well water in the arsenic-affected village was 158.3 microg/L, while that in the low-arsenic exposed village was 5.3 microg/L. No significant differences in the means of the motor nerve conduction velocity (MCV) and sensory nerve conduction velocity (SCV) were observed in relation to arsenic levels in tube wells, urine, and the duration of tube-well use. Further, no differences in mean MCV or SCV were found between the subjects with and without arsenic dermatosis, with mean SCV of 52.8 m/s (SD 6.3) in those without and 54.6 m/s (5.2) in subjects with arsenic dermatosis (p=0.206). These findings suggest that chronic arsenic poisoning from drinking water is unlikely to affect nerve conduction velocity, at least within the range of arsenic in drinking water examined in the present study.

  20. Impact of lifestage and duration of exposure on arsenic-induced proliferative lesions and neoplasia in C3H mice.

    EPA Science Inventory

    Epidemiological studies suggest that chronic exposure to inorganic arsenic is associated with cancer of the skin, urinary bladder and lung as well as the kidney and liver. Previous experimental studies have demonstrated increased incidence of liver, lung, ovary, and uterine tumo...

  1. CHARACTERIZATION OF HUMAN URINARY BLADDER CELL LINE UROTSA TRANSDUCED WITH RAT ASLLL-METHYLTRANSFERASE

    EPA Science Inventory


    In humans, the biomethylation of arsenic (As) is catalyzed by an As(III)-methyltransferase (Cyt19) and yields pentavalent and trivalent methylated arsenicals. Cyt19 activity and expression levels vary among tissues. For example, Cyt19 mRNA is not detected in UROtsa cells, a h...

  2. Epigenetic alteration of mismatch repair genes in the population chronically exposed to arsenic in West Bengal, India.

    PubMed

    Bhattacharjee, Pritha; Sanyal, Tamalika; Bhattacharjee, Sandip; Bhattacharjee, Pritha

    2018-05-01

    Arsenic exposure and its adverse health outcome, including the association with cancer risk are well established from several studies across the globe. The present study aims to analyze the epigenetic regulation of key mismatch repair (MMR) genes in the arsenic-exposed population. A case-control study was conducted involving two hundred twenty four (N=224) arsenic exposed [with skin lesion (WSL=110) and without skin lesion (WOSL=114)] and one hundred and two (N=102) unexposed individuals. The methylation status of key MMR genes i.e. MLH1, MSH2, and PMS2 were analyzed using methylation-specific PCR (MSP). The gene expression was studied by qRTPCR. The expression of H3K36me3, which was earlier reported to be an important regulator of MMR pathway, was assessed using ELISA. Arsenic-exposed individuals showed significant promoter hypermethylation (p < 0.0001) of MLH1 and MSH2 compared to those unexposed with consequent down-regulation in their gene expression [MLH1 (p=0.001) and MSH2 (p<0.05)]. However, no significant association was found in expression and methylation of PMS2 with arsenic exposure. We found significant down-regulation of H3K36me3 in the arsenic-exposed group, most significantly in the WSL group (p<0.0001). The expression of SETD2, the methyltransferase of an H3K36me3 moiety was found to be unaltered in arsenic exposure, suggesting the involvement of other regulatory factors yet to be identified. In summary, the epigenetic repression of DNA damage repair genes due to promoter hypermethylation of MLH1 and MSH2 and inefficient recruitment of MMR complex at the site of DNA damage owing to the reduced level of H3K36me3 impairs the mismatch repair pathway that might render the arsenic-exposed individuals more susceptible towards DNA damage and associated cancer risk. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Fluoride and arsenic exposure affects spatial memory and activates the ERK/CREB signaling pathway in offspring rats.

    PubMed

    Zhu, Yu-Peng; Xi, Shu-Hua; Li, Ming-Yan; Ding, Ting-Ting; Liu, Nan; Cao, Fu-Yuan; Zeng, Yang; Liu, Xiao-Jing; Tong, Jun-Wang; Jiang, Shou-Fang

    2017-03-01

    Fluoride and arsenic are inorganic contaminants that occur in the natural environment. Chronic fluoride and/or arsenic exposure can induce developmental neurotoxicity and negatively influence intelligence in children, although the underlying molecular mechanisms are poorly understood. This study explored the effects of fluoride and arsenic exposure in drinking water on spatial learning, memory and key protein expression in the ERK/CREB signaling pathway in hippocampal and cerebral cortex tissue in rat offspring. Pregnant rats were divided into four groups. Control rats drank tap water, while rats in the three exposure groups drank water with sodium fluoride (100mg/L), sodium arsenite (75mg/L), and a sodium fluoride (100mg/L) and sodium arsenite (75mg/L) combination during gestation and lactation. After weaning, rat pups drank the same solution as their mothers. Spatial learning and memory ability of pups at postnatal day 21 (PND21) and postnatal day 42 (PND42) were measured using a Morris water maze. ERK, phospho-ERK (p-ERK), CREB and phospho-CREB (p-CREB) protein expression in the hippocampus and cerebral cortex was detected using Western blot. Compared with the control pups, escape latencies increased in PND42 pups exposed to arsenic and co-exposed to fluoride and arsenic, and the short-term and long-term spatial memory ability declined in pups exposed to fluoride and arsenic, both alone and in combination. Compared with controls, ERK and p-ERK levels decreased in the hippocampus and cerebral cortex in pups exposed to combined fluoride and arsenic. CREB protein expression in the cerebral cortex decreased in pups exposed to fluoride, arsenic, and the fluoride and arsenic combination. p-CREB protein expression in both the hippocampus and cerebral cortex was decreased in pups exposed to fluoride and arsenic in combination compared to the control group. There were negative correlation between the proteins expression and escape latency periods in pups. These data indicate that exposure to fluoride and arsenic in early life stage changes ERK, p-ERK, CREB and p-CREB protein expression in the hippocampus and cerebral cortex of rat offspring at PND21 and PND 42, which may contribute to impaired neurodevelopment following exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Unusual arsenic metabolism in Giant Pandas.

    PubMed

    Braeuer, Simone; Dungl, Eveline; Hoffmann, Wiebke; Li, Desheng; Wang, Chengdong; Zhang, Hemin; Goessler, Walter

    2017-12-01

    The total arsenic concentration and the arsenic speciation in urine and feces samples of the two Giant Pandas living at Vienna zoo and of their feed, bamboo, were determined with ICPMS and HPLC-ICPMS. Urine was the main excretion route and accounted for around 90% of the ingested arsenic. The urinary arsenic concentrations were very high, namely up to 179 μg/L. Dimethylarsinic acid (DMA) was the dominating arsenic compound in the urine samples and ranged from 73 to 92% of the total arsenic, which is unusually high for a terrestrial mammal. The feces samples contained around 70% inorganic arsenic and 30% DMA. The arsenic concentrations in the bamboo samples were between 16 and 920 μg/kg dry mass. The main arsenic species in the bamboo extracts was inorganic arsenic. This indicates that the Giant Panda possesses a unique way of very efficiently methylating and excreting the provided inorganic arsenic. This could be essential for the survival of the animal in its natural habitat, because parts of this area are contaminated with arsenic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. [Interpretation of the values of urinary cotinine in smokers and non-smokers].

    PubMed

    Roussel, G; Le Quang, N T; Miguères, M L; Roche, D; Mongin-Charpin, D; Chrétien, J; Ekindjian, O G

    1991-01-01

    The values of urinary cotinine measured using high performance liquid chromatography in 125 adults (44 men and 81 women) were compared with the degree of intoxication and/or exposure to tobacco experienced over six consecutive days by auto-questionnaire. The subjects were classified in 6 groups: non exposed non smokers and non smokers exposed for less than one hour (1, n = 16); non smokers exposed for between 1 and 10 hours (2, n = 26); non smokers exposed for more than 10 hours and less than 30 hours (3, n = 33); non smokers exposed for more than 30 hours (4, n = 13); smokers smoking less than 20 cigarettes per day (5, n = 16); smokers smoking 20 cigarettes or more per day (6, n = 21). The measurements were made on urine specimens from the first morning (fraction F1), from the day and night (F2) and those of the second morning (F3). The results were expressed in micrograms/fraction and were as follows: Group 1: 37.3 (F1); 149.5 (F2); 26.8 (F3)--Group 2: 81.2; 234.1; 75.4--Group 3: 121.1; 383.1; 80.7--Group 4: 98.8; 253.7; 117.2--Group 5: 206.9; 773.8; 188--Group 6: 483.1; 1908.2; 431.3. Cotinine was found in all individuals whether they declared that they were exposed or non exposed (with the exception of a single person amongs the latter). In spite of a certain amount of overlapping between the results of the individuals in groups 4 and 5, the values obtained enabled a differentiation between the degrees of tobacco absorption.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Understanding arsenic metabolism through a comparative study of arsenic levels in the urine, hair and fingernails of healthy volunteers from three unexposed ethnic groups in the United Kingdom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brima, Eid I.; Haris, Parvez I.; Jenkins, Richard O.

    2006-10-01

    Very little is known about arsenic (As) metabolism in healthy populations that are not exposed to high concentrations of As in their food or water. Here we present a study with healthy volunteers from three different ethnic groups, residing in Leicester, UK, which reveals statistically significant differences in the levels of total As in urine and fingernail samples. Urine (n = 63), hair (n = 36) and fingernail (n = 36) samples from Asians, Somali Black-Africans and Whites were analysed using inductively coupled plasma mass spectrometry (ICP-MS) and graphite furnace atomic absorption spectroscopy (GF-AAS). The results clearly show that themore » total concentrations of As in urine and fingernail samples of a Somali Black-African population (urine 7.2 {mu}g/g creatinine; fingernails 723.1 {mu}g/kg) are significantly (P < 0.05) different from the Asian (urine 24.5 {mu}g/g creatinine; fingernails 153.9 {mu}g/kg) and White groups (urine 20.9 {mu}g/g creatinine; fingernails 177.0 {mu}g/kg). The chemical speciation of As in the urine of the three groups was also measured using high performance liquid chromatography coupled to ICP-MS. This showed that the proportion of the total urinary As present as dimethylarsenate (DMA) was higher for the Somali Black-African group (50%) compared to the Asians (16%) and Whites (22%). However, there was no significant difference (P > 0.05) in the level of As in the hair samples from these three groups; Somali Black-Africans (116.0 {mu}g/kg), Asians (117.4 {mu}g/kg) and Whites (141.2 {mu}g/kg). Significantly different levels of total As in fingernail and urine and a higher percentage of urinary DMA in the Somali Black-Africans are suggestive of a different pattern of As metabolism in this ethnic group.« less

  7. Cancer in Experimental Animals Exposed to Arsenic and Arsenic Compounds

    PubMed Central

    Tokar, Erik J.; Benbrahim-Tallaa, Lamia; Ward, Jerold M.; Lunn, Ruth; Sams, Reeder L.; Waalkes, Michael P.

    2011-01-01

    Inorganic arsenic is a ubiquitous environmental contaminant that has long been considered a human carcinogen. Recent studies raise further concern about the metalloid as a major, naturally occurring carcinogen in the environment. However, during this same period it has proven difficult to provide experimental evidence of the carcinogenicity of inorganic arsenic in laboratory animals and, until recently, there was considered to be a lack of clear evidence for carcinogenicity of any arsenical in animals. More recent work with arsenical methylation metabolites and early life exposures to inorganic arsenic has now provided evidence of carcinogenicity in rodents. Given that tens of millions of people worldwide are exposed to potentially unhealthy levels of environmental arsenic, in vivo rodent models of arsenic carcinogenesis are a clear necessity for resolving critical issues, like mechanisms of action, target tissue specificity, and sensitive subpopulations, and in developing strategies to reduce cancers in exposed human populations. This work reviews the available rodent studies considered relevant to carcinogenic assessment of arsenicals, taking advantage of the most recent review by the International Agency for Research on Cancer (IARC) that has not yet appeared as a full monograph but has been summarized (IARC 2009). Many valid studies show that arsenic can interact with other carcinogens/agents to enhance oncogenesis, and help elucidate mechanisms, and these too are summarized in this review. Finally, this body of rodent work is discussed in light of its impact on mechanisms and in the context of the persistent argument that arsenic is not carcinogenic in animals. PMID:20812815

  8. Associations between toenail arsenic concentration and dietary factors in a New Hampshire population.

    PubMed

    Gruber, Joann F; Karagas, Margaret R; Gilbert-Diamond, Diane; Bagley, Pamela J; Zens, M Scot; Sayarath, Vicki; Punshon, Tracy; Morris, J Steven; Cottingham, Kathryn L

    2012-06-29

    Dietary factors such as folate, vitamin B12, protein, and methionine are important for the excretion of arsenic via one-carbon metabolism in undernourished populations exposed to high levels of arsenic via drinking water. However, the effects of dietary factors on toenail arsenic concentrations in well-nourished populations exposed to relatively low levels of water arsenic are unknown. As part of a population-based case-control study of skin and bladder cancer from the USA, we evaluated relationships between consumption of dietary factors and arsenic concentrations in toenail clippings. Consumption of each dietary factor was determined from a validated food frequency questionnaire. We used general linear models to examine the associations between toenail arsenic and each dietary factor, taking into account potentially confounding effects. As expected, we found an inverse association between ln-transformed toenail arsenic and consumption of vitamin B12 (excluding supplements) and animal protein. Unexpectedly, there were also inverse associations with numerous dietary lipids (e.g., total fat, total animal fat, total vegetable fat, total monounsaturated fat, total polyunsaturated fat, and total saturated fat). Finally, increased toenail arsenic concentrations were associated with increased consumption of long chain n-3 fatty acids. In a relatively well-nourished population exposed to relatively low levels of arsenic via water, consumption of certain dietary lipids may decrease toenail arsenic concentration, while long chain n-3 fatty acids may increase toenail arsenic concentration, possibly due to their association with arsenolipids in fish tissue.

  9. Associations between toenail arsenic concentration and dietary factors in a New Hampshire population

    PubMed Central

    2012-01-01

    Background Dietary factors such as folate, vitamin B12, protein, and methionine are important for the excretion of arsenic via one-carbon metabolism in undernourished populations exposed to high levels of arsenic via drinking water. However, the effects of dietary factors on toenail arsenic concentrations in well-nourished populations exposed to relatively low levels of water arsenic are unknown. Methods As part of a population-based case–control study of skin and bladder cancer from the USA, we evaluated relationships between consumption of dietary factors and arsenic concentrations in toenail clippings. Consumption of each dietary factor was determined from a validated food frequency questionnaire. We used general linear models to examine the associations between toenail arsenic and each dietary factor, taking into account potentially confounding effects. Results As expected, we found an inverse association between ln-transformed toenail arsenic and consumption of vitamin B12 (excluding supplements) and animal protein. Unexpectedly, there were also inverse associations with numerous dietary lipids (e.g., total fat, total animal fat, total vegetable fat, total monounsaturated fat, total polyunsaturated fat, and total saturated fat). Finally, increased toenail arsenic concentrations were associated with increased consumption of long chain n-3 fatty acids. Conclusion In a relatively well-nourished population exposed to relatively low levels of arsenic via water, consumption of certain dietary lipids may decrease toenail arsenic concentration, while long chain n-3 fatty acids may increase toenail arsenic concentration, possibly due to their association with arsenolipids in fish tissue. PMID:22747713

  10. Quantitative Evaluation of Heavy Metals and Trace Elements in the Urinary Bladder: Comparison Between Cancerous, Adjacent Non-cancerous and Normal Cadaveric Tissue.

    PubMed

    Abdel-Gawad, Mahmoud; Elsobky, Emad; Shalaby, Mahmoud M; Abd-Elhameed, Mohamed; Abdel-Rahim, Mona; Ali-El-Dein, Bedeir

    2016-12-01

    The role of heavy metals and trace elements (HMTE) in the development of some cancers has been previously reported. Bladder carcinoma is a frequent malignancy of the urinary tract. The most common risk factors for bladder cancer are exposure to industrial carcinogens, cigarette smoking, gender, and possibly diet. The aim of this study was to evaluate HTME concentrations in the cancerous and adjacent non-cancerous tissues and compare them with those of normal cadaveric bladder. This prospective study included 102 paired samples of full-thickness cancer and adjacent non-cancerous bladder tissues of radical cystectomy (RC) specimens that were histologically proven as invasive bladder cancer (MIBC). We used 17 matched controls of non-malignant bladder tissue samples from cadavers. All samples were processed and evaluated for the concentration of 22 HMTE by using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Outcome analysis was made by the Mann-Whitney U, chi-square, Kruskal-Wallis, and Wilcoxon signed ranks tests. When compared with cadaveric control or cancerous, the adjacent non-cancerous tissue had higher levels of six elements (arsenic, lead, selenium, strontium, zinc, and aluminum), and when compared with the control alone, it had a higher concentration of calcium, cadmium, chromium, potassium, magnesium, and nickel. The cancerous tissue had a higher concentration of cadmium, lead, chromium, calcium, potassium, phosphorous, magnesium, nickel, selenium, strontium, and zinc than cadaveric control. Boron level was higher in cadaveric control than cancerous and adjacent non-cancerous tissue. Cadmium level was higher in cancerous tissue with node-positive than node-negative cases. The high concentrations of cadmium, lead, chromium, nickel, and zinc, in the cancerous together with arsenic in the adjacent non-cancerous tissues of RC specimens suggest a pathogenic role of these elements in BC. However, further work-up is needed to support this conclusion by the application of these HMTE on BC cell lines.

  11. Toxicological Evaluation of Depleted Uranium in Rats: Six-Month Evaluation Point

    DTIC Science & Technology

    1998-02-01

    mild renal dysfunction with increased urinary excretion of beta2-microglobulin and various amino acids. In rats exposed subchronically to low doses...reabsorption. Urinary enzymes are sen- sitive, non-invasive markers of toxicity primarily in the kidney tubules [46]. NAG is a lysosomal enzyme found...studies. Environmental Research 61:323-336 42. Neuman WF (1950) Urinary uranium as a meas- ure of exposure hazard. Industrial Medicine and Surgery 19

  12. Arsenic exposure through drinking water increases the risk of liver and cardiovascular diseases in the population of West Bengal, India

    PubMed Central

    2012-01-01

    Background Arsenic is a natural drinking water contaminant affecting 26 million people in West Bengal, India. Chronic arsenic exposure causes cancer, cardiovascular disease, liver disease, neuropathies and ocular diseases. The aims of the present study were to assess bioindicators of hepatocellular injury as indicated by the levels of liver enzymes, to determine the auto immune status, as indicated by the amounts of anti-nuclear antibodies (ANA) and anti-dsDNA antibodies in their serum, and to predict cardiovascular risk in the arsenic exposed population. Methods Effect of chronic arsenic exposure on liver was determined by liver function tests. Autoimmune status was measured by measuring ANA and anti-dsDNA in serum. Inflammatory cytokines associated with increased cardiovascular disease risk, IL6, IL8 and MCP-1 were determined. Results Our results indicated that serum levels of bilirubin, alanine transaminase, aspartate transaminase, alkaline phosphatase and ANA were increased in the arsenic exposed population. Serum levels of IL6 and IL8 also increased in the arsenic exposed group. Conclusions Chronic arsenic exposure causes liver injury, increases the serum levels of autoimmune markers and imparts increased cardiovascular risk. PMID:22883023

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokohira, Masanao; Arnold, Lora L.; Pennington, Karen L.

    Arsenic (+ 3 oxidation state) methyltransferase (As3mt) catalyzes reactions which convert inorganic arsenic to methylated metabolites. This study determined whether the As3mt null genotype in the mouse modifies cytotoxic and proliferative effects seen in urinary bladders of wild type mice after exposure to inorganic arsenic. Female wild type C57BL/6 mice and As3mt KO mice were divided into 3 groups each (n = 8) with free access to a diet containing 0, 100 or 150 ppm of arsenic as arsenite (As{sup III}). During the first week of As{sup III} exposure, As3mt KO mice exhibited severe and lethal systemic toxicity. At termination,more » urinary bladders of both As3mt KO and wild type mice showed hyperplasia by light microscopy. As expected, arsenic-containing granules were found in the superficial urothelial layer of wild type mice. In As3mt KO mice these granules were present in all layers of the bladder epithelium and were more abundant and larger than in wild type mice. Scanning electron microscopy of the bladder urothelium of As3mt KO mice treated with 100 ppm As{sup III} showed extensive superficial necrosis and hyperplastic changes. In As3mt KO mice, livers showed severe acute inflammatory changes and spleen size and lymphoid areas were decreased compared with wild type mice. Thus, diminished arsenic methylation in As3mt KO mice exacerbates systemic toxicity and the effects of As{sup III} on the bladder epithelium, showing that altered kinetic and dynamic behavior of arsenic can affect its toxicity.« less

  14. Skin score correlates with global DNA methylation and GSTO1 A140D polymorphism in arsenic-affected population of Eastern India.

    PubMed

    Majumder, Moumita; Dasgupta, Uma B; Guha Mazumder, D N; Das, Nilansu

    2017-07-01

    Arsenic is a potent environmental toxicant causing serious public health concerns in India, Bangladesh and other parts of the world. Gene- and promoter-specific hypermethylation has been reported in different arsenic-exposed cell lines, whereas whole genome DNA methylation study suggested genomic hypo- and hypermethylation after arsenic exposure in in vitro and in vivo studies. Along with other characteristic biomarkers, arsenic toxicity leads to typical skin lesions. The present study demonstrates significant correlation between severities of skin manifestations with their whole genome DNA methylation status as well as with a particular polymorphism (Ala 140 Asp) status in arsenic metabolizing enzyme Glutathione S-transferase Omega-1 (GSTO1) in arsenic-exposed population of the district of Nadia, West Bengal, India.

  15. Role of microRNAs in senescence and its contribution to peripheral neuropathy in the arsenic exposed population of West Bengal, India.

    PubMed

    Chatterjee, Debmita; Bandyopadhyay, Apurba; Sarma, Nilendu; Basu, Santanu; Roychowdhury, Tarit; Roy, Sib Sankar; Giri, Ashok K

    2018-02-01

    Arsenic induced senescence (AIS) has been identified in the population of West Bengal, India very recently. Also there is a high incidence of arsenic induced peripheral neuropathy (PN) throughout India. However, the epigenetic regulation of AIS and its contribution in arsenic induced PN remains unexplored. We recruited seventy two arsenic exposed and forty unexposed individuals from West Bengal to evaluate the role of senescence associated miRNAs (SA-miRs) in AIS and their involvement if any, in PN. The downstream molecules of the miRNA associated with the disease outcome, was also checked by immuoblotting. In vitro studies were conducted with HEK 293 cells and sodium arsenite exposure. Our results show that all the SA-miRs were upregulated in comparison to unexposed controls. miR-29a was the most significantly altered, highest expression being in the arsenic exposed group with PN, suggesting its association with the occurrence of PN. We looked for the expression of peripheral myelin protein 22 (PMP22), a specific target of miR-29a associated with myelination and found that both in vitro and in vivo results showed over-expression of the protein. Since this was quite contrary to miRNA regulation, we checked for intermediate players β-catenin and GSK-3β upon arsenic exposure which affects PMP22 expression. We found that β-catenin was upregulated in vitro and was also highest in the arsenic exposed group with PN while GSK-3β followed the reverse pattern. Our findings suggest that arsenic exposure alters the expression of SA-miRs and the mir-29a/beta catenin/PMP22 axis might be responsible for arsenic induced PN. Copyright © 2017. Published by Elsevier Ltd.

  16. Spatial and Temporal Variations in Arsenic Exposure via Drinking-water in Northern Argentina

    PubMed Central

    Concha, Gabriela; Nermell, Barbro

    2006-01-01

    This study evaluated the spatial, temporal and inter-individual variations in exposure to arsenic via drinking-water in Northern Argentina, based on measurements of arsenic in water, urine, and hair. Arsenic concentrations in drinking-water varied markedly among locations, from <1 to about 200 μg/L. Over a 10-year period, water from the same source in San Antonio de los Cobres fluctuated within 140 and 220 μg/L, with no trend of decreasing concentration. Arsenic concentrations in women's urine (3–900 μg/L, specific weight 1.018 g/mL) highly correlated with concentrations in water on a group level, but showed marked variations between individuals. Arsenic concentrations in hair (range 20–1,500 μg/kg) rather poorly correlated with urinary arsenic, possibly due to external contamination. Thus, arsenic concentration in urine seems to be a better marker of individual arsenic exposure than concentrations in drinking-water and hair. PMID:17366773

  17. Thio-dimethylarsinate is a common metabolite in urine samples from arsenic-exposed women in Bangladesh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raml, Reingard; Rumpler, Alice; Goessler, Walter

    2007-08-01

    Over the last 6 years, much work on arsenic species in urine samples has been directed toward the determination of the reduced dimethylated arsenic species, DMA(III), because of its high toxicity and perceived key role in the metabolism of inorganic arsenic. Recent work, however, has suggested that DMA(III) may at times have been misidentified because its chromatographic properties can be similar to those of thio-dimethylarsinate (thio-DMA). We analyzed by HPLC-ICPMS (inductively coupled plasma mass spectrometry) urine samples from 75 arsenic-exposed women from Bangladesh with total arsenic concentrations ranging from 8 to 1034 {mu}g As/L and found that thio-DMA was presentmore » in 44% of the samples at concentrations ranging mostly from trace amounts to 24 {mu}g As/L (one sample contained 123 {mu}g As/L). Cytotoxicity testing with HepG2 cells derived from human hepatocarcinoma indicated that thio-DMA was about 10-fold more cytotoxic than dimethylarsinate (DMA). The widespread occurrence of thio-DMA in urine from these arsenic-exposed women suggests that this arsenical may also be present in other urine samples and has so far escaped detection. The work highlights the need for analytical methods providing specific determinations of arsenic compounds in future studies on arsenic metabolism and toxicology.« less

  18. [Studies on markers of exposure and early effect in areas with arsenic pollution: methods and results of the project SEpiAs. Epidemiological studies on population exposed to low-to-moderate arsenic concentration in drinking water].

    PubMed

    Bustaffa, Elisa; Bianchi, Fabrizio

    2014-01-01

    Arsenic and its inorganic compounds are classified as human carcinogens. Several epidemiological studies conducted in areas of the world characterized by high arsenic concentration in drinking water, even up to 3,000 μg/l, report associations between arsenic exposure and skin, bladder, lung, liver and kidney cancer as well as cardiovascular diseases, diabetes and reproductive and developmental effects. Since general population is not exposed to these high arsenic concentrations in the last years attention focused on adverse health effects that low-to-moderate arsenic concentrations (0-150 μg/l) in drinking water could induce. The World Health Organization recommends a maximum limit of 10 μg/l for arsenic in drinking water. Almost all epidemiological studies conducted on populations exposed to low-to-moderate arsenic concentrations in drinking water are limited due to problems arising from both individual exposure assessment and low subjects number. The aim of the present review is to collect literature-based evidences regarding adverse health effects associated with exposure to low-to-moderate arsenic concentrations in drinking water (10-150 μg/l) in order to obtain a comprehensive picture of the health outcomes that such exposure can have on general population.

  19. Bioaccumulation and biotransformation of arsenic compounds in Hediste diversicolor (Muller 1776) after exposure to spiked sediments.

    PubMed

    Gaion, Andrea; Sartori, Davide; Scuderi, Alice; Fattorini, Daniele

    2014-05-01

    This study focused on the exposure of the common ragworm Hediste diversicolor (Müller 1776) to sediments enriched with different arsenic compounds, namely arsenate, dimethyl-arsinate, and arsenobetaine. Speciation analysis was carried out on both the spiked sediments and the exposed polychaetes in order to investigate H. diversicolor capability of arsenic bioaccumulation and biotransformation. Two levels of contamination (acute and moderate dose) were chosen for enriched sediments to investigate possible differences in the arsenic bioaccumulation patterns. The highest value of arsenic in tissues was reached after 15 days of exposure to dimethyl-arsinate (acute dose) spiked sediment (1,172 ± 176 μg/g). A significant increase was also obtained in worms exposed both to arsenate and arsenobetaine. Speciation analysis showed that trimethyl-arsine oxide was the predominant chemical form in tissues of H. diversicolor exposed to all the spiked sediments, confirming the importance of this intermediate in biological transformation of arsenic.

  20. Phytoremediation of arsenic from the contaminated soil using transgenic tobacco plants expressing ACR2 gene of Arabidopsis thaliana.

    PubMed

    Nahar, Noor; Rahman, Aminur; Nawani, Neelu N; Ghosh, Sibdas; Mandal, Abul

    2017-11-01

    We have cloned, characterized and transformed the AtACR2 gene (arsenic reductase 2) of Arabidopsis thaliana into the genome of tobacco (Nicotiana tabacum, var Sumsun). Our results revealed that the transgenic tobacco plants are more tolerant to arsenic than the wild type ones. These plants can grow on culture medium containing 200μM arsenate, whereas the wild type can barely survive under this condition. Furthermore, when exposed to 100μM arsenate for 35days the amount of arsenic accumulated in the shoots of transgenic plants was significantly lower (28μg/g d wt.) than that found in the shoots of non-transgenic controls (40μg/g d wt.). However, the arsenic content in the roots of transgenic plants was significantly higher (2400μg/g d. wt.) than that (2100μg/g d. wt.) observed in roots of wild type plants. We have demonstrated that Arabidopsis thaliana AtACR2 gene is a potential candidate for genetic engineering of plants to develop new crop cultivars that can be grown on arsenic contaminated fields to reduce arsenic content of the soil and can become a source of food containing no arsenic or exhibiting substantially reduced amount of this metalloid. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. In utero and postnatal exposure to arsenic alters pulmonary structure and function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lantz, R. Clark; Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ 85721; BIO5 Institute, University of Arizona, Tucson, AZ 85721

    2009-02-15

    In addition to cancer endpoints, arsenic exposures can also lead to non-cancerous chronic lung disease. Exposures during sensitive developmental time points can contribute to the adult disease. Using a mouse model, in utero and early postnatal exposures to arsenic (100 ppb or less in drinking water) were found to alter airway reactivity to methacholine challenge in 28 day old pups. Removal of mice from arsenic exposure 28 days after birth did not reverse the alterations in sensitivity to methacholine. In addition, adult mice exposed to similar levels of arsenic in drinking water did not show alterations. Therefore, alterations in airwaymore » reactivity were irreversible and specific to exposures during lung development. These functional changes correlated with protein and gene expression changes as well as morphological structural changes around the airways. Arsenic increased the whole lung levels of smooth muscle actin in a dose dependent manner. The level of smooth muscle mass around airways was increased with arsenic exposure, especially around airways smaller than 100 {mu}m in diameter. This increase in smooth muscle was associated with alterations in extracellular matrix (collagen, elastin) expression. This model system demonstrates that in utero and postnatal exposure to environmentally relevant levels of arsenic can irreversibly alter pulmonary structure and function in the adults.« less

  2. Association of urinary metals levels with type 2 diabetes risk in coke oven workers.

    PubMed

    Liu, Bing; Feng, Wei; Wang, Jing; Li, Yaru; Han, Xu; Hu, Hua; Guo, Huan; Zhang, Xiaomin; He, Meian

    2016-03-01

    Studies indicated that occupationally exposed to metals could result in oxidative damage and inflammation and increase cardiovascular diseases risk. However, epidemiological studies about the associations of metals exposure with diabetes risk among coke oven workers were limited. This study aims to investigate the potential associations of 23 metals levels with the risk of diabetes among coke oven workers. The analysis was conducted in a cross-sectional study including 1493 participants. Urinary metals and urinary polycyclic aromatic hydrocarbons (PAHs) metabolites levels were determined by inductively coupled plasma mass spectrometer and gas chromatograph-mass spectrometer respectively. Multivariate logistic regression was used to investigate the associations of urinary metal levels with diabetes risk with adjustment for potential confounding factors including gender, age, BMI, education, smoking, drinking, physical activity, hypertension, hyperlipidemia and urinary PAHs metabolites levels. Compared with the normoglycemia group, the levels of urinary copper, zinc, arsenic, selenium, molybdenum, and cadmium were significantly higher in the diabetes group (all p < 0.05). Participants with the highest tertile of urinary copper and zinc had 2.12 (95%CI: 1.12-4.01) and 5.43 (95%CI: 2.61-11.30) fold risk of diabetes. Similar results were found for hyperglycemia risk. Besides, participants with the highest tertile of manganese, barium, and lead had 1.65(1.22-2.23), 1.60(1.19-2.16) and 1.45(1.05-1.99) fold risk of hyperglycemia when compared with the lowest tertlie. The results indicated that the urinary copper and zinc levels were positively associated with the risk of diabetes and hyperglycemia among coke oven workers. Urinary manganese, barium and lead levels were also associated with increased risk of hyperglycemia independently of other traditional risk factors. These findings need further validation in prospective study with larger sample size. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Oxidative DNA damage of peripheral blood polymorphonuclear leukocytes, selectively induced by chronic arsenic exposure, is associated with extent of arsenic-related skin lesions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Qiuling, E-mail: 924969007@qq.com; Ma, Ning; Zhang, Jing

    There is increasing evidence that oxidative stress is an important risk factor for arsenic-related diseases. Peripheral blood leukocytes constitute an important defense against microorganisms or pathogens, while the research on the impact of chronic arsenic exposure on peripheral blood leukocytes is much more limited, especially at low level arsenic exposure. The purpose of the present study was to explore whether chronic arsenic exposure affects oxidative stress of peripheral blood leukocytes and possible linkages between oxidative stress and arsenic-induced skin lesions. 75 male inhabitants recruited from an As-endemic region of China were investigated in the present study. The classification of arsenicosismore » was based on the degree of skin lesions. Arsenic levels were measured in drinking water and urine by Atomic Fluorescence Spectroscopy. Urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) was tested by Enzyme-Linked Immunosorbent Assay. 8-OHdG of peripheral blood leukocytes was evaluated using immunocytochemical staining. 8-OHdG-positive reactions were only present in polymorphonuclear leukocytes (PMNs), but not in monocytes (MNs). The 8-OHdG staining of PMN cytoplasm was observed in all investigated populations, while the 8-OHdG staining of PMN nuclei was frequently found along with the elevated amounts of cell debris in individuals with skin lesion. Urinary arsenic levels were increased in the severe skin lesion group compared with the normal group. No relationship was observed between drinking water arsenic or urine 8-OHdG and the degree of skin lesions. These findings indicated that the target and persistent oxidative stress in peripheral blood PMNs may be employed as a sensitive biomarker directly to assess adverse health effects caused by chronic exposure to lower levels of arsenic. -- Highlights: ► Male inhabitants were investigated from an As-endemic region of China. ► 8-OHdG-positive reactions were only present in polymorphonuclear leukocytes (PMNs). ► 8-OHdG staining of PMN nuclei was paralleled by increased debris of cells. ► Oxidative DNA damage of PMNs is associated with arsenic-related skin lesions.« less

  4. Involvement of epigenetics and EMT related miRNA in arsenic induced neoplastic transformation and their potential clinical use

    PubMed Central

    Michailidi, Christina; Hayashi, Masamichi; Datta, Sayantan; Sen, Tanusree; Zenner, Kaitlyn; Oladeru, Oluwadamilola; Brait, Mariana; Izumchenko, Evgeny; Baras, Alexander; VandenBussche, Christopher; Argos, Maria; Bivalacqua, Trinity J; Ahsan, Habibul; Hahn, Noah M.; Netto, George J.; Sidransky, David; Hoque, Mohammad O.

    2015-01-01

    Exposure to toxicants leads to cumulative molecular changes that overtime increase a subject’s risk of developing urothelial carcinoma (UC). To assess the impact of arsenic exposure at a time progressive manner, we developed and characterized a cell culture model and tested a panel of miRNAs in urine samples from arsenic exposed subjects, UC patients and controls. To prepare an in vitro model, we chronically exposed an immortalized normal human bladder cell line (HUC1) to arsenic. Growth of the HUC1 cells was increased in a time dependent manner after arsenic treatment and cellular morphology was changed. In soft agar assay, colonies were observed only in arsenic treated cells and the number of colonies gradually increased with longer periods of treatment. Similarly, invaded cells in invasion assay were observed only in arsenic treated cells. Withdrawal of arsenic treatment for 2.5 months did not reverse the tumorigenic properties of arsenic treated cells. Western blot analysis demonstrated decreased PTEN and increased AKT and mTOR in arsenic treated HUC1 cells. Levels of miR-200a, miR-200b, and miR-200c were down-regulated in arsenic exposed HUC1 cells by quantitative RT-PCR. Furthermore, in human urine, miR-200c and miR-205 were inversely associated with arsenic exposure (P=0.005 and 0.009, respectively). Expression of miR-205 discriminated cancer cases from controls with high sensitivity and specificity (AUC=0.845). Our study suggests that exposure to arsenic rapidly induces a multifaceted dedifferentiation program and miR-205 has potential to be used as a marker of arsenic exposure as well as a maker of early UC detection. PMID:25586904

  5. Reverse Osmosis Filter Use and High Arsenic Levels in Private Well Water

    PubMed Central

    George, Christine M.; Smith, Allan H.; Kalman, David A.; Steinmaus, Craig M.

    2013-01-01

    Inorganic arsenic causes cancer, and millions of people worldwide are exposed to arsenic-contaminated water. Regulatory standards for arsenic levels in drinking water generally do not apply to private domestic wells. Reverse osmosis (RO) units commonly are used by well owners to reduce arsenic concentrations, but may not always be effective. In a survey of 102 homes in Nevada, 19 used RO devices. Pre- and post-RO filtration arsenic concentrations averaged 443 μg/l and 87 μg/l, respectively. The average absolute and percent reductions in arsenic concentrations after filtration were 356 μg/l and 79%, respectively. Postfiltration concentrations were higher than 10 μg/l in 10 homes and higher than 100 μg/l in 4 homes. These findings provide evidence that RO filters do not guarantee safe drinking water and, despite regulatory standards, some people continue to be exposed to very high arsenic concentrations. PMID:17867571

  6. Fluoride and Arsenic Exposure Impairs Learning and Memory and Decreases mGluR5 Expression in the Hippocampus and Cortex in Rats

    PubMed Central

    Jiang, Shoufang; Su, Jing; Yao, Sanqiao; Zhang, Yanshu; Cao, Fuyuan; Wang, Fei; Wang, Huihui; Li, Jun; Xi, Shuhua

    2014-01-01

    Fluoride and arsenic are two common inorganic contaminants in drinking water that are associated with impairment in child development and retarded intelligence. The present study was conducted to explore the effects on spatial learning, memory, glutamate levels, and group I metabotropic glutamate receptors (mGluRs) expression in the hippocampus and cortex after subchronic exposure to fluoride, arsenic, and a fluoride and arsenic combination in rats. Weaned male Sprague-Dawley rats were assigned to four groups. The control rats drank tap water. Rats in the three exposure groups drank water with sodium fluoride (120 mg/L), sodium arsenite (70 mg/L), and a sodium fluoride (120 mg/L) and sodium arsenite (70 mg/L) combination for 3 months. Spatial learning and memory was measured in Morris water maze. mGluR1 and mGluR5 mRNA and protein expression in the hippocampus and cortex was detected using RT-PCR and Western blot, respectively. Compared with controls, learning and memory ability declined in rats that were exposed to fluoride and arsenic both alone and combined. Combined fluoride and arsenic exposure did not have a more pronounced effect on spatial learning and memory compared with arsenic and fluoride exposure alone. Compared with controls, glutamate levels decreased in the hippocampus and cortex of rats exposed to fluoride and combined fluoride and arsenic, and in cortex of arsenic-exposed rats. mGluR5 mRNA and protein expressions in the hippocampus and mGluR5 protein expression in the cortex decreased in rats exposed to arsenic alone. Interestingly, compared with fluoride and arsenic exposure alone, fluoride and arsenic combination decreased mGluR5 mRNA expression in the cortex and protein expression in the hippocampus, suggesting a synergistic effect of fluoride and arsenic. These data indicate that fluoride and arsenic, either alone or combined, can decrease learning and memory ability in rats. The mechanism may be associated with changes of glutamate level and mGluR5 expression in cortex and hippocampus. PMID:24759735

  7. Napoleon Bonaparte's exposure to arsenic during 1816.

    PubMed

    Leslie, A C; Smith, H

    1978-12-11

    Analysis of hair from Napoleon showed that he was exposed to considerable amounts of arsenic during 1816. The distribution pattern of the arsenic in the hair is similar to that found after the daily ingestion of excessive amounts of arsenic.

