Arabaci, Murat; Djordjevic, Ivan B; Saunders, Ross; Marcoccia, Roberto M
2010-02-01
In order to achieve high-speed transmission over optical transport networks (OTNs) and maximize its throughput, we propose using a rate-adaptive polarization-multiplexed coded multilevel modulation with coherent detection based on component non-binary quasi-cyclic (QC) LDPC codes. Compared to prior-art bit-interleaved LDPC-coded modulation (BI-LDPC-CM) scheme, the proposed non-binary LDPC-coded modulation (NB-LDPC-CM) scheme not only reduces latency due to symbol- instead of bit-level processing but also provides either impressive reduction in computational complexity or striking improvements in coding gain depending on the constellation size. As the paper presents, compared to its prior-art binary counterpart, the proposed NB-LDPC-CM scheme addresses the needs of future OTNs, which are achieving the target BER performance and providing maximum possible throughput both over the entire lifetime of the OTN, better.
Non-binary LDPC-coded modulation for high-speed optical metro networks with backpropagation
NASA Astrophysics Data System (ADS)
Arabaci, Murat; Djordjevic, Ivan B.; Saunders, Ross; Marcoccia, Roberto M.
2010-01-01
To simultaneously mitigate the linear and nonlinear channel impairments in high-speed optical communications, we propose the use of non-binary low-density-parity-check-coded modulation in combination with a coarse backpropagation method. By employing backpropagation, we reduce the memory in the channel and in return obtain significant reductions in the complexity of the channel equalizer which is exponentially proportional to the channel memory. We then compensate for the remaining channel distortions using forward error correction based on non-binary LDPC codes. We propose non-binary-LDPC-coded modulation scheme because, compared to bit-interleaved binary-LDPC-coded modulation scheme employing turbo equalization, the proposed scheme lowers the computational complexity and latency of the overall system while providing impressively larger coding gains.
FPGA implementation of concatenated non-binary QC-LDPC codes for high-speed optical transport.
Zou, Ding; Djordjevic, Ivan B
2015-06-01
In this paper, we propose a soft-decision-based FEC scheme that is the concatenation of a non-binary LDPC code and hard-decision FEC code. The proposed NB-LDPC + RS with overhead of 27.06% provides a superior NCG of 11.9dB at a post-FEC BER of 10-15. As a result, the proposed NB-LDPC codes represent the strong FEC candidate of soft-decision FEC for beyond 100Gb/s optical transmission systems.
NASA Astrophysics Data System (ADS)
Wang, Liming; Qiao, Yaojun; Yu, Qian; Zhang, Wenbo
2016-04-01
We introduce a watermark non-binary low-density parity check code (NB-LDPC) scheme, which can estimate the time-varying noise variance by using prior information of watermark symbols, to improve the performance of NB-LDPC codes. And compared with the prior-art counterpart, the watermark scheme can bring about 0.25 dB improvement in net coding gain (NCG) at bit error rate (BER) of 1e-6 and 36.8-81% reduction of the iteration numbers. Obviously, the proposed scheme shows great potential in terms of error correction performance and decoding efficiency.
Experimental study of non-binary LDPC coding for long-haul coherent optical QPSK transmissions.
Zhang, Shaoliang; Arabaci, Murat; Yaman, Fatih; Djordjevic, Ivan B; Xu, Lei; Wang, Ting; Inada, Yoshihisa; Ogata, Takaaki; Aoki, Yasuhiro
2011-09-26
The performance of rate-0.8 4-ary LDPC code has been studied in a 50 GHz-spaced 40 Gb/s DWDM system with PDM-QPSK modulation. The net effective coding gain of 10 dB is obtained at BER of 10(-6). With the aid of time-interleaving polarization multiplexing and MAP detection, 10,560 km transmission over legacy dispersion managed fiber is achieved without any countable errors. The proposed nonbinary quasi-cyclic LDPC code achieves an uncoded BER threshold at 4×10(-2). Potential issues like phase ambiguity and coding length are also discussed when implementing LDPC in current coherent optical systems. © 2011 Optical Society of America
Protograph LDPC Codes Over Burst Erasure Channels
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Dolinar, Sam; Jones, Christopher
2006-01-01
In this paper we design high rate protograph based LDPC codes suitable for binary erasure channels. To simplify the encoder and decoder implementation for high data rate transmission, the structure of codes are based on protographs and circulants. These LDPC codes can improve data link and network layer protocols in support of communication networks. Two classes of codes were designed. One class is designed for large block sizes with an iterative decoding threshold that approaches capacity of binary erasure channels. The other class is designed for short block sizes based on maximizing minimum stopping set size. For high code rates and short blocks the second class outperforms the first class.
LDPC coded OFDM over the atmospheric turbulence channel.
Djordjevic, Ivan B; Vasic, Bane; Neifeld, Mark A
2007-05-14
Low-density parity-check (LDPC) coded optical orthogonal frequency division multiplexing (OFDM) is shown to significantly outperform LDPC coded on-off keying (OOK) over the atmospheric turbulence channel in terms of both coding gain and spectral efficiency. In the regime of strong turbulence at a bit-error rate of 10(-5), the coding gain improvement of the LDPC coded single-side band unclipped-OFDM system with 64 sub-carriers is larger than the coding gain of the LDPC coded OOK system by 20.2 dB for quadrature-phase-shift keying (QPSK) and by 23.4 dB for binary-phase-shift keying (BPSK).
Qin, Heng; Zuo, Yong; Zhang, Dong; Li, Yinghui; Wu, Jian
2017-03-06
Through slight modification on typical photon multiplier tube (PMT) receiver output statistics, a generalized received response model considering both scattered propagation and random detection is presented to investigate the impact of inter-symbol interference (ISI) on link data rate of short-range non-line-of-sight (NLOS) ultraviolet communication. Good agreement with the experimental results by numerical simulation is shown. Based on the received response characteristics, a heuristic check matrix construction algorithm of low-density-parity-check (LDPC) code is further proposed to approach the data rate bound derived in a delayed sampling (DS) binary pulse position modulation (PPM) system. Compared to conventional LDPC coding methods, better bit error ratio (BER) below 1E-05 is achieved for short-range NLOS UVC systems operating at data rate of 2Mbps.
Throughput Optimization Via Adaptive MIMO Communications
2006-05-30
End-to-end matlab packet simulation platform. * Low density parity check code (LDPCC). * Field trials with Silvus DSP MIMO testbed. * High mobility...incorporate advanced LDPC (low density parity check) codes . Realizing that the power of LDPC codes come at the price of decoder complexity, we also...Channel Coding Binary Convolution Code or LDPC Packet Length 0 - 216-1, bytes Coding Rate 1/2, 2/3, 3/4, 5/6 MIMO Channel Training Length 0 - 4, symbols
LDPC-coded orbital angular momentum (OAM) modulation for free-space optical communication.
Djordjevic, Ivan B; Arabaci, Murat
2010-11-22
An orbital angular momentum (OAM) based LDPC-coded modulation scheme suitable for use in FSO communication is proposed. We demonstrate that the proposed scheme can operate under strong atmospheric turbulence regime and enable 100 Gb/s optical transmission while employing 10 Gb/s components. Both binary and nonbinary LDPC-coded OAM modulations are studied. In addition to providing better BER performance, the nonbinary LDPC-coded modulation reduces overall decoder complexity and latency. The nonbinary LDPC-coded OAM modulation provides a net coding gain of 9.3 dB at the BER of 10(-8). The maximum-ratio combining scheme outperforms the corresponding equal-gain combining scheme by almost 2.5 dB.
Zhang, Yequn; Arabaci, Murat; Djordjevic, Ivan B
2012-04-09
Leveraging the advanced coherent optical communication technologies, this paper explores the feasibility of using four-dimensional (4D) nonbinary LDPC-coded modulation (4D-NB-LDPC-CM) schemes for long-haul transmission in future optical transport networks. In contrast to our previous works on 4D-NB-LDPC-CM which considered amplified spontaneous emission (ASE) noise as the dominant impairment, this paper undertakes transmission in a more realistic optical fiber transmission environment, taking into account impairments due to dispersion effects, nonlinear phase noise, Kerr nonlinearities, and stimulated Raman scattering in addition to ASE noise. We first reveal the advantages of using 4D modulation formats in LDPC-coded modulation instead of conventional two-dimensional (2D) modulation formats used with polarization-division multiplexing (PDM). Then we demonstrate that 4D LDPC-coded modulation schemes with nonbinary LDPC component codes significantly outperform not only their conventional PDM-2D counterparts but also the corresponding 4D bit-interleaved LDPC-coded modulation (4D-BI-LDPC-CM) schemes, which employ binary LDPC codes as component codes. We also show that the transmission reach improvement offered by the 4D-NB-LDPC-CM over 4D-BI-LDPC-CM increases as the underlying constellation size and hence the spectral efficiency of transmission increases. Our results suggest that 4D-NB-LDPC-CM can be an excellent candidate for long-haul transmission in next-generation optical networks.
Optical LDPC decoders for beyond 100 Gbits/s optical transmission.
Djordjevic, Ivan B; Xu, Lei; Wang, Ting
2009-05-01
We present an optical low-density parity-check (LDPC) decoder suitable for implementation above 100 Gbits/s, which provides large coding gains when based on large-girth LDPC codes. We show that a basic building block, the probabilities multiplier circuit, can be implemented using a Mach-Zehnder interferometer, and we propose corresponding probabilistic-domain sum-product algorithm (SPA). We perform simulations of a fully parallel implementation employing girth-10 LDPC codes and proposed SPA. The girth-10 LDPC(24015,19212) code of the rate of 0.8 outperforms the BCH(128,113)xBCH(256,239) turbo-product code of the rate of 0.82 by 0.91 dB (for binary phase-shift keying at 100 Gbits/s and a bit error rate of 10(-9)), and provides a net effective coding gain of 10.09 dB.
Lin, Changyu; Zou, Ding; Liu, Tao; Djordjevic, Ivan B
2016-08-08
A mutual information inspired nonbinary coded modulation design with non-uniform shaping is proposed. Instead of traditional power of two signal constellation sizes, we design 5-QAM, 7-QAM and 9-QAM constellations, which can be used in adaptive optical networks. The non-uniform shaping and LDPC code rate are jointly considered in the design, which results in a better performance scheme for the same SNR values. The matched nonbinary (NB) LDPC code is used for this scheme, which further improves the coding gain and the overall performance. We analyze both coding performance and system SNR performance. We show that the proposed NB LDPC-coded 9-QAM has more than 2dB gain in symbol SNR compared to traditional LDPC-coded star-8-QAM. On the other hand, the proposed NB LDPC-coded 5-QAM and 7-QAM have even better performance than LDPC-coded QPSK.
DNA Barcoding through Quaternary LDPC Codes
Tapia, Elizabeth; Spetale, Flavio; Krsticevic, Flavia; Angelone, Laura; Bulacio, Pilar
2015-01-01
For many parallel applications of Next-Generation Sequencing (NGS) technologies short barcodes able to accurately multiplex a large number of samples are demanded. To address these competitive requirements, the use of error-correcting codes is advised. Current barcoding systems are mostly built from short random error-correcting codes, a feature that strongly limits their multiplexing accuracy and experimental scalability. To overcome these problems on sequencing systems impaired by mismatch errors, the alternative use of binary BCH and pseudo-quaternary Hamming codes has been proposed. However, these codes either fail to provide a fine-scale with regard to size of barcodes (BCH) or have intrinsic poor error correcting abilities (Hamming). Here, the design of barcodes from shortened binary BCH codes and quaternary Low Density Parity Check (LDPC) codes is introduced. Simulation results show that although accurate barcoding systems of high multiplexing capacity can be obtained with any of these codes, using quaternary LDPC codes may be particularly advantageous due to the lower rates of read losses and undetected sample misidentification errors. Even at mismatch error rates of 10−2 per base, 24-nt LDPC barcodes can be used to multiplex roughly 2000 samples with a sample misidentification error rate in the order of 10−9 at the expense of a rate of read losses just in the order of 10−6. PMID:26492348
DNA Barcoding through Quaternary LDPC Codes.
Tapia, Elizabeth; Spetale, Flavio; Krsticevic, Flavia; Angelone, Laura; Bulacio, Pilar
2015-01-01
For many parallel applications of Next-Generation Sequencing (NGS) technologies short barcodes able to accurately multiplex a large number of samples are demanded. To address these competitive requirements, the use of error-correcting codes is advised. Current barcoding systems are mostly built from short random error-correcting codes, a feature that strongly limits their multiplexing accuracy and experimental scalability. To overcome these problems on sequencing systems impaired by mismatch errors, the alternative use of binary BCH and pseudo-quaternary Hamming codes has been proposed. However, these codes either fail to provide a fine-scale with regard to size of barcodes (BCH) or have intrinsic poor error correcting abilities (Hamming). Here, the design of barcodes from shortened binary BCH codes and quaternary Low Density Parity Check (LDPC) codes is introduced. Simulation results show that although accurate barcoding systems of high multiplexing capacity can be obtained with any of these codes, using quaternary LDPC codes may be particularly advantageous due to the lower rates of read losses and undetected sample misidentification errors. Even at mismatch error rates of 10(-2) per base, 24-nt LDPC barcodes can be used to multiplex roughly 2000 samples with a sample misidentification error rate in the order of 10(-9) at the expense of a rate of read losses just in the order of 10(-6).
FPGA implementation of advanced FEC schemes for intelligent aggregation networks
NASA Astrophysics Data System (ADS)
Zou, Ding; Djordjevic, Ivan B.
2016-02-01
In state-of-the-art fiber-optics communication systems the fixed forward error correction (FEC) and constellation size are employed. While it is important to closely approach the Shannon limit by using turbo product codes (TPC) and low-density parity-check (LDPC) codes with soft-decision decoding (SDD) algorithm; rate-adaptive techniques, which enable increased information rates over short links and reliable transmission over long links, are likely to become more important with ever-increasing network traffic demands. In this invited paper, we describe a rate adaptive non-binary LDPC coding technique, and demonstrate its flexibility and good performance exhibiting no error floor at BER down to 10-15 in entire code rate range, by FPGA-based emulation, making it a viable solution in the next-generation high-speed intelligent aggregation networks.
Structured Low-Density Parity-Check Codes with Bandwidth Efficient Modulation
NASA Technical Reports Server (NTRS)
Cheng, Michael K.; Divsalar, Dariush; Duy, Stephanie
2009-01-01
In this work, we study the performance of structured Low-Density Parity-Check (LDPC) Codes together with bandwidth efficient modulations. We consider protograph-based LDPC codes that facilitate high-speed hardware implementations and have minimum distances that grow linearly with block sizes. We cover various higher- order modulations such as 8-PSK, 16-APSK, and 16-QAM. During demodulation, a demapper transforms the received in-phase and quadrature samples into reliability information that feeds the binary LDPC decoder. We will compare various low-complexity demappers and provide simulation results for assorted coded-modulation combinations on the additive white Gaussian noise and independent Rayleigh fading channels.
Design of ACM system based on non-greedy punctured LDPC codes
NASA Astrophysics Data System (ADS)
Lu, Zijun; Jiang, Zihong; Zhou, Lin; He, Yucheng
2017-08-01
In this paper, an adaptive coded modulation (ACM) scheme based on rate-compatible LDPC (RC-LDPC) codes was designed. The RC-LDPC codes were constructed by a non-greedy puncturing method which showed good performance in high code rate region. Moreover, the incremental redundancy scheme of LDPC-based ACM system over AWGN channel was proposed. By this scheme, code rates vary from 2/3 to 5/6 and the complication of the ACM system is lowered. Simulations show that more and more obvious coding gain can be obtained by the proposed ACM system with higher throughput.
Coded Cooperation for Multiway Relaying in Wireless Sensor Networks †
Si, Zhongwei; Ma, Junyang; Thobaben, Ragnar
2015-01-01
Wireless sensor networks have been considered as an enabling technology for constructing smart cities. One important feature of wireless sensor networks is that the sensor nodes collaborate in some manner for communications. In this manuscript, we focus on the model of multiway relaying with full data exchange where each user wants to transmit and receive data to and from all other users in the network. We derive the capacity region for this specific model and propose a coding strategy through coset encoding. To obtain good performance with practical codes, we choose spatially-coupled LDPC (SC-LDPC) codes for the coded cooperation. In particular, for the message broadcasting from the relay, we construct multi-edge-type (MET) SC-LDPC codes by repeatedly applying coset encoding. Due to the capacity-achieving property of the SC-LDPC codes, we prove that the capacity region can theoretically be achieved by the proposed MET SC-LDPC codes. Numerical results with finite node degrees are provided, which show that the achievable rates approach the boundary of the capacity region in both binary erasure channels and additive white Gaussian channels. PMID:26131675
Coded Cooperation for Multiway Relaying in Wireless Sensor Networks.
Si, Zhongwei; Ma, Junyang; Thobaben, Ragnar
2015-06-29
Wireless sensor networks have been considered as an enabling technology for constructing smart cities. One important feature of wireless sensor networks is that the sensor nodes collaborate in some manner for communications. In this manuscript, we focus on the model of multiway relaying with full data exchange where each user wants to transmit and receive data to and from all other users in the network. We derive the capacity region for this specific model and propose a coding strategy through coset encoding. To obtain good performance with practical codes, we choose spatially-coupled LDPC (SC-LDPC) codes for the coded cooperation. In particular, for the message broadcasting from the relay, we construct multi-edge-type (MET) SC-LDPC codes by repeatedly applying coset encoding. Due to the capacity-achieving property of the SC-LDPC codes, we prove that the capacity region can theoretically be achieved by the proposed MET SC-LDPC codes. Numerical results with finite node degrees are provided, which show that the achievable rates approach the boundary of the capacity region in both binary erasure channels and additive white Gaussian channels.
FPGA implementation of low complexity LDPC iterative decoder
NASA Astrophysics Data System (ADS)
Verma, Shivani; Sharma, Sanjay
2016-07-01
Low-density parity-check (LDPC) codes, proposed by Gallager, emerged as a class of codes which can yield very good performance on the additive white Gaussian noise channel as well as on the binary symmetric channel. LDPC codes have gained lots of importance due to their capacity achieving property and excellent performance in the noisy channel. Belief propagation (BP) algorithm and its approximations, most notably min-sum, are popular iterative decoding algorithms used for LDPC and turbo codes. The trade-off between the hardware complexity and the decoding throughput is a critical factor in the implementation of the practical decoder. This article presents introduction to LDPC codes and its various decoding algorithms followed by realisation of LDPC decoder by using simplified message passing algorithm and partially parallel decoder architecture. Simplified message passing algorithm has been proposed for trade-off between low decoding complexity and decoder performance. It greatly reduces the routing and check node complexity of the decoder. Partially parallel decoder architecture possesses high speed and reduced complexity. The improved design of the decoder possesses a maximum symbol throughput of 92.95 Mbps and a maximum of 18 decoding iterations. The article presents implementation of 9216 bits, rate-1/2, (3, 6) LDPC decoder on Xilinx XC3D3400A device from Spartan-3A DSP family.
Joint design of QC-LDPC codes for coded cooperation system with joint iterative decoding
NASA Astrophysics Data System (ADS)
Zhang, Shunwai; Yang, Fengfan; Tang, Lei; Ejaz, Saqib; Luo, Lin; Maharaj, B. T.
2016-03-01
In this paper, we investigate joint design of quasi-cyclic low-density-parity-check (QC-LDPC) codes for coded cooperation system with joint iterative decoding in the destination. First, QC-LDPC codes based on the base matrix and exponent matrix are introduced, and then we describe two types of girth-4 cycles in QC-LDPC codes employed by the source and relay. In the equivalent parity-check matrix corresponding to the jointly designed QC-LDPC codes employed by the source and relay, all girth-4 cycles including both type I and type II are cancelled. Theoretical analysis and numerical simulations show that the jointly designed QC-LDPC coded cooperation well combines cooperation gain and channel coding gain, and outperforms the coded non-cooperation under the same conditions. Furthermore, the bit error rate performance of the coded cooperation employing jointly designed QC-LDPC codes is better than those of random LDPC codes and separately designed QC-LDPC codes over AWGN channels.
Advanced GF(32) nonbinary LDPC coded modulation with non-uniform 9-QAM outperforming star 8-QAM.
Liu, Tao; Lin, Changyu; Djordjevic, Ivan B
2016-06-27
In this paper, we first describe a 9-symbol non-uniform signaling scheme based on Huffman code, in which different symbols are transmitted with different probabilities. By using the Huffman procedure, prefix code is designed to approach the optimal performance. Then, we introduce an algorithm to determine the optimal signal constellation sets for our proposed non-uniform scheme with the criterion of maximizing constellation figure of merit (CFM). The proposed nonuniform polarization multiplexed signaling 9-QAM scheme has the same spectral efficiency as the conventional 8-QAM. Additionally, we propose a specially designed GF(32) nonbinary quasi-cyclic LDPC code for the coded modulation system based on the 9-QAM non-uniform scheme. Further, we study the efficiency of our proposed non-uniform 9-QAM, combined with nonbinary LDPC coding, and demonstrate by Monte Carlo simulation that the proposed GF(23) nonbinary LDPC coded 9-QAM scheme outperforms nonbinary LDPC coded uniform 8-QAM by at least 0.8dB.
Wu, Menglong; Han, Dahai; Zhang, Xiang; Zhang, Feng; Zhang, Min; Yue, Guangxin
2014-03-10
We have implemented a modified Low-Density Parity-Check (LDPC) codec algorithm in ultraviolet (UV) communication system. Simulations are conducted with measured parameters to evaluate the LDPC-based UV system performance. Moreover, LDPC (960, 480) and RS (18, 10) are implemented and experimented via a non-line-of-sight (NLOS) UV test bed. The experimental results are in agreement with the simulation and suggest that based on the given power and 10(-3)bit error rate (BER), in comparison with an uncoded system, average communication distance increases 32% with RS code, while 78% with LDPC code.
NASA Astrophysics Data System (ADS)
He, Jing; Wen, Xuejie; Chen, Ming; Chen, Lin
2015-09-01
In this paper, a Golay complementary training sequence (TS)-based symbol synchronization scheme is proposed and experimentally demonstrated in multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband over fiber (UWBoF) system with a variable rate low-density parity-check (LDPC) code. Meanwhile, the coding gain and spectral efficiency in the variable rate LDPC-coded MB-OFDM UWBoF system are investigated. By utilizing the non-periodic auto-correlation property of the Golay complementary pair, the start point of LDPC-coded MB-OFDM UWB signal can be estimated accurately. After 100 km standard single-mode fiber (SSMF) transmission, at the bit error rate of 1×10-3, the experimental results show that the short block length 64QAM-LDPC coding provides a coding gain of 4.5 dB, 3.8 dB and 2.9 dB for a code rate of 62.5%, 75% and 87.5%, respectively.
Performance optimization of PM-16QAM transmission system enabled by real-time self-adaptive coding.
Qu, Zhen; Li, Yao; Mo, Weiyang; Yang, Mingwei; Zhu, Shengxiang; Kilper, Daniel C; Djordjevic, Ivan B
2017-10-15
We experimentally demonstrate self-adaptive coded 5×100 Gb/s WDM polarization multiplexed 16 quadrature amplitude modulation transmission over a 100 km fiber link, which is enabled by a real-time control plane. The real-time optical signal-to-noise ratio (OSNR) is measured using an optical performance monitoring device. The OSNR measurement is processed and fed back using control plane logic and messaging to the transmitter side for code adaptation, where the binary data are adaptively encoded with three types of low-density parity-check (LDPC) codes with code rates of 0.8, 0.75, and 0.7 of large girth. The total code-adaptation latency is measured to be 2273 ms. Compared with transmission without adaptation, average net capacity improvements of 102%, 36%, and 7.5% are obtained, respectively, by adaptive LDPC coding.
A Scalable Architecture of a Structured LDPC Decoder
NASA Technical Reports Server (NTRS)
Lee, Jason Kwok-San; Lee, Benjamin; Thorpe, Jeremy; Andrews, Kenneth; Dolinar, Sam; Hamkins, Jon
2004-01-01
We present a scalable decoding architecture for a certain class of structured LDPC codes. The codes are designed using a small (n,r) protograph that is replicated Z times to produce a decoding graph for a (Z x n, Z x r) code. Using this architecture, we have implemented a decoder for a (4096,2048) LDPC code on a Xilinx Virtex-II 2000 FPGA, and achieved decoding speeds of 31 Mbps with 10 fixed iterations. The implemented message-passing algorithm uses an optimized 3-bit non-uniform quantizer that operates with 0.2dB implementation loss relative to a floating point decoder.
Rate-compatible protograph LDPC code families with linear minimum distance
NASA Technical Reports Server (NTRS)
Divsalar, Dariush (Inventor); Dolinar, Jr., Samuel J. (Inventor); Jones, Christopher R. (Inventor)
2012-01-01
Digital communication coding methods are shown, which generate certain types of low-density parity-check (LDPC) codes built from protographs. A first method creates protographs having the linear minimum distance property and comprising at least one variable node with degree less than 3. A second method creates families of protographs of different rates, all structurally identical for all rates except for a rate-dependent designation of certain variable nodes as transmitted or non-transmitted. A third method creates families of protographs of different rates, all structurally identical for all rates except for a rate-dependent designation of the status of certain variable nodes as non-transmitted or set to zero. LDPC codes built from the protographs created by these methods can simultaneously have low error floors and low iterative decoding thresholds.
A novel concatenated code based on the improved SCG-LDPC code for optical transmission systems
NASA Astrophysics Data System (ADS)
Yuan, Jian-guo; Xie, Ya; Wang, Lin; Huang, Sheng; Wang, Yong
2013-01-01
Based on the optimization and improvement for the construction method of systematically constructed Gallager (SCG) (4, k) code, a novel SCG low density parity check (SCG-LDPC)(3969, 3720) code to be suitable for optical transmission systems is constructed. The novel SCG-LDPC (6561,6240) code with code rate of 95.1% is constructed by increasing the length of SCG-LDPC (3969,3720) code, and in a way, the code rate of LDPC codes can better meet the high requirements of optical transmission systems. And then the novel concatenated code is constructed by concatenating SCG-LDPC(6561,6240) code and BCH(127,120) code with code rate of 94.5%. The simulation results and analyses show that the net coding gain (NCG) of BCH(127,120)+SCG-LDPC(6561,6240) concatenated code is respectively 2.28 dB and 0.48 dB more than those of the classic RS(255,239) code and SCG-LDPC(6561,6240) code at the bit error rate (BER) of 10-7.
NASA Astrophysics Data System (ADS)
Yuan, Jian-guo; Liang, Meng-qi; Wang, Yong; Lin, Jin-zhao; Pang, Yu
2016-03-01
A novel lower-complexity construction scheme of quasi-cyclic low-density parity-check (QC-LDPC) codes for optical transmission systems is proposed based on the structure of the parity-check matrix for the Richardson-Urbanke (RU) algorithm. Furthermore, a novel irregular QC-LDPC(4 288, 4 020) code with high code-rate of 0.937 is constructed by this novel construction scheme. The simulation analyses show that the net coding gain ( NCG) of the novel irregular QC-LDPC(4 288,4 020) code is respectively 2.08 dB, 1.25 dB and 0.29 dB more than those of the classic RS(255, 239) code, the LDPC(32 640, 30 592) code and the irregular QC-LDPC(3 843, 3 603) code at the bit error rate ( BER) of 10-6. The irregular QC-LDPC(4 288, 4 020) code has the lower encoding/decoding complexity compared with the LDPC(32 640, 30 592) code and the irregular QC-LDPC(3 843, 3 603) code. The proposed novel QC-LDPC(4 288, 4 020) code can be more suitable for the increasing development requirements of high-speed optical transmission systems.
Improving soft FEC performance for higher-order modulations via optimized bit channel mappings.
Häger, Christian; Amat, Alexandre Graell I; Brännström, Fredrik; Alvarado, Alex; Agrell, Erik
2014-06-16
Soft forward error correction with higher-order modulations is often implemented in practice via the pragmatic bit-interleaved coded modulation paradigm, where a single binary code is mapped to a nonbinary modulation. In this paper, we study the optimization of the mapping of the coded bits to the modulation bits for a polarization-multiplexed fiber-optical system without optical inline dispersion compensation. Our focus is on protograph-based low-density parity-check (LDPC) codes which allow for an efficient hardware implementation, suitable for high-speed optical communications. The optimization is applied to the AR4JA protograph family, and further extended to protograph-based spatially coupled LDPC codes assuming a windowed decoder. Full field simulations via the split-step Fourier method are used to verify the analysis. The results show performance gains of up to 0.25 dB, which translate into a possible extension of the transmission reach by roughly up to 8%, without significantly increasing the system complexity.
Djordjevic, Ivan B
2007-08-06
We describe a coded power-efficient transmission scheme based on repetition MIMO principle suitable for communication over the atmospheric turbulence channel, and determine its channel capacity. The proposed scheme employs the Q-ary pulse-position modulation. We further study how to approach the channel capacity limits using low-density parity-check (LDPC) codes. Component LDPC codes are designed using the concept of pairwise-balanced designs. Contrary to the several recent publications, bit-error rates and channel capacities are reported assuming non-ideal photodetection. The atmospheric turbulence channel is modeled using the Gamma-Gamma distribution function due to Al-Habash et al. Excellent bit-error rate performance improvement, over uncoded case, is found.
Rate-compatible protograph LDPC code families with linear minimum distance
NASA Technical Reports Server (NTRS)
Divsalar, Dariush (Inventor); Dolinar, Jr., Samuel J (Inventor); Jones, Christopher R. (Inventor)
2012-01-01
Digital communication coding methods are shown, which generate certain types of low-density parity-check (LDPC) codes built from protographs. A first method creates protographs having the linear minimum distance property and comprising at least one variable node with degree less than 3. A second method creates families of protographs of different rates, all having the linear minimum distance property, and structurally identical for all rates except for a rate-dependent designation of certain variable nodes as transmitted or non-transmitted. A third method creates families of protographs of different rates, all having the linear minimum distance property, and structurally identical for all rates except for a rate-dependent designation of the status of certain variable nodes as non-transmitted or set to zero. LDPC codes built from the protographs created by these methods can simultaneously have low error floors and low iterative decoding thresholds, and families of such codes of different rates can be decoded efficiently using a common decoding architecture.
Low-density parity-check codes for volume holographic memory systems.
Pishro-Nik, Hossein; Rahnavard, Nazanin; Ha, Jeongseok; Fekri, Faramarz; Adibi, Ali
2003-02-10
We investigate the application of low-density parity-check (LDPC) codes in volume holographic memory (VHM) systems. We show that a carefully designed irregular LDPC code has a very good performance in VHM systems. We optimize high-rate LDPC codes for the nonuniform error pattern in holographic memories to reduce the bit error rate extensively. The prior knowledge of noise distribution is used for designing as well as decoding the LDPC codes. We show that these codes have a superior performance to that of Reed-Solomon (RS) codes and regular LDPC counterparts. Our simulation shows that we can increase the maximum storage capacity of holographic memories by more than 50 percent if we use irregular LDPC codes with soft-decision decoding instead of conventionally employed RS codes with hard-decision decoding. The performance of these LDPC codes is close to the information theoretic capacity.
A good performance watermarking LDPC code used in high-speed optical fiber communication system
NASA Astrophysics Data System (ADS)
Zhang, Wenbo; Li, Chao; Zhang, Xiaoguang; Xi, Lixia; Tang, Xianfeng; He, Wenxue
2015-07-01
A watermarking LDPC code, which is a strategy designed to improve the performance of the traditional LDPC code, was introduced. By inserting some pre-defined watermarking bits into original LDPC code, we can obtain a more correct estimation about the noise level in the fiber channel. Then we use them to modify the probability distribution function (PDF) used in the initial process of belief propagation (BP) decoding algorithm. This algorithm was tested in a 128 Gb/s PDM-DQPSK optical communication system and results showed that the watermarking LDPC code had a better tolerances to polarization mode dispersion (PMD) and nonlinearity than that of traditional LDPC code. Also, by losing about 2.4% of redundancy for watermarking bits, the decoding efficiency of the watermarking LDPC code is about twice of the traditional one.
Ensemble Weight Enumerators for Protograph LDPC Codes
NASA Technical Reports Server (NTRS)
Divsalar, Dariush
2006-01-01
Recently LDPC codes with projected graph, or protograph structures have been proposed. In this paper, finite length ensemble weight enumerators for LDPC codes with protograph structures are obtained. Asymptotic results are derived as the block size goes to infinity. In particular we are interested in obtaining ensemble average weight enumerators for protograph LDPC codes which have minimum distance that grows linearly with block size. As with irregular ensembles, linear minimum distance property is sensitive to the proportion of degree-2 variable nodes. In this paper the derived results on ensemble weight enumerators show that linear minimum distance condition on degree distribution of unstructured irregular LDPC codes is a sufficient but not a necessary condition for protograph LDPC codes.
Zou, Ding; Djordjevic, Ivan B
2016-09-05
In this paper, we propose a rate-adaptive FEC scheme based on LDPC codes together with its software reconfigurable unified FPGA architecture. By FPGA emulation, we demonstrate that the proposed class of rate-adaptive LDPC codes based on shortening with an overhead from 25% to 42.9% provides a coding gain ranging from 13.08 dB to 14.28 dB at a post-FEC BER of 10-15 for BPSK transmission. In addition, the proposed rate-adaptive LDPC coding combined with higher-order modulations have been demonstrated including QPSK, 8-QAM, 16-QAM, 32-QAM, and 64-QAM, which covers a wide range of signal-to-noise ratios. Furthermore, we apply the unequal error protection by employing different LDPC codes on different bits in 16-QAM and 64-QAM, which results in additional 0.5dB gain compared to conventional LDPC coded modulation with the same code rate of corresponding LDPC code.
A novel QC-LDPC code based on the finite field multiplicative group for optical communications
NASA Astrophysics Data System (ADS)
Yuan, Jian-guo; Xu, Liang; Tong, Qing-zhen
2013-09-01
A novel construction method of quasi-cyclic low-density parity-check (QC-LDPC) code is proposed based on the finite field multiplicative group, which has easier construction, more flexible code-length code-rate adjustment and lower encoding/decoding complexity. Moreover, a regular QC-LDPC(5334,4962) code is constructed. The simulation results show that the constructed QC-LDPC(5334,4962) code can gain better error correction performance under the condition of the additive white Gaussian noise (AWGN) channel with iterative decoding sum-product algorithm (SPA). At the bit error rate (BER) of 10-6, the net coding gain (NCG) of the constructed QC-LDPC(5334,4962) code is 1.8 dB, 0.9 dB and 0.2 dB more than that of the classic RS(255,239) code in ITU-T G.975, the LDPC(32640,30592) code in ITU-T G.975.1 and the SCG-LDPC(3969,3720) code constructed by the random method, respectively. So it is more suitable for optical communication systems.
Finite-connectivity spin-glass phase diagrams and low-density parity check codes.
Migliorini, Gabriele; Saad, David
2006-02-01
We obtain phase diagrams of regular and irregular finite-connectivity spin glasses. Contact is first established between properties of the phase diagram and the performance of low-density parity check (LDPC) codes within the replica symmetric (RS) ansatz. We then study the location of the dynamical and critical transition points of these systems within the one step replica symmetry breaking theory (RSB), extending similar calculations that have been performed in the past for the Bethe spin-glass problem. We observe that the location of the dynamical transition line does change within the RSB theory, in comparison with the results obtained in the RS case. For LDPC decoding of messages transmitted over the binary erasure channel we find, at zero temperature and rate , an RS critical transition point at while the critical RSB transition point is located at , to be compared with the corresponding Shannon bound . For the binary symmetric channel we show that the low temperature reentrant behavior of the dynamical transition line, observed within the RS ansatz, changes its location when the RSB ansatz is employed; the dynamical transition point occurs at higher values of the channel noise. Possible practical implications to improve the performance of the state-of-the-art error correcting codes are discussed.
RETRACTED — PMD mitigation through interleaving LDPC codes with polarization scramblers
NASA Astrophysics Data System (ADS)
Han, Dahai; Chen, Haoran; Xi, Lixia
2012-11-01
The combination of forward error correction (FEC) and distributed fast polarization scramblers (D-FPSs) is approved as an effective method to mitigate polarization mode dispersion (PMD) in high-speed optical fiber communication system. The low-density parity-check (LDPC) codes are newly introduced into the PMD mitigation scheme with D-FPSs in this paper as one of the promising FEC codes to achieve better performance. The scrambling speed of FPS for LDPC (2040, 1903) codes system is discussed, and the reasonable speed 10 MHz is obtained from the simulation results. For easy application in practical large scale integrated (LSI) circuit, the number of iterations in decoding LDPC codes is also investigated. The PMD tolerance and cut-off optical signal-to-noise ratio (OSNR) of LDPC codes are compared with Reed-Solomon (RS) codes in different conditions. In the simulation, the interleaving LDPC codes brings incremental performance of error correction, and the PMD tolerance is 10 ps at OSNR=11.4 dB. The results show that the meaning of the work is that LDPC codes are a substitute for traditional RS codes with D-FPSs and all of the executable code files are open for researchers who have practical LSI platform for PMD mitigation.
PMD mitigation through interleaving LDPC codes with polarization scramblers
NASA Astrophysics Data System (ADS)
Han, Dahai; Chen, Haoran; Xi, Lixia
2013-09-01
The combination of forward error correction (FEC) and distributed fast polarization scramblers (D-FPSs) is approved an effective method to mitigate polarization mode dispersion (PMD) in high-speed optical fiber communication system. The low-density parity-check (LDPC) codes are newly introduced into the PMD mitigation scheme with D-FPSs in this article as one of the promising FEC codes to achieve better performance. The scrambling speed of FPS for LDPC (2040, 1903) codes system is discussed, and the reasonable speed 10MHz is obtained from the simulation results. For easy application in practical large scale integrated (LSI) circuit, the number of iterations in decoding LDPC codes is also investigated. The PMD tolerance and cut-off optical signal-to-noise ratio (OSNR) of LDPC codes are compared with Reed-Solomon (RS) codes in different conditions. In the simulation, the interleaving LDPC codes bring incremental performance of error correction, and the PMD tolerance is 10ps at OSNR=11.4dB. The results show the meaning of the work is that LDPC codes are a substitute for traditional RS codes with D-FPSs and all of the executable code files are open for researchers who have practical LSI platform for PMD mitigation.
A novel construction method of QC-LDPC codes based on CRT for optical communications
NASA Astrophysics Data System (ADS)
Yuan, Jian-guo; Liang, Meng-qi; Wang, Yong; Lin, Jin-zhao; Pang, Yu
2016-05-01
A novel construction method of quasi-cyclic low-density parity-check (QC-LDPC) codes is proposed based on Chinese remainder theory (CRT). The method can not only increase the code length without reducing the girth, but also greatly enhance the code rate, so it is easy to construct a high-rate code. The simulation results show that at the bit error rate ( BER) of 10-7, the net coding gain ( NCG) of the regular QC-LDPC(4 851, 4 546) code is respectively 2.06 dB, 1.36 dB, 0.53 dB and 0.31 dB more than those of the classic RS(255, 239) code in ITU-T G.975, the LDPC(32 640, 30 592) code in ITU-T G.975.1, the QC-LDPC(3 664, 3 436) code constructed by the improved combining construction method based on CRT and the irregular QC-LDPC(3 843, 3 603) code constructed by the construction method based on the Galois field ( GF( q)) multiplicative group. Furthermore, all these five codes have the same code rate of 0.937. Therefore, the regular QC-LDPC(4 851, 4 546) code constructed by the proposed construction method has excellent error-correction performance, and can be more suitable for optical transmission systems.
Using LDPC Code Constraints to Aid Recovery of Symbol Timing
NASA Technical Reports Server (NTRS)
Jones, Christopher; Villasnor, John; Lee, Dong-U; Vales, Esteban
2008-01-01
A method of utilizing information available in the constraints imposed by a low-density parity-check (LDPC) code has been proposed as a means of aiding the recovery of symbol timing in the reception of a binary-phase-shift-keying (BPSK) signal representing such a code in the presence of noise, timing error, and/or Doppler shift between the transmitter and the receiver. This method and the receiver architecture in which it would be implemented belong to a class of timing-recovery methods and corresponding receiver architectures characterized as pilotless in that they do not require transmission and reception of pilot signals. Acquisition and tracking of a signal of the type described above have traditionally been performed upstream of, and independently of, decoding and have typically involved utilization of a phase-locked loop (PLL). However, the LDPC decoding process, which is iterative, provides information that can be fed back to the timing-recovery receiver circuits to improve performance significantly over that attainable in the absence of such feedback. Prior methods of coupling LDPC decoding with timing recovery had focused on the use of output code words produced as the iterations progress. In contrast, in the present method, one exploits the information available from the metrics computed for the constraint nodes of an LDPC code during the decoding process. In addition, the method involves the use of a waveform model that captures, better than do the waveform models of the prior methods, distortions introduced by receiver timing errors and transmitter/ receiver motions. An LDPC code is commonly represented by use of a bipartite graph containing two sets of nodes. In the graph corresponding to an (n,k) code, the n variable nodes correspond to the code word symbols and the n-k constraint nodes represent the constraints that the code places on the variable nodes in order for them to form a valid code word. The decoding procedure involves iterative computation of values associated with these nodes. A constraint node represents a parity-check equation using a set of variable nodes as inputs. A valid decoded code word is obtained if all parity-check equations are satisfied. After each iteration, the metrics associated with each constraint node can be evaluated to determine the status of the associated parity check. Heretofore, normally, these metrics would be utilized only within the LDPC decoding process to assess whether or not variable nodes had converged to a codeword. In the present method, it is recognized that these metrics can be used to determine accuracy of the timing estimates used in acquiring the sampled data that constitute the input to the LDPC decoder. In fact, the number of constraints that are satisfied exhibits a peak near the optimal timing estimate. Coarse timing estimation (or first-stage estimation as described below) is found via a parametric search for this peak. The present method calls for a two-stage receiver architecture illustrated in the figure. The first stage would correct large time delays and frequency offsets; the second stage would track random walks and correct residual time and frequency offsets. In the first stage, constraint-node feedback from the LDPC decoder would be employed in a search algorithm in which the searches would be performed in successively narrower windows to find the correct time delay and/or frequency offset. The second stage would include a conventional first-order PLL with a decision-aided timing-error detector that would utilize, as its decision aid, decoded symbols from the LDPC decoder. The method has been tested by means of computational simulations in cases involving various timing and frequency errors. The results of the simulations ined in the ideal case of perfect timing in the receiver.
Construction of a new regular LDPC code for optical transmission systems
NASA Astrophysics Data System (ADS)
Yuan, Jian-guo; Tong, Qing-zhen; Xu, Liang; Huang, Sheng
2013-05-01
A novel construction method of the check matrix for the regular low density parity check (LDPC) code is proposed. The novel regular systematically constructed Gallager (SCG)-LDPC(3969,3720) code with the code rate of 93.7% and the redundancy of 6.69% is constructed. The simulation results show that the net coding gain (NCG) and the distance from the Shannon limit of the novel SCG-LDPC(3969,3720) code can respectively be improved by about 1.93 dB and 0.98 dB at the bit error rate (BER) of 10-8, compared with those of the classic RS(255,239) code in ITU-T G.975 recommendation and the LDPC(32640,30592) code in ITU-T G.975.1 recommendation with the same code rate of 93.7% and the same redundancy of 6.69%. Therefore, the proposed novel regular SCG-LDPC(3969,3720) code has excellent performance, and is more suitable for high-speed long-haul optical transmission systems.
NASA Astrophysics Data System (ADS)
Huang, Sheng; Ao, Xiang; Li, Yuan-yuan; Zhang, Rui
2016-09-01
In order to meet the needs of high-speed development of optical communication system, a construction method of quasi-cyclic low-density parity-check (QC-LDPC) codes based on multiplicative group of finite field is proposed. The Tanner graph of parity check matrix of the code constructed by this method has no cycle of length 4, and it can make sure that the obtained code can get a good distance property. Simulation results show that when the bit error rate ( BER) is 10-6, in the same simulation environment, the net coding gain ( NCG) of the proposed QC-LDPC(3 780, 3 540) code with the code rate of 93.7% in this paper is improved by 2.18 dB and 1.6 dB respectively compared with those of the RS(255, 239) code in ITU-T G.975 and the LDPC(3 2640, 3 0592) code in ITU-T G.975.1. In addition, the NCG of the proposed QC-LDPC(3 780, 3 540) code is respectively 0.2 dB and 0.4 dB higher compared with those of the SG-QC-LDPC(3 780, 3 540) code based on the two different subgroups in finite field and the AS-QC-LDPC(3 780, 3 540) code based on the two arbitrary sets of a finite field. Thus, the proposed QC-LDPC(3 780, 3 540) code in this paper can be well applied in optical communication systems.
Fast QC-LDPC code for free space optical communication
NASA Astrophysics Data System (ADS)
Wang, Jin; Zhang, Qi; Udeh, Chinonso Paschal; Wu, Rangzhong
2017-02-01
Free Space Optical (FSO) Communication systems use the atmosphere as a propagation medium. Hence the atmospheric turbulence effects lead to multiplicative noise related with signal intensity. In order to suppress the signal fading induced by multiplicative noise, we propose a fast Quasi-Cyclic (QC) Low-Density Parity-Check (LDPC) code for FSO Communication systems. As a linear block code based on sparse matrix, the performances of QC-LDPC is extremely near to the Shannon limit. Currently, the studies on LDPC code in FSO Communications is mainly focused on Gauss-channel and Rayleigh-channel, respectively. In this study, the LDPC code design over atmospheric turbulence channel which is nether Gauss-channel nor Rayleigh-channel is closer to the practical situation. Based on the characteristics of atmospheric channel, which is modeled as logarithmic-normal distribution and K-distribution, we designed a special QC-LDPC code, and deduced the log-likelihood ratio (LLR). An irregular QC-LDPC code for fast coding, of which the rates are variable, is proposed in this paper. The proposed code achieves excellent performance of LDPC codes and can present the characteristics of high efficiency in low rate, stable in high rate and less number of iteration. The result of belief propagation (BP) decoding shows that the bit error rate (BER) obviously reduced as the Signal-to-Noise Ratio (SNR) increased. Therefore, the LDPC channel coding technology can effectively improve the performance of FSO. At the same time, the BER, after decoding reduces with the increase of SNR arbitrarily, and not having error limitation platform phenomenon with error rate slowing down.
Discussion on LDPC Codes and Uplink Coding
NASA Technical Reports Server (NTRS)
Andrews, Ken; Divsalar, Dariush; Dolinar, Sam; Moision, Bruce; Hamkins, Jon; Pollara, Fabrizio
2007-01-01
This slide presentation reviews the progress that the workgroup on Low-Density Parity-Check (LDPC) for space link coding. The workgroup is tasked with developing and recommending new error correcting codes for near-Earth, Lunar, and deep space applications. Included in the presentation is a summary of the technical progress of the workgroup. Charts that show the LDPC decoder sensitivity to symbol scaling errors are reviewed, as well as a chart showing the performance of several frame synchronizer algorithms compared to that of some good codes and LDPC decoder tests at ESTL. Also reviewed is a study on Coding, Modulation, and Link Protocol (CMLP), and the recommended codes. A design for the Pseudo-Randomizer with LDPC Decoder and CRC is also reviewed. A chart that summarizes the three proposed coding systems is also presented.
Nonlinear Demodulation and Channel Coding in EBPSK Scheme
Chen, Xianqing; Wu, Lenan
2012-01-01
The extended binary phase shift keying (EBPSK) is an efficient modulation technique, and a special impacting filter (SIF) is used in its demodulator to improve the bit error rate (BER) performance. However, the conventional threshold decision cannot achieve the optimum performance, and the SIF brings more difficulty in obtaining the posterior probability for LDPC decoding. In this paper, we concentrate not only on reducing the BER of demodulation, but also on providing accurate posterior probability estimates (PPEs). A new approach for the nonlinear demodulation based on the support vector machine (SVM) classifier is introduced. The SVM method which selects only a few sampling points from the filter output was used for getting PPEs. The simulation results show that the accurate posterior probability can be obtained with this method and the BER performance can be improved significantly by applying LDPC codes. Moreover, we analyzed the effect of getting the posterior probability with different methods and different sampling rates. We show that there are more advantages of the SVM method under bad condition and it is less sensitive to the sampling rate than other methods. Thus, SVM is an effective method for EBPSK demodulation and getting posterior probability for LDPC decoding. PMID:23213281
Nonlinear demodulation and channel coding in EBPSK scheme.
Chen, Xianqing; Wu, Lenan
2012-01-01
The extended binary phase shift keying (EBPSK) is an efficient modulation technique, and a special impacting filter (SIF) is used in its demodulator to improve the bit error rate (BER) performance. However, the conventional threshold decision cannot achieve the optimum performance, and the SIF brings more difficulty in obtaining the posterior probability for LDPC decoding. In this paper, we concentrate not only on reducing the BER of demodulation, but also on providing accurate posterior probability estimates (PPEs). A new approach for the nonlinear demodulation based on the support vector machine (SVM) classifier is introduced. The SVM method which selects only a few sampling points from the filter output was used for getting PPEs. The simulation results show that the accurate posterior probability can be obtained with this method and the BER performance can be improved significantly by applying LDPC codes. Moreover, we analyzed the effect of getting the posterior probability with different methods and different sampling rates. We show that there are more advantages of the SVM method under bad condition and it is less sensitive to the sampling rate than other methods. Thus, SVM is an effective method for EBPSK demodulation and getting posterior probability for LDPC decoding.
Memory-efficient decoding of LDPC codes
NASA Technical Reports Server (NTRS)
Kwok-San Lee, Jason; Thorpe, Jeremy; Hawkins, Jon
2005-01-01
We present a low-complexity quantization scheme for the implementation of regular (3,6) LDPC codes. The quantization parameters are optimized to maximize the mutual information between the source and the quantized messages. Using this non-uniform quantized belief propagation algorithm, we have simulated that an optimized 3-bit quantizer operates with 0.2dB implementation loss relative to a floating point decoder, and an optimized 4-bit quantizer operates less than 0.1dB quantization loss.
Protograph LDPC Codes with Node Degrees at Least 3
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Jones, Christopher
2006-01-01
In this paper we present protograph codes with a small number of degree-3 nodes and one high degree node. The iterative decoding threshold for proposed rate 1/2 codes are lower, by about 0.2 dB, than the best known irregular LDPC codes with degree at least 3. The main motivation is to gain linear minimum distance to achieve low error floor. Also to construct rate-compatible protograph-based LDPC codes for fixed block length that simultaneously achieves low iterative decoding threshold and linear minimum distance. We start with a rate 1/2 protograph LDPC code with degree-3 nodes and one high degree node. Higher rate codes are obtained by connecting check nodes with degree-2 non-transmitted nodes. This is equivalent to constraint combining in the protograph. The condition where all constraints are combined corresponds to the highest rate code. This constraint must be connected to nodes of degree at least three for the graph to have linear minimum distance. Thus having node degree at least 3 for rate 1/2 guarantees linear minimum distance property to be preserved for higher rates. Through examples we show that the iterative decoding threshold as low as 0.544 dB can be achieved for small protographs with node degrees at least three. A family of low- to high-rate codes with minimum distance linearly increasing in block size and with capacity-approaching performance thresholds is presented. FPGA simulation results for a few example codes show that the proposed codes perform as predicted.
Low Density Parity Check Codes Based on Finite Geometries: A Rediscovery and More
NASA Technical Reports Server (NTRS)
Kou, Yu; Lin, Shu; Fossorier, Marc
1999-01-01
Low density parity check (LDPC) codes with iterative decoding based on belief propagation achieve astonishing error performance close to Shannon limit. No algebraic or geometric method for constructing these codes has been reported and they are largely generated by computer search. As a result, encoding of long LDPC codes is in general very complex. This paper presents two classes of high rate LDPC codes whose constructions are based on finite Euclidean and projective geometries, respectively. These classes of codes a.re cyclic and have good constraint parameters and minimum distances. Cyclic structure adows the use of linear feedback shift registers for encoding. These finite geometry LDPC codes achieve very good error performance with either soft-decision iterative decoding based on belief propagation or Gallager's hard-decision bit flipping algorithm. These codes can be punctured or extended to obtain other good LDPC codes. A generalization of these codes is also presented.
FPGA implementation of high-performance QC-LDPC decoder for optical communications
NASA Astrophysics Data System (ADS)
Zou, Ding; Djordjevic, Ivan B.
2015-01-01
Forward error correction is as one of the key technologies enabling the next-generation high-speed fiber optical communications. Quasi-cyclic (QC) low-density parity-check (LDPC) codes have been considered as one of the promising candidates due to their large coding gain performance and low implementation complexity. In this paper, we present our designed QC-LDPC code with girth 10 and 25% overhead based on pairwise balanced design. By FPGAbased emulation, we demonstrate that the 5-bit soft-decision LDPC decoder can achieve 11.8dB net coding gain with no error floor at BER of 10-15 avoiding using any outer code or post-processing method. We believe that the proposed single QC-LDPC code is a promising solution for 400Gb/s optical communication systems and beyond.
NASA Astrophysics Data System (ADS)
Yuan, Jian-guo; Zhou, Guang-xiang; Gao, Wen-chun; Wang, Yong; Lin, Jin-zhao; Pang, Yu
2016-01-01
According to the requirements of the increasing development for optical transmission systems, a novel construction method of quasi-cyclic low-density parity-check (QC-LDPC) codes based on the subgroup of the finite field multiplicative group is proposed. Furthermore, this construction method can effectively avoid the girth-4 phenomena and has the advantages such as simpler construction, easier implementation, lower encoding/decoding complexity, better girth properties and more flexible adjustment for the code length and code rate. The simulation results show that the error correction performance of the QC-LDPC(3 780,3 540) code with the code rate of 93.7% constructed by this proposed method is excellent, its net coding gain is respectively 0.3 dB, 0.55 dB, 1.4 dB and 1.98 dB higher than those of the QC-LDPC(5 334,4 962) code constructed by the method based on the inverse element characteristics in the finite field multiplicative group, the SCG-LDPC(3 969,3 720) code constructed by the systematically constructed Gallager (SCG) random construction method, the LDPC(32 640,30 592) code in ITU-T G.975.1 and the classic RS(255,239) code which is widely used in optical transmission systems in ITU-T G.975 at the bit error rate ( BER) of 10-7. Therefore, the constructed QC-LDPC(3 780,3 540) code is more suitable for optical transmission systems.
Efficient Signal, Code, and Receiver Designs for MIMO Communication Systems
2003-06-01
167 5-31 Concatenation of a tilted-QAM inner code with an LDPC outer code with a two component iterative soft-decision decoder. . . . . . . . . 168 5...for AWGN channels has long been studied. There are well-known soft-decision codes like the turbo codes and LDPC codes that can approach capacity to...bits) low density parity check ( LDPC ) code 1. 2. The coded bits are randomly interleaved so that bits nearby go through different sub-channels, and are
Cooperative MIMO communication at wireless sensor network: an error correcting code approach.
Islam, Mohammad Rakibul; Han, Young Shin
2011-01-01
Cooperative communication in wireless sensor network (WSN) explores the energy efficient wireless communication schemes between multiple sensors and data gathering node (DGN) by exploiting multiple input multiple output (MIMO) and multiple input single output (MISO) configurations. In this paper, an energy efficient cooperative MIMO (C-MIMO) technique is proposed where low density parity check (LDPC) code is used as an error correcting code. The rate of LDPC code is varied by varying the length of message and parity bits. Simulation results show that the cooperative communication scheme outperforms SISO scheme in the presence of LDPC code. LDPC codes with different code rates are compared using bit error rate (BER) analysis. BER is also analyzed under different Nakagami fading scenario. Energy efficiencies are compared for different targeted probability of bit error p(b). It is observed that C-MIMO performs more efficiently when the targeted p(b) is smaller. Also the lower encoding rate for LDPC code offers better error characteristics.
Cooperative MIMO Communication at Wireless Sensor Network: An Error Correcting Code Approach
Islam, Mohammad Rakibul; Han, Young Shin
2011-01-01
Cooperative communication in wireless sensor network (WSN) explores the energy efficient wireless communication schemes between multiple sensors and data gathering node (DGN) by exploiting multiple input multiple output (MIMO) and multiple input single output (MISO) configurations. In this paper, an energy efficient cooperative MIMO (C-MIMO) technique is proposed where low density parity check (LDPC) code is used as an error correcting code. The rate of LDPC code is varied by varying the length of message and parity bits. Simulation results show that the cooperative communication scheme outperforms SISO scheme in the presence of LDPC code. LDPC codes with different code rates are compared using bit error rate (BER) analysis. BER is also analyzed under different Nakagami fading scenario. Energy efficiencies are compared for different targeted probability of bit error pb. It is observed that C-MIMO performs more efficiently when the targeted pb is smaller. Also the lower encoding rate for LDPC code offers better error characteristics. PMID:22163732
Capacity Maximizing Constellations
NASA Technical Reports Server (NTRS)
Barsoum, Maged; Jones, Christopher
2010-01-01
Some non-traditional signal constellations have been proposed for transmission of data over the Additive White Gaussian Noise (AWGN) channel using such channel-capacity-approaching codes as low-density parity-check (LDPC) or turbo codes. Computational simulations have shown performance gains of more than 1 dB over traditional constellations. These gains could be translated to bandwidth- efficient communications, variously, over longer distances, using less power, or using smaller antennas. The proposed constellations have been used in a bit-interleaved coded modulation system employing state-ofthe-art LDPC codes. In computational simulations, these constellations were shown to afford performance gains over traditional constellations as predicted by the gap between the parallel decoding capacity of the constellations and the Gaussian capacity
High-throughput GPU-based LDPC decoding
NASA Astrophysics Data System (ADS)
Chang, Yang-Lang; Chang, Cheng-Chun; Huang, Min-Yu; Huang, Bormin
2010-08-01
Low-density parity-check (LDPC) code is a linear block code known to approach the Shannon limit via the iterative sum-product algorithm. LDPC codes have been adopted in most current communication systems such as DVB-S2, WiMAX, WI-FI and 10GBASE-T. LDPC for the needs of reliable and flexible communication links for a wide variety of communication standards and configurations have inspired the demand for high-performance and flexibility computing. Accordingly, finding a fast and reconfigurable developing platform for designing the high-throughput LDPC decoder has become important especially for rapidly changing communication standards and configurations. In this paper, a new graphic-processing-unit (GPU) LDPC decoding platform with the asynchronous data transfer is proposed to realize this practical implementation. Experimental results showed that the proposed GPU-based decoder achieved 271x speedup compared to its CPU-based counterpart. It can serve as a high-throughput LDPC decoder.
Low-Density Parity-Check (LDPC) Codes Constructed from Protographs
NASA Astrophysics Data System (ADS)
Thorpe, J.
2003-08-01
We introduce a new class of low-density parity-check (LDPC) codes constructed from a template called a protograph. The protograph serves as a blueprint for constructing LDPC codes of arbitrary size whose performance can be predicted by analyzing the protograph. We apply standard density evolution techniques to predict the performance of large protograph codes. Finally, we use a randomized search algorithm to find good protographs.
A Simulation Testbed for Adaptive Modulation and Coding in Airborne Telemetry
2014-05-29
its modulation waveforms and LDPC for the FEC codes . It also uses several sets of published telemetry channel sounding data as its channel models...waveforms and LDPC for the FEC codes . It also uses several sets of published telemetry channel sounding data as its channel models. Within the context...check ( LDPC ) codes with tunable code rates, and both static and dynamic telemetry channel models are included. In an effort to maximize the
Spatially coupled low-density parity-check error correction for holographic data storage
NASA Astrophysics Data System (ADS)
Ishii, Norihiko; Katano, Yutaro; Muroi, Tetsuhiko; Kinoshita, Nobuhiro
2017-09-01
The spatially coupled low-density parity-check (SC-LDPC) was considered for holographic data storage. The superiority of SC-LDPC was studied by simulation. The simulations show that the performance of SC-LDPC depends on the lifting number, and when the lifting number is over 100, SC-LDPC shows better error correctability compared with irregular LDPC. SC-LDPC is applied to the 5:9 modulation code, which is one of the differential codes. The error-free point is near 2.8 dB and over 10-1 can be corrected in simulation. From these simulation results, this error correction code can be applied to actual holographic data storage test equipment. Results showed that 8 × 10-2 can be corrected, furthermore it works effectively and shows good error correctability.
Parallel Subspace Subcodes of Reed-Solomon Codes for Magnetic Recording Channels
ERIC Educational Resources Information Center
Wang, Han
2010-01-01
Read channel architectures based on a single low-density parity-check (LDPC) code are being considered for the next generation of hard disk drives. However, LDPC-only solutions suffer from the error floor problem, which may compromise reliability, if not handled properly. Concatenated architectures using an LDPC code plus a Reed-Solomon (RS) code…
Protograph LDPC Codes for the Erasure Channel
NASA Technical Reports Server (NTRS)
Pollara, Fabrizio; Dolinar, Samuel J.; Divsalar, Dariush
2006-01-01
This viewgraph presentation reviews the use of protograph Low Density Parity Check (LDPC) codes for erasure channels. A protograph is a Tanner graph with a relatively small number of nodes. A "copy-and-permute" operation can be applied to the protograph to obtain larger derived graphs of various sizes. For very high code rates and short block sizes, a low asymptotic threshold criterion is not the best approach to designing LDPC codes. Simple protographs with much regularity and low maximum node degrees appear to be the best choices Quantized-rateless protograph LDPC codes can be built by careful design of the protograph such that multiple puncturing patterns will still permit message passing decoding to proceed
Evaluation of large girth LDPC codes for PMD compensation by turbo equalization.
