Science.gov

Sample records for non-catalytic exosite binding

  1. A Single-Domain Llama Antibody Potently Inhibits the Enzymatic Activity of Botulinum Neurotoxin by Binding to the Non-Catalytic [alpha]-Exosite Binding Region

    SciTech Connect

    Dong, Jianbo; Thompson, Aaron A.; Fan, Yongfeng; Lou, Jianlong; Conrad, Fraser; Ho, Mengfei; Pires-Alves, Melissa; Wilson, Brenda A.; Stevens, Raymond C.; Marks, James D.

    2010-08-13

    Ingestion or inhalation of botulinum neurotoxin (BoNT) results in botulism, a severe and frequently fatal disease. Current treatments rely on antitoxins, which, while effective, cannot reverse symptoms once BoNT has entered the neuron. For treatments that can reverse intoxication, interest has focused on developing inhibitors of the enzymatic BoNT light chain (BoNT Lc). Such inhibitors typically mimic substrate and bind in or around the substrate cleavage pocket. To explore the full range of binding sites for serotype A light chain (BoNT/A Lc) inhibitors, we created a library of non-immune llama single-domain VHH (camelid heavy-chain variable region derived from heavy-chain-only antibody) antibodies displayed on the surface of the yeast Saccharomyces cerevisiae. Library selection on BoNT/A Lc yielded 15 yeast-displayed VHH with equilibrium dissociation constants (K{sub d}) from 230 to 0.03 nM measured by flow cytometry. Eight of 15 VHH inhibited the cleavage of substrate SNAP25 (synaptosome-associated protein of 25,000 Da) by BoNT/A Lc. The most potent VHH (Aa1) had a solution K{sub d} for BoNT/A Lc of 1.47 x 10{sup -10} M and an IC{sub 50} (50% inhibitory concentration) of 4.7 x 10{sup -10} M and was resistant to heat denaturation and reducing conditions. To understand the mechanism by which Aa1 inhibited catalysis, we solved the X-ray crystal structure of the BoNT/A Lc-Aa1 VHH complex at 2.6 {angstrom} resolution. The structure reveals that the Aa1 VHH binds in the {alpha}-exosite of the BoNT/A Lc, far from the active site for catalysis. The study validates the utility of non-immune llama VHH libraries as a source of enzyme inhibitors and identifies the BoNT/A Lc {alpha}-exosite as a target for inhibitor development.

  2. Structural insight into exosite binding and discovery of novel exosite inhibitors of botulinum neurotoxin serotype A through in silico screening

    NASA Astrophysics Data System (ADS)

    Hu, Xin; Legler, Patricia M.; Southall, Noel; Maloney, David J.; Simeonov, Anton; Jadhav, Ajit

    2014-07-01

    Botulinum neurotoxin serotype A (BoNT/A) is the most lethal toxin among the Tier 1 Select Agents. Development of potent and selective small molecule inhibitors against BoNT/A zinc metalloprotease remains a challenging problem due to its exceptionally large substrate binding surface and conformational plasticity. The exosites of the catalytic domain of BoNT/A are intriguing alternative sites for small molecule intervention, but their suitability for inhibitor design remains largely unexplored. In this study, we employed two recently identified exosite inhibitors, D-chicoric acid and lomofungin, to probe the structural features of the exosites and molecular mechanisms of synergistic inhibition. The results showed that D-chicoric acid favors binding at the α-exosite, whereas lomofungin preferentially binds at the β-exosite by mimicking the substrate β-sheet binding interaction. Molecular dynamics simulations and binding interaction analysis of the exosite inhibitors with BoNT/A revealed key elements and hotspots that likely contribute to the inhibitor binding and synergistic inhibition. Finally, we performed database virtual screening for novel inhibitors of BoNT/A targeting the exosites. Hits C1 and C2 showed non-competitive inhibition and likely target the α- and β-exosites, respectively. The identified exosite inhibitors may provide novel candidates for structure-based development of therapeutics against BoNT/A intoxication.

  3. Structural insight into exosite binding and discovery of novel exosite inhibitors of botulinum neurotoxin serotype A through in silico screening.

    PubMed

    Hu, Xin; Legler, Patricia M; Southall, Noel; Maloney, David J; Simeonov, Anton; Jadhav, Ajit

    2014-07-01

    Botulinum neurotoxin serotype A (BoNT/A) is the most lethal toxin among the Tier 1 Select Agents. Development of potent and selective small molecule inhibitors against BoNT/A zinc metalloprotease remains a challenging problem due to its exceptionally large substrate binding surface and conformational plasticity. The exosites of the catalytic domain of BoNT/A are intriguing alternative sites for small molecule intervention, but their suitability for inhibitor design remains largely unexplored. In this study, we employed two recently identified exosite inhibitors, D-chicoric acid and lomofungin, to probe the structural features of the exosites and molecular mechanisms of synergistic inhibition. The results showed that D-chicoric acid favors binding at the α-exosite, whereas lomofungin preferentially binds at the β-exosite by mimicking the substrate β-sheet binding interaction. Molecular dynamics simulations and binding interaction analysis of the exosite inhibitors with BoNT/A revealed key elements and hotspots that likely contribute to the inhibitor binding and synergistic inhibition. Finally, we performed database virtual screening for novel inhibitors of BoNT/A targeting the exosites. Hits C1 and C2 showed non-competitive inhibition and likely target the α- and β-exosites, respectively. The identified exosite inhibitors may provide novel candidates for structure-based development of therapeutics against BoNT/A intoxication.

  4. Structural Insight into Exosite Binding and Discovery of Novel Exosite Inhibitors of Botulinum Neurotoxin Serotype A Through in silico Screening

    PubMed Central

    Hu, Xin; Legler, Patricia M.; Southall, Noel; Maloney, David J.; Simeonov, Anton; Jadhav, Ajit

    2014-01-01

    Botulinum neurotoxin serotype A (BoNT/A) is the most lethal toxin among the Tier 1 Select Agents. Development of potent and selective small molecule inhibitors against BoNT/A zinc metalloprotease remains a challenging problem due to its exceptionally large substrate binding surface and conformational plasticity. The exosites of the catalytic domain of BoNT/A are intriguing alternative sites for small molecule intervention, but their suitability for inhibitor design remains largely unexplored. In this study, we employed two recently identified exosite inhibitors, D-chicoric acid and lomofungin, to probe the structural features of the exosites and molecular mechanisms of synergistic inhibition. The results showed that D-chicoric acid favors binding at the α-exosite, whereas lomofungin preferentially binds at the β-exosite by mimicking the substrate β-sheet binding interaction. Molecular dynamics simulations and binding interaction analysis of the exosite inhibitors with BoNT/A revealed key elements and hot-spots that likely contribute to the inhibitor binding and synergistic inhibition. Finally, we performed database virtual screening for novel inhibitors of BoNT/A targeting the exosites. Hits C1 and C2 showed non-competitive inhibition and likely target the α- and β-exosites, respectively. The identified exosite inhibitors may provide novel candidates for structure-based development of therapeutics against BoNT/A intoxication. PMID:24958623

  5. Design of highly potent urea-based, exosite-binding inhibitors selective for glutamate carboxypeptidase II.

    PubMed

    Tykvart, Jan; Schimer, Jiří; Jančařík, Andrej; Bařinková, Jitka; Navrátil, Václav; Starková, Jana; Šrámková, Karolína; Konvalinka, Jan; Majer, Pavel; Šácha, Pavel

    2015-05-28

    We present here a structure-aided design of inhibitors targeting the active site as well as exosites of glutamate carboxypeptidase II (GCPII), a prostate cancer marker, preparing potent and selective inhibitors that are more than 1000-fold more active toward GCPII than its closest human homologue, glutamate carboxypeptidase III (GCPIII). Additionally, we demonstrate that the prepared inhibitor conjugate can be used for sensitive and selective imaging of GCPII in mammalian cells.

  6. The Contribution of Non-catalytic Carbohydrate Binding Modules to the Activity of Lytic Polysaccharide Monooxygenases*

    PubMed Central

    Crouch, Lucy I.; Labourel, Aurore; Walton, Paul H.; Davies, Gideon J.; Gilbert, Harry J.

    2016-01-01

    Lignocellulosic biomass is a sustainable industrial substrate. Copper-dependent lytic polysaccharide monooxygenases (LPMOs) contribute to the degradation of lignocellulose and increase the efficiency of biofuel production. LPMOs can contain non-catalytic carbohydrate binding modules (CBMs), but their role in the activity of these enzymes is poorly understood. Here we explored the importance of CBMs in LPMO function. The family 2a CBMs of two monooxygenases, CfLPMO10 and TbLPMO10 from Cellulomonas fimi and Thermobispora bispora, respectively, were deleted and/or replaced with CBMs from other proteins. The data showed that the CBMs could potentiate and, surprisingly, inhibit LPMO activity, and that these effects were both enzyme-specific and substrate-specific. Removing the natural CBM or introducing CtCBM3a, from the Clostridium thermocellum cellulosome scaffoldin CipA, almost abolished the catalytic activity of the LPMOs against the cellulosic substrates. The deleterious effect of CBM removal likely reflects the importance of prolonged presentation of the enzyme on the surface of the substrate for efficient catalytic activity, as only LPMOs appended to CBMs bound tightly to cellulose. The negative impact of CtCBM3a is in sharp contrast with the capacity of this binding module to potentiate the activity of a range of glycoside hydrolases including cellulases. The deletion of the endogenous CBM from CfLPMO10 or the introduction of a family 10 CBM from Cellvibrio japonicus LPMO10B into TbLPMO10 influenced the quantity of non-oxidized products generated, demonstrating that CBMs can modulate the mode of action of LPMOs. This study demonstrates that engineered LPMO-CBM hybrids can display enhanced industrially relevant oxygenations. PMID:26801613

  7. The isomorphous structures of prethrombin2, hirugen-, and PPACK-thrombin: changes accompanying activation and exosite binding to thrombin.

    PubMed Central

    Vijayalakshmi, J.; Padmanabhan, K. P.; Mann, K. G.; Tulinsky, A.

    1994-01-01

    The X-ray crystal structure of prethrombin2 (pre2), the immediate inactive precursor of alpha-thrombin, has been determined at 2.0 A resolution complexed with hirugen. The structure has been refined to a final R-value of 0.169 using 14,211 observed reflections in the resolution range 8.0-2.0 A. A total of 202 water molecules have also been located in the structure. Comparison with the hirugen-thrombin complex showed that, apart from the flexible beginning and terminal regions of the molecule, there are 4 polypeptide segments in pre2 differing in conformation from the active enzyme (Pro 186-Asp 194, Gly 216-Gly 223, Gly 142-Pro 152, and the Arg 15-Ile 16 cleavage region). The formation of the Ile 16-Asp 194 ion pair and the specificity pocket are characteristic of serine protease activation with the conformation of the catalytic triad being conserved. With the determination of isomorphous structures of hirugen-thrombin and D-Phe-Pro-Arg chloromethyl ketone (PPACK)-thrombin, the changes that occur in the active site that affect the kinetics of chromogenic substrate hydrolysis on binding to the fibrinogen recognition exosite have been determined. The backbone of the Ala 190-Gly 197 segment in the active site has an average RMS difference of 0.55 A between the 2 structures (about 3.7 sigma compared to the bulk structure). This segment has 2 type II beta-bends, the first bend showing the largest shift due to hirugen binding. Another important feature was the 2 different conformations of the side chain of Glu 192. The side chain extends to solvent in hirugen-thrombin, which is compatible with the binding of substrates having an acidic residue in the P3 position (protein-C, thrombin platelet receptor). In PPACK-thrombin, the side chain of Asp 189 and the segment Arg 221A-Gly 223 move to provide space for the inhibitor, whereas in hirugen-thrombin, the Ala 190-Gly 197 movement expands the active site region. Although 8 water molecules are expelled from the active site with

  8. Evaluation of the non-catalytic binding function of Ts26GST a glutathione transferase isoform of Taenia solium.

    PubMed

    Plancarte, A; Romero, J R; Nava, G; Reyes, H; Hernández, M

    2014-03-01

    Taenia solium glutathione transferase isoform of 26.5 kDa (Ts26GST) was observed to bind non-catalytically to porphyrins, trans-trans-dienals, bile acids and fatty acids, as assessed by inhibition kinetics, fluorescence spectroscopy and competitive fluorescence assays with 8-anilino-1-naphthalene sulfonate (ANS). The quenching of Ts26GST intrinsic fluorescence allowed for the determination of the dissociation constants (KD) for all ligands. Obtained data indicate that Ts26GST binds to all ligands but with different affinity. Porphyrins and lipid peroxide products inhibited Ts26GST catalytic activity up to 100% in contrast with only 20-30% inhibition observed for bile acids and two saturated fatty acids. Non-competitive type inhibition was observed for all enzyme inhibitor ligands except for trans-trans-2,4-decadienal, which exhibited uncompetitive type inhibition. The dissociation constant value KD = 0.7 μM for the hematin ligand, determined by competitive fluorescence assays with ANS, was in good agreement with its inhibition kinetic value Ki = 0.3 μM and its intrinsic fluorescence quenching KD = 0.7 μM. The remaining ligands did not displace ANS from the enzyme suggesting the existence of different binding sites. In addition to the catalytic activity of Ts26GST the results obtained suggest that the enzyme exhibits a ligandin function with broad specificity towards nonsubstrate ligands.

  9. Fragment library screening identifies hits that bind to the non-catalytic surface of Pseudomonas aeruginosa DsbA1

    PubMed Central

    Headey, Stephen J.; Vazirani, Mansha; Shouldice, Stephen R.; Coinçon, Mathieu; Tay, Stephanie; Morton, Craig J.; Simpson, Jamie S.; Martin, Jennifer L.

    2017-01-01

    At a time when the antibiotic drug discovery pipeline has stalled, antibiotic resistance is accelerating with catastrophic implications for our ability to treat bacterial infections. Globally we face the prospect of a future when common infections can once again kill. Anti-virulence approaches that target the capacity of the bacterium to cause disease rather than the growth or survival of the bacterium itself offer a tantalizing prospect of novel antimicrobials. They may also reduce the propensity to induce resistance by removing the strong selection pressure imparted by bactericidal or bacteriostatic agents. In the human pathogen Pseudomonas aeruginosa, disulfide bond protein A (PaDsbA1) plays a central role in the oxidative folding of virulence factors and is therefore an attractive target for the development of new anti-virulence antimicrobials. Using a fragment-based approach we have identified small molecules that bind to PaDsbA1. The fragment hits show selective binding to PaDsbA1 over the DsbA protein from Escherichia coli, suggesting that developing species-specific narrow-spectrum inhibitors of DsbA enzymes may be feasible. Structures of a co-complex of PaDsbA1 with the highest affinity fragment identified in the screen reveal that the fragment binds on the non-catalytic surface of the protein at a domain interface. This biophysical and structural data represent a starting point in the development of higher affinity compounds, which will be assessed for their potential as selective PaDsbA1 inhibitors. PMID:28346540

  10. Dual Exosite-binding Inhibitors of Insulin-degrading Enzyme Challenge Its Role as the Primary Mediator of Insulin Clearance in Vivo*

    PubMed Central

    Durham, Timothy B.; Toth, James L.; Klimkowski, Valentine J.; Cao, Julia X. C.; Siesky, Angela M.; Alexander-Chacko, Jesline; Wu, Ginger Y.; Dixon, Jeffrey T.; McGee, James E.; Wang, Yong; Guo, Sherry Y.; Cavitt, Rachel Nicole; Schindler, John; Thibodeaux, Stefan J.; Calvert, Nathan A.; Coghlan, Michael J.; Sindelar, Dana K.; Christe, Michael; Kiselyov, Vladislav V.; Michael, M. Dodson; Sloop, Kyle W.

    2015-01-01

    Insulin-degrading enzyme (IDE, insulysin) is the best characterized catabolic enzyme implicated in proteolysis of insulin. Recently, a peptide inhibitor of IDE has been shown to affect levels of insulin, amylin, and glucagon in vivo. However, IDE−/− mice display variable phenotypes relating to fasting plasma insulin levels, glucose tolerance, and insulin sensitivity depending on the cohort and age of animals. Here, we interrogated the importance of IDE-mediated catabolism on insulin clearance in vivo. Using a structure-based design, we linked two newly identified ligands binding at unique IDE exosites together to construct a potent series of novel inhibitors. These compounds do not interact with the catalytic zinc of the protease. Because one of these inhibitors (NTE-1) was determined to have pharmacokinetic properties sufficient to sustain plasma levels >50 times its IDE IC50 value, studies in rodents were conducted. In oral glucose tolerance tests with diet-induced obese mice, NTE-1 treatment improved the glucose excursion. Yet in insulin tolerance tests and euglycemic clamp experiments, NTE-1 did not enhance insulin action or increase plasma insulin levels. Importantly, IDE inhibition with NTE-1 did result in elevated plasma amylin levels, suggesting the in vivo role of IDE action on amylin may be more significant than an effect on insulin. Furthermore, using the inhibitors described in this report, we demonstrate that in HEK cells IDE has little impact on insulin clearance. In total, evidence from our studies supports a minimal role for IDE in insulin metabolism in vivo and suggests IDE may be more important in helping regulate amylin clearance. PMID:26085101

  11. Affinity labeling of lysine-149 in the anion-binding exosite of human. alpha. -thrombin with an N sup. alpha. -(dinitrofluorobenzyl)hirudin C-terminal peptide

    SciTech Connect

    Bourdon, P.; Maraganore, J.M. ); Fenton, J.W. II )

    1990-07-10

    In order to define structural regions in thrombin that interact with hirudin, the N{sup {alpha}}-dinitrofluorobenzyl analogue of an undecapeptide was synthesized corresponding to residues 54-64 of hirudin (GDFEEIPEEY(O{sup 35}SO{sub 3})L (DNFB-({sup 35}S)Hir{sub 54-64})). DNFB-({sup 35}S)Hir{sub 54-64} was reacted at a 10-fold molar excess with human {alpha}-thrombin in phosphate-buffered saline at pH 7.4 and 23{degree}C for 18 h. Autoradiographs of the product in reducing SDS-polyacrylamide gels revealed a single {sup 35}S-labeled band of M{sub r} {approximately}32,500. The labeled product was coincident with a band on Coomassie Blue stained gels migrating slightly above an unlabeled thrombin band at M{sub r} {approximately}31,000. Incorporation of the {sup 35}S affinity reagent peptide was found markedly reduced when reaction with thrombin was performed in the presence of 5- and 20-fold molar excesses of unlabeled hirudin peptide, showing that a specific site was involved in complex formation. The human {alpha}-thrombin-DNFB-Hir{sub 54-64} complex was reduced, S-carboxymethylated, and treated with pepsin. Peptic fragments were separated by reverse-phase HPLC revealing two major peaks containing absorbance at 310 nm. Automated Edman degradation of the peptide fragments allowed identification of Lys-149 of human thrombin as the major site of DNFB-Hir{sub 54-64} derivatization. These data suggest that the anionic C-terminal tail of hirudin interacts with an anion-binding exosite in human thrombin removed 18-20 {angstrom} from the catalytic apparatus.

  12. Dual Exosite-binding Inhibitors of Insulin-degrading Enzyme Challenge Its Role as the Primary Mediator of Insulin Clearance in Vivo.

    PubMed

    Durham, Timothy B; Toth, James L; Klimkowski, Valentine J; Cao, Julia X C; Siesky, Angela M; Alexander-Chacko, Jesline; Wu, Ginger Y; Dixon, Jeffrey T; McGee, James E; Wang, Yong; Guo, Sherry Y; Cavitt, Rachel Nicole; Schindler, John; Thibodeaux, Stefan J; Calvert, Nathan A; Coghlan, Michael J; Sindelar, Dana K; Christe, Michael; Kiselyov, Vladislav V; Michael, M Dodson; Sloop, Kyle W

    2015-08-14

    Insulin-degrading enzyme (IDE, insulysin) is the best characterized catabolic enzyme implicated in proteolysis of insulin. Recently, a peptide inhibitor of IDE has been shown to affect levels of insulin, amylin, and glucagon in vivo. However, IDE(-/-) mice display variable phenotypes relating to fasting plasma insulin levels, glucose tolerance, and insulin sensitivity depending on the cohort and age of animals. Here, we interrogated the importance of IDE-mediated catabolism on insulin clearance in vivo. Using a structure-based design, we linked two newly identified ligands binding at unique IDE exosites together to construct a potent series of novel inhibitors. These compounds do not interact with the catalytic zinc of the protease. Because one of these inhibitors (NTE-1) was determined to have pharmacokinetic properties sufficient to sustain plasma levels >50 times its IDE IC50 value, studies in rodents were conducted. In oral glucose tolerance tests with diet-induced obese mice, NTE-1 treatment improved the glucose excursion. Yet in insulin tolerance tests and euglycemic clamp experiments, NTE-1 did not enhance insulin action or increase plasma insulin levels. Importantly, IDE inhibition with NTE-1 did result in elevated plasma amylin levels, suggesting the in vivo role of IDE action on amylin may be more significant than an effect on insulin. Furthermore, using the inhibitors described in this report, we demonstrate that in HEK cells IDE has little impact on insulin clearance. In total, evidence from our studies supports a minimal role for IDE in insulin metabolism in vivo and suggests IDE may be more important in helping regulate amylin clearance.

  13. Characterization of Selective Exosite-Binding Inhibitors of Matrix Metalloproteinase 13 That Prevent Articular Cartilage Degradation in Vitro

    PubMed Central

    2015-01-01

    Matrix metalloproteinase 13 (MMP-13) has been shown to be the main collagenase responsible for degradation of articular cartilage during osteoarthritis and therefore represents a target for drug development. As a result of high-throughput screening and structure–activity relationship studies, we identified a novel, highly selective class of MMP-13 inhibitors (compounds 1 (Q), 2 (Q1), and 3 (Q2)). Mechanistic characterization revealed a noncompetitive nature of these inhibitors with binding constants in the low micromolar range. Crystallographic analyses revealed two binding modes for compound 2 in the MMP-13 S1′ subsite and in an S1/S2* subsite. Type II collagen- and cartilage-protective effects exhibited by compounds 1, 2, and 3 suggested that these compounds might be efficacious in future in vivo studies. Finally, these compounds were also highly selective when tested against a panel of 30 proteases, which, in combination with a good CYP inhibition profile, suggested low off-target toxicity and drug–drug interactions in humans. PMID:25330343

  14. Characterization of selective exosite-binding inhibitors of matrix metalloproteinase 13 that prevent articular cartilage degradation in vitro.

    PubMed

    Spicer, Timothy P; Jiang, Jianwen; Taylor, Alexander B; Choi, Jun Yong; Hart, P John; Roush, William R; Fields, Gregg B; Hodder, Peter S; Minond, Dmitriy

    2014-11-26

    Matrix metalloproteinase 13 (MMP-13) has been shown to be the main collagenase responsible for degradation of articular cartilage during osteoarthritis and therefore represents a target for drug development. As a result of high-throughput screening and structure-activity relationship studies, we identified a novel, highly selective class of MMP-13 inhibitors (compounds 1 (Q), 2 (Q1), and 3 (Q2)). Mechanistic characterization revealed a noncompetitive nature of these inhibitors with binding constants in the low micromolar range. Crystallographic analyses revealed two binding modes for compound 2 in the MMP-13 S1' subsite and in an S1/S2* subsite. Type II collagen- and cartilage-protective effects exhibited by compounds 1, 2, and 3 suggested that these compounds might be efficacious in future in vivo studies. Finally, these compounds were also highly selective when tested against a panel of 30 proteases, which, in combination with a good CYP inhibition profile, suggested low off-target toxicity and drug-drug interactions in humans.

  15. The 'pair of sugar tongs' site on the non-catalytic domain C of barley alpha-amylase participates in substrate binding and activity.

    PubMed

    Bozonnet, Sophie; Jensen, Morten T; Nielsen, Morten M; Aghajari, Nushin; Jensen, Malene H; Kramhøft, Birte; Willemoës, Martin; Tranier, Samuel; Haser, Richard; Svensson, Birte

    2007-10-01

    Some starch-degrading enzymes accommodate carbohydrates at sites situated at a certain distance from the active site. In the crystal structure of barley alpha-amylase 1, oligosaccharide is thus bound to the 'sugar tongs' site. This site on the non-catalytic domain C in the C-terminal part of the molecule contains a key residue, Tyr380, which has numerous contacts with the oligosaccharide. The mutant enzymes Y380A and Y380M failed to bind to beta-cyclodextrin-Sepharose, a starch-mimic resin used for alpha-amylase affinity purification. The K(d) for beta-cyclodextrin binding to Y380A and Y380M was 1.4 mm compared to 0.20-0.25 mm for the wild-type, S378P and S378T enzymes. The substitution in the S378P enzyme mimics Pro376 in the barley alpha-amylase 2 isozyme, which in spite of its conserved Tyr378 did not bind oligosaccharide at the 'sugar tongs' in the structure. Crystal structures of both wild-type and S378P enzymes, but not the Y380A enzyme, showed binding of the pseudotetrasaccharide acarbose at the 'sugar tongs' site. The 'sugar tongs' site also contributed importantly to the adsorption to starch granules, as Kd = 0.47 mg.mL(-1) for the wild-type enzyme increased to 5.9 mg.mL(-1) for Y380A, which moreover catalyzed the release of soluble oligosaccharides from starch granules with only 10% of the wild-type activity. beta-cyclodextrin both inhibited binding to and suppressed activity on starch granules for wild-type and S378P enzymes, but did not affect these properties of Y380A, reflecting the functional role of Tyr380. In addition, the Y380A enzyme hydrolyzed amylose with reduced multiple attack, emphasizing that the 'sugar tongs' participates in multivalent binding of polysaccharide substrates.

  16. GpIbα interacts exclusively with exosite II of thrombin.

    PubMed

    Lechtenberg, Bernhard C; Freund, Stefan M V; Huntington, James A

    2014-02-20

    Activation of platelets by the serine protease thrombin is a critical event in haemostasis. This process involves the binding of thrombin to glycoprotein Ibα (GpIbα) and cleavage of protease-activated receptors (PARs). The N-terminal extracellular domain of GpIbα contains an acidic peptide stretch that has been identified as the main thrombin binding site, and both anion binding exosites of thrombin have been implicated in GpIbα binding, but it remains unclear how they are involved. This issue is of critical importance for the mechanism of platelet activation by thrombin. If both exosites bind to GpIbα, thrombin could potentially act as a platelet adhesion molecule or receptor dimerisation trigger. Alternatively, if only a single site is involved, GpIbα may serve as a cofactor for PAR-1 activation by thrombin. To determine the involvement of thrombin's two exosites in GpIbα binding, we employed the complementary methods of mutational analysis, binding studies, X-ray crystallography and NMR spectroscopy. Our results indicate that the peptide corresponding to the C-terminal portion of GpIbα and the entire extracellular domain bind exclusively to thrombin's exosite II. The interaction of thrombin with GpIbα thus serves to recruit thrombin activity to the platelet surface while leaving exosite I free for PAR-1 recognition.

  17. Botulinum neurotoxin A protease: discovery of natural product exosite inhibitors.

    PubMed

    Silhár, Peter; Capková, Katerina; Salzameda, Nicholas T; Barbieri, Joseph T; Hixon, Mark S; Janda, Kim D

    2010-03-10

    A new mechanistic class of BoNT/A zinc metalloprotease inhibitors, from Echinacea, exemplified by the natural product d-chicoric acid (I1) is disclosed. A detailed evaluation of chicoric acid's mechanism of inhibition reveals that the inhibitor binds to an exosite, displays noncompetitive partial inhibition, and is synergistic with a competitive active site inhibitor when used in combination. Other components found in Echinacea, I3 and I4, were also inhibitors of the protease.

  18. Probing BoNT/A Protease Exosites: Implications for Inhibitor Design and Light Chain Longevity

    PubMed Central

    2015-01-01

    Botulinum neurotoxin serotype A (BoNT/A) is one of the most lethal toxins known. Its extreme toxicity is due to its light chain (LC), a zinc protease that cleaves SNAP-25, a synaptosome-associated protein, leading to the inhibition of neuronal activity. Studies on BoNT/A LC have revealed that two regions, termed exosites, can play an important role in BoNT catalytic activity. A clear understanding of how these exosites influence neurotoxin catalytic activity would provide a critical framework for deciphering the mechanism of SNAP-25 cleavage and the design of inhibitors. Herein, based on the crystallographic structure of BoNT/A LC complexed with its substrate, we designed an α-exosite binding probe. Experiments with this unique probe demonstrated that α-exosite binding enhanced both catalytic activity and stability of the LC. These data help delineate why α-exosite binding is needed for SNAP-25 cleavage and also provide new insights into the extended lifetime observed for BoNT/A LC in vivo. PMID:25295706

  19. Exosite Interactions Impact Matrix Metalloproteinase Collagen Specificities*

    PubMed Central

    Robichaud, Trista K.; Steffensen, Bjorn; Fields, Gregg B.