  8. Arsenic in Drinking Water and Mortality for Cancer and Chronic Diseases in Central Italy, 1990-2010

    PubMed Central

    D’Ippoliti, Daniela; Santelli, Enrica; De Sario, Manuela; Scortichini, Matteo; Davoli, Marina; Michelozzi, Paola

    2015-01-01

    Background In several volcanic areas of Italy, arsenic levels exceed European regulatory limits (10 μg/L in drinking water). There is still uncertainty about health risks from arsenic at low-medium doses (<100 μg/L). Objectives A large population-based study using an administrative cohort of residents in the Viterbo province (Central Italy), chronically exposed to low-medium arsenic levels via drinking water, was investigated to evaluate the effects of a lifetime exposure to arsenic on mortality from cancers and chronic diseases. Methods The study population consisted of 165,609 residents of 17 municipalities, followed from 1990 until 2010. Average individual arsenic exposure at the first residence (AsI) was estimated through a space-time modeling approach using residential history and arsenic concentrations from water supply. A time-dependent Cumulative Arsenic dose Indicator (CAI) was calculated, accounting for daily water intake and exposure duration. Mortality Hazard Ratios (HR) were estimated by gender for different diseases using Cox proportional models, adjusting for individual and area-level confounders. A flexible non-parametric approach was used to investigate dose-response relationships. Results Mean AsI exposure was 19.3 μg/L, and average exposure duration was 39.5 years. Associations of AsI and CAI indicators with several diseases were found, with greatest risks found for lung cancer in both sexes (HR = 2.61 males; HR = 2.09 females), myocardial infarction, peripheral arterial disease and COPD in males (HR = 2.94; HR = 2.44; HR = 2.54 respectively) and diabetes in females (HR = 2.56). For lung cancer and cardiovascular diseases dose-response relationship is modelled by piecewise linear functions revealing effects even for doses lower than 10 μg/L, and no threshold dose value was identified as safe for health. Conclusions Results provide new evidence for risk assessment of low-medium concentrations of arsenic and contribute to the ongoing debate about the threshold-dose of effect, suggesting that even concentrations below 10 μg/L carry a mortality risk. Policy actions are urgently needed in areas exposed to arsenic like in the Viterbo province, to comply with current EU regulations. PMID:26383851

  9. What is the best biomarker to assess arsenic exposure via drinking water?

    PubMed

    Marchiset-Ferlay, Nathalie; Savanovitch, Chantal; Sauvant-Rochat, Marie-Pierre

    2012-02-01

    Arsenic (As) is a ubiquitous element. The current WHO guideline for As in drinking water is 10 μg/L. Furthermore, about 130 million people have only access to drinking water containing more than 10 g As/L. Although numerous studies have shown the related adverse effects of As, sensitive appropriate biomarkers are still required for studies of environmental epidemiology. A review of the literature has shown that various biomarkers are used for such research. Their limits and advantages are highlighted in this paper: (i) the detection of As or its derivatives in the blood is an indication of the dose ingested but it is not evidence of chronic intoxication. (ii) The detection of As in urine is an indispensible procedure because it is a good marker for internal dose. It has been demonstrated to correlate well for a number of chronic effects related to As levels in drinking water. However confounding factors must be taken into account to avoid misinterpretation and this may require As speciation. (iii) As in the hair and nails reflects the level of long term exposure but it is difficult to relate the level with the dose ingested. (iv) Some studies showed a correlation between urinary As and urinary and blood porphyrins. However, it is difficult to use only porphyrins as a biomarker in a population survey carried out without doing further studies. (v) Genotoxic effects are based on the characterization of these potential effects. Most studies have detected increases in DNA damage, sister chromatid exchange, micronuclei or chromosomal aberrations in populations exposed to As in drinking water. Micronuclei assay is the technique of choice to follow these populations, because it is sensitive and easy to use. To conclude, whatever epidemiological studies are, the urinary and toenail biomarkers are useful to provide indications of internal dose. Moreover, micronuclei assay can be complementary use as biomarker of early effects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. A urinary metabolite of phenanthrene as a biomarker of polycyclic aromatic hydrocarbon metabolic activation in workers exposed to residual oil fly ash.

    PubMed

    Kim, Jee Young; Hecht, Stephen S; Mukherjee, Sutapa; Carmella, Steven G; Rodrigues, Ema G; Christiani, David C

    2005-03-01

    Residual oil fly ash is a chemically complex combustion product containing a significant component of potentially carcinogenic transition metals and polycyclic aromatic hydrocarbons (PAH). Various biomarkers of PAH exposure have been investigated previously, most notably 1-hydroxypyrene (1-OHP), in urine. In this study, we assessed the utility of r-1,t-2,3,c-4-tetrahydroxy-1,2,3,4-tetrahydrophenanthrene (trans, anti-PheT), a metabolite of phenanthrene, to detect occupational PAH exposure. Urine samples collected across the workweek were analyzed for 1-OHP and trans, anti-PheT in boilermakers (n = 20) exposed to residual oil fly ash. Median baseline urinary trans, anti-PheT concentrations were 0.50 microg/g creatinine in current tobacco smokers and 0.39 microg/g creatinine in nonsmokers. Median baseline urinary 1-OHP concentrations in smokers and nonsmokers were 0.31 and 0.13 microg/g creatinine, respectively. To study further the effect of smoking exposure on the urinary PAH markers, urinary cotinine was used. Although urinary trans, anti-PheT and 1-OHP concentrations were correlated (Spearman r = 0.63; P < 0.001) for all subjects, the regression coefficient between log-transformed trans, anti-PheT and log 1-OHP was statistically significant only for subjects with low levels of urinary cotinine or for nonsmokers. Each 1-unit increase in log 1-OHP was associated with a 0.77-unit increase (95% confidence interval, 0.45-1.09) in log trans, anti-PheT in subjects with low levels of urinary cotinine (P < 0.001). In these subjects, dichotomized occupational exposure status was a significant predictor of log trans, anti-PheT (P = 0.02) but not of log 1-OHP (P = 0.2). In conclusion, we found that urinary trans, anti-PheT was detected in levels comparable with 1-OHP in occupationally exposed workers, particularly nonsmokers. This study shows that urinary trans, anti-PheT may be an effective biomarker of uptake and metabolic activation of PAHs.

  11. Arsenic in the human food chain, biotransformation and toxicology--Review focusing on seafood arsenic.

    PubMed

    Molin, Marianne; Ulven, Stine Marie; Meltzer, Helle Margrete; Alexander, Jan

    2015-01-01

    Fish and seafood are main contributors of arsenic (As) in the diet. The dominating arsenical is the organoarsenical arsenobetaine (AB), found particularly in finfish. Algae, blue mussels and other filter feeders contain less AB, but more arsenosugars and relatively more inorganic arsenic (iAs), whereas fatty fish contain more arsenolipids. Other compounds present in smaller amounts in seafood include trimethylarsine oxide (TMAO), trimethylarsoniopropionate (TMAP), dimethylarsenate (DMA), methylarsenate (MA) and sulfur-containing arsenicals. The toxic and carcinogenic arsenical iAs is biotransformed in humans and excreted in urine as the carcinogens dimethylarsinate (DMA) and methylarsonate (MA), producing reactive intermediates in the process. Less is known about the biotransformation of organoarsenicals, but new insight indicates that bioconversion of arsenosugars and arsenolipids in seafood results in urinary excretion of DMA, possibly also producing reactive trivalent arsenic intermediates. Recent findings also indicate that the pre-systematic metabolism by colon microbiota play an important role for human metabolism of arsenicals. Processing of seafood may also result in transformation of arsenicals. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. Kidney function and blood pressure in preschool-aged children exposed to cadmium and arsenic - potential alleviation by selenium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skröder, Helena; Hawkesworth, Sophie; Kippler, Maria

    Background: Early-life exposure to toxic compounds may cause long-lasting health effects, but few studies have investigated effects of childhood exposure to nephrotoxic metals on kidney and cardiovascular function. Objectives: To assess effects of exposure to arsenic and cadmium on kidney function and blood pressure in pre-school-aged children, and potential protection by selenium. Methods: This cross-sectional study was part of the 4.5 years of age (range: 4.4–5.4 years) follow-up of the children from a supplementation trial in pregnancy (MINIMat) in rural Bangladesh, and nested studies on early-life metal exposures. Exposure to arsenic, cadmium and selenium from food and drinking water wasmore » assessed by concentrations in children's urine, measured by ICP-MS. Kidney function was assessed by the estimated glomerular filtration rate (eGFR, n=1106), calculated from serum cystatin C, and by kidney volume, measured by ultrasound (n=375). Systolic and diastolic blood pressure was measured (n=1356) after five minutes rest. Results: Multivariable-adjusted regression analyzes showed that exposure to cadmium, but not arsenic, was inversely associated with eGFR, particularly in girls. A 0.5 µg/L increase in urinary cadmium among the girls (above spline knot at 0.12) was associated with a decrease in eGFR of 2.6 ml/min/1.73 m{sup 2}, corresponding to 0.2SD (p=0.022). A slightly weaker inverse association with cadmium was also indicated for kidney volume, but no significant associations were found with blood pressure. Stratifying on children's urinary selenium (below or above median of 12.6 µg/L) showed a three times stronger inverse association of U-Cd with eGFR (all children) in the lower selenium stratum (B=−2.8; 95% CI: −5.5, −0.20; p=0.035), compared to those with higher selenium (B=−0.79; 95% CI: −3.0, 1.4; p=0.49). Conclusions: Childhood cadmium exposure seems to adversely affect kidney function, but not blood pressure, in this population of young children in rural Bangladesh. Better selenium status appears to be protective. However, it is important to follow up these children to assess potential long-term consequences of these findings. - Highlights: • Bangladesh has high levels of arsenic and cadmium in drinking water and food • We assessed toxic exposure, kidney and cardiovascular function in Bangladeshi children • Cadmium appeared to decrease estimated glomerular filtration rate in girls • These effects were somewhat alleviated by selenium.« less

  13. Arsenic in drinking water and urinary tract cancers: a systematic review of 30 years of epidemiological evidence

    PubMed Central

    2014-01-01

    Background Arsenic in drinking water is a public health issue affecting hundreds of millions of people worldwide. This review summarizes 30 years of epidemiological studies on arsenic exposure in drinking water and the risk of bladder or kidney cancer, quantifying these risks using a meta-analytical framework. Methods Forty studies met the selection criteria. Seventeen provided point estimates of arsenic concentrations in drinking water and were used in a meta-analysis of bladder cancer incidence (7 studies) and mortality (10 studies) and kidney cancer mortality (2 studies). Risk estimates for incidence and mortality were analyzed separately using Generalized Linear Models. Predicted risks for bladder cancer incidence were estimated at 10, 50 and 150 μg/L arsenic in drinking water. Bootstrap randomizations were used to assess robustness of effect size. Results Twenty-eight studies observed an association between arsenic in drinking water and bladder cancer. Ten studies showed an association with kidney cancer, although of lower magnitude than that for bladder cancer. The meta-analyses showed the predicted risks for bladder cancer incidence were 2.7 [1.2–4.1]; 4.2 [2.1–6.3] and; 5.8 [2.9–8.7] for drinking water arsenic levels of 10, 50, and 150 μg/L, respectively. Bootstrapped randomizations confirmed this increased risk, but, lowering the effect size to 1.4 [0.35–4.0], 2.3 [0.59–6.4], and 3.1 [0.80–8.9]. The latter suggests that with exposures to 50 μg/L, there was an 83% probability for elevated incidence of bladder cancer; and a 74% probability for elevated mortality. For both bladder and kidney cancers, mortality rates at 150 ug/L were about 30% greater than those at 10 μg/L. Conclusion Arsenic in drinking water is associated with an increased risk of bladder and kidney cancers, although at lower levels (<150 μg/L), there is uncertainty due to the increased likelihood of exposure misclassification at the lower end of the exposure curve. Meta-analyses suggest exposure to 10 μg/L of arsenic in drinking water may double the risk of bladder cancer, or at the very least, increase it by about 40%. With the large number of people exposed to these arsenic concentrations worldwide the public health consequences of arsenic in drinking water are substantial. PMID:24889821

  14. Secretion of arsenic, cholesterol, vitamin E, and zinc from the site of arsenical melanosis and leucomelanosis in skin.

    PubMed

    Yousuf, A K M; Misbahuddin, Mir; Rahman, Md Sayedur

    2011-06-01

    Melanosis and leucomelanosis with or without keratosis are the earliest symptoms of arsenicosis. Uneven distribution of arsenical melanosis and leucomelanosis in skin led us to investigate the possibility of preferential secretion of arsenic and three constituents of sweat; cholesterol, vitamin E, and zinc. Twenty-four-hour skin secretion was collected from skin lesions and unaffected sites of 20 patients. Skin secretions were collected from 20 people exposed to arsenic-contaminated drinking water and 20 healthy, unexposed individuals. The secretion of arsenic from the skin of healthy controls (mean ± SE; unit: μg/in.(2) of skin/24 h; chest: 0.6 ± 0.2; back: 0.3 ± 0.1; abdomen: 0.5 ± 0.2) was increased several folds in arsenic-exposed controls (chest: 8.4 ± 1.8; back: 8.3 ± 1.9; abdomen: 6.7 ± 1.8) and patients (chest: 9.2 ± 1.3; back: 7.8 ± 1.3; abdomen: 5.2 ± 1.0). There was no difference in the skin lesions and unaffected sites in patients. However, the secretion of cholesterol was significantly lower in the chest of patients (190 ± 36) and healthy controls (686 ± 100) (p < 0.001). Secretions of vitamin E were low in healthy controls (chest: 8.5 ± 3.1; back: 5.2 ± 1.7; and abdomen: 8.7 ± 2.4), higher in arsenic-exposed controls (chest: 30.2 ± 8.1; back: 16.3 ± 8.9; and abdomen: 24.8 ± 9.3), and highest in patients [chest: 91.4 ± 14.9 (p < 0.0001 vs. control); back: 72.4 ± 13.2 (p < 0.001 vs. control); and abdomen: 46.8 ± 12.9]. Chronic intake of arsenic led to several folds higher secretion of zinc both in patients and in arsenic-exposed controls. One molecule of arsenic appears to be co-secreted with two molecules of zinc. Arsenic skin lesions showed no alteration in secretion of arsenic, although the secretion of cholesterol, vitamin E, and zinc was changed. Potential implications are discussed.

  15. NEVADA ARSENIC STUDY

    EPA Science Inventory

    The effects of exposure to arsenic in U.S. drinking water at low levels are difficult to assess. In particular, studies of sufficient sample size on US populations exposed to arsenic in drinking water are few. Churchill County, NV (population 25000) has arsenic levels in drinki...

  16. Evaluation of the serum catalase and myeloperoxidase activities in chronic arsenic-exposed individuals and concomitant cytogenetic damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Mayukh; Banerjee, Nilanjana; Ghosh, Pritha

    2010-11-15

    Chronic arsenic exposure through contaminated drinking water is a major environmental health issue. Chronic arsenic exposure is known to exert its toxic effects by a variety of mechanisms, of which generation of reactive oxygen species (ROS) is one of the most important. A high level of ROS, in turn, leads to DNA damage that might ultimately culminate in cancer. In order to keep the level of ROS in balance, an array of enzymes is present, of which catalase (CAT) and myeloperoxidase (MPO) are important members. Hence, in this study, we determined the activities of these two enzymes in the seramore » and chromosomal aberrations (CA) in peripheral blood lymphocytes in individuals exposed and unexposed to arsenic in drinking water. Arsenic in drinking water and in urine was used as a measure of exposure. Our results show that individuals chronically exposed to arsenic have significantly higher CAT and MPO activities and higher incidence of CA. We found moderate positive correlations between CAT and MPO activities, induction of CA and arsenic in urine and water. These results indicate that chronic arsenic exposure causes higher CAT and MPO activities in serum that correlates with induction of genetic damage. We conclude that the serum levels of these enzymes might be used as biomarkers of early arsenic exposure induced disease much before the classical dermatological symptoms of arsenicosis begin to appear.« less

  17. Fluoxetine treatment ameliorates depression induced by perinatal arsenic exposure via a neurogenic mechanism

    PubMed Central

    Tyler, Christina R.; Solomon, Benjamin R.; Ulibarri, Adam L.; Allan, Andrea M.

    2014-01-01

    Several epidemiological studies have reported an association between arsenic exposure and increased rates of psychiatric disorders, including depression, in exposed populations. We have previously demonstrated that developmental exposure to low amounts of arsenic induces depression in adulthood along with several morphological and molecular aberrations, particularly associated with the hippocampus and the hypothalamic–pituitary–adrenal (HPA) axis. The extent and potential reversibility of this toxin-induced damage has not been characterized to date. In this study, we assessed the effects of fluoxetine, a selective serotonin reuptake inhibitor antidepressant, on adult animals exposed to arsenic during development. Perinatal arsenic exposure (PAE) induced depressive-like symptoms in a mild learned helplessness task and in the forced swim task after acute exposure to a predator odor (2,4,5-trimethylthiazoline, TMT). Chronic fluoxetine treatment prevented these behaviors in both tasks in arsenic-exposed animals and ameliorated arsenic-induced blunted stress responses, as measured by corticosterone (CORT) levels before and after TMT exposure. Morphologically, chronic fluoxetine treatment reversed deficits in adult hippocampal neurogenesis (AHN) after PAE, specifically differentiation and survival of neural progenitor cells. Protein expression of BDNF, CREB, the glucocorticoid receptor (GR), and HDAC2 was significantly increased in the dentate gyrus of arsenic animals after fluoxetine treatment. This study demonstrates that damage induced by perinatal arsenic exposure is reversible with chronic fluoxetine treatment resulting in restored resiliency to depression via a neurogenic mechanism. PMID:24952232

  18. Health Risk Assessment of Embedded Depleted Uranium: Behavior, Physiology, Histology and Biokenetic Modeling.

    DTIC Science & Technology

    1996-11-01

    increased urinary excretion of beta2-microglobulin and various amino acids. In rats exposed subchronically to low doses (cumulative dose: 0.66 or 1.32 mg/kg...leakage or failure of tubule reabsorption. Urinary enzymes are sensitive, non- invasive markers of toxicity primarily in the kidney tubules46. NAG is a...42 Neuman, W.F., Urinary uranium as a measure of exposure hazard, Industrial. Med. Surgery, 19 (1950) 185-191. 43 Neuman, W.F., Fleming, R.W., Dounce

  19. Increased micronucleus, nucleoplasmic bridge, and nuclear bud frequencies in the peripheral blood lymphocytes of diesel engine exhaust-exposed workers.

    PubMed

    Zhang, Xiao; Duan, Huawei; Gao, Feng; Li, Yuanyuan; Huang, Chuanfeng; Niu, Yong; Gao, Weimin; Yu, Shanfa; Zheng, Yuxin

    2015-02-01

    The International Agency for Research on Cancer has recently reclassified diesel engine exhaust (DEE) as a Group 1 carcinogen. Micronucleus (MN), nucleoplasmic bridge (NPB), and nuclear bud (NBUD) frequencies in peripheral blood lymphocytes (PBLs) are associated with cancer risk. However, the impact of DEE exposure on MN frequency has not been thoroughly elucidated due to mixed exposure and its impact on NPB and NBUD frequencies has never been explored in humans. We recruited 117 diesel engine testing workers with exclusive exposure to DEE and 112 non-DEE-exposed workers, and then we measured urinary levels of 4 mono-hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) using high-performance liquid chromatography-mass spectrometry as well as MN, NPB, and NBUD frequencies in PBLs using cytokinesis-block MN assay. The DEE-exposed workers exhibited significantly higher MN, NPB, and NBUD frequencies than the non-DEE-exposed workers (P < 0.05). Among all study subjects, increasing levels of all 4 urinary OH-PAHs, on both quartile and continuous scales, were associated with increased MN, NPB, and NBUD frequencies (all P < 0.05). When the associations were analyzed separately in DEE-exposed and non-DEE-exposed workers, we found that the association between increasing quartiles of urinary 9-hydroxyphenanthrene (9-OHPh) and MN frequencies persisted in DEE-exposed workers (P = 0.001). The percent of MN frequencies increased, on average, by 23.99% (95% confidential interval, 9.64-39.93) per 1-unit increase in ln-transformed 9-OHPh. Our results clearly show that exposure to DEE can induce increases in MN, NPB, and NBUD frequencies in PBLs and suggest that DEE exposure level is associated with MN frequencies. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. In utero arsenic exposure induces early onset of atherosclerosis in ApoE−/− mice

    PubMed Central

    Srivastava, Sanjay; D’Souza, Stanley E.; Sen, Utpal; States, J. Christopher

    2007-01-01

    Consumption of arsenic contaminated drinking water has been linked to higher rates of coronary disease, stroke, and peripheral arterial disease. Recent evidence suggests that early life exposures may play a significant role in the onset of chronic adult diseases. To investigate the potential for in utero exposure to accelerate the onset of cardiovascular disease we exposed pregnant ApoE-knockout (ApoE−/−) mice to arsenic in their drinking water and examined the aortic trees of their male offspring for evidence of early disease 10 and 16 weeks after birth. Mice were maintained on normal chow after weaning. ApoE−/− mice are a commonly used model for atherogenesis and spontaneously develop atherosclerotic disease. Mice exposed to arsenic in utero showed a >2-fold increase in lesion formation in the aortic roots as well as the aortic arch compared to control mice at both 10 and 16 weeks of age. The mice exposed to arsenic also had a 20 – 40% decrease in total triglycerides, but no change in total cholesterol, phospholipids and total abundance of VLDL or HDL particles. Subfractionation of VLDL particles showed a decrease in large VLDL particles. In addition, the arsenic exposed mice showed a vasorelaxation defect in response to acetylcholine suggesting disturbance of endothelial cell signalling. These results indicate that in utero arsenic exposure induces an early onset of atherosclerosis in ApoE−/− mice without a hyperlipidemic diet and support the hypothesis that in utero arsenic exposure may be atherogenic in humans. PMID:17317095

  1. Urinary tuberculosis is associated with the development of urothelial carcinoma but not renal cell carcinoma: a nationwide cohort study in Taiwan

    PubMed Central

    Lien, Y-C; Wang, J-Y; Lee, M-C; Shu, C-C; Chen, H-Y; Hsieh, C-H; Lee, C-H; Lee, L-N; Chao, K-M

    2013-01-01

    Background: Obstructive uropathy and chronic urinary tract infection increase the risk of urinary tract cancer. Urinary tuberculosis (UTB) can cause chronic urinary tract inflammation, lead to obstructive uropathy, and potentially contribute to the development of urinary tract cancer. However, the association between UTB and urinary tract cancer has not been studied. Methods: This study enrolled 135 142 tuberculosis (TB) cases (male, 69%) from a nationwide health insurance research database in Taiwan and investigated the risk factors for urinary tract cancer, with emphasis on a history of UTB. The incidence of urinary tract cancer in the general population without TB was also calculated for comparison. Results: The TB patients had a mean age of 57.5±19.5 years. Of the 1287 UTB and 133 855 non-UTB patients, 15 (1.2%) and 396 (0.3%) developed urothelial carcinoma, respectively (P<0.001); and 2 (0.2%) and 96 (0.1%) developed renal cell carcinoma, respectively (P=0.240). Cox regression analysis revealed that age, male sex, end-stage renal disease, obstructive uropathy, arsenic intoxication, organ transplantation, and UTB (hazard ratio: 3.38 (2.01–5.69)) were independent risk factors for urothelial carcinoma. The hazard ratio of UTB was higher among female patients (5.26 (2.12–13.06)) than that among male patients (2.96 (1.57–5.60)). Conclusion: Urinary tuberculosis had a strong association with urothelial carcinoma, but not with renal cell carcinoma. In TB endemic areas, the urinary tract of TB patients should be scrutinised. It is also imperative that these patients be followed-up carefully in the post-treatment period, and urinalysis, ultrasonography or endoscopy should be an integral part of the follow-up. PMID:24129236

  2. Arsenic: geochemical distribution and health risk in Italy

    NASA Astrophysics Data System (ADS)

    Zuzolo, Daniela; Cicchella, Domenico; Albanese, Stefano; Catani, Vittorio; Dinelli, Enrico; Lima, Annamaria; Valera, Paolo; De Vivo, Benedetto

    2017-04-01

    Characterization of risks to human health is determinant for risk management and population surveillance. This study represent the first work at national scale for Italy about arsenic occurrence, distribution and health impact. We analyzed the As geochemical distribution in different environmental matrices on the whole Italian territory, and assessed both carcinogenic and non-carcinogenic risks for different exposure routes and age groups. The results demonstrate that, in Italy, arsenic is present in significant concentrations both in water (up to 27.2 µg/L) and soils (up to 70 mg/kg). Its presence is mainly controlled by geological processes and locally reflects the industrial history of the Country. The population of the Central Italy, where high content of arsenic in the analyzed samples is due to the presence of alkaline volcanics, are the most exposed to the health risk. Based on the results of our work, it is clear that the consumption of tap water for potable use is the most impactful route for As daily exposure and play an important role in governing potential cancer and non-cancer risks for the considered population. It is interesting to observe that the Incremental Life Cancer Risk through water ingestion show that almost 80% of data falls above the internationally accepted benchmark value of 1 x 10-5. Moreover it was demonstrated that childhood is the most susceptible age stage to As exposure. Geochemical mapping provided a useful tool to spatially analyze and represent data and to highlight the most critic areas and the most exposed population to arsenic at national scale. In conclusion, this study improve knowledge about As occurrence for an entire Country, recognizing an health emerging problem. It might be a good starting point to support the urgently needed policy actions, in order to prevent and reduce the health risk. Moreover, the performed method in this case study research is potentially generalizable and applicable in other countries.

  3. [Effect of glutathione and sodium selenite on the metabolism of arsenic in mice exposed to arsenic through drinking water].

    PubMed

    Yu, Xiao-Yun; Zhong, Yuan; Niu, Yu-Hong; Qu, Chun-Qing; Li, Ge-Xin; Lü, Xiu-Qiang; Sun, Gui-Fan; Jin, Ya-Ping

    2008-09-01

    To explore the effect of glutathione (GSH) and sodium selenite on the metabolism of arsenic in the liver, kidney and blood of mice exposed to iAsIII through drinking water. The mice were randomly divided into control, arsenic, GSH and sodium selenite group, respectively. And each group had eight mice and the mice were exposed to 50 mg/L arsenite by drinking water for 4 weeks. Mice were intraperitoneally injected with GSH (600 mg/kg) and sodium selenite (1 mg/kg) for seven days from the beginning of the fourth week. At the end of the fourth week, liver, kidney and blood were sampled to assess the concentrations of inorganic arsenic (iAs), monomethylarsenic acid (MMA), dimethylarsenic acid (DMA) by hydride generation trapping by ultra-hypothermia coupled with atomic absorption spectrometry. The liver DMA (233.76 +/- 60.63 ng/g) concentration in GSH group was significantly higher than the arsenic group (218.36 +/- 42.71 ng/g). The concentration of DMA (88.52 +/- 30.86 ng/g) and total arsenic (TAs) (162.32 +/- 49.45 ng/g) in blood of GSH group was significantly higher than those [(45.32 +/- 12.19 ng/g), (108.51 +/- 18.00 ng/g), respectively] of arsenic groups(q values were 3.06, 6.40, 10.72 respectively, P < 0.05). The primary methylated index (PMI) (0.65 +/- 0.050) and secondary methylated index (SMI) (0.55 +/- 0.050) in liver sample of GSH group were significantly higher than those (0.58 +/- 0.056, 0.44 +/- 0. 093) in arsenic group. In blood samples, the PMI (0.85 +/- 0.066) in GSH group was significantly higher than that (0.54 +/- 0.113) in arsenic group (q values were 3.75, 5.26, 4.21 respectively, P < 0.05). However, no significant difference was identified between sodium selenite and arsenic groups in liver, kidney or blood samples. And no significant difference was detected in kidney samples among all arsenic exposing groups. Exogenous GSH could promote the methylated metabolism of iAsIII, but sodium selenite showed no significant effects.

  4. Biomonitoring of urinary metals in a population living in the vicinity of industrial sources: a comparison with the general population of Andalusia, Spain.

    PubMed

    Aguilera, Inmaculada; Daponte, Antonio; Gil, Fernando; Hernández, Antonio F; Godoy, Patricia; Pla, Antonio; Ramos, Juan Luis

    2008-12-15

    The Ria of Huelva (south-west Spain) is one of the most polluted fluvial-estuarine systems in the world. Industrial activity delivers huge amounts of pollutants to the local environment, particularly heavy metals and arsenic. Here we aimed to determine urinary levels of As, Cd, Cr, Cu and Ni in a representative sample (n=857) of adults living in the Ria of Huelva. Levels were compared to those from a representative sample of 861 adults of the general urban population of Andalusia (southern Spain) and multiple regression models were developed to identify individual factors associated with urinary levels of these elements. Arsenic levels were significantly higher in the Ria of Huelva as compared to other Andalusian cities, whereas Cd and Ni levels were significantly lower. Despite these differences, levels in both groups were similar to the reference values reported in previous studies for general population. Age, gender, diet and lifestyle were the major factors contributing to the interindividual variation in urinary metals. In conclusion, despite living in a highly polluted area, the population of the Ria of Huelva failed to show higher urinary levels of the studied metals as compared to a reference urban population of the same region.

  5. Arsenic metabolism and one-carbon metabolism at low-moderate arsenic exposure: Evidence from the Strong Heart Study.

    PubMed

    Spratlen, Miranda Jones; Gamble, Mary V; Grau-Perez, Maria; Kuo, Chin-Chi; Best, Lyle G; Yracheta, Joseph; Francesconi, Kevin; Goessler, Walter; Mossavar-Rahmani, Yasmin; Hall, Meghan; Umans, Jason G; Fretts, Amanda; Navas-Acien, Ana

    2017-07-01

    B-vitamins involved in one-carbon metabolism (OCM) can affect arsenic metabolism efficiency in highly arsenic exposed, undernourished populations. We evaluated whether dietary intake of OCM nutrients (including vitamins B2, B6, folate (B9), and B12) was associated with arsenic metabolism in a more nourished population exposed to lower arsenic than previously studied. Dietary intake of OCM nutrients and urine arsenic was evaluated in 405 participants from the Strong Heart Study. Arsenic exposure was measured as the sum of iAs, monomethylarsonate (MMA) and dimethylarsenate (DMA) in urine. Arsenic metabolism was measured as the individual percentages of each metabolite over their sum (iAs%, MMA%, DMA%). In adjusted models, increasing intake of vitamins B2 and B6 was associated with modest but significant decreases in iAs% and MMA% and increases in DMA%. A significant interaction was found between high folate and B6 with enhanced arsenic metabolism efficiency. Our findings suggest OCM nutrients may influence arsenic metabolism in populations with moderate arsenic exposure. Stronger and independent associations were observed with B2 and B6, vitamins previously understudied in relation to arsenic. Research is needed to evaluate whether targeting B-vitamin intake can serve as a strategy for the prevention of arsenic-related health effects at low-moderate arsenic exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. MDI Biological Laboratory Arsenic Summit: Approaches to Limiting Human Exposure to Arsenic.

    PubMed

    Stanton, Bruce A; Caldwell, Kathleen; Congdon, Clare Bates; Disney, Jane; Donahue, Maria; Ferguson, Elizabeth; Flemings, Elsie; Golden, Meredith; Guerinot, Mary Lou; Highman, Jay; James, Karen; Kim, Carol; Lantz, R Clark; Marvinney, Robert G; Mayer, Greg; Miller, David; Navas-Acien, Ana; Nordstrom, D Kirk; Postema, Sonia; Rardin, Laurie; Rosen, Barry; SenGupta, Arup; Shaw, Joseph; Stanton, Elizabeth; Susca, Paul

    2015-09-01

    This report is the outcome of the meeting "Environmental and Human Health Consequences of Arsenic" held at the MDI Biological Laboratory in Salisbury Cove, Maine, August 13-15, 2014. Human exposure to arsenic represents a significant health problem worldwide that requires immediate attention according to the World Health Organization (WHO). One billion people are exposed to arsenic in food, and more than 200 million people ingest arsenic via drinking water at concentrations greater than international standards. Although the US Environmental Protection Agency (EPA) has set a limit of 10 μg/L in public water supplies and the WHO has recommended an upper limit of 10 μg/L, recent studies indicate that these limits are not protective enough. In addition, there are currently few standards for arsenic in food. Those who participated in the Summit support citizens, scientists, policymakers, industry, and educators at the local, state, national, and international levels to (1) establish science-based evidence for setting standards at the local, state, national, and global levels for arsenic in water and food; (2) work with government agencies to set regulations for arsenic in water and food, to establish and strengthen non-regulatory programs, and to strengthen collaboration among government agencies, NGOs, academia, the private sector, industry, and others; (3) develop novel and cost-effective technologies for identification and reduction of exposure to arsenic in water; (4) develop novel and cost-effective approaches to reduce arsenic exposure in juice, rice, and other relevant foods; and (5) develop an Arsenic Education Plan to guide the development of science curricula as well as community outreach and education programs that serve to inform students and consumers about arsenic exposure and engage them in well water testing and development of remediation strategies.

  7. Bioconcentration and arsenic speciation analysis in ragworm, Hediste diversicolor (Muller 1776).

    PubMed

    Gaion, Andrea; Scuderi, Alice; Pellegrini, David; Sartori, Davide

    2013-01-01

    This study focused on bioconcentrations of arsenic in Hediste diversicolor (Müller 1776) after exposure to three different molecule solutions: arsenate, dimethyl-arsinate and arsenobetaine. Speciation analysis was carried out after exposing the organisms to these solutions in order to investigate their arsenic biotransformation capacity. Arsenic reached to the maximum level in these tissues after 15 days' exposure to a solution of 100 μg L(-1) of arsenobetaine, although a significant increase was obtained in worms exposed to arsenate. Speciation analysis shows that trimethyl-arsine oxide is the slowest detoxification phase recorded in experiment.

  8. Humans seem to produce arsenobetaine and dimethylarsinate after a bolus dose of seafood.

    PubMed

    Molin, M; Ulven, S M; Dahl, L; Telle-Hansen, V H; Holck, M; Skjegstad, G; Ledsaak, O; Sloth, J J; Goessler, W; Oshaug, A; Alexander, J; Fliegel, D; Ydersbond, T A; Meltzer, H M

    2012-01-01

    Seafood is the predominant food source of several organoarsenic compounds. Some seafood species, like crustaceans and seaweed, also contain inorganic arsenic (iAs), a well-known toxicant. It is unclear whether human biotransformation of ingested organoarsenicals from seafood result in formation of arsenicals of health concern. The present controlled dietary study examined the urinary excretion of arsenic compounds (total arsenic (tAs), iAs, AB (arsenobetaine), dimethylarsinate (DMA) and methylarsonate (MA)) following ingestion of a single test meal of seafood (cod, 780 μg tAs, farmed salmon, 290 μg tAs or blue mussel, 690 μg tAs or potato (control, 110 μg tAs)) in 38 volunteers. The amount of ingested tAs excreted via the urine within 0-72 h varied significantly among the groups: Cod, 74% (52-92%), salmon 56% (46-82%), blue mussel 49% (37-78%), control 45% (30-60%). The estimated total urinary excretion of AB was higher than the amount of ingested AB in the blue mussel group (112%) and also ingestion of cod seemed to result in more AB, indicating possible endogenous formation of AB from other organoarsenicals. Excretion of iAs was lower than ingested (13-22% of the ingested iAs was excreted in the different groups). Although the ingested amount of iAs+DMA+MA was low for all seafood groups (1.2-4.5% of tAs ingested), the urinary DMA excretion was high in the blue mussel and salmon groups, counting for 25% and 11% of the excreted tAs respectively. In conclusion our data indicate a possible formation of AB as a result of biotransformation of other organic arsenicals. The considerable amount of DMA excreted is probably not only due to methylation of ingested iAs, but due to biotransformation of organoarsenicals making it an inappropriate biomarker of iAs exposure in populations with a high seafood intake. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Interpretation of Urinary and Blood Benzene biomarkers of Exposure for Non-Occupationally Exposed Individuals

    EPA Science Inventory

    Non-occupational exposure to benzene occurs primarily through inhalation ofair impacted by motor vehicle exhaust, fuel sources, and cigarette smoke. This study relates published measurements ofbenzene biomarkers to air exposure concentrations. Benzene has three reliable biomar...