Minkov, Lyubomir L; Djordjevic, Ivan B; Xu, Lei; Wang, Ting; Kueppers, Franko
2008-08-18
Large-girth quasi-cyclic LDPC codes have been experimentally evaluated for use in PMD compensation by turbo equalization for a 10 Gb/s NRZ optical transmission system, and observing one sample per bit. Net effective coding gain improvement for girth-10, rate 0.906 code of length 11936 over maximum a posteriori probability (MAP) detector for differential group delay of 125 ps is 6.25 dB at BER of 10(-6). Girth-10 LDPC code of rate 0.8 outperforms the girth-10 code of rate 0.906 by 2.75 dB, and provides the net effective coding gain improvement of 9 dB at the same BER. It is experimentally determined that girth-10 LDPC codes of length around 15000 approach channel capacity limit within 1.25 dB.
Batshon, Hussam G; Djordjevic, Ivan; Schmidt, Ted
2010-09-13
We propose a subcarrier-multiplexed four-dimensional LDPC bit-interleaved coded modulation scheme that is capable of achieving beyond 480 Gb/s single-channel transmission rate over optical channels. Subcarrier-multiplexed four-dimensional LDPC coded modulation scheme outperforms the corresponding dual polarization schemes by up to 4.6 dB in OSNR at BER 10(-8).
Self-Configuration and Localization in Ad Hoc Wireless Sensor Networks
2010-08-31
Goddard I. SUMMARY OF CONTRIBUTIONS We explored the error mechanisms of iterative decoding of low-density parity-check ( LDPC ) codes . This work has resulted...important problems in the area of channel coding , as their unpredictable behavior has impeded the deployment of LDPC codes in many real-world applications. We...tree-based decoders of LDPC codes , including the extrinsic tree decoder, and an investigation into their performance and bounding capabilities [5], [6
Scalable video transmission over Rayleigh fading channels using LDPC codes
NASA Astrophysics Data System (ADS)
Bansal, Manu; Kondi, Lisimachos P.
2005-03-01
In this paper, we investigate an important problem of efficiently utilizing the available resources for video transmission over wireless channels while maintaining a good decoded video quality and resilience to channel impairments. Our system consists of the video codec based on 3-D set partitioning in hierarchical trees (3-D SPIHT) algorithm and employs two different schemes using low-density parity check (LDPC) codes for channel error protection. The first method uses the serial concatenation of the constant-rate LDPC code and rate-compatible punctured convolutional (RCPC) codes. Cyclic redundancy check (CRC) is used to detect transmission errors. In the other scheme, we use the product code structure consisting of a constant rate LDPC/CRC code across the rows of the `blocks' of source data and an erasure-correction systematic Reed-Solomon (RS) code as the column code. In both the schemes introduced here, we use fixed-length source packets protected with unequal forward error correction coding ensuring a strictly decreasing protection across the bitstream. A Rayleigh flat-fading channel with additive white Gaussian noise (AWGN) is modeled for the transmission. The rate-distortion optimization algorithm is developed and carried out for the selection of source coding and channel coding rates using Lagrangian optimization. The experimental results demonstrate the effectiveness of this system under different wireless channel conditions and both the proposed methods (LDPC+RCPC/CRC and RS+LDPC/CRC) outperform the more conventional schemes such as those employing RCPC/CRC.
Error floor behavior study of LDPC codes for concatenated codes design
NASA Astrophysics Data System (ADS)
Chen, Weigang; Yin, Liuguo; Lu, Jianhua
2007-11-01
Error floor behavior of low-density parity-check (LDPC) codes using quantized decoding algorithms is statistically studied with experimental results on a hardware evaluation platform. The results present the distribution of the residual errors after decoding failure and reveal that the number of residual error bits in a codeword is usually very small using quantized sum-product (SP) algorithm. Therefore, LDPC code may serve as the inner code in a concatenated coding system with a high code rate outer code and thus an ultra low error floor can be achieved. This conclusion is also verified by the experimental results.
Crosstalk eliminating and low-density parity-check codes for photochromic dual-wavelength storage
NASA Astrophysics Data System (ADS)
Wang, Meicong; Xiong, Jianping; Jian, Jiqi; Jia, Huibo
2005-01-01
Multi-wavelength storage is an approach to increase the memory density with the problem of crosstalk to be deal with. We apply Low Density Parity Check (LDPC) codes as error-correcting codes in photochromic dual-wavelength optical storage based on the investigation of LDPC codes in optical data storage. A proper method is applied to reduce the crosstalk and simulation results show that this operation is useful to improve Bit Error Rate (BER) performance. At the same time we can conclude that LDPC codes outperform RS codes in crosstalk channel.
Entanglement-assisted quantum quasicyclic low-density parity-check codes
NASA Astrophysics Data System (ADS)
Hsieh, Min-Hsiu; Brun, Todd A.; Devetak, Igor
2009-03-01
We investigate the construction of quantum low-density parity-check (LDPC) codes from classical quasicyclic (QC) LDPC codes with girth greater than or equal to 6. We have shown that the classical codes in the generalized Calderbank-Skor-Steane construction do not need to satisfy the dual-containing property as long as preshared entanglement is available to both sender and receiver. We can use this to avoid the many four cycles which typically arise in dual-containing LDPC codes. The advantage of such quantum codes comes from the use of efficient decoding algorithms such as sum-product algorithm (SPA). It is well known that in the SPA, cycles of length 4 make successive decoding iterations highly correlated and hence limit the decoding performance. We show the principle of constructing quantum QC-LDPC codes which require only small amounts of initial shared entanglement.
Performance of Low-Density Parity-Check Coded Modulation
NASA Technical Reports Server (NTRS)
Hamkins, Jon
2010-01-01
This paper reports the simulated performance of each of the nine accumulate-repeat-4-jagged-accumulate (AR4JA) low-density parity-check (LDPC) codes [3] when used in conjunction with binary phase-shift-keying (BPSK), quadrature PSK (QPSK), 8-PSK, 16-ary amplitude PSK (16- APSK), and 32-APSK.We also report the performance under various mappings of bits to modulation symbols, 16-APSK and 32-APSK ring scalings, log-likelihood ratio (LLR) approximations, and decoder variations. One of the simple and well-performing LLR approximations can be expressed in a general equation that applies to all of the modulation types.
Iterative decoding of SOVA and LDPC product code for bit-patterned media recoding
NASA Astrophysics Data System (ADS)
Jeong, Seongkwon; Lee, Jaejin
2018-05-01
The demand for high-density storage systems has increased due to the exponential growth of data. Bit-patterned media recording (BPMR) is one of the promising technologies to achieve the density of 1Tbit/in2 and higher. To increase the areal density in BPMR, the spacing between islands needs to be reduced, yet this aggravates inter-symbol interference and inter-track interference and degrades the bit error rate performance. In this paper, we propose a decision feedback scheme using low-density parity check (LDPC) product code for BPMR. This scheme can improve the decoding performance using an iterative approach with extrinsic information and log-likelihood ratio value between iterative soft output Viterbi algorithm and LDPC product code. Simulation results show that the proposed LDPC product code can offer 1.8dB and 2.3dB gains over the one LDPC code at the density of 2.5 and 3 Tb/in2, respectively, when bit error rate is 10-6.
Product code optimization for determinate state LDPC decoding in robust image transmission.
Thomos, Nikolaos; Boulgouris, Nikolaos V; Strintzis, Michael G
2006-08-01
We propose a novel scheme for error-resilient image transmission. The proposed scheme employs a product coder consisting of low-density parity check (LDPC) codes and Reed-Solomon codes in order to deal effectively with bit errors. The efficiency of the proposed scheme is based on the exploitation of determinate symbols in Tanner graph decoding of LDPC codes and a novel product code optimization technique based on error estimation. Experimental evaluation demonstrates the superiority of the proposed system in comparison to recent state-of-the-art techniques for image transmission.
An efficient decoding for low density parity check codes
NASA Astrophysics Data System (ADS)
Zhao, Ling; Zhang, Xiaolin; Zhu, Manjie
2009-12-01
Low density parity check (LDPC) codes are a class of forward-error-correction codes. They are among the best-known codes capable of achieving low bit error rates (BER) approaching Shannon's capacity limit. Recently, LDPC codes have been adopted by the European Digital Video Broadcasting (DVB-S2) standard, and have also been proposed for the emerging IEEE 802.16 fixed and mobile broadband wireless-access standard. The consultative committee for space data system (CCSDS) has also recommended using LDPC codes in the deep space communications and near-earth communications. It is obvious that LDPC codes will be widely used in wired and wireless communication, magnetic recording, optical networking, DVB, and other fields in the near future. Efficient hardware implementation of LDPC codes is of great interest since LDPC codes are being considered for a wide range of applications. This paper presents an efficient partially parallel decoder architecture suited for quasi-cyclic (QC) LDPC codes using Belief propagation algorithm for decoding. Algorithmic transformation and architectural level optimization are incorporated to reduce the critical path. First, analyze the check matrix of LDPC code, to find out the relationship between the row weight and the column weight. And then, the sharing level of the check node updating units (CNU) and the variable node updating units (VNU) are determined according to the relationship. After that, rearrange the CNU and the VNU, and divide them into several smaller parts, with the help of some assistant logic circuit, these smaller parts can be grouped into CNU during the check node update processing and grouped into VNU during the variable node update processing. These smaller parts are called node update kernel units (NKU) and the assistant logic circuit are called node update auxiliary unit (NAU). With NAUs' help, the two steps of iteration operation are completed by NKUs, which brings in great hardware resource reduction. Meanwhile, efficient techniques have been developed to reduce the computation delay of the node processing units and to minimize hardware overhead for parallel processing. This method may be applied not only to regular LDPC codes, but also to the irregular ones. Based on the proposed architectures, a (7493, 6096) irregular QC-LDPC code decoder is described using verilog hardware design language and implemented on Altera field programmable gate array (FPGA) StratixII EP2S130. The implementation results show that over 20% of logic core size can be saved than conventional partially parallel decoder architectures without any performance degradation. If the decoding clock is 100MHz, the proposed decoder can achieve a maximum (source data) decoding throughput of 133 Mb/s at 18 iterations.
NASA Technical Reports Server (NTRS)
Ni, Jianjun David
2011-01-01
This presentation briefly discusses a research effort on mitigation techniques of pulsed radio frequency interference (RFI) on a Low-Density-Parity-Check (LDPC) code. This problem is of considerable interest in the context of providing reliable communications to the space vehicle which might suffer severe degradation due to pulsed RFI sources such as large radars. The LDPC code is one of modern forward-error-correction (FEC) codes which have the decoding performance to approach the Shannon Limit. The LDPC code studied here is the AR4JA (2048, 1024) code recommended by the Consultative Committee for Space Data Systems (CCSDS) and it has been chosen for some spacecraft design. Even though this code is designed as a powerful FEC code in the additive white Gaussian noise channel, simulation data and test results show that the performance of this LDPC decoder is severely degraded when exposed to the pulsed RFI specified in the spacecraft s transponder specifications. An analysis work (through modeling and simulation) has been conducted to evaluate the impact of the pulsed RFI and a few implemental techniques have been investigated to mitigate the pulsed RFI impact by reshuffling the soft-decision-data available at the input of the LDPC decoder. The simulation results show that the LDPC decoding performance of codeword error rate (CWER) under pulsed RFI can be improved up to four orders of magnitude through a simple soft-decision-data reshuffle scheme. This study reveals that an error floor of LDPC decoding performance appears around CWER=1E-4 when the proposed technique is applied to mitigate the pulsed RFI impact. The mechanism causing this error floor remains unknown, further investigation is necessary.
Construction of Protograph LDPC Codes with Linear Minimum Distance
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Dolinar, Sam; Jones, Christopher
2006-01-01
A construction method for protograph-based LDPC codes that simultaneously achieve low iterative decoding threshold and linear minimum distance is proposed. We start with a high-rate protograph LDPC code with variable node degrees of at least 3. Lower rate codes are obtained by splitting check nodes and connecting them by degree-2 nodes. This guarantees the linear minimum distance property for the lower-rate codes. Excluding checks connected to degree-1 nodes, we show that the number of degree-2 nodes should be at most one less than the number of checks for the protograph LDPC code to have linear minimum distance. Iterative decoding thresholds are obtained by using the reciprocal channel approximation. Thresholds are lowered by using either precoding or at least one very high-degree node in the base protograph. A family of high- to low-rate codes with minimum distance linearly increasing in block size and with capacity-approaching performance thresholds is presented. FPGA simulation results for a few example codes show that the proposed codes perform as predicted.
On the reduced-complexity of LDPC decoders for ultra-high-speed optical transmission.
Djordjevic, Ivan B; Xu, Lei; Wang, Ting
2010-10-25
We propose two reduced-complexity (RC) LDPC decoders, which can be used in combination with large-girth LDPC codes to enable ultra-high-speed serial optical transmission. We show that optimally attenuated RC min-sum sum algorithm performs only 0.46 dB (at BER of 10(-9)) worse than conventional sum-product algorithm, while having lower storage memory requirements and much lower latency. We further study the use of RC LDPC decoding algorithms in multilevel coded modulation with coherent detection and show that with RC decoding algorithms we can achieve the net coding gain larger than 11 dB at BERs below 10(-9).
The application of LDPC code in MIMO-OFDM system
NASA Astrophysics Data System (ADS)
Liu, Ruian; Zeng, Beibei; Chen, Tingting; Liu, Nan; Yin, Ninghao
2018-03-01
The combination of MIMO and OFDM technology has become one of the key technologies of the fourth generation mobile communication., which can overcome the frequency selective fading of wireless channel, increase the system capacity and improve the frequency utilization. Error correcting coding introduced into the system can further improve its performance. LDPC (low density parity check) code is a kind of error correcting code which can improve system reliability and anti-interference ability, and the decoding is simple and easy to operate. This paper mainly discusses the application of LDPC code in MIMO-OFDM system.
Simultaneous chromatic dispersion and PMD compensation by using coded-OFDM and girth-10 LDPC codes.
Djordjevic, Ivan B; Xu, Lei; Wang, Ting
2008-07-07
Low-density parity-check (LDPC)-coded orthogonal frequency division multiplexing (OFDM) is studied as an efficient coded modulation scheme suitable for simultaneous chromatic dispersion and polarization mode dispersion (PMD) compensation. We show that, for aggregate rate of 10 Gb/s, accumulated dispersion over 6500 km of SMF and differential group delay of 100 ps can be simultaneously compensated with penalty within 1.5 dB (with respect to the back-to-back configuration) when training sequence based channel estimation and girth-10 LDPC codes of rate 0.8 are employed.
NASA Astrophysics Data System (ADS)
He, Jing; Wen, Xuejie; Chen, Ming; Chen, Lin; Su, Jinshu
2015-01-01
To improve the transmission performance of multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband (UWB) over optical fiber, a pre-coding scheme based on low-density parity-check (LDPC) is adopted and experimentally demonstrated in the intensity-modulation and direct-detection MB-OFDM UWB over fiber system. Meanwhile, a symbol synchronization and pilot-aided channel estimation scheme is implemented on the receiver of the MB-OFDM UWB over fiber system. The experimental results show that the LDPC pre-coding scheme can work effectively in the MB-OFDM UWB over fiber system. After 70 km standard single-mode fiber (SSMF) transmission, at the bit error rate of 1 × 10-3, the receiver sensitivities are improved about 4 dB when the LDPC code rate is 75%.
Construction of type-II QC-LDPC codes with fast encoding based on perfect cyclic difference sets
NASA Astrophysics Data System (ADS)
Li, Ling-xiang; Li, Hai-bing; Li, Ji-bi; Jiang, Hua
2017-09-01
In view of the problems that the encoding complexity of quasi-cyclic low-density parity-check (QC-LDPC) codes is high and the minimum distance is not large enough which leads to the degradation of the error-correction performance, the new irregular type-II QC-LDPC codes based on perfect cyclic difference sets (CDSs) are constructed. The parity check matrices of these type-II QC-LDPC codes consist of the zero matrices with weight of 0, the circulant permutation matrices (CPMs) with weight of 1 and the circulant matrices with weight of 2 (W2CMs). The introduction of W2CMs in parity check matrices makes it possible to achieve the larger minimum distance which can improve the error- correction performance of the codes. The Tanner graphs of these codes have no girth-4, thus they have the excellent decoding convergence characteristics. In addition, because the parity check matrices have the quasi-dual diagonal structure, the fast encoding algorithm can reduce the encoding complexity effectively. Simulation results show that the new type-II QC-LDPC codes can achieve a more excellent error-correction performance and have no error floor phenomenon over the additive white Gaussian noise (AWGN) channel with sum-product algorithm (SPA) iterative decoding.
Unitals and ovals of symmetric block designs in LDPC and space-time coding
NASA Astrophysics Data System (ADS)
Andriamanalimanana, Bruno R.
2004-08-01
An approach to the design of LDPC (low density parity check) error-correction and space-time modulation codes involves starting with known mathematical and combinatorial structures, and deriving code properties from structure properties. This paper reports on an investigation of unital and oval configurations within generic symmetric combinatorial designs, not just classical projective planes, as the underlying structure for classes of space-time LDPC outer codes. Of particular interest are the encoding and iterative (sum-product) decoding gains that these codes may provide. Various small-length cases have been numerically implemented in Java and Matlab for a number of channel models.
High-efficiency Gaussian key reconciliation in continuous variable quantum key distribution
NASA Astrophysics Data System (ADS)
Bai, ZengLiang; Wang, XuYang; Yang, ShenShen; Li, YongMin
2016-01-01
Efficient reconciliation is a crucial step in continuous variable quantum key distribution. The progressive-edge-growth (PEG) algorithm is an efficient method to construct relatively short block length low-density parity-check (LDPC) codes. The qua-sicyclic construction method can extend short block length codes and further eliminate the shortest cycle. In this paper, by combining the PEG algorithm and qua-si-cyclic construction method, we design long block length irregular LDPC codes with high error-correcting capacity. Based on these LDPC codes, we achieve high-efficiency Gaussian key reconciliation with slice recon-ciliation based on multilevel coding/multistage decoding with an efficiency of 93.7%.
NASA Technical Reports Server (NTRS)
Cheng, Michael K.; Lyubarev, Mark; Nakashima, Michael A.; Andrews, Kenneth S.; Lee, Dennis
2008-01-01
Low-density parity-check (LDPC) codes are the state-of-the-art in forward error correction (FEC) technology that exhibits capacity approaching performance. The Jet Propulsion Laboratory (JPL) has designed a family of LDPC codes that are similar in structure and therefore, leads to a single decoder implementation. The Accumulate-Repeat-by-4-Jagged- Accumulate (AR4JA) code design offers a family of codes with rates 1/2, 2/3, 4/5 and lengths 1024, 4096, 16384 information bits. Performance is less than one dB from capacity for all combinations.Integrating a stand-alone LDPC decoder with a commercial-off-the-shelf (COTS) receiver faces additional challenges than building a single receiver-decoder unit from scratch. In this work, we outline the issues and show that these additional challenges can be over-come by simple solutions. To demonstrate that an LDPC decoder can be made to work seamlessly with a COTS receiver, we interface an AR4JA LDPC decoder developed on a field-programmable gate array (FPGA) with a modern high data rate receiver and mea- sure the combined receiver-decoder performance. Through optimizations that include an improved frame synchronizer and different soft-symbol scaling algorithms, we show that a combined implementation loss of less than one dB is possible and therefore, most of the coding gain evidence in theory can also be obtained in practice. Our techniques can benefit any modem that utilizes an advanced FEC code.
Constructing LDPC Codes from Loop-Free Encoding Modules
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Dolinar, Samuel; Jones, Christopher; Thorpe, Jeremy; Andrews, Kenneth
2009-01-01
A method of constructing certain low-density parity-check (LDPC) codes by use of relatively simple loop-free coding modules has been developed. The subclasses of LDPC codes to which the method applies includes accumulate-repeat-accumulate (ARA) codes, accumulate-repeat-check-accumulate codes, and the codes described in Accumulate-Repeat-Accumulate-Accumulate Codes (NPO-41305), NASA Tech Briefs, Vol. 31, No. 9 (September 2007), page 90. All of the affected codes can be characterized as serial/parallel (hybrid) concatenations of such relatively simple modules as accumulators, repetition codes, differentiators, and punctured single-parity check codes. These are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. These codes can also be characterized as hybrid turbolike codes that have projected graph or protograph representations (for example see figure); these characteristics make it possible to design high-speed iterative decoders that utilize belief-propagation algorithms. The present method comprises two related submethods for constructing LDPC codes from simple loop-free modules with circulant permutations. The first submethod is an iterative encoding method based on the erasure-decoding algorithm. The computations required by this method are well organized because they involve a parity-check matrix having a block-circulant structure. The second submethod involves the use of block-circulant generator matrices. The encoders of this method are very similar to those of recursive convolutional codes. Some encoders according to this second submethod have been implemented in a small field-programmable gate array that operates at a speed of 100 megasymbols per second. By use of density evolution (a computational- simulation technique for analyzing performances of LDPC codes), it has been shown through some examples that as the block size goes to infinity, low iterative decoding thresholds close to channel capacity limits can be achieved for the codes of the type in question having low maximum variable node degrees. The decoding thresholds in these examples are lower than those of the best-known unstructured irregular LDPC codes constrained to have the same maximum node degrees. Furthermore, the present method enables the construction of codes of any desired rate with thresholds that stay uniformly close to their respective channel capacity thresholds.
Protograph based LDPC codes with minimum distance linearly growing with block size
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Jones, Christopher; Dolinar, Sam; Thorpe, Jeremy
2005-01-01
We propose several LDPC code constructions that simultaneously achieve good threshold and error floor performance. Minimum distance is shown to grow linearly with block size (similar to regular codes of variable degree at least 3) by considering ensemble average weight enumerators. Our constructions are based on projected graph, or protograph, structures that support high-speed decoder implementations. As with irregular ensembles, our constructions are sensitive to the proportion of degree-2 variable nodes. A code with too few such nodes tends to have an iterative decoding threshold that is far from the capacity threshold. A code with too many such nodes tends to not exhibit a minimum distance that grows linearly in block length. In this paper we also show that precoding can be used to lower the threshold of regular LDPC codes. The decoding thresholds of the proposed codes, which have linearly increasing minimum distance in block size, outperform that of regular LDPC codes. Furthermore, a family of low to high rate codes, with thresholds that adhere closely to their respective channel capacity thresholds, is presented. Simulation results for a few example codes show that the proposed codes have low error floors as well as good threshold SNFt performance.
Implementation of continuous-variable quantum key distribution with discrete modulation
NASA Astrophysics Data System (ADS)
Hirano, Takuya; Ichikawa, Tsubasa; Matsubara, Takuto; Ono, Motoharu; Oguri, Yusuke; Namiki, Ryo; Kasai, Kenta; Matsumoto, Ryutaroh; Tsurumaru, Toyohiro
2017-06-01
We have developed a continuous-variable quantum key distribution (CV-QKD) system that employs discrete quadrature-amplitude modulation and homodyne detection of coherent states of light. We experimentally demonstrated automated secure key generation with a rate of 50 kbps when a quantum channel is a 10 km optical fibre. The CV-QKD system utilises a four-state and post-selection protocol and generates a secure key against the entangling cloner attack. We used a pulsed light source of 1550 nm wavelength with a repetition rate of 10 MHz. A commercially available balanced receiver is used to realise shot-noise-limited pulsed homodyne detection. We used a non-binary LDPC code for error correction (reverse reconciliation) and the Toeplitz matrix multiplication for privacy amplification. A graphical processing unit card is used to accelerate the software-based post-processing.
LDPC Codes with Minimum Distance Proportional to Block Size
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Jones, Christopher; Dolinar, Samuel; Thorpe, Jeremy
2009-01-01
Low-density parity-check (LDPC) codes characterized by minimum Hamming distances proportional to block sizes have been demonstrated. Like the codes mentioned in the immediately preceding article, the present codes are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. The previously mentioned codes have low decoding thresholds and reasonably low error floors. However, the minimum Hamming distances of those codes do not grow linearly with code-block sizes. Codes that have this minimum-distance property exhibit very low error floors. Examples of such codes include regular LDPC codes with variable degrees of at least 3. Unfortunately, the decoding thresholds of regular LDPC codes are high. Hence, there is a need for LDPC codes characterized by both low decoding thresholds and, in order to obtain acceptably low error floors, minimum Hamming distances that are proportional to code-block sizes. The present codes were developed to satisfy this need. The minimum Hamming distances of the present codes have been shown, through consideration of ensemble-average weight enumerators, to be proportional to code block sizes. As in the cases of irregular ensembles, the properties of these codes are sensitive to the proportion of degree-2 variable nodes. A code having too few such nodes tends to have an iterative decoding threshold that is far from the capacity threshold. A code having too many such nodes tends not to exhibit a minimum distance that is proportional to block size. Results of computational simulations have shown that the decoding thresholds of codes of the present type are lower than those of regular LDPC codes. Included in the simulations were a few examples from a family of codes characterized by rates ranging from low to high and by thresholds that adhere closely to their respective channel capacity thresholds; the simulation results from these examples showed that the codes in question have low error floors as well as low decoding thresholds. As an example, the illustration shows the protograph (which represents the blueprint for overall construction) of one proposed code family for code rates greater than or equal to 1.2. Any size LDPC code can be obtained by copying the protograph structure N times, then permuting the edges. The illustration also provides Field Programmable Gate Array (FPGA) hardware performance simulations for this code family. In addition, the illustration provides minimum signal-to-noise ratios (Eb/No) in decibels (decoding thresholds) to achieve zero error rates as the code block size goes to infinity for various code rates. In comparison with the codes mentioned in the preceding article, these codes have slightly higher decoding thresholds.
NASA Astrophysics Data System (ADS)
Pan, Xiaolong; Liu, Bo; Zheng, Jianglong; Tian, Qinghua
2016-08-01
We propose and demonstrate a low complexity Reed-Solomon-based low-density parity-check (RS-LDPC) code with adaptive puncturing decoding algorithm for elastic optical transmission system. Partial received codes and the relevant column in parity-check matrix can be punctured to reduce the calculation complexity by adaptive parity-check matrix during decoding process. The results show that the complexity of the proposed decoding algorithm is reduced by 30% compared with the regular RS-LDPC system. The optimized code rate of the RS-LDPC code can be obtained after five times iteration.
Accumulate repeat accumulate codes
NASA Technical Reports Server (NTRS)
Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung
2004-01-01
In this paper we propose an innovative channel coding scheme called 'Accumulate Repeat Accumulate codes' (ARA). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes, thus belief propagation can be used for iterative decoding of ARA codes on a graph. The structure of encoder for this class can be viewed as precoded Repeat Accumulate (RA) code or as precoded Irregular Repeat Accumulate (IRA) code, where simply an accumulator is chosen as a precoder. Thus ARA codes have simple, and very fast encoder structure when they representing LDPC codes. Based on density evolution for LDPC codes through some examples for ARA codes, we show that for maximum variable node degree 5 a minimum bit SNR as low as 0.08 dB from channel capacity for rate 1/2 can be achieved as the block size goes to infinity. Thus based on fixed low maximum variable node degree, its threshold outperforms not only the RA and IRA codes but also the best known LDPC codes with the dame maximum node degree. Furthermore by puncturing the accumulators any desired high rate codes close to code rate 1 can be obtained with thresholds that stay close to the channel capacity thresholds uniformly. Iterative decoding simulation results are provided. The ARA codes also have projected graph or protograph representation that allows for high speed decoder implementation.
PMD compensation in fiber-optic communication systems with direct detection using LDPC-coded OFDM.
Djordjevic, Ivan B
2007-04-02
The possibility of polarization-mode dispersion (PMD) compensation in fiber-optic communication systems with direct detection using a simple channel estimation technique and low-density parity-check (LDPC)-coded orthogonal frequency division multiplexing (OFDM) is demonstrated. It is shown that even for differential group delay (DGD) of 4/BW (BW is the OFDM signal bandwidth), the degradation due to the first-order PMD can be completely compensated for. Two classes of LDPC codes designed based on two different combinatorial objects (difference systems and product of combinatorial designs) suitable for use in PMD compensation are introduced.
NASA Astrophysics Data System (ADS)
Nakamura, Yasuaki; Okamoto, Yoshihiro; Osawa, Hisashi; Aoi, Hajime; Muraoka, Hiroaki
We evaluate the performance of the write-margin for the low-density parity-check (LDPC) coding and iterative decoding system in the bit-patterned media (BPM) R/W channel affected by the write-head field gradient, the media switching field distribution (SFD), the demagnetization field from adjacent islands and the island position deviation. It is clarified that the LDPC coding and iterative decoding system in R/W channel using BPM at 3 Tbit/inch2 has a write-margin of about 20%.
Cooperative optimization and their application in LDPC codes
NASA Astrophysics Data System (ADS)
Chen, Ke; Rong, Jian; Zhong, Xiaochun
2008-10-01
Cooperative optimization is a new way for finding global optima of complicated functions of many variables. The proposed algorithm is a class of message passing algorithms and has solid theory foundations. It can achieve good coding gains over the sum-product algorithm for LDPC codes. For (6561, 4096) LDPC codes, the proposed algorithm can achieve 2.0 dB gains over the sum-product algorithm at BER of 4×10-7. The decoding complexity of the proposed algorithm is lower than the sum-product algorithm can do; furthermore, the former can achieve much lower error floor than the latter can do after the Eb / No is higher than 1.8 dB.
A Low-Complexity Euclidean Orthogonal LDPC Architecture for Low Power Applications.
Revathy, M; Saravanan, R
2015-01-01
Low-density parity-check (LDPC) codes have been implemented in latest digital video broadcasting, broadband wireless access (WiMax), and fourth generation of wireless standards. In this paper, we have proposed a high efficient low-density parity-check code (LDPC) decoder architecture for low power applications. This study also considers the design and analysis of check node and variable node units and Euclidean orthogonal generator in LDPC decoder architecture. The Euclidean orthogonal generator is used to reduce the error rate of the proposed LDPC architecture, which can be incorporated between check and variable node architecture. This proposed decoder design is synthesized on Xilinx 9.2i platform and simulated using Modelsim, which is targeted to 45 nm devices. Synthesis report proves that the proposed architecture greatly reduces the power consumption and hardware utilizations on comparing with different conventional architectures.
LDPC-PPM Coding Scheme for Optical Communication
NASA Technical Reports Server (NTRS)
Barsoum, Maged; Moision, Bruce; Divsalar, Dariush; Fitz, Michael
2009-01-01
In a proposed coding-and-modulation/demodulation-and-decoding scheme for a free-space optical communication system, an error-correcting code of the low-density parity-check (LDPC) type would be concatenated with a modulation code that consists of a mapping of bits to pulse-position-modulation (PPM) symbols. Hence, the scheme is denoted LDPC-PPM. This scheme could be considered a competitor of a related prior scheme in which an outer convolutional error-correcting code is concatenated with an interleaving operation, a bit-accumulation operation, and a PPM inner code. Both the prior and present schemes can be characterized as serially concatenated pulse-position modulation (SCPPM) coding schemes. Figure 1 represents a free-space optical communication system based on either the present LDPC-PPM scheme or the prior SCPPM scheme. At the transmitting terminal, the original data (u) are processed by an encoder into blocks of bits (a), and the encoded data are mapped to PPM of an optical signal (c). For the purpose of design and analysis, the optical channel in which the PPM signal propagates is modeled as a Poisson point process. At the receiving terminal, the arriving optical signal (y) is demodulated to obtain an estimate (a^) of the coded data, which is then processed by a decoder to obtain an estimate (u^) of the original data.
A Low-Complexity Euclidean Orthogonal LDPC Architecture for Low Power Applications
Revathy, M.; Saravanan, R.
2015-01-01
Low-density parity-check (LDPC) codes have been implemented in latest digital video broadcasting, broadband wireless access (WiMax), and fourth generation of wireless standards. In this paper, we have proposed a high efficient low-density parity-check code (LDPC) decoder architecture for low power applications. This study also considers the design and analysis of check node and variable node units and Euclidean orthogonal generator in LDPC decoder architecture. The Euclidean orthogonal generator is used to reduce the error rate of the proposed LDPC architecture, which can be incorporated between check and variable node architecture. This proposed decoder design is synthesized on Xilinx 9.2i platform and simulated using Modelsim, which is targeted to 45 nm devices. Synthesis report proves that the proposed architecture greatly reduces the power consumption and hardware utilizations on comparing with different conventional architectures. PMID:26065017
Optimal Codes for the Burst Erasure Channel
NASA Technical Reports Server (NTRS)
Hamkins, Jon
2010-01-01
Deep space communications over noisy channels lead to certain packets that are not decodable. These packets leave gaps, or bursts of erasures, in the data stream. Burst erasure correcting codes overcome this problem. These are forward erasure correcting codes that allow one to recover the missing gaps of data. Much of the recent work on this topic concentrated on Low-Density Parity-Check (LDPC) codes. These are more complicated to encode and decode than Single Parity Check (SPC) codes or Reed-Solomon (RS) codes, and so far have not been able to achieve the theoretical limit for burst erasure protection. A block interleaved maximum distance separable (MDS) code (e.g., an SPC or RS code) offers near-optimal burst erasure protection, in the sense that no other scheme of equal total transmission length and code rate could improve the guaranteed correctible burst erasure length by more than one symbol. The optimality does not depend on the length of the code, i.e., a short MDS code block interleaved to a given length would perform as well as a longer MDS code interleaved to the same overall length. As a result, this approach offers lower decoding complexity with better burst erasure protection compared to other recent designs for the burst erasure channel (e.g., LDPC codes). A limitation of the design is its lack of robustness to channels that have impairments other than burst erasures (e.g., additive white Gaussian noise), making its application best suited for correcting data erasures in layers above the physical layer. The efficiency of a burst erasure code is the length of its burst erasure correction capability divided by the theoretical upper limit on this length. The inefficiency is one minus the efficiency. The illustration compares the inefficiency of interleaved RS codes to Quasi-Cyclic (QC) LDPC codes, Euclidean Geometry (EG) LDPC codes, extended Irregular Repeat Accumulate (eIRA) codes, array codes, and random LDPC codes previously proposed for burst erasure protection. As can be seen, the simple interleaved RS codes have substantially lower inefficiency over a wide range of transmission lengths.
Bounded-Angle Iterative Decoding of LDPC Codes
NASA Technical Reports Server (NTRS)
Dolinar, Samuel; Andrews, Kenneth; Pollara, Fabrizio; Divsalar, Dariush
2009-01-01
Bounded-angle iterative decoding is a modified version of conventional iterative decoding, conceived as a means of reducing undetected-error rates for short low-density parity-check (LDPC) codes. For a given code, bounded-angle iterative decoding can be implemented by means of a simple modification of the decoder algorithm, without redesigning the code. Bounded-angle iterative decoding is based on a representation of received words and code words as vectors in an n-dimensional Euclidean space (where n is an integer).
Short-Block Protograph-Based LDPC Codes
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Dolinar, Samuel; Jones, Christopher
2010-01-01
Short-block low-density parity-check (LDPC) codes of a special type are intended to be especially well suited for potential applications that include transmission of command and control data, cellular telephony, data communications in wireless local area networks, and satellite data communications. [In general, LDPC codes belong to a class of error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels.] The codes of the present special type exhibit low error floors, low bit and frame error rates, and low latency (in comparison with related prior codes). These codes also achieve low maximum rate of undetected errors over all signal-to-noise ratios, without requiring the use of cyclic redundancy checks, which would significantly increase the overhead for short blocks. These codes have protograph representations; this is advantageous in that, for reasons that exceed the scope of this article, the applicability of protograph representations makes it possible to design highspeed iterative decoders that utilize belief- propagation algorithms.
LDPC Codes--Structural Analysis and Decoding Techniques
ERIC Educational Resources Information Center
Zhang, Xiaojie
2012-01-01
Low-density parity-check (LDPC) codes have been the focus of much research over the past decade thanks to their near Shannon limit performance and to their efficient message-passing (MP) decoding algorithms. However, the error floor phenomenon observed in MP decoding, which manifests itself as an abrupt change in the slope of the error-rate curve,…
Rate-Compatible Protograph LDPC Codes
NASA Technical Reports Server (NTRS)
Nguyen, Thuy V. (Inventor); Nosratinia, Aria (Inventor); Divsalar, Dariush (Inventor)
2014-01-01
Digital communication coding methods resulting in rate-compatible low density parity-check (LDPC) codes built from protographs. Described digital coding methods start with a desired code rate and a selection of the numbers of variable nodes and check nodes to be used in the protograph. Constraints are set to satisfy a linear minimum distance growth property for the protograph. All possible edges in the graph are searched for the minimum iterative decoding threshold and the protograph with the lowest iterative decoding threshold is selected. Protographs designed in this manner are used in decode and forward relay channels.
Error Correction using Quantum Quasi-Cyclic Low-Density Parity-Check(LDPC) Codes
NASA Astrophysics Data System (ADS)
Jing, Lin; Brun, Todd; Quantum Research Team
Quasi-cyclic LDPC codes can approach the Shannon capacity and have efficient decoders. Manabu Hagiwara et al., 2007 presented a method to calculate parity check matrices with high girth. Two distinct, orthogonal matrices Hc and Hd are used. Using submatrices obtained from Hc and Hd by deleting rows, we can alter the code rate. The submatrix of Hc is used to correct Pauli X errors, and the submatrix of Hd to correct Pauli Z errors. We simulated this system for depolarizing noise on USC's High Performance Computing Cluster, and obtained the block error rate (BER) as a function of the error weight and code rate. From the rates of uncorrectable errors under different error weights we can extrapolate the BER to any small error probability. Our results show that this code family can perform reasonably well even at high code rates, thus considerably reducing the overhead compared to concatenated and surface codes. This makes these codes promising as storage blocks in fault-tolerant quantum computation. Error Correction using Quantum Quasi-Cyclic Low-Density Parity-Check(LDPC) Codes.
Design and Implementation of Secure and Reliable Communication using Optical Wireless Communication
NASA Astrophysics Data System (ADS)
Saadi, Muhammad; Bajpai, Ambar; Zhao, Yan; Sangwongngam, Paramin; Wuttisittikulkij, Lunchakorn
2014-11-01
Wireless networking intensify the tractability in the home and office environment to connect the internet without wires but at the cost of risks associated with stealing the data or threat of loading malicious code with the intention of harming the network. In this paper, we proposed a novel method of establishing a secure and reliable communication link using optical wireless communication (OWC). For security, spatial diversity based transmission using two optical transmitters is used and the reliability in the link is achieved by a newly proposed method for the construction of structured parity check matrix for binary Low Density Parity Check (LDPC) codes. Experimental results show that a successful secure and reliable link between the transmitter and the receiver can be achieved by using the proposed novel technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
CHERTKOV, MICHAEL; STEPANOV, MIKHAIL
2007-01-10
The authors discuss performance of Low-Density-Parity-Check (LDPC) codes decoded by Linear Programming (LP) decoding at moderate and large Signal-to-Noise-Ratios (SNR). Frame-Error-Rate (FER) dependence on SNR and the noise space landscape of the coding/decoding scheme are analyzed by a combination of the previously introduced instanton/pseudo-codeword-search method and a new 'dendro' trick. To reduce complexity of the LP decoding for a code with high-degree checks, {ge} 5, they introduce its dendro-LDPC counterpart, that is the code performing identifically to the original one under Maximum-A-Posteriori (MAP) decoding but having reduced (down to three) check connectivity degree. Analyzing number of popular LDPC codes andmore » their dendro versions performing over the Additive-White-Gaussian-Noise (AWGN) channel, they observed two qualitatively different regimes: (i) error-floor sets early, at relatively low SNR, and (ii) FER decays with SNR increase faster at moderate SNR than at the largest SNR. They explain these regimes in terms of the pseudo-codeword spectra of the codes.« less
Constellation labeling optimization for bit-interleaved coded APSK
NASA Astrophysics Data System (ADS)
Xiang, Xingyu; Mo, Zijian; Wang, Zhonghai; Pham, Khanh; Blasch, Erik; Chen, Genshe
2016-05-01
This paper investigates the constellation and mapping optimization for amplitude phase shift keying (APSK) modulation, which is deployed in Digital Video Broadcasting Satellite - Second Generation (DVB-S2) and Digital Video Broadcasting - Satellite services to Handhelds (DVB-SH) broadcasting standards due to its merits of power and spectral efficiency together with the robustness against nonlinear distortion. The mapping optimization is performed for 32-APSK according to combined cost functions related to Euclidean distance and mutual information. A Binary switching algorithm and its modified version are used to minimize the cost function and the estimated error between the original and received data. The optimized constellation mapping is tested by combining DVB-S2 standard Low-Density Parity-Check (LDPC) codes in both Bit-Interleaved Coded Modulation (BICM) and BICM with iterative decoding (BICM-ID) systems. The simulated results validate the proposed constellation labeling optimization scheme which yields better performance against conventional 32-APSK constellation defined in DVB-S2 standard.
FPGA-based LDPC-coded APSK for optical communication systems.
Zou, Ding; Lin, Changyu; Djordjevic, Ivan B
2017-02-20
In this paper, with the aid of mutual information and generalized mutual information (GMI) capacity analyses, it is shown that the geometrically shaped APSK that mimics an optimal Gaussian distribution with equiprobable signaling together with the corresponding gray-mapping rules can approach the Shannon limit closer than conventional quadrature amplitude modulation (QAM) at certain range of FEC overhead for both 16-APSK and 64-APSK. The field programmable gate array (FPGA) based LDPC-coded APSK emulation is conducted on block interleaver-based and bit interleaver-based systems; the results verify a significant improvement in hardware efficient bit interleaver-based systems. In bit interleaver-based emulation, the LDPC-coded 64-APSK outperforms 64-QAM, in terms of symbol signal-to-noise ratio (SNR), by 0.1 dB, 0.2 dB, and 0.3 dB at spectral efficiencies of 4.8, 4.5, and 4.2 b/s/Hz, respectively. It is found by emulation that LDPC-coded 64-APSK for spectral efficiencies of 4.8, 4.5, and 4.2 b/s/Hz is 1.6 dB, 1.7 dB, and 2.2 dB away from the GMI capacity.
Channel coding for underwater acoustic single-carrier CDMA communication system
NASA Astrophysics Data System (ADS)
Liu, Lanjun; Zhang, Yonglei; Zhang, Pengcheng; Zhou, Lin; Niu, Jiong
2017-01-01
CDMA is an effective multiple access protocol for underwater acoustic networks, and channel coding can effectively reduce the bit error rate (BER) of the underwater acoustic communication system. For the requirements of underwater acoustic mobile networks based on CDMA, an underwater acoustic single-carrier CDMA communication system (UWA/SCCDMA) based on the direct-sequence spread spectrum is proposed, and its channel coding scheme is studied based on convolution, RA, Turbo and LDPC coding respectively. The implementation steps of the Viterbi algorithm of convolutional coding, BP and minimum sum algorithms of RA coding, Log-MAP and SOVA algorithms of Turbo coding, and sum-product algorithm of LDPC coding are given. An UWA/SCCDMA simulation system based on Matlab is designed. Simulation results show that the UWA/SCCDMA based on RA, Turbo and LDPC coding have good performance such that the communication BER is all less than 10-6 in the underwater acoustic channel with low signal to noise ratio (SNR) from -12 dB to -10dB, which is about 2 orders of magnitude lower than that of the convolutional coding. The system based on Turbo coding with Log-MAP algorithm has the best performance.
Joint Carrier-Phase Synchronization and LDPC Decoding
NASA Technical Reports Server (NTRS)
Simon, Marvin; Valles, Esteban
2009-01-01
A method has been proposed to increase the degree of synchronization of a radio receiver with the phase of a suppressed carrier signal modulated with a binary- phase-shift-keying (BPSK) or quaternary- phase-shift-keying (QPSK) signal representing a low-density parity-check (LDPC) code. This method is an extended version of the method described in Using LDPC Code Constraints to Aid Recovery of Symbol Timing (NPO-43112), NASA Tech Briefs, Vol. 32, No. 10 (October 2008), page 54. Both methods and the receiver architectures in which they would be implemented belong to a class of timing- recovery methods and corresponding receiver architectures characterized as pilotless in that they do not require transmission and reception of pilot signals. The proposed method calls for the use of what is known in the art as soft decision feedback to remove the modulation from a replica of the incoming signal prior to feeding this replica to a phase-locked loop (PLL) or other carrier-tracking stage in the receiver. Soft decision feedback refers to suitably processed versions of intermediate results of iterative computations involved in the LDPC decoding process. Unlike a related prior method in which hard decision feedback (the final sequence of decoded symbols) is used to remove the modulation, the proposed method does not require estimation of the decoder error probability. In a basic digital implementation of the proposed method, the incoming signal (having carrier phase theta theta (sub c) plus noise would first be converted to inphase (I) and quadrature (Q) baseband signals by mixing it with I and Q signals at the carrier frequency [wc/(2 pi)] generated by a local oscillator. The resulting demodulated signals would be processed through one-symbol-period integrate and- dump filters, the outputs of which would be sampled and held, then multiplied by a soft-decision version of the baseband modulated signal. The resulting I and Q products consist of terms proportional to the cosine and sine of the carrier phase cc as well as correlated noise components. These products would be fed as inputs to a digital PLL that would include a number-controlled oscillator (NCO), which provides an estimate of the carrier phase, theta(sub c).
Sum of the Magnitude for Hard Decision Decoding Algorithm Based on Loop Update Detection.
Meng, Jiahui; Zhao, Danfeng; Tian, Hai; Zhang, Liang
2018-01-15
In order to improve the performance of non-binary low-density parity check codes (LDPC) hard decision decoding algorithm and to reduce the complexity of decoding, a sum of the magnitude for hard decision decoding algorithm based on loop update detection is proposed. This will also ensure the reliability, stability and high transmission rate of 5G mobile communication. The algorithm is based on the hard decision decoding algorithm (HDA) and uses the soft information from the channel to calculate the reliability, while the sum of the variable nodes' (VN) magnitude is excluded for computing the reliability of the parity checks. At the same time, the reliability information of the variable node is considered and the loop update detection algorithm is introduced. The bit corresponding to the error code word is flipped multiple times, before this is searched in the order of most likely error probability to finally find the correct code word. Simulation results show that the performance of one of the improved schemes is better than the weighted symbol flipping (WSF) algorithm under different hexadecimal numbers by about 2.2 dB and 2.35 dB at the bit error rate (BER) of 10 -5 over an additive white Gaussian noise (AWGN) channel, respectively. Furthermore, the average number of decoding iterations is significantly reduced.
Transmission over UWB channels with OFDM system using LDPC coding
NASA Astrophysics Data System (ADS)
Dziwoki, Grzegorz; Kucharczyk, Marcin; Sulek, Wojciech
2009-06-01
Hostile wireless environment requires use of sophisticated signal processing methods. The paper concerns on Ultra Wideband (UWB) transmission over Personal Area Networks (PAN) including MB-OFDM specification of physical layer. In presented work the transmission system with OFDM modulation was connected with LDPC encoder/decoder. Additionally the frame and bit error rate (FER and BER) of the system was decreased using results from the LDPC decoder in a kind of turbo equalization algorithm for better channel estimation. Computational block using evolutionary strategy, from genetic algorithms family, was also used in presented system. It was placed after SPA (Sum-Product Algorithm) decoder and is conditionally turned on in the decoding process. The result is increased effectiveness of the whole system, especially lower FER. The system was tested with two types of LDPC codes, depending on type of parity check matrices: randomly generated and constructed deterministically, optimized for practical decoder architecture implemented in the FPGA device.
Encoders for block-circulant LDPC codes
NASA Technical Reports Server (NTRS)
Andrews, Kenneth; Dolinar, Sam; Thorpe, Jeremy
2005-01-01
In this paper, we present two encoding methods for block-circulant LDPC codes. The first is an iterative encoding method based on the erasure decoding algorithm, and the computations required are well organized due to the block-circulant structure of the parity check matrix. The second method uses block-circulant generator matrices, and the encoders are very similar to those for recursive convolutional codes. Some encoders of the second type have been implemented in a small Field Programmable Gate Array (FPGA) and operate at 100 Msymbols/second.
Strategic and Tactical Decision-Making Under Uncertainty
2006-01-03
message passing algorithms. In recent work we applied this method to the problem of joint decoding of a low-density parity-check ( LDPC ) code and a partial...Joint Decoding of LDPC Codes and Partial-Response Channels." IEEE Transactions on Communications. Vol. 54, No. 7, 1149-1153, 2006. P. Pakzad and V...Michael I. Jordan PAGES U U U SAPR 20 19b. TELEPHONE NUMBER (Include area code ) 510/642-3806 Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18
NASA Astrophysics Data System (ADS)
Drăghici, S.; Proştean, O.; Răduca, E.; Haţiegan, C.; Hălălae, I.; Pădureanu, I.; Nedeloni, M.; (Barboni Haţiegan, L.
2017-01-01
In this paper a method with which a set of characteristic functions are associated to a LDPC code is shown and also functions that represent the evolution density of messages that go along the edges of a Tanner graph. Graphic representations of the density evolution are shown respectively the study and simulation of likelihood threshold that render asymptotic boundaries between which there are decodable codes were made using MathCad V14 software.
Pilotless Frame Synchronization Using LDPC Code Constraints
NASA Technical Reports Server (NTRS)
Jones, Christopher; Vissasenor, John
2009-01-01
A method of pilotless frame synchronization has been devised for low- density parity-check (LDPC) codes. In pilotless frame synchronization , there are no pilot symbols; instead, the offset is estimated by ex ploiting selected aspects of the structure of the code. The advantag e of pilotless frame synchronization is that the bandwidth of the sig nal is reduced by an amount associated with elimination of the pilot symbols. The disadvantage is an increase in the amount of receiver data processing needed for frame synchronization.
Design and implementation of a channel decoder with LDPC code
NASA Astrophysics Data System (ADS)
Hu, Diqing; Wang, Peng; Wang, Jianzong; Li, Tianquan
2008-12-01
Because Toshiba quit the competition, there is only one standard of blue-ray disc: BLU-RAY DISC, which satisfies the demands of high-density video programs. But almost all the patents are gotten by big companies such as Sony, Philips. As a result we must pay much for these patents when our productions use BD. As our own high-density optical disk storage system, Next-Generation Versatile Disc(NVD) which proposes a new data format and error correction code with independent intellectual property rights and high cost performance owns higher coding efficiency than DVD and 12GB which could meet the demands of playing the high-density video programs. In this paper, we develop Low-Density Parity-Check Codes (LDPC): a new channel encoding process and application scheme using Q-matrix based on LDPC encoding has application in NVD's channel decoder. And combined with the embedded system portable feature of SOPC system, we have completed all the decoding modules by FPGA. In the NVD experiment environment, tests are done. Though there are collisions between LDPC and Run-Length-Limited modulation codes (RLL) which are used in optical storage system frequently, the system is provided as a suitable solution. At the same time, it overcomes the defects of the instability and inextensibility, which occurred in the former decoding system of NVD--it was implemented by hardware.
Wang, Andong; Zhu, Long; Chen, Shi; Du, Cheng; Mo, Qi; Wang, Jian
2016-05-30
Mode-division multiplexing over fibers has attracted increasing attention over the last few years as a potential solution to further increase fiber transmission capacity. In this paper, we demonstrate the viability of orbital angular momentum (OAM) modes transmission over a 50-km few-mode fiber (FMF). By analyzing mode properties of eigen modes in an FMF, we study the inner mode group differential modal delay (DMD) in FMF, which may influence the transmission capacity in long-distance OAM modes transmission and multiplexing. To mitigate the impact of large inner mode group DMD in long-distance fiber-based OAM modes transmission, we use low-density parity-check (LDPC) codes to increase the system reliability. By evaluating the performance of LDPC-coded single OAM mode transmission over 50-km fiber, significant coding gains of >4 dB, 8 dB and 14 dB are demonstrated for 1-Gbaud, 2-Gbaud and 5-Gbaud quadrature phase-shift keying (QPSK) signals, respectively. Furthermore, in order to verify and compare the influence of DMD in long-distance fiber transmission, single OAM mode transmission over 10-km FMF is also demonstrated in the experiment. Finally, we experimentally demonstrate OAM multiplexing and transmission over a 50-km FMF using LDPC-coded 1-Gbaud QPSK signals to compensate the influence of mode crosstalk and DMD in the 50 km FMF.
On the reduced-complexity of LDPC decoders for beyond 400 Gb/s serial optical transmission
NASA Astrophysics Data System (ADS)
Djordjevic, Ivan B.; Xu, Lei; Wang, Ting
2010-12-01
Two reduced-complexity (RC) LDPC decoders are proposed, which can be used in combination with large-girth LDPC codes to enable beyond 400 Gb/s serial optical transmission. We show that optimally attenuated RC min-sum sum algorithm performs only 0.45 dB worse than conventional sum-product algorithm, while having lower storage memory requirements and much lower latency. We further evaluate the proposed algorithms for use in beyond 400 Gb/s serial optical transmission in combination with PolMUX 32-IPQ-based signal constellation and show that low BERs can be achieved for medium optical SNRs, while achieving the net coding gain above 11.4 dB.
Low Density Parity Check Codes: Bandwidth Efficient Channel Coding
NASA Technical Reports Server (NTRS)
Fong, Wai; Lin, Shu; Maki, Gary; Yeh, Pen-Shu
2003-01-01
Low Density Parity Check (LDPC) Codes provide near-Shannon Capacity performance for NASA Missions. These codes have high coding rates R=0.82 and 0.875 with moderate code lengths, n=4096 and 8176. Their decoders have inherently parallel structures which allows for high-speed implementation. Two codes based on Euclidean Geometry (EG) were selected for flight ASIC implementation. These codes are cyclic and quasi-cyclic in nature and therefore have a simple encoder structure. This results in power and size benefits. These codes also have a large minimum distance as much as d,,, = 65 giving them powerful error correcting capabilities and error floors less than lo- BER. This paper will present development of the LDPC flight encoder and decoder, its applications and status.
Statistical mechanics of broadcast channels using low-density parity-check codes.
Nakamura, Kazutaka; Kabashima, Yoshiyuki; Morelos-Zaragoza, Robert; Saad, David
2003-03-01
We investigate the use of Gallager's low-density parity-check (LDPC) codes in a degraded broadcast channel, one of the fundamental models in network information theory. Combining linear codes is a standard technique in practical network communication schemes and is known to provide better performance than simple time sharing methods when algebraic codes are used. The statistical physics based analysis shows that the practical performance of the suggested method, achieved by employing the belief propagation algorithm, is superior to that of LDPC based time sharing codes while the best performance, when received transmissions are optimally decoded, is bounded by the time sharing limit.
Accumulate-Repeat-Accumulate-Accumulate-Codes
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Dolinar, Sam; Thorpe, Jeremy
2004-01-01
Inspired by recently proposed Accumulate-Repeat-Accumulate (ARA) codes [15], in this paper we propose a channel coding scheme called Accumulate-Repeat-Accumulate-Accumulate (ARAA) codes. These codes can be seen as serial turbo-like codes or as a subclass of Low Density Parity Check (LDPC) codes, and they have a projected graph or protograph representation; this allows for a high-speed iterative decoder implementation using belief propagation. An ARAA code can be viewed as a precoded Repeat-and-Accumulate (RA) code with puncturing in concatenation with another accumulator, where simply an accumulator is chosen as the precoder; thus ARAA codes have a very fast encoder structure. Using density evolution on their associated protographs, we find examples of rate-lJ2 ARAA codes with maximum variable node degree 4 for which a minimum bit-SNR as low as 0.21 dB from the channel capacity limit can be achieved as the block size goes to infinity. Such a low threshold cannot be achieved by RA or Irregular RA (IRA) or unstructured irregular LDPC codes with the same constraint on the maximum variable node degree. Furthermore by puncturing the accumulators we can construct families of higher rate ARAA codes with thresholds that stay close to their respective channel capacity thresholds uniformly. Iterative decoding simulation results show comparable performance with the best-known LDPC codes but with very low error floor even at moderate block sizes.
LDPC-based iterative joint source-channel decoding for JPEG2000.
Pu, Lingling; Wu, Zhenyu; Bilgin, Ali; Marcellin, Michael W; Vasic, Bane
2007-02-01
A framework is proposed for iterative joint source-channel decoding of JPEG2000 codestreams. At the encoder, JPEG2000 is used to perform source coding with certain error-resilience (ER) modes, and LDPC codes are used to perform channel coding. During decoding, the source decoder uses the ER modes to identify corrupt sections of the codestream and provides this information to the channel decoder. Decoding is carried out jointly in an iterative fashion. Experimental results indicate that the proposed method requires fewer iterations and improves overall system performance.
Yang, Qi; Al Amin, Abdullah; Chen, Xi; Ma, Yiran; Chen, Simin; Shieh, William
2010-08-02
High-order modulation formats and advanced error correcting codes (ECC) are two promising techniques for improving the performance of ultrahigh-speed optical transport networks. In this paper, we present record receiver sensitivity for 107 Gb/s CO-OFDM transmission via constellation expansion to 16-QAM and rate-1/2 LDPC coding. We also show the single-channel transmission of a 428-Gb/s CO-OFDM signal over 960-km standard-single-mode-fiber (SSMF) without Raman amplification.
LDPC product coding scheme with extrinsic information for bit patterned media recoding
NASA Astrophysics Data System (ADS)
Jeong, Seongkwon; Lee, Jaejin
2017-05-01
Since the density limit of the current perpendicular magnetic storage system will soon be reached, bit patterned media recording (BPMR) is a promising candidate for the next generation storage system to achieve an areal density beyond 1 Tb/in2. Each recording bit is stored in a fabricated magnetic island and the space between the magnetic islands is nonmagnetic in BPMR. To approach recording densities of 1 Tb/in2, the spacing of the magnetic islands must be less than 25 nm. Consequently, severe inter-symbol interference (ISI) and inter-track interference (ITI) occur. ITI and ISI degrade the performance of BPMR. In this paper, we propose a low-density parity check (LDPC) product coding scheme that exploits extrinsic information for BPMR. This scheme shows an improved bit error rate performance compared to that in which one LDPC code is used.
Low Power LDPC Code Decoder Architecture Based on Intermediate Message Compression Technique
NASA Astrophysics Data System (ADS)
Shimizu, Kazunori; Togawa, Nozomu; Ikenaga, Takeshi; Goto, Satoshi
Reducing the power dissipation for LDPC code decoder is a major challenging task to apply it to the practical digital communication systems. In this paper, we propose a low power LDPC code decoder architecture based on an intermediate message-compression technique which features as follows: (i) An intermediate message compression technique enables the decoder to reduce the required memory capacity and write power dissipation. (ii) A clock gated shift register based intermediate message memory architecture enables the decoder to decompress the compressed messages in a single clock cycle while reducing the read power dissipation. The combination of the above two techniques enables the decoder to reduce the power dissipation while keeping the decoding throughput. The simulation results show that the proposed architecture improves the power efficiency up to 52% and 18% compared to that of the decoder based on the overlapped schedule and the rapid convergence schedule without the proposed techniques respectively.
45 Gb/s low complexity optical front-end for soft-decision LDPC decoders.
Sakib, Meer Nazmus; Moayedi, Monireh; Gross, Warren J; Liboiron-Ladouceur, Odile
2012-07-30
In this paper a low complexity and energy efficient 45 Gb/s soft-decision optical front-end to be used with soft-decision low-density parity-check (LDPC) decoders is demonstrated. The results show that the optical front-end exhibits a net coding gain of 7.06 and 9.62 dB for post forward error correction bit error rate of 10(-7) and 10(-12) for long block length LDPC(32768,26803) code. The performance over a hard decision front-end is 1.9 dB for this code. It is shown that the soft-decision circuit can also be used as a 2-bit flash type analog-to-digital converter (ADC), in conjunction with equalization schemes. At bit rate of 15 Gb/s using RS(255,239), LDPC(672,336), (672, 504), (672, 588), and (1440, 1344) used with a 6-tap finite impulse response (FIR) equalizer will result in optical power savings of 3, 5, 7, 9.5 and 10.5 dB, respectively. The 2-bit flash ADC consumes only 2.71 W at 32 GSamples/s. At 45 GSamples/s the power consumption is estimated to be 4.95 W.
High-efficiency reconciliation for continuous variable quantum key distribution
NASA Astrophysics Data System (ADS)
Bai, Zengliang; Yang, Shenshen; Li, Yongmin
2017-04-01
Quantum key distribution (QKD) is the most mature application of quantum information technology. Information reconciliation is a crucial step in QKD and significantly affects the final secret key rates shared between two legitimate parties. We analyze and compare various construction methods of low-density parity-check (LDPC) codes and design high-performance irregular LDPC codes with a block length of 106. Starting from these good codes and exploiting the slice reconciliation technique based on multilevel coding and multistage decoding, we realize high-efficiency Gaussian key reconciliation with efficiency higher than 95% for signal-to-noise ratios above 1. Our demonstrated method can be readily applied in continuous variable QKD.
Sum of the Magnitude for Hard Decision Decoding Algorithm Based on Loop Update Detection
Meng, Jiahui; Zhao, Danfeng; Tian, Hai; Zhang, Liang
2018-01-01
In order to improve the performance of non-binary low-density parity check codes (LDPC) hard decision decoding algorithm and to reduce the complexity of decoding, a sum of the magnitude for hard decision decoding algorithm based on loop update detection is proposed. This will also ensure the reliability, stability and high transmission rate of 5G mobile communication. The algorithm is based on the hard decision decoding algorithm (HDA) and uses the soft information from the channel to calculate the reliability, while the sum of the variable nodes’ (VN) magnitude is excluded for computing the reliability of the parity checks. At the same time, the reliability information of the variable node is considered and the loop update detection algorithm is introduced. The bit corresponding to the error code word is flipped multiple times, before this is searched in the order of most likely error probability to finally find the correct code word. Simulation results show that the performance of one of the improved schemes is better than the weighted symbol flipping (WSF) algorithm under different hexadecimal numbers by about 2.2 dB and 2.35 dB at the bit error rate (BER) of 10−5 over an additive white Gaussian noise (AWGN) channel, respectively. Furthermore, the average number of decoding iterations is significantly reduced. PMID:29342963
Djordjevic, Ivan B; Xu, Lei; Wang, Ting
2008-09-15
We present two PMD compensation schemes suitable for use in multilevel (M>or=2) block-coded modulation schemes with coherent detection. The first scheme is based on a BLAST-type polarization-interference cancellation scheme, and the second scheme is based on iterative polarization cancellation. Both schemes use the LDPC codes as channel codes. The proposed PMD compensations schemes are evaluated by employing coded-OFDM and coherent detection. When used in combination with girth-10 LDPC codes those schemes outperform polarization-time coding based OFDM by 1 dB at BER of 10(-9), and provide two times higher spectral efficiency. The proposed schemes perform comparable and are able to compensate even 1200 ps of differential group delay with negligible penalty.