    2011-01-01

    Members of the matrix metalloproteinase (MMP) family selectively cleave collagens in vivo. However, the substrate structural determinants that facilitate interaction with specific MMPs are not well defined. We hypothesized that type I–III collagen sequences located N- or C-terminal to the physiological cleavage site mediate substrate selectivity among MMP-1, MMP-2, MMP-8, MMP-13, and MMP-14/membrane-type 1 (MT1)-MMP. The enzyme kinetics for hydrolysis of three fluorogenic triple-helical peptides (fTHPs) was evaluated herein. The first fTHP contained consensus residues 769–783 from type I–III collagens, the second inserted α1(II) collagen residues 763–768 N-terminal to the consensus sequence, and the third inserted α1(II) collagen residues 784–792 C-terminal to the consensus sequence. Our analyses showed that insertion of the C-terminal residues significantly increased kcat/Km and kcat for MMP-1. MMP-13 showed the opposite behavior with a decreased kcat/Km and kcat and a greatly improved Km in response to the C-terminal residues. Insertion of the N-terminal residues enhanced kcat/Km and kcat for MMP-8 and MT1-MMP. For MMP-2, the C-terminal residues enhanced Km and dramatically decreased kcat, resulting in a decrease in the overall activity. These changes in activities and kinetic parameters represented the collagen preferences of MMP-8, MMP-13, and MT1-MMP well. Thus, interactions with secondary binding sites (exosites) helped direct the specificity of these enzymes. However, MMP-1 collagen preferences were not recapitulated by the fTHP studies. The preference of MMP-1 for type III collagen appears to be primarily based on the flexibility of the hydrolysis site of type III collagen compared with types I and II. Further characterization of exosite determinants that govern interactions of MMPs with collagenous substrates should aid the development of pharmacotherapeutics that target individual MMPs. PMID:21896477

  20. Structural and evolutionary aspects of two families of non-catalytic domains present in starch and glycogen binding proteins from microbes, plants and animals.

    PubMed

    Janeček, Štefan; Svensson, Birte; MacGregor, E Ann

    2011-10-10

    Starch-binding domains (SBDs) comprise distinct protein modules that bind starch, glycogen or related carbohydrates and have been classified into different families of carbohydrate-binding modules (CBMs). The present review focuses on SBDs of CBM20 and CBM48 found in amylolytic enzymes from several glycoside hydrolase (GH) families GH13, GH14, GH15, GH31, GH57 and GH77, as well as in a number of regulatory enzymes, e.g., phosphoglucan, water dikinase-3, genethonin-1, laforin, starch-excess protein-4, the β-subunit of AMP-activated protein kinase and its homologues from sucrose non-fermenting-1 protein kinase SNF1 complex, and an adaptor-regulator related to the SNF1/AMPK family, AKINβγ. CBM20s and CBM48s of amylolytic enzymes occur predominantly in the microbial world, whereas the non-amylolytic proteins containing these modules are mostly of plant and animal origin. Comparison of amino acid sequences and tertiary structures of CBM20 and CBM48 reveals the close relatedness of these SBDs and, in some cases, glycogen-binding domains (GBDs). The families CBM20 and CBM48 share both an ancestral form and the mode of starch/glycogen binding at one or two binding sites. Phylogenetic analyses demonstrate that they exhibit independent behaviour, i.e. each family forms its own part in an evolutionary tree, with enzyme specificity (protein function) being well represented within each family. The distinction between CBM20 and CBM48 families is not sharp since there are representatives in both CBM families that possess an intermediate character. These are, for example, CBM20s from hypothetical GH57 amylopullulanase (probably lacking the starch-binding site 2) and CBM48s from the GH13 pullulanase subfamily (probably lacking the starch/glycogen-binding site 1). The knowledge gained concerning the occurrence of these SBDs and GBDs through the range of taxonomy will support future experimental research.

  1. Functional Roles of the Non-Catalytic Calcium-Binding Sites in the N-Terminal Domain of Human Peptidylarginine Deiminase 4

    PubMed Central

    Liu, Yi-Liang; Tsai, I-Chen; Chang, Chia-Wei; Liao, Ya-Fan; Liu, Guang-Yaw; Hung, Hui-Chih

    2013-01-01

    This study investigated the functional roles of the N-terminal Ca2+ ion-binding sites, in terms of enzyme catalysis and stability, of peptidylarginine deiminase 4 (PAD4). Amino acid residues located in the N-terminal Ca2+-binding site of PAD4 were mutated to disrupt the binding of Ca2+ ions. Kinetic data suggest that Asp155, Asp157 and Asp179, which directly coordinate Ca3 and Ca4, are essential for catalysis in PAD4. For D155A, D157A and D179A, the kcat/Km,BAEE values were 0.02, 0.63 and 0.01 s−1mM−1 (20.8 s−1mM−1 for WT), respectively. Asn153 and Asp176 are directly coordinated with Ca3 and indirectly coordinated with Ca5 via a water molecule. However, N153A displayed low enzymatic activity with a kcat value of 0.3 s−1 (13.3 s−1 for wild-type), whereas D176A retained some catalytic power with a kcat of 9.7 s−1. Asp168 is the direct ligand for Ca5, and Ca5 coordination by Glu252 is mediated by two water molecules. However, mutation of these two residues to Ala did not cause a reduction in the kcat/Km,BAEE values, which indicates that the binding of Ca5 may not be required for PAD4 enzymatic activity. The possible conformational changes of these PAD4 mutants were examined. Thermal stability analysis of the PAD4 mutants in the absence or presence of Ca2+ indicated that the conformational stability of the enzyme is highly dependent on Ca2+ ions. In addition, the results of urea-induced denaturation for the N153, D155, D157 and D179 series mutants further suggest that the binding of Ca2+ ions in the N-terminal Ca2+-binding site stabilizes the overall conformational stability of PAD4. Therefore, our data strongly suggest that the N-terminal Ca2+ ions play critical roles in the full activation of the PAD4 enzyme. PMID:23382808

  2. Functional roles of the non-catalytic calcium-binding sites in the N-terminal domain of human peptidylarginine deiminase 4.

    PubMed

    Liu, Yi-Liang; Tsai, I-Chen; Chang, Chia-Wei; Liao, Ya-Fan; Liu, Guang-Yaw; Hung, Hui-Chih

    2013-01-01

    This study investigated the functional roles of the N-terminal Ca(2+) ion-binding sites, in terms of enzyme catalysis and stability, of peptidylarginine deiminase 4 (PAD4). Amino acid residues located in the N-terminal Ca(2+)-binding site of PAD4 were mutated to disrupt the binding of Ca(2+) ions. Kinetic data suggest that Asp155, Asp157 and Asp179, which directly coordinate Ca3 and Ca4, are essential for catalysis in PAD4. For D155A, D157A and D179A, the k(cat)/K(m,BAEE) values were 0.02, 0.63 and 0.01 s(-1)mM(-1) (20.8 s(-1)mM(-1) for WT), respectively. Asn153 and Asp176 are directly coordinated with Ca3 and indirectly coordinated with Ca5 via a water molecule. However, N153A displayed low enzymatic activity with a k(cat) value of 0.3 s(-1) (13.3 s(-1) for wild-type), whereas D176A retained some catalytic power with a k(cat) of 9.7 s(-1). Asp168 is the direct ligand for Ca5, and Ca5 coordination by Glu252 is mediated by two water molecules. However, mutation of these two residues to Ala did not cause a reduction in the k(cat)/K(m,BAEE) values, which indicates that the binding of Ca5 may not be required for PAD4 enzymatic activity. The possible conformational changes of these PAD4 mutants were examined. Thermal stability analysis of the PAD4 mutants in the absence or presence of Ca(2+) indicated that the conformational stability of the enzyme is highly dependent on Ca(2+) ions. In addition, the results of urea-induced denaturation for the N153, D155, D157 and D179 series mutants further suggest that the binding of Ca(2+) ions in the N-terminal Ca(2+)-binding site stabilizes the overall conformational stability of PAD4. Therefore, our data strongly suggest that the N-terminal Ca(2+) ions play critical roles in the full activation of the PAD4 enzyme.

  3. Comparison of fluorigenic peptide substrates PL50, SNAPTide, and BoTest A/E for BoNT/A detection and quantification: exosite binding confers high-assay sensitivity.

    PubMed

    Ouimet, Tanja; Duquesnoy, Sophie; Poras, Hervé; Fournié-Zaluski, Marie-Claude; Roques, Bernard P

    2013-07-01

    Detection and quantification of low doses of botulinum toxin serotype A (BoNT/A) in medicinal preparations require precise and sensitive methods. With mounting pressure from governmental authorities to replace the mouse LD50 assay, interest in alternative methods such as the endopeptidase assay, quantifying the toxin active moiety, is growing. Using internal collision-induced fluorescence quenching, Pharmaleads produced peptides encompassing the SNAP-25 cleavage site: a 17-mer (PL63) and a 48-mer (PL50) reaching the previously identified α-exosite, with PL50 showing higher apparent affinity for BoNT/A. Peptide mapping experiments revealed that this increased affinity is mainly due to a connecting peptide sequence between the N-terminus of PL63 and the α-exosite, identifying a new cooperative exosite on BoNT/A. Other endopeptidase substrates available, including SNAPTide and BoTest A/E, are both based on fluorescent resonance energy transfer (FRET) technology. To compare these assays, their limits of detection and quantification were determined using light chain or 150-kDa BoNT/A. Detection limits of PL50 and BoTest were over 100 times better than those using SNAPtide in standard conditions. Although the BoTest possessed a detection limit around 0.2 pM for either BoNT/A form, its quantification limit (9.7 pM) using purified BoNT/A was 12 times inferior to PL50, estimated at 0.8 pM, suitable for medicinal preparation quantification.

  4. Non-catalytic recuperative reformer

    SciTech Connect

    Khinkis, Mark J.; Kozlov, Aleksandr P.; Kurek, Harry

    2015-12-22

    A non-catalytic recuperative reformer has a flue gas flow path for conducting hot flue gas from a thermal process and a reforming mixture flow path for conducting a reforming mixture. At least a portion of the reforming mixture flow path is embedded in the flue gas flow path to permit heat transfer from the hot flue gas to the reforming mixture. The reforming mixture flow path contains substantially no material commonly used as a catalyst for reforming hydrocarbon fuel (e.g., nickel oxide, platinum group elements or rhenium), but instead the reforming mixture is reformed into a higher calorific fuel via reactions due to the heat transfer and residence time. In a preferred embodiment, extended surfaces of metal material such as stainless steel or metal alloy that are high in nickel content are included within at least a portion of the reforming mixture flow path.

  5. New small-size peptides modulators of the exosite of BACE1 obtained from a structure-based design.

    PubMed

    Gutierrez, Lucas J; Angelina, Emilio; Gyebrovszki, Andrea; Fülöp, Lívia; Peruchena, Nelida; Baldoni, Héctor A; Penke, Botond; Enriz, Ricardo D

    2017-02-01

    We report here two new small-size peptides acting as modulators of the β-site APP cleaving enzyme 1 (BACE1) exosite. Ac-YPYFDPL-NH2 and Ac-YPYDIPL-NH2 displayed a moderate but significant inhibitory effect on BACE1. These peptides were obtained from a molecular modeling study. By combining MD simulations with ab initio and DFT calculations, a simple and generally applicable procedure to evaluate the binding energies of small-size peptides interacting with the exosite of the BACE1 is reported here. The structural aspects obtained for the different complexes were analyzed providing a clear picture about the binding interactions of these peptides. These interactions have been investigated within the framework of the density functional theory and the quantum theory of atoms in molecules using a reduced model. Although the approach used here was traditionally applied to the study of noncovalent interactions in small molecules complexes in gas phase, we show, through in this work, that this methodology is also a very powerful tool for the study of biomolecular complexes, providing a very detailed description of the binding event of peptides modulators at the exosite of BACE1.

  6. Matrix metalloproteinase-10/TIMP-2 structure and analyses define conserved core interactions and diverse exosite interactions in MMP/TIMP complexes.

    PubMed

    Batra, Jyotica; Soares, Alexei S; Mehner, Christine; Radisky, Evette S

    2013-01-01

    Matrix metalloproteinases (MMPs) play central roles in vertebrate tissue development, remodeling, and repair. The endogenous tissue inhibitors of metalloproteinases (TIMPs) regulate proteolytic activity by binding tightly to the MMP active site. While each of the four TIMPs can inhibit most MMPs, binding data reveal tremendous heterogeneity in affinities of different TIMP/MMP pairs, and the structural features that differentiate stronger from weaker complexes are poorly understood. Here we report the crystal structure of the comparatively weakly bound human MMP-10/TIMP-2 complex at 2.1 Å resolution. Comparison with previously reported structures of MMP-3/TIMP-1, MT1-MMP/TIMP-2, MMP-13/TIMP-2, and MMP-10/TIMP-1 complexes offers insights into the structural basis of binding selectivity. Our analyses identify a group of highly conserved contacts at the heart of MMP/TIMP complexes that define the conserved mechanism of inhibition, as well as a second category of diverse adventitious contacts at the periphery of the interfaces. The AB loop of the TIMP N-terminal domain and the contact loops of the TIMP C-terminal domain form highly variable peripheral contacts that can be considered as separate exosite interactions. In some complexes these exosite contacts are extensive, while in other complexes the AB loop or C-terminal domain contacts are greatly reduced and appear to contribute little to complex stability. Our data suggest that exosite interactions can enhance MMP/TIMP binding, although in the relatively weakly bound MMP-10/TIMP-2 complex they are not well optimized to do so. Formation of highly variable exosite interactions may provide a general mechanism by which TIMPs are fine-tuned for distinct regulatory roles in biology.

  7. Calcium pentosan polysulfate is a multifaceted exosite inhibitor of aggrecanases.

    PubMed

    Troeberg, Linda; Fushimi, Kazunari; Khokha, Rama; Emonard, Hervé; Ghosh, Peter; Nagase, Hideaki

    2008-10-01

    Degradation of the cartilage proteoglycan aggrecan is a key early event in the development of osteoarthritis. Adamalysin with thrombospondin motifs (ADAMTS) -4 and ADAMTS-5 are considered to be the main enzymes responsible for aggrecan breakdown, making them attractive drugs targets. Here we show that calcium pentosan polysulfate (CaPPS), a chemically sulfated xylanopyranose from beechwood, is a multifaceted exosite inhibitor of the aggrecanases and protects cartilage against aggrecan degradation. CaPPS interacts with the noncatalytic spacer domain of ADAMTS-4 and the cysteine-rich domain of ADAMTS-5, blocking activity against their natural substrate aggrecan with inhibitory concentration 50 values of 10-40 nM but only weakly inhibiting hydrolysis of a nonglycosylated recombinant protein substrate. In addition, CaPPS increased cartilage levels of tissue inhibitor of metalloproteinases-3 (TIMP-3), an endogenous inhibitor of ADAMTS-4 and -5. This was due to the ability of CaPPS to block endocytosis of TIMP-3 mediated by low-density lipoprotein receptor-related protein. CaPPS also increased the affinity of TIMP-3 for ADAMTS-4 and -5 by more than 100-fold, improving the efficacy of TIMP-3 as an aggrecanase inhibitor. Studies with TIMP-3-null mouse cartilage indicated that CaPPS inhibition of aggrecan degradation is TIMP-3 dependent. These unique properties make CaPPS a prototypic disease-modifying agent for osteoarthritis.

  8. Monoclonal Antibodies Targeting the Alpha-Exosite of Botulinum Neurotoxin Serotype/A Inhibit Catalytic Activity

    PubMed Central

    Fan, Yongfeng; Geren, Isin N.; Dong, Jianbo; Lou, Jianlong; Wen, Weihua; Conrad, Fraser; Smith, Theresa J.; Smith, Leonard A.; Ho, Mengfei; Pires-Alves, Melissa; Wilson, Brenda A.; Marks, James D.

    2015-01-01

    The paralytic disease botulism is caused by botulinum neurotoxins (BoNT), multi-domain proteins containing a zinc endopeptidase that cleaves the cognate SNARE protein, thereby blocking acetylcholine neurotransmitter release. Antitoxins currently used to treat botulism neutralize circulating BoNT but cannot enter, bind to or neutralize BoNT that has already entered the neuron. The light chain endopeptidase domain (LC) of BoNT serotype A (BoNT/A) was targeted for generation of monoclonal antibodies (mAbs) that could reverse paralysis resulting from intoxication by BoNT/A. Single-chain variable fragment (scFv) libraries from immunized humans and mice were displayed on the surface of yeast, and 19 BoNT/A LC-specific mAbs were isolated by using fluorescence-activated cell sorting (FACS). Affinities of the mAbs for BoNT/A LC ranged from a KD value of 9.0×10−11 M to 3.53×10−8 M (mean KD 5.38×10−9 M and median KD 1.53×10−9 M), as determined by flow cytometry analysis. Eleven mAbs inhibited BoNT/A LC catalytic activity with IC50 values ranging from 8.3 ~73×10−9 M. The fine epitopes of selected mAbs were also mapped by alanine-scanning mutagenesis, revealing that the inhibitory mAbs bound the α-exosite region remote from the BoNT/A LC catalytic center. The results provide mAbs that could prove useful for intracellular reversal of paralysis post-intoxication and further define epitopes that could be targeted by small molecule inhibitors. PMID:26275214

  9. A novel approach to inhibit bone resorption: exosite inhibitors against cathepsin K

    PubMed Central

    Panwar, Preety; Søe, Kent; Guido, Rafael VC; Bueno, Renata V C; Delaisse, Jean‐Marie

    2016-01-01

    Background and Purpose Cathepsin K (CatK) is a major drug target for the treatment of osteoporosis. Potent active site‐directed inhibitors have been developed and showed variable success in clinical trials. These inhibitors block the entire activity of CatK and thus may interfere with other pathways. The present study investigates the antiresorptive effect of an exosite inhibitor that selectively inhibits only the therapeutically relevant collagenase activity of CatK. Experimental Approach Human osteoclasts and fibroblasts were used to analyse the effect of the exosite inhibitor, ortho‐dihydrotanshinone (DHT1), and the active site inhibitor, odanacatib (ODN), on bone resorption and TGF‐ß1 degradation. Cell cultures, Western blot, light and scanning electron microscopy as well as energy dispersive X‐ray spectroscopy, molecular modelling and enzymatic assays were used to evaluate the inhibitors. Key Results DHT1 selectively inhibited the collagenase activity of CatK, without affecting the viability of osteoclasts. Both inhibitors abolished the formation of resorption trenches, with DHT1 having a slightly higher IC50 value than ODN. Maximal reductions of other resorption parameters by DHT1 and ODN were comparable, respectively 41% and 33% for total resorption surface, 46% and 48% for resorption depths, and 83% and 61% for C‐terminal telopetide fragment (CTX) release. DHT1 did not affect the turnover of fibrosis‐associated TGF‐ß1 in fibroblasts, whereas 500 nM ODN was inhibitory. Conclusions and Implications Our study shows that an exosite inhibitor of CatK can specifically block bone resorption without interfering with other pathways. PMID:26562357

  10. Designing Allosteric Regulators of Thrombin. Exosite 2 Features Multiple Sub-Sites That Can Be Targeted By Sulfated Small Molecules for Inducing Inhibition

    PubMed Central

    Sidhu, Preetpal Singh; Abdel Aziz, May H.; Sarkar, Aurijit; Mehta, Akul Y.; Zhou, Qibing; Desai, Umesh R.

    2013-01-01

    We recently designed a group of novel exosite 2-directed, sulfated, small, allosteric inhibitors of thrombin. To develop more potent inhibitors, monosulfated benzofuran tri- and tetrameric homologs of the parent designed dimers were synthesized in 7–8 steps and found to exhibit a wide range of potencies. Among these, trimer 9a was found to be nearly 10-fold more potent than the first generation molecules. Michaelis-Menten studies indicated an allosteric mechanism of inhibition. Competitive studies using a hirudin peptide (exosite 1 ligand) and, unfractionated heparin, heparin octasaccharide and γ′-fibrinogen peptide (exosite 2 ligands), demonstrated exosite 2 recognition in a manner different from the parent dimers. Alanine scanning mutagenesis of 12 Arg/Lys residues of exosite 2 revealed a defect in 9a potency for Arg233Ala thrombin only confirming the major difference in site of recognition between the two structurally related sulfated benzofurans. The results suggest that multiple avenues are available within exosite 2 for inducing thrombin inhibition. PMID:23718540

  11. The Catalytic and Non-catalytic Functions of the Brahma Chromatin-Remodeling Protein Collaborate to Fine-Tune Circadian Transcription in Drosophila

    PubMed Central

    Kwok, Rosanna S.; Li, Ying H.; Lei, Anna J.; Edery, Isaac; Chiu, Joanna C.

    2015-01-01

    Daily rhythms in gene expression play a critical role in the progression of circadian clocks, and are under regulation by transcription factor binding, histone modifications, RNA polymerase II (RNAPII) recruitment and elongation, and post-transcriptional mechanisms. Although previous studies have shown that clock-controlled genes exhibit rhythmic chromatin modifications, less is known about the functions performed by chromatin remodelers in animal clockwork. Here we have identified the Brahma (Brm) complex as a regulator of the Drosophila clock. In Drosophila, CLOCK (CLK) is the master transcriptional activator driving cyclical gene expression by participating in an auto-inhibitory feedback loop that involves stimulating the expression of the main negative regulators, period (per) and timeless (tim). BRM functions catalytically to increase nucleosome density at the promoters of per and tim, creating an overall restrictive chromatin landscape to limit transcriptional output during the active phase of cycling gene expression. In addition, the non-catalytic function of BRM regulates the level and binding of CLK to target promoters and maintains transient RNAPII stalling at the per promoter, likely by recruiting repressive and pausing factors. By disentangling its catalytic versus non-catalytic functions at the promoters of CLK target genes, we uncovered a multi-leveled mechanism in which BRM fine-tunes circadian transcription. PMID:26132408

  12. A non-catalytic N-terminal domain negatively influences the nucleotide exchange activity of translation elongation factor 1Bα.

    PubMed

    Trosiuk, Tetiana V; Shalak, Vyacheslav F; Szczepanowski, Roman H; Negrutskii, Boris S; El'skaya, Anna V

    2016-02-01

    Eukaryotic translation elongation factor 1Bα (eEF1Bα) is a functional homolog of the bacterial factor EF-Ts, and is a component of the macromolecular eEF1B complex. eEF1Bα functions as a catalyst of guanine nucleotide exchange on translation elongation factor 1A (eEF1A). The C-terminal domain of eEF1Bα is necessary and sufficient for its catalytic activity, whereas the N-terminal domain interacts with eukaryotic translation elongation factor 1Bγ (eEF1Bγ) to form a tight complex. However, eEF1Bγ has been shown to enhance the catalytic activity of eEF1Bα attributed to the C-terminal domain of eEF1Bα. This suggests that the N-terminal domain of eEF1Bα may in some way influence the guanine nucleotide exchange process. We have shown that full-length recombinant eEF1Bα and its truncated forms are non-globular proteins with elongated shapes. Truncation of the N-terminal domain of eEF1Bα, which is dispensable for catalytic activity, resulted in acceleration of the rate of guanine nucleotide exchange on eEF1A compared to full-length eEF1Bα. A similar effect on the catalytic activity of eEF1Bα was observed after its interaction with eEF1Bγ. We suggest that the non-catalytic N-terminal domain of eEF1Bα may interfere with eEF1A binding to the C-terminal catalytic domain, resulting in a decrease in the overall rate of the guanine nucleotide exchange reaction. Formation of a tight complex between the eEF1Bγ and eEF1Bα N-terminal domains abolishes this inhibitory effect.

  13. Non-Catalytic RISCs and Kinetics Determine Mammalian siRNA Sub-Cellular Localization.

    PubMed

    Ji, Fengmin; Liu, Lianyun; Tien, Ya-Hsin; Peng, Yi-Hsien; Lee, Hoong-Chien

    2015-01-01

    Small interfering RNAs (siRNAs) are fundamental to the regulation of cell function. Much is known about its gene interfering mechanism, but a kinetic description of it is still lacking. Here, we derived a set of reaction-diffusion equations for multiple RNA-induced silencing complex (RISC) pathways that give quantitative temporal and spatial descriptions of the siRNA process in mammalian cell, and are able to correctly describe all salient experimentally observed patterns of sub-cellular siRNA localization, including those that, at first glance, appear irreconcilable. These results suggest siRNA sub-cellular localization mainly concerns the non-catalytic RISC-target complex, and is caused by the selectiveness of RISC-target interaction and the permeability of the nuclear membrane to siRNA strands but not to RISC-target complexes. Our method is expected to be useful in devising RNAi based cell regulation strategies.

  14. Analysis of the lipid profiles in a section of bovine brain via non-catalytic rapid methylation.

    PubMed

    Jung, Jong-Min; Kim, Ki-Hyun; Kwon, Eilhann E; Kim, Hyung-Wook

    2015-09-21

    The main focus of this study is to mechanistically introduce a new qualitative and quantitative technique for mapping the lipid profile of a sectional brain via non-catalytic transesterification reaction (i.e., pseudo catalytic reaction in the presence of porous materials). One of the biggest technical advances achieved in this study is the qualitative and quantitative analysis of lipid from bovine brain in trace quantities in the magnitude of μg via the non-catalytic pathway. Moreover, newly introduced derivatization in this work showed high tolerance against impurities (i.e., water and extractives).

  15. Targeting Non-Catalytic Cysteine Residues Through Structure-Guided Drug Discovery.

    PubMed

    Hallenbeck, Kenneth K; Turner, David M; Renslo, Adam R; Arkin, Michelle R

    2017-01-01

    The targeting of non-catalytic cysteine residues with small molecules is drawing increased attention from drug discovery scientists and chemical biologists. From a biological perspective, genomic and proteomic studies have revealed the presence of cysteine mutations in several oncogenic proteins, suggesting both a functional role for these residues and also a strategy for targeting them in an 'allele specific' manner. For the medicinal chemist, the structure-guided design of cysteine- reactive molecules is an appealing strategy to realize improved selectivity and pharmacodynamic properties in drug leads. Finally, for chemical biologists, the modification of cysteine residues provides a unique means to probe protein structure and allosteric regulation. Here, we review three applications of cysteinemodifying small molecules: 1) the optimization of existing drug leads, 2) the discovery of new lead compounds, and 3) the use of cysteine-reactive molecules as probes of protein dynamics. In each case, structure-guided design plays a key role in determining which cysteine residue(s) to target and in designing compounds with the proper geometry to enable both covalent interaction with the targeted cysteine and productive non-covalent interactions with nearby protein residues.

  16. Kinetics of Non-Catalytic Esterification of Free Fatty Acids Present in Jatropha Oil.

    PubMed

    Prasanna Rani, Karna Narayana; Ramana Neeharika, Tulasi Sri Venkata; Kumar, Thella Prathap; Satyavathi, Bankupalli; Sailu, Chintha

    2016-05-01

    Non-catalytic esterfication of free fatty acids (FFA) present in vegetable oils is an alternative pretreatment process for the biodiesel production. Biodiesel, consists of long-chain fatty acid methyl esters (FAME) and is obtained from renewable sources such as vegetable oils or animal fat. This study presents kinetics of thermal esterification of free fatty acids present in jatropha oil with methanol. The effect of process parameters like reaction time (1-5 h), temperature (170-190°C) and oil to methanol ratio (1:3-1:5) at constant pressure was investigated. The optimal conditions were found to be oil to methanol ratio of 1:4, 190°C, at 27.1 bar and 5 h which gave a maximum conversion of 95.1%. A second order kinetic model for both forward and backward reactions was proposed to study the reaction system. A good agreement was observed between the experimental data and the model values. The activation energy for forward reaction and the heat of reaction were found to be 36.364 Kcal/mol and 1.74 Kcal/mol respectively.

  17. Targeting Non-Catalytic Cysteine Residues Through Structure-Guided Drug Discovery

    PubMed Central

    Hallenbeck, Kenneth K.; Turner, David M.; Renslo, Adam R.; Arkin, Michelle R.

