Science.gov

Sample records for non-catalytic exosite binding

  1. A single-domain llama antibody potently inhibits the enzymatic activity of botulinum neurotoxin by binding to the non-catalytic alpha-exosite binding region.

    PubMed

    Dong, Jianbo; Thompson, Aaron A; Fan, Yongfeng; Lou, Jianlong; Conrad, Fraser; Ho, Mengfei; Pires-Alves, Melissa; Wilson, Brenda A; Stevens, Raymond C; Marks, James D

    2010-04-01

    Ingestion or inhalation of botulinum neurotoxin (BoNT) results in botulism, a severe and frequently fatal disease. Current treatments rely on antitoxins, which, while effective, cannot reverse symptoms once BoNT has entered the neuron. For treatments that can reverse intoxication, interest has focused on developing inhibitors of the enzymatic BoNT light chain (BoNT Lc). Such inhibitors typically mimic substrate and bind in or around the substrate cleavage pocket. To explore the full range of binding sites for serotype A light chain (BoNT/A Lc) inhibitors, we created a library of non-immune llama single-domain VHH (camelid heavy-chain variable region derived from heavy-chain-only antibody) antibodies displayed on the surface of the yeast Saccharomyces cerevisiae. Library selection on BoNT/A Lc yielded 15 yeast-displayed VHH with equilibrium dissociation constants (K(d)) from 230 to 0.03 nM measured by flow cytometry. Eight of 15 VHH inhibited the cleavage of substrate SNAP25 (synaptosome-associated protein of 25,000 Da) by BoNT/A Lc. The most potent VHH (Aa1) had a solution K(d) for BoNT/A Lc of 1.47 x 10(-)(10) M and an IC(50) (50% inhibitory concentration) of 4.7 x 10(-)(10) M and was resistant to heat denaturation and reducing conditions. To understand the mechanism by which Aa1 inhibited catalysis, we solved the X-ray crystal structure of the BoNT/A Lc-Aa1 VHH complex at 2.6 A resolution. The structure reveals that the Aa1 VHH binds in the alpha-exosite of the BoNT/A Lc, far from the active site for catalysis. The study validates the utility of non-immune llama VHH libraries as a source of enzyme inhibitors and identifies the BoNT/A Lc alpha-exosite as a target for inhibitor development.

  2. A Single-Domain Llama Antibody Potently Inhibits the Enzymatic Activity of Botulinum Neurotoxin by Binding to the Non-Catalytic [alpha]-Exosite Binding Region

    SciTech Connect

    Dong, Jianbo; Thompson, Aaron A.; Fan, Yongfeng; Lou, Jianlong; Conrad, Fraser; Ho, Mengfei; Pires-Alves, Melissa; Wilson, Brenda A.; Stevens, Raymond C.; Marks, James D.

    2010-08-13

    Ingestion or inhalation of botulinum neurotoxin (BoNT) results in botulism, a severe and frequently fatal disease. Current treatments rely on antitoxins, which, while effective, cannot reverse symptoms once BoNT has entered the neuron. For treatments that can reverse intoxication, interest has focused on developing inhibitors of the enzymatic BoNT light chain (BoNT Lc). Such inhibitors typically mimic substrate and bind in or around the substrate cleavage pocket. To explore the full range of binding sites for serotype A light chain (BoNT/A Lc) inhibitors, we created a library of non-immune llama single-domain VHH (camelid heavy-chain variable region derived from heavy-chain-only antibody) antibodies displayed on the surface of the yeast Saccharomyces cerevisiae. Library selection on BoNT/A Lc yielded 15 yeast-displayed VHH with equilibrium dissociation constants (K{sub d}) from 230 to 0.03 nM measured by flow cytometry. Eight of 15 VHH inhibited the cleavage of substrate SNAP25 (synaptosome-associated protein of 25,000 Da) by BoNT/A Lc. The most potent VHH (Aa1) had a solution K{sub d} for BoNT/A Lc of 1.47 x 10{sup -10} M and an IC{sub 50} (50% inhibitory concentration) of 4.7 x 10{sup -10} M and was resistant to heat denaturation and reducing conditions. To understand the mechanism by which Aa1 inhibited catalysis, we solved the X-ray crystal structure of the BoNT/A Lc-Aa1 VHH complex at 2.6 {angstrom} resolution. The structure reveals that the Aa1 VHH binds in the {alpha}-exosite of the BoNT/A Lc, far from the active site for catalysis. The study validates the utility of non-immune llama VHH libraries as a source of enzyme inhibitors and identifies the BoNT/A Lc {alpha}-exosite as a target for inhibitor development.

  3. Design of highly potent urea-based, exosite-binding inhibitors selective for glutamate carboxypeptidase II.

    PubMed

    Tykvart, Jan; Schimer, Jiří; Jančařík, Andrej; Bařinková, Jitka; Navrátil, Václav; Starková, Jana; Šrámková, Karolína; Konvalinka, Jan; Majer, Pavel; Šácha, Pavel

    2015-05-28

    We present here a structure-aided design of inhibitors targeting the active site as well as exosites of glutamate carboxypeptidase II (GCPII), a prostate cancer marker, preparing potent and selective inhibitors that are more than 1000-fold more active toward GCPII than its closest human homologue, glutamate carboxypeptidase III (GCPIII). Additionally, we demonstrate that the prepared inhibitor conjugate can be used for sensitive and selective imaging of GCPII in mammalian cells. PMID:25923815

  4. Inhibition of thrombin-mediated cellular effects by triabin, a highly potent anion-binding exosite thrombin inhibitor.

    PubMed

    Glusa, E; Bretschneider, E; Daum, J; Noeske-Jungblut, C

    1997-06-01

    Triabin, a 17 kDa protein from the saliva of the assassin bug Triatoma pallidipennis is a potent thrombin inhibitor interfering with the anion-binding exosite of the enzyme. The recombinant protein, produced by the baculovirus/insect cell system, was used to study the inhibitory effect on thrombin-mediated cellular responses. The thrombin (1 nM)-stimulated aggregation of washed human platelets and the rise in cytoplasmic calcium in platelets were inhibited by triabin at nanomolar concentrations. In contrast, the rise in calcium induced by the thrombin receptor-activating peptide (10 microM) was not suppressed by triabin. In isolated porcine pulmonary arteries, preconstricted with PGF 2 alpha thrombin (2 nM) elicited an endothelium-dependent relaxation which was inhibited by triabin in the same concentration range as found for the inhibition of platelet aggregation. Higher concentrations of triabin were required to diminish the contractile response of endotheliumdenuded pulmonary vessels to thrombin (10 nM). In cultured bovine coronary smooth muscle cells, the mitogenic activity of thrombin (3 nM), measured by [3H]thymidine incorporation, was also suppressed by triabin. In all these assays, the inhibitory effect of triabin was dependent on the thrombin concentration used. These studies suggest that the new anion-binding exosite thrombin inhibitor triabin is one of the most potent inhibitors of thrombin-mediated cellular effects. PMID:9241757

  5. The Contribution of Non-catalytic Carbohydrate Binding Modules to the Activity of Lytic Polysaccharide Monooxygenases*

    PubMed Central

    Crouch, Lucy I.; Labourel, Aurore; Walton, Paul H.; Davies, Gideon J.; Gilbert, Harry J.

    2016-01-01

    Lignocellulosic biomass is a sustainable industrial substrate. Copper-dependent lytic polysaccharide monooxygenases (LPMOs) contribute to the degradation of lignocellulose and increase the efficiency of biofuel production. LPMOs can contain non-catalytic carbohydrate binding modules (CBMs), but their role in the activity of these enzymes is poorly understood. Here we explored the importance of CBMs in LPMO function. The family 2a CBMs of two monooxygenases, CfLPMO10 and TbLPMO10 from Cellulomonas fimi and Thermobispora bispora, respectively, were deleted and/or replaced with CBMs from other proteins. The data showed that the CBMs could potentiate and, surprisingly, inhibit LPMO activity, and that these effects were both enzyme-specific and substrate-specific. Removing the natural CBM or introducing CtCBM3a, from the Clostridium thermocellum cellulosome scaffoldin CipA, almost abolished the catalytic activity of the LPMOs against the cellulosic substrates. The deleterious effect of CBM removal likely reflects the importance of prolonged presentation of the enzyme on the surface of the substrate for efficient catalytic activity, as only LPMOs appended to CBMs bound tightly to cellulose. The negative impact of CtCBM3a is in sharp contrast with the capacity of this binding module to potentiate the activity of a range of glycoside hydrolases including cellulases. The deletion of the endogenous CBM from CfLPMO10 or the introduction of a family 10 CBM from Cellvibrio japonicus LPMO10B into TbLPMO10 influenced the quantity of non-oxidized products generated, demonstrating that CBMs can modulate the mode of action of LPMOs. This study demonstrates that engineered LPMO-CBM hybrids can display enhanced industrially relevant oxygenations. PMID:26801613

  6. The Contribution of Non-catalytic Carbohydrate Binding Modules to the Activity of Lytic Polysaccharide Monooxygenases.

    PubMed

    Crouch, Lucy I; Labourel, Aurore; Walton, Paul H; Davies, Gideon J; Gilbert, Harry J

    2016-04-01

    Lignocellulosic biomass is a sustainable industrial substrate. Copper-dependent lytic polysaccharide monooxygenases (LPMOs) contribute to the degradation of lignocellulose and increase the efficiency of biofuel production. LPMOs can contain non-catalytic carbohydrate binding modules (CBMs), but their role in the activity of these enzymes is poorly understood. Here we explored the importance of CBMs in LPMO function. The family 2a CBMs of two monooxygenases,CfLPMO10 andTbLPMO10 fromCellulomonas fimiandThermobispora bispora, respectively, were deleted and/or replaced with CBMs from other proteins. The data showed that the CBMs could potentiate and, surprisingly, inhibit LPMO activity, and that these effects were both enzyme-specific and substrate-specific. Removing the natural CBM or introducingCtCBM3a, from theClostridium thermocellumcellulosome scaffoldin CipA, almost abolished the catalytic activity of the LPMOs against the cellulosic substrates. The deleterious effect of CBM removal likely reflects the importance of prolonged presentation of the enzyme on the surface of the substrate for efficient catalytic activity, as only LPMOs appended to CBMs bound tightly to cellulose. The negative impact ofCtCBM3a is in sharp contrast with the capacity of this binding module to potentiate the activity of a range of glycoside hydrolases including cellulases. The deletion of the endogenous CBM fromCfLPMO10 or the introduction of a family 10 CBM fromCellvibrio japonicusLPMO10B intoTbLPMO10 influenced the quantity of non-oxidized products generated, demonstrating that CBMs can modulate the mode of action of LPMOs. This study demonstrates that engineered LPMO-CBM hybrids can display enhanced industrially relevant oxygenations.

  7. The heparin-binding exosite is critical to allosteric activation of factor IXa in the intrinsic tenase complex: the role of arginine 165 and factor X.

    PubMed

    Misenheimer, Tina M; Buyue, Yang; Sheehan, John P

    2007-07-01

    Heparin inhibits the intrinsic tenase complex (factor IXa-factor VIIIa) via interaction with a factor IXa exosite. To define the role of this exosite, human factor IXa with alanine substituted for conserved surface residues (R126, N129, K132, R165, N178) was characterized. Chromogenic substrate hydrolysis by the mutant proteases was reduced 20-30% relative to factor IXa wild type. Coagulant activity was moderately (N129A, K132A, K126A) or dramatically (R165A) reduced relative to factor IXa wild type. Kinetic analysis demonstrated a marked reduction in apparent cofactor affinity (23-fold) for factor IXa R165, and an inability to stabilize cofactor activity. Factor IXa K126A, N129A, and K132A demonstrated modest reductions ( approximately 2-fold) in apparent cofactor affinity, and accelerated decay of intrinsic tenase activity. In the absence of factor VIIIa, factor IXa N178A and R165A demonstrated a defective Vmax(app) for factor X activation. In the presence of factor VIIIa, Vmax(app) varied in proportion to the predicted factor IXa-factor VIIIa concentration. However, factor IXa R165A had a 65% reduction in the kcat for factor X, suggesting an additional effect on catalysis. The ability of factor IXa to compete for physical assembly into the intrinsic tenase complex was enhanced by EGR-chloromethylketone bound to the factor IXa active site or addition of factor X, and reduced by selected mutations in the heparin-binding exosite (N178A, K126A, R165A). These results suggest that the factor IXa heparin-binding exosite participates in both cofactor binding and protease activation, and cofactor affinity is linked to active site conformation and factor X interaction during enzyme assembly.

  8. Fucosylated chondroitin sulfate inhibits plasma thrombin generation via targeting of the factor IXa heparin-binding exosite.

    PubMed

    Buyue, Yang; Sheehan, John P

    2009-10-01

    Depolymerized holothurian glycosaminoglycan (DHG) is a fucosylated chondroitin sulfate with antithrombin-independent antithrombotic properties. Heparin cofactor II (HCII)-dependent and -independent mechanisms for DHG inhibition of plasma thrombin generation were evaluated. When thrombin generation was initiated with 0.2 pM tissue factor (TF), the half maximal effective concentration (EC(50)) for DHG inhibition was identical in mock- or HCII-depleted plasma, suggesting a serpin-independent mechanism. In the presence of excess TF, the EC(50) for DHG was increased 13- to 27-fold, suggesting inhibition was dependent on intrinsic tenase (factor IXa-factor VIIIa) components. In factor VIII-deficient plasma supplemented with 700 pM factor VIII or VIIIa, and factor IX-deficient plasma supplemented with plasma-derived factor IX or 100 pM factor IXa, the EC(50) for DHG was similar. Thus, cofactor and zymogen activation did not contribute to DHG inhibition of thrombin generation. Factor IX-deficient plasma supplemented with mutant factor IX(a) proteins demonstrated resistance to DHG inhibition of thrombin generation [factor IX(a) R233A > R170A > WT] that inversely correlated with protease-heparin affinity. These results replicate the effect of these mutations with purified intrinsic tenase components, and establish the factor IXa heparin-binding exosite as the relevant molecular target for inhibition by DHG. Glycosaminoglycan-mediated intrinsic tenase inhibition is a novel antithrombotic mechanism with physiologic and therapeutic applications.

  9. Macromolecular substrate-binding exosites on both the heavy and light chains of factor XIa mediate the formation of the Michaelis complex required for factor IX-activation.

    PubMed

    Sinha, Dipali; Marcinkiewicz, Mariola; Navaneetham, Duraiswamy; Walsh, Peter N

    2007-08-28

    Binding of factor IX (FIX) to an exosite on the heavy chain of factor XIa (FXIa) is essential for the optimal activation of FIX (Sinha, D., Seaman, F. S., and Walsh, P. N. (1987) Biochemistry 26, 3768-3775). To gain further insight into the mechanisms of activation of FIX by FXIa, we have investigated the kinetic properties of FXIa-light chain (FXIa-LC) with its active site occupied by either a reversible inhibitor of serine proteases (p-aminobenzamidine, PAB) or a small peptidyl substrate (S-2366) and have examined FIX cleavage products resulting from activation by FXIa or FXIa-LC. PAB inhibited the hydrolysis of S-2366 by FXIa-LC in a classically competitive fashion. In contrast, PAB was found to be a noncompetitive inhibitor of the activation of the macromolecular substrate FIX. Occupancy of the active site of the FXIa-LC by S-2366 also resulted in noncompetitive inhibition of FIX activation. These results demonstrate the presence of an exosite for FIX binding on the FXIa-LC remote from its active site. Furthermore, examination of the cleavage products of FIX indicated that in the absence of either Ca2+ or the heavy chain of FXIa there was substantial accumulation of the inactive intermediate FIXalpha, indicating a slower rate of cleavage of the scissile bond Arg180-Val181. We conclude that binding to two substrate-binding exosites one on the heavy chain and the other on the light chain of FXIa is required to mediate the formation of the Michaelis complex and efficient cleavages of the two spatially separated scissile bonds of FIX. PMID:17676929

  10. Dabigatran and Argatroban Diametrically Modulate Thrombin Exosite Function

    PubMed Central

    Yeh, Calvin H.; Stafford, Alan R.; Leslie, Beverly A.; Fredenburgh, James C.; Weitz, Jeffrey I.

    2016-01-01

    Thrombin is a highly plastic molecule whose activity and specificity are regulated by exosites 1 and 2, positively-charged domains that flank the active site. Exosite binding by substrates and cofactors regulates thrombin activity by localizing thrombin, guiding substrates, and by inducing allosteric changes at the active site. Although inter-exosite and exosite-to-active-site allostery have been demonstrated, the impact of active site ligation on exosite function has not been examined. To address this gap, we used surface plasmon resonance to determine the effects of dabigatran and argatroban, active site-directed inhibitors, on thrombin binding to immobilized γA/γA-fibrin or glycoprotein Ibα peptide via exosite 1 and 2, respectively, and thrombin binding to γA/γ′-fibrin or factor Va, which is mediated by both exosites. Whereas dabigatran attenuated binding, argatroban increased thrombin binding to γA/γA- and γA/γ′-fibrin and to factor Va. The results with immobilized fibrin were confirmed by examining the binding of radiolabeled thrombin to fibrin clots. Thus, dabigatran modestly accelerated the dissociation of thrombin from γA/γA-fibrin clots, whereas argatroban attenuated dissociation. Dabigatran had no effect on thrombin binding to glycoprotein Ibα peptide, whereas argatroban promoted binding. These findings not only highlight functional effects of thrombin allostery, but also suggest that individual active site-directed thrombin inhibitors uniquely modulate exosite function, thereby identifying potential novel mechanisms of action. PMID:27305147

  11. An autoantibody directed against human thrombin anion-binding exosite in a patient with arterial thrombosis: effects on platelets, endothelial cells, and protein C activation.

    PubMed

    Arnaud, E; Lafay, M; Gaussem, P; Picard, V; Jandrot-Perrus, M; Aiach, M; Rendu, F

    1994-09-15

    An autoantibody, developed by a patient with severe and recurrent arterial thrombosis, was characterized to be directed against the anion-binding exosite of thrombin, and inhibited all thrombin interactions requiring this secondary binding site without interfering with the catalytic site. The effect of the antibody was studied on thrombin interactions with platelets and endothelial cells from human umbilical veins (HUVEC). The autoantibody specifically and concentration-dependently inhibited alpha-thrombin-induced platelet activation and prostacyclin (PGI2) synthesis from HUVEC. It had no effect when gamma-thrombin or the thrombin receptor activation peptide SFLLR were the inducers. The effect of the antibody on protein C activation has been studied. The antibody blocked the thrombin-thrombomodulin activation of protein C. The inhibition of the activation was maximal with a low concentration of thrombomodulin. The fact that the autoantibody inhibited concentration-dependent alpha-thrombin-induced platelet and endothelial cell functions emphasizes the crucial role of the anion-binding exosite of thrombin to activate its receptor. In regard to the pathology, the antibody inhibited two vascular processes implicated in thrombin-antithrombotic functions, PGI2 secretion, and protein C activation, which could be implicated in this arterial thrombotic disease.

  12. Exosite-mediated substrate recognition of factor IX by factor XIa. The factor XIa heavy chain is required for initial recognition of factor IX.

    PubMed

    Ogawa, Taketoshi; Verhamme, Ingrid M; Sun, Mao-Fu; Bock, Paul E; Gailani, David

    2005-06-24

    Studies of the mechanisms of blood coagulation zymogen activation demonstrate that exosites (sites on the activating complex distinct from the protease active site) play key roles in macromolecular substrate recognition. We investigated the importance of exosite interactions in recognition of factor IX by the protease factor XIa. Factor XIa cleavage of the tripeptide substrate S2366 was inhibited by the active site inhibitors p-aminobenzamidine (Ki 28 +/- 2 microM) and aprotinin (Ki 1.13 +/- 0.07 microM) in a classical competitive manner, indicating that substrate and inhibitor binding to the active site was mutually exclusive. In contrast, inhibition of factor XIa cleavage of S2366 by factor IX (Ki 224 +/- 32 nM) was characterized by hyperbolic mixed-type inhibition, indicating that factor IX binds to free and S2366-bound factor XIa at exosites. Consistent with this premise, inhibition of factor XIa activation of factor IX by aprotinin (Ki 0.89 +/- 0.52 microM) was non-competitive, whereas inhibition by active site-inhibited factor IXa beta was competitive (Ki 0.33 +/- 0.05 microM). S2366 cleavage by isolated factor XIa catalytic domain was competitively inhibited by p-aminobenzamidine (Ki 38 +/- 14 microM) but was not inhibited by factor IX, consistent with loss of factor IX-binding exosites on the non-catalytic factor XI heavy chain. The results support a model in which factor IX binds initially to exosites on the factor XIa heavy chain, followed by interaction at the active site with subsequent bond cleavage, and support a growing body of evidence that exosite interactions are critical determinants of substrate affinity and specificity in blood coagulation reactions. PMID:15829482

  13. Processivity and Subcellular Localization of Glycogen Synthase Depend on a Non-catalytic High Affinity Glycogen-binding Site*

    PubMed Central

    Díaz, Adelaida; Martínez-Pons, Carlos; Fita, Ignacio; Ferrer, Juan C.; Guinovart, Joan J.

    2011-01-01

    Glycogen synthase, a central enzyme in glucose metabolism, catalyzes the successive addition of α-1,4-linked glucose residues to the non-reducing end of a growing glycogen molecule. A non-catalytic glycogen-binding site, identified by x-ray crystallography on the surface of the glycogen synthase from the archaeon Pyrococcus abyssi, has been found to be functionally conserved in the eukaryotic enzymes. The disruption of this binding site in both the archaeal and the human muscle glycogen synthases has a large impact when glycogen is the acceptor substrate. Instead, the catalytic efficiency remains essentially unchanged when small oligosaccharides are used as substrates. Mutants of the human muscle enzyme with reduced affinity for glycogen also show an altered intracellular distribution and a marked decrease in their capacity to drive glycogen accumulation in vivo. The presence of a high affinity glycogen-binding site away from the active center explains not only the long-recognized strong binding of glycogen synthase to glycogen but also the processivity and the intracellular localization of the enzyme. These observations demonstrate that the glycogen-binding site is a critical regulatory element responsible for the in vivo catalytic efficiency of GS. PMID:21464127

  14. The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation.

    PubMed

    Vaaje-Kolstad, Gustav; Horn, Svein J; van Aalten, Daan M F; Synstad, Bjørnar; Eijsink, Vincent G H

    2005-08-01

    The Gram-negative soil bacterium Serratia marcescens uses three different family 18 chitinases to degrade chitin, an abundant insoluble carbohydrate polymer composed of beta(1,4)-linked units of N-acetylglucosamine. We show that efficient chitin degradation additionally depends on the action of a small non-catalytic protein, CBP21, which binds to the insoluble crystalline substrate, leading to structural changes in the substrate and increased substrate accessibility. CBP21 strongly promoted hydrolysis of crystalline beta-chitin by chitinases A and C, while it was essential for full degradation by chitinase B. CBP21 variants with single mutations on the largely polar binding surface lost their ability to promote chitin degradation, while retaining considerable affinity for the polymer. Thus, binding alone is not sufficient for CBP21 functionality, which seems to depend on specific, mostly polar interactions between the protein and crystalline chitin. This is the first time a secreted binding protein is shown to assist in the enzymatic degradation of an insoluble carbohydrate via non-hydrolytic disruption of the substrate. Interestingly, homologues of CBP21 occur in most chitin-degrading microorganisms, suggesting a general mechanism by which chitin-binding proteins enhance chitinolytic activity. Homologues also occur in chitinase-containing insect viruses, whose infectiousness is known to depend on chitinase efficiency.

  15. SAR Studies of Exosite-Binding Substrate-Selective Inhibitors of A Disintegrin And Metalloprotease 17 (ADAM17) and Application as Selective in Vitro Probes.

    PubMed

    Knapinska, Anna M; Dreymuller, Daniela; Ludwig, Andreas; Smith, Lyndsay; Golubkov, Vladislav; Sohail, Anjum; Fridman, Rafael; Giulianotti, Marc; LaVoi, Travis M; Houghten, Richard A; Fields, Gregg B; Minond, Dmitriy

    2015-08-13

    ADAM17 is implicated in several debilitating diseases. However, drug discovery efforts targeting ADAM17 have failed due to the utilization of zinc-binding inhibitors. We previously reported discovery of highly selective nonzinc-binding exosite-targeting inhibitors of ADAM17 that exhibited not only enzyme isoform selectivity but synthetic substrate selectivity as well ( J. Biol. Chem. 2013, 288, 22871). As a result of SAR studies presented herein, we obtained several highly selective ADAM17 inhibitors, six of which were further characterized in biochemical and cell-based assays. Lead compounds exhibited low cellular toxicity and high potency and selectivity for ADAM17. In addition, several of the leads inhibited ADAM17 in a substrate-selective manner, which has not been previously documented for inhibitors of the ADAM family. These findings suggest that targeting exosites of ADAM17 can be used to obtain highly desirable substrate-selective inhibitors. Additionally, current inhibitors can be used as probes of biological activity of ADAM17 in various in vitro and, potentially, in vivo systems.

  16. Evaluation of the non-catalytic binding function of Ts26GST a glutathione transferase isoform of Taenia solium.

    PubMed

    Plancarte, A; Romero, J R; Nava, G; Reyes, H; Hernández, M

    2014-03-01

    Taenia solium glutathione transferase isoform of 26.5 kDa (Ts26GST) was observed to bind non-catalytically to porphyrins, trans-trans-dienals, bile acids and fatty acids, as assessed by inhibition kinetics, fluorescence spectroscopy and competitive fluorescence assays with 8-anilino-1-naphthalene sulfonate (ANS). The quenching of Ts26GST intrinsic fluorescence allowed for the determination of the dissociation constants (KD) for all ligands. Obtained data indicate that Ts26GST binds to all ligands but with different affinity. Porphyrins and lipid peroxide products inhibited Ts26GST catalytic activity up to 100% in contrast with only 20-30% inhibition observed for bile acids and two saturated fatty acids. Non-competitive type inhibition was observed for all enzyme inhibitor ligands except for trans-trans-2,4-decadienal, which exhibited uncompetitive type inhibition. The dissociation constant value KD = 0.7 μM for the hematin ligand, determined by competitive fluorescence assays with ANS, was in good agreement with its inhibition kinetic value Ki = 0.3 μM and its intrinsic fluorescence quenching KD = 0.7 μM. The remaining ligands did not displace ANS from the enzyme suggesting the existence of different binding sites. In addition to the catalytic activity of Ts26GST the results obtained suggest that the enzyme exhibits a ligandin function with broad specificity towards nonsubstrate ligands.

  17. Exosites determine macromolecular substrate recognition by prothrombinase.

    PubMed

    Krishnaswamy, S; Betz, A

    1997-10-01

    The prothrombinase complex, composed of factor Xa and factor Va assembled on a membrane surface, catalyzes the proteolytic formation of thrombin during blood coagulation. The molecular basis for the macromolecular substrate specificity of prothrombinase is poorly understood. By kinetic studies of prethrombin 2 cleavage by prothrombinase in the presence or absence of fragment 1.2, we show that occupation of the active site of the catalyst by inhibitors or alternate peptidyl substrates does not alter the affinity for prethrombin 2. Productive recognition of the macromolecular substrate therefore results from an initial interaction at enzymic sites (exosites) distinct from the active site, which largely determines substrate affinity. This interaction at exosites is evident even in the absence of activation peptide domains responsible for mediating the binding of the substrate to membranes or factor Va. Interactions at the active site with structures surrounding the scissile bond then precede bond cleavage and product release. The second binding step, which appears unfavorable, does not affect substrate affinity but contributes to the maximum catalytic rate. Therefore, binding specificity of prothrombinase for the macromolecular substrate is determined by exosites on the enzyme. We show that competitive inhibition of prethrombin 2 cleavage can be accomplished by interfering with the exosite binding step without obscuring the active site of the enzyme. These findings suggest limitations to the common approach of inferring the basis of factor Xa specificity with active site mutants or the targeting the active site of factor Xa with reversible inhibitors for therapeutic purposes. The achievement of distinctive macromolecular substrate specificities through exosite interactions and modulation of maximum catalytic rate through binding steps may also underlie the reactions catalyzed by the other coagulation complexes containing trypsin-like enzymes. PMID:9315846

  18. The factor IXa heparin-binding exosite is a cofactor interactive site: mechanism for antithrombin-independent inhibition of intrinsic tenase by heparin.

    PubMed

    Yuan, Qiu-Ping; Walke, Erik N; Sheehan, John P

    2005-03-01

    Therapeutic heparin concentrations selectively inhibit the intrinsic tenase complex in an antithrombin-independent manner. To define the molecular target and mechanism for this inhibition, recombinant human factor IXa with alanine substituted for solvent-exposed basic residues (H92, R170, R233, K241) in the protease domain was characterized with regard to enzymatic activity, heparin affinity, and inhibition by low molecular weight heparin (LMWH). These mutations only had modest effects on chromogenic substrate hydrolysis and the kinetics of factor X activation by factor IXa. Likewise, factor IXa H92A and K241A showed factor IXa-factor VIIIa affinity similar to factor IXa wild type (WT). In contrast, factor IXa R170A demonstrated a 4-fold increase in apparent factor IXa-factor VIIIa affinity and dramatically increased coagulant activity relative to factor IXa WT. Factor IXa R233A demonstrated a 2.5-fold decrease in cofactor affinity and reduced ability to stabilize cofactor half-life relative to wild type, suggesting that interaction with the factor VIIIa A2 domain was disrupted. Markedly (R233A) or moderately (H92A, R170A, K241A) reduced binding to immobilized LMWH was observed for the mutant proteases. Solution competition demonstrated that the EC(50) for LMWH was increased less than 2-fold for factor IXa H92A and K241A but over 3.5-fold for factor IXa R170A, indicating that relative heparin affinity was WT > H92A/K241A > R170A > R233A. Kinetic analysis of intrinsic tenase inhibition demonstrated that relative affinity for LMWH was WT > K241A > H92A > R170A > R233A, correlating with heparin affinity. Thus, LMWH inhibits intrinsic tenase by interacting with the heparin-binding exosite in the factor IXa protease domain, which disrupts interaction with the factor VIIIa A2 domain.

  19. Dual Exosite-binding Inhibitors of Insulin-degrading Enzyme Challenge Its Role as the Primary Mediator of Insulin Clearance in Vivo.

    PubMed

    Durham, Timothy B; Toth, James L; Klimkowski, Valentine J; Cao, Julia X C; Siesky, Angela M; Alexander-Chacko, Jesline; Wu, Ginger Y; Dixon, Jeffrey T; McGee, James E; Wang, Yong; Guo, Sherry Y; Cavitt, Rachel Nicole; Schindler, John; Thibodeaux, Stefan J; Calvert, Nathan A; Coghlan, Michael J; Sindelar, Dana K; Christe, Michael; Kiselyov, Vladislav V; Michael, M Dodson; Sloop, Kyle W

    2015-08-14

    Insulin-degrading enzyme (IDE, insulysin) is the best characterized catabolic enzyme implicated in proteolysis of insulin. Recently, a peptide inhibitor of IDE has been shown to affect levels of insulin, amylin, and glucagon in vivo. However, IDE(-/-) mice display variable phenotypes relating to fasting plasma insulin levels, glucose tolerance, and insulin sensitivity depending on the cohort and age of animals. Here, we interrogated the importance of IDE-mediated catabolism on insulin clearance in vivo. Using a structure-based design, we linked two newly identified ligands binding at unique IDE exosites together to construct a potent series of novel inhibitors. These compounds do not interact with the catalytic zinc of the protease. Because one of these inhibitors (NTE-1) was determined to have pharmacokinetic properties sufficient to sustain plasma levels >50 times its IDE IC50 value, studies in rodents were conducted. In oral glucose tolerance tests with diet-induced obese mice, NTE-1 treatment improved the glucose excursion. Yet in insulin tolerance tests and euglycemic clamp experiments, NTE-1 did not enhance insulin action or increase plasma insulin levels. Importantly, IDE inhibition with NTE-1 did result in elevated plasma amylin levels, suggesting the in vivo role of IDE action on amylin may be more significant than an effect on insulin. Furthermore, using the inhibitors described in this report, we demonstrate that in HEK cells IDE has little impact on insulin clearance. In total, evidence from our studies supports a minimal role for IDE in insulin metabolism in vivo and suggests IDE may be more important in helping regulate amylin clearance.

  20. Dual Exosite-binding Inhibitors of Insulin-degrading Enzyme Challenge Its Role as the Primary Mediator of Insulin Clearance in Vivo*

    PubMed Central

    Durham, Timothy B.; Toth, James L.; Klimkowski, Valentine J.; Cao, Julia X. C.; Siesky, Angela M.; Alexander-Chacko, Jesline; Wu, Ginger Y.; Dixon, Jeffrey T.; McGee, James E.; Wang, Yong; Guo, Sherry Y.; Cavitt, Rachel Nicole; Schindler, John; Thibodeaux, Stefan J.; Calvert, Nathan A.; Coghlan, Michael J.; Sindelar, Dana K.; Christe, Michael; Kiselyov, Vladislav V.; Michael, M. Dodson; Sloop, Kyle W.

    2015-01-01

    Insulin-degrading enzyme (IDE, insulysin) is the best characterized catabolic enzyme implicated in proteolysis of insulin. Recently, a peptide inhibitor of IDE has been shown to affect levels of insulin, amylin, and glucagon in vivo. However, IDE−/− mice display variable phenotypes relating to fasting plasma insulin levels, glucose tolerance, and insulin sensitivity depending on the cohort and age of animals. Here, we interrogated the importance of IDE-mediated catabolism on insulin clearance in vivo. Using a structure-based design, we linked two newly identified ligands binding at unique IDE exosites together to construct a potent series of novel inhibitors. These compounds do not interact with the catalytic zinc of the protease. Because one of these inhibitors (NTE-1) was determined to have pharmacokinetic properties sufficient to sustain plasma levels >50 times its IDE IC50 value, studies in rodents were conducted. In oral glucose tolerance tests with diet-induced obese mice, NTE-1 treatment improved the glucose excursion. Yet in insulin tolerance tests and euglycemic clamp experiments, NTE-1 did not enhance insulin action or increase plasma insulin levels. Importantly, IDE inhibition with NTE-1 did result in elevated plasma amylin levels, suggesting the in vivo role of IDE action on amylin may be more significant than an effect on insulin. Furthermore, using the inhibitors described in this report, we demonstrate that in HEK cells IDE has little impact on insulin clearance. In total, evidence from our studies supports a minimal role for IDE in insulin metabolism in vivo and suggests IDE may be more important in helping regulate amylin clearance. PMID:26085101

  1. Affinity labeling of lysine-149 in the anion-binding exosite of human. alpha. -thrombin with an N sup. alpha. -(dinitrofluorobenzyl)hirudin C-terminal peptide

    SciTech Connect

    Bourdon, P.; Maraganore, J.M. ); Fenton, J.W. II )

    1990-07-10

    In order to define structural regions in thrombin that interact with hirudin, the N{sup {alpha}}-dinitrofluorobenzyl analogue of an undecapeptide was synthesized corresponding to residues 54-64 of hirudin (GDFEEIPEEY(O{sup 35}SO{sub 3})L (DNFB-({sup 35}S)Hir{sub 54-64})). DNFB-({sup 35}S)Hir{sub 54-64} was reacted at a 10-fold molar excess with human {alpha}-thrombin in phosphate-buffered saline at pH 7.4 and 23{degree}C for 18 h. Autoradiographs of the product in reducing SDS-polyacrylamide gels revealed a single {sup 35}S-labeled band of M{sub r} {approximately}32,500. The labeled product was coincident with a band on Coomassie Blue stained gels migrating slightly above an unlabeled thrombin band at M{sub r} {approximately}31,000. Incorporation of the {sup 35}S affinity reagent peptide was found markedly reduced when reaction with thrombin was performed in the presence of 5- and 20-fold molar excesses of unlabeled hirudin peptide, showing that a specific site was involved in complex formation. The human {alpha}-thrombin-DNFB-Hir{sub 54-64} complex was reduced, S-carboxymethylated, and treated with pepsin. Peptic fragments were separated by reverse-phase HPLC revealing two major peaks containing absorbance at 310 nm. Automated Edman degradation of the peptide fragments allowed identification of Lys-149 of human thrombin as the major site of DNFB-Hir{sub 54-64} derivatization. These data suggest that the anionic C-terminal tail of hirudin interacts with an anion-binding exosite in human thrombin removed 18-20 {angstrom} from the catalytic apparatus.

  2. Characterization of hybrid proteins consisting of the catalytic domains of Clostridium and Ruminococcus endoglucanases, fused to Pseudomonas non-catalytic cellulose-binding domains.

    PubMed Central

    Poole, D M; Durrant, A J; Hazlewood, G P; Gilbert, H J

    1991-01-01

    The N-terminal 160 or 267 residues of xylanase A from Pseudomonas fluorescens subsp. cellulosa, containing a non-catalytic cellulose-binding domain (CBD), were fused to the N-terminus of the catalytic domain of endoglucanase E (EGE') from Clostridium thermocellum. A further hybrid enzyme was constructed consisting of the 347 N-terminal residues of xylanase C (XYLC) from P. fluorescens subsp. cellulosa, which also constitutes a CBD, fused to the N-terminus of endoglucanase A (EGA) from Ruminococcus albus. The three hybrid enzymes bound to insoluble cellulose, and could be eluted such that cellulose-binding capacity and catalytic activity were retained. The catalytic properties of the fusion enzymes were similar to EGE' and EGA respectively. Residues 37-347 and 34-347 of XYLC were fused to the C-terminus of EGE' and the 10 amino acids encoded by the multiple cloning sequence of pMTL22p respectively. The two hybrid proteins did not bind cellulose, although residues 39-139 of XYLC were shown previously to constitute a functional CBD. The putative role of the P. fluorescens subsp. cellulosa CBD in cellulase action is discussed. Images Fig. 2. Fig. 3. Fig. 4. PMID:1953672

  3. Functional roles of the non-catalytic calcium-binding sites in the N-terminal domain of human peptidylarginine deiminase 4.

    PubMed

    Liu, Yi-Liang; Tsai, I-Chen; Chang, Chia-Wei; Liao, Ya-Fan; Liu, Guang-Yaw; Hung, Hui-Chih

    2013-01-01

    This study investigated the functional roles of the N-terminal Ca(2+) ion-binding sites, in terms of enzyme catalysis and stability, of peptidylarginine deiminase 4 (PAD4). Amino acid residues located in the N-terminal Ca(2+)-binding site of PAD4 were mutated to disrupt the binding of Ca(2+) ions. Kinetic data suggest that Asp155, Asp157 and Asp179, which directly coordinate Ca3 and Ca4, are essential for catalysis in PAD4. For D155A, D157A and D179A, the k(cat)/K(m,BAEE) values were 0.02, 0.63 and 0.01 s(-1)mM(-1) (20.8 s(-1)mM(-1) for WT), respectively. Asn153 and Asp176 are directly coordinated with Ca3 and indirectly coordinated with Ca5 via a water molecule. However, N153A displayed low enzymatic activity with a k(cat) value of 0.3 s(-1) (13.3 s(-1) for wild-type), whereas D176A retained some catalytic power with a k(cat) of 9.7 s(-1). Asp168 is the direct ligand for Ca5, and Ca5 coordination by Glu252 is mediated by two water molecules. However, mutation of these two residues to Ala did not cause a reduction in the k(cat)/K(m,BAEE) values, which indicates that the binding of Ca5 may not be required for PAD4 enzymatic activity. The possible conformational changes of these PAD4 mutants were examined. Thermal stability analysis of the PAD4 mutants in the absence or presence of Ca(2+) indicated that the conformational stability of the enzyme is highly dependent on Ca(2+) ions. In addition, the results of urea-induced denaturation for the N153, D155, D157 and D179 series mutants further suggest that the binding of Ca(2+) ions in the N-terminal Ca(2+)-binding site stabilizes the overall conformational stability of PAD4. Therefore, our data strongly suggest that the N-terminal Ca(2+) ions play critical roles in the full activation of the PAD4 enzyme.

  4. Non-catalytic recuperative reformer

    SciTech Connect

    Khinkis, Mark J.; Kozlov, Aleksandr P.; Kurek, Harry

    2015-12-22

    A non-catalytic recuperative reformer has a flue gas flow path for conducting hot flue gas from a thermal process and a reforming mixture flow path for conducting a reforming mixture. At least a portion of the reforming mixture flow path is embedded in the flue gas flow path to permit heat transfer from the hot flue gas to the reforming mixture. The reforming mixture flow path contains substantially no material commonly used as a catalyst for reforming hydrocarbon fuel (e.g., nickel oxide, platinum group elements or rhenium), but instead the reforming mixture is reformed into a higher calorific fuel via reactions due to the heat transfer and residence time. In a preferred embodiment, extended surfaces of metal material such as stainless steel or metal alloy that are high in nickel content are included within at least a portion of the reforming mixture flow path.

  5. Designing Allosteric Regulators of Thrombin. Monosulfated Benzofuran Dimers Selectively Interact With Arg173 of Exosite II to Induce Inhibition

    PubMed Central

    Abdel Aziz, May H.; Sidhu, Preetpal Singh; Liang, Aiye; Kim, Ji Yeong; Mosier, Philip D.; Zhou, Qibing; Farrell, David H.; Desai, Umesh R.

    2012-01-01

    Earlier, we reported on the design of sulfated benzofuran dimers (SBDs) as allosteric inhibitors of thrombin (Sidhu et al. (2011) J Med Chem 54: 5522-5531). To identify the site of binding of SBDs, we studied thrombin inhibition in the presence of exosite 1 and 2 ligands. Whereas hirudin peptide and heparin octasaccharide did not affect the IC50 of thrombin inhibition by a high affinity SBD, the presence of full-length heparin reduced inhibition potency by 4-fold. The presence of γ’ fibrinogen peptide, which recognizes Arg93, Arg97, Arg173, Arg175 and other residues, resulted in a loss of affinity that correlated with the ideal Dixon-Webb competitive profile. Replacement of several arginines and lysines of exosite 2 with alanine did not affect thrombin inhibition potency, except for Arg173, which displayed a 22-fold reduction in IC50. Docking studies suggested a hydrophobic patch around Arg173 as a plausible site of SBD binding to thrombin. Absence of Arg173-like residue in factor Xa supported the observed selectivity of inhibition by SBDs. Cellular toxicity studies indicated that SBDs are essentially non-toxic to cells at concentrations as high as 250 mg/kg. Overall, the work presents the localization of the SBD binding site, which could lead to allosteric modulators of thrombin that are completely different from all clinically used anticoagulants. PMID:22788964

  6. Heparin inhibits the intrinsic tenase complex by interacting with an exosite on factor IXa.

    PubMed

    Sheehan, John P; Kobbervig, Catherine E; Kirkpatrick, Heidi M

    2003-09-30

    The specific molecular target for direct heparin inhibition of factor X activation by intrinsic tenase (factor IXa-factor VIIIa) was investigated. Comparison of size-fractionated oligosaccharides demonstrated that an octasaccharide was sufficient to inhibit intrinsic tenase. Substitution of soluble dihexanoic phosphatidylserine (C6PS) for phospholipid (PL) vesicles demonstrated that inhibition by low-molecular weight heparin (LMWH) was independent of factor IXa-factor VIIIa membrane assembly. LMWH also inhibited factor X activation by the factor IXa-PL complex via a distinct mechanism that required longer oligosaccharides and was independent of substrate concentrations. The apparent affinity of LMWH for the factor IXa-PL complex was higher in the absence of factor VIIIa, suggesting that the cofactor adversely affected the interaction of heparin with factor IXa-phospholipid. LMWH did not interact directly with the active site, as it failed to inhibit chromogenic substrate cleavage by the factor IXa-PL complex. LMWH induced a modest decrease in factor IXa-factor VIIIa affinity [K(D(app))] on PL vesicles that did not account for the inhibition. In contrast, LMWH caused a substantial reduction in factor IXa-factor VIIIa affinity in the presence of C6PS that fully accounted for the inhibition. Factor IXa bound LMWH with significantly higher affinity than factor X by competition solution affinity analysis, and the K(D(app)) for the factor IXa-LMWH complex agreed with the K(I) for inhibition of the factor IXa-PL complex by LMWH. Thus, LMWH binds to an exosite on factor IXa that antagonizes cofactor activity without disrupting factor IXa-factor VIIIa assembly on the PL surface. This exosite may contribute to the clinical efficacy of heparin and represents a novel target for antithrombotic therapy.

  7. Antibody-based exosite inhibitors of ADAMTS-5 (aggrecanase-2)

    PubMed Central

    Santamaria, Salvatore; Yamamoto, Kazuhiro; Botkjaer, Kenneth; Tape, Christopher; Dyson, Michael R.; McCafferty, John; Murphy, Gillian; Nagase, Hideaki

    2015-01-01

    Adamalysin-like metalloproteinases with thrombospondin (TS) motifs (ADAMTS)-5 is the multi-domain metalloproteinase that most potently degrades aggrecan proteoglycan in the cartilage and its activity is implicated in the development of osteoarthritis (OA). To generate specific exosite inhibitors for it, we screened a phage display antibody library in the presence of the zinc-chelating active site-directed inhibitor GM6001 (Ilomastat) and isolated four highly selective inhibitory antibodies. Two antibodies were mapped to react with exosites in the catalytic/disintegrin domains (Cat/Dis) of the enzyme, one in the TS domain and one in the spacer domain (Sp). The antibody reacting with the Sp blocked the enzyme action only when aggrecan or the Escherichia coli-expressed aggrecan core protein were substrates, but not against a peptide substrate. The study with this antibody revealed the importance of the Sp for effective aggrecanolytic activity of ADAMTS-5 and that this domain does not interact with sulfated glycosaminoglycans (GAGs) but with the protein moiety of the proteoglycan. An antibody directed against the Cat/Dis of ADAMTS-5 was effective in a cell-based model of aggrecan degradation; however, the anti-Sp antibody was ineffective. Western blot analysis of endogenous ADAMTS-5 expressed by human chondrocytes showed the presence largely of truncated forms of ADAMTS-5, thus explaining the lack of efficacy of the anti-Sp antibody. The possibility of ADAMTS-5 truncation must then be taken into account when considering developing anti-ancillary domain antibodies for therapeutic purposes. PMID:26303525

  8. Caspase-7 uses an exosite to promote poly(ADP ribose) polymerase 1 proteolysis.

    PubMed

    Boucher, Dave; Blais, Véronique; Denault, Jean-Bernard

    2012-04-10

    During apoptosis, hundreds of proteins are cleaved by caspases, most of them by the executioner caspase-3. However, caspase-7, which shares the same substrate primary sequence preference as caspase-3, is better at cleaving poly(ADP ribose) polymerase 1 (PARP) and Hsp90 cochaperone p23, despite a lower intrinsic activity. Here, we identified key lysine residues (K(38)KKK) within the N-terminal domain of caspase-7 as critical elements for the efficient proteolysis of these two substrates. Caspase-7's N-terminal domain binds PARP and improves its cleavage by a chimeric caspase-3 by ∼30-fold. Cellular expression of caspase-7 lacking the critical lysine residues resulted in less-efficient PARP and p23 cleavage compared with cells expressing the wild-type peptidase. We further showed, using a series of caspase chimeras, the positioning of p23 on the enzyme providing us with a mechanistic insight into the binding of the exosite. In summary, we have uncovered a role for the N-terminal domain (NTD) and the N-terminal peptide of caspase-7 in promoting key substrate proteolysis.

  9. Calcium pentosan polysulfate is a multifaceted exosite inhibitor of aggrecanases.

    PubMed

    Troeberg, Linda; Fushimi, Kazunari; Khokha, Rama; Emonard, Hervé; Ghosh, Peter; Nagase, Hideaki

    2008-10-01

    Degradation of the cartilage proteoglycan aggrecan is a key early event in the development of osteoarthritis. Adamalysin with thrombospondin motifs (ADAMTS) -4 and ADAMTS-5 are considered to be the main enzymes responsible for aggrecan breakdown, making them attractive drugs targets. Here we show that calcium pentosan polysulfate (CaPPS), a chemically sulfated xylanopyranose from beechwood, is a multifaceted exosite inhibitor of the aggrecanases and protects cartilage against aggrecan degradation. CaPPS interacts with the noncatalytic spacer domain of ADAMTS-4 and the cysteine-rich domain of ADAMTS-5, blocking activity against their natural substrate aggrecan with inhibitory concentration 50 values of 10-40 nM but only weakly inhibiting hydrolysis of a nonglycosylated recombinant protein substrate. In addition, CaPPS increased cartilage levels of tissue inhibitor of metalloproteinases-3 (TIMP-3), an endogenous inhibitor of ADAMTS-4 and -5. This was due to the ability of CaPPS to block endocytosis of TIMP-3 mediated by low-density lipoprotein receptor-related protein. CaPPS also increased the affinity of TIMP-3 for ADAMTS-4 and -5 by more than 100-fold, improving the efficacy of TIMP-3 as an aggrecanase inhibitor. Studies with TIMP-3-null mouse cartilage indicated that CaPPS inhibition of aggrecan degradation is TIMP-3 dependent. These unique properties make CaPPS a prototypic disease-modifying agent for osteoarthritis.

  10. Repurposing TRASH: emergence of the enzyme organomercurial lyase from a non-catalytic zinc finger scaffold.

    PubMed

    Kaur, Gurmeet; Subramanian, Srikrishna

    2014-10-01

    The mercury resistance pathway enzyme organomercurial lyase (MerB) catalyzes the conversion of organomercurials to ionic mercury (Hg(2+)). Here, we provide evidence for the emergence of this enzyme from a TRASH-like, non-enzymatic, treble-clef zinc finger ancestor by domain duplication and fusion. Surprisingly, the structure-stabilizing metal-binding core of the treble-clef appears to have been repurposed in evolution to serve a catalytic role. Novel enzymatic functions are believed to have evolved from ancestral generalist catalytic scaffolds or from already specialized enzymes with catalytic promiscuity. The emergence of MerB from a zinc finger ancestor serves as a rare example of how a novel enzyme may emerge from a non-catalytic scaffold with a related binding function.

  11. Monoclonal Antibodies Targeting the Alpha-Exosite of Botulinum Neurotoxin Serotype/A Inhibit Catalytic Activity.

    PubMed

    Fan, Yongfeng; Geren, Isin N; Dong, Jianbo; Lou, Jianlong; Wen, Weihua; Conrad, Fraser; Smith, Theresa J; Smith, Leonard A; Ho, Mengfei; Pires-Alves, Melissa; Wilson, Brenda A; Marks, James D

    2015-01-01

    The paralytic disease botulism is caused by botulinum neurotoxins (BoNT), multi-domain proteins containing a zinc endopeptidase that cleaves the cognate SNARE protein, thereby blocking acetylcholine neurotransmitter release. Antitoxins currently used to treat botulism neutralize circulating BoNT but cannot enter, bind to or neutralize BoNT that has already entered the neuron. The light chain endopeptidase domain (LC) of BoNT serotype A (BoNT/A) was targeted for generation of monoclonal antibodies (mAbs) that could reverse paralysis resulting from intoxication by BoNT/A. Single-chain variable fragment (scFv) libraries from immunized humans and mice were displayed on the surface of yeast, and 19 BoNT/A LC-specific mAbs were isolated by using fluorescence-activated cell sorting (FACS). Affinities of the mAbs for BoNT/A LC ranged from a KD value of 9.0×10-11 M to 3.53×10-8 M (mean KD 5.38×10-9 M and median KD 1.53×10-9 M), as determined by flow cytometry analysis. Eleven mAbs inhibited BoNT/A LC catalytic activity with IC50 values ranging from 8.3 ~73×10-9 M. The fine epitopes of selected mAbs were also mapped by alanine-scanning mutagenesis, revealing that the inhibitory mAbs bound the α-exosite region remote from the BoNT/A LC catalytic center. The results provide mAbs that could prove useful for intracellular reversal of paralysis post-intoxication and further define epitopes that could be targeted by small molecule inhibitors.

  12. Monoclonal Antibodies Targeting the Alpha-Exosite of Botulinum Neurotoxin Serotype/A Inhibit Catalytic Activity

    PubMed Central

    Fan, Yongfeng; Geren, Isin N.; Dong, Jianbo; Lou, Jianlong; Wen, Weihua; Conrad, Fraser; Smith, Theresa J.; Smith, Leonard A.; Ho, Mengfei; Pires-Alves, Melissa; Wilson, Brenda A.; Marks, James D.

    2015-01-01

    The paralytic disease botulism is caused by botulinum neurotoxins (BoNT), multi-domain proteins containing a zinc endopeptidase that cleaves the cognate SNARE protein, thereby blocking acetylcholine neurotransmitter release. Antitoxins currently used to treat botulism neutralize circulating BoNT but cannot enter, bind to or neutralize BoNT that has already entered the neuron. The light chain endopeptidase domain (LC) of BoNT serotype A (BoNT/A) was targeted for generation of monoclonal antibodies (mAbs) that could reverse paralysis resulting from intoxication by BoNT/A. Single-chain variable fragment (scFv) libraries from immunized humans and mice were displayed on the surface of yeast, and 19 BoNT/A LC-specific mAbs were isolated by using fluorescence-activated cell sorting (FACS). Affinities of the mAbs for BoNT/A LC ranged from a KD value of 9.0×10−11 M to 3.53×10−8 M (mean KD 5.38×10−9 M and median KD 1.53×10−9 M), as determined by flow cytometry analysis. Eleven mAbs inhibited BoNT/A LC catalytic activity with IC50 values ranging from 8.3 ~73×10−9 M. The fine epitopes of selected mAbs were also mapped by alanine-scanning mutagenesis, revealing that the inhibitory mAbs bound the α-exosite region remote from the BoNT/A LC catalytic center. The results provide mAbs that could prove useful for intracellular reversal of paralysis post-intoxication and further define epitopes that could be targeted by small molecule inhibitors. PMID:26275214

  13. Minimization of selective non-catalytic reduction (SNCR) operational concerns

    SciTech Connect

    Sandell, M.A.; Hofman, J.E.

    1994-12-31

    Several combustion and post-combustion techniques are common for the control of NO{sub x} emissions. These include low NO{sub x} burners, overfire air, reburning, selective catalytic reduction and selective non-catalytic reduction. The use of selective non-catalytic reduction (SNCR) for the post-combustion control of these emissions is rapidly gaining popularity in a variety of applications, including circulating fluidized bed boilers and traveling grate MSW incinerators. Existing coal fired combustors in ozone non-attainment areas may be forced to install RACT for NO{sub x} control, especially in the Northeastern US. These RACT requirements will likely involve the installation of post combustion controls for major sources. The ease of retrofitting today`s SNCR technology can be of significant appeal to these facilities. However, due to the boiler load swings and short residence times of these combustors, some design considerations must be carefully reviewed to ensure optimum operation of the SNCR process. This paper discusses the use of the NOxOUT process to control emissions from existing coal fired combustors. NOxOUT is an in-furnace SNCR technology, using urea based chemicals to convert NO{sub x} to nitrogen, carbon dioxide and water. Special emphasis is placed on minimization of ammonia slip, ammonium sulfate formation, air heater deposition and pressure drop, ammonia in the collected flyash and SNCR effects on downstream pollution control equipment such as electrostatic precipitators, fabric filters and spray dryer/fabric filter combinations.

  14. Non-Catalytic Roles of Presenilin Throughout Evolution.

    PubMed

    Otto, Grant P; Sharma, Devdutt; Williams, Robin S B

    2016-04-12

    Research into Alzheimer's disease pathology and treatment has often focused on presenilin proteins. These proteins provide the key catalytic activity of the γ-secretase complex in the cleavage of amyloid-β precursor protein and resultant amyloid tangle deposition. Over the last 25 years, screening novel drugs to control this aberrant proteolytic activity has yet to identify effective treatments for the disease. In the search for other mechanisms of presenilin pathology, several studies have demonstrated that mammalian presenilin proteins also act in a non-proteolytic role as a scaffold to co-localize key signaling proteins. This role is likely to represent an ancestral presenilin function, as it has been described in genetically distant species including non-mammalian animals, plants, and a simple eukaryotic amoeba Dictyostelium that diverged from the human lineage over a billion years ago. Here, we review the non-catalytic scaffold role of presenilin, from mammalian models to other biomedical models, and include recent insights using Dictyostelium, to suggest that this role may provide an early evolutionary function of presenilin proteins. PMID:27079701

  15. Non-Catalytic Roles of Presenilin Throughout Evolution

    PubMed Central

    Otto, Grant P.; Sharma, Devdutt; Williams, Robin S.B.

    2016-01-01

    Research into Alzheimer’s disease pathology and treatment has often focused on presenilin proteins. These proteins provide the key catalytic activity of the γ-secretase complex in the cleavage of amyloid-β precursor protein and resultant amyloid tangle deposition. Over the last 25 years, screening novel drugs to control this aberrant proteolytic activity has yet to identify effective treatments for the disease. In the search for other mechanisms of presenilin pathology, several studies have demonstrated that mammalian presenilin proteins also act in a non-proteolytic role as a scaffold to co-localize key signaling proteins. This role is likely to represent an ancestral presenilin function, as it has been described in genetically distant species including non-mammalian animals, plants, and a simple eukaryotic amoeba Dictyostelium that diverged from the human lineage over a billion years ago. Here, we review the non-catalytic scaffold role of presenilin, from mammalian models to other biomedical models, and include recent insights using Dictyostelium, to suggest that this role may provide an early evolutionary function of presenilin proteins. PMID:27079701

  16. Esterification of glycerol from biodiesel production to glycerol carbonate in non-catalytic supercritical dimethyl carbonate.

    PubMed

    Ilham, Zul; Saka, Shiro

    2016-01-01

    Conversion of glycerol from biodiesel production to glycerol carbonate was studied by esterification with dimethyl carbonate in a non-catalytic supercritical condition. It was found that in a non-catalytic supercritical condition, glycerol at higher purity gave higher yield of glycerol carbonate at 98 wt% after reaction at 300 °C/20-40 MPa/15 min. The yield of glycerol carbonate was observed to increase with molar ratio, temperature, pressure and time until a certain equilibrium limit. The existence of impurities such as water and remnants of alkaline catalyst in crude glycerol will direct the reaction to produce glycidol. Although impurities might not be desirable, the non-catalytic supercritical dimethyl carbonate could be an alternative method for conversion of glycerol from biodiesel production to value-added glycerol carbonate.Graphical abstractPlausible reaction scheme for conversion of glycerol to glycerol carbonate in non-catalytic supercritical dimethyl carbonate.

  17. Esterification of glycerol from biodiesel production to glycerol carbonate in non-catalytic supercritical dimethyl carbonate.

    PubMed

    Ilham, Zul; Saka, Shiro

    2016-01-01

    Conversion of glycerol from biodiesel production to glycerol carbonate was studied by esterification with dimethyl carbonate in a non-catalytic supercritical condition. It was found that in a non-catalytic supercritical condition, glycerol at higher purity gave higher yield of glycerol carbonate at 98 wt% after reaction at 300 °C/20-40 MPa/15 min. The yield of glycerol carbonate was observed to increase with molar ratio, temperature, pressure and time until a certain equilibrium limit. The existence of impurities such as water and remnants of alkaline catalyst in crude glycerol will direct the reaction to produce glycidol. Although impurities might not be desirable, the non-catalytic supercritical dimethyl carbonate could be an alternative method for conversion of glycerol from biodiesel production to value-added glycerol carbonate.Graphical abstractPlausible reaction scheme for conversion of glycerol to glycerol carbonate in non-catalytic supercritical dimethyl carbonate. PMID:27386367

  18. Diversity between mammalian tolloid proteinases: Oligomerisation and non-catalytic domains influence activity and specificity

    PubMed Central

    Bayley, Christopher P.; Ruiz Nivia, Hilda D.; Dajani, Rana; Jowitt, Thomas A.; Collins, Richard F.; Rada, Heather; Bird, Louise E.; Baldock, Clair

    2016-01-01

    The mammalian tolloid family of metalloproteinases is essential for tissue patterning and extracellular matrix assembly. The four members of the family: bone morphogenetic protein-1 (BMP-1), mammalian tolloid (mTLD), tolloid-like (TLL)-1 and TLL-2 differ in their substrate specificity and activity levels, despite sharing similar domain organization. We have previously described a model of substrate exclusion by dimerisation to explain differences in the activities of monomeric BMP-1 and dimers of mTLD and TLL-1. Here we show that TLL-2, the least active member of the tolloid family, is predominantly monomeric in solution, therefore it appears unlikely that substrate exclusion via dimerisation is a mechanism for regulating TLL-2 activity. X-ray scattering and electron microscopy structural and biophysical analyses reveal an elongated shape for the monomer and flexibility in the absence of calcium. Furthermore, we show that TLL-2 can cleave chordin in vitro, similar to other mammalian tolloids, but truncated forms of TLL-2 mimicking BMP-1 are unable to cleave chordin. However, both the N- and C-terminal non-catalytic domains from all mammalian tolloids bind chordin with high affinity. The mechanisms underlying substrate specificity and activity in the tolloid family are complex with variation between family members and depend on both multimerisation and substrate interaction. PMID:26902455

  19. Transcriptional reporters for genes activated by cell wall stress through a non-catalytic mechanism involving Mpk1 and SBF

    PubMed Central

    Kim, Ki-Young; Levin, David E.

    2011-01-01

    The Mpk1 MAP kinase of the Cell Wall Integrity (CWI) signaling pathway induces transcription of the FKS2 gene in response to cell wall stress through a non-catalytic mechanism that involves stable association of Mpk1 with the Swi4 transcription factor. This dimeric complex binds to a Swi4 recognition site in the FKS2 promoter. The Swi6 transcription factor is also required to bind this ternary complex for transcription initiation to ensue. In this context, the Mlp1 pseudokinase serves a redundant function with Mpk1. We have identified three additional genes, CHA1, YLR042c, and YKR013w that are induced by cell wall stress through the same mechanism. We report on the behavior of several promoter-lacZ reporter plasmids designed to detect cell wall stress transcription through this pathway. PMID:20641022

  20. The Catalytic and Non-catalytic Functions of the Brahma Chromatin-Remodeling Protein Collaborate to Fine-Tune Circadian Transcription in Drosophila.

    PubMed

    Kwok, Rosanna S; Li, Ying H; Lei, Anna J; Edery, Isaac; Chiu, Joanna C

    2015-07-01

    Daily rhythms in gene expression play a critical role in the progression of circadian clocks, and are under regulation by transcription factor binding, histone modifications, RNA polymerase II (RNAPII) recruitment and elongation, and post-transcriptional mechanisms. Although previous studies have shown that clock-controlled genes exhibit rhythmic chromatin modifications, less is known about the functions performed by chromatin remodelers in animal clockwork. Here we have identified the Brahma (Brm) complex as a regulator of the Drosophila clock. In Drosophila, CLOCK (CLK) is the master transcriptional activator driving cyclical gene expression by participating in an auto-inhibitory feedback loop that involves stimulating the expression of the main negative regulators, period (per) and timeless (tim). BRM functions catalytically to increase nucleosome density at the promoters of per and tim, creating an overall restrictive chromatin landscape to limit transcriptional output during the active phase of cycling gene expression. In addition, the non-catalytic function of BRM regulates the level and binding of CLK to target promoters and maintains transient RNAPII stalling at the per promoter, likely by recruiting repressive and pausing factors. By disentangling its catalytic versus non-catalytic functions at the promoters of CLK target genes, we uncovered a multi-leveled mechanism in which BRM fine-tunes circadian transcription.

  1. Control of combustion-generated nitrogen oxides by selective non-catalytic reduction.

    PubMed

    Javed, M Tayyeb; Irfan, Naseem; Gibbs, B M

    2007-05-01

    Controlling nitrogen oxides (NO(x)) emissions is becoming a daunting technical challenge as increasingly strict emission limits are being imposed. The stringent regulations have prompted the innovation and characterization of NO(x) control technologies suitable for various applications. This paper presents a review on NO(x) removal techniques with particular reference to selective non-catalytic reduction (SNCR) technology. This includes initially how SNCR emerged as a technology along with a comparison with other relevant technologies. A review of various features related to selective non-catalytic gas phase injection of ammonia and ammonium salts (as reducing agent) is presented. The use of urea solution as a reducing agent and its performance in laboratory and pilot scale tests as well as large-scale applications is also discussed. Use of cyanuric acid as a potential reducing agent is also presented. The underlying reaction mechanisms have been reviewed for ammonia, urea and cyanuric acid for the explanation of various observations. Computational fluid dynamics (CFD) modeling as applied to SNCR is also presented. Subsequently the use of SNCR coupled with other in-combustion and post-combustion NO(x) control techniques is elaborated. Additionally, a two-stage NO(x) removal strategy to control un-reacted ammonia slip and to improve overall efficiency is discussed. At the end a summary is given which highlights various areas needing further research.

  2. A non-catalytic N-terminal domain negatively influences the nucleotide exchange activity of translation elongation factor 1Bα.

    PubMed

    Trosiuk, Tetiana V; Shalak, Vyacheslav F; Szczepanowski, Roman H; Negrutskii, Boris S; El'skaya, Anna V

    2016-02-01

    Eukaryotic translation elongation factor 1Bα (eEF1Bα) is a functional homolog of the bacterial factor EF-Ts, and is a component of the macromolecular eEF1B complex. eEF1Bα functions as a catalyst of guanine nucleotide exchange on translation elongation factor 1A (eEF1A). The C-terminal domain of eEF1Bα is necessary and sufficient for its catalytic activity, whereas the N-terminal domain interacts with eukaryotic translation elongation factor 1Bγ (eEF1Bγ) to form a tight complex. However, eEF1Bγ has been shown to enhance the catalytic activity of eEF1Bα attributed to the C-terminal domain of eEF1Bα. This suggests that the N-terminal domain of eEF1Bα may in some way influence the guanine nucleotide exchange process. We have shown that full-length recombinant eEF1Bα and its truncated forms are non-globular proteins with elongated shapes. Truncation of the N-terminal domain of eEF1Bα, which is dispensable for catalytic activity, resulted in acceleration of the rate of guanine nucleotide exchange on eEF1A compared to full-length eEF1Bα. A similar effect on the catalytic activity of eEF1Bα was observed after its interaction with eEF1Bγ. We suggest that the non-catalytic N-terminal domain of eEF1Bα may interfere with eEF1A binding to the C-terminal catalytic domain, resulting in a decrease in the overall rate of the guanine nucleotide exchange reaction. Formation of a tight complex between the eEF1Bγ and eEF1Bα N-terminal domains abolishes this inhibitory effect. PMID:26587907

  3. Dimethyl carbonate as potential reactant in non-catalytic biodiesel production by supercritical method.

    PubMed

    Ilham, Zul; Saka, Shiro

    2009-03-01

    In this study, the non-catalytic supercritical method has been studied in utilizing dimethyl carbonate. It was demonstrated that, the supercritical dimethyl carbonate process without any catalysts applied, converted triglycerides to fatty acid methyl esters with glycerol carbonate and citramalic acid as by-products, while free fatty acids were converted to fatty acid methyl esters with glyoxal. After 12 min of reaction at 350 degrees C/20 MPa, rapeseed oil treated with supercritical dimethyl carbonate reached 94% (w/w) yield of fatty acid methyl ester. The by-products from this process which are glycerol carbonate and citramalic acid are much higher in value than glycerol produced by the conventional process. In addition, the yield of the fatty acid methyl esters as biodiesel was almost at par with supercritical methanol method. Therefore, supercritical dimethyl carbonate process can be a good candidate as an alternative biodiesel production process. PMID:18990561

  4. NO removal by reducing agents and additives in the selective non-catalytic reduction (SNCR) process.

    PubMed

    Bae, Sang Wook; Roh, Seon Ah; Kim, Sang Done

    2006-09-01

    The effect of the additives on the selective non-catalytic reduction (SNCR) reaction has been determined in a three-stage laboratory scale reactor. The optimum reaction temperature is lowered and the reaction temperature window is widened with increasing concentrations of the gas additives (CO, CH4). The optimum reaction temperature is lowered and the maximum NO removal efficiency decreases with increasing the concentration of alcohol additives (CH3OH, C2H5OH). The addition of phenol lowers the optimum reaction temperature about 100-150 degrees C similar to that of the toluene addition. The volatile organic compounds (VOCs: C6H5OH, C7H8) can be utilized in the SNCR process to enhance NO reduction and removed at the same time. A previously proposed simple kinetic model can successfully apply the NO reduction by NH3 and the present additives.

  5. Nitrogen oxides from waste incineration: control by selective non-catalytic reduction.

    PubMed

    Zandaryaa, S; Gavasci, R; Lombardi, F; Fiore, A

    2001-01-01

    An experimental study of the selective non-catalytic reduction (SNCR) process was carried out to determine the efficiency of NOx removal and NH3 mass balance, the NOx reducing reagent used. Experimental tests were conducted on a full-scale SNCR system installed in a hospital waste incineration plant. Anhydrous NH3 was injected at the boiler entrance for NOx removal. Ammonia was analyzed after each flue-gas treatment unit in order to establish its mass balance and NH3 slip in the stack gas was monitored as well. The effective fraction of NH3 for the thermal NOx reduction was calculated from measured values of injected and residual NH3. Results show that a NOx reduction efficiency in the range of 46.7-76.7% is possible at a NH3/NO molar ratio of 0.9-1.5. The fraction of NH3 used in NOx removal was found to decrease with rising NH3/NO molar ratio. The NH3 slip in the stack gas was very low, below permitted limits, even at the higher NH3 dosages used. No direct correlation was found between the NH3/NO molar ratio and the NH3 slip in the stack gas since the major part of the residual NH3 was converted into ammonium salts in the dry scrubbing reactor and subsequently collected in the fabric filter. Moreover, another fraction of NH3 was dissolved in the scrubbing liquor.

  6. Kinetics of Non-Catalytic Esterification of Free Fatty Acids Present in Jatropha Oil.

    PubMed

    Prasanna Rani, Karna Narayana; Ramana Neeharika, Tulasi Sri Venkata; Kumar, Thella Prathap; Satyavathi, Bankupalli; Sailu, Chintha

    2016-05-01

    Non-catalytic esterfication of free fatty acids (FFA) present in vegetable oils is an alternative pretreatment process for the biodiesel production. Biodiesel, consists of long-chain fatty acid methyl esters (FAME) and is obtained from renewable sources such as vegetable oils or animal fat. This study presents kinetics of thermal esterification of free fatty acids present in jatropha oil with methanol. The effect of process parameters like reaction time (1-5 h), temperature (170-190°C) and oil to methanol ratio (1:3-1:5) at constant pressure was investigated. The optimal conditions were found to be oil to methanol ratio of 1:4, 190°C, at 27.1 bar and 5 h which gave a maximum conversion of 95.1%. A second order kinetic model for both forward and backward reactions was proposed to study the reaction system. A good agreement was observed between the experimental data and the model values. The activation energy for forward reaction and the heat of reaction were found to be 36.364 Kcal/mol and 1.74 Kcal/mol respectively.

  7. Cardinal Unit 1 large scale selective non-catalytic reduction demonstration project

    SciTech Connect

    Malone, P.M.

    1999-07-01

    In late 1997, American Electric Power, Fuel Tech, and EPRI decided to perform a full-scale demonstration of a Urea-based Selective Non-Catalytic Reduction (SNCR) system. The demonstration was set to be installed at Cardinal Plant Unit 1. It is expected that multiple power plant operators will be allowed to average the emissions for their system in order to develop the most cost effective system-wide emissions reduction plan. SNCR is a promising technology likely to be utilized in achieving this goal. When SNCR is coupled with LNB's [Low NOx Burner] a level of NOx reduction in the range of 65% can be achieved at a moderate expense. The primary objective for the project was to demonstrate that Urea-based SNCR technology can be applied to a 600MW steam generator. The specific operational goal for the project is to reduce NOx emissions by 30%, beyond the level achieved through the use of Low NOx Burners, while minimizing ammonia slip at or below 5ppm. The unit is cell-fired with baseline, (post-LNB) NOx emissions of 0.68 lb/MMBtu at full load.

  8. Kinetics of Non-Catalytic Esterification of Free Fatty Acids Present in Jatropha Oil.

    PubMed

    Prasanna Rani, Karna Narayana; Ramana Neeharika, Tulasi Sri Venkata; Kumar, Thella Prathap; Satyavathi, Bankupalli; Sailu, Chintha

    2016-05-01

    Non-catalytic esterfication of free fatty acids (FFA) present in vegetable oils is an alternative pretreatment process for the biodiesel production. Biodiesel, consists of long-chain fatty acid methyl esters (FAME) and is obtained from renewable sources such as vegetable oils or animal fat. This study presents kinetics of thermal esterification of free fatty acids present in jatropha oil with methanol. The effect of process parameters like reaction time (1-5 h), temperature (170-190°C) and oil to methanol ratio (1:3-1:5) at constant pressure was investigated. The optimal conditions were found to be oil to methanol ratio of 1:4, 190°C, at 27.1 bar and 5 h which gave a maximum conversion of 95.1%. A second order kinetic model for both forward and backward reactions was proposed to study the reaction system. A good agreement was observed between the experimental data and the model values. The activation energy for forward reaction and the heat of reaction were found to be 36.364 Kcal/mol and 1.74 Kcal/mol respectively. PMID:27086997

  9. SWI/SNF-mutant cancers depend on catalytic and non-catalytic activity of EZH2.

    PubMed

    Kim, Kimberly H; Kim, Woojin; Howard, Thomas P; Vazquez, Francisca; Tsherniak, Aviad; Wu, Jennifer N; Wang, Weishan; Haswell, Jeffrey R; Walensky, Loren D; Hahn, William C; Orkin, Stuart H; Roberts, Charles W M

    2015-12-01

    Human cancer genome sequencing has recently revealed that genes that encode subunits of SWI/SNF chromatin remodeling complexes are frequently mutated across a wide variety of cancers, and several subunits of the complex have been shown to have bona fide tumor suppressor activity. However, whether mutations in SWI/SNF subunits result in shared dependencies is unknown. Here we show that EZH2, a catalytic subunit of the polycomb repressive complex 2 (PRC2), is essential in all tested cancer cell lines and xenografts harboring mutations of the SWI/SNF subunits ARID1A, PBRM1, and SMARCA4, which are several of the most frequently mutated SWI/SNF subunits in human cancer, but that co-occurrence of a Ras pathway mutation is correlated with abrogation of this dependence. Notably, we demonstrate that SWI/SNF-mutant cancer cells are primarily dependent on a non-catalytic role of EZH2 in the stabilization of the PRC2 complex, and that they are only partially dependent on EZH2 histone methyltransferase activity. These results not only reveal a shared dependency of cancers with genetic alterations in SWI/SNF subunits, but also suggest that EZH2 enzymatic inhibitors now in clinical development may not fully suppress the oncogenic activity of EZH2.

  10. Non-catalytic transfer hydrogenation in supercritical CO2 for coal liquefaction

    NASA Astrophysics Data System (ADS)

    Elhussien, Hussien

    This thesis presents the results of the investigation on developing and evaluating a low temperature (<150°C) non - catalytic process using a hydrogen transfer agent (instead of molecu-lar hydrogen) for coal dissolution in supercritical CO2. The main idea behind the thesis was that one hydrogen atom from water and one hydrogen atom from the hydrogen transfer agent (HTA) were used to hydrogenate the coal. The products of coal dissolution were non-polar and polar while the supercritical CO2, which enhanced the rates of hydrogenation and dissolution of the non-polar molecules and removal from the reaction site, was non-polar. The polar modifier (PM) for CO2 was added to the freed to aid in the dissolution and removal of the polar components. The addition of a phase transfer agent (PTA) allowed a seamless transport of the ions and by-product between the aqueous and organic phases. DDAB, used as the PTA, is an effective phase transfer catalyst and showed enhancement to the coal dissolution process. COAL + DH- +H 2O → COAL.H2 + DHO-- This process has a great feature due to the fact that the chemicals were obtained without requir-ing to first convert coal to CO and H2 units as in indirect coal liquefaction. The experiments were conducted in a unique reactor set up that can be connected through two lines. one line to feed the reactor with supercritical CO 2 and the other connected to gas chromatograph. The use of the supercritical CO2 enhanced the solvent option due to the chemical extraction, in addition to the low environmental impact and energy cost. In this thesis the experiment were conducted at five different temperatures from atmos-pheric to 140°C, 3000 - 6000 psi with five component of feed mixture, namely water, HTA, PTA, coal, and PM in semi batch vessels reactor system with a volume of 100 mL. The results show that the chemicals were obtained without requiring to first convert coal to CO and H2 units as in indirect coal liquefaction. The results show that

  11. Non-catalytic alcoholysis process for production of biodiesel fuel by using bubble column reactor

    NASA Astrophysics Data System (ADS)

    Hagiwara, S.; Nabetani, H.; Nakajima, M.