Statistical physics inspired energy-efficient coded-modulation for optical communications.
Djordjevic, Ivan B; Xu, Lei; Wang, Ting
2012-04-15
Because Shannon's entropy can be obtained by Stirling's approximation of thermodynamics entropy, the statistical physics energy minimization methods are directly applicable to the signal constellation design. We demonstrate that statistical physics inspired energy-efficient (EE) signal constellation designs, in combination with large-girth low-density parity-check (LDPC) codes, significantly outperform conventional LDPC-coded polarization-division multiplexed quadrature amplitude modulation schemes. We also describe an EE signal constellation design algorithm. Finally, we propose the discrete-time implementation of D-dimensional transceiver and corresponding EE polarization-division multiplexed system. © 2012 Optical Society of America
Photonic entanglement-assisted quantum low-density parity-check encoders and decoders.
Djordjevic, Ivan B
2010-05-01
I propose encoder and decoder architectures for entanglement-assisted (EA) quantum low-density parity-check (LDPC) codes suitable for all-optical implementation. I show that two basic gates needed for EA quantum error correction, namely, controlled-NOT (CNOT) and Hadamard gates can be implemented based on Mach-Zehnder interferometer. In addition, I show that EA quantum LDPC codes from balanced incomplete block designs of unitary index require only one entanglement qubit to be shared between source and destination.
On the optimum signal constellation design for high-speed optical transport networks.
Liu, Tao; Djordjevic, Ivan B
2012-08-27
In this paper, we first describe an optimum signal constellation design algorithm, which is optimum in MMSE-sense, called MMSE-OSCD, for channel capacity achieving source distribution. Secondly, we introduce a feedback channel capacity inspired optimum signal constellation design (FCC-OSCD) to further improve the performance of MMSE-OSCD, inspired by the fact that feedback channel capacity is higher than that of systems without feedback. The constellations obtained by FCC-OSCD are, however, OSNR dependent. The optimization is jointly performed together with regular quasi-cyclic low-density parity-check (LDPC) code design. Such obtained coded-modulation scheme, in combination with polarization-multiplexing, is suitable as both 400 Gb/s and multi-Tb/s optical transport enabling technology. Using large girth LDPC code, we demonstrate by Monte Carlo simulations that a 32-ary signal constellation, obtained by FCC-OSCD, outperforms previously proposed optimized 32-ary CIPQ signal constellation by 0.8 dB at BER of 10(-7). On the other hand, the LDPC-coded 16-ary FCC-OSCD outperforms 16-QAM by 1.15 dB at the same BER.
Continuous operation of four-state continuous-variable quantum key distribution system
NASA Astrophysics Data System (ADS)
Matsubara, Takuto; Ono, Motoharu; Oguri, Yusuke; Ichikawa, Tsubasa; Hirano, Takuya; Kasai, Kenta; Matsumoto, Ryutaroh; Tsurumaru, Toyohiro
2016-10-01
We report on the development of continuous-variable quantum key distribution (CV-QKD) system that are based on discrete quadrature amplitude modulation (QAM) and homodyne detection of coherent states of light. We use a pulsed light source whose wavelength is 1550 nm and repetition rate is 10 MHz. The CV-QKD system can continuously generate secret key which is secure against entangling cloner attack. Key generation rate is 50 kbps when the quantum channel is a 10 km optical fiber. The CV-QKD system we have developed utilizes the four-state and post-selection protocol [T. Hirano, et al., Phys. Rev. A 68, 042331 (2003).]; Alice randomly sends one of four states {|+/-α⟩,|+/-𝑖α⟩}, and Bob randomly performs x- or p- measurement by homodyne detection. A commercially available balanced receiver is used to realize shot-noise-limited pulsed homodyne detection. GPU cards are used to accelerate the software-based post-processing. We use a non-binary LDPC code for error correction (reverse reconciliation) and the Toeplitz matrix multiplication for privacy amplification.
Multiple component codes based generalized LDPC codes for high-speed optical transport.
Djordjevic, Ivan B; Wang, Ting
2014-07-14
A class of generalized low-density parity-check (GLDPC) codes suitable for optical communications is proposed, which consists of multiple local codes. It is shown that Hamming, BCH, and Reed-Muller codes can be used as local codes, and that the maximum a posteriori probability (MAP) decoding of these local codes by Ashikhmin-Lytsin algorithm is feasible in terms of complexity and performance. We demonstrate that record coding gains can be obtained from properly designed GLDPC codes, derived from multiple component codes. We then show that several recently proposed classes of LDPC codes such as convolutional and spatially-coupled codes can be described using the concept of GLDPC coding, which indicates that the GLDPC coding can be used as a unified platform for advanced FEC enabling ultra-high speed optical transport. The proposed class of GLDPC codes is also suitable for code-rate adaption, to adjust the error correction strength depending on the optical channel conditions.
Maximum likelihood decoding analysis of Accumulate-Repeat-Accumulate Codes
NASA Technical Reports Server (NTRS)
Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung
2004-01-01
Repeat-Accumulate (RA) codes are the simplest turbo-like codes that achieve good performance. However, they cannot compete with Turbo codes or low-density parity check codes (LDPC) as far as performance is concerned. The Accumulate Repeat Accumulate (ARA) codes, as a subclass of LDPC codes, are obtained by adding a pre-coder in front of RA codes with puncturing where an accumulator is chosen as a precoder. These codes not only are very simple, but also achieve excellent performance with iterative decoding. In this paper, the performance of these codes with (ML) decoding are analyzed and compared to random codes by very tight bounds. The weight distribution of some simple ARA codes is obtained, and through existing tightest bounds we have shown the ML SNR threshold of ARA codes approaches very closely to the performance of random codes. We have shown that the use of precoder improves the SNR threshold but interleaving gain remains unchanged with respect to RA code with puncturing.
NASA Astrophysics Data System (ADS)
Bai, Cheng-lin; Cheng, Zhi-hui
2016-09-01
In order to further improve the carrier synchronization estimation range and accuracy at low signal-to-noise ratio ( SNR), this paper proposes a code-aided carrier synchronization algorithm based on improved nonbinary low-density parity-check (NB-LDPC) codes to study the polarization-division-multiplexing coherent optical orthogonal frequency division multiplexing (PDM-CO-OFDM) system performance in the cases of quadrature phase shift keying (QPSK) and 16 quadrature amplitude modulation (16-QAM) modes. The simulation results indicate that this algorithm can enlarge frequency and phase offset estimation ranges and enhance accuracy of the system greatly, and the bit error rate ( BER) performance of the system is improved effectively compared with that of the system employing traditional NB-LDPC code-aided carrier synchronization algorithm.
Performance analysis of LDPC codes on OOK terahertz wireless channels
NASA Astrophysics Data System (ADS)
Chun, Liu; Chang, Wang; Jun-Cheng, Cao
2016-02-01
Atmospheric absorption, scattering, and scintillation are the major causes to deteriorate the transmission quality of terahertz (THz) wireless communications. An error control coding scheme based on low density parity check (LDPC) codes with soft decision decoding algorithm is proposed to improve the bit-error-rate (BER) performance of an on-off keying (OOK) modulated THz signal through atmospheric channel. The THz wave propagation characteristics and channel model in atmosphere is set up. Numerical simulations validate the great performance of LDPC codes against the atmospheric fading and demonstrate the huge potential in future ultra-high speed beyond Gbps THz communications. Project supported by the National Key Basic Research Program of China (Grant No. 2014CB339803), the National High Technology Research and Development Program of China (Grant No. 2011AA010205), the National Natural Science Foundation of China (Grant Nos. 61131006, 61321492, and 61204135), the Major National Development Project of Scientific Instrument and Equipment (Grant No. 2011YQ150021), the National Science and Technology Major Project (Grant No. 2011ZX02707), the International Collaboration and Innovation Program on High Mobility Materials Engineering of the Chinese Academy of Sciences, and the Shanghai Municipal Commission of Science and Technology (Grant No. 14530711300).
NASA Astrophysics Data System (ADS)
Chang, Chun; Huang, Benxiong; Xu, Zhengguang; Li, Bin; Zhao, Nan
2018-02-01
Three soft-input-soft-output (SISO) detection methods for dual-polarized quadrature duobinary (DP-QDB), including maximum-logarithmic-maximum-a-posteriori-probability-algorithm (Max-log-MAP)-based detection, soft-output-Viterbi-algorithm (SOVA)-based detection, and a proposed SISO detection, which can all be combined with SISO decoding, are presented. The three detection methods are investigated at 128 Gb/s in five-channel wavelength-division-multiplexing uncoded and low-density-parity-check (LDPC) coded DP-QDB systems by simulations. Max-log-MAP-based detection needs the returning-to-initial-states (RTIS) process despite having the best performance. When the LDPC code with a code rate of 0.83 is used, the detecting-and-decoding scheme with the SISO detection does not need RTIS and has better bit error rate (BER) performance than the scheme with SOVA-based detection. The former can reduce the optical signal-to-noise ratio (OSNR) requirement (at BER=10-5) by 2.56 dB relative to the latter. The application of the SISO iterative detection in LDPC-coded DP-QDB systems makes a good trade-off between requirements on transmission efficiency, OSNR requirement, and transmission distance, compared with the other two SISO methods.
NASA Astrophysics Data System (ADS)
Pryadko, Leonid P.; Dumer, Ilya; Kovalev, Alexey A.
2015-03-01
We construct a lower (existence) bound for the threshold of scalable quantum computation which is applicable to all stabilizer codes, including degenerate quantum codes with sublinear distance scaling. The threshold is based on enumerating irreducible operators in the normalizer of the code, i.e., those that cannot be decomposed into a product of two such operators with non-overlapping support. For quantum LDPC codes with logarithmic or power-law distances, we get threshold values which are parametrically better than the existing analytical bound based on percolation. The new bound also gives a finite threshold when applied to other families of degenerate quantum codes, e.g., the concatenated codes. This research was supported in part by the NSF Grant PHY-1416578 and by the ARO Grant W911NF-11-1-0027.
NASA Technical Reports Server (NTRS)
Simon, Marvin; Valles, Esteban; Jones, Christopher
2008-01-01
This paper addresses the carrier-phase estimation problem under low SNR conditions as are typical of turbo- and LDPC-coded applications. In previous publications by the first author, closed-loop carrier synchronization schemes for error-correction coded BPSK and QPSK modulation were proposed that were based on feeding back hard data decisions at the input of the loop, the purpose being to remove the modulation prior to attempting to track the carrier phase as opposed to the more conventional decision-feedback schemes that incorporate such feedback inside the loop. In this paper, we consider an alternative approach wherein the extrinsic soft information from the iterative decoder of turbo or LDPC codes is instead used as the feedback.
Percolation bounds for decoding thresholds with correlated erasures in quantum LDPC codes
NASA Astrophysics Data System (ADS)
Hamilton, Kathleen; Pryadko, Leonid
Correlations between errors can dramatically affect decoding thresholds, in some cases eliminating the threshold altogether. We analyze the existence of a threshold for quantum low-density parity-check (LDPC) codes in the case of correlated erasures. When erasures are positively correlated, the corresponding multi-variate Bernoulli distribution can be modeled in terms of cluster errors, where qubits in clusters of various size can be marked all at once. In a code family with distance scaling as a power law of the code length, erasures can be always corrected below percolation on a qubit adjacency graph associated with the code. We bound this correlated percolation transition by weighted (uncorrelated) percolation on a specially constructed cluster connectivity graph, and apply our recent results to construct several bounds for the latter. This research was supported in part by the NSF Grant PHY-1416578 and by the ARO Grant W911NF-14-1-0272.
Manimegalai, C T; Gauni, Sabitha; Kalimuthu, K
2017-12-04
Wireless body area network (WBAN) is a breakthrough technology in healthcare areas such as hospital and telemedicine. The human body has a complex mixture of different tissues. It is expected that the nature of propagation of electromagnetic signals is distinct in each of these tissues. This forms the base for the WBAN, which is different from other environments. In this paper, the knowledge of Ultra Wide Band (UWB) channel is explored in the WBAN (IEEE 802.15.6) system. The measurements of parameters in frequency range from 3.1-10.6 GHz are taken. The proposed system, transmits data up to 480 Mbps by using LDPC coded APSK Modulated Differential Space-Time-Frequency Coded MB-OFDM to increase the throughput and power efficiency.
An LDPC Decoder Architecture for Wireless Sensor Network Applications
Giancarlo Biroli, Andrea Dario; Martina, Maurizio; Masera, Guido
2012-01-01
The pervasive use of wireless sensors in a growing spectrum of human activities reinforces the need for devices with low energy dissipation. In this work, coded communication between a couple of wireless sensor devices is considered as a method to reduce the dissipated energy per transmitted bit with respect to uncoded communication. Different Low Density Parity Check (LDPC) codes are considered to this purpose and post layout results are shown for a low-area low-energy decoder, which offers percentage energy savings with respect to the uncoded solution in the range of 40%–80%, depending on considered environment, distance and bit error rate. PMID:22438724
An LDPC decoder architecture for wireless sensor network applications.
Biroli, Andrea Dario Giancarlo; Martina, Maurizio; Masera, Guido
2012-01-01
The pervasive use of wireless sensors in a growing spectrum of human activities reinforces the need for devices with low energy dissipation. In this work, coded communication between a couple of wireless sensor devices is considered as a method to reduce the dissipated energy per transmitted bit with respect to uncoded communication. Different Low Density Parity Check (LDPC) codes are considered to this purpose and post layout results are shown for a low-area low-energy decoder, which offers percentage energy savings with respect to the uncoded solution in the range of 40%-80%, depending on considered environment, distance and bit error rate.
Deep Hashing for Scalable Image Search.
Lu, Jiwen; Liong, Venice Erin; Zhou, Jie
2017-05-01
In this paper, we propose a new deep hashing (DH) approach to learn compact binary codes for scalable image search. Unlike most existing binary codes learning methods, which usually seek a single linear projection to map each sample into a binary feature vector, we develop a deep neural network to seek multiple hierarchical non-linear transformations to learn these binary codes, so that the non-linear relationship of samples can be well exploited. Our model is learned under three constraints at the top layer of the developed deep network: 1) the loss between the compact real-valued code and the learned binary vector is minimized, 2) the binary codes distribute evenly on each bit, and 3) different bits are as independent as possible. To further improve the discriminative power of the learned binary codes, we extend DH into supervised DH (SDH) and multi-label SDH by including a discriminative term into the objective function of DH, which simultaneously maximizes the inter-class variations and minimizes the intra-class variations of the learned binary codes with the single-label and multi-label settings, respectively. Extensive experimental results on eight widely used image search data sets show that our proposed methods achieve very competitive results with the state-of-the-arts.
Rate-Compatible LDPC Codes with Linear Minimum Distance
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Jones, Christopher; Dolinar, Samuel
2009-01-01
A recently developed method of constructing protograph-based low-density parity-check (LDPC) codes provides for low iterative decoding thresholds and minimum distances proportional to block sizes, and can be used for various code rates. A code constructed by this method can have either fixed input block size or fixed output block size and, in either case, provides rate compatibility. The method comprises two submethods: one for fixed input block size and one for fixed output block size. The first mentioned submethod is useful for applications in which there are requirements for rate-compatible codes that have fixed input block sizes. These are codes in which only the numbers of parity bits are allowed to vary. The fixed-output-blocksize submethod is useful for applications in which framing constraints are imposed on the physical layers of affected communication systems. An example of such a system is one that conforms to one of many new wireless-communication standards that involve the use of orthogonal frequency-division modulation
NASA Astrophysics Data System (ADS)
Gao, Jian; Wang, Yongkang
2018-01-01
Structural properties of u-constacyclic codes over the ring F_p+u{F}_p are given, where p is an odd prime and u^2=1. Under a special Gray map from F_p+u{F}_p to F_p^2, some new non-binary quantum codes are obtained by this class of constacyclic codes.
Adaptive software-defined coded modulation for ultra-high-speed optical transport
NASA Astrophysics Data System (ADS)
Djordjevic, Ivan B.; Zhang, Yequn
2013-10-01
In optically-routed networks, different wavelength channels carrying the traffic to different destinations can have quite different optical signal-to-noise ratios (OSNRs) and signal is differently impacted by various channel impairments. Regardless of the data destination, an optical transport system (OTS) must provide the target bit-error rate (BER) performance. To provide target BER regardless of the data destination we adjust the forward error correction (FEC) strength. Depending on the information obtained from the monitoring channels, we select the appropriate code rate matching to the OSNR range that current channel OSNR falls into. To avoid frame synchronization issues, we keep the codeword length fixed independent of the FEC code being employed. The common denominator is the employment of quasi-cyclic (QC-) LDPC codes in FEC. For high-speed implementation, low-complexity LDPC decoding algorithms are needed, and some of them will be described in this invited paper. Instead of conventional QAM based modulation schemes, we employ the signal constellations obtained by optimum signal constellation design (OSCD) algorithm. To improve the spectral efficiency, we perform the simultaneous rate adaptation and signal constellation size selection so that the product of number of bits per symbol × code rate is closest to the channel capacity. Further, we describe the advantages of using 4D signaling instead of polarization-division multiplexed (PDM) QAM, by using the 4D MAP detection, combined with LDPC coding, in a turbo equalization fashion. Finally, to solve the problems related to the limited bandwidth of information infrastructure, high energy consumption, and heterogeneity of optical networks, we describe an adaptive energy-efficient hybrid coded-modulation scheme, which in addition to amplitude, phase, and polarization state employs the spatial modes as additional basis functions for multidimensional coded-modulation.
NASA Technical Reports Server (NTRS)
Andrews, Ken; Divsalar, Dariush; Dolinar, Sam; Moision, Bruce; Hamkins, Jon; Pollara, Fabrizio
2007-01-01
This slide presentation reviews the objectives, meeting goals and overall NASA goals for the NASA Data Standards Working Group. The presentation includes information on the technical progress surrounding the objective, short LDPC codes, and the general results on the Pu-Pw tradeoff.
Qu, Zhen; Djordjevic, Ivan B
2017-08-15
We propose and experimentally demonstrate a two-stage cross-talk mitigation method in an orbital-angular-momentum (OAM)-based free-space optical communication system, which is enabled by combining spatial offset and low-density parity-check (LDPC) coded nonuniform signaling. Different from traditional OAM multiplexing, where the OAM modes are centrally aligned for copropagation, the adjacent OAM modes (OAM states 2 and -6 and OAM states -2 and 6) in our proposed scheme are spatially offset to mitigate the mode cross talk. Different from traditional rectangular modulation formats, which transmit equidistant signal points with uniform probability, the 5-quadrature amplitude modulation (5-QAM) and 9-QAM are introduced to relieve cross-talk-induced performance degradation. The 5-QAM and 9-QAM formats are based on the Huffman coding technique, which can potentially achieve great cross-talk tolerance by combining them with corresponding nonbinary LDPC codes. We demonstrate that cross talk can be reduced by 1.6 dB and 1 dB via spatial offset for OAM states ±2 and ±6, respectively. Compared to quadrature phase shift keying and 8-QAM formats, the LDPC-coded 5-QAM and 9-QAM are able to bring 1.1 dB and 5.4 dB performance improvements in the presence of atmospheric turbulence, respectively.
An Efficient Downlink Scheduling Strategy Using Normal Graphs for Multiuser MIMO Wireless Systems
NASA Astrophysics Data System (ADS)
Chen, Jung-Chieh; Wu, Cheng-Hsuan; Lee, Yao-Nan; Wen, Chao-Kai
Inspired by the success of the low-density parity-check (LDPC) codes in the field of error-control coding, in this paper we propose transforming the downlink multiuser multiple-input multiple-output scheduling problem into an LDPC-like problem using the normal graph. Based on the normal graph framework, soft information, which indicates the probability that each user will be scheduled to transmit packets at the access point through a specified angle-frequency sub-channel, is exchanged among the local processors to iteratively optimize the multiuser transmission schedule. Computer simulations show that the proposed algorithm can efficiently schedule simultaneous multiuser transmission which then increases the overall channel utilization and reduces the average packet delay.
NASA Astrophysics Data System (ADS)
Yuan, Jian-guo; Tong, Qing-zhen; Huang, Sheng; Wang, Yong
2013-11-01
An effective hierarchical reliable belief propagation (HRBP) decoding algorithm is proposed according to the structural characteristics of systematically constructed Gallager low-density parity-check (SCG-LDPC) codes. The novel decoding algorithm combines the layered iteration with the reliability judgment, and can greatly reduce the number of the variable nodes involved in the subsequent iteration process and accelerate the convergence rate. The result of simulation for SCG-LDPC(3969,3720) code shows that the novel HRBP decoding algorithm can greatly reduce the computing amount at the condition of ensuring the performance compared with the traditional belief propagation (BP) algorithm. The bit error rate (BER) of the HRBP algorithm is considerable at the threshold value of 15, but in the subsequent iteration process, the number of the variable nodes for the HRBP algorithm can be reduced by about 70% at the high signal-to-noise ratio (SNR) compared with the BP algorithm. When the threshold value is further increased, the HRBP algorithm will gradually degenerate into the layered-BP algorithm, but at the BER of 10-7 and the maximal iteration number of 30, the net coding gain (NCG) of the HRBP algorithm is 0.2 dB more than that of the BP algorithm, and the average iteration times can be reduced by about 40% at the high SNR. Therefore, the novel HRBP decoding algorithm is more suitable for optical communication systems.
Adaptive transmission based on multi-relay selection and rate-compatible LDPC codes
NASA Astrophysics Data System (ADS)
Su, Hualing; He, Yucheng; Zhou, Lin
2017-08-01
In order to adapt to the dynamical changeable channel condition and improve the transmissive reliability of the system, a cooperation system of rate-compatible low density parity check (RC-LDPC) codes combining with multi-relay selection protocol is proposed. In traditional relay selection protocol, only the channel state information (CSI) of source-relay and the CSI of relay-destination has been considered. The multi-relay selection protocol proposed by this paper takes the CSI between relays into extra account in order to obtain more chances of collabration. Additionally, the idea of hybrid automatic request retransmission (HARQ) and rate-compatible are introduced. Simulation results show that the transmissive reliability of the system can be significantly improved by the proposed protocol.
Liu, Tao; Djordjevic, Ivan B
2014-12-29
In this paper, we first describe an optimal signal constellation design algorithm suitable for the coherent optical channels dominated by the linear phase noise. Then, we modify this algorithm to be suitable for the nonlinear phase noise dominated channels. In optimization procedure, the proposed algorithm uses the cumulative log-likelihood function instead of the Euclidian distance. Further, an LDPC coded modulation scheme is proposed to be used in combination with signal constellations obtained by proposed algorithm. Monte Carlo simulations indicate that the LDPC-coded modulation schemes employing the new constellation sets, obtained by our new signal constellation design algorithm, outperform corresponding QAM constellations significantly in terms of transmission distance and have better nonlinearity tolerance.
NASA Astrophysics Data System (ADS)
Jiang, Xue-Qin; Huang, Peng; Huang, Duan; Lin, Dakai; Zeng, Guihua
2017-02-01
Achieving information theoretic security with practical complexity is of great interest to continuous-variable quantum key distribution in the postprocessing procedure. In this paper, we propose a reconciliation scheme based on the punctured low-density parity-check (LDPC) codes. Compared to the well-known multidimensional reconciliation scheme, the present scheme has lower time complexity. Especially when the chosen punctured LDPC code achieves the Shannon capacity, the proposed reconciliation scheme can remove the information that has been leaked to an eavesdropper in the quantum transmission phase. Therefore, there is no information leaked to the eavesdropper after the reconciliation stage. This indicates that the privacy amplification algorithm of the postprocessing procedure is no more needed after the reconciliation process. These features lead to a higher secret key rate, optimal performance, and availability for the involved quantum key distribution scheme.
Bilayer Protograph Codes for Half-Duplex Relay Channels
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; VanNguyen, Thuy; Nosratinia, Aria
2013-01-01
Direct to Earth return links are limited by the size and power of lander devices. A standard alternative is provided by a two-hops return link: a proximity link (from lander to orbiter relay) and a deep-space link (from orbiter relay to Earth). Although direct to Earth return links are limited by the size and power of lander devices, using an additional link and a proposed coding for relay channels, one can obtain a more reliable signal. Although significant progress has been made in the relay coding problem, existing codes must be painstakingly optimized to match to a single set of channel conditions, many of them do not offer easy encoding, and most of them do not have structured design. A high-performing LDPC (low-density parity-check) code for the relay channel addresses simultaneously two important issues: a code structure that allows low encoding complexity, and a flexible rate-compatible code that allows matching to various channel conditions. Most of the previous high-performance LDPC codes for the relay channel are tightly optimized for a given channel quality, and are not easily adapted without extensive re-optimization for various channel conditions. This code for the relay channel combines structured design and easy encoding with rate compatibility to allow adaptation to the three links involved in the relay channel, and furthermore offers very good performance. The proposed code is constructed by synthesizing a bilayer structure with a pro to graph. In addition to the contribution to relay encoding, an improved family of protograph codes was produced for the point-to-point AWGN (additive white Gaussian noise) channel whose high-rate members enjoy thresholds that are within 0.07 dB of capacity. These LDPC relay codes address three important issues in an integrative manner: low encoding complexity, modular structure allowing for easy design, and rate compatibility so that the code can be easily matched to a variety of channel conditions without extensive re-optimization. The main problem of half-duplex relay coding can be reduced to the simultaneous design of two codes at two rates and two SNRs (signal-to-noise ratios), such that one is a subset of the other. This problem can be addressed by forceful optimization, but a clever method of addressing this problem is via the bilayer lengthened (BL) LDPC structure. This method uses a bilayer Tanner graph to make the two codes while using a concept of "parity forwarding" with subsequent successive decoding that removes the need to directly address the issue of uneven SNRs among the symbols of a given codeword. This method is attractive in that it addresses some of the main issues in the design of relay codes, but it does not by itself give rise to highly structured codes with simple encoding, nor does it give rate-compatible codes. The main contribution of this work is to construct a class of codes that simultaneously possess a bilayer parity- forwarding mechanism, while also benefiting from the properties of protograph codes having an easy encoding, a modular design, and being a rate-compatible code.
Adaptive channel estimation for soft decision decoding over non-Gaussian optical channel
NASA Astrophysics Data System (ADS)
Xiang, Jing-song; Miao, Tao-tao; Huang, Sheng; Liu, Huan-lin
2016-10-01
An adaptive priori likelihood ratio (LLR) estimation method is proposed over non-Gaussian channel in the intensity modulation/direct detection (IM/DD) optical communication systems. Using the nonparametric histogram and the weighted least square linear fitting in the tail regions, the LLR is estimated and used for the soft decision decoding of the low-density parity-check (LDPC) codes. This method can adapt well to the three main kinds of intensity modulation/direct detection (IM/DD) optical channel, i.e., the chi-square channel, the Webb-Gaussian channel and the additive white Gaussian noise (AWGN) channel. The performance penalty of channel estimation is neglected.
Accumulate Repeat Accumulate Coded Modulation
NASA Technical Reports Server (NTRS)
Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung
2004-01-01
In this paper we propose an innovative coded modulation scheme called 'Accumulate Repeat Accumulate Coded Modulation' (ARA coded modulation). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes that are combined with high level modulation. Thus at the decoder belief propagation can be used for iterative decoding of ARA coded modulation on a graph, provided a demapper transforms the received in-phase and quadrature samples to reliability of the bits.
Nonlinear detection for a high rate extended binary phase shift keying system.
Chen, Xian-Qing; Wu, Le-Nan
2013-03-28
The algorithm and the results of a nonlinear detector using a machine learning technique called support vector machine (SVM) on an efficient modulation system with high data rate and low energy consumption is presented in this paper. Simulation results showed that the performance achieved by the SVM detector is comparable to that of a conventional threshold decision (TD) detector. The two detectors detect the received signals together with the special impacting filter (SIF) that can improve the energy utilization efficiency. However, unlike the TD detector, the SVM detector concentrates not only on reducing the BER of the detector, but also on providing accurate posterior probability estimates (PPEs), which can be used as soft-inputs of the LDPC decoder. The complexity of this detector is considered in this paper by using four features and simplifying the decision function. In addition, a bandwidth efficient transmission is analyzed with both SVM and TD detector. The SVM detector is more robust to sampling rate than TD detector. We find that the SVM is suitable for extended binary phase shift keying (EBPSK) signal detection and can provide accurate posterior probability for LDPC decoding.
Nonlinear Detection for a High Rate Extended Binary Phase Shift Keying System
Chen, Xian-Qing; Wu, Le-Nan
2013-01-01
The algorithm and the results of a nonlinear detector using a machine learning technique called support vector machine (SVM) on an efficient modulation system with high data rate and low energy consumption is presented in this paper. Simulation results showed that the performance achieved by the SVM detector is comparable to that of a conventional threshold decision (TD) detector. The two detectors detect the received signals together with the special impacting filter (SIF) that can improve the energy utilization efficiency. However, unlike the TD detector, the SVM detector concentrates not only on reducing the BER of the detector, but also on providing accurate posterior probability estimates (PPEs), which can be used as soft-inputs of the LDPC decoder. The complexity of this detector is considered in this paper by using four features and simplifying the decision function. In addition, a bandwidth efficient transmission is analyzed with both SVM and TD detector. The SVM detector is more robust to sampling rate than TD detector. We find that the SVM is suitable for extended binary phase shift keying (EBPSK) signal detection and can provide accurate posterior probability for LDPC decoding. PMID:23539034
Potts glass reflection of the decoding threshold for qudit quantum error correcting codes
NASA Astrophysics Data System (ADS)
Jiang, Yi; Kovalev, Alexey A.; Pryadko, Leonid P.
We map the maximum likelihood decoding threshold for qudit quantum error correcting codes to the multicritical point in generalized Potts gauge glass models, extending the map constructed previously for qubit codes. An n-qudit quantum LDPC code, where a qudit can be involved in up to m stabilizer generators, corresponds to a ℤd Potts model with n interaction terms which can couple up to m spins each. We analyze general properties of the phase diagram of the constructed model, give several bounds on the location of the transitions, bounds on the energy density of extended defects (non-local analogs of domain walls), and discuss the correlation functions which can be used to distinguish different phases in the original and the dual models. This research was supported in part by the Grants: NSF PHY-1415600 (AAK), NSF PHY-1416578 (LPP), and ARO W911NF-14-1-0272 (LPP).
Yang, Yang; Stanković, Vladimir; Xiong, Zixiang; Zhao, Wei
2009-03-01
Following recent works on the rate region of the quadratic Gaussian two-terminal source coding problem and limit-approaching code designs, this paper examines multiterminal source coding of two correlated, i.e., stereo, video sequences to save the sum rate over independent coding of both sequences. Two multiterminal video coding schemes are proposed. In the first scheme, the left sequence of the stereo pair is coded by H.264/AVC and used at the joint decoder to facilitate Wyner-Ziv coding of the right video sequence. The first I-frame of the right sequence is successively coded by H.264/AVC Intracoding and Wyner-Ziv coding. An efficient stereo matching algorithm based on loopy belief propagation is then adopted at the decoder to produce pixel-level disparity maps between the corresponding frames of the two decoded video sequences on the fly. Based on the disparity maps, side information for both motion vectors and motion-compensated residual frames of the right sequence are generated at the decoder before Wyner-Ziv encoding. In the second scheme, source splitting is employed on top of classic and Wyner-Ziv coding for compression of both I-frames to allow flexible rate allocation between the two sequences. Experiments with both schemes on stereo video sequences using H.264/AVC, LDPC codes for Slepian-Wolf coding of the motion vectors, and scalar quantization in conjunction with LDPC codes for Wyner-Ziv coding of the residual coefficients give a slightly lower sum rate than separate H.264/AVC coding of both sequences at the same video quality.
Joint Schemes for Physical Layer Security and Error Correction
ERIC Educational Resources Information Center
Adamo, Oluwayomi
2011-01-01
The major challenges facing resource constraint wireless devices are error resilience, security and speed. Three joint schemes are presented in this research which could be broadly divided into error correction based and cipher based. The error correction based ciphers take advantage of the properties of LDPC codes and Nordstrom Robinson code. A…
Encoders for block-circulant LDPC codes
NASA Technical Reports Server (NTRS)
Divsalar, Dariush (Inventor); Abbasfar, Aliazam (Inventor); Jones, Christopher R. (Inventor); Dolinar, Samuel J. (Inventor); Thorpe, Jeremy C. (Inventor); Andrews, Kenneth S. (Inventor); Yao, Kung (Inventor)
2009-01-01
Methods and apparatus to encode message input symbols in accordance with an accumulate-repeat-accumulate code with repetition three or four are disclosed. Block circulant matrices are used. A first method and apparatus make use of the block-circulant structure of the parity check matrix. A second method and apparatus use block-circulant generator matrices.
NASA Astrophysics Data System (ADS)
Fehenberger, Tobias
2018-02-01
This paper studies probabilistic shaping in a multi-span wavelength-division multiplexing optical fiber system with 64-ary quadrature amplitude modulation (QAM) input. In split-step fiber simulations and via an enhanced Gaussian noise model, three figures of merit are investigated, which are signal-to-noise ratio (SNR), achievable information rate (AIR) for capacity-achieving forward error correction (FEC) with bit-metric decoding, and the information rate achieved with low-density parity-check (LDPC) FEC. For the considered system parameters and different shaped input distributions, shaping is found to decrease the SNR by 0.3 dB yet simultaneously increases the AIR by up to 0.4 bit per 4D-symbol. The information rates of LDPC-coded modulation with shaped 64QAM input are improved by up to 0.74 bit per 4D-symbol, which is larger than the shaping gain when considering AIRs. This increase is attributed to the reduced coding gap of the higher-rate code that is used for decoding the nonuniform QAM input.
Analysis of soft-decision FEC on non-AWGN channels.
Cho, Junho; Xie, Chongjin; Winzer, Peter J
2012-03-26
Soft-decision forward error correction (SD-FEC) schemes are typically designed for additive white Gaussian noise (AWGN) channels. In a fiber-optic communication system, noise may be neither circularly symmetric nor Gaussian, thus violating an important assumption underlying SD-FEC design. This paper quantifies the impact of non-AWGN noise on SD-FEC performance for such optical channels. We use a conditionally bivariate Gaussian noise model (CBGN) to analyze the impact of correlations among the signal's two quadrature components, and assess the effect of CBGN on SD-FEC performance using the density evolution of low-density parity-check (LDPC) codes. On a CBGN channel generating severely elliptic noise clouds, it is shown that more than 3 dB of coding gain are attainable by utilizing correlation information. Our analyses also give insights into potential improvements of the detection performance for fiber-optic transmission systems assisted by SD-FEC.
NASA Astrophysics Data System (ADS)
Ma, Fanghui; Gao, Jian; Fu, Fang-Wei
2018-06-01
Let R={F}_q+v{F}_q+v2{F}_q be a finite non-chain ring, where q is an odd prime power and v^3=v. In this paper, we propose two methods of constructing quantum codes from (α +β v+γ v2)-constacyclic codes over R. The first one is obtained via the Gray map and the Calderbank-Shor-Steane construction from Euclidean dual-containing (α +β v+γ v2)-constacyclic codes over R. The second one is obtained via the Gray map and the Hermitian construction from Hermitian dual-containing (α +β v+γ v2)-constacyclic codes over R. As an application, some new non-binary quantum codes are obtained.
High performance reconciliation for continuous-variable quantum key distribution with LDPC code
NASA Astrophysics Data System (ADS)
Lin, Dakai; Huang, Duan; Huang, Peng; Peng, Jinye; Zeng, Guihua
2015-03-01
Reconciliation is a significant procedure in a continuous-variable quantum key distribution (CV-QKD) system. It is employed to extract secure secret key from the resulted string through quantum channel between two users. However, the efficiency and the speed of previous reconciliation algorithms are low. These problems limit the secure communication distance and the secure key rate of CV-QKD systems. In this paper, we proposed a high-speed reconciliation algorithm through employing a well-structured decoding scheme based on low density parity-check (LDPC) code. The complexity of the proposed algorithm is reduced obviously. By using a graphics processing unit (GPU) device, our method may reach a reconciliation speed of 25 Mb/s for a CV-QKD system, which is currently the highest level and paves the way to high-speed CV-QKD.
Design and performance investigation of LDPC-coded upstream transmission systems in IM/DD OFDM-PONs
NASA Astrophysics Data System (ADS)
Gong, Xiaoxue; Guo, Lei; Wu, Jingjing; Ning, Zhaolong
2016-12-01
In Intensity-Modulation Direct-Detection (IM/DD) Orthogonal Frequency Division Multiplexing Passive Optical Networks (OFDM-PONs), aside from Subcarrier-to-Subcarrier Intermixing Interferences (SSII) induced by square-law detection, the same laser frequency for data sending from Optical Network Units (ONUs) results in ONU-to-ONU Beating Interferences (OOBI) at the receiver. To mitigate those interferences, we design a Low-Density Parity Check (LDPC)-coded and spectrum-efficient upstream transmission system. A theoretical channel model is also derived, in order to analyze the detrimental factors influencing system performances. Simulation results demonstrate that the receiver sensitivity is improved 3.4 dB and 2.5 dB under QPSK and 8QAM, respectively, after 100 km Standard Single-Mode Fiber (SSMF) transmission. Furthermore, the spectrum efficiency can be improved by about 50%.
MIMO-OFDM System's Performance Using LDPC Codes for a Mobile Robot
NASA Astrophysics Data System (ADS)
Daoud, Omar; Alani, Omar
This work deals with the performance of a Sniffer Mobile Robot (SNFRbot)-based spatial multiplexed wireless Orthogonal Frequency Division Multiplexing (OFDM) transmission technology. The use of Multi-Input Multi-Output (MIMO)-OFDM technology increases the wireless transmission rate without increasing transmission power or bandwidth. A generic multilayer architecture of the SNFRbot is proposed with low power and low cost. Some experimental results are presented and show the efficiency of sniffing deadly gazes, sensing high temperatures and sending live videos of the monitored situation. Moreover, simulation results show the achieved performance by tackling the Peak-to-Average Power Ratio (PAPR) problem of the used technology using Low Density Parity Check (LDPC) codes; and the effect of combating the PAPR on the bit error rate (BER) and the signal to noise ratio (SNR) over a Doppler spread channel.
A new LDPC decoding scheme for PDM-8QAM BICM coherent optical communication system
NASA Astrophysics Data System (ADS)
Liu, Yi; Zhang, Wen-bo; Xi, Li-xia; Tang, Xian-feng; Zhang, Xiao-guang
2015-11-01
A new log-likelihood ratio (LLR) message estimation method is proposed for polarization-division multiplexing eight quadrature amplitude modulation (PDM-8QAM) bit-interleaved coded modulation (BICM) optical communication system. The formulation of the posterior probability is theoretically analyzed, and the way to reduce the pre-decoding bit error rate ( BER) of the low density parity check (LDPC) decoder for PDM-8QAM constellations is presented. Simulation results show that it outperforms the traditional scheme, i.e., the new post-decoding BER is decreased down to 50% of that of the traditional post-decoding algorithm.
2011-01-01
reliability, e.g., Turbo Codes [2] and Low Density Parity Check ( LDPC ) codes [3]. The challenge to apply both MIMO and ECC into wireless systems is on...REPORT Fixed-point Design of theLattice-reduction-aided Iterative Detection andDecoding Receiver for Coded MIMO Systems 14. ABSTRACT 16. SECURITY...illustrates the performance of coded LR aided detectors. 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES The views, opinions
A Low-Complexity and High-Performance 2D Look-Up Table for LDPC Hardware Implementation
NASA Astrophysics Data System (ADS)
Chen, Jung-Chieh; Yang, Po-Hui; Lain, Jenn-Kaie; Chung, Tzu-Wen
In this paper, we propose a low-complexity, high-efficiency two-dimensional look-up table (2D LUT) for carrying out the sum-product algorithm in the decoding of low-density parity-check (LDPC) codes. Instead of employing adders for the core operation when updating check node messages, in the proposed scheme, the main term and correction factor of the core operation are successfully merged into a compact 2D LUT. Simulation results indicate that the proposed 2D LUT not only attains close-to-optimal bit error rate performance but also enjoys a low complexity advantage that is suitable for hardware implementation.
Measurement Techniques for Clock Jitter
NASA Technical Reports Server (NTRS)
Lansdowne, Chatwin; Schlesinger, Adam
2012-01-01
NASA is in the process of modernizing its communications infrastructure to accompany the development of a Crew Exploration Vehicle (CEV) to replace the shuttle. With this effort comes the opportunity to infuse more advanced coded modulation techniques, including low-density parity-check (LDPC) codes that offer greater coding gains than the current capability. However, in order to take full advantage of these codes, the ground segment receiver synchronization loops must be able to operate at a lower signal-to-noise ratio (SNR) than supported by equipment currently in use.
A rate-compatible family of protograph-based LDPC codes built by expurgation and lengthening
NASA Technical Reports Server (NTRS)
Dolinar, Sam
2005-01-01
We construct a protograph-based rate-compatible family of low-density parity-check codes that cover a very wide range of rates from 1/2 to 16/17, perform within about 0.5 dB of their capacity limits for all rates, and can be decoded conveniently and efficiently with a common hardware implementation.
Landsat Data Continuity Mission (LDCM) - Optimizing X-Band Usage
NASA Technical Reports Server (NTRS)
Garon, H. M.; Gal-Edd, J. S.; Dearth, K. W.; Sank, V. I.
2010-01-01
The NASA version of the low-density parity check (LDPC) 7/8-rate code, shortened to the dimensions of (8160, 7136), has been implemented as the forward error correction (FEC) schema for the Landsat Data Continuity Mission (LDCM). This is the first flight application of this code. In order to place a 440 Msps link within the 375 MHz wide X band we found it necessary to heavily bandpass filter the satellite transmitter output . Despite the significant amplitude and phase distortions that accompanied the spectral truncation, the mission required BER is maintained at < 10(exp -12) with less than 2 dB of implementation loss. We utilized a band-pass filter designed ostensibly to replicate the link distortions to demonstrate link design viability. The same filter was then used to optimize the adaptive equalizer in the receiver employed at the terminus of the downlink. The excellent results we obtained could be directly attributed to the implementation of the LDPC code and the amplitude and phase compensation provided in the receiver. Similar results were obtained with receivers from several vendors.
Quantum Kronecker sum-product low-density parity-check codes with finite rate
NASA Astrophysics Data System (ADS)
Kovalev, Alexey A.; Pryadko, Leonid P.
2013-07-01
We introduce an ansatz for quantum codes which gives the hypergraph-product (generalized toric) codes by Tillich and Zémor and generalized bicycle codes by MacKay as limiting cases. The construction allows for both the lower and the upper bounds on the minimum distance; they scale as a square root of the block length. Many thus defined codes have a finite rate and limited-weight stabilizer generators, an analog of classical low-density parity-check (LDPC) codes. Compared to the hypergraph-product codes, hyperbicycle codes generally have a wider range of parameters; in particular, they can have a higher rate while preserving the estimated error threshold.
Accumulate-Repeat-Accumulate-Accumulate Codes
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Dolinar, Samuel; Thorpe, Jeremy
2007-01-01
Accumulate-repeat-accumulate-accumulate (ARAA) codes have been proposed, inspired by the recently proposed accumulate-repeat-accumulate (ARA) codes. These are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. ARAA codes can be regarded as serial turbolike codes or as a subclass of low-density parity-check (LDPC) codes, and, like ARA codes they have projected graph or protograph representations; these characteristics make it possible to design high-speed iterative decoders that utilize belief-propagation algorithms. The objective in proposing ARAA codes as a subclass of ARA codes was to enhance the error-floor performance of ARA codes while maintaining simple encoding structures and low maximum variable node degree.
A Simulation Testbed for Adaptive Modulation and Coding in Airborne Telemetry (Brief)
2014-10-01
SOQPSK 0.0085924 us 0.015231 kH2 10 1/2 20 Time Modulation/ Coding State ... .. . . D - 2/3 3/4 4/5 GTRI_B-‹#› MATLAB GUI Interface 8...802.11a) • Modulations: BPSK, QPSK, 16 QAM, 64 QAM • Cyclic Prefix Lengths • Number of Subcarriers • Coding • LDPC • Rates: 1/2, 2/3, 3/4, 4/5...and Coding in Airborne Telemetry (Brief) October 2014 DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited. Test
500 Gb/s free-space optical transmission over strong atmospheric turbulence channels.
Qu, Zhen; Djordjevic, Ivan B
2016-07-15
We experimentally demonstrate a high-spectral-efficiency, large-capacity, featured free-space-optical (FSO) transmission system by using low-density, parity-check (LDPC) coded quadrature phase shift keying (QPSK) combined with orbital angular momentum (OAM) multiplexing. The strong atmospheric turbulence channel is emulated by two spatial light modulators on which four randomly generated azimuthal phase patterns yielding the Andrews spectrum are recorded. The validity of such an approach is verified by reproducing the intensity distribution and irradiance correlation function (ICF) from the full-scale simulator. Excellent agreement of experimental, numerical, and analytical results is found. To reduce the phase distortion induced by the turbulence emulator, the inexpensive wavefront sensorless adaptive optics (AO) is used. To deal with remaining channel impairments, a large-girth LDPC code is used. To further improve the aggregate data rate, the OAM multiplexing is combined with WDM, and 500 Gb/s optical transmission over the strong atmospheric turbulence channels is demonstrated.
NASA Astrophysics Data System (ADS)
Chen, Jung-Chieh
This paper presents a low complexity algorithmic framework for finding a broadcasting schedule in a low-altitude satellite system, i. e., the satellite broadcast scheduling (SBS) problem, based on the recent modeling and computational methodology of factor graphs. Inspired by the huge success of the low density parity check (LDPC) codes in the field of error control coding, in this paper, we transform the SBS problem into an LDPC-like problem through a factor graph instead of using the conventional neural network approaches to solve the SBS problem. Based on a factor graph framework, the soft-information, describing the probability that each satellite will broadcast information to a terminal at a specific time slot, is exchanged among the local processing in the proposed framework via the sum-product algorithm to iteratively optimize the satellite broadcasting schedule. Numerical results show that the proposed approach not only can obtain optimal solution but also enjoys the low complexity suitable for integral-circuit implementation.
Optimum Boundaries of Signal-to-Noise Ratio for Adaptive Code Modulations
2017-11-14
1510–1521, Feb. 2015. [2]. Pursley, M. B. and Royster, T. C., “Adaptive-rate nonbinary LDPC coding for frequency - hop communications ,” IEEE...and this can cause a very narrowband noise near the center frequency during USRP signal acquisition and generation. This can cause a high BER...Final Report APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED. AIR FORCE RESEARCH LABORATORY Space Vehicles Directorate 3550 Aberdeen Ave
Isometries and binary images of linear block codes over ℤ4 + uℤ4 and ℤ8 + uℤ8
NASA Astrophysics Data System (ADS)
Sison, Virgilio; Remillion, Monica
2017-10-01
Let {{{F}}}2 be the binary field and ℤ2 r the residue class ring of integers modulo 2 r , where r is a positive integer. For the finite 16-element commutative local Frobenius non-chain ring ℤ4 + uℤ4, where u is nilpotent of index 2, two weight functions are considered, namely the Lee weight and the homogeneous weight. With the appropriate application of these weights, isometric maps from ℤ4 + uℤ4 to the binary spaces {{{F}}}24 and {{{F}}}28, respectively, are established via the composition of other weight-based isometries. The classical Hamming weight is used on the binary space. The resulting isometries are then applied to linear block codes over ℤ4+ uℤ4 whose images are binary codes of predicted length, which may or may not be linear. Certain lower and upper bounds on the minimum distances of the binary images are also derived in terms of the parameters of the ℤ4 + uℤ4 codes. Several new codes and their images are constructed as illustrative examples. An analogous procedure is performed successfully on the ring ℤ8 + uℤ8, where u 2 = 0, which is a commutative local Frobenius non-chain ring of order 64. It turns out that the method is possible in general for the class of rings ℤ2 r + uℤ2 r , where u 2 = 0, for any positive integer r, using the generalized Gray map from ℤ2 r to {{{F}}}2{2r-1}.
Soft-decision decoding techniques for linear block codes and their error performance analysis
NASA Technical Reports Server (NTRS)
Lin, Shu
1996-01-01
The first paper presents a new minimum-weight trellis-based soft-decision iterative decoding algorithm for binary linear block codes. The second paper derives an upper bound on the probability of block error for multilevel concatenated codes (MLCC). The bound evaluates difference in performance for different decompositions of some codes. The third paper investigates the bit error probability code for maximum likelihood decoding of binary linear codes. The fourth and final paper included in this report is concerns itself with the construction of multilevel concatenated block modulation codes using a multilevel concatenation scheme for the frequency non-selective Rayleigh fading channel.
Research on Formation of Microsatellite Communication with Genetic Algorithm
Wu, Guoqiang; Bai, Yuguang; Sun, Zhaowei
2013-01-01
For the formation of three microsatellites which fly in the same orbit and perform three-dimensional solid mapping for terra, this paper proposes an optimizing design method of space circular formation order based on improved generic algorithm and provides an intersatellite direct spread spectrum communication system. The calculating equation of LEO formation flying satellite intersatellite links is guided by the special requirements of formation-flying microsatellite intersatellite links, and the transmitter power is also confirmed throughout the simulation. The method of space circular formation order optimizing design based on improved generic algorithm is given, and it can keep formation order steady for a long time under various absorb impetus. The intersatellite direct spread spectrum communication system is also provided. It can be found that, when the distance is 1 km and the data rate is 1 Mbps, the input wave matches preferably with the output wave. And LDPC code can improve the communication performance. The correct capability of (512, 256) LDPC code is better than (2, 1, 7) convolution code, distinctively. The design system can satisfy the communication requirements of microsatellites. So, the presented method provides a significant theory foundation for formation-flying and intersatellite communication. PMID:24078796
Research on formation of microsatellite communication with genetic algorithm.
Wu, Guoqiang; Bai, Yuguang; Sun, Zhaowei
2013-01-01
For the formation of three microsatellites which fly in the same orbit and perform three-dimensional solid mapping for terra, this paper proposes an optimizing design method of space circular formation order based on improved generic algorithm and provides an intersatellite direct spread spectrum communication system. The calculating equation of LEO formation flying satellite intersatellite links is guided by the special requirements of formation-flying microsatellite intersatellite links, and the transmitter power is also confirmed throughout the simulation. The method of space circular formation order optimizing design based on improved generic algorithm is given, and it can keep formation order steady for a long time under various absorb impetus. The intersatellite direct spread spectrum communication system is also provided. It can be found that, when the distance is 1 km and the data rate is 1 Mbps, the input wave matches preferably with the output wave. And LDPC code can improve the communication performance. The correct capability of (512, 256) LDPC code is better than (2, 1, 7) convolution code, distinctively. The design system can satisfy the communication requirements of microsatellites. So, the presented method provides a significant theory foundation for formation-flying and intersatellite communication.
LDPC decoder with a limited-precision FPGA-based floating-point multiplication coprocessor
NASA Astrophysics Data System (ADS)
Moberly, Raymond; O'Sullivan, Michael; Waheed, Khurram
2007-09-01
Implementing the sum-product algorithm, in an FPGA with an embedded processor, invites us to consider a tradeoff between computational precision and computational speed. The algorithm, known outside of the signal processing community as Pearl's belief propagation, is used for iterative soft-decision decoding of LDPC codes. We determined the feasibility of a coprocessor that will perform product computations. Our FPGA-based coprocessor (design) performs computer algebra with significantly less precision than the standard (e.g. integer, floating-point) operations of general purpose processors. Using synthesis, targeting a 3,168 LUT Xilinx FPGA, we show that key components of a decoder are feasible and that the full single-precision decoder could be constructed using a larger part. Soft-decision decoding by the iterative belief propagation algorithm is impacted both positively and negatively by a reduction in the precision of the computation. Reducing precision reduces the coding gain, but the limited-precision computation can operate faster. A proposed solution offers custom logic to perform computations with less precision, yet uses the floating-point format to interface with the software. Simulation results show the achievable coding gain. Synthesis results help theorize the the full capacity and performance of an FPGA-based coprocessor.
Neural network decoder for quantum error correcting codes
NASA Astrophysics Data System (ADS)
Krastanov, Stefan; Jiang, Liang
Artificial neural networks form a family of extremely powerful - albeit still poorly understood - tools used in anything from image and sound recognition through text generation to, in our case, decoding. We present a straightforward Recurrent Neural Network architecture capable of deducing the correcting procedure for a quantum error-correcting code from a set of repeated stabilizer measurements. We discuss the fault-tolerance of our scheme and the cost of training the neural network for a system of a realistic size. Such decoders are especially interesting when applied to codes, like the quantum LDPC codes, that lack known efficient decoding schemes.
NASA Astrophysics Data System (ADS)
He, Jing; Dai, Min; Chen, Qinghui; Deng, Rui; Xiang, Changqing; Chen, Lin
2017-07-01
In this paper, an effective bit-loading combined with adaptive LDPC code rate algorithm is proposed and investigated in software reconfigurable multiband UWB over fiber system. To compensate the power fading and chromatic dispersion for the high frequency of multiband OFDM UWB signal transmission over standard single mode fiber (SSMF), a Mach-Zehnder modulator (MZM) with negative chirp parameter is utilized. In addition, the negative power penalty of -1 dB for 128 QAM multiband OFDM UWB signal are measured at the hard-decision forward error correction (HD-FEC) limitation of 3.8 × 10-3 after 50 km SSMF transmission. The experimental results show that, compared to the fixed coding scheme with the code rate of 75%, the signal-to-noise (SNR) is improved by 2.79 dB for 128 QAM multiband OFDM UWB system after 100 km SSMF transmission using ALCR algorithm. Moreover, by employing bit-loading combined with ALCR algorithm, the bit error rate (BER) performance of system can be further promoted effectively. The simulation results present that, at the HD-FEC limitation, the value of Q factor is improved by 3.93 dB at the SNR of 19.5 dB over 100 km SSMF transmission, compared to the fixed modulation with uncoded scheme at the same spectrum efficiency (SE).
Advanced error-prediction LDPC with temperature compensation for highly reliable SSDs
NASA Astrophysics Data System (ADS)
Tokutomi, Tsukasa; Tanakamaru, Shuhei; Iwasaki, Tomoko Ogura; Takeuchi, Ken
2015-09-01
To improve the reliability of NAND Flash memory based solid-state drives (SSDs), error-prediction LDPC (EP-LDPC) has been proposed for multi-level-cell (MLC) NAND Flash memory (Tanakamaru et al., 2012, 2013), which is effective for long retention times. However, EP-LDPC is not as effective for triple-level cell (TLC) NAND Flash memory, because TLC NAND Flash has higher error rates and is more sensitive to program-disturb error. Therefore, advanced error-prediction LDPC (AEP-LDPC) has been proposed for TLC NAND Flash memory (Tokutomi et al., 2014). AEP-LDPC can correct errors more accurately by precisely describing the error phenomena. In this paper, the effects of AEP-LDPC are investigated in a 2×nm TLC NAND Flash memory with temperature characterization. Compared with LDPC-with-BER-only, the SSD's data-retention time is increased by 3.4× and 9.5× at room-temperature (RT) and 85 °C, respectively. Similarly, the acceptable BER is increased by 1.8× and 2.3×, respectively. Moreover, AEP-LDPC can correct errors with pre-determined tables made at higher temperatures to shorten the measurement time before shipping. Furthermore, it is found that one table can cover behavior over a range of temperatures in AEP-LDPC. As a result, the total table size can be reduced to 777 kBytes, which makes this approach more practical.
Sparsening Filter Design for Iterative Soft-Input Soft-Output Detectors
2012-02-29
filter/detector structure. Since the BP detector itself is unaltered from [1], it can accommodate a system employing channel codes such as LDPC encoding...considered in [1], or can readily be extended to the MIMO case with, for example, space-time coding as in [2,8]. Since our focus is on the design of...simplex method of [15], since it was already available in Matlab , via the “fminsearch” function. 6 Cost surfaces To visualize the cost surfaces, consider
High-speed architecture for the decoding of trellis-coded modulation
NASA Technical Reports Server (NTRS)
Osborne, William P.
1992-01-01
Since 1971, when the Viterbi Algorithm was introduced as the optimal method of decoding convolutional codes, improvements in circuit technology, especially VLSI, have steadily increased its speed and practicality. Trellis-Coded Modulation (TCM) combines convolutional coding with higher level modulation (non-binary source alphabet) to provide forward error correction and spectral efficiency. For binary codes, the current stare-of-the-art is a 64-state Viterbi decoder on a single CMOS chip, operating at a data rate of 25 Mbps. Recently, there has been an interest in increasing the speed of the Viterbi Algorithm by improving the decoder architecture, or by reducing the algorithm itself. Designs employing new architectural techniques are now in existence, however these techniques are currently applied to simpler binary codes, not to TCM. The purpose of this report is to discuss TCM architectural considerations in general, and to present the design, at the logic gate level, or a specific TCM decoder which applies these considerations to achieve high-speed decoding.
Quantum image coding with a reference-frame-independent scheme
NASA Astrophysics Data System (ADS)
Chapeau-Blondeau, François; Belin, Etienne
2016-07-01
For binary images, or bit planes of non-binary images, we investigate the possibility of a quantum coding decodable by a receiver in the absence of reference frames shared with the emitter. Direct image coding with one qubit per pixel and non-aligned frames leads to decoding errors equivalent to a quantum bit-flip noise increasing with the misalignment. We show the feasibility of frame-invariant coding by using for each pixel a qubit pair prepared in one of two controlled entangled states. With just one common axis shared between the emitter and receiver, exact decoding for each pixel can be obtained by means of two two-outcome projective measurements operating separately on each qubit of the pair. With strictly no alignment information between the emitter and receiver, exact decoding can be obtained by means of a two-outcome projective measurement operating jointly on the qubit pair. In addition, the frame-invariant coding is shown much more resistant to quantum bit-flip noise compared to the direct non-invariant coding. For a cost per pixel of two (entangled) qubits instead of one, complete frame-invariant image coding and enhanced noise resistance are thus obtained.
Low-Density Parity-Check Code Design Techniques to Simplify Encoding
NASA Astrophysics Data System (ADS)
Perez, J. M.; Andrews, K.
2007-11-01
This work describes a method for encoding low-density parity-check (LDPC) codes based on the accumulate-repeat-4-jagged-accumulate (AR4JA) scheme, using the low-density parity-check matrix H instead of the dense generator matrix G. The use of the H matrix to encode allows a significant reduction in memory consumption and provides the encoder design a great flexibility. Also described are new hardware-efficient codes, based on the same kind of protographs, which require less memory storage and area, allowing at the same time a reduction in the encoding delay.
System on a Chip Real-Time Emulation (SOCRE)
2006-09-01
code ) i Table of Contents Preface...emulation platform included LDPC decoders, A/V and radio applications Port BEE flow to Emulation Platforms, SOC Technologies One of the key tasks of the...Once the design has been described within Simulink, the designer runs the BEE design flow within Matlab using the bee_xps interface. At this point
Golay sequences coded coherent optical OFDM for long-haul transmission
NASA Astrophysics Data System (ADS)
Qin, Cui; Ma, Xiangrong; Hua, Tao; Zhao, Jing; Yu, Huilong; Zhang, Jian
2017-09-01
We propose to use binary Golay sequences in coherent optical orthogonal frequency division multiplexing (CO-OFDM) to improve the long-haul transmission performance. The Golay sequences are generated by binary Reed-Muller codes, which have low peak-to-average power ratio and certain error correction capability. A low-complexity decoding algorithm for the Golay sequences is then proposed to recover the signal. Under same spectral efficiency, the QPSK modulated OFDM with binary Golay sequences coding with and without discrete Fourier transform (DFT) spreading (DFTS-QPSK-GOFDM and QPSK-GOFDM) are compared with the normal BPSK modulated OFDM with and without DFT spreading (DFTS-BPSK-OFDM and BPSK-OFDM) after long-haul transmission. At a 7% forward error correction code threshold (Q2 factor of 8.5 dB), it is shown that DFTS-QPSK-GOFDM outperforms DFTS-BPSK-OFDM by extending the transmission distance by 29% and 18%, in non-dispersion managed and dispersion managed links, respectively.
Combining Ratio Estimation for Low Density Parity Check (LDPC) Coding
NASA Technical Reports Server (NTRS)
Mahmoud, Saad; Hi, Jianjun
2012-01-01
The Low Density Parity Check (LDPC) Code decoding algorithm make use of a scaled receive signal derived from maximizing the log-likelihood ratio of the received signal. The scaling factor (often called the combining ratio) in an AWGN channel is a ratio between signal amplitude and noise variance. Accurately estimating this ratio has shown as much as 0.6 dB decoding performance gain. This presentation briefly describes three methods for estimating the combining ratio: a Pilot-Guided estimation method, a Blind estimation method, and a Simulation-Based Look-Up table. The Pilot Guided Estimation method has shown that the maximum likelihood estimates of signal amplitude is the mean inner product of the received sequence and the known sequence, the attached synchronization marker (ASM) , and signal variance is the difference of the mean of the squared received sequence and the square of the signal amplitude. This method has the advantage of simplicity at the expense of latency since several frames worth of ASMs. The Blind estimation method s maximum likelihood estimator is the average of the product of the received signal with the hyperbolic tangent of the product combining ratio and the received signal. The root of this equation can be determined by an iterative binary search between 0 and 1 after normalizing the received sequence. This method has the benefit of requiring one frame of data to estimate the combining ratio which is good for faster changing channels compared to the previous method, however it is computationally expensive. The final method uses a look-up table based on prior simulated results to determine signal amplitude and noise variance. In this method the received mean signal strength is controlled to a constant soft decision value. The magnitude of the deviation is averaged over a predetermined number of samples. This value is referenced in a look up table to determine the combining ratio that prior simulation associated with the average magnitude of the deviation. This method is more complicated than the Pilot-Guided Method due to the gain control circuitry, but does not have the real-time computation complexity of the Blind Estimation method. Each of these methods can be used to provide an accurate estimation of the combining ratio, and the final selection of the estimation method depends on other design constraints.