    2017-01-01

    The targeting of non-catalytic cysteine residues with small molecules is drawing increased attention from drug discovery scientists and chemical biologists. From a biological perspective, genomic and proteomic studies have revealed the presence of cysteine mutations in several oncogenic proteins, suggesting both a functional role for these residues and also a strategy for targeting them in an ‘allele specific’ manner. For the medicinal chemist, the structure-guided design of cysteine-reactive molecules is an appealing strategy to realize improved selectivity and pharmacodynamic properties in drug leads. Finally, for chemical biologists, the modification of cysteine residues provides a unique means to probe protein structure and allosteric regulation. Here, we review three applications of cysteine-modifying small molecules: 1) the optimization of existing drug leads, 2) the discovery of new lead compounds, and 3) the use of cysteine-reactive molecules as probes of protein dynamics. In each case, structure-guided design plays a key role in determining which cysteine residue(s) to target and in designing compounds with the proper geometry to enable both covalent interaction with the targeted cysteine and productive non-covalent interactions with nearby protein residues. PMID:27449257

  18. Non-catalytic transfer hydrogenation in supercritical CO2 for coal liquefaction

    NASA Astrophysics Data System (ADS)

    Elhussien, Hussien

    This thesis presents the results of the investigation on developing and evaluating a low temperature (<150°C) non - catalytic process using a hydrogen transfer agent (instead of molecu-lar hydrogen) for coal dissolution in supercritical CO2. The main idea behind the thesis was that one hydrogen atom from water and one hydrogen atom from the hydrogen transfer agent (HTA) were used to hydrogenate the coal. The products of coal dissolution were non-polar and polar while the supercritical CO2, which enhanced the rates of hydrogenation and dissolution of the non-polar molecules and removal from the reaction site, was non-polar. The polar modifier (PM) for CO2 was added to the freed to aid in the dissolution and removal of the polar components. The addition of a phase transfer agent (PTA) allowed a seamless transport of the ions and by-product between the aqueous and organic phases. DDAB, used as the PTA, is an effective phase transfer catalyst and showed enhancement to the coal dissolution process. COAL + DH- +H 2O → COAL.H2 + DHO-- This process has a great feature due to the fact that the chemicals were obtained without requir-ing to first convert coal to CO and H2 units as in indirect coal liquefaction. The experiments were conducted in a unique reactor set up that can be connected through two lines. one line to feed the reactor with supercritical CO 2 and the other connected to gas chromatograph. The use of the supercritical CO2 enhanced the solvent option due to the chemical extraction, in addition to the low environmental impact and energy cost. In this thesis the experiment were conducted at five different temperatures from atmos-pheric to 140°C, 3000 - 6000 psi with five component of feed mixture, namely water, HTA, PTA, coal, and PM in semi batch vessels reactor system with a volume of 100 mL. The results show that the chemicals were obtained without requiring to first convert coal to CO and H2 units as in indirect coal liquefaction. The results show that

  19. Non-catalytic alcoholysis process for production of biodiesel fuel by using bubble column reactor

    NASA Astrophysics Data System (ADS)

    Hagiwara, S.; Nabetani, H.; Nakajima, M.

    2015-04-01

    -edible lipids by use of the SMV reactor has not been examined yet. Therefore, this study aims to investigate the productivity of biodiesel produced from waste vegetable oils using the SMV reactor. Biodiesel fuel is a replacement for diesel as a fuel produced from biomass resources. It is generally produced as a FAME derived from vegetable oil by using alkaline catalyzed alcoholysis process. This alkaline method requires deacidification process prior to the reaction process and the alkaline catalyst removal process after the reaction. Those process increases the total cost of biodiesel fuel production. In order to solve the problems in the conventional alkaline catalyzed alcoholysis process, the authors proposed a non-catalytic alcoholysis process called the Superheated Methanol Vapor (SMV) method with bubble column reactor. So, this study aims to investigate the productivity of biodiesel produced from vegetable oils and other lipids using the SMV method with bubble column reactor.

  20. Crystal structure of full-length human collagenase 3 (MMP-13) with peptides in the active site defines exosites in the catalytic domain

    PubMed Central

    Stura, Enrico A.; Visse, Robert; Cuniasse, Philippe; Dive, Vincent; Nagase, Hideaki

    2013-01-01

    Matrix metalloproteinase (MMP)-13 is one of the mammalian collagenases that play key roles in tissue remodelling and repair and in progression of diseases such as cancer, arthritis, atherosclerosis, and aneurysm. For collagenase to cleave triple helical collagens, the triple helical structure has to be locally unwound before hydrolysis, but this process is not well understood. We report crystal structures of catalytically inactive full-length human MMP-13(E223A) in complex with peptides of 14–26 aa derived from the cleaved prodomain during activation. Peptides are bound to the active site of the enzyme by forming an extended β-strand with Glu40 or Tyr46 inserted into the S1′ specificity pocket. The structure of the N-terminal part of the peptides is variable and interacts with different parts of the catalytic domain. Those areas are designated substrate-dependent exosites, in that they accommodate different peptide structures, whereas the precise positioning of the substrate backbone is maintained in the active site. These modes of peptide-MMP-13 interactions have led us to propose how triple helical collagen strands fit into the active site cleft of the collagenase.—Stura, E. A., Visse, R., Cuniasse, P., Dive, V., Nagase, H. Crystal structure of full-length human collagenase 3 (MMP-13) with peptides in the active site defines exosites in the catalytic domain. PMID:23913860

  1. Deletion of a non-catalytic region increases the enzymatic activity of a β-agarase from Flammeovirga sp. MY04

    NASA Astrophysics Data System (ADS)

    Han, Wenjun; Gu, Jingyan; Liu, Huihui; Li, Fuchuan; Wu, Zhihong; Li, Yuezhong

    2015-10-01

    A Glycoside hydrolase (GH) typically contains one catalytic module and varied non-catalytic regions (NCRs). However, effects of the NCRs to the catalytic modules remain mostly unclear except the carbohydrate-binding modules (CBMs). AgaG4 is a GH16 endo- β-agarase of the agarolytic marine bacterium Flammeovirga sp. MY04. The enzyme consists of an extra sugar-binding peptide within the catalytic module, with no predictable CBMs but function-unknown sequences in the NCR, which is a new characteristic of agarase sequences. In this study, we deleted the NCR sequence, a 140-amino acid peptide at the C-terminus and expressed the truncated gene, agaG4-T140, in Escherichia coli. After purification and refolding, the truncated agarase rAgaG4-T140 retained the same catalytic temperature and pH value as rAgaG4. Using combined fluorescent labeling, HPLC and MS/MS techniques, we identified the end-products of agarose degradation by rAgaG4-T140 as neoagarotetraose and neoagarohexaose, with a final molar ratio of 1.53:1 and a conversion ratio of approximately 70%, which were similar to those of rAgaG4. However, the truncated agarase rAgaG4-T140 markedly decreased in protein solubility by 15 times and increased in enzymatic activities by 35 times. The oligosaccharide production of rAgaG4-T140 was approximately 25 times the weight of that produced by equimolar rAgaG4. This study provides some insights into the influences of NCR on the biochemical characteristics of agarase AgaG4 and implies some new strategies to improve the properties of a GH enzyme.

  2. Biodiesel production with continuous supercritical process: non-catalytic transesterification and esterification with or without carbon dioxide.

    PubMed

    Tsai, Yu-Ting; Lin, Ho-mu; Lee, Ming-Jer

    2013-10-01

    The non-catalytic transesterification of refined sunflower oil with supercritical methanol, in the presence of carbon dioxide, was conducted in a tubular reactor at temperatures from 553.2 to 593.2K and pressures up to 25.0 MPa. The FAME yield can be achieved up to about 0.70 at 593.2 K and 10.0 MPa in 23 min with methanol:oil of 25:1 in molar ratio. The effect of adding CO2 on the FAME yield is insignificant. The kinetic behavior of the non-catalytic esterification and transesterification of oleic acid or waste cooking oil (WCO) with supercritical methanol was also investigated. By using the supercritical process, the presence of free fatty acid (FFA) in WCO gives positive contribution to FAME production. The FAME yield of 0.90 from WCO can be achieved in 13 min at 573.2K. The kinetic data of supercritical transesterification and esterifaication were correlated well with a power-law model.

  3. Targeting the GPIbα Binding Site of Thrombin To Simultaneously Induce Dual Anticoagulant and Antiplatelet Effects

    PubMed Central

    2015-01-01

    Exosite 2 of human thrombin contributes to two opposing pathways, the anticoagulant pathway and the platelet aggregation pathway. We reasoned that an exosite 2 directed allosteric thrombin inhibitor should simultaneously induce anticoagulant and antiplatelet effects. To assess this, we synthesized SbO4L based on the sulfated tyrosine-containing sequence of GPIbα. SbO4L was synthesized in three simple steps in high yield and found to be a highly selective, direct inhibitor of thrombin. Michelis–Menten kinetic studies indicated a noncompetitive mechanism of inhibition. Competitive inhibition studies suggested ideal competition with heparin and glycoprotein Ibα, as predicted. Studies with site-directed mutants of thrombin indicated that SbO4L binds to Arg233, Lys235, and Lys236 of exosite 2. SbO4L prevented thrombin-mediated platelet activation and aggregation as expected on the basis of competition with GPIbα. SbO4L presents a novel paradigm of simultaneous dual anticoagulant and antiplatelet effects achieved through the GPIbα binding site of thrombin. PMID:24635452

  4. The emerging insights into catalytic or non-catalytic roles of TET proteins in tumors and neural development

    PubMed Central

    Lian, Hao; Li, Wen-Bin; Jin, Wei-Lin

    2016-01-01

    The Ten-eleven translocation (TET) proteins have been recently identified as critical regulators in epigenetic modification, especially in the methylation of cytosine in DNA. TET-mediated DNA oxidation plays prominent roles in a wide variety of physiological and pathological processes, especially in tumor and neural development. TET proteins execute stepwise enzymatic conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). In addition to the more proverbial enzymatic role of TET proteins, TET proteins also possess non-enzymatic activity, through interacting with some epigenetic modifiers. In this review article, we focus on TET proteins dual activities (catalytic or non-catalytic) in tumor and neural development. Hence, the clarification of TET proteins dual activities will contribute to our further understanding of neural development and may open the possibility of new therapeutic avenues to human tumors. PMID:27557497

  5. Non-catalytic direct synthesis of graphene on Si (111) wafers by using inductively-coupled plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hwang, Sung Won; Shin, Hyunho; Lee, Bongsoo; Choi, Suk-Ho

    2016-08-01

    We employ inductively-coupled plasma chemical vapor deposition for non-catalytic growth of graphene on a Si (111) wafer or glass substrate, which is useful for practical device applications of graphene without transfer processes. At a RF power (P) of 500 W under C2H2 flow, defect-free 3 ˜ 5-layer graphene is grown on Si (111) wafers, but on glass substrate, the layer is thicker and defective, as characterized by Raman spectroscopy and electron microscopy. The graphene is produced on Si (111) for P down to 190 W whereas it is almost not formed on glass for P < 250 W, possibly resulting from the weak catalytic-reaction-like effect on glass. These results are discussed based on possible growth mechanisms.

  6. Catalytic and non-catalytic pyrolysis of biomass in non-inert environments for production of deoxygenated bio-oil and chemicals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fast pyrolysis processes are among the most effective methods for liquefaction of lignocellulosic biomass. Catalytic fast pyrolysis (CFP) over HZSM-5 or other zeolites and/or utilization of reactive atmospheres such as in the non-catalytic Tail Gas Reactive Pyrolysis (TRGP) process, a recent patent...

  7. Three-dimensional structure of Saccharomyces invertase: role of a non-catalytic domain in oligomerization and substrate specificity.

    PubMed

    Sainz-Polo, M Angela; Ramírez-Escudero, Mercedes; Lafraya, Alvaro; González, Beatriz; Marín-Navarro, Julia; Polaina, Julio; Sanz-Aparicio, Julia

    2013-04-05

    Invertase is an enzyme that is widely distributed among plants and microorganisms and that catalyzes the hydrolysis of the disaccharide sucrose into glucose and fructose. Despite the important physiological role of Saccharomyces invertase (SInv) and the historical relevance of this enzyme as a model in early biochemical studies, its structure had not yet been solved. We report here the crystal structure of recombinant SInv at 3.3 Å resolution showing that the enzyme folds into the catalytic β-propeller and β-sandwich domains characteristic of GH32 enzymes. However, SInv displays an unusual quaternary structure. Monomers associate in two different kinds of dimers, which are in turn assembled into an octamer, best described as a tetramer of dimers. Dimerization plays a determinant role in substrate specificity because this assembly sets steric constraints that limit the access to the active site of oligosaccharides of more than four units. Comparative analysis of GH32 enzymes showed that formation of the SInv octamer occurs through a β-sheet extension that seems unique to this enzyme. Interaction between dimers is determined by a short amino acid sequence at the beginning of the β-sandwich domain. Our results highlight the role of the non-catalytic domain in fine-tuning substrate specificity and thus supplement our knowledge of the activity of this important family of enzymes. In turn, this gives a deeper insight into the structural features that rule modularity and protein-carbohydrate recognition.

  8. Experimental and modeling study of the effect of CH(4) and pulverized coal on selective non-catalytic reduction process.

    PubMed

    Zhang, Yanwen; Cai, Ningsheng; Yang, Jingbiao; Xu, Bo

    2008-10-01

    The reduction of nitric oxide using ammonia combined with methane and pulverized coal additives has been studied in a drop tube furnace reactor. Simulated flue gas with 1000 ppm NO(x) and 3.4% excess oxygen was generated by cylinder gas. Experiments were performed in the temperature range of 700-1200 degrees C to investigate the effects of additives on the DeNO(x) performance. Subsequently, a kinetic mechanism was modified and validated based on experimental results, and a computational kinetic modeling with CHEMKIN was conducted to analyze the secondary pollutants. For both methane and pulverized coal additives, the temperature window is shifted towards lower temperatures. The appropriate reaction temperature is shifted to about 900 and 800 degrees C, respectively with 1000 ppm methane and 0.051 g min(-1) pulverized lignite coal. The addition of methane and pulverized coal widens the temperature window towards lower temperature suggesting a low temperature application of the process. Furthermore, selective non-catalytic reduction (SNCR) reaction rate is accelerated evidently with additives and the residence time to complete the reaction is shortened distinctly. NO(x) reduction efficiency with 80% is achieved in about 0.3s without additive at 1000 degrees C. However, it is achieved in only about 0.2s with 100 ppm methane as additive, and only 0.07 and 0.05s are needed respectively for the cases of 500 and 1000 ppm methane. The modified kinetic modeling agrees well with the experimental results and reveals additional information about the process. Investigation on the byproducts where NO(2) and N(2)O were analyzed by modeling and the others were investigated by experimental means indicates that emissions would not increase with methane and pulverized coal additions in SNCR process and the efficacious temperature range of SNCR reaction is widened approximately with 100 degrees C.

  9. Experimental and modeling study of the effects of multicomponent gas additives on selective non-catalytic reduction process.

    PubMed

    Cao, Qingxi; Wu, Shaohua; Lui, Hui; Liu, Dunyu; Qiu, Penghua

    2009-08-01

    The influence of multicomponent additives on NO reduction by selective non-catalytic reduction process has been investigated experimentally in an electricity-heated tube reactor. The multicomponent additives are composed of two species of CO, CH(4) and H(2), and the molar ratio of their two components varies from 1/3 to 3/1. The results show that all the investigated additives could decrease the optimal temperature for NO reduction effectively, but the contributions of their components are different. The performance of multicomponent additive composed of CO and CH(4) depends mainly on CH(4) component. The function of CO component is shifting the temperature window for NO reduction to lower temperature slightly and narrowing the temperature window a little. The temperature window with multicomponent additive composed of H(2) and CH(4) is distinct from that with its each component, so both H(2) and CH(4) component make important contributions. While the fraction of CO is no more than that of H(2) in multicomponent additives composed of them, the performance of multicomponent additives is dominated by H(2) component; while the fraction of CO becomes larger, the influence of CO component becomes notable. Qualitatively the modeling results using a detailed chemical kinetic mechanism exhibit the same characteristics of the temperature window shift as observed experimentally. By reaction mechanism analysis, the distinct influences of CO, CH(4) or H(2) component on the property of multicomponent additive are mainly caused by the different production rates of (*)OH radical in their own oxidation process.

  10. A catalytic and non-catalytic role for the Yen1 nuclease in maintaining genome integrity in Kluyveromyces lactis.

    PubMed

    Chen, Jiang; Aström, Stefan U

    2012-10-01

    Yen1 is a nuclease identified in Saccharomyces cerevisiae that cleaves the Holliday junction (HJ) intermediate formed during homologous recombination. Alternative routes to disjoin HJs are performed by the Mus81/Mms4- and Sgs1/Top3/Rmi1-complexes. Here, we investigate the role of the Yen1 protein in the yeast Kluyveromyces lactis. We demonstrate that both yen1 mus81 and yen1 sgs1 double mutants displayed negative genetic interactions in the presence of DNA-damaging chemicals. To test if these phenotypes required the catalytic activity of Yen1, we introduced point mutations targeting the catalytic site of Yen1, which abolished the nuclease activity in vitro. Remarkably, catalytically inactive Yen1 did not exacerbate the hydroxyurea sensitivity of the sgs1Δ strain, which the yen1Δ allele did. In addition, overexpression of catalytically inactive Yen1 partially rescued the DNA damage sensitivity of both mus81 and sgs1 mutant strains albeit less efficiently than WT Yen1. These results suggest that Yen1 serves both a catalytic and non-catalytic role in its redundant function with Mus81 and Sgs1. Diploids lacking Mus81 had a severe defect in sporulation efficiency and crossover frequency, but diploids lacking both Mus81 and Yen1 showed no further reduction in spore formation. Hence, Yen1 had no evident role in meiosis. However, overexpression of WT Yen1, but not catalytically inactive Yen1 partially rescued the crossover defect in mus81/mus81 mutant diploids. Yen1 is a member of the RAD2/XPG-family of nucleases, but genetic analyses revealed no genetic interaction between yen1 and other family members (rad2, exo1 and rad27). In addition, yen1 mutants had normal nonhomologous end-joining efficiency. We discuss the similarities and differences between K. lactis Yen1 and Yen1/GEN1 from other organisms.

  11. Non-ionic Surfactants and Non-Catalytic Protein Treatment on Enzymatic Hydrolysis of Pretreated Creeping Wild Ryegrass

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Pan, Zhongli; Zhang, Ruihong; Wang, Donghai; Jenkins, Bryan

    Our previous research has shown that saline Creeping Wild Ryegrass (CWR), Leymus triticoides, has a great potential to be used for bioethanol production because of its high fermentable sugar yield, up to 85% cellulose conversion of pretreated CWR. However, the high cost of enzyme is still one of the obstacles making large-scale lignocellulosic bioethanol production economically difficult. It is desirable to use reduced enzyme loading to produce fermentable sugars with high yield and low cost. To reduce the enzyme loading, the effect of addition of non-ionic surfactants and non-catalytic protein on the enzymatic hydrolysis of pretreated CWR was investigated in this study. Tween 20, Tween 80, and bovine serum albumin (BSA) were used as additives to improve the enzymatic hydrolysis of dilute sulfuric-acid-pretreated CWR. Under the loading of 0.1 g additives/g dry solid, Tween 20 was the most effective additive, followed by Tween 80 and BSA. With the addition of Tween 20 mixed with cellulase loading of 15 FPU/g cellulose, the cellulose conversion increased 14% (from 75 to 89%), which was similar to that with cellulase loading of 30 FPU/g cellulose and without additive addition. The results of cellulase and BSA adsorption on the Avicel PH101, pretreated CWR, and lignaceous residue of pretreated CWR support the theory that the primary mechanism behind the additives is prevention of non-productive adsorption of enzymes on lignaceous material of pretreated CWR. The addition of additives could be a promising technology to improve the enzymatic hydrolysis by reducing the enzyme activity loss caused by non-productive adsorption.

  12. Boosting the value of biodiesel byproduct by the non-catalytic transesterification of dimethyl carbonate via a continuous flow system under ambient pressure.

    PubMed

    Kwon, Eilhann E; Yi, Haakrho; Jeon, Young Jae

    2014-10-01

    Transformation of coconut oil into biodiesel by using dimethyl carbonate (DMC) via a non-catalytic transesterification reaction under ambient pressure was investigated in this study. The non-catalytic transformation to biodiesel was achieved by means of a heterogeneous reaction between liquid triglycerides and gas phase DMC. The reaction was enhanced in the presence of porous material due to its intrinsic physical properties such as tortuosity and absorption/adsorption. The numerous pores in the material served as micro reaction chambers and ensured that there was enough contact time between the liquid triglycerides and the gaseous DMC, which enabled the completion of the transesterification. The highest fatty acid methyl esters (FAMEs) yield achieved was 98±0.5% within 1-2min at a temperature of 360-450°C under ambient pressure. The fast reaction rates made it possible to convert the lipid feedstock into biodiesel via a continuous flow system without the application of increased pressure. This suggested that the commonly used supercritical conditions could be avoided, resulting in huge cost benefits for biodiesel production. In addition, the high value of the byproduct from the transesterification of the lipid feedstock with DMC suggested that the production biodiesel using this method could be more economically competitive. Finally, the basic properties of biodiesel derived from the non-catalytic conversion of rapeseed oil with DMC were summarised.

  13. An experimental study of catalytic and non-catalytic reaction in heat recirculating reactors and applications to power generation

    NASA Astrophysics Data System (ADS)

    Ahn, Jeongmin

    An experimental study of the performance of a Swiss roll heat exchanger and reactor was conducted, with emphasis on the extinction limits and comparison of results with and without Pt catalyst. At Re<40, the catalyst was required to sustain reaction; with the catalyst self-sustaining reaction could be obtained at Re less than 1. Both lean and rich extinction limits were extended with the catalyst, though rich limits were extended much further. At low Re, the lean extinction limit was rich of stoichiometric and rich limit had equivalence ratios 80 in some cases. Non-catalytic reaction generally occurred in a flameless mode near the center of the reactor. With or without catalyst, for sufficiently robust conditions, a visible flame would propagate out of the center, but this flame could only be re-centered with catalyst. Gas chromatography indicated that at low Re, CO and non-C3 H8 hydrocarbons did not form. For higher Re, catalytic limits were slightly broader but had much lower limit temperatures. At sufficiently high Re, catalytic and gas-phase limits merged. Experiments with titanium Swiss rolls have demonstrated reducing wall thermal conductivity and thickness leads to lower heat losses and therefore increases operating temperatures and extends flammability limits. By use of Pt catalysts, reaction of propane-air mixtures at temperatures 54°C was sustained. Such low temperatures suggest that polymers may be employed as a reactor material. A polyimide reactor was built and survived prolonged testing at temperatures up to 500°C. Polymer reactors may prove more practical for microscale devices due to their lower thermal conductivity and ease of manufacturing. Since the ultimate goal of current efforts is to develop combustion driven power generation devices at MEMS like scales, a thermally self-sustaining miniature power generation device was developed utilizing a single-chamber solid-oxide-fuel-cell (SOFC) placed in a Swiss roll. With the single-chamber design

  14. alpha3beta3gamma complex of F1-ATPase from thermophilic Bacillus PS3 can maintain steady-state ATP hydrolysis activity depending on the number of non-catalytic sites.

    PubMed Central

    Amano, T; Matsui, T; Muneyuki, E; Noji, H; Hara, K; Yoshida, M; Hisabori, T

    1999-01-01

    Homogeneous preparations of alpha(3)beta(3)gamma complexes with one, two or three non-competent non-catalytic site(s) were performed as described [Amano, Hisabori, Muneyuki, and Yoshida (1996) J. Biol. Chem. 271, 18128-18133] and their properties were compared with those of the wild-type complex. The ATPase activity of the complex with three non-competent non-catalytic sites decayed rapidly to an inactivated state, as reported previously [Matsui, Muneyuki, Honda, Allison, Dou, and Yoshida (1997) J. Biol. Chem. 272, 8215-8221]. In contrast, the complex with one or two non-competent non-catalytic sites displayed a substantial steady-state phase activity depending on the number of non-competent non-catalytic sites in the complex. This result indicates that one competent non-catalytic site can maintain the continuous catalytic turnover of the enzyme and can potentially relieve all three catalytic sites from inhibition by MgADP(-). Furthermore, the results suggest that the interaction between three non-catalytic sites might not be as strong as that between catalytic sites, which are all strictly required for a continuous catalytic turnover. PMID:10493921

  15. Microbial starch-binding domain.

    PubMed

    Rodríguez-Sanoja, Romina; Oviedo, Norma; Sánchez, Sergio

    2005-06-01

    Glucosidic bonds from different non-soluble polysaccharides such as starch, cellulose and xylan are hydrolyzed by amylases, cellulases and xylanases, respectively. These enzymes are produced by microorganisms. They have a modular structure that is composed of a catalytic domain and at least one non-catalytic domain that is involved in polysaccharide binding. Starch-binding modules are present in microbial enzymes that are involved in starch metabolism; these are classified into several different families on the basis of their amino acid sequence similarities. Such binding domains promote attachment to the substrate and increase its concentration at the active site of the enzyme, which allows microorganisms to degrade non-soluble starch. Fold similarities are better conserved than sequences; nevertheless, it is possible to notice two evolutionary clusters of microbial starch-binding domains. These domains have enormous potential as tags for protein immobilization, as well as for the tailoring of enzymes that play a part in polysaccharide metabolism.

  16. Differential regulation of catalytic and non-catalytic trkB messenger RNAs in the rat hippocampus following seizures induced by systemic administration of kainate.

    PubMed

    Dugich-Djordjevic, M M; Ohsawa, F; Okazaki, T; Mori, N; Day, J R; Beck, K D; Hefti, F

    1995-06-01

    Ribonuclease protection analysis and quantitative in situ hybridization histochemistry were used to investigate the coordination and regional expression of catalytic and non-catalytic trkB messenger RNAs in the adult rat hippocampus following systemic kainate-induced seizures. Changes in trkB expression were compared with the messenger RNA expression of its neurotrophic ligands, brain-derived neurotrophic factor and neurotrophin-3. TrkB messenger RNA expression was increased in the dentate granule cells at 1-4 h following the onset of seizures, and returned to control levels 16-24 h thereafter. In addition, seizures also induced expression of trkB messenger RNA in putative non-neuronal cells at four to seven days in the molecular layer of the dentate gyrus and the stratum lacunosum moleculare of the CA1 region. Hybridization with probes specific for the non-catalytic trkB receptor and the catalytic trkB receptor revealed that the increases at four and seven days in the molecular layers of the hippocampus reflected an up-regulation of only the non-catalytic form of the receptor. Furthermore, the neuronal increases observed 1-4 h were due to an up-regulation of both trkB TK- and trkB TK+ messenger RNAs. It was established that systemic administration of kainate increased brain-derived neurotrophic factor messenger RNA levels in the pyramidal and granule cell regions of the hippocampus 1-4 h following the onset of behaviorally manifested seizure activity. Early changes in neuronal expression of trkB TK- and trkB TK+ messenger RNA paralleled changes in brain-derived neurotrophic factor messenger RNA in the dentate granule cell and CA1 pyramidal cell layers, but not in the CA3 subregion. These data suggest that concomitant regulation of brain-derived neurotrophic factor and its cognate receptor may play a role in the selective vulnerability of hippocampal subregions to kainate-induced neuropathology. Furthermore, these data suggest a dual function for trkB receptor

  17. Non-catalytic Roles For XPG with BRCA1 and BRCA2 in Homologous Recombination and Genome Stability

    PubMed Central

    Trego, Kelly S.; Groesser, Torsten; Davalos, Albert R.; Parplys, Ann C.; Zhao, Weixing; Nelson, Michael R.; Hlaing, Ayesu; Shih, Brian; Rydberg, Björn; Pluth, Janice M.; Tsai, Miaw-Sheue; Hoeijmakers, Jan H.J.; Sung, Patrick; Wiese, Claudia; Campisi, Judith; Cooper, Priscilla K.

    2016-01-01

    SUMMARY XPG is a structure-specific endonuclease required for nucleotide excision repair, and incision-defective Xpg mutations cause the skin cancer-prone syndrome xeroderma pigmentosum. Truncating mutations instead cause the neurodevelopmental progeroid disorder Cockayne syndrome, but little is known about how XPG loss results in this devastating disease. We identify XPG as a partner of BRCA1 and BRCA2 in maintaining genomic stability through homologous recombination (HRR). XPG depletion causes DNA double-strand breaks, chromosomal abnormalities, cell-cycle delays, defective HRR, inability to overcome replication fork stalling, and replication stress. XPG directly interacts with BRCA2, RAD51, and PALB2, and XPG depletion reduces their chromatin binding and subsequent RAD51 foci formation. Upstream in HRR, XPG interacts directly with BRCA1. Its depletion causes BRCA1 hyper-phosphorylation and persistent chromatin binding. These unexpected findings establish XPG as an HRR protein with important roles in genome stability and suggest how XPG defects produce severe clinical consequences including cancer and accelerated aging. PMID:26833090

  18. Non-catalytic Roles for XPG with BRCA1 and BRCA2 in Homologous Recombination and Genome Stability.

    PubMed

    Trego, Kelly S; Groesser, Torsten; Davalos, Albert R; Parplys, Ann C; Zhao, Weixing; Nelson, Michael R; Hlaing, Ayesu; Shih, Brian; Rydberg, Björn; Pluth, Janice M; Tsai, Miaw-Sheue; Hoeijmakers, Jan H J; Sung, Patrick; Wiese, Claudia; Campisi, Judith; Cooper, Priscilla K

    2016-02-18

    XPG is a structure-specific endonuclease required for nucleotide excision repair, and incision-defective XPG mutations cause the skin cancer-prone syndrome xeroderma pigmentosum. Truncating mutations instead cause the neurodevelopmental progeroid disorder Cockayne syndrome, but little is known about how XPG loss results in this devastating disease. We identify XPG as a partner of BRCA1 and BRCA2 in maintaining genomic stability through homologous recombination (HRR). XPG depletion causes DNA double-strand breaks, chromosomal abnormalities, cell-cycle delays, defective HRR, inability to overcome replication fork stalling, and replication stress. XPG directly interacts with BRCA2, RAD51, and PALB2, and XPG depletion reduces their chromatin binding and subsequent RAD51 foci formation. Upstream in HRR, XPG interacts directly with BRCA1. Its depletion causes BRCA1 hyper-phosphorylation and persistent chromatin binding. These unexpected findings establish XPG as an HRR protein with important roles in genome stability and suggest how XPG defects produce severe clinical consequences including cancer and accelerated aging.