    2015-04-01

    -edible lipids by use of the SMV reactor has not been examined yet. Therefore, this study aims to investigate the productivity of biodiesel produced from waste vegetable oils using the SMV reactor. Biodiesel fuel is a replacement for diesel as a fuel produced from biomass resources. It is generally produced as a FAME derived from vegetable oil by using alkaline catalyzed alcoholysis process. This alkaline method requires deacidification process prior to the reaction process and the alkaline catalyst removal process after the reaction. Those process increases the total cost of biodiesel fuel production. In order to solve the problems in the conventional alkaline catalyzed alcoholysis process, the authors proposed a non-catalytic alcoholysis process called the Superheated Methanol Vapor (SMV) method with bubble column reactor. So, this study aims to investigate the productivity of biodiesel produced from vegetable oils and other lipids using the SMV method with bubble column reactor.

  12. Deletion of a non-catalytic region increases the enzymatic activity of a β-agarase from Flammeovirga sp. MY04

    NASA Astrophysics Data System (ADS)

    Han, Wenjun; Gu, Jingyan; Liu, Huihui; Li, Fuchuan; Wu, Zhihong; Li, Yuezhong

    2015-10-01

    A Glycoside hydrolase (GH) typically contains one catalytic module and varied non-catalytic regions (NCRs). However, effects of the NCRs to the catalytic modules remain mostly unclear except the carbohydrate-binding modules (CBMs). AgaG4 is a GH16 endo- β-agarase of the agarolytic marine bacterium Flammeovirga sp. MY04. The enzyme consists of an extra sugar-binding peptide within the catalytic module, with no predictable CBMs but function-unknown sequences in the NCR, which is a new characteristic of agarase sequences. In this study, we deleted the NCR sequence, a 140-amino acid peptide at the C-terminus and expressed the truncated gene, agaG4-T140, in Escherichia coli. After purification and refolding, the truncated agarase rAgaG4-T140 retained the same catalytic temperature and pH value as rAgaG4. Using combined fluorescent labeling, HPLC and MS/MS techniques, we identified the end-products of agarose degradation by rAgaG4-T140 as neoagarotetraose and neoagarohexaose, with a final molar ratio of 1.53:1 and a conversion ratio of approximately 70%, which were similar to those of rAgaG4. However, the truncated agarase rAgaG4-T140 markedly decreased in protein solubility by 15 times and increased in enzymatic activities by 35 times. The oligosaccharide production of rAgaG4-T140 was approximately 25 times the weight of that produced by equimolar rAgaG4. This study provides some insights into the influences of NCR on the biochemical characteristics of agarase AgaG4 and implies some new strategies to improve the properties of a GH enzyme.

  13. Biodiesel production with continuous supercritical process: non-catalytic transesterification and esterification with or without carbon dioxide.

    PubMed

    Tsai, Yu-Ting; Lin, Ho-mu; Lee, Ming-Jer

    2013-10-01

    The non-catalytic transesterification of refined sunflower oil with supercritical methanol, in the presence of carbon dioxide, was conducted in a tubular reactor at temperatures from 553.2 to 593.2K and pressures up to 25.0 MPa. The FAME yield can be achieved up to about 0.70 at 593.2 K and 10.0 MPa in 23 min with methanol:oil of 25:1 in molar ratio. The effect of adding CO2 on the FAME yield is insignificant. The kinetic behavior of the non-catalytic esterification and transesterification of oleic acid or waste cooking oil (WCO) with supercritical methanol was also investigated. By using the supercritical process, the presence of free fatty acid (FFA) in WCO gives positive contribution to FAME production. The FAME yield of 0.90 from WCO can be achieved in 13 min at 573.2K. The kinetic data of supercritical transesterification and esterifaication were correlated well with a power-law model.

  14. Engineering development of coal-fired high performance power systems, Phase 2: Selective non-catalytic reduction system development

    SciTech Connect

    1997-02-24

    Most of the available computational models for Selective Non- Catalytic Reduction (SNCR) systems are capable of identifying injection parameters such as spray droplet size, injection angles and velocity. These results allow identification of the appropriate injection locations based on the temperature window and mixing for effective dispersion of the reagent. However, in order to quantify No{sub x} reduction and estimate the potential for ammonia slip, a kinetic model must be coupled with the mixing predictions. Typically, reaction mechanisms for SNCR consist of over 100 elementary steps occurring between approximately 30 different species. Trying to model a mechanism of this size is not practical. This ABB project incorporated development of SNCR systems including NO{sub x} reduction and ammonia slip. The model was validated using data collected from a large-scale experimental test facility. The model developed under this project can be utilized for the SNCR system design applicable to HIPPS. The HITAF design in the HIPPS project includes low NO{sub x} firing system in the coal combustor and both selective non-catalytic reduction (SNCR) downstream of the radiant heating section and selective catalytic reduction in a lower temperature zone. The performance of the SNCR will dictate the capacity and capital cost requirements of the SCR.

  15. Effect of hydrogen generated by dielectric barrier discharge of NH3 on selective non-catalytic reduction process.

    PubMed

    Byun, Youngchul; Ko, Kyung Bo; Cho, Moohyun; Namkung, Won; Shin, Dong Nam; Koh, Dong Jun

    2009-05-01

    Plasma-assisted selective non-catalytic reduction (SNCR) has been investigated to clarify which species generated by the plasma play a crucial role in NO reduction. We find that the presence of O(2) is indispensable and only H(2) is observed to be a stable product by dielectric barrier discharge (DBD) of NH(3). As the extent of NH(3) decomposition by DBD increases, the commencement temperature of SNCR processes is lowered and the working temperature window is widened. This propensity may be attributed to the chemical reaction of H(2) with O(2) to generate OH and H radicals which make it possible to yield NH(2) radicals even at low temperature.

  16. Non-catalytic direct synthesis of graphene on Si (111) wafers by using inductively-coupled plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hwang, Sung Won; Shin, Hyunho; Lee, Bongsoo; Choi, Suk-Ho

    2016-08-01

    We employ inductively-coupled plasma chemical vapor deposition for non-catalytic growth of graphene on a Si (111) wafer or glass substrate, which is useful for practical device applications of graphene without transfer processes. At a RF power (P) of 500 W under C2H2 flow, defect-free 3 ˜ 5-layer graphene is grown on Si (111) wafers, but on glass substrate, the layer is thicker and defective, as characterized by Raman spectroscopy and electron microscopy. The graphene is produced on Si (111) for P down to 190 W whereas it is almost not formed on glass for P < 250 W, possibly resulting from the weak catalytic-reaction-like effect on glass. These results are discussed based on possible growth mechanisms.

  17. Hypoxia-induced carbonic anhydrase IX facilitates lactate flux in human breast cancer cells by non-catalytic function

    PubMed Central

    Jamali, Somayeh; Klier, Michael; Ames, Samantha; Felipe Barros, L.; McKenna, Robert; Deitmer, Joachim W.; Becker, Holger M.

    2015-01-01

    The most aggressive tumour cells, which often reside in hypoxic environments, rely on glycolysis for energy production. Thereby they release vast amounts of lactate and protons via monocarboxylate transporters (MCTs), which exacerbates extracellular acidification and supports the formation of a hostile environment. We have studied the mechanisms of regulated lactate transport in MCF-7 human breast cancer cells. Under hypoxia, expression of MCT1 and MCT4 remained unchanged, while expression of carbonic anhydrase IX (CAIX) was greatly enhanced. Our results show that CAIX augments MCT1 transport activity by a non-catalytic interaction. Mutation studies in Xenopus oocytes indicate that CAIX, via its intramolecular H+-shuttle His200, functions as a “proton-collecting/distributing antenna” to facilitate rapid lactate flux via MCT1. Knockdown of CAIX significantly reduced proliferation of cancer cells, suggesting that rapid efflux of lactate and H+, as enhanced by CAIX, contributes to cancer cell survival under hypoxic conditions. PMID:26337752

  18. Lactate flux in astrocytes is enhanced by a non-catalytic action of carbonic anhydrase II

    PubMed Central

    Stridh, Malin H; Alt, Marco D; Wittmann, Sarah; Heidtmann, Hella; Aggarwal, Mayank; Riederer, Brigitte; Seidler, Ursula; Wennemuth, Gunther; McKenna, Robert; Deitmer, Joachim W; Becker, Holger M

    2012-01-01

    Rapid exchange of metabolites between different cell types is crucial for energy homeostasis of the brain. Besides glucose, lactate is a major metabolite in the brain and is primarily produced in astrocytes. In the present study, we report that carbonic anhydrase 2 (CAII) enhances both influx and efflux of lactate in mouse cerebellar astrocytes. The augmentation of lactate transport is independent of the enzyme's catalytic activity, but requires direct binding of CAII to the C-terminal of the monocarboxylate transporter MCT1, one of the major lactate/proton cotransporters in astrocytes and most tissues. By employing its intramolecular proton shuttle, CAII, bound to MCT1, can act as a ‘proton collecting antenna’ for the transporter, suppressing the formation of proton microdomains at the transporter-pore and thereby enhancing lactate flux. By this mechanism CAII could enhance transfer of lactate between astrocytes and neurons and thus provide the neurons with an increased supply of energy substrate. PMID:22451434

  19. A mechanism for Src kinase-dependent signaling by non-catalytic receptors

    PubMed Central

    2008-01-01

    A fundamental issue in cell biology is how signals are transmitted across membranes. A variety of transmembrane receptors, including multichain immune recognition receptors, lack catalytic activity and require Src family kinases (SFKs) for signal transduction. However, many receptors only bind and activate SFKs after ligand-induced receptor dimerization. This presents a conundrum: How do SFKs sense the dimerization of receptors to which they are not already bound? Most proposals to resolve this enigma invoke additional players, such as lipid rafts or receptor conformational changes. Here we used simple thermodynamics to show that SFK activation is a natural outcome of clustering of receptors with SFK phosphorylation sites, provided that there is phosphorylation-dependent receptor-SFK association and an SFK bound to one receptor can phosphorylate the second receptor or its associated SFK in a dimer. A simple system of receptor, SFK and an unregulated protein tyrosine phosphatase (PTP) can account for ligand-induced changes in phosphorylation observed in cells. We suggest that a core signaling system comprising a receptor with SFK phosphorylation sites, an SFK and an unregulated PTP provides a robust mechanism for transmembrane signal transduction. Other events that regulate signaling in specific cases may have evolved for fine-tuning of this basic mechanism. PMID:18444664

  20. Catalytic and non-catalytic pyrolysis of biomass in non-inert environments for production of deoxygenated bio-oil and chemicals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fast pyrolysis processes are among the most effective methods for liquefaction of lignocellulosic biomass. Catalytic fast pyrolysis (CFP) over HZSM-5 or other zeolites and/or utilization of reactive atmospheres such as in the non-catalytic Tail Gas Reactive Pyrolysis (TRGP) process, a recent patent...

  1. Targeting the GPIbα Binding Site of Thrombin To Simultaneously Induce Dual Anticoagulant and Antiplatelet Effects

    PubMed Central

    2015-01-01

    Exosite 2 of human thrombin contributes to two opposing pathways, the anticoagulant pathway and the platelet aggregation pathway. We reasoned that an exosite 2 directed allosteric thrombin inhibitor should simultaneously induce anticoagulant and antiplatelet effects. To assess this, we synthesized SbO4L based on the sulfated tyrosine-containing sequence of GPIbα. SbO4L was synthesized in three simple steps in high yield and found to be a highly selective, direct inhibitor of thrombin. Michelis–Menten kinetic studies indicated a noncompetitive mechanism of inhibition. Competitive inhibition studies suggested ideal competition with heparin and glycoprotein Ibα, as predicted. Studies with site-directed mutants of thrombin indicated that SbO4L binds to Arg233, Lys235, and Lys236 of exosite 2. SbO4L prevented thrombin-mediated platelet activation and aggregation as expected on the basis of competition with GPIbα. SbO4L presents a novel paradigm of simultaneous dual anticoagulant and antiplatelet effects achieved through the GPIbα binding site of thrombin. PMID:24635452

  2. Non-catalytic motor domains enable processive movement and functional diversification of the kinesin-14 Kar3

    PubMed Central

    Mieck, Christine; Molodtsov, Maxim I; Drzewicka, Katarzyna; van der Vaart, Babet; Litos, Gabriele; Schmauss, Gerald; Vaziri, Alipasha; Westermann, Stefan

    2015-01-01

    Motor proteins of the conserved kinesin-14 family have important roles in mitotic spindle organization and chromosome segregation. Previous studies have indicated that kinesin-14 motors are non-processive enzymes, working in the context of multi-motor ensembles that collectively organize microtubule networks. In this study, we show that the yeast kinesin-14 Kar3 generates processive movement as a heterodimer with the non-motor proteins Cik1 or Vik1. By analyzing the single-molecule properties of engineered motors, we demonstrate that the non-catalytic domain has a key role in the motility mechanism by acting as a ‘foothold’ that allows Kar3 to bias translocation towards the minus end. This mechanism rivals the speed and run length of conventional motors, can support transport of the Ndc80 complex in vitro and is critical for Kar3 function in vivo. Our findings provide an example for a non-conventional translocation mechanism and can explain how Kar3 substitutes for key functions of Dynein in the yeast nucleus. DOI: http://dx.doi.org/10.7554/eLife.04489.001 PMID:25626168

  3. Optical and electrical properties of ZnO nanowires grown on aluminium foil by non-catalytic thermal evaporation

    NASA Astrophysics Data System (ADS)

    Umar, Ahmad; Kim, Byoung-Kye; Kim, Ju-Jin; Hahn, Y. B.

    2007-05-01

    Well-crystallized ZnO nanowires were grown in large quantity on aluminium foil, by a non-catalytic thermal evaporation method using metallic zinc powder in the presence of oxygen at low temperature. Detailed structural and optical characterizations confirmed that the as-grown nanowires were highly crystalline, possessed a wurtzite hexagonal phase, had grown along the c-axis direction and exhibited excellent optical properties. The electrical characteristics of an individual nanowire were observed in air and vacuum by fabricating field-effect transistor (FET) devices. The transistors turned on typically between -5 and 0 V in ambient air. However, a large threshold voltage (Vth) shift, ~5 V, towards negative gate bias was observed in high vacuum. The shift of Vth is believed to be related to the charge transfer from the ZnO nanowire surface to the physically adsorbed OH or oxygen. Moreover, the fabricated FETs show a high conductivity ON/OFF ratio of about ~102 with ultraviolet (UV) light and hence provide an effective way to use these devices in nanoscale UV detectors and optoelectronic switches.

  4. N sub 2 O formation from advanced NO sub x control processes (selective non-catalytic reduction and coal reburning)

    SciTech Connect

    Montgomery, T.A.; Martz, T.D.; Quartucy, G.C.; Muzio, L.J. ); Sheldon, M.S.; Cole, J.A.; Kramlich, J.C. ); Samuelsen, G.S.; Reddy, V. )

    1991-04-01

    The current work addressed the potential of N{sub 2}O production from two NO{sub x} reduction techniques: selective non-catalytic NO{sub x} reduction (SNCR processes) and reburning with pulverized coal. The effects of SNCR processes (utilizing ammonia, urea, and cyanuric acid injection) and reburning processes (with bituminous and lignite coals) upon NO{sub x} and N{sub 2}O levels were evaluated. Pilot scale testing and chemical kinetic modeling were used to characterize the N{sub 2} production from SNCR processes over a range of process parameters. The data show that the evaluated SNCR processes (ammonia, urea, and cyanuric acid injection) produced some N{sub 2}O as a by-product. Ammonia injection produced the lowest levels of N{sub 2}O; less than 4% of the reduced NO{sub x} was converted to N{sub 2}O. Cyanuric acid injection produced the highest levels; N{sub 2}O increases ranged between 12--40% of the reduced NO{sub x}. The conversion of NO{sub x} to N{sub 2}O with urea injection ranged from 7--25%. Pilot scale testing was used to characterize the N{sub 2}O production from reburning processes with coal over a range of process parameters. Parameters included: coal type, firing rate, initial NO level, and reburn zone stoichiometry. Data show that N{sub 2}O is not a major product during coal reburning processes for NO{sub x} reduction. 56 figs., 13 tabs.

  5. Experimental and modeling study of the effect of CH(4) and pulverized coal on selective non-catalytic reduction process.

    PubMed

    Zhang, Yanwen; Cai, Ningsheng; Yang, Jingbiao; Xu, Bo

    2008-10-01

    The reduction of nitric oxide using ammonia combined with methane and pulverized coal additives has been studied in a drop tube furnace reactor. Simulated flue gas with 1000 ppm NO(x) and 3.4% excess oxygen was generated by cylinder gas. Experiments were performed in the temperature range of 700-1200 degrees C to investigate the effects of additives on the DeNO(x) performance. Subsequently, a kinetic mechanism was modified and validated based on experimental results, and a computational kinetic modeling with CHEMKIN was conducted to analyze the secondary pollutants. For both methane and pulverized coal additives, the temperature window is shifted towards lower temperatures. The appropriate reaction temperature is shifted to about 900 and 800 degrees C, respectively with 1000 ppm methane and 0.051 g min(-1) pulverized lignite coal. The addition of methane and pulverized coal widens the temperature window towards lower temperature suggesting a low temperature application of the process. Furthermore, selective non-catalytic reduction (SNCR) reaction rate is accelerated evidently with additives and the residence time to complete the reaction is shortened distinctly. NO(x) reduction efficiency with 80% is achieved in about 0.3s without additive at 1000 degrees C. However, it is achieved in only about 0.2s with 100 ppm methane as additive, and only 0.07 and 0.05s are needed respectively for the cases of 500 and 1000 ppm methane. The modified kinetic modeling agrees well with the experimental results and reveals additional information about the process. Investigation on the byproducts where NO(2) and N(2)O were analyzed by modeling and the others were investigated by experimental means indicates that emissions would not increase with methane and pulverized coal additions in SNCR process and the efficacious temperature range of SNCR reaction is widened approximately with 100 degrees C.

  6. Non-ionic Surfactants and Non-Catalytic Protein Treatment on Enzymatic Hydrolysis of Pretreated Creeping Wild Ryegrass

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Pan, Zhongli; Zhang, Ruihong; Wang, Donghai; Jenkins, Bryan

    Our previous research has shown that saline Creeping Wild Ryegrass (CWR), Leymus triticoides, has a great potential to be used for bioethanol production because of its high fermentable sugar yield, up to 85% cellulose conversion of pretreated CWR. However, the high cost of enzyme is still one of the obstacles making large-scale lignocellulosic bioethanol production economically difficult. It is desirable to use reduced enzyme loading to produce fermentable sugars with high yield and low cost. To reduce the enzyme loading, the effect of addition of non-ionic surfactants and non-catalytic protein on the enzymatic hydrolysis of pretreated CWR was investigated in this study. Tween 20, Tween 80, and bovine serum albumin (BSA) were used as additives to improve the enzymatic hydrolysis of dilute sulfuric-acid-pretreated CWR. Under the loading of 0.1 g additives/g dry solid, Tween 20 was the most effective additive, followed by Tween 80 and BSA. With the addition of Tween 20 mixed with cellulase loading of 15 FPU/g cellulose, the cellulose conversion increased 14% (from 75 to 89%), which was similar to that with cellulase loading of 30 FPU/g cellulose and without additive addition. The results of cellulase and BSA adsorption on the Avicel PH101, pretreated CWR, and lignaceous residue of pretreated CWR support the theory that the primary mechanism behind the additives is prevention of non-productive adsorption of enzymes on lignaceous material of pretreated CWR. The addition of additives could be a promising technology to improve the enzymatic hydrolysis by reducing the enzyme activity loss caused by non-productive adsorption.

  7. Boosting the value of biodiesel byproduct by the non-catalytic transesterification of dimethyl carbonate via a continuous flow system under ambient pressure.

    PubMed

    Kwon, Eilhann E; Yi, Haakrho; Jeon, Young Jae

    2014-10-01

    Transformation of coconut oil into biodiesel by using dimethyl carbonate (DMC) via a non-catalytic transesterification reaction under ambient pressure was investigated in this study. The non-catalytic transformation to biodiesel was achieved by means of a heterogeneous reaction between liquid triglycerides and gas phase DMC. The reaction was enhanced in the presence of porous material due to its intrinsic physical properties such as tortuosity and absorption/adsorption. The numerous pores in the material served as micro reaction chambers and ensured that there was enough contact time between the liquid triglycerides and the gaseous DMC, which enabled the completion of the transesterification. The highest fatty acid methyl esters (FAMEs) yield achieved was 98±0.5% within 1-2min at a temperature of 360-450°C under ambient pressure. The fast reaction rates made it possible to convert the lipid feedstock into biodiesel via a continuous flow system without the application of increased pressure. This suggested that the commonly used supercritical conditions could be avoided, resulting in huge cost benefits for biodiesel production. In addition, the high value of the byproduct from the transesterification of the lipid feedstock with DMC suggested that the production biodiesel using this method could be more economically competitive. Finally, the basic properties of biodiesel derived from the non-catalytic conversion of rapeseed oil with DMC were summarised.

  8. Boosting the value of biodiesel byproduct by the non-catalytic transesterification of dimethyl carbonate via a continuous flow system under ambient pressure.

    PubMed

    Kwon, Eilhann E; Yi, Haakrho; Jeon, Young Jae

    2014-10-01

    Transformation of coconut oil into biodiesel by using dimethyl carbonate (DMC) via a non-catalytic transesterification reaction under ambient pressure was investigated in this study. The non-catalytic transformation to biodiesel was achieved by means of a heterogeneous reaction between liquid triglycerides and gas phase DMC. The reaction was enhanced in the presence of porous material due to its intrinsic physical properties such as tortuosity and absorption/adsorption. The numerous pores in the material served as micro reaction chambers and ensured that there was enough contact time between the liquid triglycerides and the gaseous DMC, which enabled the completion of the transesterification. The highest fatty acid methyl esters (FAMEs) yield achieved was 98±0.5% within 1-2min at a temperature of 360-450°C under ambient pressure. The fast reaction rates made it possible to convert the lipid feedstock into biodiesel via a continuous flow system without the application of increased pressure. This suggested that the commonly used supercritical conditions could be avoided, resulting in huge cost benefits for biodiesel production. In addition, the high value of the byproduct from the transesterification of the lipid feedstock with DMC suggested that the production biodiesel using this method could be more economically competitive. Finally, the basic properties of biodiesel derived from the non-catalytic conversion of rapeseed oil with DMC were summarised. PMID:25065794

  9. An experimental study of catalytic and non-catalytic reaction in heat recirculating reactors and applications to power generation

    NASA Astrophysics Data System (ADS)

    Ahn, Jeongmin

    An experimental study of the performance of a Swiss roll heat exchanger and reactor was conducted, with emphasis on the extinction limits and comparison of results with and without Pt catalyst. At Re<40, the catalyst was required to sustain reaction; with the catalyst self-sustaining reaction could be obtained at Re less than 1. Both lean and rich extinction limits were extended with the catalyst, though rich limits were extended much further. At low Re, the lean extinction limit was rich of stoichiometric and rich limit had equivalence ratios 80 in some cases. Non-catalytic reaction generally occurred in a flameless mode near the center of the reactor. With or without catalyst, for sufficiently robust conditions, a visible flame would propagate out of the center, but this flame could only be re-centered with catalyst. Gas chromatography indicated that at low Re, CO and non-C3 H8 hydrocarbons did not form. For higher Re, catalytic limits were slightly broader but had much lower limit temperatures. At sufficiently high Re, catalytic and gas-phase limits merged. Experiments with titanium Swiss rolls have demonstrated reducing wall thermal conductivity and thickness leads to lower heat losses and therefore increases operating temperatures and extends flammability limits. By use of Pt catalysts, reaction of propane-air mixtures at temperatures 54°C was sustained. Such low temperatures suggest that polymers may be employed as a reactor material. A polyimide reactor was built and survived prolonged testing at temperatures up to 500°C. Polymer reactors may prove more practical for microscale devices due to their lower thermal conductivity and ease of manufacturing. Since the ultimate goal of current efforts is to develop combustion driven power generation devices at MEMS like scales, a thermally self-sustaining miniature power generation device was developed utilizing a single-chamber solid-oxide-fuel-cell (SOFC) placed in a Swiss roll. With the single-chamber design

  10. Recombinant expression of the precursor of the hemorrhagic metalloproteinase HF3 and its non-catalytic domains using a cell-free synthesis system.

    PubMed

    Menezes, Milene C; Imbert, Lionel; Kitano, Eduardo S; Vernet, Thierry; Serrano, Solange M T

    2016-09-01

    Snake venom metalloproteinases (SVMPs) participate in snakebite pathology such as hemorrhage, inflammation, and necrosis. They are synthesized as latent multi-domain precursors whose processing generates either catalytically active enzymes or free non-enzymatic domains. Recombinant expression of the precursor of P-III class SVMPs has failed due to the instability of the multi-domain polypeptide structure. Conversely, functional recombinant non-catalytic domains were obtained by prokaryotic expression systems. Here, we show for the first time the recombinant expression of the precursor of HF3, a highly hemorrhagic SVMP from Bothrops jararaca, and its non-catalytic domains, using an E. coli-based cell-free synthesis system. The precursor of HF3, composed of pro-, metalloproteinase-, disintegrin-like-, and cysteine-rich domains, and containing 38 Cys residues, was successfully expressed and purified. A protein composed of the disintegrin-like and cysteine-rich domains (DC protein) and the cysteine-rich domain alone (C protein) were expressed in vitro individually and purified. Both proteins were shown to be functional in assays monitoring the interaction with matrix proteins and in modulating the cleavage of fibrinogen by HF3. These data indicate that recombinant expression using prokaryotic-based cell-free synthesis emerges as an attractive alternative for the study of the structure and function of multi-domain proteins with a high content of Cys residues. PMID:27209197

  11. Non-catalytic Roles for XPG with BRCA1 and BRCA2 in Homologous Recombination and Genome Stability.

    PubMed

    Trego, Kelly S; Groesser, Torsten; Davalos, Albert R; Parplys, Ann C; Zhao, Weixing; Nelson, Michael R; Hlaing, Ayesu; Shih, Brian; Rydberg, Björn; Pluth, Janice M; Tsai, Miaw-Sheue; Hoeijmakers, Jan H J; Sung, Patrick; Wiese, Claudia; Campisi, Judith; Cooper, Priscilla K

    2016-02-18

    XPG is a structure-specific endonuclease required for nucleotide excision repair, and incision-defective XPG mutations cause the skin cancer-prone syndrome xeroderma pigmentosum. Truncating mutations instead cause the neurodevelopmental progeroid disorder Cockayne syndrome, but little is known about how XPG loss results in this devastating disease. We identify XPG as a partner of BRCA1 and BRCA2 in maintaining genomic stability through homologous recombination (HRR). XPG depletion causes DNA double-strand breaks, chromosomal abnormalities, cell-cycle delays, defective HRR, inability to overcome replication fork stalling, and replication stress. XPG directly interacts with BRCA2, RAD51, and PALB2, and XPG depletion reduces their chromatin binding and subsequent RAD51 foci formation. Upstream in HRR, XPG interacts directly with BRCA1. Its depletion causes BRCA1 hyper-phosphorylation and persistent chromatin binding. These unexpected findings establish XPG as an HRR protein with important roles in genome stability and suggest how XPG defects produce severe clinical consequences including cancer and accelerated aging. PMID:26833090

  12. Catalytic and non-catalytic roles for the mono-ADP-ribosyltransferase Arr in the mycobacterial DNA damage response.

    PubMed

    Stallings, Christina L; Chu, Linda; Li, Lucy X; Glickman, Michael S

    2011-01-01

    Recent evidence indicates that the mycobacterial response to DNA double strand breaks (DSBs) differs substantially from previously characterized bacteria. These differences include the use of three DSB repair pathways (HR, NHEJ, SSA), and the CarD pathway, which integrates DNA damage with transcription. Here we identify a role for the mono-ADP-ribosyltransferase Arr in the mycobacterial DNA damage response. Arr is transcriptionally induced following DNA damage and cellular stress. Although Arr is not required for induction of a core set of DNA repair genes, Arr is necessary for suppression of a set of ribosomal protein genes and rRNA during DNA damage, placing Arr in a similar pathway as CarD. Surprisingly, the catalytic activity of Arr is not required for this function, as catalytically inactive Arr was still able to suppress ribosomal protein and rRNA expression during DNA damage. In contrast, Arr substrate binding and catalytic activities were required for regulation of a small subset of other DNA damage responsive genes, indicating that Arr has both catalytic and noncatalytic roles in the DNA damage response. Our findings establish an endogenous cellular function for a mono-ADP-ribosyltransferase apart from its role in mediating Rifampin resistance.

  13. Effect of defects in oxide templates on Non-catalytic growth of GaN nanowires for high-efficiency light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Hwang, Sung Won; Choi, Suk-Ho

    2016-04-01

    Two kinds of oxide templates, one with and one without undercuts, are employed to study the effect of defects in oxide templates on non-catalytic growth of GaN nanowires (NWs). GaN NWs abnormally grown from the templates containing undercuts exhibit two types of patterns: earlystage growth of premature NWs and abnormally-overgrown (~2 μm) NWs. GaN NWs grown on perfectly-symmetric template patterns are highly crystalline and have high aspect ratios (2 ~ 5), and their tops are shaped as pyramids with semipolar facets, clearly indicating hexagonal symmetry. The internal quantum efficiency of the well-grown NWs is 10% larger than that of the deformed NWs, as estimated by using photoluminescence. These results suggest that our technique is an effective approach for growing large-area-patterned, vertically-aligned, hexagonal GaN NWs without catalysts, in strong contrast to catalytic vapor-liquid-solid growth, and that good formation of the oxide templates is crucial for the growth of high-quality GaN NWs.

  14. Effects of gas compositions on NOx reduction by selective non-catalytic reduction with ammonia in a simulated cement precalciner atmosphere.

    PubMed

    Fan, Weiyi; Zhu, Tianle; Sun, Yifei; Lv, Dong

    2014-10-01

    The effects of gas compositions on NOx reduction and NH3 slip by selective non-catalytic reduction (SNCR) with NH3 were investigated in a simulated cement precalciner atmosphere. The results show that the presence of H2O improves NOx reduction and widens the reduction temperature window significantly. O2 is indispensable for reducing NOx. The optimum reduction temperature decreases and the temperature window widens to a lower temperature with the increase of O2 content. In addition, the increase of O2 content also results in a decrease of the maximum NOx reduction efficiency. The effect of SO2 on NOx reduction is negligible in the simulated precalciner atmosphere. To increase CO concentration makes NO reduction take place at relatively low temperatures. However, NH3 will tend to be oxidized into NO instead of reducing NO after entering the stream containing O2 at high temperatures if it is initially blended with a high concentration of CO in an oxygen-free environment. The increase of H2O, O2, SO2 or CO concentration is helpful to reduce NH3 slip in the temperature region below 900°C. These effects are resulted from the fact that the generation and consumption of O and OH radicals which are crucial to NO reduction and formation can be influenced by the four gas compositions. In industrial operation of SNCR for cement precalciner, these effects should be taken into account to increase NOx reduction efficiency and avoid NH3 slip.

  15. Effects of gas compositions on NOx reduction by selective non-catalytic reduction with ammonia in a simulated cement precalciner atmosphere.

    PubMed

    Fan, Weiyi; Zhu, Tianle; Sun, Yifei; Lv, Dong

    2014-10-01

    The effects of gas compositions on NOx reduction and NH3 slip by selective non-catalytic reduction (SNCR) with NH3 were investigated in a simulated cement precalciner atmosphere. The results show that the presence of H2O improves NOx reduction and widens the reduction temperature window significantly. O2 is indispensable for reducing NOx. The optimum reduction temperature decreases and the temperature window widens to a lower temperature with the increase of O2 content. In addition, the increase of O2 content also results in a decrease of the maximum NOx reduction efficiency. The effect of SO2 on NOx reduction is negligible in the simulated precalciner atmosphere. To increase CO concentration makes NO reduction take place at relatively low temperatures. However, NH3 will tend to be oxidized into NO instead of reducing NO after entering the stream containing O2 at high temperatures if it is initially blended with a high concentration of CO in an oxygen-free environment. The increase of H2O, O2, SO2 or CO concentration is helpful to reduce NH3 slip in the temperature region below 900°C. These effects are resulted from the fact that the generation and consumption of O and OH radicals which are crucial to NO reduction and formation can be influenced by the four gas compositions. In industrial operation of SNCR for cement precalciner, these effects should be taken into account to increase NOx reduction efficiency and avoid NH3 slip. PMID:25065808

  16. Behavior of chars from Bursa Mustafa Kemal Pasa Alpagut and Balkesir Dursunbey Cakiirca Lignite (Turkey) during non-catalytic and catalytic gasification

    SciTech Connect

    Bozkurt, Y.; Misirlioglu, Z.; Sinag, A.; Tekes, A.T.; Canel, M.

    2008-07-01

    The reactivities of chars obtained by pyrolysis of Bursa Mustafa Kemal Pasa Alpagut lignite and Balkesir Dursunbey Cakiirca lignite (Turkey) at different temperatures were determined by CO{sub 2} gasification and by combustion with O{sub 2}. Catalytic effect of Na{sub 2}CO{sub 3} on the CO{sub 2} and O{sub 2} gasification reactivity of chars was investigated. Gasification tests were performed in the fixed bed reactors operating at ambient pressure. Reactivity of chars during the CO{sub 2} gasification reactions was determined by calculating the reaction rate constants and reactivity of chars during the O{sub 2} gasification was determined by using ignition temperatures of the samples. Activation energies and Arrhenius constants of the chars on the CO{sub 2} gasification reactions were also calculated by the help of Arrhenius curves. The activation energy for CO{sub 2} gasification was generally decreased with pyrolysis temperature, due to the different surface characteristics and different nature of carbon atoms gasified as the gasification reactions proceed. Generally, the increase in pyrolysis temperature leads to an increase in gasification reactivity with CO{sub 2}. The reactivity of chars in catalytic gasification was higher than the corresponding non-catalytic reactivity of the same chars. Ignition temperature increased with increasing pyrolysis temperature.

  17. Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) Protein-Protein Interaction Inhibitor Reveals a Non-catalytic Role for GAPDH Oligomerization in Cell Death.

    PubMed

    Qvit, Nir; Joshi, Amit U; Cunningham, Anna D; Ferreira, Julio C B; Mochly-Rosen, Daria

    2016-06-24

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an important glycolytic enzyme, has a non-catalytic (thus a non-canonical) role in inducing mitochondrial elimination under oxidative stress. We recently demonstrated that phosphorylation of GAPDH by δ protein kinase C (δPKC) inhibits this GAPDH-dependent mitochondrial elimination. δPKC phosphorylation of GAPDH correlates with increased cell injury following oxidative stress, suggesting that inhibiting GAPDH phosphorylation should decrease cell injury. Using rational design, we identified pseudo-GAPDH (ψGAPDH) peptide, an inhibitor of δPKC-mediated GAPDH phosphorylation that does not inhibit the phosphorylation of other δPKC substrates. Unexpectedly, ψGAPDH decreased mitochondrial elimination and increased cardiac damage in an animal model of heart attack. Either treatment with ψGAPDH or direct phosphorylation of GAPDH by δPKC decreased GAPDH tetramerization, which corresponded to reduced GAPDH glycolytic activity in vitro and ex vivo Taken together, our study identified the potential mechanism by which oxidative stress inhibits the protective GAPDH-mediated elimination of damaged mitochondria. Our study also identified a pharmacological tool, ψGAPDH peptide, with interesting properties. ψGAPDH peptide is an inhibitor of the interaction between δPKC and GAPDH and of the resulting phosphorylation of GAPDH by δPKC. ψGAPDH peptide is also an inhibitor of GAPDH oligomerization and thus an inhibitor of GAPDH glycolytic activity. Finally, we found that ψGAPDH peptide is an inhibitor of the elimination of damaged mitochondria. We discuss how this unique property of increasing cell damage following oxidative stress suggests a potential use for ψGAPDH peptide-based therapy. PMID:27129213

  18. HYBRID SELECTIVE NON-CATALYTIC REDUCTION (SNCR)/SELECTIVE CATALYTIC REDUCTION (SCR) DEMONSTRATION FOR THE REMOVAL OF NOx FROM BOILER FLUE GASES

    SciTech Connect

    Jerry B. Urbas

    1999-05-01

    The U. S. Department of Energy (DOE), Electric Power Research Institute (EPRI), Pennsylvania Electric Energy Research Council, (PEERC), New York State Electric and Gas and GPU Generation, Inc. jointly funded a demonstration to determine the capabilities for Hybrid SNCR/SCR (Selective Non-Catalytic Reduction/Selective Catalytic Reduction) technology. The demonstration site was GPU Generation's Seward Unit No.5 (147MW) located in Seward Pennsylvania. The demonstration began in October of 1997 and ended in December 1998. DOE funding was provided through Grant No. DE-FG22-96PC96256 with T. J. Feeley as the Project Manager. EPRI funding was provided through agreements TC4599-001-26999 and TC4599-002-26999 with E. Hughes as the Project Manager. This project demonstrated the operation of the Hybrid SNCR/SCR NO{sub x} control process on a full-scale coal fired utility boiler. The hybrid technology was expected to provide a cost-effective method of reducing NO{sub x} while balancing capital and operation costs. An existing urea based SNCR system was modified with an expanded-duct catalyst to provide increased NO{sub x} reduction efficiency from the SNCR while producing increased ammonia slip levels to the catalyst. The catalyst was sized to reduce the ammonia slip to the air heaters to less than 2 ppm while providing equivalent NO{sub x} reductions. The project goals were to demonstrate hybrid technology is capable of achieving at least a 55% reduction in NO{sub x} emissions while maintaining less than 2ppm ammonia slip to the air heaters, maintain flyash marketability, verify the cost benefit and applicability of Hybrid post combustion technology, and reduce forced outages due to ammonium bisulfate (ABS) fouling of the air heaters. Early system limitations, due to gas temperature stratification, restricted the Hybrid NO{sub x} reduction capabilities to 48% with an ammonia slip of 6.1 mg/Nm{sup 3} (8 ppm) at the catalyst inlet. After resolving the stratification problem

  19. Life cycle assessment of selective non-catalytic reduction (SNCR) of nitrous oxides in a full-scale municipal solid waste incinerator.

    PubMed

    Møller, Jacob; Munk, Bjarne; Crillesen, Kim; Christensen, Thomas H

    2011-06-01

    Selective non-catalytic reduction (SNCR) of nitrous oxides in a full-scale municipal solid waste incinerator was investigated using LCA. The relationship between NO(x)-cleaning and ammonia dosage was measured at the plant. Un-reacted ammonia - the ammonia slip - leaving the flue-gas cleaning system adsorbed to fly-ash or in the effluent of the acidic scrubber was quantified from the stoichiometric reaction of NO(x) and ammonia assuming no other reaction products was formed. Of the ammonia slip, 37% was associated with the fly-ash and 63% was in the effluent of the acidic scrubber. Based on NO(x)-cleaning efficiency, the fate of the ammonia slip as well as the environmental impact from ammonia production, the potential acidification and nutrient enrichment from NO(x)-cleaning was calculated as a function of ammonia dosage. Since the exact fate of the ammonia slip could not be measured directly, a number of scenarios were set up ranging from "best case" with no ammonia from the slip ending up in the environment to "worst case" where all the ammonia slip eventually ended up in the environment and contributed to environmental pollution. In the "best case" scenario the highest ammonia dosage was most beneficial demonstrating that the environmental load associated with ammonia production is of minor importance. In contrast, in a "worst case" scenario" NO(x)-cleaning using SNCR is not recommendable at all, since the impacts from the ammonia slip exceed the saved impacts from the NO(x) removal. Increased dosage of ammonia for removal of NO(x) is recommendable as long as less than 10-20% of the ammonia slip to the effluent of the acidic scrubber ends up in the environment and less than 40% of the slip to the fly-ash ends up in the environment. The study suggests that the actual fate of the ammonia slip is crucial, but since the release of the ammonia may take place during transport and at the facilities that treat the wastewater and treat the fly-ash this factor depends

  20. Life cycle assessment of selective non-catalytic reduction (SNCR) of nitrous oxides in a full-scale municipal solid waste incinerator.

    PubMed

    Møller, Jacob; Munk, Bjarne; Crillesen, Kim; Christensen, Thomas H

    2011-06-01

    Selective non-catalytic reduction (SNCR) of nitrous oxides in a full-scale municipal solid waste incinerator was investigated using LCA. The relationship between NO(x)-cleaning and ammonia dosage was measured at the plant. Un-reacted ammonia - the ammonia slip - leaving the flue-gas cleaning system adsorbed to fly-ash or in the effluent of the acidic scrubber was quantified from the stoichiometric reaction of NO(x) and ammonia assuming no other reaction products was formed. Of the ammonia slip, 37% was associated with the fly-ash and 63% was in the effluent of the acidic scrubber. Based on NO(x)-cleaning efficiency, the fate of the ammonia slip as well as the environmental impact from ammonia production, the potential acidification and nutrient enrichment from NO(x)-cleaning was calculated as a function of ammonia dosage. Since the exact fate of the ammonia slip could not be measured directly, a number of scenarios were set up ranging from "best case" with no ammonia from the slip ending up in the environment to "worst case" where all the ammonia slip eventually ended up in the environment and contributed to environmental pollution. In the "best case" scenario the highest ammonia dosage was most beneficial demonstrating that the environmental load associated with ammonia production is of minor importance. In contrast, in a "worst case" scenario" NO(x)-cleaning using SNCR is not recommendable at all, since the impacts from the ammonia slip exceed the saved impacts from the NO(x) removal. Increased dosage of ammonia for removal of NO(x) is recommendable as long as less than 10-20% of the ammonia slip to the effluent of the acidic scrubber ends up in the environment and less than 40% of the slip to the fly-ash ends up in the environment. The study suggests that the actual fate of the ammonia slip is crucial, but since the release of the ammonia may take place during transport and at the facilities that treat the wastewater and treat the fly-ash this factor depends

  1. Integrating low-NO{sub x} burners, overfire air, and selective non-catalytic reduction on a utility coal-fired boiler

    SciTech Connect

    Hunt, T.; Muzio, L.; Smith, R.

    1995-05-01

    Public Service Company of Colorado (PSCo), in cooperation with the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI), is testing the Integrated Dry NO{sub x}/SO{sub 2} Emissions Control system. This system combines low-NO{sub x} burners, overfire air, selective non-catalytic reduction (SNCR), and dry sorbent injection with humidification to reduce by up to 70% both NO{sub x} and SO{sub 2} emissions from a 100 MW coal-fired utility boiler. The project is being conducted at PSCo`s Arapahoe Unit 4 located in Denver, Colorado as part of the DOE`s Clean Coal Technology Round 3 program. The urea-based SNCR system, supplied by Noell, Inc., was installed in late 1991 and was tested with the unmodified boiler in 1992. At full load, it reduced NO{sub x} emissions by about 35% with an associated ammonia slip limit of 10 ppm. Babcock & Wilcox XLS{reg_sign} burners and a dual-zone overfire air system were retrofit to the top-fired boiler in mid-1992 and demonstrated a NO{sub x} reduction of nearly 70% across the load range. Integrated testing of the combustion modifications and the SNCR system were conducted in 1993 and showed that the SNCR system could reduce NO{sub x} emissions by an additional 45% while maintaining 10 ppm of ammonia slip limit at full load. Lower than expect4ed flue-gas temperatures caused low-load operation to be less effective than at high loads. NO{sub x} reduction decreased to as low as 11% at 60 MWe at an ammonia slip limit of 10 ppm. An ammonia conversion system was installed to improve performance at low loads. Other improvements to increase NO{sub x} removal at low-loads are planned. The combined system of combustion modifications and SNCR reduced NO{sub x} emissions by over 80% from the original full-load baseline. 11 figs.

  2. Recognition of xyloglucan by the crystalline cellulose-binding site of a family 3a carbohydrate-binding module.

    PubMed

    Hernandez-Gomez, Mercedes C; Rydahl, Maja G; Rogowski, Artur; Morland, Carl; Cartmell, Alan; Crouch, Lucy; Labourel, Aurore; Fontes, Carlos M G A; Willats, William G T; Gilbert, Harry J; Knox, J Paul

    2015-08-19

    Type A non-catalytic carbohydrate-binding modules (CBMs), exemplified by CtCBM3acipA, are widely believed to specifically target crystalline cellulose through entropic forces. Here we have tested the hypothesis that type A CBMs can also bind to xyloglucan (XG), a soluble β-1,4-glucan containing α-1,6-xylose side chains. CtCBM3acipA bound to xyloglucan in cell walls and arrayed on solid surfaces. Xyloglucan and cellulose were shown to bind to the same planar surface on CBM3acipA. A range of type A CBMs from different families were shown to bind to xyloglucan in solution with ligand binding driven by enthalpic changes. The nature of CBM-polysaccharide interactions is discussed. PMID:26193423

  3. Balance of NH{sub 3} and behavior of polychlorinated dioxins and furans in the course of the selective non-catalytic reduction of nitric oxide at the TAMARA waste incineration plant

    SciTech Connect

    Furrer, J.; Deuber, H.; Hunsinger, H.; Kreisz, S.; Linek, A.; Seifert, H.; Stoehr, J.; Ishikawa, R.; Watanabe, K.

    1998-12-31

    Investigations were performed on the selective non-catalytic reduction (SNCR) of nitric oxide (NO) at TAMARA, the pilot-scale waste incineration plant of the Karlsruhe Research Center. Aqueous ammonia (NH{sub 3}) was injected into the combustion chamber as reductant. The influence of NH{sub 3} on various inorganic and organic compounds in the flue gas was investigated. The concentrations of NO were reduced by up to about 90% by NH{sub 3} injection. The concentrations of most of the other inorganic and organic compounds, including in particular PCDD and PCDF, did not change significantly.

  4. Development of a specific affinity-matured exosite inhibitor to MT1-MMP that efficiently inhibits tumor cell invasion in vitro and metastasis in vivo

    PubMed Central

    Botkjaer, Kenneth A.; Kwok, Hang Fai; Terp, Mikkel G.; Karatt-Vellatt, Aneesh; Santamaria, Salvatore; McCafferty, John; Andreasen, Peter A.; Itoh, Yoshifumi; Ditzel, Henrik J.; Murphy, Gillian

    2016-01-01

    The membrane-associated matrix metalloproteinase-14, MT1-MMP, has been implicated in pericellular proteolysis with an important role in cellular invasion of collagenous tissues. It is substantially upregulated in various cancers and rheumatoid arthritis, and has been considered as a potential therapeutic target. Here, we report the identification of antibody fragments to MT1-MMP that potently and specifically inhibit its cell surface functions. Lead antibody clones displayed inhibitory activity towards pro-MMP-2 activation, collagen-film degradation and gelatin-film degradation, and were shown to bind to the MT1-MMP catalytic domain outside the active site cleft, inhibiting binding to triple helical collagen. Affinity maturation using CDR3 randomization created a second generation of antibody fragments with dissociation constants down to 0.11 nM, corresponding to an improved affinity of 332-fold with the ability to interfere with cell-surface MT1-MMP functions, displaying IC50 values down to 5 nM. Importantly, the new inhibitors were able to inhibit collagen invasion by tumor-cells in vitro and in vivo primary tumor growth and metastasis of MDA-MB-231 cells in a mouse orthotopic xenograft model. Herein is the first demonstration that an inhibitory antibody targeting sites outside the catalytic cleft of MT1-MMP can effectively abrogate its in vivo activity during tumorigenesis and metastasis. PMID:26934448

  5. The role of factor XIa (FXIa) catalytic domain exosite residues in substrate catalysis and inhibition by the Kunitz protease inhibitor domain of protease nexin 2.

    PubMed

    Su, Ya-Chi; Miller, Tara N; Navaneetham, Duraiswamy; Schoonmaker, Robert T; Sinha, Dipali; Walsh, Peter N

    2011-09-01

    To select residues in coagulation factor XIa (FXIa) potentially important for substrate and inhibitor interactions, we examined the crystal structure of the complex between the catalytic domain of FXIa and the Kunitz protease inhibitor (KPI) domain of a physiologically relevant FXIa inhibitor, protease nexin 2 (PN2). Six FXIa catalytic domain residues (Glu(98), Tyr(143), Ile(151), Arg(3704), Lys(192), and Tyr(5901)) were subjected to mutational analysis to investigate the molecular interactions between FXIa and the small synthetic substrate (S-2366), the macromolecular substrate (factor IX (FIX)) and inhibitor PN2KPI. Analysis of all six Ala mutants demonstrated normal K(m) values for S-2366 hydrolysis, indicating normal substrate binding compared with plasma FXIa; however, all except E98A and K192A had impaired values of k(cat) for S-2366 hydrolysis. All six Ala mutants displayed deficient k(cat) values for FIX hydrolysis, and all were inhibited by PN2KPI with normal values of K(i) except for K192A, and Y5901A, which displayed increased values of K(i). The integrity of the S1 binding site residue, Asp(189), utilizing p-aminobenzamidine, was intact for all FXIa mutants. Thus, whereas all six residues are essential for catalysis of the macromolecular substrate (FIX), only four (Tyr(143), Ile(151), Arg(3704), and Tyr(5901)) are important for S-2366 hydrolysis; Glu(98) and Lys(192) are essential for FIX but not S-2366 hydrolysis; and Lys(192) and Tyr(5901) are required for both inhibitor and macromolecular substrate interactions. PMID:21778227

  6. The role of the ADAMTS13 cysteine-rich domain in VWF binding and proteolysis

    PubMed Central

    Lane, David A.; Crawley, James T. B.

    2015-01-01

    ADAMTS13 proteolytically regulates the platelet-tethering function of von Willebrand factor (VWF). ADAMTS13 function is dependent upon multiple exosites that specifically bind the unraveled VWF A2 domain and enable proteolysis. We carried out a comprehensive functional analysis of the ADAMTS13 cysteine-rich (Cys-rich) domain using engineered glycans, sequence swaps, and single point mutations in this domain. Mutagenesis of Cys-rich domain–charged residues had no major effect on ADAMTS13 function, and 5 out of 6 engineered glycans on the Cys-rich domain also had no effect on ADAMTS13 function. However, a glycan attached at position 476 appreciably reduced both VWF binding and proteolysis. Substitution of Cys-rich sequences for the corresponding regions in ADAMTS1 identified a hydrophobic pocket involving residues Gly471-Val474 as being of critical importance for both VWF binding and proteolysis. Substitution of hydrophobic VWF A2 domain residues to serine in a region (residues 1642-1659) previously postulated to interact with the Cys-rich domain revealed the functional importance of VWF residues Ile1642, Trp1644, Ile1649, Leu1650, and Ile1651. Furthermore, the functional deficit of the ADAMTS13 Cys-rich Gly471-Val474 variant was dependent on these same hydrophobic VWF residues, suggesting that these regions form complementary binding sites that directly interact to enhance the efficiency of the proteolytic reaction. PMID:25564400

  7. The Unique Non-Catalytic C-Terminus of P37delta-PI3K Adds Proliferative Properties In Vitro and In Vivo

    PubMed Central

    Ejeskär, Katarina; Vickes, Oscar; Kuchipudi, Arunakar; Wettergren, Yvonne; Uv, Anne; Rotter Sopasakis, Victoria

    2015-01-01

    The PI3K/Akt pathway is central for numerous cellular functions and is frequently deregulated in human cancers. The catalytic subunits of PI3K, p110, are thought to have a potential oncogenic function, and the regulatory subunit p85 exerts tumor suppressor properties. The fruit fly, Drosophila melanogaster, is a highly suitable system to investigate PI3K signaling, expressing one catalytic, Dp110, and one regulatory subunit, Dp60, and both show strong homology with the human PI3K proteins p110 and p85. We recently showed that p37δ, an alternatively spliced product of human PI3K p110δ, displayed strong proliferation-promoting properties despite lacking the catalytic domain completely. Here we functionally evaluate the different domains of human p37δ in Drosophila. The N-terminal region of Dp110 alone promotes cell proliferation, and we show that the unique C-terminal region of human p37δ further enhances these proliferative properties, both when expressed in Drosophila, and in human HEK-293 cells. Surprisingly, although the N-terminal region of Dp110 and the C-terminal region of p37δ both display proliferative effects, over-expression of full length Dp110 or the N-terminal part of Dp110 decreases survival in Drosophila, whereas the unique C-terminal region of p37δ prevents this effect. Furthermore, we found that the N-terminal region of the catalytic subunit of PI3K p110, including only the Dp60 (p85)-binding domain and a minor part of the Ras binding domain, rescues phenotypes with severely impaired development caused by Dp60 over-expression in Drosophila, possibly by regulating the levels of Dp60, and also by increasing the levels of phosphorylated Akt. Our results indicate a novel kinase-independent function of the PI3K catalytic subunit. PMID:26024481

  8. Characterization of a human coagulation factor Xa-binding site on Viperidae snake venom phospholipases A2 by affinity binding studies and molecular bioinformatics

    PubMed Central

    Faure, Grazyna; Gowda, Veerabasappa T; Maroun, Rachid C

    2007-01-01

    Background The snake venom group IIA secreted phospholipases A2 (SVPLA2), present in the Viperidae snake family exhibit a wide range of toxic and pharmacological effects. They exert their different functions by catalyzing the hydrolysis of phospholipids (PL) at the membrane/water interface and by highly specific direct binding to: (i) presynaptic membrane-bound or intracellular receptors; (ii) natural PLA2-inhibitors from snake serum; and (iii) coagulation factors present in human blood. Results Using surface plasmon resonance (SPR) protein-protein interaction measurements and an in vitro biological test of inhibition of prothrombinase activity, we identify a number of Viperidae venom SVPLA2s that inhibit blood coagulation through direct binding to human blood coagulation factor Xa (FXa) via a non-catalytic, PL-independent mechanism. We classify the SVPLA2s in four groups, depending on the strength of their binding. Molecular electrostatic potentials calculated at the surface of 3D homology-modeling models show a correlation with inhibition of prothrombinase activity. In addition, molecular docking simulations between SVPLA2 and FXa guided by the experimental data identify the potential FXa binding site on the SVPLA2s. This site is composed of the following regions: helices A and B, the Ca2+ loop, the helix C-β-wing loop, and the C-terminal fragment. Some of the SVPLA2 binding site residues belong also to the interfacial binding site (IBS). The interface in FXa involves both, the light and heavy chains. Conclusion We have experimentally identified several strong FXa-binding SVPLA2s that disrupt the function of the coagulation cascade by interacting with FXa by the non-catalytic PL-independent mechanism. By theoretical methods we mapped the interaction sites on both, the SVPLA2s and FXa. Our findings may lead to the design of novel, non-competitive FXa inhibitors. PMID:18062812

  9. Final technical report on investigation of selective non-catalytic processes for in-situ reduction of NOx and CO emissions from marine gas turbines and diesel engines. Final technical report, 1 April 1994-31 March 1997

    SciTech Connect

    Bowman, C.T.; Hanson, R.K.

    1997-05-15

    The effectiveness of selective non-catalytic (SNCR) gas-phase reaction processes for NO(x) removal from combustion products at elevated pressures was investigated in a combined experimental and modeling research program. Calculations using existing chemical models for SNCR indicate that the temperature window for NO(x) removal by SNCR widens as pressure increases, resulting in NO(x) removal at higher temperatures than at ambient pressure. The calculations also show a significant reduction in the reaction time scale with increasing pressure. These observations suggest the possibility of utilizing SNCR for reducing NO(x) emissions from marine gas turbines and Diesel engines by direct injection of a reductant species into the combustion chamber, possibly as a fuel additive. Initial experiments were carried out at atmospheric pressure to allow comparison with previous measurements in order to verify the experimental approach. Following these validation tests, experiments were conducted at elevated pressures. Results from these tests, confirm the model predictions that the SNCR window for NO(x) removal widens as the pressure increases. In addition, a project was initiated, to develop compact, robust, solid-state microsensors for pollutant species for use in control systems for reduction of pollutant emissions. The sensor concept is based on integrated circuit fabrication technology that allows the integration of a metal-oxide sensor with associated electronic circuitry on a single chip. Initial efforts focused on development of a sensor for NO(x).

  10. Investigation of the selectivity of thrombin-binding aptamers for thrombin titration in murine plasma.

    PubMed

    Trapaidze, Ana; Hérault, Jean-Pascal; Herbert, Jean-Marc; Bancaud, Aurélien; Gué, Anne-Marie

    2016-04-15

    Detection of thrombin in plasma raises timely challenges to enable therapeutic management of thrombosis in patients under vital threat. Thrombin binding aptamers represent promising candidates as sensing elements for the development of real-time thrombin biosensors; however implementation of such biosensor requires the clear understanding of thrombin-aptamer interaction properties in real-like environment. In this study, we used Surface Plasmon Resonance technique to answer the questions of specificity and sensitivity of thrombin detection by the thrombin-binding aptamers HD1, NU172 and HD22. We systematically characterized their properties in the presence of thrombin, as well as interfering molecular species such as the thrombin precursor prothrombin, thrombin in complex with some of its natural inhibitors, nonspecific serum proteins, and diluted plasma. Kinetic experiments show the multiple binding modes of HD1 and NU172, which both interact with multiple sites of thrombin with low nanomolar affinities and show little specificity of interaction for prothrombin vs. thrombin. HD22, on the other hand, binds specifically to thrombin exosite II and has no affinity to prothrombin at all. While thrombin in complex with some of its inhibitors could not be recognized by any aptamer, the binding of HD1 and NU172 properties is compromised by thrombin inhibitors alone, as well as with serum albumin. Finally, the complex nature of plasma was overwhelming for HD1, but we define conditions for the thrombin detection at 10nM range in 100-fold diluted plasma by HD22. Consequently HD22 showed key advantage over HD1 and NU172, and appears as the only alternative to design an aptasensor.

  11. The collagen binding domain of gelatinase A modulates degradation of collagen IV by gelatinase B.

    PubMed

    Gioia, Magda; Monaco, Susanna; Van Den Steen, Philippe E; Sbardella, Diego; Grasso, Giuseppe; Marini, Stefano; Overall, Christopher M; Opdenakker, Ghislain; Coletta, Massimo

    2009-02-20

    Type IV collagen remodeling plays a critical role in inflammatory responses, angiogenesis and metastasis. Its remodeling is executed by a family of matrix metalloproteinases (MMPs), of which the constitutive gelatinase A (MMP2) and the inducible gelatinase B (MMP9) are key examples. Thus, in many pathological conditions, both gelatinases act together. Kinetic data are reported for the enzymatic processing at 37 degrees C of type IV collagen from human placenta by MMP9 and its modulation by the fibronectin-like collagen binding domain (CBD) of MMP2. The alpha1 and alpha2 chain components of type IV collagen were cleaved by gelatinases and identified by mass spectrometry as well as Edman sequencing. Surface plasmon resonance interaction assays showed that CBD bound type IV collagen at two topologically distinct sites. On the basis of linked-function analysis, we demonstrated that CBD of MMP2 tuned the cleavage of collagen IV by MMP9, presumably by inducing a ligand-linked structural change on the type IV collagen. At low concentrations, the CBD bound the first site and thereby allosterically modulated the binding of MMP9 to collagen IV, thus enhancing the collagenolytic activity of MMP9. At high concentrations, CBD binding to the second site interfered with MMP9 binding to collagen IV, acting as a competitive inhibitor. Interestingly, modulation of collagen IV degradation by inactive forms of MMP2 also occurred in a cell-based system, revealing that this interrelationship affected neutrophil migration across a collagen IV membrane. The regulation of the proteolytic processing by a catalytically inactive domain (i.e., CBD) suggests that the two gelatinases might cooperate in degrading substrates even when either one is inactive. This observation reinforces the idea of exosite targets for MMP inhibitors, which should include all macromolecular substrate recognition sites.

  12. Binding Procurement

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Vaidyanathan, Hari

    2007-01-01

    This viewgraph presentation reviews the use of the binding procurement process in purchasing Aerospace Flight Battery Systems. NASA Engineering and Safety Center (NESC) requested NASA Aerospace Flight Battery Systems Working Group to develop a set of guideline requirements document for Binding Procurement Contracts.

  13. Functional characterization of the Cdc42p binding domain of yeast Ste20p protein kinase.

    PubMed Central

    Leberer, E; Wu, C; Leeuw, T; Fourest-Lieuvin, A; Segall, J E; Thomas, D Y

    1997-01-01

    Ste20p from Saccharomyces cerevisiae belongs to the Ste20p/p65PAK family of protein kinases which are highly conserved from yeast to man and regulate conserved mitogen-activated protein kinase pathways. Ste20p fulfills multiple roles in pheromone signaling, morphological switching and vegetative growth and binds Cdc42p, a Rho-like small GTP binding protein required for polarized morphogenesis. We have analyzed the functional consequences of mutations that prevent binding of Cdc42p to Ste20p. The complete amino-terminal, non-catalytic half of Ste20p, including the conserved Cdc42p binding domain, was dispensable for heterotrimeric G-protein-mediated pheromone signaling. However, the Cdc42p binding domain was necessary for filamentous growth in response to nitrogen starvation and for an essential function that Ste20p shares with its isoform Cla4p during vegetative growth. Moreover, the Cdc42p binding domain was required for cell-cell adhesion during conjugation. Subcellular localization of wild-type and mutant Ste20p fused to green fluorescent protein showed that the Cdc42p binding domain is needed to direct localization of Ste20p to regions of polarized growth. These results suggest that Ste20p is regulated in different developmental pathways by different mechanisms which involve heterotrimeric and small GTP binding proteins. PMID:9009270

  14. An autoantibody epitope comprising residues R660, Y661, and Y665 in the ADAMTS13 spacer domain identifies a binding site for the A2 domain of VWF

    PubMed Central

    Pos, Wouter; Crawley, James T. B.; Fijnheer, Rob; Voorberg, Jan; Lane, David A.

    2010-01-01

    In the majority of patients with acquired thrombotic thrombocytopenic purpura (TTP), antibodies are directed toward the spacer domain of ADAMTS13. We have previously shown that region Y658-Y665 is involved. We now show that replacement of R660, Y661, or Y665 with alanine in ADAMTS13 reduced/abolished the binding of 2 previously isolated human monoclonal antibodies and polyclonal antibodies derived from plasma of 6 patients with acquired TTP. We investigated whether these residues also influenced cleavage of short von Willebrand factor (VWF) fragment substrate VWF115. An ADAMTS13 variant (R660A/Y661A/Y665A, ADAMTS13-RYY) showed a 12-fold reduced catalytic efficiency (kcat/Km) arising from greatly reduced (> 25-fold) binding, demonstrated by surface plasmon resonance. The influence of these residue changes on full-length VWF was determined with denaturing and flow assays. ADAMTS13-RYY had reduced activity in both, with proteolysis of VWF unaffected by autoantibody. Binding of ADAMTS13-RYY mutant to VWF was, however, similar to normal. Our results demonstrate that residues within Y658-Y665 of the ADAMTS13 spacer domain that are targeted by autoantibodies in TTP directly interact with a complementary exosite (E1660-R1668) within the VWF A2 domain. Residues R660, Y661, and Y665 are critical for proteolysis of short VWF substrates, but wider domain interactions also make important contributions to cleavage of full-length VWF. PMID:20032502

  15. Identification of a novel family of carbohydrate-binding modules with broad ligand specificity

    PubMed Central

    Duan, Cheng-Jie; Feng, Yu-Liang; Cao, Qi-Long; Huang, Ming-Yue; Feng, Jia-Xun

    2016-01-01

    Most enzymes that act on carbohydrates include non-catalytic carbohydrate-binding modules (CBMs) that recognize and target carbohydrates. CBMs bring their appended catalytic modules into close proximity with the target substrate and increase the hydrolytic rate of enzymes acting on insoluble substrates. We previously identified a novel CBM (CBMC5614-1) at the C-terminus of endoglucanase C5614-1 from an uncultured microorganism present in buffalo rumen. In the present study, that the functional region of CBMC5614-1 involved in ligand binding was localized to 134 amino acids. Two representative homologs of CBMC5614-1, sharing the same ligand binding profile, targeted a range of β-linked polysaccharides that adopt very different conformations. Targeted substrates included soluble and insoluble cellulose, β-1,3/1,4-mixed linked glucans, xylan, and mannan. Mutagenesis revealed that three conserved aromatic residues (Trp-380, Tyr-411, and Trp-423) play an important role in ligand recognition and targeting. These results suggest that CBMC5614-1 and its homologs form a novel CBM family (CBM72) with a broad ligand-binding specificity. CBM72 members can provide new insight into CBM-ligand interactions and may have potential in protein engineering and biocatalysis. PMID:26765840

  16. Ion-pair binding: is binding both binding better?

    PubMed

    Roelens, Stefano; Vacca, Alberto; Francesconi, Oscar; Venturi, Chiara

    2009-08-17

    It is often tempting to explain chemical phenomena on the basis of intuitive principles, but this practice can frequently lead to biased analysis of data and incorrect conclusions. One such intuitive principle is brought into play in the binding of salts by synthetic receptors. Following the heuristic concept that "binding both is binding better", it is widely believed that ditopic receptors capable of binding both ionic partners of a salt are more effective than monotopic receptors because of a cooperative effect. Using a newly designed ditopic receptor and a generalized binding descriptor, we show here that, when the problem is correctly formulated and the appropriate algorithm is derived, the cooperativity principle is neither general nor predictable, and that competition between ion binding and ion pairing may even lead to inhibition rather than enhancement of the binding of an ion to a ditopic receptor.

  17. Inhibition of Mycobacterium tuberculosis PknG by non-catalytic rubredoxin domain specific modification: reaction of an electrophilic nitro-fatty acid with the Fe-S center.

    PubMed

    Gil, Magdalena; Graña, Martín; Schopfer, Francisco J; Wagner, Tristan; Denicola, Ana; Freeman, Bruce A; Alzari, Pedro M; Batthyány, Carlos; Durán, Rosario

    2013-12-01

    PknG from Mycobacterium tuberculosis is a Ser/Thr protein kinase that regulates key metabolic processes within the bacterial cell as well as signaling pathways from the infected host cell. This multidomain protein has a conserved canonical kinase domain with N- and C-terminal flanking regions of unclear functional roles. The N-terminus harbors a rubredoxin-like domain (Rbx), a bacterial protein module characterized by an iron ion coordinated by four cysteine residues. Disruption of the Rbx-metal binding site by simultaneous mutations of all the key cysteine residues significantly impairs PknG activity. This encouraged us to evaluate the effect of a nitro-fatty acid (9- and 10-nitro-octadeca-9-cis-enoic acid; OA-NO2) on PknG activity. Fatty acid nitroalkenes are electrophilic species produced during inflammation and metabolism that react with nucleophilic residues of target proteins (i.e., Cys and His), modulating protein function and subcellular distribution in a reversible manner. Here, we show that OA-NO2 inhibits kinase activity by covalently adducting PknG remote from the catalytic domain. Mass spectrometry-based analysis established that cysteines located at Rbx are the specific targets of the nitroalkene. Cys-nitroalkylation is a Michael addition reaction typically reverted by thiols. However, the reversible OA-NO2-mediated nitroalkylation of the kinase results in an irreversible inhibition of PknG. Cys adduction by OA-NO2 induced iron release from the Rbx domain, revealing a new strategy for the specific inhibition of PknG. These results affirm the relevance of the Rbx domain as a target for PknG inhibition and support that electrophilic lipid reactions of Rbx-Cys may represent a new drug strategy for specific PknG inhibition.

  18. Analyzing binding data.

    PubMed

    Motulsky, Harvey J; Neubig, Richard R

    2010-07-01

    Measuring the rate and extent of radioligand binding provides information on the number of binding sites, and their affinity and accessibility of these binding sites for various drugs. This unit explains how to design and analyze such experiments.

  19. Mechanistic basis of Nek7 activation through Nek9 binding and induced dimerization

    PubMed Central

    Haq, Tamanna; Richards, Mark W.; Burgess, Selena G.; Gallego, Pablo; Yeoh, Sharon; O'Regan, Laura; Reverter, David; Roig, Joan; Fry, Andrew M.; Bayliss, Richard

    2015-01-01

    Mitotic spindle assembly requires the regulated activities of protein kinases such as Nek7 and Nek9. Nek7 is autoinhibited by the protrusion of Tyr97 into the active site and activated by the Nek9 non-catalytic C-terminal domain (CTD). CTD binding apparently releases autoinhibition because mutation of Tyr97 to phenylalanine increases Nek7 activity independently of Nek9. Here we find that self-association of the Nek9-CTD is needed for Nek7 activation. We map the minimal Nek7 binding region of Nek9 to residues 810–828. A crystal structure of Nek7Y97F bound to Nek9810–828 reveals a binding site on the C-lobe of the Nek7 kinase domain. Nek7Y97F crystallizes as a back-to-back dimer between kinase domain N-lobes, in which the specific contacts within the interface are coupled to the conformation of residue 97. Hence, we propose that the Nek9-CTD activates Nek7 through promoting back-to-back dimerization that releases the autoinhibitory tyrosine residue, a mechanism conserved in unrelated kinase families. PMID:26522158

  20. Mechanistic basis of Nek7 activation through Nek9 binding and induced dimerization

    NASA Astrophysics Data System (ADS)

    Haq, Tamanna; Richards, Mark W.; Burgess, Selena G.; Gallego, Pablo; Yeoh, Sharon; O'Regan, Laura; Reverter, David; Roig, Joan; Fry, Andrew M.; Bayliss, Richard

    2015-11-01

    Mitotic spindle assembly requires the regulated activities of protein kinases such as Nek7 and Nek9. Nek7 is autoinhibited by the protrusion of Tyr97 into the active site and activated by the Nek9 non-catalytic C-terminal domain (CTD). CTD binding apparently releases autoinhibition because mutation of Tyr97 to phenylalanine increases Nek7 activity independently of Nek9. Here we find that self-association of the Nek9-CTD is needed for Nek7 activation. We map the minimal Nek7 binding region of Nek9 to residues 810-828. A crystal structure of Nek7Y97F bound to Nek9810-828 reveals a binding site on the C-lobe of the Nek7 kinase domain. Nek7Y97F crystallizes as a back-to-back dimer between kinase domain N-lobes, in which the specific contacts within the interface are coupled to the conformation of residue 97. Hence, we propose that the Nek9-CTD activates Nek7 through promoting back-to-back dimerization that releases the autoinhibitory tyrosine residue, a mechanism conserved in unrelated kinase families.

  1. Probing the mechanism of ligand recognition in family 29 carbohydrate-binding modules.

    PubMed

    Flint, James; Bolam, David N; Nurizzo, Didier; Taylor, Edward J; Williamson, Michael P; Walters, Christopher; Davies, Gideon J; Gilbert, Harry J

    2005-06-24

    The recycling of photosynthetically fixed carbon, by the action of microbial plant cell wall hydrolases, is integral to one of the major geochemical cycles and is of considerable industrial importance. Non-catalytic carbohydrate-binding modules (CBMs) play a key role in this degradative process by targeting hydrolytic enzymes to their cognate substrate within the complex milieu of polysaccharides that comprise the plant cell wall. Family 29 CBMs have, thus far, only been found in an extracellular multienzyme plant cell wall-degrading complex from the anaerobic fungus Piromyces equi, where they exist as a CBM29-1:CBM29-2 tandem. Here we present both the structure of the CBM29-1 partner, at 1.5 A resolution, and examine the importance of hydrophobic stacking interactions as well as direct and solvent-mediated hydrogen bonds in the binding of CBM29-2 to different polysaccharides. CBM29 domains display unusual binding properties, exhibiting specificity for both beta-manno- and beta-gluco-configured ligands such as mannan, cellulose, and glucomannan. Mutagenesis reveals that "stacking" of tryptophan residues in the n and n+2 subsites plays a critical role in ligand binding, whereas the loss of tyrosine-mediated stacking in the n+4 subsite reduces, but does not abrogate, polysaccharide recognition. Direct hydrogen bonds to ligand, such as those provided by Arg-112 and Glu-78, play a pivotal role in the interaction with both mannan and cellulose, whereas removal of water-mediated interactions has comparatively little effect on carbohydrate binding. The interactions of CBM29-2 with the O2 of glucose or mannose contribute little to binding affinity, explaining why this CBM displays dual gluco/manno specificity. PMID:15784618

  2. Short-time dynamics of pH-dependent conformation and substrate binding in the active site of beta-glucosidases: A computational study.

    PubMed

    Flannelly, David F; Aoki, Thalia G; Aristilde, Ludmilla

    2015-09-01

    The complete degradation of cellulose to glucose is essential to carbon turnover in terrestrial ecosystems and to engineered biofuel production. A rate-limiting step in this pathway is catalyzed by beta-glucosidase (BG) enzymes, which convert cellulobiose into two glucose molecules. The activity of these enzymes has been shown to vary with solution pH. However, it is not well understood how pH influences the enzyme conformation required for catalytic action on the substrate. A structural understanding of this pH effect is important for predicting shifts in BG activity in bioreactors and environmental matrices, in addition to informing targeted protein engineering. Here we applied molecular dynamics simulations to explore conformational and substrate binding dynamics in two well-characterized BGs of bacterial (Clostridium cellulovorans) and fungal (Trichoderma reesei) origins as a function of pH. The enzymes were simulated in an explicit solvated environment, with NaCl as electrolytes, at their prominent ionization states obtained at pH 5, 6, 7, and 7.5. Our findings indicated that pH-dependent changes in the ionization states of non-catalytic residues localized outside of the immediate active site led to pH-dependent disruption of the active site conformation. This disruption interferes with favorable H-bonding interactions with catalytic residues required to initiate catalysis on the substrate. We also identified specific non-catalytic residues that are involved in stabilizing the substrate at the optimal pH for enzyme activity. The simulations further revealed the dynamics of water-bridging interactions both outside and inside the substrate binding cleft during structural changes in the enzyme-substrate complex. These findings provide new structural insights into the pH-dependent substrate binding specificity in BGs. PMID:26160737

  3. Short-time dynamics of pH-dependent conformation and substrate binding in the active site of beta-glucosidases: A computational study.

    PubMed

    Flannelly, David F; Aoki, Thalia G; Aristilde, Ludmilla

    2015-09-01

    The complete degradation of cellulose to glucose is essential to carbon turnover in terrestrial ecosystems and to engineered biofuel production. A rate-limiting step in this pathway is catalyzed by beta-glucosidase (BG) enzymes, which convert cellulobiose into two glucose molecules. The activity of these enzymes has been shown to vary with solution pH. However, it is not well understood how pH influences the enzyme conformation required for catalytic action on the substrate. A structural understanding of this pH effect is important for predicting shifts in BG activity in bioreactors and environmental matrices, in addition to informing targeted protein engineering. Here we applied molecular dynamics simulations to explore conformational and substrate binding dynamics in two well-characterized BGs of bacterial (Clostridium cellulovorans) and fungal (Trichoderma reesei) origins as a function of pH. The enzymes were simulated in an explicit solvated environment, with NaCl as electrolytes, at their prominent ionization states obtained at pH 5, 6, 7, and 7.5. Our findings indicated that pH-dependent changes in the ionization states of non-catalytic residues localized outside of the immediate active site led to pH-dependent disruption of the active site conformation. This disruption interferes with favorable H-bonding interactions with catalytic residues required to initiate catalysis on the substrate. We also identified specific non-catalytic residues that are involved in stabilizing the substrate at the optimal pH for enzyme activity. The simulations further revealed the dynamics of water-bridging interactions both outside and inside the substrate binding cleft during structural changes in the enzyme-substrate complex. These findings provide new structural insights into the pH-dependent substrate binding specificity in BGs.