Coded Modulation in C and MATLAB
NASA Technical Reports Server (NTRS)
Hamkins, Jon; Andrews, Kenneth S.
2011-01-01
This software, written separately in C and MATLAB as stand-alone packages with equivalent functionality, implements encoders and decoders for a set of nine error-correcting codes and modulators and demodulators for five modulation types. The software can be used as a single program to simulate the performance of such coded modulation. The error-correcting codes implemented are the nine accumulate repeat-4 jagged accumulate (AR4JA) low-density parity-check (LDPC) codes, which have been approved for international standardization by the Consultative Committee for Space Data Systems, and which are scheduled to fly on a series of NASA missions in the Constellation Program. The software implements the encoder and decoder functions, and contains compressed versions of generator and parity-check matrices used in these operations.
Clustering and Dimensionality Reduction to Discover Interesting Patterns in Binary Data
NASA Astrophysics Data System (ADS)
Palumbo, Francesco; D'Enza, Alfonso Iodice
The attention towards binary data coding increased consistently in the last decade due to several reasons. The analysis of binary data characterizes several fields of application, such as market basket analysis, DNA microarray data, image mining, text mining and web-clickstream mining. The paper illustrates two different approaches exploiting a profitable combination of clustering and dimensionality reduction for the identification of non-trivial association structures in binary data. An application in the Association Rules framework supports the theory with the empirical evidence.
Low-complexity video encoding method for wireless image transmission in capsule endoscope.
Takizawa, Kenichi; Hamaguchi, Kiyoshi
2010-01-01
This paper presents a low-complexity video encoding method applicable for wireless image transmission in capsule endoscopes. This encoding method is based on Wyner-Ziv theory, in which side information available at a transmitter is treated as side information at its receiver. Therefore complex processes in video encoding, such as estimation of the motion vector, are moved to the receiver side, which has a larger-capacity battery. As a result, the encoding process is only to decimate coded original data through channel coding. We provide a performance evaluation for a low-density parity check (LDPC) coding method in the AWGN channel.
The COBAIN (COntact Binary Atmospheres with INterpolation) Code for Radiative Transfer
NASA Astrophysics Data System (ADS)
Kochoska, Angela; Prša, Andrej; Horvat, Martin
2018-01-01
Standard binary star modeling codes make use of pre-existing solutions of the radiative transfer equation in stellar atmospheres. The various model atmospheres available today are consistently computed for single stars, under different assumptions - plane-parallel or spherical atmosphere approximation, local thermodynamical equilibrium (LTE) or non-LTE (NLTE), etc. However, they are nonetheless being applied to contact binary atmospheres by populating the surface corresponding to each component separately and neglecting any mixing that would typically occur at the contact boundary. In addition, single stellar atmosphere models do not take into account irradiance from a companion star, which can pose a serious problem when modeling close binaries. 1D atmosphere models are also solved under the assumption of an atmosphere in hydrodynamical equilibrium, which is not necessarily the case for contact atmospheres, as the potentially different densities and temperatures can give rise to flows that play a key role in the heat and radiation transfer.To resolve the issue of erroneous modeling of contact binary atmospheres using single star atmosphere tables, we have developed a generalized radiative transfer code for computation of the normal emergent intensity of a stellar surface, given its geometry and internal structure. The code uses a regular mesh of equipotential surfaces in a discrete set of spherical coordinates, which are then used to interpolate the values of the structural quantites (density, temperature, opacity) in any given point inside the mesh. The radiaitive transfer equation is numerically integrated in a set of directions spanning the unit sphere around each point and iterated until the intensity values for all directions and all mesh points converge within a given tolerance. We have found that this approach, albeit computationally expensive, is the only one that can reproduce the intensity distribution of the non-symmetric contact binary atmosphere and can be used with any existing or new model of the structure of contact binaries. We present results on several test objects and future prospects of the implementation in state-of-the-art binary star modeling software.
Linear chirp phase perturbing approach for finding binary phased codes
NASA Astrophysics Data System (ADS)
Li, Bing C.
2017-05-01
Binary phased codes have many applications in communication and radar systems. These applications require binary phased codes to have low sidelobes in order to reduce interferences and false detection. Barker codes are the ones that satisfy these requirements and they have lowest maximum sidelobes. However, Barker codes have very limited code lengths (equal or less than 13) while many applications including low probability of intercept radar, and spread spectrum communication, require much higher code lengths. The conventional techniques of finding binary phased codes in literatures include exhaust search, neural network, and evolutionary methods, and they all require very expensive computation for large code lengths. Therefore these techniques are limited to find binary phased codes with small code lengths (less than 100). In this paper, by analyzing Barker code, linear chirp, and P3 phases, we propose a new approach to find binary codes. Experiments show that the proposed method is able to find long low sidelobe binary phased codes (code length >500) with reasonable computational cost.
High performance and cost effective CO-OFDM system aided by polar code.
Liu, Ling; Xiao, Shilin; Fang, Jiafei; Zhang, Lu; Zhang, Yunhao; Bi, Meihua; Hu, Weisheng
2017-02-06
A novel polar coded coherent optical orthogonal frequency division multiplexing (CO-OFDM) system is proposed and demonstrated through experiment for the first time. The principle of a polar coded CO-OFDM signal is illustrated theoretically and the suitable polar decoding method is discussed. Results show that the polar coded CO-OFDM signal achieves a net coding gain (NCG) of more than 10 dB at bit error rate (BER) of 10-3 over 25-Gb/s 480-km transmission in comparison with conventional CO-OFDM. Also, compared to the 25-Gb/s low-density parity-check (LDPC) coded CO-OFDM 160-km system, the polar code provides a NCG of 0.88 dB @BER = 10-3. Moreover, the polar code can relieve the laser linewidth requirement massively to get a more cost-effective CO-OFDM system.
Composite hot subdwarf binaries - I. The spectroscopically confirmed sdB sample
NASA Astrophysics Data System (ADS)
Vos, Joris; Németh, Péter; Vučković, Maja; Østensen, Roy; Parsons, Steven
2018-01-01
Hot subdwarf-B (sdB) stars in long-period binaries are found to be on eccentric orbits, even though current binary-evolution theory predicts that these objects are circularized before the onset of Roche lobe overflow (RLOF). To increase our understanding of binary interaction processes during the RLOF phase, we started a long-term observing campaign to study wide sdB binaries. In this paper, we present a sample of composite binary sdBs, and the results of the spectral analysis of nine such systems. The grid search in stellar parameters (GSSP) code is used to derive atmospheric parameters for the cool companions. To cross-check our results and also to characterize the hot subdwarfs, we used the independent XTGRID code, which employs TLUSTY non-local thermodynamic equilibrium models to derive atmospheric parameters for the sdB component and PHOENIX synthetic spectra for the cool companions. The independent GSSP and XTGRID codes are found to show good agreement for three test systems that have atmospheric parameters available in the literature. Based on the rotational velocity of the companions, we make an estimate for the mass accreted during the RLOF phase and the minimum duration of that phase. We find that the mass transfer to the companion is minimal during the subdwarf formation.
Future capabilities for the Deep Space Network
NASA Technical Reports Server (NTRS)
Berner, J. B.; Bryant, S. H.; Andrews, K. S.
2004-01-01
This paper will look at three new capabilities that are in different stages of development. First, turbo decoding, which provides improved telemetry performance for data rates up to about 1 Mbps, will be discussed. Next, pseudo-noise ranging will be presented. Pseudo-noise ranging has several advantages over the current sequential ranging, anmely easier operations, improved performance, and the capability to be used in a regenerative implementation on a spacecraft. Finally, Low Density Parity Check decoding will be discussed. LDPC codes can provide performance that matches or slightly exceed turbo codes, but are designed for use in the 10 Mbps range.
16QAM transmission with 5.2 bits/s/Hz spectral efficiency over transoceanic distance.
Zhang, H; Cai, J-X; Batshon, H G; Davidson, C R; Sun, Y; Mazurczyk, M; Foursa, D G; Pilipetskii, A; Mohs, G; Bergano, Neal S
2012-05-21
We transmit 160 x 100 G PDM RZ 16 QAM channels with 5.2 bits/s/Hz spectral efficiency over 6,860 km. There are more than 3 billion 16 QAM symbols, i.e., 12 billion bits, processed in total. Using coded modulation and iterative decoding between a MAP decoder and an LDPC based FEC all channels are decoded with no remaining errors.
NASA Technical Reports Server (NTRS)
Lin, Shu; Rhee, Dojun
1996-01-01
This paper is concerned with construction of multilevel concatenated block modulation codes using a multi-level concatenation scheme for the frequency non-selective Rayleigh fading channel. In the construction of multilevel concatenated modulation code, block modulation codes are used as the inner codes. Various types of codes (block or convolutional, binary or nonbinary) are being considered as the outer codes. In particular, we focus on the special case for which Reed-Solomon (RS) codes are used as the outer codes. For this special case, a systematic algebraic technique for constructing q-level concatenated block modulation codes is proposed. Codes have been constructed for certain specific values of q and compared with the single-level concatenated block modulation codes using the same inner codes. A multilevel closest coset decoding scheme for these codes is proposed.
Performance Analysis of New Binary User Codes for DS-CDMA Communication
NASA Astrophysics Data System (ADS)
Usha, Kamle; Jaya Sankar, Kottareddygari
2016-03-01
This paper analyzes new binary spreading codes through correlation properties and also presents their performance over additive white Gaussian noise (AWGN) channel. The proposed codes are constructed using gray and inverse gray codes. In this paper, a n-bit gray code appended by its n-bit inverse gray code to construct the 2n-length binary user codes are discussed. Like Walsh codes, these binary user codes are available in sizes of power of two and additionally code sets of length 6 and their even multiples are also available. The simple construction technique and generation of code sets of different sizes are the salient features of the proposed codes. Walsh codes and gold codes are considered for comparison in this paper as these are popularly used for synchronous and asynchronous multi user communications respectively. In the current work the auto and cross correlation properties of the proposed codes are compared with those of Walsh codes and gold codes. Performance of the proposed binary user codes for both synchronous and asynchronous direct sequence CDMA communication over AWGN channel is also discussed in this paper. The proposed binary user codes are found to be suitable for both synchronous and asynchronous DS-CDMA communication.
NASA Astrophysics Data System (ADS)
Yakut, Kadri
2015-08-01
We present a detailed study of KIC 2306740, an eccentric double-lined eclipsing binary system with a pulsating component.Archive Kepler satellite data were combined with newly obtained spectroscopic data with 4.2\\,m William Herschel Telescope(WHT). This allowed us to determine rather precise orbital and physical parameters of this long period, slightly eccentric, pulsating binary system. Duplicity effects are extracted from the light curve in order to estimate pulsation frequencies from the residuals.We modelled the detached binary system assuming non-conservative evolution models with the Cambridge STARS(TWIN) code.
Batshon, Hussam G; Djordjevic, Ivan; Xu, Lei; Wang, Ting
2010-06-21
In this paper, we present a modified coded hybrid subcarrier/ amplitude/phase/polarization (H-SAPP) modulation scheme as a technique capable of achieving beyond 400 Gb/s single-channel transmission over optical channels. The modified H-SAPP scheme profits from the available resources in addition to geometry to increase the bandwidth efficiency of the transmission system, and so increases the aggregate rate of the system. In this report we present the modified H-SAPP scheme and focus on an example that allows 11 bits/Symbol that can achieve 440 Gb/s transmission using components of 50 Giga Symbol/s (GS/s).
Frame Synchronization Without Attached Sync Markers
NASA Technical Reports Server (NTRS)
Hamkins, Jon
2011-01-01
We describe a method to synchronize codeword frames without making use of attached synchronization markers (ASMs). Instead, the synchronizer identifies the code structure present in the received symbols, by operating the decoder for a handful of iterations at each possible symbol offset and forming an appropriate metric. This method is computationally more complex and doesn't perform as well as frame synchronizers that utilize an ASM; nevertheless, the new synchronizer acquires frame synchronization in about two seconds when using a 600 kbps software decoder, and would take about 15 milliseconds on prototype hardware. It also eliminates the need for the ASMs, which is an attractive feature for short uplink codes whose coding gain would be diminished by the overheard of ASM bits. The lack of ASMs also would simplify clock distribution for the AR4JA low-density parity-check (LDPC) codes and adds a small amount to the coding gain as well (up to 0.2 dB).
On the Existence of t-Identifying Codes in Undirected De Bruijn Networks
2015-08-04
remaining cases remain open. Additionally, we show that the eccentricity of the undirected non-binary de Bruijn graph is n. 15. SUBJECT TERMS...Additionally, we show that the eccentricity of the undirected non-binary de Bruijn graph is n. 1 Introduction and Background Let x ∈ V (G), and...we must have d(y, x) = n + 2. In other words, Theorem 2.5 tells us the eccentricity of every node in the graph B(d, n) is n for d ≥ 3, and so the
NASA Astrophysics Data System (ADS)
Hinder, Ian; Buonanno, Alessandra; Boyle, Michael; Etienne, Zachariah B.; Healy, James; Johnson-McDaniel, Nathan K.; Nagar, Alessandro; Nakano, Hiroyuki; Pan, Yi; Pfeiffer, Harald P.; Pürrer, Michael; Reisswig, Christian; Scheel, Mark A.; Schnetter, Erik; Sperhake, Ulrich; Szilágyi, Bela; Tichy, Wolfgang; Wardell, Barry; Zenginoğlu, Anıl; Alic, Daniela; Bernuzzi, Sebastiano; Bode, Tanja; Brügmann, Bernd; Buchman, Luisa T.; Campanelli, Manuela; Chu, Tony; Damour, Thibault; Grigsby, Jason D.; Hannam, Mark; Haas, Roland; Hemberger, Daniel A.; Husa, Sascha; Kidder, Lawrence E.; Laguna, Pablo; London, Lionel; Lovelace, Geoffrey; Lousto, Carlos O.; Marronetti, Pedro; Matzner, Richard A.; Mösta, Philipp; Mroué, Abdul; Müller, Doreen; Mundim, Bruno C.; Nerozzi, Andrea; Paschalidis, Vasileios; Pollney, Denis; Reifenberger, George; Rezzolla, Luciano; Shapiro, Stuart L.; Shoemaker, Deirdre; Taracchini, Andrea; Taylor, Nicholas W.; Teukolsky, Saul A.; Thierfelder, Marcus; Witek, Helvi; Zlochower, Yosef
2013-01-01
The Numerical-Relativity-Analytical-Relativity (NRAR) collaboration is a joint effort between members of the numerical relativity, analytical relativity and gravitational-wave data analysis communities. The goal of the NRAR collaboration is to produce numerical-relativity simulations of compact binaries and use them to develop accurate analytical templates for the LIGO/Virgo Collaboration to use in detecting gravitational-wave signals and extracting astrophysical information from them. We describe the results of the first stage of the NRAR project, which focused on producing an initial set of numerical waveforms from binary black holes with moderate mass ratios and spins, as well as one non-spinning binary configuration which has a mass ratio of 10. All of the numerical waveforms are analysed in a uniform and consistent manner, with numerical errors evaluated using an analysis code created by members of the NRAR collaboration. We compare previously-calibrated, non-precessing analytical waveforms, notably the effective-one-body (EOB) and phenomenological template families, to the newly-produced numerical waveforms. We find that when the binary's total mass is ˜100-200M⊙, current EOB and phenomenological models of spinning, non-precessing binary waveforms have overlaps above 99% (for advanced LIGO) with all of the non-precessing-binary numerical waveforms with mass ratios ⩽4, when maximizing over binary parameters. This implies that the loss of event rate due to modelling error is below 3%. Moreover, the non-spinning EOB waveforms previously calibrated to five non-spinning waveforms with mass ratio smaller than 6 have overlaps above 99.7% with the numerical waveform with a mass ratio of 10, without even maximizing on the binary parameters.
Gene-specific cell labeling using MiMIC transposons
Gnerer, Joshua P.; Venken, Koen J. T.; Dierick, Herman A.
2015-01-01
Binary expression systems such as GAL4/UAS, LexA/LexAop and QF/QUAS have greatly enhanced the power of Drosophila as a model organism by allowing spatio-temporal manipulation of gene function as well as cell and neural circuit function. Tissue-specific expression of these heterologous transcription factors relies on random transposon integration near enhancers or promoters that drive the binary transcription factor embedded in the transposon. Alternatively, gene-specific promoter elements are directly fused to the binary factor within the transposon followed by random or site-specific integration. However, such insertions do not consistently recapitulate endogenous expression. We used Minos-Mediated Integration Cassette (MiMIC) transposons to convert host loci into reliable gene-specific binary effectors. MiMIC transposons allow recombinase-mediated cassette exchange to modify the transposon content. We developed novel exchange cassettes to convert coding intronic MiMIC insertions into gene-specific binary factor protein-traps. In addition, we expanded the set of binary factor exchange cassettes available for non-coding intronic MiMIC insertions. We show that binary factor conversions of different insertions in the same locus have indistinguishable expression patterns, suggesting that they reliably reflect endogenous gene expression. We show the efficacy and broad applicability of these new tools by dissecting the cellular expression patterns of the Drosophila serotonin receptor gene family. PMID:25712101
Extra Solar Planet Science With a Non Redundant Mask
NASA Astrophysics Data System (ADS)
Minto, Stefenie Nicolet; Sivaramakrishnan, Anand; Greenbaum, Alexandra; St. Laurent, Kathryn; Thatte, Deeparshi
2017-01-01
To detect faint planetary companions near a much brighter star, at the Resolution Limit of the James Webb Space Telescope (JWST) the Near-Infrared Imager and Slitless Spectrograph (NIRISS) will use a non-redundant aperture mask (NRM) for high contrast imaging. I simulated NIRISS data of stars with and without planets, and run these through the code that measures interferometric image properties to determine how sensitive planetary detection is to our knowledge of instrumental parameters, starting with the pixel scale. I measured the position angle, distance, and contrast ratio of the planet (with respect to the star) to characterize the binary pair. To organize this data I am creating programs that will automatically and systematically explore multi-dimensional instrument parameter spaces and binary characteristics. In the future my code will also be applied to explore any other parameters we can simulate.
Learning Discriminative Binary Codes for Large-scale Cross-modal Retrieval.
Xu, Xing; Shen, Fumin; Yang, Yang; Shen, Heng Tao; Li, Xuelong
2017-05-01
Hashing based methods have attracted considerable attention for efficient cross-modal retrieval on large-scale multimedia data. The core problem of cross-modal hashing is how to learn compact binary codes that construct the underlying correlations between heterogeneous features from different modalities. A majority of recent approaches aim at learning hash functions to preserve the pairwise similarities defined by given class labels. However, these methods fail to explicitly explore the discriminative property of class labels during hash function learning. In addition, they usually discard the discrete constraints imposed on the to-be-learned binary codes, and compromise to solve a relaxed problem with quantization to obtain the approximate binary solution. Therefore, the binary codes generated by these methods are suboptimal and less discriminative to different classes. To overcome these drawbacks, we propose a novel cross-modal hashing method, termed discrete cross-modal hashing (DCH), which directly learns discriminative binary codes while retaining the discrete constraints. Specifically, DCH learns modality-specific hash functions for generating unified binary codes, and these binary codes are viewed as representative features for discriminative classification with class labels. An effective discrete optimization algorithm is developed for DCH to jointly learn the modality-specific hash function and the unified binary codes. Extensive experiments on three benchmark data sets highlight the superiority of DCH under various cross-modal scenarios and show its state-of-the-art performance.
INTRODUCING CAFein, A NEW COMPUTATIONAL TOOL FOR STELLAR PULSATIONS AND DYNAMIC TIDES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valsecchi, F.; Farr, W. M.; Willems, B.
2013-08-10
Here we present CAFein, a new computational tool for investigating radiative dissipation of dynamic tides in close binaries and of non-adiabatic, non-radial stellar oscillations in isolated stars in the linear regime. For the latter, CAFein computes the non-adiabatic eigenfrequencies and eigenfunctions of detailed stellar models. The code is based on the so-called Riccati method, a numerical algorithm that has been successfully applied to a variety of stellar pulsators, and which does not suffer from the major drawbacks of commonly used shooting and relaxation schemes. Here we present an extension of the Riccati method to investigate dynamic tides in close binaries.more » We demonstrate CAFein's capabilities as a stellar pulsation code both in the adiabatic and non-adiabatic regimes, by reproducing previously published eigenfrequencies of a polytrope, and by successfully identifying the unstable modes of a stellar model in the {beta} Cephei/SPB region of the Hertzsprung-Russell diagram. Finally, we verify CAFein's behavior in the dynamic tides regime by investigating the effects of dynamic tides on the eigenfunctions and orbital and spin evolution of massive main sequence stars in eccentric binaries, and of hot Jupiter host stars. The plethora of asteroseismic data provided by NASA's Kepler satellite, some of which include the direct detection of tidally excited stellar oscillations, make CAFein quite timely. Furthermore, the increasing number of observed short-period detached double white dwarfs (WDs) and the observed orbital decay in the tightest of such binaries open up a new possibility of investigating WD interiors through the effects of tides on their orbital evolution.« less
Castro-Chavez, Fernando
2012-01-01
Background Three binary representations of the genetic code according to the ancient I Ching of Fu-Xi will be presented, depending on their defragging capabilities by pairing based on three biochemical properties of the nucleic acids: H-bonds, Purine/Pyrimidine rings, and the Keto-enol/Amino-imino tautomerism, yielding the last pair a 32/32 single-strand self-annealed genetic code and I Ching tables. Methods Our working tool is the ancient binary I Ching's resulting genetic code chromosomes defragged by vertical and by horizontal pairing, reverse engineered into non-binaries of 2D rotating 4×4×4 circles and 8×8 squares and into one 3D 100% symmetrical 16×4 tetrahedron coupled to a functional tetrahedron with apical signaling and central hydrophobicity (codon formula: 4[1(1)+1(3)+1(4)+4(2)]; 5:5, 6:6 in man) forming a stella octangula, and compared to Nirenberg's 16×4 codon table (1965) pairing the first two nucleotides of the 64 codons in axis y. Results One horizontal and one vertical defragging had the start Met at the center. Two, both horizontal and vertical pairings produced two pairs of 2×8×4 genetic code chromosomes naturally arranged (M and I), rearranged by semi-introversion of central purines or pyrimidines (M' and I') and by clustering hydrophobic amino acids; their quasi-identity was disrupted by amino acids with odd codons (Met and Tyr pairing to Ile and TGA Stop); in all instances, the 64-grid 90° rotational ability was restored. Conclusions We defragged three I Ching representations of the genetic code while emphasizing Nirenberg's historical finding. The synthetic genetic code chromosomes obtained reflect the protective strategy of enzymes with a similar function, having both humans and mammals a biased G-C dominance of three H-bonds in the third nucleotide of their most used codons per amino acid, as seen in one chromosome of the i, M and M' genetic codes, while a two H-bond A-T dominance was found in their complementary chromosome, as seen in invertebrates and plants. The reverse engineering of chromosome I' into 2D rotating circles and squares was undertaken, yielding a 100% symmetrical 3D geometry which was coupled to a previously obtained genetic code tetrahedron in order to differentiate the start methionine from the methionine that is acting as a codifying non-start codon. PMID:23431415
Learning Compact Binary Face Descriptor for Face Recognition.
Lu, Jiwen; Liong, Venice Erin; Zhou, Xiuzhuang; Zhou, Jie
2015-10-01
Binary feature descriptors such as local binary patterns (LBP) and its variations have been widely used in many face recognition systems due to their excellent robustness and strong discriminative power. However, most existing binary face descriptors are hand-crafted, which require strong prior knowledge to engineer them by hand. In this paper, we propose a compact binary face descriptor (CBFD) feature learning method for face representation and recognition. Given each face image, we first extract pixel difference vectors (PDVs) in local patches by computing the difference between each pixel and its neighboring pixels. Then, we learn a feature mapping to project these pixel difference vectors into low-dimensional binary vectors in an unsupervised manner, where 1) the variance of all binary codes in the training set is maximized, 2) the loss between the original real-valued codes and the learned binary codes is minimized, and 3) binary codes evenly distribute at each learned bin, so that the redundancy information in PDVs is removed and compact binary codes are obtained. Lastly, we cluster and pool these binary codes into a histogram feature as the final representation for each face image. Moreover, we propose a coupled CBFD (C-CBFD) method by reducing the modality gap of heterogeneous faces at the feature level to make our method applicable to heterogeneous face recognition. Extensive experimental results on five widely used face datasets show that our methods outperform state-of-the-art face descriptors.
NASA Astrophysics Data System (ADS)
Nakamura, Yusuke; Hoshizawa, Taku
2016-09-01
Two methods for increasing the data capacity of a holographic data storage system (HDSS) were developed. The first method is called “run-length-limited (RLL) high-density recording”. An RLL modulation has the same effect as enlarging the pixel pitch; namely, it optically reduces the hologram size. Accordingly, the method doubles the raw-data recording density. The second method is called “RLL turbo signal processing”. The RLL turbo code consists of \\text{RLL}(1,∞ ) trellis modulation and an optimized convolutional code. The remarkable point of the developed turbo code is that it employs the RLL modulator and demodulator as parts of the error-correction process. The turbo code improves the capability of error correction more than a conventional LDPC code, even though interpixel interference is generated. These two methods will increase the data density 1.78-fold. Moreover, by simulation and experiment, a data density of 2.4 Tbit/in.2 is confirmed.
Learning Short Binary Codes for Large-scale Image Retrieval.
Liu, Li; Yu, Mengyang; Shao, Ling
2017-03-01
Large-scale visual information retrieval has become an active research area in this big data era. Recently, hashing/binary coding algorithms prove to be effective for scalable retrieval applications. Most existing hashing methods require relatively long binary codes (i.e., over hundreds of bits, sometimes even thousands of bits) to achieve reasonable retrieval accuracies. However, for some realistic and unique applications, such as on wearable or mobile devices, only short binary codes can be used for efficient image retrieval due to the limitation of computational resources or bandwidth on these devices. In this paper, we propose a novel unsupervised hashing approach called min-cost ranking (MCR) specifically for learning powerful short binary codes (i.e., usually the code length shorter than 100 b) for scalable image retrieval tasks. By exploring the discriminative ability of each dimension of data, MCR can generate one bit binary code for each dimension and simultaneously rank the discriminative separability of each bit according to the proposed cost function. Only top-ranked bits with minimum cost-values are then selected and grouped together to compose the final salient binary codes. Extensive experimental results on large-scale retrieval demonstrate that MCR can achieve comparative performance as the state-of-the-art hashing algorithms but with significantly shorter codes, leading to much faster large-scale retrieval.
NASA Astrophysics Data System (ADS)
de Schryver, C.; Weithoffer, S.; Wasenmüller, U.; Wehn, N.
2012-09-01
Channel coding is a standard technique in all wireless communication systems. In addition to the typically employed methods like convolutional coding, turbo coding or low density parity check (LDPC) coding, algebraic codes are used in many cases. For example, outer BCH coding is applied in the DVB-S2 standard for satellite TV broadcasting. A key operation for BCH and the related Reed-Solomon codes are multiplications in finite fields (Galois Fields), where extension fields of prime fields are used. A lot of architectures for multiplications in finite fields have been published over the last decades. This paper examines four different multiplier architectures in detail that offer the potential for very high throughputs. We investigate the implementation performance of these multipliers on FPGA technology in the context of channel coding. We study the efficiency of the multipliers with respect to area, frequency and throughput, as well as configurability and scalability. The implementation data of the fully verified circuits are provided for a Xilinx Virtex-4 device after place and route.
Binary weight distributions of some Reed-Solomon codes
NASA Technical Reports Server (NTRS)
Pollara, F.; Arnold, S.
1992-01-01
The binary weight distributions of the (7,5) and (15,9) Reed-Solomon (RS) codes and their duals are computed using the MacWilliams identities. Several mappings of symbols to bits are considered and those offering the largest binary minimum distance are found. These results are then used to compute bounds on the soft-decoding performance of these codes in the presence of additive Gaussian noise. These bounds are useful for finding large binary block codes with good performance and for verifying the performance obtained by specific soft-coding algorithms presently under development.
Gene-specific cell labeling using MiMIC transposons.
Gnerer, Joshua P; Venken, Koen J T; Dierick, Herman A
2015-04-30
Binary expression systems such as GAL4/UAS, LexA/LexAop and QF/QUAS have greatly enhanced the power of Drosophila as a model organism by allowing spatio-temporal manipulation of gene function as well as cell and neural circuit function. Tissue-specific expression of these heterologous transcription factors relies on random transposon integration near enhancers or promoters that drive the binary transcription factor embedded in the transposon. Alternatively, gene-specific promoter elements are directly fused to the binary factor within the transposon followed by random or site-specific integration. However, such insertions do not consistently recapitulate endogenous expression. We used Minos-Mediated Integration Cassette (MiMIC) transposons to convert host loci into reliable gene-specific binary effectors. MiMIC transposons allow recombinase-mediated cassette exchange to modify the transposon content. We developed novel exchange cassettes to convert coding intronic MiMIC insertions into gene-specific binary factor protein-traps. In addition, we expanded the set of binary factor exchange cassettes available for non-coding intronic MiMIC insertions. We show that binary factor conversions of different insertions in the same locus have indistinguishable expression patterns, suggesting that they reliably reflect endogenous gene expression. We show the efficacy and broad applicability of these new tools by dissecting the cellular expression patterns of the Drosophila serotonin receptor gene family. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Layered Wyner-Ziv video coding.
Xu, Qian; Xiong, Zixiang
2006-12-01
Following recent theoretical works on successive Wyner-Ziv coding (WZC), we propose a practical layered Wyner-Ziv video coder using the DCT, nested scalar quantization, and irregular LDPC code based Slepian-Wolf coding (or lossless source coding with side information at the decoder). Our main novelty is to use the base layer of a standard scalable video coder (e.g., MPEG-4/H.26L FGS or H.263+) as the decoder side information and perform layered WZC for quality enhancement. Similar to FGS coding, there is no performance difference between layered and monolithic WZC when the enhancement bitstream is generated in our proposed coder. Using an H.26L coded version as the base layer, experiments indicate that WZC gives slightly worse performance than FGS coding when the channel (for both the base and enhancement layers) is noiseless. However, when the channel is noisy, extensive simulations of video transmission over wireless networks conforming to the CDMA2000 1X standard show that H.26L base layer coding plus Wyner-Ziv enhancement layer coding are more robust against channel errors than H.26L FGS coding. These results demonstrate that layered Wyner-Ziv video coding is a promising new technique for video streaming over wireless networks.
NASA Astrophysics Data System (ADS)
Qin, Yi; Wang, Zhipeng; Wang, Hongjuan; Gong, Qiong
2018-07-01
We propose a binary image encryption method in joint transform correlator (JTC) by aid of the run-length encoding (RLE) and Quick Response (QR) code, which enables lossless retrieval of the primary image. The binary image is encoded with RLE to obtain the highly compressed data, and then the compressed binary image is further scrambled using a chaos-based method. The compressed and scrambled binary image is then transformed into one QR code that will be finally encrypted in JTC. The proposed method successfully, for the first time to our best knowledge, encodes a binary image into a QR code with the identical size of it, and therefore may probe a new way for extending the application of QR code in optical security. Moreover, the preprocessing operations, including RLE, chaos scrambling and the QR code translation, append an additional security level on JTC. We present digital results that confirm our approach.
δ Scuti-type pulsation in the hot component of the Algol-type binary system BG Peg
NASA Astrophysics Data System (ADS)
Şenyüz, T.; Soydugan, E.
2014-02-01
In this study, 23 Algol-type binary systems, which were selected as candidate binaries with pulsating components, were observed at the Çanakkale Onsekiz Mart University Observatory. One of these systems was BG Peg. Its hotter component shows δ Scuti-type light variations. Physical parameters of BG Peg were derived from modelling the V light curve using the Wilson-Devinney code. The frequency analysis shows that the pulsational component of the BG Peg system pulsates in two modes with periods of 0.039 and 0.047 d. Mode identification indicates that both modes are most likely non-radial l = 2 modes.
High-Performance CCSDS AOS Protocol Implementation in FPGA
NASA Technical Reports Server (NTRS)
Clare, Loren P.; Torgerson, Jordan L.; Pang, Jackson
2010-01-01
The Consultative Committee for Space Data Systems (CCSDS) Advanced Orbiting Systems (AOS) space data link protocol provides a framing layer between channel coding such as LDPC (low-density parity-check) and higher-layer link multiplexing protocols such as CCSDS Encapsulation Service, which is described in the following article. Recent advancement in RF modem technology has allowed multi-megabit transmission over space links. With this increase in data rate, the CCSDS AOS protocol implementation needs to be optimized to both reduce energy consumption and operate at a high rate.
SCaN Network Ground Station Receiver Performance for Future Service Support
NASA Technical Reports Server (NTRS)
Estabrook, Polly; Lee, Dennis; Cheng, Michael; Lau, Chi-Wung
2012-01-01
Objectives: Examine the impact of providing the newly standardized CCSDS Low Density Parity Check (LDPC) codes to the SCaN return data service on the SCaN SN and DSN ground stations receivers: SN Current Receiver: Integrated Receiver (IR). DSN Current Receiver: Downlink Telemetry and Tracking (DTT) Receiver. Early Commercial-Off-The-Shelf (COTS) prototype of the SN User Service Subsystem Component Replacement (USS CR) Narrow Band Receiver. Motivate discussion of general issues of ground station hardware design to enable simple and cheap modifications for support of future services.
NASA Astrophysics Data System (ADS)
Pal, Amrindra; Kumar, Santosh; Sharma, Sandeep
2017-05-01
Binary to octal and octal to binary code converter is a device that allows placing digital information from many inputs to many outputs. Any application of combinational logic circuit can be implemented by using external gates. In this paper, binary to octal and octal to binary code converter is proposed using electro-optic effect inside lithium-niobate based Mach-Zehnder interferometers (MZIs). The MZI structures have powerful capability to switching an optical input signal to a desired output port. The paper constitutes a mathematical description of the proposed device and thereafter simulation using MATLAB. The study is verified using beam propagation method (BPM).
Mechanisms of lectin and antibody-dependent polymorphonuclear leukocyte-mediated cytolysis.
Tsunawaki, S; Ikenami, M; Mizuno, D; Yamazaki, M
1983-04-01
The mechanisms of tumor lysis by polymorphonuclear leukocytes (PMNs) were investigated. In antibody-dependent PMN-mediated cytolysis (ADPC), sensitized tumor cells were specifically lysed via Fc receptors on PMNs. On the other hand, lectin-dependent PMN-mediated cytolysis (LDPC) caused nonspecific lysis of several murine tumors after recognition of carbohydrate moieties on the cell membrane of both PMNs and tumor cells. Both ADPC and LDPC depended on glycolysis, and cytotoxicity was mediated by reactive oxygen species; LDPC was dependent on superoxide and ADPC on the myeloperoxidase system. The participation of reactive oxygen species in PMN cytotoxicity was also demonstrated by pharmacological triggering with phorbol myristate acetate. These results indicate that reactive oxygen species have an important role In tumor killing by PMNs and that ADPC and LDPC have partly different cytolytic processes as well as different recognition steps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, Edward C.; Etzel, Paul B., E-mail: olsoneco@aol.com, E-mail: pbetzel@mail.sdsu.edu
We obtained full-orbit Iybvu intermediate-band photometry and CCD spectroscopy of the long-period Algol eclipsing binary RX Geminorum. Photometric solutions using the Wilson–Devinney code give a gainer rotation (hotter, mass-accreting component) about 15 times the synchronous rate. We describe a simple technique to detect departures from uniform rotation of the hotter component. These binaries radiate double-peaked Hα emission from a low-mass accretion disk around the gainer. We used an approximate non-LTE disk code to predict models in fair agreement with observations, except in the far wings of the emission profile, where the star–inner disk boundary layer emits extra radiation. Variations inmore » Hα emission derive from modulations in the transfer rate. A study of times of minima during the 20th century suggests that a perturbing third body is present near RX Gem.« less
Progressive transmission of images over fading channels using rate-compatible LDPC codes.
Pan, Xiang; Banihashemi, Amir H; Cuhadar, Aysegul
2006-12-01
In this paper, we propose a combined source/channel coding scheme for transmission of images over fading channels. The proposed scheme employs rate-compatible low-density parity-check codes along with embedded image coders such as JPEG2000 and set partitioning in hierarchical trees (SPIHT). The assignment of channel coding rates to source packets is performed by a fast trellis-based algorithm. We examine the performance of the proposed scheme over correlated and uncorrelated Rayleigh flat-fading channels with and without side information. Simulation results for the expected peak signal-to-noise ratio of reconstructed images, which are within 1 dB of the capacity upper bound over a wide range of channel signal-to-noise ratios, show considerable improvement compared to existing results under similar conditions. We also study the sensitivity of the proposed scheme in the presence of channel estimation error at the transmitter and demonstrate that under most conditions our scheme is more robust compared to existing schemes.
NASA Astrophysics Data System (ADS)
Castrillón, Mario A.; Morero, Damián A.; Agazzi, Oscar E.; Hueda, Mario R.
2015-08-01
The joint iterative detection and decoding (JIDD) technique has been proposed by Barbieri et al. (2007) with the objective of compensating the time-varying phase noise and constant frequency offset experienced in satellite communication systems. The application of JIDD to optical coherent receivers in the presence of laser frequency fluctuations has not been reported in prior literature. Laser frequency fluctuations are caused by mechanical vibrations, power supply noise, and other mechanisms. They significantly degrade the performance of the carrier phase estimator in high-speed intradyne coherent optical receivers. This work investigates the performance of the JIDD algorithm in multi-gigabit optical coherent receivers. We present simulation results of bit error rate (BER) for non-differential polarization division multiplexing (PDM)-16QAM modulation in a 200 Gb/s coherent optical system that includes an LDPC code with 20% overhead and net coding gain of 11.3 dB at BER = 10-15. Our study shows that JIDD with a pilot rate ⩽ 5 % compensates for both laser phase noise and laser frequency fluctuation. Furthermore, since JIDD is used with non-differential modulation formats, we find that gains in excess of 1 dB can be achieved over existing solutions based on an explicit carrier phase estimator with differential modulation. The impact of the fiber nonlinearities in dense wavelength division multiplexing (DWDM) systems is also investigated. Our results demonstrate that JIDD is an excellent candidate for application in next generation high-speed optical coherent receivers.
Elder, D
1984-06-07
The logic of genetic control of development may be based on a binary epigenetic code. This paper revises the author's previous scheme dealing with the numerology of annelid metamerism in these terms. Certain features of the code had been deduced to be combinatorial, others not. This paradoxical contrast is resolved here by the interpretation that these features relate to different operations of the code; the combinatiorial to coding identity of units, the non-combinatorial to coding production of units. Consideration of a second paradox in the theory of epigenetic coding leads to a new solution which further provides a basis for epimorphic regeneration, and may in particular throw light on the "regeneration-duplication" phenomenon. A possible test of the model is also put forward.
Method for coding low entrophy data
NASA Technical Reports Server (NTRS)
Yeh, Pen-Shu (Inventor)
1995-01-01
A method of lossless data compression for efficient coding of an electronic signal of information sources of very low information rate is disclosed. In this method, S represents a non-negative source symbol set, (s(sub 0), s(sub 1), s(sub 2), ..., s(sub N-1)) of N symbols with s(sub i) = i. The difference between binary digital data is mapped into symbol set S. Consecutive symbols in symbol set S are then paired into a new symbol set Gamma which defines a non-negative symbol set containing the symbols (gamma(sub m)) obtained as the extension of the original symbol set S. These pairs are then mapped into a comma code which is defined as a coding scheme in which every codeword is terminated with the same comma pattern, such as a 1. This allows a direct coding and decoding of the n-bit positive integer digital data differences without the use of codebooks.
An adaptable binary entropy coder
NASA Technical Reports Server (NTRS)
Kiely, A.; Klimesh, M.
2001-01-01
We present a novel entropy coding technique which is based on recursive interleaving of variable-to-variable length binary source codes. We discuss code design and performance estimation methods, as well as practical encoding and decoding algorithms.
NASA Tech Briefs, October 2009
NASA Technical Reports Server (NTRS)
2009-01-01
Topics covered include: Light-Driven Polymeric Bimorph Actuators; Guaranteeing Failsafe Operation of Extended-Scene Shack-Hartmann Wavefront Sensor Algorithm; Cloud Water Content Sensor for Sounding Balloons and Small UAVs; Pixelized Device Control Actuators for Large Adaptive Optics; T-Slide Linear Actuators; G4FET Implementations of Some Logic Circuits; Electrically Variable or Programmable Nonvolatile Capacitors; System for Automated Calibration of Vector Modulators; Complementary Paired G4FETs as Voltage-Controlled NDR Device; Three MMIC Amplifiers for the 120-to-200 GHz Frequency Band; Low-Noise MMIC Amplifiers for 120 to 180 GHz; Using Ozone To Clean and Passivate Oxygen-Handling Hardware; Metal Standards for Waveguide Characterization of Materials; Two-Piece Screens for Decontaminating Granular Material; Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer; Improved Method of Design for Folding Inflatable Shells; Ultra-Large Solar Sail; Cooperative Three-Robot System for Traversing Steep Slopes; Assemblies of Conformal Tanks; Microfluidic Pumps Containing Teflon[Trademark] AF Diaphragms; Transparent Conveyor of Dielectric Liquids or Particles; Multi-Cone Model for Estimating GPS Ionospheric Delays; High-Sensitivity GaN Microchemical Sensors; On the Divergence of the Velocity Vector in Real-Gas Flow; Progress Toward a Compact, Highly Stable Ion Clock; Instruments for Imaging from Far to Near; Reflectors Made from Membranes Stretched Between Beams; Integrated Risk and Knowledge Management Program -- IRKM-P; LDPC Codes with Minimum Distance Proportional to Block Size; Constructing LDPC Codes from Loop-Free Encoding Modules; MMICs with Radial Probe Transitions to Waveguides; Tests of Low-Noise MMIC Amplifier Module at 290 to 340 GHz; and Extending Newtonian Dynamics to Include Stochastic Processes.
Mal-Xtract: Hidden Code Extraction using Memory Analysis
NASA Astrophysics Data System (ADS)
Lim, Charles; Syailendra Kotualubun, Yohanes; Suryadi; Ramli, Kalamullah
2017-01-01
Software packer has been used effectively to hide the original code inside a binary executable, making it more difficult for existing signature based anti malware software to detect malicious code inside the executable. A new method of written and rewritten memory section is introduced to to detect the exact end time of unpacking routine and extract original code from packed binary executable using Memory Analysis running in an software emulated environment. Our experiment results show that at least 97% of the original code from the various binary executable packed with different software packers could be extracted. The proposed method has also been successfully extracted hidden code from recent malware family samples.
Multimodal Discriminative Binary Embedding for Large-Scale Cross-Modal Retrieval.
Wang, Di; Gao, Xinbo; Wang, Xiumei; He, Lihuo; Yuan, Bo
2016-10-01
Multimodal hashing, which conducts effective and efficient nearest neighbor search across heterogeneous data on large-scale multimedia databases, has been attracting increasing interest, given the explosive growth of multimedia content on the Internet. Recent multimodal hashing research mainly aims at learning the compact binary codes to preserve semantic information given by labels. The overwhelming majority of these methods are similarity preserving approaches which approximate pairwise similarity matrix with Hamming distances between the to-be-learnt binary hash codes. However, these methods ignore the discriminative property in hash learning process, which results in hash codes from different classes undistinguished, and therefore reduces the accuracy and robustness for the nearest neighbor search. To this end, we present a novel multimodal hashing method, named multimodal discriminative binary embedding (MDBE), which focuses on learning discriminative hash codes. First, the proposed method formulates the hash function learning in terms of classification, where the binary codes generated by the learned hash functions are expected to be discriminative. And then, it exploits the label information to discover the shared structures inside heterogeneous data. Finally, the learned structures are preserved for hash codes to produce similar binary codes in the same class. Hence, the proposed MDBE can preserve both discriminability and similarity for hash codes, and will enhance retrieval accuracy. Thorough experiments on benchmark data sets demonstrate that the proposed method achieves excellent accuracy and competitive computational efficiency compared with the state-of-the-art methods for large-scale cross-modal retrieval task.
Spherical hashing: binary code embedding with hyperspheres.
Heo, Jae-Pil; Lee, Youngwoon; He, Junfeng; Chang, Shih-Fu; Yoon, Sung-Eui
2015-11-01
Many binary code embedding schemes have been actively studied recently, since they can provide efficient similarity search, and compact data representations suitable for handling large scale image databases. Existing binary code embedding techniques encode high-dimensional data by using hyperplane-based hashing functions. In this paper we propose a novel hypersphere-based hashing function, spherical hashing, to map more spatially coherent data points into a binary code compared to hyperplane-based hashing functions. We also propose a new binary code distance function, spherical Hamming distance, tailored for our hypersphere-based binary coding scheme, and design an efficient iterative optimization process to achieve both balanced partitioning for each hash function and independence between hashing functions. Furthermore, we generalize spherical hashing to support various similarity measures defined by kernel functions. Our extensive experiments show that our spherical hashing technique significantly outperforms state-of-the-art techniques based on hyperplanes across various benchmarks with sizes ranging from one to 75 million of GIST, BoW and VLAD descriptors. The performance gains are consistent and large, up to 100 percent improvements over the second best method among tested methods. These results confirm the unique merits of using hyperspheres to encode proximity regions in high-dimensional spaces. Finally, our method is intuitive and easy to implement.
DNA as a Binary Code: How the Physical Structure of Nucleotide Bases Carries Information
ERIC Educational Resources Information Center
McCallister, Gary
2005-01-01
The DNA triplet code also functions as a binary code. Because double-ring compounds cannot bind to double-ring compounds in the DNA code, the sequence of bases classified simply as purines or pyrimidines can encode for smaller groups of possible amino acids. This is an intuitive approach to teaching the DNA code. (Contains 6 figures.)
Cross-indexing of binary SIFT codes for large-scale image search.
Liu, Zhen; Li, Houqiang; Zhang, Liyan; Zhou, Wengang; Tian, Qi
2014-05-01
In recent years, there has been growing interest in mapping visual features into compact binary codes for applications on large-scale image collections. Encoding high-dimensional data as compact binary codes reduces the memory cost for storage. Besides, it benefits the computational efficiency since the computation of similarity can be efficiently measured by Hamming distance. In this paper, we propose a novel flexible scale invariant feature transform (SIFT) binarization (FSB) algorithm for large-scale image search. The FSB algorithm explores the magnitude patterns of SIFT descriptor. It is unsupervised and the generated binary codes are demonstrated to be dispreserving. Besides, we propose a new searching strategy to find target features based on the cross-indexing in the binary SIFT space and original SIFT space. We evaluate our approach on two publicly released data sets. The experiments on large-scale partial duplicate image retrieval system demonstrate the effectiveness and efficiency of the proposed algorithm.
Probability Quantization for Multiplication-Free Binary Arithmetic Coding
NASA Technical Reports Server (NTRS)
Cheung, K. -M.
1995-01-01
A method has been developed to improve on Witten's binary arithmetic coding procedure of tracking a high value and a low value. The new method approximates the probability of the less probable symbol, which improves the worst-case coding efficiency.
25 Tb/s transmission over 5,530 km using 16QAM at 5.2 b/s/Hz spectral efficiency.
Cai, J-X; Batshon, H G; Zhang, H; Davidson, C R; Sun, Y; Mazurczyk, M; Foursa, D G; Sinkin, O; Pilipetskii, A; Mohs, G; Bergano, Neal S
2013-01-28
We transmit 250x100G PDM RZ-16QAM channels with 5.2 b/s/Hz spectral efficiency over 5,530 km using single-stage C-band EDFAs equalized to 40 nm. We use single parity check coded modulation and all channels are decoded with no errors after iterative decoding between a MAP decoder and an LDPC based FEC algorithm. We also observe that the optimum power spectral density is nearly independent of SE, signal baud rate or modulation format in a dispersion uncompensated system.
Performance of Low-Density Parity-Check Coded Modulation
NASA Astrophysics Data System (ADS)
Hamkins, J.
2011-02-01
This article presents the simulated performance of a family of nine AR4JA low-density parity-check (LDPC) codes when used with each of five modulations. In each case, the decoder inputs are codebit log-likelihood ratios computed from the received (noisy) modulation symbols using a general formula which applies to arbitrary modulations. Suboptimal soft-decision and hard-decision demodulators are also explored. Bit-interleaving and various mappings of bits to modulation symbols are considered. A number of subtle decoder algorithm details are shown to affect performance, especially in the error floor region. Among these are quantization dynamic range and step size, clipping degree-one variable nodes, "Jones clipping" of variable nodes, approximations of the min* function, and partial hard-limiting messages from check nodes. Using these decoder optimizations, all coded modulations simulated here are free of error floors down to codeword error rates below 10^{-6}. The purpose of generating this performance data is to aid system engineers in determining an appropriate code and modulation to use under specific power and bandwidth constraints, and to provide information needed to design a variable/adaptive coded modulation (VCM/ACM) system using the AR4JA codes. IPNPR Volume 42-185 Tagged File.txt
A Fast Optimization Method for General Binary Code Learning.
Shen, Fumin; Zhou, Xiang; Yang, Yang; Song, Jingkuan; Shen, Heng; Tao, Dacheng
2016-09-22
Hashing or binary code learning has been recognized to accomplish efficient near neighbor search, and has thus attracted broad interests in recent retrieval, vision and learning studies. One main challenge of learning to hash arises from the involvement of discrete variables in binary code optimization. While the widely-used continuous relaxation may achieve high learning efficiency, the pursued codes are typically less effective due to accumulated quantization error. In this work, we propose a novel binary code optimization method, dubbed Discrete Proximal Linearized Minimization (DPLM), which directly handles the discrete constraints during the learning process. Specifically, the discrete (thus nonsmooth nonconvex) problem is reformulated as minimizing the sum of a smooth loss term with a nonsmooth indicator function. The obtained problem is then efficiently solved by an iterative procedure with each iteration admitting an analytical discrete solution, which is thus shown to converge very fast. In addition, the proposed method supports a large family of empirical loss functions, which is particularly instantiated in this work by both a supervised and an unsupervised hashing losses, together with the bits uncorrelation and balance constraints. In particular, the proposed DPLM with a supervised `2 loss encodes the whole NUS-WIDE database into 64-bit binary codes within 10 seconds on a standard desktop computer. The proposed approach is extensively evaluated on several large-scale datasets and the generated binary codes are shown to achieve very promising results on both retrieval and classification tasks.
Self-Supervised Video Hashing With Hierarchical Binary Auto-Encoder.
Song, Jingkuan; Zhang, Hanwang; Li, Xiangpeng; Gao, Lianli; Wang, Meng; Hong, Richang
2018-07-01
Existing video hash functions are built on three isolated stages: frame pooling, relaxed learning, and binarization, which have not adequately explored the temporal order of video frames in a joint binary optimization model, resulting in severe information loss. In this paper, we propose a novel unsupervised video hashing framework dubbed self-supervised video hashing (SSVH), which is able to capture the temporal nature of videos in an end-to-end learning to hash fashion. We specifically address two central problems: 1) how to design an encoder-decoder architecture to generate binary codes for videos and 2) how to equip the binary codes with the ability of accurate video retrieval. We design a hierarchical binary auto-encoder to model the temporal dependencies in videos with multiple granularities, and embed the videos into binary codes with less computations than the stacked architecture. Then, we encourage the binary codes to simultaneously reconstruct the visual content and neighborhood structure of the videos. Experiments on two real-world data sets show that our SSVH method can significantly outperform the state-of-the-art methods and achieve the current best performance on the task of unsupervised video retrieval.
Self-Supervised Video Hashing With Hierarchical Binary Auto-Encoder
NASA Astrophysics Data System (ADS)
Song, Jingkuan; Zhang, Hanwang; Li, Xiangpeng; Gao, Lianli; Wang, Meng; Hong, Richang
2018-07-01
Existing video hash functions are built on three isolated stages: frame pooling, relaxed learning, and binarization, which have not adequately explored the temporal order of video frames in a joint binary optimization model, resulting in severe information loss. In this paper, we propose a novel unsupervised video hashing framework dubbed Self-Supervised Video Hashing (SSVH), that is able to capture the temporal nature of videos in an end-to-end learning-to-hash fashion. We specifically address two central problems: 1) how to design an encoder-decoder architecture to generate binary codes for videos; and 2) how to equip the binary codes with the ability of accurate video retrieval. We design a hierarchical binary autoencoder to model the temporal dependencies in videos with multiple granularities, and embed the videos into binary codes with less computations than the stacked architecture. Then, we encourage the binary codes to simultaneously reconstruct the visual content and neighborhood structure of the videos. Experiments on two real-world datasets (FCVID and YFCC) show that our SSVH method can significantly outperform the state-of-the-art methods and achieve the currently best performance on the task of unsupervised video retrieval.
Embedding intensity image into a binary hologram with strong noise resistant capability
NASA Astrophysics Data System (ADS)
Zhuang, Zhaoyong; Jiao, Shuming; Zou, Wenbin; Li, Xia
2017-11-01
A digital hologram can be employed as a host image for image watermarking applications to protect information security. Past research demonstrates that a gray level intensity image can be embedded into a binary Fresnel hologram by error diffusion method or bit truncation coding method. However, the fidelity of the retrieved watermark image from binary hologram is generally not satisfactory, especially when the binary hologram is contaminated with noise. To address this problem, we propose a JPEG-BCH encoding method in this paper. First, we employ the JPEG standard to compress the intensity image into a binary bit stream. Next, we encode the binary bit stream with BCH code to obtain error correction capability. Finally, the JPEG-BCH code is embedded into the binary hologram. By this way, the intensity image can be retrieved with high fidelity by a BCH-JPEG decoder even if the binary hologram suffers from serious noise contamination. Numerical simulation results show that the image quality of retrieved intensity image with our proposed method is superior to the state-of-the-art work reported.
NASA Astrophysics Data System (ADS)
Doi, Masafumi; Tokutomi, Tsukasa; Hachiya, Shogo; Kobayashi, Atsuro; Tanakamaru, Shuhei; Ning, Sheyang; Ogura Iwasaki, Tomoko; Takeuchi, Ken
2016-08-01
NAND flash memory’s reliability degrades with increasing endurance, retention-time and/or temperature. After a comprehensive evaluation of 1X nm triple-level cell (TLC) NAND flash, two highly reliable techniques are proposed. The first proposal, quick low-density parity check (Quick-LDPC), requires only one cell read in order to accurately estimate a bit-error rate (BER) that includes the effects of temperature, write and erase (W/E) cycles and retention-time. As a result, 83% read latency reduction is achieved compared to conventional AEP-LDPC. Also, W/E cycling is extended by 100% compared with conventional Bose-Chaudhuri-Hocquenghem (BCH) error-correcting code (ECC). The second proposal, dynamic threshold voltage optimization (DVO) has two parts, adaptive V Ref shift (AVS) and V TH space control (VSC). AVS reduces read error and latency by adaptively optimizing the reference voltage (V Ref) based on temperature, W/E cycles and retention-time. AVS stores the optimal V Ref’s in a table in order to enable one cell read. VSC further improves AVS by optimizing the voltage margins between V TH states. DVO reduces BER by 80%.
Fast Exact Search in Hamming Space With Multi-Index Hashing.
Norouzi, Mohammad; Punjani, Ali; Fleet, David J
2014-06-01
There is growing interest in representing image data and feature descriptors using compact binary codes for fast near neighbor search. Although binary codes are motivated by their use as direct indices (addresses) into a hash table, codes longer than 32 bits are not being used as such, as it was thought to be ineffective. We introduce a rigorous way to build multiple hash tables on binary code substrings that enables exact k-nearest neighbor search in Hamming space. The approach is storage efficient and straight-forward to implement. Theoretical analysis shows that the algorithm exhibits sub-linear run-time behavior for uniformly distributed codes. Empirical results show dramatic speedups over a linear scan baseline for datasets of up to one billion codes of 64, 128, or 256 bits.
Distributed Adaptive Binary Quantization for Fast Nearest Neighbor Search.
Xianglong Liu; Zhujin Li; Cheng Deng; Dacheng Tao
2017-11-01
Hashing has been proved an attractive technique for fast nearest neighbor search over big data. Compared with the projection based hashing methods, prototype-based ones own stronger power to generate discriminative binary codes for the data with complex intrinsic structure. However, existing prototype-based methods, such as spherical hashing and K-means hashing, still suffer from the ineffective coding that utilizes the complete binary codes in a hypercube. To address this problem, we propose an adaptive binary quantization (ABQ) method that learns a discriminative hash function with prototypes associated with small unique binary codes. Our alternating optimization adaptively discovers the prototype set and the code set of a varying size in an efficient way, which together robustly approximate the data relations. Our method can be naturally generalized to the product space for long hash codes, and enjoys the fast training linear to the number of the training data. We further devise a distributed framework for the large-scale learning, which can significantly speed up the training of ABQ in the distributed environment that has been widely deployed in many areas nowadays. The extensive experiments on four large-scale (up to 80 million) data sets demonstrate that our method significantly outperforms state-of-the-art hashing methods, with up to 58.84% performance gains relatively.
Interactive Exploration for Continuously Expanding Neuron Databases.
Li, Zhongyu; Metaxas, Dimitris N; Lu, Aidong; Zhang, Shaoting
2017-02-15
This paper proposes a novel framework to help biologists explore and analyze neurons based on retrieval of data from neuron morphological databases. In recent years, the continuously expanding neuron databases provide a rich source of information to associate neuronal morphologies with their functional properties. We design a coarse-to-fine framework for efficient and effective data retrieval from large-scale neuron databases. In the coarse-level, for efficiency in large-scale, we employ a binary coding method to compress morphological features into binary codes of tens of bits. Short binary codes allow for real-time similarity searching in Hamming space. Because the neuron databases are continuously expanding, it is inefficient to re-train the binary coding model from scratch when adding new neurons. To solve this problem, we extend binary coding with online updating schemes, which only considers the newly added neurons and update the model on-the-fly, without accessing the whole neuron databases. In the fine-grained level, we introduce domain experts/users in the framework, which can give relevance feedback for the binary coding based retrieval results. This interactive strategy can improve the retrieval performance through re-ranking the above coarse results, where we design a new similarity measure and take the feedback into account. Our framework is validated on more than 17,000 neuron cells, showing promising retrieval accuracy and efficiency. Moreover, we demonstrate its use case in assisting biologists to identify and explore unknown neurons. Copyright © 2017 Elsevier Inc. All rights reserved.
Fundamental finite key limits for one-way information reconciliation in quantum key distribution
NASA Astrophysics Data System (ADS)
Tomamichel, Marco; Martinez-Mateo, Jesus; Pacher, Christoph; Elkouss, David
2017-11-01
The security of quantum key distribution protocols is guaranteed by the laws of quantum mechanics. However, a precise analysis of the security properties requires tools from both classical cryptography and information theory. Here, we employ recent results in non-asymptotic classical information theory to show that one-way information reconciliation imposes fundamental limitations on the amount of secret key that can be extracted in the finite key regime. In particular, we find that an often used approximation for the information leakage during information reconciliation is not generally valid. We propose an improved approximation that takes into account finite key effects and numerically test it against codes for two probability distributions, that we call binary-binary and binary-Gaussian, that typically appear in quantum key distribution protocols.
Digital plus analog output encoder
NASA Technical Reports Server (NTRS)
Hafle, R. S. (Inventor)
1976-01-01
The disclosed encoder is adapted to produce both digital and analog output signals corresponding to the angular position of a rotary shaft, or the position of any other movable member. The digital signals comprise a series of binary signals constituting a multidigit code word which defines the angular position of the shaft with a degree of resolution which depends upon the number of digits in the code word. The basic binary signals are produced by photocells actuated by a series of binary tracks on a code disc or member. The analog signals are in the form of a series of ramp signals which are related in length to the least significant bit of the digital code word. The analog signals are derived from sine and cosine tracks on the code disc.
PopCORN: Hunting down the differences between binary population synthesis codes
NASA Astrophysics Data System (ADS)
Toonen, S.; Claeys, J. S. W.; Mennekens, N.; Ruiter, A. J.