  10. Arsenic exposure, genetic susceptibility and leukocyte telomere length in an Italian young adult population.

    PubMed

    Borghini, Andrea; Faita, Francesca; Mercuri, Antonella; Minichilli, Fabrizio; Bustaffa, Elisa; Bianchi, Fabrizio; Andreassi, Maria Grazia

    2016-09-01

    Arsenic-induced health effects may be associated with critically shortened telomeres. However, few data are available on the effects of arsenic exposure on telomere length. The aim of this study was to investigate the effects of chronic arsenic exposure on leukocyte telomere length (LTL) as well as the contribution of common polymorphisms in genes implicated in arsenic metabolism (GSTT1 and GSTM1) and DNA repair (hOGG1 and XRCC1). A group of 241 healthy subjects was enrolled from four areas of Italy known to be affected by natural or anthropogenic arsenic pollution. Urine samples were tested for inorganic As (iAs), monomethylarsinic (MMA) and dimethylarsinic acid (DMA). LTL was evaluated by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Genotyping was carried out by PCR-RFLP on leukocyte DNA. In multiple linear regression analysis, LTL was significantly and inversely correlated with age (β = -0.231, P = 0.006) and showed a certain trend toward significance with iAs urinary concentration (log10 iAs, β = -0.106, P = 0.08). The genotype distribution showed significant associations between GSTT1 and the As concentration (log10 iAs, P = 0.01) and metabolite patterns (log10 DMA, P = 0.05) in the urine. However, GST genes did not interact with arsenic exposure in the modulation of LTL. Conversely, the combined presence of a higher level of iAs + MMA + DMA ≥ 19.3 μg/l (F = 6.0, P interaction = 0.01), Asi ≥ 3.86 (F = 3.9, P interaction = 0.04) μg/l, iAs + MMA + DMA ≥ 15 μg/l (F = 4.2, P interaction = 0.04) and hOGG1 Cys allele was associated with a significantly lower LTL. An interaction between XRCC1 Arg399Gln and arsenic exposure was also observed (all P interaction = 0.04). These findings suggest that telomere shortening may represent a mechanism that contributes to arsenic-related disease. The interaction of hOGG1 and XRCC1 DNA repair polymorphisms and exposure enhances telomeric DNA damage. Future studies are warranted to understand better the epidemiologic impact of arsenic on telomere function as well as to identify the subgroups of exposed subjects who need better health surveillance. © The Author 2016. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Mechanism of erythrocyte death in human population exposed to arsenic through drinking water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Debabrata; Banerjee, Mayukh; Sen, Gargi

    2008-07-01

    Arsenic contamination in drinking water is one of the biggest natural calamities, which has become an imperative threat to human health throughout the world. Abbreviation of erythrocyte lifespan leading to the development of anemia is a common sequel in arsenic exposed population. This study was undertaken to explore the mechanism of cell death in human erythrocytes during chronic arsenic exposure. Results revealed transformation of smooth discoid red cells into evaginated echinocytic form in the exposed individuals. Further distortion converted reversible echinocytes to irreversible spheroechinocytes. Arsenic toxicity increased membrane microviscosity along with an elevation of cholesterol/phospholipid ratio, which hampered the flexibilitymore » of red cell membrane and made them less deformable. Significant increase in the binding of merocyanine 540 with erythrocyte membrane due to arsenic exposure indicated disruption of lipid packing in the outer leaflet of the cell membrane resulting from altered transbilayer phospholipid asymmetry. Arsenic induced eryptosis was characterized by cell shrinkage and exposure of phosphatidylserine at the cell surface. Furthermore, metabolic starvation with depletion of cellular ATP triggered apoptotic removal of erythrocytes from circulation. Significant decrease in reduced glutathione content indicating defective antioxidant capacity was coupled with enhancement of malondialdehyde and protein carbonyl levels, which pointed to oxidative damage to erythrocyte membrane. Arsenic toxicity intervened into red cell membrane integrity eventually leading to membrane destabilization and hemoglobin release. The study depicted the involvement of both erythrophagocytosis and hemolysis in the destruction of human erythrocytes during chronic arsenic exposure.« less

  12. [Effects on serum myelin proteins of n-hexane exposure].

    PubMed

    Yi, Juan; Zhou, Wei; He, Jia-xi; Liu, Qing-jun; Huang, Xian-qing

    2011-02-01

    Exploring the effects of n-hexane on expression of serum myelin proteins in occupational exposure workers, and finding the early biomarker of n-hexane exposure. In the study, 373 subjects were recruited, 269 exposure workers (work experience of more than1 year) and 104 non-exposure workers were selected. Firstly examined the level of urinary 2,5-hexanedione in the two groups, based on urinary 2,5-hexanedione biological limit value (4 mg/L), the exposed group was divided into high-exposed group and low-exposed group. And then collected blood samples and extracted serum. Human peripheral myelin protein zero (P0) antibody (IgG, IgM) and human peripheral myelin protein two (P2) antibody (IgG, IgM) analysis was performed according to ELISA kit. The concentration of urinary 2,5-hexanedione in the exposed group was (3.10 ± 1.35) mg/L. The level of P0 antibody (IgG, IgM) and P2 antibody (IgG, IgM) in the high-exposed group and low-exposed group were both higher than that in the controls (P < 0.01). P0 antibody and P2 antibody could be used as the early biomarkers of n-hexane exposure, which not only evaluate the occupational hazards in the early, but also provide the policy maker with scientific evidence.

  13. Methyl group balance in brain and liver: role of choline on increased S-adenosyl methionine (SAM) demand by chronic arsenic exposure.

    PubMed

    Ríos, Rosalva; Santoyo, Martha E; Cruz, Daniela; Delgado, Juan Manuel; Zarazúa, Sergio; Jiménez-Capdeville, María E

    2012-11-30

    Arsenic toxicity has been related to its interference with one carbon metabolism, where a high demand of S-adenosylmethionine (SAM) for arsenic methylation as well as a failure of its regeneration would compromise the availability of methyl groups for diverse cellular functions. Since exposed animals show disturbances of methylated products such as methylated arginines, myelin and axon membranes, this work investigates whether alterations of SAM, choline and phosphatidylcholine (PC) in the brain of arsenic exposed rats are associated with myelin alterations and myelin basic protein (MBP) immunoreactivity. Also these metabolites, morphologic and biochemical markers of methyl group alterations were analyzed in the liver, the main site of arsenic methylation. In adult, life-long arsenic exposed rats through drinking water (3 ppm), no changes of SAM, choline and PC concentrations where found in the brain, but SAM and PC were severely decreased in liver accompanied by a significant increase of choline. These results suggest that choline plays an important role as methyl donor in arsenic exposure, which could underlie hepatic affections observed when arsenic exposure is combined with other environmental factors. Also, important myelin and nerve fiber alterations, accompanied by a 75% decrease of MBP immunoreactivity were not associated with a SAM deficit in the brain. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Associations between DNA methylation in DNA damage response-related genes and cytokinesis-block micronucleus cytome index in diesel engine exhaust-exposed workers.

    PubMed

    Zhang, Xiao; Li, Jie; He, Zhini; Duan, Huawei; Gao, Weimin; Wang, Haisheng; Yu, Shanfa; Chen, Wen; Zheng, Yuxin

    2016-08-01

    Recently, diesel engine exhaust (DEE) was reclassified as a known carcinogen to humans. DNA methylation alterations in DNA damage response (DDR)-related genes have the potential to affect DEE exposure-related cancer risk. However, the evidence regarding the association between DEE exposure and methylation alterations in DDR-related genes is limited. In 117 DEE-exposed workers and 112 non-DEE-exposed workers, we measured urinary concentrations of six mono-hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs). We also determined the methylation levels of three DDR-related genes (p16, RASSF1A, and MGMT) and LINE-1 by bisulfite-pyrosequencing assay. We found that DEE-exposed workers exhibited significantly lower mean promoter methylation levels of p16, RASSF1A, and MGMT than non-DEE-exposed workers (all p < 0.001). In all study subjects and non-smoking workers, increasing quartiles of urinary summed OH-PAHs was associated with hypomethylation of p16, RASSF1A, and MGMT (all p < 0.05). In non-smoking workers, methylation in p16, RASSF1A, and MGMT decreased by 0.36 % [95 % confidential interval (CI): -0.60, -0.11 %], 0.46 % (95 % CI: -0.79, -0.14 %), and 0.55 % (95 % CI: -0.95, -0.15 %), respectively, in association with highest versus lowest quartile of urinary summed OH-PAHs. In addition, p16, RASSF1A, MGMT, and LINE-1 methylation levels showed negative correlations with cytokinesis-block micronucleus cytome index which was previously measured in the same workers (all p < 0.05). In conclusion, our results clearly indicated that DEE exposure and increased genetic damage were associated with hypomethylation of p16, RASSF1A, and MGMT. Future studies with larger sample size are needed to confirm these associations.

  15. Effects of Orally Ingested Arsenic on Respiratory Epithelial Permeability to Bacteria and Small Molecules in Mice

    PubMed Central

    Madenspacher, Jennifer H.; Whitehead, Gregory S.; Thomas, Seddon Y.; Aloor, Jim J.; Gowdy, Kymberly M.; Fessler, Michael B.

    2017-01-01

    Background: Arsenic exposure via drinking water impacts millions of people worldwide. Although arsenic has been associated epidemiologically with increased lung infections, the identity of the lung cell types targeted by peroral arsenic and the associated immune mechanisms remain poorly defined. Objectives: We aimed to determine the impact of peroral arsenic on pulmonary antibacterial host defense. Methods: Female C57BL/6 mice were administered drinking water with 0, 250 ppb, or 25 ppm sodium arsenite for 5 wk and then challenged intratracheally with Klebsiella pneumoniae, Streptococcus pneumoniae, or lipopolysaccharide. Bacterial clearance and immune responses were profiled. Results: Arsenic had no effect on bacterial clearance in the lung or on the intrapulmonary innate immune response to bacteria or lipopolysaccharide, as assessed by neutrophil recruitment to, and cytokine induction in, the airspace. Alveolar macrophage TNFα production was unaltered. By contrast, arsenic-exposed mice had significantly reduced plasma TNFα in response to systemic lipopolysaccharide challenge, together suggesting that the local airway innate immune response may be relatively preserved from arsenic intoxication. Despite intact intrapulmonary bacterial clearance during pneumonia, arsenic-exposed mice suffered dramatically increased bacterial dissemination to the bloodstream. Mechanistically, this was linked to increased respiratory epithelial permeability, as revealed by intratracheal FITC-dextran tracking, serum Club Cell protein 16 measurement, and other approaches. Consistent with barrier disruption at the alveolar level, arsenic-exposed mice had evidence for alveolar epithelial type 1 cell injury. Conclusions: Peroral arsenic has little effect on local airway immune responses to bacteria but compromises respiratory epithelial barrier integrity, increasing systemic translocation of inhaled pathogens and small molecules. https://doi.org/10.1289/EHP1878 PMID:28960179

  16. Oxidative stress and hepatic stellate cell activation are key events in arsenic induced liver fibrosis in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghatak, Subhadip; Biswas, Ayan; Dhali, Gopal Krishna

    2011-02-15

    Arsenic is an environmental toxicant and carcinogen. Exposure to arsenic is associated with development of liver fibrosis and portal hypertension through ill defined mechanisms. We evaluated hepatic fibrogenesis after long term arsenic exposure in a murine model. BALB/c mice were exposed to arsenic by daily gavages of 6 {mu}g/gm body weight for 1 year and were evaluated for markers of hepatic oxidative stress and fibrosis, as well as pro-inflammatory, pro-apoptotic and pro-fibrogenic factors at 9 and 12 months. Hepatic NADPH oxidase activity progressively increased in arsenic exposure with concomitant development of hepatic oxidative stress. Hepatic steatosis with occasional collection ofmore » mononuclear inflammatory cells and mild portal fibrosis were the predominant liver lesion observed after 9 months of arsenic exposure, while at 12 months, the changes included mild hepatic steatosis, inflammation, necrosis and significant fibrosis in periportal areas. The pathologic changes in the liver were associated with markers of hepatic stellate cells (HSCs) activation, matrix reorganization and fibrosis including {alpha}-smooth muscle actin, transforming growth factor-{beta}1, PDGF-R{beta}, pro-inflammatory cytokines and enhanced expression of tissue inhibitor of metalloproteinase-1 and pro({alpha}) collagen type I. Moreover, pro-apoptotic protein Bax was dominantly expressed and Bcl-2 was down-regulated along with increased number of TUNEL positive hepatocytes in liver of arsenic exposed mice. Furthermore, HSCs activation due to increased hepatic oxidative stress observed after in vivo arsenic exposure was recapitulated in co-culture model of isolated HSCs and hepatocytes exposed to arsenic. These findings have implications not only for the understanding of the pathology of arsenic related liver fibrosis but also for the design of preventive strategies in chronic arsenicosis.« less

  17. Biological monitoring and the influence of genetic polymorphism of As3MT and GSTs on distribution of urinary arsenic species in occupational exposure workers.

    PubMed

    Janasik, Beata; Reszka, Edyta; Stanislawska, Magdalena; Wieczorek, Edyta; Fendler, Wojciech; Wasowicz, Wojciech

    2015-08-01

    To examine the differences in urinary arsenic metabolism patterns in men affected by occupational exposure, we performed a study on 149 participants—workers of a copper mill and 52 healthy controls without occupational exposure. To elucidate the role of genetic factors in arsenic (As) metabolism, we studied the associations of six polymorphisms: As3MT Met287Thr (T>C) in exon 9; As3MT A>G in 5'UTR; As3MT C>G in intron 6; As3MT T>G in intron 1; GSTP1 Ile105Val and GSTO2 T>C. Air samples were collected using individual samplers during work shift. Urine samples were analyzed for total arsenic and arsenic chemical forms (As(III); As(V), MMA, DMA, AsB) using HPLC-ICP-MS. A specific polymerase chain reaction was done for the amplification of exons and flanking regions of As3MT and GSTs. The geometric mean arsenic concentrations in the air were 27.6 ± 4.9 µg/m(3). A significant correlation (p < 0.05) was observed between arsenic in air and sum of iAs +MMA and iAs. As3MT (rs3740400) GG homozygotes showed significantly (p < 0.05) higher %iAs (21.8 ± 2.0) in urine than GC+CC heterozygotes (16.0 ± 2.1). A strong association between the gene variants and As species in urine was observed for GSTO2 (rs156697) polymorphism. The findings of the study point out that the concentration of iAs or the sum of iAs + MMA in urine can be a reliable biological indicator of occupational exposure to arsenic. This study demonstrates that As3MT and/or GSTs genotype may influence As metabolism. Nevertheless, further studies investigating genetic polymorphism in occupational conditions are required.

  18. Arsenic-related skin lesions and glutathione S-transferase P1 A1578G (lle105Val) polymorphism in two ethnic clans exposed to indoor combustion of high arsenic coal in one village

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, G.F.; Du, H.; Chen, J.G.

    A total of 2402 patients with arsenic-related skin lesions, such as hyperkeratosis, hyperpigmentation or hypopigmentation, or even skin cancer in a few villages in Southwest Guizhou Autonomous Prefecture, China represent a unique case of endemic arsenism related with indoor combustion of high arsenic coal. This study aimed to investigate the cluster of arsenism cases and the possible relevant factors including GSTP1 polymorphism in two clans of different ethnic origin living in one village for generations. Arsenism morbidity in Miao clan P was significantly lower than in the neighbouring Han clan G1 (5.9 vs. 32.7%, odds ratio (OR)=0.13, 95% confidence intervalmore » (CI): 0.06-0.27, P < 0.0001). No sex differences were confirmed inside both clans. Analyses of the environmental samples indicated that Miao clan P members were exposed to higher amounts of arsenic via inhalation and food ingestion. Hair and urine samples also proved a higher arsenic body burden in ethnic Miao individuals. No corresponding differences by sex were found. Higher frequencies of combined mutant genotype G/G1578 and A/G1578 (OR=4.72, 95% CI: 2.34-9.54, P < 0.0001) and of mutant allele G1578 (OR=3.22, 95% CI: 2.00-5.18, P < 0.0001) were detected in diagnosed arsenism patients than in non-diseased individuals. The Miao individuals showed a lower percentage of combined mutant genotypes (30.6 vs. 52.7%, OR=0.40, 95% CI: 0.19-0.84, P=0.015) as well as of mutant allele G1578 (OR=0.46, 95% CI: 0.24-0.88, P=0.017) than their Han neighbours. Conclusions Genetic predisposition influences dermal arsenism toxicity. The GSTP1 A1578G (IIe105Val) status might be a susceptibility factor for arsenic-related skin lesions.« less

  19. GENE EXPRESSION PROFILING OF NORMAL HUMAN BRONCHIAL EPITHELIAL CELLS EXPOSED TO TRIVALENT ARSENICALS AND DIMETHYLTHIOARSINIC ACID

    EPA Science Inventory

    Lung is a major target for arsenic carcinogenesis in humans. However, the carcinogenic mode of action of arsenicals is unknown. We investigated, in human bronchial epithelial (BEAS2B) cells, the effects of inorganic arsenic (iAsIII), monomethylarsonous acid (MMAIII), dimethylarsi...

  20. Genomic-wide analysis of BEAS-2B cells exposed to Trivalent Arsenicals and Dimethylthioarsinic acid

    EPA Science Inventory

    Lung is a major target for arsenic carcinogenesis in humans by both oral and inhalation routes. However, the carcinogenic mode of action of arsenicals is unknown. We investigated the effects of inorganic arsenic (iAsIII), monomethylarsonous acid (MMAIII), dimethylarsinous acid (D...

  1. Arsenic Exposure and Toxicology: A Historical Perspective

    EPA Science Inventory

    The metalloid arsenic is a natural environmental contaminant to which humans are routinely exposed in food, water, air and soil. Arsenic has a long history of use as a homicidal agent, but in the past 100 years arsenic, in various forms, has also been used as a pesticide and a ch...

  2. FOLATE DEFICIENCY ENHANCES ARSENIC EFFECTS ON EXPRESSION OF GENES INVOLVED IN EPIDERMAL DIFFERENTIATION

    EPA Science Inventory

    Chronic arsenic exposure in humans is associated with cancers of the skin, lung, and bladder. There is evidence that folate deficiency may increase susceptibility to arsenic¿s effects, including arsenic-induced skin lesions. K6/ODC mice develop skin tumors when exposed to 10 ppm ...

  3. MDI Biological Laboratory Arsenic Summit: Approaches to Limiting Human Exposure to Arsenic

    PubMed Central

    Stanton, Bruce A.

    2015-01-01

    This report is the outcome of the meeting: “Environmental and Human Health Consequences of Arsenic”, held at the MDI Biological Laboratory in Salisbury Cove, Maine, August 13–15, 2014. Human exposure to arsenic represents a significant health problem worldwide that requires immediate attention according to the World Health Organization (WHO). One billion people are exposed to arsenic in food and more than 200 million people ingest arsenic via drinking water at concentrations greater than international standards. Although the U.S. Environmental Protection Agency (EPA) has set a limit of 10 micrograms per liter (10 μg/L) in public water supplies and the WHO has recommended an upper limit of 10 μg/L, recent studies indicate that these limits are not protective enough. In addition, there are currently few standards for arsenic in food. Those who participated in the Summit support citizens, scientists, policymakers, industry and educators at the local, state, national and international levels to: (1) Establish science-based evidence for setting standards at the local, state, national, and global levels for arsenic in water and food; (2) Work with government agencies to set regulations for arsenic in water and food, to establish and strengthen non-regulatory programs, and to strengthen collaboration among government agencies, NGOs, academia, the private sector, industry and others; (3) Develop novel and cost-effective technologies for identification and reduction of exposure to arsenic in water; (4) Develop novel and cost-effective approaches to reduce arsenic exposure in juice, rice, and other relevant foods, and (5) Develop an Arsenic Education Plan to guide the development of science curricula as well as community outreach and education programs that serve to inform students and consumers about arsenic exposure and engage them in well water testing and development of remediation strategies. PMID:26231509

  4. Chronic Exposure to Arsenic and Markers of Cardiometabolic Risk: A Cross-Sectional Study in Chihuahua, Mexico.

    PubMed

    Mendez, Michelle A; González-Horta, Carmen; Sánchez-Ramírez, Blanca; Ballinas-Casarrubias, Lourdes; Cerón, Roberto Hernández; Morales, Damián Viniegra; Terrazas, Francisco A Baeza; Ishida, María C; Gutiérrez-Torres, Daniela S; Saunders, R Jesse; Drobná, Zuzana; Fry, Rebecca C; Buse, John B; Loomis, Dana; García-Vargas, Gonzalo G; Del Razo, Luz M; Stýblo, Miroslav

    2016-01-01

    Exposure to arsenic (As) concentrations in drinking water > 150 μg/L has been associated with risk of diabetes and cardiovascular disease, but little is known about the effects of lower exposures. This study aimed to examine whether moderate As exposure, or indicators of individual As metabolism at these levels of exposure, are associated with cardiometabolic risk. We analyzed cross-sectional associations between arsenic exposure and multiple markers of cardiometabolic risk using drinking-water As measurements and urinary As species data obtained from 1,160 adults in Chihuahua, Mexico, who were recruited in 2008-2013. Fasting blood glucose and lipid levels, the results of an oral glucose tolerance test, and blood pressure were used to characterize cardiometabolic risk. Multivariable logistic, multinomial, and linear regression were used to assess associations between cardiometabolic outcomes and water As or the sum of inorganic and methylated As species in urine. After multivariable adjustment, concentrations in the second quartile of water As (25.5 to < 47.9 μg/L) and concentrations of total speciated urinary As (< 55.8 μg/L) below the median were significantly associated with elevated triglycerides, high total cholesterol, and diabetes. However, moderate water and urinary As levels were also positively associated with HDL cholesterol. Associations between arsenic exposure and both dysglycemia and triglyceridemia were higher among individuals with higher proportions of dimethylarsenic in urine. Moderate exposure to As may increase cardiometabolic risk, particularly in individuals with high proportions of urinary dimethylarsenic. In this cohort, As exposure was associated with several markers of increased cardiometabolic risk (diabetes, triglyceridemia, and cholesterolemia), but exposure was also associated with higher rather than lower HDL cholesterol. Mendez MA, González-Horta C, Sánchez-Ramírez B, Ballinas-Casarrubias L, Hernández Cerón R, Viniegra Morales D, Baeza Terrazas FA, Ishida MC, Gutiérrez-Torres DS, Saunders RJ, Drobná Z, Fry RC, Buse JB, Loomis D, García-Vargas GG, Del Razo LM, Stýblo M. 2016. Chronic exposure to arsenic and markers of cardiometabolic risk: a cross-sectional study in Chihuahua, Mexico. Environ Health Perspect 124:104-111; http://dx.doi.org/10.1289/ehp.1408742.

  5. Arsenic methylation capacity is associated with breast cancer in northern Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López-Carrillo, Lizbeth; Hernández-Ramírez, Raúl Ulises; Gandolfi, A. Jay

    Exposure to environmental contaminants, dietary factors and lifestyles may explain worldwide different breast cancer (BC) incidence. Inorganic arsenic (iAs) in the drinking water is a concern in many regions, such as northern Mexico. Studies in several countries have associated the proportion of urinary monomethylarsenic (%MMA) with increased risks for many As-related diseases, including cancer. To investigate the potential relationships between the risk of BC and the capacity to methylate iAs, a hospital-based case–control study (1016 cases/1028 controls) was performed in northern Mexico. Women were directly interviewed about their reproductive histories. The profile of As metabolites in urine was determined bymore » HPLC-ICP-MS and methylation capacity was assessed by metabolite percentages and indexes. Total urinary As, excluding arsenobetaine (TAs-AsB), ranged from 0.26 to 303.29 μg/L. Most women (86%) had TAs-AsB levels below As biological exposure index (35 μg/L). Women with higher %MMA and/or primary methylation index (PMI) had an increased BC risk (%MMA OR{sub Q5vs.Q1} = 2.63; 95%CI 1.89,3.66; p for trend < 0.001; PMI OR{sub Q5vs.Q1} = 1.90; 95%CI 1.39,2.59, p for trend < 0.001). In contrast, women with higher proportion of urinary dimethylarsenic (%DMA) and/or secondary methylation index (SMI) had a reduced BC risk (%DMA OR{sub Q5vs.Q1} = 0.63; 95%CI 0.45,0.87, p for trend 0.006; SMI OR{sub Q5vsQ1} = 0.42, 95%CI 0.31,0.59, p for trend < 0.001). Neither %iAs nor total methylation index was associated to BC risk. Inter-individual variations in iAs metabolism may play a role in BC carcinogenesis. Women with higher capacity to methylate iAs to MMA and/or a lower capacity to further methylate MMA to DMA were at higher BC risk. - Highlights: • Arsenic methylation capacity is associated to an increased breast cancer (BC) risk. • Women with higher capacity to methylate arsenic to MMA were at higher BC risk. • Women with higher capacity to methylate arsenic to DMA were at lower BC risk. • Associations occurred at urinary As levels near the biological exposure index.« less

  6. Chronic Exposure to Arsenic and Markers of Cardiometabolic Risk: A Cross-Sectional Study in Chihuahua, Mexico

    PubMed Central

    Mendez, Michelle A.; González-Horta, Carmen; Sánchez-Ramírez, Blanca; Ballinas-Casarrubias, Lourdes; Cerón, Roberto Hernández; Morales, Damián Viniegra; Terrazas, Francisco A. Baeza; Ishida, María C.; Gutiérrez-Torres, Daniela S.; Saunders, R. Jesse; Drobná, Zuzana; Fry, Rebecca C.; Buse, John B.; Loomis, Dana; García-Vargas, Gonzalo G.; Del Razo, Luz M.

    2015-01-01

    Background Exposure to arsenic (As) concentrations in drinking water > 150 μg/L has been associated with risk of diabetes and cardiovascular disease, but little is known about the effects of lower exposures. Objective This study aimed to examine whether moderate As exposure, or indicators of individual As metabolism at these levels of exposure, are associated with cardiometabolic risk. Methods We analyzed cross-sectional associations between arsenic exposure and multiple markers of cardiometabolic risk using drinking-water As measurements and urinary As species data obtained from 1,160 adults in Chihuahua, Mexico, who were recruited in 2008–2013. Fasting blood glucose and lipid levels, the results of an oral glucose tolerance test, and blood pressure were used to characterize cardiometabolic risk. Multivariable logistic, multinomial, and linear regression were used to assess associations between cardiometabolic outcomes and water As or the sum of inorganic and methylated As species in urine. Results After multivariable adjustment, concentrations in the second quartile of water As (25.5 to < 47.9 μg/L) and concentrations of total speciated urinary As (< 55.8 μg/L) below the median were significantly associated with elevated triglycerides, high total cholesterol, and diabetes. However, moderate water and urinary As levels were also positively associated with HDL cholesterol. Associations between arsenic exposure and both dysglycemia and triglyceridemia were higher among individuals with higher proportions of dimethylarsenic in urine. Conclusions Moderate exposure to As may increase cardiometabolic risk, particularly in individuals with high proportions of urinary dimethylarsenic. In this cohort, As exposure was associated with several markers of increased cardiometabolic risk (diabetes, triglyceridemia, and cholesterolemia), but exposure was also associated with higher rather than lower HDL cholesterol. Citation Mendez MA, González-Horta C, Sánchez-Ramírez B, Ballinas-Casarrubias L, Hernández Cerón R, Viniegra Morales D, Baeza Terrazas FA, Ishida MC, Gutiérrez-Torres DS, Saunders RJ, Drobná Z, Fry RC, Buse JB, Loomis D, García-Vargas GG, Del Razo LM, Stýblo M. 2016. Chronic exposure to arsenic and markers of cardiometabolic risk: a cross-sectional study in Chihuahua, Mexico. Environ Health Perspect 124:104–111; http://dx.doi.org/10.1289/ehp.1408742 PMID:26068977

  7. 10th NTES Conference: Nickel and arsenic compounds alter the epigenome of peripheral blood mononuclear cells

    PubMed Central

    Brocato, Jason; Costa, Max

    2014-01-01

    The mechanisms that underlie metal carcinogenesis are the subject of intense investigation ; however, data from in vitro and in vivo studies are starting to piece together a story that implicates epigenetics as a key player. Data from our lab has shown that nickel compounds inhibit dioxygenase enzymes by displacing iron in the active site. Arsenic is hypothesized to inhibit these enzymes by diminishing ascorbate levels- an important co-factor for dioxygenases. Inhibition of histone demethylase dioxygenases can increase histone methylation levels, which also may affect gene expression. Recently, our lab conducted a series of investigations in human subjects exposed to high levels of nickel or arsenic compounds. Global levels of histone modifications in peripheral blood mononuclear cells (PBMCs) from exposed subjects were compared to low environmentally exposed controls. Results showed that nickel increased H3K4me3 and decreased H3K9me2 globally. Arsenic increased H3K9me2 and decreased H3K9ac globally. Other histone modifications affected by arsenic were sex-dependent. Nickel affected the expression of 2,756 genes in human PBMCs and many of the genes were involved in immune and carcinogenic pathways. This review will describe data from our lab that demonstrates for the first time that nickel and arsenic compounds affect global levels of histone modifications and gene expression in exposed human populations. PMID:24837610

  8. Use status and metabolism of realgar in Chinese patent medicine.

    PubMed

    Li, Yongfang; Wang, Da; Xu, Yuanyuan; Liu, Boying; Zheng, Yi; Yang, Boyi; Fan, Shujun; Zhi, Xueyuan; Zheng, Quanmei; Sun, Guifan

    2015-04-08

    Realgar is widely used in combination with other herbs as Chinese patent medicine to treat a wide range of diseases in China. It is also a well known arsenical toxicant. Chronic arsenic poisoning events caused by long-term usage of realgar-containing medicines have been reported in literatures. Given to the paradoxical role of realgar, comprehensive outline of its usage status in Chinese patent medicine might provide basal data for evaluating its toxicology risks in populations. Unfortunately, the relevant information is limited. Also, a metabolic process after intake of realgar-containing medicine in humans is poorly understood. The Traditional Chinese Patent Medicine Prescription Database was reviewed to get the information on the usage status of realgar. Realgar powder was dissolved in different pH-value solutions (1, 3, 5, 7, 9 and 11) to determine the soluble arsenic concentrations from realgar. Ten volunteers aged 24-26 years old were recruited to take four pills of Niu Huang Jie Du Pian (NHJDP), a very common Chinese patent medicine with realgar, to analyze the arsenic metabolism after exposure to realgar-containing medicine. The four pills were taken according to the medical instruction. Concentrations of soluble arsenic from realgar and urinary arsenic metabolites in humans were determined by hydride generation atomic absorption spectrometry. A total of 191 (2.25%) realgar-containing traditional Chinese patent medicines were obtained from the database, and almost 86.91% of them were for oral application. 73 (38.22%) medicines were found to be available for children. The mass fraction of arsenic in realgar-containing medicine ranged from 0.11% to 27.52%. According to medical instructions, the amount of average daily arsenic intake ranged from 0.47 to 2895.53mg. Nearly 86% medicines with daily intake of arsenic >10mg. Only inorganic arsenic (iAs) was detected from realgar in dissolution experiment and the levels of soluble iAs increased with pH values. After intake NHJDP, arsenic excretion in urine significantly increased, with a maximum excretion of iAs and monomethylarsonic acid at 6h post-ingestion and a peak excretion of dimethylarsinic acid at 9h post-ingestion. Arsenic methylation capacity was decreased after intake NHJDP. Females carried a more efficient arsenic methylation process than males. Realgar is widely used in traditional Chinese medicine. The arsenic solubility from realgar may be enhanced under alkaline conditions. The levels of urinary arsenic metabolites significantly increased while the arsenic methylation capacity significantly decreased after intaking realgar-containing medicine, which may suggest that a potential health hazard exists if people use arsenical medicines for long-term. Copyright © 2015. Published by Elsevier Ireland Ltd.

  9. The Impact of Hazardous Chemicals on Macrophages

    DTIC Science & Technology

    2012-04-01

    by inducing the activity of phase II detoxification enzymes in the urinary bladder. Arsenic {Ill) chloride [Ars(III)Cl]: Arsenic is one of the...agent used as raw materials for pharmaceuticals, analytical reagent as well as in organic synthesis and making iodine salts. 4,4’-Methylenebis ( 4𔃾...several factors. First, we sought to include hazardous chemicals with properties broadly representative of categories of TICs such as chlorides and

  10. Increased levels of urinary biomarkers of lipid peroxidation products among workers occupationally exposed to diesel engine exhaust.

    PubMed

    Bin, Ping; Shen, Meili; Li, Haibin; Sun, Xin; Niu, Yong; Meng, Tao; Yu, Tao; Zhang, Xiao; Dai, Yufei; Gao, Weimin; Gu, Guizhen; Yu, Shanfa; Zheng, Yuxin

    2016-08-01

    Diesel engine exhaust (DEE) was found to induce lipid peroxidation (LPO) in animal exposure studies. LPO is a class of oxidative stress and can be reflected by detecting the levels of its production, such as malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), and etheno-DNA adducts including 1,N(6)-etheno-2'-deoxyadenosine (ɛdA) and 3,N(4)-etheno-2'-deoxycytidine (ɛdC). However, the impact of DEE exposure on LPO has not been explored in humans. In this study, we evaluated urinary MDA, 4-HNE, ɛdA, and ɛdC levels as biomarkers of LPO among 108 workers with exclusive exposure to DEE and 109 non-DEE-exposed workers. Results showed that increased levels of urinary MDA and ɛdA were observed in subjects occupationally exposed to DEE before and after age, body mass index (BMI), smoking status, and alcohol use were adjusted (all p < 0.001). There was a statistically significant relationship between the internal exposure dose (urinary ΣOH-PAHs) and MDA, 4-HNE, and ɛdA (all p < 0.001). Furthermore, significant increased relations between urinary etheno-DNA adduct and MDA, 4-HNE were observed (all p < 0.05). The findings of this study suggested that the level of LPO products (MDA and ɛdA) was increased in DEE-exposed workers, and urinary MDA and ɛdA might be feasible biomarkers for DEE exposure. LPO induced DNA damage might be involved and further motivated the genomic instability could be one of the pathogeneses of cancer induced by DEE-exposure. However, additional investigations should be performed to understand these observations.

  11. Effects of Carbon in Flooded Paddy Soils: Implications for Microbial Activity and Arsenic Mobilization

    NASA Astrophysics Data System (ADS)

    Avancha, S.; Boye, K.

    2014-12-01

    In the Mekong delta in Cambodia, naturally occurring arsenic (originating from erosion in the Himalaya Mountains) in paddy soils is mobilized during the seasonal flooding. As a consequence, rice grown on the flooded soils may take up arsenic and expose people eating the rice to this carcinogenic substance. Microbial activity will enhance or decrease the mobilization of arsenic depending on their metabolic pathways. Among the microbes naturally residing in the soil are denitrifying bacteria, sulfate reducers, metal reducers (Fe, Mn), arsenic reducers, methanogens, and fermenters, whose activity varies based on the presence of oxygen. The purpose of the experiment was to assess how different amendments affect the microbial activity and the arsenic mobilization during the transition from aerobic to anaerobic metabolism after flooding of naturally contaminated Cambodian soil. In a batch experiment, we investigated how the relative metabolic rate of naturally occurring microbes could vary with different types of organic carbon. The experiment was designed to measure the effects of various sources of carbon (dried rice straw, charred rice straw, manure, and glucose) on the microbial activity and arsenic release in an arsenic-contaminated paddy soil from Cambodia under flooded conditions. All amendments were added based on the carbon content in order to add 0.036 g of carbon per vial. The soil was flooded with a 10mM TRIS buffer solution at pH 7.04 in airtight 25mL serum vials and kept at 25 °C. We prepared 14 replicates per treatment to sample both gas and solution. On each sampling point, the solution replicates were sampled destructively. The gas replicates continued on and were sampled for both gas and solution on the final day of the experiment. We measured pH, total arsenic, methane, carbon dioxide, and nitrous oxide at 8 hours, 1.5 days, 3.33 days, and 6.33 days from the start of the experiment.

  12. Disruption of canonical TGFβ-signaling in murine coronary progenitor cells by low level arsenic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allison, Patrick; Huang, Tianfang; Broka, Derrick

    2013-10-01

    Exposure to arsenic results in several types of cancers as well as heart disease. A major contributor to ischemic heart pathologies is coronary artery disease, however the influences by environmental arsenic in this disease process are not known. Similarly, the impact of toxicants on blood vessel formation and function during development has not been studied. During embryogenesis, the epicardium undergoes proliferation, migration, and differentiation into several cardiac cell types including smooth muscle cells which contribute to the coronary vessels. The TGFβ family of ligands and receptors is essential for developmental cardiac epithelial to mesenchymal transition (EMT) and differentiation into coronarymore » smooth muscle cells. In this in vitro study, 18 hour exposure to 1.34 μM arsenite disrupted developmental EMT programming in murine epicardial cells causing a deficit in cardiac mesenchyme. The expression of EMT genes including TGFβ2, TGFβ receptor-3, Snail, and Has-2 are decreased in a dose-dependent manner following exposure to arsenite. TGFβ2 cell signaling is abrogated as detected by decreases in phosphorylated Smad2/3 when cells are exposed to 1.34 μM arsenite. There is also loss of nuclear accumulation pSmad due to arsenite exposure. These observations coincide with a decrease in vimentin positive mesenchymal cells invading three-dimensional collagen gels. However, arsenite does not block TGFβ2 mediated smooth muscle cell differentiation by epicardial cells. Overall these results show that arsenic exposure blocks developmental EMT gene programming in murine coronary progenitor cells by disrupting TGFβ2 signals and Smad activation, and that smooth muscle cell differentiation is refractory to this arsenic toxicity. - Highlights: • Arsenic blocks TGFβ2 induced expression of EMT genes. • Arsenic blocks TGFβ2 triggered Smad2/3 phosphorylation and nuclear translocation. • Arsenic blocks epicardial cell differentiation into cardiac mesenchyme. • Arsenic does not block TGFβ2 induced smooth muscle cell differentiation.« less

  13. Arsenic-Induced Genotoxicity and Genetic Susceptibility to Arsenic-Related Pathologies

    PubMed Central

    Faita, Francesca; Cori, Liliana; Bianchi, Fabrizio; Andreassi, Maria Grazia

    2013-01-01

    The arsenic (As) exposure represents an important problem in many parts of the World. Indeed, it is estimated that over 100 million individuals are exposed to arsenic, mainly through a contamination of groundwaters. Chronic exposure to As is associated with adverse effects on human health such as cancers, cardiovascular diseases, neurological diseases and the rate of morbidity and mortality in populations exposed is alarming. The purpose of this review is to summarize the genotoxic effects of As in the cells as well as to discuss the importance of signaling and repair of arsenic-induced DNA damage. The current knowledge of specific polymorphisms in candidate genes that confer susceptibility to arsenic exposure is also reviewed. We also discuss the perspectives offered by the determination of biological markers of early effect on health, incorporating genetic polymorphisms, with biomarkers for exposure to better evaluate exposure-response clinical relationships as well as to develop novel preventative strategies for arsenic- health effects. PMID:23583964

  14. Effects of exogenous glutathione on arsenic burden and NO metabolism in brain of mice exposed to arsenite through drinking water.