  4. Evolution of the chalcone-isomerase fold from fatty-acid binding to stereospecific catalysis.

    PubMed

    Ngaki, Micheline N; Louie, Gordon V; Philippe, Ryan N; Manning, Gerard; Pojer, Florence; Bowman, Marianne E; Li, Ling; Larsen, Elise; Wurtele, Eve Syrkin; Noel, Joseph P

    2012-05-24

    Specialized metabolic enzymes biosynthesize chemicals of ecological importance, often sharing a pedigree with primary metabolic enzymes. However, the lineage of the enzyme chalcone isomerase (CHI) remained unknown. In vascular plants, CHI-catalysed conversion of chalcones to chiral (S)-flavanones is a committed step in the production of plant flavonoids, compounds that contribute to attraction, defence and development. CHI operates near the diffusion limit with stereospecific control. Although associated primarily with plants, the CHI fold occurs in several other eukaryotic lineages and in some bacteria. Here we report crystal structures, ligand-binding properties and in vivo functional characterization of a non-catalytic CHI-fold family from plants. Arabidopsis thaliana contains five actively transcribed genes encoding CHI-fold proteins, three of which additionally encode amino-terminal chloroplast-transit sequences. These three CHI-fold proteins localize to plastids, the site of de novo fatty-acid biosynthesis in plant cells. Furthermore, their expression profiles correlate with those of core fatty-acid biosynthetic enzymes, with maximal expression occurring in seeds and coinciding with increased fatty-acid storage in the developing embryo. In vitro, these proteins are fatty-acid-binding proteins (FAPs). FAP knockout A. thaliana plants show elevated α-linolenic acid levels and marked reproductive defects, including aberrant seed formation. Notably, the FAP discovery defines the adaptive evolution of a stereospecific and catalytically 'perfected' enzyme from a non-enzymatic ancestor over a defined period of plant evolution.

  5. A Non-catalytic Deep Desulphurization Process using Hydrodynamic Cavitation.

    PubMed

    Suryawanshi, Nalinee B; Bhandari, Vinay M; Sorokhaibam, Laxmi Gayatri; Ranade, Vivek V

    2016-01-01

    A novel approach is developed for desulphurization of fuels or organics without use of catalyst. In this process, organic and aqueous phases are mixed in a predefined manner under ambient conditions and passed through a cavitating device. Vapor cavities formed in the cavitating device are then collapsed which generate (in-situ) oxidizing species which react with the sulphur moiety resulting in the removal of sulphur from the organic phase. In this work, vortex diode was used as a cavitating device. Three organic solvents (n-octane, toluene and n-octanol) containing known amount of a model sulphur compound (thiophene) up to initial concentrations of 500 ppm were used to verify the proposed method. A very high removal of sulphur content to the extent of 100% was demonstrated. The nature of organic phase and the ratio of aqueous to organic phase were found to be the most important process parameters. The results were also verified and substantiated using commercial diesel as a solvent. The developed process has great potential for deep of various organics, in general, and for transportation fuels, in particular. PMID:27605492

  6. Cord Wood Testing in a Non-Catalytic Wood Stove

    SciTech Connect

    Butcher, T.; Trojanowski, R.; Wei, G.

    2014-06-30

    EPA Method 28 and the current wood stove regulations have been in-place since 1988. Recently, EPA proposed an update to the existing NSPS for wood stove regulations which includes a plan to transition from the current crib wood fuel to cord wood fuel for certification testing. Cord wood is seen as generally more representative of field conditions while the crib wood is seen as more repeatable. In any change of certification test fuel, there are questions about the impact on measured results and the correlation between tests with the two different fuels. The purpose of the work reported here is to provide data on the performance of a noncatalytic stove with cord wood. The stove selected has previously been certified with crib wood which provides a basis for comparison with cord wood. Overall, particulate emissions were found to be considerably higher with cord wood.

  7. Non-catalytic surfaces for metallic heat shields

    NASA Technical Reports Server (NTRS)

    Swann, R. T.; Wood, G. M.; Brown, R. D.; Upchurch, B. T.; Allen, G. J.

    1984-01-01

    The magnitude of the atom recombination coefficients needed for metal heat shield surfaces on Shuttle-type vehicles is analyzed and discussed. Prior work which identifies surfaces having low catalytic activity is reviewed. Arc tunnel tests to evaluate catalytic activity are described and the difficulties of such tests are discussed. Results are presented which show major differences between atom recombination and atom exchange from molecules. Results of surface analysis show that bulk and surface composition of a coating are different.

  8. Non-catalytic coatings for hypersonic vehicle applications

    NASA Technical Reports Server (NTRS)

    Cunnington, G. R.; Robinson, J. C.; Clark, R. K.

    1990-01-01

    CVD coatings of boron-oxygen-silicon and aluminum-boron-oxygen and silicon compositions were applied to alpha 2 and gamma titanium-aluminide alloys, and tested under simulated earth reentry conditions to evaluate oxidation protection, recombination effifiency and total emittance under cyclic exposures between temperatures of 300 and 1255 K. The degree of oxidation protection afforded to the alloys was evaluated from the amount of specimen weight gain after a 100 hour exposure to air at atmospheric pressure and at a temperature of 1255 K. Data are presented for two types of coatings, a monolithic and a multilayer, which have recombination efficiencies from 0.005 to 0.020 after ten one-half hour long simulated reentry cycles. Total normal emittance was 0.80 or greater and weight gain was less than 10 g/sq m both coating types. Compositional and morphological changes resulting from the exposures are discussed in relation to time-dependent variations in recombination efficiency.

  9. A Non-catalytic Deep Desulphurization Process using Hydrodynamic Cavitation

    PubMed Central

    Suryawanshi, Nalinee B.; Bhandari, Vinay M.; Sorokhaibam, Laxmi Gayatri; Ranade, Vivek V.

    2016-01-01

    A novel approach is developed for desulphurization of fuels or organics without use of catalyst. In this process, organic and aqueous phases are mixed in a predefined manner under ambient conditions and passed through a cavitating device. Vapor cavities formed in the cavitating device are then collapsed which generate (in-situ) oxidizing species which react with the sulphur moiety resulting in the removal of sulphur from the organic phase. In this work, vortex diode was used as a cavitating device. Three organic solvents (n-octane, toluene and n-octanol) containing known amount of a model sulphur compound (thiophene) up to initial concentrations of 500 ppm were used to verify the proposed method. A very high removal of sulphur content to the extent of 100% was demonstrated. The nature of organic phase and the ratio of aqueous to organic phase were found to be the most important process parameters. The results were also verified and substantiated using commercial diesel as a solvent. The developed process has great potential for deep of various organics, in general, and for transportation fuels, in particular. PMID:27605492

  10. A Non-catalytic Deep Desulphurization Process using Hydrodynamic Cavitation

    NASA Astrophysics Data System (ADS)

    Suryawanshi, Nalinee B.; Bhandari, Vinay M.; Sorokhaibam, Laxmi Gayatri; Ranade, Vivek V.

    2016-09-01

    A novel approach is developed for desulphurization of fuels or organics without use of catalyst. In this process, organic and aqueous phases are mixed in a predefined manner under ambient conditions and passed through a cavitating device. Vapor cavities formed in the cavitating device are then collapsed which generate (in-situ) oxidizing species which react with the sulphur moiety resulting in the removal of sulphur from the organic phase. In this work, vortex diode was used as a cavitating device. Three organic solvents (n-octane, toluene and n-octanol) containing known amount of a model sulphur compound (thiophene) up to initial concentrations of 500 ppm were used to verify the proposed method. A very high removal of sulphur content to the extent of 100% was demonstrated. The nature of organic phase and the ratio of aqueous to organic phase were found to be the most important process parameters. The results were also verified and substantiated using commercial diesel as a solvent. The developed process has great potential for deep of various organics, in general, and for transportation fuels, in particular.

  11. Analyzing radioligand binding data.

    PubMed

    Motulsky, Harvey; Neubig, Richard

    2002-08-01

    Radioligand binding experiments are easy to perform, and provide useful data in many fields. They can be used to study receptor regulation, discover new drugs by screening for compounds that compete with high affinity for radioligand binding to a particular receptor, investigate receptor localization in different organs or regions using autoradiography, categorize receptor subtypes, and probe mechanisms of receptor signaling, via measurements of agonist binding and its regulation by ions, nucleotides, and other allosteric modulators. This unit reviews the theory of receptor binding and explains how to analyze experimental data. Since binding data are usually best analyzed using nonlinear regression, this unit also explains the principles of curve fitting with nonlinear regression.

  12. Circular Permutation Provides an Evolutionary Link between Two Families of Calcium-dependent Carbohydrate Binding Modules*

    PubMed Central

    Montanier, Cedric; Flint, James E.; Bolam, David N.; Xie, Hefang; Liu, Ziyuan; Rogowski, Artur; Weiner, David P.; Ratnaparkhe, Supriya; Nurizzo, Didier; Roberts, Shirley M.; Turkenburg, Johan P.; Davies, Gideon J.; Gilbert, Harry J.

    2010-01-01

    The microbial deconstruction of the plant cell wall is a critical biological process, which also provides important substrates for environmentally sustainable industries. Enzymes that hydrolyze the plant cell wall generally contain non-catalytic carbohydrate binding modules (CBMs) that contribute to plant cell wall degradation. Here we report the biochemical properties and crystal structure of a family of CBMs (CBM60) that are located in xylanases. Uniquely, the proteins display broad ligand specificity, targeting xylans, galactans, and cellulose. Some of the CBM60s display enhanced affinity for their ligands through avidity effects mediated by protein dimerization. The crystal structure of vCBM60, displays a β-sandwich with the ligand binding site comprising a broad cleft formed by the loops connecting the two β-sheets. Ligand recognition at site 1 is, exclusively, through hydrophobic interactions, whereas binding at site 2 is conferred by polar interactions between a protein-bound calcium and the O2 and O3 of the sugar. The observation, that ligand recognition at site 2 requires only a β-linked sugar that contains equatorial hydroxyls at C2 and C3, explains the broad ligand specificity displayed by vCBM60. The ligand-binding apparatus of vCBM60 displays remarkable structural conservation with a family 36 CBM (CBM36); however, the residues that contribute to carbohydrate recognition are derived from different regions of the two proteins. Three-dimensional structure-based sequence alignments reveal that CBM36 and CBM60 are related by circular permutation. The biological and evolutionary significance of the mechanism of ligand recognition displayed by family 60 CBMs is discussed. PMID:20659893

  13. Enhanced exo-inulinase activity and stability by fusion of an inulin-binding module.

    PubMed

    Zhou, Shun-Hua; Liu, Yuan; Zhao, Yu-Juan; Chi, Zhe; Chi, Zhen-Ming; Liu, Guang-Lei

    2016-09-01

    In this study, an inulin-binding module from Bacillus macerans was successfully fused to an exo-inulinase from Kluyveromyces marxianus, creating a hybrid functional enzyme. The recombinant exo-inulinase (rINU), the hybrid enzyme (rINUIBM), and the recombinant inulin-binding module (rIBM) were, respectively, heterologously expressed and biochemically characterized. It was found that both the inulinase activity and the catalytic efficiency (k cat/K m(app)) of the rINUIBM were considerably higher than those of rINU. Though the rINU and the rINUIBM shared the same optimum pH of 4.5, the optimum temperature of the rINUIBM (60 °C) was 5 °C higher than that of the rINU. Notably, the fused IBM significantly enhanced both the pH stability and the thermostability of the rINUIBM, suggesting that the rINUIBM obtained would have more extensive potential applications. Furthermore, the fusion of the IBM could substantially improve the inulin-binding capability of the rINUIBM, which was consistent with the determination of the K m(app). This meant that the fused IBM could play a critical role in the recognition of polysaccharides and enhanced the hydrolase activity of the associated inulinase by increasing enzyme-substrate proximity. Besides, the extra supplement of the independent non-catalytic rIBM could also improve the inulinase activity of the rINU. However, this improvement was much better in case of the fusion. Consequently, the IBM could be designated as a multifunctional domain that was responsible for the activity enhancement, the stabilization, and the substrate binding of the rINUIBM. All these features obtained in this study make the rINUIBM become an attractive candidate for an efficient inulin hydrolysis. PMID:27164865

  14. Enhanced exo-inulinase activity and stability by fusion of an inulin-binding module.

    PubMed

    Zhou, Shun-Hua; Liu, Yuan; Zhao, Yu-Juan; Chi, Zhe; Chi, Zhen-Ming; Liu, Guang-Lei

    2016-09-01

    In this study, an inulin-binding module from Bacillus macerans was successfully fused to an exo-inulinase from Kluyveromyces marxianus, creating a hybrid functional enzyme. The recombinant exo-inulinase (rINU), the hybrid enzyme (rINUIBM), and the recombinant inulin-binding module (rIBM) were, respectively, heterologously expressed and biochemically characterized. It was found that both the inulinase activity and the catalytic efficiency (k cat/K m(app)) of the rINUIBM were considerably higher than those of rINU. Though the rINU and the rINUIBM shared the same optimum pH of 4.5, the optimum temperature of the rINUIBM (60 °C) was 5 °C higher than that of the rINU. Notably, the fused IBM significantly enhanced both the pH stability and the thermostability of the rINUIBM, suggesting that the rINUIBM obtained would have more extensive potential applications. Furthermore, the fusion of the IBM could substantially improve the inulin-binding capability of the rINUIBM, which was consistent with the determination of the K m(app). This meant that the fused IBM could play a critical role in the recognition of polysaccharides and enhanced the hydrolase activity of the associated inulinase by increasing enzyme-substrate proximity. Besides, the extra supplement of the independent non-catalytic rIBM could also improve the inulinase activity of the rINU. However, this improvement was much better in case of the fusion. Consequently, the IBM could be designated as a multifunctional domain that was responsible for the activity enhancement, the stabilization, and the substrate binding of the rINUIBM. All these features obtained in this study make the rINUIBM become an attractive candidate for an efficient inulin hydrolysis.

  15. Protein Binding Pocket Dynamics.

    PubMed

    Stank, Antonia; Kokh, Daria B; Fuller, Jonathan C; Wade, Rebecca C

    2016-05-17

    The dynamics of protein binding pockets are crucial for their interaction specificity. Structural flexibility allows proteins to adapt to their individual molecular binding partners and facilitates the binding process. This implies the necessity to consider protein internal motion in determining and predicting binding properties and in designing new binders. Although accounting for protein dynamics presents a challenge for computational approaches, it expands the structural and physicochemical space for compound design and thus offers the prospect of improved binding specificity and selectivity. A cavity on the surface or in the interior of a protein that possesses suitable properties for binding a ligand is usually referred to as a binding pocket. The set of amino acid residues around a binding pocket determines its physicochemical characteristics and, together with its shape and location in a protein, defines its functionality. Residues outside the binding site can also have a long-range effect on the properties of the binding pocket. Cavities with similar functionalities are often conserved across protein families. For example, enzyme active sites are usually concave surfaces that present amino acid residues in a suitable configuration for binding low molecular weight compounds. Macromolecular binding pockets, on the other hand, are located on the protein surface and are often shallower. The mobility of proteins allows the opening, closing, and adaptation of binding pockets to regulate binding processes and specific protein functionalities. For example, channels and tunnels can exist permanently or transiently to transport compounds to and from a binding site. The influence of protein flexibility on binding pockets can vary from small changes to an already existent pocket to the formation of a completely new pocket. Here, we review recent developments in computational methods to detect and define binding pockets and to study pocket dynamics. We introduce five

  16. Protein Binding Pocket Dynamics.

    PubMed

    Stank, Antonia; Kokh, Daria B; Fuller, Jonathan C; Wade, Rebecca C

    2016-05-17

    The dynamics of protein binding pockets are crucial for their interaction specificity. Structural flexibility allows proteins to adapt to their individual molecular binding partners and facilitates the binding process. This implies the necessity to consider protein internal motion in determining and predicting binding properties and in designing new binders. Although accounting for protein dynamics presents a challenge for computational approaches, it expands the structural and physicochemical space for compound design and thus offers the prospect of improved binding specificity and selectivity. A cavity on the surface or in the interior of a protein that possesses suitable properties for binding a ligand is usually referred to as a binding pocket. The set of amino acid residues around a binding pocket determines its physicochemical characteristics and, together with its shape and location in a protein, defines its functionality. Residues outside the binding site can also have a long-range effect on the properties of the binding pocket. Cavities with similar functionalities are often conserved across protein families. For example, enzyme active sites are usually concave surfaces that present amino acid residues in a suitable configuration for binding low molecular weight compounds. Macromolecular binding pockets, on the other hand, are located on the protein surface and are often shallower. The mobility of proteins allows the opening, closing, and adaptation of binding pockets to regulate binding processes and specific protein functionalities. For example, channels and tunnels can exist permanently or transiently to transport compounds to and from a binding site. The influence of protein flexibility on binding pockets can vary from small changes to an already existent pocket to the formation of a completely new pocket. Here, we review recent developments in computational methods to detect and define binding pockets and to study pocket dynamics. We introduce five

  17. Analyzing radioligand binding data.

    PubMed

    Motulsky, H; Neubig, R

    2001-05-01

    A radioligand is a radioactively labeled drug that can associate with a receptor, transporter, enzyme, or any protein of interest. Measuring the rate and extent of binding provides information on the number of binding sites, and their affinity and accessibility for various drugs. Radioligand binding experiments are easy to perform, and provide useful data in many fields. For example, radioligand binding studies are used to study receptor regulation, investigate receptor localization in different organs or regions using autoradiography, categorize receptor subtypes, and probe mechanisms of receptor signaling. This unit reviews the theory of receptor binding and explains how to analyze experimental data. Since binding data are usually best analyzed using nonlinear regression, this unit also explains the principles of curve fitting with nonlinear regression.

  18. Evolving nucleotide binding surfaces

    NASA Technical Reports Server (NTRS)

    Kieber-Emmons, T.; Rein, R.

    1981-01-01

    An analysis is presented of the stability and nature of binding of a nucleotide to several known dehydrogenases. The employed approach includes calculation of hydrophobic stabilization of the binding motif and its intermolecular interaction with the ligand. The evolutionary changes of the binding motif are studied by calculating the Euclidean deviation of the respective dehydrogenases. Attention is given to the possible structural elements involved in the origin of nucleotide recognition by non-coded primordial polypeptides.

  19. Melanin-binding radiopharmaceuticals

    SciTech Connect

    Packer, S; Fairchild, R G; Watts, K P; Greenberg, D; Hannon, S J

    1980-01-01

    The scope of this paper is limited to an analysis of the factors that are important to the relationship of radiopharmaceuticals to melanin. While the authors do not attempt to deal with differences between melanin-binding vs. melanoma-binding, a notable variance is assumed. (PSB)

  20. SPRYSEC Effectors: A Versatile Protein-Binding Platform to Disrupt Plant Innate Immunity

    PubMed Central

    Diaz-Granados, Amalia; Petrescu, Andrei-José; Goverse, Aska; Smant, Geert

    2016-01-01

    Persistent infections by sedentary plant-parasitic nematodes are a major threat to important food crops all over the world. These roundworms manipulate host plant cell morphology and physiology to establish sophisticated feeding structures. Key modifications to plant cells during their transition into feeding structures are largely attributed to the activity of effectors secreted by the nematodes. The SPRYSEC effectors were initially identified in the potato cyst nematodes Globodera rostochiensis and G. pallida, and are characterized by a single SPRY domain, a non-catalytic domain present in modular proteins with different functions. The SPRY domain is wide-spread among eukaryotes and thought to be involved in mediating protein–protein interactions. Thus far, the SPRY domain is only reported as a functional domain in effectors of plant-parasitic nematodes, but not of other plant pathogens. SPRYSEC effectors have been implicated in both suppression and activation of plant immunity, but other possible roles in nematode virulence remain undefined. Here, we review the latest reports on the structure, function, and sequence diversity of SPRYSEC effectors, which provide support for a model featuring these effectors as a versatile protein-binding platform for the nematodes to target a wide range of host proteins during parasitism. PMID:27812363

  1. Metallochaperones: bind and deliver

    SciTech Connect

    Rosenzweig, A.C.

    2010-03-08

    Metallochaperones deliver metal ions directly to target proteins via specific protein-protein interactions. Recent research has led to a molecular picture of how some metallochaperones bind metal ions, recognize their partner proteins, and accomplish metal ion transfer.

  2. ¹H, ¹³C and ¹⁵N backbone and side-chain resonance assignments of a family 36 carbohydrate binding module of xylanase from Paenibacillus campinasensis.

    PubMed

    Wang, Yu-Sheng; Ko, Chun-Han; Chang, Hao-Ting; Yang, Kai-Jay; Chen, Yu-Jen; Huang, Shing-Jong; Fang, Pei-Ju; Chang, Chi-Fon; Tzou, Der-Lii M

    2014-10-01

    Paenibacillus campinasensis BL11 isolated from black liquor secretes multiple glycoside hydrolases (GHs) against all kinds of polysaccharides. GH consists of a catalytic module and non-catalytic carbohydrate-binding modules (CBMs), in which CBMs append to the catalytic module, mediating specific interactions with insoluble carbohydrates to promote the hydrolysis efficiency of the cognate enzyme. Endo-β-1,4-xylanase (XylX) is one of the GHs reveals high enzymatic activity in a wide range of pH and thermal endurance, suitable for bioconversion and bio-refinement applications. In this work, we report the resonance assignments of a family 36 CBM (characterized as CBM36) derived from XylX. Our investigations will facilitate molecular structure determination and molecular dynamics analysis of CBMs.

  3. The Conformational Changes Induced by Ubiquinone Binding in the Na+-pumping NADH:Ubiquinone Oxidoreductase (Na+-NQR) Are Kinetically Controlled by Conserved Glycines 140 and 141 of the NqrB Subunit*

    PubMed Central

    Strickland, Madeleine; Juárez, Oscar; Neehaul, Yashvin; Cook, Darcie A.; Barquera, Blanca; Hellwig, Petra

    2014-01-01

    Na+-pumping NADH:ubiquinone oxidoreductase (Na+-NQR) is responsible for maintaining a sodium gradient across the inner bacterial membrane. This respiratory enzyme, which couples sodium pumping to the electron transfer between NADH and ubiquinone, is not present in eukaryotes and as such could be a target for antibiotics. In this paper it is shown that the site of ubiquinone reduction is conformationally coupled to the NqrB subunit, which also hosts the final cofactor in the electron transport chain, riboflavin. Previous work showed that mutations in conserved NqrB glycine residues 140 and 141 affect ubiquinone reduction and the proper functioning of the sodium pump. Surprisingly, these mutants did not affect the dissociation constant of ubiquinone or its analog HQNO (2-n-heptyl-4-hydroxyquinoline N-oxide) from Na+-NQR, which indicates that these residues do not participate directly in the ubiquinone binding site but probably control its accessibility. Indeed, redox-induced difference spectroscopy showed that these mutations prevented the conformational change involved in ubiquinone binding but did not modify the signals corresponding to bound ubiquinone. Moreover, data are presented that demonstrate the NqrA subunit is able to bind ubiquinone but with a low non-catalytically relevant affinity. It is also suggested that Na+-NQR contains a single catalytic ubiquinone binding site and a second site that can bind ubiquinone but is not active. PMID:25006248

  4. Squaring cooperative binding circles

    PubMed Central

    Deutman, Alexander B. C.; Monnereau, Cyrille; Moalin, Mohamed; Coumans, Ruud G. E.; Veling, Nico; Coenen, Michiel; Smits, Jan M. M.; de Gelder, René; Elemans, Johannes A. A. W.; Ercolani, Gianfranco; Nolte, Roeland J. M.; Rowan, Alan E.

    2009-01-01

    The cooperative binding effects of viologens and pyridines to a synthetic bivalent porphyrin receptor are used as a model system to study how the magnitudes of these effects relate to the experimentally obtained values. The full thermodynamic and kinetic circles concerning both activation and inhibition of the cage of the receptor for the binding of viologens were measured and evaluated. The results strongly emphasize the apparent character of measured binding and rate constants, in which the fractional saturation of receptors with other guests is linearly expressed in these constants. The presented method can be used as a simple tool to better analyze and comprehend the experimentally observed kinetics and thermodynamics of natural and artificial cooperative systems. PMID:19470643

  5. Mechanisms for optical binding

    NASA Astrophysics Data System (ADS)

    Andrews, David L.; Davila Romero, Luciana C.

    2009-08-01

    The phenomenon of optical binding is now experimentally very well established. With a recognition of the facility to collect and organize particles held in an optical trap, the related term 'optical matter' has also been gaining currency, highlighting possibilities for a significant interplay between optically induced inter-particle forces and other interactions such as chemical bonding and dispersion forces. Optical binding itself has a variety of interpretations. With some of these explanations being more prominent than others, and their applicability to some extent depending on the nature of the particles involved, a listing of these has to include the following: collective scattering, laser-dressed Casimir forces, virtual photon coupling, optically induced dipole resonance, and plasmon resonance coupling. It is the purpose of this paper to review and to establish the extent of fundamental linkages between these theoretical descriptions, recognizing the value that each has in relating the phenomenon of optical binding to the broader context of other, closely related physical measurements.

  6. Inhibition of selectin binding

    DOEpatents

    Nagy, Jon O.; Spevak, Wayne R.; Dasgupta, Falguni; Bertozzi, Caroline

    1999-01-01

    This invention provides compositions for inhibiting the binding between two cells, one expressing P- or L-selectin on the surface and the other expressing the corresponding ligand. A covalently crosslinked lipid composition is prepared having saccharides and acidic group on separate lipids. The composition is then interposed between the cells so as to inhibit binding. Inhibition can be achieved at an effective oligosaccharide concentration as low as 10.sup.6 fold below that of the free saccharide. Since selectins are involved in recruiting cells to sites of injury, these composition scan be used to palliate certain inflammatory and immunological conditions.

  7. Inhibition of selectin binding

    DOEpatents

    Nagy, Jon O.; Spevak, Wayne R.; Dasgupta, Falguni; Bertozzi, Caroline

    2001-10-09

    This invention provides compositions for inhibiting the binding between two cells, one expressing P- or L-selectin on the surface and the other expressing the corresponding ligand. A covalently crosslinked lipid composition is prepared having saccharides and acidic group on separate lipids. The composition is then interposed between the cells so as to inhibit binding. Inhibition can be achieved at an effective oligosaccharide concentration as low as 10.sup.6 fold below that of the free saccharide. Since selectins are involved in recruiting cells to sites of injury, these composition scan be used to palliate certain inflammatory and immunological conditions.

  8. Inhibition of selectin binding

    DOEpatents

    Nagy, Jon O.; Spevak, Wayne R.; Dasgupta, Falguni; Bertozzi, Carolyn

    1999-10-05

    This invention provides a system for inhibiting the binding between two cells, one expressing P- or L-selectin on the surface and the other expressing the corresponding ligand. A covalently crosslinked lipid composition is prepared having saccharides and acidic group on separate lipids. The composition is then interposed between the cells so as to inhibit binding. Inhibition can be achieved at an effective oligosaccharide concentration as low as 10.sup.6 fold below that of the free saccharide. Since selectins are involved in recruiting cells to sites of injury, this system can be used to palliate certain inflammatory and immunological conditions.

  9. The folate binding proteins.

    PubMed

    Corrocher, R; Olivieri, O; Pacor, M L

    1991-01-01

    Folates are essential molecules for cell life and, not surprisingly, their transport in biological fluids and their transfer to cells are finely regulated. Folate binding proteins play a major role in this regulation. This paper will review our knowledge on these proteins and examine the most recent advances in this field. PMID:1820987

  10. MD-2 binds cholesterol.

    PubMed

    Choi, Soo-Ho; Kim, Jungsu; Gonen, Ayelet; Viriyakosol, Suganya; Miller, Yury I

    2016-02-19

    Cholesterol is a structural component of cellular membranes, which is transported from liver to peripheral cells in the form of cholesterol esters (CE), residing in the hydrophobic core of low-density lipoprotein. Oxidized CE (OxCE) is often found in plasma and in atherosclerotic lesions of subjects with cardiovascular disease. Our earlier studies have demonstrated that OxCE activates inflammatory responses in macrophages via toll-like receptor-4 (TLR4). Here we demonstrate that cholesterol binds to myeloid differentiation-2 (MD-2), a TLR4 ancillary molecule, which is a binding receptor for bacterial lipopolysaccharide (LPS) and is indispensable for LPS-induced TLR4 dimerization and signaling. Cholesterol binding to MD-2 was competed by LPS and by OxCE-modified BSA. Furthermore, soluble MD-2 in human plasma and MD-2 in mouse atherosclerotic lesions carried cholesterol, the finding supporting the biological significance of MD-2 cholesterol binding. These results help understand the molecular basis of TLR4 activation by OxCE and mechanisms of chronic inflammation in atherosclerosis.

  11. Sequential memory: Binding dynamics

    NASA Astrophysics Data System (ADS)

    Afraimovich, Valentin; Gong, Xue; Rabinovich, Mikhail

    2015-10-01

    Temporal order memories are critical for everyday animal and human functioning. Experiments and our own experience show that the binding or association of various features of an event together and the maintaining of multimodality events in sequential order are the key components of any sequential memories—episodic, semantic, working, etc. We study a robustness of binding sequential dynamics based on our previously introduced model in the form of generalized Lotka-Volterra equations. In the phase space of the model, there exists a multi-dimensional binding heteroclinic network consisting of saddle equilibrium points and heteroclinic trajectories joining them. We prove here the robustness of the binding sequential dynamics, i.e., the feasibility phenomenon for coupled heteroclinic networks: for each collection of successive heteroclinic trajectories inside the unified networks, there is an open set of initial points such that the trajectory going through each of them follows the prescribed collection staying in a small neighborhood of it. We show also that the symbolic complexity function of the system restricted to this neighborhood is a polynomial of degree L - 1, where L is the number of modalities.

  12. Cellulose binding domain proteins

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.; Doi, R.

    1998-11-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  13. Lectin binding in meningiomas.

    PubMed

    Kleinert, R; Radner, H

    1987-01-01

    Forty-two meningiomas of different morphological sub-type were examined to determine their pattern of binding to 11 different lectins which characterize cell surface components such as carbohydrate residues. Histiocytic and xanthoma cells within meningiomas could be demonstrated with six different lectins: wheat germ agglutinin (WGA), peanut agglutinin (PNA) Bauhinia purpurea agglutinin (BPA), Helix pomatia agglutinin (HPA), Vicia fava agglutinin (VFA) and Soyabean agglutinin (SBA). Vascular elements including endothelial cells and intimal cells, bound Ulex europaeus agglutinin type 1 (UEA 1), WGA and HPA. The fibrous stroma in fibrous and fibroblastic meningiomas bound PNA, Laburnum alpinum agglutinin (LAA) and SBA. Tumour cells in meningotheliomatous meningiomas and some areas of anaplastic meningiomas bound Concanavalin A, PNA, LAA and VFA whereas tumour cells in fibrous and fibroblastic meningiomas bound BPA, LAA and VFA. Lectin binding has proved to be of value in detecting histiocytic and xanthoma cells together with vascular elements within meningiomas. In addition, the different lectin binding patterns allow different histological sub-types of meningioma to be distinguished although the biological significance of the binding patterns is unclear. PMID:3658105

  14. Cellulose binding domain proteins

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  15. Sequential memory: Binding dynamics.

    PubMed

    Afraimovich, Valentin; Gong, Xue; Rabinovich, Mikhail

    2015-10-01

    Temporal order memories are critical for everyday animal and human functioning. Experiments and our own experience show that the binding or association of various features of an event together and the maintaining of multimodality events in sequential order are the key components of any sequential memories-episodic, semantic, working, etc. We study a robustness of binding sequential dynamics based on our previously introduced model in the form of generalized Lotka-Volterra equations. In the phase space of the model, there exists a multi-dimensional binding heteroclinic network consisting of saddle equilibrium points and heteroclinic trajectories joining them. We prove here the robustness of the binding sequential dynamics, i.e., the feasibility phenomenon for coupled heteroclinic networks: for each collection of successive heteroclinic trajectories inside the unified networks, there is an open set of initial points such that the trajectory going through each of them follows the prescribed collection staying in a small neighborhood of it. We show also that the symbolic complexity function of the system restricted to this neighborhood is a polynomial of degree L - 1, where L is the number of modalities. PMID:26520084

  16. VAP-B binds to Rab3GAP1 at the ER: its implication in nuclear envelope formation through the ER-Golgi intermediate compartment.

    PubMed

    Hantan, Degejirihu; Yamamoto, Yasunori; Sakisaka, Toshiaki

    2014-01-01

    The vesicle-associated membrane protein-associated protein B (VAP-B) is a tail-anchored protein in the endoplasmic reticulum (ER). VAP-B functions as an adaptor protein to recruit target proteins to the ER and execute various cellular functions, lipid transport, membrane traffic, ER stress etc. Recently, VAP-B has been shown to regulate the nuclear envelope protein transport through the ER-Golgi intermediate compartment (ERGIC). We showed here that VAP-B directly binds to Rab3 GTPase activating protein 1 (Rab3GAP1), the catalytic subunit of Rab3GAP, through the two phenylalanines (FF) in an acidic tract (FFAT)-like motif of Rab3GAP1. Rab3GAP consists of two subunits, the catalytic subunit Rab3GAP1 and the non-catalytic subunit Rab3GAP2. VAP-B binds to Rab3GAP1 even in the Rab3GAP1/2 heterodimer complex. A single amino acid substitution of the FFAT-like motif reduces the binding activity of Rab3GAP1 to VAP-B. On the other hand, the FFAT-like motif mutation increases the binding activity of Rab3GAP1 to ERGIC-53, the ERGIC marker protein. Overexpression of Rab3GAP1 affects nuclear envelope formation more potently than that of Rab3GAP1 FFAT-like motif mutant. These results suggest that the binding of VAP-B to Rab3GAP1 is implicated in the regulation of nuclear envelope formation through ERGIC.

  17. Evolutionary history of double-stranded RNA binding proteins in plants: identification of new cofactors involved in easiRNA biogenesis.

    PubMed

    Clavel, Marion; Pélissier, Thierry; Montavon, Thomas; Tschopp, Marie-Aude; Pouch-Pélissier, Marie-Noëlle; Descombin, Julie; Jean, Viviane; Dunoyer, Patrice; Bousquet-Antonelli, Cécile; Deragon, Jean-Marc

    2016-05-01

    In this work, we retrace the evolutionary history of plant double-stranded RNA binding proteins (DRBs), a group of non-catalytic factors containing one or more double-stranded RNA binding motif (dsRBM) that play important roles in small RNA biogenesis and functions. Using a phylogenetic approach, we show that multiple dsRBM DRBs are systematically composed of two different types of dsRBMs evolving under different constraints and likely fulfilling complementary functions. In vascular plants, four distinct clades of multiple dsRBM DRBs are always present with the exception of Brassicaceae species, that do not possess member of the newly identified clade we named DRB6. We also identified a second new and highly conserved DRB family (we named DRB7) whose members possess a single dsRBM that shows concerted evolution with the most C-terminal dsRBM domain of the Dicer-like 4 (DCL4) proteins. Using a BiFC approach, we observed that Arabidopsis thaliana DRB7.2 (AtDRB7.2) can directly interact with AtDRB4 but not with AtDCL4 and we provide evidence that both AtDRB7.2 and AtDRB4 participate in the epigenetically activated siRNAs pathway.

  18. Evolutionary history of double-stranded RNA binding proteins in plants: identification of new cofactors involved in easiRNA biogenesis.

    PubMed

    Clavel, Marion; Pélissier, Thierry; Montavon, Thomas; Tschopp, Marie-Aude; Pouch-Pélissier, Marie-Noëlle; Descombin, Julie; Jean, Viviane; Dunoyer, Patrice; Bousquet-Antonelli, Cécile; Deragon, Jean-Marc

    2016-05-01

    In this work, we retrace the evolutionary history of plant double-stranded RNA binding proteins (DRBs), a group of non-catalytic factors containing one or more double-stranded RNA binding motif (dsRBM) that play important roles in small RNA biogenesis and functions. Using a phylogenetic approach, we show that multiple dsRBM DRBs are systematically composed of two different types of dsRBMs evolving under different constraints and likely fulfilling complementary functions. In vascular plants, four distinct clades of multiple dsRBM DRBs are always present with the exception of Brassicaceae species, that do not possess member of the newly identified clade we named DRB6. We also identified a second new and highly conserved DRB family (we named DRB7) whose members possess a single dsRBM that shows concerted evolution with the most C-terminal dsRBM domain of the Dicer-like 4 (DCL4) proteins. Using a BiFC approach, we observed that Arabidopsis thaliana DRB7.2 (AtDRB7.2) can directly interact with AtDRB4 but not with AtDCL4 and we provide evidence that both AtDRB7.2 and AtDRB4 participate in the epigenetically activated siRNAs pathway. PMID:26858002

  19. Library Binding Manual. Revised Edition.

    ERIC Educational Resources Information Center

    Lakhanpal, S. K.

    This procedural manual is designed to be used in bindery sections in public, university and special libraries. It briefly discusses these general matters: administrative control; selection of a binder; when and what to bind; conventional binding; routines; missing issues; schedule for shipments; temporary binding; rare books, maps and newspapers;…

  20. Carboplatin binding to histidine

    SciTech Connect

    Tanley, Simon W. M.; Diederichs, Kay; Kroon-Batenburg, Loes M. J.; Levy, Colin; Schreurs, Antoine M. M.; Helliwell, John R.

    2014-08-29

    An X-ray crystal structure showing the binding of purely carboplatin to histidine in a model protein has finally been obtained. This required extensive crystallization trials and various novel crystal structure analyses. Carboplatin is a second-generation platinum anticancer agent used for the treatment of a variety of cancers. Previous X-ray crystallographic studies of carboplatin binding to histidine (in hen egg-white lysozyme; HEWL) showed the partial conversion of carboplatin to cisplatin owing to the high NaCl concentration used in the crystallization conditions. HEWL co-crystallizations with carboplatin in NaBr conditions have now been carried out to confirm whether carboplatin converts to the bromine form and whether this takes place in a similar way to the partial conversion of carboplatin to cisplatin observed previously in NaCl conditions. Here, it is reported that a partial chemical transformation takes place but to a transplatin form. Thus, to attempt to resolve purely carboplatin binding at histidine, this study utilized co-crystallization of HEWL with carboplatin without NaCl to eliminate the partial chemical conversion of carboplatin. Tetragonal HEWL crystals co-crystallized with carboplatin were successfully obtained in four different conditions, each at a different pH value. The structural results obtained show carboplatin bound to either one or both of the N atoms of His15 of HEWL, and this particular variation was dependent on the concentration of anions in the crystallization mixture and the elapsed time, as well as the pH used. The structural details of the bound carboplatin molecule also differed between them. Overall, the most detailed crystal structure showed the majority of the carboplatin atoms bound to the platinum centre; however, the four-carbon ring structure of the cyclobutanedicarboxylate moiety (CBDC) remained elusive. The potential impact of the results for the administration of carboplatin as an anticancer agent are described.

  1. BINDING OF ANTIGEN BY IMMUNOCYTES

    PubMed Central

    Bystryn, Jean-Claude; Siskind, Gregory W.; Uhr, Jonathan W.

    1973-01-01

    The binding of antigen to cells with antibody on their surface has been studied in a model system consisting of murine myeloma cells (MOPC 315) and DNP conjugates. Specific binding occurred between the DNP groups of DNP conjugates and cell surface immunoglobulin. Using this model, the binding affinities of multivalent and univalent DNP conjugates were measured directly by equilibrium-binding techniques and indirectly by displacement of bound conjugate with univalent hapten. With both approaches the multivalent conjugate was shown to bind to cells with an avidity 100–300 fold greater than the univalent hapten. Nonspecific binding of unrelated protein and repeated washing of cells was found to markedly dedecrease the specific binding of univalent conjugates, presumably because the relatively weak bonds dissociate readily. PMID:4734402

  2. An olive pollen protein with allergenic activity, Ole e 10, defines a novel family of carbohydrate-binding modules and is potentially implicated in pollen germination

    PubMed Central

    2005-01-01

    CBMs (carbohydrate-binding modules) are the most common non-catalytic modules associated with enzymes active in plant cell-wall hydrolysis. They have been frequently identified by amino acid sequence alignments, but only a few have been experimentally established to have a carbohydrate-binding activity. A small olive pollen protein, Ole e 10 (10 kDa), has been described as a major inducer of type I allergy in humans. In the present study, the ability of Ole e 10 to bind several polysaccharides has been analysed by affinity gel electrophoresis, which demonstrated that the protein bound 1,3-β-glucans preferentially. Analytical ultracentrifugation studies confirmed binding to laminarin, at a protein/ligand ratio of 1:1. The interaction of Ole e 10 with laminarin induced a conformational change in the protein, as detected by CD and fluorescence analyses, and an increase of 3.6 °C in the thermal denaturation temperature of Ole e 10 in the presence of the glycan. These results, and the absence of alignment of the sequence of Ole e 10 with that of any classified CBM, indicate that this pollen protein defines a novel family of CBMs, which we propose to name CBM43. Immunolocalization of Ole e 10 in mature and germinating pollen by transmission electron microscopy and confocal laser scanning microscopy demonstrated the co-localization of Ole e 10 and callose (1,3-β-glucan) in the growing pollen tube, suggesting a role for this protein in the metabolism of carbohydrates and in pollen tube wall re-formation during germination. PMID:15882149

  3. Multipose binding in molecular docking.

    PubMed

    Atkovska, Kalina; Samsonov, Sergey A; Paszkowski-Rogacz, Maciej; Pisabarro, M Teresa

    2014-02-14

    Molecular docking has been extensively applied in virtual screening of small molecule libraries for lead identification and optimization. A necessary prerequisite for successful differentiation between active and non-active ligands is the accurate prediction of their binding affinities in the complex by use of docking scoring functions. However, many studies have shown rather poor correlations between docking scores and experimental binding affinities. Our work aimed to improve this correlation by implementing a multipose binding concept in the docking scoring scheme. Multipose binding, i.e., the property of certain protein-ligand complexes to exhibit different ligand binding modes, has been shown to occur in nature for a variety of molecules. We conducted a high-throughput docking study and implemented multipose binding in the scoring procedure by considering multiple docking solutions in binding affinity prediction. In general, improvement of the agreement between docking scores and experimental data was observed, and this was most pronounced in complexes with large and flexible ligands and high binding affinities. Further developments of the selection criteria for docking solutions for each individual complex are still necessary for a general utilization of the multipose binding concept for accurate binding affinity prediction by molecular docking.

  4. A new family of rhamnogalacturonan lyases contains an enzyme that binds to cellulose.

    PubMed Central

    McKie, V A; Vincken, J P; Voragen, A G; van den Broek, L A; Stimson, E; Gilbert, H J

    2001-01-01

    Pseudomonas cellulosa is an aerobic bacterium that synthesizes an extensive array of modular cellulases and hemicellulases, which have a modular architecture consisting of catalytic domains and distinct non-catalytic carbohydrate-binding modules (CBMs). To investigate whether the main-chain-cleaving pectinases from this bacterium also have a modular structure, a library of P. cellulosa genomic DNA, constructed in lambdaZAPII, was screened for pectinase-encoding sequences. A recombinant phage that attacked arabinan, galactan and rhamnogalacturonan was isolated. The encoded enzyme, designated Rgl11A, had a modular structure comprising an N-terminal domain that exhibited homology to Bacillus and Streptomyces proteins of unknown function, a middle domain that exhibited sequence identity to fibronectin-3 domains, and a C-terminal domain that was homologous to family 2a CBMs. Expression of the three modules of the Pseudomonas protein in Escherichia coli showed that its C-terminal module was a functional cellulose-binding domain, and the N-terminal module consisted of a catalytic domain that hydrolysed rhamnogalacturonan-containing substrates. The activity of Rgl11A against apple- and potato-derived rhamnogalacturonan substrates indicated that the enzyme had a strong preference for rhamnogalacturonans that contained galactose side chains, and which were not esterified. The enzyme had an absolute requirement for calcium, a high optimum pH, and catalysis was associated with an increase in absorbance at 235 nm, indicating that glycosidic bond cleavage was mediated via a beta-elimination mechanism. These data indicate that Rgl11A is a rhamnogalacturonan lyase and, together with the homologous Bacillus and Streptomyces proteins, comprise a new family of polysaccharide lyases. The presence of a family 2a CBM in Rgl11A, and in a P. cellulosa pectate lyase described in the accompanying paper [Brown, Mallen, Charnock, Davies and Black (2001) Biochem. J. 355, 155-165] suggests that

  5. Carboplatin binding to histidine.

    PubMed

    Tanley, Simon W M; Diederichs, Kay; Kroon-Batenburg, Loes M J; Levy, Colin; Schreurs, Antoine M M; Helliwell, John R

    2014-09-01

    Carboplatin is a second-generation platinum anticancer agent used for the treatment of a variety of cancers. Previous X-ray crystallographic studies of carboplatin binding to histidine (in hen egg-white lysozyme; HEWL) showed the partial conversion of carboplatin to cisplatin owing to the high NaCl concentration used in the crystallization conditions. HEWL co-crystallizations with carboplatin in NaBr conditions have now been carried out to confirm whether carboplatin converts to the bromine form and whether this takes place in a similar way to the partial conversion of carboplatin to cisplatin observed previously in NaCl conditions. Here, it is reported that a partial chemical transformation takes place but to a transplatin form. Thus, to attempt to resolve purely carboplatin binding at histidine, this study utilized co-crystallization of HEWL with carboplatin without NaCl to eliminate the partial chemical conversion of carboplatin. Tetragonal HEWL crystals co-crystallized with carboplatin were successfully obtained in four different conditions, each at a different pH value. The structural results obtained show carboplatin bound to either one or both of the N atoms of His15 of HEWL, and this particular variation was dependent on the concentration of anions in the crystallization mixture and the elapsed time, as well as the pH used. The structural details of the bound carboplatin molecule also differed between them. Overall, the most detailed crystal structure showed the majority of the carboplatin atoms bound to the platinum centre; however, the four-carbon ring structure of the cyclobutanedicarboxylate moiety (CBDC) remained elusive. The potential impact of the results for the administration of carboplatin as an anticancer agent are described.

  6. Trifluoperazine binding to mutant calmodulins.

    PubMed

    Massom, L R; Lukas, T J; Persechini, A; Kretsinger, R H; Watterson, D M; Jarrett, H W

    1991-01-22

    Trifluoperazine (TFP) binding by 14 calmodulins, including 12 produced by site-directed mutagenesis, was determined. While vertebrate calmodulin binds 4.2 +/- 0.2 equiv of TFP, Escherichia coli expressed but unmutated calmodulins bind about 5.0 +/- 0.5 equiv of TFP. The cause for this difference is not known. The E. coli expressed proteins consist of two different series expressed from different calmodulin genes, CaMI and SYNCAM. The wild-type genes code for proteins that differ by nine conservative amino acid substitutions. Both these calmodulins bind 5 equiv of TFP with similar affinities, thus none of these conservative substitutions has any additional effect on TFP binding. Some altered calmodulins (deletion of EE83-84 or SEEE81-84, changing DEE118-120----KKK, M124----I,E120----K, or E82----K) have no appreciable effect on TFP binding. Other mutations affect either the binding of one TFP (deletion of E84) or about two TFP (changing E84----K, EEE82-84----KKK, E67----A, DEQ6-8----KKK, or E11----K). The mutations that affect TFP binding are localized to three regions of calmodulin: The amino-terminal alpha-helix, the central helix between the two globular ends of calmodulin, and a calcium-binding site in the second calcium-binding domain. The results are consistent with each of these regions either directly participating in drug binding or involved structurally in maintaining or inducing the correct conformation for TFP binding in the amino-terminal half of calmodulin.

  7. Binding Energy and Enzymatic Catalysis.

    ERIC Educational Resources Information Center

    Hansen, David E.; Raines, Ronald T.

    1990-01-01

    Discussed is the fundamental role that the favorable free energy of binding of the rate-determining transition state plays in catalysis. The principle that all of the catalytic factors discussed are realized by the use of this binding energy is reviewed. (CW)

  8. Cooperative binding: a multiple personality.

    PubMed

    Martini, Johannes W R; Diambra, Luis; Habeck, Michael

    2016-06-01

    Cooperative binding has been described in many publications and has been related to or defined by several different properties of the binding behavior of the ligand to the target molecule. In addition to the commonly used Hill coefficient, other characteristics such as a sigmoidal shape of the overall titration curve in a linear plot, a change of ligand affinity of the other binding sites when a site of the target molecule becomes occupied, or complex roots of the binding polynomial have been used to define or to quantify cooperative binding. In this work, we analyze how the different properties are related in the most general model for binding curves based on the grand canonical partition function and present several examples which highlight differences between the cooperativity characterizing properties which are discussed. Our results mainly show that among the presented definitions there are not two which fully coincide. Moreover, this work poses the question whether it can make sense to distinguish between positive and negative cooperativity based on the macroscopic binding isotherm only. This article shall emphasize that scientists who investigate cooperative effects in biological systems could help avoiding misunderstandings by stating clearly which kind of cooperativity they discuss.

  9. (/sup 3/)tetrahydrotrazodone binding. Association with serotonin binding sites

    SciTech Connect

    Kendall, D.A.; Taylor, D.P.; Enna, S.J.

    1983-05-01

    High (17 nM) and low (603 nM) affinity binding sites for (/sup 3/)tetrahydrotrazodone ((/sup 3/) THT), a biologically active analogue of trazodone, have been identified in rat brain membranes. The substrate specificity, concentration, and subcellular and regional distributions of these sites suggest that they may represent a component of the serotonin transmitter system. Pharmacological analysis of (/sup 3/)THT binding, coupled with brain lesion and drug treatment experiments, revealed that, unlike other antidepressants, (/sup 3/) THT does not attach to either a biogenic amine transporter or serotonin binding sites. Rather, it would appear that (/sup 3/)THT may be an antagonist ligand for the serotonin binding site. This probe may prove of value in defining the mechanism of action of trazodone and in further characterizing serotonin receptors.

  10. Superresolution microscopy with transient binding.

    PubMed

    Molle, Julia; Raab, Mario; Holzmeister, Susanne; Schmitt-Monreal, Daniel; Grohmann, Dina; He, Zhike; Tinnefeld, Philip

    2016-06-01

    For single-molecule localization based superresolution, the concentration of fluorescent labels has to be thinned out. This is commonly achieved by photophysically or photochemically deactivating subsets of molecules. Alternatively, apparent switching of molecules can be achieved by transient binding of fluorescent labels. Here, a diffusing dye yields bright fluorescent spots when binding to the structure of interest. As the binding interaction is weak, the labeling is reversible and the dye ligand construct diffuses back into solution. This approach of achieving superresolution by transient binding (STB) is reviewed in this manuscript. Different realizations of STB are discussed and compared to other localization-based superresolution modalities. We propose the development of labeling strategies that will make STB a highly versatile tool for superresolution microscopy at highest resolution. PMID:26773299

  11. When is protein binding important?

    PubMed

    Heuberger, Jules; Schmidt, Stephan; Derendorf, Hartmut

    2013-09-01

    The present paper is an ode to a classic citation by Benet and Hoener (2002. Clin Pharm Ther 71(3):115-121). The now classic paper had a huge impact on drug development and the way the issue of protein binding is perceived and interpreted. Although the authors very clearly pointed out the limitations and underlying assumptions for their delineations, these are too often overlooked and the classic paper's message is misinterpreted by broadening to cases that were not intended. Some members of the scientific community concluded from the paper that protein binding is not important. This was clearly not intended by the authors, as they finished their paper with a paragraph entitled: "When is protein binding important?" Misinterpretation of the underlying assumptions in the classic work can result in major pitfalls in drug development. Therefore, we revisit the topic of protein binding with the intention of clarifying when clinically relevant changes should be considered during drug development.

  12. Superresolution microscopy with transient binding.

    PubMed

    Molle, Julia; Raab, Mario; Holzmeister, Susanne; Schmitt-Monreal, Daniel; Grohmann, Dina; He, Zhike; Tinnefeld, Philip

    2016-06-01

    For single-molecule localization based superresolution, the concentration of fluorescent labels has to be thinned out. This is commonly achieved by photophysically or photochemically deactivating subsets of molecules. Alternatively, apparent switching of molecules can be achieved by transient binding of fluorescent labels. Here, a diffusing dye yields bright fluorescent spots when binding to the structure of interest. As the binding interaction is weak, the labeling is reversible and the dye ligand construct diffuses back into solution. This approach of achieving superresolution by transient binding (STB) is reviewed in this manuscript. Different realizations of STB are discussed and compared to other localization-based superresolution modalities. We propose the development of labeling strategies that will make STB a highly versatile tool for superresolution microscopy at highest resolution.

  13. Metal binding to the HIV nucleocapsid peptide.

    PubMed

    McLendon, G; Hull, H; Larkin, K; Chang, W

    1999-04-01

    Co(II) and Zn(II) binding constants have been measured for binding to the HIV-1 nucleocapsid N-terminal metal binding domain (residues 1-18), using competition titration methods and monitoring Co(II) binding by visible absorbance spectroscopy. Enthalpies for binding were directly measured by isothermal titration colorimetry. The results are compared with recent studies of related systems, including a study of Zn(II) binding by the full length protein.

  14. Binding of cellulose binding modules reveal differences between cellulose substrates

    PubMed Central

    Arola, Suvi; Linder, Markus B.

    2016-01-01

    The interaction between cellulase enzymes and their substrates is of central importance to several technological and scientific challenges. Here we report that the binding of cellulose binding modules (CBM) from Trichoderma reesei cellulases Cel6A and Cel7A show a major difference in how they interact with substrates originating from wood compared to bacterial cellulose. We found that the CBM from TrCel7A recognizes the two substrates differently and as a consequence shows an unexpected way of binding. We show that the substrate has a large impact on the exchange rate of the studied CBM, and moreover, CBM-TrCel7A seems to have an additional mode of binding on wood derived cellulose but not on cellulose originating from bacterial source. This mode is not seen in double CBM (DCBM) constructs comprising both CBM-TrCel7A and CBM-TrCel6A. The linker length of DCBMs affects the binding properties, and slows down the exchange rates of the proteins and thus, can be used to analyze the differences between the single CBM. These results have impact on the cellulase research and offer new understanding on how these industrially relevant enzymes act. PMID:27748440

  15. The binding domain structure of retinoblastoma-binding proteins.

    PubMed Central

    Figge, J.; Breese, K.; Vajda, S.; Zhu, Q. L.; Eisele, L.; Andersen, T. T.; MacColl, R.; Friedrich, T.; Smith, T. F.

    1993-01-01

    The retinoblastoma gene product (Rb), a cellular growth suppressor, complexes with viral and cellular proteins that contain a specific binding domain incorporating three invariant residues: Leu-X-Cys-X-Glu, where X denotes a nonconserved residue. Hydrophobic and electrostatic properties are strongly conserved in this segment even though the nonconserved amino acids vary considerably from one Rb-binding protein to another. In this report, we present a diagnostic computer pattern for a high-affinity Rb-binding domain featuring the three conserved residues as well as the conserved physico-chemical properties. Although the pattern encompasses only 10 residues (with only 4 of these explicitly defined), it exhibits 100% sensitivity and 99.95% specificity in database searches. This implies that a certain pattern of structural and physico-chemical properties encoded by this short sequence is sufficient to govern specific Rb binding. We also present evidence that the secondary structural conformation through this region is important for effective Rb binding. PMID:8382993

  16. Ion binding to biological macromolecules

    PubMed Central

    Petukh, Marharyta; Alexov, Emil

    2015-01-01

    Biological macromolecules carry out their functions in water and in the presence of ions. The ions can bind to the macromolecules either specifically or non-specifically, or can simply to be a part of the water phase providing physiological gradient across various membranes. This review outlines the differences between specific and non-specific ion binding in terms of the function and stability of the corresponding macromolecules. Furthermore, the experimental techniques to identify ion positions and computational methods to predict ion binding are reviewed and their advantages compared. It is indicated that specifically bound ions are relatively easier to be revealed while non-specifically associated ions are difficult to predict. In addition, the binding and the residential time of non-specifically bound ions are very much sensitive to the environmental factors in the cells, specifically to the local pH and ion concentration. Since these characteristics differ among the cellular compartments, the non-specific ion binding must be investigated with respect to the sub-cellular localization of the corresponding macromolecule. PMID:25774076

  17. Cholesterol binding to ion channels

    PubMed Central

    Levitan, Irena; Singh, Dev K.; Rosenhouse-Dantsker, Avia

    2014-01-01

    Numerous studies demonstrated that membrane cholesterol is a major regulator of ion channel function. The goal of this review is to discuss significant advances that have been recently achieved in elucidating the mechanisms responsible for cholesterol regulation of ion channels. The first major insight that comes from growing number of studies that based on the sterol specificity of cholesterol effects, show that several types of ion channels (nAChR, Kir, BK, TRPV) are regulated by specific sterol-protein interactions. This conclusion is supported by demonstrating direct saturable binding of cholesterol to a bacterial Kir channel. The second major advance in the field is the identification of putative cholesterol binding sites in several types of ion channels. These include sites at locations associated with the well-known cholesterol binding motif CRAC and its reversed form CARC in nAChR, BK, and TRPV, as well as novel cholesterol binding regions in Kir channels. Notably, in the majority of these channels, cholesterol is suggested to interact mainly with hydrophobic residues in non-annular regions of the channels being embedded in between transmembrane protein helices. We also discuss how identification of putative cholesterol binding sites is an essential step to understand the mechanistic basis of cholesterol-induced channel regulation. Clearly, however, these are only the first few steps in obtaining a general understanding of cholesterol-ion channels interactions and their roles in cellular and organ functions. PMID:24616704

  18. Water binding in legume seeds

    NASA Technical Reports Server (NTRS)

    Vertucci, C. W.; Leopold, A. C.

    1987-01-01

    The physical status of water in seeds has a pivotal role in determining the physiological reactions that can take place in the dry state. Using water sorption isotherms from cotyledon and axis tissue of five leguminous seeds, the strength of water binding and the numbers of binding sites have been estimated using van't Hoff analyses and the D'Arcy/Watt equation. These parameters of water sorption are calculated for each of the three regions of water binding and for a range of temperatures. Water sorption characteristics are reflective of the chemical composition of the biological materials as well as the temperature at which hydration takes place. Changes in the sorption characteristics with temperature and hydration level may suggest hydration-induced structural changes in cellular components.

  19. HIV: Cell Binding and Entry

    PubMed Central

    Wilen, Craig B.; Tilton, John C.; Doms, Robert W.

    2012-01-01

    The first step of the human immunodeficiency virus (HIV) replication cycle—binding and entry into the host cell—plays a major role in determining viral tropism and the ability of HIV to degrade the human immune system. HIV uses a complex series of steps to deliver its genome into the host cell cytoplasm while simultaneously evading the host immune response. To infect cells, the HIV protein envelope (Env) binds to the primary cellular receptor CD4 and then to a cellular coreceptor. This sequential binding triggers fusion of the viral and host cell membranes, initiating infection. Revealing the mechanism of HIV entry has profound implications for viral tropism, transmission, pathogenesis, and therapeutic intervention. Here, we provide an overview into the mechanism of HIV entry, provide historical context to key discoveries, discuss recent advances, and speculate on future directions in the field. PMID:22908191

  20. Binding Kinetics in Drug Discovery.

    PubMed

    Ferruz, Noelia; De Fabritiis, Gianni

    2016-07-01

    Over the last years, researchers have increasingly become interested in measuring and understanding drugs' binding kinetics, namely the time in which drug and its target associate and dissociate. Historically, drug discovery programs focused on the optimization of target affinity as a proxy of in-vivo efficacy. However, often the efficacy of a ligand is not appropriately described by the in-vitro measured drug-receptor affinity, but rather depends on the lifetime of the in-vivo drug-receptor interaction. In this review we review recent works that highlight the importance of binding kinetics, molecular determinants for rational optimization and the recent emergence of computational methods as powerful tools in measuring and understanding binding kinetics. PMID:27492236

  1. Diarylferrocene tweezers for cation binding.

    PubMed

    Lima, Carlos F R A C; Fernandes, Ana M; Melo, André; Gonçalves, Luís M; Silva, Artur M S; Santos, Luís M N B F

    2015-10-01

    The host-guest chemistry of ferrocene derivatives was explored by a combined experimental and theoretical study. Several 1-arylferrocenes and 1,1'-diarylferrocenes were synthesized by the Suzuki-Miyaura cross-coupling reaction. The ability of these compounds to bind small cations in the gas phase was investigated experimentally by electrospray ionization mass spectrometry (ESI-MS). The results evidenced a noticeable ability of all 1,1'-diarylferrocenes studied to bind cations, while the same was not observed for the corresponding 1-arylferrocenes nor ferrocene. The 1,1'-diarylferrocenecation relative interaction energies were evaluated by ESI-MS and quantum chemical calculations and showed that cation binding in these systems follows electrostatic trends. It was found that, due to their unique molecular shape and smooth torsional potentials, 1,1'-diarylferrocenes can act as molecular tweezers of small-sized cations in the gas phase. PMID:26309143

  2. Computational Prediction of RNA-Binding Proteins and Binding Sites.

    PubMed

    Si, Jingna; Cui, Jing; Cheng, Jin; Wu, Rongling

    2015-01-01

    Proteins and RNA interaction have vital roles in many cellular processes such as protein synthesis, sequence encoding, RNA transfer, and gene regulation at the transcriptional and post-transcriptional levels. Approximately 6%-8% of all proteins are RNA-binding proteins (RBPs). Distinguishing these RBPs or their binding residues is a major aim of structural biology. Previously, a number of experimental methods were developed for the determination of protein-RNA interactions. However, these experimental methods are expensive, time-consuming, and labor-intensive. Alternatively, researchers have developed many computational approaches to predict RBPs and protein-RNA binding sites, by combining various machine learning methods and abundant sequence and/or structural features. There are three kinds of computational approaches, which are prediction from protein sequence, prediction from protein structure, and protein-RNA docking. In this paper, we review all existing studies of predictions of RNA-binding sites and RBPs and complexes, including data sets used in different approaches, sequence and structural features used in several predictors, prediction method classifications, performance comparisons, evaluation methods, and future directions.

  3. Synthetic heparin-binding growth factor analogs

    DOEpatents

    Pena, Louis A.; Zamora, Paul; Lin, Xinhua; Glass, John D.

    2007-01-23

    The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain that binds a heparin-binding growth factor receptor, covalently bound to a hydrophobic linker, which is in turn covalently bound to a non-signaling peptide that includes a heparin-binding domain. The synthetic heparin-binding growth factor analogs are useful as soluble biologics or as surface coatings for medical devices.

  4. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, O.; Yosef, K.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1998-02-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  5. Positive Emotion Facilitates Audiovisual Binding

    PubMed Central

    Kitamura, Miho S.; Watanabe, Katsumi; Kitagawa, Norimichi

    2016-01-01

    It has been shown that positive emotions can facilitate integrative and associative information processing in cognitive functions. The present study examined whether emotions in observers can also enhance perceptual integrative processes. We tested 125 participants in total for revealing the effects of emotional states and traits in observers on the multisensory binding between auditory and visual signals. Participants in Experiment 1 observed two identical visual disks moving toward each other, coinciding, and moving away, presented with a brief sound. We found that for participants with lower depressive tendency, induced happy moods increased the width of the temporal binding window of the sound-induced bounce percept in the stream/bounce display, while no effect was found for the participants with higher depressive tendency. In contrast, no effect of mood was observed for a simple audiovisual simultaneity discrimination task in Experiment 2. These results provide the first empirical evidence of a dependency of multisensory binding upon emotional states and traits, revealing that positive emotions can facilitate the multisensory binding processes at a perceptual level. PMID:26834585

  6. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  7. Obligate Ordered Binding of Human Lactogenic Cytokines*

    PubMed Central

    Voorhees, Jeffery L.; Brooks, Charles L.

    2010-01-01

    Class 1 cytokines bind two receptors to create an active heterotrimeric complex. It has been argued that ligand binding to their receptors is an ordered process, but a structural mechanism describing this process has not been determined. We have previously described an obligate ordered binding mechanism for the human prolactin/prolactin receptor heterotrimeric complex. In this work we expand this conceptual understanding of ordered binding to include three human lactogenic hormones: prolactin, growth hormone, and placental lactogen. We independently blocked either of the two receptor binding sites of each hormone and used surface plasmon resonance to measure human prolactin receptor binding kinetics and stoichiometries to the remaining binding surface. When site 1 of any of the three hormones was blocked, site 2 could not bind the receptor. But blocking site 2 did not affect receptor binding at site 1, indicating a requirement for receptor binding to site 1 before site 2 binding. In addition we noted variable responses to the presence of zinc in hormone-receptor interaction. Finally, we performed Förster resonance energy transfer (FRET) analyses where receptor binding at subsaturating stoichiometries induced changes in FRET signaling, indicative of binding-induced changes in hormone conformation, whereas at receptor:hormone ratios in excess of 2:1 no additional changes in FRET signaling were observed. These results strongly support a conformationally mediated obligate-ordered receptor binding for each of the three lactogenic hormones. PMID:20427283

  8. Anion binding in biological systems

    NASA Astrophysics Data System (ADS)

    Feiters, Martin C.; Meyer-Klaucke, Wolfram; Kostenko, Alexander V.; Soldatov, Alexander V.; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Küpper, Frithjof C.; Hollenstein, Kaspar; Locher, Kaspar P.; Bevers, Loes E.; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2009-11-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L3 (2p3/2) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  9. Non-catalytic liquefaction of coal with bagasse, a biomass waste

    SciTech Connect

    Rafiqul, I.; Lugang, B.; Yan, Y.; Li, T.

    1999-07-01

    Liquefaction of a Chinese bituminous coal with bagasse, a kind of biomass waste, have been carried out in an autoclave of 300 ml capacity at a temperature range of 350--450 C, reaction time 15--45 min and cool hydrogen pressure 300--700 PSIG (2.04 4.76 MPa). Optimization of the co-liquefaction process was done with respect to oil yield by Factorial Experiment Design Method. Oil yield reached 48% at optimum conditions of temperature: 420 C, cool hydrogen pressure: 500 PSIG and reaction time: 40 min. A polynomial mathematical model, a second order response surface model, has been obtained for correlating the oil yield response factor as well as conversion with the major process variables. The equation derived by the authors holds good in determining the effect of process variables on response factors for any regime conditions in the range of the Planned Experimental Design. Experimental data were also correlated by a kinetic model. The model is based on coal and bagasse, undergoing thermal cracking, is first converted parallel to form preasphaltene and asphaltene and low molecular gaseous products; then consecutively oil is formed from preasphaltene and asphaltene. Activation energies for these three reactions are 32.51 KJ/mol, 75.14 KJ/mol and 44.65 KJ/mol, respectively. These values are lower than that of liquefaction of coal alone. It justifies that the addition of bagasse is effective in enhancing the process of co-liquefaction and giving higher yield of oil than for liquefaction of coal alone. Calculated values from this model fairly agree with the experimental data.

  10. Preclinical Profile of BI 224436, a Novel HIV-1 Non-Catalytic-Site Integrase Inhibitor

    PubMed Central

    Amad, Ma'an; Bailey, Murray D.; Bethell, Richard; Bös, Michael; Bonneau, Pierre; Cordingley, Michael; Coulombe, René; Duan, Jianmin; Edwards, Paul; Faucher, Anne-Marie; Garneau, Michel; Jakalian, Araz; Kawai, Stephen; Lamorte, Louie; LaPlante, Steven; Luo, Laibin; Mason, Steve; Poupart, Marc-André; Rioux, Nathalie; Schroeder, Patricia; Simoneau, Bruno; Tremblay, Sonia; Tsantrizos, Youla; Witvrouw, Myriam; Yoakim, Christiane

    2014-01-01

    BI 224436 is an HIV-1 integrase inhibitor with effective antiviral activity that acts through a mechanism that is distinct from that of integrase strand transfer inhibitors (INSTIs). This 3-quinolineacetic acid derivative series was identified using an enzymatic integrase long terminal repeat (LTR) DNA 3′-processing assay. A combination of medicinal chemistry, parallel synthesis, and structure-guided drug design led to the identification of BI 224436 as a candidate for preclinical profiling. It has antiviral 50% effective concentrations (EC50s) of <15 nM against different HIV-1 laboratory strains and cellular cytotoxicity of >90 μM. BI 224436 also has a low, ∼2.1-fold decrease in antiviral potency in the presence of 50% human serum and, by virtue of a steep dose-response curve slope, exhibits serum-shifted EC95 values ranging between 22 and 75 nM. Passage of virus in the presence of inhibitor selected for either A128T, A128N, or L102F primary resistance substitutions, all mapping to a conserved allosteric pocket on the catalytic core of integrase. BI 224436 also retains full antiviral activity against recombinant viruses encoding INSTI resistance substitutions N155S, Q148H, and E92Q. In drug combination studies performed in cellular antiviral assays, BI 224436 displays an additive effect in combination with most approved antiretrovirals, including INSTIs. BI 224436 has drug-like in vitro absorption, distribution, metabolism, and excretion (ADME) properties, including Caco-2 cell permeability, solubility, and low cytochrome P450 inhibition. It exhibited excellent pharmacokinetic profiles in rat (clearance as a percentage of hepatic flow [CL], 0.7%; bioavailability [F], 54%), monkey (CL, 23%; F, 82%), and dog (CL, 8%; F, 81%). Based on the excellent biological and pharmacokinetic profile, BI 224436 was advanced into phase 1 clinical trials. PMID:24663024

  11. Biodiesel production from Jatropha oil by catalytic and non-catalytic approaches: an overview.

    PubMed

    Juan, Joon Ching; Kartika, Damayani Agung; Wu, Ta Yeong; Hin, Taufiq-Yap Yun

    2011-01-01

    Biodiesel (fatty acids alkyl esters) is a promising alternative fuel to replace petroleum-based diesel that is obtained from renewable sources such as vegetable oil, animal fat and waste cooking oil. Vegetable oils are more suitable source for biodiesel production compared to animal fats and waste cooking since they are renewable in nature. However, there is a concern that biodiesel production from vegetable oil would disturb the food market. Oil from Jatropha curcas is an acceptable choice for biodiesel production because it is non-edible and can be easily grown in a harsh environment. Moreover, alkyl esters of jatropha oil meet the standard of biodiesel in many countries. Thus, the present paper provides a review on the transesterification methods for biodiesel production using jatropha oil as feedstock.

  12. Mammalian Argonaute-DNA binding?

    PubMed

    Smalheiser, Neil R; Gomes, Octavio L A

    2015-01-01

    When a field shares the consensus that a particular phenomenon does NOT occur, this may reflect extensive experimental investigations with negative outcomes, or may represent the "common sense" position based on current knowledge and established ways of thinking. The current consensus of the RNA field is that eukaryotic Argonaute (Ago) proteins employ RNA guides and target other RNAs. The alternative -- that eukaryotic Ago has biologically important interactions with DNA in vivo - has not been seriously considered, in part because the only role contemplated for DNA was as a guide strand, and in part because it did not seem plausible that any natural source of suitable DNAs exists in eukaryotic cells. However, eukaryotic Argonaute domains bind DNA in the test tube, and several articles report that small inhibitory double-stranded DNAs do have the ability to silence target RNAs in a sequence-dependent (though poorly characterized) manner. A search of the literature identified potential DNA binding partners for Ago, including (among others) single-stranded DNAs residing in extracellular vesicles, and cytoplasmic satellite-repeat DNA fragments that are associated with the plasma membrane and transcribed by Pol II. It is interesting to note that both cytoplasmic and extracellular vesicle DNA are expressed at greatly elevated levels in cancer cells relative to normal cells. In such a pathological scenario, if not under normal conditions, there may be appreciable binding of Ago to DNA despite its lower affinity compared to RNA. If so, DNA might displace Ago from binding to its normal partners (miRNAs, siRNAs and other short ncRNAs), disrupting tightly controlled post-transcriptional gene silencing processes that are vital to correct functioning of a normal cell. The possible contribution to cancer pathogenesis is a strong motivator for further investigation of Ago-DNA binding. More generally, this case underscores the need for better informatics tools to allow

  13. Feature-Based Binding and Phase Theory

    ERIC Educational Resources Information Center

    Antonenko, Andrei

    2012-01-01

    Current theories of binding cannot provide a uniform account for many facts associated with the distribution of anaphors, such as long-distance binding effects and the subject-orientation of monomorphemic anaphors. Further, traditional binding theory is incompatible with minimalist assumptions. In this dissertation I propose an analysis of…

  14. Erythropoietin binding protein from mammalian serum

    DOEpatents

    Clemons, G.K.

    1997-04-29

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described. 11 figs.

  15. Erythropoietin binding protein from mammalian serum

    DOEpatents

    Clemons, Gisela K.

    1997-01-01

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described.

  16. Evolution of Protein-binding DNA Sequences through Competitive Binding

    NASA Astrophysics Data System (ADS)

    Peng, Weiqun; Gerland, Ulrich; Hwa, Terence; Levine, Herbert

    2002-03-01

    The dynamics of in vitro DNA evolution controlled via competitive binding of DNA sequences to proteins has been explored in a recent serial transfer experiment footnote B. Dubertret, S.Liu, Q. Ouyang, A. Libchaber, Phys. Rev. Lett. 86, 6022 (2001).. Motivated by the experiment, we investigate a continuum model for this evolution process in various parameter regimes. We establish a self-consistent mean-field evolution equation, determine its dynamical properties and finite population size corrections. In addition, we discuss the experimental implications of our results.

  17. Synthetic heparin-binding factor analogs

    DOEpatents

    Pena, Louis A.; Zamora, Paul O.; Lin, Xinhua; Glass, John D.

    2010-04-20

    The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain, and preferably two peptide chains branched from a dipeptide branch moiety composed of two trifunctional amino acid residues, which peptide chain or chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a linker, which may be a hydrophobic linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  18. Glucocorticoid receptor transformation and DNA binding

    SciTech Connect

    Tienrungroj, W.

    1986-01-01

    The overall goal is to probe the mechanism whereby glucocorticoid receptors are transformed from a non-DNA-binding form to their active DNA-binding form. The author has examined the effect of an endogenous inhibitor purified from rat liver cytosol on receptor binding to DNA. The inhibitor binds to transformed receptors in whole cytosol and prevent their binding to DNA. He also examined the role of sulfhydryl groups in determining the DNA binding activity of the transformed receptor and in determining the transformation process. Treatment of rat liver cytosol containing temperature-transformed, (/sup 3/H)dexamethasone-bound receptors at 0/sup 0/C with the sulfhydryl modifying reagent methyl methanethiosulfonate inhibits the DNA-binding activity of the receptor, and DNA-binding activity is restored after addition of dithiothreitol. In addition, he has examined the relationship between receptor phosphorylation and DNA binding. Untransformed receptor complexes purified from cytosol prepared from mouse L cells grown in medium containing (/sup 32/P)orthophosphate contain two components, a 100 k-Da and a 90-kDa subunit, both of which are phosphoproteins. On transformation, the receptor dissociates from the 90-kDa protein. Transformation of the complex under cell free conditions does not result in a dephosphorylation of the 100-kDa steroid-binding protein. Transformed receptor that has been bound to DNA and purified by monoclonal antibody is still in a phosphorylated form. These results suggest that dephosphorylation is not required for receptor binding to DNA.