2014-02-01
Context. Binary population synthesis (BPS) modelling is a very effective tool to study the evolution and properties of various types of close binary systems. The uncertainty in the parameters of the model and their effect on a population can be tested in a statistical way, which then leads to a deeper understanding of the underlying (sometimes poorly understood) physical processes involved. Several BPS codes exist that have been developed with different philosophies and aims. Although BPS has been very successful for studies of many populations of binary stars, in the particular case of the study of the progenitors of supernovae Type Ia, the predicted rates and ZAMS progenitors vary substantially between different BPS codes. Aims: To understand the predictive power of BPS codes, we study the similarities and differences in the predictions of four different BPS codes for low- and intermediate-mass binaries. We investigate the differences in the characteristics of the predicted populations, and whether they are caused by different assumptions made in the BPS codes or by numerical effects, e.g. a lack of accuracy in BPS codes. Methods: We compare a large number of evolutionary sequences for binary stars, starting with the same initial conditions following the evolution until the first (and when applicable, the second) white dwarf (WD) is formed. To simplify the complex problem of comparing BPS codes that are based on many (often different) assumptions, we equalise the assumptions as much as possible to examine the inherent differences of the four BPS codes. Results: We find that the simulated populations are similar between the codes. Regarding the population of binaries with one WD, there is very good agreement between the physical characteristics, the evolutionary channels that lead to the birth of these systems, and their birthrates. Regarding the double WD population, there is a good agreement on which evolutionary channels exist to create double WDs and a rough agreement on the characteristics of the double WD population. Regarding which progenitor systems lead to a single and double WD system and which systems do not, the four codes agree well. Most importantly, we find that for these two populations, the differences in the predictions from the four codes are not due to numerical differences, but because of different inherent assumptions. We identify critical assumptions for BPS studies that need to be studied in more detail. Appendices are available in electronic form at http://www.aanda.org
The progenitors of supernovae Type Ia
NASA Astrophysics Data System (ADS)
Toonen, Silvia
2014-09-01
Despite the significance of Type Ia supernovae (SNeIa) in many fields in astrophysics, SNeIa lack a theoretical explanation. SNeIa are generally thought to be thermonuclear explosions of carbon/oxygen (CO) white dwarfs (WDs). The canonical scenarios involve white dwarfs reaching the Chandrasekhar mass, either by accretion from a non-degenerate companion (single-degenerate channel, SD) or by a merger of two CO WDs (double-degenerate channel, DD). The study of SNeIa progenitors is a very active field of research for binary population synthesis (BPS) studies. The strength of the BPS approach is to study the effect of uncertainties in binary evolution on the macroscopic properties of a binary population, in order to constrain binary evolutionary processes. I will discuss the expected SNeIa rate from the BPS approach and the uncertainties in their progenitor evolution, and compare with current observations. I will also discuss the results of the POPCORN project in which four BPS codes were compared to better understand the differences in the predicted SNeIa rate of the SD channel. The goal of this project is to investigate whether differences in the simulated populations are due to numerical effects or whether they can be explained by differences in the input physics. I will show which assumptions in BPS codes affect the results most and hence should be studied in more detail.
On the existence of binary simplex codes. [using combinatorial construction
NASA Technical Reports Server (NTRS)
Taylor, H.
1977-01-01
Using a simple combinatorial construction, the existence of a binary simplex code with m codewords for all m is greater than or equal to 1 is proved. The problem of the shortest possible length is left open.
Extending the capability of GYRE to calculate tidally forced stellar oscillations
NASA Astrophysics Data System (ADS)
Guo, Zhao; Gies, Douglas R.
2016-01-01
Tidally forced oscillations have been observed in many eccentric binary systems, such as KOI-54 and many other 'heart beat stars'. The tidal response of the star can be calculated by solving a revised stellar oscillations equations.The open-source stellar oscillation code GYRE (Townsend & Teitler 2013) can be used to solve the free stellar oscillation equations in both adiabatic and non-adiabatic cases. It uses a novel matrix exponential method which avoids many difficulties of the classical shooting and relaxation method. The new version also includes the effect of rotation in traditional approximation.After showing the code flow of GYRE, we revise its subroutines and extend its capability to calculate tidallyforced oscillations in both adiabatic and non-adiabatic cases following the procedure in the CAFein code (Valsecchi et al. 2013). In the end, we compare the tidal eigenfunctions with those calculated from CAFein.More details of the revision and a simple version of the code in MATLAB can be obtained upon request.
POPCORN: A comparison of binary population synthesis codes
NASA Astrophysics Data System (ADS)
Claeys, J. S. W.; Toonen, S.; Mennekens, N.
2013-01-01
We compare the results of three binary population synthesis codes to understand the differences in their results. As a first result we find that when equalizing the assumptions the results are similar. The main differences arise from deviating physical input.
Cost-Sensitive Local Binary Feature Learning for Facial Age Estimation.
Lu, Jiwen; Liong, Venice Erin; Zhou, Jie
2015-12-01
In this paper, we propose a cost-sensitive local binary feature learning (CS-LBFL) method for facial age estimation. Unlike the conventional facial age estimation methods that employ hand-crafted descriptors or holistically learned descriptors for feature representation, our CS-LBFL method learns discriminative local features directly from raw pixels for face representation. Motivated by the fact that facial age estimation is a cost-sensitive computer vision problem and local binary features are more robust to illumination and expression variations than holistic features, we learn a series of hashing functions to project raw pixel values extracted from face patches into low-dimensional binary codes, where binary codes with similar chronological ages are projected as close as possible, and those with dissimilar chronological ages are projected as far as possible. Then, we pool and encode these local binary codes within each face image as a real-valued histogram feature for face representation. Moreover, we propose a cost-sensitive local binary multi-feature learning method to jointly learn multiple sets of hashing functions using face patches extracted from different scales to exploit complementary information. Our methods achieve competitive performance on four widely used face aging data sets.
NASA Astrophysics Data System (ADS)
Kumar, Santosh
2017-07-01
Binary to Binary coded decimal (BCD) converter is a basic building block for BCD processing. The last few decades have witnessed exponential rise in applications of binary coded data processing in the field of optical computing thus there is an eventual increase in demand of acceptable hardware platform for the same. Keeping this as an approach a novel design exploiting the preeminent feature of Mach-Zehnder Interferometer (MZI) is presented in this paper. Here, an optical 4-bit binary to binary coded decimal (BCD) converter utilizing the electro-optic effect of lithium niobate based MZI has been demonstrated. It exhibits the property of switching the optical signal from one port to the other, when a certain appropriate voltage is applied to its electrodes. The projected scheme is implemented using the combinations of cascaded electro-optic (EO) switches. Theoretical description along with mathematical formulation of the device is provided and the operation is analyzed through finite difference-Beam propagation method (FD-BPM). The fabrication techniques to develop the device are also discussed.
Rotation invariant deep binary hashing for fast image retrieval
NASA Astrophysics Data System (ADS)
Dai, Lai; Liu, Jianming; Jiang, Aiwen
2017-07-01
In this paper, we study how to compactly represent image's characteristics for fast image retrieval. We propose supervised rotation invariant compact discriminative binary descriptors through combining convolutional neural network with hashing. In the proposed network, binary codes are learned by employing a hidden layer for representing latent concepts that dominate on class labels. A loss function is proposed to minimize the difference between binary descriptors that describe reference image and the rotated one. Compared with some other supervised methods, the proposed network doesn't have to require pair-wised inputs for binary code learning. Experimental results show that our method is effective and achieves state-of-the-art results on the CIFAR-10 and MNIST datasets.
The fourfold way of the genetic code.
Jiménez-Montaño, Miguel Angel
2009-11-01
We describe a compact representation of the genetic code that factorizes the table in quartets. It represents a "least grammar" for the genetic language. It is justified by the Klein-4 group structure of RNA bases and codon doublets. The matrix of the outer product between the column-vector of bases and the corresponding row-vector V(T)=(C G U A), considered as signal vectors, has a block structure consisting of the four cosets of the KxK group of base transformations acting on doublet AA. This matrix, translated into weak/strong (W/S) and purine/pyrimidine (R/Y) nucleotide classes, leads to a code table with mixed and unmixed families in separate regions. A basic difference between them is the non-commuting (R/Y) doublets: AC/CA, GU/UG. We describe the degeneracy in the canonical code and the systematic changes in deviant codes in terms of the divisors of 24, employing modulo multiplication groups. We illustrate binary sub-codes characterizing mutations in the quartets. We introduce a decision-tree to predict the mode of tRNA recognition corresponding to each codon, and compare our result with related findings by Jestin and Soulé [Jestin, J.-L., Soulé, C., 2007. Symmetries by base substitutions in the genetic code predict 2' or 3' aminoacylation of tRNAs. J. Theor. Biol. 247, 391-394], and the rearrangements of the table by Delarue [Delarue, M., 2007. An asymmetric underlying rule in the assignment of codons: possible clue to a quick early evolution of the genetic code via successive binary choices. RNA 13, 161-169] and Rodin and Rodin [Rodin, S.N., Rodin, A.S., 2008. On the origin of the genetic code: signatures of its primordial complementarity in tRNAs and aminoacyl-tRNA synthetases. Heredity 100, 341-355], respectively.
Optimal periodic binary codes of lengths 28 to 64
NASA Technical Reports Server (NTRS)
Tyler, S.; Keston, R.
1980-01-01
Results from computer searches performed to find repeated binary phase coded waveforms with optimal periodic autocorrelation functions are discussed. The best results for lengths 28 to 64 are given. The code features of major concern are where (1) the peak sidelobe in the autocorrelation function is small and (2) the sum of the squares of the sidelobes in the autocorrelation function is small.
NASA Technical Reports Server (NTRS)
Ancheta, T. C., Jr.
1976-01-01
A method of using error-correcting codes to obtain data compression, called syndrome-source-coding, is described in which the source sequence is treated as an error pattern whose syndrome forms the compressed data. It is shown that syndrome-source-coding can achieve arbitrarily small distortion with the number of compressed digits per source digit arbitrarily close to the entropy of a binary memoryless source. A 'universal' generalization of syndrome-source-coding is formulated which provides robustly effective distortionless coding of source ensembles. Two examples are given, comparing the performance of noiseless universal syndrome-source-coding to (1) run-length coding and (2) Lynch-Davisson-Schalkwijk-Cover universal coding for an ensemble of binary memoryless sources.
INSPECTION MEANS FOR INDUCTION MOTORS
Williams, A.W.
1959-03-10
an appartus is descripbe for inspcting electric motors and more expecially an appartus for detecting falty end rings inn suqirrel cage inductio motors while the motor is running. In its broua aspects, the mer would around ce of reference tedtor means also itons in the phase ition of the An electronic circuit for conversion of excess-3 binary coded serial decimal numbers to straight binary coded serial decimal numbers is reported. The converter of the invention in its basic form generally coded pulse words of a type having an algebraic sign digit followed serially by a plurality of decimal digits in order of decreasing significance preceding a y algebraic sign digit followed serially by a plurality of decimal digits in order of decreasing significance. A switching martix is coupled to said input circuit and is internally connected to produce serial straight binary coded pulse groups indicative of the excess-3 coded input. A stepping circuit is coupled to the switching matrix and to a synchronous counter having a plurality of x decimal digit and plurality of y decimal digit indicator terminals. The stepping circuit steps the counter in synchornism with the serial binary pulse group output from the switching matrix to successively produce pulses at corresponding ones of the x and y decimal digit indicator terminals. The combinations of straight binary coded pulse groups and corresponding decimal digit indicator signals so produced comprise a basic output suitable for application to a variety of output apparatus.
Asymmetric Planetary Nebulae VI: the conference summary
NASA Astrophysics Data System (ADS)
De Marco, O.
2014-04-01
The Asymmetric Planetary Nebulae conference series, now in its sixth edition, aims to resolve the shaping mechanism of PN. Eighty percent of PN have non spherical shapes and during this conference the last nails in the coffin of single stars models for non spherical PN have been put. Binary theories abound but observational tests are lagging. The highlight of APN6 has been the arrival of ALMA which allowed us to measure magnetic fields on AGB stars systematically. AGB star halos, with their spiral patterns are now connected to PPN and PN halos. New models give us hope that binary parameters may be decoded from these images. In the post-AGB and pre-PN evolutionary phase the naked post-AGB stars present us with an increasingly curious puzzle as complexity is added to the phenomenologies of objects in transition between the AGB and the central star regimes. Binary central stars continue to be detected, including the first detection of longer period binaries, however a binary fraction is still at large. Hydro models of binary interactions still fail to give us results, if we make an exception for the wider types of binary interactions. More promise is shown by analytical considerations and models driven by simpler, 1D simulations such as those carried out with the code MESA. Large community efforts have given us more homogeneous datasets which will yield results for years to come. Examples are the ChanPlaN and HerPlaNe collaborations that have been working with the Chandra and Herschel space telescopes, respectively. Finally, the new kid in town is the intermediate-luminosity optical transient, a new class of events that may have contributed to forming several peculiar PN and pre-PN.
Co-operation of digital nonlinear equalizers and soft-decision LDPC FEC in nonlinear transmission.
Tanimura, Takahito; Oda, Shoichiro; Hoshida, Takeshi; Aoki, Yasuhiko; Tao, Zhenning; Rasmussen, Jens C
2013-12-30
We experimentally and numerically investigated the characteristics of 128 Gb/s dual polarization - quadrature phase shift keying signals received with two types of nonlinear equalizers (NLEs) followed by soft-decision (SD) low-density parity-check (LDPC) forward error correction (FEC). Successful co-operation among SD-FEC and NLEs over various nonlinear transmissions were demonstrated by optimization of parameters for NLEs.
Gong, Yunchao; Lazebnik, Svetlana; Gordo, Albert; Perronnin, Florent
2013-12-01
This paper addresses the problem of learning similarity-preserving binary codes for efficient similarity search in large-scale image collections. We formulate this problem in terms of finding a rotation of zero-centered data so as to minimize the quantization error of mapping this data to the vertices of a zero-centered binary hypercube, and propose a simple and efficient alternating minimization algorithm to accomplish this task. This algorithm, dubbed iterative quantization (ITQ), has connections to multiclass spectral clustering and to the orthogonal Procrustes problem, and it can be used both with unsupervised data embeddings such as PCA and supervised embeddings such as canonical correlation analysis (CCA). The resulting binary codes significantly outperform several other state-of-the-art methods. We also show that further performance improvements can result from transforming the data with a nonlinear kernel mapping prior to PCA or CCA. Finally, we demonstrate an application of ITQ to learning binary attributes or "classemes" on the ImageNet data set.
Binary translation using peephole translation rules
Bansal, Sorav; Aiken, Alex
2010-05-04
An efficient binary translator uses peephole translation rules to directly translate executable code from one instruction set to another. In a preferred embodiment, the translation rules are generated using superoptimization techniques that enable the translator to automatically learn translation rules for translating code from the source to target instruction set architecture.
Computer search for binary cyclic UEP codes of odd length up to 65
NASA Technical Reports Server (NTRS)
Lin, Mao-Chao; Lin, Chi-Chang; Lin, Shu
1990-01-01
Using an exhaustive computation, the unequal error protection capabilities of all binary cyclic codes of odd length up to 65 that have minimum distances at least 3 are found. For those codes that can only have upper bounds on their unequal error protection capabilities computed, an analytic method developed by Dynkin and Togonidze (1976) is used to show that the upper bounds meet the exact unequal error protection capabilities.
Cognitive Code-Division Channelization
2011-04-01
22] G. N. Karystinos and D. A. Pados, “New bounds on the total squared correlation and optimum design of DS - CDMA binary signature sets,” IEEE Trans...Commun., vol. 51, pp. 48-51, Jan. 2003. [23] C. Ding, M. Golin, and T. Klve, “Meeting the Welch and Karystinos- Pados bounds on DS - CDMA binary...receiver pair coexisting with a primary code-division multiple-access ( CDMA ) system. Our objective is to find the optimum transmitting power and code
Non-conservative evolution in Algols: where is the matter?
NASA Astrophysics Data System (ADS)
Deschamps, R.; Braun, K.; Jorissen, A.; Siess, L.; Baes, M.; Camps, P.
2015-05-01
Context. There is indirect evidence of non-conservative evolutions in Algols. However, the systemic mass-loss rate is poorly constrained by observations and generally set as a free parameter in binary-star evolution simulations. Moreover, systemic mass loss may lead to observational signatures that still need to be found. Aims: Within the "hotspot" ejection mechanism, some of the material that is initially transferred from the companion star via an accretion stream is expelled from the system due to the radiative energy released on the gainer's surface by the impacting material. The objective of this paper is to retrieve observable quantities from this process and to compare them with observations. Methods: We investigate the impact of the outflowing gas and the possible presence of dust grains on the spectral energy distribution (SED). We used the 1D plasma code Cloudy and compared the results with the 3D Monte-Carlo radiative transfer code Skirt for dusty simulations. The circumbinary mass-distribution and binary parameters were computed with state-of-the-art binary calculations done with the Binstar evolution code. Results: The outflowing material reduces the continuum flux level of the stellar SED in the optical and UV. Because of the time-dependence of this effect, it may help to distinguish between different ejection mechanisms. If present, dust leads to observable infrared excesses, even with low dust-to-gas ratios, and traces the cold material at large distances from the star. By searching for this dust emission in the WISE catalogue, we found a small number of Algols showing infrared excesses, among which the two rather surprising objects SX Aur and CZ Vel. We find that some binary B[e] stars show the same strong Balmer continuum as we predict with our models. However, direct evidence of systemic mass loss is probably not observable in genuine Algols, since these systems no longer eject mass through the hotspot mechanism. Furthermore, owing to its high velocity, the outflowing material dissipates in a few hundred years. If hot enough, the hotspot may produce highly ionised species, such as Si iv, and observable characteristics that are typical of W Ser systems. Conclusions: If present, systemic mass loss leads to clear observational imprints. These signatures are not to be found in genuine Algols but in the closely related β Lyraes, W Serpentis stars, double periodic variables, symbiotic Algols, and binary B[e] stars. We emphasise the need for further observations of such objects where systemic mass loss is most likely to occur. Appendices are available in electronic form at http://www.aanda.org
Binary encoding of multiplexed images in mixed noise.
Lalush, David S
2008-09-01
Binary coding of multiplexed signals and images has been studied in the context of spectroscopy with models of either purely constant or purely proportional noise, and has been shown to result in improved noise performance under certain conditions. We consider the case of mixed noise in an imaging system consisting of multiple individually-controllable sources (X-ray or near-infrared, for example) shining on a single detector. We develop a mathematical model for the noise in such a system and show that the noise is dependent on the properties of the binary coding matrix and on the average number of sources used for each code. Each binary matrix has a characteristic linear relationship between the ratio of proportional-to-constant noise and the noise level in the decoded image. We introduce a criterion for noise level, which is minimized via a genetic algorithm search. The search procedure results in the discovery of matrices that outperform the Hadamard S-matrices at certain levels of mixed noise. Simulation of a seven-source radiography system demonstrates that the noise model predicts trends and rank order of performance in regions of nonuniform images and in a simple tomosynthesis reconstruction. We conclude that the model developed provides a simple framework for analysis, discovery, and optimization of binary coding patterns used in multiplexed imaging systems.
Two-bit trinary full adder design based on restricted signed-digit numbers
NASA Astrophysics Data System (ADS)
Ahmed, J. U.; Awwal, A. A. S.; Karim, M. A.
1994-08-01
A 2-bit trinary full adder using a restricted set of a modified signed-digit trinary numeric system is designed. When cascaded together to design a multi-bit adder machine, the resulting system is able to operate at a speed independent of the size of the operands. An optical non-holographic content addressable memory based on binary coded arithmetic is considered for implementing the proposed adder.
Improvements to the construction of binary black hole initial data
NASA Astrophysics Data System (ADS)
Ossokine, Serguei; Foucart, Francois; Pfeiffer, Harald P.; Boyle, Michael; Szilágyi, Béla
2015-12-01
Construction of binary black hole initial data is a prerequisite for numerical evolutions of binary black holes. This paper reports improvements to the binary black hole initial data solver in the spectral Einstein code, to allow robust construction of initial data for mass-ratio above 10:1, and for dimensionless black hole spins above 0.9, while improving efficiency for lower mass-ratios and spins. We implement a more flexible domain decomposition, adaptive mesh refinement and an updated method for choosing free parameters. We also introduce a new method to control and eliminate residual linear momentum in initial data for precessing systems, and demonstrate that it eliminates gravitational mode mixing during the evolution. Finally, the new code is applied to construct initial data for hyperbolic scattering and for binaries with very small separation.
Nonlinear, nonbinary cyclic group codes
NASA Technical Reports Server (NTRS)
Solomon, G.
1992-01-01
New cyclic group codes of length 2(exp m) - 1 over (m - j)-bit symbols are introduced. These codes can be systematically encoded and decoded algebraically. The code rates are very close to Reed-Solomon (RS) codes and are much better than Bose-Chaudhuri-Hocquenghem (BCH) codes (a former alternative). The binary (m - j)-tuples are identified with a subgroup of the binary m-tuples which represents the field GF(2 exp m). Encoding is systematic and involves a two-stage procedure consisting of the usual linear feedback register (using the division or check polynomial) and a small table lookup. For low rates, a second shift-register encoding operation may be invoked. Decoding uses the RS error-correcting procedures for the m-tuple codes for m = 4, 5, and 6.
BHDD: Primordial black hole binaries code
NASA Astrophysics Data System (ADS)
Kavanagh, Bradley J.; Gaggero, Daniele; Bertone, Gianfranco
2018-06-01
BHDD (BlackHolesDarkDress) simulates primordial black hole (PBH) binaries that are clothed in dark matter (DM) halos. The software uses N-body simulations and analytical estimates to follow the evolution of PBH binaries formed in the early Universe.
NASA Astrophysics Data System (ADS)
Matsui, Chihiro; Kinoshita, Reika; Takeuchi, Ken
2018-04-01
A hybrid of storage class memory (SCM) and NAND flash is a promising technology for high performance storage. Error correction is inevitable on SCM and NAND flash because their bit error rate (BER) increases with write/erase (W/E) cycles, data retention, and program/read disturb. In addition, scaling and multi-level cell technologies increase BER. However, error-correcting code (ECC) degrades storage performance because of extra memory reading and encoding/decoding time. Therefore, applicable ECC strength of SCM and NAND flash is evaluated independently by fixing ECC strength of one memory in the hybrid storage. As a result, weak BCH ECC with small correctable bit is recommended for the hybrid storage with large SCM capacity because SCM is accessed frequently. In contrast, strong and long-latency LDPC ECC can be applied to NAND flash in the hybrid storage with large SCM capacity because large-capacity SCM improves the storage performance.
Binary Arithmetic From Hariot (CA, 1600 A.D.) to the Computer Age.
ERIC Educational Resources Information Center
Glaser, Anton
This history of binary arithmetic begins with details of Thomas Hariot's contribution and includes specific references to Hariot's manuscripts kept at the British Museum. A binary code developed by Sir Francis Bacon is discussed. Briefly mentioned are contributions to binary arithmetic made by Leibniz, Fontenelle, Gauss, Euler, Benzout, Barlow,…
Learning Rotation-Invariant Local Binary Descriptor.
Duan, Yueqi; Lu, Jiwen; Feng, Jianjiang; Zhou, Jie
2017-08-01
In this paper, we propose a rotation-invariant local binary descriptor (RI-LBD) learning method for visual recognition. Compared with hand-crafted local binary descriptors, such as local binary pattern and its variants, which require strong prior knowledge, local binary feature learning methods are more efficient and data-adaptive. Unlike existing learning-based local binary descriptors, such as compact binary face descriptor and simultaneous local binary feature learning and encoding, which are susceptible to rotations, our RI-LBD first categorizes each local patch into a rotational binary pattern (RBP), and then jointly learns the orientation for each pattern and the projection matrix to obtain RI-LBDs. As all the rotation variants of a patch belong to the same RBP, they are rotated into the same orientation and projected into the same binary descriptor. Then, we construct a codebook by a clustering method on the learned binary codes, and obtain a histogram feature for each image as the final representation. In order to exploit higher order statistical information, we extend our RI-LBD to the triple rotation-invariant co-occurrence local binary descriptor (TRICo-LBD) learning method, which learns a triple co-occurrence binary code for each local patch. Extensive experimental results on four different visual recognition tasks, including image patch matching, texture classification, face recognition, and scene classification, show that our RI-LBD and TRICo-LBD outperform most existing local descriptors.
Constructing binary black hole initial data with high mass ratios and spins
NASA Astrophysics Data System (ADS)
Ossokine, Serguei; Foucart, Francois; Pfeiffer, Harald; Szilagyi, Bela; Simulating Extreme Spacetimes Collaboration
2015-04-01
Binary black hole systems have now been successfully modelled in full numerical relativity by many groups. In order to explore high-mass-ratio (larger than 1:10), high-spin systems (above 0.9 of the maximal BH spin), we revisit the initial-data problem for binary black holes. The initial-data solver in the Spectral Einstein Code (SpEC) was not able to solve for such initial data reliably and robustly. I will present recent improvements to this solver, among them adaptive mesh refinement and control of motion of the center of mass of the binary, and will discuss the much larger region of parameter space this code can now address.
Sub-Selective Quantization for Learning Binary Codes in Large-Scale Image Search.
Li, Yeqing; Liu, Wei; Huang, Junzhou
2018-06-01
Recently with the explosive growth of visual content on the Internet, large-scale image search has attracted intensive attention. It has been shown that mapping high-dimensional image descriptors to compact binary codes can lead to considerable efficiency gains in both storage and performing similarity computation of images. However, most existing methods still suffer from expensive training devoted to large-scale binary code learning. To address this issue, we propose a sub-selection based matrix manipulation algorithm, which can significantly reduce the computational cost of code learning. As case studies, we apply the sub-selection algorithm to several popular quantization techniques including cases using linear and nonlinear mappings. Crucially, we can justify the resulting sub-selective quantization by proving its theoretic properties. Extensive experiments are carried out on three image benchmarks with up to one million samples, corroborating the efficacy of the sub-selective quantization method in terms of image retrieval.
Fundamental parameters of massive stars in multiple systems: The cases of HD 17505A and HD 206267A
NASA Astrophysics Data System (ADS)
Raucq, F.; Rauw, G.; Mahy, L.; Simón-Díaz, S.
2018-06-01
Context. Many massive stars are part of binary or higher multiplicity systems. The present work focusses on two higher multiplicity systems: HD 17505A and HD 206267A. Aims: Determining the fundamental parameters of the components of the inner binary of these systems is mandatory to quantify the impact of binary or triple interactions on their evolution. Methods: We analysed high-resolution optical spectra to determine new orbital solutions of the inner binary systems. After subtracting the spectrum of the tertiary component, a spectral disentangling code was applied to reconstruct the individual spectra of the primary and secondary. We then analysed these spectra with the non-LTE model atmosphere code CMFGEN to establish the stellar parameters and the CNO abundances of these stars. Results: The inner binaries of these systems have eccentric orbits with e 0.13 despite their relatively short orbital periods of 8.6 and 3.7 days for HD 17505Aa and HD 206267Aa, respectively. Slight modifications of the CNO abundances are found in both components of each system. The components of HD 17505Aa are both well inside their Roche lobe, whilst the primary of HD 206267Aa nearly fills its Roche lobe around periastron passage. Whilst the rotation of the primary of HD 206267Aa is in pseudo-synchronization with the orbital motion, the secondary displays a rotation rate that is higher. Conclusions: The CNO abundances and properties of HD 17505Aa can be explained by single star evolutionary models accounting for the effects of rotation, suggesting that this system has not yet experienced binary interaction. The properties of HD 206267Aa suggest that some intermittent binary interaction might have taken place during periastron passages, but is apparently not operating anymore. Based on observations collected with the TIGRE telescope (La Luz, Mexico), the 1.93 m telescope at Observatoire de Haute Provence (France), the Nordic Optical Telescope at the Observatorio del Roque de los Muchachos (La Palma, Spain), and the Canada-France-Hawaii telescope (Mauna Kea, Hawaii).
Letter order is not coded by open bigrams
Kinoshita, Sachiko; Norris, Dennis
2013-01-01
Open bigram (OB) models (e.g., SERIOL: Whitney, 2001, 2008; Binary OB, Grainger & van Heuven, 2003; Overlap OB, Grainger et al., 2006; Local combination detector model, Dehaene et al., 2005) posit that letter order in a word is coded by a set of ordered letter pairs. We report three experiments using bigram primes in the same-different match task, investigating the effects of order reversal and the number of letters intervening between the letters in the target. Reversed bigrams (e.g., fo-OF, ob-ABOLISH) produced robust priming, in direct contradiction to the assumption that letter order is coded by the presence of ordered letter pairs. Also in contradiction to the core assumption of current open bigram models, non-contiguous bigrams spanning three letters in the target (e.g., bs-ABOLISH) showed robust priming effects, equivalent in size to contiguous bigrams (e.g., bo-ABOLISH). These results question the role of open bigrams in coding letter order. PMID:23914048
A Comparison of Grid-based and SPH Binary Mass-transfer and Merger Simulations
Motl, Patrick M.; Frank, Juhan; Staff, Jan; ...
2017-03-29
There is currently a great amount of interest in the outcomes and astrophysical implications of mergers of double degenerate binaries. In a commonly adopted approximation, the components of such binaries are represented by polytropes with an index of n = 3/2. We present detailed comparisons of stellar mass-transfer and merger simulations of polytropic binaries that have been carried out using two very different numerical algorithms—a finite-volume "grid" code and a smoothed-particle hydrodynamics (SPH) code. We find that there is agreement in both the ultimate outcomes of the evolutions and the intermediate stages if the initial conditions for each code aremore » chosen to match as closely as possible. We find that even with closely matching initial setups, the time it takes to reach a concordant evolution differs between the two codes because the initial depth of contact cannot be matched exactly. There is a general tendency for SPH to yield higher mass transfer rates and faster evolution to the final outcome. Here, we also present comparisons of simulations calculated from two different energy equations: in one series, we assume a polytropic equation of state and in the other series an ideal gas equation of state. In the latter series of simulations, an atmosphere forms around the accretor, which can exchange angular momentum and cause a more rapid loss of orbital angular momentum. In the simulations presented here, the effect of the ideal equation of state is to de-stabilize the binary in both SPH and grid simulations, but the effect is more pronounced in the grid code.« less
Post-Newtonian Dynamical Modeling of Supermassive Black Holes in Galactic-scale Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rantala, Antti; Pihajoki, Pauli; Johansson, Peter H.
We present KETJU, a new extension of the widely used smoothed particle hydrodynamics simulation code GADGET-3. The key feature of the code is the inclusion of algorithmically regularized regions around every supermassive black hole (SMBH). This allows for simultaneously following global galactic-scale dynamical and astrophysical processes, while solving the dynamics of SMBHs, SMBH binaries, and surrounding stellar systems at subparsec scales. The KETJU code includes post-Newtonian terms in the equations of motions of the SMBHs, which enables a new SMBH merger criterion based on the gravitational wave coalescence timescale, pushing the merger separation of SMBHs down to ∼0.005 pc. Wemore » test the performance of our code by comparison to NBODY7 and rVINE. We set up dynamically stable multicomponent merger progenitor galaxies to study the SMBH binary evolution during galaxy mergers. In our simulation sample the SMBH binaries do not suffer from the final-parsec problem, which we attribute to the nonspherical shape of the merger remnants. For bulge-only models, the hardening rate decreases with increasing resolution, whereas for models that in addition include massive dark matter halos, the SMBH binary hardening rate becomes practically independent of the mass resolution of the stellar bulge. The SMBHs coalesce on average 200 Myr after the formation of the SMBH binary. However, small differences in the initial SMBH binary eccentricities can result in large differences in the SMBH coalescence times. Finally, we discuss the future prospects of KETJU, which allows for a straightforward inclusion of gas physics in the simulations.« less
NASA Astrophysics Data System (ADS)
Sheikh, Alireza; Amat, Alexandre Graell i.; Liva, Gianluigi
2017-12-01
We analyze the achievable information rates (AIRs) for coded modulation schemes with QAM constellations with both bit-wise and symbol-wise decoders, corresponding to the case where a binary code is used in combination with a higher-order modulation using the bit-interleaved coded modulation (BICM) paradigm and to the case where a nonbinary code over a field matched to the constellation size is used, respectively. In particular, we consider hard decision decoding, which is the preferable option for fiber-optic communication systems where decoding complexity is a concern. Recently, Liga \\emph{et al.} analyzed the AIRs for bit-wise and symbol-wise decoders considering what the authors called \\emph{hard decision decoder} which, however, exploits \\emph{soft information} of the transition probabilities of discrete-input discrete-output channel resulting from the hard detection. As such, the complexity of the decoder is essentially the same as the complexity of a soft decision decoder. In this paper, we analyze instead the AIRs for the standard hard decision decoder, commonly used in practice, where the decoding is based on the Hamming distance metric. We show that if standard hard decision decoding is used, bit-wise decoders yield significantly higher AIRs than symbol-wise decoders. As a result, contrary to the conclusion by Liga \\emph{et al.}, binary decoders together with the BICM paradigm are preferable for spectrally-efficient fiber-optic systems. We also design binary and nonbinary staircase codes and show that, in agreement with the AIRs, binary codes yield better performance.
Binary Neutron Stars with Arbitrary Spins in Numerical Relativity
NASA Astrophysics Data System (ADS)
Pfeiffer, Harald; Tacik, Nick; Foucart, Francois; Haas, Roland; Kaplan, Jeffrey; Muhlberger, Curran; Duez, Matt; Kidder, Lawrence; Scheel, Mark; Szilagyi, Bela
2015-04-01
We present a code to construct initial data for binary neutron star where the stars are rotating. Our code, based on the formalism developed by Tichy, allows for arbitrary rotation axes of the neutron stars and is able to achieve rotation rates near rotational breakup. We demonstrate that orbital eccentricity of the binary neutron stars can be controlled to ~ 0 . 1 % . Preliminary evolutions show that spin- and orbit-precession of Neutron stars is well described by post-Newtonian approximation. The neutron stars show quasi-normal mode oscillations at an amplitude which increases with the rotation rate of the stars.
Binary neutron stars with arbitrary spins in numerical relativity
NASA Astrophysics Data System (ADS)
Tacik, Nick; Foucart, Francois; Pfeiffer, Harald P.; Haas, Roland; Ossokine, Serguei; Kaplan, Jeff; Muhlberger, Curran; Duez, Matt D.; Kidder, Lawrence E.; Scheel, Mark A.; Szilágyi, Béla
2015-12-01
We present a code to construct initial data for binary neutron star systems in which the stars are rotating. Our code, based on a formalism developed by Tichy, allows for arbitrary rotation axes of the neutron stars and is able to achieve rotation rates near rotational breakup. We compute the neutron star angular momentum through quasilocal angular momentum integrals. When constructing irrotational binary neutron stars, we find a very small residual dimensionless spin of ˜2 ×10-4 . Evolutions of rotating neutron star binaries show that the magnitude of the stars' angular momentum is conserved, and that the spin and orbit precession of the stars is well described by post-Newtonian approximation. We demonstrate that orbital eccentricity of the binary neutron stars can be controlled to ˜0.1 % . The neutron stars show quasinormal mode oscillations at an amplitude which increases with the rotation rate of the stars.
Two Upper Bounds for the Weighted Path Length of Binary Trees. Report No. UIUCDCS-R-73-565.
ERIC Educational Resources Information Center
Pradels, Jean Louis
Rooted binary trees with weighted nodes are structures encountered in many areas, such as coding theory, searching and sorting, information storage and retrieval. The path length is a meaningful quantity which gives indications about the expected time of a search or the length of a code, for example. In this paper, two sharp bounds for the total…
ERIC Educational Resources Information Center
Haro, Elizabeth K.; Haro, Luis S.
2014-01-01
The multiple-choice question (MCQ) is the foundation of knowledge assessment in K-12, higher education, and standardized entrance exams (including the GRE, MCAT, and DAT). However, standard MCQ exams are limited with respect to the types of questions that can be asked when there are only five choices. MCQs offering additional choices more…
Characterization of vibrissa germinative cells: transition of cell types.
Osada, A; Kobayashi, K
2001-12-01
Germinative cells, small cell masses attached to the stalks of dermal papillae that are able to differentiate into the hair shaft and inner root sheath, form follicular bulb-like structures when co-cultured with dermal papilla cells. We studied the growth characteristics of germinative cells to determine the cell types in the vibrissa germinative tissue. Germinative tissues, attaching to dermal papillae, were cultured on 3T3 feeder layers. The cultured keratinocytes were harvested and transferred, equally and for two passages, onto lined dermal papilla cells (LDPC) and/or 3T3 feeder layers. The resulting germinative cells were classified into three types in the present experimental condition. Type 1 cells grow very well on either feeder layer, whereas Type 3 cells scarcely grow on either feeder layer. Type 2 cells are very conspicuous and are reversible. They grow well on 3T3 but growth is suppressed on LDPC feeder layers. The Type 2 cells that grow well on 3T3 feeder layers, however, are suppressed when transferred onto LDPC and the Type 2 cells that are suppressed on LDPC begin to grow again on 3T3. The transition of one cell type to another in vitro and the cell types that these germinative cell types correspond to in vivo is discussed. It was concluded that stem cells or their close progenitors reside in the germinative tissues of the vibrissa bulb except at late anagen-early catagen.
NASA Astrophysics Data System (ADS)
Leinhardt, Zoë M.; Richardson, Derek C.
2005-08-01
We present a new code ( companion) that identifies bound systems of particles in O(NlogN) time. Simple binaries consisting of pairs of mutually bound particles and complex hierarchies consisting of collections of mutually bound particles are identifiable with this code. In comparison, brute force binary search methods scale as O(N) while full hierarchy searches can be as expensive as O(N), making analysis highly inefficient for multiple data sets with N≳10. A simple test case is provided to illustrate the method. Timing tests demonstrating O(NlogN) scaling with the new code on real data are presented. We apply our method to data from asteroid satellite simulations [Durda et al., 2004. Icarus 167, 382-396; Erratum: Icarus 170, 242; reprinted article: Icarus 170, 243-257] and note interesting multi-particle configurations. The code is available at http://www.astro.umd.edu/zoe/companion/ and is distributed under the terms and conditions of the GNU Public License.
A novel encoding scheme for effective biometric discretization: Linearly Separable Subcode.
Lim, Meng-Hui; Teoh, Andrew Beng Jin
2013-02-01
Separability in a code is crucial in guaranteeing a decent Hamming-distance separation among the codewords. In multibit biometric discretization where a code is used for quantization-intervals labeling, separability is necessary for preserving distance dissimilarity when feature components are mapped from a discrete space to a Hamming space. In this paper, we examine separability of Binary Reflected Gray Code (BRGC) encoding and reveal its inadequacy in tackling interclass variation during the discrete-to-binary mapping, leading to a tradeoff between classification performance and entropy of binary output. To overcome this drawback, we put forward two encoding schemes exhibiting full-ideal and near-ideal separability capabilities, known as Linearly Separable Subcode (LSSC) and Partially Linearly Separable Subcode (PLSSC), respectively. These encoding schemes convert the conventional entropy-performance tradeoff into an entropy-redundancy tradeoff in the increase of code length. Extensive experimental results vindicate the superiority of our schemes over the existing encoding schemes in discretization performance. This opens up possibilities of achieving much greater classification performance with high output entropy.
Characteristic Evolution and Matching
NASA Astrophysics Data System (ADS)
Winicour, Jeffrey
2012-01-01
I review the development of numerical evolution codes for general relativity based upon the characteristic initial-value problem. Progress in characteristic evolution is traced from the early stage of 1D feasibility studies to 2D-axisymmetric codes that accurately simulate the oscillations and gravitational collapse of relativistic stars and to current 3D codes that provide pieces of a binary black-hole spacetime. Cauchy codes have now been successful at simulating all aspects of the binary black-hole problem inside an artificially constructed outer boundary. A prime application of characteristic evolution is to extend such simulations to null infinity where the waveform from the binary inspiral and merger can be unambiguously computed. This has now been accomplished by Cauchy-characteristic extraction, where data for the characteristic evolution is supplied by Cauchy data on an extraction worldtube inside the artificial outer boundary. The ultimate application of characteristic evolution is to eliminate the role of this outer boundary by constructing a global solution via Cauchy-characteristic matching. Progress in this direction is discussed.
A Comparison of Grid-based and SPH Binary Mass-transfer and Merger Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motl, Patrick M.; Frank, Juhan; Clayton, Geoffrey C.
2017-04-01
There is currently a great amount of interest in the outcomes and astrophysical implications of mergers of double degenerate binaries. In a commonly adopted approximation, the components of such binaries are represented by polytropes with an index of n = 3/2. We present detailed comparisons of stellar mass-transfer and merger simulations of polytropic binaries that have been carried out using two very different numerical algorithms—a finite-volume “grid” code and a smoothed-particle hydrodynamics (SPH) code. We find that there is agreement in both the ultimate outcomes of the evolutions and the intermediate stages if the initial conditions for each code are chosen to matchmore » as closely as possible. We find that even with closely matching initial setups, the time it takes to reach a concordant evolution differs between the two codes because the initial depth of contact cannot be matched exactly. There is a general tendency for SPH to yield higher mass transfer rates and faster evolution to the final outcome. We also present comparisons of simulations calculated from two different energy equations: in one series, we assume a polytropic equation of state and in the other series an ideal gas equation of state. In the latter series of simulations, an atmosphere forms around the accretor, which can exchange angular momentum and cause a more rapid loss of orbital angular momentum. In the simulations presented here, the effect of the ideal equation of state is to de-stabilize the binary in both SPH and grid simulations, but the effect is more pronounced in the grid code.« less
A flexible surface wetness sensor using a RFID technique.
Yang, Cheng-Hao; Chien, Jui-Hung; Wang, Bo-Yan; Chen, Ping-Hei; Lee, Da-Sheng
2008-02-01
This paper presents a flexible wetness sensor whose detection signal, converted to a binary code, is transmitted through radio-frequency (RF) waves from a radio-frequency identification integrated circuit (RFID IC) to a remote reader. The flexible sensor, with a fixed operating frequency of 13.56 MHz, contains a RFID IC and a sensor circuit that is fabricated on a flexible printed circuit board (FPCB) using a Micro-Electro-Mechanical-System (MEMS) process. The sensor circuit contains a comb-shaped sensing area surrounded by an octagonal antenna with a width of 2.7 cm. The binary code transmitted from the RFIC to the reader changes if the surface conditions of the detector surface changes from dry to wet. This variation in the binary code can be observed on a digital oscilloscope connected to the reader.
On models of the genetic code generated by binary dichotomic algorithms.
Gumbel, Markus; Fimmel, Elena; Danielli, Alberto; Strüngmann, Lutz
2015-02-01
In this paper we introduce the concept of a BDA-generated model of the genetic code which is based on binary dichotomic algorithms (BDAs). A BDA-generated model is based on binary dichotomic algorithms (BDAs). Such a BDA partitions the set of 64 codons into two disjoint classes of size 32 each and provides a generalization of known partitions like the Rumer dichotomy. We investigate what partitions can be generated when a set of different BDAs is applied sequentially to the set of codons. The search revealed that these models are able to generate code tables with very different numbers of classes ranging from 2 to 64. We have analyzed whether there are models that map the codons to their amino acids. A perfect matching is not possible. However, we present models that describe the standard genetic code with only few errors. There are also models that map all 64 codons uniquely to 64 classes showing that BDAs can be used to identify codons precisely. This could serve as a basis for further mathematical analysis using coding theory, for example. The hypothesis that BDAs might reflect a molecular mechanism taking place in the decoding center of the ribosome is discussed. The scan demonstrated that binary dichotomic partitions are able to model different aspects of the genetic code very well. The search was performed with our tool Beady-A. This software is freely available at http://mi.informatik.hs-mannheim.de/beady-a. It requires a JVM version 6 or higher. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Djordjevic, Ivan B
2010-04-12
The Bell states preparation circuit is a basic circuit required in quantum teleportation. We describe how to implement it in all-fiber technology. The basic building blocks for its implementation are directional couplers and highly nonlinear optical fiber (HNLF). Because the quantum information processing is based on delicate superposition states, it is sensitive to quantum errors. In order to enable fault-tolerant quantum computing the use of quantum error correction is unavoidable. We show how to implement in all-fiber technology encoders and decoders for sparse-graph quantum codes, and provide an illustrative example to demonstrate this implementation. We also show that arbitrary set of universal quantum gates can be implemented based on directional couplers and HNLFs.
Image transmission system using adaptive joint source and channel decoding
NASA Astrophysics Data System (ADS)
Liu, Weiliang; Daut, David G.
2005-03-01
In this paper, an adaptive joint source and channel decoding method is designed to accelerate the convergence of the iterative log-dimain sum-product decoding procedure of LDPC codes as well as to improve the reconstructed image quality. Error resilience modes are used in the JPEG2000 source codec, which makes it possible to provide useful source decoded information to the channel decoder. After each iteration, a tentative decoding is made and the channel decoded bits are then sent to the JPEG2000 decoder. Due to the error resilience modes, some bits are known to be either correct or in error. The positions of these bits are then fed back to the channel decoder. The log-likelihood ratios (LLR) of these bits are then modified by a weighting factor for the next iteration. By observing the statistics of the decoding procedure, the weighting factor is designed as a function of the channel condition. That is, for lower channel SNR, a larger factor is assigned, and vice versa. Results show that the proposed joint decoding methods can greatly reduce the number of iterations, and thereby reduce the decoding delay considerably. At the same time, this method always outperforms the non-source controlled decoding method up to 5dB in terms of PSNR for various reconstructed images.
Fingerprinting Communication and Computation on HPC Machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peisert, Sean
2010-06-02
How do we identify what is actually running on high-performance computing systems? Names of binaries, dynamic libraries loaded, or other elements in a submission to a batch queue can give clues, but binary names can be changed, and libraries provide limited insight and resolution on the code being run. In this paper, we present a method for"fingerprinting" code running on HPC machines using elements of communication and computation. We then discuss how that fingerprint can be used to determine if the code is consistent with certain other types of codes, what a user usually runs, or what the user requestedmore » an allocation to do. In some cases, our techniques enable us to fingerprint HPC codes using runtime MPI data with a high degree of accuracy.« less
NASA Technical Reports Server (NTRS)
Massey, J. L.
1976-01-01
Virtually all previously-suggested rate 1/2 binary convolutional codes with KE = 24 are compared. Their distance properties are given; and their performance, both in computation and in error probability, with sequential decoding on the deep-space channel is determined by simulation. Recommendations are made both for the choice of a specific KE = 24 code as well as for codes to be included in future coding standards for the deep-space channel. A new result given in this report is a method for determining the statistical significance of error probability data when the error probability is so small that it is not feasible to perform enough decoding simulations to obtain more than a very small number of decoding errors.
A burst-mode photon counting receiver with automatic channel estimation and bit rate detection
NASA Astrophysics Data System (ADS)
Rao, Hemonth G.; DeVoe, Catherine E.; Fletcher, Andrew S.; Gaschits, Igor D.; Hakimi, Farhad; Hamilton, Scott A.; Hardy, Nicholas D.; Ingwersen, John G.; Kaminsky, Richard D.; Moores, John D.; Scheinbart, Marvin S.; Yarnall, Timothy M.
2016-04-01
We demonstrate a multi-rate burst-mode photon-counting receiver for undersea communication at data rates up to 10.416 Mb/s over a 30-foot water channel. To the best of our knowledge, this is the first demonstration of burst-mode photon-counting communication. With added attenuation, the maximum link loss is 97.1 dB at λ=517 nm. In clear ocean water, this equates to link distances up to 148 meters. For λ=470 nm, the achievable link distance in clear ocean water is 450 meters. The receiver incorporates soft-decision forward error correction (FEC) based on a product code of an inner LDPC code and an outer BCH code. The FEC supports multiple code rates to achieve error-free performance. We have selected a burst-mode receiver architecture to provide robust performance with respect to unpredictable channel obstructions. The receiver is capable of on-the-fly data rate detection and adapts to changing levels of signal and background light. The receiver updates its phase alignment and channel estimates every 1.6 ms, allowing for rapid changes in water quality as well as motion between transmitter and receiver. We demonstrate on-the-fly rate detection, channel BER within 0.2 dB of theory across all data rates, and error-free performance within 1.82 dB of soft-decision capacity across all tested code rates. All signal processing is done in FPGAs and runs continuously in real time.
Binary Black Hole Mergers from Field Triples: Properties, Rates, and the Impact of Stellar Evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonini, Fabio; Toonen, Silvia; Hamers, Adrian S.
We consider the formation of binary black hole (BH) mergers through the evolution of field massive triple stars. In this scenario, favorable conditions for the inspiral of a BH binary are initiated by its gravitational interaction with a distant companion, rather than by a common-envelope phase invoked in standard binary evolution models. We use a code that follows self-consistently the evolution of massive triple stars, combining the secular triple dynamics (Lidov–Kozai cycles) with stellar evolution. After a BH triple is formed, its dynamical evolution is computed using either the orbit-averaged equations of motion, or a high-precision direct integrator for triplesmore » with weaker hierarchies for which the secular perturbation theory breaks down. Most BH mergers in our models are produced in the latter non-secular dynamical regime. We derive the properties of the merging binaries and compute a BH merger rate in the range (0.3–1.3) Gpc{sup −3} yr{sup −1}, or up to ≈2.5 Gpc{sup −3} yr{sup −1} if the BH orbital planes have initially random orientation. Finally, we show that BH mergers from the triple channel have significantly higher eccentricities than those formed through the evolution of massive binaries or in dense star clusters. Measured eccentricities could therefore be used to uniquely identify binary mergers formed through the evolution of triple stars. While our results suggest up to ≈10 detections per year with Advanced-LIGO, the high eccentricities could render the merging binaries harder to detect with planned space based interferometers such as LISA.« less
Yukinawa, Naoto; Oba, Shigeyuki; Kato, Kikuya; Ishii, Shin
2009-01-01
Multiclass classification is one of the fundamental tasks in bioinformatics and typically arises in cancer diagnosis studies by gene expression profiling. There have been many studies of aggregating binary classifiers to construct a multiclass classifier based on one-versus-the-rest (1R), one-versus-one (11), or other coding strategies, as well as some comparison studies between them. However, the studies found that the best coding depends on each situation. Therefore, a new problem, which we call the "optimal coding problem," has arisen: how can we determine which coding is the optimal one in each situation? To approach this optimal coding problem, we propose a novel framework for constructing a multiclass classifier, in which each binary classifier to be aggregated has a weight value to be optimally tuned based on the observed data. Although there is no a priori answer to the optimal coding problem, our weight tuning method can be a consistent answer to the problem. We apply this method to various classification problems including a synthesized data set and some cancer diagnosis data sets from gene expression profiling. The results demonstrate that, in most situations, our method can improve classification accuracy over simple voting heuristics and is better than or comparable to state-of-the-art multiclass predictors.
Spectral Cauchy Characteristic Extraction: Gravitational Waves and Gauge Free News
NASA Astrophysics Data System (ADS)
Handmer, Casey; Szilagyi, Bela; Winicour, Jeff
2015-04-01
We present a fast, accurate spectral algorithm for the characteristic evolution of the full non-linear vacuum Einstein field equations in the Bondi framework. Developed within the Spectral Einstein Code (SpEC), we demonstrate how spectral Cauchy characteristic extraction produces gravitational News without confounding gauge effects. We explain several numerical innovations and demonstrate speed, stability, accuracy, exponential convergence, and consistency with existing methods. We highlight its capability to deliver physical insights in the study of black hole binaries.
The massive multiple system HD 64315
NASA Astrophysics Data System (ADS)
Lorenzo, J.; Simón-Díaz, S.; Negueruela, I.; Vilardell, F.; Garcia, M.; Evans, C. J.; Montes, D.
2017-10-01
Context. The O6 Vn star HD 64315 is believed to belong to the star-forming region known as NGC 2467, but previous distance estimates do not support this association. Moreover, it has been identified as a spectroscopic binary, but existing data support contradictory values for its orbital period. Aims: We explore the multiple nature of this star with the aim of determining its distance, and understanding its connection to NGC 2467. Methods: A total of 52 high-resolution spectra have been gathered over a decade. We use their analysis, in combination with the photometric data from All Sky Automated Survey and Hipparcos catalogues, to conclude that HD 64315 is composed of at least two spectroscopic binaries, one of which is an eclipsing binary. We have developed our own program to fit four components to the combined line shapes. Once the four radial velocities were derived, we obtained a model to fit the radial-velocity curves using the Spectroscopic Binary Orbit Program (SBOP). We then implemented the radial velocities of the eclipsing binary and the light curves in the Wilson-Devinney code iteratively to derive stellar parameters for its components. We were also able to analyse the non-eclipsing binary, and to derive minimum masses for its components which dominate the system flux. Results: HD 64315 contains two binary systems, one of which is an eclipsing binary. The two binaries are separated by 0.09 arcsec (or 500 AU) if the most likely distance to the system, 5 kpc, is considered. The presence of fainter companions is not excluded by current observations. The non-eclipsing binary (HD 64315 AaAb) has a period of 2.70962901 ± 0.00000021 d. Its components are hotter than those of the eclipsing binary, and dominate the appearance of the system. The eclipsing binary (HD 64315 BaBb) has a shorter period of 1.0189569 ± 0.0000008 d. We derive masses of 14.6 ± 2.3 M⊙ for both components of the BaBb system. They are almost identical; both stars are overfilling their respective Roche lobes, and share a common envelope in an overcontact configuration. The non-eclipsing binary is a detached system composed of two stars with spectral types around O6 V with minimum masses of 10.8 M⊙ and 10.2 M⊙, and likely masses ≈ 30 M⊙. Conclusions: HD 64315 provides a cautionary tale about high-mass star isolation and multiplicity. Its total mass is likely above 90M⊙, but it seems to have formed without an accompanying cluster. It contains one the most massive overcontact binaries known, a likely merger progenitor in a very wide multiple system. Based on observations obtained at the European Southern Observatory under programmes 078.D-0665(A), 082-D.0136 and 093.A-9001(A). Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.
Finger Vein Recognition Based on Local Directional Code
Meng, Xianjing; Yang, Gongping; Yin, Yilong; Xiao, Rongyang
2012-01-01
Finger vein patterns are considered as one of the most promising biometric authentication methods for its security and convenience. Most of the current available finger vein recognition methods utilize features from a segmented blood vessel network. As an improperly segmented network may degrade the recognition accuracy, binary pattern based methods are proposed, such as Local Binary Pattern (LBP), Local Derivative Pattern (LDP) and Local Line Binary Pattern (LLBP). However, the rich directional information hidden in the finger vein pattern has not been fully exploited by the existing local patterns. Inspired by the Webber Local Descriptor (WLD), this paper represents a new direction based local descriptor called Local Directional Code (LDC) and applies it to finger vein recognition. In LDC, the local gradient orientation information is coded as an octonary decimal number. Experimental results show that the proposed method using LDC achieves better performance than methods using LLBP. PMID:23202194
Finger vein recognition based on local directional code.
Meng, Xianjing; Yang, Gongping; Yin, Yilong; Xiao, Rongyang
2012-11-05
Finger vein patterns are considered as one of the most promising biometric authentication methods for its security and convenience. Most of the current available finger vein recognition methods utilize features from a segmented blood vessel network. As an improperly segmented network may degrade the recognition accuracy, binary pattern based methods are proposed, such as Local Binary Pattern (LBP), Local Derivative Pattern (LDP) and Local Line Binary Pattern (LLBP). However, the rich directional information hidden in the finger vein pattern has not been fully exploited by the existing local patterns. Inspired by the Webber Local Descriptor (WLD), this paper represents a new direction based local descriptor called Local Directional Code (LDC) and applies it to finger vein recognition. In LDC, the local gradient orientation information is coded as an octonary decimal number. Experimental results show that the proposed method using LDC achieves better performance than methods using LLBP.
Direct-detection Free-space Laser Transceiver Test-bed
NASA Technical Reports Server (NTRS)
Krainak, Michael A.; Chen, Jeffrey R.; Dabney, Philip W.; Ferrara, Jeffrey F.; Fong, Wai H.; Martino, Anthony J.; McGarry Jan. F.; Merkowitz, Stephen M.; Principe, Caleb M.; Sun, Siaoli;
2008-01-01
NASA Goddard Space Flight Center is developing a direct-detection free-space laser communications transceiver test bed. The laser transmitter is a master-oscillator power amplifier (MOPA) configuration using a 1060 nm wavelength laser-diode with a two-stage multi-watt Ytterbium fiber amplifier. Dual Mach-Zehnder electro-optic modulators provide an extinction ratio greater than 40 dB. The MOPA design delivered 10-W average power with low-duty-cycle PPM waveforms and achieved 1.7 kW peak power. We use pulse-position modulation format with a pseudo-noise code header to assist clock recovery and frame boundary identification. We are examining the use of low-density-parity-check (LDPC) codes for forward error correction. Our receiver uses an InGaAsP 1 mm diameter photocathode hybrid photomultiplier tube (HPMT) cooled with a thermo-electric cooler. The HPMT has 25% single-photon detection efficiency at 1064 nm wavelength with a dark count rate of 60,000/s at -22 degrees Celsius and a single-photon impulse response of 0.9 ns. We report on progress toward demonstrating a combined laser communications and ranging field experiment.
A m-ary linear feedback shift register with binary logic
NASA Technical Reports Server (NTRS)
Perlman, M. (Inventor)
1973-01-01
A family of m-ary linear feedback shift registers with binary logic is disclosed. Each m-ary linear feedback shift register with binary logic generates a binary representation of a nonbinary recurring sequence, producible with a m-ary linear feedback shift register without binary logic in which m is greater than 2. The state table of a m-ary linear feedback shift register without binary logic, utilizing sum modulo m feedback, is first tubulated for a given initial state. The entries in the state table are coded in binary and the binary entries are used to set the initial states of the stages of a plurality of binary shift registers. A single feedback logic unit is employed which provides a separate feedback binary digit to each binary register as a function of the states of corresponding stages of the binary registers.
NASA Astrophysics Data System (ADS)
Kaplan, Jeffrey Daniel
2014-01-01
Computational general relativity is a field of study which has reached maturity only within the last decade. This thesis details several studies that elucidate phenomena related to the coalescence of compact object binaries. Chapters 2 and 3 recounts work towards developing new analytical tools for visualizing and reasoning about dynamics in strongly curved spacetimes. In both studies, the results employ analogies with the classical theory of electricity and magnetism, first (Ch. 2) in the post-Newtonian approximation to general relativity and then (Ch. 3) in full general relativity though in the absence of matter sources. In Chapter 4, we examine the topological structure of absolute event horizons during binary black hole merger simulations conducted with the SpEC code. Chapter 6 reports on the progress of the SpEC code in simulating the coalescence of neutron star-neutron star binaries, while Chapter 7 tests the effects of various numerical gauge conditions on the robustness of black hole formation from stellar collapse in SpEC. In Chapter 5, we examine the nature of pseudospectral expansions of non-smooth functions motivated by the need to simulate the stellar surface in Chapters 6 and 7. In Chapter 8, we study how thermal effects in the nuclear equation of state effect the equilibria and stability of hypermassive neutron stars. Chapter 9 presents supplements to the work in Chapter 8, including an examination of the stability question raised in Chapter 8 in greater mathematical detail.
Lossless compression of VLSI layout image data.
Dai, Vito; Zakhor, Avideh
2006-09-01
We present a novel lossless compression algorithm called Context Copy Combinatorial Code (C4), which integrates the advantages of two very disparate compression techniques: context-based modeling and Lempel-Ziv (LZ) style copying. While the algorithm can be applied to many lossless compression applications, such as document image compression, our primary target application has been lossless compression of integrated circuit layout image data. These images contain a heterogeneous mix of data: dense repetitive data better suited to LZ-style coding, and less dense structured data, better suited to context-based encoding. As part of C4, we have developed a novel binary entropy coding technique called combinatorial coding which is simultaneously as efficient as arithmetic coding, and as fast as Huffman coding. Compression results show C4 outperforms JBIG, ZIP, BZIP2, and two-dimensional LZ, and achieves lossless compression ratios greater than 22 for binary layout image data, and greater than 14 for gray-pixel image data.
A proposed study of multiple scattering through clouds up to 1 THz
NASA Technical Reports Server (NTRS)
Gerace, G. C.; Smith, E. K.
1992-01-01
A rigorous computation of the electromagnetic field scattered from an atmospheric liquid water cloud is proposed. The recent development of a fast recursive algorithm (Chew algorithm) for computing the fields scattered from numerous scatterers now makes a rigorous computation feasible. A method is presented for adapting this algorithm to a general case where there are an extremely large number of scatterers. It is also proposed to extend a new binary PAM channel coding technique (El-Khamy coding) to multiple levels with non-square pulse shapes. The Chew algorithm can be used to compute the transfer function of a cloud channel. Then the transfer function can be used to design an optimum El-Khamy code. In principle, these concepts can be applied directly to the realistic case of a time-varying cloud (adaptive channel coding and adaptive equalization). A brief review is included of some preliminary work on cloud dispersive effects on digital communication signals and on cloud liquid water spectra and correlations.
2012-03-01
advanced antenna systems AMC adaptive modulation and coding AWGN additive white Gaussian noise BPSK binary phase shift keying BS base station BTC ...QAM-16, and QAM-64, and coding types include convolutional coding (CC), convolutional turbo coding (CTC), block turbo coding ( BTC ), zero-terminating
"I would have preferred more options": accounting for non-binary youth in health research.
Frohard-Dourlent, Hélène; Dobson, Sarah; Clark, Beth A; Doull, Marion; Saewyc, Elizabeth M
2017-01-01
As a research team focused on vulnerable youth, we increasingly need to find ways to acknowledge non-binary genders in health research. Youth have become more vocal about expanding notions of gender beyond traditional categories of boy/man and girl/woman. Integrating non-binary identities into established research processes is a complex undertaking in a culture that often assumes gender is a binary variable. In this article, we present the challenges at every stage of the research process and questions we have asked ourselves to consider non-binary genders in our work. As researchers, how do we interrogate the assumptions that have made non-binary lives invisible? What challenges arise when attempting to transform research practices to incorporate non-binary genders? Why is it crucial that researchers consider these questions at each step of the research process? We draw on our own research experiences to highlight points of tensions and possibilities for change. Improving access to inclusive health-care for non-binary people, and non-binary youth in particular, is part of creating a more equitable healthcare system. We argue that increased and improved access to inclusive health-care can be supported by research that acknowledges and includes people of all genders. © 2016 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clough, Katy; Figueras, Pau; Finkel, Hal
In this work, we introduce GRChombo: a new numerical relativity code which incorporates full adaptive mesh refinement (AMR) using block structured Berger-Rigoutsos grid generation. The code supports non-trivial 'many-boxes-in-many-boxes' mesh hierarchies and massive parallelism through the message passing interface. GRChombo evolves the Einstein equation using the standard BSSN formalism, with an option to turn on CCZ4 constraint damping if required. The AMR capability permits the study of a range of new physics which has previously been computationally infeasible in a full 3 + 1 setting, while also significantly simplifying the process of setting up the mesh for these problems. Wemore » show that GRChombo can stably and accurately evolve standard spacetimes such as binary black hole mergers and scalar collapses into black holes, demonstrate the performance characteristics of our code, and discuss various physics problems which stand to benefit from the AMR technique.« less
NASA Astrophysics Data System (ADS)
Han, Yishi; Luo, Zhixiao; Wang, Jianhua; Min, Zhixuan; Qin, Xinyu; Sun, Yunlong
2014-09-01
In general, context-based adaptive variable length coding (CAVLC) decoding in H.264/AVC standard requires frequent access to the unstructured variable length coding tables (VLCTs) and significant memory accesses are consumed. Heavy memory accesses will cause high power consumption and time delays, which are serious problems for applications in portable multimedia devices. We propose a method for high-efficiency CAVLC decoding by using a program instead of all the VLCTs. The decoded codeword from VLCTs can be obtained without any table look-up and memory access. The experimental results show that the proposed algorithm achieves 100% memory access saving and 40% decoding time saving without degrading video quality. Additionally, the proposed algorithm shows a better performance compared with conventional CAVLC decoding, such as table look-up by sequential search, table look-up by binary search, Moon's method, and Kim's method.