    PubMed

    Wang, Yan; Zhao, Fenghong; Jin, Yaping; Zhong, Yuan; Yu, Xiaoyun; Li, Gexin; Lv, Xiuqiang; Sun, Guifan

    2011-03-01

    Chronic exposure to inorganic arsenic (iAs) is associated with neurotoxicity. Studies to date have disclosed that methylation of ingested iAs is the main metabolic pathway, and it is a process relying on reduced glutathione (GSH). The aim of this study was to explore the effects of exogenous GSH on arsenic burden and metabolism of nitric oxide (NO) in the brain of mice exposed to arsenite via drinking water. Mice were exposed to sodium arsenite through drinking water contaminated with 50 mg/L arsenic for 4 weeks and treated intraperitoneally with saline solution, 200 mg/kg body weight (b.w), 400 mg/kg b.w, or 800 mg/kg b.w GSH, respectively, at the 4th week. Levels of iAs, monomethylarsenic acid, and dimethylarsenic acid (DMAs) in the liver, blood, and brain were determined by method of hydride generation coupled with atomic absorption spectrophotometry. Activities of nitric oxide synthase (NOS) and contents of NO in the brain were determined by colorimetric method. Compared with mice exposed to arsenite alone, administration of GSH increased dose-dependently the primary and secondary methylation ratio in the liver, which caused the decrease in percent iAs and increase in percent DMAs in the liver, as a consequence, resulted in significant decrease in iAs levels in the blood and total arsenic levels in both blood and brain. NOS activities and NO levels in the brain of mice in iAs group were significantly lower than those in control; however, administration of GSH could increase significantly activities of NOS and contents of NO. Findings from this study suggested that exogenous GSH could promote both primary and secondary arsenic methylation capacity in the liver, which might facilitate excretion of arsenicals, and consequently reduce arsenic burden in both blood and brain and furthermore ameliorate the effects of arsenicals on NO metabolism in the brain.

  15. Genetic Susceptible Locus in NOTCH2 Interacts with Arsenic in Drinking Water on Risk of Type 2 Diabetes

    PubMed Central

    Pan, Wen-Chi; Kile, Molly L.; Seow, Wei Jie; Lin, Xihong; Quamruzzaman, Quazi; Rahman, Mahmuder; Mahiuddin, Golam; Mostofa, Golam; Lu, Quan; Christiani, David C.

    2013-01-01

    Background Chronic exposure to arsenic in drinking water is associated with increased risk of type 2 diabetes mellitus (T2DM) but the underlying molecular mechanism remains unclear. Objectives This study evaluated the interaction between single nucleotide polymorphisms (SNPs) in genes associated with diabetes and arsenic exposure in drinking water on the risk of developing T2DM. Methods In 2009–2011, we conducted a follow up study of 957 Bangladeshi adults who participated in a case-control study of arsenic-induced skin lesions in 2001–2003. Logistic regression models were used to evaluate the association between 38 SNPs in 18 genes and risk of T2DM measured at follow up. T2DM was defined as having a blood hemoglobin A1C level greater than or equal to 6.5% at follow-up. Arsenic exposure was characterized by drinking water samples collected from participants' tubewells. False discovery rates were applied in the analysis to control for multiple comparisons. Results Median arsenic levels in 2001–2003 were higher among diabetic participants compared with non-diabetic ones (71.6 µg/L vs. 12.5 µg/L, p-value <0.001). Three SNPs in ADAMTS9 were nominally associated with increased risk of T2DM (rs17070905, Odds Ratio (OR)  = 2.30, 95% confidence interval (CI) 1.17–4.50; rs17070967, OR = 2.02, 95%CI 1.00–4.06; rs6766801, OR = 2.33, 95%CI 1.18–4.60), but these associations did not reach the statistical significance after adjusting for multiple comparisons. A significant interaction between arsenic and NOTCH2 (rs699780) was observed which significantly increased the risk of T2DM (p for interaction = 0.003; q-value = 0.021). Further restricted analysis among participants exposed to water arsenic of less than 148 µg/L showed consistent results for interaction between the NOTCH2 variant and arsenic exposure on T2DM (p for interaction  = 0.048; q-value = 0.004). Conclusions These findings suggest that genetic variation in NOTCH2 increased susceptibility to T2DM among people exposed to inorganic arsenic. Additionally, genetic variants in ADAMTS9 may increase the risk of T2DM. PMID:23967108

  16. ESTIMATING BIOAVAILABILITY OF ARSENICALS IN DIETARY AND COMPOSITE DIET SAMPLES VIA A SYNTHETIC STOMACH EXTRACTION

    EPA Science Inventory

    People are exposed to arsenic (As) principally through the water they drink and the food they eat. But the chemical form of As (arsenicals) in food or water strongly influences its toxicity. The toxicity of arsenicals in foods are considerably more difficult to assess analytica...

  17. Well water arsenic exposure, arsenic induced skin-lesions and self-reported morbidity in Inner Mongolia

    EPA Science Inventory

    Arsenic exposure from contaminated well water is a cause of skin and bladder cancer and linked to numerous other adverse health effects. Residents of the Bayingnormen region of Inner Mongolia, China, have been exposed to arsenic-contaminated well water for over 20 years but few s...

  18. Proteomic Profiling of Bladders from Mice Exposed with Sodium Arsenite

    EPA Science Inventory

    Arsenic, an environmental contaminant, has been linked with cancer of the bladder in humans. To study the mode of action of arsenic, female CH3 mice were exposed to 85 ppm sodium arsenite in their drinking water for 30 days. Following the exposure a comparative proteomic analysis...

  19. Multiple Elemental Exposures Amongst Workers at the Agbogbloshie Electronic Waste (E-Waste) Site in Ghana

    PubMed Central

    Srigboh, Roland Kofi; Basu, Niladri; Stephens, Judith; Asampong, Emmanuel; Perkins, Marie; Neitzel, Richard L.; Fobil, Julius

    2016-01-01

    Electronic waste (e-waste) recycling is growing worldwide and raising a number of environmental health concerns. One of the largest e-waste sites is Agbogbloshie (Ghana). While several toxic elements have been reported in Agbogbloshie’s environment, there is limited knowledge of human exposures there. The objectives of this study were to characterize exposures to several essential (copper, iron, manganese, selenium, zinc) and toxic (arsenic, cadmium, cobalt, chromium, mercury, nickel, lead) elements in the urine and blood of male workers (n=58) at Agbogbloshie, as well as females (n=11) working in activities that serve the site, and to relate these exposures to sociodemographic and occupational characteristics. The median number of years worked at the site was 5, and the average worker indicated being active in 6.8 tasks (of 9 key e-waste job categories). Additionally, we categorized four main e-waste activities (in brackets % of population self-reported main activity): dealing (22.4%), sorting (24.1%), dismantling (50%), and burning (3.4%) e-waste materials. Many blood and urinary elements (including essential ones) were within biomonitoring reference ranges. However, blood cadmium (1.2 ug/L median) and lead (6.4 ug/dl; 67% above U.S. CDC/NIOSH reference level), and urinary arsenic (38.3 ug/L; 39% above U.S. ATSDR value) levels were elevated compared to background populations elsewhere. Workers who burned e-waste tended to have the highest biomarker levels. The findings of this study contribute to a growing body of work at Agbogbloshie (and elsewhere) to document that individuals working within e-waste sites are exposed to a number of toxic elements, some at potentially concerning levels. PMID:27580259

  20. Multiple elemental exposures amongst workers at the Agbogbloshie electronic waste (e-waste) site in Ghana.

    PubMed

    Srigboh, Roland Kofi; Basu, Niladri; Stephens, Judith; Asampong, Emmanuel; Perkins, Marie; Neitzel, Richard L; Fobil, Julius

    2016-12-01

    Electronic waste (e-waste) recycling is growing worldwide and raising a number of environmental health concerns. One of the largest e-waste sites is Agbogbloshie (Ghana). While several toxic elements have been reported in Agbogbloshie's environment, there is limited knowledge of human exposures there. The objectives of this study were to characterize exposures to several essential (copper, iron, manganese, selenium, zinc) and toxic (arsenic, cadmium, cobalt, chromium, mercury, nickel, lead) elements in the urine and blood of male workers (n = 58) at Agbogbloshie, as well as females (n = 11) working in activities that serve the site, and to relate these exposures to sociodemographic and occupational characteristics. The median number of years worked at the site was 5, and the average worker indicated being active in 6.8 tasks (of 9 key e-waste job categories). Additionally, we categorized four main e-waste activities (in brackets % of population self-reported main activity): dealing (22.4%), sorting (24.1%), dismantling (50%), and burning (3.4%) e-waste materials. Many blood and urinary elements (including essential ones) were within biomonitoring reference ranges. However, blood cadmium (1.2 μg/L median) and lead (6.4 μg/dl; 67% above U.S. CDC/NIOSH reference level), and urinary arsenic (38.3 μg/L; 39% above U.S. ATSDR value) levels were elevated compared to background populations elsewhere. Workers who burned e-waste tended to have the highest biomarker levels. The findings of this study contribute to a growing body of work at Agbogbloshie (and elsewhere) to document that individuals working within e-waste sites are exposed to a number of toxic elements, some at potentially concerning levels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Human arsenic poisoning issues in central-east Indian locations: biomarkers and biochemical monitoring.

    PubMed

    Pandey, Piyush Kant; Yadav, Sushma; Pandey, Madhurima

    2007-03-01

    The study reports the use of three biomarkers i.e. total arsenic in hair and nails, total arsenic in blood, and total arsenic in urine to identify or quantify arsenic exposure and concomitant health effects. The main source of arsenic was inorganic exposure through drinking water. The arsenic levels and the health effects were analyzed closely in a family having maximum symptoms of arsenic. Based on the result of this study it is reported that there exist a correlation between the clinically observable symptoms, the blood and urine arsenic level, and the arsenic intake through drinking water. An intensive study on the urinary arsenic levels was carried out in which the urine levels of arsenic and the urine sufficiency tests were performed. A composite picture of body burden of arsenic has been obtained by carrying out a complete biochemical analysis of a maximum affected family. This confirms pronounced chronic exposure of the arsenic to these people. A combined correlation study on the arsenic levels measured in whole blood, urine, hair, nails and age present a remarkable outcome. Accordingly, the arsenic levels in blood are negatively correlated with the urine arsenic levels, which indicate either the inadequacy of the renal system in cleaning the blood arsenic or a continuous recirculation of the accumulated arsenic. This is an important conclusion about arsenical metabolism in humans. The study also raises the issues of the prospects of complete elimination of the accumulated arsenic and the reversibility of the health effects. Based on the work in Kourikasa village we report that there are very remote chances of complete purging of arsenic and thus reversibility of the health effects owing to various factors. The paper also discusses the various issues concerning the chronic arsenic poisoning management in the affected locations.

  2. Environmental exposure to arsenic and chromium in children is associated with kidney injury molecule-1.

    PubMed

    Cárdenas-González, M; Osorio-Yáñez, C; Gaspar-Ramírez, O; Pavković, M; Ochoa-Martínez, A; López-Ventura, D; Medeiros, M; Barbier, O C; Pérez-Maldonado, I N; Sabbisetti, V S; Bonventre, J V; Vaidya, V S

    2016-10-01

    Environmental hazards from natural or anthropological sources are widespread, especially in the north-central region of Mexico. Children represent a susceptible population due to their unique routes of exposure and special vulnerabilities. In this study we evaluated the association of exposure to environmental kidney toxicants with kidney injury biomarkers in children living in San Luis Potosi (SLP), Mexico. A cross-sectional study was conducted with 83 children (5-12 years of age) residents of Villa de Reyes, SLP. Exposure to arsenic, cadmium, chromium, fluoride and lead was assessed in urine, blood and drinking water samples. Almost all tap and well water samples had levels of arsenic (81.5%) and fluoride (100%) above the permissible levels recommended by the World Health Organization. Mean urine arsenic (45.6ppb) and chromium (61.7ppb) were higher than the biological exposure index, a reference value in occupational settings. Using multivariate adjusted models, we found a dose-dependent association between kidney injury molecule-1 (KIM-1) across chromium exposure tertiles [(T1: reference, T2: 467pg/mL; T3: 615pg/mL) (p-trend=0.001)]. Chromium upper tertile was also associated with higher urinary miR-200c (500 copies/μl) and miR-423 (189 copies/μL). Arsenic upper tertile was also associated with higher urinary KIM-1 (372pg/mL). Other kidney injury/functional biomarkers such as serum creatinine, glomerular filtration rate, albuminuria, neutrophil gelatinase-associated lipocalin and miR-21 did not show any association with arsenic, chromium or any of the other toxicants evaluated. We conclude that KIM-1 might serve as a sensitive biomarker to screen children for kidney damage induced by environmental toxic agents. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Environmental Exposure to Arsenic and Chromium in Children is Associated with Kidney Injury Molecule-1

    PubMed Central

    Cárdenas-González, M; Osorio-Yáñez, C; Gaspar-Ramírez, O; Pavković, M; Ochoa-Martínez, A; López-Ventura, D; Medeiros, M; Barbier, OC; Pérez-Maldonado, IN; Sabbisetti, VS; Bonventre, JV; Vaidya, VS

    2016-01-01

    Environmental hazards from natural or anthropological sources are widespread, especially in the north-central region of Mexico. Children represent a susceptible population due to their unique routes of exposure and special vulnerabilities. In this study we evaluated the association of environmental kidney toxicants exposure and kidney injury biomarkers in children living in San Luis Potosi (SLP), Mexico. A cross-sectional study was conducted with 83 children (5-12 years of age) residents of Villa de Reyes, SLP. Exposure to arsenic, cadmium, chromium, fluoride and lead was assessed in urine, blood and drinking water samples. Almost all tap and well water samples had levels of arsenic (81.5%) and fluoride (100%) above the permissible levels recommended by the World Health Organization. Mean urine arsenic (45.6 ppb) and chromium (61.7 ppb) were higher than the biological exposure index, a reference value in occupational settings. Using multivariate adjusted models, we found a dose-dependent association between kidney injury molecule-1 (KIM-1) across chromium exposure tertiles [(T1: reference, T2: 467 pg/mL; T3: 615 pg/mL) (p-trend=0.001)]. Chromium upper tertile was also associated with higher urinary miR-200c (500 copies/μL) and miR-423 (189 copies/μL). Arsenic upper tertile was also associated with higher urinary KIM-1 (372 pg/mL). Other kidney injury/functional biomarkers such as serum creatinine, glomerular filtration rate, albuminuria, neutrophil gelatinase-associated lipocalin and miR-21 did not show any association with arsenic, chromium or any of the other toxicants evaluated. We conclude that KIM-1 might serve as a sensitive biomarker for environmental exposure risk assessment and kidney toxicity in children. PMID:27431456

  4. Search for a plant for phytoremediation--what can we learn from field and hydroponic studies?

    PubMed

    Zabłudowska, E; Kowalska, J; Jedynak, L; Wojas, S; Skłodowska, A; Antosiewicz, D M

    2009-10-01

    The main aim of the study was to evaluate the strategies for coping with arsenic toxicity developed by the mine species (Calamagrostis arundinacea, Fragaria vesca, Stachys sylvatica, and Epilobium parviflorum), and to compare results obtained from plants exposed to arsenic present in contaminated soil (2000-3500 mg/kg dw) and in hydroponic solution (2 microM and 12 microM arsenate). Here we report basic differences in plant responses to arsenic depending on growth conditions (hydroponic/soil) with respect to uptake, root-to-shoot translocation, distribution, and detoxification/speciation. Calamagrostis has the highest level of As-tolerance among the tested species. When grown in soil, it accumulated the highest amount of As in roots and shoots relative to other species, however, when exposed to arsenic in hydroponics, it had lower As concentrations. The efficiency of arsenic root-to-shoot translocation was also different, being less effective in soil-grown Calamagrostis compared with hydroponics. Furthermore, in Calamagrostis exposed to arsenate in liquid medium, As(III) was the predominant arsenic form, in contrast to plants grown in As-contaminated soil, in which As(V) predominated. In addition, comparison of the level of phytochelatins showed that only PC2 was detected in plants from hydroponics, whereas in those from soil, additionally PC3 and PC4 were found. The results show that the basic components of a plant's response to arsenic, including uptake, accumulation as well as detoxification, change depending on the experimental conditions (arsenic in liquid medium or contaminated soil).

  5. Chronic Arsenic Exposure in Nanomolar Concentrations Compromises Wound Response and Intercellular Signaling in Airway Epithelial Cells

    PubMed Central

    Boitano, Scott

    2013-01-01

    Paracrine ATP signaling in the lung epithelium participates in a variety of innate immune functions, including mucociliary clearance, bactericide production, and as an initiating signal in wound repair. We evaluated the effects of chronic low-dose arsenic relevant to U.S. drinking water standards (i.e., 10 ppb [130nM]) on airway epithelial cells. Immortalized human bronchial epithelial cells (16HBE14o-) were exposed to 0, 130, or 330nM arsenic (as Na-arsenite) for 4–5 weeks and examined for wound repair efficiency and ATP-mediated Ca2+ signaling. We found that chronic arsenic exposure at these low doses slows wound repair and reduces ATP-mediated Ca2+ signaling. We further show that arsenic compromises ATP-mediated Ca2+ signaling by altering both Ca2+ release from intracellular stores (via metabotropic P2Y receptors) and Ca2+ influx mechanisms (via ionotropic P2X receptors). To better model the effects of arsenic on ATP-mediated Ca2+ signaling under conditions of natural exposure, we cultured tracheal epithelial cells obtained from mice exposed to control or 50 ppb Na-arsenite supplemented drinking water for 4 weeks. Tracheal epithelial cells from arsenic-exposed mice displayed reduced ATP-mediated Ca2+ signaling dynamics similar to our in vitro chronic exposure. Our findings demonstrate that chronic arsenic exposure at levels that are commonly found in drinking water (i.e., 10–50 ppb) alters cellular mechanisms critical to airway innate immunity. PMID:23204110

  6. Increased levels of etheno-DNA adducts and genotoxicity biomarkers of long-term exposure to pure diesel engine exhaust.

    PubMed

    Shen, Meili; Bin, Ping; Li, Haibin; Zhang, Xiao; Sun, Xin; Duan, Huawei; Niu, Yong; Meng, Tao; Dai, Yufei; Gao, Weimin; Yu, Shanfa; Gu, Guizhen; Zheng, Yuxin

    2016-02-01

    Etheno-DNA adducts are biomarkers for assessing oxidative stress. In this study, the aim was to detect the level of etheno-DNA adducts and explore the relationship between the etheno-DNA adducts and genotoxicity biomarkers of the diesel engine exhaust (DEE)-exposed workers. We recruited 86 diesel engine testing workers with long-term exposure to DEE and 99 non-DEE-exposed workers. The urinary mono-hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and etheno-DNA adducts (εdA and εdC) were detected by HPLC-MS/MS and UPLC-MS/MS, respectively. Genotoxicity biomarkers were also evaluated by comet assay and cytokinesis-block micronucleus assay. The results showed that urinary εdA was significantly higher in the DEE-exposed workers (p<0.001), exhibited 2.1-fold increase compared with the non-DEE-exposed workers. The levels of urinary OH-PAHs were positively correlated with the level of εdA among all the study subjects (p<0.001). Moreover, we found that the increasing level of εdA was significantly associated with the increased olive tail moment, percentage of tail DNA, or frequency of micronucleus in the study subjects (p<0.01). No significant association was observed between the εdC level and any measured genotoxicity biomarkers. In summary, εdA could serve as an indicator for DEE exposure in the human population. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Influence of dietary selenium on the disposition of arsenate in the female B6C3F{sub 1} mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenyon, E.M.; Hughes, M.F.; Levander, O.A.

    1997-06-27

    Interactions between arsenic (As) and selenium (Se) at the metabolic level are multifaceted and complex. These interactions are of practical significance because populations in various parts of the world are simultaneously exposed to inorganic As in drinking water and Se mainly in the diet at varying levels. The primary goal of this study was to investigate whether differing dietary Se status would alter the profile of urinary metabolites or their time course for elimination after exposure to arsenate [As(V)]. Weanling female 86C3F, mice were maintained for 28 d on either a control diet of powdered rodent meal sufficient in Semore » (A 0.2 ppm) or Torula yeast-based (TYB) diets deficient (B, 0.02 ppm Se), sufficient (C, 0.2 ppm Se), or excessive (D, 2.0 ppm Se) in Se; mice then received by oral gavage 5 mg (As)/kg as sodium [{sup 73}As] arsenate. The time course for elimination of total arsenic and metabolites in urine was measured over a 48-h period, and total arsenic was determined in feces and tissues at 48 h. Mice on the Se excess diet excreted a significantly higher percentage of urinary As as inorganic As, with a significantly decreased ratio of organic to inorganic As compared to Se-sufficient mice, suggesting that As methylation was decreased. Mice on the Se-deficient diet appeared to eliminate As(V), arsenite, and dimethylarsinic acid (DMA) in urine more slowly than Se-sufficient mice; however, further studies are required to confirm this finding. Mice on the Se-sufficient meal diet (A) excreted significantly less (by percent) arsenate-derived radioactivity in urine and more in feces compared to mice on the Se-sufficient TYB diet (C), with total elimination being similar for both groups. This indicates that mice on the meal diet absorbed significantly less As(V) than mice on the TYB diet, and this may be due to more fiber or {open_quotes}bulk{close_quotes} in the meal diet. 35 refs., 6 figs., 6 tabs.« less

  8. Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway.

    PubMed

    Lallemand-Breitenbach, Valérie; Jeanne, Marion; Benhenda, Shirine; Nasr, Rihab; Lei, Ming; Peres, Laurent; Zhou, Jun; Zhu, Jun; Raught, Brian; de Thé, Hugues

    2008-05-01

    In acute promyelocytic leukaemia (APL), arsenic trioxide induces degradation of the fusion protein encoded by the PML-RARA oncogene, differentiation of leukaemic cells and produces clinical remissions. SUMOylation of its PML moiety was previously implicated, but the nature of the degradation pathway involved and the role of PML-RARalpha catabolism in the response to therapy have both remained elusive. Here, we demonstrate that arsenic-induced PML SUMOylation triggers its Lys 48-linked polyubiquitination and proteasome-dependent degradation. When exposed to arsenic, SUMOylated PML recruits RNF4, the human orthologue of the yeast SUMO-dependent E3 ubiquitin-ligase, as well as ubiquitin and proteasomes onto PML nuclear bodies. Arsenic-induced differentiation is impaired in cells transformed by a non-degradable PML-RARalpha SUMOylation mutant or in APL cells transduced with a dominant-negative RNF4, directly implicating PML-RARalpha catabolism in the therapeutic response. We thus identify PML as the first protein degraded by SUMO-dependent polyubiquitination. As PML SUMOylation recruits not only RNF4, ubiquitin and proteasomes, but also many SUMOylated proteins onto PML nuclear bodies, these domains could physically integrate the SUMOylation, ubiquitination and degradation pathways.

  9. Risk assessment for arsenic-contaminated groundwater along River Indus in Pakistan.

    PubMed

    Rabbani, Unaib; Mahar, Gohar; Siddique, Azhar; Fatmi, Zafar

    2017-02-01

    The study determined the risk zone and estimated the population at risk of adverse health effects for arsenic exposure along the bank of River Indus in Pakistan. A cross-sectional survey was conducted in 216 randomly selected villages of one of the districts along River Indus. Wells of ten households from each village were selected to measure arsenic levels. The location of wells was identified using global positioning system device, and spatial variations of the groundwater contamination were assessed using geographical information system tools. Using layers of contaminated drinking water wells according to arsenic levels and population with major landmarks, a risk zone and estimated population at risk were determined, which were exposed to arsenic level ≥10 µg/L. Drinking wells with arsenic levels of ≥10 µg/L were concentrated within 18 km near the river bank. Based on these estimates, a total of 13 million people were exposed to ≥10 µg/L arsenic concentration along the course of River Indus traversing through 27 districts in Pakistan. This information would help the researchers in designing health effect studies on arsenic and policy makers in allocating resources for designing focused interventions for arsenic mitigation in Pakistan. The study methods have implication on similar populations which are affected along rivers due to arsenic contamination.

  10. Trophic Transfer of Arsenic from an Aquatic Insect to Terrestrial Insect Predators.

    PubMed

    Mogren, Christina L; Walton, William E; Parker, David R; Trumble, John T

    2013-01-01

    The movement of energy and nutrients from aquatic to terrestrial ecosystems can be substantial, and emergent aquatic insects can serve as biovectors not only for nutrients, but also for contaminants present in the aquatic environment. The terrestrial predators Tenodera aridifolia sinensis (Mantodea: Mantidae) and Tidarren haemorrhoidale (Araneae: Theridiidae) and the aquatic predator Buenoa scimitra (Hemiptera: Notonectidae) were chosen to evaluate the efficacy of arsenic transfer between aquatic and terrestrial environments. Culex tarsalis larvae were reared in either control water or water containing 1000 µg l(-1) arsenic. Adults that emerged from the control and arsenic treatments were fed to the terrestrial predators, and fourth instar larvae were fed to the aquatic predator reared in control or arsenic contaminated water. Tenodera a. sinensis fed arsenic-treated Cx. tarsalis accumulated 658±130 ng g(-1) of arsenic. There was no significant difference between control and arsenic-fed T. haemorrhoidale (range 142-290 ng g(-1)). Buenoa scimitra accumulated 5120±406 ng g(-1) of arsenic when exposed to arsenic-fed Cx. tarsalis and reared in water containing 1000 µg l(-1) arsenic. There was no significant difference between controls or arsenic-fed B. scimitra that were not exposed to water-borne arsenic, indicating that for this species environmental exposure was more important in accumulation than strictly dietary arsenic. These results indicate that transfer to terrestrial predators may play an important role in arsenic cycling, which would be particularly true during periods of mass emergence of potential insect biovectors. Trophic transfer within the aquatic environment may still occur with secondary predation, or in predators with different feeding strategies.

  11. Arsenic exposure from drinking water and dyspnoea risk in Araihazar, Bangladesh: a population-based study

    PubMed Central

    Pesola, Gene R.; Parvez, Faruque; Chen, Yu; Ahmed, Alauddin; Hasan, Rabiul; Ahsan, Habibul

    2014-01-01

    Bangladesh has high well water arsenic exposure. Chronic arsenic ingestion may result in diseases that manifest as dyspnoea, although information is sparse. Baseline values were obtained from an arsenic study. Trained physicians ascertained data on dyspnoea among 11,746 subjects. Data were collected on demographic factors, including smoking, blood pressure and arsenic exposure. Logistic regression models estimated odds ratios and confidence intervals for the association between arsenic exposure and dyspnoea. The adjusted odds of having dyspnoea was 1.32-fold (95% CI 1.15–1.52) greater in those exposed to high well water arsenic concentrations (≥50 μg·L−1) compared with low-arsenic-exposed nonsmokers (p<0.01). A significant dose–response relationship was found for arsenic (as well as smoking) in relation to dyspnoea. In nonsmokers, the adjusted odds of having dyspnoea were 1.36, 1.96, 2.34 and 1.80-fold greater for arsenic concentrations of 7–38, 39–90, 91–178 and 179–864 μg·L−1, respectively, compared with the reference arsenic concentration of <7 μg·L−1 (p<0.01; Chi-squared test for trend). Arsenic exposure through well water is associated with dyspnoea, independently of smoking status. This study suggests that mandated well water testing for arsenic with reduction in exposure may significantly reduce diseases that manifest as dyspnoea, usually cardiac or pulmonary. PMID:22088973

  12. Drinking water arsenic in northern Chile: high cancer risks 40 years after exposure cessation

    PubMed Central

    Steinmaus, Craig M.; Ferreccio, Catterina; Romo, Johanna Acevedo; Yuan, Yan; Cortes, Sandra; Marshall, Guillermo; Moore, Lee E.; Balmes, John R.; Liaw, Jane; Golden, Todd; Smith, Allan H.

    2013-01-01

    Background Millions of people worldwide are exposed to arsenic-contaminated water. In the largest city in northern Chile (Antofagasta) >250,000 people were exposed to high arsenic drinking water concentrations from 1958 until 1970 when a water treatment plant was installed. Because of its unique geology, limited water sources, and good historical records, lifetime exposure and long-term latency patterns can be assessed in this area with better accuracy than in other arsenic-exposed areas worldwide. Methods We performed a population-based case-control study in northern Chile from October 2007 to December 2010 involving 232 lung and 306 bladder cancer cases and 640 age- and gender-matched controls, with detailed information on past exposure and potential confounders, including smoking and occupation. Results Bladder cancer odds ratios for quartiles of average arsenic concentrations in water before 1971 (<11, 11–90, 91–335, and >335 µg/L) were 1.00, 1.36 (95% confidence interval, 0.78 to 2.37), 3.87 (2.25 to 6.64), and 6.50 (3.69 to 11.43), respectively. Corresponding lung cancer odds ratios were 1.00, 1.27 (0.81 to 1.98), 2.00 (1.24 to 3.24), and 4.32 (2.60 to 7.17). Bladder and lung cancer odds ratios in those highly exposed in Antofagasta during 1958–70 but not thereafter were 6.88 (3.84 to 12.32) and 4.35 (2.57 to 7.36), respectively. Conclusions The lung and bladder cancer risks that we found up to 40 years after high exposures have ended are very high. Impact Our findings suggest that prevention, treatment, and other mortality reduction efforts in arsenic-exposed countries will be needed for decades after exposure cessation. PMID:23355602

  13. [Pollutants from a plant which burns toxic waste in the Province of Arezzo (Tuscany Region, Central Italy): human biomonitoring pilot study to evaluate the possible type of environmental exposure].

    PubMed

    Chellini, Elisabetta; Fondelli, Maria Cristina; Maurello, Maria Teresa; Sciarra, Gianfranco; Aprea, Maria Cristina; Carreras, Giulia

    2015-01-01

    to identify the biomarkers to use in order to evaluate the level and trend of exposure to environmental pollutants from a plant which retrieves and refines precious metals and burns toxic waste. human biomonitoring cross sectional study on a small sample of population resident in the study area. blood and urinary samples, and questionnaires from volunteers resident at least for 10 years in Civitella in Val di Chiana area (Arezzo Province, Tuscany Region, Central Italy), where the plant is located, and in a control area; they had to be 5-year non-smokers or ex-smokers, in good health status and non occupationally exposed to heavy metals and/or combustion products. geometric mean and 95th percentile (P95) of mercury (Hg) and cadmium (Cd) blood concentrations, and of the urinary concentrations of antimony (Sb), silver (Ag), arsenic (As), Cd, cobalt (Co), chromium (Cr), Hg, nickel (Ni), platinum (Pt), 1-hydroxypyrene, and trans, trans-muconic acid in the two populations; quantity and pattern of porphyrins in the 24-hour urines of Civitella volunteers. Student's "t" test calculated on the means of data with logarithmic transformation was used to compare the two groups. In case of significant differences linear regression analyses have been performed using questionnaire information. The distribution of observed data was compared with specific reference values. Sb, Cd, and Ni concentrations were significantly higher in Civitella population (39 subjects), while Cr concentration was higher in the control group (18 subjects). No correlations with the individual characteristics have been observed. The 30.3%of subjects who gave their 24- hour urine had a distorted pattern of porphyrins. the results confirmed the need to perform human biomonitoring in the Civitella area, increasing the number of samples, using urine as biological matrix, and monitoring at least Sb, Cd, Ni, Pt, Ag, and porphyrins.

  14. Bioaccessibility and excretion of arsenic in Niu Huang Jie Du Pian pills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, Iris; Sylvester, Steven; Lai, Vivian W.-M.

    2007-08-01

    Traditional Chinese medicines (TCMs) often contain significant levels of potentially toxic elements, including arsenic. Niu Huang Jie Du Pian pills were analyzed to determine the concentration, bioaccessibility (arsenic fraction soluble in the human gastrointestinal system) and chemical form (speciation) of arsenic. Arsenic excretion in urine (including speciation) and facial hair were studied after a one-time ingestion. The pills contained arsenic in the form of realgar, and although the total arsenic that was present in a single pill was high (28 mg), the low bioaccessibility of this form of arsenic predicted that only 4% of it was available for absorption intomore » the bloodstream (1 mg of arsenic per pill). The species of arsenic that were solubilized were inorganic arsenate (As(V)) and arsenite (As(III)) but DMAA and MMAA were detected in urine. Two urinary arsenic excretion peaks were observed: an initial peak several (4-8) hours after ingestion corresponding to the excretion of predominantly As(III), and a larger peak at 14 h corresponding predominantly to DMAA and MMAA. No methylated As(III) species were observed. Facial hair analysis revealed that arsenic concentrations did not increase significantly as a result of the ingestion. Arsenic is incompletely soluble under human gastrointestinal conditions, and is metabolized from the inorganic to organic forms found in urine. Bioaccessible arsenic is comparable to the quantity excreted. Facial hair as a bio-indicator should be further tested.« less

  15. GT-repeat polymorphism in the heme oxygenase-1 gene promoter is associated with cardiovascular mortality risk in an arsenic-exposed population in northeastern Taiwan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Meei-Maan, E-mail: mmwu@tmu.edu.t; Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Basic Medicine, College of Medicine, Fu-Jen Catholic University, Taipei, Taiwan

    2010-11-01

    Inorganic arsenic has been associated with increased risk of atherosclerotic vascular disease and mortality in humans. A functional GT-repeat polymorphism in the heme oxygenase-1 (HO-1) gene promoter is inversely correlated with the development of coronary artery disease and restenosis after clinical angioplasty. The relationship of HO-1 genotype with arsenic-associated cardiovascular disease has not been studied. In this study, we evaluated the relationship between the HO-1 GT-repeat polymorphism and cardiovascular mortality in an arsenic-exposed population. A total of 504 study participants were followed up for a median of 10.7 years for occurrence of cardiovascular deaths (coronary heart disease, cerebrovascular disease, andmore » peripheral arterial disease). Cardiovascular risk factors and DNA samples for determination of HO-1 GT repeats were obtained at recruitment. GT repeats variants were grouped into the S (< 27 repeats) or L allele ({>=} 27 repeats). Relative mortality risk was estimated using Cox regression analysis, adjusted for competing risk of cancer and other causes. For the L/L, L/S, and S/S genotype groups, the crude mortalities for cardiovascular disease were 8.42, 3.10, and 2.85 cases/1000 person-years, respectively. After adjusting for conventional cardiovascular risk factors and competing risk of cancer and other causes, carriers with class S allele (L/S or S/S genotypes) had a significantly reduced risk of cardiovascular mortality compared to non-carriers (L/L genotype) [OR, 0.38; 95% CI, 0.16-0.90]. In contrast, no significant association was observed between HO-1 genotype and cancer mortality or mortality from other causes. Shorter (GT)n repeats in the HO-1 gene promoter may confer protective effects against cardiovascular mortality related to arsenic exposure.« less

  16. THE EFFECT OF DIETARY ARSENIC ON SWIM-UP RAINBOW TROUT

    EPA Science Inventory

    Two 30-day toxicity tests were conducted in which swim-up rainbow trout were fed live diets of oligochaetes (Lumbriculus variegatus) containing elevated arsenic. Arsenic was incorporated into the diet by exposing oligochaetes to waterborne arsenate (test one) and waterborne ars...

  17. High exposure to inorganic arsenic by food: the need for risk reduction.

    PubMed

    Gundert-Remy, Ursula; Damm, Georg; Foth, Heidi; Freyberger, Alexius; Gebel, Thomas; Golka, Klaus; Röhl, Claudia; Schupp, Thomas; Wollin, Klaus-Michael; Hengstler, Jan Georg

    2015-12-01

    Arsenic is a human carcinogen that occurs ubiquitously in soil and water. Based on epidemiological studies, a benchmark dose (lower/higher bound estimate) between 0.3 and 8 μg/kg bw/day was estimated to cause a 1 % increased risk of lung, skin and bladder cancer. A recently published study by EFSA on dietary exposure to inorganic arsenic in the European population reported 95th percentiles (lower bound min to upper bound max) for different age groups in the same range as the benchmark dose. For toddlers, a highly exposed group, the highest values ranged between 0.61 and 2.09 µg arsenic/kg bw/day. For all other age classes, the margin of exposure is also small. This scenario calls for regulatory action to reduce arsenic exposure. One priority measure should be to reduce arsenic in food categories that contribute most to exposure. In the EFSA study the food categories 'milk and dairy products,' 'drinking water' and 'food for infants' represent major sources of inorganic arsenic for infants and also rice is an important source. Long-term strategies are required to reduce inorganic arsenic in these food groups. The reduced consumption of rice and rice products which has been recommended may be helpful for a minority of individuals consuming unusually high amounts of rice. However, it is only of limited value for the general European population, because the food categories 'grain-based processed products (non rice-based)' or 'milk and dairy products' contribute more to the exposure with inorganic arsenic than the food category 'rice.' A balanced regulatory activity focusing on the most relevant food categories is required. In conclusion, exposure to inorganic arsenic represents a risk to the health of the European population, particularly to young children. Regulatory measures to reduce exposure are urgently required.

  18. Fate of over 480 million inhabitants living in arsenic and fluoride endemic Indian districts: Magnitude, health, socio-economic effects and mitigation approaches.

    PubMed

    Chakraborti, Dipankar; Rahman, Mohammad Mahmudur; Chatterjee, Amit; Das, Dipankar; Das, Bhaskar; Nayak, Biswajit; Pal, Arup; Chowdhury, Uttam Kumar; Ahmed, Sad; Biswas, Bhajan Kumar; Sengupta, Mrinal Kumar; Lodh, Dilip; Samanta, Gautam; Chakraborty, Sanjana; Roy, M M; Dutta, Rathindra Nath; Saha, Khitish Chandra; Mukherjee, Subhas Chandra; Pati, Shyamapada; Kar, Probir Bijoy

    2016-12-01

    During our last 27 years of field survey in India, we have studied the magnitude of groundwater arsenic and fluoride contamination and its resulting health effects from numerous states. India is the worst groundwater fluoride and arsenic affected country in the world. Fluoride results the most prevalent groundwater related diseases in India. Out of a total 29 states in India, groundwater of 20 states is fluoride affected. Total population of fluoride endemic 201 districts of India is 411 million (40% of Indian population) and more than 66 million people are estimated to be suffering from fluorosis including 6 million children below 14 years of age. Fluoride may cause a crippling disease. In 6 states of the Ganga-Brahmaputra Plain (GB-Plain), 70.4 million people are potentially at risk from groundwater arsenic toxicity. Three additional states in the non GB-Plain are mildly arsenic affected. For arsenic with substantial cumulative exposure can aggravate the risk of cancers along with various other diseases. Clinical effects of fluoride includes abnormal tooth enamel in children; adults had joint pain and deformity of the limbs, spine etc. The affected population chronically exposed to arsenic and fluoride from groundwater is in danger and there is no available medicine for those suffering from the toxicity. Arsenic and fluoride safe water and nutritious food are suggested to prevent further aggravation of toxicity. The World Health Organization (WHO) points out that social problems arising from arsenic and fluoride toxicity eventually create pressure on the economy of the affected areas. In arsenic and fluoride affected areas in India, crisis is not always having too little safe water to satisfy our need, it is the crisis of managing the water. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Behavioral Determinants of Switching to Arsenic-Safe Water Wells: An Analysis of a Randomized Controlled Trial of Health Education Interventions Coupled With Water Arsenic Testing

    ERIC Educational Resources Information Center

    George, Christine Marie; Inauen, Jennifer; Perin, Jamie; Tighe, Jennifer; Hasan, Khaled; Zheng, Yan

    2017-01-01

    More than 100 million people globally are estimated to be exposed to arsenic in drinking water that exceeds the World Health Organization guideline of 10 µg/L. In an effort to develop and test a low-cost sustainable approach for water arsenic testing in Bangladesh, we conducted a randomized controlled trial which found arsenic educational…

  20. Chronic subhepatotoxic exposure to arsenic enhances hepatic injury caused by high fat diet in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Min; Schmidt, Robin H.; Beier, Juliane I.