  19. Infinite sets and double binds.

    PubMed

    Arden, M

    1984-01-01

    There have been many attempts to bring psychoanalytical theory up to date. This paper approaches the problem by discussing the work of Gregory Bateson and Ignacio Matte-Blanco, with particular reference to the use made by these authors of Russell's theory of logical types. Bateson's theory of the double bind and Matte-Blanco's bilogic are both based on concepts of logical typing. It is argued that the two theories can be linked by the idea that neurotic symptoms are based on category errors in thinking. Clinical material is presented from the analysis of a middle-aged woman. The intention is to demonstrate that the process of making interpretations can be thought of as revealing errors in thinking. Changes in the patient's inner world are then seen to be the result of clarifying childhood experiences based on category errors. Matte-Blanco's theory of bilogic and infinite experiences is a re-evaluation of the place of the primary process in mental life. It is suggested that a combination of bilogic and double bind theory provides a possibility of reformulating psychoanalytical theory. PMID:6544755

  20. Infinite sets and double binds.

    PubMed

    Arden, M

    1984-01-01

    There have been many attempts to bring psychoanalytical theory up to date. This paper approaches the problem by discussing the work of Gregory Bateson and Ignacio Matte-Blanco, with particular reference to the use made by these authors of Russell's theory of logical types. Bateson's theory of the double bind and Matte-Blanco's bilogic are both based on concepts of logical typing. It is argued that the two theories can be linked by the idea that neurotic symptoms are based on category errors in thinking. Clinical material is presented from the analysis of a middle-aged woman. The intention is to demonstrate that the process of making interpretations can be thought of as revealing errors in thinking. Changes in the patient's inner world are then seen to be the result of clarifying childhood experiences based on category errors. Matte-Blanco's theory of bilogic and infinite experiences is a re-evaluation of the place of the primary process in mental life. It is suggested that a combination of bilogic and double bind theory provides a possibility of reformulating psychoanalytical theory.

  1. Unraveling determinants of transcription factor binding outside the core binding site.

    PubMed

    Levo, Michal; Zalckvar, Einat; Sharon, Eilon; Dantas Machado, Ana Carolina; Kalma, Yael; Lotam-Pompan, Maya; Weinberger, Adina; Yakhini, Zohar; Rohs, Remo; Segal, Eran

    2015-07-01

    Binding of transcription factors (TFs) to regulatory sequences is a pivotal step in the control of gene expression. Despite many advances in the characterization of sequence motifs recognized by TFs, our ability to quantitatively predict TF binding to different regulatory sequences is still limited. Here, we present a novel experimental assay termed BunDLE-seq that provides quantitative measurements of TF binding to thousands of fully designed sequences of 200 bp in length within a single experiment. Applying this binding assay to two yeast TFs, we demonstrate that sequences outside the core TF binding site profoundly affect TF binding. We show that TF-specific models based on the sequence or DNA shape of the regions flanking the core binding site are highly predictive of the measured differential TF binding. We further characterize the dependence of TF binding, accounting for measurements of single and co-occurring binding events, on the number and location of binding sites and on the TF concentration. Finally, by coupling our in vitro TF binding measurements, and another application of our method probing nucleosome formation, to in vivo expression measurements carried out with the same template sequences serving as promoters, we offer insights into mechanisms that may determine the different expression outcomes observed. Our assay thus paves the way to a more comprehensive understanding of TF binding to regulatory sequences and allows the characterization of TF binding determinants within and outside of core binding sites. PMID:25762553

  2. Binding characteristics of swine erythrocyte insulin receptors

    SciTech Connect

    Dieberg, G.; Bryan, G.S.; Sartin, J.L.; Williams, J.C.; Prince, T.J.; Kemppainen, R.J.

    1985-09-01

    Crossbred gilts had 8.8 +/- 1.1% maximum binding of ( SVI)insulin to insulin receptors on erythrocytes. The number of insulin-binding sites per cell was 137 +/- 19, with a binding affinity ranging from 7.4 X 10(7)M-1 to 11.2 X 10(7)M-1 and mean of 8.8 X 10(7)M-1. Pregnant sows had a significant increase in maximum binding due to an increase in number of receptor sites per cell. Lactating sows fed a high-fiber diet and a low-fiber diet did not develop a significant difference in maximum binding of insulin. Sows fed the low-fiber diet had a significantly higher number of binding sites and a significantly lower binding affinity than did sows fed a high-fiber diet. Receptor-binding affinity was lower in the low-fiber diet group than in cycling gilts, whereas data from sows fed the high-fiber diet did not differ from data for cycling gilts. Data from this study indicated that insulin receptors of swine erythrocytes have binding characteristics similar to those in other species. Pregnancy and diet will alter insulin receptor binding in swine.

  3. On the Theory of Noncovalent Binding

    PubMed Central

    Mihailescu, Mihail; Gilson, Michael K.

    2004-01-01

    It is widely accepted that the binding constant of a receptor and ligand can be written as a two-body integral involving the interaction energy of the receptor and the ligand. Interestingly, however, three different theories of binding in the literature dictate three distinct integrals. The present study uses theory, as well as simulations of binding experiments, to test the validity of the three integrals. When binding is measured by a signal that detects the ligand in the binding site, the most accurate results are obtained by an integral of the Boltzmann factor, where the bound complex is defined in terms of an exclusive binding region. A novel prediction of this approach, that expanding a ligand can increase its binding constant, is borne out by the simulations. The simulations also show that abnormal binding isotherms can be obtained when the region over which the signal is detected deviates markedly from the exclusion zone. Interestingly, the binding constant measured by equilibrium dialysis, rather than by monitoring a localized signal, can yield a binding constant that differs from that obtained from a signal measurement, and that is matched best by the integral of the Mayer factor. PMID:15240441

  4. Receptor-binding sites: bioinformatic approaches.

    PubMed

    Flower, Darren R

    2006-01-01

    It is increasingly clear that both transient and long-lasting interactions between biomacromolecules and their molecular partners are the most fundamental of all biological mechanisms and lie at the conceptual heart of protein function. In particular, the protein-binding site is the most fascinating and important mechanistic arbiter of protein function. In this review, I examine the nature of protein-binding sites found in both ligand-binding receptors and substrate-binding enzymes. I highlight two important concepts underlying the identification and analysis of binding sites. The first is based on knowledge: when one knows the location of a binding site in one protein, one can "inherit" the site from one protein to another. The second approach involves the a priori prediction of a binding site from a sequence or a structure. The full and complete analysis of binding sites will necessarily involve the full range of informatic techniques ranging from sequence-based bioinformatic analysis through structural bioinformatics to computational chemistry and molecular physics. Integration of both diverse experimental and diverse theoretical approaches is thus a mandatory requirement in the evaluation of binding sites and the binding events that occur within them. PMID:16671408

  5. Synthetic LPS-Binding Polymer Nanoparticles

    NASA Astrophysics Data System (ADS)

    Jiang, Tian

    Lipopolysaccharide (LPS), one of the principal components of most gram-negative bacteria's outer membrane, is a type of contaminant that can be frequently found in recombinant DNA products. Because of its strong and even lethal biological effects, selective LPS removal from bioproducts solution is of particular importance in the pharmaceutical and health care industries. In this thesis, for the first time, a proof-of-concept study on preparing LPS-binding hydrogel-like NPs through facile one-step free-radical polymerization was presented. With the incorporation of various hydrophobic (TBAm), cationic (APM, GUA) monomers and cross-linkers (BIS, PEG), a small library of NPs was constructed. Their FITC-LPS binding behaviors were investigated and compared with those of commercially available LPS-binding products. Moreover, the LPS binding selectivity of the NPs was also explored by studying the NPs-BSA interactions. The results showed that all NPs obtained generally presented higher FITC-LPS binding capacity in lower ionic strength buffer than higher ionic strength. However, unlike commercial poly-lysine cellulose and polymyxin B agarose beads' nearly linear increase of FITC-LPS binding with particle concentration, NPs exhibited serious aggregation and the binding quickly saturated or even decreased at high particle concentration. Among various types of NPs, higher FITC-LPS binding capacity was observed for those containing more hydrophobic monomers (TBAm). However, surprisingly, more cationic NPs with higher content of APM exhibited decreased FITC-LPS binding in high ionic strength conditions. Additionally, when new cationic monomer and cross-linker, GUA and PEG, were applied to replace APM and BIS, the obtained NPs showed improved FITC-LPS binding capacity at low NP concentration. But compared with APM- and BIS-containing NPs, the FITC-LPS binding capacity of GUA- and PEG-containing NPs saturated earlier. To investigate the NPs' binding to proteins, we tested the NPs

  6. Why tight-binding theory?

    NASA Astrophysics Data System (ADS)

    Harrison, Walter A.

    2002-12-01

    In the context of computational physics other methods are more accurate, but tight-binding theory allows very direct physical interpretation and is simple enough to allow much more realistic treatments beyond the local density approximation. We address several important questions of this last category: How does the gap enhancement from Coulomb correlations vary from material to material? Should the enhanced gap be used for calculating the dielectric constant? For calculating the effective mass in k-dot-p theory? How valid is the scissors approximation? How does one line up bands at an interface? How should we match the envelope function at interfaces in effective-mass theory? Why can the resulting quantum-well states seem to violate the uncertainty principle? How should f-shell electrons be treated when they are intermediate between band-like and core-like? The answers to all of these questions are given and discussed.

  7. Gamma Oscillations and Visual Binding

    NASA Astrophysics Data System (ADS)

    Robinson, Peter A.; Kim, Jong Won

    2006-03-01

    At the root of visual perception is the mechanism the brain uses to analyze features in a scene and bind related ones together. Experiments show this process is linked to oscillations of brain activity in the 30-100 Hz gamma band. Oscillations at different sites have correlation functions (CFs) that often peak at zero lag, implying simultaneous firing, even when conduction delays are large. CFs are strongest between cells stimulated by related features. Gamma oscillations are studied here by modeling mm-scale patchy interconnections in the visual cortex. Resulting predictions for gamma responses to stimuli account for numerous experimental findings, including why oscillations and zero-lag synchrony are associated, observed connections with feature preferences, the shape of the zero-lag peak, and variations of CFs with attention. Gamma waves are found to obey the Schroedinger equation, opening the possibility of cortical analogs of quantum phenomena. Gamma instabilities are tied to observations of gamma activity linked to seizures and hallucinations.

  8. Receptor binding properties of amperozide.

    PubMed

    Svartengren, J; Simonsson, P

    1990-01-01

    The receptor pharmacology of amperozide was investigated with in vitro radioligand binding technique. Amperozide possessed a high affinity to the 5-HT2 receptors (Ki = 16.5 +/- 2.1 nM) and a moderate affinity to alpha 1-adrenergic receptors of rat cerebral cortical membranes (Ki = 172 +/- 14 nM). The affinity of amperozide for striatal and limbic dopamine D2 receptors was low and not significantly different (Ki +/- S.E.M. = 540 +/- 59 nM vs 403 +/- 42 nM; p less than 0.11, n = 4). The affinity for striatal and limbic 5-HT2 receptors was measured as well and found to be very close to the affinity to the cerebral cortical 5-HT2 receptor. The drug affinity for D2 and 5-HT2 receptors seems thus not to be influenced by the location of the receptor moiety. The affinity for several other rat brain receptors such as 5-HT1A, alpha 2-adrenergic, dopamine D1, muscarinic M1 and M2, opiate sigma and beta 2-adrenergic was low. The pseudo-Hill coefficient of the amperozide competition binding curve was consistently higher than one indicating antagonistic and complex interactions with the 5-HT2 receptor or with alpha 1-adrenergic and dopamine D2 receptors. The antagonistic properties of amperozide were investigated by its ability to antagonize the serotonin-induced formation of inositol-1-phosphate in human blood platelets. Amperozide inhibited this 5-HT2 receptor-mediated intracellular response with similar potency as ketanserin. These results suggest that amperozide is a selective 5-HT2 receptor antagonist.

  9. The helical structure of DNA facilitates binding

    NASA Astrophysics Data System (ADS)

    Berg, Otto G.; Mahmutovic, Anel; Marklund, Emil; Elf, Johan

    2016-09-01

    The helical structure of DNA imposes constraints on the rate of diffusion-limited protein binding. Here we solve the reaction-diffusion equations for DNA-like geometries and extend with simulations when necessary. We find that the helical structure can make binding to the DNA more than twice as fast compared to a case where DNA would be reactive only along one side. We also find that this rate advantage remains when the contributions from steric constraints and rotational diffusion of the DNA-binding protein are included. Furthermore, we find that the association rate is insensitive to changes in the steric constraints on the DNA in the helix geometry, while it is much more dependent on the steric constraints on the DNA-binding protein. We conclude that the helical structure of DNA facilitates the nonspecific binding of transcription factors and structural DNA-binding proteins in general.

  10. Secretin: specific binding to rat brain membranes

    SciTech Connect

    Fremeau, R.T. Jr.; Jensen, R.T.; Charlton, C.G.; Miller, R.L.; O'Donohue, T.L.; Moody, T.W.

    1983-08-01

    The binding of (/sup 125/I)secretin to rat brain membranes was investigated. Radiolabeled secretin bound with high affinity (KD . 0.2 nM) to a single class of noninteracting sites. Binding was specific, saturable, and reversible. Regional distribution studies indicated that the specific binding was greatest in the cerebellum, intermediate in the cortex, thalamus, striatum, hippocampus, and hypothalamus, and lowest in the midbrain and medulla/pons. Pharmacological studies indicated that only secretin, but not other peptides, inhibits binding of (/sup 125/I)secretin with high affinity. Also, certain guanine nucleotides inhibited high affinity binding. These data indicate that rat brain membranes possess high affinity binding sites specific for secretin and that with the use of (/sup 125/I) secretin the kinetics, stoichiometry, specificity, and distribution of secretin receptors can be directly investigated.

  11. The helical structure of DNA facilitates binding

    NASA Astrophysics Data System (ADS)

    Berg, Otto G.; Mahmutovic, Anel; Marklund, Emil; Elf, Johan

    2016-09-01

    The helical structure of DNA imposes constraints on the rate of diffusion-limited protein binding. Here we solve the reaction–diffusion equations for DNA-like geometries and extend with simulations when necessary. We find that the helical structure can make binding to the DNA more than twice as fast compared to a case where DNA would be reactive only along one side. We also find that this rate advantage remains when the contributions from steric constraints and rotational diffusion of the DNA-binding protein are included. Furthermore, we find that the association rate is insensitive to changes in the steric constraints on the DNA in the helix geometry, while it is much more dependent on the steric constraints on the DNA-binding protein. We conclude that the helical structure of DNA facilitates the nonspecific binding of transcription factors and structural DNA-binding proteins in general.

  12. Binding of cholera toxin by various tissues.

    PubMed

    Gascoyne, N; Van Heyningen, W E

    1975-09-01

    Under certain conditions, it is possible to confirm the observation by Peterson (1974) that the cholera toxin-binding capacities of tissues from brain and colon mucosa, and from liver and small intestine mucosa, are comparable. Binding of toxin by all tissues except brain is very variable, but is roughtly proportional to their content of the toxin-binding ganglioside galactosyl-N-acetylgalactosaminyl (sialosyl) lactosyl ceramide. It appears that some toxin-binding sites of the mucosa of the small intestin and colon may be masked. It has also been confirmed that there may be some solubilization of toxin-binding material from brain on standing a few days at 4 C, but this is comparatively slight. Some disadvantages of measuring toxin binding by adding small amounts of radioactive toxin to compartively large amounts of tissue are discussed.

  13. An RNA motif that binds ATP

    NASA Technical Reports Server (NTRS)

    Sassanfar, M.; Szostak, J. W.

    1993-01-01

    RNAs that contain specific high-affinity binding sites for small molecule ligands immobilized on a solid support are present at a frequency of roughly one in 10(10)-10(11) in pools of random sequence RNA molecules. Here we describe a new in vitro selection procedure designed to ensure the isolation of RNAs that bind the ligand of interest in solution as well as on a solid support. We have used this method to isolate a remarkably small RNA motif that binds ATP, a substrate in numerous biological reactions and the universal biological high-energy intermediate. The selected ATP-binding RNAs contain a consensus sequence, embedded in a common secondary structure. The binding properties of ATP analogues and modified RNAs show that the binding interaction is characterized by a large number of close contacts between the ATP and RNA, and by a change in the conformation of the RNA.

  14. Calcium-binding proteins and development

    NASA Technical Reports Server (NTRS)

    Beckingham, K.; Lu, A. Q.; Andruss, B. F.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    The known roles for calcium-binding proteins in developmental signaling pathways are reviewed. Current information on the calcium-binding characteristics of three classes of cell-surface developmental signaling proteins (EGF-domain proteins, cadherins and integrins) is presented together with an overview of the intracellular pathways downstream of these surface receptors. The developmental roles delineated to date for the universal intracellular calcium sensor, calmodulin, and its targets, and for calcium-binding regulators of the cytoskeleton are also reviewed.

  15. Mutated Leguminous Lectin Containing a Heparin-Binding like Motif in a Carbohydrate-Binding Loop Specifically Binds to Heparin

    PubMed Central

    Abo, Hirohito; Soga, Keisuke; Tanaka, Atsuhiro; Tateno, Hiroaki; Hirabayashi, Jun; Yamamoto, Kazuo

    2015-01-01

    We previously introduced random mutations in the sugar-binding loops of a leguminous lectin and screened the resulting mutated lectins for novel specificities using cell surface display. Screening of a mutated peanut agglutinin (PNA), revealed a mutated PNA with a distinct preference for heparin. Glycan microarray analyses using the mutated lectin fused to the Fc region of human immunoglobulin, revealed that a particular sulfated glycosaminoglycan (GAG), heparin, had the highest binding affinity for mutated PNA among 97 glycans tested, although wild-type PNA showed affinity towards Galβ1-3GalNAc and similar galactosylated glycans. Further analyses of binding specificity using an enzyme-linked immunoadsorbent assay demonstrated that the mutated PNA specifically binds to heparin, and weakly to de-2-O-sulfated heparin, but not to other GAG chains including de-6-O-sulfated and de-N-sulfated heparins. The mutated PNA had six amino acid substitutions within the eight amino acid-long sugar-binding loop. In this loop, the heparin-binding like motif comprised three arginine residues at positions 124, 128, and 129, and a histidine at position 125 was present. Substitution of each arginine or histidine residue to alanine reduced heparin-binding ability, indicating that all of these basic amino acid residues contributed to heparin binding. Inhibition assay demonstrated that heparin and dextran sulfate strongly inhibited mutated PNA binding to heparin in dose-dependent manner. The mutated PNA could distinguish between CHO cells and proteoglycan-deficient mutant cells. This is the first report establishing a novel leguminous lectin that preferentially binds to highly sulfated heparin and may provide novel GAG-binding probes to distinguish between heterogeneous GAG repeating units. PMID:26714191

  16. Mutated Leguminous Lectin Containing a Heparin-Binding like Motif in a Carbohydrate-Binding Loop Specifically Binds to Heparin.

    PubMed

    Abo, Hirohito; Soga, Keisuke; Tanaka, Atsuhiro; Tateno, Hiroaki; Hirabayashi, Jun; Yamamoto, Kazuo

    2015-01-01

    We previously introduced random mutations in the sugar-binding loops of a leguminous lectin and screened the resulting mutated lectins for novel specificities using cell surface display. Screening of a mutated peanut agglutinin (PNA), revealed a mutated PNA with a distinct preference for heparin. Glycan microarray analyses using the mutated lectin fused to the Fc region of human immunoglobulin, revealed that a particular sulfated glycosaminoglycan (GAG), heparin, had the highest binding affinity for mutated PNA among 97 glycans tested, although wild-type PNA showed affinity towards Galβ1-3GalNAc and similar galactosylated glycans. Further analyses of binding specificity using an enzyme-linked immunoadsorbent assay demonstrated that the mutated PNA specifically binds to heparin, and weakly to de-2-O-sulfated heparin, but not to other GAG chains including de-6-O-sulfated and de-N-sulfated heparins. The mutated PNA had six amino acid substitutions within the eight amino acid-long sugar-binding loop. In this loop, the heparin-binding like motif comprised three arginine residues at positions 124, 128, and 129, and a histidine at position 125 was present. Substitution of each arginine or histidine residue to alanine reduced heparin-binding ability, indicating that all of these basic amino acid residues contributed to heparin binding. Inhibition assay demonstrated that heparin and dextran sulfate strongly inhibited mutated PNA binding to heparin in dose-dependent manner. The mutated PNA could distinguish between CHO cells and proteoglycan-deficient mutant cells. This is the first report establishing a novel leguminous lectin that preferentially binds to highly sulfated heparin and may provide novel GAG-binding probes to distinguish between heterogeneous GAG repeating units.

  17. Radiation abolishes inducer binding to lactose repressor.

    PubMed

    Gillard, Nathalie; Spotheim-Maurizot, Mélanie; Charlier, Michel

    2005-04-01

    The lactose operon functions under the control of the repressor-operator system. Binding of the repressor to the operator prevents the expression of the structural genes. This interaction can be destroyed by the binding of an inducer to the repressor. If ionizing radiations damage the partners, a dramatic dysfunction of the regulation system may be expected. We showed previously that gamma irradiation hinders repressor-operator binding through protein damage. Here we show that irradiation of the repressor abolishes the binding of the gratuitous inducer isopropyl-1-beta-D-thiogalactoside (IPTG) to the repressor. The observed lack of release of the repressor from the complex results from the loss of the ability of the inducer to bind to the repressor due to the destruction of the IPTG binding site. Fluorescence measurements show that both tryptophan residues located in or near the IPTG binding site are damaged. Since tryptophan damage is strongly correlated with the loss of IPTG binding ability, we conclude that it plays a critical role in the effect. A model was built that takes into account the kinetic analysis of damage production and the observed protection of its binding site by IPTG. This model satisfactorily accounts for the experimental results and allows us to understand the radiation-induced effects. PMID:15799700

  18. Chemokine binding proteins encoded by pathogens.

    PubMed

    Alcami, Antonio; Saraiva, Margarida

    2009-01-01

    Chemokines are chemoattractant cytokines that play an important role in immunity. The role of chemokines against invading pathogens is emphasized by the expression of chemokine inhibitors by many pathogens. A mechanims employed by poxviruses and herpesviruses is the secretion of chemokine bindingproteins unrelated to host receptors that bind chemokines with high affinity and block their activity. Soluble chemokine binding proteins have also been identified in the human parasite Schistosoma mansoni and in ticks. The binding specificity of these inhibitors of cell migration point at chemokines that contribute to host defense mechanisms against various pathogens. Chemokine binding proteins modulate the immune response and may lead to new therapeutic approaches to treat inflamatory diseases.

  19. Lack of [3H]quinuclidinyl benzylate binding to biologically relevant binding sites on mononuclear cells.

    PubMed

    Adams, E M; Lubrano, T M; Gordon, J; Fields, J Z

    1992-09-01

    We analyzed the binding characteristics of [3H]quinuclidinyl benzylate ([3H]QNB), a muscarinic cholinergic ligand, to rat and human mononuclear cells (MNC). Under various assay conditions, atropine-sensitive, saturable binding occurred with an apparent Kd of 10 nM. Conditions which disrupted the MNC membrane reduced total binding and eliminated specific binding. Muscarinic agonists were unable to inhibit [3H]QNB binding to MNC at concentrations up to 10(-2) M. Stereoisomers dexetimide and levetimide were equipotent inhibitors of binding (IC50 2 x 10(-5) M). We conclude that, although atropine-sensitive binding of [3H]QNB to MNC occurs, the binding is not consistent with the presence of a biologically relevant muscarinic cholinergic receptor. PMID:1392105

  20. Tissue specificity of endothelin binding sites

    SciTech Connect

    Bolger, G.T.; Liard, F.; Krogsrud, R.; Thibeault, D.; Jaramillo, J. )

    1990-09-01

    A measurement was made of the binding of 125I-labeled endothelin (125I-ET) to crude membrane fractions prepared from rat aorta, atrium, ventricle, portal vein, trachea, lung parenchyma, vas deferens, ileum, bladder, and guinea-pig taenia coli and lung parenchyma. Scatchard analysis of 125I-ET binding in all tissues indicated binding to a single class of saturable sites. The affinity and density of 125I-ET binding sites varied between tissues. The Kd of 125I-ET binding was approximately 0.5 nM for rat aorta, trachea, lung parenchyma, ventricle, bladder, and vas deferens, and guinea-pig taenia coli and lung parenchyma, 1.8 nM for rat portal vein and atrium, and 3.3 nM for ileum. The Bmax of 125I-ET binding had the following rank order of density in rat tissues: trachea greater than lung parenchyma = vas deferens much greater than aorta = portal vein = atrium greater than bladder greater than ventricle = ileum. The properties of 125I-ET endothelin binding were characterized in rat ventricular membranes. 125I-ET binding was time dependent, reaching a maximum within 45-60 min at 25 degrees C. The calculated microassociation constant was 9.67 x 10(5) s-1 M-1. Only 15-20% of 125I-ET dissociated from its binding site even when dissociation was studied as long as 3 h. Preincubation of ventricular membranes with ET prevented binding of 125I-ET. 125I-ET binding was destroyed by boiling of ventricular membranes and was temperature, pH, and cation (Ca2+, Mg2+, and Na+) dependent.

  1. New DNA-binding radioprotectors

    NASA Astrophysics Data System (ADS)

    Martin, Roger

    The normal tissue damage associated with cancer radiotherapy has motivated the development at Peter Mac of a new class of DNA-binding radioprotecting drugs that could be applied top-ically to normal tissues at risk. Methylproamine (MP), the lead compound, reduces radiation induced cell kill at low concentrations. For example, experiments comparing the clonogenic survival of transformed human keratinocytes treated with 30 micromolar MP before and dur-ing various doses of ionising radiation, with the radiation dose response for untreated cells, indicate a dose reduction factor (DRF) of 2. Similar survival curve experiments using various concentrations of MP, with parallel measurements of uptake of MP into cell nuclei, have en-abled the relationship between drug uptake and extent of radioprotection to be established. Radioprotection has also been demonstrated after systemic administration to mice, for three different endpoints, namely lung, jejunum and bone marrow (survival at 30 days post-TBI). The results of pulse radiolysis studies indicated that the drugs act by reduction of transient radiation-induced oxidative species on DNA. This hypothesis was substantiated by the results of experiments in which MP radioprotection of radiation-induced DNA double-strand breaks, assessed as -H2AX foci, in the human keratinocyte cell line. For both endpoints, the extent of radioprotection increased with MP concentration up to a maximal value. These results are consistent with the hypothesis that radioprotection by MP is mediated by attenuation of the extent of initial DNA damage. However, although MP is a potent radioprotector, it becomes cytotoxic at higher concentrations. This limitation has been addressed in an extensive program of lead optimisation and some promising analogues have emerged from which the next lead will be selected. Given the clinical potential of topical radioprotection, the new analogues are being assessed in terms of delivery to mouse oral mucosa. This is

  2. Designing ligands to bind proteins.

    PubMed

    Whitesides, George M; Krishnamurthy, Vijay M

    2005-11-01

    The ability to design drugs (so-called 'rational drug design') has been one of the long-term objectives of chemistry for 50 years. It is an exceptionally difficult problem, and many of its parts lie outside the expertise of chemistry. The much more limited problem - how to design tight-binding ligands (rational ligand design) - would seem to be one that chemistry could solve, but has also proved remarkably recalcitrant. The question is 'Why is it so difficult?' and the answer is 'We still don't entirely know'. This perspective discusses some of the technical issues - potential functions, protein plasticity, enthalpy/entropy compensation, and others - that contribute, and suggests areas where fundamental understanding of protein-ligand interactions falls short of what is needed. It surveys recent technological developments (in particular, isothermal titration calorimetry) that will, hopefully, make now the time for serious progress in this area. It concludes with the calorimetric examination of the association of a series of systematically varied ligands with a model protein. The counterintuitive thermodynamic results observed serve to illustrate that, even in relatively simple systems, understanding protein-ligand association is challenging.

  3. Biodiscovery of aluminum binding peptides

    NASA Astrophysics Data System (ADS)

    Adams, Bryn L.; Sarkes, Deborah A.; Finch, Amethist S.; Hurley, Margaret M.; Stratis-Cullum, Dimitra

    2013-05-01

    Cell surface peptide display systems are large and diverse libraries of peptides (7-15 amino acids) which are presented by a display scaffold hosted by a phage (virus), bacteria, or yeast cell. This allows the selfsustaining peptide libraries to be rapidly screened for high affinity binders to a given target of interest, and those binders quickly identified. Peptide display systems have traditionally been utilized in conjunction with organic-based targets, such as protein toxins or carbon nanotubes. However, this technology has been expanded for use with inorganic targets, such as metals, for biofabrication, hybrid material assembly and corrosion prevention. While most current peptide display systems employ viruses to host the display scaffold, we have recently shown that a bacterial host, Escherichia coli, displaying peptides in the ubiquitous, membrane protein scaffold eCPX can also provide specific peptide binders to an organic target. We have, for the first time, extended the use of this bacterial peptide display system for the biodiscovery of aluminum binding 15mer peptides. We will present the process of biopanning with macroscopic inorganic targets, binder enrichment, and binder isolation and discovery.

  4. Vinculin Tail Dimerization and Paxillin Binding

    NASA Astrophysics Data System (ADS)

    Campbell, Sharon

    2006-03-01

    Vinculin is a highly conserved cytoskeletal protein that is essential for regulation of cell morphology and migration, and is a critical component of both cell-cell and cell-matrix complexes. The tail domain of vinculin (Vt) was crystallized as a homodimer and is believed to bind F-actin as a dimer. We have characterized Vt dimerization by Nuclear Magnetic Resonance (NMR) Spectroscopy and identified the dimer interface in solution by chemical shift perturbation. The Vt dimer interface in solution is similar to the crystallographic dimer interface. Interestingly, the Vt dimer interface determined by NMR partially overlaps the paxillin binding region previously defined coarsely by deletion mutagenesis and gel-blot assays. To further characterize the paxillin binding site in Vt and probe relationship between paxillin binding and dimerization, we conducted chemical shift perturbations experiments using a paxillin derived peptide, LD2. Our NMR experiments have confirmed that the paxillin binding site and the Vt dimerization site partially overlap, and we have further characterized both of these two binding interfaces. Information derived from these studies was used to identify mutations in Vt that selectively perturb paxillin binding and Vt self-association. These mutants are currently being characterized for their utility in structural and biological analyses to elucidate the role of paxillin binding and Vt dimerization in vinculin function.

  5. Neurotransmitter Receptor Binding in Bovine Cerebral Microvessels

    NASA Astrophysics Data System (ADS)

    Peroutka, Stephen J.; Moskowitz, Michael A.; Reinhard, John F.; Synder, Solomon H.

    1980-05-01

    Purified preparations of microvessels from bovine cerebral cortex contain substantial levels of alpha-adrenergic, beta-adrenergic, and histamine 1 receptor binding sites but only negligible serotonin, muscarinic cholinergic, opiate, and benzodiazepine receptor binding. Norepinephrine and histamine may be endogenous regulators of the cerebral microcirculation at the observed receptors.

  6. Multiple instance learning of Calmodulin binding sites

    PubMed Central

    Minhas, Fayyaz ul Amir Afsar; Ben-Hur, Asa

    2012-01-01

    Motivation: Calmodulin (CaM) is a ubiquitously conserved protein that acts as a calcium sensor, and interacts with a large number of proteins. Detection of CaM binding proteins and their interaction sites experimentally requires a significant effort, so accurate methods for their prediction are important. Results: We present a novel algorithm (MI-1 SVM) for binding site prediction and evaluate its performance on a set of CaM-binding proteins extracted from the Calmodulin Target Database. Our approach directly models the problem of binding site prediction as a large-margin classification problem, and is able to take into account uncertainty in binding site location. We show that the proposed algorithm performs better than the standard SVM formulation, and illustrate its ability to recover known CaM binding motifs. A highly accurate cascaded classification approach using the proposed binding site prediction method to predict CaM binding proteins in Arabidopsis thaliana is also presented. Availability: Matlab code for training MI-1 SVM and the cascaded classification approach is available on request. Contact: fayyazafsar@gmail.com or asa@cs.colostate.edu PMID:22962461

  7. Methods for Improving Aptamer Binding Affinity.

    PubMed

    Hasegawa, Hijiri; Savory, Nasa; Abe, Koichi; Ikebukuro, Kazunori

    2016-01-01

    Aptamers are single stranded oligonucleotides that bind a wide range of biological targets. Although aptamers can be isolated from pools of random sequence oligonucleotides using affinity-based selection, aptamers with high affinities are not always obtained. Therefore, further refinement of aptamers is required to achieve desired binding affinities. The optimization of primary sequences and stabilization of aptamer conformations are the main approaches to refining the binding properties of aptamers. In particular, sequence optimization using combined in silico sequence recombinations and in vitro functional evaluations is effective for the improvement of binding affinities, however, the binding affinities of aptamers are limited by the low hydrophobicity of nucleic acids. Accordingly, introduction of hydrophobic moieties into aptamers expands the diversity of interactions between aptamers and targets. Moreover, construction of multivalent aptamers by connecting aptamers that recognize distinct epitopes is an attractive approach to substantial increases in binding affinity. In addition, binding affinities can be tuned by optimizing the scaffolds of multivalent constructs. In this review, we summarize the various techniques for improving the binding affinities of aptamers. PMID:27043498

  8. Plasma protein binding of zomepirac sodium.

    PubMed

    O'Neill, P J

    1981-07-01

    The plasma protein binding of zomepirac, a new nonnarcotic analgesic, was studied using equilibrium dialysis. Experiments were performed using human plasma and plasma from mice, rats, and rhesus monkeys, all species of pharmacological or toxicological interest. At concentrations approximating those achieved in vivo, the binding was fairly constant at 98-99% in all species except the rhesus monkey, where binding was decreased from 98 to approximately 96% at higher concentrations (greater then 50 microgram/ml). Zomepirac (10 microgram/ml) did not appear to displace or to be displaced by warfarin (10 microgram/ml) caused a concentration-dependent decrease in zomepirac (10 microgram/ml) binding. Zomepirac did not affect salicylate binding.

  9. Ethylene binding site affinity in ripening apples

    SciTech Connect

    Blankenship, S.M. . Dept. of Horticultural Science); Sisler, E.C. )

    1993-09-01

    Scatchard plots for ethylene binding in apples (Malus domestica Borkh.), which were harvested weekly for 5 weeks to include the ethylene climacteric rise, showed C[sub 50] values (concentration of ethylene needed to occupy 50% of the ethylene binding sites) of 0.10, 0.11, 0.34, 0.40, and 0.57 [mu]l ethylene/liter[sup [minus]1], respectively, for each of the 5 weeks. Higher ethylene concentrations were required to saturate the binding sites during the climacteric rise than at other times. Diffusion of [sup 14]C-ethylene from the binding sites was curvilinear and did not show any indication of multiple binding sites. Ethylene was not metabolized by apple tissue.

  10. (TH) diazepam binding to human granulocytes

    SciTech Connect

    Bond, P.A.; Cundall, R.L.; Rolfe, B.

    1985-07-08

    (TH)-diazepam binds to sites on human granulocyte membranes, with little or no binding to platelets or lymphocytes. These (TH)-diazepam binding sites are of the peripheral type, being strongly inhibited by R05-4864 (Ki=6.23nM) but only weakly by clonazepam (Ki=14 M). Binding of (TH) diazepam at 0 is saturable, specific and stereoselective. Scatchard analysis indicates a single class of sites with Bmax of 109 +/- 17f moles per mg of protein and K/sub D/ of 3.07 +/- 0.53nM. Hill plots of saturation experiments gave straight lines with a mean Hill coefficient of 1.03 +/- 0.014. Binding is time dependent and reversible and it varies linearly with granulocyte protein concentration over the range 0.025-0.300 mg of protein. 11 references, 3 figures, 1 table.

  11. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    SciTech Connect

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  12. Improving Binding Affinity and Selectivity of Computationally Designed Ligand-Binding Proteins Using Experiments.

    PubMed

    Tinberg, Christine E; Khare, Sagar D

    2016-01-01

    The ability to de novo design proteins that can bind small molecules has wide implications for synthetic biology and medicine. Combining computational protein design with the high-throughput screening of mutagenic libraries of computationally designed proteins is emerging as a general approach for creating binding proteins with programmable binding modes, affinities, and selectivities. The computational step enables the creation of a binding site in a protein that otherwise does not (measurably) bind the intended ligand, and targeted mutagenic screening allows for validation and refinement of the computational model as well as provides orders-of-magnitude increases in the binding affinity. Deep sequencing of mutagenic libraries can provide insights into the mutagenic binding landscape and enable further affinity improvements. Moreover, in such a combined computational-experimental approach where the binding mode is preprogrammed and iteratively refined, selectivity can be achieved (and modulated) by the placement of specified amino acid side chain groups around the ligand in defined orientations. Here, we describe the experimental aspects of a combined computational-experimental approach for designing-using the software suite Rosetta-proteins that bind a small molecule of choice and engineering, using fluorescence-activated cell sorting and high-throughput yeast surface display, high affinity and ligand selectivity. We illustrated the utility of this approach by performing the design of a selective digoxigenin (DIG)-binding protein that, after affinity maturation, binds DIG with picomolar affinity and high selectivity over structurally related steroids. PMID:27094290

  13. Measuring Equilibrium Binding Constants for the WT1-DNA Interaction Using a Filter Binding Assay.

    PubMed

    Romaniuk, Paul J

    2016-01-01

    Equilibrium binding of WT1 to specific sites in DNA and potentially RNA molecules is central in mediating the regulatory roles of this protein. In order to understand the functional effects of mutations in the nucleic acid-binding domain of WT1 proteins and/or mutations in the DNA- or RNA-binding sites, it is necessary to measure the equilibrium constant for formation of the protein-nucleic acid complex. This chapter describes the use of a filter binding assay to make accurate measurements of the binding of the WT1 zinc finger domain to the consensus WT1-binding site in DNA. The method described is readily adapted to the measurement of the effects of mutations in either the WT1 zinc finger domain or the putative binding sites within a promoter element or cellular RNA.

  14. The TRPV5/6 calcium channels contain multiple calmodulin binding sites with differential binding properties.

    PubMed

    Kovalevskaya, Nadezda V; Bokhovchuk, Fedir M; Vuister, Geerten W

    2012-06-01

    The epithelial Ca(2+) channels TRPV5/6 (transient receptor potential vanilloid 5/6) are thoroughly regulated in order to fine-tune the amount of Ca(2+) reabsorption. Calmodulin has been shown to be involved into calcium-dependent inactivation of TRPV5/6 channels by binding directly to the distal C-terminal fragment of the channels (de Groot et al. in Mol Cell Biol 31:2845-2853, 12). Here, we investigate this binding in detail and find significant differences between TRPV5 and TRPV6. We also identify and characterize in vitro four other CaM binding fragments of TRPV5/6, which likely are also involved in TRPV5/6 channel regulation. The five CaM binding sites display diversity in binding modes, binding stoichiometries and binding affinities, which may fine-tune the response of the channels to varying Ca(2+)-concentrations. PMID:22354706

  15. Calmodulin Binding Proteins and Alzheimer's Disease.

    PubMed

    O'Day, Danton H; Eshak, Kristeen; Myre, Michael A

    2015-01-01

    The small, calcium-sensor protein, calmodulin, is ubiquitously expressed and central to cell function in all cell types. Here the literature linking calmodulin to Alzheimer's disease is reviewed. Several experimentally-verified calmodulin-binding proteins are involved in the formation of amyloid-β plaques including amyloid-β protein precursor, β-secretase, presenilin-1, and ADAM10. Many others possess potential calmodulin-binding domains that remain to be verified. Three calmodulin binding proteins are associated with the formation of neurofibrillary tangles: two kinases (CaMKII, CDK5) and one protein phosphatase (PP2B or calcineurin). Many of the genes recently identified by genome wide association studies and other studies encode proteins that contain putative calmodulin-binding domains but only a couple (e.g., APOE, BIN1) have been experimentally confirmed as calmodulin binding proteins. At least two receptors involved in calcium metabolism and linked to Alzheimer's disease (mAchR; NMDAR) have also been identified as calmodulin-binding proteins. In addition to this, many proteins that are involved in other cellular events intimately associated with Alzheimer's disease including calcium channel function, cholesterol metabolism, neuroinflammation, endocytosis, cell cycle events, and apoptosis have been tentatively or experimentally verified as calmodulin binding proteins. The use of calmodulin as a potential biomarker and as a therapeutic target is discussed. PMID:25812852

  16. WISP-1 binds to decorin and biglycan.

    PubMed

    Desnoyers, L; Arnott, D; Pennica, D

    2001-12-14

    Wnt-1-induced secreted protein 1 (WISP-1) is a member of the CCN (connective tissue growth factor, Cyr61, NOV) family of growth factors. Structural and experimental evidence suggests that CCN family member activities are modulated by their interaction with sulfated glycoconjugates. To elucidate the mechanism of action for WISP-1, we characterized the specificity of its tissue and cellular interaction and identified binding factors. WISP-1 binding was restricted to the stroma of colon tumors and to cells with a fibroblastic phenotype. By using a solid phase assay, we showed that human skin fibroblast conditioned media contained WISP-1 binding factors. Competitive inhibition with different glycosaminoglycans and treatment with glycosaminoglycan lyases and proteases demonstrated that binding to the conditioned media was mediated by dermatan sulfate proteoglycans. Mass spectrometric analysis identified the isolated binding factors as decorin and biglycan. Decorin and biglycan interacted directly with WISP-1 and inhibited its binding to components in the conditioned media. Similarly, WISP-1 interaction with human skin fibroblasts was inhibited by dermatan sulfate, decorin, and biglycan or by treatment of the cell surface with dermatan sulfate-specific lyases. Together these results demonstrate that decorin and biglycan are WISP-1 binding factors that can mediate and modulate its interaction with the surface of fibroblasts. We propose that this specific interaction plays a role in the regulation of WISP-1 function.

  17. [Binding to chicken liver lactatedehydrogenase (author's transl)].

    PubMed

    Lluís, C; Bozal, J

    1976-06-01

    Some information about the lactate dehydrogenase NAD binding site has been obtained by working with coenzymes analogs of incomplete molecules. 5'AMP, 5'-ADP, ATP, 5'-c-AMP and 3'(2)-AMP inhibit chicken liver LDH activity competitively with NADH. 5"-AMP and 5'-ADP show a stronger inhibition power than ATP, suggesting that the presence of one or two phosphate groups at the 5' position of adenosine, is essential for the binding of the coenzyme analogs at the enzyme binding site. Ribose and ribose-5'-P do not appear to inhibit the LDH activity, proving that purine base lacking mononucleotides do not bind to the enzyme. 5"-ADPG inhibits LDH activity in the exactly as 5'-ADP, showing that ribose moiety may be replaced by glucose, without considerable effects on the coenzyme analog binding. 2'-desoxidenosin-5'-phosphate proves to be a poorer inhibitor of the LDH activity than 5'-AMP, indicating that an interaction between the--OH groups and the amino-acids of the LDH active center takes place. Nicotinamide does not produce any inhibition effect, while NMN and CMP induce a much weaker inhibition than the adenine analogues, thus indicating a lesser binding capacity to the enzyme. Therefore, the LDH binding site seems to show some definite specificity towards the adenina groups of the coenzyme.

  18. Improved flow cytometer measurement of binding assays

    DOEpatents

    Saunders, G.C.

    1984-05-30

    The invention relates to a method of measuring binding assays carried out with different size particles wherein the binding assay sample is run through a flow cytometer without separating the sample from the marking agent. The amount of a binding reactant present in a sample is determined by providing particles with a coating of binder and also a known quantity of smaller particles with a coating of binder reactant. The binding reactant is the same as the binding reactant present in the sample. The smaller particles also contain a fluorescent chemical. The particles are combined with the sample and the binding reaction is allowed to occur for a set length of time followed by combining the smaller particles with the mixture of the particles and the sample produced and allowing the binding reactions to proceed to equilibrium. The fluorescence and light scatter of the combined mixture is then measured as the combined mixture passes through a flow cytometer equipped with a laser to bring about fluorescence, and the number and strength of fluorescent events are compared. A similar method is also provided for determining the amount of antigen present in the sample by providing spheres with an antibody coating and some smaller spheres with an antigen coating. (LEW)

  19. Role of carbohydrates in thyrotropin binding sites.

    PubMed

    Pekonen, F

    1980-07-01

    The role of carbohydrates in thyrotropin binding was studied by glycosidase treatment of human thyroid membranes. Removal of over 75% of membrane sialic acid resulted in a 50% increase of TSH binding, measured in 10 mM Tris-HCl, 50 mM NaCl, 0.1% bSA, pH 7.4, 37 degrees C (buffer A). This augmentation was due to an increase in binding to high affinity sites (Ka 1 X 10(10)M-1). The binding was highly specific and was not significantly inhibited by gangliosides. In contrast, low affinity binding of TSH was unchanged either in buffer A or in 10 mM Tris-acetate, 0.1% bSA pH 6.0, 4 degrees C (buffer B) and was inhibited by gangliosides. Treatment of membranes with beta-galactosidase, beta-N-acetylglucosaminidase and alpha-L-fucosidase had little effect on TSH binding. The data suggests that membrane-associated sialic acid inhibits TSH binding to high affinity receptors and that gangliosides are not involved in tthis TSH-receptor interaction.

  20. Muscarine binding sites in bovine adrenal medulla.

    PubMed

    Barron, B A; Murrin, L C; Hexum, T D

    1986-03-18

    The presence of muscarinic binding sites in the bovine adrenal medulla was investigated using [3H]QNB and the bovine adrenal medulla. Scatchard analysis combined with computer analysis yielded data consistent with a two binding site configuration. KDs of 0.15 and 14 nM and Bmax s of 29 and 210 fmol/mg protein, respectively, were observed. Displacement of [3H]QNB by various cholinergic agents is, in order of decreasing potency: QNB, dexetimide, atropine, scopolamine, imipramine, desipramine, oxotremorine, pilocarpine, acetylcholine, methacholine and carbachol. These results demonstrate the presence of more than one muscarine binding site in the bovine adrenal gland. PMID:3709656

  1. Measuring Binding Affinity of Protein-Ligand Interaction Using Spectrophotometry: Binding of Neutral Red to Riboflavin-Binding Protein

    ERIC Educational Resources Information Center

    Chenprakhon, Pirom; Sucharitakul, Jeerus; Panijpan, Bhinyo; Chaiyen, Pimchai

    2010-01-01

    The dissociation constant, K[subscript d], of the binding of riboflavin-binding protein (RP) with neutral red (NR) can be determined by titrating RP to a fixed concentration of NR. Upon adding RP to the NR solution, the maximum absorption peak of NR shifts to 545 nm from 450 nm for the free NR. The change of the absorption can be used to determine…

  2. Carbohydrate-binding modules from a thermostable Rhodothermus marinus xylanase: cloning, expression and binding studies.

    PubMed Central

    Abou Hachem, M; Nordberg Karlsson, E; Bartonek-Roxâ, E; Raghothama, S; Simpson, P J; Gilbert, H J; Williamson, M P; Holst, O

    2000-01-01

    The two N-terminally repeated carbohydrate-binding modules (CBM4-1 and CBM4-2) encoded by xyn10A from Rhodothermus marinus were produced in Escherichia coli and purified by affinity chromatography. Binding assays to insoluble polysaccharides showed binding to insoluble xylan and to phosphoric-acid-swollen cellulose but not to Avicel or crystalline cellulose. Binding to insoluble substrates was significantly enhanced by the presence of Na(+) and Ca(2+) ions. The binding affinities for soluble polysaccharides were tested by affinity electrophoresis; strong binding occurred with different xylans and beta-glucan. CBM4-2 displayed a somewhat higher binding affinity than CBM4-1 for both soluble and insoluble substrates but both had similar specificities. Binding to short oligosaccharides was measured by NMR; both modules bound with similar affinities. The binding of the modules was shown to be dominated by enthalpic forces. The binding modules did not contribute with any significant synergistic effects on xylan hydrolysis when incubated with a Xyn10A catalytic module. This is the first report of family 4 CBMs with affinity for both insoluble xylan and amorphous cellulose. PMID:10600638

  3. Leukocyte protease binding to nucleic acids promotes nuclear localization and cleavage of nucleic acid binding proteins.

    PubMed

    Thomas, Marshall P; Whangbo, Jennifer; McCrossan, Geoffrey; Deutsch, Aaron J; Martinod, Kimberly; Walch, Michael; Lieberman, Judy

    2014-06-01

    Killer lymphocyte granzyme (Gzm) serine proteases induce apoptosis of pathogen-infected cells and tumor cells. Many known Gzm substrates are nucleic acid binding proteins, and the Gzms accumulate in the target cell nucleus by an unknown mechanism. In this study, we show that human Gzms bind to DNA and RNA with nanomolar affinity. Gzms cleave their substrates most efficiently when both are bound to nucleic acids. RNase treatment of cell lysates reduces Gzm cleavage of RNA binding protein targets, whereas adding RNA to recombinant RNA binding protein substrates increases in vitro cleavage. Binding to nucleic acids also influences Gzm trafficking within target cells. Preincubation with competitor DNA and DNase treatment both reduce Gzm nuclear localization. The Gzms are closely related to neutrophil proteases, including neutrophil elastase (NE) and cathepsin G. During neutrophil activation, NE translocates to the nucleus to initiate DNA extrusion into neutrophil extracellular traps, which bind NE and cathepsin G. These myeloid cell proteases, but not digestive serine proteases, also bind DNA strongly and localize to nuclei and neutrophil extracellular traps in a DNA-dependent manner. Thus, high-affinity nucleic acid binding is a conserved and functionally important property specific to leukocyte serine proteases. Furthermore, nucleic acid binding provides an elegant and simple mechanism to confer specificity of these proteases for cleavage of nucleic acid binding protein substrates that play essential roles in cellular gene expression and cell proliferation.

  4. Two nucleotide binding sites modulate ( sup 3 H) glyburide binding to rat cortex membranes

    SciTech Connect

    Johnson, D.E.; Gopalakrishnan, M.; Triggle, D.J.; Janis, R.A. State Univ. of New York, Buffalo )

    1991-03-11

    The effects of nucleotides on the binding of the ATP-dependent K{sup +}-channel antagonist ({sup 3}H)glyburide (GLB) to rat cortex membranes were examined. Nucleotide triphosphates (NTPs) and nucleotide diphosphate (NDPs) inhibited the binding of GLB. This effect was dependent on the presence of dithiothreitol (DTT). Inhibition of binding by NTPs, with the exception of ATP{gamma}S, was dependent on the presence of Mg{sup 2+}. GLB binding showed a biphasic response to ADP: up to 3 mM, ADP inhibited binding, and above this concentration GLB binding increased rapidly, and was restored to normal levels by 10 mM ADP. In the presence of Mg{sup 2+}, ADP did not stimulate binding. Saturation analysis in the presence of Mg{sup 2+} and increasing concentrations of ADP showed that ADP results primarily in a change of the B{sub max} for GLB binding. The differential effects of NTPS and NDPs indicate that two nucleotide binding sites regulate GLB binding.

  5. Tau Induces Cooperative Taxol Binding to Microtubules

    NASA Astrophysics Data System (ADS)

    Ross, Jennifer; Santangelo, Christian; Victoria, Makrides; Fygenson, Deborah

    2004-03-01

    Taxol and tau are two ligands which stabilize the microtubule (MT) lattice. Taxol is an anti-mitotic drug that binds β tubulin in the MT interior. Tau is a MT-associated protein that binds both α and β tubulin on the MT exterior. Both taxol and tau reduce MT dynamics and promote tubulin polymerization. Tau alone also acts as a buttress to bundle, stiffen, and space MTs. A structural study recently suggested that taxol and tau may interact by binding to the same site. Using fluorescence recovery after photobleaching, we find that tau induces taxol to bind MTs cooperatively depending on the tau concentration. We develop a model that correctly fits the data in the absence of tau and yields a measure of taxol cooperativity when tau is present.

  6. Binding of ATP to the progesterone receptor.

    PubMed Central

    Moudgil, V K; Toft, D O

    1975-01-01

    The possible interaction of progesterone--receptor complexes with nucleotides was tested by affinity chromatography. The cytosol progesterone receptor from hen oviduct was partially purified by ammonium sulfate precipitation before use. When progesterone was bound to the receptor, the resulting complex could be selectively adsorbed onto columns of ATP-Sepharose. This interaction was reversible and of an ionic nature since it could be disrupted by high-salt conditions. A competitive binding assay was used to test the specificity of receptor binding to several other nucleotides, including ADP, AMP, and cAMP. A clear specificity for binding ATP was evident from these studies. When ATP was added to receptor preparations, the nucleotide did not affect the sedimentation properties or hormone binding characteristics of the receptor. Although the function of ATP remains unknown, these studies indicate a role of this nucleotide in some aspect of hormone receptor activity. PMID:165493

  7. Hardware device binding and mutual authentication

    DOEpatents

    Hamlet, Jason R; Pierson, Lyndon G

    2014-03-04

    Detection and deterrence of device tampering and subversion by substitution may be achieved by including a cryptographic unit within a computing device for binding multiple hardware devices and mutually authenticating the devices. The cryptographic unit includes a physically unclonable function ("PUF") circuit disposed in or on the hardware device, which generates a binding PUF value. The cryptographic unit uses the binding PUF value during an enrollment phase and subsequent authentication phases. During a subsequent authentication phase, the cryptographic unit uses the binding PUF values of the multiple hardware devices to generate a challenge to send to the other device, and to verify a challenge received from the other device to mutually authenticate the hardware devices.

  8. Ligand Binding to Macromolecules: Allosteric and Sequential Models of Cooperativity.

    ERIC Educational Resources Information Center

    Hess, V. L.; Szabo, Attila

    1979-01-01

    A simple model is described for the binding of ligands to macromolecules. The model is applied to the cooperative binding by hemoglobin and aspartate transcarbamylase. The sequential and allosteric models of cooperative binding are considered. (BB)

  9. Weak binding gases as modulators of hemoglobin function

    SciTech Connect

    Schoenborn, B P; Saxena, A; North, B E

    1980-01-01

    Studies are reported in which the mechanisms of binding of inert gaseous agents to hemoglobin and myoglobin are investigated. Specific binding sites are mapped. Possible effects on sickle cell formation and oxygen binding are discussed. (ACR)

  10. Atomic electron binding energies in fermium

    SciTech Connect

    Das, M.P.

    1981-02-01

    Calculations of the binding energies of electrons in fermium by using a relativistic local-density functional theory are reported. It is found that relaxation effects are nonnegligible for inner core orbitals. Calculated orbital binding energies are compared with those due to nonlocal Dirac-Fock calculations and also with those determined experimentally from conversion electron spectroscopy. Finally the usefulness of the local-density approximation for the study of heavy atomic and condensed systems is discussed.

  11. Binding capacity: cooperativity and buffering in biopolymers.

    PubMed Central

    Di Cera, E; Gill, S J; Wyman, J

    1988-01-01

    The group of linkage potentials resulting from the energy of a physicochemical system expressed per mol of a reference component, say a polyfunctional macromolecule, leads to the concept of binding capacity. This concept applies equally to both chemical and physical ligands and opens the way to consideration of higher-order linkage relationships. It provides a means of exploring the consequences of thermodynamic stability on generalized binding phenomena in biopolymers. PMID:3422436

  12. Electrostatically biased binding of kinesin to microtubules.

    PubMed

    Grant, Barry J; Gheorghe, Dana M; Zheng, Wenjun; Alonso, Maria; Huber, Gary; Dlugosz, Maciej; McCammon, J Andrew; Cross, Robert A

    2011-11-01

    The minimum motor domain of kinesin-1 is a single head. Recent evidence suggests that such minimal motor domains generate force by a biased binding mechanism, in which they preferentially select binding sites on the microtubule that lie ahead in the progress direction of the motor. A specific molecular mechanism for biased binding has, however, so far been lacking. Here we use atomistic Brownian dynamics simulations combined with experimental mutagenesis to show that incoming kinesin heads undergo electrostatically guided diffusion-to-capture by microtubules, and that this produces directionally biased binding. Kinesin-1 heads are initially rotated by the electrostatic field so that their tubulin-binding sites face inwards, and then steered towards a plus-endwards binding site. In tethered kinesin dimers, this bias is amplified. A 3-residue sequence (RAK) in kinesin helix alpha-6 is predicted to be important for electrostatic guidance. Real-world mutagenesis of this sequence powerfully influences kinesin-driven microtubule sliding, with one mutant producing a 5-fold acceleration over wild type. We conclude that electrostatic interactions play an important role in the kinesin stepping mechanism, by biasing the diffusional association of kinesin with microtubules. PMID:22140358

  13. Electrostatically Biased Binding of Kinesin to Microtubules

    PubMed Central

    Zheng, Wenjun; Alonso, Maria; Huber, Gary; Dlugosz, Maciej; McCammon, J. Andrew; Cross, Robert A.

    2011-01-01

    The minimum motor domain of kinesin-1 is a single head. Recent evidence suggests that such minimal motor domains generate force by a biased binding mechanism, in which they preferentially select binding sites on the microtubule that lie ahead in the progress direction of the motor. A specific molecular mechanism for biased binding has, however, so far been lacking. Here we use atomistic Brownian dynamics simulations combined with experimental mutagenesis to show that incoming kinesin heads undergo electrostatically guided diffusion-to-capture by microtubules, and that this produces directionally biased binding. Kinesin-1 heads are initially rotated by the electrostatic field so that their tubulin-binding sites face inwards, and then steered towards a plus-endwards binding site. In tethered kinesin dimers, this bias is amplified. A 3-residue sequence (RAK) in kinesin helix alpha-6 is predicted to be important for electrostatic guidance. Real-world mutagenesis of this sequence powerfully influences kinesin-driven microtubule sliding, with one mutant producing a 5-fold acceleration over wild type. We conclude that electrostatic interactions play an important role in the kinesin stepping mechanism, by biasing the diffusional association of kinesin with microtubules. PMID:22140358

  14. The readiness potential reflects intentional binding.

    PubMed

    Jo, Han-Gue; Wittmann, Marc; Hinterberger, Thilo; Schmidt, Stefan

    2014-01-01

    When a voluntary action is causally linked with a sensory outcome, the action and its consequent effect are perceived as being closer together in time. This effect is called intentional binding. Although many experiments were conducted on this phenomenon, the underlying neural mechanisms are not well understood. While intentional binding is specific to voluntary action, we presumed that preconscious brain activity (the readiness potential, RP), which occurs before an action is made, might play an important role in this binding effect. In this study, the brain dynamics were recorded with electroencephalography (EEG) and analyzed in single-trials in order to estimate whether intentional binding is correlated with the early neural processes. Moreover, we were interested in different behavioral performance between meditators and non-meditators since meditators are expected to be able to keep attention more consistently on a task. Thus, we performed the intentional binding paradigm with 20 mindfulness meditators and compared them to matched controls. Although, we did not observe a group effect on either behavioral data or EEG recordings, we found that self-initiated movements following ongoing negative deflections of slow cortical potentials (SCPs) result in a stronger binding effect compared to positive potentials, especially regarding the perceived time of the consequent effect. Our results provide the first direct evidence that the early neural activity within the range of SCPs affects perceived time of a sensory outcome that is caused by intentional action.

  15. Molecular design of substrate binding sites

    SciTech Connect

    Shelnutt, J.A.; Hobbs, J.D.

    1991-12-31

    Computer-aided molecular design methods were used to tailor binding sites for small substrate molecules, including CO{sub 2} and methane. The goal is to design a cavity, adjacent to a catalytic metal center, into which the substrate will selectively bind through only non-bonding interactions with the groups lining the binding pocket. Porphyrins are used as a basic molecular structure, with various substituents added to construct the binding pocket. The conformations of these highly-substituted porphyrins are predicted using molecular mechanics calculations with a force field that gives accurate predictions for metalloporhyrins. Dynamics and energy-minimization calculations of substrate molecules bound to the cavity indicate high substrate binding affinity. The size, shape and charge-distribution of groups surrounding the cavity provide molecular selectivity. Specifically, calculated binding energies of methane, benzene, dichloromethane, CO{sub 2} and chloroform vary by about 10 kcal/mol for metal octaethyl-tetraphenylporphyrins (OETPPs) with chloroform, dichloromethane, and CO{sub 2} having the lowest. Significantly, a solvent molecule is found in the cavity in the X-ray structures of Co- and CuOETPP crystals obtained from dichloromethane. 5 refs., 3 figs., 3 tabs.

  16. Molecular design of substrate binding sites

    SciTech Connect

    Shelnutt, J.A.; Hobbs, J.D.

    1991-01-01

    Computer-aided molecular design methods were used to tailor binding sites for small substrate molecules, including CO{sub 2} and methane. The goal is to design a cavity, adjacent to a catalytic metal center, into which the substrate will selectively bind through only non-bonding interactions with the groups lining the binding pocket. Porphyrins are used as a basic molecular structure, with various substituents added to construct the binding pocket. The conformations of these highly-substituted porphyrins are predicted using molecular mechanics calculations with a force field that gives accurate predictions for metalloporhyrins. Dynamics and energy-minimization calculations of substrate molecules bound to the cavity indicate high substrate binding affinity. The size, shape and charge-distribution of groups surrounding the cavity provide molecular selectivity. Specifically, calculated binding energies of methane, benzene, dichloromethane, CO{sub 2} and chloroform vary by about 10 kcal/mol for metal octaethyl-tetraphenylporphyrins (OETPPs) with chloroform, dichloromethane, and CO{sub 2} having the lowest. Significantly, a solvent molecule is found in the cavity in the X-ray structures of Co- and CuOETPP crystals obtained from dichloromethane. 5 refs., 3 figs., 3 tabs.

  17. Two bradykinin binding sites with picomolar affinities

    SciTech Connect

    Manning, D.C.; Vavrek, R.; Stewart, J.M.; Snyder, S.H.

    1986-05-01

    Bradykinin (BK) and related peptides exert a wide range of effects on several organ systems. We have attempted to sort out these effects by studying the binding interaction of (/sup 3/H)BK at the membrane level with in vitro receptor binding techniques. High specific activity (/sup 3/H)BK and an enzyme inhibitor cocktail has enabled us to label two BK binding sites with different affinity and peptide specificity in several guinea-pig tissues. In the guinea-pig ileum the high-affinity site has an equilibrium dissociation constant (Kd) for (/sup 3/H)BK of 13 pM and a maximal number of binding sites of 8.3 pmol/g of tissue wet weight. The low-affinity guinea-pig ileum site displays a Kd of 910 pM, a maximum number of binding sites of 14 pmol/g of tissue wet weight and shows a greater selectivity for BK analogs over Lysyl-BK analogs. Two similar sites can also be discriminated in kidney and heart. The potencies of a series of BK analogs at the high-affinity guinea-pig ileum site correlate well with their potencies in contracting ileal smooth muscle. The binding of (/sup 3/H)BK in the guinea-pig ileum is inhibited by physiological concentrations of monovalent and divalent cations.

  18. Immobilized purified folate-binding protein: binding characteristics and use for quantifying folate in erythrocytes

    SciTech Connect

    Hansen, S.I.; Holm, J.; Nexo, E.

    1987-08-01

    Purified folate-binding protein from cow's milk was immobilized on monodisperse polymer particles (Dynospheres) activated by rho-toluenesulfonyl chloride. Leakage from the spheres was less than 0.1%, and the binding properties were similar to those of the soluble protein with regard to dissociation, pH optimum for binding pteroylglutamic acid, and specificity for binding various folate derivatives. We used the immobilized folate-binding protein as binding protein in an isotope-dilution assay for quantifying folate in erythrocytes. The detection limit was 50 nmol/L and the CV over a six-month period was 2.3% (means = 1.25 mumol/L, n = 15). The reference interval, for folate measured in erythrocytes of 43 blood donors, was 0.4-1.5 mumol/L.

  19. Theoretical studies of binding of mannose-binding protein to monosaccharides

    NASA Astrophysics Data System (ADS)

    Aida-Hyugaji, Sachiko; Takano, Keiko; Takada, Toshikazu; Hosoya, Haruo; Kojima, Naoya; Mizuochi, Tsuguo; Inoue, Yasushi

    2004-11-01

    Binding properties of mannose-binding protein (MBP) to monosaccharides are discussed based on ab initio molecular orbital calculations for cluster models constructed. The calculated binding energies indicate that MBP has an affinity for N-acetyl- D-glucosamine, D-mannose, L-fucose, and D-glucose rather than D-galactose and N-acetyl- D-galactosamine, which is consistent with the biochemical experimental results. Electrostatic potential surfaces at the binding site of four monosaccharides having binding properties matched well with that of MBP. A vacant frontier orbital was found to be localized around the binding site of MBP, suggesting that MBP-monosaccharide interaction may occur through electrostatic and orbital interactions.

  20. Fucose-binding Lotus tetragonolobus lectin binds to human polymorphonuclear leukocytes and induces a chemotactic response.

    PubMed

    VanEpps, D E; Tung, K S

    1977-09-01

    Fucose-binding L. tetragonolobus lectin to the surface of human polymorphonuclear leukocytes (PMN) and induces a chemotactic response. Both surface binding and chemotaxis are inhibited by free fucose but not by fructose, mannose, or galactose. The lectin-binding sites on PMN are unrelated to the A, B, or O blood group antigen. Utilization of this lectin should be a useful tool in isolating PMN membrane components and in analyzing the mechanism of neutrophil chemotaxis. PMID:330752

  1. Folding funnels, binding funnels, and protein function.

    PubMed Central

    Tsai, C. J.; Kumar, S.; Ma, B.; Nussinov, R.

    1999-01-01

    Folding funnels have been the focus of considerable attention during the last few years. These have mostly been discussed in the general context of the theory of protein folding. Here we extend the utility of the concept of folding funnels, relating them to biological mechanisms and function. In particular, here we describe the shape of the funnels in light of protein synthesis and folding; flexibility, conformational diversity, and binding mechanisms; and the associated binding funnels, illustrating the multiple routes and the range of complexed conformers. Specifically, the walls of the folding funnels, their crevices, and bumps are related to the complexity of protein folding, and hence to sequential vs. nonsequential folding. Whereas the former is more frequently observed in eukaryotic proteins, where the rate of protein synthesis is slower, the latter is more frequent in prokaryotes, with faster translation rates. The bottoms of the funnels reflect the extent of the flexibility of the proteins. Rugged floors imply a range of conformational isomers, which may be close on the energy landscape. Rather than undergoing an induced fit binding mechanism, the conformational ensembles around the rugged bottoms argue that the conformers, which are most complementary to the ligand, will bind to it with the equilibrium shifting in their favor. Furthermore, depending on the extent of the ruggedness, or of the smoothness with only a few minima, we may infer nonspecific, broad range vs. specific binding. In particular, folding and binding are similar processes, with similar underlying principles. Hence, the shape of the folding funnel of the monomer enables making reasonable guesses regarding the shape of the corresponding binding funnel. Proteins having a broad range of binding, such as proteolytic enzymes or relatively nonspecific endonucleases, may be expected to have not only rugged floors in their folding funnels, but their binding funnels will also behave similarly

  2. Kinetic mechanisms of inhibitor binding: relevance to the fast-acting slow-binding paradigm.

    PubMed Central

    Falk, S; Oulianova, N; Berteloot, A

    1999-01-01

    Although phlorizin inhibition of Na+-glucose cotransport occurs within a few seconds, 3H-phlorizin binding to the sodium-coupled glucose transport protein(s) requires several minutes to reach equilibrium (the fast-acting slow-binding paradigm). Using kinetic models of arbitrary dimension that can be reduced to a two-state diagram according to Cha's formalism, we show that three basic mechanisms of inhibitor binding can be identified whereby the inhibitor binding step either (A) represents, (B) precedes, or (C) follows the rate-limiting step in a binding reaction. We demonstrate that each of mechanisms A-C is associated with a set of unique kinetic properties, and that the time scale over which one may expect to observe mechanism C is conditioned by the turnover number of the catalytic cycle. In contrast, mechanisms A and B may be relevant to either fast-acting or slow-binding inhibitors. However, slow-binding inhibition according to mechanism A may not be compatible with a fast-acting behavior on the steady-state time scale of a few seconds. We conclude that the recruitment hypothesis (mechanism C) cannot account for slow phlorizin binding to the sodium-coupled glucose transport protein(s), and that mechanism B is the only alternative that may explain the fast-acting slow-binding paradigm. PMID:10388748

  3. Recent improvements to Binding MOAD: a resource for protein–ligand binding affinities and structures

    PubMed Central

    Ahmed, Aqeel; Smith, Richard D.; Clark, Jordan J.; Dunbar, James B.; Carlson, Heather A.

    2015-01-01

    For over 10 years, Binding MOAD (Mother of All Databases; http://www.BindingMOAD.org) has been one of the largest resources for high-quality protein–ligand complexes and associated binding affinity data. Binding MOAD has grown at the rate of 1994 complexes per year, on average. Currently, it contains 23 269 complexes and 8156 binding affinities. Our annual updates curate the data using a semi-automated literature search of the references cited within the PDB file, and we have recently upgraded our website and added new features and functionalities to better serve Binding MOAD users. In order to eliminate the legacy application server of the old platform and to accommodate new changes, the website has been completely rewritten in the LAMP (Linux, Apache, MySQL and PHP) environment. The improved user interface incorporates current third-party plugins for better visualization of protein and ligand molecules, and it provides features like sorting, filtering and filtered downloads. In addition to the field-based searching, Binding MOAD now can be searched by structural queries based on the ligand. In order to remove redundancy, Binding MOAD records are clustered in different families based on 90% sequence identity. The new Binding MOAD, with the upgraded platform, features and functionalities, is now equipped to better serve its users. PMID:25378330

  4. Crystal Structure of the Botulinum Neurotoxin Type G Binding Domain: Insight into Cell Surface Binding

    SciTech Connect

    Stenmark, Pål; Dong, Min; Dupuy, Jérôme; Chapman, Edwin R.; Stevens, Raymond C.

    2011-11-02

    Botulinum neurotoxins (BoNTs) typically bind the neuronal cell surface via dual interactions with both protein receptors and gangliosides. We present here the 1.9-{angstrom} X-ray structure of the BoNT serotype G (BoNT/G) receptor binding domain (residues 868-1297) and a detailed view of protein receptor and ganglioside binding regions. The ganglioside binding motif (SxWY) has a conserved structure compared to the corresponding regions in BoNT serotype A and BoNT serotype B (BoNT/B), but several features of interactions with the hydrophilic face of the ganglioside are absent at the opposite side of the motif in the BoNT/G ganglioside binding cleft. This may significantly reduce the affinity between BoNT/G and gangliosides. BoNT/G and BoNT/B share the protein receptor synaptotagmin (Syt) I/II. The Syt binding site has a conserved hydrophobic plateau located centrally in the proposed protein receptor binding interface (Tyr1189, Phe1202, Ala1204, Pro1205, and Phe1212). Interestingly, only 5 of 14 residues that are important for binding between Syt-II and BoNT/B are conserved in BoNT/G, suggesting that the means by which BoNT/G and BoNT/B bind Syt diverges more than previously appreciated. Indeed, substitution of Syt-II Phe47 and Phe55 with alanine residues had little effect on the binding of BoNT/G, but strongly reduced the binding of BoNT/B. Furthermore, an extended solvent-exposed hydrophobic loop, located between the Syt binding site and the ganglioside binding cleft, may serve as a third membrane association and binding element to contribute to high-affinity binding to the neuronal membrane. While BoNT/G and BoNT/B are homologous to each other and both utilize Syt-I/Syt-II as their protein receptor, the precise means by which these two toxin serotypes bind to Syt appears surprisingly divergent.

  5. RNA binding protein and binding site useful for expression of recombinant molecules

    DOEpatents

    Mayfield, Stephen P.

    2006-10-17

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  6. RNA binding protein and binding site useful for expression of recombinant molecules

    DOEpatents

    Mayfield, Stephen

    2000-01-01

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  7. Binding studies of SV40 T-antigen to SV40 binding site II.

    PubMed

    Gottlieb, P; Nasoff, M S; Fisher, E F; Walsh, A M; Caruthers, M H

    1985-09-25

    SV40 T-Antigen binding site II was synthesized, cloned and analyzed for its ability to bind purified SV40 T-antigen. We report the binding constant of T-antigen for isolated site II. Using a filter binding assay the calculated binding constant was 6-8 fold less efficient than site I previously reported. Binding constants were calculated using two methods. The first was a direct calculation using a protein titration curve (KD). The second was by the ratio of measured association and dissociation rates. Both methods gave similar constants. Protection studies with SV40 T-antigen on the T-antigen binding sites in the wild-type array demonstrated that the binding constants of site I and site II are similar to those calculated for the individual sites. These results demonstrate that SV40 T-antigen does not bind cooperatively to sites one and two as earlier believed and are in agreement with recent observations emanating from several laboratories.

  8. Wild-Type p53 Binds to the TATA-Binding Protein and Represses Transcription

    NASA Astrophysics Data System (ADS)

    Seto, Edward; Usheva, Anny; Zambetti, Gerard P.; Momand, Jamil; Horikoshi, Nobuo; Weinmann, Roberto; Levine, Arnold J.; Shenk, Thomas

    1992-12-01

    p53 activates transcription of genes with a p53 response element, and it can repress genes lacking the element. Here we demonstrate that wild-type but not mutant p53 inhibits transcription in a HeLa nuclear extract from minimal promoters. Wild-type but not mutant p53 binds to human TATA-binding protein (TBP). p53 does not bind to yeast TBP, and it cannot inhibit transcription in a HeLa extract where yeast TBP substitutes for human TBP. These results suggest a model in which p53 binds to TBP and interferes with transcriptional initiation.

  9. Radiation inactivation reveals discrete cation binding sites that modulate dihydropyridine binding sites

    SciTech Connect

    Bolger, G.T.; Skolnick, P.; Kempner, E.S. )

    1989-08-01

    In low ionic strength buffer (5 mM Tris.HCl), the binding of (3H) nitrendipine to dihydropyridine calcium antagonist binding sites of mouse forebrain membranes is increased by both Na{sup +} and Ca{sup 2+}. Radiation inactivation was used to determine the target size of ({sup 3}H)nitrendipine binding sites in 5 mM Tris.HCl buffer, in the presence and absence of these cations. After irradiation, ({sup 3}H) nitrendipine binding in buffer with or without Na+ was diminished, due to a loss of binding sites and also to an increase in Kd. After accounting for radiation effects on the dissociation constant, the target size for the nitrendipine binding site in buffer was 160-170 kDa and was 170-180 kDa in the presence of sodium. In the presence of calcium ions, ({sup 3}H)nitrendipine binding showed no radiation effects on Kd and yielded a target size of 150-170 kDa. These findings suggest, as in the case of opioid receptors, the presence of high molecular weight membrane components that modulate cation-induced alterations in radioligand binding to dihydropyridine binding sites.

  10. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    PubMed Central

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-01-01

    Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states. PMID:25004958

  11. Tight-Binding Configuration Interaction (TBCI): A Noniterative Approach to Incorporating Electrostatics into Tight Binding.

    PubMed

    Iron, Mark A; Heyden, Andreas; Staszewska, Grażyna; Truhlar, Donald G

    2008-05-01

    We present a new electronic structure approximation called Tight Binding Configuration Interaction. It uses a tight-binding Hamiltonian to obtain orbitals that are used in a configuration interaction calculation that includes explicit charge interactions. This new method is better capable of predicting energies, ionization potentials, and fragmentation charges than the Wolfsberg-Helmholz Tight-Binding and Many-Body Tight-Binding models reported earlier (Staszewska, G.; Staszewski, P.; Schultz, N. E.; Truhlar, D. Phys. Rev. B 2005, 71, 045423). The method is illustrated for clusters and nanoparticles containing aluminum.