  19. Effect of defects in oxide templates on Non-catalytic growth of GaN nanowires for high-efficiency light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Hwang, Sung Won; Choi, Suk-Ho

    2016-04-01

    Two kinds of oxide templates, one with and one without undercuts, are employed to study the effect of defects in oxide templates on non-catalytic growth of GaN nanowires (NWs). GaN NWs abnormally grown from the templates containing undercuts exhibit two types of patterns: earlystage growth of premature NWs and abnormally-overgrown (~2 μm) NWs. GaN NWs grown on perfectly-symmetric template patterns are highly crystalline and have high aspect ratios (2 ~ 5), and their tops are shaped as pyramids with semipolar facets, clearly indicating hexagonal symmetry. The internal quantum efficiency of the well-grown NWs is 10% larger than that of the deformed NWs, as estimated by using photoluminescence. These results suggest that our technique is an effective approach for growing large-area-patterned, vertically-aligned, hexagonal GaN NWs without catalysts, in strong contrast to catalytic vapor-liquid-solid growth, and that good formation of the oxide templates is crucial for the growth of high-quality GaN NWs.

  20. Mutations in the Non-Catalytic Subunit Dpb2 of DNA Polymerase Epsilon Affect the Nrm1 Branch of the DNA Replication Checkpoint

    PubMed Central

    Rudzka, Justyna; Campbell, Judith L.; Jonczyk, Piotr; Fijałkowska, Iwona J.

    2017-01-01

    To preserve genome integrity, the S-phase checkpoint senses damaged DNA or nucleotide depletion and when necessary, arrests replication progression and delays cell division. Previous studies, based on two pol2 mutants have suggested the involvement of DNA polymerase epsilon (Pol ε) in sensing DNA replication accuracy in Saccharomyces cerevisiae. Here we have studied the involvement of Pol ε in sensing proper progression of DNA replication, using a mutant in DPB2, the gene coding for a non-catalytic subunit of Pol ε. Under genotoxic conditions, the dpb2-103 cells progress through S phase faster than wild-type cells. Moreover, the Nrm1-dependent branch of the checkpoint, which regulates the expression of many replication checkpoint genes, is impaired in dpb2-103 cells. Finally, deletion of DDC1 in the dpb2-103 mutant is lethal supporting a model of strand-specific activation of the replication checkpoint. This lethality is suppressed by NRM1 deletion. We postulate that improper activation of the Nrm1-branch may explain inefficient replication checkpoint activation in Pol ε mutants. PMID:28107343

  1. Cerato-populin and cerato-platanin, two non-catalytic proteins from phytopathogenic fungi, interact with hydrophobic inanimate surfaces and leaves.

    PubMed

    Martellini, Federica; Faoro, Franco; Carresi, Lara; Pantera, Barbara; Baccelli, Ivan; Maffi, Dario; Tiribilli, Bruno; Sbrana, Francesca; Luti, Simone; Comparini, Cecilia; Bernardi, Rodolfo; Cappugi, Gianni; Scala, Aniello; Pazzagli, Luigia

    2013-09-01

    Based on sequence homology, several fungal Cys-rich secreted proteins have been grouped in the cerato-platanin (CP) family, which comprises at least 40 proteins involved mainly in eliciting defense-related responses. The core member of this family is cerato-platanin, a moderately hydrophobic protein with a double ψ-β barrel fold. CP and the recently identified orthologous cerato-populin (Pop1) are involved in host-fungus interaction, and can be considered non-catalytic fungal PAMPs. CP is more active in inducing defense when in an aggregated conformation than in its native form, but little is known about other CP-orthologous proteins. Here, we cloned, expressed, and purified recombinant Pop1, which was used to characterize the protein aggregates. Our results suggest that the unfolded, self-assembled Pop1 is more active in inducing defense, and that the unfolding process can be induced by interaction with hydrophobic inanimate surfaces such as Teflon, treated mica, and gold sheets. In vivo, we found that both CP and Pop1 interact with the hydrophobic cuticle of leaves. Therefore, we propose that the interaction of these proteins with host cuticle waxes could induce unfolding and consequently trigger their PAMP-like activity.

  2. HYBRID SELECTIVE NON-CATALYTIC REDUCTION (SNCR)/SELECTIVE CATALYTIC REDUCTION (SCR) DEMONSTRATION FOR THE REMOVAL OF NOx FROM BOILER FLUE GASES

    SciTech Connect

    Jerry B. Urbas

    1999-05-01

    The U. S. Department of Energy (DOE), Electric Power Research Institute (EPRI), Pennsylvania Electric Energy Research Council, (PEERC), New York State Electric and Gas and GPU Generation, Inc. jointly funded a demonstration to determine the capabilities for Hybrid SNCR/SCR (Selective Non-Catalytic Reduction/Selective Catalytic Reduction) technology. The demonstration site was GPU Generation's Seward Unit No.5 (147MW) located in Seward Pennsylvania. The demonstration began in October of 1997 and ended in December 1998. DOE funding was provided through Grant No. DE-FG22-96PC96256 with T. J. Feeley as the Project Manager. EPRI funding was provided through agreements TC4599-001-26999 and TC4599-002-26999 with E. Hughes as the Project Manager. This project demonstrated the operation of the Hybrid SNCR/SCR NO{sub x} control process on a full-scale coal fired utility boiler. The hybrid technology was expected to provide a cost-effective method of reducing NO{sub x} while balancing capital and operation costs. An existing urea based SNCR system was modified with an expanded-duct catalyst to provide increased NO{sub x} reduction efficiency from the SNCR while producing increased ammonia slip levels to the catalyst. The catalyst was sized to reduce the ammonia slip to the air heaters to less than 2 ppm while providing equivalent NO{sub x} reductions. The project goals were to demonstrate hybrid technology is capable of achieving at least a 55% reduction in NO{sub x} emissions while maintaining less than 2ppm ammonia slip to the air heaters, maintain flyash marketability, verify the cost benefit and applicability of Hybrid post combustion technology, and reduce forced outages due to ammonium bisulfate (ABS) fouling of the air heaters. Early system limitations, due to gas temperature stratification, restricted the Hybrid NO{sub x} reduction capabilities to 48% with an ammonia slip of 6.1 mg/Nm{sup 3} (8 ppm) at the catalyst inlet. After resolving the stratification problem

  3. Structural Insights into Omega-Class Glutathione Transferases: A Snapshot of Enzyme Reduction and Identification of a Non-Catalytic Ligandin Site

    PubMed Central

    Brock, Joseph; Board, Philip G.; Oakley, Aaron J.

    2013-01-01

    Glutathione transferases (GSTs) are dimeric enzymes containing one active-site per monomer. The omega-class GSTs (hGSTO1-1 and hGSTO2-2 in humans) are homodimeric and carry out a range of reactions including the glutathione-dependant reduction of a range of compounds and the reduction of S-(phenacyl)glutathiones to acetophenones. Both types of reaction result in the formation of a mixed-disulfide of the enzyme with glutathione through the catalytic cysteine (C32). Recycling of the enzyme utilizes a second glutathione molecule and results in oxidized glutathione (GSSG) release. The crystal structure of an active-site mutant (C32A) of the hGSTO1-1 isozyme in complex with GSSG provides a snapshot of the enzyme in the process of regeneration. GSSG occupies both the G (GSH-binding) and H (hydrophobic-binding) sites and causes re-arrangement of some H-site residues. In the same structure we demonstrate the existence of a novel “ligandin” binding site deep within in the dimer interface of this enzyme, containing S-(4-nitrophenacyl)glutathione, an isozyme-specific substrate for hGSTO1-1. The ligandin site, conserved in Omega class GSTs from a range of species, is hydrophobic in nature and may represent the binding location for tocopherol esters that are uncompetitive hGSTO1-1 inhibitors. PMID:23593192

  4. The role of the ADAMTS13 cysteine-rich domain in VWF binding and proteolysis.

    PubMed

    de Groot, Rens; Lane, David A; Crawley, James T B

    2015-03-19

    ADAMTS13 proteolytically regulates the platelet-tethering function of von Willebrand factor (VWF). ADAMTS13 function is dependent upon multiple exosites that specifically bind the unraveled VWF A2 domain and enable proteolysis. We carried out a comprehensive functional analysis of the ADAMTS13 cysteine-rich (Cys-rich) domain using engineered glycans, sequence swaps, and single point mutations in this domain. Mutagenesis of Cys-rich domain-charged residues had no major effect on ADAMTS13 function, and 5 out of 6 engineered glycans on the Cys-rich domain also had no effect on ADAMTS13 function. However, a glycan attached at position 476 appreciably reduced both VWF binding and proteolysis. Substitution of Cys-rich sequences for the corresponding regions in ADAMTS1 identified a hydrophobic pocket involving residues Gly471-Val474 as being of critical importance for both VWF binding and proteolysis. Substitution of hydrophobic VWF A2 domain residues to serine in a region (residues 1642-1659) previously postulated to interact with the Cys-rich domain revealed the functional importance of VWF residues Ile1642, Trp1644, Ile1649, Leu1650, and Ile1651. Furthermore, the functional deficit of the ADAMTS13 Cys-rich Gly471-Val474 variant was dependent on these same hydrophobic VWF residues, suggesting that these regions form complementary binding sites that directly interact to enhance the efficiency of the proteolytic reaction.

  5. Using structure to inform carbohydrate binding module function.

    PubMed

    Abbott, D Wade; van Bueren, Alicia Lammerts

    2014-10-01

    Generally, non-catalytic carbohydrate binding module (CBM) specificity has been shown to parallel the catalytic activity of the carbohydrate active enzyme (CAZyme) module it is appended to. With the rapid expansion in metagenomic sequence space for the potential discovery of new CBMs in addition to the recent emergence of several new CBM families that display diverse binding profiles and novel functions, elucidating the function of these protein modules has become a much more challenging task. This review summarizes several approaches that have been reported for using primary structure to inform CBM specificity and streamlining their biophysical characterization. In addition we discuss general trends in binding site architecture and several newly identified functions for CBMs. Streams of investigation that will facilitate the development and refinement of sequence-based prediction tools are suggested.

  6. Characterization of a human coagulation factor Xa-binding site on Viperidae snake venom phospholipases A2 by affinity binding studies and molecular bioinformatics

    PubMed Central

    Faure, Grazyna; Gowda, Veerabasappa T; Maroun, Rachid C

    2007-01-01

    Background The snake venom group IIA secreted phospholipases A2 (SVPLA2), present in the Viperidae snake family exhibit a wide range of toxic and pharmacological effects. They exert their different functions by catalyzing the hydrolysis of phospholipids (PL) at the membrane/water interface and by highly specific direct binding to: (i) presynaptic membrane-bound or intracellular receptors; (ii) natural PLA2-inhibitors from snake serum; and (iii) coagulation factors present in human blood. Results Using surface plasmon resonance (SPR) protein-protein interaction measurements and an in vitro biological test of inhibition of prothrombinase activity, we identify a number of Viperidae venom SVPLA2s that inhibit blood coagulation through direct binding to human blood coagulation factor Xa (FXa) via a non-catalytic, PL-independent mechanism. We classify the SVPLA2s in four groups, depending on the strength of their binding. Molecular electrostatic potentials calculated at the surface of 3D homology-modeling models show a correlation with inhibition of prothrombinase activity. In addition, molecular docking simulations between SVPLA2 and FXa guided by the experimental data identify the potential FXa binding site on the SVPLA2s. This site is composed of the following regions: helices A and B, the Ca2+ loop, the helix C-β-wing loop, and the C-terminal fragment. Some of the SVPLA2 binding site residues belong also to the interfacial binding site (IBS). The interface in FXa involves both, the light and heavy chains. Conclusion We have experimentally identified several strong FXa-binding SVPLA2s that disrupt the function of the coagulation cascade by interacting with FXa by the non-catalytic PL-independent mechanism. By theoretical methods we mapped the interaction sites on both, the SVPLA2s and FXa. Our findings may lead to the design of novel, non-competitive FXa inhibitors. PMID:18062812

  7. Multi-site substrate binding and interplay in barley alpha-amylase 1.

    PubMed

    Nielsen, Morten Munch; Seo, Eun-Seong; Bozonnet, Sophie; Aghajari, Nushin; Robert, Xavier; Haser, Richard; Svensson, Birte

    2008-07-23

    Certain starch hydrolases possess secondary carbohydrate binding sites outside of the active site, suggesting that multi-site substrate interactions are functionally significant. In barley alpha-amylase both Tyr380, situated on a remote non-catalytic domain, and Tyr105 in subsite -6 of the active site cleft are principal carbohydrate binding residues. The dual active site/secondary site mutants Y105A/Y380A and Y105A/Y380M show that each of Tyr380 and Tyr105 is important, albeit not essential for binding, degradation, and multiple attack on polysaccharides, while Tyr105 predominates in oligosaccharide hydrolysis. Additional delicate structure/function relationships of the secondary site are uncovered using Y380A/H395A, Y380A, and H395A AMY1 mutants.

  8. Binding Procurement

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Vaidyanathan, Hari

    2007-01-01

    This viewgraph presentation reviews the use of the binding procurement process in purchasing Aerospace Flight Battery Systems. NASA Engineering and Safety Center (NESC) requested NASA Aerospace Flight Battery Systems Working Group to develop a set of guideline requirements document for Binding Procurement Contracts.

  9. A robust methodology to subclassify pseudokinases based on their nucleotide-binding properties.

    PubMed

    Murphy, James M; Zhang, Qingwei; Young, Samuel N; Reese, Michael L; Bailey, Fiona P; Eyers, Patrick A; Ungureanu, Daniela; Hammaren, Henrik; Silvennoinen, Olli; Varghese, Leila N; Chen, Kelan; Tripaydonis, Anne; Jura, Natalia; Fukuda, Koichi; Qin, Jun; Nimchuk, Zachary; Mudgett, Mary Beth; Elowe, Sabine; Gee, Christine L; Liu, Ling; Daly, Roger J; Manning, Gerard; Babon, Jeffrey J; Lucet, Isabelle S

    2014-01-15

    Protein kinase-like domains that lack conserved residues known to catalyse phosphoryl transfer, termed pseudokinases, have emerged as important signalling domains across all kingdoms of life. Although predicted to function principally as catalysis-independent protein-interaction modules, several pseudokinase domains have been attributed unexpected catalytic functions, often amid controversy. We established a thermal-shift assay as a benchmark technique to define the nucleotide-binding properties of kinase-like domains. Unlike in vitro kinase assays, this assay is insensitive to the presence of minor quantities of contaminating kinases that may otherwise lead to incorrect attribution of catalytic functions to pseudokinases. We demonstrated the utility of this method by classifying 31 diverse pseudokinase domains into four groups: devoid of detectable nucleotide or cation binding; cation-independent nucleotide binding; cation binding; and nucleotide binding enhanced by cations. Whereas nine pseudokinases bound ATP in a divalent cation-dependent manner, over half of those examined did not detectably bind nucleotides, illustrating that pseudokinase domains predominantly function as non-catalytic protein-interaction modules within signalling networks and that only a small subset is potentially catalytically active. We propose that henceforth the thermal-shift assay be adopted as the standard technique for establishing the nucleotide-binding and catalytic potential of kinase-like domains.

  10. A single residue mutation abolishes attachment of the CBM26 starch-binding domain from Lactobacillus amylovorus alpha-amylase.

    PubMed

    Rodríguez-Sanoja, Romina; Oviedo, N; Escalante, L; Ruiz, B; Sánchez, S

    2009-03-01

    Starch is degraded by amylases that frequently have a modular structure composed of a catalytic domain and at least one non-catalytic domain that is involved in polysaccharide binding. The C-terminal domain from the Lactobacillus amylovorus alpha-amylase has an unusual architecture composed of five tandem starch-binding domains (SBDs). These domains belong to family 26 in the carbohydrate-binding modules (CBM) classification. It has been reported that members of this family have only one site for starch binding, where aromatic amino acids perform the binding function. In SBDs, fold similarities are better conserved than sequences; nevertheless, it is possible to identify in CBM26 members at least two aromatic residues highly conserved. We attempt to explain polysaccharide recognition for the L. amylovorus alpha-amylase SBD through site-directed mutagenesis of aromatic amino acids. Three amino acids were identified as essential for binding, two tyrosines and one tryptophan. Y18L and Y20L mutations were found to decrease the SBD binding capacity, but unexpectedly, the mutation at W32L led to a total loss of affinity, either with linear or ramified substrates. The critical role of Trp 32 in substrate binding confirms the presence of just one binding site in each alpha-amylase SBD.

  11. Carbohydrate-binding modules: fine-tuning polysaccharide recognition

    PubMed Central

    2004-01-01

    The enzymic degradation of insoluble polysaccharides is one of the most important reactions on earth. Despite this, glycoside hydrolases attack such polysaccharides relatively inefficiently as their target glycosidic bonds are often inaccessible to the active site of the appropriate enzymes. In order to overcome these problems, many of the glycoside hydrolases that utilize insoluble substrates are modular, comprising catalytic modules appended to one or more non-catalytic CBMs (carbohydrate-binding modules). CBMs promote the association of the enzyme with the substrate. In view of the central role that CBMs play in the enzymic hydrolysis of plant structural and storage polysaccharides, the ligand specificity displayed by these protein modules and the mechanism by which they recognize their target carbohydrates have received considerable attention since their discovery almost 20 years ago. In the last few years, CBM research has harnessed structural, functional and bioinformatic approaches to elucidate the molecular determinants that drive CBM–carbohydrate recognition. The present review summarizes the impact structural biology has had on our understanding of the mechanisms by which CBMs bind to their target ligands. PMID:15214846

  12. A family 6 carbohydrate-binding module potentiates the efficiency of a recombinant xylanase used to supplement cereal-based diets for poultry.

    PubMed

    Fontes, C M G A; Ponte, P I P; Reis, T C; Soares, M C; Gama, L T; Dias, F M V; Ferreira, L M A

    2004-10-01

    (1) Cellulases and xylanases display a modular architecture that comprises a catalytic module linked to one or more non-catalytic carbohydrate-binding modules (CBMs). On the basis of primary structure similarity, CBMs have been classified into more than 30 different families. These non-catalytic modules mediate a prolonged and intimate contact of the enzyme with the target substrate, eliciting efficient hydrolysis of the insoluble polysaccharides. (2) Xylanases are very effective in improving the nutritive value of wheat- or rye-based diets for broiler chicks although the role of non-catalytic CBMs in the function of exogenous modular xylanases in vivo remains to be determined. (3) A study was undertaken to investigate the importance of a family 6 CBM in the function of recombinant derivatives of xylanase 11A (Xyn11A) of Clostridium thermocellum used to supplement cereal-based diets for poultry. (4) The data show that birds fed on a wheat-based diet supplemented with the modular xylanase display an increased final body weight when compared with birds receiving Xyn11A catalytic module or birds receiving the enzyme mixture Roxazyme G. (5) Interestingly, the modular xylanase was truncated and transformed into its single domain counterpart on the duodenum of birds fed on the wheat-based diets, most possibly due to the action of pancreatic proteases. (6) Together the data point to the importance of CBMs in the function of feed xylanases and suggest, that in chicken fed on wheat-based diets, the main sites for exogenous enzymes action might be the gastrointestinal (GI) compartments preceding the duodenum, most probably the crop.

  13. Inhibition of Mycobacterium tuberculosis PknG by non-catalytic rubredoxin domain specific modification: reaction of an electrophilic nitro-fatty acid with the Fe-S center.

    PubMed

    Gil, Magdalena; Graña, Martín; Schopfer, Francisco J; Wagner, Tristan; Denicola, Ana; Freeman, Bruce A; Alzari, Pedro M; Batthyány, Carlos; Durán, Rosario

    2013-12-01

    PknG from Mycobacterium tuberculosis is a Ser/Thr protein kinase that regulates key metabolic processes within the bacterial cell as well as signaling pathways from the infected host cell. This multidomain protein has a conserved canonical kinase domain with N- and C-terminal flanking regions of unclear functional roles. The N-terminus harbors a rubredoxin-like domain (Rbx), a bacterial protein module characterized by an iron ion coordinated by four cysteine residues. Disruption of the Rbx-metal binding site by simultaneous mutations of all the key cysteine residues significantly impairs PknG activity. This encouraged us to evaluate the effect of a nitro-fatty acid (9- and 10-nitro-octadeca-9-cis-enoic acid; OA-NO2) on PknG activity. Fatty acid nitroalkenes are electrophilic species produced during inflammation and metabolism that react with nucleophilic residues of target proteins (i.e., Cys and His), modulating protein function and subcellular distribution in a reversible manner. Here, we show that OA-NO2 inhibits kinase activity by covalently adducting PknG remote from the catalytic domain. Mass spectrometry-based analysis established that cysteines located at Rbx are the specific targets of the nitroalkene. Cys-nitroalkylation is a Michael addition reaction typically reverted by thiols. However, the reversible OA-NO2-mediated nitroalkylation of the kinase results in an irreversible inhibition of PknG. Cys adduction by OA-NO2 induced iron release from the Rbx domain, revealing a new strategy for the specific inhibition of PknG. These results affirm the relevance of the Rbx domain as a target for PknG inhibition and support that electrophilic lipid reactions of Rbx-Cys may represent a new drug strategy for specific PknG inhibition.

  14. Inhibition of Mycobacterium tuberculosis PknG by non-catalytic rubredoxin domain specific modification: reaction of an electrophilic nitro-fatty acid with the Fe–S center

    PubMed Central

    Gil, Magdalena; Graña, Martín; Schopfer, Francisco J.; Wagner, Tristan; Denicola, Ana; Freeman, Bruce A.; Alzari, Pedro M.; Batthyány, Carlos; Durán, Rosario

    2014-01-01

    PknG from Mycobacterium tuberculosis is a Ser/Thr protein kinase that regulates key metabolic processes within the bacterial cell as well as signaling pathways from the infected host cell. This multidomain protein has a conserved canonical kinase domain with N- and C-terminal flanking regions of unclear functional roles. The N-terminus harbors a rubredoxin-like domain (Rbx), a bacterial protein module characterized by an iron ion coordinated by four cysteine residues. Disruption of the Rbx-metal binding site by simultaneous mutations of all the key cysteine residues significantly impairs PknG activity. This encouraged us to evaluate the effect of a nitro-fatty acid (9- and 10-nitro-octadeca-9-cis-enoic acid; OA-NO2) on PknG activity. Fatty acid nitroalkenes are electrophilic species produced during inflammation and metabolism that react with nucleophilic residues of target proteins (i.e., Cys and His), modulating protein function and subcellular distribution in a reversible manner. Here, we show that OA-NO2 inhibits kinase activity by covalently adducting PknG remote from the catalytic domain. Mass spectrometry-based analysis established that cysteines located at Rbx are the specific targets of the nitroalkene. Cys-nitroalkylation is a Michael addition reaction typically reverted by thiols. However, the reversible OA-NO2-mediated nitroalkylation of the kinase results in an irreversible inhibition of PknG. Cys adduction by OA-NO2 induced iron release from the Rbx domain, revealing a new strategy for the specific inhibition of PknG. These results affirm the relevance of the Rbx domain as a target for PknG inhibition and support that electrophilic lipid reactions of Rbx-Cys may represent a new drug strategy for specific PknG inhibition. PMID:23792274

  15. Through-bond effects in the ternary complexes of thrombin sandwiched by two DNA aptamers

    PubMed Central

    Pica, Andrea; Russo Krauss, Irene; Parente, Valeria; Tateishi-Karimata, Hisae; Nagatoishi, Satoru; Tsumoto, Kouhei; Sugimoto, Naoki; Sica, Filomena

    2017-01-01

    Aptamers directed against human thrombin can selectively bind to two different exosites on the protein surface. The simultaneous use of two DNA aptamers, HD1 and HD22, directed to exosite I and exosite II respectively, is a very powerful approach to exploit their combined affinity. Indeed, strategies to link HD1 and HD22 together have been proposed in order to create a single bivalent molecule with an enhanced ability to control thrombin activity. In this work, the crystal structures of two ternary complexes, in which thrombin is sandwiched between two DNA aptamers, are presented and discussed. The structures shed light on the cross talk between the two exosites. The through-bond effects are particularly evident at exosite II, with net consequences on the HD22 structure. Moreover, thermodynamic data on the binding of the two aptamers are also reported and analyzed. PMID:27899589

  16. Through-bond effects in the ternary complexes of thrombin sandwiched by two DNA aptamers.

    PubMed

    Pica, Andrea; Russo Krauss, Irene; Parente, Valeria; Tateishi-Karimata, Hisae; Nagatoishi, Satoru; Tsumoto, Kouhei; Sugimoto, Naoki; Sica, Filomena

    2017-01-09

    Aptamers directed against human thrombin can selectively bind to two different exosites on the protein surface. The simultaneous use of two DNA aptamers, HD1 and HD22, directed to exosite I and exosite II respectively, is a very powerful approach to exploit their combined affinity. Indeed, strategies to link HD1 and HD22 together have been proposed in order to create a single bivalent molecule with an enhanced ability to control thrombin activity. In this work, the crystal structures of two ternary complexes, in which thrombin is sandwiched between two DNA aptamers, are presented and discussed. The structures shed light on the cross talk between the two exosites. The through-bond effects are particularly evident at exosite II, with net consequences on the HD22 structure. Moreover, thermodynamic data on the binding of the two aptamers are also reported and analyzed.

  17. Role of a family 11 carbohydrate-binding module in the function of a recombinant cellulase used to supplement a barley-based diet for broiler chickens.

    PubMed

    Guerreiro, C I P D; Ribeiro, T; Ponte, P I P; Lordelo, M M S; Falcao, L; Freire, J P B; Ferreira, L M A; Prates, J A M; Fontes, C M G A

    2008-07-01

    1. Cellulases and xylanases display a modular architecture that comprises a catalytic module linked to one or more non-catalytic carbohydrate-binding modules (CBMs). CBMs have been classified into 52 different families, based on primary structure similarity. These non-catalytic modules mediate a prolonged and intimate contact of the enzyme with the target substrate eliciting efficient hydrolysis of the target polysaccharides. 2. A study was undertaken to investigate the importance of a family 11 CBM, displaying high affinities for barley beta-glucans, in the function of recombinant derivatives of cellulase CtLic26A-Cel5E of Clostridium thermocellum used to supplement a barley-based diet for broiler chicken. 3. The results showed that birds fed on diets containing the recombinant CtLic26A-Cel5E modular derivatives or the commercial enzyme mixture Rovabio Excel AP displayed improved performance when compared with birds fed on diets not supplemented with exogenous enzymes. 4. It is suggested that the enzyme dosage used in this study (30 U/kg of basal diet), was probably too high for the efficacy of the family 11 CBM to be noticed. It remains to be established if the targeting effect resulting from the incorporation of CBMs in plant cell wall hydrolases may be effective at lower exogenous enzyme dosages.

  18. Probing the mechanism of ligand recognition in family 29 carbohydrate-binding modules.

    PubMed

    Flint, James; Bolam, David N; Nurizzo, Didier; Taylor, Edward J; Williamson, Michael P; Walters, Christopher; Davies, Gideon J; Gilbert, Harry J

    2005-06-24

    The recycling of photosynthetically fixed carbon, by the action of microbial plant cell wall hydrolases, is integral to one of the major geochemical cycles and is of considerable industrial importance. Non-catalytic carbohydrate-binding modules (CBMs) play a key role in this degradative process by targeting hydrolytic enzymes to their cognate substrate within the complex milieu of polysaccharides that comprise the plant cell wall. Family 29 CBMs have, thus far, only been found in an extracellular multienzyme plant cell wall-degrading complex from the anaerobic fungus Piromyces equi, where they exist as a CBM29-1:CBM29-2 tandem. Here we present both the structure of the CBM29-1 partner, at 1.5 A resolution, and examine the importance of hydrophobic stacking interactions as well as direct and solvent-mediated hydrogen bonds in the binding of CBM29-2 to different polysaccharides. CBM29 domains display unusual binding properties, exhibiting specificity for both beta-manno- and beta-gluco-configured ligands such as mannan, cellulose, and glucomannan. Mutagenesis reveals that "stacking" of tryptophan residues in the n and n+2 subsites plays a critical role in ligand binding, whereas the loss of tyrosine-mediated stacking in the n+4 subsite reduces, but does not abrogate, polysaccharide recognition. Direct hydrogen bonds to ligand, such as those provided by Arg-112 and Glu-78, play a pivotal role in the interaction with both mannan and cellulose, whereas removal of water-mediated interactions has comparatively little effect on carbohydrate binding. The interactions of CBM29-2 with the O2 of glucose or mannose contribute little to binding affinity, explaining why this CBM displays dual gluco/manno specificity.