    Arsenic is a ubiquitous contaminant in drinking water. Whereas arsenic can be directly hepatotoxic, the concentrations/doses required are generally higher than present in the US water supply. However, physiological/biochemical changes that are alone pathologically inert can enhance the hepatotoxic response to a subsequent stimulus. Such a '2-hit' paradigm is best exemplified in chronic fatty liver diseases. Here, the hypothesis that low arsenic exposure sensitizes liver to hepatotoxicity in a mouse model of non-alcoholic fatty liver disease was tested. Accordingly, male C57Bl/6J mice were exposed to low fat diet (LFD; 13% calories as fat) or high fat diet (HFD; 42% caloriesmore » as fat) and tap water or arsenic (4.9 ppm as sodium arsenite) for ten weeks. Biochemical and histologic indices of liver damage were determined. High fat diet ({+-} arsenic) significantly increased body weight gain in mice compared with low-fat controls. HFD significantly increased liver to body weight ratios; this variable was unaffected by arsenic exposure. HFD caused steatohepatitis, as indicated by histological assessment and by increases in plasma ALT and AST. Although arsenic exposure had no effect on indices of liver damage in LFD-fed animals, it significantly increased the liver damage caused by HFD. This effect of arsenic correlated with enhanced inflammation and fibrin extracellular matrix (ECM) deposition. These data indicate that subhepatotoxic arsenic exposure enhances the toxicity of HFD. These results also suggest that arsenic exposure might be a risk factor for the development of fatty liver disease in human populations. -- Highlights: Black-Right-Pointing-Pointer Characterizes a mouse model of arsenic enhanced NAFLD. Black-Right-Pointing-Pointer Arsenic synergistically enhances experimental fatty liver disease at concentrations that cause no overt hepatotoxicity alone. Black-Right-Pointing-Pointer This effect is associated with increased inflammation.« less

  1. Arsenic in agricultural soils across China: Distribution pattern, accumulation trend, influencing factors, and risk assessment.

    PubMed

    Zhou, Yuting; Niu, Lili; Liu, Kai; Yin, Shanshan; Liu, Weiping

    2018-03-01

    Arsenic (As) in the environment is of concern due to its strong toxicity and high risks to the ecosystems and humans. In this study, soil samples across China collected in 2011 and 2016 were used to determine the concentrations of arsenic in arable soils. The median concentration of arsenic in surface soils was 9.7mg/kg. The inventory of arsenic in the Chinese agricultural surface soils was estimated to be 3.7×10 6 tons. In general, arsenic contamination was found higher in South and Northeast China than in other regions, with means of 18.7 and 15.8mg/kg, respectively. Vertically, arsenic concentrations were higher in top layer (0-15cm) soils (median of 9.8mg/kg) and decreased with soil depth (medians of 8.9mg/kg at 15-30cm and 8.0mg/kg at 30-45cm). By comparing with published data, an increasing accumulation trend over the past decades was found and this enhancement was positively related with the long-term application of fertilizers in agricultural practice, especially phosphate fertilizers. Soil pH was found to affect the movement of arsenic in soil, and high-pH conditions enhanced the pool of arsenic. The ecological risk assessment revealed that arsenic in Chinese agricultural soil posed a low risk to the ecosystem. Regarding human health, the mean hazard indices (HIs) of arsenic were below 1, suggesting an absence of non-carcinogenic risks. In addition, the cancer risks of arsenic in all soil samples were within the acceptable range (below 1×10 -4 ), indicating low to very low risks to the exposed population. Findings from this study are valuable to provide effective management options for risk avoidance and to control the persistent accumulation of arsenic in the agriculture sector across the world. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Assessing the risks on human health associated with inorganic arsenic intake from groundwater-cultured milkfish in southwestern Taiwan.

    PubMed

    Lin, M C; Liao, C M

    2008-02-01

    The risk of consuming groundwater-cultured milkfish (Chanos chanos) was assessed. Samples of water and milkfish from groundwater-cultured ponds in southwestern Taiwan were analyzed. One third of the 12 sampled ponds had arsenic concentrations in the water higher than 50 microg/L, which is the maximum allowed concentration for arsenic in aquacultural water in Taiwan. Of the total amount of arsenic in water, the percentage of inorganic arsenic was 67.5+/-8.8%. The inorganic arsenic level in milkfish was 44.1+/-10.2%. The bioconcentration factors (BCFs) of milkfish for total arsenic and inorganic arsenic were 11.55+/-4.42 and 6.8+/-2.64, respectively. The target cancer risk (TR) for intake of the milkfish from those ponds was higher than the safe standard 1 x 10(-6), while in 8 of the ponds the TR values were higher than 1 x 10(-4). Among the 12 ponds, 7 of those had the target hazard quotient (THQ) for intake of the milkfish higher than the safe standard 1. The actual consumption (IRF) of milkfish from most of those ponds were higher than the calculated acceptable consumption (RBIRF), based on TR = 1 x 10(-6)-1 x 10(-4). Only three sampled ponds (Putai 2, Peimen 2 and Peimen 3) did not show differences between the IRF and the RBIRF. Based on the standard TR = 1 x 10(-6), both the risk-based concentration for inorganic arsenic in milkfish (RBC(f)) and the risk-based concentration for inorganic arsenic in pond water (RBC(w)) were lower than the levels of inorganic arsenic in reared milkfish (C(b)) and the concentration of inorganic arsenic in pond water (C(w)), respectively. When the calculation was based on TR = 1 x 10(-4), only one sampled pond (Putai 3) had a RBC(f) value higher than C(b). The inhabitants might be exposed to arsenic pollution with carcinogenic and non-carcinogenic risks.

  3. Trace elements are associated with urinary 8-hydroxy-2'-deoxyguanosine level: a case study of college students in Guangzhou, China.

    PubMed

    Lu, Shaoyou; Ren, Lu; Fang, Jianzhang; Ji, Jiajia; Liu, Guihua; Zhang, Jianqing; Zhang, Huimin; Luo, Ruorong; Lin, Kai; Fan, Ruifang

    2016-05-01

    Many trace heavy elements are carcinogenic and increase the incidence of cancer. However, a comprehensive study of the correlation between multiple trace elements and DNA oxidative damage is still lacking. The aim of this study is to investigate the relationships between the body burden of multiple trace elements and DNA oxidative stress in college students in Guangzhou, China. Seventeen trace elements in urine samples were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), a biomarker of DNA oxidative stress, was also measured using liquid chromatography tandem mass spectrometer (LC-MS/MS). The concentrations of six essential elements including manganese (Mn), copper (Cu), nickel (Ni), selenium (Se), strontium (Sr), and molybdenum (Mo), and five non-essential elements including arsenic (As), cadmium (Cd), aluminum (Al), stibium (Sb), and thallium (Tl), were found to be significantly correlated with urinary 8-OHdG levels. Moreover, urinary levels of Ni, Se, Mo, As, Sr, and Tl were strongly significantly correlated with 8-OHdG (P < 0.01) concentration. Environmental exposure and dietary intake of these trace elements may play important roles in DNA oxidative damage in the population of Guangzhou, China.

  4. Chronic exposure to arsenic in drinking water can lead to resistance to antimonial drugs in a mouse model of visceral leishmaniasis

    PubMed Central

    Perry, Meghan R.; Wyllie, Susan; Raab, Andrea; Feldmann, Joerg; Fairlamb, Alan H.

    2013-01-01

    The Indian subcontinent is the only region where arsenic contamination of drinking water coexists with widespread resistance to antimonial drugs that are used to treat the parasitic disease visceral leishmaniasis. We have previously proposed that selection for parasite resistance within visceral leishmaniasis patients who have been exposed to trivalent arsenic results in cross-resistance to the related metalloid antimony, present in the pentavalent state as a complex in drugs such as sodium stibogluconate (Pentostam) and meglumine antimonate (Glucantime). To test this hypothesis, Leishmania donovani was serially passaged in mice exposed to arsenic in drinking water at environmentally relevant levels (10 or 100 ppm). Arsenic accumulation in organs and other tissues was proportional to the level of exposure and similar to that previously reported in human liver biopsies. After five monthly passages in mice exposed to arsenic, isolated parasites were found to be completely refractory to 500 μg⋅mL−1 Pentostam compared with the control passage group (38.5 μg⋅mL−1) cultured in vitro in mouse peritoneal macrophages. Reassessment of resistant parasites following further passage for 4 mo in mice without arsenic exposure showed that resistance was stable. Treatment of infected mice with Pentostam confirmed that resistance observed in vitro also occurred in vivo. We conclude that arsenic contamination may have played a significant role in the development of Leishmania antimonial resistance in Bihar because inadequate treatment with antimonial drugs is not exclusive to India, whereas widespread antimonial resistance is. PMID:24167266

  5. Chronic exposure to arsenic in drinking water can lead to resistance to antimonial drugs in a mouse model of visceral leishmaniasis.

    PubMed

    Perry, Meghan R; Wyllie, Susan; Raab, Andrea; Feldmann, Joerg; Fairlamb, Alan H

    2013-12-03

    The Indian subcontinent is the only region where arsenic contamination of drinking water coexists with widespread resistance to antimonial drugs that are used to treat the parasitic disease visceral leishmaniasis. We have previously proposed that selection for parasite resistance within visceral leishmaniasis patients who have been exposed to trivalent arsenic results in cross-resistance to the related metalloid antimony, present in the pentavalent state as a complex in drugs such as sodium stibogluconate (Pentostam) and meglumine antimonate (Glucantime). To test this hypothesis, Leishmania donovani was serially passaged in mice exposed to arsenic in drinking water at environmentally relevant levels (10 or 100 ppm). Arsenic accumulation in organs and other tissues was proportional to the level of exposure and similar to that previously reported in human liver biopsies. After five monthly passages in mice exposed to arsenic, isolated parasites were found to be completely refractory to 500 μg · mL(-1) Pentostam compared with the control passage group (38.5 μg · mL(-1)) cultured in vitro in mouse peritoneal macrophages. Reassessment of resistant parasites following further passage for 4 mo in mice without arsenic exposure showed that resistance was stable. Treatment of infected mice with Pentostam confirmed that resistance observed in vitro also occurred in vivo. We conclude that arsenic contamination may have played a significant role in the development of Leishmania antimonial resistance in Bihar because inadequate treatment with antimonial drugs is not exclusive to India, whereas widespread antimonial resistance is.

  6. Integrated Quantitative Cancer Risk Assessment of Inorganic Arsenic

    EPA Science Inventory

    This paper attempts to make an integrated risk assessment of arsenic, using data on humans exposed to arsenic via inhalation and ingestion. he data useful for making an integrated analysis and data gaps are discussed. rsenic provides a rare opportunity to compare the cancer risk ...

  7. ARSENIC-INDUCED SKIN CONDITIONS IDENTIFIED IN SOUTHWEST DERMATOLOGY PRACTICE: AN EPIDEMIOLOGIC TOOL?

    EPA Science Inventory

    Populations living in the Southwest United States are more likely to be exposed to elevated drinking water arsenic levels compared to other areas of the country. Skin changes, including hyperpigmentation and generalized hyperkeratosis, are the most common signs of chronic arsenic...

  8. Maternal drinking water arsenic exposure and perinatal outcomes in Inner Mongolia, China, Journal

    EPA Science Inventory

    BACKGROUND: Bayingnormen is a region located in western Inner Mongolia China with a population that is exposed to a wide range of drinking water Arsenic concentrations. This study evaluated the relationship between maternal drinking water arsenic exposure and perinatal endpoints ...

  9. The immune responses and expression of metallothionein (MT) gene and heat shock protein 70 (HSP 70) in juvenile rockfish, Sebastes schlegelii, exposed to waterborne arsenic (As3+).

    PubMed

    Kim, Jun-Hwan; Kang, Ju-Chan

    2016-10-01

    Juvenile rockfish, Sebastes schlegelii (mean length 16.4±1.9cm, and mean weight 71.6±6.4g) were exposed for 20days with the different levels of waterborne arsenic concentration (0, 50, 100, 200 and 400μg/L). The plasma cortisol of S. schlegelii was significantly increased by the waterborne arsenit exposure. In the immune responses, the immunoglobulin M (Ig M) and lysozyme activity of S. schlegelii were significantly increased by the waterborne arsenic exposure. The acetylcholinesterase (AChE) activity of S. schlegelii was inhibited by the waterborne arsenic exposure. The substantial increases in the gene expression such as metallothionein (MT) and heat shock protein 70 (HSP 70) were observed by the waterborne arsenic exposure. The results demonstrated that waterborne arsenic exposure can induce the significant alterations in the immune responses and specific gene expression of S. schlegelii. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The factors influencing urinary arsenic excretion and metabolism of workers in steel and iron smelting foundry.

    PubMed

    Shuhua, Xi; Qingshan, Sun; Fei, Wang; Shengnan, Liu; Ling, Yan; Lin, Zhang; Yingli, Song; Nan, Yan; Guifan, Sun

    2014-01-01

    In order to evaluate the degree of arsenic (As) exposure and the factors influencing urinary As excretion and metabolism, 192 workers from a steel and iron smelting plant, with different type of work in production such as roller, steel smelting, iron smelting and metallic charge preparation, were recruited. Information about characteristics of each subject was obtained by questionnaire and inorganic As (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) in urine were determined. The results showed that steel smelters had significantly higher concentrations of DMA and total As (TAs) than rollers and metallic charge preparation workers, and iron and steel smelters had a higher value of primary methylation index and lower proportion of the iAs (iAs%) than rollers and metallic charge preparation workers. In steel smelters, urinary As level exceeded the biological exposure index (BEI) limit for urinary As of 35 μg/l by 65.52%, and higher than metallic charge preparation workers (35.14%). The individuals consumed seafood in recent 3 days had a higher TAs than the individuals without seafood consumption. Multivariate logistic regression analysis showed that different jobs, taken Chinese medicine of bezoar and seafood consumption in recent 3 days were significantly associated with urinary TAs exceeded BEI limit value 35 μg/l. Our results suggest that workers in steel and iron smelting plant had a lower level of As exposure, and seafood consumption and taking Chinese medicine of bezoar also could increase the risk of urinary TAs exceeded BEI limit value.

  11. Trophic Transfer of Arsenic from an Aquatic Insect to Terrestrial Insect Predators

    PubMed Central

    Mogren, Christina L.; Walton, William E.; Parker, David R.; Trumble, John T.

    2013-01-01

    The movement of energy and nutrients from aquatic to terrestrial ecosystems can be substantial, and emergent aquatic insects can serve as biovectors not only for nutrients, but also for contaminants present in the aquatic environment. The terrestrial predators Tenodera aridifolia sinensis (Mantodea: Mantidae) and Tidarren haemorrhoidale (Araneae: Theridiidae) and the aquatic predator Buenoa scimitra (Hemiptera: Notonectidae) were chosen to evaluate the efficacy of arsenic transfer between aquatic and terrestrial environments. Culex tarsalis larvae were reared in either control water or water containing 1000 µg l−1 arsenic. Adults that emerged from the control and arsenic treatments were fed to the terrestrial predators, and fourth instar larvae were fed to the aquatic predator reared in control or arsenic contaminated water. Tenodera a. sinensis fed arsenic-treated Cx. tarsalis accumulated 658±130 ng g−1 of arsenic. There was no significant difference between control and arsenic-fed T. haemorrhoidale (range 142–290 ng g−1). Buenoa scimitra accumulated 5120±406 ng g−1 of arsenic when exposed to arsenic-fed Cx. tarsalis and reared in water containing 1000 µg l−1 arsenic. There was no significant difference between controls or arsenic-fed B. scimitra that were not exposed to water-borne arsenic, indicating that for this species environmental exposure was more important in accumulation than strictly dietary arsenic. These results indicate that transfer to terrestrial predators may play an important role in arsenic cycling, which would be particularly true during periods of mass emergence of potential insect biovectors. Trophic transfer within the aquatic environment may still occur with secondary predation, or in predators with different feeding strategies. PMID:23826344

  12. Detection of damage on single- or double-stranded DNA in a population exposed to arsenic in drinking water.

    PubMed

    Jiménez-Villarreal, J; Rivas-Armendariz, D I; Pineda-Belmontes, C P; Betancourt-Martínez, N D; Macías-Corral, M A; Guerra-Alanis, A J; Niño-Castañeda, M S; Morán-Martínez, J

    2017-05-18

    Different studies have suggested an association between arsenic (As) exposure and damage to single-stranded DNA by reactive oxygen species derived from the biotransformation of arsenic. The single strand damages are converted to double strand damage upon interaction with ultraviolet radiation. Analysis of genomic integrity is important for assessing the genotoxicity caused by environmental pollutants. In this study, we compared the concentration of As in drinking water, nutritional status, lifestyle variables, and the level of genotoxicity in an exposed population and a control group. Arsenic content of water was determined using a portable Arsenator ® kit. DNA fragmentation was determined using the two-tailed comet assay. Our results show that the exposed population had low nutritional consumption compared to the control group (P < 0.05). Furthermore, the water consumed by the exposed group had As concentration of 14.3 ± 8.4 mg/L, whereas the As level in the water consumed by the control group was 7.7 ± 3.5 mg/L. Analysis shows that the frequency of double strand break (DSB) fragmentation was higher in the population exposed to higher levels of As compared to that of the control group. These results suggest a possible association between the concentration of As in drinking water and lifestyle variables, with increasing fragmentation of DSBs in the exposed population.

  13. Hair and toenail arsenic concentrations of residents living in areas with high environmental arsenic concentrations.

    PubMed Central

    Hinwood, Andrea L; Sim, Malcolm R; Jolley, Damien; de Klerk, Nick; Bastone, Elisa B; Gerostamoulos, Jim; Drummer, Olaf H

    2003-01-01

    Surface soil and groundwater in Australia have been found to contain high concentrations of arsenic. The relative importance of long-term human exposure to these sources has not been established. Several studies have investigated long-term exposure to environmental arsenic concentrations using hair and toenails as the measure of exposure. Few have compared the difference in these measures of environmental sources of exposure. In this study we aimed to investigate risk factors for elevated hair and toenail arsenic concentrations in populations exposed to a range of environmental arsenic concentrations in both drinking water and soil as well as in a control population with low arsenic concentrations in both drinking water and soil. In this study, we recruited 153 participants from areas with elevated arsenic concentrations in drinking water and residential soil, as well as a control population with no anticipated arsenic exposures. The median drinking water arsenic concentrations in the exposed population were 43.8 micro g/L (range, 16.0-73 micro g/L) and median soil arsenic concentrations were 92.0 mg/kg (range, 9.1-9,900 mg/kg). In the control group, the median drinking water arsenic concentration was below the limit of detection, and the median soil arsenic concentration was 3.3 mg/kg. Participants were categorized based on household drinking water and residential soil arsenic concentrations. The geometric mean hair arsenic concentrations were 5.52 mg/kg for the drinking water exposure group and 3.31 mg/kg for the soil exposure group. The geometric mean toenail arsenic concentrations were 21.7 mg/kg for the drinking water exposure group and 32.1 mg/kg for the high-soil exposure group. Toenail arsenic concentrations were more strongly correlated with both drinking water and soil arsenic concentrations; however, there is a strong likelihood of significant external contamination. Measures of residential exposure were better predictors of hair and toenail arsenic concentrations than were local environmental concentrations. PMID:12573904

  14. Arsenic Exposure to Killifish During Embryogenesis Alters Muscle Development

    PubMed Central

    Gaworecki, Kristen M.; Chapman, Robert W.; Neely, Marion G.; D’Amico, Angela R.; Bain, Lisa J.

    2012-01-01

    Epidemiological studies have correlated arsenic exposure in drinking water with adverse developmental outcomes such as stillbirths, spontaneous abortions, neonatal mortality, low birth weight, delays in the use of musculature, and altered locomotor activity. Killifish (Fundulus heteroclitus) were used as a model to help to determine the mechanisms by which arsenic could impact development. Killifish embryos were exposed to three different sodium arsenite concentrations and were collected at 32 h post-fertilization (hpf), 42 hpf, 168 hpf, or < 24 h post-hatch. A killifish oligo microarray was developed and used to examine gene expression changes between control and 25-ppm arsenic-exposed hatchlings. With artificial neural network analysis of the transcriptomic data, accurate prediction of each group (control vs. arsenic-exposed embryos) was obtained using a small subset of only 332 genes. The genes differentially expressed include those involved in cell cycle, development, ubiquitination, and the musculature. Several of the genes involved in cell cycle regulation and muscle formation, such as fetuin B, cyclin D–binding protein 1, and CapZ, were differentially expressed in the embryos in a time- and dose-dependent manner. Examining muscle structure in the hatchlings showed that arsenic exposure during embryogenesis significantly reduces the average muscle fiber size, which is coupled with a significant 2.1- and 1.6-fold upregulation of skeletal myosin light and heavy chains, respectively. These findings collectively indicate that arsenic exposure during embryogenesis can initiate molecular changes that appear to lead to aberrant muscle formation. PMID:22058191

  15. Exposure to low level of arsenic and lead in drinking water from Antofagasta city induces gender differences in glucose homeostasis in rats.

    PubMed

    Palacios, Javier; Roman, Domingo; Cifuentes, Fredi

    2012-08-01

    Populations chronically exposed to arsenic in drinking water often have increased prevalence of diabetes mellitus. The purpose of this study was to compare the glucose homeostasis of male and female rats exposed to low levels of heavy metals in drinking water. Treated groups were Sprague-Dawley male and female rats exposed to drinking water from Antofagasta city, with total arsenic of 30 ppb and lead of 53 ppb for 3 months; control groups were exposed to purified water by reverse osmosis. The two treated groups in both males and females showed arsenic and lead in the hair of rats. The δ-aminolevulinic acid dehydratase was used as a sensitive biomarker of arsenic toxicity and lead. The activity of δ-aminolevulinic acid dehydratase was reduced only in treated male rats, compared to the control group. Treated males showed a significantly sustained increase in blood glucose and plasma insulin levels during oral glucose tolerance test compared to control group. The oral glucose tolerance test and the homeostasis model assessment of insulin resistance demonstrated that male rats were insulin resistant, and females remained sensitive to insulin after treatment. The total cholesterol and LDL cholesterol increased in treated male rats vs. the control, and triglyceride increased in treated female rats vs. the control. The activity of intestinal Na+/glucose cotransporter in male rats increased compared to female rats, suggesting a significant increase in intestinal glucose absorption. The findings indicate that exposure to low levels of arsenic and lead in drinking water could cause gender differences in insulin resistance.

  16. ARSENIC MODE OF ACTION AND DEVELOPING A BBDR MODEL

    EPA Science Inventory

    The current USEPA cancer risk assessment for inorganic arsenic is based on a linear extrapolation of the epidemiological data from exposed populations in Taiwan. However, proposed key events in the mode of action (MoA) for arsenic-induced cancer (which may include altered DNA me...

  17. Elevated levels of plasma Big endothelin-1 and its relation to hypertension and skin lesions in individuals exposed to arsenic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, Ekhtear; Islam, Khairul; Yeasmin, Fouzia

    Chronic arsenic (As) exposure affects the endothelial system causing several diseases. Big endothelin-1 (Big ET-1), the biological precursor of endothelin-1 (ET-1) is a more accurate indicator of the degree of activation of the endothelial system. Effect of As exposure on the plasma Big ET-1 levels and its physiological implications have not yet been documented. We evaluated plasma Big ET-1 levels and their relation to hypertension and skin lesions in As exposed individuals in Bangladesh. A total of 304 study subjects from the As-endemic and non-endemic areas in Bangladesh were recruited for this study. As concentrations in water, hair and nailsmore » were measured by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The plasma Big ET-1 levels were measured using a one-step sandwich enzyme immunoassay kit. Significant increase in Big ET-1 levels were observed with the increasing concentrations of As in drinking water, hair and nails. Further, before and after adjusting with different covariates, plasma Big ET-1 levels were found to be significantly associated with the water, hair and nail As concentrations of the study subjects. Big ET-1 levels were also higher in the higher exposure groups compared to the lowest (reference) group. Interestingly, we observed that Big ET-1 levels were significantly higher in the hypertensive and skin lesion groups compared to the normotensive and without skin lesion counterpart, respectively of the study subjects in As-endemic areas. Thus, this study demonstrated a novel dose–response relationship between As exposure and plasma Big ET-1 levels indicating the possible involvement of plasma Big ET-1 levels in As-induced hypertension and skin lesions. -- Highlights: ► Plasma Big ET-1 is an indicator of endothelial damage. ► Plasma Big ET-1 level increases dose-dependently in arsenic exposed individuals. ► Study subjects in arsenic-endemic areas with hypertension have elevated Big ET-1 levels. ► Study subjects with arsenic-induced skin lesions show elevated plasma Big ET-1 levels. ► Arsenic-induced hypertension and skin lesions may be linked to plasma Big ET-1 levels.« less

  18. Coal fly ash basins as an attractive nuisance to birds: parental provisioning exposes nestlings to harmful trace elements.

    PubMed

    Bryan, A L; Hopkins, W A; Parikh, J H; Jackson, B P; Unrine, J M

    2012-02-01

    Birds attracted to nest around coal ash settling basins may expose their young to contaminants by provisioning them with contaminated food. Diet and tissues of Common Grackle (Quiscalus quiscala) nestlings were analyzed for trace elements to determine if nestlings were accumulating elements via dietary exposure and if feather growth limits elemental accumulation in other tissues. Arsenic, cadmium, and selenium concentrations in ash basin diets were 5× higher than reference diets. Arsenic, cadmium, and selenium concentrations were elevated in feather, liver, and carcass, but only liver Se concentrations approached levels of concern. Approximately 15% of the total body burden of Se, As, and Cd was sequestered in feathers of older (>5 days) nestlings, whereas only 1% of the total body burden of Sr was sequestered in feathers. Feather concentrations of only three elements (As, Se, and Sr) were correlated with liver concentrations, indicating their value as non-lethal indicators of exposure. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Prenatal Heavy Metal Exposure and Adverse Birth Outcomes in Myanmar: A Birth-Cohort Study.

    PubMed

    Wai, Kyi Mar; Mar, Ohn; Kosaka, Satoko; Umemura, Mitsutoshi; Watanabe, Chiho

    2017-11-03

    Arsenic, cadmium and lead are well-known environmental contaminants, and their toxicity at low concentration is the target of scientific concern. In this study, we aimed to identify the potential effects of prenatal heavy metal exposure on the birth outcomes among the Myanmar population. This study is part of a birth-cohort study conducted with 419 pregnant women in the Ayeyarwady Division, Myanmar. Face-to-face interviews were performed using a questionnaire, and maternal spot urine samples were collected at the third trimester. Birth outcomes were evaluated at delivery during the follow up. The median values of adjusted urinary arsenic, cadmium, selenium and lead concentration were 74.2, 0.9, 22.6 and 1.8 μg/g creatinine, respectively. Multivariable logistic regression revealed that prenatal cadmium exposure (adjusted odds ratio (OR) = 1.10; 95% confidence interval (CI): 1.01-1.21; p = 0.043), gestational age (adjusted OR = 0.83; 95% CI: 0.72-0.95; p = 0.009) and primigravida mothers (adjusted OR = 4.23; 95% CI: 1.31-13.65; p = 0.016) were the predictors of low birth weight. The present study identified that Myanmar mothers were highly exposed to cadmium. Prenatal maternal cadmium exposure was associated with an occurrence of low birth weight.

  20. Benefits of Alcohol on Arsenic Toxicity in Rats

    PubMed Central

    Dutta, Shubha Ranjan; Passi, Deepak; Bharti, Jaya

    2017-01-01

    Introduction It has been demonstrated earlier that exposure to ethanol and/or arsenic compounds (such as sodium arsenite) produces toxic effects as shown by both in vitro and in vivo experiments. Chronic exposure of humans to arsenic through drinking water, pesticides or consumption of alcoholic beverages has produced major health problem and concern in recent years. Water being one of the main ingredients for alcohol formation (beer fermentation process) can lead to contamination with arsenic. Thus, people consuming such alcohol are getting continuously exposed to arsenic compounds as well along with alcohol. Aim The present study was undertaken to investigate the effect of alcohol co-administration on arsenic induced changes in carbohydrate metabolic status in adult male albino rats. Materials and Methods Adult male albino rats of Wistar strain (weighing~100g) were divided into three groups (n=8 rats/group) including Control or vehicle treated (C), Arsenic treated (As) and Arsenic treated alcohol co-exposed (As+Alc). Treatment with Sodium-arsenite included intra-peritoneal injection consecutively for 14 days at a dose of 5.55 mg/kg (equivalent to 35% of LD50) per day. Absolute alcohol (15% v/v) was fed at a dose of 0.5 ml/100 g body weight per day for five consecutive days from start of the treatment schedule. Distilled water (D/W) was used as vehicle. Blood Glucose (BG) level, levels of glycogen, Pyruvic Acid (PA), Free Amino Acid Nitrogen (FAAN), total protein, Glutamate Oxalate transaminase (GOT) and Glutamate Pyruvate Transaminase (GPT) activity, and glucose-6-phosphatase (G6Pase) activity were measured in tissues including liver, kidney and muscle. Results Treatment with arsenic decreased the levels of BG, liver glycogen and PA, tissue protein and G6Pase activity, GOT activity in liver and muscle, and increased free amino acid content in kidney and muscle, GPT activity in liver and kidney. Alcohol administration to rats co-exposed to arsenic treatment reversed these changes. Conclusion Thus, it is suggested that combined administration of alcohol with arsenic can result in the suppression of the down-regulating action of arsenic on glucose homeostasis as evidenced by its hypoglycaemic effect and increased gluconeogenesis and transamination in liver. PMID:28273963

  1. Benefits of Alcohol on Arsenic Toxicity in Rats.

    PubMed

    Singh, Purnima; Dutta, Shubha Ranjan; Passi, Deepak; Bharti, Jaya

    2017-01-01

    It has been demonstrated earlier that exposure to ethanol and/or arsenic compounds (such as sodium arsenite) produces toxic effects as shown by both in vitro and in vivo experiments. Chronic exposure of humans to arsenic through drinking water, pesticides or consumption of alcoholic beverages has produced major health problem and concern in recent years. Water being one of the main ingredients for alcohol formation (beer fermentation process) can lead to contamination with arsenic. Thus, people consuming such alcohol are getting continuously exposed to arsenic compounds as well along with alcohol. The present study was undertaken to investigate the effect of alcohol co-administration on arsenic induced changes in carbohydrate metabolic status in adult male albino rats. Adult male albino rats of Wistar strain (weighing~100g) were divided into three groups (n=8 rats/group) including Control or vehicle treated (C), Arsenic treated (As) and Arsenic treated alcohol co-exposed (As+Alc). Treatment with Sodium-arsenite included intra-peritoneal injection consecutively for 14 days at a dose of 5.55 mg/kg (equivalent to 35% of LD50) per day. Absolute alcohol (15% v/v) was fed at a dose of 0.5 ml/100 g body weight per day for five consecutive days from start of the treatment schedule. Distilled water (D/W) was used as vehicle. Blood Glucose (BG) level, levels of glycogen, Pyruvic Acid (PA), Free Amino Acid Nitrogen (FAAN), total protein, Glutamate Oxalate transaminase (GOT) and Glutamate Pyruvate Transaminase (GPT) activity, and glucose-6-phosphatase (G6Pase) activity were measured in tissues including liver, kidney and muscle. Treatment with arsenic decreased the levels of BG, liver glycogen and PA, tissue protein and G6Pase activity, GOT activity in liver and muscle, and increased free amino acid content in kidney and muscle, GPT activity in liver and kidney. Alcohol administration to rats co-exposed to arsenic treatment reversed these changes. Thus, it is suggested that combined administration of alcohol with arsenic can result in the suppression of the down-regulating action of arsenic on glucose homeostasis as evidenced by its hypoglycaemic effect and increased gluconeogenesis and transamination in liver.

  2. Experimental lead intoxication in dogs: a comparison of blood lead and urinary delta-aminolevulinic acid following intoxication and chelation therapy.

    PubMed Central

    Green, R A; Selby, L A; Zumwalt, R W

    1978-01-01

    Intravenous lead administration to dogs produced an acute syndrome of lead intoxication charcterized by depression, vomiting, anorexia and weight loss. The effect of chelation therapy with calcium disodium ethylene diamine tetraacetate, penicillamine or both was determined by serially monitoring changes in blood lead and urine delta-aminolevulinic acid. Following therapy, blood lead values were significantly lower in chelated dogs than non-treated lead exposed dogs on days 7 and 10. Urine delta-aminolevulinic acid at day 7 was significantly higher in untreated lead exposed dogs than in other groups. There was no significant difference in blood lead or urine delta-aminolevulinic acid between lead intoxicated dogs which underwent the indicated chelation therapy protocols. There was, however, a trend for higher urinary delta-aminolevulinic acid excretion in those intoxicated dogs undergoing calcium disodium ethylene diamine tetraacetate therapy as opposed to those undergoing penicilamine therapy. There was no significant correlation between blood lead and urinary delta-aminolevulinic acid previous to lead exposure. However, after lead exposure significant correlation was present at days 4, 7, 10 and 14. Certain lead exposed dogs following chelation therapy were noted to have normal blood lead levels but elevated urinary delta-aminolevulinic acid suggesting that blood lead does not always correlate with metabolic effects of lead in the body. Urinary delta-aminolevulinic acid was therefore recommended as an additional laboratory parameter which improved assessment of lead exposure in dogs, particularly in determining adequacy of chelation therapy. PMID:667707

  3. [PAH exposure in asphalt workers].

    PubMed

    Garattini, Siria; Sarnico, Michela; Benvenuti, Alessandra; Barbieri, P G

    2010-01-01

    There has been interest in evaluating the potential carcinogenicity of bitumen fumes in asphalt workers since the 1960's. The IARC classified air-refined bitumens as possible human carcinogens, while coal-tar fumes were classified as known carcinogens. Occupational/environmental PAH exposure can be measured by several urinary markers. Urinary 1-OHP has become the most commonly used biological marker of PAH exposure in asphalt workers. The aim of this study was to assess asphalt workers' exposure levels by monitoring 1-OHP urinary excretion and compare this data with those of non-occupationally exposed subjects. We investigated three groups of asphalt workers: 100 in summer 2007, 29 in winter 2007, and 148 during summer 2008 and compared 1-OHP urinary concentrations using Kruskall-Wallis test. Median 1-OHP urinary concentrations during the three biomonitoring sampling periods were 0.65, 0.17 and 0.53 microg/g creatinine respectively. There was a significant difference in 1-OHP values between the three groups (p < 0.001). our study showed that PAH exposure of asphalt workers' is higher than that observed in the general population and in workers in urban areas. Our results suggest that PAH exposure in the three groups studied is not sufficiently kept under control by the use of personal protective equipment and that biomonitoring is useful in evaluating PAH exposure and for risk assessment. Regulations need to be enforced for workers exposed to cancer risk, such as the register of workers exposed to carcinogens.

  4. Genome-wide analysis of DNA methylation changes induced by gestational arsenic exposure in liver tumors.

    PubMed

    Suzuki, Takehiro; Yamashita, Satoshi; Ushijima, Toshikazu; Takumi, Shota; Sano, Tomoharu; Michikawa, Takehiro; Nohara, Keiko

    2013-12-01

    Inorganic arsenic is known to be a human carcinogen. Previous studies have reported that DNA methylation changes are involved in arsenic-induced carcinogenesis, therefore, DNA methylation changes that are specific to arsenic-induced tumors would be useful to distinguish tumors induced by arsenic from tumors caused by other factors and to dissect arsenic carcinogenesis. Previous studies have shown that gestational arsenic exposure of C3H mice, which tend to spontaneously develop liver tumors, increases the incidence of tumors in male offspring. In this study we used the same experimental protocol as in those previous studies and searched for DNA regions where methylation status was specifically altered in the liver tumors of arsenic-exposed offspring by using methylated DNA immunoprecipitation-CpG island microarrays. The methylation levels of the DNA regions selected were measured by quantitative methylation-specific PCR and bisulfite sequencing. The results of this study clarified a number of regions where DNA methylation status was altered in the liver tumors in the C3H mice compared to normal liver tissues. Among such regions, we showed that a gene body region of the oncogene Fosb underwent alteration in DNA methylation by gestational arsenic exposure. We also showed that Fosb expression significantly increased corresponding to the DNA methylation level of the gene body in the arsenic-exposed group. These findings suggest that the DNA methylation status can be used to identify tumors increased by gestational arsenic exposure. © 2013 Japanese Cancer Association.

  5. Sex-specific patterns and deregulation of endocrine pathways in the gene expression profiles of Bangladeshi adults exposed to arsenic contaminated drinking water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muñoz, Alexandra; Chervona, Yana; Hall, Megan

    Arsenic contamination of drinking water occurs globally and is associated with numerous diseases including skin, lung and bladder cancers, and cardiovascular disease. Recent research indicates that arsenic may be an endocrine disruptor. This study was conducted to evaluate the nature of gene expression changes among males and females exposed to arsenic contaminated water in Bangladesh at high and low doses. Twenty-nine (55% male) Bangladeshi adults with water arsenic exposure ranging from 50 to 1000 μg/L were selected from the Folic Acid Creatinine Trial. RNA was extracted from peripheral blood mononuclear cells for gene expression profiling using Affymetrix 1.0 ST arrays.more » Differentially expressed genes were assessed between high and low exposure groups for males and females separately and findings were validated using quantitative real-time PCR. There were 534 and 645 differentially expressed genes (p < 0.05) in the peripheral blood mononuclear cells of males and females, respectively, when high and low water arsenic exposure groups were compared. Only 43 genes overlapped between the two sexes, with 29 changing in opposite directions. Despite the difference in gene sets both males and females exhibited common biological changes including deregulation of 17β-hydroxysteroid dehydrogenase enzymes, deregulation of genes downstream of Sp1 (specificity protein 1) transcription factor, and prediction of estrogen receptor alpha as a key hub in cardiovascular networks. Arsenic-exposed adults exhibit sex-specific gene expression profiles that implicate involvement of the endocrine system. Due to arsenic's possible role as an endocrine disruptor, exposure thresholds for arsenic may require different parameters for males and females. - Highlights: • Males and females exhibit unique gene expression changes in response to arsenic. • Only 23 genes are common among the differentially expressed genes for the sexes. • Male and female gene lists exhibit common biological implications. • Both sexes exhibit deregulation of cardiovascular and endocrine pathways.« less

  6. Plasma, salivary and urinary cotinine in non-smoker Italian women exposed and unexposed to environmental tobacco smoking (SEASD study).