The serial message-passing schedule for LDPC decoding algorithms
NASA Astrophysics Data System (ADS)
Liu, Mingshan; Liu, Shanshan; Zhou, Yuan; Jiang, Xue
2015-12-01
The conventional message-passing schedule for LDPC decoding algorithms is the so-called flooding schedule. It has the disadvantage that the updated messages cannot be used until next iteration, thus reducing the convergence speed . In this case, the Layered Decoding algorithm (LBP) based on serial message-passing schedule is proposed. In this paper the decoding principle of LBP algorithm is briefly introduced, and then proposed its two improved algorithms, the grouped serial decoding algorithm (Grouped LBP) and the semi-serial decoding algorithm .They can improve LBP algorithm's decoding speed while maintaining a good decoding performance.
Maier, Joscha; Sawall, Stefan; Kachelrieß, Marc
2014-05-01
Phase-correlated microcomputed tomography (micro-CT) imaging plays an important role in the assessment of mouse models of cardiovascular diseases and the determination of functional parameters as the left ventricular volume. As the current gold standard, the phase-correlated Feldkamp reconstruction (PCF), shows poor performance in case of low dose scans, more sophisticated reconstruction algorithms have been proposed to enable low-dose imaging. In this study, the authors focus on the McKinnon-Bates (MKB) algorithm, the low dose phase-correlated (LDPC) reconstruction, and the high-dimensional total variation minimization reconstruction (HDTV) and investigate their potential to accurately determine the left ventricular volume at different dose levels from 50 to 500 mGy. The results were verified in phantom studies of a five-dimensional (5D) mathematical mouse phantom. Micro-CT data of eight mice, each administered with an x-ray dose of 500 mGy, were acquired, retrospectively gated for cardiac and respiratory motion and reconstructed using PCF, MKB, LDPC, and HDTV. Dose levels down to 50 mGy were simulated by using only a fraction of the projections. Contrast-to-noise ratio (CNR) was evaluated as a measure of image quality. Left ventricular volume was determined using different segmentation algorithms (Otsu, level sets, region growing). Forward projections of the 5D mouse phantom were performed to simulate a micro-CT scan. The simulated data were processed the same way as the real mouse data sets. Compared to the conventional PCF reconstruction, the MKB, LDPC, and HDTV algorithm yield images of increased quality in terms of CNR. While the MKB reconstruction only provides small improvements, a significant increase of the CNR is observed in LDPC and HDTV reconstructions. The phantom studies demonstrate that left ventricular volumes can be determined accurately at 500 mGy. For lower dose levels which were simulated for real mouse data sets, the HDTV algorithm shows the best performance. At 50 mGy, the deviation from the reference obtained at 500 mGy were less than 4%. Also the LDPC algorithm provides reasonable results with deviation less than 10% at 50 mGy while PCF and MKB reconstruction show larger deviations even at higher dose levels. LDPC and HDTV increase CNR and allow for quantitative evaluations even at dose levels as low as 50 mGy. The left ventricular volumes exemplarily illustrate that cardiac parameters can be accurately estimated at lowest dose levels if sophisticated algorithms are used. This allows to reduce dose by a factor of 10 compared to today's gold standard and opens new options for longitudinal studies of the heart.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maier, Joscha, E-mail: joscha.maier@dkfz.de; Sawall, Stefan; Kachelrieß, Marc
2014-05-15
Purpose: Phase-correlated microcomputed tomography (micro-CT) imaging plays an important role in the assessment of mouse models of cardiovascular diseases and the determination of functional parameters as the left ventricular volume. As the current gold standard, the phase-correlated Feldkamp reconstruction (PCF), shows poor performance in case of low dose scans, more sophisticated reconstruction algorithms have been proposed to enable low-dose imaging. In this study, the authors focus on the McKinnon-Bates (MKB) algorithm, the low dose phase-correlated (LDPC) reconstruction, and the high-dimensional total variation minimization reconstruction (HDTV) and investigate their potential to accurately determine the left ventricular volume at different dose levelsmore » from 50 to 500 mGy. The results were verified in phantom studies of a five-dimensional (5D) mathematical mouse phantom. Methods: Micro-CT data of eight mice, each administered with an x-ray dose of 500 mGy, were acquired, retrospectively gated for cardiac and respiratory motion and reconstructed using PCF, MKB, LDPC, and HDTV. Dose levels down to 50 mGy were simulated by using only a fraction of the projections. Contrast-to-noise ratio (CNR) was evaluated as a measure of image quality. Left ventricular volume was determined using different segmentation algorithms (Otsu, level sets, region growing). Forward projections of the 5D mouse phantom were performed to simulate a micro-CT scan. The simulated data were processed the same way as the real mouse data sets. Results: Compared to the conventional PCF reconstruction, the MKB, LDPC, and HDTV algorithm yield images of increased quality in terms of CNR. While the MKB reconstruction only provides small improvements, a significant increase of the CNR is observed in LDPC and HDTV reconstructions. The phantom studies demonstrate that left ventricular volumes can be determined accurately at 500 mGy. For lower dose levels which were simulated for real mouse data sets, the HDTV algorithm shows the best performance. At 50 mGy, the deviation from the reference obtained at 500 mGy were less than 4%. Also the LDPC algorithm provides reasonable results with deviation less than 10% at 50 mGy while PCF and MKB reconstruction show larger deviations even at higher dose levels. Conclusions: LDPC and HDTV increase CNR and allow for quantitative evaluations even at dose levels as low as 50 mGy. The left ventricular volumes exemplarily illustrate that cardiac parameters can be accurately estimated at lowest dose levels if sophisticated algorithms are used. This allows to reduce dose by a factor of 10 compared to today's gold standard and opens new options for longitudinal studies of the heart.« less
Compact binary hashing for music retrieval
NASA Astrophysics Data System (ADS)
Seo, Jin S.
2014-03-01
With the huge volume of music clips available for protection, browsing, and indexing, there is an increased attention to retrieve the information contents of the music archives. Music-similarity computation is an essential building block for browsing, retrieval, and indexing of digital music archives. In practice, as the number of songs available for searching and indexing is increased, so the storage cost in retrieval systems is becoming a serious problem. This paper deals with the storage problem by extending the supervector concept with the binary hashing. We utilize the similarity-preserving binary embedding in generating a hash code from the supervector of each music clip. Especially we compare the performance of the various binary hashing methods for music retrieval tasks on the widely-used genre dataset and the in-house singer dataset. Through the evaluation, we find an effective way of generating hash codes for music similarity estimation which improves the retrieval performance.
A new technique for calculations of binary stellar evolution, with application to magnetic braking
NASA Technical Reports Server (NTRS)
Rappaport, S.; Joss, P. C.; Verbunt, F.
1983-01-01
The development of appropriate computer programs has made it possible to conduct studies of stellar evolution which are more detailed and accurate than the investigations previously feasible. However, the use of such programs can also entail some serious drawbacks which are related to the time and expense required for the work. One approach for overcoming these drawbacks involves the employment of simplified stellar evolution codes which incorporate the essential physics of the problem of interest without attempting either great generality or maximal accuracy. Rappaport et al. (1982) have developed a simplified code to study the evolution of close binary stellar systems composed of a collapsed object and a low-mass secondary. The present investigation is concerned with a more general, but still simplified, technique for calculating the evolution of close binary systems with collapsed binaries and mass-losing secondaries.
Be discs in coplanar circular binaries: Phase-locked variations of emission lines
NASA Astrophysics Data System (ADS)
Panoglou, Despina; Faes, Daniel M.; Carciofi, Alex C.; Okazaki, Atsuo T.; Baade, Dietrich; Rivinius, Thomas; Borges Fernandes, Marcelo
2018-01-01
In this paper, we present the first results of radiative transfer calculations on decretion discs of binary Be stars. A smoothed particle hydrodynamics code computes the structure of Be discs in coplanar circular binary systems for a range of orbital and disc parameters. The resulting disc configuration consists of two spiral arms, and this can be given as input into a Monte Carlo code, which calculates the radiative transfer along the line of sight for various observational coordinates. Making use of the property of steady disc structure in coplanar circular binaries, observables are computed as functions of the orbital phase. Some orbital-phase series of line profiles are given for selected parameter sets under various viewing angles, to allow comparison with observations. Flat-topped profiles with and without superimposed multiple structures are reproduced, showing, for example, that triple-peaked profiles do not have to be necessarily associated with warped discs and misaligned binaries. It is demonstrated that binary tidal effects give rise to phase-locked variability of the violet-to-red (V/R) ratio of hydrogen emission lines. The V/R ratio exhibits two maxima per cycle; in certain cases those maxima are equal, leading to a clear new V/R cycle every half orbital period. This study opens a way to identifying binaries and to constraining the parameters of binary systems that exhibit phase-locked variations induced by tidal interaction with a companion star.
Large-scale Exploration of Neuronal Morphologies Using Deep Learning and Augmented Reality.
Li, Zhongyu; Butler, Erik; Li, Kang; Lu, Aidong; Ji, Shuiwang; Zhang, Shaoting
2018-02-12
Recently released large-scale neuron morphological data has greatly facilitated the research in neuroinformatics. However, the sheer volume and complexity of these data pose significant challenges for efficient and accurate neuron exploration. In this paper, we propose an effective retrieval framework to address these problems, based on frontier techniques of deep learning and binary coding. For the first time, we develop a deep learning based feature representation method for the neuron morphological data, where the 3D neurons are first projected into binary images and then learned features using an unsupervised deep neural network, i.e., stacked convolutional autoencoders (SCAEs). The deep features are subsequently fused with the hand-crafted features for more accurate representation. Considering the exhaustive search is usually very time-consuming in large-scale databases, we employ a novel binary coding method to compress feature vectors into short binary codes. Our framework is validated on a public data set including 58,000 neurons, showing promising retrieval precision and efficiency compared with state-of-the-art methods. In addition, we develop a novel neuron visualization program based on the techniques of augmented reality (AR), which can help users take a deep exploration of neuron morphologies in an interactive and immersive manner.
NASA Technical Reports Server (NTRS)
2009-01-01
Topics covered include: Direct-Solve Image-Based Wavefront Sensing; Use of UV Sources for Detection and Identification of Explosives; Using Fluorescent Viruses for Detecting Bacteria in Water; Gradiometer Using Middle Loops as Sensing Elements in a Low-Field SQUID MRI System; Volcano Monitor: Autonomous Triggering of In-Situ Sensors; Wireless Fluid-Level Sensors for Harsh Environments; Interference-Detection Module in a Digital Radar Receiver; Modal Vibration Analysis of Large Castings; Structural/Radiation-Shielding Epoxies; Integrated Multilayer Insulation; Apparatus for Screening Multiple Oxygen-Reduction Catalysts; Determining Aliasing in Isolated Signal Conditioning Modules; Composite Bipolar Plate for Unitized Fuel Cell/Electrolyzer Systems; Spectrum Analyzers Incorporating Tunable WGM Resonators; Quantum-Well Thermophotovoltaic Cells; Bounded-Angle Iterative Decoding of LDPC Codes; Conversion from Tree to Graph Representation of Requirements; Parallel Hybrid Vehicle Optimal Storage System; and Anaerobic Digestion in a Flooded Densified Leachbed.
Trans*versing the DMZ: A Non-Binary Autoethnographic Exploration of Gender and Masculinity
ERIC Educational Resources Information Center
Stewart, Dafina-Lazarus
2017-01-01
Using an abductive, critical-poststructuralist autoethnographic approach, I consider the ways in which masculine of centre, non-binary/genderqueer trans* identities transverse the poles of socializing binary gender systems, structures, and norms which inform higher education. In this paper, I assert that non-binary genderqueer identities are…
Chopper-stabilized phase detector
NASA Technical Reports Server (NTRS)
Hopkins, P. M.
1978-01-01
Phase-detector circuit for binary-tracking loops and other binary-data acquisition systems minimizes effects of drift, gain imbalance, and voltage offset in detector circuitry. Input signal passes simultaneously through two channels where it is mixed with early and late codes that are alternately switched between channels. Code switching is synchronized with polarity switching of detector output of each channel so that each channel uses each detector for half time. Net result is that dc offset errors are canceled, and effect of gain imbalance is simply change in sensitivity.
Observability of characteristic binary-induced structures in circumbinary disks
NASA Astrophysics Data System (ADS)
Avramenko, R.; Wolf, S.; Illenseer, T. F.
2017-07-01
Context. A substantial fraction of protoplanetary disks form around stellar binaries. The binary system generates a time-dependent non-axisymmetric gravitational potential, inducing strong tidal forces on the circumbinary disk. This leads to a change in basic physical properties of the circumbinary disk, which should in turn result in unique structures that are potentially observable with the current generation of instruments. Aims: The goal of this study is to identify these characteristic structures, constrain the physical conditions that cause them, and evaluate the feasibility of observing them in circumbinary disks. Methods: To achieve this, first we perform 2D hydrodynamic simulations. The resulting density distributions are post-processed with a 3D radiative transfer code to generate re-emission and scattered light maps. Based on these distributions, we study the influence of various parameters, such as the mass of the stellar components, mass of the disk, and binary separation on observable features in circumbinary disks. Results: We find that the Atacama Large (sub-)Millimetre Array (ALMA) as well as the European Extremely Large Telescope (E-ELT) are capable of tracing asymmetries in the inner region of circumbinary disks, which are affected most by the binary-disk interaction. Observations at submillimetre/millimetre wavelengths allow the detection of the density waves at the inner rim of the disk and inner cavity. With the E-ELT one can partially resolve the innermost parts of the disk in the infrared wavelength range, including the disk's rim, accretion arms, and potentially the expected circumstellar disks around each of the binary components.
Signal Detection and Frame Synchronization of Multiple Wireless Networking Waveforms
2007-09-01
punctured to obtain coding rates of 2 3 and 3 4 . Convolutional forward error correction coding is used to detect and correct bit...likely to be isolated and be correctable by the convolutional decoder. 44 Data rate (Mbps) Modulation Coding Rate Coded bits per subcarrier...binary convolutional code . A shortened Reed-Solomon technique is employed first. The code is shortened depending upon the data
A robust recognition and accurate locating method for circular coded diagonal target
NASA Astrophysics Data System (ADS)
Bao, Yunna; Shang, Yang; Sun, Xiaoliang; Zhou, Jiexin
2017-10-01
As a category of special control points which can be automatically identified, artificial coded targets have been widely developed in the field of computer vision, photogrammetry, augmented reality, etc. In this paper, a new circular coded target designed by RockeTech technology Corp. Ltd is analyzed and studied, which is called circular coded diagonal target (CCDT). A novel detection and recognition method with good robustness is proposed in the paper, and implemented on Visual Studio. In this algorithm, firstly, the ellipse features of the center circle are used for rough positioning. Then, according to the characteristics of the center diagonal target, a circular frequency filter is designed to choose the correct center circle and eliminates non-target noise. The precise positioning of the coded target is done by the correlation coefficient fitting extreme value method. Finally, the coded target recognition is achieved by decoding the binary sequence in the outer ring of the extracted target. To test the proposed algorithm, this paper has carried out simulation experiments and real experiments. The results show that the CCDT recognition and accurate locating method proposed in this paper can robustly recognize and accurately locate the targets in complex and noisy background.
Universal Noiseless Coding Subroutines
NASA Technical Reports Server (NTRS)
Schlutsmeyer, A. P.; Rice, R. F.
1986-01-01
Software package consists of FORTRAN subroutines that perform universal noiseless coding and decoding of integer and binary data strings. Purpose of this type of coding to achieve data compression in sense that coded data represents original data perfectly (noiselessly) while taking fewer bits to do so. Routines universal because they apply to virtually any "real-world" data source.
GPU accelerated manifold correction method for spinning compact binaries
NASA Astrophysics Data System (ADS)
Ran, Chong-xi; Liu, Song; Zhong, Shuang-ying
2018-04-01
The graphics processing unit (GPU) acceleration of the manifold correction algorithm based on the compute unified device architecture (CUDA) technology is designed to simulate the dynamic evolution of the Post-Newtonian (PN) Hamiltonian formulation of spinning compact binaries. The feasibility and the efficiency of parallel computation on GPU have been confirmed by various numerical experiments. The numerical comparisons show that the accuracy on GPU execution of manifold corrections method has a good agreement with the execution of codes on merely central processing unit (CPU-based) method. The acceleration ability when the codes are implemented on GPU can increase enormously through the use of shared memory and register optimization techniques without additional hardware costs, implying that the speedup is nearly 13 times as compared with the codes executed on CPU for phase space scan (including 314 × 314 orbits). In addition, GPU-accelerated manifold correction method is used to numerically study how dynamics are affected by the spin-induced quadrupole-monopole interaction for black hole binary system.
2001-09-01
Rate - compatible punctured convolutional codes (RCPC codes ) and their applications,” IEEE...ABSTRACT In this dissertation, the bit error rates for serially concatenated convolutional codes (SCCC) for both BPSK and DPSK modulation with...INTENTIONALLY LEFT BLANK i EXECUTIVE SUMMARY In this dissertation, the bit error rates of serially concatenated convolutional codes
General Relativistic Simulations of Magnetized Plasmas Around Merging Supermassive Black Holes
NASA Technical Reports Server (NTRS)
Giacomazzo, Bruno; Baker, John G.; Miller, M. Coleman; Reynolds, Christopher S.; van Meter, James R.
2012-01-01
Coalescing supermassive black hole binaries are produced by the mergers of galaxies and are the most powerful sources of gravitational waves accessible to space-based gravitational observatories. Some such mergers may occur in the presence of matter and magnetic fields and hence generate an electromagnetic counterpart. In this paper we present the first general relativistic simulations of magnetized plasma around merging supermassive black holes using the general relativistic magnetohydrodynamic code Whisky. By considering different magnetic field strengths, going from non-magnetically dominated to magnetically dominated regimes, we explore how magnetic fields affect the dynamics of the plasma and the possible emission of electromagnetic signals. In particular we observe, total amplification of the magnetic field of approx 2 orders of magnitude which is driven by the accretion onto the binary and that leads to stronger electromagnetic signals than in the force-free regime where such amplifications are not possible.
Coding efficiency of AVS 2.0 for CBAC and CABAC engines
NASA Astrophysics Data System (ADS)
Cui, Jing; Choi, Youngkyu; Chae, Soo-Ik
2015-12-01
In this paper we compare the coding efficiency of AVS 2.0[1] for engines of the Context-based Binary Arithmetic Coding (CBAC)[2] in the AVS 2.0 and the Context-Adaptive Binary Arithmetic Coder (CABAC)[3] in the HEVC[4]. For fair comparison, the CABAC is embedded in the reference code RD10.1 because the CBAC is in the HEVC in our previous work[5]. The rate estimation table is employed only for RDOQ in the RD code. To reduce the computation complexity of the video encoder, therefore we modified the RD code so that the rate estimation table is employed for all RDO decision. Furthermore, we also simplify the complexity of rate estimation table by reducing the bit depth of its fractional part to 2 from 8. The simulation result shows that the CABAC has the BD-rate loss of about 0.7% compared to the CBAC. It seems that the CBAC is a little more efficient than that the CABAC in the AVS 2.0.
Observational properties of massive black hole binary progenitors
NASA Astrophysics Data System (ADS)
Hainich, R.; Oskinova, L. M.; Shenar, T.; Marchant, P.; Eldridge, J. J.; Sander, A. A. C.; Hamann, W.-R.; Langer, N.; Todt, H.
2018-01-01
Context. The first directly detected gravitational waves (GW 150914) were emitted by two coalescing black holes (BHs) with masses of ≈ 36 M⊙ and ≈ 29 M⊙. Several scenarios have been proposed to put this detection into an astrophysical context. The evolution of an isolated massive binary system is among commonly considered models. Aims: Various groups have performed detailed binary-evolution calculations that lead to BH merger events. However, the question remains open as to whether binary systems with the predicted properties really exist. The aim of this paper is to help observers to close this gap by providing spectral characteristics of massive binary BH progenitors during a phase where at least one of the companions is still non-degenerate. Methods: Stellar evolution models predict fundamental stellar parameters. Using these as input for our stellar atmosphere code (Potsdam Wolf-Rayet), we compute a set of models for selected evolutionary stages of massive merging BH progenitors at different metallicities. Results: The synthetic spectra obtained from our atmosphere calculations reveal that progenitors of massive BH merger events start their lives as O2-3V stars that evolve to early-type blue supergiants before they undergo core-collapse during the Wolf-Rayet phase. When the primary has collapsed, the remaining system will appear as a wind-fed high-mass X-ray binary. Based on our atmosphere models, we provide feedback parameters, broad band magnitudes, and spectral templates that should help to identify such binaries in the future. Conclusions: While the predicted parameter space for massive BH binary progenitors is partly realized in nature, none of the known massive binaries match our synthetic spectra of massive BH binary progenitors exactly. Comparisons of empirically determined mass-loss rates with those assumed by evolution calculations reveal significant differences. The consideration of the empirical mass-loss rates in evolution calculations will possibly entail a shift of the maximum in the predicted binary-BH merger rate to higher metallicities, that is, more candidates should be expected in our cosmic neighborhood than previously assumed.
Synergism and Combinatorial Coding for Binary Odor Mixture Perception in Drosophila
Chakraborty, Tuhin Subhra; Siddiqi, Obaid
2016-01-01
Most odors in the natural environment are mixtures of several compounds. Olfactory receptors housed in the olfactory sensory neurons detect these odors and transmit the information to the brain, leading to decision-making. But whether the olfactory system detects the ingredients of a mixture separately or treats mixtures as different entities is not well understood. Using Drosophila melanogaster as a model system, we have demonstrated that fruit flies perceive binary odor mixtures in a manner that is heavily dependent on both the proportion and the degree of dilution of the components, suggesting a combinatorial coding at the peripheral level. This coding strategy appears to be receptor specific and is independent of interneuronal interactions. PMID:27588303
Context-Aware Local Binary Feature Learning for Face Recognition.
Duan, Yueqi; Lu, Jiwen; Feng, Jianjiang; Zhou, Jie
2018-05-01
In this paper, we propose a context-aware local binary feature learning (CA-LBFL) method for face recognition. Unlike existing learning-based local face descriptors such as discriminant face descriptor (DFD) and compact binary face descriptor (CBFD) which learn each feature code individually, our CA-LBFL exploits the contextual information of adjacent bits by constraining the number of shifts from different binary bits, so that more robust information can be exploited for face representation. Given a face image, we first extract pixel difference vectors (PDV) in local patches, and learn a discriminative mapping in an unsupervised manner to project each pixel difference vector into a context-aware binary vector. Then, we perform clustering on the learned binary codes to construct a codebook, and extract a histogram feature for each face image with the learned codebook as the final representation. In order to exploit local information from different scales, we propose a context-aware local binary multi-scale feature learning (CA-LBMFL) method to jointly learn multiple projection matrices for face representation. To make the proposed methods applicable for heterogeneous face recognition, we present a coupled CA-LBFL (C-CA-LBFL) method and a coupled CA-LBMFL (C-CA-LBMFL) method to reduce the modality gap of corresponding heterogeneous faces in the feature level, respectively. Extensive experimental results on four widely used face datasets clearly show that our methods outperform most state-of-the-art face descriptors.
Binary Multidimensional Scaling for Hashing.
Huang, Yameng; Lin, Zhouchen
2017-10-04
Hashing is a useful technique for fast nearest neighbor search due to its low storage cost and fast query speed. Unsupervised hashing aims at learning binary hash codes for the original features so that the pairwise distances can be best preserved. While several works have targeted on this task, the results are not satisfactory mainly due to the oversimplified model. In this paper, we propose a unified and concise unsupervised hashing framework, called Binary Multidimensional Scaling (BMDS), which is able to learn the hash code for distance preservation in both batch and online mode. In the batch mode, unlike most existing hashing methods, we do not need to simplify the model by predefining the form of hash map. Instead, we learn the binary codes directly based on the pairwise distances among the normalized original features by Alternating Minimization. This enables a stronger expressive power of the hash map. In the online mode, we consider the holistic distance relationship between current query example and those we have already learned, rather than only focusing on current data chunk. It is useful when the data come in a streaming fashion. Empirical results show that while being efficient for training, our algorithm outperforms state-of-the-art methods by a large margin in terms of distance preservation, which is practical for real-world applications.
An efficient coding algorithm for the compression of ECG signals using the wavelet transform.
Rajoub, Bashar A
2002-04-01
A wavelet-based electrocardiogram (ECG) data compression algorithm is proposed in this paper. The ECG signal is first preprocessed, the discrete wavelet transform (DWT) is then applied to the preprocessed signal. Preprocessing guarantees that the magnitudes of the wavelet coefficients be less than one, and reduces the reconstruction errors near both ends of the compressed signal. The DWT coefficients are divided into three groups, each group is thresholded using a threshold based on a desired energy packing efficiency. A binary significance map is then generated by scanning the wavelet decomposition coefficients and outputting a binary one if the scanned coefficient is significant, and a binary zero if it is insignificant. Compression is achieved by 1) using a variable length code based on run length encoding to compress the significance map and 2) using direct binary representation for representing the significant coefficients. The ability of the coding algorithm to compress ECG signals is investigated, the results were obtained by compressing and decompressing the test signals. The proposed algorithm is compared with direct-based and wavelet-based compression algorithms and showed superior performance. A compression ratio of 24:1 was achieved for MIT-BIH record 117 with a percent root mean square difference as low as 1.08%.
On the error probability of general tree and trellis codes with applications to sequential decoding
NASA Technical Reports Server (NTRS)
Johannesson, R.
1973-01-01
An upper bound on the average error probability for maximum-likelihood decoding of the ensemble of random binary tree codes is derived and shown to be independent of the length of the tree. An upper bound on the average error probability for maximum-likelihood decoding of the ensemble of random L-branch binary trellis codes of rate R = 1/n is derived which separates the effects of the tail length T and the memory length M of the code. It is shown that the bound is independent of the length L of the information sequence. This implication is investigated by computer simulations of sequential decoding utilizing the stack algorithm. These simulations confirm the implication and further suggest an empirical formula for the true undetected decoding error probability with sequential decoding.
Coding/modulation trade-offs for Shuttle wideband data links
NASA Technical Reports Server (NTRS)
Batson, B. H.; Huth, G. K.; Trumpis, B. D.
1974-01-01
This paper describes various modulation and coding schemes which are potentially applicable to the Shuttle wideband data relay communications link. This link will be capable of accommodating up to 50 Mbps of scientific data and will be subject to a power constraint which forces the use of channel coding. Although convolutionally encoded coherent binary PSK is the tentative signal design choice for the wideband data relay link, FM techniques are of interest because of the associated hardware simplicity and because an FM system is already planned to be available for transmission of television via relay satellite to the ground. Binary and M-ary FSK are considered as candidate modulation techniques, and both coherent and noncoherent ground station detection schemes are examined. The potential use of convolutional coding is considered in conjunction with each of the candidate modulation techniques.
Direct-Sequence Spread Spectrum System
1990-06-01
by directly modulating a conventional narrowband frequency-modulated (FM) carrier by a high rate digital code. The direct modulation is binary phase ...specification of the DSSS system will not be developed. The results of the evaluation phase of this research will be compared against theoretical...spread spectrum is called binary phase -shift keying 19 (BPSK). BPSK is a modulation in which a binary Ŕ" represents a 0-degree relative phase
Numerical Simulations of Dynamical Mass Transfer in Binaries
NASA Astrophysics Data System (ADS)
Motl, P. M.; Frank, J.; Tohline, J. E.
1999-05-01
We will present results from our ongoing research project to simulate dynamically unstable mass transfer in near contact binaries with mass ratios different from one. We employ a fully three-dimensional self-consistent field technique to generate synchronously rotating polytropic binaries. With our self-consistent field code we can create equilibrium binaries where one component is, by radius, within about 99 of filling its Roche lobe for example. These initial configurations are evolved using a three-dimensional, Eulerian hydrodynamics code. We make no assumptions about the symmetry of the subsequent flow and the entire binary system is evolved self-consistently under the influence of its own gravitational potential. For a given mass ratio and polytropic index for the binary components, mass transfer via Roche lobe overflow can be predicted to be stable or unstable through simple theoretical arguments. The validity of the approximations made in the stability calculations are tested against our numerical simulations. We acknowledge support from the U.S. National Science Foundation through grants AST-9720771, AST-9528424, and DGE-9355007. This research has been supported, in part, by grants of high-performance computing time on NPACI facilities at the San Diego Supercomputer Center, the Texas Advanced Computing Center and through the PET program of the NAVOCEANO DoD Major Shared Resource Center in Stennis, MS.
Fault-Tolerant Coding for State Machines
NASA Technical Reports Server (NTRS)
Naegle, Stephanie Taft; Burke, Gary; Newell, Michael
2008-01-01
Two reliable fault-tolerant coding schemes have been proposed for state machines that are used in field-programmable gate arrays and application-specific integrated circuits to implement sequential logic functions. The schemes apply to strings of bits in state registers, which are typically implemented in practice as assemblies of flip-flop circuits. If a single-event upset (SEU, a radiation-induced change in the bit in one flip-flop) occurs in a state register, the state machine that contains the register could go into an erroneous state or could hang, by which is meant that the machine could remain in undefined states indefinitely. The proposed fault-tolerant coding schemes are intended to prevent the state machine from going into an erroneous or hang state when an SEU occurs. To ensure reliability of the state machine, the coding scheme for bits in the state register must satisfy the following criteria: 1. All possible states are defined. 2. An SEU brings the state machine to a known state. 3. There is no possibility of a hang state. 4. No false state is entered. 5. An SEU exerts no effect on the state machine. Fault-tolerant coding schemes that have been commonly used include binary encoding and "one-hot" encoding. Binary encoding is the simplest state machine encoding and satisfies criteria 1 through 3 if all possible states are defined. Binary encoding is a binary count of the state machine number in sequence; the table represents an eight-state example. In one-hot encoding, N bits are used to represent N states: All except one of the bits in a string are 0, and the position of the 1 in the string represents the state. With proper circuit design, one-hot encoding can satisfy criteria 1 through 4. Unfortunately, the requirement to use N bits to represent N states makes one-hot coding inefficient.
NASA Astrophysics Data System (ADS)
Bhattachryya, Arunava; Kumar Gayen, Dilip; Chattopadhyay, Tanay
2013-04-01
All-optical 4-bit binary to binary coded decimal (BCD) converter has been proposed and described, with the help of semiconductor optical amplifier (SOA)-assisted Sagnac interferometric switches in this manuscript. The paper describes all-optical conversion scheme using a set of all-optical switches. BCD is common in computer systems that display numeric values, especially in those consisting solely of digital logic with no microprocessor. In many personal computers, the basic input/output system (BIOS) keep the date and time in BCD format. The operations of the circuit are studied theoretically and analyzed through numerical simulations. The model accounts for the SOA small signal gain, line-width enhancement factor and carrier lifetime, the switching pulse energy and width, and the Sagnac loop asymmetry. By undertaking a detailed numerical simulation the influence of these key parameters on the metrics that determine the quality of switching is thoroughly investigated.
Thermal Timescale Mass Transfer In Binary Population Synthesis
NASA Astrophysics Data System (ADS)
Justham, S.; Kolb, U.
2004-07-01
Studies of binary evolution have, until recently, neglected thermal timescale mass transfer (TTMT). Recent work has suggested that this previously poorly studied area is crucial in the understanding of systems across the compact binary spectrum. We use the state-of-the-art binary population synthesis code BiSEPS (Willems and Kolb, 2002, MNRAS 337 1004-1016). However, the present treatment of TTMT is incomplete due to the nonlinear behaviour of stars in their departure from gravothermal `equilibrium'. Here we show work that should update the ultrafast stellar evolution algorithms within BiSEPS to make it the first pseudo-analytic code that can follow TTMT properly. We have generated fits to a set of over 300 Case B TTMT sequences with a range of intermediate-mass donors. These fits produce very good first approximations to both HR diagrams and mass-transfer rates (see figures 1 and 2), which we later hope to improve and extend. They are already a significant improvement over the previous fits.
NASA Technical Reports Server (NTRS)
Becker, Jeffrey C.
1995-01-01
The Thinking Machines CM-5 platform was designed to run single program, multiple data (SPMD) applications, i.e., to run a single binary across all nodes of a partition, with each node possibly operating on different data. Certain classes of applications, such as multi-disciplinary computational fluid dynamics codes, are facilitated by the ability to have subsets of the partition nodes running different binaries. In order to extend the CM-5 system software to permit such applications, a multi-program loader was developed. This system is based on the dld loader which was originally developed for workstations. This paper provides a high level description of dld, and describes how it was ported to the CM-5 to provide support for multi-binary applications. Finally, it elaborates how the loader has been used to implement the CM-5 version of MPIRUN, a portable facility for running multi-disciplinary/multi-zonal MPI (Message-Passing Interface Standard) codes.
Can Binary Population Synthesis Models Be Tested With Hot Subdwarfs ?
NASA Astrophysics Data System (ADS)
Kopparapu, Ravi Kumar; Wade, R. A.; O'Shaughnessy, R.
2007-12-01
Models of binary star interactions have been successful in explaining the origin of field hot subdwarf (sdB) stars in short period systems. The hydrogen envelopes around these core He-burning stars are removed in a "common envelope" evolutionary phase. Reasonably clean samples of short-period sdB+WD or sdB+dM systems exist, that allow the common envelope ejection efficiency to be estimated for wider use in binary population synthesis (BPS) codes. About one-third of known sdB stars, however, are found in longer-period systems with a cool G or K star companion. These systems may have formed through Roche-lobe overflow (RLOF) mass transfer from the present sdB to its companion. They have received less attention, because the existing catalogues are believed to have severe selection biases against these systems, and because their long, slow orbits are difficult to measure. Are these known sdB+cool systems worth intense observational effort? That is, can they be used to make a valid and useful test of the RLOF process in BPS codes? We use the Binary Stellar Evolution (BSE) code of Hurley et al. (2002), mapping sets of initial binaries into present-day binaries that include sdBs, and distinguishing "observable" sdBs from "hidden" ones. We aim to find out whether (1) the existing catalogues of sdBs are sufficiently fair samples of the kinds of sdB binaries that theory predicts, to allow testing or refinement of RLOF models; or instead whether (2) large predicted hidden populations mandate the construction of new catalogues, perhaps using wide-field imaging surveys such as 2MASS, SDSS, and Galex. This work has been partially supported by NASA grant NNG05GE11G and NSF grants PHY 03-26281, PHY 06-00953 and PHY 06-53462. This work is also supported by the Center for Gravitational Wave Physics, which is supported by the National Science Foundation under cooperative agreement PHY 01-14375.
Antoine, Sophie; Ranzini, Mariagrazia; Gebuis, Titia; van Dijck, Jean-Philippe; Gevers, Wim
2017-10-01
A largely substantiated view in the domain of working memory is that the maintenance of serial order is achieved by generating associations of each item with an independent representation of its position, so-called position markers. Recent studies reported that the ordinal position of an item in verbal working memory interacts with spatial processing. This suggests that position markers might be spatial in nature. However, these interactions were so far observed in tasks implying a clear binary categorization of space (i.e., with left and right responses or targets). Such binary categorizations leave room for alternative interpretations, such as congruency between non-spatial categorical codes for ordinal position (e.g., begin and end) and spatial categorical codes for response (e.g., left and right). Here we discard this interpretation by providing evidence that this interaction can also be observed in a task that draws upon a continuous processing of space, the line bisection task. Specifically, bisections are modulated by ordinal position in verbal working memory, with lines bisected more towards the right after retrieving items from the end compared to the beginning of the memorized sequence. This supports the idea that position markers are intrinsically spatial in nature.
Exact Algorithms for Duplication-Transfer-Loss Reconciliation with Non-Binary Gene Trees.
Kordi, Misagh; Bansal, Mukul S
2017-06-01
Duplication-Transfer-Loss (DTL) reconciliation is a powerful method for studying gene family evolution in the presence of horizontal gene transfer. DTL reconciliation seeks to reconcile gene trees with species trees by postulating speciation, duplication, transfer, and loss events. Efficient algorithms exist for finding optimal DTL reconciliations when the gene tree is binary. In practice, however, gene trees are often non-binary due to uncertainty in the gene tree topologies, and DTL reconciliation with non-binary gene trees is known to be NP-hard. In this paper, we present the first exact algorithms for DTL reconciliation with non-binary gene trees. Specifically, we (i) show that the DTL reconciliation problem for non-binary gene trees is fixed-parameter tractable in the maximum degree of the gene tree, (ii) present an exponential-time, but in-practice efficient, algorithm to track and enumerate all optimal binary resolutions of a non-binary input gene tree, and (iii) apply our algorithms to a large empirical data set of over 4700 gene trees from 100 species to study the impact of gene tree uncertainty on DTL-reconciliation and to demonstrate the applicability and utility of our algorithms. The new techniques and algorithms introduced in this paper will help biologists avoid incorrect evolutionary inferences caused by gene tree uncertainty.
PPLN-waveguide-based polarization entangled QKD simulator
NASA Astrophysics Data System (ADS)
Gariano, John; Djordjevic, Ivan B.
2017-08-01
We have developed a comprehensive simulator to study the polarization entangled quantum key distribution (QKD) system, which takes various imperfections into account. We assume that a type-II SPDC source using a PPLN-based nonlinear optical waveguide is used to generate entangled photon pairs and implements the BB84 protocol, using two mutually unbiased basis with two orthogonal polarizations in each basis. The entangled photon pairs are then simulated to be transmitted to both parties; Alice and Bob, through the optical channel, imperfect optical elements and onto the imperfect detector. It is assumed that Eve has no control over the detectors, and can only gain information from the public channel and the intercept resend attack. The secure key rate (SKR) is calculated using an upper bound and by using actual code rates of LDPC codes implementable in FPGA hardware. After the verification of the simulation results, such as the pair generation rate and the number of error due to multiple pairs, for the ideal scenario, available in the literature, we then introduce various imperfections. Then, the results are compared to previously reported experimental results where a BBO nonlinear crystal is used, and the improvements in SKRs are determined for when a PPLN-waveguide is used instead.
Formation of the first three gravitational-wave observations through isolated binary evolution
Stevenson, Simon; Vigna-Gómez, Alejandro; Mandel, Ilya; Barrett, Jim W.; Neijssel, Coenraad J.; Perkins, David; de Mink, Selma E.
2017-01-01
During its first four months of taking data, Advanced LIGO has detected gravitational waves from two binary black hole mergers, GW150914 and GW151226, along with the statistically less significant binary black hole merger candidate LVT151012. Here we use the rapid binary population synthesis code COMPAS to show that all three events can be explained by a single evolutionary channel—classical isolated binary evolution via mass transfer including a common envelope phase. We show all three events could have formed in low-metallicity environments (Z=0.001) from progenitor binaries with typical total masses ≳160M⊙, ≳60M⊙ and ≳90M⊙, for GW150914, GW151226 and LVT151012, respectively. PMID:28378739
EVOLUTION OF CATACLYSMIC VARIABLES AND RELATED BINARIES CONTAINING A WHITE DWARF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalomeni, B.; Rappaport, S.; Molnar, M.
We present a binary evolution study of cataclysmic variables (CVs) and related systems with white dwarf (WD) accretors, including for example, AM CVn systems, classical novae, supersoft X-ray sources (SXSs), and systems with giant donor stars. Our approach intentionally avoids the complications associated with population synthesis algorithms, thereby allowing us to present the first truly comprehensive exploration of all of the subsequent binary evolution pathways that zero-age CVs might follow (assuming fully non-conservative, Roche-lobe overflow onto an accreting WD) using the sophisticated binary stellar evolution code MESA. The grid consists of 56,000 initial models, including 14 WD accretor masses, 43more » donor-star masses (0.1–4.7 M {sub ⊙}), and 100 orbital periods. We explore evolution tracks in the orbital period and donor-mass ( P {sub orb}– M {sub don}) plane in terms of evolution dwell times, masses of the WD accretor, accretion rate, and chemical composition of the center and surface of the donor star. We report on the differences among the standard CV tracks, those with giant donor stars, and ultrashort period systems. We show where in parameter space one can expect to find SXSs, present a diagnostic to distinguish among different evolutionary paths to forming AM CVn binaries, quantify how the minimum orbital period in CVs depends on the chemical composition of the donor star, and update the P {sub orb}( M {sub wd}) relation for binaries containing WDs whose progenitors lost their envelopes via stable Roche-lobe overflow. Finally, we indicate where in the P {sub orb}– M {sub don} the accretion disks will tend to be stable against the thermal-viscous instability, and where gravitational radiation signatures may be found with LISA.« less
Evolution of Cataclysmic Variables and Related Binaries Containing a White Dwarf
NASA Astrophysics Data System (ADS)
Kalomeni, B.; Nelson, L.; Rappaport, S.; Molnar, M.; Quintin, J.; Yakut, K.
2016-12-01
We present a binary evolution study of cataclysmic variables (CVs) and related systems with white dwarf (WD) accretors, including for example, AM CVn systems, classical novae, supersoft X-ray sources (SXSs), and systems with giant donor stars. Our approach intentionally avoids the complications associated with population synthesis algorithms, thereby allowing us to present the first truly comprehensive exploration of all of the subsequent binary evolution pathways that zero-age CVs might follow (assuming fully non-conservative, Roche-lobe overflow onto an accreting WD) using the sophisticated binary stellar evolution code MESA. The grid consists of 56,000 initial models, including 14 WD accretor masses, 43 donor-star masses (0.1-4.7 M ⊙), and 100 orbital periods. We explore evolution tracks in the orbital period and donor-mass (P orb-M don) plane in terms of evolution dwell times, masses of the WD accretor, accretion rate, and chemical composition of the center and surface of the donor star. We report on the differences among the standard CV tracks, those with giant donor stars, and ultrashort period systems. We show where in parameter space one can expect to find SXSs, present a diagnostic to distinguish among different evolutionary paths to forming AM CVn binaries, quantify how the minimum orbital period in CVs depends on the chemical composition of the donor star, and update the P orb(M wd) relation for binaries containing WDs whose progenitors lost their envelopes via stable Roche-lobe overflow. Finally, we indicate where in the P orb-M don the accretion disks will tend to be stable against the thermal-viscous instability, and where gravitational radiation signatures may be found with LISA.
Where Kinsey, Christ, and Tila Tequila meet: discourse and the sexual (non)-binary.
Callis, April S
2014-01-01
Drawing on 80 interviews and 17 months of participant observation in Lexington, Kentucky, this article details how individuals drew on three areas of national and local discourse to conceptualize sexuality. Media, popular science, and religious discourses can be viewed as portraying sexuality bifocally--as both a binary of heterosexual/homosexual and as a non-binary that encompasses fluidity. However, individuals in Lexington drew on each of these areas of discourse differently. Religion was thought to produce a binary vision of sexuality, whereas popular science accounts were understood as both binary and not. The media was understood as portraying non-binary identities that were not viable, thus strengthening the sexual binary. These differing points of view led identities such as bisexual and queer to lack cultural intelligibility.
Block-based scalable wavelet image codec
NASA Astrophysics Data System (ADS)
Bao, Yiliang; Kuo, C.-C. Jay
1999-10-01
This paper presents a high performance block-based wavelet image coder which is designed to be of very low implementational complexity yet with rich features. In this image coder, the Dual-Sliding Wavelet Transform (DSWT) is first applied to image data to generate wavelet coefficients in fixed-size blocks. Here, a block only consists of wavelet coefficients from a single subband. The coefficient blocks are directly coded with the Low Complexity Binary Description (LCBiD) coefficient coding algorithm. Each block is encoded using binary context-based bitplane coding. No parent-child correlation is exploited in the coding process. There is also no intermediate buffering needed in between DSWT and LCBiD. The compressed bit stream generated by the proposed coder is both SNR and resolution scalable, as well as highly resilient to transmission errors. Both DSWT and LCBiD process the data in blocks whose size is independent of the size of the original image. This gives more flexibility in the implementation. The codec has a very good coding performance even the block size is (16,16).
Analysis and Defense of Vulnerabilities in Binary Code
2008-09-29
language . We demonstrate our techniques by automatically generating input filters from vulnerable binary programs. vi Acknowledgments I thank my wife, family...21 2.2 The Vine Intermediate Language . . . . . . . . . . . . . . . . . . . . . . 21 ix 2.2.1 Normalized Memory...The Traditional Weakest Precondition Semantics . . . . . . . . . . . . . 44 3.2.1 The Guarded Command Language . . . . . . . . . . . . . . . . . 44
Distribution of compact object mergers around galaxies
NASA Astrophysics Data System (ADS)
Bulik, T.; Belczyński, K.; Zbijewski, W.
1999-09-01
Compact object mergers are one of the favoured models of gamma ray bursts (GRB). Using a binary population synthesis code we calculate properties of the population of compact object binaries; e.g. lifetimes and velocities. We then propagate them in galactic potentials and find their distribution in relation to the host.
A Biosequence-based Approach to Software Characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oehmen, Christopher S.; Peterson, Elena S.; Phillips, Aaron R.
For many applications, it is desirable to have some process for recognizing when software binaries are closely related without relying on them to be identical or have identical segments. Some examples include monitoring utilization of high performance computing centers or service clouds, detecting freeware in licensed code, and enforcing application whitelists. But doing so in a dynamic environment is a nontrivial task because most approaches to software similarity require extensive and time-consuming analysis of a binary, or they fail to recognize executables that are similar but nonidentical. Presented herein is a novel biosequence-based method for quantifying similarity of executable binaries.more » Using this method, it is shown in an example application on large-scale multi-author codes that 1) the biosequence-based method has a statistical performance in recognizing and distinguishing between a collection of real-world high performance computing applications better than 90% of ideal; and 2) an example of using family tree analysis to tune identification for a code subfamily can achieve better than 99% of ideal performance.« less
Analysis of Optical CDMA Signal Transmission: Capacity Limits and Simulation Results
NASA Astrophysics Data System (ADS)
Garba, Aminata A.; Yim, Raymond M. H.; Bajcsy, Jan; Chen, Lawrence R.
2005-12-01
We present performance limits of the optical code-division multiple-access (OCDMA) networks. In particular, we evaluate the information-theoretical capacity of the OCDMA transmission when single-user detection (SUD) is used by the receiver. First, we model the OCDMA transmission as a discrete memoryless channel, evaluate its capacity when binary modulation is used in the interference-limited (noiseless) case, and extend this analysis to the case when additive white Gaussian noise (AWGN) is corrupting the received signals. Next, we analyze the benefits of using nonbinary signaling for increasing the throughput of optical CDMA transmission. It turns out that up to a fourfold increase in the network throughput can be achieved with practical numbers of modulation levels in comparison to the traditionally considered binary case. Finally, we present BER simulation results for channel coded binary and[InlineEquation not available: see fulltext.]-ary OCDMA transmission systems. In particular, we apply turbo codes concatenated with Reed-Solomon codes so that up to several hundred concurrent optical CDMA users can be supported at low target bit error rates. We observe that unlike conventional OCDMA systems, turbo-empowered OCDMA can allow overloading (more active users than is the length of the spreading sequences) with good bit error rate system performance.
Box codes of lengths 48 and 72
NASA Technical Reports Server (NTRS)
Solomon, G.; Jin, Y.
1993-01-01
A self-dual code length 48, dimension 24, with Hamming distance essentially equal to 12 is constructed here. There are only six code words of weight eight. All the other code words have weights that are multiples of four and have a minimum weight equal to 12. This code may be encoded systematically and arises from a strict binary representation of the (8,4;5) Reed-Solomon (RS) code over GF (64). The code may be considered as six interrelated (8,7;2) codes. The Mattson-Solomon representation of the cyclic decomposition of these codes and their parity sums are used to detect an odd number of errors in any of the six codes. These may then be used in a correction algorithm for hard or soft decision decoding. A (72,36;15) box code was constructed from a (63,35;8) cyclic code. The theoretical justification is presented herein. A second (72,36;15) code is constructed from an inner (63,27;16) Bose Chaudhuri Hocquenghem (BCH) code and expanded to length 72 using box code algorithms for extension. This code was simulated and verified to have a minimum distance of 15 with even weight words congruent to zero modulo four. The decoding for hard and soft decision is still more complex than the first code constructed above. Finally, an (8,4;5) RS code over GF (512) in the binary representation of the (72,36;15) box code gives rise to a (72,36;16*) code with nine words of weight eight, and all the rest have weights greater than or equal to 16.
Advances in Black-Hole Mergers: Spins and Unequal Masses
NASA Technical Reports Server (NTRS)
Kelly, Bernard
2007-01-01
The last two years have seen incredible development in numerical relativity: from fractions of an orbit, evolutions of an equal-mass binary have reached multiple orbits, and convergent gravitational waveforms have been produced from several research groups and numerical codes. We are now able to move our attention from pure numerics to astrophysics, and address scenarios relevant to current and future gravitational-wave detectors.Over the last 12 months at NASA Goddard, we have extended the accuracy of our Hahn-Dol code, and used it to move toward these goals. We have achieved high-accuracy simulations of black-hole binaries of low initial eccentricity, with enough orbits of inspiral before merger to allow us to produce hybrid waveforms that reflect accurately the entire lifetime of the BH binary. We are extending this work, looking at the effects of unequal masses and spins.
Entropy-Based Bounds On Redundancies Of Huffman Codes
NASA Technical Reports Server (NTRS)
Smyth, Padhraic J.
1992-01-01
Report presents extension of theory of redundancy of binary prefix code of Huffman type which includes derivation of variety of bounds expressed in terms of entropy of source and size of alphabet. Recent developments yielded bounds on redundancy of Huffman code in terms of probabilities of various components in source alphabet. In practice, redundancies of optimal prefix codes often closer to 0 than to 1.
Contamination of RR Lyrae stars from Binary Evolution Pulsators
NASA Astrophysics Data System (ADS)
Karczmarek, Paulina; Pietrzyński, Grzegorz; Belczyński, Krzysztof; Stępień, Kazimierz; Wiktorowicz, Grzegorz; Iłkiewicz, Krystian
2016-06-01
Binary Evolution Pulsator (BEP) is an extremely low-mass member of a binary system, which pulsates as a result of a former mass transfer to its companion. BEP mimics RR Lyrae-type pulsations but has different internal structure and evolution history. We present possible evolution channels to produce BEPs, and evaluate the contamination value, i.e. how many objects classified as RR Lyrae stars can be undetected BEPs. In this analysis we use population synthesis code StarTrack.
Photometric Mapping of Two Kepler Eclipsing Binaries: KIC11560447 and KIC8868650
NASA Astrophysics Data System (ADS)
Senavci, Hakan Volkan; Özavci, I.; Isik, E.; Hussain, G. A. J.; O'Neal, D. O.; Yilmaz, M.; Selam, S. O.
2018-04-01
We present the surface maps of two eclipsing binary systems KIC11560447 and KIC8868650, using the Kepler light curves covering approximately 4 years. We use the code DoTS, which is based on maximum entropy method in order to reconstruct the surface maps. We also perform numerical tests of DoTS to check the ability of the code in terms of tracking phase migration of spot clusters. The resulting latitudinally averaged maps of KIC11560447 show that spots drift towards increasing orbital longitudes, while the overall behaviour of spots on KIC8868650 drifts towards decreasing latitudes.
The gravitational wave strain in the characteristic formalism of numerical relativity
NASA Astrophysics Data System (ADS)
Bishop, Nigel T.; Reisswig, Christian
2014-01-01
The extraction of the gravitational wave signal, within the context of a characteristic numerical evolution is revisited. A formula for the gravitational wave strain is developed and tested, and is made publicly available as part of the PITT code within the Einstein Toolkit. Using the new strain formula, we show that artificial non-linear drifts inherent in time integrated waveforms can be reduced for the case of a binary black hole merger configuration. For the test case of a rapidly spinning stellar core collapse model, however, we find that the drift must have different roots.
Study of a co-designed decision feedback equalizer, deinterleaver, and decoder
NASA Technical Reports Server (NTRS)
Peile, Robert E.; Welch, Loyd
1990-01-01
A technique that promises better quality data from band limited channels at lower received power in digital transmission systems is presented. Data transmission, in such systems often suffers from intersymbol interference (ISI) and noise. Two separate techniques, channel coding and equalization, have caused considerable advances in the state of communication systems and both concern themselves with removing the undesired effects of a communication channel. Equalizers mitigate the ISI whereas coding schemes are used to incorporate error-correction. In the past, most of the research in these two areas has been carried out separately. However, the individual techniques have strengths and weaknesses that are complementary in many applications: an integrated approach realizes gains in excess to that of a simple juxtaposition. Coding schemes have been successfully used in cascade with linear equalizers which in the absence of ISI provide excellent performance. However, when both ISI and the noise level are relatively high, nonlinear receivers like the decision feedback equalizer (DFE) perform better. The DFE has its drawbacks: it suffers from error propagation. The technique presented here takes advantage of interleaving to integrate the two approaches so that the error propagation in DFE can be reduced with the help of error correction provided by the decoder. The results of simulations carried out for both, binary, and non-binary, channels confirm that significant gain can be obtained by codesigning equalizer and decoder. Although, systems with time-invariant channels and simple DFE having linear filters were looked into, the technique is fairly general and can easily be modified for more sophisticated equalizers to obtain even larger gains.
NASA Astrophysics Data System (ADS)
Valsecchi, Francesca
Binary star systems hosting black holes, neutron stars, and white dwarfs are unique laboratories for investigating both extreme physical conditions, and stellar and binary evolution. Black holes and neutron stars are observed in X-ray binaries, where mass accretion from a stellar companion renders them X-ray bright. Although instruments like Chandra have revolutionized the field of X-ray binaries, our theoretical understanding of their origin and formation lags behind. Progress can be made by unravelling the evolutionary history of observed systems. As part of my thesis work, I have developed an analysis method that uses detailed stellar models and all the observational constraints of a system to reconstruct its evolutionary path. This analysis models the orbital evolution from compact-object formation to the present time, the binary orbital dynamics due to explosive mass loss and a possible kick at core collapse, and the evolution from the progenitor's Zero Age Main Sequence to compact-object formation. This method led to a theoretical model for M33 X-7, one of the most massive X-ray binaries known and originally marked as an evolutionary challenge. Compact objects are also expected gravitational wave (GW) sources. In particular, double white dwarfs are both guaranteed GW sources and observed electromagnetically. Although known systems show evidence of tidal deformation and a successful GW astronomy requires realistic models of the sources, detached double white dwarfs are generally approximated to point masses. For the first time, I used realistic models to study tidally-driven periastron precession in eccentric binaries. I demonstrated that its imprint on the GW signal yields constrains on the components' masses and that the source would be misclassified if tides are neglected. Beyond this adiabatic precession, tidal dissipation creates a sink of orbital angular momentum. Its efficiency is strongest when tides are dynamic and excite the components' free oscillation modes. Accounting for this effect will determine whether our interpretation of current and future observations will constrain the sources' true physical properties. To investigate dynamic tides I have developed CAFein, a novel code that calculates forced non-adiabatic stellar oscillations using a highly stable and efficient numerical method.
Simulations of binary black hole mergers
NASA Astrophysics Data System (ADS)
Lovelace, Geoffrey
2017-01-01
Advanced LIGO's observations of merging binary black holes have inaugurated the era of gravitational wave astronomy. Accurate models of binary black holes and the gravitational waves they emit are helping Advanced LIGO to find as many gravitational waves as possible and to learn as much as possible about the waves' sources. These models require numerical-relativity simulations of binary black holes, because near the time when the black holes merge, all analytic approximations break down. Following breakthroughs in 2005, many research groups have built numerical-relativity codes capable of simulating binary black holes. In this talk, I will discuss current challenges in simulating binary black holes for gravitational-wave astronomy, and I will discuss the tremendous progress that has already enabled such simulations to become an essential tool for Advanced LIGO.
Polar codes for achieving the classical capacity of a quantum channel
NASA Astrophysics Data System (ADS)
Guha, Saikat; Wilde, Mark
2012-02-01
We construct the first near-explicit, linear, polar codes that achieve the capacity for classical communication over quantum channels. The codes exploit the channel polarization phenomenon observed by Arikan for classical channels. Channel polarization is an effect in which one can synthesize a set of channels, by ``channel combining'' and ``channel splitting,'' in which a fraction of the synthesized channels is perfect for data transmission while the other fraction is completely useless for data transmission, with the good fraction equal to the capacity of the channel. Our main technical contributions are threefold. First, we demonstrate that the channel polarization effect occurs for channels with classical inputs and quantum outputs. We then construct linear polar codes based on this effect, and the encoding complexity is O(N log N), where N is the blocklength of the code. We also demonstrate that a quantum successive cancellation decoder works well, i.e., the word error rate decays exponentially with the blocklength of the code. For a quantum channel with binary pure-state outputs, such as a binary-phase-shift-keyed coherent-state optical communication alphabet, the symmetric Holevo information rate is in fact the ultimate channel capacity, which is achieved by our polar code.
Error Correcting Codes and Related Designs
1990-09-30
Theory, IT-37 (1991), 1222-1224. 6. Codes and designs, existence and uniqueness, Discrete Math ., to appear. 7. (with R. Brualdi and N. Cai), Orphan...structure of the first order Reed-Muller codes, Discrete Math ., to appear. 8. (with J. H. Conway and N.J.A. Sloane), The binary self-dual codes of length up...18, 1988. 4. "Codes and Designs," Mathematics Colloquium, Technion, Haifa, Israel, March 6, 1989. 5. "On the Covering Radius of Codes," Discrete Math . Group
Syndrome source coding and its universal generalization
NASA Technical Reports Server (NTRS)
Ancheta, T. C., Jr.
1975-01-01
A method of using error-correcting codes to obtain data compression, called syndrome-source-coding, is described in which the source sequence is treated as an error pattern whose syndrome forms the compressed data. It is shown that syndrome-source-coding can achieve arbitrarily small distortion with the number of compressed digits per source digit arbitrarily close to the entropy of a binary memoryless source. A universal generalization of syndrome-source-coding is formulated which provides robustly-effective, distortionless, coding of source ensembles.
Toward Optimal Manifold Hashing via Discrete Locally Linear Embedding.
Rongrong Ji; Hong Liu; Liujuan Cao; Di Liu; Yongjian Wu; Feiyue Huang
2017-11-01
Binary code learning, also known as hashing, has received increasing attention in large-scale visual search. By transforming high-dimensional features to binary codes, the original Euclidean distance is approximated via Hamming distance. More recently, it is advocated that it is the manifold distance, rather than the Euclidean distance, that should be preserved in the Hamming space. However, it retains as an open problem to directly preserve the manifold structure by hashing. In particular, it first needs to build the local linear embedding in the original feature space, and then quantize such embedding to binary codes. Such a two-step coding is problematic and less optimized. Besides, the off-line learning is extremely time and memory consuming, which needs to calculate the similarity matrix of the original data. In this paper, we propose a novel hashing algorithm, termed discrete locality linear embedding hashing (DLLH), which well addresses the above challenges. The DLLH directly reconstructs the manifold structure in the Hamming space, which learns optimal hash codes to maintain the local linear relationship of data points. To learn discrete locally linear embeddingcodes, we further propose a discrete optimization algorithm with an iterative parameters updating scheme. Moreover, an anchor-based acceleration scheme, termed Anchor-DLLH, is further introduced, which approximates the large similarity matrix by the product of two low-rank matrices. Experimental results on three widely used benchmark data sets, i.e., CIFAR10, NUS-WIDE, and YouTube Face, have shown superior performance of the proposed DLLH over the state-of-the-art approaches.
Deng, Lei; Wu, Hongjie; Liu, Chuyao; Zhan, Weihua; Zhang, Jingpu
2018-06-01
Long non-coding RNAs (lncRNAs) are involved in many biological processes, such as immune response, development, differentiation and gene imprinting and are associated with diseases and cancers. But the functions of the vast majority of lncRNAs are still unknown. Predicting the biological functions of lncRNAs is one of the key challenges in the post-genomic era. In our work, We first build a global network including a lncRNA similarity network, a lncRNA-protein association network and a protein-protein interaction network according to the expressions and interactions, then extract the topological feature vectors of the global network. Using these features, we present an SVM-based machine learning approach, PLNRGO, to annotate human lncRNAs. In PLNRGO, we construct a training data set according to the proteins with GO annotations and train a binary classifier for each GO term. We assess the performance of PLNRGO on our manually annotated lncRNA benchmark and a protein-coding gene benchmark with known functional annotations. As a result, the performance of our method is significantly better than that of other state-of-the-art methods in terms of maximum F-measure and coverage. Copyright © 2018 Elsevier Ltd. All rights reserved.
On the Complexity of Duplication-Transfer-Loss Reconciliation with Non-Binary Gene Trees.