  19. Short-time dynamics of pH-dependent conformation and substrate binding in the active site of beta-glucosidases: A computational study.

    PubMed

    Flannelly, David F; Aoki, Thalia G; Aristilde, Ludmilla

    2015-09-01

    The complete degradation of cellulose to glucose is essential to carbon turnover in terrestrial ecosystems and to engineered biofuel production. A rate-limiting step in this pathway is catalyzed by beta-glucosidase (BG) enzymes, which convert cellulobiose into two glucose molecules. The activity of these enzymes has been shown to vary with solution pH. However, it is not well understood how pH influences the enzyme conformation required for catalytic action on the substrate. A structural understanding of this pH effect is important for predicting shifts in BG activity in bioreactors and environmental matrices, in addition to informing targeted protein engineering. Here we applied molecular dynamics simulations to explore conformational and substrate binding dynamics in two well-characterized BGs of bacterial (Clostridium cellulovorans) and fungal (Trichoderma reesei) origins as a function of pH. The enzymes were simulated in an explicit solvated environment, with NaCl as electrolytes, at their prominent ionization states obtained at pH 5, 6, 7, and 7.5. Our findings indicated that pH-dependent changes in the ionization states of non-catalytic residues localized outside of the immediate active site led to pH-dependent disruption of the active site conformation. This disruption interferes with favorable H-bonding interactions with catalytic residues required to initiate catalysis on the substrate. We also identified specific non-catalytic residues that are involved in stabilizing the substrate at the optimal pH for enzyme activity. The simulations further revealed the dynamics of water-bridging interactions both outside and inside the substrate binding cleft during structural changes in the enzyme-substrate complex. These findings provide new structural insights into the pH-dependent substrate binding specificity in BGs.

  20. Non-Catalytic Reforming with Applications to Portable Power

    DTIC Science & Technology

    2013-10-01

    and J.J. Beaman, Jr., “Freeform Fabrication of Non-Metallic Objects by Selective Laser Sintering and Infiltration”, Materials Science Forum, 561-565...for syngas production from jet fuel using various methods including catalysts [4, 47-54] and plasmas [55]. Investigations of noncatalytic reforming...Combustion of n-butanol in a spark -ignition IC engine. Fuel. 89(7): p. 1573-1582. 32. Behrens, D.A., I.C. Lee, and C.M. Waits, Catalytic combustion of

  1. A Non-catalytic Deep Desulphurization Process using Hydrodynamic Cavitation

    NASA Astrophysics Data System (ADS)

    Suryawanshi, Nalinee B.; Bhandari, Vinay M.; Sorokhaibam, Laxmi Gayatri; Ranade, Vivek V.

    2016-09-01

    A novel approach is developed for desulphurization of fuels or organics without use of catalyst. In this process, organic and aqueous phases are mixed in a predefined manner under ambient conditions and passed through a cavitating device. Vapor cavities formed in the cavitating device are then collapsed which generate (in-situ) oxidizing species which react with the sulphur moiety resulting in the removal of sulphur from the organic phase. In this work, vortex diode was used as a cavitating device. Three organic solvents (n-octane, toluene and n-octanol) containing known amount of a model sulphur compound (thiophene) up to initial concentrations of 500 ppm were used to verify the proposed method. A very high removal of sulphur content to the extent of 100% was demonstrated. The nature of organic phase and the ratio of aqueous to organic phase were found to be the most important process parameters. The results were also verified and substantiated using commercial diesel as a solvent. The developed process has great potential for deep of various organics, in general, and for transportation fuels, in particular.

  2. A Non-catalytic Deep Desulphurization Process using Hydrodynamic Cavitation

    PubMed Central

    Suryawanshi, Nalinee B.; Bhandari, Vinay M.; Sorokhaibam, Laxmi Gayatri; Ranade, Vivek V.

    2016-01-01

    A novel approach is developed for desulphurization of fuels or organics without use of catalyst. In this process, organic and aqueous phases are mixed in a predefined manner under ambient conditions and passed through a cavitating device. Vapor cavities formed in the cavitating device are then collapsed which generate (in-situ) oxidizing species which react with the sulphur moiety resulting in the removal of sulphur from the organic phase. In this work, vortex diode was used as a cavitating device. Three organic solvents (n-octane, toluene and n-octanol) containing known amount of a model sulphur compound (thiophene) up to initial concentrations of 500 ppm were used to verify the proposed method. A very high removal of sulphur content to the extent of 100% was demonstrated. The nature of organic phase and the ratio of aqueous to organic phase were found to be the most important process parameters. The results were also verified and substantiated using commercial diesel as a solvent. The developed process has great potential for deep of various organics, in general, and for transportation fuels, in particular. PMID:27605492

  3. Cord Wood Testing in a Non-Catalytic Wood Stove

    SciTech Connect

    Butcher, T.; Trojanowski, R.; Wei, G.

    2014-06-30

    EPA Method 28 and the current wood stove regulations have been in-place since 1988. Recently, EPA proposed an update to the existing NSPS for wood stove regulations which includes a plan to transition from the current crib wood fuel to cord wood fuel for certification testing. Cord wood is seen as generally more representative of field conditions while the crib wood is seen as more repeatable. In any change of certification test fuel, there are questions about the impact on measured results and the correlation between tests with the two different fuels. The purpose of the work reported here is to provide data on the performance of a noncatalytic stove with cord wood. The stove selected has previously been certified with crib wood which provides a basis for comparison with cord wood. Overall, particulate emissions were found to be considerably higher with cord wood.

  4. Enhanced exo-inulinase activity and stability by fusion of an inulin-binding module.

    PubMed

    Zhou, Shun-Hua; Liu, Yuan; Zhao, Yu-Juan; Chi, Zhe; Chi, Zhen-Ming; Liu, Guang-Lei

    2016-09-01

    In this study, an inulin-binding module from Bacillus macerans was successfully fused to an exo-inulinase from Kluyveromyces marxianus, creating a hybrid functional enzyme. The recombinant exo-inulinase (rINU), the hybrid enzyme (rINUIBM), and the recombinant inulin-binding module (rIBM) were, respectively, heterologously expressed and biochemically characterized. It was found that both the inulinase activity and the catalytic efficiency (k cat/K m(app)) of the rINUIBM were considerably higher than those of rINU. Though the rINU and the rINUIBM shared the same optimum pH of 4.5, the optimum temperature of the rINUIBM (60 °C) was 5 °C higher than that of the rINU. Notably, the fused IBM significantly enhanced both the pH stability and the thermostability of the rINUIBM, suggesting that the rINUIBM obtained would have more extensive potential applications. Furthermore, the fusion of the IBM could substantially improve the inulin-binding capability of the rINUIBM, which was consistent with the determination of the K m(app). This meant that the fused IBM could play a critical role in the recognition of polysaccharides and enhanced the hydrolase activity of the associated inulinase by increasing enzyme-substrate proximity. Besides, the extra supplement of the independent non-catalytic rIBM could also improve the inulinase activity of the rINU. However, this improvement was much better in case of the fusion. Consequently, the IBM could be designated as a multifunctional domain that was responsible for the activity enhancement, the stabilization, and the substrate binding of the rINUIBM. All these features obtained in this study make the rINUIBM become an attractive candidate for an efficient inulin hydrolysis.

  5. Circular Permutation Provides an Evolutionary Link between Two Families of Calcium-dependent Carbohydrate Binding Modules*

    PubMed Central

    Montanier, Cedric; Flint, James E.; Bolam, David N.; Xie, Hefang; Liu, Ziyuan; Rogowski, Artur; Weiner, David P.; Ratnaparkhe, Supriya; Nurizzo, Didier; Roberts, Shirley M.; Turkenburg, Johan P.; Davies, Gideon J.; Gilbert, Harry J.

    2010-01-01

    The microbial deconstruction of the plant cell wall is a critical biological process, which also provides important substrates for environmentally sustainable industries. Enzymes that hydrolyze the plant cell wall generally contain non-catalytic carbohydrate binding modules (CBMs) that contribute to plant cell wall degradation. Here we report the biochemical properties and crystal structure of a family of CBMs (CBM60) that are located in xylanases. Uniquely, the proteins display broad ligand specificity, targeting xylans, galactans, and cellulose. Some of the CBM60s display enhanced affinity for their ligands through avidity effects mediated by protein dimerization. The crystal structure of vCBM60, displays a β-sandwich with the ligand binding site comprising a broad cleft formed by the loops connecting the two β-sheets. Ligand recognition at site 1 is, exclusively, through hydrophobic interactions, whereas binding at site 2 is conferred by polar interactions between a protein-bound calcium and the O2 and O3 of the sugar. The observation, that ligand recognition at site 2 requires only a β-linked sugar that contains equatorial hydroxyls at C2 and C3, explains the broad ligand specificity displayed by vCBM60. The ligand-binding apparatus of vCBM60 displays remarkable structural conservation with a family 36 CBM (CBM36); however, the residues that contribute to carbohydrate recognition are derived from different regions of the two proteins. Three-dimensional structure-based sequence alignments reveal that CBM36 and CBM60 are related by circular permutation. The biological and evolutionary significance of the mechanism of ligand recognition displayed by family 60 CBMs is discussed. PMID:20659893

  6. Ureaplasma urealyticum binds mannose-binding lectin.

    PubMed

    Benstein, Barbara D; Ourth, Donald D; Crouse, Dennis T; Shanklin, D Radford

    2004-10-01

    Mannose-binding C-type lectin (MBL) is an important component of innate immunity in mammals. Mannose-binding lectin (MBL), an acute phase protein, acts as an opsonin for phagocytosis and also activates the mannan-binding lectin complement pathway. It may play a particularly significant role during infancy before adequate specific protection can be provided by the adaptive immune system. Ureaplasma urealyticum has been linked to several diseases including pneumonia and chronic lung disease (CLD) in premature infants. We therefore investigated the ability of U. urealyticum to bind MBL. A guinea pig IgG anti-rabbit-MBL antiserum was produced. An immunoblot (dot-blot) assay done on nitrocellulose membrane determined that the anti-MBL antibody had specificity against both rabbit and human MBL. Pure cultures of U. urealyticum, serotype 3, were used to make slide preparations. The slides containing the organisms were then incubated with nonimmune rabbit serum containing MBL. Ureaplasma was shown to bind rabbit MBL with an immunocytochemical assay using the guinea pig IgG anti-rabbit MBL antiserum. Horseradish peroxidase (HRP)-labeled anti-guinea pig IgG was used to localize the reaction. The anti-MBL antiserum was also used in an immunocytochemical assay to localize U. urealyticum in histological sections of lungs from mice specifically infected with this organism. The same method also indicated binding of MBL by ureaplasma in human lung tissue obtained at autopsy from culture positive infants. Our results demonstrate that ureaplasma has the capacity to bind MBL. The absence of MBL may play a role in the predisposition of diseases related to this organism.

  7. Evolving nucleotide binding surfaces

    NASA Technical Reports Server (NTRS)

    Kieber-Emmons, T.; Rein, R.

    1981-01-01

    An analysis is presented of the stability and nature of binding of a nucleotide to several known dehydrogenases. The employed approach includes calculation of hydrophobic stabilization of the binding motif and its intermolecular interaction with the ligand. The evolutionary changes of the binding motif are studied by calculating the Euclidean deviation of the respective dehydrogenases. Attention is given to the possible structural elements involved in the origin of nucleotide recognition by non-coded primordial polypeptides.

  8. The N-Terminal Non-Kinase-Domain-Mediated Binding of Haspin to Pds5B Protects Centromeric Cohesion in Mitosis.

    PubMed

    Zhou, Linli; Liang, Cai; Chen, Qinfu; Zhang, Zhenlei; Zhang, Bo; Yan, Haiyan; Qi, Feifei; Zhang, Miao; Yi, Qi; Guan, Youchen; Xiang, Xingfeng; Zhang, Xiaoqing; Ye, Sheng; Wang, Fangwei

    2017-04-03

    Sister-chromatid cohesion, mediated by the multi-subunit cohesin complex, must be precisely regulated to prevent chromosome mis-segregation. In prophase and prometaphase, whereas the bulk of cohesin on chromosome arms is removed by its antagonist Wapl, cohesin at centromeres is retained to ensure chromosome biorientation until anaphase onset. It remains incompletely understood how centromeric cohesin is protected against Wapl in mitosis. Here we show that the mitotic histone kinase Haspin binds to the cohesin regulatory subunit Pds5B through a conserved YGA/R motif in its non-catalytic N terminus, which is similar to the recently reported YSR-motif-dependent binding of Wapl to Pds5B. Knockout of Haspin or disruption of Haspin-Pds5B interaction causes weakened centromeric cohesion and premature chromatid separation, which can be reverted by centromeric targeting of a N-terminal short fragment of Haspin containing the Pds5B-binding motif or by prevention of Wapl-dependent cohesin removal. Conversely, excessive Haspin capable of binding Pds5B displaces Wapl from Pds5B and suppresses Wapl activity, and it largely bypasses the Wapl antagonist Sgo1 for cohesion protection. Taken together, these data indicate that the Haspin-Pds5B interaction is required to ensure proper sister-chromatid cohesion, most likely through antagonizing Wapl-mediated cohesin release from mitotic centromeres.

  9. Melanin-binding radiopharmaceuticals

    SciTech Connect

    Packer, S; Fairchild, R G; Watts, K P; Greenberg, D; Hannon, S J

    1980-01-01

    The scope of this paper is limited to an analysis of the factors that are important to the relationship of radiopharmaceuticals to melanin. While the authors do not attempt to deal with differences between melanin-binding vs. melanoma-binding, a notable variance is assumed. (PSB)

  10. The Rrp6 C-terminal domain binds RNA and activates the nuclear RNA exosome

    PubMed Central

    Wasmuth, Elizabeth V.; Lima, Christopher D.

    2017-01-01

    The eukaryotic RNA exosome is an essential, multi-subunit complex that catalyzes RNA turnover, maturation, and quality control processes. Its non-catalytic donut-shaped core includes 9 subunits that associate with the 3′ to 5′ exoribonucleases Rrp6, and Rrp44/Dis3, a subunit that also catalyzes endoribonuclease activity. Although recent structures and biochemical studies of RNA bound exosomes from S. cerevisiae revealed that the Exo9 central channel guides RNA to either Rrp6 or Rrp44 using partially overlapping and mutually exclusive paths, several issues related to RNA recruitment remain. Here, we identify activities for the highly basic Rrp6 C-terminal tail that we term the ‘lasso’ because it binds RNA and stimulates ribonuclease activities associated with Rrp44 and Rrp6 within the 11-subunit nuclear exosome. Stimulation is dependent on the Exo9 central channel, and the lasso contributes to degradation and processing activities of exosome substrates in vitro and in vivo. Finally, we present evidence that the Rrp6 lasso may be a conserved feature of the eukaryotic RNA exosome. PMID:27899565

  11. SPRYSEC Effectors: A Versatile Protein-Binding Platform to Disrupt Plant Innate Immunity

    PubMed Central

    Diaz-Granados, Amalia; Petrescu, Andrei-José; Goverse, Aska; Smant, Geert

    2016-01-01

    Persistent infections by sedentary plant-parasitic nematodes are a major threat to important food crops all over the world. These roundworms manipulate host plant cell morphology and physiology to establish sophisticated feeding structures. Key modifications to plant cells during their transition into feeding structures are largely attributed to the activity of effectors secreted by the nematodes. The SPRYSEC effectors were initially identified in the potato cyst nematodes Globodera rostochiensis and G. pallida, and are characterized by a single SPRY domain, a non-catalytic domain present in modular proteins with different functions. The SPRY domain is wide-spread among eukaryotes and thought to be involved in mediating protein–protein interactions. Thus far, the SPRY domain is only reported as a functional domain in effectors of plant-parasitic nematodes, but not of other plant pathogens. SPRYSEC effectors have been implicated in both suppression and activation of plant immunity, but other possible roles in nematode virulence remain undefined. Here, we review the latest reports on the structure, function, and sequence diversity of SPRYSEC effectors, which provide support for a model featuring these effectors as a versatile protein-binding platform for the nematodes to target a wide range of host proteins during parasitism. PMID:27812363

  12. Multiple Ligands of von Willebrand Factor-binding Protein (vWbp) Promote Staphylococcus aureus Clot Formation in Human Plasma*

    PubMed Central

    Thomer, Lena; Schneewind, Olaf; Missiakas, Dominique

    2013-01-01

    Staphylococcus aureus secretes coagulase (Coa) and von Willebrand factor-binding protein (vWbp) to activate host prothrombin and form fibrin cables, thereby promoting the establishment of infectious lesions. The D1-D2 domains of Coa and vWbp associate with, and non-proteolytically activate prothrombin. Moreover, Coa encompasses C-terminal tandem repeats for binding to fibrinogen, whereas vWbp has been reported to associate with von Willebrand factor and fibrinogen. Here we used affinity chromatography with non-catalytic Coa and vWbp to identify the ligands for these virulence factors in human plasma. vWbp bound to prothrombin, fibrinogen, fibronectin, and factor XIII, whereas Coa co-purified with prothrombin and fibrinogen. vWbp association with fibrinogen and factor XIII, but not fibronectin, required prothrombin and triggered the non-proteolytic activation of FXIII in vitro. Staphylococcus aureus coagulation of human plasma was associated with the recruitment of prothrombin, FXIII, and fibronectin as well as the formation of cross-linked fibrin. FXIII activity in staphylococcal clots could be attributed to thrombin-dependent proteolytic activation as well as vWbp-mediated non-proteolytic activation of FXIII zymogen. PMID:23960083

  13. Metallochaperones: bind and deliver

    SciTech Connect

    Rosenzweig, A.C.

    2010-03-08

    Metallochaperones deliver metal ions directly to target proteins via specific protein-protein interactions. Recent research has led to a molecular picture of how some metallochaperones bind metal ions, recognize their partner proteins, and accomplish metal ion transfer.

  14. The Conformational Changes Induced by Ubiquinone Binding in the Na+-pumping NADH:Ubiquinone Oxidoreductase (Na+-NQR) Are Kinetically Controlled by Conserved Glycines 140 and 141 of the NqrB Subunit*

    PubMed Central

    Strickland, Madeleine; Juárez, Oscar; Neehaul, Yashvin; Cook, Darcie A.; Barquera, Blanca; Hellwig, Petra

    2014-01-01

    Na+-pumping NADH:ubiquinone oxidoreductase (Na+-NQR) is responsible for maintaining a sodium gradient across the inner bacterial membrane. This respiratory enzyme, which couples sodium pumping to the electron transfer between NADH and ubiquinone, is not present in eukaryotes and as such could be a target for antibiotics. In this paper it is shown that the site of ubiquinone reduction is conformationally coupled to the NqrB subunit, which also hosts the final cofactor in the electron transport chain, riboflavin. Previous work showed that mutations in conserved NqrB glycine residues 140 and 141 affect ubiquinone reduction and the proper functioning of the sodium pump. Surprisingly, these mutants did not affect the dissociation constant of ubiquinone or its analog HQNO (2-n-heptyl-4-hydroxyquinoline N-oxide) from Na+-NQR, which indicates that these residues do not participate directly in the ubiquinone binding site but probably control its accessibility. Indeed, redox-induced difference spectroscopy showed that these mutations prevented the conformational change involved in ubiquinone binding but did not modify the signals corresponding to bound ubiquinone. Moreover, data are presented that demonstrate the NqrA subunit is able to bind ubiquinone but with a low non-catalytically relevant affinity. It is also suggested that Na+-NQR contains a single catalytic ubiquinone binding site and a second site that can bind ubiquinone but is not active. PMID:25006248

  15. SHBG (Sex Hormone Binding Globulin)

    MedlinePlus

    ... as: Testosterone-estrogen Binding Globulin; TeBG Formal name: Sex Hormone Binding Globulin Related tests: Testosterone , Free Testosterone, ... I should know? How is it used? The sex hormone binding globulin (SHBG) test may be used ...

  16. Sigma Receptor Binding Assays.

    PubMed

    Chu, Uyen B; Ruoho, Arnold E

    2015-12-08

    Sigma receptors, both Sigma-1(S1R) and Sigma-2 (S2R), are small molecule-regulated, primarily endoplasmic reticulum (ER) membrane-associated sites. A number of drugs bind to sigma receptors, including the antipsychotic haloperidol and (+)-pentazocine, an opioid analgesic. Sigma receptors are implicated in many central nervous system disorders, in particular Alzheimer's disease and conditions associated with motor control, such as Amyotrophic Lateral Sclerosis (ALS). Described in this unit are radioligand binding assays used for the pharmacological characterization of S1R and S2R. Methods detailed include a radioligand saturation binding assay for defining receptor densities and a competitive inhibition binding assay employing [³H]-(+)-pentazocine for identifying and characterizing novel ligands that interact with S1R. Procedures using [³H]-1,3-di(2-tolyl)guanidine ([³H]-DTG), a nonselective sigma receptor ligand, are described for conducting a saturation binding and competitive inhibition assays for the S2R site. These protocols are of value in drug discovery in identifying new sigma ligands and in the characterization of these receptors.

  17. Stability and Ligand Promiscuity of Type A Carbohydrate-binding Modules Are Illustrated by the Structure of Spirochaeta thermophila StCBM64C.

    PubMed

    Pires, Virgínia M R; Pereira, Pedro M M; Brás, Joana L A; Correia, Márcia; Cardoso, Vânia; Bule, Pedro; Alves, Victor D; Najmudin, Shabir; Venditto, Immacolata; Ferreira, Luís M A; Romão, Maria João; Carvalho, Ana Luísa; Fontes, Carlos M G A; Prazeres, Duarte Miguel

    2017-03-24

    Deconstruction of cellulose, the most abundant plant cell wall polysaccharide, requires the cooperative activity of a large repertoire of microbial enzymes. Modular cellulases contain non-catalytic type A carbohydrate-binding modules (CBMs) that specifically bind to the crystalline regions of cellulose, thus promoting enzyme efficacy through proximity and targeting effects. Although type A CBMs play a critical role in cellulose recycling, their mechanism of action remains poorly understood. Here we produced a library of recombinant CBMs representative of the known diversity of type A modules. The binding properties of 40 CBMs, in fusion with an N-terminal GFP domain, revealed that type A CBMs possess the ability to recognize different crystalline forms of cellulose and chitin over a wide range of temperatures, pH levels, and ionic strengths. A Spirochaeta thermophila CBM64, in particular, displayed plasticity in its capacity to bind both crystalline and soluble carbohydrates under a wide range of extreme conditions. The structure of S. thermophila StCBM64C revealed an untwisted, flat, carbohydrate-binding interface comprising the side chains of four tryptophan residues in a co-planar linear arrangement. Significantly, two highly conserved asparagine side chains, each one located between two tryptophan residues, are critical to insoluble and soluble glucan recognition but not to bind xyloglucan. Thus, CBM64 compact structure and its extended and versatile ligand interacting platform illustrate how type A CBMs target their appended plant cell wall-degrading enzymes to a diversity of recalcitrant carbohydrates under a wide range of environmental conditions.

  18. Aluminum binding by humus

    SciTech Connect

    Benedetti, M.F.; Hiemstra, T.; Riemsdijk, W. van; Kinniburgh, D.

    1996-10-01

    The need for qualitative and quantitative description of the chemical speciation of Al, in particular and other metal ions in general, is stressed by the increased mobilization of metal ions in water and soils due to acid rain deposition. In this paper we present new data of Al binding to two humic acids. These new data sets and the some previously published data will be analyzed with the NICA-Donnan model using one set of parameters to describe the Al binding to the different humic substances. Once the experimental data is described with the NICA-Donnan approach, we will show the effect of Ca on Al binding and surface speciation as well as the effect of Al on the charge of the humic particles. The parameters derived from the laboratory experiments will be used to describe the variation of the field based Al partition coefficient.

  19. Inhibition of selectin binding

    DOEpatents

    Nagy, Jon O.; Spevak, Wayne R.; Dasgupta, Falguni; Bertozzi, Carolyn

    1999-10-05

    This invention provides a system for inhibiting the binding between two cells, one expressing P- or L-selectin on the surface and the other expressing the corresponding ligand. A covalently crosslinked lipid composition is prepared having saccharides and acidic group on separate lipids. The composition is then interposed between the cells so as to inhibit binding. Inhibition can be achieved at an effective oligosaccharide concentration as low as 10.sup.6 fold below that of the free saccharide. Since selectins are involved in recruiting cells to sites of injury, this system can be used to palliate certain inflammatory and immunological conditions.

  20. Inhibition of selectin binding

    DOEpatents

    Nagy, Jon O.; Spevak, Wayne R.; Dasgupta, Falguni; Bertozzi, Caroline

    2001-10-09

    This invention provides compositions for inhibiting the binding between two cells, one expressing P- or L-selectin on the surface and the other expressing the corresponding ligand. A covalently crosslinked lipid composition is prepared having saccharides and acidic group on separate lipids. The composition is then interposed between the cells so as to inhibit binding. Inhibition can be achieved at an effective oligosaccharide concentration as low as 10.sup.6 fold below that of the free saccharide. Since selectins are involved in recruiting cells to sites of injury, these composition scan be used to palliate certain inflammatory and immunological conditions.

  1. Inhibition of selectin binding

    DOEpatents

    Nagy, Jon O.; Spevak, Wayne R.; Dasgupta, Falguni; Bertozzi, Caroline

    1999-01-01

    This invention provides compositions for inhibiting the binding between two cells, one expressing P- or L-selectin on the surface and the other expressing the corresponding ligand. A covalently crosslinked lipid composition is prepared having saccharides and acidic group on separate lipids. The composition is then interposed between the cells so as to inhibit binding. Inhibition can be achieved at an effective oligosaccharide concentration as low as 10.sup.6 fold below that of the free saccharide. Since selectins are involved in recruiting cells to sites of injury, these composition scan be used to palliate certain inflammatory and immunological conditions.

  2. MD-2 binds cholesterol.

    PubMed

    Choi, Soo-Ho; Kim, Jungsu; Gonen, Ayelet; Viriyakosol, Suganya; Miller, Yury I

    2016-02-19

    Cholesterol is a structural component of cellular membranes, which is transported from liver to peripheral cells in the form of cholesterol esters (CE), residing in the hydrophobic core of low-density lipoprotein. Oxidized CE (OxCE) is often found in plasma and in atherosclerotic lesions of subjects with cardiovascular disease. Our earlier studies have demonstrated that OxCE activates inflammatory responses in macrophages via toll-like receptor-4 (TLR4). Here we demonstrate that cholesterol binds to myeloid differentiation-2 (MD-2), a TLR4 ancillary molecule, which is a binding receptor for bacterial lipopolysaccharide (LPS) and is indispensable for LPS-induced TLR4 dimerization and signaling. Cholesterol binding to MD-2 was competed by LPS and by OxCE-modified BSA. Furthermore, soluble MD-2 in human plasma and MD-2 in mouse atherosclerotic lesions carried cholesterol, the finding supporting the biological significance of MD-2 cholesterol binding. These results help understand the molecular basis of TLR4 activation by OxCE and mechanisms of chronic inflammation in atherosclerosis.

  3. MD-2 binds cholesterol

    PubMed Central

    Choi, Soo-Ho; Kim, Jungsu; Gonen, Ayelet; Viriyakosol, Suganya; Miller, Yury I.

    2016-01-01

    Cholesterol is a structural component of cellular membranes, which is transported from liver to peripheral cells in the form of cholesterol esters (CE), residing in the hydrophobic core of low-density lipoprotein. Oxidized CE (OxCE) is often found in plasma and in atherosclerotic lesions of subjects with cardiovascular disease. Our earlier studies have demonstrated that OxCE activates inflammatory responses in macrophages via toll-like receptor-4 (TLR4). Here we demonstrate that cholesterol binds to myeloid differentiation-2 (MD-2), a TLR4 ancillary molecule, which is a binding receptor for bacterial lipopolysaccharide (LPS) and is indispensable for LPS-induced TLR4 dimerization and signaling. Cholesterol binding to MD-2 was competed by LPS and by OxCE-modified BSA. Furthermore, soluble MD-2 in human plasma and MD-2 in mouse atherosclerotic lesions carried cholesterol, the finding supporting the biological significance of MD-2 cholesterol binding. These results help understand the molecular basis of TLR4 activation by OxCE and mechanisms of chronic inflammation in atherosclerosis. PMID:26806306

  4. Cellulose binding domain proteins

    SciTech Connect

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  5. Cellulose binding domain proteins

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.; Doi, R.

    1998-11-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  6. Sequential memory: Binding dynamics

    NASA Astrophysics Data System (ADS)

    Afraimovich, Valentin; Gong, Xue; Rabinovich, Mikhail

    2015-10-01

    Temporal order memories are critical for everyday animal and human functioning. Experiments and our own experience show that the binding or association of various features of an event together and the maintaining of multimodality events in sequential order are the key components of any sequential memories—episodic, semantic, working, etc. We study a robustness of binding sequential dynamics based on our previously introduced model in the form of generalized Lotka-Volterra equations. In the phase space of the model, there exists a multi-dimensional binding heteroclinic network consisting of saddle equilibrium points and heteroclinic trajectories joining them. We prove here the robustness of the binding sequential dynamics, i.e., the feasibility phenomenon for coupled heteroclinic networks: for each collection of successive heteroclinic trajectories inside the unified networks, there is an open set of initial points such that the trajectory going through each of them follows the prescribed collection staying in a small neighborhood of it. We show also that the symbolic complexity function of the system restricted to this neighborhood is a polynomial of degree L - 1, where L is the number of modalities.