    PubMed

    Simoni, Marzia; Baldacci, Sandra; Puntoni, Roberto; Pistelli, Francesco; Farchi, Sara; Lo Presti, Elena; Pistelli, Riccardo; Corbo, Giuseppe; Agabiti, Nerina; Basso, Salvatore; Matteelli, Gabriella; Di Pede, Francesco; Carrozzi, Laura; Forastiere, Francesco; Viegi, Giovanni

    2006-01-01

    The aim of this study was to compare cotinine determinations in three biological fluids for assessing environmental tobacco smoke (ETS) exposure in female non-smokers (n=1605) in Italy. Information about ETS exposure at home, in the workplace, and in other places within the previous week was collected via questionnaire. Plasma, salivary and urinary cotinine levels were measured. Cotinine levels of > or =0.1 ng/mL for plasma, > or =0.2 ng/mL for saliva, and > or =0.5 ng/mL for urine were used to determine biochemical exposure. Median cotinine levels were significantly higher in exposed than in unexposed women (0.21 vs. 0.05 ng/mL in plasma, 0.80 vs. 0.41 ng/mL in saliva, and 9.74 vs. 5.30 ng/mL in urine). Self-reported ETS exposure was significantly related to biochemical exposure [odds ratio 2.99, (95% CI 2.40-3.72) for plasma; 1.90 (1.51-2.39) for saliva; and 2.67 (2.14-3.34) for urine]. Cotinine significantly increased with increasing exposure level, regardless of the exposure source. Among self-reported exposed subjects, higher percentages of cotinine level above the cut-off, i.e., indicating exposure, were found in saliva (76%) and urine (75%) than in plasma (52%). In general, women correctly reported their ETS exposure status. Both non-invasive salivary and urinary cotinine determinations seem preferable in epidemiological studies, in view of their higher sensitivity, when compared to plasma cotinine.

  7. Cytotoxicity of diesel engine exhaust among the Chinese occupational population: a complement of cytokinesis-block micronucleus cytome.

    PubMed

    Zhang, Xiao; Xiao, Xinhua; Duan, Huawei; Gao, Feng; Li, Yuanyuan; Niu, Yong; Gao, Weimin; Wang, Haisheng; Yu, Shanfa; Zheng, Yuxin

    2016-01-01

    Diesel engine exhaust (DEE), a ubiquitous environmental pollutant, has been associated with adverse health effects. Revelation of cellular and molecular changes is critical for understanding environmental exposure-related diseases. Although the molecular-level effects of DEE exposure have been investigated, whether it is associated with aberrant changes at cellular level is largely unknown at the population level. In the present study, we measured urinary concentrations of 6 mono-hydroxylated PAHs (OH-PAHs) and cytotoxicity-related endpoints including apoptosis and necrosis frequencies, and nuclear division cytotoxicity index (NDCI) in peripheral blood lymphocytes (PBLs) of 79 DEE-exposed workers and 59 non-DEE-exposed workers. We found that DEE-exposed workers had significantly higher necrosis frequency and lower NDCI than did non-DEE-exposed workers (both p < 0.001). In all study subjects and nonsmoking workers, urinary summed OH-PAHs was associated with increased necrosis frequency and reduced NDCI. In nonsmoking workers, an interquartile range increase in urinary summed OH-PAHs was associated with 105.03% increase in necrosis frequency and 8.70% decrease in NDCI. Taking advantage of the previous measure of micronucleus frequency, we observed that micronucleus frequency was positively correlated with apoptosis and necrosis frequencies (r = 0.277, p = 0.047 and r = 0.452, p = 0.001, respectively) and negatively correlated with NDCI (r = -0.477, p < 0.001). In conclusion, our results suggested that DEE exposure was associated with increased necrosis frequency and further with reduced NDCI in PBLs, providing evidence of DEE exposure-induced cytotoxicity in humans.

  8. Nutritional deficiency and arsenical manifestations: a perspective study in an arsenic-endemic region of West Bengal, India.

    PubMed

    Deb, Debasree; Biswas, Anirban; Ghose, Aloke; Das, Arabinda; Majumdar, Kunal K; Guha Mazumder, Debendra N

    2013-09-01

    To assess whether nutritional deficiency increases susceptibility to arsenic-related health effects. Assessment of nutrition was based on a 24 h recall method of all dietary constituents. Epidemiological cross-sectional study was conducted in an arsenic endemic area of West Bengal with groundwater arsenic contamination. The study was composed of two groups – Group 1 (cases, n 108) exhibiting skin lesions and Group 2 (exposed controls, n 100) not exhibiting skin lesions – age- and sex-matched and having similar arsenic exposure through drinking water and arsenic levels in urine and hair. Both groups belonged to low socio-economic strata (Group 1 significantly poorer, P<0·01) and had low BMI (prevalence of BMI<18·5 kg/m2: in 38% in Group 1 and 27% in Group 2). Energy intake was below the Recommended Daily Allowance (set by the Indian Council of Medical Research) in males and females in both groups. Increased risk of arsenical skin lesions was found for those in the lowest quintile of protein intake (v. highest quintile: OR=4·60, 95% CI 1·36, 15·50 in males; OR=5·62, 95% CI 1·19, 34·57 in females). Significantly lower intakes of energy, protein, thiamin, niacin, Mg, Zn and choline were observed in both males and females of Group 1 compared with Group 2. Significantly lower intakes of carbohydrate, riboflavin, niacin and Cu were also observed in female cases with skin lesions compared with non-cases. Deficiencies of Zn, Mg and Cu, in addition to protein, B vitamins and choline, are found to be associated with arsenical skin lesions in West Bengal.

  9. SPECIATION OF ARSENIC IN BIOLOGICAL MATRICES BY AUTOMATED HG-AAS WITH MULTIPLE MICROFLAME QUARTZ TUBE ATOMIZER (MULTIATOMIZER)

    EPA Science Inventory

    Analyses of arsenic (As) species in body fluids and tissues of individuals chronically exposed to inorganic arsenic (iAs) provide essential information about the exposure level and pattern of iAs metabolism. This information facilitates the risk assessment of disorders associated...

  10. COMPARISON OF TWO ARSENIC EXPOSURE ASSESSMENT PROTOCOLS IN A CHRONICALLY EXPOSED POPULATION

    EPA Science Inventory

    Consistent with the US EPA 1997 Arsenic Research Plan's emphasis on studies in US populations to obtain data to support a revised Maximum Contaminant Level (MCL) for arsenic, two studies were conducted in Millard County, Utah; the first in 1997 and a second in 1999. This locat...

  11. Assessing the Groundwater Concentrations and Geographical Distribution of Arsenic in Nepal

    NASA Astrophysics Data System (ADS)

    Ma, J.; Liu, F.

    2015-12-01

    Arsenic 33As, one of the major groundwater contaminants, occurs in both natural and anthropogenic forms. Arsenic inhibits cellular respiration and the production of ATP in human body. Prolonged intake of non-lethal quantities of arsenic can cause cancer and diseases in vital organs such as the heart, liver, skin, and kidney. Each year, millions of people in the rural areas of Bangladesh, India, and other developing countries in South Asia are exposed to arsenic-poisoned groundwater. According to the World Health Organization, arsenic levels in drinking water should not exceed 10 parts per billion; however, the levels of arsenic found in groundwater in the heavily contaminated regions are often more than ten times of the recommended limit. Nepal is one of these regions. In most of the rural areas in Nepal, there is no infrastructure to produce clean filtered water, and wells thus became the major source. However, most of these wells were dug without testing for groundwater safety, because the test commands resources that the rural communities do not have access to. This is also limited data published on Nepal's groundwater contaminant levels. The scarcity of information prohibits the international community from recognizing the severity of arsenic poisoning in Nepal and coming up with the most efficient measures to help. With this project, we will present a method to determine groundwater safety by analyzing geologic data and using remote sensing. The original source of arsenic is the arsenic-bearing minerals in the sediments. Some geological formations have higher arsenic levels than others due to their depositional environments. Therefore, by using existing geologic data from Nepal and countries with similar types of arsenic contamination, we hope to determine correlations between areas where there are reports of high concentrations of arsenic in groundwater to the environmental factors that may cause a particular concentration of arsenic. Furthermore, with deeper understanding of the correlations, we can predict whether an area is suffering from arsenic laden groundwater without actual field testing. We use R and ArcGIS to conduct the statistical and geographical analysis in this project.

  12. Exhaled Breath Condensate as a Suitable Matrix to Assess Lung Dose and Effects in Workers Exposed to Cobalt and Tungsten

    PubMed Central

    Goldoni, Matteo; Catalani, Simona; De Palma, Giuseppe; Manini, Paola; Acampa, Olga; Corradi, Massimo; Bergonzi, Roberto; Apostoli, Pietro; Mutti, Antonio

    2004-01-01

    The aim of the present study was to investigate whether exhaled breath condensate (EBC), a fluid formed by cooling exhaled air, can be used as a suitable matrix to assess target tissue dose and effects of inhaled cobalt and tungsten, using EBC malondialdehyde (MDA) as a biomarker of pulmonary oxidative stress. Thirty-three workers exposed to Co and W in workshops producing either diamond tools or hard-metal mechanical parts participated in this study. Two EBC and urinary samples were collected: one before and one at the end of the work shift. Controls were selected among nonexposed workers. Co, W, and MDA in EBC were analyzed with analytical methods based on mass spectrometric reference techniques. In the EBC from controls, Co was detectable at ultratrace levels, whereas W was undetectable. In exposed workers, EBC Co ranged from a few to several hundred nanomoles per liter. Corresponding W levels ranged from undetectable to several tens of nanomoles per liter. A parallel trend was observed for much higher urinary levels. Both Co and W in biological media were higher at the end of the work shift in comparison with preexposure values. In EBC, MDA levels were increased depending on Co concentration and were enhanced by coexposure to W. Such a correlation between EBC MDA and both Co and W levels was not observed with urinary concentration of either element. These results suggest the potential usefulness of EBC to complete and integrate biomonitoring and health surveillance procedures among workers exposed to mixtures of transition elements and hard metals. PMID:15345342

  13. Sodium arsenite represses the expression of myogenin in C2C12 mouse myoblast cells through histone modifications and altered expression of Ezh2, Glp, and Igf-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Gia-Ming; Present address: The University of Chicago, Section of Hematology/Oncology, 900 E. 57th Street, Room 7134, Chicago, IL 60637; Bain, Lisa J., E-mail: lbain@clemson.edu

    2012-05-01

    Arsenic is a toxicant commonly found in water systems and chronic exposure can result in adverse developmental effects including increased neonatal death, stillbirths, and miscarriages, low birth weight, and altered locomotor activity. Previous studies indicate that 20 nM sodium arsenite exposure to C2C12 mouse myocyte cells delayed myoblast differentiation due to reduced myogenin expression, the transcription factor that differentiates myoblasts into myotubes. In this study, several mechanisms by which arsenic could alter myogenin expression were examined. Exposing differentiating C2C12 cells to 20 nM arsenic increased H3K9 dimethylation (H3K9me2) and H3K9 trimethylation (H3K9me3) by 3-fold near the transcription start site ofmore » myogenin, which is indicative of increased repressive marks, and reduced H3K9 acetylation (H3K9Ac) by 0.5-fold, indicative of reduced permissive marks. Protein expression of Glp or Ehmt1, a H3-K9 methyltransferase, was also increased by 1.6-fold in arsenic-exposed cells. In addition to the altered histone remodeling status on the myogenin promoter, protein and mRNA levels of Igf-1, a myogenic growth factor, were significantly repressed by arsenic exposure. Moreover, a 2-fold induction of Ezh2 expression, and an increased recruitment of Ezh2 (3.3-fold) and Dnmt3a (∼ 2-fold) to the myogenin promoter at the transcription start site (− 40 to + 42), were detected in the arsenic-treated cells. Together, we conclude that the repressed myogenin expression in arsenic-exposed C2C12 cells was likely due to a combination of reduced expression of Igf-1, enhanced nuclear expression and promoter recruitment of Ezh2, and altered histone remodeling status on myogenin promoter (− 40 to + 42). -- Highlights: ► Igf-1 expression is decreased in C2C12 cells after 20 nM arsenite exposure. ► Arsenic exposure alters histone remodeling on the myogenin promoter. ► Glp expression, a H3–K9 methyltransferase, was increased in arsenic-exposed cells. ► Ezh2 and Dnmt3a localization to the myogenin promoter is induced by arsenic.« less

  14. Additional danger of arsenic exposure through inhalation from burning of cow dung cakes laced with arsenic as a fuel in arsenic affected villages in Ganga-Meghna-Brahmaputra plain.

    PubMed

    Pal, Arup; Nayak, Bishwajit; Das, Bhaskar; Hossain, M Amir; Ahamed, Sad; Chakraborti, Dipankar

    2007-10-01

    In arsenic contaminated areas of the Ganga-Meghna-Brahmaputra (GMB) plain (area 569,749 sq. km; population over 500 million) where traditionally cow dung cake is used as a fuel in unventilated ovens for cooking purposes, people are simply exposed to 1859.2 ng arsenic per day through direct inhalation, of which 464.8 ng could be absorbed in respiratory tract.

  15. Developmental and reproductive toxicity of inorganic arsenic: animal studies and human concerns.

    PubMed

    Golub, M S; Macintosh, M S; Baumrind, N

    1998-01-01

    Information on the reproductive and developmental toxicity of inorganic arsenic is available primarily from studies in animals using arsenite and arsenate salts and arsenic trioxide. Inorganic arsenic has been extensively studied as a teratogen in animals. Data from animal studies demonstrate that arsenic can produce developmental toxicity, including malformation, death, and growth retardation, in four species (hamsters, mice, rats, rabbits). A characteristic pattern of malformations is produced, and the developmental toxicity effects are dependent on dose, route, and the day of gestation when exposure occurs. Studies with gavage and diet administration indicate that death and growth retardation are produced by oral arsenic exposure. Arsenic is readily transferred to the fetus and produces developmental toxicity in embryo culture. Animal studies have not identified an effect of arsenic on fertility in males or females. When females were dosed chronically for periods that included pregnancy, the primary effect of arsenic on reproduction was a dose-dependent increase in conceptus mortality and in postnatal growth retardation. Human data are limited to a few studies of populations exposed to arsenic from drinking water or from working at or living near smelters. Associations with spontaneous abortion and stillbirth have been reported in more than one of these studies, but interpretation of these studies is complicated because study populations were exposed to multiple chemicals. Thus, animal studies suggest that environmental arsenic exposures are primarily a risk to the developing fetus. In order to understand the implications for humans, attention must be given to comparative pharmacokinetics and metabolism, likely exposure scenarios, possible mechanisms of action, and the potential role of arsenic as an essential nutrient.

  16. Arsenic-induced dyslipidemia in male albino rats: comparison between trivalent and pentavalent inorganic arsenic in drinking water.

    PubMed

    Afolabi, Olusegun K; Wusu, Adedoja D; Ogunrinola, Olabisi O; Abam, Esther O; Babayemi, David O; Dosumu, Oluwatosin A; Onunkwor, Okechukwu B; Balogun, Elizabeth A; Odukoya, Olusegun O; Ademuyiwa, Oladipo

    2015-06-05

    Recent epidemiological evidences indicate close association between inorganic arsenic exposure via drinking water and cardiovascular diseases. However, the exact mechanism of this arsenic-mediated increase in cardiovascular risk factors remains enigmatic. In order to investigate the effects of inorganic arsenic exposure on lipid metabolism, male albino rats were exposed to 50, 100 and 150 ppm arsenic as sodium arsenite and 100, 150 and 200 ppm arsenic as sodium arsenate respectively in their drinking water for 12 weeks. Dyslipidemia induced by the two arsenicals exhibited different patterns. Hypocholesterolemia characterised the effect of arsenite at all the doses, but arsenate induced hypercholesterolemia at the 150 ppm As dose. Hypertriglyceridemia was the hallmark of arsenate effect whereas plasma free fatty acids (FFAs) was increased by the two arsenicals. Reverse cholesterol transport was inhibited by the two arsenicals as evidenced by decreased HDL cholesterol concentrations whereas hepatic cholesterol was increased by arsenite (100 ppm As), but decreased by arsenite (150 ppm As) and arsenate (100 ppm As) respectively. Brain cholesterol and triglyceride were decreased by the two arsenicals; arsenate decreased the renal content of cholesterol, but increased renal content of triglyceride. Arsenite, on the other hand, increased the renal contents of the two lipids. The two arsenicals induced phospholipidosis in the spleen. Arsenite (150 ppm As) and arsenate (100 ppm As) inhibited hepatic HMG CoA reductase. At other doses of the two arsenicals, hepatic activity of the enzyme was up-regulated. The two arsenicals however up-regulated the activity of the brain enzyme. We observed positive associations between tissue arsenic levels and plasma FFA and negative associations between tissue arsenic levels and HDL cholesterol. Our findings indicate that even though sub-chronic exposure to arsenite and arsenate through drinking water produced different patterns of dyslipidemia, our study identified two common denominators of dyslipidemia namely: inhibition of reverse cholesterol transport and increase in plasma FFA. These two denominators (in addition to other individual perturbations of lipid metabolism induced by each arsenical), suggest that in contrast to strengthening a dose-dependent effect phenomenon, the two forms of inorganic arsenic induced lipotoxic and non-lipotoxic dyslipidemia at "low" or "medium" doses and these might be responsible for the cardiovascular and other disease endpoints of inorganic arsenic exposure through drinking water.

  17. Arsenic and diabetes: current perspectives.

    PubMed

    Huang, Chun Fa; Chen, Ya Wen; Yang, Ching Yao; Tsai, Keh Sung; Yang, Rong Sen; Liu, Shing Hwa

    2011-09-01

    Arsenic is a naturally occurring toxic metalloid of global concern. Many studies have indicated a dose-response relationship between accumulative arsenic exposure and the prevalence of diabetes mellitus (DM) in arseniasis-endemic areas in Taiwan and Bangladesh, where arsenic exposure occurs through drinking water. Epidemiological researches have suggested that the characteristics of arsenic-induced DM observed in arseniasis-endemic areas in Taiwan and Mexico are similar to those of non-insulin-dependent DM (Type 2 DM). These studies analyzed the association between high and chronic exposure to inorganic arsenic in drinking water and the development of DM, but the effect of exposure to low to moderate levels of inorganic arsenic on the risk of DM is unclear. Navas-Acien et al. recently proposed that a positive association existed between total urine arsenic and the prevalence of Type 2 DM in people exposed to low to moderate levels of arsenic. However, the diabetogenic role played by arsenic is still debated upon. An increase in the prevalence of DM has been observed among residents of highly arsenic-contaminated areas, whereas the findings from community-based and occupational studies in low-arsenic-exposure areas have been inconsistent. Recently, a population-based cross-sectional study showed that the current findings did not support an association between arsenic exposure from drinking water at levels less than 300 μg/L and a significantly increased risk of DM. Moreover, although the precise mechanisms for the arsenic-induced diabetogenic effect are still largely undefined, recent in vitro experimental studies indicated that inorganic arsenic or its metabolites impair insulin-dependent glucose uptake or glucose-stimulated insulin secretion. Nevertheless, the dose, the form of arsenic used, and the experimental duration in the in vivo studies varied greatly, leading to conflicting results and ambiguous interpretation of these data with respect to human exposure to arsenic in the environment. Moreover, the experimental studies were limited to the use of arsenic concentrations much higher than those relevant to human exposure. Further prospective epidemiological studies might help to clarify this controversy. The issues about environmental exposure assessment and appropriate biomarkers should also be considered. Here, we focus on the review of mechanism studies and discuss the currently available evidence and conditions for the association between environmental arsenic exposure and the development of DM. Copyright © 2011. Published by Elsevier B.V.

  18. Disruption of Canonical TGFβ-signaling in Murine Coronary Progenitor Cells by Low Level Arsenic

    PubMed Central

    Allison, Patrick; Huang, Tianfang; Broka, Derrick; Parker, Patti; Barnett, Joey V.; Camenisch, Todd D.

    2013-01-01

    Exposure to arsenic results in several types of cancers as well as heart disease. A major contributor to ischemic heart pathologies is coronary artery disease, however the influences by environmental arsenic in this disease process are not known. Similarly, the impact of toxicants on blood vessel formation and function during development has not been studied. During embryogenesis, the epicardium undergoes proliferation, migration, and differentiation into several cardiac cell types including smooth muscle cells which contribute to the coronary vessels. The TGFβ family of ligands and receptors are essential for developmental cardiac epithelial to mesenchymal transition (EMT) and differentiation into coronary smooth muscle cells. In this in vitrostudy, 18 hour exposure to 1.34 μMarsenite disrupted developmental EMT programming in murine epicardial cells causing a deficit in cardiac mesenchyme. The expression of EMT genes including TGFβ2, TGFβ receptor-3, Snail, and Has-2 are decreased in a dose-dependent manner following exposure to arsenite. TGFβ2 cell signaling is abrogated as detected by decreases in phosphorylated Smad2/3 when cells are exposed to 1.34 μMarsenite. There is also loss of nuclear accumulation pSmad due to arsenite exposure. These observations coincide with a decrease invimentinpositive mesenchymal cells invading three-dimensional collagen gels. However, arsenite does not block TGFβ2 mediated smooth muscle cell differentiation by epicardial cells. Overall these results show that arsenic exposure blocks developmental EMT gene programming in murine coronary progenitor cells by disrupting TGFβ2 signals and Smad activation, and that smooth muscle cell differentiation is refractory to this arsenic toxicity. PMID:23732083

  19. Spatial Modeling for Groundwater Arsenic Levels in North Carolina

    PubMed Central

    Kim, Dohyeong; Miranda, Marie Lynn; Tootoo, Joshua; Bradley, Phil; Gelfand, Alan E.

    2013-01-01

    To examine environmental and geologic determinants of arsenic in groundwater, detailed geologic data were integrated with well water arsenic concentration data and well construction data for 471 private wells in Orange County, NC, via a geographic information system. For the statistical analysis, the geologic units were simplified into four generalized categories based on rock type and interpreted mode of deposition/emplacement. The geologic transitions from rocks of a primary pyroclastic origin to rocks of volcaniclastic sedimentary origin were designated as polylines. The data were fitted to a left-censored regression model to identify key determinants of arsenic levels in groundwater. A Bayesian spatial random effects model was then developed to capture any spatial patterns in groundwater arsenic residuals into model estimation. Statistical model results indicate (1) wells close to a transition zone or fault are more likely to contain detectible arsenic; (2) welded tuffs and hydrothermal quartz bodies are associated with relatively higher groundwater arsenic concentrations and even higher for those proximal to a pluton; and (3) wells of greater depth are more likely to contain elevated arsenic. This modeling effort informs policy intervention by creating three-dimensional maps of predicted arsenic levels in groundwater for any location and depth in the area. PMID:21528844

  20. Spatial modeling for groundwater arsenic levels in North Carolina.

    PubMed

    Kim, Dohyeong; Miranda, Marie Lynn; Tootoo, Joshua; Bradley, Phil; Gelfand, Alan E

    2011-06-01

    To examine environmental and geologic determinants of arsenic in groundwater, detailed geologic data were integrated with well water arsenic concentration data and well construction data for 471 private wells in Orange County, NC, via a geographic information system. For the statistical analysis, the geologic units were simplified into four generalized categories based on rock type and interpreted mode of deposition/emplacement. The geologic transitions from rocks of a primary pyroclastic origin to rocks of volcaniclastic sedimentary origin were designated as polylines. The data were fitted to a left-censored regression model to identify key determinants of arsenic levels in groundwater. A Bayesian spatial random effects model was then developed to capture any spatial patterns in groundwater arsenic residuals into model estimation. Statistical model results indicate (1) wells close to a transition zone or fault are more likely to contain detectible arsenic; (2) welded tuffs and hydrothermal quartz bodies are associated with relatively higher groundwater arsenic concentrations and even higher for those proximal to a pluton; and (3) wells of greater depth are more likely to contain elevated arsenic. This modeling effort informs policy intervention by creating three-dimensional maps of predicted arsenic levels in groundwater for any location and depth in the area.

  1. Arsenic effects on some photophysical parameters of Cichorium intybus under different radiation and water irrigation regimes.

    PubMed

    Cordon, Gabriela; Iriel, Analia; Cirelli, Alicia Fernández; Lagorio, M Gabriela

    2018-08-01

    The presence of arsenic (As) in groundwater is a major problem in several parts of Latin America. In the present work, non-destructive approaches to monitor the effects of As on plants of Cichorium intybus, an herbaceous Asteraceae, were explored. In this sense, the effects of As at different levels of water and radiation were evaluated on these crops. Plants were grown in a greenhouse, watered daily with As solutions and exposed to different water and/or light conditions for four months, using a three-factor (As, water, radiation) and two-level resource (As vs non As, field capacity vs half-field capacity condition, light vs shade condition) factorial design. The parameters most affected by this treatment were the area under the first derivative of the reflectance spectrum in the blue region, chlorophyll concentration, the F red /F far-red fluorescence ratio and the quantum yield for the photophysical decay. These changes indicated the ability of this plant species to be a biomonitor for the presence of arsenic in irrigation water. Interestingly, it was further proved in this work that the biomonitoring capacity was enhanced in the presence of sunlight. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Arsenic, tobacco smoke, and occupation: associations of multiple agents with lung and bladder cancer.

    PubMed

    Ferreccio, Catterina; Yuan, Yan; Calle, Jacqueline; Benítez, Hugo; Parra, Roxana L; Acevedo, Johanna; Smith, Allan H; Liaw, Jane; Steinmaus, Craig

    2013-11-01

    Millions of people worldwide are exposed to arsenic in drinking water, and many are likely coexposed to other agents that could substantially increase their risks of arsenic-related cancer. We performed a case-control study of multiple chemical exposures in 538 lung and bladder cancer cases and 640 controls in northern Chile, an area with formerly high drinking water arsenic concentrations. Detailed information was collected on lifetime arsenic exposure, smoking, secondhand smoke, and other known or suspected carcinogens, including asbestos, silica, and wood dust. Very high lung and bladder cancer odds ratios (ORs), and evidence of greater than additive effects, were seen in people exposed to arsenic concentrations >335 µg/L and who were tobacco smokers (OR = 16, 95% confidence interval = 6.5-40 for lung cancer; and OR = 23 [8.2-66] for bladder cancer; Rothman Synergy Indices = 4.0 [1.7-9.4] and 2.0 [0.92-4.5], respectively). Evidence of greater than additive effects were also seen in people coexposed to arsenic and secondhand tobacco smoke and several other known or suspected carcinogens, including asbestos, silica, and wood dust. These findings suggest that people coexposed to arsenic and other known or suspected carcinogens have very high risks of lung or bladder cancer.

  3. Sex differences in the reduction of arsenic methylation capacity as a function of urinary total and inorganic arsenic in Mexican children.

    PubMed

    Torres-Sánchez, Luisa; López-Carrillo, Lizbeth; Rosado, Jorge L; Rodriguez, Valentina M; Vera-Aguilar, Eunice; Kordas, Katarzyna; García-Vargas, Gonzalo G; Cebrian, Mariano E

    2016-11-01

    Chronic arsenic (As) exposure decreases adult and children's ability to methylate inorganic As (iAs); however, few studies have examined children's sex differences. We measured urinary concentrations of iAs, monomethylarsonic (MMA), and dimethylarsinic (DMA) acids, and calculated the primary (PMI: MMA/iAs) and secondary (SMI: DMA/MMA) methylation capacity indexes in 591 children 6-8 years in Torreón, Mexico. We determined iAs, MMA, and DMA by hydride generation cryotrapping AAS. Lineal regression models estimated associations between methylation capacity and total As (TAs) or iAs. Interactions with sex were tested at p<0.10. Boys had significantly higher TAs levels, (58.4µg/L) than girls (46.2µg/L). We observed negative associations between TAs and PMI (β=-0.039; p<0.18) and SMI (β=-0.08; p=0.002) with significant sex differences; PMI reduction was significant in boys (β=-0.09; p=0.02) but not in girls (β=0.021; p=0.63), p for interaction=0.06. In contrast, SMI reduction was significantly more pronounced in girls. Furthermore, negative associations PMI (β=-0.19; p<0.001) and SMI (β=-0.35; p<0.001) were a function of urinary iAs levels, independently of TAs; however, the reduction in PMI was more pronounced in boys (β=-0.24; p<0.001; girls β=-0.15; p<0.001), p for interaction=0.04. A significant negative association was observed between SMI and iAs levels without significant sex differences. TAs and iAs associations with metabolite percentages were in good agreement with those observed with methylation indexes. Our results suggest that iAs plays an important role in reducing As methylation ability and that significant sex differences are present in As metabolism. These differences merit further investigation to confirm our findings and their potential implications for arsenic toxicity in children. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. SILAC-based quantitative proteomic analysis reveals widespread molecular alterations in human skin keratinocytes upon chronic arsenic exposure.

    PubMed

    Mir, Sartaj Ahmad; Pinto, Sneha M; Paul, Somnath; Raja, Remya; Nanjappa, Vishalakshi; Syed, Nazia; Advani, Jayshree; Renuse, Santosh; Sahasrabuddhe, Nandini A; Prasad, T S Keshava; Giri, Ashok K; Gowda, Harsha; Chatterjee, Aditi

    2017-03-01

    Chronic exposure to arsenic is associated with dermatological and nondermatological disorders. Consumption of arsenic-contaminated drinking water results in accumulation of arsenic in liver, spleen, kidneys, lungs, and gastrointestinal tract. Although arsenic is cleared from these sites, a substantial amount of residual arsenic is left in keratin-rich tissues including skin. Epidemiological studies suggest the association of skin cancer upon arsenic exposure, however, the mechanism of arsenic-induced carcinogenesis is not completely understood. We developed a cell line based model to understand the molecular mechanisms involved in arsenic-mediated toxicity and carcinogenicity. Human skin keratinocyte cell line, HaCaT, was chronically exposed to 100 nM sodium arsenite over a period of 6 months. We observed an increase in basal ROS levels in arsenic-exposed cells. SILAC-based quantitative proteomics approach resulted in identification of 2111 proteins of which 42 proteins were found to be overexpressed and 54 downregulated (twofold) upon chronic arsenic exposure. Our analysis revealed arsenic-induced overexpression of aldo-keto reductase family 1 member C2 (AKR1C2), aldo-keto reductase family 1 member C3 (AKR1C3), glutamate-cysteine ligase catalytic subunit (GCLC), and NAD(P)H dehydrogenase [quinone] 1 (NQO1) among others. We observed downregulation of several members of the plakin family including periplakin (PPL), envoplakin (EVPL), and involucrin (IVL) that are essential for terminal differentiation of keratinocytes. MRM and Western blot analysis confirmed differential expression of several candidate proteins. Our study provides insights into molecular alterations upon chronic arsenic exposure on skin. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Non-melanoma skin cancer: occupational risk from UV light and arsenic exposure.

    PubMed

    Surdu, Simona

    2014-01-01

    Non-melanoma skin cancer (NMSC) has a significant impact on public health and health care costs as a result of high morbidity and disfigurement due to the destruction of surrounding tissues. Although the mortality rates of these tumors are low, the high incidence rates determine a considerable number of deaths. NMSC is the most common type of skin cancer, representing about 1/3 of all malignancies diagnosed worldwide each year. The most common NMSC are basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). Studies on humans and experimental animals indicate that ultraviolet (UV) light and arsenic play important roles in the development of these skin malignancies. Several epidemiological studies have investigated the risk of developing NMSC and the potential link between exposure to sunlight and arsenic in the agricultural and industrial occupational settings. To date, the published literature suggests that there is no apparent skin cancer risk as regards workplace exposure to artificial UV light or arsenic. Concerning UV light from sun exposure at the workplace, most published studies indicated an elevated risk for SCC, but are less conclusive for BCC. Many of these studies are limited by the methodology used in the evaluation of occupational exposure and the lack of adjustment for major confounders. Therefore, further epidemiological studies are required to focus on exposure assessment at the individual level as well as potential interactions with other occupational and non-occupational exposures and individual susceptibility. In doing so, we can better quantify the true risk of skin cancer in exposed workers and inform effective public health prevention programs.

  6. Association between chronic arsenic exposure and nutritional status among the women of child bearing age: a case-control study in Bangladesh.

    PubMed

    Milton, Abul H; Shahidullah, S M; Smith, Wayne; Hossain, Kazi S; Hasan, Ziaul; Ahmed, Kazi T

    2010-07-01

    The role of nutritional factors in arsenic metabolism and toxicity is yet to be fully elucidated. A low protein diet results in decreased excretion of DMA and increased tissue retention of arsenic in experimental studies. Malnourished women carry a higher risk of adverse pregnancy outcomes. Chronic exposure to high arsenic (>50 microg/L) through drinking water also increases the risk of adverse pregnancy outcomes. The synergistic effects (if any) of malnutrition and chronic arsenic exposure may worsen the adverse pregnancy outcomes. This population based case control study reports the association between chronic arsenic exposure and nutritional status among the rural women in Bangladesh. 348 cases (BMI < 18.5) and 360 controls (BMI 18.5-24.99) were recruited from a baseline survey conducted among 2,341 women. An excess risk for malnutrition was observed among the participants chronically exposed to higher concentrations of arsenic in drinking water after adjusting for potential confounders such as participant's age, religion, education, monthly household income and history of oral contraceptive pills. Women exposed to arsenic >50 microg/L were at 1.9 times (Odds Ratio = 1.9, 95% CI = 1.1-3.6) increased risk of malnutrition compared to unexposed. The findings of this study suggest that chronic arsenic exposure is likely to contribute to poor nutritional status among women of 20-45 years.

  7. High soil and groundwater arsenic levels induce high body arsenic loads, health risk and potential anemia for inhabitants of northeastern Iran.

    PubMed

    Taheri, Masumeh; Mehrzad, Jalil; Mahmudy Gharaie, Mohamad Hosein; Afshari, Reza; Dadsetan, Ahmad; Hami, Shakiba

    2016-04-01

    Arsenic bioavailability in rock, soil and water resources is notoriously hazardous. Geogenic arsenic enters the body and adversely affects many biochemical processes in animals and humans, posing risk to public health. Chelpu is located in NE Iran, where realgar, orpiment and pyrite mineralization is the source of arsenic in the macroenvironment. Using cluster random sampling strategy eight rocks, 23 soils, 12 drinking water resources, 36 human urine and hair samples and 15 adult sheep urine and wool samples in several large-scale herds in the area were randomly taken for quantification of arsenic in rock/soil/water, wool/hair/urine. Arsenic levels in rock/soil/water and wool/hair/urine were measured using inductively coupled plasma spectroscopy and atomic absorption spectrophotometry, respectively. While arsenic levels in rocks, soils and water resources hazardously ranged 9.40-25,873.3 mg kg(-1), 7.10-1448.80 mg kg(-1) and 12-606 μg L(-1), respectively, arsenic concentrations in humans' hair and urine and sheep's wool and urine varied from 0.37-1.37 μg g(-1) and 9-271.4 μg L(-1) and 0.3-3.11 μg g(-1) and 29.1-1015 μg L(-1), respectively. Local sheep and human were widely sick and slightly anemic. Hematological examination of the inhabitants revealed that geogenic arsenic could harm blood cells, potentially resulting in many other hematoimmunological disorders including cancer. The findings warn widespread exposure of animals and human in this agroecologically and geopolitically important region (i.e., its proximity with Afghanistan, Pakistan and Turkmenistan) and give a clue on how arsenic could induce infectious and non-infectious diseases in highly exposed human/animals.

  8. Arsenic induces structural and compositional colonic microbiome change and promotes host nitrogen and amino acid metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dheer, Rishu; Patterson, Jena; Dudash, Mark

    Chronic exposure to arsenic in drinking water causes cancer and non-cancer diseases. However, mechanisms for chronic arsenic-induced pathogenesis, especially in response to lower exposure levels, are unclear. In addition, the importance of health impacts from xeniobiotic-promoted microbiome changes is just being realized and effects of arsenic on the microbiome with relation to disease promotion are unknown. To investigate impact of arsenic exposure on both microbiome and host metabolism, the stucture and composition of colonic microbiota, their metabolic phenotype, and host tissue and plasma metabolite levels were compared in mice exposed for 2, 5, or 10 weeks to 0, 10 (low)more » or 250 (high) ppb arsenite (As(III)). Genotyping of colonic bacteria revealed time and arsenic concentration dependent shifts in community composition, particularly the Bacteroidetes and Firmicutes, relative to those seen in the time-matched controls. Arsenic-induced erosion of bacterial biofilms adjacent to the mucosal lining and changes in the diversity and abundance of morphologically distinct species indicated changes in microbial community structure. Bacterical spores increased in abundance and intracellular inclusions decreased with high dose arsenic. Interestingly, expression of arsenate reductase (arsA) and the As(III) exporter arsB, remained unchanged, while the dissimilatory nitrite reductase (nrfA) gene expression increased. In keeping with the change in nitrogen metabolism, colonic and liver nitrite and nitrate levels and ratios changed with time. In addition, there was a concomitant increase in pathogenic arginine metabolites in the mouse circulation. These data suggest that arsenic exposure impacts the microbiome and microbiome/host nitrogen metabolism to support disease enhancing pathogenic phenotypes. - Highlights: • Arsenic exposure induces changes in host and host nitrogen metabolism that cause progresive change in the microbiome. • A polyphasic approach reveals changes in microbial community structure, composition and nitrite reductase expression. • The profile of nitrogen and nitroamino acid change caused by arsenic may relect increased risk of cardiovascular pathogenesis.« less

  9. Environmental exposure to arsenic and chromium in an industrial area.

    PubMed

    Vimercati, Luigi; Gatti, Maria F; Gagliardi, Tommaso; Cuccaro, Francesco; De Maria, Luigi; Caputi, Antonio; Quarato, Marco; Baldassarre, Antonio

    2017-04-01

    Arsenic and chromium are widespread environmental contaminants that affect global health due to their toxicity and carcinogenicity. To date, few studies have investigated exposure to arsenic and chromium in a population residing in a high-risk environmental area. The aim of this study is to evaluate the exposure to arsenic and chromium in the general population with no occupational exposure to these metals, resident in the industrial area of Taranto, Southern Italy, through biological monitoring techniques. We measured the levels of chromium, inorganic arsenic, and methylated metabolites, in the urine samples of 279 subjects residing in Taranto and neighboring areas. Qualified health staff administered a standardized structured questionnaire investigating lifestyle habits and controlling for confounding factors. The biological monitoring data showed high urinary concentrations of both the heavy metals investigated, particularly Cr. On this basis, it will be necessary to carry out an organized environmental monitoring program, taking into consideration all exposure routes so as to correlate the environmental concentrations of these metals with the biomonitoring results.