  12. Evidence for chemoreceptors with bimodular ligand-binding regions harboring two signal-binding sites

    PubMed Central

    Pineda-Molina, Estela; Reyes-Darias, José-Antonio; Lacal, Jesús; Ramos, Juan L.; García-Ruiz, Juan Manuel; Gavira, Jose A.; Krell, Tino

    2012-01-01

    Chemoreceptor-based signaling is a central mechanism in bacterial signal transduction. Receptors are classified according to the size of their ligand-binding region. The well-studied cluster I proteins have a 100- to 150-residue ligand-binding region that contains a single site for chemoattractant recognition. Cluster II receptors, which contain a 220- to 300-residue ligand-binding region and which are almost as abundant as cluster I receptors, remain largely uncharacterized. Here, we report high-resolution structures of the ligand-binding region of the cluster II McpS chemotaxis receptor (McpS-LBR) of Pseudomonas putida KT2440 in complex with different chemoattractants. The structure of McpS-LBR represents a small-molecule binding domain composed of two modules, each able to bind different signal molecules. Malate and succinate were found to bind to the membrane-proximal module, whereas acetate binds to the membrane-distal module. A structural alignment of the two modules revealed that the ligand-binding sites could be superimposed and that amino acids involved in ligand recognition are conserved in both binding sites. Ligand binding to both modules was shown to trigger chemotactic responses. Further analysis showed that McpS-like receptors were found in different classes of proteobacteria, indicating that this mode of response to different carbon sources may be universally distributed. The physiological relevance of the McpS architecture may lie in its capacity to respond with high sensitivity to the preferred carbon sources malate and succinate and, at the same time, mediate lower sensitivity responses to the less preferred but very abundant carbon source acetate. PMID:23112148

  13. Prebending the estrogen response element destabilizes binding of the estrogen receptor DNA binding domain.

    PubMed Central

    Kim, J; de Haan, G; Nardulli, A M; Shapiro, D J

    1997-01-01

    Binding of many eukaryotic transcription regulatory proteins to their DNA recognition sequences results in conformational changes in DNA. To test the effect of altering DNA topology by prebending a transcription factor binding site, we examined the interaction of the estrogen receptor (ER) DNA binding domain (DBD) with prebent estrogen response elements (EREs). When the ERE in minicircle DNA was prebent toward the major groove, which is in the same direction as the ER-induced DNA bend, there was no significant effect on ER DBD binding relative to the linear counterparts. However, when the ERE was bent toward the minor groove, in a direction that opposes the ER-induced DNA bend, there was a four- to eightfold reduction in ER DBD binding. Since reduced binding was also observed with the ERE in nicked circles, the reduction in binding was not due to torsional force induced by binding of ER DBD to the prebent ERE in covalently closed minicircles. To determine the mechanism responsible for reduced binding to the prebent ERE, we examined the effect of prebending the ERE on the association and dissociation of the ER DBD. Binding of the ER DBD to ERE-containing minicircles was rapid when the EREs were prebent toward either the major or minor groove of the DNA (k(on) of 9.9 x 10(6) to 1.7 x 10(7) M(-1) s(-1)). Prebending the ERE toward the minor groove resulted in an increase in k(off) of four- to fivefold. Increased dissociation of the ER DBD from the ERE is, therefore, the major factor responsible for reduced binding of the ER DBD to an ERE prebent toward the minor groove. These data provide the first direct demonstration that the interaction of a eukaryotic transcription factor with its recognition sequence can be strongly influenced by altering DNA topology through prebending the DNA. PMID:9154816

  14. Human sex hormone-binding globulin binding affinities of 125 structurally diverse chemicals and comparison with their binding to androgen receptor, estrogen receptor, and α-fetoprotein.

    PubMed

    Hong, Huixiao; Branham, William S; Ng, Hui Wen; Moland, Carrie L; Dial, Stacey L; Fang, Hong; Perkins, Roger; Sheehan, Daniel; Tong, Weida

    2015-02-01

    One endocrine disruption mechanism is through binding to nuclear receptors such as the androgen receptor (AR) and estrogen receptor (ER) in target cells. The concentration of a chemical in serum is important for its entry into the target cells to bind the receptors, which is regulated by the serum proteins. Human sex hormone-binding globulin (SHBG) is the major transport protein in serum that can bind androgens and estrogens and thus change a chemical's availability to enter the target cells. Sequestration of an androgen or estrogen in the serum can alter the chemical elicited AR- and ER-mediated responses. To better understand the chemical-induced endocrine activity, we developed a competitive binding assay using human pregnancy plasma and measured the binding to the human SHBG for 125 structurally diverse chemicals, most of which were known to bind AR and ER. Eighty seven chemicals were able to bind the human SHBG in the assay, whereas 38 chemicals were nonbinders. Binding data for human SHBG are compared with that for rat α-fetoprotein, ER and AR. Knowing the binding profiles between serum and nuclear receptors will improve assessment of a chemical's potential for endocrine disruption. The SHBG binding data reported here represent the largest data set of structurally diverse chemicals tested for human SHBG binding. Utilization of the SHBG binding data with AR and ER binding data could enable better evaluation of endocrine disrupting potential of chemicals through AR- and ER-mediated responses since sequestration in serum could be considered.

  15. Ag(I)-binding to phytochelatins.

    PubMed

    Mehra, R K; Tran, K; Scott, G W; Mulchandani, P; Saini, S S

    1996-02-01

    Phytochelatins (PCs) are glutathione-derived peptides with the general structure (gamma-Glu-Cys)nGly, where n varies from 2 to 11. A variety of metal ions such as Cu(II), Cd(II), Pb(II), Zn(II), and Ag(I) induce PC synthesis in plants and some yeasts. It has generally been assumed that the inducer metals also bind PCs. However, very little information is available on the binding of metals other than Cu(I) and Cd(II) to PCs. In this paper, we describe the Ag(I)-binding characteristics of PCs with the structure (gamma-Glu-Cys)2Gly, (gamma-Glu-Cys)3Gly, and (gamma-Glu-Cys)4Gly. The Ag(I)-binding stoichiometries of these three peptides were determined by (i) UV/VIS spectrophotometry, (ii) luminescence spectroscopy at 77 K, and (iii) reverse-phase HPLC. The three techniques yielded similar results. ApoPCs exhibit featureless absorption in the 220-340 nm range. The binding of Ag(I) to PCs induced the appearance of specific absorption shoulders. The titration end point was indicated by the flattening of the characteristic absorption shoulders. Similarly, luminescence at 77 K due to Ag(I)-thiolate clusters increased with the addition of graded Ag(I) equivalents. The luminescence declined when Ag(I) equivalents in excess of the saturating amounts were added to the peptides. At neutral pH, (gamma-Glu-Cys)2Gly, (gamma-Glu-Cys)3Gly, and (gamma-Glu-Cys)4Gly bind 1.0, 1.5, and 4.0 equivalents of Ag(I), respectively. The Ag(I)-binding capacity of (gamma-Glu-Cys)2Gly and (gamma-Glu-Cys)3Gly was increased at pH 5.0 and below so that Ag(I)/-SH ratio approached 1.0. A similar pH-dependent binding of Ag(I) to glutathione was also observed. The increased Ag(I)-binding to PCs at lower pH is of physiological significance as these peptides accumulate in acidic vacuoles. We also report lifetime data on Ag(I)-PCs. The relatively long decay-times (approximately 0.1-0.3 msec) accompanied with a large Stokes shift in the emission band are indicative of spin-forbidden phosphorescence. PMID

  16. Conformational heterogeneity of the calmodulin binding interface

    PubMed Central

    Shukla, Diwakar; Peck, Ariana; Pande, Vijay S.

    2016-01-01

    Calmodulin (CaM) is a ubiquitous Ca2+ sensor and a crucial signalling hub in many pathways aberrantly activated in disease. However, the mechanistic basis of its ability to bind diverse signalling molecules including G-protein-coupled receptors, ion channels and kinases remains poorly understood. Here we harness the high resolution of molecular dynamics simulations and the analytical power of Markov state models to dissect the molecular underpinnings of CaM binding diversity. Our computational model indicates that in the absence of Ca2+, sub-states in the folded ensemble of CaM's C-terminal domain present chemically and sterically distinct topologies that may facilitate conformational selection. Furthermore, we find that local unfolding is off-pathway for the exchange process relevant for peptide binding, in contrast to prior hypotheses that unfolding might account for binding diversity. Finally, our model predicts a novel binding interface that is well-populated in the Ca2+-bound regime and, thus, a candidate for pharmacological intervention. PMID:27040077

  17. Endocytosis of Integrin-Binding Human Picornaviruses

    PubMed Central

    Merilahti, Pirjo; Koskinen, Satu; Heikkilä, Outi; Karelehto, Eveliina; Susi, Petri

    2012-01-01

    Picornaviruses that infect humans form one of the largest virus groups with almost three hundred virus types. They include significant enteroviral pathogens such as rhino-, polio-, echo-, and coxsackieviruses and human parechoviruses that cause wide range of disease symptoms. Despite the economic importance of picornaviruses, there are no antivirals. More than ten cellular receptors are known to participate in picornavirus infection, but experimental evidence of their role in cellular infection has been shown for only about twenty picornavirus types. Three enterovirus types and one parechovirus have experimentally been shown to bind and use integrin receptors in cellular infection. These include coxsackievirus A9 (CV-A9), echovirus 9, and human parechovirus 1 that are among the most common and epidemic human picornaviruses and bind to αV-integrins via RGD motif that resides on virus capsid. In contrast, echovirus 1 (E-1) has no RGD and uses integrin α2β1 as cellular receptor. Endocytosis of CV-A9 has recently been shown to occur via a novel Arf6- and dynamin-dependent pathways, while, contrary to collagen binding, E-1 binds inactive β1 integrin and enters via macropinocytosis. In this paper, we review what is known about receptors and endocytosis of integrin-binding human picornaviruses. PMID:23227048

  18. C60 fullerene binding to DNA

    NASA Astrophysics Data System (ADS)

    Alshehri, Mansoor H.; Cox, Barry J.; Hill, James M.

    2014-09-01

    Fullerenes have attracted considerable attention in various areas of science and technology. Owing to their exceptional physical, chemical, and biological properties, they have many applications, particularly in cosmetic and medical products. Using the Lennard-Jones 6-12 potential function and the continuum approximation, which assumes that intermolecular interactions can be approximated by average atomic surface densities, we determine the binding energies of a C60 fullerene with respect to both single-strand and double-strand DNA molecules. We assume that all configurations are in a vacuum and that the C60 fullerene is initially at rest. Double integrals are performed to determine the interaction energy of the system. We find that the C60 fullerene binds to the double-strand DNA molecule, at either the major or minor grooves, with binding energies of -4.7 eV or -2.3 eV, respectively, and that the C60 molecule binds to the single-strand DNA molecule with a binding energy of -1.6 eV. Our results suggest that the C60 molecule is most likely to be linked to the major groove of the dsDNA molecule.

  19. Binding in agrammatic aphasia: Processing to comprehension

    PubMed Central

    Janet Choy, Jungwon; Thompson, Cynthia K.

    2010-01-01

    Background Theories of comprehension deficits in Broca’s aphasia have largely been based on the pattern of deficit found with movement constructions. However, some studies have found comprehension deficits with binding constructions, which do not involve movement. Aims This study investigates online processing and offline comprehension of binding constructions, such as reflexive (e.g., himself) and pronoun (e.g., him) constructions in unimpaired and aphasic individuals in an attempt to evaluate theories of agrammatic comprehension. Methods & Procedures Participants were eight individuals with agrammatic Broca’s aphasia and eight age-matched unimpaired individuals. We used eyetracking to examine online processing of binding constructions while participants listened to stories. Offline comprehension was also tested. Outcomes & Results The eye movement data showed that individuals with Broca’s aphasia were able to automatically process the correct antecedent of reflexives and pronouns. In addition, their syntactic processing of binding was not delayed compared to normal controls. Nevertheless, offline comprehension of both pronouns and reflexives was significantly impaired compared to the control participants. This comprehension failure was reflected in the aphasic participants’ eye movements at sentence end, where fixations to the competitor increased. Conclusions These data suggest that comprehension difficulties with binding constructions seen in agrammatic aphasic patients are not due to a deficit in automatic syntactic processing or delayed processing. Rather, they point to a possible deficit in lexical integration. PMID:20535243

  20. Endocytosis of integrin-binding human picornaviruses.

    PubMed

    Merilahti, Pirjo; Koskinen, Satu; Heikkilä, Outi; Karelehto, Eveliina; Susi, Petri

    2012-01-01

    Picornaviruses that infect humans form one of the largest virus groups with almost three hundred virus types. They include significant enteroviral pathogens such as rhino-, polio-, echo-, and coxsackieviruses and human parechoviruses that cause wide range of disease symptoms. Despite the economic importance of picornaviruses, there are no antivirals. More than ten cellular receptors are known to participate in picornavirus infection, but experimental evidence of their role in cellular infection has been shown for only about twenty picornavirus types. Three enterovirus types and one parechovirus have experimentally been shown to bind and use integrin receptors in cellular infection. These include coxsackievirus A9 (CV-A9), echovirus 9, and human parechovirus 1 that are among the most common and epidemic human picornaviruses and bind to αV-integrins via RGD motif that resides on virus capsid. In contrast, echovirus 1 (E-1) has no RGD and uses integrin α2β1 as cellular receptor. Endocytosis of CV-A9 has recently been shown to occur via a novel Arf6- and dynamin-dependent pathways, while, contrary to collagen binding, E-1 binds inactive β1 integrin and enters via macropinocytosis. In this paper, we review what is known about receptors and endocytosis of integrin-binding human picornaviruses.

  1. Lactoferrin binding properties of Vibrio cholerae.

    PubMed

    Ascencio, F; Ljungh, A; Wadström, T

    1992-01-01

    The lactoferrin binding properties of Vibrio cholerae, a non-invasive pathogen were investigated. Screening of fifty V. cholerae strains of different serogroups and serotypes, showed that 10% of the V. cholerae strains bound to 125I-labelled lactoferrin, and 40% of the 125I-labelled lactoferrin bound to V. cholerae strain 623 could be displaced by unlabelled lactoferrin. Other iron-binding glycoproteins and ferroproteins like ferritin, transferrin, haemoglobin, and myoglobin inhibited the binding of 125I-lactoferrin to a lesser degree. Monosaccharides (GalNac, Man, Gal, and Fuc), and other glycoproteins such as fetuin and orosomucoid also inhibited the binding to a lesser extent. V. cholerae 623 showed a cell surface associated-proteolytic activity which cleaved off the cell-bound 125I-labelled lactoferrin. The generation of cryptotopes on the V. cholerae cell surface by proteolytic digestion favoured the binding of ferritin, transferrin, haemoglobin, and haemin, as well as Congo red, to cells of V. cholerae 623.

  2. Improved flow cytometer measurement of binding assays

    NASA Astrophysics Data System (ADS)

    Saunders, G. C.

    1984-05-01

    A method of measuring binding assays is carried out with different size particles wherein the binding assay sample is run through a flow cytometer without separating the sample from the marking agent. The amount of a binding reactant present in a sample is determined by providing particles with a coating of binder and also known quantity of smaller particles with a coating of binder reactant. The smaller particles also contain a fluorescent chemical. The particles are combined with the sample and the binding reaction is allowed to occur for a set length of time followed by combining the smaller particles with the mixture of the particles and the sample produced and allowing the binding reactions to proceed to equilibrium. The fluorescence and light scatter of the combined mixture is then measured as the combined mixture passes through a flow cytometer equipped with a laser to bring about fluorescence, and the number of fluorescent events are compared. A similar method is also provided for determining the amount of antigen present in the sample by providing spheres with an antibody coating and some smaller spheres with an antigen coating.

  3. Conformational heterogeneity of the calmodulin binding interface

    NASA Astrophysics Data System (ADS)

    Shukla, Diwakar; Peck, Ariana; Pande, Vijay S.

    2016-04-01

    Calmodulin (CaM) is a ubiquitous Ca2+ sensor and a crucial signalling hub in many pathways aberrantly activated in disease. However, the mechanistic basis of its ability to bind diverse signalling molecules including G-protein-coupled receptors, ion channels and kinases remains poorly understood. Here we harness the high resolution of molecular dynamics simulations and the analytical power of Markov state models to dissect the molecular underpinnings of CaM binding diversity. Our computational model indicates that in the absence of Ca2+, sub-states in the folded ensemble of CaM's C-terminal domain present chemically and sterically distinct topologies that may facilitate conformational selection. Furthermore, we find that local unfolding is off-pathway for the exchange process relevant for peptide binding, in contrast to prior hypotheses that unfolding might account for binding diversity. Finally, our model predicts a novel binding interface that is well-populated in the Ca2+-bound regime and, thus, a candidate for pharmacological intervention.

  4. Phage display of engineered binding proteins.

    PubMed

    Levisson, Mark; Spruijt, Ruud B; Winkel, Ingrid Nolla; Kengen, Servé W M; van der Oost, John

    2014-01-01

    In current purification processes optimization of the capture step generally has a large impact on cost reduction. At present, valuable biomolecules are often produced in relatively low concentrations and, consequently, the eventual selective separation from complex mixtures can be rather inefficient. A separation technology based on a very selective high-affinity binding may overcome these problems. Proteins in their natural environment manifest functionality by interacting specifically and often with relatively high affinity with other molecules, such as substrates, inhibitors, activators, or other proteins. At present, antibodies are the most commonly used binding proteins in numerous applications. However, antibodies do have limitations, such as high production costs, low stability, and a complex patent landscape. A novel approach is therefore to use non-immunoglobulin engineered binding proteins in affinity purification. In order to obtain engineered binders with a desired specificity, a large mutant library of the new to-be-developed binding protein has to be created and screened for potential binders. A powerful technique to screen and select for proteins with desired properties from a large pool of variants is phage display. Here, we indicate several criteria for potential binding protein scaffolds and explain the principle of M13 phage display. In addition, we describe experimental protocols for the initial steps in setting up a M13 phage display system based on the pComb3X vector, including construction of the phagemid vector, production of phages displaying the protein of interest, and confirmation of display on the M13 phage.

  5. Specific Ion Binding at Phospholipid Membrane Surfaces.

    PubMed

    Yang, Jing; Calero, Carles; Bonomi, Massimiliano; Martí, Jordi

    2015-09-01

    Metal cations are ubiquitous components in biological environments and play an important role in regulating cellular functions and membrane properties. By applying metadynamics simulations, we have performed systematic free energy calculations of Na(+), K(+), Ca(2+), and Mg(2+) bound to phospholipid membrane surfaces for the first time. The free energy landscapes unveil specific binding behaviors of metal cations on phospholipid membranes. Na(+) and K(+) are more likely to stay in the aqueous solution and can bind easily to a few lipid oxygens by overcoming low free energy barriers. Ca(2+) is most stable when it is bound to four lipid oxygens of the membrane rather than being hydrated in the aqueous solution. Mg(2+) is tightly hydrated, and it shows hardly any loss of a hydration water or binding directly to the membrane. When bound to the membrane, the cations' most favorable total coordination numbers with water and lipid oxygens are the same as their corresponding hydration numbers in aqueous solution, indicating a competition between ion binding to water and lipids. The binding specificity of metal cations on membranes is highly correlated with the hydration free energy and the size of the hydration shell.

  6. Quantification of Cooperativity in Heterodimer-DNA Binding Improves the Accuracy of Binding Specificity Models*

    PubMed Central

    Isakova, Alina; Berset, Yves; Hatzimanikatis, Vassily; Deplancke, Bart

    2016-01-01

    Many transcription factors (TFs) have the ability to cooperate on DNA elements as heterodimers. Despite the significance of TF heterodimerization for gene regulation, a quantitative understanding of cooperativity between various TF dimer partners and its impact on heterodimer DNA binding specificity models is still lacking. Here, we used a novel integrative approach, combining microfluidics-steered measurements of dimer-DNA assembly with mechanistic modeling of the implicated protein-protein-DNA interactions to quantitatively interrogate the cooperative DNA binding behavior of the adipogenic peroxisome proliferator-activated receptor γ (PPARγ):retinoid X receptor α (RXRα) heterodimer. Using the high throughput MITOMI (mechanically induced trapping of molecular interactions) platform, we derived equilibrium DNA binding data for PPARγ, RXRα, as well as the PPARγ:RXRα heterodimer to more than 300 target DNA sites and variants thereof. We then quantified cooperativity underlying heterodimer-DNA binding and derived an integrative heterodimer DNA binding constant. Using this cooperativity-inclusive constant, we were able to build a heterodimer-DNA binding specificity model that has superior predictive power than the one based on a regular one-site equilibrium. Our data further revealed that individual nucleotide substitutions within the target site affect the extent of cooperativity in PPARγ:RXRα-DNA binding. Our study therefore emphasizes the importance of assessing cooperativity when generating DNA binding specificity models for heterodimers. PMID:26912662

  7. Allosteric opening of the polypeptide-binding site when an Hsp70 binds ATP

    PubMed Central

    Qi, Ruifeng; Sarbeng, Evans Boateng; Liu, Qun; Le, Katherine Quynh; Xu, Xinping; Xu, Hongya; Yang, Jiao; Wong, Jennifer Li; Vorvis, Christina; Hendrickson, Wayne A.; Zhou, Lei; Liu, Qinglian

    2013-01-01

    The 70kD heat shock proteins (Hsp70s) are ubiquitous molecular chaperones essential for cellular protein folding and proteostasis. Each Hsp70 has two functional domains: a nucleotide-binding domain (NBD) that binds and hydrolyzes ATP, and a substrate-binding domain (SBD) that binds extended polypeptides. NBD and SBD interact little when in ADP; however, ATP binding allosterically couples the polypeptide- and ATP-binding sites. ATP binding promotes polypeptide release; polypeptide rebinding stimulates ATP hydrolysis. This allosteric coupling is poorly understood. Here we present the crystal structure of an intact Hsp70 from Escherichia coli in an ATP-bound state at 1.96 Å resolution. NBD-ATP adopts a unique conformation, forming extensive interfaces with a radically changed SBD that has its α-helical lid displaced and the polypeptide-binding channel of its β-subdomain restructured. These conformational changes together with our biochemical tests provide a long-sought structural explanation for allosteric coupling in Hsp70 activity. PMID:23708608

  8. Binding of ethidium to the nucleosome core particle. 2. Internal and external binding modes

    SciTech Connect

    McMurray, C.T.; Small, E.W.; van Holde, K.E. )

    1991-06-11

    The authors have previously reported that the binding of ethidium bromide to the nucleosome core particle results in a stepwise dissociation of the structure which involves the initial release of one copy each of H2A and H2B. In this report, they have examined the absorbance and fluorescence properties of intercalated and outside bound forms of ethidium bromide. From these properties, they have measured the extent of external, electrostatic binding of the dye versus internal, intercalation binding to the core particle, free from contribution by linker DNA. They have established that dissociation is induced by the intercalation mode of binding to DNA within the core particle DNA, and not by binding to the histones or by nonintercalative binding to DNA. The covalent binding of ({sup 3}H)-8-azidoethidium to the core particle clearly shows that < 1.0 adduct is formed per histone octamer over a wide range of input ratios. Simultaneously, analyses of steady-state fluorescence enhancement and fluorescence lifetime data from bound ethidium complexes demonstrate extensive intercalation binding. Combined analyses from steady-state fluorescence intensity with equilibrium dialysis or fluorescence lifetime data revealed that dissociation began when {approximately}14 ethidium molecules are bound by intercalation to each core particle and < 1.0 nonintercalated ion pair was formed per core particle.

  9. Characterization of DNA Binding and Retinoic Acid Binding Properties of Retinoic Acid Receptor

    NASA Astrophysics Data System (ADS)

    Yang, Na; Schule, Roland; Mangelsdorf, David J.; Evans, Ronald M.

    1991-05-01

    High-level expression of the full-length human retinoic acid receptor (RAR) α and the DNA binding domain of the RAR in Escherichia coli was achieved by using a T7 RNA polymerase-directed expression system. After induction, full-length RAR protein was produced at an estimated level of 20% of the total bacterial proteins. Both intact RAR molecules and the DNA binding domain bind to the cognate DNA response element with high specificity in the absence of retinoic acid. However, this binding is enhanced to a great extent upon the addition of eukaryotic cell extracts. The factor responsible for this enhancement is heat-sensitive and forms a complex with RAR that binds to DNA and exhibits a distinct migration pattern in the gel-mobility-shift assay. The interaction site of the factor with RAR is localized in the 70-amino acid DNA binding region of RAR. The hormone binding ability of the RARα protein was assayed by a charcoal absorption assay and the RAR protein was found to bind to retinoic acid with a K_d of 2.1 x 10-10 M.

  10. The RNA-binding protein Gemin5 binds directly to the ribosome and regulates global translation

    PubMed Central

    Francisco-Velilla, Rosario; Fernandez-Chamorro, Javier; Ramajo, Jorge; Martinez-Salas, Encarnación

    2016-01-01

    RNA-binding proteins (RBPs) play crucial roles in all organisms. The protein Gemin5 harbors two functional domains. The N-terminal domain binds to snRNAs targeting them for snRNPs assembly, while the C-terminal domain binds to IRES elements through a non-canonical RNA-binding site. Here we report a comprehensive view of the Gemin5 interactome; most partners copurified with the N-terminal domain via RNA bridges. Notably, Gemin5 sediments with the subcellular ribosome fraction, and His-Gemin5 binds to ribosome particles via its N-terminal domain. The interaction with the ribosome was lost in F381A and Y474A Gemin5 mutants, but not in W14A and Y15A. Moreover, the ribosomal proteins L3 and L4 bind directly with Gemin5, and conversely, Gemin5 mutants impairing the binding to the ribosome are defective in the interaction with L3 and L4. The overall polysome profile was affected by Gemin5 depletion or overexpression, concomitant to an increase or a decrease, respectively, of global protein synthesis. Gemin5, and G5-Nter as well, were detected on the polysome fractions. These results reveal the ribosome-binding capacity of the N-ter moiety, enabling Gemin5 to control global protein synthesis. Our study uncovers a crosstalk between this protein and the ribosome, and provides support for the view that Gemin5 may control translation elongation. PMID:27507887

  11. The cell-binding domain of intimin from enteropathogenic Escherichia coli binds to beta1 integrins.

    PubMed

    Frankel, G; Lider, O; Hershkoviz, R; Mould, A P; Kachalsky, S G; Candy, D C; Cahalon, L; Humphries, M J; Dougan, G

    1996-08-23

    Bacteria interact with mammalian cells surface molecules, such as integrins, to colonize tissues and evade immunological detection. Herein, the ability of intimin, an outer membrane protein from enteropathogenic Escherichia coli, to bind beta1 integrins was investigated. Solid-phase binding assays revealed binding of the carboxyl-terminal 280 amino acids of intimin (Int280) to alpha4beta1 and alpha5beta1 integrins. The binding required divalent ions (in particular, it was enhanced by Mn2+) and was inhibited by an RGD-containing peptide. Nonderivatized Int280, but not Int280CS (like Int280 but with Cys-937 replaced by Ser) blocked the binding of biotinylated Int280 to integrins. Int280 did not efficiently inhibit beta1 integrin binding of invasin from Yersinia pseudotuberculosis. Both intimin and invasin, immobilized on plastic surfaces, mediated adherence of resting or phorbol 12-myristate 13-acetate-activated human CD4(+) T cells, whereas fibronectin mediated the adherence of only activated T cells. T cell binding to intimin and invasin was integrin mediated because it was specifically blocked by an RGD-containing peptide and by antibodies directed against the integrin subunits beta1, alpha4, and alpha5. These results demonstrate a specific integrin binding activity for intimin that is related to, but distinct from, that of invasin. PMID:8702771

  12. Binding of C-reactive protein to human lymphocytes. I. Requirement for a binding specificity.

    PubMed

    James, K; Hansen, B; Gewurz, H

    1981-12-01

    Our laboratory previously reported that C-reactive protein (CRP) binds selectively to T lymphocytes and inhibits certain of their reactivities in vitro. However, these findings could not be repeated using more highly purified CRP preparations even under a variety of experimental conditions. Purified CRP alone did not bind to peripheral blood lymphocytes (PBL); however, in the presence of a ligand such as pneumococcal C-polysaccharide (CPS), CRP binding was readily detectable both by immunofluorescence and by a radioassay established for this purpose. The optimal concentration of CRP, ratio of CRP:CPS, and time and temperature for reactivity were determined using both assays. A markedly enhanced rate of binding was observed after pre-equilibration of CRP with calcium. A small percentage (mean 3.0%; range 0.5 to 8.0%) of PBL bound complexed CRP, and saturation was reached with 200 microgram CRP/ml. Reactivity of CRP with a multimeric form of phosphocholine (PC) (KLH-PC44) led to binding comparable to that observed with CPS, whereas monomeric PC inhibited the binding. Thus, in the presence of a multimeric binding specificity, CRP binds to a small fraction of peripheral blood lymphocytes, which are characterized in the accompanying paper.

  13. Ancestral Protein Reconstruction Yields Insights into Adaptive Evolution of Binding Specificity in Solute-Binding Proteins.

    PubMed

    Clifton, Ben E; Jackson, Colin J

    2016-02-18

    The promiscuous functions of proteins are an important reservoir of functional novelty in protein evolution, but the molecular basis for binding promiscuity remains elusive. We used ancestral protein reconstruction to experimentally characterize evolutionary intermediates in the functional expansion of the polar amino acid-binding protein family, which has evolved to bind a variety of amino acids with high affinity and specificity. High-resolution crystal structures of an ancestral arginine-binding protein in complex with l-arginine and l-glutamine show that the promiscuous binding of l-glutamine is enabled by multi-scale conformational plasticity, water-mediated interactions, and selection of an alternative conformational substate productive for l-glutamine binding. Evolution of specialized glutamine-binding proteins from this ancestral protein was achieved by displacement of water molecules from the protein-ligand interface, reducing the entropic penalty associated with the promiscuous interaction. These results provide a structural and thermodynamic basis for the co-option of a promiscuous interaction in the evolution of binding specificity.

  14. Binding of ionic species: a general approach to measuring binding constants and assessing affinities.

    PubMed

    Roelens, Stefano; Vacca, Alberto; Venturi, Chiara

    2009-03-01

    Bound together: The association of receptors with ionic species cannot be assimilated to the binding of neutral guests. When dealing with salts, both ion pairing and binding to the free and the ion-paired ionic guest determine the actual association pattern (see figure). The general issue of measuring association constants and assessing affinities for ions is addressed and validated in two cases of anion binding.A general approach to the largely underestimated issue of measuring binding constants and assessing affinities in the binding of ionic species is described. The approach is based on a rigorous, nongraphical determination of binding constants in multiequilibrium systems by nonlinear regression of chemical shift data from NMR titrations and on the use of the BC(50) descriptor for assessing affinities and ranking the binding ability of receptors on a common scale. The approach has been validated with two tripodal anion-binding receptors, namely, a ureidic (1) and a pyrrolic (2) receptor, binding to tetramethylammonium chloride in CDCl(3)/CD(3)CN (80:20). A set of five and six formation constants could be measured for 1 and 2, respectively, including, in addition to the ion pair, complexes of the free and the ion-paired anion. The BC(50) values calculated from the measured constants allowed a quantitative assessment of each receptor's binding affinity towards the chloride anion, the pyrrolic receptor showing a 15-fold larger affinity over the ureidic receptor, a figure that quantifies the improvement obtained by replacing the amido-pyrrolic for ureidic binding groups on the tripodal scaffold of the receptor. The results have shown that, in contrast to common practice, neither of the two systems could be appropriately described by a 1:1 association with the anion only, but required the ion-pairing and ion-pair binding equilibria to be taken into account because these contribute substantially to the complexation process. The BC(50) descriptor has also been shown

  15. Opioid binding sites in the guinea pig and rat kidney: Radioligand homogenate binding and autoradiography

    SciTech Connect

    Dissanayake, V.U.; Hughes, J.; Hunter, J.C. )

    1991-07-01

    The specific binding of the selective {mu}-, {delta}-, and {kappa}-opioid ligands (3H)(D-Ala2,MePhe4,Gly-ol5)enkephalin ((3H) DAGOL), (3H)(D-Pen2,D-Pen5)enkephalin ((3H)DPDPE), and (3H)U69593, respectively, to crude membranes of the guinea pig and rat whole kidney, kidney cortex, and kidney medulla was investigated. In addition, the distribution of specific 3H-opioid binding sites in the guinea pig and rat kidney was visualized by autoradiography. Homogenate binding and autoradiography demonstrated the absence of {mu}- and {kappa}-opioid binding sites in the guinea pig kidney. No opioid binding sites were demonstrable in the rat kidney. In the guinea pig whole kidney, cortex, and medulla, saturation studies demonstrated that (3H)DPDPE bound with high affinity (KD = 2.6-3.5 nM) to an apparently homogeneous population of binding sites (Bmax = 8.4-30 fmol/mg of protein). Competition studies using several opioid compounds confirmed the nature of the {delta}-opioid binding site. Autoradiography experiments demonstrated that specific (3H)DPDPE binding sites were distributed radially in regions of the inner and outer medulla and at the corticomedullary junction of the guinea pig kidney. Computer-assisted image analysis of saturation data yielded KD values (4.5-5.0 nM) that were in good agreement with those obtained from the homogenate binding studies. Further investigation of the {delta}-opioid binding site in medulla homogenates, using agonist ((3H)DPDPE) and antagonist ((3H)diprenorphine) binding in the presence of Na+, Mg2+, and nucleotides, suggested that the {delta}-opioid site is linked to a second messenger system via a GTP-binding protein. Further studies are required to establish the precise localization of the {delta} binding site in the guinea pig kidney and to determine the nature of the second messenger linked to the GTP-binding protein in the medulla.

  16. Presence of a highly efficient binding to bacterial contamination can distort data from binding studies

    SciTech Connect

    Balcar, V.J. )

    1990-12-01

    {sup 3}HGABA at low concentrations (5-10 nM) was bound by what appeared to be a GABA receptor binding site in bacterial contamination originating from a batch of distilled water. Under experimental conditions similar to those usually employed in {sup 3}HGABA binding studies, the apparent binding displayed a very high specific component and a high efficiency in terms of {sup 3}HGABA bound per mg of protein. The binding was blocked by muscimol but not by isoguvacine, SR95531 and nipecotic acid. These characteristics suggest that the presence of such spurious binding in the experiments using 3H-labeled ligands in brain homogenates may not always be very obvious and, moreover, it can result in subtle, but serious, distortions of data from such studies, which may not be immediately recognized.

  17. Relation between the change in DNA elasticity on ligand binding and the binding energetics.

    PubMed

    Kostjukov, Viktor V; Evstigneev, Maxim P

    2012-09-01

    The widespread use of tweezers for measurement of ligand-DNA binding parameters is based on the McGhee-von Hippel treatment of the DNA contour and persistence length as a function of concentration. The McGhee-von Hippel approach contains the basic assumption that the binding constant K is independent of the number of already bound ligands. However, the change in elasticity of DNA on binding affects the entropic part of the Gibbs free energy and, hence, the K value in a concentration-dependent manner, making the whole approach inconsistent. In the present work we show that the energetic effect of DNA stiffening on noncovalent binding of small ligands is negligible with respect to the net energy of reaction, whereas the DNA stiffening on binding of large ligands must always be considered in each particular case.

  18. Relation between the change in DNA elasticity on ligand binding and the binding energetics

    NASA Astrophysics Data System (ADS)

    Kostjukov, Viktor V.; Evstigneev, Maxim P.

    2012-09-01

    The widespread use of tweezers for measurement of ligand-DNA binding parameters is based on the McGhee-von Hippel treatment of the DNA contour and persistence length as a function of concentration. The McGhee-von Hippel approach contains the basic assumption that the binding constant K is independent of the number of already bound ligands. However, the change in elasticity of DNA on binding affects the entropic part of the Gibbs free energy and, hence, the K value in a concentration-dependent manner, making the whole approach inconsistent. In the present work we show that the energetic effect of DNA stiffening on noncovalent binding of small ligands is negligible with respect to the net energy of reaction, whereas the DNA stiffening on binding of large ligands must always be considered in each particular case.

  19. Binding kinetics of lock and key colloids

    NASA Astrophysics Data System (ADS)

    Colón-Meléndez, Laura; Beltran-Villegas, Daniel J.; van Anders, Greg; Liu, Jun; Spellings, Matthew; Sacanna, Stefano; Pine, David J.; Glotzer, Sharon C.; Larson, Ronald G.; Solomon, Michael J.

    2015-05-01

    Using confocal microscopy and first passage time analysis, we measure and predict the rates of formation and breakage of polymer-depletion-induced bonds between lock-and-key colloidal particles and find that an indirect route to bond formation is accessed at a rate comparable to that of the direct formation of these bonds. In the indirect route, the pocket of the lock particle is accessed by nonspecific bonding of the key particle with the lock surface, followed by surface diffusion leading to specific binding in the pocket of the lock. The surprisingly high rate of indirect binding is facilitated by its high entropy relative to that of the pocket. Rate constants for forward and reverse transitions among free, nonspecific, and specific bonds are reported, compared to theoretical values, and used to determine the free energy difference between the nonspecific and specific binding states.

  20. AUXIN BINDING PROTEIN1: The Outsider

    PubMed Central

    Sauer, Michael; Kleine-Vehn, Jürgen

    2011-01-01

    AUXIN BINDING PROTEIN1 (ABP1) is one of the first characterized proteins that bind auxin and has been implied as a receptor for a number of auxin responses. Early studies characterized its auxin binding properties and focused on rapid electrophysiological and cell expansion responses, while subsequent work indicated a role in cell cycle and cell division control. Very recently, ABP1 has been ascribed a role in modulating endocytic events at the plasma membrane and RHO OF PLANTS-mediated cytoskeletal rearrangements during asymmetric cell expansion. The exact molecular function of ABP1 is still unresolved, but its main activity apparently lies in influencing events at the plasma membrane. This review aims to connect the novel findings with the more classical literature on ABP1 and to point out the many open questions that still separate us from a comprehensive model of ABP1 action, almost 40 years after the first reports of its existence. PMID:21719690

  1. Mercury-binding proteins of Mytilus edulis

    SciTech Connect

    Roesijadi, G.; Morris, J. E.; Calabrese, A.

    1981-11-01

    Mytilus edulis possesses low molecular weight, mercury-binding proteins. The predominant protein isolated from gill tissue is enriched in cysteinyl residues (8%) and possesses an amino acid composition similar to cadmium-binding proteins of mussels and oysters. Continuous exposure of mussels to 5 ..mu..g/l mercury results in spillover of mercury from these proteins to high molecular weight proteins. Antibodies to these proteins have been isolated, and development of immunoassays is presently underway. Preliminary studies to determine whether exposure of adult mussels to mercury will result in induction of mercury-binding proteins in offspring suggest that such proteins occur in larvae although additional studies are indicated for a conclusive demonstration.

  2. Energetics of echinomycin binding to DNA

    PubMed Central

    Leng, Fenfei; Chaires, Jonathan B.; Waring, Michael J.

    2003-01-01

    Differential scanning calorimetry and UV thermal denaturation have been used to determine a complete thermodynamic profile for the bis-intercalative interaction of the peptide antibiotic echinomycin with DNA. The new calorimetric data are consistent with all previously published binding data, and afford the most rigorous and direct determination of the binding enthalpy possible. For the association of echinomycin with DNA, we found ΔG° = –7.6 kcal mol–1, ΔH = +3.8 kcal mol–1 and ΔS = +38.9 cal mol–1 K–1 at 20°C. The binding reaction is clearly entropically driven, a hallmark of a process that is predominantly stabilized by hydrophobic interactions, though a deeper analysis of the free energy contributions suggests that direct molecular recognition between echinomycin and DNA, mediated by hydrogen bonding and van der Waals contacts, also plays an important role in stabilizing the complex. PMID:14576305

  3. Conformation-controlled binding kinetics of antibodies

    NASA Astrophysics Data System (ADS)

    Galanti, Marta; Fanelli, Duccio; Piazza, Francesco

    2016-01-01

    Antibodies are large, extremely flexible molecules, whose internal dynamics is certainly key to their astounding ability to bind antigens of all sizes, from small hormones to giant viruses. In this paper, we build a shape-based coarse-grained model of IgG molecules and show that it can be used to generate 3D conformations in agreement with single-molecule Cryo-Electron Tomography data. Furthermore, we elaborate a theoretical model that can be solved exactly to compute the binding rate constant of a small antigen to an IgG in a prescribed 3D conformation. Our model shows that the antigen binding process is tightly related to the internal dynamics of the IgG. Our findings pave the way for further investigation of the subtle connection between the dynamics and the function of large, flexible multi-valent molecular machines.

  4. Conformation-controlled binding kinetics of antibodies

    PubMed Central

    Galanti, Marta; Fanelli, Duccio; Piazza, Francesco

    2016-01-01

    Antibodies are large, extremely flexible molecules, whose internal dynamics is certainly key to their astounding ability to bind antigens of all sizes, from small hormones to giant viruses. In this paper, we build a shape-based coarse-grained model of IgG molecules and show that it can be used to generate 3D conformations in agreement with single-molecule Cryo-Electron Tomography data. Furthermore, we elaborate a theoretical model that can be solved exactly to compute the binding rate constant of a small antigen to an IgG in a prescribed 3D conformation. Our model shows that the antigen binding process is tightly related to the internal dynamics of the IgG. Our findings pave the way for further investigation of the subtle connection between the dynamics and the function of large, flexible multi-valent molecular machines. PMID:26755272

  5. Flow cytometer measurement of binding assays

    DOEpatents

    Saunders, George C.

    1987-01-01

    A method of measuring the result of a binding assay that does not require separation of fluorescent smaller particles is disclosed. In a competitive binding assay the smaller fluorescent particles coated with antigen compete with antigen in the sample being analyzed for available binding sites on larger particles. In a sandwich assay, the smaller, fluorescent spheres coated with antibody attach themselves to molecules containing antigen that are attached to larger spheres coated with the same antibody. The separation of unattached, fluorescent smaller particles is made unnecessary by only counting the fluorescent events triggered by the laser of a flow cytometer when the event is caused by a particle with a light scatter measurement within a certain range corresponding to the presence of larger particles.

  6. Voluntary action and causality in temporal binding.

    PubMed

    Cravo, Andre M; Claessens, Peter M E; Baldo, Marcus V C

    2009-10-01

    Previous studies have documented temporal attraction in perceived times of actions and their effects. While some authors argue that voluntary action is a necessary condition for this phenomenon, others claim that the causal relationship between action and effect is the crucial ingredient. In the present study, we investigate voluntary action and causality as the necessary and sufficient conditions for temporal binding. We used a variation of the launching effect proposed by Michotte, in which participants controlled the launch stimulus in some blocks. Volunteers reported causality ratings and estimated the interval between the two events. Our results show dissociations between causality ratings and temporal estimation. While causality ratings are not affected by voluntary action, temporal bindings were only found in the presence of both voluntary action and high causality. Our results indicate that voluntary action and causality are both necessary for the emergence of temporal binding.

  7. Molecular beacons for detecting DNA binding proteins.

    PubMed

    Heyduk, Tomasz; Heyduk, Ewa

    2002-02-01

    We report here a simple, rapid, homogeneous fluorescence assay, the molecular beacon assay, for the detection and quantification of sequence-specific DNA-binding proteins. The central feature of the assay is the protein-dependent association of two DNA fragments each containing about half of a DNA sequence defining a protein-binding site. Protein-dependent association of DNA fragments can be detected by any proximity-based spectroscopic signal, such as fluorescence resonance energy transfer (FRET) between fluorochromes introduced into these DNA molecules. The assay is fully homogeneous and requires no manipulations aside from mixing of the sample and the test solution. It offers flexibility with respect to the mode of signal detection and the fluorescence probe, and is compatible with multicolor simultaneous detection of several proteins. The assay can be used in research and medical diagnosis and for high-throughput screening of drugs targeted to DNA-binding proteins.

  8. Protein Binding Studies with Zero Mode Waveguides

    NASA Astrophysics Data System (ADS)

    Samiee, K.; Foquet, M.; Cox, E. C.; Craighead, H. G.

    2004-03-01

    Single protein molecules binding to their DNA operator site are observed using zero mode waveguides, novel quasi one-dimensional optical nanostructures. The subwavelength features of the waveguides allow the formation of a focal volume smaller than those allowed by classical diffraction limited optics. The small observation volume allows the use of fluorescence correlation spectroscopy to measure diffusion constants at fluorophore concentrations as high as10uM. Binding is observed between a DNA oligomer containing OR1, an operator site on the Lambda genome, and CI, the repressor protein that inhibits the bacteriophage's lytic growth cycle. The dimensions of the waveguide should allow a single DNA fragment to be fixed at the bottom where its binding dynamics can be characterized on a single molecule basis.

  9. Mucin Binding Reduces Colistin Antimicrobial Activity.

    PubMed

    Huang, Johnny X; Blaskovich, Mark A T; Pelingon, Ruby; Ramu, Soumya; Kavanagh, Angela; Elliott, Alysha G; Butler, Mark S; Montgomery, A Bruce; Cooper, Matthew A

    2015-10-01

    Colistin has found increasing use in treating drug-resistant bacterial lung infections, but potential interactions with pulmonary biomolecules have not been investigated. We postulated that colistin, like aminoglycoside antibiotics, may bind to secretory mucin in sputum or epithelial mucin that lines airways, reducing free drug levels. To test this hypothesis, we measured binding of colistin and other antibiotics to porcine mucin, a family of densely glycosylated proteins used as a surrogate for human sputum and airway mucin. Antibiotics were incubated in dialysis tubing with or without mucin, and concentrations of unbound antibiotics able to penetrate the dialysis tubing were measured over time using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The percentage of antibiotic measured in the dialysate after 4 h in the presence of mucin, relative to the amount without mucin, was 15% for colistin, 16% for polymyxin B, 19% for tobramycin, 52% for ciprofloxacin, and 78% for daptomycin. Antibiotics with the strongest mucin binding had an overall polybasic positive charge, whereas those with comparatively little binding were less basic. When comparing MICs measured with or without added mucin, colistin and polymyxin B showed >100-fold increases in MICs for multiple Gram-negative bacteria. Preclinical evaluation of mucin binding should become a standard procedure when considering the potential pulmonary use of new or existing antibiotics, particularly those with a polybasic overall charge. In the airways, mucin binding may reduce the antibacterial efficacy of inhaled or intravenously administered colistin, and the presence of sub-MIC effective antibiotic concentrations could result in the development of antibiotic resistance. PMID:26169405

  10. Mucin Binding Reduces Colistin Antimicrobial Activity.

    PubMed

    Huang, Johnny X; Blaskovich, Mark A T; Pelingon, Ruby; Ramu, Soumya; Kavanagh, Angela; Elliott, Alysha G; Butler, Mark S; Montgomery, A Bruce; Cooper, Matthew A

    2015-10-01

    Colistin has found increasing use in treating drug-resistant bacterial lung infections, but potential interactions with pulmonary biomolecules have not been investigated. We postulated that colistin, like aminoglycoside antibiotics, may bind to secretory mucin in sputum or epithelial mucin that lines airways, reducing free drug levels. To test this hypothesis, we measured binding of colistin and other antibiotics to porcine mucin, a family of densely glycosylated proteins used as a surrogate for human sputum and airway mucin. Antibiotics were incubated in dialysis tubing with or without mucin, and concentrations of unbound antibiotics able to penetrate the dialysis tubing were measured over time using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The percentage of antibiotic measured in the dialysate after 4 h in the presence of mucin, relative to the amount without mucin, was 15% for colistin, 16% for polymyxin B, 19% for tobramycin, 52% for ciprofloxacin, and 78% for daptomycin. Antibiotics with the strongest mucin binding had an overall polybasic positive charge, whereas those with comparatively little binding were less basic. When comparing MICs measured with or without added mucin, colistin and polymyxin B showed >100-fold increases in MICs for multiple Gram-negative bacteria. Preclinical evaluation of mucin binding should become a standard procedure when considering the potential pulmonary use of new or existing antibiotics, particularly those with a polybasic overall charge. In the airways, mucin binding may reduce the antibacterial efficacy of inhaled or intravenously administered colistin, and the presence of sub-MIC effective antibiotic concentrations could result in the development of antibiotic resistance.

  11. Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins

    NASA Technical Reports Server (NTRS)

    Schoeffler, Allyn J.; Ruiz, Carmen R.; Joubert, Allison M.; Yang, Xuemei; LiCata, Vince J.

    2003-01-01

    Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.

  12. Binding of actin to lens alpha crystallins

    NASA Technical Reports Server (NTRS)

    Gopalakrishnan, S.; Takemoto, L.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    Actin has been coupled to a cyanogen bromide-activated Sepharose 4B column, then tested for binding to alpha, beta, and gamma crystallin preparations from the bovine lens. Alpha, but not beta or gamma, crystallins bound to the actin affinity column in a time dependent and saturable manner. Subfractionation of the alpha crystallin preparation into the alpha-A and alpha-B species, followed by incubation with the affinity column, demonstrated that both species bound approximately the same. Together, these studies demonstrate a specific and saturable binding of lens alpha-A and alpha-B with actin.

  13. Binding energies of hypernuclei and hypernuclear interactions

    SciTech Connect

    Bodmer, A.R. |; Murali, S.; Usmani, Q.N.

    1996-05-01

    In part 1 the effect of nuclear core dynamics on the binding energies of {Lambda} hypernuclei is discussed in the framework of variational correlated wave functions. In particular, the authors discuss a new rearrangement energy contribution and its effect on the core polarization. In part 2 they consider the interpretation of the {Lambda} single-particle energy in terms of basic {Lambda}-nuclear interactions using a local density approximation based on a Fermi hypernetted chain calculation of the A binding to nuclear matter. To account for the data strongly repulsive 3-body {Lambda}NN forces are required. Also in this framework they discuss core polarization for medium and heavier hypernuclei.

  14. Ice-Binding Proteins and Their Function.

    PubMed

    Bar Dolev, Maya; Braslavsky, Ido; Davies, Peter L

    2016-06-01

    Ice-binding proteins (IBPs) are a diverse class of proteins that assist organism survival in the presence of ice in cold climates. They have different origins in many organisms, including bacteria, fungi, algae, diatoms, plants, insects, and fish. This review covers the gamut of IBP structures and functions and the common features they use to bind ice. We discuss mechanisms by which IBPs adsorb to ice and interfere with its growth, evidence for their irreversible association with ice, and methods for enhancing the activity of IBPs. The applications of IBPs in the food industry, in cryopreservation, and in other technologies are vast, and we chart out some possibilities. PMID:27145844

  15. Binding properties of Paracentrotus lividus (Echinoidea) hemolysin.

    PubMed

    Canicatti, C

    1991-01-01

    1. Paracentrotus lividus hemolysin binds erythrocytes, zymosan particles, lipopolysaccharide and laminarin surfaces but not auto and allogeneic cell membranes. 2. The binding could, at least for erythrocytes, involve phospholipids and cholesterol. 3. The protease activity of the coelomic fluid is not related to hemolysis. 4. The finding that very low concentrations of Zn2+ inactivate the hemolysin suggests a possible regulative function of the ion in the hemolytic reaction. 5. Ultrastructural observations on rabbit erythrocyte membranes indicate that most likely the transmembrane pores are induced by the lytic molecules. PMID:1674457

  16. Binding Energy Distribution Analysis Method: Hamiltonian Replica Exchange with Torsional Flattening for Binding Mode Prediction and Binding Free Energy Estimation.

    PubMed

    Mentes, Ahmet; Deng, Nan-Jie; Vijayan, R S K; Xia, Junchao; Gallicchio, Emilio; Levy, Ronald M

    2016-05-10

    Molecular dynamics modeling of complex biological systems is limited by finite simulation time. The simulations are often trapped close to local energy minima separated by high energy barriers. Here, we introduce Hamiltonian replica exchange (H-REMD) with torsional flattening in the Binding Energy Distribution Analysis Method (BEDAM), to reduce energy barriers along torsional degrees of freedom and accelerate sampling of intramolecular degrees of freedom relevant to protein-ligand binding. The method is tested on a standard benchmark (T4 Lysozyme/L99A/p-xylene complex) and on a library of HIV-1 integrase complexes derived from the SAMPL4 blind challenge. We applied the torsional flattening strategy to 26 of the 53 known binders to the HIV Integrase LEDGF site found to have a binding energy landscape funneled toward the crystal structure. We show that our approach samples the conformational space more efficiently than the original method without flattening when starting from a poorly docked pose with incorrect ligand dihedral angle conformations. In these unfavorable cases convergence to a binding pose within 2-3 Å from the crystallographic pose is obtained within a few nanoseconds of the Hamiltonian replica exchange simulation. We found that torsional flattening is insufficient in cases where trapping is due to factors other than torsional energy, such as the formation of incorrect intramolecular hydrogen bonds and stacking. Work is in progress to generalize the approach to handle these cases and thereby make it more widely applicable.

  17. Characterizing low affinity epibatidine binding to α4β2 nicotinic acetylcholine receptors with ligand depletion and nonspecific binding

    PubMed Central

    2011-01-01

    Background Along with high affinity binding of epibatidine (Kd1≈10 pM) to α4β2 nicotinic acetylcholine receptor (nAChR), low affinity binding of epibatidine (Kd2≈1-10 nM) to an independent binding site has been reported. Studying this low affinity binding is important because it might contribute understanding about the structure and synthesis of α4β2 nAChR. The binding behavior of epibatidine and α4β2 AChR raises a question about interpreting binding data from two independent sites with ligand depletion and nonspecific binding, both of which can affect equilibrium binding of [3H]epibatidine and α4β2 nAChR. If modeled incorrectly, ligand depletion and nonspecific binding lead to inaccurate estimates of binding constants. Fitting total equilibrium binding as a function of total ligand accurately characterizes a single site with ligand depletion and nonspecific binding. The goal of this study was to determine whether this approach is sufficient with two independent high and low affinity sites. Results Computer simulations of binding revealed complexities beyond fitting total binding for characterizing the second, low affinity site of α4β2 nAChR. First, distinguishing low-affinity specific binding from nonspecific binding was a potential problem with saturation data. Varying the maximum concentration of [3H]epibatidine, simultaneously fitting independently measured nonspecific binding, and varying α4β2 nAChR concentration were effective remedies. Second, ligand depletion helped identify the low affinity site when nonspecific binding was significant in saturation or competition data, contrary to a common belief that ligand depletion always is detrimental. Third, measuring nonspecific binding without α4β2 nAChR distinguished better between nonspecific binding and low-affinity specific binding under some circumstances of competitive binding than did presuming nonspecific binding to be residual [3H]epibatidine binding after adding a large concentration of

  18. Mechanism for ordered receptor binding by human prolactin.

    PubMed

    Sivaprasad, Umasundari; Canfield, Jeffrey M; Brooks, Charles L

    2004-11-01

    Prolactin, a lactogenic hormone, binds to two prolactin receptors sequentially, the first receptor binding at site 1 of the hormone followed by the second receptor binding at site 2. We have investigated the mechanism by which human prolactin (hPRL) binds the extracellular domain of the human prolactin receptor (hPRLbp) using surface plasmon resonance (SPR) technology. We have covalently coupled hPRL to the SPR chip surface via coupling chemistries that reside in and block either site 1 or site 2. Equilibrium binding experiments using saturating hPRLbp concentrations show that site 2 receptor binding is dependent on site 1 receptor occupancy. In contrast, site 1 binding is independent of site 2 occupancy. Thus, sites 1 and 2 are functionally coupled, site 1 binding inducing the functional organization of site 2. Site 2 of hPRL does not have a measurable binding affinity prior to hPRLbp binding at site 1. After site 1 receptor binding, site 2 affinity is increased to values approaching that of site 1. Corruption of either site 1 or site 2 by mutagenesis is consistent with a functional coupling of sites 1 and 2. Fluorescence resonance energy transfer (FRET) experiments indicate that receptor binding at site 1 induces a conformation change in the hormone. These data support an "induced-fit" model for prolactin receptor binding where binding of the first receptor to hPRL induces a conformation change in the hormone creating the second receptor-binding site.

  19. Non-DNA-binding cofactors enhance DNA-binding specificity of a transcriptional regulatory complex.

    PubMed

    Siggers, Trevor; Duyzend, Michael H; Reddy, Jessica; Khan, Sidra; Bulyk, Martha L

    2011-12-06

    Recruitment of cofactors to specific DNA sites is integral for specificity in gene regulation. As a model system, we examined how targeting and transcriptional control of the sulfur metabolism genes in Saccharomyces cerevisiae is governed by recruitment of the transcriptional co-activator Met4. We developed genome-scale approaches to measure transcription factor (TF) DNA-binding affinities and cofactor recruitment to >1300 genomic binding site sequences. We report that genes responding to the TF Cbf1 and cofactor Met28 contain a novel 'recruitment motif' (RYAAT), adjacent to Cbf1 binding sites, which enhances the binding of a Met4-Met28-Cbf1 regulatory complex, and that abrogation of this motif significantly reduces gene induction under low-sulfur conditions. Furthermore, we show that correct recognition of this composite motif requires both non-DNA-binding cofactors Met4 and Met28. Finally, we demonstrate that the presence of an RYAAT motif next to a Cbf1 site, rather than Cbf1 binding affinity, specifies Cbf1-dependent sulfur metabolism genes. Our results highlight the need to examine TF/cofactor complexes, as novel specificity can result from cofactors that lack intrinsic DNA-binding specificity.

  20. Can cofactor-binding sites in proteins be flexible? Desulfovibrio desulfuricans flavodoxin binds FMN dimer.

    PubMed

    Muralidhara, B K; Wittung-Stafshede, Pernilla

    2003-11-11

    Flavodoxins catalyze redox reactions using the isoalloxazine moiety of the flavin mononucleotide (FMN) cofactor stacked between two aromatic residues located in two peptide loops. At high FMN concentrations that favor stacked FMN dimers in solution, isothermal titration calorimetric studies show that these dimers bind strongly to apo-flavodoxin from Desulfovibrio desulfuricans (30 degrees C, 20 mM Hepes, pH 7, K(D) = 5.8 microM). Upon increasing the temperature so the FMN dimers dissociate (as shown by (1)H NMR), only one-to-one (FMN-to-protein) binding is observed. Calorimetric titrations result in one-to-one binding also in the presence of phosphate or sulfate (30 degrees C, 13 mM anion, pH 7, K(D) = 0.4 microM). FMN remains dimeric in the presence of phosphate and sulfate, suggesting that specific binding of a divalent anion to the phosphate-binding site triggers ordering of the peptide loops so only one isoalloxazine can fit. Although the physiological relevance of FMN and other nucleotides as dimers has not been explored, our study shows that high-affinity binding to proteins of such dimers can occur in vitro. This emphasizes that the cofactor-binding site in flavodoxin is more flexible than previously expected. PMID:14596623

  1. Binding balls: fast detection of binding sites using a property of spherical Fourier transform.

    PubMed

    Comin, Matteo; Guerra, Concettina; Dellaert, Frank

    2009-11-01

    The functional prediction of proteins is one of the most challenging problems in modern biology. An established computational technique involves the identification of three-dimensional local similarities in proteins. In this article, we present a novel method to quickly identify promising binding sites. Our aim is to efficiently detect putative binding sites without explicitly aligning them. Using the theory of Spherical Harmonics, a candidate binding site is modeled as a Binding Ball. The Binding Ball signature, offered by the Spherical Fourier coefficients, can be efficiently used for a fast detection of putative regions. Our contribution includes the Binding Ball modeling and the definition of a scoring function that does not require aligning candidate regions. Our scoring function can be computed efficiently using a property of Spherical Fourier transform (SFT) that avoids the evaluation of all alignments. Experiments on different ligands show good discrimination power when searching for known binding sites. Moreover, we prove that this method can save up to 40% in time compared with traditional approaches.

  2. Solution structure and binding specificity of the p63 DNA binding domain

    PubMed Central

    Enthart, Andreas; Klein, Christian; Dehner, Alexander; Coles, Murray; Gemmecker, Gerd; Kessler, Horst; Hagn, Franz

    2016-01-01

    p63 is a close homologue of p53 and, together with p73, is grouped into the p53 family of transcription factors. p63 is known to be involved in the induction of controlled apoptosis important for differentiation processes, germ line integrity and development. Despite its high homology to p53, especially within the DNA binding domain (DBD), p63-DBD does not show cooperative DNA binding properties and is significantly more stable against thermal and chemical denaturation. Here, we determined the solution structure of p63-DBD and show that it is markedly less dynamic than p53-DBD. In addition, we also investigate the effect of a double salt bridge present in p53-DBD, but not in p63-DBD on the cooperative binding behavior and specificity to various DNA sites. Restoration of the salt bridges in p63-DBD by mutagenesis leads to enhanced binding affinity to p53-specific, but not p63-specific response elements. Furthermore, we show that p63-DBD is capable of binding to anti-apoptotic BclxL via its DNA binding interface, a feature that has only been shown for p53 so far. These data suggest that all p53 family members - despite alterations in the specificity and binding affinity - are capable of activating pro-apoptotic pathways in a tissue specific manner. PMID:27225672

  3. Solution structure and binding specificity of the p63 DNA binding domain.

    PubMed

    Enthart, Andreas; Klein, Christian; Dehner, Alexander; Coles, Murray; Gemmecker, Gerd; Kessler, Horst; Hagn, Franz

    2016-01-01

    p63 is a close homologue of p53 and, together with p73, is grouped into the p53 family of transcription factors. p63 is known to be involved in the induction of controlled apoptosis important for differentiation processes, germ line integrity and development. Despite its high homology to p53, especially within the DNA binding domain (DBD), p63-DBD does not show cooperative DNA binding properties and is significantly more stable against thermal and chemical denaturation. Here, we determined the solution structure of p63-DBD and show that it is markedly less dynamic than p53-DBD. In addition, we also investigate the effect of a double salt bridge present in p53-DBD, but not in p63-DBD on the cooperative binding behavior and specificity to various DNA sites. Restoration of the salt bridges in p63-DBD by mutagenesis leads to enhanced binding affinity to p53-specific, but not p63-specific response elements. Furthermore, we show that p63-DBD is capable of binding to anti-apoptotic BclxL via its DNA binding interface, a feature that has only been shown for p53 so far. These data suggest that all p53 family members - despite alterations in the specificity and binding affinity - are capable of activating pro-apoptotic pathways in a tissue specific manner. PMID:27225672

  4. Coenzyme Q10-Binding/Transfer Protein Saposin B also Binds gamma-Tocopherol.

    PubMed

    Jin, Guangzhi; Horinouchi, Ryo; Sagawa, Tomofumi; Orimo, Nobutsune; Kubo, Hiroshi; Yoshimura, Shinichi; Fujisawa, Akio; Kashiba, Misato; Yamamoto, Yorihiro

    2008-09-01

    gamma-Tocopherol, the major form of dietary vitamin E, is absorbed in the intestine and is secreted in chylomicrons, which are then transferred to liver lysosomes. Most gamma-tocopherol is transferred to liver microsomes and is catabolized by cytochrome p450. Due to the hydrophobicity of gamma-tocopherol, a binding and transfer protein is plausible, but none have yet been isolated and characterized. We recently found that a ubiquitous cytosolic protein, saposin B, binds and transfers coenzyme Q10 (CoQ10), which is an essential factor for ATP production and an important antioxidant. Here, we report that saposin B also binds gamma-tocopherol, but not alpha-tocopherol, as efficiently as CoQ10 at pH 7.4. At acidic pH, saposin B binds gamma-tocopherol preferentially to CoQ10 and alpha-tocopherol. Furthermore, we confirmed that saposin B selectively binds gamma-tocopherol instead of CoQ10 and alpha-tocopherol at every pH between 5.4 and 8.0 when all three lipids are competing for binding. We detected gamma-tocopherol in human saposin B monoclonal antibody-induced immunoprecipitates from human urine, although the amount of gamma-tocopherol was much smaller than that of CoQ10. These results suggest that saposin B binds and transports gamma-tocopherol in human cells.

  5. Binding Sites Analyser (BiSA): Software for Genomic Binding Sites Archiving and Overlap Analysis

    PubMed Central

    Khushi, Matloob; Liddle, Christopher; Clarke, Christine L.; Graham, J. Dinny

    2014-01-01

    Genome-wide mapping of transcription factor binding and histone modification reveals complex patterns of interactions. Identifying overlaps in binding patterns by different factors is a major objective of genomic studies, but existing methods to archive large numbers of datasets in a personalised database lack sophistication and utility. Therefore we have developed transcription factor DNA binding site analyser software (BiSA), for archiving of binding regions and easy identification of overlap with or proximity to other regions of interest. Analysis results can be restricted by chromosome or base pair overlap between regions or maximum distance between binding peaks. BiSA is capable of reporting overlapping regions that share common base pairs; regions that are nearby; regions that are not overlapping; and average region sizes. BiSA can identify genes located near binding regions of interest, genomic features near a gene or locus of interest and statistical significance of overlapping regions can also be reported. Overlapping results can be visualized as Venn diagrams. A major strength of BiSA is that it is supported by a comprehensive database of publicly available transcription factor binding sites and histone modifications, which can be directly compared to user data. The documentation and source code are available on http://bisa.sourceforge.net PMID:24533055

  6. Information flow through calcium binding proteins

    NASA Astrophysics Data System (ADS)

    Bak, Ji Hyun; Bialek, William

    2013-03-01

    Calcium signaling is a ubiquitous mode of biological communication, which regulates a great variety of vital processes in living systems. Such a signal typically begins with an elementary event, in which calcium ions bind to a protein, inducing a change in the protein's structure. Information can only be lost, from what was conveyed through this initial event, as the signal is further transduced through the downstream networks. In the present work we analyze and optimize the information flow in the calcium binding process. We explicitly calculate the mutual information between the calcium concentration and the states of the protein, using a simple model for allosteric regulation in a dimeric protein. The optimal solution depends on the dynamic range of the input as well as on the timescale of signal integration. According to our result, the optimizing strategy involves allowing the calcium-binding protein to be ``activated'' by a partial occupation of its sites, and tuning independently the strengths of cooperative interactions in the binding and unbinding processes.

  7. Non-binding relationship between visual features.

    PubMed

    Rangelov, Dragan; Zeki, Semir

    2014-01-01

    The answer as to how visual attributes processed in different brain loci at different speeds are bound together to give us our unitary experience of the visual world remains unknown. In this study we investigated whether bound representations arise, as commonly assumed, through physiological interactions between cells in the visual areas. In a focal attentional task in which correct responses from either bound or unbound representations were possible, participants discriminated the color or orientation of briefly presented single bars. On the assumption that representations of the two attributes are bound, the accuracy of reporting the color and orientation should co-vary. By contrast, if the attributes are not mandatorily bound, the accuracy of reporting the two attributes should be independent. The results of our psychophysical studies reported here supported the latter, non-binding, relationship between visual features, suggesting that binding does not necessarily occur even under focal attention. We propose a task-contingent binding mechanism, postulating that binding occurs at late, post-perceptual (PP), stages through the intervention of memory. PMID:25339879

  8. Stabilized sulfur binding using activated fillers

    DOEpatents

    Kalb, Paul D.; Vagin, Vyacheslav P.; Vagin, Sergey P.

    2015-07-21

    A method of making a stable, sulfur binding composite comprising impregnating a solid aggregate with an organic modifier comprising unsaturated hydrocarbons with at least one double or triple covalent bond between adjacent carbon atoms to create a modifier-impregnated aggregate; heating and drying the modifier-impregnated aggregate to activate the surface of the modifier-impregnated aggregate for reaction with sulfur.

  9. DBSI: DNA-binding site identifier

    PubMed Central

    Zhu, Xiaolei; Ericksen, Spencer S.; Mitchell, Julie C.

    2013-01-01

    In this study, we present the DNA-Binding Site Identifier (DBSI), a new structure-based method for predicting protein interaction sites for DNA binding. DBSI was trained and validated on a data set of 263 proteins (TRAIN-263), tested on an independent set of protein-DNA complexes (TEST-206) and data sets of 29 unbound (APO-29) and 30 bound (HOLO-30) protein structures distinct from the training data. We computed 480 candidate features for identifying protein residues that bind DNA, including new features that capture the electrostatic microenvironment within shells near the protein surface. Our iterative feature selection process identified features important in other models, as well as features unique to the DBSI model, such as a banded electrostatic feature with spatial separation comparable with the canonical width of the DNA minor groove. Validations and comparisons with established methods using a range of performance metrics clearly demonstrate the predictive advantage of DBSI, and its comparable performance on unbound (APO-29) and bound (HOLO-30) conformations demonstrates robustness to binding-induced protein conformational changes. Finally, we offer our feature data table to others for integration into their own models or for testing improved feature selection and model training strategies based on DBSI. PMID:23873960

  10. Dynamics of Transcription Factor Binding Site Evolution

    PubMed Central

    Tuğrul, Murat; Paixão, Tiago; Barton, Nicholas H.; Tkačik, Gašper

    2015-01-01

    Evolution of gene regulation is crucial for our understanding of the phenotypic differences between species, populations and individuals. Sequence-specific binding of transcription factors to the regulatory regions on the DNA is a key regulatory mechanism that determines gene expression and hence heritable phenotypic variation. We use a biophysical model for directional selection on gene expression to estimate the rates of gain and loss of transcription factor binding sites (TFBS) in finite populations under both point and insertion/deletion mutations. Our results show that these rates are typically slow for a single TFBS in an isolated DNA region, unless the selection is extremely strong. These rates decrease drastically with increasing TFBS length or increasingly specific protein-DNA interactions, making the evolution of sites longer than ∼ 10 bp unlikely on typical eukaryotic speciation timescales. Similarly, evolution converges to the stationary distribution of binding sequences very slowly, making the equilibrium assumption questionable. The availability of longer regulatory sequences in which multiple binding sites can evolve simultaneously, the presence of “pre-sites” or partially decayed old sites in the initial sequence, and biophysical cooperativity between transcription factors, can all facilitate gain of TFBS and reconcile theoretical calculations with timescales inferred from comparative genomics. PMID:26545200

  11. Cadmium-binding protein (metallothionein) in carp

    SciTech Connect

    Kito, H.; Ose, Y.; Sato, T.

    1986-03-01

    When carp (Cyprinus carpio) were exposed to 5 and 30 ppm Cd in the water, the contents of Cd-binding protein, which has low molecular weight, increased in the hepatopancreas, kidney, gills and gastrointestinal tract with duration of exposure. This Cd-binding protein was purified from hepatopancreas, kidney, gills, and spleen of carp administered 2 mg/kg Cd (as CdCl/sub 2/), intraperitoneally for 6 days. Two Cd-binding proteins were separated by DEAE-Sephadex A-25 column chromatography. These proteins had Cd-mercaptide bond, high cysteine contents (ca. 29-34%), but no aromatic amino acids or histidine. From these characteristics the Cd-binding proteins were identified as metallothionein. By using antiserum obtained from a rabbit to which carp hepatopancreas MT-II had been administered, immunological characteristics between hepatopancreas MT-I, II and kidney MT-II were studied, and a slight difference in antigenic determinant was observed among them. By immunological staining techniques with horseradish peroxidase, the localization of metallothionein was investigated. Carp were bred in 1 ppm Cd, 5 ppm Zn solution, and tap water for 14 days, following transfer to 15 ppm Cd solution, respectively. The survival ratio was the highest in the Zn group followed by Cd-treated and control groups.

  12. Collagen binding to OSCAR: the odd couple.

    PubMed

    An, Bo; Brodsky, Barbara

    2016-02-01

    In this issue of Blood, Zhou et al reported the high-resolution structure of the collagen-activated osteoclast-associated receptor (OSCAR) bound to a collagen model peptide. Together with binding studies, the results confirm a novel recognition mechanism for collagen by immunoglobulin-like motifs. PMID:26847065

  13. Metal binding components in human amniotic fluid

    SciTech Connect

    Paterson, P.G.; Zlotkin, S.H.; Sarkar, B. )

    1990-02-26

    Amniotic fluid is a potential source of both nutritionally essential and toxic metals for the fetus. As the binding pattern of these metals in amniotic fluid may be one of the determining factors in their availability to the fetus, the objective of this study was to investigate metal binding in vitro. The binding of six trace metals, Mn(II), Ni(II), Zn(II), Cu(II), Cd(II), and Fe(III), to components of human amniotic fluid was studied by Sephadex G-100 gel filtration at physiological pH, using radioisotopes as tracers and 50 mM TRIS/HCl as the elution buffer. The amniotic fluid was collected at 16-16.5 weeks gestation by amniocentesis and pooled for analysis. Extensive amounts of Fe, Cu, Zn, and Cd and small amounts of Mn and Ni were bound to high molecular weight proteins with elution patterns similar to those seen for the binding of these metals in serum. In addition, large amounts of Fe, Mn, Ni and Cd and small amounts of Zn and Cu were associated with low molecular weight component(s). The identity of these latter components is unknown, but they play an important biological role in amniotic fluid.

  14. The Cultural Bind on the American Male

    ERIC Educational Resources Information Center

    Chenoweth, Gene

    2012-01-01

    In this article, the author talks about the cultural bind on the American male. The process starts with conception. If the spermatozoid that fertilizes the egg contains only X chromosomes a girl will be produced. If a single Y chromosome out of the 24 produced by the father is included, the baby will be a boy. From this point on the girls have a…

  15. Lipid binding proteins from parasitic platyhelminthes.

    PubMed

    Alvite, Gabriela; Esteves, Adriana

    2012-01-01

    TWO MAIN FAMILIES OF LIPID BINDING PROTEINS HAVE BEEN IDENTIFIED IN PARASITIC PLATYHELMINTHES: hydrophobic ligand binding proteins (HLBPs) and fatty acid binding proteins (FABPs). Members of the former family of proteins are specific to the Cestoda class, while FABPs are conserved across a wide range of animal species. Because Platyhelminthes are unable to synthesize their own lipids, these lipid-binding proteins are important molecules in these organisms. HLBPs are a high molecular mass complex of proteins and lipids. They are composed of subunits of low molecular mass proteins and a wide array of lipid molecules ranging from CoA esters to cholesterol. These proteins are excretory-secretory molecules and are key serological tools for diagnosis of diseases caused by cestodes. FABPs are mainly intracellular proteins of low molecular weight. They are also vaccine candidates. Despite that the knowledge of their function is scarce, the differences in their molecular organization, ligand preferences, intra/extracellular localization, evolution, and phylogenetic distribution, suggest that platyhelminths HLBPs and FABPs should play different functions. FABPs might be involved in the removal of fatty acids from the inner surface of the cell membrane and in their subsequent targeting to specific cellular destinations. In contrast, HLBPs might be involved in fatty acid uptake from the host environment.

  16. Oxytocin binding sites in bovine mammary tissue

    SciTech Connect

    Zhao, Xin.

    1989-01-01

    Oxytocin binding sites were identified and characterized in bovine mammary tissue. ({sup 3}H)-oxytocin binding reached equilibrium by 50 min at 20{degree}C and by 8 hr at 4{degree}C. The half-time of displacement at 20{degree}C was approximately 1 hr. Thyrotropin releasing hormone, adrenocorticotropin, angiotensin I, angiotensin II, pentagastrin, bradykinin, xenopsin and L-valyl-histidyl-L-leucyl-L-threonyl-L-prolyl-L-valyl-L-glutamyl-L-lysine were not competitive. In the presence of 10 nM LiCl, addition of oxytocin to dispersed bovine mammary cells, in which phosphatidylinositol was pre-labelled, caused a time and dose-dependent increase in radioactive inositiol monophosphate incorporation. The possibility that there are distinct vasopressin receptors in bovine mammary tissue was investigated. ({sup 3}H)-vasopressin binding reached equilibrium by 40 min at 20{degree}. The half-time of displacement at 20{degree}C was approximately 1 hr. The ability of the peptides to inhibit ({sup 3}H)-vasopressin binding was: (Thr{sup 4},Gly{sup 7})-oxytocin > Arg{sup 8}-vasopressin > (lys{sup 8})-vasopressin > (Deamino{sup 1},D-arg{sup 8})-vasopressin > oxytocin > d (CH{sub 2}){sub 5}Tyr(Me)AVP.