  7. SIGMA RECEPTOR BINDING ASSAYS

    PubMed Central

    CHU, UYEN B.; RUOHO, ARNOLD E.

    2016-01-01

    Sigma receptors belong to a class of small molecule-regulated, primarily endoplasmic reticulum (ER) membrane-associated receptors, of which there are two subtypes: the Sigma-1 receptor (S1R) and the Sigma-2 receptor (S2R). Both S1R and S2R bind to a number of drugs including antipsychotic, haloperidol, and the opioid analgesic, (+)-pentazocine. Sigma receptors are implicated in multiple disease pathologies associated with the nervous system including diseases affecting motor control such as Amyotrophic Lateral Sclerosis (ALS) and Alzeimher's disease. This unit describes methods for the pharmacological characterization of S1R and S2R using radioligand-binding assays. In the first section, radioligand saturation binding assay to determine receptor densities and competitive inhibition assays to characterize affinities of novel compounds are presented for S1R using the selective S1R ligand, [3H]-(+)-pentazocine. The second section describes radioligand saturation binding assay and competitive inhibition assays for the S2R using a non-selective S1R and S2R ligand, [3H]-1,3-di(2-tolyl)guanidine ([3H]-DTG). PMID:26646191

  8. VAP-B binds to Rab3GAP1 at the ER: its implication in nuclear envelope formation through the ER-Golgi intermediate compartment.

    PubMed

    Hantan, Degejirihu; Yamamoto, Yasunori; Sakisaka, Toshiaki

    2014-10-01

    The vesicle-associated membrane protein-associated protein B (VAP-B) is a tail-anchored protein in the endoplasmic reticulum (ER). VAP-B functions as an adaptor protein to recruit target proteins to the ER and execute various cellular functions, lipid transport, membrane traffic, ER stress etc. Recently, VAP-B has been shown to regulate the nuclear envelope protein transport through the ER-Golgi intermediate compartment (ERGIC). We showed here that VAP-B directly binds to Rab3 GTPase activating protein 1 (Rab3GAP1), the catalytic subunit of Rab3GAP, through the two phenylalanines (FF) in an acidic tract (FFAT)-like motif of Rab3GAP1. Rab3GAP consists of two subunits, the catalytic subunit Rab3GAP1 and the non-catalytic subunit Rab3GAP2. VAP-B binds to Rab3GAP1 even in the Rab3GAP1/2 heterodimer complex. A single amino acid substitution of the FFAT-like motif reduces the binding activity of Rab3GAP1 to VAP-B. On the other hand, the FFAT-like motif mutation increases the binding activity of Rab3GAP1 to ERGIC-53, the ERGIC marker protein. Overexpression of Rab3GAP1 affects nuclear envelope formation more potently than that of Rab3GAP1 FFAT-like motif mutant. These results suggest that the binding of VAP-B to Rab3GAP1 is implicated in the regulation of nuclear envelope formation through ERGIC.

  9. Evolutionary history of double-stranded RNA binding proteins in plants: identification of new cofactors involved in easiRNA biogenesis.

    PubMed

    Clavel, Marion; Pélissier, Thierry; Montavon, Thomas; Tschopp, Marie-Aude; Pouch-Pélissier, Marie-Noëlle; Descombin, Julie; Jean, Viviane; Dunoyer, Patrice; Bousquet-Antonelli, Cécile; Deragon, Jean-Marc

    2016-05-01

    In this work, we retrace the evolutionary history of plant double-stranded RNA binding proteins (DRBs), a group of non-catalytic factors containing one or more double-stranded RNA binding motif (dsRBM) that play important roles in small RNA biogenesis and functions. Using a phylogenetic approach, we show that multiple dsRBM DRBs are systematically composed of two different types of dsRBMs evolving under different constraints and likely fulfilling complementary functions. In vascular plants, four distinct clades of multiple dsRBM DRBs are always present with the exception of Brassicaceae species, that do not possess member of the newly identified clade we named DRB6. We also identified a second new and highly conserved DRB family (we named DRB7) whose members possess a single dsRBM that shows concerted evolution with the most C-terminal dsRBM domain of the Dicer-like 4 (DCL4) proteins. Using a BiFC approach, we observed that Arabidopsis thaliana DRB7.2 (AtDRB7.2) can directly interact with AtDRB4 but not with AtDCL4 and we provide evidence that both AtDRB7.2 and AtDRB4 participate in the epigenetically activated siRNAs pathway.

  10. Conciliating binding efficiency and polypharmacology.

    PubMed

    Mestres, Jordi; Gregori-Puigjané, Elisabet

    2009-09-01

    The association between molecular size and risk of failure has promoted the use of binding efficiency as a prioritization metric in lead selection. Even though by extension it is often referred to as "ligand efficiency", the concept was originally conceived to be strictly applicable to comparing the binding efficiencies of ligands for a single target. With current trends in designing drugs to bind efficiently to multiple targets, a revision of the original binding efficiency definition is carried out. To this aim, the dependency of binding efficiency on polypharmacology is highlighted in a retrospective analysis of a set of antipsychotic drugs. Statistical standardization of target binding efficiencies relative to basal values obtained from a large background of medicinal chemistry compounds is proposed as a means to conciliate the concepts of binding efficiency and polypharmacology. Finally, the interplay between binding efficiency and therapeutic efficacy for optimizing natural products, random hits, and fragments is discussed.

  11. Library Binding Manual. Revised Edition.

    ERIC Educational Resources Information Center

    Lakhanpal, S. K.

    This procedural manual is designed to be used in bindery sections in public, university and special libraries. It briefly discusses these general matters: administrative control; selection of a binder; when and what to bind; conventional binding; routines; missing issues; schedule for shipments; temporary binding; rare books, maps and newspapers;…

  12. Americium binding to humic acid.

    PubMed

    Peters, A J; Hamilton-Taylor, J; Tipping, E

    2001-09-01

    The binding of americium (Am) by peat humic acid (PHA) has been investigated at Am concentrations between 10(-1) and 10(-7) M at pH approximately 2.6 in the presence and absence of Cu as a competing ion. Cu-PHA binding was also investigated in order to derive independent binding constants for use in modeling the competitive binding studies. Humic ion-binding model VI was used to compare the acquired data with previously published binding data and to investigate the importance of high-affinity binding sites in metal-PHA binding. Am was not observed to bind to high-affinity, low-concentration binding sites. The model VI parameter deltaLK2 takes into accountthe small number of strong sites in PHA and was found to be important for Cu-PHA binding but not for Am-PHA binding, regardless of whether Cu was present. Analysis of the PHA sample revealed that it contained a considerable quantity of Fe not removed by the extraction procedure, much of which is believed to be present as Fe(III). Model VI was then used to investigate the possible importance of the presence of Fe(III) in the Am-PHA binding experiments. When Fe(III) was assumed to be present, improved descriptions of the data by model VI were obtained by assuming that all of the metals [Am, Cu, and Fe(III)] undergo strong binding. This highlights the importance of Fe(III) competition in metal-PHA binding studies and possible shortcomings in the extraction procedure used to extract PHA.

  13. Carboplatin binding to histidine

    SciTech Connect

    Tanley, Simon W. M.; Diederichs, Kay; Kroon-Batenburg, Loes M. J.; Levy, Colin; Schreurs, Antoine M. M.; Helliwell, John R.

    2014-08-29

    An X-ray crystal structure showing the binding of purely carboplatin to histidine in a model protein has finally been obtained. This required extensive crystallization trials and various novel crystal structure analyses. Carboplatin is a second-generation platinum anticancer agent used for the treatment of a variety of cancers. Previous X-ray crystallographic studies of carboplatin binding to histidine (in hen egg-white lysozyme; HEWL) showed the partial conversion of carboplatin to cisplatin owing to the high NaCl concentration used in the crystallization conditions. HEWL co-crystallizations with carboplatin in NaBr conditions have now been carried out to confirm whether carboplatin converts to the bromine form and whether this takes place in a similar way to the partial conversion of carboplatin to cisplatin observed previously in NaCl conditions. Here, it is reported that a partial chemical transformation takes place but to a transplatin form. Thus, to attempt to resolve purely carboplatin binding at histidine, this study utilized co-crystallization of HEWL with carboplatin without NaCl to eliminate the partial chemical conversion of carboplatin. Tetragonal HEWL crystals co-crystallized with carboplatin were successfully obtained in four different conditions, each at a different pH value. The structural results obtained show carboplatin bound to either one or both of the N atoms of His15 of HEWL, and this particular variation was dependent on the concentration of anions in the crystallization mixture and the elapsed time, as well as the pH used. The structural details of the bound carboplatin molecule also differed between them. Overall, the most detailed crystal structure showed the majority of the carboplatin atoms bound to the platinum centre; however, the four-carbon ring structure of the cyclobutanedicarboxylate moiety (CBDC) remained elusive. The potential impact of the results for the administration of carboplatin as an anticancer agent are described.

  14. Collagen binding to Staphylococcus aureus

    SciTech Connect

    Holderbaum, D.; Hall, G.S.; Ehrhart, L.A.

    1986-11-01

    Staphylococcus aureus can bind soluble collagen in a specific, saturable manner. We have previously shown that some variability exists in the degree of collagen binding between different strains of heat-killed, formaldehyde-fixed S. aureus which are commercially available as immunologic reagents. The present study demonstrates that live S. aureus of the Cowan 1 strain binds amounts of collagen per organism equivalent to those demonstrated previously in heat-killed, formaldehyde-fixed bacteria but has an affinity over 100 times greater, with Kd values of 9.7 X 10(-11) M and 4.3 X 10(-8) M for live and heat-killed organisms, respectively. Studies were also carried out with S. aureus killed by ionizing radiation, since this method of killing the organism seemed less likely to alter the binding moieties on the surface than did heat killing. Bacteria killed by exposure to gamma radiation bound collagen in a manner essentially indistinguishable from that of live organisms. Binding of collagen to irradiated cells of the Cowan 1 strain was rapid, with equilibrium reached by 30 min at 22 degrees C, and was fully reversible. The binding was not inhibited by fibronectin, fibrinogen, C1q, or immunoglobulin G, suggesting a binding site for collagen distinct from those for these proteins. Collagen binding was virtually eliminated in trypsin-treated organisms, indicating that the binding site has a protein component. Of four strains examined, Cowan 1 and S. aureus ATCC 25923 showed saturable, specific binding, while strains Woods and S4 showed a complete lack of binding. These results suggest that some strains of S. aureus contain high-affinity binding sites for collagen. While the number of binding sites per bacterium varied sixfold in the two collagen-binding strains, the apparent affinity was similar.

  15. An olive pollen protein with allergenic activity, Ole e 10, defines a novel family of carbohydrate-binding modules and is potentially implicated in pollen germination

    PubMed Central

    2005-01-01

    CBMs (carbohydrate-binding modules) are the most common non-catalytic modules associated with enzymes active in plant cell-wall hydrolysis. They have been frequently identified by amino acid sequence alignments, but only a few have been experimentally established to have a carbohydrate-binding activity. A small olive pollen protein, Ole e 10 (10 kDa), has been described as a major inducer of type I allergy in humans. In the present study, the ability of Ole e 10 to bind several polysaccharides has been analysed by affinity gel electrophoresis, which demonstrated that the protein bound 1,3-β-glucans preferentially. Analytical ultracentrifugation studies confirmed binding to laminarin, at a protein/ligand ratio of 1:1. The interaction of Ole e 10 with laminarin induced a conformational change in the protein, as detected by CD and fluorescence analyses, and an increase of 3.6 °C in the thermal denaturation temperature of Ole e 10 in the presence of the glycan. These results, and the absence of alignment of the sequence of Ole e 10 with that of any classified CBM, indicate that this pollen protein defines a novel family of CBMs, which we propose to name CBM43. Immunolocalization of Ole e 10 in mature and germinating pollen by transmission electron microscopy and confocal laser scanning microscopy demonstrated the co-localization of Ole e 10 and callose (1,3-β-glucan) in the growing pollen tube, suggesting a role for this protein in the metabolism of carbohydrates and in pollen tube wall re-formation during germination. PMID:15882149

  16. Function of Phe-259 and Thr-314 within the Substrate Binding Pocket of the Juvenile Hormone Esterase of Manduca sexta†

    PubMed Central

    Kamita, Shizuo G.; Wogulis, Mark D.; Law, Christopher S.; Morisseau, Christophe; Tanaka, Hiromasa; Huang, Huazhang; Wilson, David K.; Hammock, Bruce D.

    2013-01-01

    Juvenile hormone (JH) is a key insect developmental hormone that is found at low nanomolar levels in larval insects. The methyl ester of JH is hydrolyzed in many insects by an esterase that shows high specificity for JH. We have previously determined a crystal structure of the JH esterase (JHE) of the tobacco hornworm Manduca sexta (MsJHE) [Wogulis, M., Wheelock, C. E., Kamita, S. G., Hinton, A. C., Whetstone, P. A., Hammock, B. D., and Wilson, D. K. (2006) Biochemistry 45, 4045-4057]. Our molecular modeling indicates that JH fits very tightly within the substrate binding pocket of MsJHE. This tight fit places two non-catalytic amino acid residues, Phe-259 and Thr-314, within the appropriate distance and geometry to potentially interact with the α,β-unsaturated ester and epoxide, respectively, of JH. These residues are highly conserved in numerous biologically active JHEs. Kinetic analyses of mutants of Phe-259 or Thr-314 indicate that these residues contribute to the low KM that MsJHE shows for JH. This low KM, however, comes at the cost of reduced substrate turnover. Neither nucleophilic attack of the resonance stabilized ester by the catalytic serine nor the availability of a water molecule for attack of the acyl-enzyme intermediate appear to be a rate-determining step in the hydrolysis of JH by MsJHE. We hypothesize that the release of the JH acid metabolite from the substrate binding pocket limits the catalytic cycle. Our findings also demonstrate that chemical bond strength does not necessarily correlate with how reactive the bond will be to metabolism. PMID:20307057

  17. Multipose binding in molecular docking.

    PubMed

    Atkovska, Kalina; Samsonov, Sergey A; Paszkowski-Rogacz, Maciej; Pisabarro, M Teresa

    2014-02-14

    Molecular docking has been extensively applied in virtual screening of small molecule libraries for lead identification and optimization. A necessary prerequisite for successful differentiation between active and non-active ligands is the accurate prediction of their binding affinities in the complex by use of docking scoring functions. However, many studies have shown rather poor correlations between docking scores and experimental binding affinities. Our work aimed to improve this correlation by implementing a multipose binding concept in the docking scoring scheme. Multipose binding, i.e., the property of certain protein-ligand complexes to exhibit different ligand binding modes, has been shown to occur in nature for a variety of molecules. We conducted a high-throughput docking study and implemented multipose binding in the scoring procedure by considering multiple docking solutions in binding affinity prediction. In general, improvement of the agreement between docking scores and experimental data was observed, and this was most pronounced in complexes with large and flexible ligands and high binding affinities. Further developments of the selection criteria for docking solutions for each individual complex are still necessary for a general utilization of the multipose binding concept for accurate binding affinity prediction by molecular docking.

  18. Lactoperoxidase binding to streptococci.

    PubMed Central

    Pruitt, K M; Adamson, M; Arnold, R

    1979-01-01

    There have been conflicting reports regarding the binding of lactoperoxidase to bacterial cell surfaces. We describe here the effects of cell-bound lactoperoxidase on acid production by suspensions of Streptococcus mutans (NCTC 10449) in the presence of hydrogen peroxide and thiocyanate. Saline suspensions of log-phase bacteria were treated with 0.1 mg of lactoperoxidase per ml and were then washed thoroughly. The addition of hydrogen peroxide and thiocyanate markedly reduced the acid production of these lactoperoxidase-treated bacteria but had no effect on the acid production of untreated controls. After a 3-h incubation in saline, the lactoperoxidase-treated bacteria produced acid in the presence of hydrogen peroxide and thiocyanate at the same rate as untreated bacteria. These observations suggest that lactoperoxidase is initially bound to the cell surface in an enzymatically active form at a concentration sufficient to inhibit acid production. The lactoperoxidase is slowly degraded or desorbed as the bacteria stand in saline suspension. PMID:39032

  19. Managing a Library Binding Program.

    ERIC Educational Resources Information Center

    Merrill-Oldham, Jan

    Library binding is one of the activities typically included in newly created preservation departments, but librarians continue to discover that transforming a traditional binding program into one that better meets preservation objectives requires considerable investment of time. This resource guide is intended to help libraries review their…

  20. Binding Energy and Enzymatic Catalysis.

    ERIC Educational Resources Information Center

    Hansen, David E.; Raines, Ronald T.

    1990-01-01

    Discussed is the fundamental role that the favorable free energy of binding of the rate-determining transition state plays in catalysis. The principle that all of the catalytic factors discussed are realized by the use of this binding energy is reviewed. (CW)

  1. Empirically Unbinding the Double Bind.

    ERIC Educational Resources Information Center

    Olson, David H.

    The theoretical concept of the double bind and the possibilities for researching it are discussed. The author has observed that theory and research, which should be reciprocal and mutually beneficial, have been working, as concerns the double bind, at odds with one another. Two approaches to empirically investigating the concept are considered via…

  2. A family 11 carbohydrate-binding module (CBM) improves the efficacy of a recombinant cellulase used to supplement barley-based diets for broilers at lower dosage rates.

    PubMed

    Ribeiro, T; Ponte, P I P; Guerreiro, C I P D; Santos, H M; Falcão, L; Freire, J P B; Ferreira, L M A; Prates, J A M; Fontes, C M G A; Lordelo, M M

    2008-09-01

    1. Exogenous microbial beta-1,3-1,4-glucanases and hemicellulases contribute to improving the nutritive value of cereals rich in soluble non-starch polysaccharides for poultry. 2. In general, plant cell wall hydrolases display a modular structure comprising a catalytic module linked to one or more non-catalytic carbohydrate-binding modules (CBMs). Based on primary structure similarity, CBMs have been classified in 50 different families. CBMs anchor cellulases and hemicellulases into their target substrates, therefore eliciting efficient hydrolysis of recalcitrant polysaccharides. 3. A study was undertaken to investigate the effects of a family 11 beta-glucan-binding domain in the function of recombinant derivatives of cellulase CtLic26A-Cel5E of Clostridium thermocellum that were used to supplement a barley-based diet at lower dosage rates. 4. The results showed that birds fed on diets supplemented with the recombinant CtLic26A-Cel5E modular derivative containing the family 11 CBM or the commercial enzyme mixture Rovabio Excel AP tended to display improved performance when compared to birds fed diets not supplemented with exogenous enzymes. 5. It is suggested that at lower than previously reported enzyme dosage (10 U/kg vs 30 U/kg of basal diet), the beta-glucan-binding domain also elicits the function of the recombinant CtLic26A-Cel5E derivatives. 6. Finally, the data suggest that exogenous enzymes added to barley-based diets act primarily in the proximal section of the gastrointestinal tract.

  3. (/sup 3/)tetrahydrotrazodone binding. Association with serotonin binding sites

    SciTech Connect

    Kendall, D.A.; Taylor, D.P.; Enna, S.J.

    1983-05-01

    High (17 nM) and low (603 nM) affinity binding sites for (/sup 3/)tetrahydrotrazodone ((/sup 3/) THT), a biologically active analogue of trazodone, have been identified in rat brain membranes. The substrate specificity, concentration, and subcellular and regional distributions of these sites suggest that they may represent a component of the serotonin transmitter system. Pharmacological analysis of (/sup 3/)THT binding, coupled with brain lesion and drug treatment experiments, revealed that, unlike other antidepressants, (/sup 3/) THT does not attach to either a biogenic amine transporter or serotonin binding sites. Rather, it would appear that (/sup 3/)THT may be an antagonist ligand for the serotonin binding site. This probe may prove of value in defining the mechanism of action of trazodone and in further characterizing serotonin receptors.

  4. Superresolution microscopy with transient binding.

    PubMed

    Molle, Julia; Raab, Mario; Holzmeister, Susanne; Schmitt-Monreal, Daniel; Grohmann, Dina; He, Zhike; Tinnefeld, Philip

    2016-06-01

    For single-molecule localization based superresolution, the concentration of fluorescent labels has to be thinned out. This is commonly achieved by photophysically or photochemically deactivating subsets of molecules. Alternatively, apparent switching of molecules can be achieved by transient binding of fluorescent labels. Here, a diffusing dye yields bright fluorescent spots when binding to the structure of interest. As the binding interaction is weak, the labeling is reversible and the dye ligand construct diffuses back into solution. This approach of achieving superresolution by transient binding (STB) is reviewed in this manuscript. Different realizations of STB are discussed and compared to other localization-based superresolution modalities. We propose the development of labeling strategies that will make STB a highly versatile tool for superresolution microscopy at highest resolution.

  5. Chiral discrimination in optical binding

    NASA Astrophysics Data System (ADS)

    Forbes, Kayn A.; Andrews, David L.

    2015-05-01

    The laser-induced intermolecular force that exists between two or more particles in the presence of an electromagnetic field is commonly termed "optical binding." Distinct from the single-particle forces that are at play in optical trapping at the molecular level, the phenomenon of optical binding is a manifestation of the coupling between optically induced dipole moments in neutral particles. In other, more widely known areas of optics, there are many examples of chiral discrimination—signifying the different response a chiral material has to the handedness of an optical input. In the present analysis, extending previous work on chiral discrimination in optical binding, a mechanism is identified using a quantum electrodynamical approach. It is shown that the optical binding force between a pair of chiral molecules can be significantly discriminatory in nature, depending upon both the handedness of the interacting particles and the polarization of the incident light, and it is typically several orders of magnitude larger than previously reported.

  6. Reexamining hydroxamate inhibitors of botulinum neurotoxin serotype A: Extending towards the β-exosite

    PubMed Central

    Caglič, Dejan; Čapek, Petr; Zhang, Yan; Godbole, Sujata; Reitz, Allen B.

    2012-01-01

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known to man, exposure to which results in flaccid paralysis. Given their extreme potency, these proteins have become studied as possible weapons of bioterrorism; however, effective treatments that function after intoxication have not progressed to the clinic. Here, we have reexamined one of the most effective inhibitors, 2,4-dichlorocinnamyl hydroxamate, in the context of the known plasticity of the BoNT/A light chain metalloprotease. Our studies have shown that modifications of this compound are tolerated and result in improved inhibitors, with the best compound having an IC50 of 0.23 μM. Given the inconsistency of structure-activity relationship trends observed across similar compounds, this data argues for caution in extrapolating across structural series. PMID:22542019

  7. Chemical binding affinity estimation using MSB

    NASA Astrophysics Data System (ADS)

    Weaver, John B.; Rauwerdink, Adam M.

    2011-03-01

    Binding affinity can be estimated in several ways in the laboratory but there is no viable way to estimate binding affinity in vivo without assumptions on the number of binding sites. Magnetic spectroscopy of nanoparticle Brownian motion, MSB, measures the rotational Brownian motion. The MSB signal is affected by nanoparticle binding affinity so it provides a mechanism to measure the chemical binding affinity. We present a possible mechanism to quantify the binding affinity and test that mechanism using viscous solutions.

  8. Binding of cellulose binding modules reveal differences between cellulose substrates

    PubMed Central

    Arola, Suvi; Linder, Markus B.

    2016-01-01

    The interaction between cellulase enzymes and their substrates is of central importance to several technological and scientific challenges. Here we report that the binding of cellulose binding modules (CBM) from Trichoderma reesei cellulases Cel6A and Cel7A show a major difference in how they interact with substrates originating from wood compared to bacterial cellulose. We found that the CBM from TrCel7A recognizes the two substrates differently and as a consequence shows an unexpected way of binding. We show that the substrate has a large impact on the exchange rate of the studied CBM, and moreover, CBM-TrCel7A seems to have an additional mode of binding on wood derived cellulose but not on cellulose originating from bacterial source. This mode is not seen in double CBM (DCBM) constructs comprising both CBM-TrCel7A and CBM-TrCel6A. The linker length of DCBMs affects the binding properties, and slows down the exchange rates of the proteins and thus, can be used to analyze the differences between the single CBM. These results have impact on the cellulase research and offer new understanding on how these industrially relevant enzymes act. PMID:27748440

  9. The binding domain structure of retinoblastoma-binding proteins.

    PubMed Central

    Figge, J.; Breese, K.; Vajda, S.; Zhu, Q. L.; Eisele, L.; Andersen, T. T.; MacColl, R.; Friedrich, T.; Smith, T. F.

    1993-01-01

    The retinoblastoma gene product (Rb), a cellular growth suppressor, complexes with viral and cellular proteins that contain a specific binding domain incorporating three invariant residues: Leu-X-Cys-X-Glu, where X denotes a nonconserved residue. Hydrophobic and electrostatic properties are strongly conserved in this segment even though the nonconserved amino acids vary considerably from one Rb-binding protein to another. In this report, we present a diagnostic computer pattern for a high-affinity Rb-binding domain featuring the three conserved residues as well as the conserved physico-chemical properties. Although the pattern encompasses only 10 residues (with only 4 of these explicitly defined), it exhibits 100% sensitivity and 99.95% specificity in database searches. This implies that a certain pattern of structural and physico-chemical properties encoded by this short sequence is sufficient to govern specific Rb binding. We also present evidence that the secondary structural conformation through this region is important for effective Rb binding. PMID:8382993

  10. The prion protein binds thiamine.

    PubMed

    Perez-Pineiro, Rolando; Bjorndahl, Trent C; Berjanskii, Mark V; Hau, David; Li, Li; Huang, Alan; Lee, Rose; Gibbs, Ebrima; Ladner, Carol; Dong, Ying Wei; Abera, Ashenafi; Cashman, Neil R; Wishart, David S

    2011-11-01

    Although highly conserved throughout evolution, the exact biological function of the prion protein is still unclear. In an effort to identify the potential biological functions of the prion protein we conducted a small-molecule screening assay using the Syrian hamster prion protein [shPrP(90-232)]. The screen was performed using a library of 149 water-soluble metabolites that are known to pass through the blood-brain barrier. Using a combination of 1D NMR, fluorescence quenching and surface plasmon resonance we identified thiamine (vitamin B1) as a specific prion ligand with a binding constant of ~60 μM. Subsequent studies showed that this interaction is evolutionarily conserved, with similar binding constants being seen for mouse, hamster and human prions. Various protein construct lengths, both with and without the unstructured N-terminal region in the presence and absence of copper, were examined. This indicates that the N-terminus has no influence on the protein's ability to interact with thiamine. In addition to thiamine, the more biologically abundant forms of vitamin B1 (thiamine monophosphate and thiamine diphosphate) were also found to bind the prion protein with similar affinity. Heteronuclear NMR experiments were used to determine thiamine's interaction site, which is located between helix 1 and the preceding loop. These data, in conjunction with computer-aided docking and molecular dynamics, were used to model the thiamine-binding pharmacophore and a comparison with other thiamine binding proteins was performed to reveal the common features of interaction.

  11. Water binding in legume seeds

    NASA Technical Reports Server (NTRS)

    Vertucci, C. W.; Leopold, A. C.

    1987-01-01

    The physical status of water in seeds has a pivotal role in determining the physiological reactions that can take place in the dry state. Using water sorption isotherms from cotyledon and axis tissue of five leguminous seeds, the strength of water binding and the numbers of binding sites have been estimated using van't Hoff analyses and the D'Arcy/Watt equation. These parameters of water sorption are calculated for each of the three regions of water binding and for a range of temperatures. Water sorption characteristics are reflective of the chemical composition of the biological materials as well as the temperature at which hydration takes place. Changes in the sorption characteristics with temperature and hydration level may suggest hydration-induced structural changes in cellular components.