Kordi, Misagh; Bansal, Mukul S
2017-01-01
Duplication-Transfer-Loss (DTL) reconciliation has emerged as a powerful technique for studying gene family evolution in the presence of horizontal gene transfer. DTL reconciliation takes as input a gene family phylogeny and the corresponding species phylogeny, and reconciles the two by postulating speciation, gene duplication, horizontal gene transfer, and gene loss events. Efficient algorithms exist for finding optimal DTL reconciliations when the gene tree is binary. However, gene trees are frequently non-binary. With such non-binary gene trees, the reconciliation problem seeks to find a binary resolution of the gene tree that minimizes the reconciliation cost. Given the prevalence of non-binary gene trees, many efficient algorithms have been developed for this problem in the context of the simpler Duplication-Loss (DL) reconciliation model. Yet, no efficient algorithms exist for DTL reconciliation with non-binary gene trees and the complexity of the problem remains unknown. In this work, we resolve this open question by showing that the problem is, in fact, NP-hard. Our reduction applies to both the dated and undated formulations of DTL reconciliation. By resolving this long-standing open problem, this work will spur the development of both exact and heuristic algorithms for this important problem.
NASA Astrophysics Data System (ADS)
Walker, Ernest; Chen, Xinjia; Cooper, Reginald L.
2010-04-01
An arbitrarily accurate approach is used to determine the bit-error rate (BER) performance for generalized asynchronous DS-CDMA systems, in Gaussian noise with Raleigh fading. In this paper, and the sequel, new theoretical work has been contributed which substantially enhances existing performance analysis formulations. Major contributions include: substantial computational complexity reduction, including a priori BER accuracy bounding; an analytical approach that facilitates performance evaluation for systems with arbitrary spectral spreading distributions, with non-uniform transmission delay distributions. Using prior results, augmented by these enhancements, a generalized DS-CDMA system model is constructed and used to evaluated the BER performance, in a variety of scenarios. In this paper, the generalized system modeling was used to evaluate the performance of both Walsh- Hadamard (WH) and Walsh-Hadamard-seeded zero-correlation-zone (WH-ZCZ) coding. The selection of these codes was informed by the observation that WH codes contain N spectral spreading values (0 to N - 1), one for each code sequence; while WH-ZCZ codes contain only two spectral spreading values (N/2 - 1,N/2); where N is the sequence length in chips. Since these codes span the spectral spreading range for DS-CDMA coding, by invoking an induction argument, the generalization of the system model is sufficiently supported. The results in this paper, and the sequel, support the claim that an arbitrary accurate performance analysis for DS-CDMA systems can be evaluated over the full range of binary coding, with minimal computational complexity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ablimit, Iminhaji; Maeda, Keiichi; Li, Xiang-Dong
Binary population synthesis (BPS) studies provide a comprehensive way to understand the evolution of binaries and their end products. Close white dwarf (WD) binaries have crucial characteristics for examining the influence of unresolved physical parameters on binary evolution. In this paper, we perform Monte Carlo BPS simulations, investigating the population of WD/main-sequence (WD/MS) binaries and double WD binaries using a publicly available binary star evolution code under 37 different assumptions for key physical processes and binary initial conditions. We considered different combinations of the binding energy parameter ( λ {sub g}: considering gravitational energy only; λ {sub b}: considering bothmore » gravitational energy and internal energy; and λ {sub e}: considering gravitational energy, internal energy, and entropy of the envelope, with values derived from the MESA code), CE efficiency, critical mass ratio, initial primary mass function, and metallicity. We find that a larger number of post-CE WD/MS binaries in tight orbits are formed when the binding energy parameters are set by λ {sub e} than in those cases where other prescriptions are adopted. We also determine the effects of the other input parameters on the orbital periods and mass distributions of post-CE WD/MS binaries. As they contain at least one CO WD, double WD systems that evolved from WD/MS binaries may explode as type Ia supernovae (SNe Ia) via merging. In this work, we also investigate the frequency of two WD mergers and compare it to the SNe Ia rate. The calculated Galactic SNe Ia rate with λ = λ {sub e} is comparable to the observed SNe Ia rate, ∼8.2 × 10{sup 5} yr{sup 1} – ∼4 × 10{sup 3} yr{sup 1} depending on the other BPS parameters, if a DD system does not require a mass ratio higher than ∼0.8 to become an SNe Ia. On the other hand, a violent merger scenario, which requires the combined mass of two CO WDs ≥ 1.6 M {sub ⊙} and a mass ratio >0.8, results in a much lower SNe Ia rate than is observed.« less
New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities
NASA Technical Reports Server (NTRS)
Mceliece, R. J.; Rodemich, E. R.; Rumsey, H., Jr.; Welch, L. R.
1977-01-01
An upper bound on the rate of a binary code as a function of minimum code distance (using a Hamming code metric) is arrived at from Delsarte-MacWilliams inequalities. The upper bound so found is asymptotically less than Levenshtein's bound, and a fortiori less than Elias' bound. Appendices review properties of Krawtchouk polynomials and Q-polynomials utilized in the rigorous proofs.
BigWig and BigBed: enabling browsing of large distributed datasets.
Kent, W J; Zweig, A S; Barber, G; Hinrichs, A S; Karolchik, D
2010-09-01
BigWig and BigBed files are compressed binary indexed files containing data at several resolutions that allow the high-performance display of next-generation sequencing experiment results in the UCSC Genome Browser. The visualization is implemented using a multi-layered software approach that takes advantage of specific capabilities of web-based protocols and Linux and UNIX operating systems files, R trees and various indexing and compression tricks. As a result, only the data needed to support the current browser view is transmitted rather than the entire file, enabling fast remote access to large distributed data sets. Binaries for the BigWig and BigBed creation and parsing utilities may be downloaded at http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/. Source code for the creation and visualization software is freely available for non-commercial use at http://hgdownload.cse.ucsc.edu/admin/jksrc.zip, implemented in C and supported on Linux. The UCSC Genome Browser is available at http://genome.ucsc.edu.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schäfer, Gerhard
The current knowledge in the post-Newtonian (PN) dynamics and motion of non-spinning and spinning compact binaries will be presented based on the Arnowitt-Deser-Misner Hamiltonian approach to general relativity. The presentation will cover the binary dynamics with non-spinning components up to the 4PN order and for spinning binaries up to the next-to-next-to-leading order in the spin-orbit and spin-spin couplings. Radiation reaction will be treated for both non-spinning and spinning binaries. Explicit analytic expressions for the motion will be given, innermost stable circular orbits will be discussed.
Coding Local and Global Binary Visual Features Extracted From Video Sequences.
Baroffio, Luca; Canclini, Antonio; Cesana, Matteo; Redondi, Alessandro; Tagliasacchi, Marco; Tubaro, Stefano
2015-11-01
Binary local features represent an effective alternative to real-valued descriptors, leading to comparable results for many visual analysis tasks while being characterized by significantly lower computational complexity and memory requirements. When dealing with large collections, a more compact representation based on global features is often preferred, which can be obtained from local features by means of, e.g., the bag-of-visual word model. Several applications, including, for example, visual sensor networks and mobile augmented reality, require visual features to be transmitted over a bandwidth-limited network, thus calling for coding techniques that aim at reducing the required bit budget while attaining a target level of efficiency. In this paper, we investigate a coding scheme tailored to both local and global binary features, which aims at exploiting both spatial and temporal redundancy by means of intra- and inter-frame coding. In this respect, the proposed coding scheme can conveniently be adopted to support the analyze-then-compress (ATC) paradigm. That is, visual features are extracted from the acquired content, encoded at remote nodes, and finally transmitted to a central controller that performs the visual analysis. This is in contrast with the traditional approach, in which visual content is acquired at a node, compressed and then sent to a central unit for further processing, according to the compress-then-analyze (CTA) paradigm. In this paper, we experimentally compare the ATC and the CTA by means of rate-efficiency curves in the context of two different visual analysis tasks: 1) homography estimation and 2) content-based retrieval. Our results show that the novel ATC paradigm based on the proposed coding primitives can be competitive with the CTA, especially in bandwidth limited scenarios.
Coding Local and Global Binary Visual Features Extracted From Video Sequences
NASA Astrophysics Data System (ADS)
Baroffio, Luca; Canclini, Antonio; Cesana, Matteo; Redondi, Alessandro; Tagliasacchi, Marco; Tubaro, Stefano
2015-11-01
Binary local features represent an effective alternative to real-valued descriptors, leading to comparable results for many visual analysis tasks, while being characterized by significantly lower computational complexity and memory requirements. When dealing with large collections, a more compact representation based on global features is often preferred, which can be obtained from local features by means of, e.g., the Bag-of-Visual-Word (BoVW) model. Several applications, including for example visual sensor networks and mobile augmented reality, require visual features to be transmitted over a bandwidth-limited network, thus calling for coding techniques that aim at reducing the required bit budget, while attaining a target level of efficiency. In this paper we investigate a coding scheme tailored to both local and global binary features, which aims at exploiting both spatial and temporal redundancy by means of intra- and inter-frame coding. In this respect, the proposed coding scheme can be conveniently adopted to support the Analyze-Then-Compress (ATC) paradigm. That is, visual features are extracted from the acquired content, encoded at remote nodes, and finally transmitted to a central controller that performs visual analysis. This is in contrast with the traditional approach, in which visual content is acquired at a node, compressed and then sent to a central unit for further processing, according to the Compress-Then-Analyze (CTA) paradigm. In this paper we experimentally compare ATC and CTA by means of rate-efficiency curves in the context of two different visual analysis tasks: homography estimation and content-based retrieval. Our results show that the novel ATC paradigm based on the proposed coding primitives can be competitive with CTA, especially in bandwidth limited scenarios.
The NASA Neutron Star Grand Challenge: The coalescences of Neutron Star Binary System
NASA Astrophysics Data System (ADS)
Suen, Wai-Mo
1998-04-01
NASA funded a Grand Challenge Project (9/1996-1999) for the development of a multi-purpose numerical treatment for relativistic astrophysics and gravitational wave astronomy. The coalescence of binary neutron stars is chosen as the model problem for the code development. The institutes involved in it are the Argonne Lab, Livermore lab, Max-Planck Institute at Potsdam, StonyBrook, U of Illinois and Washington U. We have recently succeeded in constructing a highly optimized parallel code which is capable of solving the full Einstein equations coupled with relativistic hydrodynamics, running at over 50 GFLOPS on a T3E (the second milestone point of the project). We are presently working on the head-on collisions of two neutron stars, and the inclusion of realistic equations of state into the code. The code will be released to the relativity and astrophysics community in April of 1998. With the full dynamics of the spacetime, relativistic hydro and microphysics all combined into a unified 3D code for the first time, many interesting large scale calculations in general relativistic astrophysics can now be carried out on massively parallel computers.
BIT BY BIT: A Game Simulating Natural Language Processing in Computers
ERIC Educational Resources Information Center
Kato, Taichi; Arakawa, Chuichi
2008-01-01
BIT BY BIT is an encryption game that is designed to improve students' understanding of natural language processing in computers. Participants encode clear words into binary code using an encryption key and exchange them in the game. BIT BY BIT enables participants who do not understand the concept of binary numbers to perform the process of…
Huffman coding in advanced audio coding standard
NASA Astrophysics Data System (ADS)
Brzuchalski, Grzegorz
2012-05-01
This article presents several hardware architectures of Advanced Audio Coding (AAC) Huffman noiseless encoder, its optimisations and working implementation. Much attention has been paid to optimise the demand of hardware resources especially memory size. The aim of design was to get as short binary stream as possible in this standard. The Huffman encoder with whole audio-video system has been implemented in FPGA devices.
The Base 32 Method: An Improved Method for Coding Sibling Constellations.
ERIC Educational Resources Information Center
Perfetti, Lawrence J. Carpenter
1990-01-01
Offers new sibling constellation coding method (Base 32) for genograms using binary and base 32 numbers that saves considerable microcomputer memory. Points out that new method will result in greater ability to store and analyze larger amounts of family data. (Author/CM)
Dynamic fisheye grids for binary black hole simulations
NASA Astrophysics Data System (ADS)
Zilhão, Miguel; Noble, Scott C.
2014-03-01
We present a new warped gridding scheme adapted to simulating gas dynamics in binary black hole spacetimes. The grid concentrates grid points in the vicinity of each black hole to resolve the smaller scale structures there, and rarefies grid points away from each black hole to keep the overall problem size at a practical level. In this respect, our system can be thought of as a ‘double’ version of the fisheye coordinate system, used before in numerical relativity codes for evolving binary black holes. The gridding scheme is constructed as a mapping between a uniform coordinate system—in which the equations of motion are solved—to the distorted system representing the spatial locations of our grid points. Since we are motivated to eventually use this system for circumbinary disc calculations, we demonstrate how the distorted system can be constructed to asymptote to the typical spherical polar coordinate system, amenable to efficiently simulating orbiting gas flows about central objects with little numerical diffusion. We discuss its implementation in the Harm3d code, tailored to evolve the magnetohydrodynamics equations in curved spacetimes. We evaluate the performance of the system’s implementation in Harm3d with a series of tests, such as the advected magnetic field loop test, magnetized Bondi accretion, and evolutions of hydrodynamic discs about a single black hole and about a binary black hole. Like we have done with Harm3d, this gridding scheme can be implemented in other unigrid codes as a (possibly) simpler alternative to adaptive mesh refinement.
Emission-line diagnostics of nearby H II regions including interacting binary populations
NASA Astrophysics Data System (ADS)
Xiao, Lin; Stanway, Elizabeth R.; Eldridge, J. J.
2018-06-01
We present numerical models of the nebular emission from H II regions around young stellar populations over a range of compositions and ages. The synthetic stellar populations include both single stars and interacting binary stars. We compare these models to the observed emission lines of 254 H II regions of 13 nearby spiral galaxies and 21 dwarf galaxies drawn from archival data. The models are created using the combination of the BPASS (Binary Population and Spectral Synthesis) code with the photoionization code CLOUDY to study the differences caused by the inclusion of interacting binary stars in the stellar population. We obtain agreement with the observed emission line ratios from the nearby star-forming regions and discuss the effect of binary-star evolution pathways on the nebular ionization of H II regions. We find that at population ages above 10 Myr, single-star models rapidly decrease in flux and ionization strength, while binary-star models still produce strong flux and high [O III]/H β ratios. Our models can reproduce the metallicity of H II regions from spiral galaxies, but we find higher metallicities than previously estimated for the H II regions from dwarf galaxies. Comparing the equivalent width of H β emission between models and observations, we find that accounting for ionizing photon leakage can affect age estimates for H II regions. When it is included, the typical age derived for H II regions is 5 Myr from single-star models, and up to 10 Myr with binary-star models. This is due to the existence of binary-star evolution pathways, which produce more hot Wolf-Rayet and helium stars at older ages. For future reference, we calculate new BPASS binary maximal starburst lines as a function of metallicity, and for the total model population, and present these in Appendix A.
Teaching Non-Recursive Binary Searching: Establishing a Conceptual Framework.
ERIC Educational Resources Information Center
Magel, E. Terry
1989-01-01
Discusses problems associated with teaching non-recursive binary searching in computer language classes, and describes a teacher-directed dialog based on dictionary use that helps students use their previous searching experiences to conceptualize the binary search process. Algorithmic development is discussed and appropriate classroom discussion…
Hierarchical Recurrent Neural Hashing for Image Retrieval With Hierarchical Convolutional Features.
Lu, Xiaoqiang; Chen, Yaxiong; Li, Xuelong
Hashing has been an important and effective technology in image retrieval due to its computational efficiency and fast search speed. The traditional hashing methods usually learn hash functions to obtain binary codes by exploiting hand-crafted features, which cannot optimally represent the information of the sample. Recently, deep learning methods can achieve better performance, since deep learning architectures can learn more effective image representation features. However, these methods only use semantic features to generate hash codes by shallow projection but ignore texture details. In this paper, we proposed a novel hashing method, namely hierarchical recurrent neural hashing (HRNH), to exploit hierarchical recurrent neural network to generate effective hash codes. There are three contributions of this paper. First, a deep hashing method is proposed to extensively exploit both spatial details and semantic information, in which, we leverage hierarchical convolutional features to construct image pyramid representation. Second, our proposed deep network can exploit directly convolutional feature maps as input to preserve the spatial structure of convolutional feature maps. Finally, we propose a new loss function that considers the quantization error of binarizing the continuous embeddings into the discrete binary codes, and simultaneously maintains the semantic similarity and balanceable property of hash codes. Experimental results on four widely used data sets demonstrate that the proposed HRNH can achieve superior performance over other state-of-the-art hashing methods.Hashing has been an important and effective technology in image retrieval due to its computational efficiency and fast search speed. The traditional hashing methods usually learn hash functions to obtain binary codes by exploiting hand-crafted features, which cannot optimally represent the information of the sample. Recently, deep learning methods can achieve better performance, since deep learning architectures can learn more effective image representation features. However, these methods only use semantic features to generate hash codes by shallow projection but ignore texture details. In this paper, we proposed a novel hashing method, namely hierarchical recurrent neural hashing (HRNH), to exploit hierarchical recurrent neural network to generate effective hash codes. There are three contributions of this paper. First, a deep hashing method is proposed to extensively exploit both spatial details and semantic information, in which, we leverage hierarchical convolutional features to construct image pyramid representation. Second, our proposed deep network can exploit directly convolutional feature maps as input to preserve the spatial structure of convolutional feature maps. Finally, we propose a new loss function that considers the quantization error of binarizing the continuous embeddings into the discrete binary codes, and simultaneously maintains the semantic similarity and balanceable property of hash codes. Experimental results on four widely used data sets demonstrate that the proposed HRNH can achieve superior performance over other state-of-the-art hashing methods.
Stellar Collisions and Blue Straggler Stars in Dense Globular Clusters
NASA Astrophysics Data System (ADS)
Chatterjee, Sourav; Rasio, Frederic A.; Sills, Alison; Glebbeek, Evert
2013-11-01
Blue straggler stars (BSSs) are abundantly observed in all Galactic globular clusters (GGCs) where data exist. However, observations alone cannot reveal the relative importance of various formation channels or the typical formation times for this well-studied population of anomalous stars. Using a state-of-the-art Hénon-type Monte Carlo code that includes all relevant physical processes, we create 128 models with properties typical of the observed GGCs. These models include realistic numbers of single and binary stars, use observationally motivated initial conditions, and span large ranges in central density, concentration, binary fraction, and mass. Their properties can be directly compared with those of observed GGCs. We can easily identify the BSSs in our models and determine their formation channels and birth times. We find that for central densities above ~103 M ⊙ pc-3, the dominant formation channel is stellar collisions, while for lower density clusters, mass transfer in binaries provides a significant contribution (up to 60% in our models). The majority of these collisions are binary-mediated, occurring during three-body and four-body interactions. As a result, a strong correlation between the specific frequency of BSSs and the binary fraction in a cluster can be seen in our models. We find that the number of BSSs in the core shows only a weak correlation with the collision rate estimator Γ traditionally used by observers, in agreement with the latest Hubble Space Telescope Advanced Camera for Surveys data. Using an idealized "full mixing" prescription for collision products, our models indicate that the BSSs observed today may have formed several Gyr ago. However, denser clusters tend to have younger (~1 Gyr) BSSs.
Absolute Properties of the Pulsating Post-mass Transfer Eclipsing Binary OO Draconis
NASA Astrophysics Data System (ADS)
Lee, Jae Woo; Hong, Kyeongsoo; Koo, Jae-Rim; Park, Jang-Ho
2018-01-01
OO Dra is a short-period Algol system with a δ Sct-like pulsator. We obtained time-series spectra between 2016 February and May to derive the fundamental parameters of the binary star and to study its evolutionary scenario. The radial velocity (RV) curves for both components were presented, and the effective temperature of the hotter and more massive primary was determined to be {T}{eff,1}=8260+/- 210 K by comparing the disentangling spectrum and the Kurucz models. Our RV measurements were solved with the BV light curves of Zhang et al. using the Wilson-Devinney binary code. The absolute dimensions of each component are determined as follows: M 1 = 2.03 ± 0.06 {M}⊙ , M 2 = 0.19 ± 0.01 {M}⊙ , R 1 = 2.08 ± 0.03 {R}⊙ , R 2 = 1.20 ± 0.02 {R}⊙ , L 1 = 18 ± 2 {L}⊙ , and L 2 = 2.0 ± 0.2 {L}⊙ . Comparison with stellar evolution models indicated that the primary star resides inside the δ Sct instability strip on the main sequence, while the cool secondary component is noticeably overluminous and oversized. We demonstrated that OO Dra is an oscillating post-mass transfer R CMa-type binary; the originally more massive star became the low-mass secondary component through mass loss caused by stellar wind and mass transfer, and the gainer became the pulsating primary as the result of mass accretion. The R CMa stars, such as OO Dra, are thought to have formed by non-conservative binary evolution and ultimately to evolve into EL CVn stars.
NASA Astrophysics Data System (ADS)
Kiefer, F.; Halbwachs, J.-L.; Lebreton, Y.; Soubiran, C.; Arenou, F.; Pourbaix, D.; Famaey, B.; Guillout, P.; Ibata, R.; Mazeh, T.
2018-02-01
The orbital motion of non-contact double-lined spectroscopic binaries (SB2s), with periods of a few tens of days to several years, holds unique, accurate information on individual stellar masses, which only long-term monitoring can unlock. The combination of radial velocity measurements from high-resolution spectrographs and astrometric measurements from high-precision interferometers allows the derivation of SB2 component masses down to the percent precision. Since 2010, we have observed a large sample of SB2s with the SOPHIE spectrograph at the Observatoire de Haute-Provence, aiming at the derivation of orbital elements with sufficient accuracy to obtain masses of components with relative errors as low as 1 per cent when the astrometric measurements of the Gaia satellite are taken into account. In this paper, we present the results from 6 yr of observations of 14 SB2 systems with periods ranging from 33 to 4185 days. Using the TODMOR algorithm, we computed radial velocities from the spectra and then derived the orbital elements of these binary systems. The minimum masses of the 28 stellar components are then obtained with an average sample accuracy of 1.0 ± 0.2 per cent. Combining the radial velocities with existing interferometric measurements, we derived the masses of the primary and secondary components of HIP 61100, HIP 95995 and HIP 101382 with relative errors for components (A,B) of, respectively, (2.0, 1.7) per cent, (3.7, 3.7) per cent and (0.2, 0.1) per cent. Using the CESAM2K stellar evolution code, we constrained the initial He abundance, age and metallicity for HIP 61100 and HIP 95995.
The Merger Rate of Binary White Dwarfs in the Galactic Disk
NASA Astrophysics Data System (ADS)
Badenes, Carles; Maoz, Dan
2012-04-01
We use multi-epoch spectroscopy of ~4000 white dwarfs in the Sloan Digital Sky Survey to constrain the properties of the Galactic population of binary white dwarf systems and calculate their merger rate. With a Monte Carlo code, we model the distribution of ΔRVmax, the maximum radial velocity shift between exposures of the same star, as a function of the binary fraction within 0.05 AU, f bin, and the power-law index in the separation distribution at the end of the common-envelope phase, α. Although there is some degeneracy between f bin and α, the 15 high-ΔRVmax systems that we find constrain the combination of these parameters, which determines a white dwarf merger rate per unit stellar mass of 1.4+3.4 -1.0 × 10-13 yr-1 M -1 ⊙ (1σ limits). This is remarkably similar to the measured rate of Type Ia supernovae (SNe Ia) per unit stellar mass in Milky-Way-like Sbc galaxies. The rate of super-Chandrasekhar mergers is only 1.0+1.6 -0.6 × 10-14 yr-1 M -1 ⊙. We conclude that there are not enough close binary white dwarf systems to reproduce the observed SN Ia rate in the "classic" double degenerate super-Chandrasekhar scenario. On the other hand, if sub-Chandrasekhar mergers can lead to SNe Ia, as has been recently suggested by some studies, they could make a major contribution to the overall SN Ia rate. Although unlikely, we cannot rule out contamination of our sample by M-dwarf binaries or non-Gaussian errors. These issues will be clarified in the near future by completing the follow-up of all 15 high-ΔRVmax systems.
2011-03-01
Karystinos and D. A. Pados, “New bounds on the total squared correlation and optimum design of DS - CDMA binary signature sets,” IEEE Trans. Commun...vol. 51, pp. 48-51, Jan. 2003. [99] C. Ding, M. Golin, and T. Klφve, “Meeting the Welch and Karystinos-Pados bounds on DS - CDMA binary signature sets...Designs, Codes and Cryptography, vol. 30, pp. 73-84, Aug. 2003. [100] V. P. Ipatov, “On the Karystinos-Pados bounds and optimal binary DS - CDMA
2015-07-09
49, pp. 873-885, Apr. 2003. [23] G. N. Karystinos and D. A. Pados, “New bounds on the total squared correlation and optimum design of DS - CDMA binary...bounds on DS - CDMA binary signature sets,” Designs, Codes and Cryptography, vol. 30, pp. 73-84, Aug. 2003. [25] V. P. Ipatov, “On the Karystinos-Pados...bounds and optimal binary DS - CDMA signature ensembles,” IEEE Commun. Letters, vol. 8, pp. 81-83, Feb. 2004. [26] G. N. Karystinos and D. A. Pados
The Coding of Biological Information: From Nucleotide Sequence to Protein Recognition
NASA Astrophysics Data System (ADS)
Štambuk, Nikola
The paper reviews the classic results of Swanson, Dayhoff, Grantham, Blalock and Root-Bernstein, which link genetic code nucleotide patterns to the protein structure, evolution and molecular recognition. Symbolic representation of the binary addresses defining particular nucleotide and amino acid properties is discussed, with consideration of: structure and metric of the code, direct correspondence between amino acid and nucleotide information, and molecular recognition of the interacting protein motifs coded by the complementary DNA and RNA strands.
PatternCoder: A Programming Support Tool for Learning Binary Class Associations and Design Patterns
ERIC Educational Resources Information Center
Paterson, J. H.; Cheng, K. F.; Haddow, J.
2009-01-01
PatternCoder is a software tool to aid student understanding of class associations. It has a wizard-based interface which allows students to select an appropriate binary class association or design pattern for a given problem. Java code is then generated which allows students to explore the way in which the class associations are implemented in a…
Object-Location-Aware Hashing for Multi-Label Image Retrieval via Automatic Mask Learning.
Huang, Chang-Qin; Yang, Shang-Ming; Pan, Yan; Lai, Han-Jiang
2018-09-01
Learning-based hashing is a leading approach of approximate nearest neighbor search for large-scale image retrieval. In this paper, we develop a deep supervised hashing method for multi-label image retrieval, in which we propose to learn a binary "mask" map that can identify the approximate locations of objects in an image, so that we use this binary "mask" map to obtain length-limited hash codes which mainly focus on an image's objects but ignore the background. The proposed deep architecture consists of four parts: 1) a convolutional sub-network to generate effective image features; 2) a binary "mask" sub-network to identify image objects' approximate locations; 3) a weighted average pooling operation based on the binary "mask" to obtain feature representations and hash codes that pay most attention to foreground objects but ignore the background; and 4) the combination of a triplet ranking loss designed to preserve relative similarities among images and a cross entropy loss defined on image labels. We conduct comprehensive evaluations on four multi-label image data sets. The results indicate that the proposed hashing method achieves superior performance gains over the state-of-the-art supervised or unsupervised hashing baselines.
Entanglement-assisted quantum convolutional coding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilde, Mark M.; Brun, Todd A.
2010-04-15
We show how to protect a stream of quantum information from decoherence induced by a noisy quantum communication channel. We exploit preshared entanglement and a convolutional coding structure to develop a theory of entanglement-assisted quantum convolutional coding. Our construction produces a Calderbank-Shor-Steane (CSS) entanglement-assisted quantum convolutional code from two arbitrary classical binary convolutional codes. The rate and error-correcting properties of the classical convolutional codes directly determine the corresponding properties of the resulting entanglement-assisted quantum convolutional code. We explain how to encode our CSS entanglement-assisted quantum convolutional codes starting from a stream of information qubits, ancilla qubits, and shared entangled bits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timchalk, Chuck; Poet, Torka S.
2008-05-01
Physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) models have been developed and validated for the organophosphorus (OP) insecticides chlorpyrifos (CPF) and diazinon (DZN). Based on similar pharmacokinetic and mode of action properties it is anticipated that these OPs could interact at a number of important metabolic steps including: CYP450 mediated activation/detoxification, and blood/tissue cholinesterase (ChE) binding/inhibition. We developed a binary PBPK/PD model for CPF, DZN and their metabolites based on previously published models for the individual insecticides. The metabolic interactions (CYP450) between CPF and DZN were evaluated in vitro and suggests that CPF is more substantially metabolized to its oxon metabolite than ismore » DZN. These data are consistent with their observed in vivo relative potency (CPF>DZN). Each insecticide inhibited the other’s in vitro metabolism in a concentration-dependent manner. The PBPK model code used to described the metabolism of CPF and DZN was modified to reflect the type of inhibition kinetics (i.e. competitive vs. non-competitive). The binary model was then evaluated against previously published rodent dosimetry and ChE inhibition data for the mixture. The PBPK/PD model simulations of the acute oral exposure to single- (15 mg/kg) vs. binary-mixtures (15+15 mg/kg) of CFP and DZN at this lower dose resulted in no differences in the predicted pharmacokinetics of either the parent OPs or their respective metabolites; whereas, a binary oral dose of CPF+DZN at 60+60 mg/kg did result in observable changes in the DZN pharmacokinetics. Cmax was more reasonably fit by modifying the absorption parameters. It is anticipated that at low environmentally relevant binary doses, most likely to be encountered in occupational or environmental related exposures, that the pharmacokinetics are expected to be linear, and ChE inhibition dose-additive.« less
Improved magnetic encoding device and method for making the same. [Patent application
Fox, R.J.
A magnetic encoding device and method for making the same are provided for use as magnetic storage media in identification control applications that give output signals from a reader that are of shorter duration and substantially greater magnitude than those of the prior art. Magnetic encoding elements are produced by uniformly bending wire or strip stock of a magnetic material longitudinally about a common radius to exceed the elastic limit of the material and subsequently mounting the material so that it is restrained in an unbent position on a substrate of nonmagnetic material. The elements are spot weld attached to a substrate to form a binary coded array of elements according to a desired binary code. The coded substrate may be enclosed in a plastic laminate structure. Such devices may be used for security badges, key cards, and the like and may have many other applications. 7 figures.
Method for making an improved magnetic encoding device
Fox, Richard J.
1981-01-01
A magnetic encoding device and method for making the same are provided for use as magnetic storage mediums in identification control applications which give output signals from a reader that are of shorter duration and substantially greater magnitude than those of the prior art. Magnetic encoding elements are produced by uniformly bending wire or strip stock of a magnetic material longitudinally about a common radius to exceed the elastic limit of the material and subsequently mounting the material so that it is restrained in an unbent position on a substrate of nonmagnetic material. The elements are spot weld attached to a substrate to form a binary coded array of elements according to a desired binary code. The coded substrate may be enclosed in a plastic laminate structure. Such devices may be used for security badges, key cards, and the like and may have many other applications.
Galerkin-collocation domain decomposition method for arbitrary binary black holes
NASA Astrophysics Data System (ADS)
Barreto, W.; Clemente, P. C. M.; de Oliveira, H. P.; Rodriguez-Mueller, B.
2018-05-01
We present a new computational framework for the Galerkin-collocation method for double domain in the context of ADM 3 +1 approach in numerical relativity. This work enables us to perform high resolution calculations for initial sets of two arbitrary black holes. We use the Bowen-York method for binary systems and the puncture method to solve the Hamiltonian constraint. The nonlinear numerical code solves the set of equations for the spectral modes using the standard Newton-Raphson method, LU decomposition and Gaussian quadratures. We show convergence of our code for the conformal factor and the ADM mass. Thus, we display features of the conformal factor for different masses, spins and linear momenta.
NASA Astrophysics Data System (ADS)
Blackman, Jonathan; Field, Scott E.; Galley, Chad R.; Szilágyi, Béla; Scheel, Mark A.; Tiglio, Manuel; Hemberger, Daniel A.
2015-09-01
Simulating a binary black hole coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. Using reduced order modeling techniques, we construct an accurate surrogate model, which is evaluated in a millisecond to a second, for numerical relativity (NR) waveforms from nonspinning binary black hole coalescences with mass ratios in [1, 10] and durations corresponding to about 15 orbits before merger. We assess the model's uncertainty and show that our modeling strategy predicts NR waveforms not used for the surrogate's training with errors nearly as small as the numerical error of the NR code. Our model includes all spherical-harmonic -2Yℓm waveform modes resolved by the NR code up to ℓ=8 . We compare our surrogate model to effective one body waveforms from 50 M⊙ to 300 M⊙ for advanced LIGO detectors and find that the surrogate is always more faithful (by at least an order of magnitude in most cases).
Holographic implementation of a binary associative memory for improved recognition
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Somnath; Ghosh, Ajay; Datta, Asit K.
1998-03-01
Neural network associate memory has found wide application sin pattern recognition techniques. We propose an associative memory model for binary character recognition. The interconnection strengths of the memory are binary valued. The concept of sparse coding is sued to enhance the storage efficiency of the model. The question of imposed preconditioning of pattern vectors, which is inherent in a sparsely coded conventional memory, is eliminated by using a multistep correlation technique an the ability of correct association is enhanced in a real-time application. A potential optoelectronic implementation of the proposed associative memory is also described. The learning and recall is possible by using digital optical matrix-vector multiplication, where full use of parallelism and connectivity of optics is made. A hologram is used in the experiment as a longer memory (LTM) for storing all input information. The short-term memory or the interconnection weight matrix required during the recall process is configured by retrieving the necessary information from the holographic LTM.
Documentation for the machine-readable character coded version of the SKYMAP catalogue
NASA Technical Reports Server (NTRS)
Warren, W. H., Jr.
1981-01-01
The SKYMAP catalogue is a compilation of astronomical data prepared primarily for purposes of attitude guidance for satellites. In addition to the SKYMAP Master Catalogue data base, a software package of data base management and utility programs is available. The tape version of the SKYMAP Catalogue, as received by the Astronomical Data Center (ADC), contains logical records consisting of a combination of binary and EBCDIC data. Certain character coded data in each record are redundant in that the same data are present in binary form. In order to facilitate wider use of all SKYMAP data by the astronomical community, a formatted (character) version was prepared by eliminating all redundant character data and converting all binary data to character form. The character version of the catalogue is described. The document is intended to fully describe the formatted tape so that users can process the data problems and guess work; it should be distributed with any character version of the catalogue.
Blackman, Jonathan; Field, Scott E; Galley, Chad R; Szilágyi, Béla; Scheel, Mark A; Tiglio, Manuel; Hemberger, Daniel A
2015-09-18
Simulating a binary black hole coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. Using reduced order modeling techniques, we construct an accurate surrogate model, which is evaluated in a millisecond to a second, for numerical relativity (NR) waveforms from nonspinning binary black hole coalescences with mass ratios in [1, 10] and durations corresponding to about 15 orbits before merger. We assess the model's uncertainty and show that our modeling strategy predicts NR waveforms not used for the surrogate's training with errors nearly as small as the numerical error of the NR code. Our model includes all spherical-harmonic _{-2}Y_{ℓm} waveform modes resolved by the NR code up to ℓ=8. We compare our surrogate model to effective one body waveforms from 50M_{⊙} to 300M_{⊙} for advanced LIGO detectors and find that the surrogate is always more faithful (by at least an order of magnitude in most cases).
NASA Astrophysics Data System (ADS)
Belloni, Diogo; Schreiber, Matthias R.; Zorotovic, Mónica; Iłkiewicz, Krystian; Hurley, Jarrod R.; Giersz, Mirek; Lagos, Felipe
2018-06-01
The predicted and observed space density of cataclysmic variables (CVs) have been for a long time discrepant by at least an order of magnitude. The standard model of CV evolution predicts that the vast majority of CVs should be period bouncers, whose space density has been recently measured to be ρ ≲ 2 × 10-5 pc-3. We performed population synthesis of CVs using an updated version of the Binary Stellar Evolution (BSE) code for single and binary star evolution. We find that the recently suggested empirical prescription of consequential angular momentum loss (CAML) brings into agreement predicted and observed space densities of CVs and period bouncers. To progress with our understanding of CV evolution it is crucial to understand the physical mechanism behind empirical CAML. Our changes to the BSE code are also provided in details, which will allow the community to accurately model mass transfer in interacting binaries in which degenerate objects accrete from low-mass main-sequence donor stars.
Serial binary interval ratios improve rhythm reproduction.
Wu, Xiang; Westanmo, Anders; Zhou, Liang; Pan, Junhao
2013-01-01
Musical rhythm perception is a natural human ability that involves complex cognitive processes. Rhythm refers to the organization of events in time, and musical rhythms have an underlying hierarchical metrical structure. The metrical structure induces the feeling of a beat and the extent to which a rhythm induces the feeling of a beat is referred to as its metrical strength. Binary ratios are the most frequent interval ratio in musical rhythms. Rhythms with hierarchical binary ratios are better discriminated and reproduced than rhythms with hierarchical non-binary ratios. However, it remains unclear whether a superiority of serial binary over non-binary ratios in rhythm perception and reproduction exists. In addition, how different types of serial ratios influence the metrical strength of rhythms remains to be elucidated. The present study investigated serial binary vs. non-binary ratios in a reproduction task. Rhythms formed with exclusively binary (1:2:4:8), non-binary integer (1:3:5:6), and non-integer (1:2.3:5.3:6.4) ratios were examined within a constant meter. The results showed that the 1:2:4:8 rhythm type was more accurately reproduced than the 1:3:5:6 and 1:2.3:5.3:6.4 rhythm types, and the 1:2.3:5.3:6.4 rhythm type was more accurately reproduced than the 1:3:5:6 rhythm type. Further analyses showed that reproduction performance was better predicted by the distribution pattern of event occurrences within an inter-beat interval, than by the coincidence of events with beats, or the magnitude and complexity of interval ratios. Whereas rhythm theories and empirical data emphasize the role of the coincidence of events with beats in determining metrical strength and predicting rhythm performance, the present results suggest that rhythm processing may be better understood when the distribution pattern of event occurrences is taken into account. These results provide new insights into the mechanisms underlining musical rhythm perception.
Serial binary interval ratios improve rhythm reproduction
Wu, Xiang; Westanmo, Anders; Zhou, Liang; Pan, Junhao
2013-01-01
Musical rhythm perception is a natural human ability that involves complex cognitive processes. Rhythm refers to the organization of events in time, and musical rhythms have an underlying hierarchical metrical structure. The metrical structure induces the feeling of a beat and the extent to which a rhythm induces the feeling of a beat is referred to as its metrical strength. Binary ratios are the most frequent interval ratio in musical rhythms. Rhythms with hierarchical binary ratios are better discriminated and reproduced than rhythms with hierarchical non-binary ratios. However, it remains unclear whether a superiority of serial binary over non-binary ratios in rhythm perception and reproduction exists. In addition, how different types of serial ratios influence the metrical strength of rhythms remains to be elucidated. The present study investigated serial binary vs. non-binary ratios in a reproduction task. Rhythms formed with exclusively binary (1:2:4:8), non-binary integer (1:3:5:6), and non-integer (1:2.3:5.3:6.4) ratios were examined within a constant meter. The results showed that the 1:2:4:8 rhythm type was more accurately reproduced than the 1:3:5:6 and 1:2.3:5.3:6.4 rhythm types, and the 1:2.3:5.3:6.4 rhythm type was more accurately reproduced than the 1:3:5:6 rhythm type. Further analyses showed that reproduction performance was better predicted by the distribution pattern of event occurrences within an inter-beat interval, than by the coincidence of events with beats, or the magnitude and complexity of interval ratios. Whereas rhythm theories and empirical data emphasize the role of the coincidence of events with beats in determining metrical strength and predicting rhythm performance, the present results suggest that rhythm processing may be better understood when the distribution pattern of event occurrences is taken into account. These results provide new insights into the mechanisms underlining musical rhythm perception. PMID:23964258
Digital Controller For Emergency Beacon
NASA Technical Reports Server (NTRS)
Ivancic, William D.
1990-01-01
Prototype digital controller intended for use in 406-MHz emergency beacon. Undergoing development according to international specifications, 406-MHz emergency beacon system includes satellites providing worldwide monitoring of beacons, with Doppler tracking to locate each beacon within 5 km. Controller turns beacon on and off and generates binary codes identifying source (e.g., ship, aircraft, person, or vehicle on land). Codes transmitted by phase modulation. Knowing code, monitor attempts to communicate with user, monitor uses code information to dispatch rescue team appropriate to type and locations of carrier.
Evidence for a planetary mass third body orbiting the binary star KIC 5095269
NASA Astrophysics Data System (ADS)
Getley, A. K.; Carter, B.; King, R.; O'Toole, S.
2017-07-01
In this paper, we report the evidence for a planetary mass body orbiting the close binary star KIC 5095269. This detection arose from a search for eclipse timing variations amongst the more than 2000 eclipsing binaries observed by Kepler. Light curve and periodic eclipse time variations have been analysed using systemic and a custom Binary Eclipse Timings code based on the Transit Analysis Package which indicates a 7.70 ± 0.08MJup object orbiting every 237.7 ± 0.1 d around a 1.2 M⊙ primary and a 0.51 M⊙ secondary in an 18.6 d orbit. A dynamical integration over 107 yr suggests a stable orbital configuration. Radial velocity observations are recommended to confirm the properties of the binary star components and the planetary mass of the companion.
NASA Technical Reports Server (NTRS)
Rajpal, Sandeep; Rhee, Do Jun; Lin, Shu
1997-01-01
The first part of this paper presents a simple and systematic technique for constructing multidimensional M-ary phase shift keying (MMK) trellis coded modulation (TCM) codes. The construction is based on a multilevel concatenation approach in which binary convolutional codes with good free branch distances are used as the outer codes and block MPSK modulation codes are used as the inner codes (or the signal spaces). Conditions on phase invariance of these codes are derived and a multistage decoding scheme for these codes is proposed. The proposed technique can be used to construct good codes for both the additive white Gaussian noise (AWGN) and fading channels as is shown in the second part of this paper.
On the decoding process in ternary error-correcting output codes.
Escalera, Sergio; Pujol, Oriol; Radeva, Petia
2010-01-01
A common way to model multiclass classification problems is to design a set of binary classifiers and to combine them. Error-Correcting Output Codes (ECOC) represent a successful framework to deal with these type of problems. Recent works in the ECOC framework showed significant performance improvements by means of new problem-dependent designs based on the ternary ECOC framework. The ternary framework contains a larger set of binary problems because of the use of a "do not care" symbol that allows us to ignore some classes by a given classifier. However, there are no proper studies that analyze the effect of the new symbol at the decoding step. In this paper, we present a taxonomy that embeds all binary and ternary ECOC decoding strategies into four groups. We show that the zero symbol introduces two kinds of biases that require redefinition of the decoding design. A new type of decoding measure is proposed, and two novel decoding strategies are defined. We evaluate the state-of-the-art coding and decoding strategies over a set of UCI Machine Learning Repository data sets and into a real traffic sign categorization problem. The experimental results show that, following the new decoding strategies, the performance of the ECOC design is significantly improved.
Planet formation: is it good or bad to have a stellar companion?
NASA Astrophysics Data System (ADS)
Marzari, F.; Thebault, P.; Scholl, H.
2010-04-01
Planet formation in binary star systems is a complex issue due to the gravitational perturbations of the companion star. One of the crucial steps of the core-accretion model is planetesimal accretion into large protoplanets which finally coalesce into planets. In a planetesimal swarm surrounding the primary star, the average mutual impact velocity determines if larger bodies form or if the population is grinded down to dust, halting the planet formation process. This velocity is strongly influenced by the companion gravitational pull and by gas drag. The combined effect of these two forces may act in favour of or against planet formation, setting a lower or equal probability of the existence of extrasolar planets around single or binary stars. Planetesimal accretion in binaries has been studied so far with two different approaches. N-body codes based on the assumption that the disk is axisymmetric are very cost-effective since they allow the study of the mutual relative velocity with limited CPU usage. A large amount of planetesimal trajectories can be computed making it possible to outline the regions around the star where planet formation is possible. The main limitation of the N-body codes is the axisymmetric assumption. The companion perturbations affect not only the planetesimal orbits, but also the gaseous disk, by forcing spiral density waves. In addition, the overall shape of the disk changes from circular to elliptic. Hybrid codes have been recently developed which solve the equations for the disk with a hydrodynamical grid code and use the computed gas density and velocity vector to calculate an accurate value of the gas drag force on the planetesimals. These codes are more complex and may compute the trajectories of only a limited number of planetesimals.
Accuracy of inference on the physics of binary evolution from gravitational-wave observations
NASA Astrophysics Data System (ADS)
Barrett, Jim W.; Gaebel, Sebastian M.; Neijssel, Coenraad J.; Vigna-Gómez, Alejandro; Stevenson, Simon; Berry, Christopher P. L.; Farr, Will M.; Mandel, Ilya
2018-04-01
The properties of the population of merging binary black holes encode some of the uncertain physics underlying the evolution of massive stars in binaries. The binary black hole merger rate and chirp-mass distribution are being measured by ground-based gravitational-wave detectors. We consider isolated binary evolution, and explore how accurately the physical model can be constrained with such observations by applying the Fisher information matrix to the merging black hole population simulated with the rapid binary-population synthesis code COMPAS. We investigate variations in four COMPAS parameters: common-envelope efficiency, kick-velocity dispersion, and mass-loss rates during the luminous blue variable and Wolf-Rayet stellar-evolutionary phases. We find that ˜1000 observations would constrain these model parameters to a fractional accuracy of a few per cent. Given the empirically determined binary black hole merger rate, we can expect gravitational-wave observations alone to place strong constraints on the physics of stellar and binary evolution within a few years. Our approach can be extended to use other observational data sets; combining observations at different evolutionary stages will lead to a better understanding of stellar and binary physics.
Accuracy of inference on the physics of binary evolution from gravitational-wave observations
NASA Astrophysics Data System (ADS)
Barrett, Jim W.; Gaebel, Sebastian M.; Neijssel, Coenraad J.; Vigna-Gómez, Alejandro; Stevenson, Simon; Berry, Christopher P. L.; Farr, Will M.; Mandel, Ilya
2018-07-01
The properties of the population of merging binary black holes encode some of the uncertain physics underlying the evolution of massive stars in binaries. The binary black hole merger rate and chirp-mass distribution are being measured by ground-based gravitational-wave detectors. We consider isolated binary evolution, and explore how accurately the physical model can be constrained with such observations by applying the Fisher information matrix to the merging black hole population simulated with the rapid binary-population synthesis code COMPAS. We investigate variations in four COMPAS parameters: common-envelope efficiency, kick-velocity dispersion and mass-loss rates during the luminous blue variable, and Wolf-Rayet stellar-evolutionary phases. We find that ˜1000 observations would constrain these model parameters to a fractional accuracy of a few per cent. Given the empirically determined binary black hole merger rate, we can expect gravitational-wave observations alone to place strong constraints on the physics of stellar and binary evolution within a few years. Our approach can be extended to use other observational data sets; combining observations at different evolutionary stages will lead to a better understanding of stellar and binary physics.
Synthetic Survey of the Kepler Field
NASA Astrophysics Data System (ADS)
Wells, Mark; Prša, Andrej
2018-01-01
In the era of large scale surveys, including LSST and Gaia, binary population studies will flourish due to the large influx of data. In addition to probing binary populations as a function of galactic latitude, under-sampled groups such as low mass binaries will be observed at an unprecedented rate. To prepare for these missions, binary population simulations need to be carried out at high fidelity. These simulations will enable the creation of simulated data and, through comparison with real data, will allow the underlying binary parameter distributions to be explored. In order for the simulations to be considered robust, they should reproduce observed distributions accurately. To this end we have developed a simulator which takes input models and creates a synthetic population of eclipsing binaries. Starting from a galactic single star model, implemented using Galaxia, a code by Sharma et al. (2011), and applying observed multiplicity, mass-ratio, period, and eccentricity distributions, as reported by Raghavan et al. (2010), Duchêne & Kraus (2013), and Moe & Di Stefano (2017), we are able to generate synthetic binary surveys that correspond to any survey cadences. In order to calibrate our input models we compare the results of our synthesized eclipsing binary survey to the Kepler Eclipsing Binary catalog.
Common Envelope Light Curves. I. Grid-code Module Calibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galaviz, Pablo; Marco, Orsola De; Staff, Jan E.
The common envelope (CE) binary interaction occurs when a star transfers mass onto a companion that cannot fully accrete it. The interaction can lead to a merger of the two objects or to a close binary. The CE interaction is the gateway of all evolved compact binaries, all stellar mergers, and likely many of the stellar transients witnessed to date. CE simulations are needed to understand this interaction and to interpret stars and binaries thought to be the byproduct of this stage. At this time, simulations are unable to reproduce the few observational data available and several ideas have been putmore » forward to address their shortcomings. The need for more definitive simulation validation is pressing and is already being fulfilled by observations from time-domain surveys. In this article, we present an initial method and its implementation for post-processing grid-based CE simulations to produce the light curve so as to compare simulations with upcoming observations. Here we implemented a zeroth order method to calculate the light emitted from CE hydrodynamic simulations carried out with the 3D hydrodynamic code Enzo used in unigrid mode. The code implements an approach for the computation of luminosity in both optically thick and optically thin regimes and is tested using the first 135 days of the CE simulation of Passy et al., where a 0.8 M {sub ⊙} red giant branch star interacts with a 0.6 M {sub ⊙} companion. This code is used to highlight two large obstacles that need to be overcome before realistic light curves can be calculated. We explain the nature of these problems and the attempted solutions and approximations in full detail to enable the next step to be identified and implemented. We also discuss our simulation in relation to recent data of transients identified as CE interactions.« less
Deep classification hashing for person re-identification
NASA Astrophysics Data System (ADS)
Wang, Jiabao; Li, Yang; Zhang, Xiancai; Miao, Zhuang; Tao, Gang
2018-04-01
As the development of surveillance in public, person re-identification becomes more and more important. The largescale databases call for efficient computation and storage, hashing technique is one of the most important methods. In this paper, we proposed a new deep classification hashing network by introducing a new binary appropriation layer in the traditional ImageNet pre-trained CNN models. It outputs binary appropriate features, which can be easily quantized into binary hash-codes for hamming similarity comparison. Experiments show that our deep hashing method can outperform the state-of-the-art methods on the public CUHK03 and Market1501 datasets.
Getting Started in Classroom Computing.
ERIC Educational Resources Information Center
Ahl, David H.
Written for secondary students, this booklet provides an introduction to several computer-related concepts through a set of six classroom games, most of which can be played with little more than a sheet of paper and a pencil. The games are: 1) SECRET CODES--introduction to binary coding, punched cards, and paper tape; 2) GUESS--efficient methods…
2009-09-01
184 LEGALRESR Recode-Tab:[8] State of legal voting res 72 LITHO * Litho code 473 NOFVAPA* 42a. [42a] Not used FVAP tele:Did not know 363...471 INRECNO Master SCS ID number 472 LITHO Litho code 473 QCOMPF Binary variable indicating if case compl 474 QCOMPN [QCOMPN] Questions
Factors Affecting Code Status in a University Hospital Intensive Care Unit
ERIC Educational Resources Information Center
Van Scoy, Lauren Jodi; Sherman, Michael
2013-01-01
The authors collected data on diagnosis, hospital course, and end-of-life preparedness in patients who died in the intensive care unit (ICU) with "full code" status (defined as receiving cardiopulmonary resuscitation), compared with those who didn't. Differences were analyzed using binary and stepwise logistic regression. They found no…
Alternancia entre el estado de emisión de Rayos-X y Pulsar en Sistemas Binarios Interactuantes
NASA Astrophysics Data System (ADS)
De Vito, M. A.; Benvenuto, O. G.; Horvath, J. E.
2015-08-01
Redbacks belong to the family of binary systems in which one of the components is a pulsar. Recent observations show redbacks that have switched their state from pulsar - low mass companion (where the accretion of material over the pulsar has ceased) to low mass X-ray binary system (where emission is produced by the mass accretion on the pulsar), or inversely. The irradiation effect included in our models leads to cyclic mass transfer episodes, which allow close binary systems to switch between one state to other. We apply our results to the case of PSR J1723-2837, and discuss the need to include new ingredients in our code of binary evolution to describe the observed state transitions.
Potential Energy Cost Savings from Increased Commercial Energy Code Compliance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenberg, Michael I.; Hart, Philip R.; Athalye, Rahul A.
2016-08-22
An important question for commercial energy code compliance is: “How much energy cost savings can better compliance achieve?” This question is in sharp contrast to prior efforts that used a checklist of code requirements, each of which was graded pass or fail. Percent compliance for any given building was simply the percent of individual requirements that passed. A field investigation method is being developed that goes beyond the binary approach to determine how much energy cost savings is not realized. Prototype building simulations were used to estimate the energy cost impact of varying levels of non-compliance for newly constructed officemore » buildings in climate zone 4C. Field data collected from actual buildings on specific conditions relative to code requirements was then applied to the simulation results to find the potential lost energy savings for a single building or for a sample of buildings. This new methodology was tested on nine office buildings in climate zone 4C. The amount of additional energy cost savings they could have achieved had they complied fully with the 2012 International Energy Conservation Code is determined. This paper will present the results of the test, lessons learned, describe follow-on research that is needed to verify that the methodology is both accurate and practical, and discuss the benefits that might accrue if the method were widely adopted.« less
Dentists' perspectives on caries-related treatment decisions.
Gomez, J; Ellwood, R P; Martignon, S; Pretty, I A
2014-06-01
To assess the impact of patient risk status on Colombian dentists' caries related treatment decisions for early to intermediate caries lesions (ICDAS code 2 to 4). A web-based questionnaire assessed dentists' views on the management of early/intermediate lesions. The questionnaire included questions on demographic characteristics, five clinical scenarios with randomised levels of caries risk, and two questions on different clinical and radiographic sets of images with different thresholds of caries. Questionnaires were completed by 439 dentists. For the two scenarios describing occlusal lesions ICDAS code 2, dentists chose to provide a preventive option in 63% and 60% of the cases. For the approximal lesion ICDAS code 2, 81% of the dentists chose to restore. The main findings of the binary logistic regression analysis for the clinical scenarios suggest that for the ICDAS code 2 occlusal lesions, the odds of a high caries risk patient having restorations is higher than for a low caries risk patient. For the questions describing different clinical thresholds of caries, most dentists would restore at ICDAS code 2 (55%) and for the question showing different radiographic thresholds images, 65% of dentists would intervene operatively at the inner half of enamel. No significant differences with respect to risk were found for these questions with the logistic regression. The results of this study indicate that Colombian dentists have not yet fully adopted non-invasive treatment for early caries lesions.
Generating code adapted for interlinking legacy scalar code and extended vector code
Gschwind, Michael K
2013-06-04
Mechanisms for intermixing code are provided. Source code is received for compilation using an extended Application Binary Interface (ABI) that extends a legacy ABI and uses a different register configuration than the legacy ABI. First compiled code is generated based on the source code, the first compiled code comprising code for accommodating the difference in register configurations used by the extended ABI and the legacy ABI. The first compiled code and second compiled code are intermixed to generate intermixed code, the second compiled code being compiled code that uses the legacy ABI. The intermixed code comprises at least one call instruction that is one of a call from the first compiled code to the second compiled code or a call from the second compiled code to the first compiled code. The code for accommodating the difference in register configurations is associated with the at least one call instruction.
Multifunction audio digitizer. [producing direct delta and pulse code modulation
NASA Technical Reports Server (NTRS)
Monford, L. G., Jr. (Inventor)
1974-01-01
An illustrative embodiment of the invention includes apparatus which simultaneously produces both direct delta modulation and pulse code modulation. An input signal, after amplification, is supplied to a window comparator which supplies a polarity control signal to gate the output of a clock to the appropriate input of a binary up-down counter. The control signals provide direct delta modulation while the up-down counter output provides pulse code modulation.
MAJIQ-SPEL: Web-tool to interrogate classical and complex splicing variations from RNA-Seq data.
Green, Christopher J; Gazzara, Matthew R; Barash, Yoseph
2017-09-11
Analysis of RNA sequencing (RNA-Seq) data have highlighted the fact that most genes undergo alternative splicing (AS) and that these patterns are tightly regulated. Many of these events are complex, resulting in numerous possible isoforms that quickly become difficult to visualize, interpret, and experimentally validate. To address these challenges we developed MAJIQ-SPEL, a web-tool that takes as input local splicing variations (LSVs) quantified from RNA-Seq data and provides users with visualization and quantification of gene isoforms associated with those. Importantly, MAJIQ-SPEL is able to handle both classical (binary) and complex, non-binary, splicing variations. Using a matching primer design algorithm it also suggests users possible primers for experimental validation by RT-PCR and displays those, along with the matching protein domains affected by the LSV, on UCSC Genome Browser for further downstream analysis. Program and code will be available at http://majiq.biociphers.org/majiq-spel. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
DNABIT Compress - Genome compression algorithm.
Rajarajeswari, Pothuraju; Apparao, Allam
2011-01-22
Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, "DNABIT Compress" for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that "DNABIT Compress" algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases.
Numerical 3D Hydrodynamics Study of Gravitational Instabilities in a Circumbinary Disk
NASA Astrophysics Data System (ADS)
Desai, Karna Mahadev; Steiman-Cameron, Thomas Y.; Michael, Scott; Cai, Kai; Durisen, Richard H.
2016-01-01
We present a 3D hydrodynamical study of gravitational instabilities (GIs) in a circumbinary protoplanetary disk around a Solar mass star and a brown dwarf companion (0.02 M⊙). GIs can play an important, and at times dominant, role in driving the structural evolution of protoplanetary disks. The reported simulations were performed employing CHYMERA, a radiative 3D hydrodynamics code developed by the Indiana University Hydrodynamics Group. The simulations include disk self-gravity and radiative cooling governed by realistic dust opacities. We examine the role of GIs in modulating the thermodynamic state of the disks, and determine the strengths of GI-induced density waves, non-axisymmetric density structures, radial mass transport, and gravitational torques. The principal goal of this study is to determine how the presence of the companion affects the nature and strength of GIs. Results are compared with a parallel simulation of a protoplanetary disk without the presence of the brown dwarf binary companion. We detect no fragmentation in either disk. A persistent vortex forms in the inner region of both disks. The vortex seems to be stabilized by the presence of the binary companion.
Fast and reliable symplectic integration for planetary system N-body problems
NASA Astrophysics Data System (ADS)
Hernandez, David M.
2016-06-01
We apply one of the exactly symplectic integrators, which we call HB15, of Hernandez & Bertschinger, along with the Kepler problem solver of Wisdom & Hernandez, to solve planetary system N-body problems. We compare the method to Wisdom-Holman (WH) methods in the MERCURY software package, the MERCURY switching integrator, and others and find HB15 to be the most efficient method or tied for the most efficient method in many cases. Unlike WH, HB15 solved N-body problems exhibiting close encounters with small, acceptable error, although frequent encounters slowed the code. Switching maps like MERCURY change between two methods and are not exactly symplectic. We carry out careful tests on their properties and suggest that they must be used with caution. We then use different integrators to solve a three-body problem consisting of a binary planet orbiting a star. For all tested tolerances and time steps, MERCURY unbinds the binary after 0 to 25 years. However, in the solutions of HB15, a time-symmetric HERMITE code, and a symplectic Yoshida method, the binary remains bound for >1000 years. The methods' solutions are qualitatively different, despite small errors in the first integrals in most cases. Several checks suggest that the qualitative binary behaviour of HB15's solution is correct. The Bulirsch-Stoer and Radau methods in the MERCURY package also unbind the binary before a time of 50 years, suggesting that this dynamical error is due to a MERCURY bug.
NASA Astrophysics Data System (ADS)
Shi, Yu; Wang, Yue; Xu, Shijie
2018-04-01
The motion of a massless particle in the gravity of a binary asteroid system, referred as the restricted full three-body problem (RF3BP), is fundamental, not only for the evolution of the binary system, but also for the design of relevant space missions. In this paper, equilibrium points and associated periodic orbit families in the gravity of a binary system are investigated, with the binary (66391) 1999 KW4 as an example. The polyhedron shape model is used to describe irregular shapes and corresponding gravity fields of the primary and secondary of (66391) 1999 KW4, which is more accurate than the ellipsoid shape model in previous studies and provides a high-fidelity representation of the gravitational environment. Both of the synchronous and non-synchronous states of the binary system are considered. For the synchronous binary system, the equilibrium points and their stability are determined, and periodic orbit families emanating from each equilibrium point are generated by using the shooting (multiple shooting) method and the homotopy method, where the homotopy function connects the circular restricted three-body problem and RF3BP. In the non-synchronous binary system, trajectories of equivalent equilibrium points are calculated, and the associated periodic orbits are obtained by using the homotopy method, where the homotopy function connects the synchronous and non-synchronous systems. Although only the binary (66391) 1999 KW4 is considered, our methods will also be well applicable to other binary systems with polyhedron shape data. Our results on equilibrium points and associated periodic orbits provide general insights into the dynamical environment and orbital behaviors in proximity of small binary asteroids and enable the trajectory design and mission operations in future binary system explorations.
Arithmetic operations in optical computations using a modified trinary number system.
Datta, A K; Basuray, A; Mukhopadhyay, S
1989-05-01
A modified trinary number (MTN) system is proposed in which any binary number can be expressed with the help of trinary digits (1, 0, 1 ). Arithmetic operations can be performed in parallel without the need for carry and borrow steps when binary digits are converted to the MTN system. An optical implementation of the proposed scheme that uses spatial light modulators and color-coded light signals is described.