  17. Binding of NAD+ to pertussis toxin.

    PubMed

    Lobban, M D; Irons, L I; van Heyningen, S

    1991-06-24

    The equilibrium dissociation constant of NAD+ and pertussis toxin was determined by equilibrium dialysis and by the quenching of the protein's intrinsic fluorescence on titration with NAD+. A binding constant, Kd, of 24 +/- 2 microM at 30 degrees C was obtained from equilibrium dialysis, consistent with the previously determined value for the Michaelis constant, Km, of 30 +/- 5 microM for NAD+ (when the toxin is catalysing the ADP-ribosylation of water and of dithiothreitol). The intrinsic fluorescence of pertussis toxin was quenched by up to 60% on titration with NAD+, and after correction for dilution and inner filter effects, a Kd value of 27 microM at 30 degrees C was obtained, agreeing well with that found by equilibrium dialysis. The binding constants were measured at a number of temperatures using both techniques, and from this the enthalpy of binding of NAD+ to toxin was determined to be 30 kJ.mol-1, a typical value for a protein-ligand interaction. There is one binding site for NAD+ per toxin molecule. PMID:1648404

  18. The Double Bind: The next Generation

    ERIC Educational Resources Information Center

    Malcom, Lindsey E.; Malcom, Shirley M.

    2011-01-01

    In this foreword, Shirley Malcom and Lindsey Malcom speak to the history and current status of women of color in science, technology, engineering, and mathematics (STEM) fields. As the author of the seminal report "The Double Bind: The Price of Being a Minority Woman in Science", Shirley Malcom is uniquely poised to give us an insightful…

  19. The Binding Properties of Quechua Suffixes.

    ERIC Educational Resources Information Center

    Weber, David

    This paper sketches an explicitly non-lexicalist application of grammatical theory to Huallaga (Huanuco) Quechua (HgQ). The advantages of applying binding theory to many suffixes that have previously been treated only as objects of the morphology are demonstrated. After an introduction, section 2 outlines basic assumptions about the nature of HgQ…

  20. Cross-Modal Binding in Developmental Dyslexia

    ERIC Educational Resources Information Center

    Jones, Manon W.; Branigan, Holly P.; Parra, Mario A.; Logie, Robert H.

    2013-01-01

    The ability to learn visual-phonological associations is a unique predictor of word reading, and individuals with developmental dyslexia show impaired ability in learning these associations. In this study, we compared developmentally dyslexic and nondyslexic adults on their ability to form cross-modal associations (or "bindings") based…

  1. Nucleic acids encoding a cellulose binding domain

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1996-03-05

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 15 figs.

  2. Nucleic acids encoding a cellulose binding domain

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1996-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  3. Prolactin binding in minor salivary gland tumors.

    PubMed

    Abbey, L M; Witorsch, R J

    1985-07-01

    An immunohistochemical study of 15 minor salivary gland tumors was initiated to determine if prolactin binding occurred in these tissues. Eight benign mixed tumors (BMT) and 7 adenoid cystic carcinomas (ACC) were selected at random from the surgical biopsy service of the MCV/VCU School of Dentistry, Department of Oral Pathology. The specimens were cut and mounted on slides along with sections of rat pituitary and rat ventral prostate which served as methodologic controls. Experimental specimens were incubated for 24 hours with varying concentrations of highly purified (iodination grade) rat prolactin; controls were incubated with vehicle. Following incubation the specimens were stained according to the Sternberger peroxidase-antiperoxidase method. Results showed dose-dependent staining for prolactin binding sites in 7 of 8 BMTs and 5 of 7 ACCs. The staining was wider in distribution than we observed in normal human minor salivary gland tissue. Binding was confined primarily to cells of duct origin in both types of tumor. In individual cells, staining was observed in diffuse cytoplasmic and perinuclear locations as well as in nuclei and apical regions. We conclude that two minor salivary gland neoplasms (BMT and ACC) exhibit prolactin binding at different cellular locations and in a more widespread pattern than was observed in normal minor salivary gland.

  4. Perturbation Approaches for Exploring Protein Binding Site Flexibility to Predict Transient Binding Pockets.

    PubMed

    Kokh, Daria B; Czodrowski, Paul; Rippmann, Friedrich; Wade, Rebecca C

    2016-08-01

    Simulations of the long-time scale motions of a ligand binding pocket in a protein may open up new perspectives for the design of compounds with steric or chemical properties differing from those of known binders. However, slow motions of proteins are difficult to access using standard molecular dynamics (MD) simulations and are thus usually neglected in computational drug design. Here, we introduce two nonequilibrium MD approaches to identify conformational changes of a binding site and detect transient pockets associated with these motions. The methods proposed are based on the rotamerically induced perturbation (RIP) MD approach, which employs perturbation of side-chain torsional motion for initiating large-scale protein movement. The first approach, Langevin-RIP (L-RIP), entails a series of short Langevin MD simulations, each starting with perturbation of one of the side-chains lining the binding site of interest. L-RIP provides extensive sampling of conformational changes of the binding site. In less than 1 ns of MD simulation with L-RIP, we observed distortions of the α-helix in the ATP binding site of HSP90 and flipping of the DFG loop in Src kinase. In the second approach, RIPlig, a perturbation is applied to a pseudoligand placed in different parts of a binding pocket, which enables flexible regions of the binding site to be identified in a small number of 10 ps MD simulations. The methods were evaluated for four test proteins displaying different types and degrees of binding site flexibility. Both methods reveal all transient pocket regions in less than a total of 10 ns of simulations, even though many of these regions remained closed in 100 ns conventional MD. The proposed methods provide computationally efficient tools to explore binding site flexibility and can aid in the functional characterization of protein pockets, and the identification of transient pockets for ligand design. PMID:27399277

  5. Exploration of dimensions of estrogen potency: parsing ligand binding and coactivator binding affinities.

    PubMed

    Jeyakumar, M; Carlson, Kathryn E; Gunther, Jillian R; Katzenellenbogen, John A

    2011-04-15

    The estrogen receptors, ERα and ERβ, are ligand-regulated transcription factors that control gene expression programs in target tissues. The molecular events underlying estrogen action involve minimally two steps, hormone binding to the ER ligand-binding domain followed by coactivator recruitment to the ER·ligand complex; this ligand·receptor·coactivator triple complex then alters gene expression. Conceptually, the potency of an estrogen in activating a cellular response should reflect the affinities that characterize both steps involved in the assembly of the active ligand·receptor·coactivator complex. Thus, to better understand the molecular basis of estrogen potency, we developed a completely in vitro system (using radiometric and time-resolved FRET assays) to quantify independently three parameters: (a) the affinity of ligand binding to ER, (b) the affinity of coactivator binding to the ER·ligand complex, and (c) the potency of ligand recruitment of coactivator. We used this system to characterize the binding and potency of 12 estrogens with both ERα and ERβ. Some ligands showed good correlations between ligand binding affinity, coactivator binding affinity, and coactivator recruitment potency with both ERs, whereas others showed correlations with only one ER subtype or displayed discordant coactivator recruitment potencies. When ligands with low receptor binding affinity but high coactivator recruitment potencies to ERβ were evaluated in cell-based assays, elevation of cellular coactivator levels significantly and selectively improved their potency. Collectively, our results indicate that some low affinity estrogens may elicit greater cellular responses in those target cells that express higher levels of specific coactivators capable of binding to their ER complexes with high affinity. PMID:21321128

  6. Five of Five VHHs Neutralizing Poliovirus Bind the Receptor-Binding Site

    PubMed Central

    Strauss, Mike; Schotte, Lise; Thys, Bert; Filman, David J.

    2016-01-01

    ABSTRACT Nanobodies, or VHHs, that recognize poliovirus type 1 have previously been selected and characterized as candidates for antiviral agents or reagents for standardization of vaccine quality control. In this study, we present high-resolution cryo-electron microscopy reconstructions of poliovirus with five neutralizing VHHs. All VHHs bind the capsid in the canyon at sites that extensively overlap the poliovirus receptor-binding site. In contrast, the interaction involves a unique (and surprisingly extensive) surface for each of the five VHHs. Five regions of the capsid were found to participate in binding with all five VHHs. Four of these five regions are known to alter during the expansion of the capsid associated with viral entry. Interestingly, binding of one of the VHHs, PVSS21E, resulted in significant changes of the capsid structure and thus seems to trap the virus in an early stage of expansion. IMPORTANCE We describe the cryo-electron microscopy structures of complexes of five neutralizing VHHs with the Mahoney strain of type 1 poliovirus at resolutions ranging from 3.8 to 6.3Å. All five VHHs bind deep in the virus canyon at similar sites that overlap extensively with the binding site for the receptor (CD155). The binding surfaces on the VHHs are surprisingly extensive, but despite the use of similar binding surfaces on the virus, the binding surface on the VHHs is unique for each VHH. In four of the five complexes, the virus remains essentially unchanged, but for the fifth there are significant changes reminiscent of but smaller in magnitude than the changes associated with cell entry, suggesting that this VHH traps the virus in a previously undescribed early intermediate state. The neutralizing mechanisms of the VHHs and their potential use as quality control agents for the end game of poliovirus eradication are discussed. PMID:26764003

  7. CD36 binds oxidized low density lipoprotein (LDL) in a mechanism dependent upon fatty acid binding.

    PubMed

    Jay, Anthony G; Chen, Alexander N; Paz, Miguel A; Hung, Justin P; Hamilton, James A

    2015-02-20

    The association of unesterified fatty acid (FA) with the scavenger receptor CD36 has been actively researched, with focuses on FA and oxidized low density lipoprotein (oxLDL) uptake. CD36 has been shown to bind FA, but this interaction has been poorly characterized to date. To gain new insights into the physiological relevance of binding of FA to CD36, we characterized FA binding to the ectodomain of CD36 by the biophysical method surface plasmon resonance. Five structurally distinct FAs (saturated, monounsaturated (cis and trans), polyunsaturated, and oxidized) were pulsed across surface plasmon resonance channels, generating association and dissociation binding curves. Except for the oxidized FA HODE, all FAs bound to CD36, with rapid association and dissociation kinetics similar to HSA. Next, to elucidate the role that each FA might play in CD36-mediated oxLDL uptake, we used a fluorescent oxLDL (Dii-oxLDL) live cell assay with confocal microscopy imaging. CD36-mediated uptake in serum-free medium was very low but greatly increased when serum was present. The addition of exogenous FA in serum-free medium increased oxLDL binding and uptake to levels found with serum and affected CD36 plasma membrane distribution. Binding/uptake of oxLDL was dependent upon the FA dose, except for docosahexaenoic acid, which exhibited binding to CD36 but did not activate the uptake of oxLDL. HODE also did not affect oxLDL uptake. High affinity FA binding to CD36 and the effects of each FA on oxLDL uptake have important implications for protein conformation, binding of other ligands, functional properties of CD36, and high plasma FA levels in obesity and type 2 diabetes.

  8. Retinoblastoma-binding protein 1 has an interdigitated double Tudor domain with DNA binding activity.

    PubMed

    Gong, Weibin; Wang, Jinfeng; Perrett, Sarah; Feng, Yingang

    2014-02-21

    Retinoblastoma-binding protein 1 (RBBP1) is a tumor and leukemia suppressor that binds both methylated histone tails and DNA. Our previous studies indicated that RBBP1 possesses a Tudor domain, which cannot bind histone marks. In order to clarify the function of the Tudor domain, the solution structure of the RBBP1 Tudor domain was determined by NMR and is presented here. Although the proteins are unrelated, the RBBP1 Tudor domain forms an interdigitated double Tudor structure similar to the Tudor domain of JMJD2A, which is an epigenetic mark reader. This indicates the functional diversity of Tudor domains. The RBBP1 Tudor domain structure has a significant area of positively charged surface, which reveals a capability of the RBBP1 Tudor domain to bind nucleic acids. NMR titration and isothermal titration calorimetry experiments indicate that the RBBP1 Tudor domain binds both double- and single-stranded DNA with an affinity of 10-100 μM; no apparent DNA sequence specificity was detected. The DNA binding mode and key interaction residues were analyzed in detail based on a model structure of the Tudor domain-dsDNA complex, built by HADDOCK docking using the NMR data. Electrostatic interactions mediate the binding of the Tudor domain with DNA, which is consistent with NMR experiments performed at high salt concentration. The DNA-binding residues are conserved in Tudor domains of the RBBP1 protein family, resulting in conservation of the DNA-binding function in the RBBP1 Tudor domains. Our results provide further insights into the structure and function of RBBP1.

  9. Manganese Binds to Clostridium difficile Fbp68 and Is Essential for Fibronectin Binding*

    PubMed Central

    Lin, Yi-Pin; Kuo, Chih-Jung; Koleci, Xhelil; McDonough, Sean P.; Chang, Yung-Fu

    2011-01-01

    Clostridium difficile is an etiological agent of pseudomembranous colitis and antibiotic-associated diarrhea. Adhesion is the crucial first step in bacterial infection. Thus, in addition to toxins, the importance of colonization factors in C. difficile-associated disease is recognized. In this study, we identified Fbp68, one of the colonization factors that bind to fibronectin (Fn), as a manganese-binding protein (KD = 52.70 ± 1.97 nm). Furthermore, the conformation of Fbp68 changed dramatically upon manganese binding. Manganese binding can also stabilize the structure of Fbp68 as evidenced by the increased Tm measured by thermodenatured circular dichroism and differential scanning calorimetry (CD, Tm = 58–65 °C; differential scanning calorimetry, Tm = 59–66 °C). In addition, enhanced tolerance to protease K also suggests greatly improved stability of Fbp68 through manganese binding. Fn binding activity was found to be dependent on manganese due to the lack of binding by manganese-free Fbp68 to Fn. The C-terminal 194 amino acid residues of Fbp68 (Fbp68C) were discovered to bind to the N-terminal domain of Fn (Fbp68C-NTD, KD = 233 ± 10 nm, obtained from isothermal titration calorimetry). Moreover, adhesion of C. difficile to Caco-2 cells can be partially blocked if cells are pretreated with Fbp68C, and the binding of Fbp68C on Fn siRNA-transfected cells was significantly reduced. These results raise the possibility that Fbp68 plays a key role in C. difficile adherence on host cells to initiate infection. PMID:21062746

  10. Perturbation Approaches for Exploring Protein Binding Site Flexibility to Predict Transient Binding Pockets.

    PubMed

    Kokh, Daria B; Czodrowski, Paul; Rippmann, Friedrich; Wade, Rebecca C

    2016-08-01

    Simulations of the long-time scale motions of a ligand binding pocket in a protein may open up new perspectives for the design of compounds with steric or chemical properties differing from those of known binders. However, slow motions of proteins are difficult to access using standard molecular dynamics (MD) simulations and are thus usually neglected in computational drug design. Here, we introduce two nonequilibrium MD approaches to identify conformational changes of a binding site and detect transient pockets associated with these motions. The methods proposed are based on the rotamerically induced perturbation (RIP) MD approach, which employs perturbation of side-chain torsional motion for initiating large-scale protein movement. The first approach, Langevin-RIP (L-RIP), entails a series of short Langevin MD simulations, each starting with perturbation of one of the side-chains lining the binding site of interest. L-RIP provides extensive sampling of conformational changes of the binding site. In less than 1 ns of MD simulation with L-RIP, we observed distortions of the α-helix in the ATP binding site of HSP90 and flipping of the DFG loop in Src kinase. In the second approach, RIPlig, a perturbation is applied to a pseudoligand placed in different parts of a binding pocket, which enables flexible regions of the binding site to be identified in a small number of 10 ps MD simulations. The methods were evaluated for four test proteins displaying different types and degrees of binding site flexibility. Both methods reveal all transient pocket regions in less than a total of 10 ns of simulations, even though many of these regions remained closed in 100 ns conventional MD. The proposed methods provide computationally efficient tools to explore binding site flexibility and can aid in the functional characterization of protein pockets, and the identification of transient pockets for ligand design.

  11. STARD4 Membrane Interactions and Sterol Binding.

    PubMed

    Iaea, David B; Dikiy, Igor; Kiburu, Irene; Eliezer, David; Maxfield, Frederick R

    2015-08-01

    The steroidogenic acute regulatory protein-related lipid transfer (START) domain family is defined by a conserved 210-amino acid sequence that folds into an α/β helix-grip structure. Members of this protein family bind a variety of ligands, including cholesterol, phospholipids, sphingolipids, and bile acids, with putative roles in nonvesicular lipid transport, metabolism, and cell signaling. Among the soluble START proteins, STARD4 is expressed in most tissues and has previously been shown to transfer sterol, but the molecular mechanisms of membrane interaction and sterol binding remain unclear. In this work, we use biochemical techniques to characterize regions of STARD4 and determine their role in membrane interaction and sterol binding. Our results show that STARD4 interacts with anionic membranes through a surface-exposed basic patch and that introducing a mutation (L124D) into the Omega-1 (Ω1) loop, which covers the sterol binding pocket, attenuates sterol transfer activity. To gain insight into the attenuating mechanism of the L124D mutation, we conducted structural and biophysical studies of wild-type and L124D STARD4. These studies show that the L124D mutation reduces the conformational flexibility of the protein, resulting in a diminished level of membrane interaction and sterol transfer. These studies also reveal that the C-terminal α-helix, and not the Ω1 loop, partitions into the membrane bilayer. On the basis of these observations, we propose a model of STARD4 membrane interaction and sterol binding and release that requires dynamic movement of both the Ω1 loop and membrane insertion of the C-terminal α-helix.

  12. Linoleic acid binding properties of ovalbumin nanoparticles.

    PubMed

    Sponton, Osvaldo E; Perez, Adrián A; Carrara, Carlos R; Santiago, Liliana G

    2015-04-01

    In the present work, ovalbumin (OVA) solutions (10 g/L, 50 mM NaCl, pH 7.5) were heat-treated at 75, 80 and 85°C (namely, OVA-75, OVA-80 and OVA-85, respectively), from 0 to 25 min. OVA nanoparticles (OVAn) around 100 nm were obtained. For 3 min of heat treatment, OVAn sizes increased with temperature, but for a heating time longer than 10 min, OVA-75 showed the highest size values. OVAn surface hydrophobicity increased 6-8 folds in comparison with native OVA and wavelength blue shifts of 25-30 nm in maximum fluorescence intensity were registered. These results suggest that buried hydrophobic residues were exposed to the aqueous medium. Binding experiments with linoleic acid (LA) as polyunsaturated fatty acid (PUFA) model were carried out. Firstly, binding ability of OVAn was determined from LA titration curves of intrinsic fluorescence measurements. OVA-85 at 5 min presented the highest binding ability and it was used for further binding properties studies (turbidity, particle size distribution--PSD--analysis and ζ-potential measurements). Turbidity measurement and PSD analysis showed that OVAn-LA nanocomplexes were formed, avoiding LA supramolecular self-assembly formation. The union of LA to OVAn surface confers them significant lower ζ-potential and larger size. Hence, fluorescence and ζ-potential results showed that LA would bind to OVAn by mean of hydrophobic interactions. Information derived from this work could be important to potentially use OVAn as PUFA vehiculization with applications in several industrial sectors (food, pharmaceutical, cosmetics, etc.).

  13. Switch-like surface binding of competing multivalent particles

    NASA Astrophysics Data System (ADS)

    Tito, N. B.; Frenkel, D.

    2016-07-01

    Multivalent particles competing for binding on the same surface can exhibit switch-like behaviour, depending on the concentration of receptors on the surface. When the receptor concentration is low, energy dominates the free energy of binding, and particles having a small number of strongly-binding ligands preferentially bind to the surface. At higher receptor concentrations, multivalent effects become significant, and entropy dominates the binding free energy; particles having many weakly-binding ligands preferentially bind to the surface. Between these two regimes there is a "switch-point", at which the surface binds the two species of particles equally strongly. We demonstrate that a simple theory can account for this switch-like behaviour and present numerical calculations that support the theoretical predictions. We argue that binding selectivity based on receptor density, rather than identity, may have practical applications.

  14. Metal binding stoichiometry and isotherm choice in biosorption

    SciTech Connect

    Schiewer, S.; Wong, M.H.

    1999-11-01

    Seaweeds that possess a high metal binding capacity may be used as biosorbents for the removal of toxic heavy metals from wastewater. The binding of Cu and Ni by three brown algae (Sargassum, Colpomenia, Petalonia) and one green alga (Ulva) was investigated at pH 4.0 and pH 3.0. The greater binding strength of Cu is reflected in a binding constant that is about 10 times as high as that of Ni. The extent of metal binding followed the order Petalonia {approximately} Sargassum > Colpomenia > Ulva. This was caused by a decreasing number of binding sites and by much lower metal binding constants for Ulva as compared to the brown algae. Three different stoichiometric assumptions are compared for describing the metal binding, which assume either that each metal ion M binds to one binding site B forming a BM complex or that a divalent metal ion M binds to two monovalent sites B forming BM{sub 0.5} or B{sub 2}M complexes, respectively. Stoichiometry plots are proposed as tools to discern the relevant binding stoichiometry. The pH effect in metal binding and the change in proton binding were well predicted for the B{sub 2}M or BM{sub 0.5} stoichiometries with the former being better for Cu and the latter preferable for Ni. Overall, the BM{sub 0.5} model is recommended because it avoids iterations.

  15. Structural analysis of ibuprofen binding to human adipocyte fatty-acid binding protein (FABP4)

    PubMed Central

    González, Javier M.; Fisher, S. Zoë

    2015-01-01

    Inhibition of human adipocyte fatty-acid binding protein (FABP4) has been proposed as a treatment for type 2 diabetes, fatty liver disease and atherosclerosis. However, FABP4 displays a naturally low selectivity towards hydrophobic ligands, leading to the possibility of side effects arising from cross-inhibition of other FABP isoforms. In a search for structural determinants of ligand-binding selectivity, the binding of FABP4 towards a group of small molecules structurally related to the nonsteroidal anti-inflammatory drug ibuprofen was analyzed through X-ray crystallography. Several specific hydrophobic interactions are shown to enhance the binding affinities of these compounds, whereas an aromatic edge-to-face interaction is proposed to determine the conformation of bound ligands, highlighting the importance of aromatic interactions in hydrophobic environments. PMID:25664790

  16. Structure of the RNA-Binding Domain of Telomerase: Implications For RNA Recognition and Binding

    SciTech Connect

    Rouda,S.; Skordalakes, E.

    2007-01-01

    Telomerase, a ribonucleoprotein complex, replicates the linear ends of eukaryotic chromosomes, thus taking care of the 'end of replication problem.' TERT contains an essential and universally conserved domain (TRBD) that makes extensive contacts with the RNA (TER) component of the holoenzyme, and this interaction is thought to facilitate TERT/TER assembly and repeat-addition processivity. Here, we present a high-resolution structure of TRBD from Tetrahymena thermophila. The nearly all-helical structure comprises a nucleic acid-binding fold suitable for TER binding. An extended pocket on the surface of the protein, formed by two conserved motifs (CP and T motifs) comprises TRBD's RNA-binding pocket. The width and the chemical nature of this pocket suggest that it binds both single- and double-stranded RNA, possibly stem I, and the template boundary element (TBE). Moreover, the structure provides clues into the role of this domain in TERT/TER stabilization and telomerase repeat-addition processivity.

  17. Characterization of the DNA-binding activity of HIV-1 integrase using a filter binding assay.

    PubMed

    Haugan, I R; Nilsen, B M; Worland, S; Olsen, L; Helland, D E

    1995-12-26

    Based on the selective binding of proteins and DNA to distinct filter materials a double-layered dot blot radio assay was developed to evaluate the binding of DNA to HIV-1 integrase. In this assay the DNA-binding was found to be independent of Mn2+ concentration, inhibited by concentrations of Mg2+ above 5 mM, abolished by zinc chelation and inhibited by monoclonal antibodies reacting with either the N-terminal or C-terminal regions of integrase. Atomic absorption spectroscopy revealed the molar ratio between integrase and zinc to be close to 1. It is concluded that both the N-terminal and the C-terminal regions of integrase are involved in DNA-binding and that the reported double-layered dot blot radio assay is well suited for further characterization of the integrase.

  18. Structural analysis of ibuprofen binding to human adipocyte fatty-acid binding protein (FABP4).

    PubMed

    González, Javier M; Fisher, S Zoë

    2015-02-01

    Inhibition of human adipocyte fatty-acid binding protein (FABP4) has been proposed as a treatment for type 2 diabetes, fatty liver disease and atherosclerosis. However, FABP4 displays a naturally low selectivity towards hydrophobic ligands, leading to the possibility of side effects arising from cross-inhibition of other FABP isoforms. In a search for structural determinants of ligand-binding selectivity, the binding of FABP4 towards a group of small molecules structurally related to the nonsteroidal anti-inflammatory drug ibuprofen was analyzed through X-ray crystallography. Several specific hydrophobic interactions are shown to enhance the binding affinities of these compounds, whereas an aromatic edge-to-face interaction is proposed to determine the conformation of bound ligands, highlighting the importance of aromatic interactions in hydrophobic environments.

  19. A new zinc binding fold underlines the versatility of zinc binding modules in protein evolution.

    PubMed

    Sharpe, Belinda K; Matthews, Jacqueline M; Kwan, Ann H Y; Newton, Anthea; Gell, David A; Crossley, Merlin; Mackay, Joel P

    2002-05-01

    Many different zinc binding modules have been identified. Their abundance and variety suggests that the formation of zinc binding folds might be relatively common. We have determined the structure of CH1(1), a 27-residue peptide derived from the first cysteine/histidine-rich region (CH1) of CREB binding protein (CBP). This peptide forms a highly ordered zinc-dependent fold that is distinct from known folds. The structure differs from a subsequently determined structure of a larger region from the CH3 region of CBP, and the CH1(1) fold probably represents a nonphysiologically active form. Despite this, the fold is thermostable and tolerant to both multiple alanine mutations and changes in the zinc-ligand spacing. Our data support the idea that zinc binding domains may arise frequently. Additionally, such structures may prove useful as scaffolds for protein design, given their stability and robustness.

  20. Cello-oligomer-binding dynamics and directionality in family 4 carbohydrate-binding modules.

    PubMed

    Kognole, Abhishek A; Payne, Christina M

    2015-10-01

    Carbohydrate-binding modules (CBMs) play significant roles in modulating the function of cellulases, and understanding the protein-carbohydrate recognition mechanisms by which CBMs selectively bind substrate is critical to development of enhanced biomass conversion technology. CBMs exhibit a limited range of specificity and appear to bind polysaccharides in a directional fashion dictated by the position of the ring oxygen relative to the protein fold. The two family 4 CBMs of Cellulomonas fimi Cel9B (CfCBM4) are reported to preferentially bind cellulosic substrates. However, experimental evidence suggests that these CBMs may not exhibit a thermodynamic preference for a particular orientation. We use molecular dynamics (MD) and free energy calculations to investigate protein-carbohydrate recognition mechanisms in CfCBM4-1 and CfCBM4-2 and to elucidate preferential ligand-binding orientation. We evaluate four cellopentaose orientations including that of the crystal structure and three others suggested by nuclear magnetic resonance (NMR). These four orientations differ based on position of the ligand reducing end (RE) and pyranose ring orientations relative to the protein core. MD simulations indicate that the plausible orientations reduce to two conformations. Calculated ligand-binding free energy discerns each of the orientations is equally favorable. The calculated free energies are in excellent agreement with isothermal titration calorimetry measurements from the literature. MD simulations further reveal the approximate structural symmetry of the oligosaccharides relative to the amino acids along the binding cleft plays a role in the promiscuity of ligand binding. A survey of ligand-bound structures suggests this phenomenon may be characteristic of the broader class of proteins belonging to the β-sandwich fold.

  1. Cello-oligomer-binding dynamics and directionality in family 4 carbohydrate-binding modules.

    PubMed

    Kognole, Abhishek A; Payne, Christina M

    2015-10-01

    Carbohydrate-binding modules (CBMs) play significant roles in modulating the function of cellulases, and understanding the protein-carbohydrate recognition mechanisms by which CBMs selectively bind substrate is critical to development of enhanced biomass conversion technology. CBMs exhibit a limited range of specificity and appear to bind polysaccharides in a directional fashion dictated by the position of the ring oxygen relative to the protein fold. The two family 4 CBMs of Cellulomonas fimi Cel9B (CfCBM4) are reported to preferentially bind cellulosic substrates. However, experimental evidence suggests that these CBMs may not exhibit a thermodynamic preference for a particular orientation. We use molecular dynamics (MD) and free energy calculations to investigate protein-carbohydrate recognition mechanisms in CfCBM4-1 and CfCBM4-2 and to elucidate preferential ligand-binding orientation. We evaluate four cellopentaose orientations including that of the crystal structure and three others suggested by nuclear magnetic resonance (NMR). These four orientations differ based on position of the ligand reducing end (RE) and pyranose ring orientations relative to the protein core. MD simulations indicate that the plausible orientations reduce to two conformations. Calculated ligand-binding free energy discerns each of the orientations is equally favorable. The calculated free energies are in excellent agreement with isothermal titration calorimetry measurements from the literature. MD simulations further reveal the approximate structural symmetry of the oligosaccharides relative to the amino acids along the binding cleft plays a role in the promiscuity of ligand binding. A survey of ligand-bound structures suggests this phenomenon may be characteristic of the broader class of proteins belonging to the β-sandwich fold. PMID:26153106

  2. Chloramphenicol binding to human serum albumin: Determination of binding constants and binding sites by steady-state fluorescence

    NASA Astrophysics Data System (ADS)

    Ding, Fei; Zhao, Guangyu; Chen, Shoucong; Liu, Feng; Sun, Ying; Zhang, Li

    2009-07-01

    The interaction between chloramphenicol and human serum albumin (HSA) was studied by fluorescence, UV/vis, circular dichroism (CD) and three-dimensional fluorescence spectroscopy. Fluorescence data revealed that the fluorescence quenching of HSA by chloramphenicol was the result of the formation of drug-HSA complex, and the effective quenching constants ( Ka) were 2.852 × 10 4, 2.765 × 10 4, 2.638 × 10 4 and 2.542 × 10 4 M -1 at 287, 295, 303 and 311 K, respectively. The thermodynamic parameters, enthalpy change (Δ H) and entropy change (Δ S) for the reaction were calculated to be -3.634 kJ mol -1 and 72.66 J mol -1 K -1 according to van't Hoff equation. The results indicated that the hydrophobic and electrostatic interactions played a major role in the binding of drug to HSA. The distance r between donor and acceptor was obtained to be 3.63 nm according to Förster's theory. Site marker competitive experiments indicated that the binding of drug to HSA primarily took place in subdomain IIA. The alterations of HSA secondary structure in the presence of chloramphenicol were confirmed by the evidences from synchronous fluorescence, CD and three-dimensional fluorescence spectra. In addition, the effect of common ions on the binding constants of drug-HSA complex was also discussed.

  3. Is there a link between selectivity and binding thermodynamics profiles?

    PubMed

    Tarcsay, Ákos; Keserű, György M

    2015-01-01

    Thermodynamics of ligand binding is influenced by the interplay between enthalpy and entropy contributions of the binding event. The impact of these binding free energy components, however, is not limited to the primary target only. Here, we investigate the relationship between binding thermodynamics and selectivity profiles by combining publicly available data from broad off-target assay profiling and the corresponding thermodynamics measurements. Our analysis indicates that compounds binding their primary targets with higher entropy contributions tend to hit more off-targets compared with those ligands that demonstrated enthalpy-driven binding.

  4. CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins.

    PubMed

    Khorshid, Mohsen; Rodak, Christoph; Zavolan, Mihaela

    2011-01-01

    The stability, localization and translation rate of mRNAs are regulated by a multitude of RNA-binding proteins (RBPs) that find their targets directly or with the help of guide RNAs. Among the experimental methods for mapping RBP binding sites, cross-linking and immunoprecipitation (CLIP) coupled with deep sequencing provides transcriptome-wide coverage as well as high resolution. However, partly due to their vast volume, the data that were so far generated in CLIP experiments have not been put in a form that enables fast and interactive exploration of binding sites. To address this need, we have developed the CLIPZ database and analysis environment. Binding site data for RBPs such as Argonaute 1-4, Insulin-like growth factor II mRNA-binding protein 1-3, TNRC6 proteins A-C, Pumilio 2, Quaking and Polypyrimidine tract binding protein can be visualized at the level of the genome and of individual transcripts. Individual users can upload their own sequence data sets while being able to limit the access to these data to specific users, and analyses of the public and private data sets can be performed interactively. CLIPZ, available at http://www.clipz.unibas.ch, aims to provide an open access repository of information for post-transcriptional regulatory elements.

  5. CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins

    PubMed Central

    Khorshid, Mohsen; Rodak, Christoph; Zavolan, Mihaela

    2011-01-01

    The stability, localization and translation rate of mRNAs are regulated by a multitude of RNA-binding proteins (RBPs) that find their targets directly or with the help of guide RNAs. Among the experimental methods for mapping RBP binding sites, cross-linking and immunoprecipitation (CLIP) coupled with deep sequencing provides transcriptome-wide coverage as well as high resolution. However, partly due to their vast volume, the data that were so far generated in CLIP experiments have not been put in a form that enables fast and interactive exploration of binding sites. To address this need, we have developed the CLIPZ database and analysis environment. Binding site data for RBPs such as Argonaute 1-4, Insulin-like growth factor II mRNA-binding protein 1-3, TNRC6 proteins A-C, Pumilio 2, Quaking and Polypyrimidine tract binding protein can be visualized at the level of the genome and of individual transcripts. Individual users can upload their own sequence data sets while being able to limit the access to these data to specific users, and analyses of the public and private data sets can be performed interactively. CLIPZ, available at http://www.clipz.unibas.ch, aims to provide an open access repository of information for post-transcriptional regulatory elements. PMID:21087992

  6. Amphetamine binding to synthetic melanin and scatchard analysis of binding data.

    PubMed

    Gautam, Lata; Scott, Karen S; Cole, Michael D

    2005-01-01

    Previous research into drug-hair binding shows that hair color affects drug-hair binding. There are no structural disparities in hair of different colors other than the type and content of melanin present. For this reason, this investigation focuses on synthetic eumelanin as a site for drug interaction using amphetamine as the candidate drug. The binding study was carried out at room temperature. The interaction between synthetic eumelanin and amphetamine was monitored using UV-Vis spectrophotometry at 257.2 nm. As the molecular weight of melanin is unknown, the number of binding sites could not be calculated directly. Hence the ratio of the number of mumoles of drug bound and the dry weight of melanin in mug was considered. Equilibrium was reached when approximately 32% of the drug was bound to melanin. Hence this study proves that amphetamine binds to synthetic eumelanin in vitro. Data interpretation using Scatchard analysis yielded a curvilinear plot with upward concavity indicating multiple binding sites on melanin and negative cooperativity. PMID:16105258

  7. Fucosyl neoglycoprotein binds to mouse epididymal spermatozoa and inhibits sperm binding to the egg zona pellucida.

    PubMed

    Oh, Y S; Ahn, H S; Gye, M C

    2013-12-01

    Glycan epitopes of cellular glycoconjugates act as versatile biochemical signals, and this sugar coding plays an important role in cell-to-cell recognition processes. In this study, our aims were to determine the distribution of sperm receptors with activity for fucosyl- and galactosyl glycans and to address whether monosugar neoglycoproteins functionally mimic the binding between zona pellucida (ZP) glycoproteins and spermatozoa. In mouse epididymal spermatozoa with intact acrosomes, fucopyranosyl bovine serum albumin (BSA-Fuc) bound to the segment of the acrosome, the equatorial segment, and the postacrosome region of the sperm head. Galactosyl BSA (BSA-Gal) binding activity was similar to that of BSA-Fuc, but was weaker. In acrosome-reacted spermatozoa treated with the Ca(2+) ionophore A23187, BSA-zuc binding was lost in the apical segment of the acrosome but remained in the equatorial segment and postacrosome regions. BSA-Gal binding to the equatorial region was increased. In the presence of 2.5 μg ml(-1) BSA-Fuc, in vitro sperm-ZP binding was significantly decreased, indicating that fucosyl BSA functionally mimics ZP glycoproteins during sperm-egg ZP interactions. At the same concentration, BSA-Gal was not effective. Fucosyl BSA that efficiently inhibited the sperm-ZP binding can mimic the ZP glycoconjugate and has potential for use as a sperm fertility control agent in mouse.

  8. Blind prediction of charged ligand binding affinities in a model binding site

    PubMed Central

    Rocklin, Gabriel J.; Boyce, Sarah E.; Fischer, Marcus; Fish, Inbar; Mobley, David L.; Shoichet, Brian K.; Dill, Ken A.

    2013-01-01

    Predicting absolute protein-ligand binding affinities remains a frontier challenge in ligand discovery and design. This becomes more difficult when ionic interactions are involved, because of the large opposing solvation and electrostatic attraction energies. In a blind test, we examined whether alchemical free energy calculations could predict binding affinities of 14 charged and 5 neutral compounds previously untested as ligands for a cavity binding site in Cytochrome C Peroxidase. In this simplified site, polar and cationic ligands compete with solvent to interact with a buried aspartate. Predictions were tested by calorimetry, spectroscopy, and crystallography. Of the 15 compounds predicted to bind, 13 were experimentally confirmed, while four compounds were false negative predictions. Predictions had an RMSE of 1.95 kcal/mol to the experimental affinities, and predicted poses had an average RMSD of 1.7 Å to the crystallographic poses. This test serves as a benchmark for these thermodynamically rigorous calculations at predicting binding affinities for charged compounds, and gives insights into the existing sources of error, which are primarily electrostatic interactions inside proteins. Our experiments also provide a useful set of ionic binding affinities in a simplified system for testing new affinity prediction methods. PMID:23896298

  9. Amphetamine binding to synthetic melanin and scatchard analysis of binding data.

    PubMed

    Gautam, Lata; Scott, Karen S; Cole, Michael D

    2005-01-01

    Previous research into drug-hair binding shows that hair color affects drug-hair binding. There are no structural disparities in hair of different colors other than the type and content of melanin present. For this reason, this investigation focuses on synthetic eumelanin as a site for drug interaction using amphetamine as the candidate drug. The binding study was carried out at room temperature. The interaction between synthetic eumelanin and amphetamine was monitored using UV-Vis spectrophotometry at 257.2 nm. As the molecular weight of melanin is unknown, the number of binding sites could not be calculated directly. Hence the ratio of the number of mumoles of drug bound and the dry weight of melanin in mug was considered. Equilibrium was reached when approximately 32% of the drug was bound to melanin. Hence this study proves that amphetamine binds to synthetic eumelanin in vitro. Data interpretation using Scatchard analysis yielded a curvilinear plot with upward concavity indicating multiple binding sites on melanin and negative cooperativity.

  10. Simultaneous optimal experimental design for in vitro binding parameter estimation.

    PubMed

    Ernest, C Steven; Karlsson, Mats O; Hooker, Andrew C

    2013-10-01

    Simultaneous optimization of in vitro ligand binding studies using an optimal design software package that can incorporate multiple design variables through non-linear mixed effect models and provide a general optimized design regardless of the binding site capacity and relative binding rates for a two binding system. Experimental design optimization was employed with D- and ED-optimality using PopED 2.8 including commonly encountered factors during experimentation (residual error, between experiment variability and non-specific binding) for in vitro ligand binding experiments: association, dissociation, equilibrium and non-specific binding experiments. Moreover, a method for optimizing several design parameters (ligand concentrations, measurement times and total number of samples) was examined. With changes in relative binding site density and relative binding rates, different measurement times and ligand concentrations were needed to provide precise estimation of binding parameters. However, using optimized design variables, significant reductions in number of samples provided as good or better precision of the parameter estimates compared to the original extensive sampling design. Employing ED-optimality led to a general experimental design regardless of the relative binding site density and relative binding rates. Precision of the parameter estimates were as good as the extensive sampling design for most parameters and better for the poorly estimated parameters. Optimized designs for in vitro ligand binding studies provided robust parameter estimation while allowing more efficient and cost effective experimentation by reducing the measurement times and separate ligand concentrations required and in some cases, the total number of samples. PMID:23943088

  11. Competitive protein binding assay for piritrexim

    SciTech Connect

    Woolley, J.L. Jr.; Ringstad, J.L.; Sigel, C.W. )

    1989-09-01

    A competitive protein binding assay for piritrexim (PTX, 1) that makes use of a commercially available radioassay kit for methotrexate has been developed. After it is selectively extracted from plasma, PTX competes with ({sup 125}I)methotrexate for binding to dihydrofolate reductase isolated from Lactobacillus casei. Free drug is separated from bound drug by adsorption to dextran-coated charcoal. Piritrexim is measurable over a range of 0.01 to 10.0 micrograms/mL in plasma with a coefficient of variation less than 15%. The limit of sensitivity of the assay is approximately 2 ng/mL. An excellent correlation between this assay and a previously published HPLC method was found.

  12. Calcium binding to an aquatic fulvic acid

    NASA Astrophysics Data System (ADS)

    Paxéus, Nicklas; Wedborg, Margareta

    The degree of binding of calcium to aquatic fulvic acid from the Göta River was estimated from potentiometric titrations. A pH-glass electrode and a calcium-selective electrode were used to monitor the free concentrations of the competing, central ions. The ionic strength and the temperature were maintained constant at 0.1 M and 25°C. The total concentration of fulvic acid was maintained at approximately 1 g 1-1, while the total calcium concentration was varied within the range 0-10-3 M. Two types of titrations were carried out: (1) back titration with hydrochloric acid from basic solution, roughly within the pH range 10.5-2.5; (2) titration with calcium chloride at a constant total hydrogen ion concentration. The model applied for the calcium binding was an extension of our previous model for the acid-base behaviour.

  13. Triazatriangulene as binding group for molecular electronics.

    PubMed

    Wei, Zhongming; Wang, Xintai; Borges, Anders; Santella, Marco; Li, Tao; Sørensen, Jakob Kryger; Vanin, Marco; Hu, Wenping; Liu, Yunqi; Ulstrup, Jens; Solomon, Gemma C; Chi, Qijin; Bjørnholm, Thomas; Nørgaard, Kasper; Laursen, Bo W

    2014-12-16

    The triazatriangulene (TATA) ring system was investigated as a binding group for tunnel junctions of molecular wires on gold surfaces. Self-assembled monolayers (SAMs) of TATA platforms with three different lengths of phenylene wires were fabricated, and their electrical conductance was recorded by both conducting probe-atomic force microscopy (CP-AFM) and scanning tunneling microscopy (STM). Similar measurements were performed for phenylene SAMs with thiol anchoring groups as references. It was found that, despite the presence of a sp(3) hybridized carbon atom in the conduction path, the TATA platform displays a contact resistance only slightly larger than the thiols. This surprising finding has not been reported before and was analyzed by theoretical computations of the transmission functions of the TATA anchored molecular wires. The relatively low contact resistance of the TATA platform along with its high stability and directionality make this binding group very attractive for molecular electronic measurements and devices. PMID:25426950

  14. Copper binding in the prion protein.

    PubMed

    Millhauser, Glenn L

    2004-02-01

    A conformational change of the prion protein is responsible for a class of neurodegenerative diseases called the transmissible spongiform encephalopathies that include mad cow disease and the human afflictions kuru and Creutzfeldt-Jakob disease. Despite the attention given to these diseases, the normal function of the prion protein in healthy tissue is unknown. Research over the past few years, however, demonstrates that the prion protein is a copper binding protein with high selectivity for Cu(2+). The structural features of the Cu(2+) binding sites have now been characterized and are providing important clues about the normal function of the prion protein and perhaps how metals or loss of protein function play a role in disease. The link between prion protein and copper may provide insight into the general, and recently appreciated, role of metals in neurodegenerative disease. PMID:14967054

  15. Antibodies against the calcium-binding protein

    SciTech Connect

    Chou, Mei; Jensen, K.G.; Sjolund, R.D. ); Krause, K.H.; Campbell, K.P. )

    1989-12-01

    Plant microsomes contain a protein clearly related to a calcium-binding protein, calsequestrin, originally found in the sarcoplasmic reticulum of muscle cells, responsible for the rapid release and uptake of Ca{sup 2+} within the cells. The location and role of calsequestrin in plant cells is unknown. To generate monoclonal antibodies specific to plant calsequestrin, mice were immunized with a microsomal fraction from cultured cells of Streptanthus tortuosus (Brassicaceae). Two clones cross-reacted with one protein band with a molecular weight equal to that of calsequestrin (57 kilodaltons) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting. This band is able to bind {sup 45}Ca{sup 2+} and can be recognized by a polyclonal antibody against the canine cardiac muscle calsequestrin. Rabbit skeletal muscle calsequestrin cross-reacted with the plant monoclonal antibodies. The plant monoclonal antibodies generated here are specific to calsequestrin protein.

  16. Quantifying drug-protein binding in vivo.

    SciTech Connect

    Buchholz, B; Bench, G; Keating III, G; Palmblad, M; Vogel, J; Grant, P G; Hillegonds, D

    2004-02-17

    Accelerator mass spectrometry (AMS) provides precise quantitation of isotope labeled compounds that are bound to biological macromolecules such as DNA or proteins. The sensitivity is high enough to allow for sub-pharmacological (''micro-'') dosing to determine macromolecular targets without inducing toxicities or altering the system under study, whether it is healthy or diseased. We demonstrated an application of AMS in quantifying the physiologic effects of one dosed chemical compound upon the binding level of another compound in vivo at sub-toxic doses [4].We are using tissues left from this study to develop protocols for quantifying specific binding to isolated and identified proteins. We also developed a new technique to quantify nanogram to milligram amounts of isolated protein at precisions that are comparable to those for quantifying the bound compound by AMS.

  17. Programmable DNA-binding Small Molecules

    PubMed Central

    Blackledge, Meghan S.; Melander, Christian

    2013-01-01

    Aberrant gene expression is responsible for a myriad of human diseases from infectious diseases to cancer. Precise regulation of these genes via specific interactions with the DNA double helix could pave the way for novel therapeutics. Pyrrole-imidazole polyamides are small molecules capable of binding to pre-determined DNA sequences up to 16 base pairs with affinity and specificity comparable to natural transcription factors. In the three decades since their development, great strides have been made relating to synthetic accessibility and improved sequence specificity and binding affinity. This perspective presents a brief history of early seminal developments in the field and highlights recent reports of the utility of polyamides as both genetic modulators and molecular probes. PMID:23665141

  18. Causal binding of actions to their effects.

    PubMed

    Buehner, Marc J; Humphreys, Gruffydd R

    2009-10-01

    According to widely held views in cognitive science harking back to David Hume, causality cannot be perceived directly, but instead is inferred from patterns of sensory experience, and the quality of these inferences is determined by perceivable quantities such as contingency and contiguity. We report results that suggest a reversal of Hume's conjecture: People's sense of time is warped by the experience of causality. In a stimulus-anticipation task, participants' response behavior reflected a shortened experience of time in the case of target stimuli participants themselves had generated, relative to equidistant, equally predictable stimuli they had not caused. These findings suggest that causality in the mind leads to temporal binding of cause and effect, and extend and generalize beyond earlier claims of intentional binding between action and outcome.

  19. Mannose-binding lectin in HIV infection

    PubMed Central

    Eisen, Sarah; Dzwonek, Agnieszka; Klein, Nigel J

    2010-01-01

    Infection with HIV represents a significant global health problem, with high infection rates and high mortality worldwide. Treatment with antiretroviral therapy is inaccessible to many patients and efficacy is limited by development of resistance and side effects. The interactions of HIV with the human immune system, both innate and humoral, are complex and complicated by the profound ability of the virus to disable the host immune response. Mannose-binding lectin, a component of the innate immune system, has been demonstrated to play a role in host-virus interactions. This protein may have a key role in determining host susceptibility to infection, pathogenesis and progression of disease, and may contribute to the extensive variability of host response to infection. Further understanding and manipulation of the mannose-binding lectin response may represent a target for immunomodulation in HIV infection, which may, in conjunction with highly active antiretroviral therapy, allow development of a novel therapeutic approach to HIV infection. PMID:21218140

  20. Engineering knottins as novel binding agents.

    PubMed

    Moore, Sarah J; Cochran, Jennifer R

    2012-01-01

    Cystine-knot miniproteins, also known as knottins, contain a conserved core of three tightly woven disulfide bonds which impart extraordinary thermal and proteolytic stability. Interspersed between their conserved cysteine residues are constrained loops that possess high levels of sequence diversity among knottin family members. Together these attributes make knottins promising molecular scaffolds for protein engineering and translational applications. While naturally occurring knottins have shown potential as both diagnostic agents and therapeutics, protein engineering is playing an important and increasing role in creating designer molecules that bind to a myriad of biomedical targets. Toward this goal, rational and combinatorial approaches have been used to engineer knottins with novel molecular recognition properties. Here, methods are described for creating and screening knottin libraries using yeast surface display and fluorescence-activated cell sorting. Protocols are also provided for producing knottins by synthetic and recombinant methods, and for measuring the binding affinity of knottins to target proteins expressed on the cell surface.

  1. Gene encoding herbicide safener binding protein

    SciTech Connect

    Walton, J.D.; Scott-Craig, J.S.

    1999-10-26

    The cDNA encoding safener binding protein (SafBP), also referred to as SBP1, is presented. The deduced amino acid sequence is provided. Methods of making and using SBP1 and SafBP to alter a plant's sensitivity to certain herbicides or a plant's responsiveness to certain safeners are also provided, as well as expression vectors, transgenic plants or other organisms transfected with vectors and seeds from the plants.

  2. Calcium-binding proteins: an overview.

    PubMed

    Weinman, S

    1991-03-01

    In order to understand the mechanism of the various responses evoked by calcium in the cell, the identification and characterization of a number of calcium receptors were undertaken within the past two decades. Advances in amino acid sequence and protein three-dimensional structure led to the description of two families of calcium-binding proteins, the EF-hand homolog family and the annexin family. The EF-hand motif consists of two alpha helices, "E" and "F", joined by a Ca(2+)-binding loop. EF-hands have been identified in numerous Ca(2+)-binding proteins by similarity of amino acid sequence and confirmed in some crystal structures. Functional EF-hands seem always to occur in pairs. To date, the EF-hand homolog family contains more than 160 different Ca(2+)-modulated proteins which have a broad range of functions. Among them, are the calmodulin, the troponin C, the myosin regulatory light chain, the parvalbumin, the S-100 proteins and the calbindins 9- and 28 kDa. The most striking feature of the EF-hand family is the ability to modulate the activity of a number of enzymes. Several groups have identified proteins from various tissues that show calcium-dependent binding to membranes. These proteins, termed annexins have a molecular weight of 35- or 67 kDa. The amino acid sequences of the members of the annexin family show that each protein contains conserved internal repeats of about 70 amino acids each. The 35 kDa annexins contain four repeats, which show a high degree of homology with each other and with the repeat sequences of the other proteins. These repeats correspond to structural domains with a similar fold.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1864864

  3. Non-catalytic facile synthesis of superhard phase of boron carbide (B13C2) nanoflakes and nanoparticles.

    PubMed

    Xie, Sky Shumao; Su, Liap Tat; Guo, Jun; Vasylkiv, Oleg; Borodianska, Hanna; Xi, Zhu; Krishnan, Gireesh M; Su, Haibin; Tokl, Alfred I Y

    2012-01-01

    Boron Carbide is one the hardest and lightest material that is also relatively easier to synthesis as compared to other superhard ceramics like cubic boron nitride and diamond. However, the brittle nature of monolithic advanced ceramics material hinders its use in various engineering applications. Thus, strategies that can toughen the material are of fundamental and technological importance. One approach is to use nanostructure materials as building blocks, and organize them into a complex hierarchical structure, which could potentially enhance its mechanical properties to exceed that of the monolithic form. In this paper, we demonstrated a simple approach to synthesize one- and two-dimension nanostructure boron carbide by simply changing the mixing ratio of the initial compound to influence the saturation condition of the process at a relatively low temperature of 1500 degrees C with no catalyst involved in the growing process. Characterization of the resulting nano-structures shows B13C2, which is a superhard phase of boron carbide as its hardness is almost twice as hard as the commonly known B4C. Using ab-initio density functional theory study on the elastic properties of both B12C3 and B13C2, the high hardness of B13C2 is consistent to our calculation results, where bulk modulus of B13C2 is higher than that of B4C. High resolution transmission electron microscopy of the nanoflakes also reveals high density of twinning defects which could potentially inhibit the crack propagation, leading to toughening of the materials.

  4. Human cap methyltransferase (RNMT) N-terminal non-catalytic domain mediates recruitment to transcription initiation sites

    PubMed Central

    Aregger, Michael; Cowling, Victoria H.

    2013-01-01

    Gene expression in eukaryotes is dependent on the mRNA methyl cap which mediates mRNA processing and translation initiation. Synthesis of the methyl cap initiates with the addition of 7-methylguanosine to the initiating nucleotide of RNA pol II (polymerase II) transcripts, which occurs predominantly during transcription and in mammals is catalysed by RNGTT (RNA guanylyltransferase and 5′ phosphatase) and RNMT (RNA guanine-7 methyltransferase). RNMT has a methyltransferase domain and an N-terminal domain whose function is unclear; it is conserved in mammals, but not required for cap methyltransferase activity. In the present study we report that the N-terminal domain is necessary and sufficient for RNMT recruitment to transcription initiation sites and that recruitment occurs in a DRB (5,6-dichloro-1-β-D-ribofuranosylbenzimidazole)-dependent manner. The RNMT-activating subunit, RAM (RNMT-activating miniprotein), is also recruited to transcription initiation sites via an interaction with RNMT. The RNMT N-terminal domain is required for transcript expression, translation and cell proliferation. PMID:23863084

  5. The Non-catalytic “Cap Domain” of a Mycobacterial Metallophosphoesterase Regulates Its Expression and Localization in the Cell*

    PubMed Central

    Matange, Nishad; Podobnik, Marjetka; Visweswariah, Sandhya S.

    2014-01-01

    Despite highly conserved core catalytic domains, members of the metallophosphoesterase (MPE) superfamily perform diverse and crucial functions ranging from nucleotide and nucleic acid metabolism to phospholipid hydrolysis. Unique structural elements outside of the catalytic core called “cap domains” are thought to provide specialization to these enzymes; however, no directed study has been performed to substantiate this. The cap domain of Rv0805, an MPE from Mycobacterium tuberculosis, is located C-terminal to its catalytic domain and is dispensable for the catalytic activity of this enzyme in vitro. We show here that this C-terminal extension (CTE) mediates in vivo localization of the protein to the cell membrane and cell wall as well as modulates expression levels of Rv0805 in mycobacteria. We also demonstrate that Rv0805 interacts with the cell wall of mycobacteria, possibly with the mycolyl-arabinogalactan-peptidoglycan complex, by virtue of its C terminus, a hitherto unknown property of this MPE. Using a panel of mutant proteins, we identify interactions between active site residues of Rv0805 and the CTE that determine its association with the cell wall. Finally, we show that Rv0805 and a truncated mutant devoid of the CTE produce different phenotypic effects when expressed in mycobacteria. Our study thus provides a detailed dissection of the functions of the cap domain of an MPE and suggests that the repertoire of cellular functions of MPEs cannot be understood without exploring the modulatory effects of these subdomains. PMID:24970891

  6. Structural insight into PPARgamma ligands binding.

    PubMed

    Farce, A; Renault, N; Chavatte, P

    2009-01-01

    Peroxisome Proliferator Activated Receptors (PPARs) are a family of three related nuclear receptors first cloned in 1990. Their involvement in glucidic and lipidic homeostasis quickly made them an attractive target for the treatment of metabolic syndrome, the most prevalent mortality factor in developed countries. They therefore attracted much synthetic efforts, more particularly PPARgamma. Supported by a large number of crystallographic studies, data derived from these compounds lead to a fairly clear view of the agonist binding mode into the Ligand Binding Domain (LBD). Nearly all the compounds conform to a three-module structure, with a binder group involved in a series of hydrogen bonds in front of the ligand-dependent Activation Function (AF2), a linker mostly arranged around a phenoxyethyl and an effector end occupying the large cavity of the binding site. Following the marketing of the glitazones and the observation of the hepatotoxicity of troglitazone, variations in the binder led to the glitazars, and then pharmacomodulations have been undertaken on the two other modules, leading to a large family of highly related chemical structures. Some compounds, while still adhering to the three-module structure, diverge from the mainstream, such as the phthalates. Curiously, these plasticizers were known to elicit biological effects that led to the discovery of PPARs but were not actively studied as PPARs agonists. As the biological effects of PPARs became clearer, new compounds were also found to exert at least a part of their actions by the activation of PPARgamma. PMID:19442144

  7. Alternative polyadenylation and RNA-binding proteins.

    PubMed

    Erson-Bensan, Ayse Elif

    2016-08-01

    Our understanding of the extent of microRNA-based gene regulation has expanded in an impressive pace over the past decade. Now, we are beginning to better appreciate the role of 3'-UTR (untranslated region) cis-elements which harbor not only microRNA but also RNA-binding protein (RBP) binding sites that have significant effect on the stability and translational rate of mRNAs. To add further complexity, alternative polyadenylation (APA) emerges as a widespread mechanism to regulate gene expression by producing shorter or longer mRNA isoforms that differ in the length of their 3'-UTRs or even coding sequences. Resulting shorter mRNA isoforms generally lack cis-elements where trans-acting factors bind, and hence are differentially regulated compared with the longer isoforms. This review focuses on the RBPs involved in APA regulation and their action mechanisms on APA-generated isoforms. A better understanding of the complex interactions between APA and RBPs is promising for mechanistic and clinical implications including biomarker discovery and new therapeutic approaches. PMID:27208003

  8. Tau binds ATP and induces its aggregation.

    PubMed

    Farid, Mina; Corbo, Christopher P; Alonso, Alejandra Del C

    2014-02-01

    Tau is a microtubule-associated protein mainly found in neurons. The protein is associated with process of microtubule assembly, which plays an important role in intracellular transport and cell structure of the neuron. Tauopathies are a group of neurodegenerative diseases specifically associated with tau abnormalities. While a well-defined mechanism remains unknown, most facts point to tau as a prominent culprit in neurodegeneration. In most cases of Tauopathies, aggregates of hyperphosphorylated tau have been found. Two proposals are present when discussing tau toxicity, one being the aggregation of tau proteins and the other points toward a conformational change within the protein. Previous work we carried out showed tau hyperphosphorylation promotes tau to behave abnormally resulting in microtubule assembly disruption as well as a breakdown in tau self-assembly. We found that tau's N-terminal region has a putative site for ATP/GTP binding. In this paper we demonstrate that tau is able to bind ATP and not GTP, that this binding induces tau self-assembly into filaments. At 1 mM ATP the filaments are 4-7 nm in width, whereas at 10 mM ATP the filaments appeared to establish lateral interaction, bundling and twisting, forming filaments that resembled the Paired Helical Filaments (PHF) isolated from Alzheimer disease brain. ATP-induced self-assembly is not energy dependent because the nonhydrolysable analogue of the ATP induces the same assembly. PMID:24258797

  9. The dynamics of ligands binding to proteins

    NASA Astrophysics Data System (ADS)

    Callender, Robert

    2001-03-01

    The static structures of many proteins have been solved, and this has revealed much about how they function. On the other hand, although the importance of atomic motion to how proteins function has been conjectured for several decades, the characterization of protein dynamics on multiple time scales is scant. This is because of severe experimental and theoretical difficulties, particularly characterizing the nanosecond to millisecond time scales. Recently, several new techniques have been introduced that make it possible to initiate chemical reactions on fast time scales. We have applied advanced laser induced temperature jump relaxation spectroscopy with nanosecond resolution to examine the binding kinetics of ligands to several enzymes. The observed kinetics take place over multiple time scales. The results reveal the dynamical nature of the binding process and show that there are substantial populations of many structures that are in a constant dynamic equilibrium in some cases. Some of these structures lie quite far from the static structure defined in crystallographic studies, which suggest that the conventional thermodynamical picture of binding (an equilibrium between ligand free in solution and bound) is far off the mark. Moreover, the results suggest that the dynamics can certainly play a crucial role in kinetic control of protein function as in, for example, affecting the rates of enzymatic catalysis. This work is a collaborative project with Hong Deng and Nick Zhadin, also at Albert Einstein. Work supported by the NSF and NIH.

  10. The aesthetic experience of 'contour binding'.

    PubMed

    Casco, Clara; Guzzon, Daniela

    2008-01-01

    To find the diagnostic spatial frequency information in different painting styles (cubism, impressionism and realism), we have compared sensitivity (d') in distinguishing signal (subject of the painting) from noise with normal, high-pass and low-pass filtered images at long (150 ms) and short (30 ms) exposure. We found that for cubist-style images, d' increases with high-pass filtering compared with normal and low-pass filtered images, but decreases with low-pass filtering compared with normal images. These results indicate that channels with high spatial resolution provide the diagnostic information to solve the binding problem. Sensitivity for images in impressionist style was instead reduced by both low- and high-pass filtering. This indicates that both high and low spatial frequency channels play a role in solving the binding problem, suggesting the involvement of large collator units that group the response of small channels tuned to the same orientation. The difference between realism, which shows higher sensitivity for low-frequency filtering at short durations and cubism in which the binding problem is solved by high spatial frequency channels, has a corresponding difference in aesthetic judgment: the probability of judging a painting as 'intriguing' is larger with low-pass filtering than with high-pass filtering in realism, while the opposite is true for cubism. This suggests that the aesthetic experience is available during early processing of an image, and could preferentially influence high-level categorization of the subject of a painting. PMID:18534105

  11. Steroid binding domain of porcine estrogen receptor

    SciTech Connect

    Koike, S.; Nii, A.; Sakai, M.; Muramatsu, M.

    1987-05-05

    For the purpose of characterizing the estrogen binding domain of porcine estrogen receptor (ER), the authors have made use of affinity labeling of partially purified ER with (/sup 3/H)tamoxifen aziridine. The labeling is very efficient and selective particularly after partial purification of ER. A 65,000-dalton (65-kDa) band was detected on the fluorogram of a sodium dodecyl sulfate-polyacrylamide gel, together with a 50-kDa band and a few more smaller bands. The 50-kDa protein appears to be a degradation product of the 65-kDa protein in view of the similar peptide map. ER was affinity labeled before or after controlled limited proteolysis with either trypsin, papain, or ..cap alpha..-chymotrypsin. The labeling patterns of limited digests indicate that a fragment of about 30 kDa is relatively resistant to proteases and has a full and specific binding activity to estrogen, whereas smaller fragments have lost much of the binding activity. This fragment is very hydrophobic and probably corresponds to the carboxy half of ER.

  12. Radiobrominated triphenylethylenes as estrogen receptor binding radiopharmaceuticals

    SciTech Connect

    Seevers, R.H.; Meese, R.C.; Friedman, A.M.; DeSombre, E.R.

    1985-05-01

    Estrogen receptor binding radiopharmaceuticals have potential for use in the diagnosis and treatment of cancers of the female reproductive system. Tamoxifen is an antiestrogen derived from the triphenylethylene skeleton which is used in the treatment of mammary carcinoma. Hydroxytamoxifen is a metabolite of tamoxifen which binds tightly to the estrogen receptor. Two triphenylethylene derivatives based on the structure of hydroxytamoxifen have been prepared: 1-bromo-1-phenyl-2- (2-dimethylamino)-4-ethoxyphenyl -2-(4-hydroxyphenyl) ethene (1) where the ethyl group of hydroxytamoxifen has been replaced by a bromine, and 1-bromo-1-phenyl-2,2-(4-hydroxyphenyl) ethene (2) with a similar substitution and also lacking the aminoethoxy side chain believed to confer antiestrogenicity. Both 1 and 2 bind strongly to the estrogen receptor. 2 has been labeled with the Auger electron emitting nuclide Br-80m in moderate yields in high specific activity using either N-bromosuccinimide or N-bromophthalimide and shows promise as a potential radiotherapy agent.

  13. Genetics Home Reference: core binding factor acute myeloid leukemia

    MedlinePlus

    ... acute myeloid leukemia core binding factor acute myeloid leukemia Enable Javascript to view the expand/collapse boxes. ... Close All Description Core binding factor acute myeloid leukemia (CBF-AML) is one form of a cancer ...

  14. The patterns of binding of RAR, RXR and TR homo- and heterodimers to direct repeats are dictated by the binding specificites of the DNA binding domains.

    PubMed Central

    Mader, S; Chen, J Y; Chen, Z; White, J; Chambon, P; Gronemeyer, H

    1993-01-01

    We show here that, in addition to generating an increase in DNA binding efficiency, heterodimerization of retinoid X receptor (RXR) with either retinoic acid receptor (RAR) or thyroid hormone receptor (TR) alters the binding site repertoires of RAR, RXR and TR homodimers. The binding site specificities of both homo- and heterodimers appear to be largely determined by their DNA binding domains (DBDs), and are dictated by (i) homocooperative DNA binding of the RXR DBD, (ii) heterocooperative DNA binding of RXR/RAR and RXR/TR DBDs, and (iii) steric hindrance. No homodimerization domain exists in the DBDs of TR and RAR. The dimerization function which is located in the ligand binding domain further stabilizes, but in general does not change, the repertoire dictated by the corresponding DBD(s). The binding repertoire can be further modified by the actual sequence of the binding site. We also provide evidence supporting the view that the cooperative binding of the RXR/RAR and RXR/TR DBDs to directly repeated elements is anisotropic, with interactions between the dimerization interfaces occurring only with RXR bound to the 5' located motif. This polarity, which appears to be maintained in the full-length receptor heterodimers, may constitute a novel parameter in promoter-specific transactivation. Images PMID:8262045

  15. Caffeine inhibits glucose transport by binding at the GLUT1 nucleotide-binding site.

    PubMed

    Sage, Jay M; Cura, Anthony J; Lloyd, Kenneth P; Carruthers, Anthony

    2015-05-15

    Glucose transporter 1 (GLUT1) is the primary glucose transport protein of the cardiovascular system and astroglia. A recent study proposes that caffeine uncompetitive inhibition of GLUT1 results from interactions at an exofacial GLUT1 site. Intracellular ATP is also an uncompetitive GLUT1 inhibitor and shares structural similarities with caffeine, suggesting that caffeine acts at the previously characterized endofacial GLUT1 nucleotide-binding site. We tested this by confirming that caffeine uncompetitively inhibits GLUT1-mediated 3-O-methylglucose uptake in human erythrocytes [Vmax and Km for transport are reduced fourfold; Ki(app) = 3.5 mM caffeine]. ATP and AMP antagonize caffeine inhibition of 3-O-methylglucose uptake in erythrocyte ghosts by increasing Ki(app) for caffeine inhibition of transport from 0.9 ± 0.3 mM in the absence of intracellular nucleotides to 2.6 ± 0.6 and 2.4 ± 0.5 mM in the presence of 5 mM intracellular ATP or AMP, respectively. Extracellular ATP has no effect on sugar uptake or its inhibition by caffeine. Caffeine and ATP displace the fluorescent ATP derivative, trinitrophenyl-ATP, from the GLUT1 nucleotide-binding site, but d-glucose and the transport inhibitor cytochalasin B do not. Caffeine, but not ATP, inhibits cytochalasin B binding to GLUT1. Like ATP, caffeine renders the GLUT1 carboxy-terminus less accessible to peptide-directed antibodies, but cytochalasin B and d-glucose do not. These results suggest that the caffeine-binding site bridges two nonoverlapping GLUT1 endofacial sites-the regulatory, nucleotide-binding site and the cytochalasin B-binding site. Caffeine binding to GLUT1 mimics the action of ATP but not cytochalasin B on sugar transport. Molecular docking studies support this hypothesis.

  16. Calmodulin binds to maize lipid transfer protein and modulates its lipids binding ability.

    PubMed

    Li, Cuifeng; Xie, Wanqin; Bai, Wenyan; Li, Zhenpeng; Zhao, Yulong; Liu, Hua

    2008-11-01

    Although plant non-specific lipid transfer proteins (ns-LTPs) are characterized by their ability to bind and transfer a broad range of hydrophobic ligands in vitro, their biological functions in vivo remain unclear. Recently, it has been proposed that ns-LTPs may play a key role in plant defense mechanisms, particularly during the induction of systemic acquired resistance, however, very little is known about the regulation in this process. We report that the binding of maize non-specific lipid transfer protein (Zm-LTP) to calmodulin (CaM) is in a calcium-independent manner. To better understand the interaction mechanism between Zm-LTP and CaM, the CaM-binding site of Zm-LTP was mapped to the region of amino acids 46-60. Point mutations indicate that four amino acid residues, R46, R47, K54 and R58, in this region are crucial for binding. Furthermore, we tested the effects of CaM on the lipid-binding activity of Zm-LTP in the presence of Ca(2+), EGTA, N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide and trifluoperazine respectively. We also investigated the structural features of CaM-binding motifs in LTPs from different species and strong differences were observed. Taken together, our results suggest that the interaction with CaM could be a common feature of plant LTPs. The identification and characterization of CaM-binding domain of LTPs should provide new insights into the mechanism by which the physiological functions of LTPs are regulated.

  17. AB-Bind: Antibody binding mutational database for computational affinity predictions.

    PubMed

    Sirin, Sarah; Apgar, James R; Bennett, Eric M; Keating, Amy E

    2016-02-01

    Antibodies (Abs) are a crucial component of the immune system and are often used as diagnostic and therapeutic agents. The need for high-affinity and high-specificity antibodies in research and medicine is driving the development of computational tools for accelerating antibody design and discovery. We report a diverse set of antibody binding data with accompanying structures that can be used to evaluate methods for modeling antibody interactions. Our Antibody-Bind (AB-Bind) database includes 1101 mutants with experimentally determined changes in binding free energies (ΔΔG) across 32 complexes. Using the AB-Bind data set, we evaluated the performance of protein scoring potentials in their ability to predict changes in binding free energies upon mutagenesis. Numerical correlations between computed and observed ΔΔG values were low (r = 0.16-0.45), but the potentials exhibited predictive power for classifying variants as improved vs weakened binders. Performance was evaluated using the area under the curve (AUC) for receiver operator characteristic (ROC) curves; the highest AUC values for 527 mutants with |ΔΔG| > 1.0 kcal/mol were 0.81, 0.87, and 0.88 using STATIUM, FoldX, and Discovery Studio scoring potentials, respectively. Some methods could also enrich for variants with improved binding affinity; FoldX and Discovery Studio were able to correctly rank 42% and 30%, respectively, of the 80 most improved binders (those with ΔΔG < -1.0 kcal/mol) in the top 5% of the database. This modest predictive performance has value but demonstrates the continuing need to develop and improve protein energy functions for affinity prediction. PMID:26473627

  18. Using evolutionary and structural information to predict DNA-binding sites on DNA-binding proteins.

    PubMed

    Kuznetsov, Igor B; Gou, Zhenkun; Li, Run; Hwang, Seungwoo

    2006-07-01

    Proteins that interact with DNA are involved in a number of fundamental biological activities such as DNA replication, transcription, and repair. A reliable identification of DNA-binding sites in DNA-binding proteins is important for functional annotation, site-directed mutagenesis, and modeling protein-DNA interactions. We apply Support Vector Machine (SVM), a supervised pattern recognition method, to predict DNA-binding sites in DNA-binding proteins using the following features: amino acid sequence, profile of evolutionary conservation of sequence positions, and low-resolution structural information. We use a rigorous statistical approach to study the performance of predictors that utilize different combinations of features and how this performance is affected by structural and sequence properties of proteins. Our results indicate that an SVM predictor based on a properly scaled profile of evolutionary conservation in the form of a position specific scoring matrix (PSSM) significantly outperforms a PSSM-based neural network predictor. The highest accuracy is achieved by SVM predictor that combines the profile of evolutionary conservation with low-resolution structural information. Our results also show that knowledge-based predictors of DNA-binding sites perform significantly better on proteins from mainly-alpha structural class and that the performance of these predictors is significantly correlated with certain structural and sequence properties of proteins. These observations suggest that it may be possible to assign a reliability index to the overall accuracy of the prediction of DNA-binding sites in any given protein using its sequence and structural properties. A web-server implementation of the predictors is freely available online at http://lcg.rit.albany.edu/dp-bind/.

  19. SVM based prediction of RNA-binding proteins using binding residues and evolutionary information.

    PubMed

    Kumar, Manish; Gromiha, M Michael; Raghava, Gajendra P S

    2011-01-01

    RNA-binding proteins (RBPs) play crucial role in transcription and gene-regulation. This paper describes a support vector machine (SVM) based method for discriminating and classifying RNA-binding and non-binding proteins using sequence features. With the threshold of 30% interacting residues, RNA-binding amino acid prediction method PPRINT achieved the Matthews correlation coefficient (MCC) of 0.32. BLAST and PSI-BLAST identified RBPs with the coverage of 32.63 and 33.16%, respectively, at the e-value of 1e-4. The SVM models developed with amino acid, dipeptide and four-part amino acid compositions showed the MCC of 0.60, 0.46, and 0.53, respectively. This is the first study in which evolutionary information in form of position specific scoring matrix (PSSM) profile has been successfully used for predicting RBPs. We achieved the maximum MCC of 0.62 using SVM model based on PSSM called PSSM-400. Finally, we developed different hybrid approaches and achieved maximum MCC of 0.66. We also developed a method for predicting three subclasses of RNA binding proteins (e.g., rRNA, tRNA, mRNA binding proteins). The performance of the method was also evaluated on an independent dataset of 69 RBPs and 100 non-RBPs (NBPs). An additional benchmarking was also performed using gene ontology (GO) based annotation. Based on the hybrid approach a web-server RNApred has been developed for predicting RNA binding proteins from amino acid sequences (http://www.imtech.res.in/raghava/rnapred/).

  20. Copper binding to the prion protein: Structural implications of four identical cooperative binding sites

    PubMed Central

    Viles, John H.; Cohen, Fred E.; Prusiner, Stanley B.; Goodin, David B.; Wright, Peter E.; Dyson, H. Jane

    1999-01-01

    Evidence is growing to support a functional role for the prion protein (PrP) in copper metabolism. Copper ions appear to bind to the protein in a highly conserved octapeptide repeat region (sequence PHGGGWGQ) near the N terminus. To delineate the site and mode of binding of Cu(II) to the PrP, the copper-binding properties of peptides of varying lengths corresponding to 2-, 3-, and 4-octarepeat sequences have been probed by using various spectroscopic techniques. A two-octarepeat peptide binds a single Cu(II) ion with Kd ≈ 6 μM whereas a four-octarepeat peptide cooperatively binds four Cu(II) ions. Circular dichroism spectra indicate a distinctive structuring of the octarepeat region on Cu(II) binding. Visible absorption, visible circular dichroism, and electron spin resonance spectra suggest that the coordination sphere of the copper is identical for 2, 3, or 4 octarepeats, consisting of a square-planar geometry with three nitrogen ligands and one oxygen ligand. Consistent with the pH dependence of Cu(II) binding, proton NMR spectroscopy indicates that the histidine residues in each octarepeat are coordinated to the Cu(II) ion. Our working model for the structure of the complex shows the histidine residues in successive octarepeats bridged between two copper ions, with both the Nɛ2 and Nδ1 imidazole nitrogen of each histidine residue coordinated and the remaining coordination sites occupied by a backbone amide nitrogen and a water molecule. This arrangement accounts for the cooperative nature of complex formation and for the apparent evolutionary requirement for four octarepeats in the PrP. PMID:10051591

  1. Novel stereospecificity of the L-arabinose-binding protein

    NASA Astrophysics Data System (ADS)

    Quiocho, Florante A.; Vyas, Nand K.

    1984-08-01

    Tertiary structure refinement at 1.7 Å resolution of the liganded form of L-arabinose-binding protein from Escherichia coli has revealed a novel binding site geometry which accommodates both α- and β-anomers of L-arabinose. This detailed structure analysis provides new understanding of protein-sugar interaction, the process by which the binding protein minimizes the difference in the stability of the two bound sugar anomers, and the roles of periplasmic binding proteins in active transport

  2. Engineering a uranyl specific binding protein from NikR.

    SciTech Connect

    Wegner, S. V.; Boyaci, H.; Chen, H.; Jensen, M. P.; He, C.