  12. Galectin-3-Binding and Metastasis

    PubMed Central

    Nangia-Makker, Pratima; Balan, Vitaly; Raz, Avraham

    2013-01-01

    i. Summary Galectin-3 is a member of a family of carbohydrate-binding proteins. It is present in the nucleus, the cytoplasm and also extracellular matrix of many normal and neoplastic cell types. Arrays of reports show an upregulation of this protein in transformed and metastatic cell lines (1, 2). Moreover, in many human carcinomas, an increased expression of galectin-3 correlates with progressive tumor stages (3–6). Several lines of analysis have demonstrated that the galectins participate in cell-cell and cell-matrix interactions by recognizing and binding complimentary glycoconjugates and thereby play a crucial role in normal and pathological processes. Elevated expression of the protein is associated with an increased capacity for anchorage-independent growth, homotypic aggregation, and tumor cell lung colonization (7–9). In this chapter we describe the methods of purification of galectin-3 from transformed E. coli and some of the commonly used functional assays for analyzing galectin-3 binding. PMID:22674139

  13. Computational Prediction of RNA-Binding Proteins and Binding Sites

    PubMed Central

    Si, Jingna; Cui, Jing; Cheng, Jin; Wu, Rongling

    2015-01-01

    Proteins and RNA interaction have vital roles in many cellular processes such as protein synthesis, sequence encoding, RNA transfer, and gene regulation at the transcriptional and post-transcriptional levels. Approximately 6%–8% of all proteins are RNA-binding proteins (RBPs). Distinguishing these RBPs or their binding residues is a major aim of structural biology. Previously, a number of experimental methods were developed for the determination of protein–RNA interactions. However, these experimental methods are expensive, time-consuming, and labor-intensive. Alternatively, researchers have developed many computational approaches to predict RBPs and protein–RNA binding sites, by combining various machine learning methods and abundant sequence and/or structural features. There are three kinds of computational approaches, which are prediction from protein sequence, prediction from protein structure, and protein-RNA docking. In this paper, we review all existing studies of predictions of RNA-binding sites and RBPs and complexes, including data sets used in different approaches, sequence and structural features used in several predictors, prediction method classifications, performance comparisons, evaluation methods, and future directions. PMID:26540053

  14. Synthetic heparin-binding growth factor analogs

    DOEpatents

    Pena, Louis A.; Zamora, Paul; Lin, Xinhua; Glass, John D.

    2007-01-23

    The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain that binds a heparin-binding growth factor receptor, covalently bound to a hydrophobic linker, which is in turn covalently bound to a non-signaling peptide that includes a heparin-binding domain. The synthetic heparin-binding growth factor analogs are useful as soluble biologics or as surface coatings for medical devices.

  15. Allosteric Dynamic Control of Binding

    PubMed Central

    Sumbul, Fidan; Acuner-Ozbabacan, Saliha Ece; Haliloglu, Turkan

    2015-01-01

    Proteins have a highly dynamic nature and there is a complex interrelation between their structural dynamics and binding behavior. By assuming various conformational ensembles, they perform both local and global fluctuations to interact with other proteins in a dynamic infrastructure adapted to functional motion. Here, we show that there is a significant association between allosteric mutations, which lead to high-binding-affinity changes, and the hinge positions of global modes, as revealed by a large-scale statistical analysis of data in the Structural Kinetic and Energetic Database of Mutant Protein Interactions (SKEMPI). We further examined the mechanism of allosteric dynamics by conducting studies on human growth hormone (hGH) and pyrin domain (PYD), and the results show how mutations at the hinge regions could allosterically affect the binding-site dynamics or induce alternative binding modes by modifying the ensemble of accessible conformations. The long-range dissemination of perturbations in local chemistry or physical interactions through an impact on global dynamics can restore the allosteric dynamics. Our findings suggest a mechanism for the coupling of structural dynamics to the modulation of protein interactions, which remains a critical phenomenon in understanding the effect of mutations that lead to functional changes in proteins. PMID:26338442

  16. Cellulose binding domain fusion proteins

    SciTech Connect

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  17. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, O.; Yosef, K.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1998-02-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  18. Protein binding assay for hyaluronate

    SciTech Connect

    Lacy, B.E.; Underhill, C.B.

    1986-11-01

    A relatively quick and simple assay for hyaluronate was developed using the specific binding protein, hyaluronectin. The hyaluronectin was obtained by homogenizing the brains of Sprague-Dawley rats, and then centrifuging the homogenate. The resulting supernatant was used as a source of crude hyaluronectin. In the binding assay, the hyaluronectin was mixed with (/sup 3/H)hyaluronate, followed by an equal volume of saturated (NH/sub 4/)/sub 2/SO/sub 4/, which precipitated the hyaluronectin and any (/sup 3/H)hyaluronate associated with it, but left free (/sup 3/H)hyaluronate in solution. The mixture was then centrifuged, and the amount of bound (/sup 3/H)hyaluronate in the precipitate was determined. Using this assay, the authors found that hyaluronectin specifically bound hyaluronate, since other glycosaminoglycans failed to compete for the binding protein. In addition, the interaction between hyaluronectin and hyaluronate was of relatively high affinity, and the size of the hyaluronate did not appear to substantially alter the amount of binding. To determine the amount of hyaluronate in an unknown sample, they used a competition assay in which the binding of a set amount of (/sup 3/H)hyaluronate was blocked by the addition of unlabeled hyaluronate. By comparing the degree of competition of the unknown samples with that of known amounts of hyaluronate, it was possible to determine the amount of hyaluronate in the unknowns. They have found that this method is sensitive to 1 ..mu..g or less of hyaluronate, and is unaffected by the presence of proteins.

  19. Thermodynamic and kinetic study of phenol degradation by a non-catalytic wet air oxidation process.

    PubMed

    Lefèvre, Sébastien; Boutin, Olivier; Ferrasse, Jean-Henry; Malleret, Laure; Faucherand, Rémy; Viand, Alain

    2011-08-01

    This work is dedicated to an accurate evaluation of thermodynamic and kinetics aspects of phenol degradation using wet air oxidation process. Phenol is a well known polluting molecule and therefore it is important having data of its behaviour during this process. A view cell is used for the experimental study, with an internal volume of 150 mL, able to reach pressures up to 30 MPa and temperatures up to 350°C. Concerning the thermodynamic phase equilibria, experimental and modelling results are obtained for different binary systems (water/nitrogen, water/air) and ternary system (water/nitrogen/phenol). The best model is the Predictive Soave Redlich Kwong one. This information is necessary to predict the composition of the gas phase during the process. It is also important for an implementation in a process simulation. The second part is dedicated to kinetics evaluation of the degradation of phenol. Different compounds have been detected using GC coupled with a MS. A kinetic scheme is deduced, taking into account the evolution of phenol, hydroquinones, catechol, resorcinol and acetic acid. The kinetic parameters are calculated for this scheme. These data are important to evaluate the evolution of the concentration of the different polluting molecules during the process. A simplified kinetic scheme, which can be easily implemented in a process simulation, is also determined for the direct degradation of phenol into H(2)O and CO(2). The Arrhenius law data obtained for the phenol disappearance are the following: k=1.8×10(6)±3.9×10(5)M(-1)s(-1) (pre-exponential factor) and E(a)=77±8 kJ mol(-1) (activation energy).

  20. Relative influence of process variables during non-catalytic wet oxidation of municipal sludge.

    PubMed

    Baroutian, Saeid; Smit, Anne-Marie; Gapes, Daniel James

    2013-11-01

    Individual and interactive effects of process variables on the degradation of fermented municipal sludge were examined during wet oxidation. The process was carried out at 220-240°C using 1:1-2:1 oxygen to biomass ratio and 300-500 rpm stirring speed. Response surface methodology coupled with a faced-centred central composite design was used to evaluate the effect of these variables on total suspended solids, volatile suspended solids and total chemical oxygen demand. Multivariate analysis was conducted for the initial and near completion stages of reaction: 5 and 60 min treatments, respectively. Temperature had the most significant effect on degradation rate throughout. During the initial stage the effect of mixing intensity was less significant than that of oxygen ratio. Mixing intensity did not influence degradation rate at the later stage in the process. During the near completion stage, the interaction of temperature and oxygen ratio had significant effect on sludge degradation.

  1. Catalytic and non-catalytic wet air oxidation of sodium dodecylbenzene sulfonate: kinetics and biodegradability enhancement.

    PubMed

    Suárez-Ojeda, María Eugenia; Kim, Jungkwon; Carrera, Julián; Metcalfe, Ian S; Font, Josep

    2007-06-18

    Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) were investigated as suitable precursors for the biological treatment of industrial wastewater containing sodium dodecylbenzene sulfonate (DBS). Two hours WAO semi-batch experiments were conducted at 15 bar of oxygen partial pressure (P(O2)) and at 180, 200 and 220 degrees C. It was found that the highest temperature provides appreciable total organic carbon (TOC) and chemical oxygen demand (COD) abatement of about 42 and 47%, correspondingly. Based on the main identified intermediates (acetic acid and sulfobenzoic acid) a reaction pathway for DBS and a kinetic model in WAO were proposed. In the case of CWAO experiments, seventy-two hours tests were done in a fixed bed reactor in continuous trickle flow regime, using a commercial activated carbon (AC) as catalyst. The temperature and P(O2) were 140-160 degrees C and 2-9 bar, respectively. The influence of the operating conditions on the DBS oxidation, the occurrence of oxidative coupling reactions over the AC, and the catalytic activity (in terms of substrate removal) were established. The results show that the AC without any supported active metal behaves bi-functional as adsorbent and catalyst, giving TOC conversions up to 52% at 160 degrees C and 2 bar of P(O2), which were comparable to those obtained in WAO experiments. Respirometric tests were completed before and after CWAO and to the main intermediates identified through the WAO and CWAO oxidation route. Then, the readily biodegradable COD (COD(RB)) of the CWAO and WAO effluents were found. Taking into account these results it was possible to compare whether or not the CWAO or WAO effluents were suitable for a conventional activated sludge plant inoculated with non adapted culture.

  2. A kinetic model of municipal sludge degradation during non-catalytic wet oxidation.

    PubMed

    Prince-Pike, Arrian; Wilson, David I; Baroutian, Saeid; Andrews, John; Gapes, Daniel J

    2015-12-15

    Wet oxidation is a successful process for the treatment of municipal sludge. In addition, the resulting effluent from wet oxidation is a useful carbon source for subsequent biological nutrient removal processes in wastewater treatment. Owing to limitations with current kinetic models, this study produced a kinetic model which predicts the concentrations of key intermediate components during wet oxidation. The model was regressed from lab-scale experiments and then subsequently validated using data from a wet oxidation pilot plant. The model was shown to be accurate in predicting the concentrations of each component, and produced good results when applied to a plant 500 times larger in size. A statistical study was undertaken to investigate the validity of the regressed model parameters. Finally the usefulness of the model was demonstrated by suggesting optimum operating conditions such that volatile fatty acids were maximised.

  3. Non-catalytic liquefaction of coal with bagasse, a biomass waste

    SciTech Connect

    Rafiqul, I.; Lugang, B.; Yan, Y.; Li, T.

    1999-07-01

    Liquefaction of a Chinese bituminous coal with bagasse, a kind of biomass waste, have been carried out in an autoclave of 300 ml capacity at a temperature range of 350--450 C, reaction time 15--45 min and cool hydrogen pressure 300--700 PSIG (2.04 4.76 MPa). Optimization of the co-liquefaction process was done with respect to oil yield by Factorial Experiment Design Method. Oil yield reached 48% at optimum conditions of temperature: 420 C, cool hydrogen pressure: 500 PSIG and reaction time: 40 min. A polynomial mathematical model, a second order response surface model, has been obtained for correlating the oil yield response factor as well as conversion with the major process variables. The equation derived by the authors holds good in determining the effect of process variables on response factors for any regime conditions in the range of the Planned Experimental Design. Experimental data were also correlated by a kinetic model. The model is based on coal and bagasse, undergoing thermal cracking, is first converted parallel to form preasphaltene and asphaltene and low molecular gaseous products; then consecutively oil is formed from preasphaltene and asphaltene. Activation energies for these three reactions are 32.51 KJ/mol, 75.14 KJ/mol and 44.65 KJ/mol, respectively. These values are lower than that of liquefaction of coal alone. It justifies that the addition of bagasse is effective in enhancing the process of co-liquefaction and giving higher yield of oil than for liquefaction of coal alone. Calculated values from this model fairly agree with the experimental data.

  4. Non-catalytic co-gasification of sub-bituminous coal and biomass

    NASA Astrophysics Data System (ADS)

    Nyendu, Guevara Che

    Fluidization characteristics and co-gasification of pulverized sub-bituminous coal, hybrid poplar wood, corn stover, switchgrass, and their mixtures were investigated. Co-gasification studies were performed over temperature range from 700°C to 900°C in different media (N2, CO2, steam) using a bubbling fluidized bed reactor. In fluidization experiments, pressure drop (Delta P) observed for coal-biomass mixtures was higher than those of single coal and biomass bed materials in the complete fluidization regime. There was no systematic trend observed for minimum fluidization velocity ( Umf) with increasing biomass content. However, porosity at minimum fluidization (εmf) increased with increasing biomass content. Channeling effects were observed in biomass bed materials and coal bed with 40 wt.% and 50 wt.% biomass content at low gas flowrates. The effect of coal pressure overshoot reduced with increasing biomass content. Co-gasification of coal and corn stover mixtures showed minor interactions. Synergetic effects were observed with 10 wt.% corn stover. Coal mixed with corn stover formed agglomerates during co-gasification experiments and the effect was severe with increase in corn stover content and at 900°C. Syngas (H2 + CO) concentrations obtained using CO2 as co-gasification medium were higher (~78 vol.% at 700°C, ~87 vol.% at 800°C, ~93 vol.% at 900°C) than those obtained with N2 medium (~60 vol.% at 700°C, ~65 vol.% at 800°C, ~75 vol.% at 900°C). Experiments involving co-gasification of coal with poplar showed no synergetic effects. Experimental yields were identical to predicted yields. However, synergetic effects were observed on H2 production when steam was used as the co-gasification medium. Additionally, the presence of steam increased H2/CO ratio up to 2.5 with 10 wt.% hybrid poplar content. Overall, char and tar yields decreased with increasing temperature and increasing biomass content, which led to increase in product gas.

  5. DNA replication: polymerase epsilon as a non-catalytic converter of the helicase.

    PubMed

    Zegerman, Philip

    2013-04-08

    In eukaryotes DNA polymerase epsilon (ε) synthesises the leading DNA strand during replication. A new study provides insight into how this polymerase also functions independently of its enzyme activity to assemble and activate the replicative helicase.

  6. Preclinical profile of BI 224436, a novel HIV-1 non-catalytic-site integrase inhibitor.

    PubMed

    Fenwick, Craig; Amad, Ma'an; Bailey, Murray D; Bethell, Richard; Bös, Michael; Bonneau, Pierre; Cordingley, Michael; Coulombe, René; Duan, Jianmin; Edwards, Paul; Fader, Lee D; Faucher, Anne-Marie; Garneau, Michel; Jakalian, Araz; Kawai, Stephen; Lamorte, Louie; LaPlante, Steven; Luo, Laibin; Mason, Steve; Poupart, Marc-André; Rioux, Nathalie; Schroeder, Patricia; Simoneau, Bruno; Tremblay, Sonia; Tsantrizos, Youla; Witvrouw, Myriam; Yoakim, Christiane

    2014-06-01

    BI 224436 is an HIV-1 integrase inhibitor with effective antiviral activity that acts through a mechanism that is distinct from that of integrase strand transfer inhibitors (INSTIs). This 3-quinolineacetic acid derivative series was identified using an enzymatic integrase long terminal repeat (LTR) DNA 3'-processing assay. A combination of medicinal chemistry, parallel synthesis, and structure-guided drug design led to the identification of BI 224436 as a candidate for preclinical profiling. It has antiviral 50% effective concentrations (EC50s) of <15 nM against different HIV-1 laboratory strains and cellular cytotoxicity of >90 μM. BI 224436 also has a low, ∼2.1-fold decrease in antiviral potency in the presence of 50% human serum and, by virtue of a steep dose-response curve slope, exhibits serum-shifted EC95 values ranging between 22 and 75 nM. Passage of virus in the presence of inhibitor selected for either A128T, A128N, or L102F primary resistance substitutions, all mapping to a conserved allosteric pocket on the catalytic core of integrase. BI 224436 also retains full antiviral activity against recombinant viruses encoding INSTI resistance substitutions N155S, Q148H, and E92Q. In drug combination studies performed in cellular antiviral assays, BI 224436 displays an additive effect in combination with most approved antiretrovirals, including INSTIs. BI 224436 has drug-like in vitro absorption, distribution, metabolism, and excretion (ADME) properties, including Caco-2 cell permeability, solubility, and low cytochrome P450 inhibition. It exhibited excellent pharmacokinetic profiles in rat (clearance as a percentage of hepatic flow [CL], 0.7%; bioavailability [F], 54%), monkey (CL, 23%; F, 82%), and dog (CL, 8%; F, 81%). Based on the excellent biological and pharmacokinetic profile, BI 224436 was advanced into phase 1 clinical trials.

  7. Non-catalytic synthesis of diamond from amorphous carbon at high static pressure

    NASA Astrophysics Data System (ADS)

    Higashi, K.; Onodera, A.

    1986-05-01

    Amorphous carbon prepared from furfuryl alcohol resin was studied under static high pressure above 10 GPa without planned addition of catalyst. Diamond can be formed at temperatures lower than required for the catalytic process.

  8. Non-cell autonomous and non-catalytic activities of ATX in the developing brain.

    PubMed

    Greenman, Raanan; Gorelik, Anna; Sapir, Tamar; Baumgart, Jan; Zamor, Vanessa; Segal-Salto, Michal; Levin-Zaidman, Smadar; Aidinis, Vassilis; Aoki, Junken; Nitsch, Robert; Vogt, Johannes; Reiner, Orly

    2015-01-01

    The intricate formation of the cerebral cortex requires a well-coordinated series of events, which are regulated at the level of cell-autonomous and non-cell autonomous mechanisms. Whereas cell-autonomous mechanisms that regulate cortical development are well-studied, the non-cell autonomous mechanisms remain poorly understood. A non-biased screen allowed us to identify Autotaxin (ATX) as a non-cell autonomous regulator of neural stem cells. ATX (also known as ENPP2) is best known to catalyze lysophosphatidic acid (LPA) production. Our results demonstrate that ATX affects the localization and adhesion of neuronal progenitors in a cell autonomous and non-cell autonomous manner, and strikingly, this activity is independent from its catalytic activity in producing LPA.

  9. Biodiesel production from Jatropha oil by catalytic and non-catalytic approaches: an overview.

    PubMed

    Juan, Joon Ching; Kartika, Damayani Agung; Wu, Ta Yeong; Hin, Taufiq-Yap Yun

    2011-01-01

    Biodiesel (fatty acids alkyl esters) is a promising alternative fuel to replace petroleum-based diesel that is obtained from renewable sources such as vegetable oil, animal fat and waste cooking oil. Vegetable oils are more suitable source for biodiesel production compared to animal fats and waste cooking since they are renewable in nature. However, there is a concern that biodiesel production from vegetable oil would disturb the food market. Oil from Jatropha curcas is an acceptable choice for biodiesel production because it is non-edible and can be easily grown in a harsh environment. Moreover, alkyl esters of jatropha oil meet the standard of biodiesel in many countries. Thus, the present paper provides a review on the transesterification methods for biodiesel production using jatropha oil as feedstock.

  10. Temporal binding of interval markers

    PubMed Central

    Derichs, Christina; Zimmermann, Eckart

    2016-01-01

    How we estimate the passage of time is an unsolved mystery in neuroscience. Illusions of subjective time provide an experimental access to this question. Here we show that time compression and expansion of visually marked intervals result from a binding of temporal interval markers. Interval markers whose onset signals were artificially weakened by briefly flashing a whole-field mask were bound in time towards markers with a strong onset signal. We explain temporal compression as the consequence of summing response distributions of weak and strong onset signals. Crucially, temporal binding occurred irrespective of the temporal order of weak and strong onset markers, thus ruling out processing latencies as an explanation for changes in interval duration judgments. If both interval markers were presented together with a mask or the mask was shown in the temporal interval center, no compression occurred. In a sequence of two intervals, masking the middle marker led to time compression for the first and time expansion for the second interval. All these results are consistent with a model view of temporal binding that serves a functional role by reducing uncertainty in the final estimate of interval duration. PMID:27958311

  11. Anion binding in biological systems

    NASA Astrophysics Data System (ADS)

    Feiters, Martin C.; Meyer-Klaucke, Wolfram; Kostenko, Alexander V.; Soldatov, Alexander V.; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Küpper, Frithjof C.; Hollenstein, Kaspar; Locher, Kaspar P.; Bevers, Loes E.; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2009-11-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L3 (2p3/2) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  12. Nucleotides of transcription factor binding sites exert interdependent effects on the binding affinities of transcription factors

    PubMed Central

    Bulyk, Martha L.; Johnson, Philip L. F.; Church, George M.

    2002-01-01

    We can determine the effects of many possible sequence variations in transcription factor binding sites using microarray binding experiments. Analysis of wild-type and mutant Zif268 (Egr1) zinc fingers bound to microarrays containing all possible central 3 bp triplet binding sites indicates that the nucleotides of transcription factor binding sites cannot be treated independently. This indicates that the current practice of characterizing transcription factor binding sites by mutating individual positions of binding sites one base pair at a time does not provide a true picture of the sequence specificity. Similarly, current bioinformatic practices using either just a consensus sequence, or even mononucleotide frequency weight matrices to provide more complete descriptions of transcription factor binding sites, are not accurate in depicting the true binding site specificities, since these methods rely upon the assumption that the nucleotides of binding sites exert independent effects on binding affinity. Our results stress the importance of complete reference tables of all possible binding sites for comparing protein binding preferences for various DNA sequences. We also show results suggesting that microarray binding data using particular subsets of all possible binding sites can be used to extrapolate the relative binding affinities of all possible full-length binding sites, given a known binding site for use as a starting sequence for site preference refinement. PMID:11861919

  13. Cooperative Ligand Binding to Linear Chain Molecules

    ERIC Educational Resources Information Center

    Applequist, Jon

    1977-01-01

    Summarizes the Ising model of ligand binding as it applies to cooperative binding to long chain molecules. Also presents some illustrations which help to visualize the connection between the interaction parameters and the shape of the binding isotherm. (Author/MR)

  14. Erythropoietin binding protein from mammalian serum

    DOEpatents

    Clemons, G.K.

    1997-04-29

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described. 11 figs.

  15. Feature-Based Binding and Phase Theory

    ERIC Educational Resources Information Center

    Antonenko, Andrei

    2012-01-01

    Current theories of binding cannot provide a uniform account for many facts associated with the distribution of anaphors, such as long-distance binding effects and the subject-orientation of monomorphemic anaphors. Further, traditional binding theory is incompatible with minimalist assumptions. In this dissertation I propose an analysis of…

  16. Erythropoietin binding protein from mammalian serum

    DOEpatents

    Clemons, Gisela K.

    1997-01-01

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described.

  17. Novel cellulose-binding domains, NodB homologues and conserved modular architecture in xylanases from the aerobic soil bacteria Pseudomonas fluorescens subsp. cellulosa and Cellvibrio mixtus.

    PubMed Central

    Millward-Sadler, S J; Davidson, K; Hazlewood, G P; Black, G W; Gilbert, H J; Clarke, J H

    1995-01-01

    To test the hypothesis that selective pressure has led to the retention of cellulose-binding domains (CBDs) by hemicellulase enzymes from aerobic bacteria, four new xylanase (xyn) genes from two cellulolytic soil bacteria, Pseudomonas fluorescens subsp. cellulosa and Cellvibrio mixtus, have been isolated and sequenced. Pseudomonas genes xynE and xynF encoded modular xylanases (XYLE and XYLF) with predicted M(r) values of 68,600 and 65000 respectively. XYLE contained a glycosyl hydrolase family 11 catalytic domain at its N-terminus, followed by three other domains; the second of these exhibited sequence identity with NodB from rhizobia. The C-terminal domain (40 residues) exhibited significant sequence identity with a non-catalytic domain of previously unknown function, conserved in all the cellulases and one of the hemicellulases previously characterized from the pseudomonad, and was shown to function as a CBD when fused to the reporter protein glutathione-S-transferase. XYLF contained a C-terminal glycosyl hydrolase family 10 catalytic domain and a novel CBD at its N-terminus. C. mixtus genes xynA and xynB exhibited substantial sequence identity with xynE and xynF respectively, and encoded modular xylanases with the same molecular architecture and, by inference, the same functional properties. In the absence of extensive cross-hybridization between other multiple cel (cellulase) and xyn genes from P. fluorescens subsp. cellulosa and genomic DNA from C. mixtus, similarity between the two pairs of xylanases may indicate a recent transfer of genes between the two bacteria. Images Figure 1 Figure 4 PMID:7492333

  18. Nonphysiological binding of ethylene by plants.

    PubMed

    Abeles, F B

    1984-03-01

    Ethylene binding to seedling tissue of Vicia faba, Phaseolus vulgaris, Glycine max, and Triticum aestivum was demonstrated by determining transit time required for ethylene to move through a glass tube filled with seedling tissue. Transit time for ethylene was greater than that for methane indicating that these tissues had an affinity for ethylene. However, the following observations suggest that the binding was not physiological. Inhibitors of ethylene action such as Ag(+) ions and CO(2) did not decrease binding. Mushrooms which have no known sites of ethylene action also demonstrated ethylene binding. The binding of acetylene, propylene, ethylene, propane, and ethane more closely followed their solubility in water than any known physiological activity.

  19. Synthetic heparin-binding factor analogs

    DOEpatents

    Pena, Louis A.; Zamora, Paul O.; Lin, Xinhua; Glass, John D.

    2010-04-20

    The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain, and preferably two peptide chains branched from a dipeptide branch moiety composed of two trifunctional amino acid residues, which peptide chain or chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a linker, which may be a hydrophobic linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  20. Data of protein-RNA binding sites.

    PubMed

    Lee, Wook; Park, Byungkyu; Choi, Daesik; Han, Kyungsook

    2017-02-01

    Despite the increasing number of protein-RNA complexes in structure databases, few data resources have been made available which can be readily used in developing or testing a method for predicting either protein-binding sites in RNA sequences or RNA-binding sites in protein sequences. The problem of predicting protein-binding sites in RNA has received much less attention than the problem of predicting RNA-binding sites in protein. The data presented in this paper are related to the article entitled "PRIdictor: Protein-RNA Interaction predictor" (Tuvshinjargal et al. 2016) [1]. PRIdictor can predict protein-binding sites in RNA as well as RNA-binding sites in protein at the nucleotide- and residue-levels. This paper presents four datasets that were used to test four prediction models of PRIdictor: (1) model RP for predicting protein-binding sites in RNA from protein and RNA sequences, (2) model RaP for predicting protein-binding sites in RNA from RNA sequence alone, (3) model PR for predicting RNA-binding sites in protein from protein and RNA sequences, and (4) model PaR for predicting RNA-binding sites in protein from protein sequence alone. The datasets supplied in this article can be used as a valuable resource to evaluate and compare different methods for predicting protein-RNA binding sites.

  1. Leukotriene B4 binding to human neutrophils

    SciTech Connect

    Lin, A.H.; Ruppel, P.L.; Gorman, R.R.

    1984-12-01

    (/sup 3/H) Leukotriene B4 (LTB4) binds concentration dependently to intact human polymorphonuclear leukocytes (PMN's). The binding is saturable, reaches equilibrium in 10 min at 4 degrees C, and is readily reversible. Mathematical modeling analysis reveals biphasic binding of (/sup 3/H) LTB4 indicating two discrete populations of binding sites. The high affinity binding sites have a dissociation constant of 0.46 X 10(-9)M and Bmax of 1.96 X 10(4) sites per neutrophil; the low affinity binding sites have a dissociation constant of 541 X 10(-9)M and a Bmax of 45.16 X 10(4) sites per neutrophil. Competitive binding experiments with structural analogues of LTB4 demonstrate that the interaction between LTB4 and the binding site is stereospecific, and correlates with the relative biological activity of the analogs. At 25 degrees C (/sup 3/H) LTB4 is rapidly dissociated from the binding site and metabolized to 20-OH and 20-COOH-LTB4. Purification of neutrophils in the presence of 5-lipoxygenase inhibitors significantly increases specific (/sup 3/H) LTB4 binding, suggesting that LTB4 is biosynthesized during the purification procedure. These data suggest that stereospecific binding and metabolism of LTB4 in neutrophils are tightly coupled processes.

  2. Engineering RNA-binding proteins for biology.

    PubMed

    Chen, Yu; Varani, Gabriele

    2013-08-01

    RNA-binding proteins play essential roles in the regulation of gene expression. Many have modular structures and combine relatively few common domains in various arrangements to recognize RNA sequences and/or structures. Recent progress in engineering the specificity of the PUF class RNA-binding proteins has shown that RNA-binding domains may be combined with various effector or functional domains to regulate the metabolism of targeted RNAs. Designer RNA-binding proteins with tailored sequence specificity will provide valuable tools for biochemical research as well as potential therapeutic applications. In this review, we discuss the suitability of various RNA-binding domains for engineering RNA-binding specificity, based on the structural basis for their recognition. We also compare various protein engineering and design methods applied to RNA-binding proteins, and discuss future applications of these proteins.

  3. Specific gonadotropin binding to Pseudomonas maltophilia.

    PubMed

    Richert, N D; Ryan, R J

    1977-03-01

    Binding of 125I-labeled human chorionic gonadotropin to Pseudomonas maltophilia is dependent on time, temperature, and pH and the binding to this procaryotic species is hormone-specific and saturable. The equilibrium dissociation constant is 2.3 X 10(-9) M. There are no cooperative interactions between binding sites (Hill coefficient, 1.05). The number of sites is estimaated as 240 fmol/100 mug of protein. NaCl and KCl, at concentrations from 1 to 10 mM, have no effect on binding. Divalent cations (Mg2+ and Ca2+) and 1 mM EDTA inhibit hormone binding. Binding is destroyed by heat or by treatment with Pronase of alpha-chymotrypsin and is increased by phospholipase C. Binding of the labeled gonadotropin is not observed with other gram-negative organisms--e.g., Escherichia coli, Pseudomonas testosteroni, Pseudomonas aeruginosa, Enterobacter aerogenes, or Enterobacter cloacae.