  10. [Transformation and mobility of arsenic in the rhizosphere and non-rhizosphere soils at different growth stages of rice].

    PubMed

    Yang, Wen-Tao; Wang, Ying-Jie; Zhou, Hang; Yi, Kai-Xin; Zeng, Min; Peng, Pei-Qin; Liao, Bo-Han

    2015-02-01

    Speciation and bioavailability of arsenic in the rhizosphere and non-rhizosphere soils at different growth stages (tillering stage, jointing stage, booting stage, filling stage and maturing stage) of rice (Oryza sativa L.) were studied using toxicity characteristic leaching procedure (TCLP) and arsenic speciation analysis. Pot experiments were conducted and the soil samples were taken from a certain paddy soil in Hunan Province contaminated by mining industry. The results showed that: (1) With the extension of rice growth period, pH values and TCLP extractable arsenic levels in the rhizosphere and non-rhizosphere soils increased gradually. Soil pH and TCLP extractable arsenic levels in non-rhizosphere soils were higher than those in the rhizosphere soils at the same growth stage. (2) At the different growth stages of rice, contents of exchangeable arsenic (AE-As) in rhizosphere and non-rhizosphere soils were lower than those before the rice planting, and increased gradually with the extension of the rice growing period. Contents of Al-bound arsenic (Al-As), Fe-bound arsenic (Fe-As) and Ca-bound arsenic (Ca-As) increased gradually after rice planting, but not significantly. Residual arsenic (O-As) and total arsenic (T-As) decreased gradually after rice planting, by 37.30% and 14.69% in the rhizosphere soils and by 31.38% and 8.67% in the non-rhizosphere soils, respectively. (3) At the different growth stages of rice, contents of various forms of arsenic in the soils were in the following order: residual arsenic (O-As) > Fe-bound arsenic ( Fe-As) > Al-bound arsenic (Al-As) > Ca-bound arsenic (Ca-As) > exchangeable arsenic (AE-As). In the pH range of 5.0- 5.8, significant positive linear correlations were found between most forms of arsenic or TCLP extractable arsenic levels and pH values, while the Ca-bound arsenic was poorly correlated with pH values in the rhizosphere soils.

  11. A comprehensive assessment of arsenic in commonly consumed foodstuffs to evaluate the potential health risk in Bangladesh.

    PubMed

    Ahmed, Md Kawser; Shaheen, Nazma; Islam, Md Saiful; Habibullah-Al-Mamun, Md; Islam, Saiful; Islam, Md Monirul; Kundu, Goutam Kumar; Bhattacharjee, Lalita

    2016-02-15

    Arsenic (As), particularly of its inorganic form (iAs) is highly toxic, and its presence in food composites is a matter of concern for the public health safety, specifically in Bangladesh which is regarded as the most arsenic affected country throughout the world. This study was carried out to investigate the levels of As in the composite samples of commonly consumed foodstuffs collected from 30 different agro-ecological zones for the first time in Bangladesh. Most of the individual food composites contain a considerable amount of As which was, as a whole, in the range of 0.077-1.5mg/kg fw which was lower than those reported from Spain, EU, France, Korea, whereas higher than those of Mexico, Chile, Japan, Cambodia, Hong Kong, Serbia, respectively. Cereals, vegetables, milk, and fish contribute about 90% to the daily intake of inorganic arsenic. Human health risk of dietary iAs was assessed separately for both the rural and urban adults. The estimated daily dietary intakes (EDI) of iAs for the exposed rural (3.5) and urban residents (3.2 μg/kg-BW/day) clearly exceeded the previous provisional tolerable daily intake (PTDI) value of 2.1 μg/kg-BW/day, recommended by the World Health Organization (WHO). From the health point of view, this study concluded that both the rural and urban residents of Bangladesh are exposed to carcinogenic and non-carcinogenic risks who consume As-contaminated water and foodstuffs. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Arsenic exposure disrupts epigenetic regulation of SIRT1 in human keratinocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herbert, Katharine J.; Holloway, Adele; Cook, Anthony L.

    2014-11-15

    Arsenic is an environmental toxin which increases skin cancer risk for exposed populations worldwide; however the underlying biomolecular mechanism for arsenic-induced carcinogenesis is complex and poorly defined. Recent investigations show that histone deacetylase and DNA methyltransferase activity is impaired, and epigenetic patterns of gene regulation are consistently altered in cancers associated with arsenic exposure. Expression of the histone deacetylase SIRT1 is altered in solid tumours and haematological malignancies; however its role in arsenic-induced pathology is unknown. In this study we investigated the effect of arsenic on epigenetic regulation of SIRT1 and its targeting microRNA, miR-34a in primary human keratinocytes. Acetylationmore » of histone H4 at lysine 16 (H4K16) increased in keratinocytes exposed to 0.5 μM arsenite [As(III)]; and this was associated with chromatin remodelling at the miR-34a promoter. Moreover, although SIRT1 protein initially increased in these As(III)-exposed cells, after 24 days expression was not significantly different from untreated controls. Extended exposure to low-dose As(III) (0.5 μM; > 5 weeks) compromised the pattern of CpG methylation at SIRT1 and miR-34a gene promoters, and this was associated with altered expression for both genes. We have found that arsenic alters epigenetic regulation of SIRT1 expression via structural reorganisation of chromatin at the miR-34a gene promoter in the initial 24 h of exposure; and over time, through shifts in miR-34a and SIRT1 gene methylation. Taken together, this investigation demonstrates that arsenic produces cumulative disruptions to epigenetic regulation of miR-34a expression, and this is associated with impaired coordination of SIRT1 functional activity. - Highlights: • Submicromolar arsenic concentrations disrupt SIRT1 activity and expression in human keratinocytes. • Arsenic-induced chromatin remodelling at the miR-34a gene promoter is associated with hyperacetylation of histone H4 (Lys 16). • Continual extended exposure to arsenic reorganises the pattern of SIRT1 and miR-34a promoter methylation.« less

  13. Mutagenic activity of overnight urine from healthy non-smoking subjects.

    PubMed

    Pavanello, Sofia; Lupi, Silvia; Pulliero, Alessandra; Gregorio, Pasquale; Saia, Bruno Onofrio; Clonfero, Erminio

    2007-03-01

    Urinary mutagenicity was evaluated in relation to environmental mutagen exposure (i.e., diet, indoor/outdoor activities, residential area etc.) on the day prior to sample collection, and also considering factors that contribute to the variability of Salmonella mutagenicity assay results. Overnight urine samples from 283 healthy non-smoking residents of northeast Italy (46% males, 20-62 years) were analyzed for mutagenicity on sensitive Salmonella typhimurium strain YG1024 with S9 mix employing the preincubation version of the plate incorporation assay (i.e., the Salmonella reverse mutation test). Urinary mutagenicity varied between 0.02 and 9.84 rev/ equiv. ml, and 7% of samples were positive (i.e., sample elicited a two-fold increase in revertants). There was an evident increase in mutagenicity in subjects with increased intake of mutagen-rich meals (n = 80) (P < 0.01 and positive urine 13% vs. 5%, P = 0.025). Indoor-exposed subjects (n = 65) also showed a higher percentage of positive urine (14% vs. 5%, P = 0.015). In particular, those subjects exposed to cooking fumes the previous evening (n = 28) revealed higher urinary mutagenicity (P = 0.035, positive urine 25% vs. 5%, P < 0.001) than non-indoor exposed. The sources of variability of the mutagenicity assay, mainly the histidine content of the urine concentrate (z = 4.06, P < 0.0001), and to a lesser extent bacterial inoculum size (z = 2.33, P = 0.019), also significantly influenced urinary mutagenicity values. In a linear multiple regression analysis, their effects were still significant (i.e., histidine content P = 0.026 and inoculum size P = 0.021), but the effects of diet, indoor exposure, and other environmental exposures (i.e., traffic and heating system exhausts, residential area) were not. It is concluded that the previous day's exposure to mutagen-rich meals and cooking fumes may influence the presence of mutagenic activity in the overnight urine of non-smoking subjects. This mutagenic activity, which remains in contact with bladder mucosa for several hours, could be considered risk factors for colorectal adenoma and possibly other cancers (i.e., bladder) in non-smokers. Accurate control of histidine content and bacterial inoculum size is strongly recommended when investigating the mutagenic activity of urine from non-smokers. (c) 2007 Wiley-Liss, Inc.

  14. GENE EXPRESSION DOSE-RESPONSE IN THE BLADDERS OF MICE EXPOSED TO ARSENIC IN DRINKING WATER FOR 13 WEEKS

    EPA Science Inventory

    The association between drinking water exposures to inorganic arsenic and life-threatening tumors in the human is strongest for bladder cancer. To investigate the mode of action for inorganic arsenic carcinogenicity in the bladder, a study was conducted to characterize the dose-r...

  15. Impact of life stage and duration of exposure on arsenic-induced proliferative lesions, neoplasia, and gene expression in male C3H mice.

    EPA Science Inventory

    Previous studies have demonstrated increased liver and adrenal tumor incidence in male mice exposed gestationally to 85 ppm inorganic arsenic via the dams’ drinking water. To further characterize age susceptibility to arsenic carcinogenesis we have administered 85 ppm sodium ars...

  16. Alpha-lipoic acid protects oxidative stress, changes in cholinergic system and tissue histopathology during co-exposure to arsenic-dichlorvos in rats.

    PubMed

    Dwivedi, Nidhi; Flora, Govinder; Kushwaha, Pramod; Flora, Swaran J S

    2014-01-01

    We investigated protective efficacy of α-lipoic acid (LA), an antioxidant against arsenic and DDVP co-exposed rats. Biochemical variables suggestive of oxidative stress, neurological dysfunction, and tissue histopathological alterations were determined. Male rats were exposed either to 50 ppm sodium arsenite in drinking water or in combination with DDVP (4 mg/kg, subcutaneously) for 10 weeks. α-Lipoic acid (50mg/kg, pos) was also co-administered in above groups. Arsenic exposure led to significant oxidative stress along, hepatotoxicity, hematotoxicity and altered brain biogenic amines levels accompanied by increased arsenic accumulation in blood and tissues. These altered biochemical variables were supported by histopathological examinations leading to oxidative stress and cell death. These biochemical alterations were significantly restored by co-administration of α-lipoic acid with arsenic and DDVP alone and concomitantly. The results indicate that arsenic and DDVP induced oxidative stress and cholinergic dysfunction can be significantly protected by the supplementation of α-lipoic acid. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Benchmark Dose Modeling Estimates of the Concentrations of Inorganic Arsenic That Induce Changes to the Neonatal Transcriptome, Proteome, and Epigenome in a Pregnancy Cohort.

    PubMed

    Rager, Julia E; Auerbach, Scott S; Chappell, Grace A; Martin, Elizabeth; Thompson, Chad M; Fry, Rebecca C

    2017-10-16

    Prenatal inorganic arsenic (iAs) exposure influences the expression of critical genes and proteins associated with adverse outcomes in newborns, in part through epigenetic mediators. The doses at which these genomic and epigenomic changes occur have yet to be evaluated in the context of dose-response modeling. The goal of the present study was to estimate iAs doses that correspond to changes in transcriptomic, proteomic, epigenomic, and integrated multi-omic signatures in human cord blood through benchmark dose (BMD) modeling. Genome-wide DNA methylation, microRNA expression, mRNA expression, and protein expression levels in cord blood were modeled against total urinary arsenic (U-tAs) levels from pregnant women exposed to varying levels of iAs. Dose-response relationships were modeled in BMDExpress, and BMDs representing 10% response levels were estimated. Overall, DNA methylation changes were estimated to occur at lower exposure concentrations in comparison to other molecular endpoints. Multi-omic module eigengenes were derived through weighted gene co-expression network analysis, representing co-modulated signatures across transcriptomic, proteomic, and epigenomic profiles. One module eigengene was associated with decreased gestational age occurring alongside increased iAs exposure. Genes/proteins within this module eigengene showed enrichment for organismal development, including potassium voltage-gated channel subfamily Q member 1 (KCNQ1), an imprinted gene showing differential methylation and expression in response to iAs. Modeling of this prioritized multi-omic module eigengene resulted in a BMD(BMDL) of 58(45) μg/L U-tAs, which was estimated to correspond to drinking water arsenic concentrations of 51(40) μg/L. Results are in line with epidemiological evidence supporting effects of prenatal iAs occurring at levels <100 μg As/L urine. Together, findings present a variety of BMD measures to estimate doses at which prenatal iAs exposure influences neonatal outcome-relevant transcriptomic, proteomic, and epigenomic profiles.

  18. Mitochondria are the main target organelle for trivalent monomethylarsonous acid (MMA(III))-induced cytotoxicity.

    PubMed

    Naranmandura, Hua; Xu, Shi; Sawata, Takashi; Hao, Wen Hui; Liu, Huan; Bu, Na; Ogra, Yasumitsu; Lou, Yi Jia; Suzuki, Noriyuki

    2011-07-18

    Excessive generation of reactive oxygen species (ROS) is considered to play an important role in arsenic-induced carcinogenicity in the liver, lungs, and urinary bladder. However, little is known about the mechanism of ROS-based carcinogenicity, including where the ROS are generated, and which arsenic species are the most effective ROS inducers. In order to better understand the mechanism of arsenic toxicity, rat liver RLC-16 cells were exposed to arsenite (iAs(III)) and its intermediate metabolites [i.e., monomethylarsonous acid (MMA(III)) and dimethylarsinous acid (DMA(III))]. MMA(III) (IC(50) = 1 μM) was found to be the most toxic form, followed by DMA(III) (IC(50) = 2 μM) and iAs(III) (IC(50) = 18 μM). Following exposure to MMA(III), ROS were found to be generated primarily in the mitochondria. DMA(III) exposure resulted in ROS generation in other organelles, while no ROS generation was seen following exposures to low levels of iAs(III). This suggests the mechanisms of induction of ROS are different among the three arsenicals. The effects of iAs(III), MMA(III), and DMA(III) on activities of complexes I-IV in the electron transport chain (ETC) of rat liver submitochondrial particles and on the stimulation of ROS production in intact mitochondria were also studied. Activities of complexes II and IV were significantly inhibited by MMA(III), but only the activity of complexes II was inhibited by DMA(III). Incubation with iAs(III) had no inhibitory effects on any of the four complexes. Generation of ROS in intact mitochondria was significantly increased following incubation with MMA(III), while low levels of ROS generation were observed following incubation with DMA(III). ROS was not produced in mitochondria following exposure to iAs(III). The mechanism underlying cell death is different among As(III), MMA(III), and DMA(III), with mitochondria being one of the primary target organelles for MMA(III)-induced cytotoxicity. © 2011 American Chemical Society

  19. Occupational Health Risks Among Trichloroethylene-Exposed Workers in a Clock Manufacturing Factory

    PubMed Central

    Singthong, Siriporn; Pakkong, Pannee; Choosang, Kantima; Wongsanit, Sarinya

    2015-01-01

    Trichloroethylene (TCE) is an important volatile organic compound once widely used in industry throughout the world. Occupational exposure to TCE can cause a number of health hazards such as allergic reactions and genetic damage. The purpose of this study was to evaluate occupational exposure to TCE, by analysis of the air in the breathing zone and of urine from workers employed in a clock manufacturing factory. A subjective symptom survey was conducted by using a self-administered questionnaire to evaluate the health hazards. Micronucleus (MN) frequency, based on the cytokinesis-block micronucleus assay (CBMN) in peripheral blood lymphocytes, (PBLs) was used as a biomarker for chromosome damage. A total of 244 participants, including 171 workers occupationally exposed to TCE and 73 non-exposed control employees, working mainly in office jobs in the same factory, were enrolled in this study. Analyses of airborne TCE concentrations in the workplace, and of urinary trichloroacetic acid (TCA) of the workers and controls, were performed by Gas Chromatography-Electron Capture Detector (GC-ECD) using the modified headspace technique. The average concentration of TCE in the workplace breathing zone was 27.83 ± 6.02 ppm. The average level of urinary TCA of the exposed workers and controls was 14.84 ± 1.62, 2.95 ± 0.28 mg/L. The frequency of MN/1000BN was 7.029 ± 0.39, significantly higher than for those in the control group (3.57 ± 0.31, p = 0.001). According to multiple linear regression analysis, the results indicated that urinary TCA levels correlated with the increased MN in exposed workers (r = 0.285, p < 0.001). The prevalence rate of subjective symptoms in the exposed group was 9.61-11.76 times higher than the rate of the non-exposed group (p < 0.001). It was found that skin (29.6%) and respiratory symptoms (21.1%) were the most frequent among the exposed workers. In conclusion, these results indicate that increased micronucleus frequency is associated with occupational trichloroethylene exposure. The use of TCE in the factory is threatening workers’ health. PMID:25560356

  20. Occupational health risks among trichloroethylene-exposed workers in a clock manufacturing factory.

    PubMed

    Singthong, Siriporn; Pakkong, Pannee; Choosang, Kantima; Wongsanit, Sarinya

    2014-08-22

    Trichloroethylene (TCE) is an important volatile organic compound once widely used in industry throughout the world. Occupational exposure to TCE can cause a number of health hazards such as allergic reactions and genetic damage. The purpose of this study was to evaluate occupational exposure to TCE, by analysis of the air in the breathing zone and of urine from workers employed in a clock manufacturing factory. A subjective symptom survey was conducted by using a self-administered questionnaire to evaluate the health hazards. Micronucleus (MN) frequency, based on the cytokinesis-block micronucleus assay (CBMN) in peripheral blood lymphocytes, (PBLs) was used as a biomarker for chromosome damage. A total of 244 participants, including 171 workers occupationally exposed to TCE and 73 non-exposed control employees, working mainly in office jobs in the same factory, were enrolled in this study. Analyses of airborne TCE concentrations in the workplace, and of urinary trichloroacetic acid (TCA) of the workers and controls, were performed by Gas Chromatography-Electron Capture Detector (GC-ECD) using the modified headspace technique. The average concentration of TCE in the workplace breathing zone was 27.83 ± 6.02 ppm. The average level of urinary TCA of the exposed workers and controls was 14.84 ± 1.62, 2.95 ± 0.28 mg/L. The frequency of MN/1000BN was 7.029 ± 0.39, significantly higher than for those in the control group (3.57 ± 0.31, p = 0.001). According to multiple linear regression analysis, the results indicated that urinary TCA levels correlated with the increased MN in exposed workers (r = 0.285, p < 0.001). The prevalence rate of subjective symptoms in the exposed group was 9.61-11.76 times higher than the rate of the non-exposed group (p < 0.001). It was found that skin (29.6%) and respiratory symptoms (21.1%) were the most frequent among the exposed workers. In conclusion, these results indicate that increased micronucleus frequency is associated with occupational trichloroethylene exposure. The use of TCE in the factory is threatening workers' health.

  1. Evaluation of genetic damage in tobacco and arsenic exposed population of Southern Assam, India using buccal cytome assay and comet assay.

    PubMed

    Roy, Prasenjit; Mukherjee, Anita; Giri, Sarbani

    2016-02-01

    Ground water is the principal source of drinking water in Assam. Ground water contamination of arsenic in drinking water is a great concern for human health and considered as a human carcinogen. The present cytogenetic biomonitoring study was undertaken to investigate the genotoxic effects associated with people of southern Assam consuming arsenic contaminated water and chewing tobacco. Employing the buccal cytome assay, exfoliated cells were analyzed in 138 individuals of age range 22-42 years and divided into four groups. Group I (n=54) are participants residing in localities where ground water contains arsenic concentration below the permissible limit (<10μg/l) and without any tobacco chewing history. Group II (n=32) participants from the same area but they are tobacco chewers. Group III (n=24) participants from localities where significantly high arsenic contamination in ground water were observed. Whereas the Group IV (n=28) consists of participants from the arsenic contaminated area and also tobacco chewers. Body mass index (BMI) in all the groups are found to be nearly same and in normal range. Statistically significant (P<0.001) increase in genotoxic, cell death parameters and cell proliferation biomarkers were observed in the Group IV compared to other groups. In the comet assay, percent of tail DNA gradually increases among the groups and has statistical significance. Spearman correlation revealed strong positive correlation between the arsenic exposed peoples and the binucleated cells (r=0.4763; P<0.001). Amount of chewing tobacco had significant positive correlation with micronucleus frequency (r=0.268; P<0.05) and karyolitic cells (r=0.217; P<0.05) and also in the percentage of tail DNA (r=0.5532, P<0.001). A statistically significant increase in glucose content and decrease in hemoglobin content as well as acetylcholine esterase in the blood of exposed individuals was observed. Our preliminary study indicate that population exposed to arsenic through drinking water may become more susceptible towards chewing tobacco induced nuclear damage as evaluated by buccal cytome assay and comet assay. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Well Water Arsenic Exposure, Arsenic Induced Skin-Lesions and Self-Reported Morbidity in Inner Mongolia

    PubMed Central

    Xia, Yajuan; Wade, Timothy J.; Wu, Kegong; Li, Yanhong; Ning, Zhixiong; Le, X Chris; He, Xingzhou; Chen, Binfei; Feng, Yong; Mumford, Judy L.

    2009-01-01

    Residents of the Bayingnormen region of Inner Mongolia have been exposed to arsenic-contaminated well water for over 20 years, but relatively few studies have investigated health effects in this region. We surveyed one village to document exposure to arsenic and assess the prevalence of arsenic-associated skin lesions and self-reported morbidity. Five-percent (632) of the 12,334 residents surveyed had skin lesions characteristics of arsenic exposure. Skin lesions were strongly associated with well water arsenic and there was an elevated prevalence among residents with water arsenic exposures as low as 5 μg/L-10 μg/L. The presence of skin lesions was also associated with self-reported cardiovascular disease. PMID:19440430

  3. Impaired arsenic metabolism in children during weaning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faengstroem, Britta; Hamadani, Jena; Nermell, Barbro

    2009-09-01

    Background: Methylation of inorganic arsenic (iAs) via one-carbon metabolism is a susceptibility factor for a range of arsenic-related health effects, but there is no data on the importance of arsenic metabolism for effects on child development. Aim: To elucidate the development of arsenic metabolism in early childhood. Methods: We measured iAs, methylarsonic acid (MA) and dimethylarsinic acid (DMA), the metabolites of iAs, in spot urine samples of 2400 children at 18 months of age. The children were born to women participating in a population-based longitudinal study of arsenic effects on pregnancy outcomes and child development, carried out in Matlab, amore » rural area in Bangladesh with a wide range of arsenic concentrations in drinking water. Arsenic metabolism was evaluated in relation to age, sex, anthropometry, socio-economic status and arsenic exposure. Results: Arsenic concentrations in child urine (median 34 {mu}g/L, range 2.4-940 {mu}g/L), adjusted to average specific gravity of 1.009 g/mL, were considerably higher than that measured at 3 months of age, but lower than that in maternal urine. Child urine contained on average 12% iAs, 9.4% MA and 78% DMA, which implies a marked change in metabolite pattern since infancy. In particular, there was a marked increase in urinary %MA, which has been associated with increased risk of health effects. Conclusion: The arsenic metabolite pattern in urine of children at 18 months of age in rural Bangladesh indicates a marked decrease in arsenic methylation efficiency during weaning.« less

  4. Prevalence of Chronic Diseases in Adults Exposed to Arsenic-Contaminated Drinking Water

    PubMed Central

    Zierold, Kristina M.; Knobeloch, Lynda; Anderson, Henry

    2004-01-01

    Inorganic arsenic is naturally occurring in groundwaters throughout the United States. This study investigated arsenic exposure and self-report of 9 chronic diseases. We received private well-water samples and questionnaires from 1185 people who reported drinking their water for 20 or more years. Respondents with arsenic levels of 2 μg/L or greater were statistically more likely to report a history of depression, high blood pressure, circulatory problems, and bypass surgery than were respondents with arsenic concentrations less than 2 μg/L. PMID:15514231

  5. The correlation of arsenic levels in drinking water with the biological samples of skin disorders.

    PubMed

    Kazi, Tasneem Gul; Arain, Muhammad Balal; Baig, Jameel Ahmed; Jamali, Muhammad Khan; Afridi, Hassan Imran; Jalbani, Nusrat; Sarfraz, Raja Adil; Shah, Abdul Qadir; Niaz, Abdul

    2009-01-15

    Arsenic (As) poisoning has become a worldwide public health concern. The skin is quite sensitive to As and skin lesions are the most common and earliest nonmalignant effects associated to chronic As exposure. In 2005-2007, a survey was carried out on surface and groundwater arsenic contamination and relationships between As exposure via the drinking water and related adverse health effects (melanosis and keratosis) on villagers resides on the banks of Manchar lake, southern part of Sindh, Pakistan. We screened the population from arsenic-affected villages, 61 to 73% population were identified patients suffering from chronic arsenic toxicity. The effects of As toxicity via drinking water were estimated by biological samples (scalp hair and blood) of adults (males and females), have or have not skin problem (n=187). The referent samples of both genders were also collected from the areas having low level of As (<10 microg/L) in drinking water (n=121). Arsenic concentration in drinking water and biological samples were analyzed using electrothermal atomic absorption spectrometry. The range of arsenic concentrations in lake surface water was 35.2-158 microg/L, which is 3-15 folds higher than World Health Organization [WHO, 2004. Guidelines for drinking-water quality third ed., WHO Geneva Switzerland.]. It was observed that As concentration in the scalp hair and blood samples were above the range of permissible values 0.034-0.319 microg As/g for hair and <0.5-4.2 microg/L for blood. The linear regressions showed good correlations between arsenic concentrations in water versus hair and blood samples of exposed skin diseased subjects (R2=0.852 and 0.718) as compared to non-diseased subjects (R2=0.573 and 0.351), respectively.

  6. Water Consumption as Source of Arsenic, Chromium, and Mercury in Children Living in Rural Yucatan, Mexico: Blood and Urine Levels.

    PubMed

    Arcega-Cabrera, F; Fargher, L F; Oceguera-Vargas, I; Noreña-Barroso, E; Yánez-Estrada, L; Alvarado, J; González, L; Moo-Puc, R; Pérez-Herrera, N; Quesadas-Rojas, M; Pérez-Medina, S

    2017-10-01

    Studies investigating the correlation between metal content in water and metal levels in children are scarce worldwide, but especially in developing nations. Therefore, this study investigates the correlation between arsenic, chromium, and mercury concentrations in drinking and cooking water and in blood and urine samples collected from healthy and supposedly non-exposed children from a rural area in Yucatan, Mexico. Mercury in water shows concentrations above the recommended World Health Organization (WHO) value for drinking and cooking water. Also, 25% of the children show mercury in urine above the WHO recommended value. Multivariate analyses show a significant role for drinking and cooking water as a vector of exposure in children. Also, the factor analysis shows chronic exposure in the case of arsenic, as well as an ongoing detoxification process through urine in the case of mercury. Further studies should be done in order to determine other potential metal exposure pathways among children.

  7. High risks of lung disease associated with early-life and moderate lifetime arsenic exposure in northern Chile.

    PubMed

    Steinmaus, Craig; Ferreccio, Catterina; Acevedo, Johanna; Balmes, John R; Liaw, Jane; Troncoso, Patricia; Dauphiné, David C; Nardone, Anthony; Smith, Allan H

    2016-12-15

    Arsenic in drinking water has been associated with increases in lung disease, but information on the long-term impacts of early-life exposure or moderate exposure levels are limited. We investigated pulmonary disease and lung function in 795 subjects from three socio-demographically similar areas in northern Chile: Antofagasta, which had a well-described period of high arsenic water concentrations (860μg/L) from 1958 to 1970; Iquique, which had long-term arsenic water concentrations near 60μg/L; and Arica, with long-term water concentrations ≤10μg/L. Compared to adults never exposed >10μg/L, adults born in Antofagasta during the high exposure period had elevated odds ratios (OR) of respiratory symptoms (e.g., OR for shortness of breath=5.56, 90% confidence interval (CI): 2.68-11.5), and decreases in pulmonary function (e.g., 224mL decrease in forced vital capacity in nonsmokers, 90% CI: 97-351mL). Subjects with long-term exposure to arsenic water concentrations near 60μg/L also had increases in some pulmonary symptoms and reduced lung function. Overall, these findings provide new evidence that in utero or childhood arsenic exposure is associated with non-malignant pulmonary disease in adults. They also provide preliminary new evidence that long-term exposures to moderate levels of arsenic may be associated with lung toxicity, although the magnitude of these latter findings were greater than expected and should be confirmed. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. High risks of lung disease associated with early-life and moderate lifetime arsenic exposure in northern Chile

    PubMed Central

    Steinmaus, Craig; Ferreccio, Catterina; Acevedo, Johanna; Balmes, John R; Liaw, Jane; Troncoso, Patricia; Dauphiné, David C; Nardone, Anthony; Smith, Allan H

    2016-01-01

    Background Arsenic in drinking water has been associated with increases in lung disease, but information on the long-term impacts of early-life exposure or moderate exposure levels are limited. Methods We investigated pulmonary disease and lung function in 795 subjects from three socio-demographically similar areas in northern Chile: Antofagasta, which had a well-described period of high arsenic water concentrations (860 μg/L) from 1958–1970; Iquique, which had long-term arsenic water concentrations near 60 μg/L; and Arica, with long-term water concentrations ≤10 μg/L. Results Compared to adults never exposed >10 μg/L, adults born in Antofagasta during the high exposure period had elevated odds ratios (OR) of respiratory symptoms (e.g., OR for shortness of breath = 5.56, 90% confidence interval (CI): 2.68–11.5), and decreases in pulmonary function (e.g., 224 ml decrease in forced vital capacity in nonsmokers, 90% CI: 97–351 ml). Subjects with long-term exposure to arsenic water concentrations near 60 μg/L also had increases in some pulmonary symptoms and reduced lung function. Conclusions Overall, these findings provide new evidence that in utero or childhood arsenic exposure is associated with non-malignant pulmonary disease in adults. They also provide preliminary new evidence that long-term exposures to moderate levels of arsenic may be associated with lung toxicity, although the magnitude of these latter findings were greater than expected and should be confirmed. PMID:27725189

  9. Overexpression of HER-2 via immunohistochemistry in canine urinary bladder transitional cell carcinoma - A marker of malignancy and possible therapeutic target.

    PubMed

    Millanta, F; Impellizeri, J; McSherry, L; Rocchigiani, G; Aurisicchio, L; Lubas, G

    2018-06-01

    Transitional cell carcinoma (TCC) is the most commonly diagnosed neoplasm in the urinary bladder. Distant metastases to the regional lymph nodes, lungs, abdominal organs or bones are noted in up to 50% of dogs at time of death. Surgical excision is often not practical as TCC typically involve the trigone of the bladder and/or occurs multifocally throughout the bladder with field cancerization. Therapeutic approaches are very challenging and the requirement to evaluate alternative therapeutic protocols that may prolong survival times in dogs bearing these tumours is compelling. We assessed the immunohistochemical expression of HER-2 in 23 cases of canine TCCs of the urinary bladder and compare it with non-neoplastic urothelium in order to evaluate a rationale for targeted therapies and gene-based vaccines. HER-2 positivity was recorded in 13/23 (56%) neoplastic lesions. The receptor was significantly overexpressed in neoplastic than in non-neoplastic samples (P = .015). According to our preliminary results, it would be of interest to further evaluate the role of HER-2 in canine TCCs as a marker of malignancy and a therapeutic target for cancer vaccine and antibodies. Moreover, the significantly different overexpression of HER-2 in TCCs than in non-neoplastic urothelium further supports to investigate its role in the progression toward malignancy of non-neoplastic lesions. © 2017 John Wiley & Sons Ltd.

  10. Quantitative Mass Spectrometry Reveals Changes in Histone H2B Variants as Cells Undergo Inorganic Arsenic-Mediated Cellular Transformation*

    PubMed Central

    Rea, Matthew; Jiang, Tingting; Eleazer, Rebekah; Eckstein, Meredith; Marshall, Alan G.; Fondufe-Mittendorf, Yvonne N.

    2016-01-01

    Exposure to inorganic arsenic, a ubiquitous environmental toxic metalloid, leads to carcinogenesis. However, the mechanism is unknown. Several studies have shown that inorganic arsenic exposure alters specific gene expression patterns, possibly through alterations in chromatin structure. While most studies on understanding the mechanism of chromatin-mediated gene regulation have focused on histone post-translational modifications, the role of histone variants remains largely unknown. Incorporation of histone variants alters the functional properties of chromatin. To understand the global dynamics of chromatin structure and function in arsenic-mediated carcinogenesis, analysis of the histone variants incorporated into the nucleosome and their covalent modifications is required. Here we report the first global mass spectrometric analysis of histone H2B variants as cells undergo arsenic-mediated epithelial to mesenchymal transition. We used electron capture dissociation-based top-down tandem mass spectrometry analysis validated with quantitative reverse transcription real-time polymerase chain reaction to identify changes in the expression levels of H2B variants in inorganic arsenic-mediated epithelial-mesenchymal transition. We identified changes in the expression levels of specific histone H2B variants in two cell types, which are dependent on dose and length of exposure of inorganic arsenic. In particular, we found increases in H2B variants H2B1H/1K/1C/1J/1O and H2B2E/2F, and significant decreases in H2B1N/1D/1B as cells undergo inorganic arsenic-mediated epithelial-mesenchymal transition. The analysis of these histone variants provides a first step toward an understanding of the functional significance of the diversity of histone structures, especially in inorganic arsenic-mediated gene expression and carcinogenesis. PMID:27169413

  11. SPECIATION ANALYSIS OF ARSENIC IN BIOLOGICAL MATRICES BY AUTOMATED HYDRIDE GENERATION-CRYOTRAPPING-ATOMIC ABSORPTION SPECTROMETRY WITH MULTIPLE MICROFLAME QUARTZ TUBE ATOMIZER (MULTIATOMIZER)

    EPA Science Inventory

    Abstract Analyses of arsenic (As) species in tissues and body fluids of individuals chronically exposed to inorganic arsenic (iAs) provide essential information about the exposure level and pattern of iAs metabolism. We have previously described an oxidation state-specifi...

  12. High risks of lung disease associated with early-life and moderate lifetime arsenic exposure in northern Chile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinmaus, Craig, E-mail: craigs@berkeley.edu

    Background: Arsenic in drinking water has been associated with increases in lung disease, but information on the long-term impacts of early-life exposure or moderate exposure levels are limited. Methods: We investigated pulmonary disease and lung function in 795 subjects from three socio-demographically similar areas in northern Chile: Antofagasta, which had a well-described period of high arsenic water concentrations (860 μg/L) from 1958 to 1970; Iquique, which had long-term arsenic water concentrations near 60 μg/L; and Arica, with long-term water concentrations ≤ 10 μg/L. Results: Compared to adults never exposed > 10 μg/L, adults born in Antofagasta during the high exposuremore » period had elevated odds ratios (OR) of respiratory symptoms (e.g., OR for shortness of breath = 5.56, 90% confidence interval (CI): 2.68–11.5), and decreases in pulmonary function (e.g., 224 mL decrease in forced vital capacity in nonsmokers, 90% CI: 97–351 mL). Subjects with long-term exposure to arsenic water concentrations near 60 μg/L also had increases in some pulmonary symptoms and reduced lung function. Conclusions: Overall, these findings provide new evidence that in utero or childhood arsenic exposure is associated with non-malignant pulmonary disease in adults. They also provide preliminary new evidence that long-term exposures to moderate levels of arsenic may be associated with lung toxicity, although the magnitude of these latter findings were greater than expected and should be confirmed. - Highlights: • Based on its unique geology, lifetime arsenic exposure can be assessed in north Chile. • Signs and symptoms of lung disease were associated with early-life arsenic exposure. • Evidence of lung disease was also associated with moderate arsenic exposure.« less

  13. Spatial modeling for groundwater arsenic levels in North Carolina

    USGS Publications Warehouse

    Kim, D.; Miranda, M.L.; Tootoo, J.; Bradley, P.; Gelfand, A.E.

    2011-01-01

    To examine environmental and geologic determinants of arsenic in groundwater, detailed geologic data were integrated with well water arsenic concentration data and well construction data for 471 private wells in Orange County, NC, via a geographic information system. For the statistical analysis, the geologic units were simplified into four generalized categories based on rock type and interpreted mode of deposition/emplacement. The geologic transitions from rocks of a primary pyroclastic origin to rocks of volcaniclastic sedimentary origin were designated as polylines. The data were fitted to a left-censored regression model to identify key determinants of arsenic levels in groundwater. A Bayesian spatial random effects model was then developed to capture any spatial patterns in groundwater arsenic residuals into model estimation. Statistical model results indicate (1) wells close to a transition zone or fault are more likely to contain detectible arsenic; (2) welded tuffs and hydrothermal quartz bodies are associated with relatively higher groundwater arsenic concentrations and even higher for those proximal to a pluton; and (3) wells of greater depth are more likely to contain elevated arsenic. This modeling effort informs policy intervention by creating three-dimensional maps of predicted arsenic levels in groundwater for any location and depth in the area. ?? 2011 American Chemical Society.

  14. Arsenic uptake by common marsh fern Thelypteris palustris and its potential for phytoremediation.

    PubMed

    Anderson, LaShunda; Walsh, Maud M

    2007-07-01

    Hydroponic and soil cultivations of Thelypteris palustris, the common marsh fern, were used to investigate its potential for use in phytoremediation of arsenic (As) contaminated water or soil. ICP-MS analyses indicate that both roots and fronds accumulated arsenic in levels up to 100 times the concentration of treatment solutions of 250 microg/L and 500 mug/L arsenic, but values varied widely and there was no significant difference in concentrations in fronds between the control (no arsenic) and treatments. Plants exposed to 500 microg/L exhibited necrosis in their fronds, suggesting that Thelypteris palustris is not a good candidate for phyotoremediation of arsenic-contaminated sites.