Modeling the binary circumstellar medium of Type IIb/L/n supernova progenitors
NASA Astrophysics Data System (ADS)
Kolb, Christopher; Blondin, John; Borkowski, Kazik; Reynolds, Stephen
2018-01-01
Circumstellar interaction in close binary systems can produce a highly asymmetric environment, particularly for systems with a mass outflow velocity comparable to the binary orbital speed. This asymmetric circumstellar medium (CSM) becomes visible after a supernova explosion, when SN radiation illuminates the gas and when SN ejecta collide with the CSM. We aim to better understand the development of this asymmetric CSM, particularly for binary systems containing a red supergiant progenitor, and to study its impact on supernova morphology. To achieve this, we model the asymmetric wind and subsequent supernova explosion in full 3D hydrodynamics using the shock-capturing hydro code VH-1 on a spherical yin-yang grid. Wind interaction is computed in a frame co-rotating with the binary system, and gas is accelerated using a radiation pressure-driven wind model where optical depth of the radiative force is dependent on azimuthally-averaged gas density. We present characterization of our asymmetric wind density distribution model by fitting a polar-to-equatorial density contrast function to free parameters such as binary separation distance, primary mass loss rate, and binary mass ratio.
Black Hole Accretion Discs on a Moving Mesh
NASA Astrophysics Data System (ADS)
Ryan, Geoffrey
2017-01-01
We present multi-dimensional numerical simulations of black hole accretion disks relevant for the production of electromagnetic counterparts to gravitational wave sources. We perform these simulations with a new general relativistic version of the moving-mesh magnetohydrodynamics code DISCO which we will present. This open-source code, GR-DISCO uses an orbiting and shearing mesh which moves with the dominant flow velocity, greatly improving the numerical accuracy of the thermodynamic variables in supersonic flows while also reducing numerical viscosity and greatly increasing computational efficiency by allowing for a larger time step. We have used GR-DISCO to study black hole accretion discs subject to gravitational torques from a binary companion, relevant for both current and future supermassive binary black hole searches and also as a possible electromagnetic precursor mechanism for LIGO events. Binary torques in these discs excite spiral shockwaves which effectively transport angular momentum in the disc and propagate through the innermost stable orbit, leading to stress corresponding to an alpha-viscosity of 10-2. We also present three-dimensional GRMHD simulations of neutrino dominated accretion flows (NDAFs) occurring after a binary neutron star merger in order to elucidate the conditions for electromagnetic transient production accompanying these gravitational waves sources expected to be detected by LIGO in the near future.
Close encounters of the third-body kind. [intruding bodies in binary star systems
NASA Technical Reports Server (NTRS)
Davies, M. B.; Benz, W.; Hills, J. G.
1994-01-01
We simulated encounters involving binaries of two eccentricities: e = 0 (i.e., circular binaries) and e = 0.5. In both cases the binary contained a point mass of 1.4 solar masses (i.e., a neutron star) and a 0.8 solar masses main-sequence star modeled as a polytrope. The semimajor axes of both binaries were set to 60 solar radii (0.28 AU). We considered intruders of three masses: 1.4 solar masses (a neutron star), 0.8 solar masses (a main-sequence star or a higher mass white dwarf), and 0.64 solar masses (a more typical mass white dwarf). Our strategy was to perform a large number (40,000) of encounters using a three-body code, then to rerun a small number of cases with a three-dimensional smoothed particle hydrodynamics (SPH) code to determine the importance of hydrodynamical effects. Using the results of the three-body runs, we computed the exchange across sections, sigma(sub ex). From the results of the SPH runs, we computed the cross sections for clean exchange, denoted by sigma(sub cx); the formation of a triple system, denoted by sigma(sub trp); and the formation of a merged binary with an object formed from the merger of two of the stars left in orbit around the third star, denoted by sigma(sub mb). For encounters between either binary and a 1.4 solar masses neutron star, sigma(sub cx) approx. 0.7 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 0.3 sigma(sub ex). For encounters between either binary and the 0.8 solar masses main-sequence star, sigma(sub cx) approx. 0.50 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 1.0 sigma(sub ex). If the main sequence star is replaced by a main-sequence star of the same mass, we have sigma(sub cx) approx. 0.5 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 1.6 sigma(sub ex). Although the exchange cross section is a sensitive function of intruder mass, we see that the cross section to produce merged binaries is roughly independent of intruder mass. The merged binaries produced have semi-major axes much larger than either those of the original binaries or those of binaries produced in clean exchanges. Coupled with their lower kick velocities, received from the encounters, their larger size will enhance their cross section, shortening the waiting time to a subsequent encounter with another single star.
Good trellises for IC implementation of viterbi decoders for linear block codes
NASA Technical Reports Server (NTRS)
Lin, Shu; Moorthy, Hari T.; Uehara, Gregory T.
1996-01-01
This paper investigates trellis structures of linear block codes for the IC (integrated circuit) implementation of Viterbi decoders capable of achieving high decoding speed while satisfying a constraint on the structural complexity of the trellis in terms of the maximum number of states at any particular depth. Only uniform sectionalizations of the code trellis diagram are considered. An upper bound on the number of parallel and structurally identical (or isomorphic) subtrellises in a proper trellis for a code without exceeding the maximum state complexity of the minimal trellis of the code is first derived. Parallel structures of trellises with various section lengths for binary BCH and Reed-Muller (RM) codes of lengths 32 and 64 are analyzed. Next, the complexity of IC implementation of a Viterbi decoder based on an L-section trellis diagram for a code is investigated. A structural property of a Viterbi decoder called ACS-connectivity which is related to state connectivity is introduced. This parameter affects the complexity of wire-routing (interconnections within the IC). The effect of five parameters namely: (1) effective computational complexity; (2) complexity of the ACS-circuit; (3) traceback complexity; (4) ACS-connectivity; and (5) branch complexity of a trellis diagram on the VLSI complexity of a Viterbi decoder is investigated. It is shown that an IC implementation of a Viterbi decoder based on a non-minimal trellis requires less area and is capable of operation at higher speed than one based on the minimal trellis when the commonly used ACS-array architecture is considered.
Bondi-Hoyle-Lyttleton Accretion onto Binaries
NASA Astrophysics Data System (ADS)
Antoni, Andrea; MacLeod, Morgan; Ramírez-Ruiz, Enrico
2018-01-01
Binary stars are not rare. While only close binary stars will eventually interact with one another, even the widest binary systems interact with their gaseous surroundings. The rates of accretion and the gaseous drag forces arising in these interactions are the key to understanding how these systems evolve. This poster examines accretion flows around a binary system moving supersonically through a background gas. We perform three-dimensional hydrodynamic simulations of Bondi-Hoyle-Lyttleton accretion using the adaptive mesh refinement code FLASH. We simulate a range of values of semi-major axis of the orbit relative to the gravitational focusing impact parameter of the pair. On large scales, gas is gravitationally focused by the center-of-mass of the binary, leading to dynamical friction drag and to the accretion of mass and momentum. On smaller scales, the orbital motion imprints itself on the gas. Notably, the magnitude and direction of the forces acting on the binary inherit this orbital dependence. The long-term evolution of the binary is determined by the timescales for accretion, slow down of the center-of-mass, and decay of the orbit. We use our simulations to measure these timescales and to establish a hierarchy between them. In general, our simulations indicate that binaries moving through gaseous media will slow down before the orbit decays.
COSMIC probes into compact binary formation and evolution
NASA Astrophysics Data System (ADS)
Breivik, Katelyn
2018-01-01
The population of compact binaries in the galaxy represents the final state of all binaries that have lived up to the present epoch. Compact binaries present a unique opportunity to probe binary evolution since many of the interactions binaries experience can be imprinted on the compact binary population. By combining binary evolution simulations with catalogs of observable compact binary systems, we can distill the dominant physical processes that govern binary star evolution, as well as predict the abundance and variety of their end products.The next decades herald a previously unseen opportunity to study compact binaries. Multi-messenger observations from telescopes across all wavelengths and gravitational-wave observatories spanning several decades of frequency will give an unprecedented view into the structure of these systems and the composition of their components. Observations will not always be coincident and in some cases may be separated by several years, providing an avenue for simulations to better constrain binary evolution models in preparation for future observations.I will present the results of three population synthesis studies of compact binary populations carried out with the Compact Object Synthesis and Monte Carlo Investigation Code (COSMIC). I will first show how binary-black-hole formation channels can be understood with LISA observations. I will then show how the population of double white dwarfs observed with LISA and Gaia could provide a detailed view of mass transfer and accretion. Finally, I will show that Gaia could discover thousands black holes in the Milky Way through astrometric observations, yielding view into black-hole astrophysics that is complementary to and independent from both X-ray and gravitational-wave astronomy.
Probing the Milky Way electron density using multi-messenger astronomy
NASA Astrophysics Data System (ADS)
Breivik, Katelyn; Larson, Shane
2015-04-01
Multi-messenger observations of ultra-compact binaries in both gravitational waves and electromagnetic radiation supply highly complementary information, providing new ways of characterizing the internal dynamics of these systems, as well as new probes of the galaxy itself. Electron density models, used in pulsar distance measurements via the electron dispersion measure, are currently not well constrained. Simultaneous radio and gravitational wave observations of pulsars in binaries provide a method of measuring the average electron density along the line of sight to the pulsar, thus giving a new method for constraining current electron density models. We present this method and assess its viability with simulations of the compact binary component of the Milky Way using the public domain binary evolution code, BSE. This work is supported by NASA Award NNX13AM10G.
Synchronization Analysis and Simulation of a Standard IEEE 802.11G OFDM Signal
2004-03-01
Figure 26 Convolutional Encoder Parameters. Figure 27 Puncturing Parameters. As per Table 3, the required code rate is 3 4r = which requires...to achieve the higher data rates required by the Standard 802.11b was accomplished by using packet binary convolutional coding (PBCC). Essentially...higher data rates are achieved by using convolutional coding combined with BPSK or QPSK modulation. The data is first encoded with a rate one-half
Formation of Black Hole X-Ray Binaries with Non-degenerate Donors in Globular Clusters
NASA Astrophysics Data System (ADS)
Ivanova, Natalia; da Rocha, Cassio A.; Van, Kenny X.; Nandez, Jose L. A.
2017-07-01
In this Letter, we propose a formation channel for low-mass X-ray binaries with black hole accretors and non-degenerate donors via grazing tidal encounters with subgiants. We estimate that in a typically dense globular cluster with a core density of 105 stars pc-3, the formation rates are about one binary per Gyr per 50-100 retained black holes. The donors—stripped subgiants—will be strongly underluminous when compared to subgiant or giant branch stars of the same colors. The products of tidal stripping are underluminous by at least one magnitude for several hundred million years when compared to normal stars of the same color, and differ from underluminous red stars that could be produced by non-catastrophic mass transfer in an ordinary binary. The dynamically formed binaries become quiescent LMXBs, with lifetimes of about a Gyr. The expected number of X-ray binaries is one per 50-200 retained black holes, while the expected number of strongly underluminous subsubgiant is about half this. The presence of strongly underluminous stars in a GC may be indicative of the presence of black holes.
FBC: a flat binary code scheme for fast Manhattan hash retrieval
NASA Astrophysics Data System (ADS)
Kong, Yan; Wu, Fuzhang; Gao, Lifa; Wu, Yanjun
2018-04-01
Hash coding is a widely used technique in approximate nearest neighbor (ANN) search, especially in document search and multimedia (such as image and video) retrieval. Based on the difference of distance measurement, hash methods are generally classified into two categories: Hamming hashing and Manhattan hashing. Benefitting from better neighborhood structure preservation, Manhattan hashing methods outperform earlier methods in search effectiveness. However, due to using decimal arithmetic operations instead of bit operations, Manhattan hashing becomes a more time-consuming process, which significantly decreases the whole search efficiency. To solve this problem, we present an intuitive hash scheme which uses Flat Binary Code (FBC) to encode the data points. As a result, the decimal arithmetic used in previous Manhattan hashing can be replaced by more efficient XOR operator. The final experiments show that with a reasonable memory space growth, our FBC speeds up more than 80% averagely without any search accuracy loss when comparing to the state-of-art Manhattan hashing methods.
Amalian, Jean-Arthur; Trinh, Thanh Tam; Lutz, Jean-François; Charles, Laurence
2016-04-05
Tandem mass spectrometry was evaluated as a reliable sequencing methodology to read codes encrypted in monodisperse sequence-coded oligo(triazole amide)s. The studied oligomers were composed of monomers containing a triazole ring, a short ethylene oxide segment, and an amide group as well as a short alkyl chain (propyl or isobutyl) which defined the 0/1 molecular binary code. Using electrospray ionization, oligo(triazole amide)s were best ionized as protonated molecules and were observed to adopt a single charge state, suggesting that adducted protons were located on every other monomer unit. Upon collisional activation, cleavages of the amide bond and of one ether bond were observed to proceed in each monomer, yielding two sets of complementary product ions. Distribution of protons over the precursor structure was found to remain unchanged upon activation, allowing charge state to be anticipated for product ions in the four series and hence facilitating their assignment for a straightforward characterization of any encoded oligo(triazole amide)s.
Peng, Zhong; Liu, Sidi; Meng, Xiujuan; Liang, Wan; Xu, Zhuofei; Tang, Biao; Wang, Yuanguo; Duan, Juping; Fu, Chenchao; Wu, Bin; Wu, Anhua; Li, Chunhui
2017-01-01
Clostridium difficile is an anaerobic Gram-positive spore-forming gut pathogen that causes antibiotic-associated diarrhea worldwide. A small number of C. difficile strains express the binary toxin (CDT), which is generally found in C. difficile 027 (ST1) and/or 078 (ST11) in clinic. However, we isolated a binary toxin-positive non-027, non-078 C. difficile LC693 that is associated with severe diarrhea in China. The genotype of this strain was determined as ST201. To understand the pathogenesis-basis of C. difficile ST201, the strain LC693 was chosen for whole genome sequencing, and its genome sequence was analyzed together with the other two ST201 strains VL-0104 and VL-0391 and compared to the epidemic 027/ST1 and 078/ST11 strains. The project finally generated an estimated genome size of approximately 4.07 Mbp for strain LC693. Genome size of the three ST201 strains ranged from 4.07 to 4.16 Mb, with an average GC content between 28.5 and 28.9%. Phylogenetic analysis demonstrated that the ST201 strains belonged to clade 3. The ST201 genomes contained more than 40 antibiotic resistance genes and 15 of them were predicted to be associated with vancomycin-resistance. The ST201 strains contained a larger PaLoc with a Tn6218 element inserted than the 027/ST1 and 078/ST11 strains, and encoded a truncated TcdC. In addition, the ST201 strains contained intact binary toxin coding and regulation genes which are highly homologous to the 027/ST1 strain. Genome comparison of the ST201 strains with the epidemic 027 and 078 strain identified 641 genes specific for C. difficile ST201, and a number of them were predicted as fitness and virulence associated genes. The presence of those genes also contributes to the pathogenesis of the ST201 strains. In this study, the genomic characterization of three binary toxin-positive C. difficile ST201 strains in clade 3 was discussed and compared to the genomes of the epidemic 027 and the 078 strains. Our analysis identified a number fitness and virulence associated genes/loci in the ST201 genomes that contribute to the pathogenesis of C. difficile ST201.
Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation.
Djordjevic, Ivan B
2011-07-18
In order to achieve multi-gigabit transmission (projected for 2020) for the use in interplanetary communications, the usage of large number of time slots in pulse-position modulation (PPM), typically used in deep-space applications, is needed, which imposes stringent requirements on system design and implementation. As an alternative satisfying high-bandwidth demands of future interplanetary communications, while keeping the system cost and power consumption reasonably low, in this paper, we describe the use of orbital angular momentum (OAM) as an additional degree of freedom. The OAM is associated with azimuthal phase of the complex electric field. Because OAM eigenstates are orthogonal the can be used as basis functions for N-dimensional signaling. The OAM modulation and multiplexing can, therefore, be used, in combination with other degrees of freedom, to solve the high-bandwidth requirements of future deep-space and near-Earth optical communications. The main challenge for OAM deep-space communication represents the link between a spacecraft probe and the Earth station because in the presence of atmospheric turbulence the orthogonality between OAM states is no longer preserved. We will show that in combination with LDPC codes, the OAM-based modulation schemes can operate even under strong atmospheric turbulence regime. In addition, the spectral efficiency of proposed scheme is N2/log2N times better than that of PPM.
I-Ching, dyadic groups of binary numbers and the geno-logic coding in living bodies.
Hu, Zhengbing; Petoukhov, Sergey V; Petukhova, Elena S
2017-12-01
The ancient Chinese book I-Ching was written a few thousand years ago. It introduces the system of symbols Yin and Yang (equivalents of 0 and 1). It had a powerful impact on culture, medicine and science of ancient China and several other countries. From the modern standpoint, I-Ching declares the importance of dyadic groups of binary numbers for the Nature. The system of I-Ching is represented by the tables with dyadic groups of 4 bigrams, 8 trigrams and 64 hexagrams, which were declared as fundamental archetypes of the Nature. The ancient Chinese did not know about the genetic code of protein sequences of amino acids but this code is organized in accordance with the I-Ching: in particularly, the genetic code is constructed on DNA molecules using 4 nitrogenous bases, 16 doublets, and 64 triplets. The article also describes the usage of dyadic groups as a foundation of the bio-mathematical doctrine of the geno-logic code, which exists in parallel with the known genetic code of amino acids but serves for a different goal: to code the inherited algorithmic processes using the logical holography and the spectral logic of systems of genetic Boolean functions. Some relations of this doctrine with the I-Ching are discussed. In addition, the ratios of musical harmony that can be revealed in the parameters of DNA structure are also represented in the I-Ching book. Copyright © 2017 Elsevier Ltd. All rights reserved.
Establishing Malware Attribution and Binary Provenance Using Multicompilation Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramshaw, M. J.
2017-07-28
Malware is a serious problem for computer systems and costs businesses and customers billions of dollars a year in addition to compromising their private information. Detecting malware is particularly difficult because malware source code can be compiled in many different ways and generate many different digital signatures, which causes problems for most anti-malware programs that rely on static signature detection. Our project uses a convolutional neural network to identify malware programs but these require large amounts of data to be effective. Towards that end, we gather thousands of source code files from publicly available programming contest sites and compile themmore » with several different compilers and flags. Building upon current research, we then transform these binary files into image representations and use them to train a long-term recurrent convolutional neural network that will eventually be used to identify how a malware binary was compiled. This information will include the compiler, version of the compiler and the options used in compilation, information which can be critical in determining where a malware program came from and even who authored it.« less
NASA Astrophysics Data System (ADS)
Dogan, Suzan
2016-07-01
Accretion discs are common in binary systems, and they are often found to be misaligned with respect to the binary orbit. The gravitational torque from a companion induces nodal precession in misaligned disc orbits. In this study, we first calculate whether this precession is strong enough to overcome the internal disc torques communicating angular momentum. We compare the disc precession torque with the disc viscous torque to determine whether the disc should warp or break. For typical parameters precession wins: the disc breaks into distinct planes that precess effectively independently. To check our analytical findings, we perform 3D hydrodynamical numerical simulations using the PHANTOM smoothed particle hydrodynamics code, and confirm that disc breaking is widespread and enhances accretion on to the central object. For some inclinations, the disc goes through strong Kozai cycles. Disc breaking promotes markedly enhanced and variable accretion and potentially produces high-energy particles or radiation through shocks. This would have significant implications for all binary systems: e.g. accretion outbursts in X-ray binaries and fuelling supermassive black hole (SMBH) binaries. The behaviour we have discussed in this work is relevant to a variety of astrophysical systems, for example X-ray binaries, where the disc plane may be tilted by radiation warping, SMBH binaries, where accretion of misaligned gas can create effectively random inclinations and protostellar binaries, where a disc may be misaligned by a variety of effects such as binary capture/exchange, accretion after binary formation.
Malware detection and analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Ken; Lloyd, Levi; Crussell, Jonathan
Embodiments of the invention describe systems and methods for malicious software detection and analysis. A binary executable comprising obfuscated malware on a host device may be received, and incident data indicating a time when the binary executable was received and identifying processes operating on the host device may be recorded. The binary executable is analyzed via a scalable plurality of execution environments, including one or more non-virtual execution environments and one or more virtual execution environments, to generate runtime data and deobfuscation data attributable to the binary executable. At least some of the runtime data and deobfuscation data attributable tomore » the binary executable is stored in a shared database, while at least some of the incident data is stored in a private, non-shared database.« less
X-ray Spectral Formation In High-mass X-ray Binaries: The Case Of Vela X-1
NASA Astrophysics Data System (ADS)
Akiyama, Shizuka; Mauche, C. W.; Liedahl, D. A.; Plewa, T.
2007-05-01
We are working to develop improved models of radiatively-driven mass flows in the presence of an X-ray source -- such as in X-ray binaries, cataclysmic variables, and active galactic nuclei -- in order to infer the physical properties that determine the X-ray spectra of such systems. The models integrate a three-dimensional time-dependent hydrodynamics capability (FLASH); a comprehensive and uniform set of atomic data, improved calculations of the line force multiplier that account for X-ray photoionization and non-LTE population kinetics, and X-ray emission-line models appropriate to X-ray photoionized plasmas (HULLAC); and a Monte Carlo radiation transport code that simulates Compton scattering and recombination cascades following photoionization. As a test bed, we have simulated a high-mass X-ray binary with parameters appropriate to Vela X-1. While the orbital and stellar parameters of this system are well constrained, the physics of X-ray spectral formation is less well understood because the canonical analytical wind velocity profile of OB stars does not account for the dynamical and radiative feedback effects due to the rotation of the system and to the irradiation of the stellar wind by X-rays from the neutron star. We discuss the dynamical wind structure of Vela X-1 as determined by the FLASH simulation, where in the binary the X-ray emission features originate, and how the spatial and spectral properties of the X-ray emission features are modified by Compton scattering, photoabsorption, and fluorescent emission. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
Soft decoding a self-dual (48, 24; 12) code
NASA Technical Reports Server (NTRS)
Solomon, G.
1993-01-01
A self-dual (48,24;12) code comes from restricting a binary cyclic (63,18;36) code to a 6 x 7 matrix, adding an eighth all-zero column, and then adjoining six dimensions to this extended 6 x 8 matrix. These six dimensions are generated by linear combinations of row permutations of a 6 x 8 matrix of weight 12, whose sums of rows and columns add to one. A soft decoding using these properties and approximating maximum likelihood is presented here. This is preliminary to a possible soft decoding of the box (72,36;15) code that promises a 7.7-dB theoretical coding under maximum likelihood.
A programmable metasurface with dynamic polarization, scattering and focusing control
NASA Astrophysics Data System (ADS)
Yang, Huanhuan; Cao, Xiangyu; Yang, Fan; Gao, Jun; Xu, Shenheng; Li, Maokun; Chen, Xibi; Zhao, Yi; Zheng, Yuejun; Li, Sijia
2016-10-01
Diverse electromagnetic (EM) responses of a programmable metasurface with a relatively large scale have been investigated, where multiple functionalities are obtained on the same surface. The unit cell in the metasurface is integrated with one PIN diode, and thus a binary coded phase is realized for a single polarization. Exploiting this anisotropic characteristic, reconfigurable polarization conversion is presented first. Then the dynamic scattering performance for two kinds of sources, i.e. a plane wave and a point source, is carefully elaborated. To tailor the scattering properties, genetic algorithm, normally based on binary coding, is coupled with the scattering pattern analysis to optimize the coding matrix. Besides, inverse fast Fourier transform (IFFT) technique is also introduced to expedite the optimization process of a large metasurface. Since the coding control of each unit cell allows a local and direct modulation of EM wave, various EM phenomena including anomalous reflection, diffusion, beam steering and beam forming are successfully demonstrated by both simulations and experiments. It is worthwhile to point out that a real-time switch among these functionalities is also achieved by using a field-programmable gate array (FPGA). All the results suggest that the proposed programmable metasurface has great potentials for future applications.
A programmable metasurface with dynamic polarization, scattering and focusing control
Yang, Huanhuan; Cao, Xiangyu; Yang, Fan; Gao, Jun; Xu, Shenheng; Li, Maokun; Chen, Xibi; Zhao, Yi; Zheng, Yuejun; Li, Sijia
2016-01-01
Diverse electromagnetic (EM) responses of a programmable metasurface with a relatively large scale have been investigated, where multiple functionalities are obtained on the same surface. The unit cell in the metasurface is integrated with one PIN diode, and thus a binary coded phase is realized for a single polarization. Exploiting this anisotropic characteristic, reconfigurable polarization conversion is presented first. Then the dynamic scattering performance for two kinds of sources, i.e. a plane wave and a point source, is carefully elaborated. To tailor the scattering properties, genetic algorithm, normally based on binary coding, is coupled with the scattering pattern analysis to optimize the coding matrix. Besides, inverse fast Fourier transform (IFFT) technique is also introduced to expedite the optimization process of a large metasurface. Since the coding control of each unit cell allows a local and direct modulation of EM wave, various EM phenomena including anomalous reflection, diffusion, beam steering and beam forming are successfully demonstrated by both simulations and experiments. It is worthwhile to point out that a real-time switch among these functionalities is also achieved by using a field-programmable gate array (FPGA). All the results suggest that the proposed programmable metasurface has great potentials for future applications. PMID:27774997
A programmable metasurface with dynamic polarization, scattering and focusing control.
Yang, Huanhuan; Cao, Xiangyu; Yang, Fan; Gao, Jun; Xu, Shenheng; Li, Maokun; Chen, Xibi; Zhao, Yi; Zheng, Yuejun; Li, Sijia
2016-10-24
Diverse electromagnetic (EM) responses of a programmable metasurface with a relatively large scale have been investigated, where multiple functionalities are obtained on the same surface. The unit cell in the metasurface is integrated with one PIN diode, and thus a binary coded phase is realized for a single polarization. Exploiting this anisotropic characteristic, reconfigurable polarization conversion is presented first. Then the dynamic scattering performance for two kinds of sources, i.e. a plane wave and a point source, is carefully elaborated. To tailor the scattering properties, genetic algorithm, normally based on binary coding, is coupled with the scattering pattern analysis to optimize the coding matrix. Besides, inverse fast Fourier transform (IFFT) technique is also introduced to expedite the optimization process of a large metasurface. Since the coding control of each unit cell allows a local and direct modulation of EM wave, various EM phenomena including anomalous reflection, diffusion, beam steering and beam forming are successfully demonstrated by both simulations and experiments. It is worthwhile to point out that a real-time switch among these functionalities is also achieved by using a field-programmable gate array (FPGA). All the results suggest that the proposed programmable metasurface has great potentials for future applications.
2006-06-01
called packet binary convolutional code (PBCC), was included as an option for performance at rate of either 5.5 or 11 Mpbs. The second offshoot...and the code rate is r k n= . A general convolutional encoder can be implemented with k shift-registers and n modulo-2 adders. Higher rates can be...derived from lower rate codes by employing “ puncturing .” Puncturing is a procedure for omitting some of the encoded bits in the transmitter (thus
Lu, Jiwen; Erin Liong, Venice; Zhou, Jie
2017-08-09
In this paper, we propose a simultaneous local binary feature learning and encoding (SLBFLE) approach for both homogeneous and heterogeneous face recognition. Unlike existing hand-crafted face descriptors such as local binary pattern (LBP) and Gabor features which usually require strong prior knowledge, our SLBFLE is an unsupervised feature learning approach which automatically learns face representation from raw pixels. Unlike existing binary face descriptors such as the LBP, discriminant face descriptor (DFD), and compact binary face descriptor (CBFD) which use a two-stage feature extraction procedure, our SLBFLE jointly learns binary codes and the codebook for local face patches so that discriminative information from raw pixels from face images of different identities can be obtained by using a one-stage feature learning and encoding procedure. Moreover, we propose a coupled simultaneous local binary feature learning and encoding (C-SLBFLE) method to make the proposed approach suitable for heterogeneous face matching. Unlike most existing coupled feature learning methods which learn a pair of transformation matrices for each modality, we exploit both the common and specific information from heterogeneous face samples to characterize their underlying correlations. Experimental results on six widely used face datasets are presented to demonstrate the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Almog, Assaf; Garlaschelli, Diego
2014-09-01
The dynamics of complex systems, from financial markets to the brain, can be monitored in terms of multiple time series of activity of the constituent units, such as stocks or neurons, respectively. While the main focus of time series analysis is on the magnitude of temporal increments, a significant piece of information is encoded into the binary projection (i.e. the sign) of such increments. In this paper we provide further evidence of this by showing strong nonlinear relations between binary and non-binary properties of financial time series. These relations are a novel quantification of the fact that extreme price increments occur more often when most stocks move in the same direction. We then introduce an information-theoretic approach to the analysis of the binary signature of single and multiple time series. Through the definition of maximum-entropy ensembles of binary matrices and their mapping to spin models in statistical physics, we quantify the information encoded into the simplest binary properties of real time series and identify the most informative property given a set of measurements. Our formalism is able to accurately replicate, and mathematically characterize, the observed binary/non-binary relations. We also obtain a phase diagram allowing us to identify, based only on the instantaneous aggregate return of a set of multiple time series, a regime where the so-called ‘market mode’ has an optimal interpretation in terms of collective (endogenous) effects, a regime where it is parsimoniously explained by pure noise, and a regime where it can be regarded as a combination of endogenous and exogenous factors. Our approach allows us to connect spin models, simple stochastic processes, and ensembles of time series inferred from partial information.
NASA Astrophysics Data System (ADS)
Choudhary, Kuldeep; Kumar, Santosh
2017-05-01
The application of electro-optic effect in lithium-niobate-based Mach-Zehnder interferometer to design a 3-bit optical pseudorandom binary sequence (PRBS) generator has been proposed, which is characterized by its simplicity of generation and stability. The proposed device is optoelectronic in nature. The PBRS generator is immensely applicable for pattern generation, encryption, and coding applications in optical networks. The study is carried out by simulating the proposed device with beam propagation method.
Period variation studies of six contact binaries in M4
NASA Astrophysics Data System (ADS)
Rukmini, Jagirdar; Shanti Priya, Devarapalli
2018-04-01
We present the first period study of six contact binaries in the closest globular cluster M4 the data collected from June 1995‑June 2009 and Oct 2012‑Sept 2013. New times of minima are determined for all the six variables and eclipse timing (O-C) diagrams along with the quadratic fit are presented. For all the variables, the study of (O-C) variations reveals changes in the periods. In addition, the fundamental parameters for four of the contact binaries obtained using the Wilson-Devinney code (v2003) are presented. Planned observations of these binaries using the 3.6-m Devasthal Optical Telescope (DOT) and the 4-m International Liquid Mirror Telescope (ILMT) operated by the Aryabhatta Research Institute of Observational Sciences (ARIES; Nainital) can throw light on their evolutionary status from long term period variation studies.
The fidelity of Kepler eclipsing binary parameters inferred by the neural network
NASA Astrophysics Data System (ADS)
Holanda, N.; da Silva, J. R. P.
2018-04-01
This work aims to test the fidelity and efficiency of obtaining automatic orbital elements of eclipsing binary systems, from light curves using neural network models. We selected a random sample with 78 systems, from over 1400 eclipsing binary detached obtained from the Kepler Eclipsing Binaries Catalog, processed using the neural network approach. The orbital parameters of the sample systems were measured applying the traditional method of light curve adjustment with uncertainties calculated by the bootstrap method, employing the JKTEBOP code. These estimated parameters were compared with those obtained by the neural network approach for the same systems. The results reveal a good agreement between techniques for the sum of the fractional radii and moderate agreement for e cos ω and e sin ω, but orbital inclination is clearly underestimated in neural network tests.
The fidelity of Kepler eclipsing binary parameters inferred by the neural network
NASA Astrophysics Data System (ADS)
Holanda, N.; da Silva, J. R. P.
2018-07-01
This work aims to test the fidelity and efficiency of obtaining automatic orbital elements of eclipsing binary systems, from light curves using neural network models. We selected a random sample with 78 systems, from over 1400 detached eclipsing binaries obtained from the Kepler Eclipsing Binaries Catalog, processed using the neural network approach. The orbital parameters of the sample systems were measured applying the traditional method of light-curve adjustment with uncertainties calculated by the bootstrap method, employing the JKTEBOP code. These estimated parameters were compared with those obtained by the neural network approach for the same systems. The results reveal a good agreement between techniques for the sum of the fractional radii and moderate agreement for e cosω and e sinω, but orbital inclination is clearly underestimated in neural network tests.
Complementary Reliability-Based Decodings of Binary Linear Block Codes
NASA Technical Reports Server (NTRS)
Fossorier, Marc P. C.; Lin, Shu
1997-01-01
This correspondence presents a hybrid reliability-based decoding algorithm which combines the reprocessing method based on the most reliable basis and a generalized Chase-type algebraic decoder based on the least reliable positions. It is shown that reprocessing with a simple additional algebraic decoding effort achieves significant coding gain. For long codes, the order of reprocessing required to achieve asymptotic optimum error performance is reduced by approximately 1/3. This significantly reduces the computational complexity, especially for long codes. Also, a more efficient criterion for stopping the decoding process is derived based on the knowledge of the algebraic decoding solution.
Helium: lifting high-performance stencil kernels from stripped x86 binaries to halide DSL code
Mendis, Charith; Bosboom, Jeffrey; Wu, Kevin; ...
2015-06-03
Highly optimized programs are prone to bit rot, where performance quickly becomes suboptimal in the face of new hardware and compiler techniques. In this paper we show how to automatically lift performance-critical stencil kernels from a stripped x86 binary and generate the corresponding code in the high-level domain-specific language Halide. Using Halide's state-of-the-art optimizations targeting current hardware, we show that new optimized versions of these kernels can replace the originals to rejuvenate the application for newer hardware. The original optimized code for kernels in stripped binaries is nearly impossible to analyze statically. Instead, we rely on dynamic traces to regeneratemore » the kernels. We perform buffer structure reconstruction to identify input, intermediate and output buffer shapes. Here, we abstract from a forest of concrete dependency trees which contain absolute memory addresses to symbolic trees suitable for high-level code generation. This is done by canonicalizing trees, clustering them based on structure, inferring higher-dimensional buffer accesses and finally by solving a set of linear equations based on buffer accesses to lift them up to simple, high-level expressions. Helium can handle highly optimized, complex stencil kernels with input-dependent conditionals. We lift seven kernels from Adobe Photoshop giving a 75 % performance improvement, four kernels from Irfan View, leading to 4.97 x performance, and one stencil from the mini GMG multigrid benchmark netting a 4.25 x improvement in performance. We manually rejuvenated Photoshop by replacing eleven of Photoshop's filters with our lifted implementations, giving 1.12 x speedup without affecting the user experience.« less
Coding for Communication Channels with Dead-Time Constraints
NASA Technical Reports Server (NTRS)
Moision, Bruce; Hamkins, Jon
2004-01-01
Coding schemes have been designed and investigated specifically for optical and electronic data-communication channels in which information is conveyed via pulse-position modulation (PPM) subject to dead-time constraints. These schemes involve the use of error-correcting codes concatenated with codes denoted constrained codes. These codes are decoded using an interactive method. In pulse-position modulation, time is partitioned into frames of Mslots of equal duration. Each frame contains one pulsed slot (all others are non-pulsed). For a given channel, the dead-time constraints are defined as a maximum and a minimum on the allowable time between pulses. For example, if a Q-switched laser is used to transmit the pulses, then the minimum allowable dead time is the time needed to recharge the laser for the next pulse. In the case of bits recorded on a magnetic medium, the minimum allowable time between pulses depends on the recording/playback speed and the minimum distance between pulses needed to prevent interference between adjacent bits during readout. The maximum allowable dead time for a given channel is the maximum time for which it is possible to satisfy the requirement to synchronize slots. In mathematical shorthand, the dead-time constraints for a given channel are represented by the pair of integers (d,k), where d is the minimum allowable number of zeroes between ones and k is the maximum allowable number of zeroes between ones. A system of the type to which the present schemes apply is represented by a binary- input, real-valued-output channel model illustrated in the figure. At the transmitting end, information bits are first encoded by use of an error-correcting code, then further encoded by use of a constrained code. Several constrained codes for channels subject to constraints of (d,infinity) have been investigated theoretically and computationally. The baseline codes chosen for purposes of comparison were simple PPM codes characterized by M-slot PPM frames separated by d-slot dead times.
Formation of Black Hole X-Ray Binaries with Non-degenerate Donors in Globular Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanova, Natalia; Rocha, Cassio A. da; Van, Kenny X.
In this Letter, we propose a formation channel for low-mass X-ray binaries with black hole accretors and non-degenerate donors via grazing tidal encounters with subgiants. We estimate that in a typically dense globular cluster with a core density of 10{sup 5} stars pc{sup −3}, the formation rates are about one binary per Gyr per 50–100 retained black holes. The donors—stripped subgiants—will be strongly underluminous when compared to subgiant or giant branch stars of the same colors. The products of tidal stripping are underluminous by at least one magnitude for several hundred million years when compared to normal stars of themore » same color, and differ from underluminous red stars that could be produced by non-catastrophic mass transfer in an ordinary binary. The dynamically formed binaries become quiescent LMXBs, with lifetimes of about a Gyr. The expected number of X-ray binaries is one per 50–200 retained black holes, while the expected number of strongly underluminous subsubgiant is about half this. The presence of strongly underluminous stars in a GC may be indicative of the presence of black holes.« less
Non-binary or genderqueer genders.
Richards, Christina; Bouman, Walter Pierre; Seal, Leighton; Barker, Meg John; Nieder, Timo O; T'Sjoen, Guy
2016-01-01
Some people have a gender which is neither male nor female and may identify as both male and female at one time, as different genders at different times, as no gender at all, or dispute the very idea of only two genders. The umbrella terms for such genders are 'genderqueer' or 'non-binary' genders. Such gender identities outside of the binary of female and male are increasingly being recognized in legal, medical and psychological systems and diagnostic classifications in line with the emerging presence and advocacy of these groups of people. Population-based studies show a small percentage--but a sizable proportion in terms of raw numbers--of people who identify as non-binary. While such genders have been extant historically and globally, they remain marginalized, and as such--while not being disorders or pathological in themselves--people with such genders remain at risk of victimization and of minority or marginalization stress as a result of discrimination. This paper therefore reviews the limited literature on this field and considers ways in which (mental) health professionals may assist the people with genderqueer and non-binary gender identities and/or expressions they may see in their practice. Treatment options and associated risks are discussed.
Accuracy of Binary Black Hole Waveform Models for Advanced LIGO
NASA Astrophysics Data System (ADS)
Kumar, Prayush; Fong, Heather; Barkett, Kevin; Bhagwat, Swetha; Afshari, Nousha; Chu, Tony; Brown, Duncan; Lovelace, Geoffrey; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela; Simulating Extreme Spacetimes (SXS) Team
2016-03-01
Coalescing binaries of compact objects, such as black holes and neutron stars, are the primary targets for gravitational-wave (GW) detection with Advanced LIGO. Accurate modeling of the emitted GWs is required to extract information about the binary source. The most accurate solution to the general relativistic two-body problem is available in numerical relativity (NR), which is however limited in application due to computational cost. Current searches use semi-analytic models that are based in post-Newtonian (PN) theory and calibrated to NR. In this talk, I will present comparisons between contemporary models and high-accuracy numerical simulations performed using the Spectral Einstein Code (SpEC), focusing at the questions: (i) How well do models capture binary's late-inspiral where they lack a-priori accurate information from PN or NR, and (ii) How accurately do they model binaries with parameters outside their range of calibration. These results guide the choice of templates for future GW searches, and motivate future modeling efforts.
Numerical Simulations of Close and Contact Binary Systems Having Bipolytropic Equation of State
NASA Astrophysics Data System (ADS)
Kadam, Kundan; Clayton, Geoffrey C.; Motl, Patrick M.; Marcello, Dominic; Frank, Juhan
2017-01-01
I present the results of the numerical simulations of the mass transfer in close and contact binary systems with both stars having a bipolytropic (composite polytropic) equation of state. The initial binary systems are obtained by a modifying Hachisu’s self-consistent field technique. Both the stars have fully resolved cores with a molecular weight jump at the core-envelope interface. The initial properties of these simulations are chosen such that they satisfy the mass-radius relation, composition and period of a late W-type contact binary system. The simulations are carried out using two different Eulerian hydrocodes, Flow-ER with a fixed cylindrical grid, and Octo-tiger with an AMR capable cartesian grid. The detailed comparison of the simulations suggests an agreement between the results obtained from the two codes at different resolutions. The set of simulations can be treated as a benchmark, enabling us to reliably simulate mass transfer and merger scenarios of binary systems involving bipolytropic components.
Solubility modeling of refrigerant/lubricant mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michels, H.H.; Sienel, T.H.
1996-12-31
A general model for predicting the solubility properties of refrigerant/lubricant mixtures has been developed based on applicable theory for the excess Gibbs energy of non-ideal solutions. In our approach, flexible thermodynamic forms are chosen to describe the properties of both the gas and liquid phases of refrigerant/lubricant mixtures. After an extensive study of models for describing non-ideal liquid effects, the Wohl-suffix equations, which have been extensively utilized in the analysis of hydrocarbon mixtures, have been developed into a general form applicable to mixtures where one component is a POE lubricant. In the present study we have analyzed several POEs wheremore » structural and thermophysical property data were available. Data were also collected from several sources on the solubility of refrigerant/lubricant binary pairs. We have developed a computer code (NISC), based on the Wohl model, that predicts dew point or bubble point conditions over a wide range of composition and temperature. Our present analysis covers mixtures containing up to three refrigerant molecules and one lubricant. The present code can be used to analyze the properties of R-410a and R-407c in mixtures with a POE lubricant. Comparisons with other models, such as the Wilson or modified Wilson equations, indicate that the Wohl-suffix equations yield more reliable predictions for HFC/POE mixtures.« less
Error Control Coding Techniques for Space and Satellite Communications
NASA Technical Reports Server (NTRS)
Lin, Shu
2000-01-01
This paper presents a concatenated turbo coding system in which a Reed-Solomom outer code is concatenated with a binary turbo inner code. In the proposed system, the outer code decoder and the inner turbo code decoder interact to achieve both good bit error and frame error performances. The outer code decoder helps the inner turbo code decoder to terminate its decoding iteration while the inner turbo code decoder provides soft-output information to the outer code decoder to carry out a reliability-based soft-decision decoding. In the case that the outer code decoding fails, the outer code decoder instructs the inner code decoder to continue its decoding iterations until the outer code decoding is successful or a preset maximum number of decoding iterations is reached. This interaction between outer and inner code decoders reduces decoding delay. Also presented in the paper are an effective criterion for stopping the iteration process of the inner code decoder and a new reliability-based decoding algorithm for nonbinary codes.
An Interactive Concatenated Turbo Coding System
NASA Technical Reports Server (NTRS)
Liu, Ye; Tang, Heng; Lin, Shu; Fossorier, Marc
1999-01-01
This paper presents a concatenated turbo coding system in which a Reed-Solomon outer code is concatenated with a binary turbo inner code. In the proposed system, the outer code decoder and the inner turbo code decoder interact to achieve both good bit error and frame error performances. The outer code decoder helps the inner turbo code decoder to terminate its decoding iteration while the inner turbo code decoder provides soft-output information to the outer code decoder to carry out a reliability-based soft- decision decoding. In the case that the outer code decoding fails, the outer code decoder instructs the inner code decoder to continue its decoding iterations until the outer code decoding is successful or a preset maximum number of decoding iterations is reached. This interaction between outer and inner code decoders reduces decoding delay. Also presented in the paper are an effective criterion for stopping the iteration process of the inner code decoder and a new reliability-based decoding algorithm for nonbinary codes.
Multispectral Image Compression Based on DSC Combined with CCSDS-IDC
Li, Jin; Xing, Fei; Sun, Ting; You, Zheng
2014-01-01
Remote sensing multispectral image compression encoder requires low complexity, high robust, and high performance because it usually works on the satellite where the resources, such as power, memory, and processing capacity, are limited. For multispectral images, the compression algorithms based on 3D transform (like 3D DWT, 3D DCT) are too complex to be implemented in space mission. In this paper, we proposed a compression algorithm based on distributed source coding (DSC) combined with image data compression (IDC) approach recommended by CCSDS for multispectral images, which has low complexity, high robust, and high performance. First, each band is sparsely represented by DWT to obtain wavelet coefficients. Then, the wavelet coefficients are encoded by bit plane encoder (BPE). Finally, the BPE is merged to the DSC strategy of Slepian-Wolf (SW) based on QC-LDPC by deep coupling way to remove the residual redundancy between the adjacent bands. A series of multispectral images is used to test our algorithm. Experimental results show that the proposed DSC combined with the CCSDS-IDC (DSC-CCSDS)-based algorithm has better compression performance than the traditional compression approaches. PMID:25110741
Multispectral image compression based on DSC combined with CCSDS-IDC.
Li, Jin; Xing, Fei; Sun, Ting; You, Zheng
2014-01-01
Remote sensing multispectral image compression encoder requires low complexity, high robust, and high performance because it usually works on the satellite where the resources, such as power, memory, and processing capacity, are limited. For multispectral images, the compression algorithms based on 3D transform (like 3D DWT, 3D DCT) are too complex to be implemented in space mission. In this paper, we proposed a compression algorithm based on distributed source coding (DSC) combined with image data compression (IDC) approach recommended by CCSDS for multispectral images, which has low complexity, high robust, and high performance. First, each band is sparsely represented by DWT to obtain wavelet coefficients. Then, the wavelet coefficients are encoded by bit plane encoder (BPE). Finally, the BPE is merged to the DSC strategy of Slepian-Wolf (SW) based on QC-LDPC by deep coupling way to remove the residual redundancy between the adjacent bands. A series of multispectral images is used to test our algorithm. Experimental results show that the proposed DSC combined with the CCSDS-IDC (DSC-CCSDS)-based algorithm has better compression performance than the traditional compression approaches.
Visualising interacting binaries in 3D
NASA Astrophysics Data System (ADS)
Hynes, R. I.
2002-01-01
I have developed a code which allows images to be produced of a variety of interacting binaries for any system parameters. The resulting images are not only helpful in visualising the geometry of a given system but are also helpful in talks and educational work. I would like to acknowledge financial support from the Leverhulme Trust, and to thank Dan Rolfe for many discussions on how to represent interacting binaries and the users of BinSim who have provided valuable testing and feedback. BinSim would not have been possible without the efforts of Brian Paul and others responsible for the Mesa 3-D graphics library -- Mesa 3-D graphics .
Monte Carlo study of four dimensional binary hard hypersphere mixtures
NASA Astrophysics Data System (ADS)
Bishop, Marvin; Whitlock, Paula A.
2012-01-01
A multithreaded Monte Carlo code was used to study the properties of binary mixtures of hard hyperspheres in four dimensions. The ratios of the diameters of the hyperspheres examined were 0.4, 0.5, 0.6, and 0.8. Many total densities of the binary mixtures were investigated. The pair correlation functions and the equations of state were determined and compared with other simulation results and theoretical predictions. At lower diameter ratios the pair correlation functions of the mixture agree with the pair correlation function of a one component fluid at an appropriately scaled density. The theoretical results for the equation of state compare well to the Monte Carlo calculations for all but the highest densities studied.
Genders and Individual Treatment Progress in (Non-)Binary Trans Individuals.
Koehler, Andreas; Eyssel, Jana; Nieder, Timo O
2018-01-01
Health care for transgender and transsexual (ie, trans) individuals has long been based on a binary understanding of gender (ie, feminine vs masculine). However, the existence of non-binary or genderqueer (NBGQ) genders is increasingly recognized by academic and/or health care professionals. To gain insight into the individual health care experiences and needs of binary and NBGQ individuals to improve their health care outcomes and experience. Data were collected using an online survey study on experiences with trans health care. The non-clinical sample consisted of 415 trans individuals. An individual treatment progress score was calculated to report and compare participants' individual progress toward treatment completion and consider the individual treatment needs and definitions of completed treatment (ie, amount and types of different treatments needed to complete one's medical transition). Main outcome measures were (i) general and trans-related sociodemographic data and (ii) received and planned treatments. Participants reported binary (81.7%) and different NBGQ (18.3%) genders. The 2 groups differed significantly in basic demographic data (eg, mean age; P < .05). NBGQ participants reported significantly fewer received treatments compared with binary participants. For planned treatments, binary participants reported more treatments related to primary sex characteristics only. Binary participants required more treatments for a completed treatment than NBGQ participants (6.0 vs 4.0). There were no differences with regard to individual treatment progress score. Because traditional binary-focused treatment practice could have hindered NBGQ individuals from accessing trans health care or sufficiently articulating their needs, health care professionals are encouraged to provide a holistic and individual treatment approach and acknowledge genders outside the gender binary to address their needs appropriately. Because the study was made inclusive for non-patients and individuals who decided against trans health care, bias from a participant-patient double role was prevented, which is the reason the results are likely to have a higher level of validity than a clinical sample. However, because of the anonymity of an online survey, it remains unclear whether NBGQ individuals live according to their gender identity in their everyday life. The study highlights the broad spectrum of genders in trans-individuals and associated health care needs and provides a novel approach to measure individual treatment progress in trans individuals. Koehler A, Eyssel J, Nieder TO. Genders and Individual Treatment Progress in (Non-)Binary Trans Individuals. J Sex Med 2018;15:102-113. Copyright © 2017 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
EXODUS II: A finite element data model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoof, L.A.; Yarberry, V.R.
1994-09-01
EXODUS II is a model developed to store and retrieve data for finite element analyses. It is used for preprocessing (problem definition), postprocessing (results visualization), as well as code to code data transfer. An EXODUS II data file is a random access, machine independent, binary file that is written and read via C, C++, or Fortran library routines which comprise the Application Programming Interface (API).
NASA Technical Reports Server (NTRS)
1972-01-01
Here, the 7400 line of transistor to transistor logic (TTL) devices is emphasized almost exclusively where hardware is concerned. However, it should be pointed out that the logic theory contained herein applies to all hardware. Binary numbers, simplification of logic circuits, code conversion circuits, basic flip-flop theory, details about series 54/7400, and asynchronous circuits are discussed.
Replacing the CCSDS Telecommand Protocol with the Next Generation Uplink (NGU)
NASA Technical Reports Server (NTRS)
Kazz, Greg J.; Greenberg, Ed; Burleigh, Scott C.
2012-01-01
The current CCSDS Telecommand (TC) Recommendations 1-3 have essentially been in use since the early 1960s. The purpose of this paper is to propose a successor protocol to TC. The current CCSDS recommendations can only accommodate telecommand rates up to approximately 1 mbit/s. However today's spacecraft are storehouses for software including software for Field Programmable Gate Arrays (FPGA) which are rapidly replacing unique hardware systems. Changes to flight software occasionally require uplinks to deliver very large volumes of data. In the opposite direction, high rate downlink missions that use acknowledged CCSDS File Delivery Protocol (CFDP)4 will increase the uplink data rate requirements. It is calculated that a 5 mbits/s downlink could saturate a 4 kbits/s uplink with CFDP downlink responses: negative acknowledgements (NAKs), FINISHs, End-of-File (EOF), Acknowledgements (ACKs). Moreover, it is anticipated that uplink rates of 10 to 20 mbits/s will be required to support manned missions. The current TC recommendations cannot meet these new demands. Specifically, they are very tightly coupled to the Bose-Chaudhuri-Hocquenghem (BCH) code in Ref. 2. This protocol requires that an uncorrectable BCH codeword delimit the TC frame and terminate the randomization process. This method greatly limits telecom performance since only the BCH code can support the protocol. More modern techniques such as the CCSDS Low Density Parity Check (LDPC)5 codes can provide a minimum performance gain of up to 6 times higher command data rates as long as sufficient power is available in the data. This paper will describe the proposed protocol format, trade-offs, and advantages offered, along with a discussion of how reliable communications takes place at higher nominal rates.
Glynn, P.D.
1991-01-01
The computer code MBSSAS uses two-parameter Margules-type excess-free-energy of mixing equations to calculate thermodynamic equilibrium, pure-phase saturation, and stoichiometric saturation states in binary solid-solution aqueous-solution (SSAS) systems. Lippmann phase diagrams, Roozeboom diagrams, and distribution-coefficient diagrams can be constructed from the output data files, and also can be displayed by MBSSAS (on IBM-PC compatible computers). MBSSAS also will calculate accessory information, such as the location of miscibility gaps, spinodal gaps, critical-mixing points, alyotropic extrema, Henry's law solid-phase activity coefficients, and limiting distribution coefficients. Alternatively, MBSSAS can use such information (instead of the Margules, Guggenheim, or Thompson and Waldbaum excess-free-energy parameters) to calculate the appropriate excess-free-energy of mixing equation for any given SSAS system. ?? 1991.
Analysis of the possibility of using G.729 codec for steganographic transmission
NASA Astrophysics Data System (ADS)
Piotrowski, Zbigniew; Ciołek, Michał; Dołowski, Jerzy; Wojtuń, Jarosław
2017-04-01
Network steganography is dedicated in particular for those communication services for which there are no bridges or nodes carrying out unintentional attacks on steganographic sequence. In order to set up a hidden communication channel the method of data encoding and decoding was implemented using code books of codec G.729. G.729 codec includes, in its construction, linear prediction vocoder CS-ACELP (Conjugate Structure Algebraic Code Excited Linear Prediction), and by modifying the binary content of the codebook, it is easy to change a binary output stream. The article describes the results of research on the selection of these bits of the codebook codec G.729 which the negation of the least have influence to the loss of quality and fidelity of the output signal. The study was performed with the use of subjective and objective listening tests.
NASA Technical Reports Server (NTRS)
Talcott, N. A., Jr.
1977-01-01
Equations and computer code are given for the thermodynamic properties of gaseous fluorocarbons in chemical equilibrium. In addition, isentropic equilibrium expansions of two binary mixtures of fluorocarbons and argon are included. The computer code calculates the equilibrium thermodynamic properties and, in some cases, the transport properties for the following fluorocarbons: CCl2F, CCl2F2, CBrF3, CF4, CHCl2F, CHF3, CCL2F-CCl2F, CCLF2-CClF2, CF3-CF3, and C4F8. Equilibrium thermodynamic properties are tabulated for six of the fluorocarbons(CCl3F, CCL2F2, CBrF3, CF4, CF3-CF3, and C4F8) and pressure-enthalpy diagrams are presented for CBrF3.
A Chemical Alphabet for Macromolecular Communications.
Giannoukos, Stamatios; McGuiness, Daniel Tunç; Marshall, Alan; Smith, Jeremy; Taylor, Stephen
2018-06-08
Molecular communications in macroscale environments is an emerging field of study driven by the intriguing prospect of sending coded information over olfactory networks. For the first time, this article reports two signal modulation techniques (on-off keying-OOK, and concentration shift keying-CSK) which have been used to encode and transmit digital information using odors over distances of 1-4 m. Molecular transmission of digital data was experimentally investigated for the letter "r" with a binary value of 01110010 (ASCII) for a gas stream network channel (up to 4 m) using mass spectrometry (MS) as the main detection-decoding system. The generation and modulation of the chemical signals was achieved using an automated odor emitter (OE) which is based on the controlled evaporation of a chemical analyte and its diffusion into a carrier gas stream. The chemical signals produced propagate within a confined channel to reach the demodulator-MS. Experiments were undertaken for a range of volatile organic compounds (VOCs) with different diffusion coefficient values in air at ambient conditions. Representative compounds investigated include acetone, cyclopentane, and n-hexane. For the first time, the binary code ASCII (American Standard Code for Information Interchange) is combined with chemical signaling to generate a molecular representation of the English alphabet. Transmission experiments of fixed-width molecular signals corresponding to letters of the alphabet over varying distances are shown. A binary message corresponding to the word "ion" was synthesized using chemical signals and transmitted within a physical channel over a distance of 2 m.
The modelling of heat, mass and solute transport in solidification systems
NASA Technical Reports Server (NTRS)
Voller, V. R.; Brent, A. D.; Prakash, C.
1989-01-01
The aim of this paper is to explore the range of possible one-phase models of binary alloy solidification. Starting from a general two-phase description, based on the two-fluid model, three limiting cases are identified which result in one-phase models of binary systems. Each of these models can be readily implemented in standard single phase flow numerical codes. Differences between predictions from these models are examined. In particular, the effects of the models on the predicted macro-segregation patterns are evaluated.
Binary CFG Rebuilt of Self-Modifying Codes
2016-10-03
ABOVE ORGANIZATION. 1. REPORT DATE (DD-MM-YYYY) 04-10-2016 2. REPORT TYPE Final 3. DATES COVERED (From - To) 12 May 2014 to 11 May 2016 4. TITLE ...industry to analyze malware is a dynamic analysis in a sand- box . Alternatively, we apply a hybrid method combining concolic testing (dynamic symbolic...virus software based on binary signatures. A popular method in industry to analyze malware is a dynamic analysis in a sand- box . Alternatively, we
Short, unit-memory, Byte-oriented, binary convolutional codes having maximal free distance
NASA Technical Reports Server (NTRS)
Lee, L. N.
1975-01-01
It is shown that (n sub 0, k sub 0) convolutional codes with unit memory always achieve the largest free distance among all codes of the same rate k sub 0/n sub 0 and same number 2MK sub 0 of encoder states, where M is the encoder memory. A unit-memory code with maximal free distance is given at each place where this free distance exceeds that of the best code with k sub 0 and n sub 0 relatively prime, for all Mk sub 0 less than or equal to 6 and for R = 1/2, 1/3, 1/4, 2/3. It is shown that the unit-memory codes are byte-oriented in such a way as to be attractive for use in concatenated coding systems.
Coding and decoding in a point-to-point communication using the polarization of the light beam.
Kavehvash, Z; Massoumian, F
2008-05-10
A new technique for coding and decoding of optical signals through the use of polarization is described. In this technique the concept of coding is translated to polarization. In other words, coding is done in such a way that each code represents a unique polarization. This is done by implementing a binary pattern on a spatial light modulator in such a way that the reflected light has the required polarization. Decoding is done by the detection of the received beam's polarization. By linking the concept of coding to polarization we can use each of these concepts in measuring the other one, attaining some gains. In this paper the construction of a simple point-to-point communication where coding and decoding is done through polarization will be discussed.
DNABIT Compress – Genome compression algorithm
Rajarajeswari, Pothuraju; Apparao, Allam
2011-01-01
Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, “DNABIT Compress” for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that “DNABIT Compress” algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases. PMID:21383923
Arikan and Alamouti matrices based on fast block-wise inverse Jacket transform
NASA Astrophysics Data System (ADS)
Lee, Moon Ho; Khan, Md Hashem Ali; Kim, Kyeong Jin
2013-12-01
Recently, Lee and Hou (IEEE Signal Process Lett 13: 461-464, 2006) proposed one-dimensional and two-dimensional fast algorithms for block-wise inverse Jacket transforms (BIJTs). Their BIJTs are not real inverse Jacket transforms from mathematical point of view because their inverses do not satisfy the usual condition, i.e., the multiplication of a matrix with its inverse matrix is not equal to the identity matrix. Therefore, we mathematically propose a fast block-wise inverse Jacket transform of orders N = 2 k , 3 k , 5 k , and 6 k , where k is a positive integer. Based on the Kronecker product of the successive lower order Jacket matrices and the basis matrix, the fast algorithms for realizing these transforms are obtained. Due to the simple inverse and fast algorithms of Arikan polar binary and Alamouti multiple-input multiple-output (MIMO) non-binary matrices, which are obtained from BIJTs, they can be applied in areas such as 3GPP physical layer for ultra mobile broadband permutation matrices design, first-order q-ary Reed-Muller code design, diagonal channel design, diagonal subchannel decompose for interference alignment, and 4G MIMO long-term evolution Alamouti precoding design.
cit: hypothesis testing software for mediation analysis in genomic applications.
Millstein, Joshua; Chen, Gary K; Breton, Carrie V
2016-08-01
The challenges of successfully applying causal inference methods include: (i) satisfying underlying assumptions, (ii) limitations in data/models accommodated by the software and (iii) low power of common multiple testing approaches. The causal inference test (CIT) is based on hypothesis testing rather than estimation, allowing the testable assumptions to be evaluated in the determination of statistical significance. A user-friendly software package provides P-values and optionally permutation-based FDR estimates (q-values) for potential mediators. It can handle single and multiple binary and continuous instrumental variables, binary or continuous outcome variables and adjustment covariates. Also, the permutation-based FDR option provides a non-parametric implementation. Simulation studies demonstrate the validity of the cit package and show a substantial advantage of permutation-based FDR over other common multiple testing strategies. The cit open-source R package is freely available from the CRAN website (https://cran.r-project.org/web/packages/cit/index.html) with embedded C ++ code that utilizes the GNU Scientific Library, also freely available (http://www.gnu.org/software/gsl/). joshua.millstein@usc.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Izmailov, Alexander F.; Myerson, Allan S.
1993-01-01
A new mathematical ansatz is developed for solution of the time-dependent Ginzburg-Landau nonlinear partial differential equation describing metastable state relaxation in binary (solute+solvent) non-critical solutions with non-conserved scalar order parameter in presence of a gravitational field. It has been demonstrated analytically that in such systems metastability initiates heterogeneous solute redistribution which results in the formation of a non-equilibrium singly-periodic spatial solute structure in the new solute-rich phase. The critical radius of nucleation and the induction time in these systems are gravity-dependent. It has also been proved that metastable state relaxation in vertical columns of supersaturated non-critical binary solutions leads to formation of the solute concentration gradient. Analytical expression for this concentration gradient is found and analysed. It is concluded that gravity can initiate phase separation (nucleation or spinodal decomposition).
P-Code-Enhanced Encryption-Mode Processing of GPS Signals
NASA Technical Reports Server (NTRS)
Young, Lawrence; Meehan, Thomas; Thomas, Jess B.
2003-01-01
A method of processing signals in a Global Positioning System (GPS) receiver has been invented to enable the receiver to recover some of the information that is otherwise lost when GPS signals are encrypted at the transmitters. The need for this method arises because, at the option of the military, precision GPS code (P-code) is sometimes encrypted by a secret binary code, denoted the A code. Authorized users can recover the full signal with knowledge of the A-code. However, even in the absence of knowledge of the A-code, one can track the encrypted signal by use of an estimate of the A-code. The present invention is a method of making and using such an estimate. In comparison with prior such methods, this method makes it possible to recover more of the lost information and obtain greater accuracy.