    2009-03-16

    The first uranyl-selective DNA-binding protein is designed using the E. coli nickel(II)-responsive protein NikR as the template. The resulting NikR? protein binds uranyl (see picture) with a dissociation constant Kd=53?nM and selectively binds to DNA in the presence of uranyl.

  3. Binding of Intrinsic and Extrinsic Features in Working Memory

    ERIC Educational Resources Information Center

    Ecker, Ullrich K. H.; Maybery, Murray; Zimmer, Hubert D.

    2013-01-01

    There is ongoing debate concerning the mechanisms of feature binding in working memory. In particular, there is controversy regarding the extent to which these binding processes are automatic. The present article demonstrates that binding mechanisms differ depending on whether the to-be-integrated features are perceived as forming a coherent…

  4. Thioredoxin binding site of phosphoribulokinase overlaps the catalytic site. [R

    SciTech Connect

    Porter, M.A.; Hartman, F.C.

    1986-01-01

    The ATP-regulatory binding site of phosphoribulokinase was studied using bromoacetylethanolamine phosphate (BrAcNHEtOP). BrAcNHEtOP binds to the active-regulatory binding site of the protein. Following trypsin degradation of the labeled protein, fragments were separated by HPLC and sequenced. (DT)

  5. The binding interactions of imidacloprid with earthworm fibrinolytic enzyme

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Qing; Zhang, Hong-Mei; Chen, Tao

    2014-08-01

    In this paper, several studies were conducted to elucidate the binding mechanism of earthworm fibrinolytic enzyme (EFE) with imidocloprid (IMI) by using theoretical calculation, fluorescence, UV-vis, circular dichroism spectroscopy and an enzymatic inhibition assay. The spectral data showed that the binding interactions existed between IMI and EFE. The binding constants, binding site, thermodynamic parameters and binding forces were analyzed in detail. The results indicate a single class of binding sites for IMI in EFE and that this binding interaction is a spontaneous process with the estimated enthalpy and entropy changes being 2.195 kJ mol-1 and 94.480 J mol-1 K-1, respectively. A single class of binding site existed for IMI in EFE. The tertiary or secondary structure of EFE was partly destroyed by IMI. The visualized binding details were also exhibited by the theoretical calculation and the results indicated that the interaction between IMI and Phe (Tyr, or Trp) or EFE occurred. Combining the experimental data with the theoretical calculation data, we showed that the binding forces between IMI and EFE were mainly hydrophobic force accompanied by hydrogen binding, and π-π stacking. In addition, IMI did not obviously influence the activity of EFE. In a word, the above analysis offered insights into the binding mechanism of IMI with EFE and could provide some important information for the molecular toxicity of IMI for earthworms.

  6. Landscape of protein-small ligand binding modes.

    PubMed

    Kasahara, Kota; Kinoshita, Kengo

    2016-09-01

    Elucidating the mechanisms of specific small-molecule (ligand) recognition by proteins is a long-standing conundrum. While the structures of these molecules, proteins and ligands, have been extensively studied, protein-ligand interactions, or binding modes, have not been comprehensively analyzed. Although methods for assessing similarities of binding site structures have been extensively developed, the methods for the computational treatment of binding modes have not been well established. Here, we developed a computational method for encoding the information about binding modes as graphs, and assessing their similarities. An all-against-all comparison of 20,040 protein-ligand complexes provided the landscape of the protein-ligand binding modes and its relationships with protein- and chemical spaces. While similar proteins in the same SCOP Family tend to bind relatively similar ligands with similar binding modes, the correlation between ligand and binding similarities was not very high (R(2)  = 0.443). We found many pairs with novel relationships, in which two evolutionally distant proteins recognize dissimilar ligands by similar binding modes (757,474 pairs out of 200,790,780 pairs were categorized into this relationship, in our dataset). In addition, there were an abundance of pairs of homologous proteins binding to similar ligands with different binding modes (68,217 pairs). Our results showed that many interesting relationships between protein-ligand complexes are still hidden in the structure database, and our new method for assessing binding mode similarities is effective to find them. PMID:27327045

  7. Landscape of protein-small ligand binding modes.

    PubMed

    Kasahara, Kota; Kinoshita, Kengo

    2016-09-01

    Elucidating the mechanisms of specific small-molecule (ligand) recognition by proteins is a long-standing conundrum. While the structures of these molecules, proteins and ligands, have been extensively studied, protein-ligand interactions, or binding modes, have not been comprehensively analyzed. Although methods for assessing similarities of binding site structures have been extensively developed, the methods for the computational treatment of binding modes have not been well established. Here, we developed a computational method for encoding the information about binding modes as graphs, and assessing their similarities. An all-against-all comparison of 20,040 protein-ligand complexes provided the landscape of the protein-ligand binding modes and its relationships with protein- and chemical spaces. While similar proteins in the same SCOP Family tend to bind relatively similar ligands with similar binding modes, the correlation between ligand and binding similarities was not very high (R(2)  = 0.443). We found many pairs with novel relationships, in which two evolutionally distant proteins recognize dissimilar ligands by similar binding modes (757,474 pairs out of 200,790,780 pairs were categorized into this relationship, in our dataset). In addition, there were an abundance of pairs of homologous proteins binding to similar ligands with different binding modes (68,217 pairs). Our results showed that many interesting relationships between protein-ligand complexes are still hidden in the structure database, and our new method for assessing binding mode similarities is effective to find them.

  8. Fractionating the Binding Process: Neuropsychological Evidence from Reversed Search Efficiencies

    ERIC Educational Resources Information Center

    Humphreys, Glyn W.; Hodsoll, John; Riddoch, M. Jane

    2009-01-01

    The authors present neuropsychological evidence distinguishing binding between form, color, and size (cross-domain binding) and binding between form elements. They contrasted conjunctive search with difficult feature search using control participants and patients with unilateral parietal or fronto/temporal lesions. To rule out effects of task…

  9. Minisatellite binding protein Msbp-1 is a sequence-specific single-stranded DNA-binding protein.

    PubMed Central

    Collick, A; Dunn, M G; Jeffreys, A J

    1991-01-01

    Msbp-1 is a minisatellite-specific DNA-binding protein. Using synthetic binding substrates, we now show that Msbp-1 binds not to double-stranded DNA, but exclusively to single-stranded DNA. Binding is specific to the guanine-rich strand of the minisatellite duplex, interactions with the cytosine-rich strand being undetectable by southwestern analysis. Furthermore, the binding site required for successful DNA-protein interactions appears to be two or more minisatellite repeat units. We have also isolated, by whole-genome PCR and cloning, one Msbp-1 binding site from the human genome. Again, the binding strand of this molecule contains a repetitive G-rich structure equivalent to that of a small minisatellite. These observations are discussed with respect to other single-stranded DNA-binding proteins known to play a role in recombination processes. Images PMID:1754375

  10. MODELING THE BINDING OF THE METABOLITES OF SOME POLYCYCLIC AROMTIC HYDROCARBONS TO THE LIGAND BINDING DOMAIN OF THE ESTROGEN RECEPTOR

    EPA Science Inventory

    Modeling the binding of the metabolites of some Polycyclic Aromatic Hydrocarbons to the ligand binding domain of the estrogen receptor
    James Rabinowitz, Stephen Little, Katrina Brown, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC; Un...

  11. Site-specific interaction of thrombin and inhibitors observed by fluorescence correlation spectroscopy.

    PubMed Central

    Klingler, J; Friedrich, T

    1997-01-01

    We report on the application of fluorescence correlation spectroscopy (FCS) to observe the interaction between thrombin and thrombin inhibitors. Two site-specific fluorescent labels were used to distinguish between inhibitors directed to the active site, the exosite, or both binding sites of thrombin. For several well-known inhibitors of thrombin, the binding sites observed by FCS correspond to previous studies. The interaction of the recently discovered thrombin inhibitor ornithodorin from the tick Ornithodorus moubata with thrombin was investigated. It was found that this inhibitor, like hirudin and rhodniin, binds to both the active site and exosite of thrombin simultaneously. This study shows the feasibility of FCS as a sensitive and selective method for observing protein-ligand interactions. As an additional technique, simultaneous labeling with both fluorescent labels was successfully demonstrated. Images FIGURE 1 PMID:9336216

  12. Characterization of Kinetic Binding Properties of Unlabeled Ligands via a Preincubation Endpoint Binding Approach.

    PubMed

    Shimizu, Yuji; Ogawa, Kazumasa; Nakayama, Masaharu

    2016-08-01

    The dissociation rates of unlabeled drugs have been well studied by kinetic binding analyses. Since kinetic assays are laborious, we developed a simple method to determine the kinetic binding parameters of unlabeled competitors by a preincubation endpoint assay. The probe binding after preincubation of a competitor can be described by a single equation as a function of time. Simulations using the equation revealed the degree of IC50 change induced by preincubation of a competitor depended on the dissociation rate koff of the competitor but not on the association rate kon To validate the model, an in vitro binding assay was performed using a smoothened receptor (SMO) and [(3)H]TAK-441, a SMO antagonist. The equilibrium dissociation constants (KI) and koff of SMO antagonists determined by globally fitting the model to the concentration-response curves obtained with and without 24 h preincubation correlated well with those determined by other methods. This approach could be useful for early-stage optimization of drug candidates by enabling determination of binding kinetics in a high-throughput manner because it does not require kinetic measurements, an intermediate washout step during the reaction, or prior determination of competitors' KI values. PMID:27270099

  13. Identification of DNA-binding and protein-binding proteins using enhanced graph wavelet features.

    PubMed

    Zhu, Yuan; Zhou, Weiqiang; Dai, Dao-Qing; Yan, Hong

    2013-01-01

    Interactions between biomolecules play an essential role in various biological processes. For predicting DNA-binding or protein-binding proteins, many machine-learning-based techniques have used various types of features to represent the interface of the complexes, but they only deal with the properties of a single atom in the interface and do not take into account the information of neighborhood atoms directly. This paper proposes a new feature representation method for biomolecular interfaces based on the theory of graph wavelet. The enhanced graph wavelet features (EGWF) provides an effective way to characterize interface feature through adding physicochemical features and exploiting a graph wavelet formulation. Particularly, graph wavelet condenses the information around the center atom, and thus enhances the discrimination of features of biomolecule binding proteins in the feature space. Experiment results show that EGWF performs effectively for predicting DNA-binding and protein-binding proteins in terms of Matthew's correlation coefficient (MCC) score and the area value under the receiver operating characteristic curve (AUC). PMID:24334394

  14. The Receptor Binding Domain of Botulinum Neurotoxin Stereotype C Binds Phosphoinositides

    SciTech Connect

    Zhang, Yanfeng; Varnum, Susan M.

    2012-03-01

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known for humans and animals with an extremely low LD50 of {approx} 1 ng/kg. BoNTs generally require a protein and a ganglioside on the cell membrane surface for binding, which is known as a 'dual receptor' mechanism for host intoxication. Recent studies have suggested that in addition to gangliosides, other membrane lipids such as phosphoinositides may be involved in the interactions with the receptor binding domain (HCR) of BoNTs for better membrane penetration. Here, using two independent lipid-binding assays, we tested the interactions of BoNT/C-HCR with lipids in vitro. BoNT/C-HCR was found to bind negatively charged phospholipids, preferentially phosphoinositides. Additional interactions to phosphoinositides may help BoNT/C bind membrane more tightly and transduct signals for subsequent steps of intoxication. Our results provide new insights into the mechanisms of host cell membrane recognition by BoNTs.

  15. Behind the scenes of vitamin D binding protein: more than vitamin D binding.

    PubMed

    Delanghe, Joris R; Speeckaert, Reinhart; Speeckaert, Marijn M

    2015-10-01

    Although being discovered in 1959, the number of published papers in recent years reveals that vitamin D binding protein (DBP), a member of the albuminoid superfamily, is a hot research topic. Besides the three major phenotypes (DBP1F, DBP1S and DBP2), more than 120 unique variants have been described of this polymorphic protein. The presence of DBP has been demonstrated in different body fluids (serum, urine, breast milk, ascitic fluid, cerebrospinal fluid, saliva and seminal fluid) and organs (brain, heart, lungs, kidneys, placenta, spleen, testes and uterus). Although the major function is binding, solubilization and transport of vitamin D and its metabolites, the name of this glycoprotein hides numerous other important biological functions. In this review, we will focus on the analytical aspects of the determination of DBP and discuss in detail the multifunctional capacity [actin scavenging, binding of fatty acids, chemotaxis, binding of endotoxins, influence on T cell response and influence of vitamin D binding protein-macrophage activating factor (DBP-MAF) on bone metabolism and cancer] of this abundant plasma protein. PMID:26522461

  16. Binding kinetics of lock-key colloids: surface diffusion enhancement of the rate of specific binding

    NASA Astrophysics Data System (ADS)

    Colon-Melendez, Laura; Beltran-Villegas, Daniel J.; van Anders, Greg; Liu, Jun; Spellings, Matthew; Sacanna, Stefano; Pine, David J.; Glotzer, Sharon C.; Larson, Ronald G.; Solomon, Michael J.

    2014-03-01

    The kinetics of anisotropic particle assembly are expected to be slow due to specific directional interactions between the assembly building blocks. We investigate the lock-and-key colloidal system (Sacanna et al, Nature 464, 575-578 (2010)), to identify and understand the mechanisms that lead to specific lock-key pair binding. For lock pockets of a particular shape, we experimentally identify the importance of nonspecific lock-key binding as a pathway to specific lock-key pair formation. In this pathway, key particles can diffuse on the surface of the lock and bind specifically to the dimple of the lock. We find that this mechanism can be more important to specific bond formation than the direct binding mechanism. We model the surface diffusion mechanism as a mean first-passage time problem. Using an anisotropic interaction potential between a lock and key particle pair (van Anders et al, arXiv:1309.1187), we compare Stokesian dynamics simulations of lock and key binding to the experiments. We propose that nonspecific interactions can play an important role in accelerating anisotropic particle assembly. This work is supported by the U.S. Army Research Office under Grant Award W911NF-10-1-0518.

  17. Thermodynamics of zinc binding to hepatitis C virus NS3 protease: a folding by binding event.

    PubMed

    Abian, Olga; Neira, Jose Luis; Velazquez-Campoy, Adrian

    2009-11-15

    The hepatitis C virus (HCV) nonstructural protein 3 (NS3) protease is responsible for the processing of the non-structural region of the viral precursor polyprotein in infected hepatic cells. HCV NS3 is a zinc-dependent serine protease. The zinc ion, which is bound far away from the active site and considered to have a structural role, is essential for the structural integrity of the protein; furthermore, the ion is required for the hydrolytic activity. Consequently, the NS3 zinc binding site has been considered for a long time as a possible target for drug discovery. As a first step towards this goal, the energetics of the NS3-zinc interaction and its effect on the NS3 conformation must be established and discussed. The thermodynamic characterization of zinc binding to NS3 protease by isothermal titration calorimetry and spectroscopy is presented here. Spectroscopic and calorimetric results suggest that a considerable conformational change in the protein is coupled to zinc binding. The energetics of the conformational change is comparable to that of the folding of a protein of similar size. Therefore, zinc binding to NS3 protease can be considered as a "folding by binding" event.

  18. A bacterial collagen-binding domain with novel calcium-binding motif controls domain orientation

    PubMed Central

    Wilson, Jeffrey J.; Matsushita, Osamu; Okabe, Akinobu; Sakon, Joshua

    2003-01-01

    The crystal structure of a collagen-binding domain (CBD) with an N-terminal domain linker from Clostridium histolyticum class I collagenase was determined at 1.00 Å resolution in the absence of calcium (1NQJ) and at 1.65 Å resolution in the presence of calcium (1NQD). The mature enzyme is composed of four domains: a metalloprotease domain, a spacing domain and two CBDs. A 12-residue-long linker is found at the N-terminus of each CBD. In the absence of calcium, the CBD reveals a β-sheet sandwich fold with the linker adopting an α-helix. The addition of calcium unwinds the linker and anchors it to the distal side of the sandwich as a new β-strand. The conformational change of the linker upon calcium binding is confirmed by changes in the Stokes and hydrodynamic radii as measured by size exclusion chromatography and by dynamic light scattering with and without calcium. Furthermore, extensive mutagenesis of conserved surface residues and collagen-binding studies allow us to identify the collagen-binding surface of the protein and propose likely collagen–protein binding models. PMID:12682007

  19. A DNA-binding protein factor recognizes two binding domains within the octopine synthase enhancer element.

    PubMed Central

    Tokuhisa, J G; Singh, K; Dennis, E S; Peacock, W J

    1990-01-01

    A protein that binds to the enhancing element of the octopine synthase gene has been identified in nuclear extracts from maize cell suspension cultures. Two protein-DNA complexes are distinguishable by electrophoretic mobility in gel retardation assays. Footprint analyses of these low and high molecular weight complexes show, respectively, half and complete protection of the ocs-element DNA from cleavage by methidiumpropyl-EDTA.FE(II). Two lines of evidence indicate that the element has two recognition sites, each of which can bind identical protein units. Elements that are mutated in one or the other half and form only the low molecular weight complex interfere with the formation of both the low and high molecular weight complexes by the wild-type element. Protein isolated from a complex with only one binding site occupied can bind to the wild-type ocs-element and generate complexes with protein occupying one or both binding sites. Occupation of both sites of the ocs-element is a prerequisite for transcriptional enhancement. PMID:2152113

  20. Tritium NMR spectroscopy of ligand binding to maltose-binding protein

    SciTech Connect

    Gehring, K.; Williams, P.G.; Pelton, J.G.; Morimoto, H.; Wemmer, D.E. )

    1991-06-04

    Tritium-labeled {alpha}- and {beta}-maltodextrins have been used to study their complexes with maltose-binding protein (MBP), a 40-kDa bacterial protein. Five substrates, from maltose to maltohexaose, were labeled at their reducing ends and their binding studied. Tritium NMR specctroscopy of the labeled sugars showed large upfield chamical shift changes upon binding and strong anomeric specficity. At 10{degrees}C, MBP bound {alpha}-maltose with 2.7 {plus minus} 0.5-fold higher affinity than {beta}-maltose, and, for longer maltodextrins, the ratio of affinities was even larger. The maximum chemical shift change was 2.2 ppm, suggesting that the reducing end of bound {alpha}-maltodextrin makes close contact with an aromatic residue in the MBP-binding site. Experiments with maltotriose (and longer maltodextrins) also revealed the presence of two bound {beta}-maltotriose resonances in rapid exchange. The authors interpret these two resonances as arising from two distinct sugar-protein complexes. In one complex, the {beta}-maltodextrin is bound by its reducing end, and, in the other complex, the {beta}-maltodextrin is bound by the middle glucose residue(s). This interpretation also suggests how MBP is able to bind both linear and circular maltodextrins.

  1. Odorant binding characteristics of three recombinant odorant binding proteins in Microplitis mediator (Hymenoptera: Braconidae).

    PubMed

    Li, Keming; Wang, Shanning; Zhang, Kang; Ren, Liyan; Ali, Abid; Zhang, Yongjun; Zhou, Jingjiang; Guo, Yuyuan

    2014-06-01

    Odorant binding proteins (OBPs) are believed to be important for transporting semiochemicals through the aqueous sensillar lymph to the olfactory receptor cells within the insect antennal sensilla. In this study, three new putative OBP genes, MmedOBP8-10, were identified from a Microplitis mediator (Hymenoptera: Braconidae) antennal cDNA library. Quantitative real-time PCR (qRT-PCR) analysis revealed that all three of the OBP genes were expressed mainly in the antennae of adult wasps. The three OBPs were recombinantly expressed in Escherichia coli and purified by Ni ion affinity chromatography. Fluorescence competitive binding assays were performed using N-phenyl-naphthylamine as a fluorescent probe and 45 small organic compounds as competitors. These assays demonstrated that the three M. mediator OBPs can bind a broad range of odorant molecules with different binding affinities. They can bind the following ligands: nonane, farnesol, nerolidol, nonanal, β-ionone, acetic ether, and farnesene. In a Y-tube assay with these ligands as odor stimuli and paraffin oil as a control, all ligands, except nerolidol and acetic ether, were able to elicit behavioral responses in adult M. mediator. The wasps were significantly attracted to β-ionone, nonanal, and farnesene and repelled by nonane and farnesol. The results of this work provide insight into the chemosensory functions of the OBPs in M. mediator.

  2. Loss of cargo binding in the human myosin VI deafness mutant (R1166X) leads to increased actin filament binding

    PubMed Central

    Arden, Susan D.; Tumbarello, David A.; Butt, Tariq; Kendrick-Jones, John; Buss, Folma

    2016-01-01

    Mutations in myosin VI have been associated with autosomal-recessive (DFNB37) and autosomal-dominant (DFNA22) deafness in humans. Here, we characterise an myosin VI nonsense mutation (R1166X) that was identified in a family with hereditary hearing loss in Pakistan. This mutation leads to the deletion of the C-terminal 120 amino acids of the myosin VI cargo-binding domain, which includes the WWY-binding motif for the adaptor proteins LMTK2, Tom1 as well as Dab2. Interestingly, compromising myosin VI vesicle-binding ability by expressing myosin VI with the R1166X mutation or with single point mutations in the adaptor-binding sites leads to increased F-actin binding of this myosin in vitro and in vivo. As our results highlight the importance of cargo attachment for regulating actin binding to the motor domain, we perform a detailed characterisation of adaptor protein binding and identify single amino acids within myosin VI required for binding to cargo adaptors. We not only show that the adaptor proteins can directly interact with the cargo-binding tail of myosin VI, but our in vitro studies also suggest that multiple adaptor proteins can bind simultaneously to non-overlapping sites in the myosin VI tail. In conclusion, our characterisation of the human myosin VI deafness mutant (R1166X) suggests that defects in cargo binding may leave myosin VI in a primed/activated state with an increased actin-binding ability. PMID:27474411

  3. PRBP: Prediction of RNA-Binding Proteins Using a Random Forest Algorithm Combined with an RNA-Binding Residue Predictor.

    PubMed

    Ma, Xin; Guo, Jing; Xiao, Ke; Sun, Xiao

    2015-01-01

    The prediction of RNA-binding proteins is an incredibly challenging problem in computational biology. Although great progress has been made using various machine learning approaches with numerous features, the problem is still far from being solved. In this study, we attempt to predict RNA-binding proteins directly from amino acid sequences. A novel approach, PRBP predicts RNA-binding proteins using the information of predicted RNA-binding residues in conjunction with a random forest based method. For a given protein, we first predict its RNA-binding residues and then judge whether the protein binds RNA or not based on information from that prediction. If the protein cannot be identified by the information associated with its predicted RNA-binding residues, then a novel random forest predictor is used to determine if the query protein is a RNA-binding protein. We incorporated features of evolutionary information combined with physicochemical features (EIPP) and amino acid composition feature to establish the random forest predictor. Feature analysis showed that EIPP contributed the most to the prediction of RNA-binding proteins. The results also showed that the information from the RNA-binding residue prediction improved the overall performance of our RNA-binding protein prediction. It is anticipated that the PRBP method will become a useful tool for identifying RNA-binding proteins. A PRBP Web server implementation is freely available at http://www.cbi.seu.edu.cn/PRBP/.

  4. Loss of cargo binding in the human myosin VI deafness mutant (R1166X) leads to increased actin filament binding.

    PubMed

    Arden, Susan D; Tumbarello, David A; Butt, Tariq; Kendrick-Jones, John; Buss, Folma

    2016-10-01

    Mutations in myosin VI have been associated with autosomal-recessive (DFNB37) and autosomal-dominant (DFNA22) deafness in humans. Here, we characterise an myosin VI nonsense mutation (R1166X) that was identified in a family with hereditary hearing loss in Pakistan. This mutation leads to the deletion of the C-terminal 120 amino acids of the myosin VI cargo-binding domain, which includes the WWY-binding motif for the adaptor proteins LMTK2, Tom1 as well as Dab2. Interestingly, compromising myosin VI vesicle-binding ability by expressing myosin VI with the R1166X mutation or with single point mutations in the adaptor-binding sites leads to increased F-actin binding of this myosin in vitro and in vivo As our results highlight the importance of cargo attachment for regulating actin binding to the motor domain, we perform a detailed characterisation of adaptor protein binding and identify single amino acids within myosin VI required for binding to cargo adaptors. We not only show that the adaptor proteins can directly interact with the cargo-binding tail of myosin VI, but our in vitro studies also suggest that multiple adaptor proteins can bind simultaneously to non-overlapping sites in the myosin VI tail. In conclusion, our characterisation of the human myosin VI deafness mutant (R1166X) suggests that defects in cargo binding may leave myosin VI in a primed/activated state with an increased actin-binding ability. PMID:27474411

  5. Spatial analysis and quantification of the thermodynamic driving forces in protein-ligand binding: binding site variability.

    PubMed

    Raman, E Prabhu; MacKerell, Alexander D

    2015-02-25

    The thermodynamic driving forces behind small molecule-protein binding are still not well-understood, including the variability of those forces associated with different types of ligands in different binding pockets. To better understand these phenomena we calculate spatially resolved thermodynamic contributions of the different molecular degrees of freedom for the binding of propane and methanol to multiple pockets on the proteins Factor Xa and p38 MAP kinase. Binding thermodynamics are computed using a statistical thermodynamics based end-point method applied on a canonical ensemble comprising the protein-ligand complexes and the corresponding free states in an explicit solvent environment. Energetic and entropic contributions of water and ligand degrees of freedom computed from the configurational ensemble provide an unprecedented level of detail into the mechanisms of binding. Direct protein-ligand interaction energies play a significant role in both nonpolar and polar binding, which is comparable to water reorganization energy. Loss of interactions with water upon binding strongly compensates these contributions leading to relatively small binding enthalpies. For both solutes, the entropy of water reorganization is found to favor binding in agreement with the classical view of the "hydrophobic effect". Depending on the specifics of the binding pocket, both energy-entropy compensation and reinforcement mechanisms are observed. It is notable to have the ability to visualize the spatial distribution of the thermodynamic contributions to binding at atomic resolution showing significant differences in the thermodynamic contributions of water to the binding of propane versus methanol. PMID:25625202

  6. Coenzyme A Binding to the Aminoglycoside Acetyltransferase (3)-IIIb Increases Conformational Sampling of Antibiotic Binding Site

    SciTech Connect

    Hu, Xiaohu; Norris, Adrianne; Baudry, Jerome Y; Serpersu, Engin H

    2011-01-01

    NMR spectroscopy experiments and molecular dynamics simulations were performed to describe the dynamic properties of the aminoglycoside acetyltransferase (3)-IIIb (AAC) in its apo and coenzyme A (CoASH) bound forms. The {sup 15}N-{sup 1}H HSQC spectra indicate a partial structural change and coupling of the CoASH binding site with another region in the protein upon the CoASH titration into the apo enzyme. Molecular dynamics simulations indicate a significant structural and dynamic variation of the long loop in the antibiotic binding domain in the form of a relatively slow (250 ns), concerted opening motion in the CoASH enzyme complex and that binding of the CoASH increases the structural flexibility of the loop, leading to an interchange between several similar equally populated conformations.

  7. Rapid characterization of sugar-binding specificity by in-solution proximity binding with photosensitizers.

    PubMed

    Chang, Chuan-Fa; Pan, Jia-Fu; Lin, Chun-Nan; Wu, I-Lin; Wong, Chi-Huey; Lin, Chun-Hung

    2011-07-01

    Cell-surface carbohydrates are known to participate in many important physiological and pathological activities by interacting with their corresponding proteins or receptors. Although several methods have been developed for studying carbohydrate-protein interactions, one major problem originates from the weak bindings of carbohydrates/proteins that are often lost during repeating wash steps. Herein, we established a homogeneous solution carbohydrate array in which polyacrylamide-based glycans are used for offering a multivalent environment. The method requires no wash step and can be carried out in a high-throughput manner. We characterized the carbohydrate-binding specificities of 11 lectins and 7 antibodies, the majority of which displayed the binding patterns in consistence with previous reports. These results demonstrate that our developed solution carbohydrate array provides a useful alternative that is better than or comparable with the current available methods.

  8. Sex hormone binding globulin and corticosteroid binding globulin as major effectors of steroid action.

    PubMed

    Caldwell, Jack D; Jirikowski, Gustav F

    2014-03-01

    Contrary to the long-held postulate of steroid-hormone binding globulin action, these protein carriers of steroids are major players in steroid actions in the body. This manuscript will focus on our work with sex hormone binding globulin (SHBG) and corticosteroid binding globulin (CBG) and demonstrate how they are actively involved in the uptake, intracellular transport, and possibly release of steroids from cells. This manuscript will also discuss our own findings that the steroid estradiol is taken up into the cell, as demonstrated by uptake of fluorescence labeled estradiol into Chinese hamster ovary (CHO) cells, and into the cytoplasm where it may have multiple actions that do not seem to involve the cell nucleus. This manuscript will focus mainly on events in two compartments of the cell, the plasma membrane and the cytoplasm.

  9. Rapid characterization of sugar-binding specificity by in-solution proximity binding with photosensitizers.

    PubMed

    Chang, Chuan-Fa; Pan, Jia-Fu; Lin, Chun-Nan; Wu, I-Lin; Wong, Chi-Huey; Lin, Chun-Hung

    2011-07-01

    Cell-surface carbohydrates are known to participate in many important physiological and pathological activities by interacting with their corresponding proteins or receptors. Although several methods have been developed for studying carbohydrate-protein interactions, one major problem originates from the weak bindings of carbohydrates/proteins that are often lost during repeating wash steps. Herein, we established a homogeneous solution carbohydrate array in which polyacrylamide-based glycans are used for offering a multivalent environment. The method requires no wash step and can be carried out in a high-throughput manner. We characterized the carbohydrate-binding specificities of 11 lectins and 7 antibodies, the majority of which displayed the binding patterns in consistence with previous reports. These results demonstrate that our developed solution carbohydrate array provides a useful alternative that is better than or comparable with the current available methods. PMID:21325337

  10. Dual chain synthetic heparin-binding growth factor analogs

    DOEpatents

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua

    2009-10-06

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  11. Dual chain synthetic heparin-binding growth factor analogs

    DOEpatents

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua

    2012-04-24

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  12. Type II oestrogen binding sites in human colorectal carcinoma.

    PubMed Central

    Piantelli, M; Ricci, R; Larocca, L M; Rinelli, A; Capelli, A; Rizzo, S; Scambia, G; Ranelletti, F O

    1990-01-01

    Seven cases of colorectal adenocarcinomas were investigated for the presence of oestrogen receptors and progesterone receptors. The tumours specifically bound oestradiol. This binding almost exclusively resulted from the presence of high numbers of type II oestrogen binding sites. Oestrogen receptors were absent or present at very low concentrations. Immunohistochemical investigation of nuclear oestrogen receptors gave negative results. This indicates that antioestrogen receptor antibodies recognise oestrogen receptors but not type II oestrogen binding sites. The presence of specific type II oestrogen binding sites and progesterone binding offers further evidence for a potential role for these steroids and their receptors in colorectal carcinoma. PMID:2266171

  13. Cooperative binding of fluorescein-labeled clupeine by DNA.

    PubMed Central

    Wehling,, K; Krauss, S; Wagner, K G

    1976-01-01

    The alpha-amino group of clupeine fraction Z from herring sperm was coupled with fluorescein. Binding of the labeled protamine by DNA is accompanied by significant fluorescence quenching up to 80%. This allowed the convenient determination of the binding behavior of protamine and DNA. Binding was found to be strongly cooperative and not be significantly affected by the size of DNA. The ionic strength dependence in the range up to 0.3 M NaCl was rather small. Binding parameters were derived according to classical unique-site treatment and to a concept which includes vagrant multi-site binding. PMID:1250694

  14. Selective Activation of Transcription by a Novel CCAAT Binding Factor

    NASA Astrophysics Data System (ADS)

    Maity, Sankar N.; Golumbek, Paul T.; Karsenty, Gerard; de Crombrugghe, Benoit

    1988-07-01

    A novel CCAAT binding factor (CBF) composed of two different subunits has been extensively purified from rat liver. Both subunits are needed for specific binding to DNA. Addition of this purified protein to nuclear extracts of NIH 3T3 fibroblasts stimulates transcription from several promoters including the α 2(I) collagen, the α 1(I) collagen, the Rous sarcoma virus long terminal repeat (RSV-LTR), and the adenovirus major late promoter. Point mutations in the CCAAT motif that show either no binding or a decreased binding of CBF likewise abolish or reduce activation of transcription by CBF. Activation of transcription requires, therefore, the specific binding of CBF to its recognition sites.

  15. Nitric oxide initiates iron binding to neocuproine.

    PubMed

    Vanin, A F; Serezhenkov, V A; Malenkova, I V

    2001-04-01

    It was demonstrated that two species of paramagnetic dinitrosyl iron complex (DNIC) with neocuproine form under the following conditions: in addition of neocuproine to a solution of DNIC with phosphate; in gaseous NO treatment of a mixture of Fe(2+) + neocuproine aqueous solutions at pH 6.5-8; and in addition of Fe(2+)--citrate complex + neocuproine to a S-nitrosocysteine (cys-NO) solution. The first form of DNIC with neocuproine is characterized by an EPR signal with g-factor values of 2.087, 2.055, and 2.025, when it is recorded at 77K. At room temperature, the complex displays a symmetric singlet at g = 2.05. The second form of DNIC with neocuproine gives an EPR signal with g-factor values of 2.042, 2.02, and 2.003, which can be recorded at a low temperature only.The revealed complexes are close to DNIC with cysteine in their stability. The ability of neocuproine to bind Fe(2+) in the presence of NO with formation of paramagnetic DNICs warrants critical reevaluation of the statement that neocuproine is only able to bind Cu(+) ions. It was suggested that the observed affinity of neocuproine to iron was due to transition of Fe(2+) in DNIC with neocuproine to Fe(+). In experiments on cys-NO, it was shown that the stabilizing effect of neocuproine on this compound could be due to neocuproine binding to the iron catalyzing decomposition of cys-NO.

  16. A Crayfish Insulin-like-binding Protein

    PubMed Central

    Rosen, Ohad; Weil, Simy; Manor, Rivka; Roth, Ziv; Khalaila, Isam; Sagi, Amir

    2013-01-01

    Across the animal kingdom, the involvement of insulin-like peptide (ILP) signaling in sex-related differentiation processes is attracting increasing attention. Recently, a gender-specific ILP was identified as the androgenic sex hormone in Crustacea. However, moieties modulating the actions of this androgenic insulin-like growth factor were yet to be revealed. Through molecular screening of an androgenic gland (AG) cDNA library prepared from the crayfish Cherax quadricarinatus, we have identified a novel insulin-like growth factor-binding protein (IGFBP) termed Cq-IGFBP. Based on bioinformatics analyses, the deduced Cq-IGFBP was shown to share high sequence homology with IGFBP family members from both invertebrates and vertebrates. The protein also includes a sequence determinant proven crucial for ligand binding, which according to three-dimensional modeling is assigned to the exposed outer surface of the protein. Recombinant Cq-IGFBP (rCq-IGFBP) protein was produced and, using a “pulldown” methodology, was shown to specifically interact with the insulin-like AG hormone of the crayfish (Cq-IAG). Particularly, using both mass spectral analysis and an immunological tool, rCq-IGFBP was shown to bind the Cq-IAG prohormone. Furthermore, a peptide corresponding to residues 23–38 of the Cq-IAG A-chain was found sufficient for in vitro recognition by rCq-IGFBP. Cq-IGFBP is the first IGFBP family member shown to specifically interact with a gender-specific ILP. Unlike their ILP ligands, IGFBPs are highly conserved across evolution, from ancient arthropods, like crustaceans, to humans. Such conservation places ILP signaling at the center of sex-related phenomena in early animal development. PMID:23775079

  17. Structural basis for PECAM-1 homophilic binding.

    PubMed

    Paddock, Cathy; Zhou, Dongwen; Lertkiatmongkol, Panida; Newman, Peter J; Zhu, Jieqing

    2016-02-25

    Platelet endothelial cell adhesion molecule-1 (PECAM-1) is a 130-kDa member of the immunoglobulin gene superfamily (IgSF) that is present on the surface of circulating platelets and leukocytes, and highly expressed at the junctions of confluent endothelial cell monolayers. PECAM-1-mediated homophilic interactions, known to be mediated by its 2 amino-terminal immunoglobulin homology domains, are essential for concentrating PECAM-1 at endothelial cell intercellular junctions, where it functions to facilitate diapedesis, maintain vascular integrity, and transmit survival signals into the cell. Given the importance of PECAM-1-mediated homophilic interactions in mediating each of these cell physiological events, and to reveal the nature and orientation of the PECAM-1-PECAM-1 homophilic-binding interface, we undertook studies aimed at determining the crystal structure of the PECAM-1 homophilic-binding domain, which is composed of amino-terminal immunoglobulin homology domains 1 and 2 (IgD1 and IgD2). The crystal structure revealed that both IgD1 and IgD2 exhibit a classical IgSF fold, having a β-sandwich topology formed by 2 sheets of antiparallel β strands stabilized by the hallmark disulfide bond between the B and F strands. Interestingly, despite previous assignment to the C2 class of immunoglobulin-like domains, the structure of IgD1 reveals that it actually belongs to the I2 set of IgSF folds. Both IgD1 and IgD2 participate importantly in the formation of the trans homophilic-binding interface, with a total buried interface area of >2300 Å(2). These and other unique structural features of PECAM-1 allow for the development of an atomic-level model of the interactions that PECAM-1 forms during assembly of endothelial cell intercellular junctions. PMID:26702061

  18. Nitric oxide initiates iron binding to neocuproine.

    PubMed

    Vanin, A F; Serezhenkov, V A; Malenkova, I V

    2001-04-01

    It was demonstrated that two species of paramagnetic dinitrosyl iron complex (DNIC) with neocuproine form under the following conditions: in addition of neocuproine to a solution of DNIC with phosphate; in gaseous NO treatment of a mixture of Fe(2+) + neocuproine aqueous solutions at pH 6.5-8; and in addition of Fe(2+)--citrate complex + neocuproine to a S-nitrosocysteine (cys-NO) solution. The first form of DNIC with neocuproine is characterized by an EPR signal with g-factor values of 2.087, 2.055, and 2.025, when it is recorded at 77K. At room temperature, the complex displays a symmetric singlet at g = 2.05. The second form of DNIC with neocuproine gives an EPR signal with g-factor values of 2.042, 2.02, and 2.003, which can be recorded at a low temperature only.The revealed complexes are close to DNIC with cysteine in their stability. The ability of neocuproine to bind Fe(2+) in the presence of NO with formation of paramagnetic DNICs warrants critical reevaluation of the statement that neocuproine is only able to bind Cu(+) ions. It was suggested that the observed affinity of neocuproine to iron was due to transition of Fe(2+) in DNIC with neocuproine to Fe(+). In experiments on cys-NO, it was shown that the stabilizing effect of neocuproine on this compound could be due to neocuproine binding to the iron catalyzing decomposition of cys-NO. PMID:11292366

  19. Dengue virus binding and replication by platelets.

    PubMed

    Simon, Ayo Y; Sutherland, Michael R; Pryzdial, Edward L G

    2015-07-16

    Dengue virus (DENV) infection causes ∼200 million cases of severe flulike illness annually, escalating to life-threatening hemorrhagic fever or shock syndrome in ∼500,000. Although thrombocytopenia is typical of both mild and severe diseases, the mechanism triggering platelet reduction is incompletely understood. As a probable initiating event, direct purified DENV-platelet binding was followed in the current study by quantitative reverse transcription-polymerase chain reaction and confirmed antigenically. Approximately 800 viruses specifically bound per platelet at 37°C. Fewer sites were observed at 25°C, the blood bank storage temperature (∼350 sites), or 4°C, known to attenuate virus cell entry (∼200 sites). Dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) and heparan sulfate proteoglycan were implicated as coreceptors because only the combination of anti-DC-SIGN and low-molecular-weight heparin prevented binding. Interestingly, at 37°C and 25°C, platelets replicated the positive sense single-stranded RNA genome of DENV by up to ∼4-fold over 7 days. Further time course experiments demonstrated production of viral NS1 protein, which is known to be highly antigenic in patient serum. The infectivity of DENV intrinsically decayed in vitro, which was moderated by platelet-mediated generation of viable progeny. This was shown using a transcription inhibitor and confirmed by freeze-denatured platelets being incapable of replicating the DENV genome. For the first time, these data demonstrate that platelets directly bind DENV saturably and produce infectious virus. Thus, expression of antigen encoded by DENV is a novel consideration in the pathogen-induced thrombocytopenia mechanism. These results furthermore draw attention to the possibility that platelets may produce permissive RNA viruses in addition to DENV.

  20. Helical Defects in MicroRNA Influence Protein Binding by TAR RNA Binding Protein

    PubMed Central

    Acevedo, Roderico; Orench-Rivera, Nichole; Quarles, Kaycee A.; Showalter, Scott A.

    2015-01-01

    Background MicroRNAs (miRNAs) are critical post-transcriptional regulators of gene expression. Their precursors have a globally A-form helical geometry, which prevents most proteins from identifying their nucleotide sequence. This suggests the hypothesis that local structural features (e.g., bulges, internal loops) play a central role in specific double-stranded RNA (dsRNA) selection from cellular RNA pools by dsRNA binding domain (dsRBD) containing proteins. Furthermore, the processing enzymes in the miRNA maturation pathway require tandem-dsRBD cofactor proteins for optimal function, suggesting that dsRBDs play a key role in the molecular mechanism for precise positioning of the RNA within these multi-protein complexes. Here, we focus on the tandem-dsRBDs of TRBP, which have been shown to bind dsRNA tightly. Methodology/Principal Findings We present a combination of dsRNA binding assays demonstrating that TRBP binds dsRNA in an RNA-length dependent manner. Moreover, circular dichroism data shows that the number of dsRBD moieties bound to RNA at saturation is different for a tandem-dsRBD construct than for constructs with only one dsRBD per polypeptide, revealing another reason for the selective pressure to maintain multiple domains within a polypeptide chain. Finally, we show that helical defects in precursor miRNA alter the apparent dsRNA size, demonstrating that imperfections in RNA structure influence the strength of TRBP binding. Conclusion/Significance We conclude that TRBP is responsible for recognizing structural imperfections in miRNA precursors, in the sense that TRBP is unable to bind imperfections efficiently and thus is positioned around them. We propose that once positioned around structural defects, TRBP assists Dicer and the rest of the RNA-induced silencing complex (RISC) in providing efficient and homogenous conversion of substrate precursor miRNA into mature miRNA downstream. PMID:25608000

  1. Molecular and structural basis of steroid hormone binding and release from corticosteroid-binding globulin.

    PubMed

    Lin, Hai-Yan; Muller, Yves A; Hammond, Geoffrey L

    2010-03-01

    Corticosteroid-binding globulin (CBG), a non-inhibitory member of the serine proteinase inhibitor (serpin) super-family, is the high-affinity transport protein for glucocorticoids in vertebrate blood. Plasma CBG is a glycoprotein with 30% of its mass represented by N-linked oligosaccharide chains. Its well-characterized steroid-binding properties represent a "bench-mark data set" used extensively for in silico studies of protein-ligand interactions and drug design. Recent crystal structure analyses of intact rat CBG and cleaved human CBG have revealed the precise topography of the steroid-binding site, and shown that cortisol-bound CBG displays a typical stressed (S) serpin conformation with the reactive center loop (RCL) fully exposed from the central beta-sheet A, while proteolytic cleavage of the RCL results in CBG adopting a relaxed (R) conformation with the cleaved RCL fully inserted within the protein core. These crystal structures have set the stage for mechanistic studies of CBG function which have so far shown that helix D plays a key role in coupling RCL movement and steroid-binding site integrity, and provided evidence for an allosteric mechanism that modulates steroid binding and release from CBG. These studies have also revealed how the irreversible release of steroids occurs after proteolysis and re-orientation of the RCL within the R conformation. This recent insight into the structure and function of CBG reveals how naturally occurring genetic CBG mutations affect steroid binding, and helps understand how proteolysis of CBG enhances the targeted delivery of biologically active steroids to their sites of action.

  2. Oligomerization of Mannan-binding Lectin Dictates Binding Properties and Complement Activation.

    PubMed

    Kjaer, T R; Jensen, L; Hansen, A; Dani, R; Jensenius, J C; Dobó, J; Gál, P; Thiel, S

    2016-07-01

    The complement system is a part of the innate immune system and is involved in recognition and clearance of pathogens and altered-self structures. The lectin pathway of the complement system is initiated when soluble pattern recognition molecules (PRMs) with collagen-like regions bind to foreign or altered self-surfaces. Associated with the collagen-like stems of these PRMs are three mannan-binding lectin (MBL)-associated serine proteases (MASPs) and two MBL-associated proteins (MAps). The most studied of the PRMs, MBL, is present in serum mainly as trimeric and tetrameric oligomers of the structural subunit. We hypothesized that oligomerization of MBL may influence both the potential to bind to micro organisms and the interaction with the MASPs and MAps, thus influencing the ability to initiate complement activation. When testing binding at 37 °C, we found higher binding of tetrameric MBL to Staphylococcus aureus (S. aureus) than trimeric and dimeric MBL. In serum, we found that tetrameric MBL was the main oligomeric form present in complexes with the MASPs and MAp44. Such preference was confirmed using purified forms of recombinant MBL (rMBL) oligomers, where tetrameric rMBL interacted stronger with all of the MASPs and MAp44, compared to trimeric MBL. As a direct consequence of the weaker interaction with the MASPs, we found that trimeric rMBL was inferior to tetrameric rMBL in activating the complement system. Our data suggest that the oligomeric state of MBL is crucial both for the binding properties and the effector function of MBL.

  3. Disulfide bridge regulates ligand-binding site selectivity in liver bile acid-binding proteins.

    PubMed

    Cogliati, Clelia; Tomaselli, Simona; Assfalg, Michael; Pedò, Massimo; Ferranti, Pasquale; Zetta, Lucia; Molinari, Henriette; Ragona, Laura

    2009-10-01

    Bile acid-binding proteins (BABPs) are cytosolic lipid chaperones that play central roles in driving bile flow, as well as in the adaptation to various pathological conditions, contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Understanding the mode of binding of bile acids with their cytoplasmic transporters is a key issue in providing a model for the mechanism of their transfer from the cytoplasm to the nucleus, for delivery to nuclear receptors. A number of factors have been shown to modulate bile salt selectivity, stoichiometry, and affinity of binding to BABPs, e.g. chemistry of the ligand, protein plasticity and, possibly, the formation of disulfide bridges. Here, the effects of the presence of a naturally occurring disulfide bridge on liver BABP ligand-binding properties and backbone dynamics have been investigated by NMR. Interestingly, the disulfide bridge does not modify the protein-binding stoichiometry, but has a key role in modulating recognition at both sites, inducing site selectivity for glycocholic and glycochenodeoxycholic acid. Protein conformational changes following the introduction of a disulfide bridge are small and located around the inner binding site, whereas significant changes in backbone motions are observed for several residues distributed over the entire protein, both in the apo form and in the holo form. Site selectivity appears, therefore, to be dependent on protein mobility rather than being governed by steric factors. The detected properties further establish a parallelism with the behaviour of human ileal BABP, substantiating the proposal that BABPs have parallel functions in hepatocytes and enterocytes. PMID:19754879

  4. Thyroxine binding to serum thyronine-binding globulin in thyroidectomized adult and normal neonatal rats

    SciTech Connect

    Young, R.A.; Meyers, B.; Alex, S.; Fang, S.L.; Braverman, L.E.

    1988-05-01

    The amount of tracer (125I)T4 bound to serum thyronine-binding globulin (TBG) was measured by polyacrylamide gel electrophoresis in adult thyroidectomized (TX) rats and normal 1-day to 4-week-old rat puts. Thyroidectomy was associated with the appearance of significant amounts of (125I)T4 binding to serum TBG in lean rats, but not in obese Zucker rats. Treatment of the TX rats in vivo with replacement doses of T4 prevented this increase in TBG binding, but enrichment of serum from TX rats with T4 did not. Significant amounts of tracer (125I)T4 binding to TBG was present in serum from 1- to 3-week-old normal rat pups, but not in 1-day- or 4-week-old pups. There were significantly higher levels of TBG binding of (125I)T4 in serum from 2-week-old rat pups raised in litters of 16 pups compared to those raised in litters of 4 pups. All manipulations that result in the appearance of TBG in rat serum also result in either weight loss or a slowing in the rate of growth, suggesting that the appearance of TBG in rat serum has a nutritional component. This possibility is further supported by the observations that increases in TBG binding of (125I)T4 are not found in obese Zucker rats fed a low protein-high carbohydrate diet for 14 days or fasted for 7 days, or after thyroidectomy, perhaps owing to the large stores of fuel in the obese rat.

  5. Heparin-binding mechanism of the IGF2/IGF-binding protein 2 complex.

    PubMed

    Lund, Jacob; Søndergaard, Mads T; Conover, Cheryl A; Overgaard, Michael T

    2014-06-01

    IGF1 and IGF2 are potent stimulators of diverse cellular activities such as differentiation and mitosis. Six IGF-binding proteins (IGFBP1-IGFBP6) are primary regulators of IGF half-life and receptor availability. Generally, the binding of IGFBPs inhibits IGF receptor activation. However, it has been shown that IGFBP2 in complex with IGF2 (IGF2/IGFBP2) stimulates osteoblast function in vitro and increases skeletal mass in vivo. IGF2 binding to IGFBP2 greatly increases the affinity for 2- or 3-carbon O-sulfated glycosaminoglycans (GAGs), e.g. heparin and heparan sulfate, which is hypothesized to preferentially and specifically target the IGF2/IGFBP2 complex to the bone matrix. In order to obtain a more detailed understanding of the interactions between the IGF2/IGFBP2 complex and GAGs, we investigated heparin-binding properties of IGFBP2 and the IGF2/IGFBP2 complex in a quantitative manner. For this study, we mutated key positively charged residues within the two heparin-binding domains (HBDs) in IGFBP2 and in one potential HBD in IGF2. Using heparin affinity chromatography, we demonstrate that the two IGFBP2 HBDs contribute differentially to GAG binding in free IGFBP2 and the IGF2/IGFBP2 protein complex. Moreover, we identify a significant contribution from the HBD in IGF2 to the increased IGF2/IGFBP2 heparin affinity. Using molecular modeling, we present a novel model for the IGF2/IGFBP2 interaction with heparin where all three proposed HBDs constitute a positively charged and surface-exposed area that would serve to promote the increased heparin affinity of the complex compared with free intact IGFBP2.

  6. Disulfide bridge regulates ligand-binding site selectivity in liver bile acid-binding proteins.

    PubMed

    Cogliati, Clelia; Tomaselli, Simona; Assfalg, Michael; Pedò, Massimo; Ferranti, Pasquale; Zetta, Lucia; Molinari, Henriette; Ragona, Laura

    2009-10-01

    Bile acid-binding proteins (BABPs) are cytosolic lipid chaperones that play central roles in driving bile flow, as well as in the adaptation to various pathological conditions, contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Understanding the mode of binding of bile acids with their cytoplasmic transporters is a key issue in providing a model for the mechanism of their transfer from the cytoplasm to the nucleus, for delivery to nuclear receptors. A number of factors have been shown to modulate bile salt selectivity, stoichiometry, and affinity of binding to BABPs, e.g. chemistry of the ligand, protein plasticity and, possibly, the formation of disulfide bridges. Here, the effects of the presence of a naturally occurring disulfide bridge on liver BABP ligand-binding properties and backbone dynamics have been investigated by NMR. Interestingly, the disulfide bridge does not modify the protein-binding stoichiometry, but has a key role in modulating recognition at both sites, inducing site selectivity for glycocholic and glycochenodeoxycholic acid. Protein conformational changes following the introduction of a disulfide bridge are small and located around the inner binding site, whereas significant changes in backbone motions are observed for several residues distributed over the entire protein, both in the apo form and in the holo form. Site selectivity appears, therefore, to be dependent on protein mobility rather than being governed by steric factors. The detected properties further establish a parallelism with the behaviour of human ileal BABP, substantiating the proposal that BABPs have parallel functions in hepatocytes and enterocytes.

  7. Characterization of the cellulose-binding domain of the Clostridium cellulovorans cellulose-binding protein A.

    PubMed Central

    Goldstein, M A; Takagi, M; Hashida, S; Shoseyov, O; Doi, R H; Segel, I H

    1993-01-01

    Cellulose-binding protein A (CbpA), a component of the cellulase complex of Clostridium cellulovorans, contains a unique sequence which has been demonstrated to be a cellulose-binding domain (CBD). The DNA coding for this putative CBD was subcloned into pET-8c, an Escherichia coli expression vector. The protein produced under the direction of the recombinant plasmid, pET-CBD, had a high affinity for crystalline cellulose. Affinity-purified CBD protein was used in equilibrium binding experiments to characterize the interaction of the protein with various polysaccharides. It was found that the binding capacity of highly crystalline cellulose samples (e.g., cotton) was greater than that of samples of low crystallinity (e.g., fibrous cellulose). At saturating CBD concentration, about 6.4 mumol of protein was bound by 1 g of cotton. Under the same conditions, fibrous cellulose bound only 0.2 mumol of CBD per g. The measured dissociation constant was in the 1 microM range for all cellulose samples. The results suggest that the CBD binds specifically to crystalline cellulose. Chitin, which has a crystal structure similar to that of cellulose, also was bound by the CBD. The presence of high levels of cellobiose or carboxymethyl cellulose in the assay mixture had no effect on the binding of CBD protein to crystalline cellulose. This result suggests that the CBD recognition site is larger than a simple cellobiose unit or more complex than a repeating cellobiose moiety. This CBD is of particular interest because it is the first CBD from a completely sequenced nonenzymatic protein shown to be an independently functional domain. Images PMID:8376323

  8. Crystal structures of human tissue kallikrein 4: activity modulation by a specific zinc binding site.

    PubMed

    Debela, Mekdes; Magdolen, Viktor; Grimminger, Valerie; Sommerhoff, Christian; Messerschmidt, Albrecht; Huber, Robert; Friedrich, Rainer; Bode, Wolfram; Goettig, Peter

    2006-10-01

    Human tissue kallikrein 4 (hK4) belongs to a 15-member family of closely related serine proteinases. hK4 is predominantly expressed in prostate, activates hK3/PSA, and is up-regulated in prostate and ovarian cancer. We have identified active monomers of recombinant hK4 besides inactive oligomers in solution. hK4 crystallised in the presence of zinc, nickel, and cobalt ions in three crystal forms containing cyclic tetramers and octamers. These structures display a novel metal site between His25 and Glu77 that links the 70-80 loop with the N-terminal segment. Micromolar zinc as present in prostatic fluid inhibits the enzymatic activity of hK4 against fluorogenic substrates. In our measurements, wild-type hK4 exhibited a zinc inhibition constant (IC50) of 16 microM including a permanent residual activity, in contrast to the zinc-independent mutants H25A and E77A. Since the Ile16 N terminus of wild-type hK4 becomes more accessible for acetylating agents in the presence of zinc, we propose that zinc affects the hK4 active site via the salt-bridge formed between the N terminus and Asp194 required for a functional active site. hK4 possesses an unusual 99-loop that creates a groove-like acidic S2 subsite. These findings explain the observed specificity of hK4 for the P1 to P4 substrate residues. Moreover, hK4 shows a negatively charged surface patch, which may represent an exosite for prime-side substrate recognition. PMID:16950394

  9. Regulation of Pluripotency by RNA Binding Proteins

    PubMed Central

    Ye, Julia; Blelloch, Robert

    2015-01-01

    Establishment, maintenance, and exit from pluripotency require precise coordination of a cell’s molecular machinery. Substantial headway has been made in deciphering many aspects of this elaborate system, particularly with respect to epigenetics, transcription, and noncoding RNAs. Less attention has been paid to posttranscriptional regulatory processes such as alternative splicing, RNA processing and modification, nuclear export, regulation of transcript stability, and translation. Here, we introduce the RNA binding proteins that enable the posttranscriptional regulation of gene expression, summarizing current and ongoing research on their roles at different regulatory points and discussing how they help script the fate of pluripotent stem cells. PMID:25192462

  10. Polynucleotides encoding TRF1 binding proteins

    DOEpatents

    Campisi, Judith; Kim, Sahn-Ho

    2002-01-01

    The present invention provides a novel telomere associated protein (Trf1-interacting nuclear protein 2 "Tin2") that hinders the binding of Trf1 to its specific telomere repeat sequence and mediates the formation of a Tin2-Trf1-telomeric DNA complex that limits telomerase access to the telomere. Also included are the corresponding nucleic acids that encode the Tin2 of the present invention, as well as mutants of Tin2. Methods of making, purifying and using Tin2 of the present invention are described. In addition, drug screening assays to identify drugs that mimic and/or complement the effect of Tin2 are presented.

  11. Computational Identification of Uncharacterized Cruzain Binding Sites

    PubMed Central

    Wilson, Benjamin A.; McCammon, J. Andrew

    2010-01-01

    Chagas disease, caused by the unicellular parasite Trypanosoma cruzi, claims 50,000 lives annually and is the leading cause of infectious myocarditis in the world. As current antichagastic therapies like nifurtimox and benznidazole are highly toxic, ineffective at parasite eradication, and subject to increasing resistance, novel therapeutics are urgently needed. Cruzain, the major cysteine protease of Trypanosoma cruzi, is one attractive drug target. In the current work, molecular dynamics simulations and a sequence alignment of a non-redundant, unbiased set of peptidase C1 family members are used to identify uncharacterized cruzain binding sites. The two sites identified may serve as targets for future pharmacological intervention. PMID:20485483

  12. Gene encoding herbicide safener binding protein

    DOEpatents

    Walton, Jonathan D.; Scott-Craig, John S.

    1999-01-01

    The cDNA encoding safener binding protein (SafBP), also referred to as SBP1, is set forth in FIG. 5 and SEQ ID No. 1. The deduced amino acid sequence is provided in FIG. 5 and SEQ ID No. 2. Methods of making and using SBP1 and SafBP to alter a plant's sensitivity to certain herbicides or a plant's responsiveness to certain safeners are also provided, as well as expression vectors, transgenic plants or other organisms transfected with said vectors and seeds from said plants.

  13. Binding profile of Artocarpus integrifolia agglutinin (Jacalin).

    PubMed

    Wu, Albert M; Wu, June H; Lin, Li-Hua; Lin, Shin-Hua; Liu, Jia-Hau

    2003-04-01

    Artocarpus integrifolia agglutinin (Jacalin) from the seeds of jack fruits has attracted considerable attention for its diverse biological activities and has been recognized as a Galbeta1-->3GalNAc (T) specific lectin. In previous studies, the information of its binding was limited to the inhibition results of monosaccharides and several T related disaccharides, but its interaction with other carbohydrate structural units occurring in natural glycans has not been characterized. For this reason, the binding profile of this lectin was studied by enzyme linked lectinosorbent assay (ELLSA) with our glycan/ligand collection. Among glycoproteins (gps) tested for binding, high density of multi-Galbeta1-->3GalNAcalpha1--> (mT(alpha)) and GalNAcalpha1-->Ser/Thr (mTn) containing gps reacted most avidly with Jacalin. As inhibitors expressed as nanograms yielding 50% inhibition, these mT(alpha) and mTn containing glycans were about 7.1 x 10(3), 4.0 x 10(5), and 7.8 x 10(5) times more potent than monomeric T(alpha), GalNAc, and Gal. Of the sugars tested and expressed as nanomoles for 50% inhibition, Tn containing peptides, T(alpha), and the human P blood group active disaccharide (P(alpha), GalNAcbeta1-->3Galalpha1-->) were the best and about 283 times more active than Gal. We conclude that the most potent ligands for this lectin are mTn, mT, and possibly P(alpha) glycotopes, while GalNAcbeta1-->4Galbeta1-->, GalNAcalpha1-->3Gal, GalNAcalpha1-->3GalNAc, and Galalpha1-->3Gal determinants were poor inhibitors. Thus, the overall binding profile of Jacalin can be defined in decreasing order as high density of mTn, and mT(alpha) > simple Tn cluster > monomeric T(alpha) > monomeric P(alpha) > monomeric Tn > monomeric T > GalNAc > Gal > Methylalpha1-->Man z.Gt; Man and Glc (inactive). Our finding should aid in the selection of this lectin for biological applications.

  14. Detection of secondary binding sites in proteins using fragment screening

    PubMed Central

    Ludlow, R. Frederick; Verdonk, Marcel L.; Saini, Harpreet K.; Tickle, Ian J.; Jhoti, Harren

    2015-01-01

    Proteins need to be tightly regulated as they control biological processes in most normal cellular functions. The precise mechanisms of regulation are rarely completely understood but can involve binding of endogenous ligands and/or partner proteins at specific locations on a protein that can modulate function. Often, these additional secondary binding sites appear separate to the primary binding site, which, for example for an enzyme, may bind a substrate. In previous work, we have uncovered several examples in which secondary binding sites were discovered on proteins using fragment screening approaches. In each case, we were able to establish that the newly identified secondary binding site was biologically relevant as it was able to modulate function by the binding of a small molecule. In this study, we investigate how often secondary binding sites are located on proteins by analyzing 24 protein targets for which we have performed a fragment screen using X-ray crystallography. Our analysis shows that, surprisingly, the majority of proteins contain secondary binding sites based on their ability to bind fragments. Furthermore, sequence analysis of these previously unknown sites indicate high conservation, which suggests that they may have a biological function, perhaps via an allosteric mechanism. Comparing the physicochemical properties of the secondary sites with known primary ligand binding sites also shows broad similarities indicating that many of the secondary sites may be druggable in nature with small molecules that could provide new opportunities to modulate potential therapeutic targets. PMID:26655740

  15. High molecular weight kininogen binds to unstimulated platelets.

    PubMed Central

    Gustafson, E J; Schutsky, D; Knight, L C; Schmaier, A H

    1986-01-01

    Studies were performed to determine if the unstimulated platelet membrane has a site for high molecular weight kininogen (HMWK) binding. 125I-HMWK bound to unstimulated platelets. Zn++ was required for 125I-HMWK binding to unstimulated platelets and binding was maximal at 50 microM Zn++. Neither Mg++ nor Ca++ substituted for Zn++ in supporting 125I-HMWK binding to unstimulated platelets, and neither ion potentiated binding in the presence of 50 microM zinc. 125I-HMWK competed with equal affinity with HMWK for binding, and excess HMWK inhibited 125I-HMWK-platelet binding. Only HMWK, not prekallikrein, Factor XII, Factor XI, Factor V, fibrinogen, or fibronectin inhibited 125I-HMWK-platelet binding. 125I-HMWK binding to unstimulated platelets was 89% reversible within 10 min with a 50-fold molar excess of HMWK. Unstimulated platelets contained a single set of saturable, high affinity binding sites for 125I-HMWK with an apparent dissociation constant of 0.99 nM +/- 0.35 and 3,313 molecules/platelet +/- 843. These studies indicate that the unstimulated external platelet membrane has a binding site for HMWK that could serve as a surface to modulate contact phase activation. Images PMID:3722381

  16. Time-dynamic imaging of individual cell ligand binding kinetics

    NASA Astrophysics Data System (ADS)

    Gross, David; Chung, Johnson

    1997-05-01

    Ligand-binding assays are commonly applied to large numbers of cells in culture; the binding parameters derived from such assays reflect the ensemble average behavior of many cells. Equilibrium binding assays of epidermal growth factor (EGF) binding to the EGF receptor (EGFR) indicate that the EGFR exhibits two affinity states for EGF, one low affinity with Kd about 10 nM and one high affinity with Kd < 1 nM. Bulk binding studies cannot determined if such multiple ligand binding classes are due to cell population heterogeneity or are due to heterogeneity at the individual cell level. Here is described a technique based on single cell imaging of fluorescein-EGF (f-EGF) binding to individual human epidermoid carcinoma A431 cells that demonstrates that both classes of EGFR are found on all A431 cells, that the time course of f-EGF binding to individual cells shows two kinetic on-rates and two off-rates, that cell-to-cell heterogeneity of EGF binding is significant and that ligand binding kinetics vary across an individual cell. Contributions of cell autofluorescence photobleaching and f- EGF photobleaching in the measurement of fluorescent ligand binding are shown to be significant.

  17. Measurement and analysis of equilibrium binding titrations: A beginner's guide.

    PubMed

    Beckett, Dorothy

    2011-01-01

    Binding events are central to biology. Simple binding of a substrate to an enzyme initiates catalysis. Formation of protein:protein complexes is integral to signal transduction. Binding of multiple proteins to the ribosomal ribonucleic acid (rRNA) results in ribosome assembly. Consequently, elucidation of mechanisms of biological processes requires binding measurements. Such measurements reveal, among other things, the relevant concentrations required for binding partners to form a complex and are indispensible to understanding the relationship between structure and biological function. This article is intended to serve as a primer for biologists who are contemplating performing binding studies. The focus is on practical aspects of design and analysis of binding measurements for a simple process. The information that one can extract from such measurements is also addressed. Theoretical background on binding for both simple and complex systems can be found in many textbooks and monographs including those by Hammes [Hammes, G. G. (2000). Thermodynamics and Kinetics for the Biological Sciences. Wiley, New York, NY], Weber [Weber, G. (1992). Protein Interactions. Chapman and Hall, New York, NY], and Wyman and Gill [Wyman, J. and Gill, S. J. (1990). Binding and Linkage. University Science Books, Mill Valley, CA]. While the first reference is excellent for beginners, the latter two, in addition to discussion of simple binding, contain theoretical background for complex binding processes.

  18. Detection of secondary binding sites in proteins using fragment screening.

    PubMed

    Ludlow, R Frederick; Verdonk, Marcel L; Saini, Harpreet K; Tickle, Ian J; Jhoti, Harren

    2015-12-29

    Proteins need to be tightly regulated as they control biological processes in most normal cellular functions. The precise mechanisms of regulation are rarely completely understood but can involve binding of endogenous ligands and/or partner proteins at specific locations on a protein that can modulate function. Often, these additional secondary binding sites appear separate to the primary binding site, which, for example for an enzyme, may bind a substrate. In previous work, we have uncovered several examples in which secondary binding sites were discovered on proteins using fragment screening approaches. In each case, we were able to establish that the newly identified secondary binding site was biologically relevant as it was able to modulate function by the binding of a small molecule. In this study, we investigate how often secondary binding sites are located on proteins by analyzing 24 protein targets for which we have performed a fragment screen using X-ray crystallography. Our analysis shows that, surprisingly, the majority of proteins contain secondary binding sites based on their ability to bind fragments. Furthermore, sequence analysis of these previously unknown sites indicate high conservation, which suggests that they may have a biological function, perhaps via an allosteric mechanism. Comparing the physicochemical properties of the secondary sites with known primary ligand binding sites also shows broad similarities indicating that many of the secondary sites may be druggable in nature with small molecules that could provide new opportunities to modulate potential therapeutic targets.

  19. RNA recognition by the DNA end-binding Ku heterodimer.

    PubMed

    Dalby, Andrew B; Goodrich, Karen J; Pfingsten, Jennifer S; Cech, Thomas R

    2013-06-01

    Most nucleic acid-binding proteins selectively bind either DNA or RNA, but not both nucleic acids. The Saccharomyces cerevisiae Ku heterodimer is unusual in that it has two very different biologically relevant binding modes: (1) Ku is a sequence-nonspecific double-stranded DNA end-binding protein with prominent roles in nonhomologous end-joining and telomeric capping, and (2) Ku associates with a specific stem-loop of TLC1, the RNA subunit of budding yeast telomerase, and is necessary for proper nuclear localization of this ribonucleoprotein enzyme. TLC1 RNA-binding and dsDNA-binding are mutually exclusive, so they may be mediated by the same site on Ku. Although dsDNA binding by Ku is well studied, much less is known about what features of an RNA hairpin enable specific recognition by Ku. To address this question, we localized the Ku-binding site of the TLC1 hairpin with single-nucleotide resolution using phosphorothioate footprinting, used chemical modification to identify an unpredicted motif within the hairpin secondary structure, and carried out mutagenesis of the stem-loop to ascertain the critical elements within the RNA that permit Ku binding. Finally, we provide evidence that the Ku-binding site is present in additional budding yeast telomerase RNAs and discuss the possibility that RNA binding is a conserved function of the Ku heterodimer.

  20. Characterization of the DNA binding properties of polyomavirus capsid protein

    NASA Technical Reports Server (NTRS)

    Chang, D.; Cai, X.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The DNA binding properties of the polyomavirus structural proteins VP1, VP2, and VP3 were studied by Southwestern analysis. The major viral structural protein VP1 and host-contributed histone proteins of polyomavirus virions were shown to exhibit DNA binding activity, but the minor capsid proteins VP2 and VP3 failed to bind DNA. The N-terminal first five amino acids (Ala-1 to Lys-5) were identified as the VP1 DNA binding domain by genetic and biochemical approaches. Wild-type VP1 expressed in Escherichia coli (RK1448) exhibited DNA binding activity, but the N-terminal truncated VP1 mutants (lacking Ala-1 to Lys-5 and Ala-1 to Cys-11) failed to bind DNA. The synthetic peptide (Ala-1 to Cys-11) was also shown to have an affinity for DNA binding. Site-directed mutagenesis of the VP1 gene showed that the point mutations at Pro-2, Lys-3, and Arg-4 on the VP1 molecule did not affect DNA binding properties but that the point mutation at Lys-5 drastically reduced DNA binding affinity. The N-terminal (Ala-1 to Lys-5) region of VP1 was found to be essential and specific for DNA binding, while the DNA appears to be non-sequence specific. The DNA binding domain and the nuclear localization signal are located in the same N-terminal region.

  1. Development of cholecystokinin binding sites in rat upper gastrointestinal tract

    SciTech Connect

    Robinson, P.H.; Moran, T.H.; Goldrich, M.; McHugh, P.R.

    1987-04-01

    Autoradiography using /sup 125/I-labeled Bolton Hunter-CCK-33 was used to study the distribution of cholecystokinin binding sites at different stages of development in the rat upper gastrointestinal tract. Cholecystokinin (CCK) binding was present in the distal stomach, esophagus, and gastroduodenal junction in the rat fetus of gestational age of 17 days. In the 20-day fetus, specific binding was found in the gastric mucosa, antral circular muscle, and pyloric sphincter. Mucosal binding declined during postnatal development and had disappeared by day 15. Antral binding declined sharply between day 10 and day 15 and disappeared by day 50. Pyloric muscle binding was present in fetal stomach and persisted in the adult. Pancreatic CCK binding was not observed before day 10. These results suggest that CCK may have a role in the control of gastric emptying and ingestive behavior in the neonatal rat.

  2. Structural Analysis of Botulinum Neurotoxin Type G Receptor Binding

    SciTech Connect

    Schmitt, John; Karalewitz, Andrew; Benefield, Desire A.; Mushrush, Darren J.; Pruitt, Rory N.; Spiller, Benjamin W.; Barbieri, Joseph T.; Lacy, D. Borden

    2010-10-19

    Botulinum neurotoxin (BoNT) binds peripheral neurons at the neuromuscular junction through a dual-receptor mechanism that includes interactions with ganglioside and protein receptors. The receptor identities vary depending on BoNT serotype (A-G). BoNT/B and BoNT/G bind the luminal domains of synaptotagmin I and II, homologous synaptic vesicle proteins. We observe conditions under which BoNT/B binds both Syt isoforms, but BoNT/G binds only SytI. Both serotypes bind ganglioside G{sub T1b}. The BoNT/G receptor-binding domain crystal structure provides a context for examining these binding interactions and a platform for understanding the physiological relevance of different Syt receptor isoforms in vivo.

  3. Cooperative binding modes of Cu(II) in prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Chisnell, Robin; Lu, Wenchang; Bernholc, Jerry

    2007-03-01

    The misfolding of the prion protein, PrP, is responsible for a group of neurodegenerative diseases including mad cow disease and Creutzfeldt-Jakob disease. It is known that the PrP can efficiently bind copper ions; four high-affinity binding sites located in the octarepeat region of PrP are now well known. Recent experiments suggest that at low copper concentrations new binding modes, in which one copper ion is shared between two or more binding sites, are possible. Using our hybrid Thomas-Fermi/DFT computational scheme, which is well suited for simulations of biomolecules in solution, we investigate the geometries and energetics of two, three and four binding sites cooperatively binding one copper ion. These geometries are then used as inputs for classical molecular dynamics simulations. We find that copper binding affects the secondary structure of the PrP and that it stabilizes the unstructured (unfolded) part of the protein.

  4. Autoradiographic localization of endothelin-1 binding sites in porcine skin

    SciTech Connect

    Zhao, Y.D.; Springall, D.R.; Wharton, J.; Polak, J.M. )

    1991-01-01

    Autoradiographic techniques and {sup 125}I-labeled endothelin-1 were used to study the distribution of endothelin-1 binding sites in porcine skin. Specific endothelin-1 binding sites were localized to blood vessels (capillaries, deep cutaneous vascular plexus, arteries, and arterioles), the deep dermal and connective tissue sheath of hair follicles, sebaceous and sweat glands, and arrector pili muscle. Specific binding was inhibited by endothelin-2 and endothelin-3 as well as endothelin-1. Non-specific binding was found in the epidermis and the medulla of hair follicles. No binding was found in connective tissue or fat. These vascular binding sites may represent endothelin receptors, in keeping with the known cutaneous vasoconstrictor actions of the peptide. If all binding sites are receptors, the results suggest that endothelin could also regulate the function of sweat glands and may have trophic effects in the skin.

  5. Structure-function relationship of monocot mannose-binding lectins.

    PubMed Central

    Barre, A; Van Damme, E J; Peumans, W J; Rougé, P

    1996-01-01

    The monocot mannose-binding lectins are an extended superfamily of structurally and evolutionarily related proteins, which until now have been isolated from species of the Amaryllidaceae, Alliaceae, Araceae, Orchidaceae, and Liliaceae. To explain the obvious differences in biological activities, the structure-function relationships of the monocot mannose-binding lectins were studied by a combination of glycan-binding studies and molecular modeling using the deduced amino acid sequences of the currently known lectins. Molecular modeling indicated that the number of active mannose-binding sites per monomer varies between three and zero. Since the number of binding sites is fairly well correlated with the binding activity measured by surface plasmon resonance, and is also in good agreement with the results of previous studies of the biological activities of the mannose-binding lectins, molecular modeling is of great value for predicting which lectins are best suited for a particular application. PMID:8972598

  6. Noncovalent endo-binding of fullerenes to diprotonated bisporphyrins.

    PubMed

    Jung, Sunghan; van Paauwe, John D; Boyd, Peter D W; Shin, Seung Koo

    2011-12-01

    Noncovalent binding of fullerenes to bisporphyrins was studied in the gas phase by energy-dependent collision-induced dissociation (CID) with Xe under single-collision conditions. The electrospray ionization mass spectra of calix[4]arene-linked bisporphyrins show that bisporphyrins take up to 3-4 protons, depending on the type of meso-substituents. Of the protonated bisporphyrins, the diprotonated species form stable 1:1 complexes with fullerenes (C(60) and C(70)). CID cracking patterns of the diprotonated bisporphyrins indicate that each monomeric porphyrin moiety is singly protonated. CID yield-energy curves obtained from the 1:1 diprotonated bisporphyrin-fullerene complexes suggest that a fullerene occupies the endo-binding site intercalated between the two singly protonated porphyrin moieties. In the cases of 1:2 diprotonated bisporphyrin-fullerene complexes, CID results show that one fullerene binds inside (endo-binding) and the other outside (exo-binding). The exo-binding mode is energetically almost identical to the binding of fullerenes to singly protonated porphyrin monomers. The endo-binding energy is at least twice the exo-binding energy. To gain insights into the binding mode, we optimized structures of diprotonated bisporphyrins and their 1:1 endo-complexes with fullerenes, and calculated the endo-binding energy for C(60), C(70) (end-on), and C(70) (side-on). The endo-binding of fullerenes to diprotonated bisporphyrins nearly doubles the π-π interactions while reducing the electrostatic repulsion between the two singly protonated porphyrin moieties. The side-on binding of C(70) is favored over the end-on binding because the former exerts less steric strain to the lower rim of calixarene.