  15. Biomarkers of oxidative stress and its association with the urinary reducing capacity in bus maintenance workers.

    PubMed

    Sauvain, Jean-Jacques; Setyan, Ari; Wild, Pascal; Tacchini, Philippe; Lagger, Grégoire; Storti, Ferdinand; Deslarzes, Simon; Guillemin, Michel; Rossi, Michel J; Riediker, Michael

    2011-05-30

    Exposure to particles (PM) induces adverse health effects (cancer, cardiovascular and pulmonary diseases). A key-role in these adverse effects seems to be played by oxidative stress, which is an excess of reactive oxygen species relative to the amount of reducing species (including antioxidants), the first line of defense against reactive oxygen species. The aim of this study was to document the oxidative stress caused by exposure to respirable particles in vivo, and to test whether exposed workers presented changes in their urinary levels for reducing species. Bus depot workers (n = 32) exposed to particles and pollutants (respirable PM4, organic and elemental carbon, particulate metal content, polycyclic aromatic hydrocarbons, NOx, O3) were surveyed over two consecutive days. We collected urine samples before and after each shift, and quantified an oxidative stress biomarker (8-hydroxy-2'-deoxyguanosine), the reducing capacity and a biomarker of PAH exposure (1-hydroxypyrene). We used a linear mixed model to test for associations between the oxidative stress status of the workers and their particle exposure as well as with their urinary level of reducing species. Workers were exposed to low levels of respirable PM4 (range 25-71 μg/m3). However, urinary levels of 8-hydroxy-2'-deoxyguanosine increased significantly within each shift and between both days for non-smokers. The between-day increase was significantly correlated (p < 0.001) with the concentrations of organic carbon, NOx, and the particulate copper content. The within-shift increase in 8OHdG was highly correlated to an increase of the urinary reducing capacity (Spearman ρ = 0.59, p < 0.0001). These findings confirm that exposure to components associated to respirable particulate matter causes a systemic oxidative stress, as measured with the urinary 8OHdG. The strong association observed between urinary 8OHdG with the reducing capacity is suggestive of protective or other mechanisms, including circadian effects. Additional investigations should be performed to understand these observations.

  16. Ethnic characterization of a population of children exposed to high doses of arsenic via drinking water and a possible correlation with metabolic processes

    PubMed Central

    Bobillo, Cecilia; Navoni, Julio A; Olmos, Valentina; Merini, Luciano J; Villaamil Lepori, Edda; Corach, Daniel

    2014-01-01

    Because the ratio between the two major arsenic metabolites is related to the adverse health effects of arsenic, numerous studies have been performed to establish a relationship between the ability to metabolically detoxify arsenic and other variables, including exposure level, gender, age and ethnicity. Because ethnicity may play a key role and provide relevant information for heterogeneous populations, we characterized a group of 70 children from rural schools in the Argentinean provinces of Chaco and Santiago del Estero who were exposed to high levels of arsenic. We used genetic markers for maternal, paternal and bi-parental ancestry to achieve this goal. Our results demonstrate that the Amerindian maternal linages are present in 100% of the samples, whereas the Amerindian component transmitted through the paternal line is less than 10%. Informative markers for autosomal ancestry show a predominantly European ancestry, in which 37% of the samples contained between 90 and 99% European ancestry. The native American component ranged from 50 to 80% in 15.7% of the samples, and in all but four samples, the African component was less than 10%. Correlation analysis demonstrated that the ethnicity and the ratio of the excreted arsenic metabolites monomethyl arsenic and dimethyl arsenic are not associated, dismissing a relationship between ethnic origin and differential metabolism. PMID:24596592

  17. Arsenic in tube well water in Bangladesh: health and economic impacts and implications for arsenic mitigation.

    PubMed

    Flanagan, Sara V; Johnston, Richard B; Zheng, Yan

    2012-11-01

    A national drinking water quality survey conducted in 2009 furnished data that were used to make an updated estimate of chronic arsenic exposure in Bangladesh. About 20 million and 45 million people were found to be exposed to concentrations above the national standard of 50 µg/L and the World Health Organization's guideline value of 10 µg/L, respectively. From the updated exposure data and all-cause mortality hazard ratios based on local epidemiological studies, it was estimated that arsenic exposures to concentrations > 50 µg/L and 10-50 µg/L account for an annual 24,000 and perhaps as many as 19,000 adult deaths in the country, respectively. Exposure varies widely in the 64 districts; among adults, arsenic-related deaths account for 0-15% of all deaths. An arsenic-related mortality rate of 1 in every 16 adult deaths could represent an economic burden of 13 billion United States dollars (US$) in lost productivity alone over the next 20 years. Arsenic mitigation should follow a two-tiered approach: (i) prioritizing provision of safe water to an estimated 5 million people exposed to > 200 µg/L arsenic, and (ii) building local arsenic testing capacity. The effectiveness of such an approach was demonstrated during the United Nations Children's Fund 2006-2011 country programme, which provided safe water to arsenic-contaminated areas at a cost of US$ 11 per capita. National scale-up of such an approach would cost a few hundred million US dollars but would improve the health and productivity of the population, especially in future generations.

  18. Arsenic exposure induces the Warburg effect in cultured human cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Fei; Severson, Paul; Pacheco, Samantha

    2013-08-15

    Understanding how arsenic exacts its diverse, global disease burden is hampered by a limited understanding of the particular biological pathways that are disrupted by arsenic and underlie pathogenesis. A reductionist view would predict that a small number of basic pathways are generally perturbed by arsenic, and manifest as diverse diseases. Following an initial observation that arsenite-exposed cells in culture acidify their media more rapidly than control cells, the report here shows that low level exposure to arsenite (75 ppb) is sufficient to induce aerobic glycolysis (the Warburg effect) as a generalized phenomenon in cultured human primary cells and cell lines.more » Expanded studies in one such cell line, the non-malignant pulmonary epithelial line, BEAS-2B, established that the arsenite-induced Warburg effect was associated with increased accumulation of intracellular and extracellular lactate, an increased rate of extracellular acidification, and inhibition by the non-metabolized glucose analog, 2-deoxy-D-glucose. Associated with the induction of aerobic glycolysis was a pathway-wide induction of glycolysis gene expression, as well as protein accumulation of an established glycolysis master-regulator, hypoxia-inducible factor 1A. Arsenite-induced alteration of energy production in human cells represents the type of fundamental perturbation that could extend to many tissue targets and diseases. - Highlights: • Chronic arsenite exposure induces aerobic glycolysis, dubbed the “Warburg effect”. • Arsenite-induced Warburg effect is a general phenomenon in cultured human cells. • HIF-1A may mediate arsenite induced Warburg effect.« less

  19. Chronic inorganic arsenic exposure in vitro induces a cancer cell phenotype in human peripheral lung epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Person, Rachel J.; Olive Ngalame, Ntube N.; Makia, Ngome L.

    Inorganic arsenic is a human lung carcinogen. We studied the ability of chronic inorganic arsenic (2 μM; as sodium arsenite) exposure to induce a cancer phenotype in the immortalized, non-tumorigenic human lung peripheral epithelial cell line, HPL-1D. After 38 weeks of continuous arsenic exposure, secreted matrix metalloproteinase-2 (MMP2) activity increased to over 200% of control, levels linked to arsenic-induced cancer phenotypes in other cell lines. The invasive capacity of these chronic arsenic-treated lung epithelial (CATLE) cells increased to 320% of control and colony formation increased to 280% of control. CATLE cells showed enhanced proliferation in serum-free media indicative of autonomousmore » growth. Compared to control cells, CATLE cells showed reduced protein expression of the tumor suppressor gene PTEN (decreased to 26% of control) and the putative tumor suppressor gene SLC38A3 (14% of control). Morphological evidence of epithelial-to-mesenchymal transition (EMT) occurred in CATLE cells together with appropriate changes in expression of the EMT markers vimentin (VIM; increased to 300% of control) and e-cadherin (CDH1; decreased to 16% of control). EMT is common in carcinogenic transformation of epithelial cells. CATLE cells showed increased KRAS (291%), ERK1/2 (274%), phosphorylated ERK (p-ERK; 152%), and phosphorylated AKT1 (p-AKT1; 170%) protein expression. Increased transcript expression of metallothioneins, MT1A and MT2A and the stress response genes HMOX1 (690%) and HIF1A (247%) occurred in CATLE cells possibly in adaptation to chronic arsenic exposure. Thus, arsenic induced multiple cancer cell characteristics in human peripheral lung epithelial cells. This model may be useful to assess mechanisms of arsenic-induced lung cancer. - Highlights: • Chronic arsenic exposure transforms a human peripheral lung epithelia cell line. • Cells acquire characteristics in common with human lung adenocarcinoma cells. • These transformed cells provide a valuable model for arsenic-induced lung cancer.« less

  20. Urinary excretion of mutagens in coke oven workers.

    PubMed

    Clonfero, E; Granella, M; Marchioro, M; Barra, E L; Nardini, B; Ferri, G; Foà, V

    1995-03-01

    The influence of occupational exposure to polycyclic aromatic hydrocarbons (PAHs) on urinary mutagenic activity was assessed in 75 coke oven workers, using a highly sensitive bacterial mutagen technique (extraction with C18 resin and liquid micro-preincubation test on strain TA98 of Salmonella typhimurium in the presence of metabolizing and deconjugating enzymes). Exposure to PAHs was assessed according to the urinary excretion of 1-pyrenol; the main confounding factors were checked by the number of cigarettes smoked per day and the levels of nicotine and its metabolites in urine, or by ascertaining whether recommended dietary restrictions had been followed. Of the 20 urine samples which turned out to be positive (producing at least double the number of spontaneous revertants), 19 (95%) belonged to smokers. Only one non-smoker had obvious urinary mutagenic activity, and was highly exposed occupationally to PAHs (urinary 1-pyrenol of 3.930 mumol/mol of creatinine). Of the five urine samples from subjects who had not followed the recommended diet, two (40%) were clearly mutagenic. Multiple regression analysis (n = 67) showed that the presence of samples positive for urinary mutagenic activity depended only on smoking habits, if this confounding factor was assessed according to the number of cigarettes smoked per day, while the significant influence of exposure to PAH could be shown when the confounding factor was objectively estimated according to the urinary levels of nicotine and its metabolites. Assessment of the mutagenic potency of urinary extracts (net revertants/mmol creatinine) confirmed the strong influence of smoking habits on urinary mutagenic activity (all smokers 2156 +/- 2691 versus non-smokers 939 +/- 947 net revertants/mmol creatinine; Mann-Whitney test: P < 0.01). In smokers highly exposed to PAHs, greater excretion of mutagens with respect to low-exposure smokers was revealed (3548 +/- 4009 versus 1552 +/- 1227 net revertants/mmol creatinine; Mann-Whitney test: P < 0.01). Multiple regression analysis showed that the mutagenic potency of urinary extracts of coke oven workers depended on exposure to PAHs, tobacco smoking habits, and consumption of fried, grilled or barbecued meat. Increased urinary mutagenic activity strengthens epidemiological evidence of the increased risk of renal and urinary tract tumours in these workers. The presence of mutagenic metabolites in urine as a result of occupational exposure to PAH may be demonstrated only by using highly sensitive techniques for assessing urinary mutagenic activity in studies which include careful checking of the main confounding factors.

  1. Immunomodulatory role of Emblica officinalis in arsenic induced oxidative damage and apoptosis in thymocytes of mice

    PubMed Central

    2013-01-01

    Background Arsenic is widely distributed in the environment and has been found to be associated with the various health related problems including skin lesions, cancer, cardiovascular and immunological disorders. The fruit extract of Emblica officinalis (amla) has been shown to have anti-oxidative and immunomodulatory properties. In view of increasing health risk of arsenic, the present study has been carried out to investigate the protective effect of amla against arsenic induced oxidative stress and apoptosis in thymocytes of mice. Methods Mice were exposed to arsenic (sodium arsenite 3 mg/kg body weight p.o.) or amla (500 mg/kg body weight p.o.) or simultaneously with arsenic and amla for 28 days. The antioxidant enzyme assays were carried out using spectrophotometer and generation of ROS, apoptotic parameters, change in cell cycle were carried out using flow cytometer following the standard protocols. Results Arsenic exposure to mice caused a significant increase in the lipid peroxidation, ROS production and decreased cell viability, levels of reduced glutathione, the activity of superoxide dismutase, catalase, cytochrome c oxidase and mitochondrial membrane potential in the thymus as compared to controls. Increased activity of caspase-3 linked with apoptosis assessed by the cell cycle analysis and annexin V/PI binding was also observed in mice exposed to arsenic as compared to controls. Co-treatment with arsenic and amla decreased the levels of lipid peroxidation, ROS production, activity of caspase-3, apoptosis and increased cell viability, levels of antioxidant enzymes, cytochrome c oxidase and mitochondrial membrane potential as compared to mice treated with arsenic alone. Conclusions The results of the present study exhibits that arsenic induced oxidative stress and apoptosis significantly protected by co-treatment with amla that could be due to its strong antioxidant potential. PMID:23889914

  2. Seasonal perspective of dietary arsenic consumption and urine arsenic in an endemic population.

    PubMed

    Biswas, Anirban; Deb, Debasree; Ghose, Aloke; Santra, Subhas Chandra; Guha Mazumder, Debendra Nath

    2014-07-01

    Exposure to arsenic in arsenic endemic areas is most remarkable environmental health challenges. Although effects of arsenic contamination are well established, reports are unavailable on probable seasonal variation due to changes of food habit depending on winter and summer seasons, especially for endemic regions of Nadia district, West Bengal. Complete 24-h diets, drinking-cooking water, first morning voided urine samples, and diet history were analyzed on 25 volunteers in arsenic endemic Chakdah block of Nadia district, once in summer followed by once in winter from the same participants. Results depicted no seasonal variation of body weight and body mass index. Arsenic concentration of source drinking and cooking water decreased (p = 0.04) from 26 μg L(-1) in summer to 6 μg L(-1) in winter season. We recorded a seasonal decrease of water intake in male (3.8 and 2.5 L day (-1)) and female (2.6 and 1.2 L day(-1)) participants from summer to winter. Arsenic intake through drinking water decreased (p = 0.04) in winter (29 μg day(-1)) than in summer (100 μg day(-1)), and urinary arsenic concentration decreased (p = 0.018) in winter (41 μg L(-1)) than in summer (69 μg L(-1)). Dietary arsenic intake remained unchanged (p = 0.24) over the seasons. Hence, we can infer that human health risk assessment from arsenic needs an insight over temporal scale.

  3. Multiple metals exposure in a small-scale artisanal gold mining community.

    PubMed

    Basu, Niladri; Nam, Dong-Ha; Kwansaa-Ansah, Edward; Renne, Elisha P; Nriagu, Jerome O

    2011-04-01

    Urinary metals were characterized in 57 male residents of a small-scale gold mining community in Ghana. Chromium and arsenic exceeded health guideline values for 52% and 34%, respectively, of all participants. About 10-40% of the participants had urinary levels of aluminum, copper, manganese, nickel, selenium, and zinc that fell outside the U.S. reference range. Exposures appear ubiquitous across the community as none of the elements were associated with occupation, age, and diet. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. In Vivo Exposure to Inorganic Arsenic Alters Differentiation-Specific Gene Expression of Adipose-Derived Mesenchymal Stem/Stromal Cells in C57BL/6J Mouse Model

    PubMed Central

    Shearer, Joseph J.; Figueiredo Neto, Manoel; Umbaugh, C. Samuel; Figueiredo, Marxa L.

    2017-01-01

    Abstract The number of mesenchymal stem cell (MSC) therapeutic modalities has grown in recent years. Adipose-derived mesenchymal stem/stromal cells (ASCs) can be isolated and expanded relatively easily as compared with their bone-marrow counterparts, making them a particularly promising source of MSCs. And although the biological mechanisms surrounding ASCs are actively being investigated, little is known about the effects that in vivo environmental exposures might have on their ability to properly differentiate. Therefore, we hypothesized that ASCs isolated from mice exposed to inorganic arsenic (iAs) would have an altered response towards adipogenic, osteogenic, and/or chondrogenic differentiation. To test this hypothesis, C57BL/6J male mice were provided drinking water containing 0, 300, or 1000 ppb iAs. ASCs were then isolated and differentiated, which was assessed by immunocytochemistry and real-time quantitative PCR (RT-qPCR). Our results showed that total urinary arsenic equilibrated within 1 week of exposure to iAs and was maintained throughout the study. ASCs isolated from each exposure group maintained differentiation capabilities for each lineage. The magnitude of differentiation-specific gene expression, however, appeared to be concentration dependent. For osteogenesis and chondrogenesis, differentiation-specific gene expression decreased, whereas adipogenesis showed a biphasic response with an initial decrease followed by an increase in adipogenic-related gene expression following iAs exposure. These results suggest that the level in which differentiation-specific genes are induced within these stromal cells might be sensitive to environmental contaminants. These findings highlight the need to take into account potential environmental exposures prior to selecting stromal cell donors, so ASCs can achieve optimal efficiency in regenerative therapy applications. PMID:28206643

  5. Color vision impairments among shipyard workers exposed to mixed organic solvents, especially xylene.

    PubMed

    Lee, Eun-Hee; Paek, Domyung; Kho, Young Lim; Choi, Kyungho; Chae, Hong Jae

    2013-01-01

    We evaluated color vision impairment in workers exposed to organic solvents, especially xylene. Three groups of subjects, comprising 63 workers occupationally exposed to organic solvents, 122 non-exposed workers in the same industry, and 185 subjects from the general population as controls, were evaluated for color vision. Exposure to solvents was indirectly evaluated by measuring the concentration of a urinary metabolite. Color vision was assessed using the Lanthony Desaturated 15-hue (Lanthony D-15) panel. Color confusion index (CCI) values in the exposed group were significantly higher than in the non-exposed workers or the general population, after adjustment for age and education, and significantly correlated with the concentration of methylhippuric acid. Color vision impairments were detected more frequently among the exposed group, and the most common types were type III and complex impairments. The rate of type III impairments was 9.52% in the exposed group, 1.64% in the non-exposed group, and 1.62% in the general population. Our results support the hypothesis that acquired color vision impairments could be induced by exposure to xylene. Testing for color vision impairment is a relatively simple, non-invasive and sensitive diagnostic method for relatively low-level exposures to xylene. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Cell cycle pathway dysregulation in human keratinocytes during chronic exposure to low arsenite.

    PubMed

    Al-Eryani, Laila; Waigel, Sabine; Jala, Venkatakrishna; Jenkins, Samantha F; States, J Christopher

    2017-09-15

    Arsenic is naturally prevalent in the earth's crust and widely distributed in air and water. Chronic low arsenic exposure is associated with several cancers in vivo, including skin cancer, and with transformation in vitro of cell lines including immortalized human keratinocytes (HaCaT). Arsenic also is associated with cell cycle dysregulation at different exposure levels in multiple cell lines. In this work, we analyzed gene expression in HaCaT cells to gain an understanding of gene expression changes contributing to transformation at an early time point. HaCaT cells were exposed to 0 or 100nM NaAsO 2 for 7weeks. Total RNA was purified and analyzed by microarray hybridization. Differential expression with fold change≥|1.5| and p-value≤0.05 was determined using Partek Genomic Suite™ and pathway and network analyses using MetaCore™ software (FDR≤0.05). Cell cycle analysis was performed using flow cytometry. 644 mRNAs were differentially expressed. Cell cycle/cell cycle regulation pathways predominated in the list of dysregulated pathways. Genes involved in replication origin licensing were enriched in the network. Cell cycle assay analysis showed an increase in G2/M compartment in arsenite-exposed cells. Arsenite exposure induced differential gene expression indicating dysregulation of cell cycle control, which was confirmed by cell cycle analysis. The results suggest that cell cycle dysregulation is an early event in transformation manifested in cells unable to transit G2/M efficiently. Further study at later time points will reveal additional changes in gene expression related to transformation processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Determination of Arsenic in Sinus Wash and Tap Water by Inductively Coupled Plasma-Mass Spectrometry

    ERIC Educational Resources Information Center

    Donnell, Anna M.; Nahan, Keaton; Holloway, Dawone; Vonderheide, Anne P.

    2016-01-01

    Arsenic is a toxic element to which humans are primarily exposed through food and water; it occurs as a result of human activities and naturally from the earth's crust. An experiment was developed for a senior level analytical laboratory utilizing an Inductively Coupled Plasma-Mass Spectrometer (ICP-MS) for the analysis of arsenic in household…

  8. Superconductivity in electron-doped arsenene

    NASA Astrophysics Data System (ADS)

    Kong, Xin; Gao, Miao; Yan, Xun-Wang; Lu, Zhong-Yi; Xiang, Tao

    2018-04-01

    Based on the first-principles density functional theory electronic structure calculation, we investigate the possible phonon-mediated superconductivity in arsenene, a two-dimensional buckled arsenic atomic sheet, under electron doping. We find that the strong superconducting pairing interaction results mainly from the $p_z$-like electrons of arsenic atoms and the $A_1$ phonon mode around the $K$ point, and the superconducting transition temperature can be as high as 30.8 K in the arsenene with 0.2 doped electrons per unit cell and 12\\% applied biaxial tensile strain. This transition temperature is about ten times higher than that in the bulk arsenic under high pressure. It is also the highest transition temperature that is predicted for electron-doped two-dimensional elemental superconductors, including graphene, silicene, phosphorene, and borophene.

  9. Biological monitoring of workers exposed to benzene in the coke oven industry.

    PubMed Central

    Drummond, L; Luck, R; Afacan, A S; Wilson, H K

    1988-01-01

    Workers in the coke oven industry are potentially exposed to low concentrations of benzene. There is a need to establish a well validated biological monitoring procedure for low level benzene exposure. The use of breath and blood benzene and urinary phenol has been explored in conjunction with personal monitoring data. At exposures of about 1 ppm benzene, urinary phenol is of no value as an indicator of uptake/exposure. Benzene in blood was measured by head space gas chromatography but the concentrations were only just above the detection limit. The determination of breath benzene collected before the next shift is non-specific in the case of smokers. The most useful monitor at low concentrations appears to be breath benzene measured at the end-of-shift. PMID:3378002

  10. XAS Studies of Arsenic in the Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charnock, J. M.; School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL; Polya, D. A.

    2007-02-02

    Arsenic is present in low concentrations in much of the Earth's crust and changes in its speciation are vital to understanding its transport and toxicity in the environment. We have used X-ray absorption spectroscopy to investigate the coordination sites of arsenic in a wide variety of samples, including soil and earthworm tissues from arsenic-contaminated land, and human hair and nail samples from people exposed to arsenic in Cambodia. Our results confirm the effectiveness of using X-ray absorption near edge structure (XANES) and X-ray absorption fine structure (EXAFS) spectroscopy to determine speciation changes in environmental samples.

  11. SPATIAL AND TEMPORAL DYNAMICS IN ARSENIC SPECIATION ACROSS THE GROUND WATER-SURFACE WATER TRANSITION ZONE AT A CONTAMINATED SITE

    EPA Science Inventory

    Field investigations have been conducted to understand the fate of arsenic in contaminated ground water during discharge into a small lake. The ground-water plume contains elevated levels of arsenic and hydrocarbon contaminants derived from historical disposal of process wastes ...

  12. Human health risk assessment with spatial analysis: study of a population chronically exposed to arsenic through drinking water from Argentina.

    PubMed

    Navoni, J A; De Pietri, D; Olmos, V; Gimenez, C; Bovi Mitre, G; de Titto, E; Villaamil Lepori, E C

    2014-11-15

    Arsenic (As) is a ubiquitous element widely distributed in the environment. This metalloid has proven carcinogenic action in man. The aim of this work was to assess the health risk related to As exposure through drinking water in an Argentinean population, applying spatial analytical techniques in addition to conventional approaches. The study involved 650 inhabitants from Chaco and Santiago del Estero provinces. Arsenic in drinking water (Asw) and urine (UAs) was measured by hydride generation atomic absorption spectrophotometry. Average daily dose (ADD), hazard quotient (HQ), and carcinogenic risk (CR) were estimated, geo-referenced and integrated with demographical data by a health composite index (HI) applying geographic information system (GIS) analysis. Asw covered a wide range of concentration: from non-detectable (ND) to 2000 μg/L. More than 90% of the population was exposed to As, with UAs levels above the intervention level of 100 μg/g creatinine. GIS analysis described an expected level of exposure lower than the observed, indicating possible additional source/s of exposure to inorganic arsenic. In 68% of the locations, the population had a HQ greater than 1, and the CR ranged between 5·10(-5) and 2,1·10(-2). An environmental exposure area through ADD geo-referencing defined a baseline scenario for space-time risk assessment. The time of residence, the demographic density and the potential health considered outcomes helped characterize the health risk in the region. The geospatial analysis contributed to delimitate and analyze the change tendencies of risk in the region, broadening the scopes of the results for a decision-making process. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Interaction between arsenic exposure from drinking water and genetic susceptibility in carotid intima-media thickness in Bangladesh

    PubMed Central

    Wu, Fen; Jasmine, Farzana; Kibriya, Muhammad G.; Liu, Mengling; Cheng, Xin; Parvez, Faruque; Paul-Brutus, Rachelle; Islam, Tariqul; Paul, Rina Rani; Sarwar, Golam; Ahmed, Alauddin; Jiang, Jieying; Islam, Tariqul; Slavkovich, Vesna; Rundek, Tatjana; Demmer, Ryan T.; Desvarieux, Moise; Ahsan, Habibul; Chen, Yu

    2014-01-01

    Epidemiologic studies that evaluated genetic susceptibility to the effects of arsenic exposure from drinking water on subclinical atherosclerosis are limited. We conducted a cross-sectional study of 1,078 participants randomly selected from the Health Effects of Arsenic Longitudinal Study in Bangladesh to evaluate whether the association between arsenic exposure and carotid artery intima-medial thickness (cIMT) differs by 207 single-nucleotide polymorphisms (SNPs) in 18 genes related to arsenic metabolism, oxidative stress, inflammation, and endothelial dysfunction. Although not statistically significant after correcting for multiple testing, nine SNPs in APOE, AS3MT, PNP, and TNF genes had a nominally statistically significant interaction with well-water arsenic in cIMT. For instance, the joint presence of a higher level of well-water arsenic (≥ 40.4 μg/L) and the GG genotype of AS3MT rs3740392 was associated with a difference of 40.9 μm (95% CI = 14.4, 67.5) in cIMT, much greater than the difference of cIMT associated with the genotype alone (β = -5.1 μm, 95% CI = -31.6, 21.3) or arsenic exposure alone (β = 7.2 μm, 95% CI = -3.1, 17.5). The pattern and magnitude of the interactions were similar when urinary arsenic was used as the exposure variable. Additionally, the at-risk genotypes of the AS3MT SNPs were positively related to proportion of monomethylarsonic acid (MMA) in urine, which is indicative of arsenic methylation capacity. The findings provide novel evidence that genetic variants related to arsenic metabolism may play an important role in arsenic-induced subclinical atherosclerosis. Future replication studies in diverse populations are needed to confirm the findings. PMID:24593923

  14. Interaction between arsenic exposure from drinking water and genetic susceptibility in carotid intima-media thickness in Bangladesh.

    PubMed

    Wu, Fen; Jasmine, Farzana; Kibriya, Muhammad G; Liu, Mengling; Cheng, Xin; Parvez, Faruque; Paul-Brutus, Rachelle; Paul, Rina Rani; Sarwar, Golam; Ahmed, Alauddin; Jiang, Jieying; Islam, Tariqul; Slavkovich, Vesna; Rundek, Tatjana; Demmer, Ryan T; Desvarieux, Moise; Ahsan, Habibul; Chen, Yu

    2014-05-01

    Epidemiologic studies that evaluated genetic susceptibility for the effects of arsenic exposure from drinking water on subclinical atherosclerosis are limited. We conducted a cross-sectional study of 1078 participants randomly selected from the Health Effects of Arsenic Longitudinal Study in Bangladesh to evaluate whether the association between arsenic exposure and carotid artery intima-media thickness (cIMT) differs by 207 single-nucleotide polymorphisms (SNPs) in 18 genes related to arsenic metabolism, oxidative stress, inflammation, and endothelial dysfunction. Although not statistically significant after correcting for multiple testing, nine SNPs in APOE, AS3MT, PNP, and TNF genes had a nominally statistically significant interaction with well-water arsenic in cIMT. For instance, the joint presence of a higher level of well-water arsenic (≥ 40.4 μg/L) and the GG genotype of AS3MT rs3740392 was associated with a difference of 40.9 μm (95% CI = 14.4, 67.5) in cIMT, much greater than the difference of cIMT associated with the genotype alone (β = -5.1 μm, 95% CI = -31.6, 21.3) or arsenic exposure alone (β = 7.2 μm, 95% CI = -3.1, 17.5). The pattern and magnitude of the interactions were similar when urinary arsenic was used as the exposure variable. Additionally, the at-risk genotypes of the AS3MT SNPs were positively related to the proportion of monomethylarsonic acid (MMA) in urine, which is indicative of arsenic methylation capacity. The findings provide novel evidence that genetic variants related to arsenic metabolism may play an important role in arsenic-induced subclinical atherosclerosis. Future replication studies in diverse populations are needed to confirm the findings. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. [Exploration of Epigenetic Changes and DNA Methylation Markers Associated with Liver Tumors Induced by Inorganic Arsenite Exposure in Mice].

    PubMed

    Suzuki, Takehiro; Nohara, Keiko

    2015-01-01

    Naturally occurring inorganic arsenic is known to increase the risk of cancers of the skin and several other organs, including the urinary bladder, lung, and liver. Epidemiological studies have also indicated that gestational arsenic exposure is associated with increased incidences of cancers in several organs, including the bladder and liver, in adulthood. Previous studies have shown that epigenetic changes are involved in arsenic-induced carcinogenesis. Among epigenetic changes, DNA methylation changes that are specific to arsenic-induced tumors would be useful for distinguishing such tumors from tumors induced by other factors and for clarifying arsenic carcinogenesis. It has been reported that gestational arsenic exposure of C3H mice, whose males tend to spontaneously develop liver tumors, increases the incidence of tumors in the male offspring. Using the same experimental protocol, we found a number of regions where the DNA methylation status was altered in the liver tumors compared with the normal liver tissues by the methylated DNA immunoprecipitation (MeDIP)-CpG island microarray method. Among such regions, we demonstrated using real-time methylation-specific PCR and bisulfite sequencing that a gene body region of the oncogene Fosb underwent alteration in DNA methylation following gestational arsenic exposure. We also showed that the Fosb expression level significantly increased following gestational arsenic exposure. These findings suggest that the DNA methylation status of the Fosb region is implicated in tumor augmentation and can also be utilized for characterizing tumors induced by gestational arsenic exposure.

  16. Acrolein Exposure in Hookah Smokers and Non-Smokers Exposed to Hookah Tobacco Secondhand Smoke: Implications for Regulating Hookah Tobacco Products.

    PubMed

    Kassem, Nada O F; Kassem, Noura O; Liles, Sandy; Zarth, Adam T; Jackson, Sheila R; Daffa, Reem M; Chatfield, Dale A; Carmella, Steven G; Hecht, Stephen S; Hovell, Melbourne F

    2018-03-06

    Acrolein is a highly ciliatoxic agent, a toxic respiratory irritant, a cardiotoxicant, and a possible carcinogen present in tobacco smoke including hookah tobacco. 105 hookah smokers and 103 non-smokers attended exclusively hookah smoking social events at either a hookah lounge or private home, and provided urine samples the morning of and the morning after the event. Samples were analyzed for 3-hydroxypropylmercapturic acid (3-HPMA), a metabolite of acrolein. Geometric mean (GM) urinary 3-HPMA levels in hookah smokers and non-smokers exposed to secondhand smoke (SHS) increased significantly, 1.41 times, 95% CI = 1.15 to 1.74 and 1.39 times, 95% CI = 1.16 to 1.67, respectively, following a hookah social event. The highest increase (1.68 times, 95% CI = 1.15 to 2.45; p = 0.007) in 3-HPMA post a hookah social event was among daily hookah smokers (GM, from 1991 pmol/mg to 3348 pmol/mg). Pre-to-post event change in urinary 3-HPMA was significantly positively correlated with pre-to-post event change in urinary cotinine among hookah smokers at either location of hookah event, (ρ = 0.359, p = 0.001), and among non-smokers in hookah lounges (ρ = 0.369, p = 0.012). Hookah tobacco smoke is a source of acrolein exposure. Findings support regulating hookah tobacco products including reducing humectants and sugar additives, which are precursors of acrolein under certain pyrolysis conditions. We suggest posting health warning signs for indoor smoking in hookah lounges, and encouraging voluntary bans of smoking hookah tobacco in private homes. Our study is the first to quantify the increase in acrolein exposure in hookah smokers and non-smokers exposed to exclusively hookah tobacco SHS at hookah social events in homes or hookah lounges. Our findings provide additional support for regulating hookah tobacco product content, protecting non-smokers' health by posting health warning signs for indoor smoking in hookah lounges, and encouraging home bans on hookah tobacco smoking to safeguard vulnerable residents.

  17. Arsenic in tube well water in Bangladesh: health and economic impacts and implications for arsenic mitigation

    PubMed Central

    Flanagan, Sara V; Johnston, Richard B

    2012-01-01

    Abstract A national drinking water quality survey conducted in 2009 furnished data that were used to make an updated estimate of chronic arsenic exposure in Bangladesh. About 20 million and 45 million people were found to be exposed to concentrations above the national standard of 50 µg/L and the World Health Organization’s guideline value of 10 µg/L, respectively. From the updated exposure data and all-cause mortality hazard ratios based on local epidemiological studies, it was estimated that arsenic exposures to concentrations > 50 µg/L and 10–50 µg/L account for an annual 24 000 and perhaps as many as 19 000 adult deaths in the country, respectively. Exposure varies widely in the 64 districts; among adults, arsenic-related deaths account for 0–15% of all deaths. An arsenic-related mortality rate of 1 in every 16 adult deaths could represent an economic burden of 13 billion United States dollars (US$) in lost productivity alone over the next 20 years. Arsenic mitigation should follow a two-tiered approach: (i) prioritizing provision of safe water to an estimated 5 million people exposed to > 200 µg/L arsenic, and (ii) building local arsenic testing capacity. The effectiveness of such an approach was demonstrated during the United Nations Children’s Fund 2006–2011 country programme, which provided safe water to arsenic-contaminated areas at a cost of US$ 11 per capita. National scale-up of such an approach would cost a few hundred million US dollars but would improve the health and productivity of the population, especially in future generations. PMID:23226896

  18. Nicotinamide Enhances Repair of Arsenic and Ultraviolet Radiation-Induced DNA Damage in HaCaT Keratinocytes and Ex Vivo Human Skin

    PubMed Central

    Thompson, Benjamin C.; Halliday, Gary M.; Damian, Diona L.

    2015-01-01

    Arsenic-induced skin cancer is a significant global health burden. In areas with arsenic contamination of water sources, such as China, Pakistan, Myanmar, Cambodia and especially Bangladesh and West Bengal, large populations are at risk of arsenic-induced skin cancer. Arsenic acts as a co-carcinogen with ultraviolet (UV) radiation and affects DNA damage and repair. Nicotinamide (vitamin B3) reduces premalignant keratoses in sun-damaged skin, likely by prevention of UV-induced cellular energy depletion and enhancement of DNA repair. We investigated whether nicotinamide modifies DNA repair following exposure to UV radiation and sodium arsenite. HaCaT keratinocytes and ex vivo human skin were exposed to 2μM sodium arsenite and low dose (2J/cm2) solar-simulated UV, with and without nicotinamide supplementation. DNA photolesions in the form of 8-oxo-7,8-dihydro-2′-deoxyguanosine and cyclobutane pyrimidine dimers were detected by immunofluorescence. Arsenic exposure significantly increased levels of 8-oxo-7,8-dihydro-2′-deoxyguanosine in irradiated cells. Nicotinamide reduced both types of photolesions in HaCaT keratinocytes and in ex vivo human skin, likely by enhancing DNA repair. These results demonstrate a reduction of two different photolesions over time in two different models in UV and arsenic exposed cells. Nicotinamide is a nontoxic, inexpensive agent with potential for chemoprevention of arsenic induced skin cancer. PMID:25658450

  19. Arsenate Impact on the Metabolite Profile, Production, and Arsenic Loading of Xylem Sap in Cucumbers (Cucumis sativus L.)

    PubMed Central

    Uroic, M. Kalle; Salaün, Pascal; Raab, Andrea; Feldmann, Jörg

    2012-01-01

    Arsenic uptake and translocation studies on xylem sap focus generally on the concentration and speciation of arsenic in the xylem. Arsenic impact on the xylem sap metabolite profile and its production during short term exposure has not been reported in detail. To investigate this, cucumbers were grown hydroponically and arsenate (AsV) and DMA were used for plant treatment for 24 h. Total arsenic and arsenic speciation in xylem sap was analyzed including a metabolite profiling under AsV stress. Produced xylem sap was quantified and absolute arsenic transported was determined. AsV exposure had a significant impact on the metabolite profile of xylem sap. Four m/z values corresponding to four compounds were up-regulated, one compound down-regulated by AsV exposure. The compound down-regulated was identified to be isoleucine. Furthermore, AsV exposure had a significant influence on sap production, leading to a reduction of up to 96% sap production when plants were exposed to 1000 μg kg−1 AsV. No difference to control plants was observed when plants were exposed to 1000 μg kg−1 DMA. Absolute arsenic amount in xylem sap was the lowest at high AsV exposure. These results show that AsV has a significant impact on the production and metabolite profile of xylem sap. The physiological importance of isoleucine needs further attention. PMID:22536187

  20. Epithelial to mesenchymal transition in arsenic-transformed cells promotes angiogenesis through activating β-catenin–vascular endothelial growth factor pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhishan; Humphries, Brock; Xiao, Hua

    2013-08-15

    Arsenic exposure represents a major health concern increasing cancer risks, yet the mechanism of arsenic carcinogenesis has not been elucidated. We and others recently reported that cell malignant transformation by arsenic is accompanied by epithelial to mesenchymal transition (EMT). However, the role of EMT in arsenic carcinogenesis is not well understood. Although previous studies showed that short term exposure of endothelial cells to arsenic stimulated angiogenesis, it remains to be determined whether cells that were malignantly transformed by long term arsenic exposure have a pro-angiogenic effect. The objective of this study was to investigate the effect of arsenic-transformed human bronchialmore » epithelial cells that underwent EMT on angiogenesis and the underlying mechanism. It was found that the conditioned medium from arsenic-transformed cells strongly stimulated tube formation by human umbilical vein endothelial cells (HUVECs). Moreover, enhanced angiogenesis was detected in mouse xenograft tumor tissues resulting from inoculation of arsenic-transformed cells. Mechanistic studies revealed that β-catenin was activated in arsenic-transformed cells up-regulating its target gene expression including angiogenic-stimulating vascular endothelial growth factor (VEGF). Stably expressing microRNA-200b in arsenic-transformed cells that reversed EMT inhibited β-catenin activation, decreased VEGF expression and reduced tube formation by HUVECs. SiRNA knockdown β-catenin decreased VEGF expression. Adding a VEGF neutralizing antibody into the conditioned medium from arsenic-transformed cells impaired tube formation by HUVECs. Reverse transcriptase-PCR analysis revealed that the mRNA levels of canonical Wnt ligands were not increased in arsenic-transformed cells. These findings suggest that EMT in arsenic-transformed cells promotes angiogenesis through activating β-catenin–VEGF pathway. - Highlights: • Arsenic-transformed cells that underwent EMT displayed a pro-angiogenic effect. • EMT in arsenic-transformed cells activates β-catenin. • β-Catenin activation increases VEGF expression in arsenic-transformed cells. • β-Catenin activation is likely independent of canonical Wnt signaling. • EMT in arsenic-transformed cells promotes angiogenesis via β-catenin–VEGF pathway.« less

Top