  7. Predicting Ca2+ -binding sites using refined carbon clusters.

    PubMed

    Zhao, Kun; Wang, Xue; Wong, Hing C; Wohlhueter, Robert; Kirberger, Michael P; Chen, Guantao; Yang, Jenny J

    2012-12-01

    Identifying Ca(2+) -binding sites in proteins is the first step toward understanding the molecular basis of diseases related to Ca(2+) -binding proteins. Currently, these sites are identified in structures either through X-ray crystallography or NMR analysis. However, Ca(2+) -binding sites are not always visible in X-ray structures due to flexibility in the binding region or low occupancy in a Ca(2+) -binding site. Similarly, both Ca(2+) and its ligand oxygens are not directly observed in NMR structures. To improve our ability to predict Ca(2+) -binding sites in both X-ray and NMR structures, we report a new graph theory algorithm (MUG(C) ) to predict Ca(2+) -binding sites. Using carbon atoms covalently bonded to the chelating oxygen atoms, and without explicit reference to side-chain oxygen ligand co-ordinates, MUG(C) is able to achieve 94% sensitivity with 76% selectivity on a dataset of X-ray structures composed of 43 Ca(2+) -binding proteins. Additionally, prediction of Ca(2+) -binding sites in NMR structures was obtained by MUG(C) using a different set of parameters, which were determined by the analysis of both Ca(2+) -constrained and unconstrained Ca(2+) -loaded structures derived from NMR data. MUG(C) identified 20 of 21 Ca(2+) -binding sites in NMR structures inferred without the use of Ca(2+) constraints. MUG(C) predictions are also highly selective for Ca(2+) -binding sites as analyses of binding sites for Mg(2+) , Zn(2+) , and Pb(2+) were not identified as Ca(2+) -binding sites. These results indicate that the geometric arrangement of the second-shell carbon cluster is sufficient not only for accurate identification of Ca(2+) -binding sites in NMR and X-ray structures but also for selective differentiation between Ca(2+) and other relevant divalent cations.

  8. Clostridium difficile toxin A binding to human intestinal epithelial cells.

    PubMed

    Smith, J A; Cooke, D L; Hyde, S; Borriello, S P; Long, R G

    1997-11-01

    Clostridium difficile radiolabelled toxin A ([3H]-toxin A) bound to human duodenal and colonic epithelial cells isolated from endoscopic biopsies. Binding was greater at 4 degrees C than 37 degrees C, consistent with the thermal binding characteristic of toxin A to a carbohydrate moiety. At 37 degrees C colonic cells bound significantly more [3H]-toxin A than duodenal cells. The amount of [3H]-toxin A binding varied considerably between individuals. [3H]-toxin A was displaced by unlabelled toxin A by 50% for duodenal cells and 70% for colonic cells with 94.3 nM unlabelled toxin A. Low non-displacable binding was observed in some samples at 4 degrees C and 37 degrees C, suggesting that these cells came from individuals incapable of specifically binding toxin. Pre-treating cells with alpha- or beta-galactosidases to cleave terminal alpha- and beta-galactose residues reduced [3H]-toxin A binding. There was also a reduction in [3H]-toxin A binding after heat treating cells, which is suggestive of protein binding. The reduction in binding varied between individuals. The reduction of [3H]-toxin A binding, after the removal of beta-linked galactose units, implicates these as components of the receptor and adds credence to the idea that the Lewis X, Y and I antigens may be involved in toxin A binding to human intestinal epithelial cells. However, because the Lewis antigens do not possess terminal alpha-galactose units, the reduction in binding after alpha-galactosidase treatment suggests that other receptors may be involved in toxin A binding to some human intestinal cells. These data are the first demonstration of direct toxin A binding to human intestinal epithelial cells.

  9. Multiple binding modes for dicationic Hoechst 33258 to DNA.

    PubMed

    Guan, Yuan; Shi, Ruina; Li, Xiaomin; Zhao, Meiping; Li, Yuanzong

    2007-06-28

    The binding of dicationic Hoechst 33258 (ligand) to DNA was characterized by means of the fluorescence spectra, fluorescence intensity titration, time-resolved fluorescence decay, light scattering, circular dichroism, and fluorescence thermal denaturation measurements, and two binding modes were distinguished by the experimental results. Type 1 binding has the stoichiometry of one ligand to more than 12 base pairs, and it is defined as quasi-minor groove binding which has the typical prolonged fluorescence lifetime of about 4.4 ns. In type 1 binding, planar conformation of the ligand is favorable. Type 2 binding with phosphate to ligand ratio (P/L) < 2.5 has the stoichiometry of one ligand to two phosphates. It is defined as a highly dense and orderly stacked binding with DNA backbone as the template. Electrostatic interactions between doubly protonated ligands and negatively charged DNA backbone play a predominant role in the type 2 binding mode. The characteristics of this type of binding result in a twisted conformation of the ligand that has a fluorescence lifetime of less than 1 ns. The results also indicate that the binding is in a cooperative manner primarily by stacking of the aromatic rings of the neighboring ligands. Type 1 binding is only observed for double-stranded DNA (dsDNA) with affinity constant of 1.83 x 10(7) M-1. In the type 2 binding mode, the binding affinity constants are 4.9 x 10(6) and 4.3 x 10(6) M-1 for dsDNA and single-stranded DNA (ssDNA), respectively. The type 2 binding is base pair independent while the type 1 binding is base pair related. The experiments described in this paper revealed that the dication bindings are different from the monocation bindings reported by previous study. The dication binding leads to stronger aggregation at low ligand concentration and results in orderly arrangements of the ligands along DNA chains. Furthermore the dication binding is demonstrated to be beneficial for enhancing the DNA's stability.

  10. Binding Ensemble PROfiling with (F)photoaffinity Labeling (BEProFL) Approach: Mapping the Binding Poses of HDAC8 Inhibitors

    PubMed Central

    He, Bai; Velaparthi, Subash; Pieffet, Gilles; Pennington, Chris; Mahesh, Aruna; Holzle, Denise L.; Brunsteiner, Michael; van Breemen, Richard; Blond, Sylvie Y.; Petukhov, Pavel A.

    2009-01-01

    A Binding Ensemble PROfiling with (F)photoaffinity Labeling (BEProFL) approach that utilizes photolabeling of HDAC8 with a probe containing a UV-activated aromatic azide, mapping the covalent modifications by liquid chromatography-tandem mass-spectrometry, and a computational method to characterize the multiple binding poses of the probe is described. Using the BEProFL approach two distinct binding poses of the HDAC8 probe were identified. The data also suggest that an “upside-down” pose with the surface binding group of the probe bound in an alternative pocket near the catalytic site may contribute to the binding. PMID:19886628

  11. The Tomato Nucleotide-binding Leucine-rich Repeat Immune Receptor I-2 Couples DNA-binding to Nucleotide-binding Domain Nucleotide Exchange.

    PubMed

    Fenyk, Stepan; Dixon, Christopher H; Gittens, William H; Townsend, Philip D; Sharples, Gary J; Pålsson, Lars-Olof; Takken, Frank L W; Cann, Martin J

    2016-01-15

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable plants to recognize and respond to pathogen attack. Previously, we demonstrated that the Rx1 NLR of potato is able to bind and bend DNA in vitro. DNA binding in situ requires its genuine activation following pathogen perception. However, it is unknown whether other NLR proteins are also able to bind DNA. Nor is it known how DNA binding relates to the ATPase activity intrinsic to NLR switch function required to immune activation. Here we investigate these issues using a recombinant protein corresponding to the N-terminal coiled-coil and nucleotide-binding domain regions of the I-2 NLR of tomato. Wild type I-2 protein bound nucleic acids with a preference of ssDNA ≈ dsDNA > ssRNA, which is distinct from Rx1. I-2 induced bending and melting of DNA. Notably, ATP enhanced DNA binding relative to ADP in the wild type protein, the null P-loop mutant K207R, and the autoactive mutant S233F. DNA binding was found to activate the intrinsic ATPase activity of I-2. Because DNA binding by I-2 was decreased in the presence of ADP when compared with ATP, a cyclic mechanism emerges; activated ATP-associated I-2 binds to DNA, which enhances ATP hydrolysis, releasing ADP-bound I-2 from the DNA. Thus DNA binding is a general property of at least a subset of NLR proteins, and NLR activation is directly linked to its activity at DNA.

  12. The Tomato Nucleotide-binding Leucine-rich Repeat Immune Receptor I-2 Couples DNA-binding to Nucleotide-binding Domain Nucleotide Exchange.

    PubMed

    Fenyk, Stepan; Dixon, Christopher H; Gittens, William H; Townsend, Philip D; Sharples, Gary J; Pålsson, Lars-Olof; Takken, Frank L W; Cann, Martin J

    2016-01-15

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable plants to recognize and respond to pathogen attack. Previously, we demonstrated that the Rx1 NLR of potato is able to bind and bend DNA in vitro. DNA binding in situ requires its genuine activation following pathogen perception. However, it is unknown whether other NLR proteins are also able to bind DNA. Nor is it known how DNA binding relates to the ATPase activity intrinsic to NLR switch function required to immune activation. Here we investigate these issues using a recombinant protein corresponding to the N-terminal coiled-coil and nucleotide-binding domain regions of the I-2 NLR of tomato. Wild type I-2 protein bound nucleic acids with a preference of ssDNA ≈ dsDNA > ssRNA, which is distinct from Rx1. I-2 induced bending and melting of DNA. Notably, ATP enhanced DNA binding relative to ADP in the wild type protein, the null P-loop mutant K207R, and the autoactive mutant S233F. DNA binding was found to activate the intrinsic ATPase activity of I-2. Because DNA binding by I-2 was decreased in the presence of ADP when compared with ATP, a cyclic mechanism emerges; activated ATP-associated I-2 binds to DNA, which enhances ATP hydrolysis, releasing ADP-bound I-2 from the DNA. Thus DNA binding is a general property of at least a subset of NLR proteins, and NLR activation is directly linked to its activity at DNA. PMID:26601946

  13. The Tomato Nucleotide-binding Leucine-rich Repeat Immune Receptor I-2 Couples DNA-binding to Nucleotide-binding Domain Nucleotide Exchange*

    PubMed Central

    Fenyk, Stepan; Dixon, Christopher H.; Gittens, William H.; Townsend, Philip D.; Sharples, Gary J.; Pålsson, Lars-Olof; Takken, Frank L. W.; Cann, Martin J.

    2016-01-01

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable plants to recognize and respond to pathogen attack. Previously, we demonstrated that the Rx1 NLR of potato is able to bind and bend DNA in vitro. DNA binding in situ requires its genuine activation following pathogen perception. However, it is unknown whether other NLR proteins are also able to bind DNA. Nor is it known how DNA binding relates to the ATPase activity intrinsic to NLR switch function required to immune activation. Here we investigate these issues using a recombinant protein corresponding to the N-terminal coiled-coil and nucleotide-binding domain regions of the I-2 NLR of tomato. Wild type I-2 protein bound nucleic acids with a preference of ssDNA ≈ dsDNA > ssRNA, which is distinct from Rx1. I-2 induced bending and melting of DNA. Notably, ATP enhanced DNA binding relative to ADP in the wild type protein, the null P-loop mutant K207R, and the autoactive mutant S233F. DNA binding was found to activate the intrinsic ATPase activity of I-2. Because DNA binding by I-2 was decreased in the presence of ADP when compared with ATP, a cyclic mechanism emerges; activated ATP-associated I-2 binds to DNA, which enhances ATP hydrolysis, releasing ADP-bound I-2 from the DNA. Thus DNA binding is a general property of at least a subset of NLR proteins, and NLR activation is directly linked to its activity at DNA. PMID:26601946

  14. Ku antigen binds to Alu family DNA.

    PubMed

    Tsuchiya, T; Saëgusa, Y; Taira, T; Mimori, T; Iguchi-Ariga, S M; Ariga, H

    1998-01-01

    The GC-rich segment containing GGAGGC (Alu core) is conserved within the RNA polymerase III (pol III) promoters of Alu family sequences. We have shown that the GGAGGC motif functions as a modulator of DNA replication as well as of transcription, and identified the proteins binding to the motif in human HeLa cells. In this study, the Alu core binding proteins were partially purified from human Raji cells by using an Alu core DNA affinity column. Both the proteins thus purified were implied to be subunits of Ku antigen based on the following criteria: The molecular weights of the proteins estimated on gel electrophoreses were 70 and 85 kDa, respectively, under denaturing conditions, while under non-denaturing conditions only one band was observed for the same sample at 150 kDa, probably representing hetero-dimer formed between the 70 and 85 kDa proteins. The sizes and the hetero-dimer formation are reminiscent of the 70 and 80 kDa subunits of Ku antigen (Ku-p70 and Ku-p80). Moreover, the purified proteins were immunoreactive with anti-Ku antibodies, and the specific DNA-protein complex on the Alu core element was cancelled by the anti-Ku antibodies. The nucleoprotein complex showed the same clipping patterns as those of the complex between the Alu core element and an authentically purified Ku antigen after proteolytic cleavage with trypsin and chymotrypsin.

  15. Latent TGF-β-binding proteins

    PubMed Central

    Robertson, Ian B.; Horiguchi, Masahito; Zilberberg, Lior; Dabovic, Branka; Hadjiolova, Krassimira; Rifkin, Daniel B.

    2016-01-01

    The LTBPs (or latent transforming growth factor β binding proteins) are important components of the extracellular matrix (ECM) that interact with fibrillin microfibrils and have a number of different roles in microfibril biology. There are four LTBPs isoforms in the human genome (LTBP-1, -2, -3, and -4), all of which appear to associate with fibrillin and the biology of each isoform is reviewed here. The LTBPs were first identified as forming latent complexes with TGFβ by covalently binding the TGFβ propeptide (LAP) via disulfide bonds in the endoplasmic reticulum. LAP in turn is cleaved from the mature TGFβ precursor in the trans golgi network but LAP and TGFβ remain strongly bound through non-covalent interactions. LAP, TGFβ, and LTBP together form the large latent complex (LLC). LTBPs were originally thought to primarily play a role in maintaining TGFβ latency and targeting the latent growth factor to the extracellular matrix (ECM), but it has also been shown that LTBP-1 participates in TGFβ activation by integrins and may also regulate activation by proteases and other factors. LTBP-3 appears to have a role in skeletal formation including tooth development. As well as having important functions in TGFβ regulation, TGFβ-independent activities have recently been identified for LTBP-2 and LTBP-4 in stabilizing microfibril bundles and regulating elastic fiber assembly. PMID:25960419

  16. Complement binding to Leishmania donovani promastigotes (LD)

    SciTech Connect

    Puentes, S.M.; Bates, P.A.; Dwyer, D.M.; Joiner, K.A.

    1986-03-01

    To study the binding and processing of C3 on LD, parasites in various phases of growth were incubated in human serum deficient in complement component 8 containing /sup 125/I-C3. Uptake of /sup 125/I-C3 is rapid, peaking at 1.7-2.1 x 10/sup 6/ C3 molecules bound per parasite at 15 minutes for all growth phases, and decreases thereafter with continued incubation. One half of total C3 bound is spontaneously released by 90 minutes of incubation with all LD phases and occurs at a similar rate for LD washed free of serum and incubated at 37/sup 0/ C in buffer. As assessed by SDS-PAGE autoradiography, C3 on the surface of LD is present as C3b (36 to 50%) and iC3b (50 to 65%), linked covalently via a bond resistant to hydroxylamine treatment, presumably an amide linkage. Immunoblot analysis of purified membranes from serum-incubated LD, using rabbit antibody to C3 and LD surface constituents, strongly suggests that a major C3 acceptor is the LD acid phosphatase (AP). These results, in conjunction with recent studies, suggest a previously unrecognized role of AP as a C3 acceptor and, thus, as a molecule potentially involved in parasite binding and uptake.

  17. Characterizing the morphology of protein binding patches.

    PubMed

    Malod-Dognin, Noël; Bansal, Achin; Cazals, Frédéric

    2012-12-01

    Let the patch of a partner in a protein complex be the collection of atoms accounting for the interaction. To improve our understanding of the structure-function relationship, we present a patch model decoupling the topological and geometric properties. While the geometry is classically encoded by the atomic positions, the topology is recorded in a graph encoding the relative position of concentric shells partitioning the interface atoms. The topological-geometric duality provides the basis of a generic dynamic programming-based algorithm comparing patches at the shell level, which may favor topological or geometric features. On the biological side, we address four questions, using 249 cocrystallized heterodimers organized in biological families. First, we dissect the morphology of binding patches and show that Nature enjoyed the topological and geometric degrees of freedom independently while retaining a finite set of qualitatively distinct topological signatures. Second, we argue that our shell-based comparison is effective to perform atomic-level comparisons and show that topological similarity is a less stringent than geometric similarity. We also use the topological versus geometric duality to exhibit topo-rigid patches, whose topology (but not geometry) remains stable upon docking. Third, we use our comparison algorithms to infer specificity-related information amidst a database of complexes. Finally, we exhibit a descriptor outperforming its contenders to predict the binding affinities of the affinity benchmark. The softwares developed with this article are availablefrom http://team.inria.fr/abs/vorpatch_compatch/.

  18. Metal Binding to Bipyridine-Modified PNA

    SciTech Connect

    Franzini,R.; Watson, R.; Patra, G.; Breece, R.; Tierney, D.; Hendrich, M.; Achim, C.

    2006-01-01

    Substitution of natural nucleobases in PNA oligomers with ligands is a strategy for directing metal ion incorporation to specific locations within a PNA duplex. In this study, we have synthesized PNA oligomers that contain up to three adjacent bipyridine ligands and examined the interaction with Ni{sup 2+} and Cu{sup 2+} of these oligomers and of duplexes formed from them. Variable-temperature UV spectroscopy showed that duplexes containing one terminal pair of bipyridine ligands are more stable upon metal binding than their nonmodified counterparts. While binding of one metal ion to duplexes that contain two adjacent bipyridine pairs makes the duplexes more stable, additional metal ions lower the duplex stability, with electrostatic repulsions being, most likely, an important contributor to the destabilization. UV titrations showed that the presence of several bipyridine ligands in close proximity of each other in PNA oligomers exerts a chelate effect. A supramolecular chelate effect occurs when several bipyridines are brought next to each other by hybridization of PNA duplexes. EPR spectroscopy studies indicate that even when two Cu{sup 2+} ions coordinate to a PNA duplex in which two bipyridine pairs are next to each other, the two metal-ligand complexes that form in the duplex are far enough from each other that the dipolar coupling is very weak. EXAFS and XANES show that the Ni{sup 2+}-bipyridine bond lengths are typical for [Ni(bipy){sub 2}]{sup 2+} and [Ni(bipy){sub 3}]{sup 2+} complexes.

  19. Oligosaccharide Binding in Escherichia coli Glycogen Synthase

    SciTech Connect

    Sheng, Fang; Yep, Alejandra; Feng, Lei; Preiss, Jack; Geiger, James H.

    2010-11-17

    Glycogen/starch synthase elongates glucan chains and is the key enzyme in the synthesis of glycogen in bacteria and starch in plants. Cocrystallization of Escherichia coli wild-type glycogen synthase (GS) with substrate ADPGlc and the glucan acceptor mimic HEPPSO produced a closed form of GS and suggests that domain-domain closure accompanies glycogen synthesis. Cocrystallization of the inactive GS mutant E377A with substrate ADPGlc and oligosaccharide results in the first oligosaccharide-bound glycogen synthase structure. Four bound oligosaccharides are observed, one in the interdomain cleft (G6a) and three on the N-terminal domain surface (G6b, G6c, and G6d). Extending from the center of the enzyme to the interdomain cleft opening, G6a mostly interacts with the highly conserved N-terminal domain residues lining the cleft of GS. The surface-bound oligosaccharides G6c and G6d have less interaction with enzyme and exhibit a more curled, helixlike structural arrangement. The observation that oligosaccharides bind only to the N-terminal domain of GS suggests that glycogen in vivo probably binds to only one side of the enzyme to ensure unencumbered interdomain movement, which is required for efficient, continuous glucan-chain synthesis.

  20. Peptide Binding for Bio-Based Nanomaterials.

    PubMed

    Bedford, N M; Munro, C J; Knecht, M R

    2016-01-01

    Peptide-based strategies represent transformative approaches to fabricate functional inorganic materials under sustainable conditions by modeling the methods exploited in biology. In general, peptides with inorganic affinity and specificity have been isolated from organisms and through biocombinatorial selection techniques (ie, phage and cell surface display). These peptides recognize and bind the inorganic surface through a series of noncovalent interactions, driven by both enthalpic and entropic contributions, wherein the biomolecules wrap the metallic nanoparticle structure. Through these interactions, modification of the inorganic surface can be accessed to drive the incorporation of significantly disordered surface metal atoms, which have been found to be highly catalytically active for a variety of chemical transformations. We have employed synthetic, site-directed mutagenesis studies to reveal localized binding effects of the peptide at the metallic nanoparticle structure to begin to identify the biological basis of control over biomimetic nanoparticle catalytic activity. The protocols described herein were used to fabricate and characterize peptide-capped nanoparticles in atomic resolution to identify peptide sequence effects on the surface structure of the materials, which can then be directly correlated to the catalytic activity to identify structure/function relationships. PMID:27586350

  1. Characterization of nicotine binding in mouse brain and comparison with the binding of alpha-bungarotoxin and quinuclidinyl benzilate

    SciTech Connect

    Marks, M.J.; Collins, A.C.

    1982-11-01

    The binding of (/sup 3/H)nicotine to mouse brain has been measured and subsequently compared with the binding of (/sup 125/I)alpha-bungarotoxin (alpha-BTX) and L-(/sup 3/H)quinuclidinyl benzilate (QNB). The binding of nicotine was saturable, reversible, and stereospecific. The average KD and Bmax were 59 nM and 88 fmoles/mg of protein, respectively. Although the rates of association and dissociation of nicotine were temperature-dependent, the incubation temperature had no effect on either KD or Bmax. When measured at 20 degrees or 37 degrees, nicotine appeared to bind to a single class of binding sites, but a second, very low-affinity, binding site was observed at 4 degrees. Nicotine binding was unaffected by the addition of NaCl, KCl, CaCl/sub 2/, or MgSO/sub 4/ to the incubation medium. Nicotinic cholinergic agonists were potent inhibitors of nicotine binding; however, nicotinic antagonists were poor inhibitors. The regional distribution of binding was not uniform: midbrain and striatum contained the highest number of receptors, whereas cerebellum had the fewest. Differences in site densities, regional distribution, inhibitor potencies, and thermal denaturation indicated that nicotine binding was not the same as either QNB or alpha-BTX binding, and therefore that receptors for nicotine may represent a unique population of cholinergic receptors.

  2. BindUP: a web server for non-homology-based prediction of DNA and RNA binding proteins.

    PubMed

    Paz, Inbal; Kligun, Efrat; Bengad, Barak; Mandel-Gutfreund, Yael

    2016-07-01

    Gene expression is a multi-step process involving many layers of regulation. The main regulators of the pathway are DNA and RNA binding proteins. While over the years, a large number of DNA and RNA binding proteins have been identified and extensively studied, it is still expected that many other proteins, some with yet another known function, are awaiting to be discovered. Here we present a new web server, BindUP, freely accessible through the website http://bindup.technion.ac.il/, for predicting DNA and RNA binding proteins using a non-homology-based approach. Our method is based on the electrostatic features of the protein surface and other general properties of the protein. BindUP predicts nucleic acid binding function given the proteins three-dimensional structure or a structural model. Additionally, BindUP provides information on the largest electrostatic surface patches, visualized on the server. The server was tested on several datasets of DNA and RNA binding proteins, including proteins which do not possess DNA or RNA binding domains and have no similarity to known nucleic acid binding proteins, achieving very high accuracy. BindUP is applicable in either single or batch modes and can be applied for testing hundreds of proteins simultaneously in a highly efficient manner.

  3. BindUP: a web server for non-homology-based prediction of DNA and RNA binding proteins

    PubMed Central

    Paz, Inbal; Kligun, Efrat; Bengad, Barak; Mandel-Gutfreund, Yael

    2016-01-01

    Gene expression is a multi-step process involving many layers of regulation. The main regulators of the pathway are DNA and RNA binding proteins. While over the years, a large number of DNA and RNA binding proteins have been identified and extensively studied, it is still expected that many other proteins, some with yet another known function, are awaiting to be discovered. Here we present a new web server, BindUP, freely accessible through the website http://bindup.technion.ac.il/, for predicting DNA and RNA binding proteins using a non-homology-based approach. Our method is based on the electrostatic features of the protein surface and other general properties of the protein. BindUP predicts nucleic acid binding function given the proteins three-dimensional structure or a structural model. Additionally, BindUP provides information on the largest electrostatic surface patches, visualized on the server. The server was tested on several datasets of DNA and RNA binding proteins, including proteins which do not possess DNA or RNA binding domains and have no similarity to known nucleic acid binding proteins, achieving very high accuracy. BindUP is applicable in either single or batch modes and can be applied for testing hundreds of proteins simultaneously in a highly efficient manner. PMID:27198220

  4. Calcyclin Binding Protein/Siah-1 Interacting Protein Is a Hsp90 Binding Chaperone

    PubMed Central

    Góral, Agnieszka; Bieganowski, Paweł; Prus, Wiktor; Krzemień-Ojak, Łucja; Kądziołka, Beata; Fabczak, Hanna; Filipek, Anna

    2016-01-01

    The Hsp90 chaperone activity is tightly regulated by interaction with many co-chaperones. Since CacyBP/SIP shares some sequence homology with a known Hsp90 co-chaperone, Sgt1, in this work we performed a set of experiments in order to verify whether CacyBP/SIP can interact with Hsp90. By applying the immunoprecipitation assay we have found that CacyBP/SIP binds to Hsp90 and that the middle (M) domain of Hsp90 is responsible for this binding. Furthermore, the proximity ligation assay (PLA) performed on HEp-2 cells has shown that the CacyBP/SIP-Hsp90 complexes are mainly localized in the cytoplasm of these cells. Using purified proteins and applying an ELISA we have shown that Hsp90 interacts directly with CacyBP/SIP and that the latter protein does not compete with Sgt1 for the binding to Hsp90. Moreover, inhibitors of Hsp90 do not perturb CacyBP/SIP-Hsp90 binding. Luciferase renaturation assay and citrate synthase aggregation assay with the use of recombinant proteins have revealed that CacyBP/SIP exhibits chaperone properties. Also, CacyBP/SIP-3xFLAG expression in HEp-2 cells results in the appearance of more basic Hsp90 forms in 2D electrophoresis, which may indicate that CacyBP/SIP dephosphorylates Hsp90. Altogether, the obtained results suggest that CacyBP/SIP is involved in regulation of the Hsp90 chaperone machinery. PMID:27249023

  5. Multiple Binding Poses in the Hydrophobic Cavity of Bee Odorant Binding Protein AmelOBP14

    PubMed Central

    2015-01-01

    In the first step of olfaction, odorants are bound and solubilized by small globular odorant binding proteins (OBPs) which shuttle them to the membrane of a sensory neuron. Low ligand affinity and selectivity at this step enable the recognition of a wide range of chemicals. Honey bee Apis mellifera’s OBP14 (AmelOBP14) binds different plant odorants in a largely hydrophobic cavity. In long molecular dynamics simulations in the presence and absence of ligand eugenol, we observe a highly dynamic C-terminal region which forms one side of the ligand-binding cavity, and the ligand drifts away from its crystallized orientation. Hamiltonian replica exchange simulations, allowing exchanges of conformations sampled by the real ligand with those sampled by a noninteracting dummy molecule and several intermediates, suggest an alternative, quite different ligand pose which is adopted immediately and which is stable in long simulations. Thermodynamic integration yields binding free energies which are in reasonable agreement with experimental data. PMID:26633245

  6. Plasma variation of corticosteroid-binding globulin and sex hormone-binding globulin.

    PubMed

    Lewis, J G; Möpert, B; Shand, B I; Doogue, M P; Soule, S G; Frampton, C M; Elder, P A

    2006-04-01

    Sex hormone-binding globulin (SHBG) and corticosteroid-binding globulin (CBG) circulate in plasma and bind their cognate ligands with high affinity, offering a steroid delivery system to target tissues by a variety of mechanisms. Analysis of these steroid-binding proteins is gaining importance in the clinical setting, although more information is warranted on their diurnal and biological variation. This study shows that plasma SHBG (in normal subjects) exhibits little diurnal or biological variation over the 30 day period studied, in contrast to CBG, where plasma levels peak in the early afternoon. This leads to attenuation of the diurnal free cortisol level rhythm compared to total cortisol. We also show that plasma CBG is significantly lower in male subjects with the metabolic syndrome compared to age-matched lean counterparts, and may therefore act as a surrogate marker of insulin resistance. The consequence of lower levels of CBG in these obese male subjects is reflected by higher levels of circulating free cortisol, potentially offering a more favourable environment for adipogenesis.

  7. Lipid binding to the carotenoid binding site in photosynthetic reaction centers.

    PubMed

    Deshmukh, Sasmit S; Tang, Kai; Kálmán, László

    2011-10-12

    Lipid binding to the carotenoid binding site near the inactive bacteriochlorophyll monomer was probed in the reaction centers of carotenoid-less mutant, R-26 from Rhodobacter sphaeroides. Recently, a marked light-induced change of the local dielectric constant in the vicinity of the inactive bacteriochlorophyll monomer was reported in wild type that was attributed to structural changes that ultimately lengthened the lifetime of the charge-separated state by 3 orders of magnitude (Deshmukh, S. S.; Williams, J. C.; Allen, J. P.; Kalman, L. Biochemistry 2011, 50, 340). Here in the R-26 reaction centers, the combination of light-induced structural changes and lipid binding resulted in a 5 orders of magnitude increase in the lifetime of the charge-separated state involving the oxidized dimer and the reduced primary quinone in proteoliposomes. Only saturated phospholipids with fatty acid chains of 12 and 14 carbon atoms long were bound successfully at 8 °C by cooling the reaction center protein slowly from room temperature. In addition to reporting a dramatic increase of the lifetime of the charge-separated state at physiologically relevant temperatures, this study reveals a novel lipid binding site in photosynthetic reaction center. These results shed light on a new potential application of the reaction center in energy storage as a light-driven biocapacitor since the charges separated by ∼30 Å in a low-dielectric medium can be prevented from recombination for hours.

  8. Mechanical unfolding of ribose binding protein and its comparison with other periplasmic binding proteins.

    PubMed

    Kotamarthi, Hema Chandra; Narayan, Satya; Ainavarapu, Sri Rama Koti

    2014-10-01

    Folding and unfolding studies on large, multidomain proteins are still rare despite their high abundance in genomes of prokaryotes and eukaryotes. Here, we investigate the unfolding properties of a 271 residue, two-domain ribose binding protein (RBP) from the bacterial periplasm using single-molecule force spectroscopy. We observe that RBP predominately unfolds via a two-state pathway with an unfolding force of ∼80 pN and an unfolding contour length of ∼95 nm. Only a small population (∼15%) of RBP follows three-state pathways. The ligand binding neither increases the mechanical stability nor influences the unfolding flux of RBP through different pathways. The kinetic partitioning between two-state and three-state pathways, which has been reported earlier for other periplasmic proteins, is also observed in RBP, albeit to a lesser extent. These results provide important insights into the mechanical stability and unfolding processes of large two-domain proteins and highlight the contrasting features upon ligand binding. Protein structural topology diagrams are used to explain the differences in the mechanical unfolding behavior of RBP with other periplasmic binding proteins.

  9. Structural Basis of Rnd1 Binding to Plexin Rho GTPase Binding Domains (RBDs)

    SciTech Connect

    Wang, Hui; Hota, Prasanta K.; Tong, Yufeng; Li, Buren; Shen, Limin; Nedyalkova, Lyudmila; Borthakur, Susmita; Kim, SoonJeung; Tempel, Wolfram; Buck, Matthias; Park, Hee-Won

    2011-09-20

    Plexin receptors regulate cell adhesion, migration, and guidance. The Rho GTPase binding domain (RBD) of plexin-A1 and -B1 can bind GTPases, including Rnd1. By contrast, plexin-C1 and -D1 reportedly bind Rnd2 but associate with Rnd1 only weakly. The structural basis of this differential Rnd1 GTPase binding to plexin RBDs remains unclear. Here, we solved the structure of the plexin-A2 RBD in complex with Rnd1 and the structures of the plexin-C1 and plexin-D1 RBDs alone, also compared with the previously determined plexin-B1 RBD.Rnd1 complex structure. The plexin-A2 RBD {center_dot} Rnd1 complex is a heterodimer, whereas plexin-B1 and -A2 RBDs homodimerize at high concentration in solution, consistent with a proposed model for plexin activation. Plexin-C1 and -D1 RBDs are monomeric, consistent with major residue changes in the homodimerization loop. In plexin-A2 and -B1, the RBD {beta}3-{beta}4 loop adjusts its conformation to allow Rnd1 binding, whereas minimal structural changes occur in Rnd1. The plexin-C1 and -D1 RBDs lack several key non-polar residues at the corresponding GTPase binding surface and do not significantly interact with Rnd1. Isothermal titration calorimetry measurements on plexin-C1 and -D1 mutants reveal that the introduction of non-polar residues in this loop generates affinity for Rnd1. Structure and sequence comparisons suggest a similar mode of Rnd1 binding to the RBDs, whereas mutagenesis suggests that the interface with the highly homologous Rnd2 GTPase is different in detail. Our results confirm, from a structural perspective, that Rnd1 does not play a role in the activation of plexin-C1 and -D1. Plexin functions appear to be regulated by subfamily-specific mechanisms, some of which involve different Rho family GTPases.

  10. Primary structure and binding activity of the hnRNP U protein: binding RNA through RGG box.

    PubMed Central

    Kiledjian, M; Dreyfuss, G

    1992-01-01

    Heterogeneous nuclear ribonucleoproteins (hnRNPs) are thought to influence the structure of hnRNA and participate in the processing of hnRNA to mRNA. The hnRNP U protein is an abundant nucleoplasmic phosphoprotein that is the largest of the major hnRNP proteins (120 kDa by SDS-PAGE). HnRNP U binds pre-mRNA in vivo and binds both RNA and ssDNA in vitro. Here we describe the cloning and sequencing of a cDNA encoding the hnRNP U protein, the determination of its amino acid sequence and the delineation of a region in this protein that confers RNA binding. The predicted amino acid sequence of hnRNP U contains 806 amino acids (88,939 Daltons), and shows no extensive homology to any known proteins. The N-terminus is rich in acidic residues and the C-terminus is glycine-rich. In addition, a glutamine-rich stretch, a putative NTP binding site and a putative nuclear localization signal are present. It could not be defined from the sequence what segment of the protein confers its RNA binding activity. We identified an RNA binding activity within the C-terminal glycine-rich 112 amino acids. This region, designated U protein glycine-rich RNA binding region (U-gly), can by itself bind RNA. Furthermore, fusion of U-gly to a heterologous bacterial protein (maltose binding protein) converts this fusion protein into an RNA binding protein. A 26 amino acid peptide within U-gly is necessary for the RNA binding activity of the U protein. Interestingly, this peptide contains a cluster of RGG repeats with characteristic spacing and this motif is found also in several other RNA binding proteins. We have termed this region the RGG box and propose that it is an RNA binding motif and a predictor of RNA binding activity. Images PMID:1628625

  11. Cooperativity in Binding Processes: New Insights from Phenomenological Modeling

    PubMed Central

    Cattoni, Diego I.; Chara, Osvaldo; Kaufman, Sergio B.; González Flecha, F. Luis

    2015-01-01

    Cooperative binding is one of the most interesting and not fully understood phenomena involved in control and regulation of biological processes. Here we analyze the simplest phenomenological model that can account for cooperativity (i.e. ligand binding to a macromolecule with two binding sites) by generating equilibrium binding isotherms from deterministically simulated binding time courses. We show that the Hill coefficients determined for cooperative binding, provide a good measure of the Gibbs free energy of interaction among binding sites, and that their values are independent of the free energy of association for empty sites. We also conclude that although negative cooperativity and different classes of binding sites cannot be distinguished at equilibrium, they can be kinetically differentiated. This feature highlights the usefulness of pre-equilibrium time-resolved strategies to explore binding models as a key complement of equilibrium experiments. Furthermore, our analysis shows that under conditions of strong negative cooperativity, the existence of some binding sites can be overlooked, and experiments at very high ligand concentrations can be a valuable tool to unmask such sites. PMID:26717487

  12. Characteristics of [3H]sultopride binding to rat brain.

    PubMed

    Mizuchi, A; Kitagawa, N; Saruta, S; Miyachi, Y

    1982-10-15

    The binding of [3H]sultopride, a benzamide drug, to rat brain was investigated in vitro. Specific [3H]sultopride binding was observed in dopaminergic regions: striatum, nucleus accumbens, olfactory tubercle, substantia nigra, frontal cortex and anterior pituitary. Specific [3H]sultopride binding to striatum was saturable and had one high affinity binding site with a KD of 5.8 nM and a total density of receptors 25.7 pmol/g. [3H]Sultopride binding was stereoselectively displaced by (-)- and (+)-sultopride. Inhibition studies indicated that all neuroleptic drugs and dopamine were capable of displacing sultopride from its binding sites. A highly significant correlation was observed between IC50 values against [3H]sultopride and those against [3H]spiperone binding. Specific [3H]sultopride binding was highly dependent on the presence of sodium ions. The results suggest that the characteristics of sultopride binding sites seem to be similar to those of the D2-receptor labeled by spiperone and haloperidol. The sultopride binding site was highly dependent on the presence of sodium ions and may thus be characterized as a sodium-dependent D2-receptor.

  13. Drug binding in sera deficient in lipoproteins, albumin or orosomucoid.

    PubMed Central

    Pike, E; Kierulf, P; Skuterud, B; Bredesen, J E; Lunde, P K

    1983-01-01

    The relative role of lipoproteins, albumin and orosomucoid in the serum binding variation of various drugs was examined by separate removal of these proteins. Lipoproteins were removed from serum by ultracentrifugation, albumin by affinity chromatography and orosomucoid by immunoprecipitation. Removal of the lipoproteins did not affect the serum binding of the acidic (phenytoin) and neutral (digitoxin) drugs tested, nor the basic drugs disopyramide, quinidine or propranolol. A reduction in binding of amitryptyline, nortriptyline, doxepin and desmethyldoxepin was observed. Removal of albumin did, with some exception for nortriptyline, not affect the serum binding of the basic drugs tested. A pronounced reduction in the binding of phenytoin and digitoxin was observed. Removal of orosomucoid did not affect the binding of the acidic and neutral drugs tested. A reduction in the binding of all the basic drugs tested was observed, especially for disopyramide whose binding almost disappeared. Quinidine, propranolol, phenytoin and digitoxin all bound to isolated lipoproteins, but the removal of lipoproteins had no effect on the total serum binding for these drugs. Hence, the use of deficient sera provides valuable information as to the quantitative role of the various proteins in drug binding, whereas studies using purified proteins are often necessary to examine the mechanisms of the drug protein interactions. Images Figure 1 Figure 2 PMID:6626414

  14. Kinetics characterization of c-Src binding to lipid membranes: Switching from labile to persistent binding.

    PubMed

    Le Roux, Anabel-Lise; Busquets, Maria Antònia; Sagués, Francesc; Pons, Miquel

    2016-02-01

    Cell signaling by the c-Src proto-oncogen requires the attachment of the protein to the inner side of the plasma membrane through the myristoylated N-terminal region, known as the SH4 domain. Additional binding regions of lower affinity are located in the neighbor intrinsically disordered Unique domain and the structured SH3 domain. Here we present a surface plasmon resonance study of the binding of a myristoylated protein including the SH4, Unique and SH3 domains of c-Src to immobilized liposomes. Two distinct binding processes were observed: a fast and a slow one. The second process lead to a persistently bound form (PB) with a slower binding and a much slower dissociation rate than the first one. The association and dissociation of the PB form could be detected using an anti-SH4 antibody. The kinetic analysis revealed that binding of the PB form follows a second order rate law suggesting that it involves the formation of c-Src dimers on the membrane surface. A kinetically equivalent PB form is observed in a myristoylated peptide containing only the SH4 domain but not in a construct including the three domains but with a 12-carbon lauroyl substituent instead of the 14-carbon myristoyl group. The PB form is observed with neutral lipids but its population increases when the immobilized liposomes contain negatively charged lipids. We suggest that the PB form may represent the active signaling form of c-Src while the labile form provides the capacity for fast 2D search of the target signaling site on the membrane surface. PMID:26638178

  15. Distinct binding and immunogenic properties of the gonococcal homologue of meningococcal factor h binding protein.

    PubMed

    Jongerius, Ilse; Lavender, Hayley; Tan, Lionel; Ruivo, Nicola; Exley, Rachel M; Caesar, Joseph J E; Lea, Susan M; Johnson, Steven; Tang, Christoph M

    2013-01-01

    Neisseria meningitidis is a leading cause of sepsis and meningitis. The bacterium recruits factor H (fH), a negative regulator of the complement system, to its surface via fH binding protein (fHbp), providing a mechanism to avoid complement-mediated killing. fHbp is an important antigen that elicits protective immunity against the meningococcus and has been divided into three different variant groups, V1, V2 and V3, or families A and B. However, immunisation with fHbp V1 does not result in cross-protection against V2 and V3 and vice versa. Furthermore, high affinity binding of fH could impair immune responses against fHbp. Here, we investigate a homologue of fHbp in Neisseria gonorrhoeae, designated as Gonococcal homologue of fHbp (Ghfp) which we show is a promising vaccine candidate for N. meningitidis. We demonstrate that Gfhp is not expressed on the surface of the gonococcus and, despite its high level of identity with fHbp, does not bind fH. Substitution of only two amino acids in Ghfp is sufficient to confer fH binding, while the corresponding residues in V3 fHbp are essential for high affinity fH binding. Furthermore, immune responses against Ghfp recognise V1, V2 and V3 fHbps expressed by a range of clinical isolates, and have serum bactericidal activity against N. meningitidis expressing fHbps from all variant groups.

  16. Nucleic acid binding affinity of fd gene 5 protein in the cooperative binding mode.

    PubMed

    Bobst, A M; Ireland, J C; Bobst, E V

    1984-02-25

    A sensitive ESR method which allows a direct quantitative determination of nucleic acid binding affinities of proteins under physiologically relevant conditions has been applied to the gene 5 protein of bacteriophage fd. This was achieved with two spin-labeled nucleic acids, (ldT, dT)n and (lA,A)n, which served as macro-molecular spin probes in ESR competition experiments. With the two different macromolecular spin probes, it was possible to determine the relative apparent affinity constants, Kapp, over a large affinity domain. In 20 mM Tris X HCl (pH 8.1), 1 mM sodium EDTA, 0.1 mM dithiothreitol, 10% (w/v) glycerol, 0.05% Triton, and 125 mM NaCl, the following affinity relationship was observed: K(dT)napp = 10(3) KfdDNAapp = 2 X 10(4) K(A)napp = 6.6 X 10(4) KrRNAapp = 1.5 X 10(5) KR17RNAapp. Increasing the [NaCl] from 125 to 200 mM caused considerably less tight binding of gene 5 protein to (lA,A)n, and a typical cooperative binding isotherm was observed, whereas at the lower [NaCl] used for the competition experiments, the binding was essentially stoichiometric. A computer fit of the experimental titration data at 200 mM NaCl gave an intrinsic binding constant, Kint, of 1300 M-1 and a cooperativity factor, omega, of 60 (Kint omega = Kapp) for (lA,A)n.

  17. Kinetics characterization of c-Src binding to lipid membranes: Switching from labile to persistent binding.

    PubMed

    Le Roux, Anabel-Lise; Busquets, Maria Antònia; Sagués, Francesc; Pons, Miquel

    2016-02-01

    Cell signaling by the c-Src proto-oncogen requires the attachment of the protein to the inner side of the plasma membrane through the myristoylated N-terminal region, known as the SH4 domain. Additional binding regions of lower affinity are located in the neighbor intrinsically disordered Unique domain and the structured SH3 domain. Here we present a surface plasmon resonance study of the binding of a myristoylated protein including the SH4, Unique and SH3 domains of c-Src to immobilized liposomes. Two distinct binding processes were observed: a fast and a slow one. The second process lead to a persistently bound form (PB) with a slower binding and a much slower dissociation rate than the first one. The association and dissociation of the PB form could be detected using an anti-SH4 antibody. The kinetic analysis revealed that binding of the PB form follows a second order rate law suggesting that it involves the formation of c-Src dimers on the membrane surface. A kinetically equivalent PB form is observed in a myristoylated peptide containing only the SH4 domain but not in a construct including the three domains but with a 12-carbon lauroyl substituent instead of the 14-carbon myristoyl group. The PB form is observed with neutral lipids but its population increases when the immobilized liposomes contain negatively charged lipids. We suggest that the PB form may represent the active signaling form of c-Src while the labile form provides the capacity for fast 2D search of the target signaling site on the membrane surface.

  18. Distinct binding and immunogenic properties of the gonococcal homologue of meningococcal factor h binding protein.

    PubMed

    Jongerius, Ilse; Lavender, Hayley; Tan, Lionel; Ruivo, Nicola; Exley, Rachel M; Caesar, Joseph J E; Lea, Susan M; Johnson, Steven; Tang, Christoph M

    2013-01-01

    Neisseria meningitidis is a leading cause of sepsis and meningitis. The bacterium recruits factor H (fH), a negative regulator of the complement system, to its surface via fH binding protein (fHbp), providing a mechanism to avoid complement-mediated killing. fHbp is an important antigen that elicits protective immunity against the meningococcus and has been divided into three different variant groups, V1, V2 and V3, or families A and B. However, immunisation with fHbp V1 does not result in cross-protection against V2 and V3 and vice versa. Furthermore, high affinity binding of fH could impair immune responses against fHbp. Here, we investigate a homologue of fHbp in Neisseria gonorrhoeae, designated as Gonococcal homologue of fHbp (Ghfp) which we show is a promising vaccine candidate for N. meningitidis. We demonstrate that Gfhp is not expressed on the surface of the gonococcus and, despite its high level of identity with fHbp, does not bind fH. Substitution of only two amino acids in Ghfp is sufficient to confer fH binding, while the corresponding residues in V3 fHbp are essential for high affinity fH binding. Furthermore, immune responses against Ghfp recognise V1, V2 and V3 fHbps expressed by a range of clinical isolates, and have serum bactericidal activity against N. meningitidis expressing fHbps from all variant groups. PMID:23935503

  19. Pulmonary surfactant protein A (SP-A) specifically binds dipalmitoylphosphatidylcholine

    SciTech Connect

    Kuroki, Y.; Akino, T. )

    1991-02-15

    Phospholipids are the major components of pulmonary surfactant. Dipalmitoylphosphatidylcholine is believed to be especially essential for the surfactant function of reducing the surface tension at the air-liquid interface. Surfactant protein A (SP-A) with a reduced denatured molecular mass of 26-38 kDa, characterized by a collagen-like structure and N-linked glycosylation, interacts strongly with a mixture of surfactant-like phospholipids. In the present study the direct binding of SP-A to phospholipids on a thin layer chromatogram was visualized using 125I-SP-A as a probe, so that the phospholipid specificities of SP-A binding and the structural requirements of SP-A and phospholipids for the binding could be examined. Although 125I-SP-A bound phosphatidylcholine and sphingomyeline, it was especially strong in binding dipalmitoylphosphatidylcholine, but failed to bind phosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine, and phosphatidylserine. Labeled SP-A also exhibited strong binding to distearoylphosphatidylcholine, but weak binding to dimyristoyl-, 1-palmitoyl-2-linoleoyl-, and dilinoleoylphosphatidylcholine. Unlabeled SP-A readily competed with labeled SP-A for phospholipid binding. SP-A strongly bound dipalmitoylglycerol produced by phospholipase C treatment of dipalmitoylphosphatidylcholine, but not palmitic acid. This protein also failed to bind lysophosphatidylcholine produced by phospholipase A2 treatment of dipalmitoylphosphatidylcholine. 125I-SP-A shows almost no binding to dipalmitoylphosphatidylglycerol and dipalmitoylphosphatidylethanolamine. The addition of 10 mM EGTA into the binding buffer reduced much of the 125I-SP-A binding to phospholipids. Excess deglycosylated SP-A competed with labeled SP-A for binding to dipalmitoylphosphatidylcholine, but the excess collagenase-resistant fragment of SP-A failed.

  20. Binding biological motion and visual features in working memory.

    PubMed

    Ding, Xiaowei; Zhao, Yangfan; Wu, Fan; Lu, Xiqian; Gao, Zaifeng; Shen, Mowei

    2015-06-01

    Working memory mechanisms for binding have been examined extensively in the last decade, yet few studies have explored bindings relating to human biological motion (BM). Human BM is the most salient and biologically significant kinetic information encountered in everyday life and is stored independently from other visual features (e.g., colors). The current study explored 3 critical issues of BM-related binding in working memory: (a) how many BM binding units can be retained in working memory, (b) whether involuntarily object-based binding occurs during BM binding, and (c) whether the maintenance of BM bindings in working memory requires attention above and beyond that needed to maintain the constituent dimensions. We isolated motion signals of human BM from non-BM sources by using point-light displays as to-be-memorized BM and presented the participants colored BM in a change detection task. We found that working memory capacity for BM-color bindings is rather low; only 1 or 2 BM-color bindings could be retained in working memory regardless of the presentation manners (Experiments 1-3). Furthermore, no object-based encoding took place for colored BM stimuli regardless of the processed dimensions (Experiments 4 and 5). Central executive attention contributes to the maintenance of BM-color bindings, yet maintaining BM bindings in working memory did not require more central attention than did maintaining the constituent dimensions in working memory (Experiment 6). Overall, these results suggest that keeping BM bindings in working memory is a fairly resource-demanding process, yet central executive attention does not play a special role in this cross-module binding.

  1. Binding biological motion and visual features in working memory.

    PubMed

    Ding, Xiaowei; Zhao, Yangfan; Wu, Fan; Lu, Xiqian; Gao, Zaifeng; Shen, Mowei

    2015-06-01

    Working memory mechanisms for binding have been examined extensively in the last decade, yet few studies have explored bindings relating to human biological motion (BM). Human BM is the most salient and biologically significant kinetic information encountered in everyday life and is stored independently from other visual features (e.g., colors). The current study explored 3 critical issues of BM-related binding in working memory: (a) how many BM binding units can be retained in working memory, (b) whether involuntarily object-based binding occurs during BM binding, and (c) whether the maintenance of BM bindings in working memory requires attention above and beyond that needed to maintain the constituent dimensions. We isolated motion signals of human BM from non-BM sources by using point-light displays as to-be-memorized BM and presented the participants colored BM in a change detection task. We found that working memory capacity for BM-color bindings is rather low; only 1 or 2 BM-color bindings could be retained in working memory regardless of the presentation manners (Experiments 1-3). Furthermore, no object-based encoding took place for colored BM stimuli regardless of the processed dimensions (Experiments 4 and 5). Central executive attention contributes to the maintenance of BM-color bindings, yet maintaining BM bindings in working memory did not require more central attention than did maintaining the constituent dimensions in working memory (Experiment 6). Overall, these results suggest that keeping BM bindings in working memory is a fairly resource-demanding process, yet central executive attention does not play a special role in this cross-module binding. PMID:25893683

  2. An Electrostatic Funnel in the GABA-Binding Pathway

    PubMed Central

    Lightstone, Felice C.

    2016-01-01

    The γ-aminobutyric acid type A receptor (GABAA-R) is a major inhibitory neuroreceptor that is activated by the binding of GABA. The structure of the GABAA-R is well characterized, and many of the binding site residues have been identified. However, most of these residues are obscured behind the C-loop that acts as a cover to the binding site. Thus, the mechanism by which the GABA molecule recognizes the binding site, and the pathway it takes to enter the binding site are both unclear. Through the completion and detailed analysis of 100 short, unbiased, independent molecular dynamics simulations, we have investigated this phenomenon of GABA entering the binding site. In each system, GABA was placed quasi-randomly near the binding site of a GABAA-R homology model, and atomistic simulations were carried out to observe the behavior of the GABA molecules. GABA fully entered the binding site in 19 of the 100 simulations. The pathway taken by these molecules was consistent and non-random; the GABA molecules approach the binding site from below, before passing up behind the C-loop and into the binding site. This binding pathway is driven by long-range electrostatic interactions, whereby the electrostatic field acts as a ‘funnel’ that sweeps the GABA molecules towards the binding site, at which point more specific atomic interactions take over. These findings define a nuanced mechanism whereby the GABAA-R uses the general zwitterionic features of the GABA molecule to identify a potential ligand some 2 nm away from the binding site. PMID:27119953

  3. Memory binding and white matter integrity in familial Alzheimer's disease.

    PubMed

    Parra, Mario A; Saarimäki, Heini; Bastin, Mark E; Londoño, Ana C; Pettit, Lewis; Lopera, Francisco; Della Sala, Sergio; Abrahams, Sharon

    2015-05-01

    Binding information in short-term and long-term memory are functions sensitive to Alzheimer's disease. They have been found to be affected in patients who meet criteria for familial Alzheimer's disease due to the mutation E280A of the PSEN1 gene. However, only short-term memory binding has been found to be affected in asymptomatic carriers of this mutation. The neural correlates of this dissociation are poorly understood. The present study used diffusion tensor magnetic resonance imaging to investigate whether the integrity of white matter structures could offer an account. A sample of 19 patients with familial Alzheimer's disease, 18 asymptomatic carriers and 21 non-carrier controls underwent diffusion tensor magnetic resonance imaging, neuropsychological and memory binding assessment. The short-term memory binding task required participants to detect changes across two consecutive screens displaying arrays of shapes, colours, or shape-colour bindings. The long-term memory binding task was a Paired Associates Learning Test. Performance on these tasks were entered into regression models. Relative to controls, patients with familial Alzheimer's disease performed poorly on both memory binding tasks. Asymptomatic carriers differed from controls only in the short-term memory binding task. White matter integrity explained poor memory binding performance only in patients with familial Alzheimer's disease. White matter water diffusion metrics from the frontal lobe accounted for poor performance on both memory binding tasks. Dissociations were found in the genu of corpus callosum which accounted for short-term memory binding impairments and in the hippocampal part of cingulum bundle which accounted for long-term memory binding deficits. The results indicate that white matter structures in the frontal and temporal lobes are vulnerable to the early stages of familial Alzheimer's disease and their damage is associated with impairments in two memory binding functions known to

  4. Memory binding and white matter integrity in familial Alzheimer's disease.

    PubMed

    Parra, Mario A; Saarimäki, Heini; Bastin, Mark E; Londoño, Ana C; Pettit, Lewis; Lopera, Francisco; Della Sala, Sergio; Abrahams, Sharon

    2015-05-01

    Binding information in short-term and long-term memory are functions sensitive to Alzheimer's disease. They have been found to be affected in patients who meet criteria for familial Alzheimer's disease due to the mutation E280A of the PSEN1 gene. However, only short-term memory binding has been found to be affected in asymptomatic carriers of this mutation. The neural correlates of this dissociation are poorly understood. The present study used diffusion tensor magnetic resonance imaging to investigate whether the integrity of white matter structures could offer an account. A sample of 19 patients with familial Alzheimer's disease, 18 asymptomatic carriers and 21 non-carrier controls underwent diffusion tensor magnetic resonance imaging, neuropsychological and memory binding assessment. The short-term memory binding task required participants to detect changes across two consecutive screens displaying arrays of shapes, colours, or shape-colour bindings. The long-term memory binding task was a Paired Associates Learning Test. Performance on these tasks were entered into regression models. Relative to controls, patients with familial Alzheimer's disease performed poorly on both memory binding tasks. Asymptomatic carriers differed from controls only in the short-term memory binding task. White matter integrity explained poor memory binding performance only in patients with familial Alzheimer's disease. White matter water diffusion metrics from the frontal lobe accounted for poor performance on both memory binding tasks. Dissociations were found in the genu of corpus callosum which accounted for short-term memory binding impairments and in the hippocampal part of cingulum bundle which accounted for long-term memory binding deficits. The results indicate that white matter structures in the frontal and temporal lobes are vulnerable to the early stages of familial Alzheimer's disease and their damage is associated with impairments in two memory binding functions known to

  5. An Electrostatic Funnel in the GABA-Binding Pathway.

    PubMed

    Carpenter, Timothy S; Lightstone, Felice C

    2016-04-01

    The γ-aminobutyric acid type A receptor (GABAA-R) is a major inhibitory neuroreceptor that is activated by the binding of GABA. The structure of the GABAA-R is well characterized, and many of the binding site residues have been identified. However, most of these residues are obscured behind the C-loop that acts as a cover to the binding site. Thus, the mechanism by which the GABA molecule recognizes the binding site, and the pathway it takes to enter the binding site are both unclear. Through the completion and detailed analysis of 100 short, unbiased, independent molecular dynamics simulations, we have investigated this phenomenon of GABA entering the binding site. In each system, GABA was placed quasi-randomly near the binding site of a GABAA-R homology model, and atomistic simulations were carried out to observe the behavior of the GABA molecules. GABA fully entered the binding site in 19 of the 100 simulations. The pathway taken by these molecules was consistent and non-random; the GABA molecules approach the binding site from below, before passing up behind the C-loop and into the binding site. This binding pathway is driven by long-range electrostatic interactions, whereby the electrostatic field acts as a 'funnel' that sweeps the GABA molecules towards the binding site, at which point more specific atomic interactions take over. These findings define a nuanced mechanism whereby the GABAA-R uses the general zwitterionic features of the GABA molecule to identify a potential ligand some 2 nm away from the binding site. PMID:27119953

  6. Binding Strength of Methylmercury to Aquatic NOM

    SciTech Connect

    Khwaja, A.; Bloom, P; Brezonik, P

    2010-01-01

    A competitive-ligand, equilibrium-dialysis technique using bromide measured methylmercury (MeHg{sup +}) binding to Suwannee River fulvic acid (SRFA) and NOM from a lake and a bog in Minnesota. Distribution coefficients (K{sub OC}) and stability constants (K{prime}) varied only slightly over a range of [Br{sup -}] and ratios of MeHg{sup +} to reduced sulfur, S{sub re}, the putative NOM binding site. For SRFA at pH 3.0, K{sub OC} ranged from 10{sup 7.7} to 10{sup 8.2} and K{prime} ranged from 10{sup 15.5} to 10{sup 16.0} over MeHg{sup +}:S{sub re} ratios from 1:1220 to 1:12200 (well below S{sub re} saturation). The importance of pH depends on the calculation model for binding constants. Over pH 2.98-7.62, K{sub OC} had little pH dependence (slope = 0.2; r{sup 2} = 0.4; range 10{sup 7.7}-10{sup 9.1}), but K{prime} calculated using thiol ligands with pK{sub a} = 9.96 had an inverse relationship (slope = -0.8; r{sup 2} = 0.9; range 10{sup 15.6}-10{sup 12.3}). A pH-independent model was obtained only with thiol pK{sub a} {le} 4. The mean K{prime}{sub 4} for SRFA (K{prime} with thiol pK{sub a} = 4.2) was 10{sup 9.8} (range 10{sup 9.11}-10{sup 10.27}) and small slope (0.02). Similar values were found for Spring Lake NOM; bog S2 NOM had values one-tenth as large. These constants are generally similar to published values; differences reflect variations in methods, pH, types of NOM, and calculation models.

  7. Molecular bases for the recognition of short peptide substrates and cysteine-directed modifications of human insulin-degrading enzyme

    PubMed Central

    Malito, Enrico; Ralat, Luis A.; Manolopoulou, Marika; Tsay, Julie L.; Wadlington, Natasha L.; Tang, Wei-Jen

    2009-01-01

    Insulin degrading enzyme (IDE) utilizes a large catalytic chamber to selectively bind and degrade peptide substrates such as insulin and amyloid β (Aβ). Tight interactions with substrates occur at an exosite located ~30Å away from the catalytic center that anchors the N-terminus of substrates to facilitate binding and subsequent cleavages at the catalytic site. However, IDE also degrades peptide substrates that are too short to occupy both the catalytic site and the exosite simultaneously. Here, we use kinins as a model system to address the kinetics and regulation of human IDE with short peptides. IDE specifically degrades bradykinin and kallidin at the Pro/Phe site. A 1.9Å crystal structure of bradykinin-bound IDE reveals the binding of bradykinin to the exosite, and not to the catalytic site. In agreement with observed high Km values, this suggests low affinity of bradykinin for IDE. This structure also provides the molecular basis on how the binding of short peptides at the exosite could regulate substrate recognition. We also found that human IDE is potently inhibited by physiologically relevant concentrations of S-nitrosylation and oxidation agents. Cysteine-directed modifications play a key role, since an IDE mutant devoid of all thirteen cysteines is insensitive to the inhibition by S-nitroso-glutathione, hydrogen peroxide, or N-ethylmaleimide. Specifically, cysteine 819 of human IDE is located inside the catalytic chamber pointing towards an extended hydrophobic pocket and is critical for the inactivation. Thiol-directed modification of this residue likely causes local structural perturbation to reduce substrate binding and catalysis. PMID:18986166

  8. Molecular bases for the recognition of short peptide substrates and cysteine-directed modifications of human insulin-degrading enzyme.

    PubMed

    Malito, Enrico; Ralat, Luis A; Manolopoulou, Marika; Tsay, Julie L; Wadlington, Natasha L; Tang, Wei-Jen

    2008-12-01

    Insulin degrading enzyme (IDE) utilizes a large catalytic chamber to selectively bind and degrade peptide substrates such as insulin and amyloid beta (Abeta). Tight interactions with substrates occur at an exosite located approximately 30 A away from the catalytic center that anchors the N-terminus of substrates to facilitate binding and subsequent cleavages at the catalytic site. However, IDE also degrades peptide substrates that are too short to occupy both the catalytic site and the exosite simultaneously. Here, we use kinins as a model system to address the kinetics and regulation of human IDE with short peptides. IDE specifically degrades bradykinin and kallidin at the Pro/Phe site. A 1.9 A crystal structure of bradykinin-bound IDE reveals the binding of bradykinin to the exosite and not to the catalytic site. In agreement with observed high K(m) values, this suggests low affinity of bradykinin for IDE. This structure also provides the molecular basis on how the binding of short peptides at the exosite could regulate substrate recognition. We also found that human IDE is potently inhibited by physiologically relevant concentrations of S-nitrosylation and oxidation agents. Cysteine-directed modifications play a key role, since an IDE mutant devoid of all 13 cysteines is insensitive to the inhibition by S-nitrosoglutathione, hydrogen peroxide, or N-ethylmaleimide. Specifically, cysteine 819 of human IDE is located inside the catalytic chamber pointing toward an extended hydrophobic pocket and is critical for the inactivation. Thiol-directed modification of this residue likely causes local structural perturbation to reduce substrate binding and catalysis.

  9. Molecular Bases for the Recognition of Short Peptide Substrates and Cysteine-Directed Modifications of Human Insulin-Degrading Enzyme

    SciTech Connect

    Malito, Enrico; Ralat, Luis A.; Manolopoulou, Marika; Tsay, Julie L.; Wadlington, Natasha L.; Tang, Wei-Jen

    2009-12-01

    Insulin degrading enzyme (IDE) utilizes a large catalytic chamber to selectively bind and degrade peptide substrates such as insulin and amyloid {beta} (A{beta}). Tight interactions with substrates occur at an exosite located 30 {angstrom} away from the catalytic center that anchors the N-terminus of substrates to facilitate binding and subsequent cleavages at the catalytic site. However, IDE also degrades peptide substrates that are too short to occupy both the catalytic site and the exosite simultaneously. Here, we use kinins as a model system to address the kinetics and regulation of human IDE with short peptides. IDE specifically degrades bradykinin and kallidin at the Pro/Phe site. A 1.9 {angstrom} crystal structure of bradykinin-bound IDE reveals the binding of bradykinin to the exosite and not to the catalytic site. In agreement with observed high K{sub m} values, this suggests low affinity of bradykinin for IDE. This structure also provides the molecular basis on how the binding of short peptides at the exosite could regulate substrate recognition. We also found that human IDE is potently inhibited by physiologically relevant concentrations of S-nitrosylation and oxidation agents. Cysteine-directed modifications play a key role, since an IDE mutant devoid of all 13 cysteines is insensitive to the inhibition by S-nitrosoglutathione, hydrogen peroxide, or N-ethylmaleimide. Specifically, cysteine 819 of human IDE is located inside the catalytic chamber pointing toward an extended hydrophobic pocket and is critical for the inactivation. Thiol-directed modification of this residue likely causes local structural perturbation to reduce substrate binding and catalysis.

  10. Copper-binding protein in Mimulus guttatus

    SciTech Connect

    Robinson, N.J.; Thurman, D.A.

    1985-01-01

    A Cu-binding protein has been purified from the roots of Mimulus guttatus using gel permeation chromatography on Sephadex G-75 and anion exchange chromatography on DEAE Biogel A. The protein has similar properties to putative metallothioneins (MTS) purified from other angiosperms. Putative MT was estimated by measuring the relative percentage incorporation of (/sup 35/S) into fractions containing the protein after HPLC on SW 3000-gel. In the roots of both Cu-tolerant and non tolerant plants synthesis of putative MT is induced by increased Cu concentration in the nutrient solution. The relative percentage incorporation of (/sup 35/S) into putative MT is significantly higher in extracts from the roots of Cu-tolerant than non tolerant M. guttatus after growth in 1 ..mu..M Cu suggesting involvement in the mechanism of tolerance. 22 refs., 2 figs., 1 tab.

  11. Physical factors affecting chloroquine binding to melanin.

    PubMed

    Schroeder, R L; Pendleton, P; Gerber, J P

    2015-10-01

    Chloroquine is an antimalarial drug but is also prescribed for conditions such as rheumatoid arthritis. Long-term users risk toxic side effects, including retinopathy, thought to be caused by chloroquine accumulation on ocular melanin. Although the binding potential of chloroquine to melanin has been investigated previously, our study is the first to demonstrate clear links between chloroquine adsorption by melanin and system factors including temperature, pH, melanin type, and particle size. In the current work, two Sepia melanins were compared with bovine eye as a representative mammalian melanin. Increasing the surface anionic character due to a pH change from 4.7 to 7.4 increased each melanin's affinity for chloroquine. Although the chloroquine isotherms exhibited an apparently strong interaction with each melanin, isosteric heat analysis indicated a competitive interaction. Buffer solution cations competed effectively at low surface coverage; chloroquine adsorption occurs via buffer cation displacement and is promoted by temperature-influenced secondary structure swelling.

  12. Two hypervariable minisatellite DNA binding proteins.

    PubMed

    Wahls, W P; Swenson, G; Moore, P D

    1991-06-25

    Hypervariable minisatellite DNA sequences are short, tandemly repeated sequences present at numerous loci in eukaryotes. They stimulate intermolecular homologous recombination up to 13-fold in human cells in culture and may be specific sites for the initiation of recombination in the eukaryotic genome (Wahls, W.P., Wallace, L.J., & Moore, P.D. (1990) Cell 60, 95-103). Reported here is the detection and partial purification of two hypervariable minisatellite DNA binding proteins, called Msbp-2 and Msbp-3, present in the nuclear extracts of human HeLa cells. The proteins elute from a gel filtration column with a native mass of 200-250 kDa and have sizes of 77 kDa and 115 kDa respectively. PMID:2062643

  13. Method and apparatus for detecting chemical binding

    DOEpatents

    Warner, Benjamin P.; Havrilla, George J.; Miller, Thomasin C.; Wells, Cyndi A.

    2007-07-10

    The method for screening binding between a target binder and potential pharmaceutical chemicals involves sending a solution (preferably an aqueous solution) of the target binder through a conduit to a size exclusion filter, the target binder being too large to pass through the size exclusion filter, and then sending a solution of one or more potential pharmaceutical chemicals (preferably an aqueous solution) through the same conduit to the size exclusion filter after target binder has collected on the filter. The potential pharmaceutical chemicals are small enough to pass through the filter. Afterwards, x-rays are sent from an x-ray source to the size exclusion filter, and if the potential pharmaceutical chemicals form a complex with the target binder, the complex produces an x-ray fluorescence signal having an intensity that indicates that a complex has formed.

  14. Lactation-induced cadmium-binding proteins

    SciTech Connect

    Bhattacharyya, M.H.; Solaiman, D.; Garvey, J.S.; Miyazaki, W.Y.

    1987-01-01

    Previously we have demonstrated an increase during midlactation in /sup 109/Cd adsorption and increased retention by the duodenum, kidney, and mammary tissue of mouse dams receiving environmental levels of cadmium//sup 109/Cd via drinking water, with little change in /sup 109/Cd retention in liver and jejunum compared to nonpregnant controls. Results are reported here of a study of cadmium deposition during midlactation as associated with induction of metallothionein (MT). A cadmium/hemoglobin (Cd/Hb) assay and radioimmunoassay for MT which measures heat-stable cadmium binding capacity in tissues was used to determine MT concentrations in fractions of kidney, liver, duodenum, and jejunum from female mice. Both assays demonstrated clear lactation-induced increases in MT concentrations in liver, kidney, and duodenum, with MT concentrations falling rapidly to control levels after weaning. 4 refs., 1 tab.

  15. Gaussian polarizable-ion tight binding

    NASA Astrophysics Data System (ADS)

    Boleininger, Max; Guilbert, Anne AY; Horsfield, Andrew P.

    2016-10-01

    To interpret ultrafast dynamics experiments on large molecules, computer simulation is required due to the complex response to the laser field. We present a method capable of efficiently computing the static electronic response of large systems to external electric fields. This is achieved by extending the density-functional tight binding method to include larger basis sets and by multipole expansion of the charge density into electrostatically interacting Gaussian distributions. Polarizabilities for a range of hydrocarbon molecules are computed for a multipole expansion up to quadrupole order, giving excellent agreement with experimental values, with average errors similar to those from density functional theory, but at a small fraction of the cost. We apply the model in conjunction with the polarizable-point-dipoles model to estimate the internal fields in amorphous poly(3-hexylthiophene-2,5-diyl).

  16. Method And Apparatus For Detecting Chemical Binding

    DOEpatents

    Warner, Benjamin P.; Havrilla, George J.; Miller, Thomasin C.; Wells, Cyndi A.

    2005-02-22

    The method for screening binding between a target binder and potential pharmaceutical chemicals involves sending a solution (preferably an aqueous solution) of the target binder through a conduit to a size exclusion filter, the target binder being too large to pass through the size exclusion filter, and then sending a solution of one or more potential pharmaceutical chemicals (preferably an aqueous solution) through the same conduit to the size exclusion filter after target binder has collected on the filter. The potential pharmaceutical chemicals are small enough to pass through the filter. Afterwards, x-rays are sent from an x-ray source to the size exclusion filter, and if the potential pharmaceutical chemicals form a complex with the target binder, the complex produces an x-ray fluorescence signal having an intensity that indicates that a complex has formed.

  17. Engineering short peptide sequences for uranyl binding.

    PubMed

    Lebrun, Colette; Starck, Matthieu; Gathu, Vicky; Chenavier, Yves; Delangle, Pascale

    2014-12-01

    Peptides are interesting tools to rationalize uranyl-protein interactions, which are relevant to uranium toxicity in vivo. Structured cyclic peptide scaffolds were chosen as promising candidates to coordinate uranyl thanks to four amino acid side chains pre-oriented towards the dioxo cation equatorial plane. The binding of uranyl by a series of decapeptides has been investigated with complementary analytical and spectroscopic methods to determine the key parameters for the formation of stable uranyl-peptide complexes. The molar ellipticity of the uranyl complex at 195 nm is directly correlated to its stability, which demonstrates that the β-sheet structure is optimal for high stability in the peptide series. Cyclodecapeptides with four glutamate residues exhibit the highest affinities for uranyl with log KC =8.0-8.4 and, therefore, appear as good starting points for the design of high-affinity uranyl-chelating peptides. PMID:25324194

  18. DNA binding and aggregation by carbon nanoparticles

    SciTech Connect

    An, Hongjie; Liu, Qingdai; Ji, Qiaoli; Jin, Bo

    2010-03-19

    Significant environmental and health risks due to the increasing applications of engineered nanoparticles in medical and industrial activities have been concerned by many communities. The interactions between nanomaterials and genomes have been poorly studied so far. This study examined interactions of DNA with carbon nanoparticles (CNP) using atomic force microscopy (AFM). We experimentally assessed how CNP affect DNA molecule and bacterial growth of Escherichia coli. We found that CNP were bound to the DNA molecules during the DNA replication in vivo. The results revealed that the interaction of DNA with CNP resulted in DNA molecule binding and aggregation both in vivo and in vitro in a dose-dependent manner, and consequently inhabiting the E. coli growth. While this was a preliminary study, our results showed that this nanoparticle may have a significant impact on genomic activities.

  19. A Detour for Yeast Oxysterol Binding Proteins*

    PubMed Central

    Beh, Christopher T.; McMaster, Christopher R.; Kozminski, Keith G.; Menon, Anant K.

    2012-01-01

    Oxysterol binding protein-related proteins, including the yeast proteins encoded by the OSH gene family (OSH1–OSH7), are implicated in the non-vesicular transfer of sterols between intracellular membranes and the plasma membrane. In light of recent studies, we revisited the proposal that Osh proteins are sterol transfer proteins and present new models consistent with known Osh protein functions. These models focus on the role of Osh proteins as sterol-dependent regulators of phosphoinositide and sphingolipid pathways. In contrast to their posited role as non-vesicular sterol transfer proteins, we propose that Osh proteins coordinate lipid signaling and membrane reorganization with the assembly of tethering complexes to promote molecular exchanges at membrane contact sites. PMID:22334669

  20. NMDA receptor binding in focal epilepsies

    PubMed Central

    McGinnity, C J; Koepp, M J; Hammers, A; Riaño Barros, D A; Pressler, R M; Luthra, S; Jones, P A; Trigg, W; Micallef, C; Symms, M R; Brooks, D J; Duncan, J S

    2015-01-01

    Objective To demonstrate altered N-methyl-d-aspartate (NMDA) receptor availability in patients with focal epilepsies using positron emission tomography (PET) and [18F]GE-179, a ligand that selectively binds to the open NMDA receptor ion channel, which is thought to be overactive in epilepsy. Methods Eleven patients (median age 33 years, 6 males) with known frequent interictal epileptiform discharges had an [18F]GE-179 PET scan, in a cross-sectional study. MRI showed a focal lesion but discordant EEG changes in two, was non-localising with multifocal EEG abnormalities in two, and was normal in the remaining seven patients who all had multifocal EEG changes. Individual patient [18F]GE-179 volume-of-distribution (VT) images were compared between individual patients and a group of 10 healthy controls (47 years, 7 males) using Statistical Parametric Mapping. Results Individual analyses revealed a single cluster of focal VT increase in four patients; one with a single and one with multifocal MRI lesions, and two with normal MRIs. Post hoc analysis revealed that, relative to controls, patients not taking antidepressants had globally increased [18F]GE-179 VT (+28%; p<0.002), and the three patients taking an antidepressant drug had globally reduced [18F]GE-179 VT (−29%; p<0.002). There were no focal abnormalities common to the epilepsy group. Conclusions In patients with focal epilepsies, we detected primarily global increases of [18F]GE-179 VT consistent with increased NMDA channel activation, but reduced availability in those taking antidepressant drugs, consistent with a possible mode of action of this class of drugs. [18F]GE-179 PET showed focal accentuations of NMDA binding in 4 out of 11 patients, with difficult to localise and treat focal epilepsy. PMID:25991402