  4. Insulin binding to individual rat skeletal muscles

    SciTech Connect

    Koerker, D.J.; Sweet, I.R.; Baskin, D.G. )

    1990-10-01

    Studies of insulin binding to skeletal muscle, performed using sarcolemmal membrane preparations or whole muscle incubations of mixed muscle or typical red (soleus, psoas) or white (extensor digitorum longus (EDL), gastrocnemius) muscle, have suggested that red muscle binds more insulin than white muscle. We have evaluated this hypothesis using cryostat sections of unfixed tissue to measure insulin binding in a broad range of skeletal muscles; many were of similar fiber-type profiles. Insulin binding per square millimeter of skeletal muscle slice was measured by autoradiography and computer-assisted densitometry. We found a 4.5-fold range in specific insulin tracer binding, with heart and predominantly slow-twitch oxidative muscles (SO) at the high end and the predominantly fast-twitch glycolytic (FG) muscles at the low end of the range. This pattern reflects insulin sensitivity. Evaluation of displacement curves for insulin binding yielded linear Scatchard plots. The dissociation constants varied over a ninefold range (0.26-2.06 nM). Binding capacity varied from 12.2 to 82.7 fmol/mm2. Neither binding parameter was correlated with fiber type or insulin sensitivity; e.g., among three muscles of similar fiber-type profile, the EDL had high numbers of low-affinity binding sites, whereas the quadriceps had low numbers of high-affinity sites. In summary, considerable heterogeneity in insulin binding was found among hindlimb muscles of the rat, which can be attributed to heterogeneity in binding affinities and the numbers of binding sites. It can be concluded that a given fiber type is not uniquely associated with a set of insulin binding parameters that result in high or low binding.

  5. Infinite sets and double binds.

    PubMed

    Arden, M

    1984-01-01

    There have been many attempts to bring psychoanalytical theory up to date. This paper approaches the problem by discussing the work of Gregory Bateson and Ignacio Matte-Blanco, with particular reference to the use made by these authors of Russell's theory of logical types. Bateson's theory of the double bind and Matte-Blanco's bilogic are both based on concepts of logical typing. It is argued that the two theories can be linked by the idea that neurotic symptoms are based on category errors in thinking. Clinical material is presented from the analysis of a middle-aged woman. The intention is to demonstrate that the process of making interpretations can be thought of as revealing errors in thinking. Changes in the patient's inner world are then seen to be the result of clarifying childhood experiences based on category errors. Matte-Blanco's theory of bilogic and infinite experiences is a re-evaluation of the place of the primary process in mental life. It is suggested that a combination of bilogic and double bind theory provides a possibility of reformulating psychoanalytical theory.

  6. Folding versus charge: understanding selective target recognition by the thrombin aptamers.

    PubMed

    Marson, Giuseppe; Palumbo, Manlio; Sissi, Claudia

    2012-01-01

    The use of nucleic acids as drugs represents a consistently growing approach. Different therapeutical strategies take advantage of the biological and biophysical properties of DNA and RNA to properly modulate activity of selected targets. A peculiar characteristic of these molecules is their structural flexibility which allows them to assume distinct foldings depending upon their sequence and/or environment. During the last twenty years this has led to the theoretical and experimental development of oligonucleotide aptamers, short sequences which can recognize a target with specificity and affinity comparable to antibodies. A leading example is represented by the Thrombin aptamer (15fTBA), a 15-mer DNA selected by its high affinity for the exosite I (fibrinogen binding site) of the coagulation factor. The very stable protein-DNA complex formation is the result of complementarities between the two macromolecules promoted by the aptamer sequence and folding as well as of electrostatic interactions generated by the charge balance at the binding site/s. Here, we investigated the relative role of these contributions and their involvement in defining the biological properties of the resulting complex. Thus we compared the Thrombin binding and inhibition properties of TBA to those of unrelated single stranded oligonucleotides. Additionally, the differences between the two protein exosites were assessed by using 29hTBA, a longer (29-mer) aptamer known to bind exosite II (heparin binding site). A subtle balance of aptamer folding and sequence is shown to cooperate with charge density for effective and selective recognition of exosite I or exosite II by TBAs.

  7. Ligand binding by PDZ domains.

    PubMed

    Chi, Celestine N; Bach, Anders; Strømgaard, Kristian; Gianni, Stefano; Jemth, Per

    2012-01-01

    The postsynaptic density protein-95/disks large/zonula occludens-1 (PDZ) protein domain family is one of the most common protein-protein interaction modules in mammalian cells, with paralogs present in several hundred human proteins. PDZ domains are found in most cell types, but neuronal proteins, for example, are particularly rich in these domains. The general function of PDZ domains is to bring proteins together within the appropriate cellular compartment, thereby facilitating scaffolding, signaling, and trafficking events. The many functions of PDZ domains under normal physiological as well as pathological conditions have been reviewed recently. In this review, we focus on the molecular details of how PDZ domains bind their protein ligands and their potential as drug targets in this context.

  8. Gamma Oscillations and Visual Binding

    NASA Astrophysics Data System (ADS)

    Robinson, Peter A.; Kim, Jong Won

    2006-03-01

    At the root of visual perception is the mechanism the brain uses to analyze features in a scene and bind related ones together. Experiments show this process is linked to oscillations of brain activity in the 30-100 Hz gamma band. Oscillations at different sites have correlation functions (CFs) that often peak at zero lag, implying simultaneous firing, even when conduction delays are large. CFs are strongest between cells stimulated by related features. Gamma oscillations are studied here by modeling mm-scale patchy interconnections in the visual cortex. Resulting predictions for gamma responses to stimuli account for numerous experimental findings, including why oscillations and zero-lag synchrony are associated, observed connections with feature preferences, the shape of the zero-lag peak, and variations of CFs with attention. Gamma waves are found to obey the Schroedinger equation, opening the possibility of cortical analogs of quantum phenomena. Gamma instabilities are tied to observations of gamma activity linked to seizures and hallucinations.

  9. Synthetic LPS-Binding Polymer Nanoparticles

    NASA Astrophysics Data System (ADS)

    Jiang, Tian

    Lipopolysaccharide (LPS), one of the principal components of most gram-negative bacteria's outer membrane, is a type of contaminant that can be frequently found in recombinant DNA products. Because of its strong and even lethal biological effects, selective LPS removal from bioproducts solution is of particular importance in the pharmaceutical and health care industries. In this thesis, for the first time, a proof-of-concept study on preparing LPS-binding hydrogel-like NPs through facile one-step free-radical polymerization was presented. With the incorporation of various hydrophobic (TBAm), cationic (APM, GUA) monomers and cross-linkers (BIS, PEG), a small library of NPs was constructed. Their FITC-LPS binding behaviors were investigated and compared with those of commercially available LPS-binding products. Moreover, the LPS binding selectivity of the NPs was also explored by studying the NPs-BSA interactions. The results showed that all NPs obtained generally presented higher FITC-LPS binding capacity in lower ionic strength buffer than higher ionic strength. However, unlike commercial poly-lysine cellulose and polymyxin B agarose beads' nearly linear increase of FITC-LPS binding with particle concentration, NPs exhibited serious aggregation and the binding quickly saturated or even decreased at high particle concentration. Among various types of NPs, higher FITC-LPS binding capacity was observed for those containing more hydrophobic monomers (TBAm). However, surprisingly, more cationic NPs with higher content of APM exhibited decreased FITC-LPS binding in high ionic strength conditions. Additionally, when new cationic monomer and cross-linker, GUA and PEG, were applied to replace APM and BIS, the obtained NPs showed improved FITC-LPS binding capacity at low NP concentration. But compared with APM- and BIS-containing NPs, the FITC-LPS binding capacity of GUA- and PEG-containing NPs saturated earlier. To investigate the NPs' binding to proteins, we tested the NPs

  10. An RNA motif that binds ATP

    NASA Technical Reports Server (NTRS)

    Sassanfar, M.; Szostak, J. W.

    1993-01-01

    RNAs that contain specific high-affinity binding sites for small molecule ligands immobilized on a solid support are present at a frequency of roughly one in 10(10)-10(11) in pools of random sequence RNA molecules. Here we describe a new in vitro selection procedure designed to ensure the isolation of RNAs that bind the ligand of interest in solution as well as on a solid support. We have used this method to isolate a remarkably small RNA motif that binds ATP, a substrate in numerous biological reactions and the universal biological high-energy intermediate. The selected ATP-binding RNAs contain a consensus sequence, embedded in a common secondary structure. The binding properties of ATP analogues and modified RNAs show that the binding interaction is characterized by a large number of close contacts between the ATP and RNA, and by a change in the conformation of the RNA.

  11. Binding mode and affinity studies of DNA-binding agents using topoisomerase I DNA unwinding assay.

    PubMed

    McKnight, Ruel E; Gleason, Aaron B; Keyes, James A; Sahabi, Sadia

    2007-02-15

    A topoisomerase I DNA unwinding assay has been used to determine the relative DNA-binding affinities of a model pair of homologous naphthalene diimides. Binding affinity data were corroborated using calorimetric (ITC) and spectrophotometric (titration and T(m)) studies, with substituent size playing a significant role in binding. The assay was also used to investigate the mode of binding adopted by several known DNA-binding agents, including SYBR Green and PicoGreen. Some of the compounds exhibited unexpected binding modes.

  12. Binding of TH-iloprost to rat gastric mucosa: a pitfall in performing radioligand binding assays

    SciTech Connect

    Beinborn, M.; Kromer, W.; Staar, U.; Sewing, K.F.

    1985-09-01

    Binding of TH-iloprost was studied in a 20,000 x g sediment of the rat gastric mucosa. When pH in both test tubes for total and non-specific binding was kept identical, no displaceable binding of iloprost could be detected. When no care was taken to keep the pH identical in corresponding test tubes of the binding assay, changes in pH simulated specific and displaceable binding of iloprost. Therefore it is concluded that - in contrast to earlier reports - it is not possible to demonstrate specific iloprost binding using the given method.

  13. Calcium-binding proteins and development

    NASA Technical Reports Server (NTRS)

    Beckingham, K.; Lu, A. Q.; Andruss, B. F.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    The known roles for calcium-binding proteins in developmental signaling pathways are reviewed. Current information on the calcium-binding characteristics of three classes of cell-surface developmental signaling proteins (EGF-domain proteins, cadherins and integrins) is presented together with an overview of the intracellular pathways downstream of these surface receptors. The developmental roles delineated to date for the universal intracellular calcium sensor, calmodulin, and its targets, and for calcium-binding regulators of the cytoskeleton are also reviewed.

  14. Mutated Leguminous Lectin Containing a Heparin-Binding like Motif in a Carbohydrate-Binding Loop Specifically Binds to Heparin

    PubMed Central

    Abo, Hirohito; Soga, Keisuke; Tanaka, Atsuhiro; Tateno, Hiroaki; Hirabayashi, Jun; Yamamoto, Kazuo

    2015-01-01

    We previously introduced random mutations in the sugar-binding loops of a leguminous lectin and screened the resulting mutated lectins for novel specificities using cell surface display. Screening of a mutated peanut agglutinin (PNA), revealed a mutated PNA with a distinct preference for heparin. Glycan microarray analyses using the mutated lectin fused to the Fc region of human immunoglobulin, revealed that a particular sulfated glycosaminoglycan (GAG), heparin, had the highest binding affinity for mutated PNA among 97 glycans tested, although wild-type PNA showed affinity towards Galβ1-3GalNAc and similar galactosylated glycans. Further analyses of binding specificity using an enzyme-linked immunoadsorbent assay demonstrated that the mutated PNA specifically binds to heparin, and weakly to de-2-O-sulfated heparin, but not to other GAG chains including de-6-O-sulfated and de-N-sulfated heparins. The mutated PNA had six amino acid substitutions within the eight amino acid-long sugar-binding loop. In this loop, the heparin-binding like motif comprised three arginine residues at positions 124, 128, and 129, and a histidine at position 125 was present. Substitution of each arginine or histidine residue to alanine reduced heparin-binding ability, indicating that all of these basic amino acid residues contributed to heparin binding. Inhibition assay demonstrated that heparin and dextran sulfate strongly inhibited mutated PNA binding to heparin in dose-dependent manner. The mutated PNA could distinguish between CHO cells and proteoglycan-deficient mutant cells. This is the first report establishing a novel leguminous lectin that preferentially binds to highly sulfated heparin and may provide novel GAG-binding probes to distinguish between heterogeneous GAG repeating units. PMID:26714191

  15. FCA does not bind abscisic acid.

    PubMed

    Risk, Joanna M; Macknight, Richard C; Day, Catherine L

    2008-12-11

    The RNA-binding protein FCA promotes flowering in Arabidopsis. Razem et al. reported that FCA is also a receptor for the phytohormone abscisic acid (ABA). However, we find that FCA does not bind ABA, suggesting that the quality of the proteins assayed and the sensitivity of the ABA-binding assay have led Razem et al. to erroneous conclusions. Because similar assays have been used to characterize other ABA receptors, our results indicate that the ABA-binding properties of these proteins should be carefully re-evaluated and that alternative ABA receptors are likely to be discovered.

  16. New DNA-binding radioprotectors

    NASA Astrophysics Data System (ADS)

    Martin, Roger

    The normal tissue damage associated with cancer radiotherapy has motivated the development at Peter Mac of a new class of DNA-binding radioprotecting drugs that could be applied top-ically to normal tissues at risk. Methylproamine (MP), the lead compound, reduces radiation induced cell kill at low concentrations. For example, experiments comparing the clonogenic survival of transformed human keratinocytes treated with 30 micromolar MP before and dur-ing various doses of ionising radiation, with the radiation dose response for untreated cells, indicate a dose reduction factor (DRF) of 2. Similar survival curve experiments using various concentrations of MP, with parallel measurements of uptake of MP into cell nuclei, have en-abled the relationship between drug uptake and extent of radioprotection to be established. Radioprotection has also been demonstrated after systemic administration to mice, for three different endpoints, namely lung, jejunum and bone marrow (survival at 30 days post-TBI). The results of pulse radiolysis studies indicated that the drugs act by reduction of transient radiation-induced oxidative species on DNA. This hypothesis was substantiated by the results of experiments in which MP radioprotection of radiation-induced DNA double-strand breaks, assessed as -H2AX foci, in the human keratinocyte cell line. For both endpoints, the extent of radioprotection increased with MP concentration up to a maximal value. These results are consistent with the hypothesis that radioprotection by MP is mediated by attenuation of the extent of initial DNA damage. However, although MP is a potent radioprotector, it becomes cytotoxic at higher concentrations. This limitation has been addressed in an extensive program of lead optimisation and some promising analogues have emerged from which the next lead will be selected. Given the clinical potential of topical radioprotection, the new analogues are being assessed in terms of delivery to mouse oral mucosa. This is

  17. SVOP Is a Nucleotide Binding Protein

    PubMed Central

    Yao, Jia; Bajjalieh, Sandra M.

    2009-01-01

    Background Synaptic Vesicle Protein 2 (SV2) and SV2-related protein (SVOP) are transporter-like proteins that localize to neurotransmitter-containing vesicles. Both proteins share structural similarity with the major facilitator (MF) family of small molecule transporters. We recently reported that SV2 binds nucleotides, a feature that has also been reported for another MF family member, the human glucose transporter 1 (Glut1). In the case of Glut1, nucleotide binding affects transport activity. In this study, we determined if SVOP also binds nucleotides and assessed its nucleotide binding properties. Methodology/Principal Findings We performed in vitro photoaffinity labeling experiments with the photoreactive ATP analogue, 8-azido-ATP[γ] biotin and purified recombinant SVOP-FLAG fusion protein. We found that SVOP is a nucleotide-binding protein, although both its substrate specificity and binding site differ from that of SV2. Within the nucleotides tested, ATP, GTP and NAD show same level of inhibition on SVOP-FLAG labeling. Dose dependent studies indicated that SVOP demonstrates the highest affinity for NAD, in contrast to SV2, which binds both NAD and ATP with equal affinity. Mapping of the binding site revealed a single region spanning transmembrane domains 9–12, which contrasts to the two binding sites in the large cytoplasmic domains in SV2A. Conclusions/Significance SVOP is the third MF family member to be found to bind nucleotides. Given that the binding sites are unique in SVOP, SV2 and Glut1, this feature appears to have arisen separately. PMID:19390693

  18. Novel xylan-binding properties of an engineered family 4 carbohydrate-binding module.

    PubMed

    Cicortas Gunnarsson, Lavinia; Montanier, Cedric; Tunnicliffe, Richard B; Williamson, Mike P; Gilbert, Harry J; Nordberg Karlsson, Eva; Ohlin, Mats

    2007-09-01

    Molecular engineering of ligand-binding proteins is commonly used for identification of variants that display novel specificities. Using this approach to introduce novel specificities into CBMs (carbohydrate-binding modules) has not been extensively explored. Here, we report the engineering of a CBM, CBM4-2 from the Rhodothermus marinus xylanase Xyn10A, and the identification of the X-2 variant. As compared with the wild-type protein, this engineered module displays higher specificity for the polysaccharide xylan, and a lower preference for binding xylo-oligomers rather than binding the natural decorated polysaccharide. The mode of binding of X-2 differs from other xylan-specific CBMs in that it only has one aromatic residue in the binding site that can make hydrophobic interactions with the sugar rings of the ligand. The evolution of CBM4-2 has thus generated a xylan-binding module with different binding properties to those displayed by CBMs available in Nature.

  19. Elasticity and Binding of Adenovirus

    NASA Astrophysics Data System (ADS)

    Matthews, Garrett; Negishi, Atsuko; Seeger, Adam; McCarty, Doug; Taylor, Russell; Samulshi, Jude; Superfine, Richard

    1999-11-01

    Adenovirus was the first human virus found to cause the transformation of cells and is one of the more common vectors being used for the development of gene therapy. As such, much is known about the viral structure and genome; however, the events of the early infection cycle, such as binding of the virus to the cell membrane and the release of genetic material from the capsid, for this and other nonenveloped viruses, are not fully understood. With the atomic force microscope (AFM) we are able to image the virus in both air and liquids, allowing us to change the surrounding environment, varying such physiologically relevant parameters as osmolality or pH. We additionally have the ability to do manipulations on single virus particles in these environments using the nanoManipulator. The nanoManipulator is an advanced interface for AFM that allows real time three dimensional rendering of the topographical data, allows the sample surface to be non-destructively felt using a hand held stylus that responds to the information being sensed at the tip, and allows controlled modification of the surface. Using this tool we have translated single virions over various surfaces, allowing us to measure the adhesion between the capsid and these surfaces. Additionally, we are able to place the tip directly atop individual viruses and measure their elasticity under a compressive load being supplied by that tip. We can explore how this property changes as a function of the properties of the surrounding liquid.

  20. Biodiscovery of aluminum binding peptides

    NASA Astrophysics Data System (ADS)

    Adams, Bryn L.; Sarkes, Deborah A.; Finch, Amethist S.; Hurley, Margaret M.; Stratis-Cullum, Dimitra

    2013-05-01

    Cell surface peptide display systems are large and diverse libraries of peptides (7-15 amino acids) which are presented by a display scaffold hosted by a phage (virus), bacteria, or yeast cell. This allows the selfsustaining peptide libraries to be rapidly screened for high affinity binders to a given target of interest, and those binders quickly identified. Peptide display systems have traditionally been utilized in conjunction with organic-based targets, such as protein toxins or carbon nanotubes. However, this technology has been expanded for use with inorganic targets, such as metals, for biofabrication, hybrid material assembly and corrosion prevention. While most current peptide display systems employ viruses to host the display scaffold, we have recently shown that a bacterial host, Escherichia coli, displaying peptides in the ubiquitous, membrane protein scaffold eCPX can also provide specific peptide binders to an organic target. We have, for the first time, extended the use of this bacterial peptide display system for the biodiscovery of aluminum binding 15mer peptides. We will present the process of biopanning with macroscopic inorganic targets, binder enrichment, and binder isolation and discovery.

  1. Binding Principle for Long-Distance Anaphors.

    ERIC Educational Resources Information Center

    Choi, Dong-Ik

    1997-01-01

    An analysis of long-distance anaphora, a binding phenomenon in which reflexives find their antecedents outside their local domain, is presented, using data from English, Chinese, Japanese, Korean, Russian, Icelandic, and Italian. It is found that no approach deals with long-distance anaphors exclusively and elegantly. The binding domain…

  2. A citrate-binding site in calmodulin.

    PubMed

    Neufeld, T; Eisenstein, M; Muszkat, K A; Fleminger, G

    1998-01-01

    Calmodulin (CaM) is a major Ca2+ messenger which, upon Ca2+ activation, binds and activates a number of target enzymes involved in crucial cellular processes. The dependence on Ca2+ ion concentration suggests that CaM activation may be modulated by low-affinity Ca2+ chelators. The effect on CaM structure and function of citrate ion, a Ca2+ chelator commonly found in the cytosol and the mitochondria, was therefore investigated. A series of structural and biochemical methods, including tryptic mapping, immunological recognition by specific monoclonal antibodies, CIDNP-NMR, binding to specific ligands and association with radiolabeled citrate, showed that citrate induces conformational modifications in CaM which affect the shape and activity of the protein. These changes were shown to be associated with the C-terminal lobe of the molecule and involve actual binding of citrate to CaM. Analyzing X-ray structures of several citrate-binding proteins by computerized molecular graphics enabled us to identify a putative citrate-binding site (CBS) on the CaM molecule around residues Arg106-His107. Owing to the tight proximity of this site to the third Ca(2+)-binding loop of CaM, binding of citrate is presumably translated into changes in Ca2+ binding to site III (and indirectly to site IV). These changes apparently affect the structural and biochemical properties of the conformation-sensitive protein.

  3. Neurotransmitter Receptor Binding in Bovine Cerebral Microvessels

    NASA Astrophysics Data System (ADS)

    Peroutka, Stephen J.; Moskowitz, Michael A.; Reinhard, John F.; Synder, Solomon H.

    1980-05-01

    Purified preparations of microvessels from bovine cerebral cortex contain substantial levels of alpha-adrenergic, beta-adrenergic, and histamine 1 receptor binding sites but only negligible serotonin, muscarinic cholinergic, opiate, and benzodiazepine receptor binding. Norepinephrine and histamine may be endogenous regulators of the cerebral microcirculation at the observed receptors.

  4. Ethylene binding site affinity in ripening apples

    SciTech Connect

    Blankenship, S.M. . Dept. of Horticultural Science); Sisler, E.C. )

    1993-09-01

    Scatchard plots for ethylene binding in apples (Malus domestica Borkh.), which were harvested weekly for 5 weeks to include the ethylene climacteric rise, showed C[sub 50] values (concentration of ethylene needed to occupy 50% of the ethylene binding sites) of 0.10, 0.11, 0.34, 0.40, and 0.57 [mu]l ethylene/liter[sup [minus]1], respectively, for each of the 5 weeks. Higher ethylene concentrations were required to saturate the binding sites during the climacteric rise than at other times. Diffusion of [sup 14]C-ethylene from the binding sites was curvilinear and did not show any indication of multiple binding sites. Ethylene was not metabolized by apple tissue.

  5. Estrogen binding by leukocytes during phagocytosis,

    PubMed Central

    1977-01-01

    Estradiol binds covalently to normal leukocytes during phagocytosis. The binding involves three cell types, neutrophils, eosinophils, and monocytes and at least two reaction mechanisms, one involving the peroxidase of neutrophils and monocytes (myeloperoxidase [MPO]) and possibly the eosinophil peroxidase, and the second involving catalase. Binding is markedly reduced when leukocytes from patients with chronic granulomatous disease (CGD), severe leukocytic glucose 6-phosphate dehydrogenase deficiency, and familial lipochrome histiocytosis are employed and two populations of neutrophils, one which binds estradiol and one which does not, can be demonstrated in the blood of a CGD carrier. Leukocytes from patients with hereditary MPO deficiency also bind estradiol poorly although the defect is not as severe as in CGD. These findings are discussed in relation to the inactivation of estrogens during infection and the possible role of estrogens in neutrophil function. PMID:858996

  6. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    SciTech Connect

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  7. Measuring Equilibrium Binding Constants for the WT1-DNA Interaction Using a Filter Binding Assay.

    PubMed

    Romaniuk, Paul J

    2016-01-01

    Equilibrium binding of WT1 to specific sites in DNA and potentially RNA molecules is central in mediating the regulatory roles of this protein. In order to understand the functional effects of mutations in the nucleic acid-binding domain of WT1 proteins and/or mutations in the DNA- or RNA-binding sites, it is necessary to measure the equilibrium constant for formation of the protein-nucleic acid complex. This chapter describes the use of a filter binding assay to make accurate measurements of the binding of the WT1 zinc finger domain to the consensus WT1-binding site in DNA. The method described is readily adapted to the measurement of the effects of mutations in either the WT1 zinc finger domain or the putative binding sites within a promoter element or cellular RNA.

  8. Lipoprotein binding to cultured human hepatoma cells.

    PubMed Central

    Krempler, F; Kostner, G M; Friedl, W; Paulweber, B; Bauer, H; Sandhofer, F

    1987-01-01

    Binding of various 125I-lipoproteins to hepatic receptors was studied on cultured human hepatoma cells (Hep G2). Chylomicrons, isolated from a chylothorax, chylomicron remnants, hypertriglyceridemic very low-density lipoproteins, normotriglyceridemic very low-density lipoproteins (NTG-VLDL), their remnants, low-density lipoproteins (LDL), and HDL-E (an Apo E-rich high-density lipoprotein isolated from the plasma of a patient with primary biliary cirrhosis) were bound by high-affinity receptors. Chylomicron remnants and HDL-E were bound with the highest affinity. The results, obtained from competitive binding experiments, are consistent with the existence of two distinct receptors on Hep G2 cells: (a) a remnant receptor capable of high-affinity binding of triglyceride-rich lipoproteins and HDL-E, but not of Apo E free LDL, and (b) a LDL receptor capable of high-affinity binding of LDL, NTG-VLDL, and HDL-E. Specific binding of Apo E-free LDL was completely abolished in the presence of 3 mM EDTA, indicating that binding to the LDL receptor is calcium dependent. Specific binding of chylomicron remnants was not inhibited by the presence of even 10 mM EDTA. Preincubation of the Hep G2 cells in lipoprotein-containing medium resulted in complete suppression of LDL receptors but did not affect the remnant receptors. Hep G2 cells seem to be a suitable model for the study of hepatic receptors for lipoprotein in man. Images PMID:3038957

  9. Improved flow cytometer measurement of binding assays

    DOEpatents

    Saunders, G.C.

    1984-05-30

    The invention relates to a method of measuring binding assays carried out with different size particles wherein the binding assay sample is run through a flow cytometer without separating the sample from the marking agent. The amount of a binding reactant present in a sample is determined by providing particles with a coating of binder and also a known quantity of smaller particles with a coating of binder reactant. The binding reactant is the same as the binding reactant present in the sample. The smaller particles also contain a fluorescent chemical. The particles are combined with the sample and the binding reaction is allowed to occur for a set length of time followed by combining the smaller particles with the mixture of the particles and the sample produced and allowing the binding reactions to proceed to equilibrium. The fluorescence and light scatter of the combined mixture is then measured as the combined mixture passes through a flow cytometer equipped with a laser to bring about fluorescence, and the number and strength of fluorescent events are compared. A similar method is also provided for determining the amount of antigen present in the sample by providing spheres with an antibody coating and some smaller spheres with an antigen coating. (LEW)

  10. Transcription factor binding energy vs. biological function

    NASA Astrophysics Data System (ADS)

    Djordjevic, M.; Grotewold, E.

    2007-03-01

    Transcription factors (TFs) are proteins that bind to DNA and regulate expression of genes. Identification of transcription factor binding sites within the regulatory segments of genomic DNA is an important step towards understanding of gene regulatory networks. Recent theoretical advances that we developed [1,2], allow us to infer TF-DNA interaction parameters from in-vitro selection experiments [3]. We use more than 6000 binding sequences [3], assembled under controlled conditions, to obtain protein-DNA interaction parameters for a mammalian TF with up to now unprecedented accuracy. Can one accurately identify biologically functional TF binding sites (i.e. the binding sites that regulate gene expression), even with the best possible protein-DNA interaction parameters? To address this issue we i) compare our prediction of protein binding with gene expression data, ii) use evolutionary comparison between related mammalian genomes. Our results strongly suggest that in a genome there exists a large number of randomly occurring high energy binding sites that are not biologically functional. [1] M Djordjevic, submitted to Biomol. Eng. [2] M. Djordjevic and A. M. Sengupta, Phys. Biol. 3: 13, 2006. [3] E. Roulet et al., Nature Biotech. 20: 831, 2002.

  11. Human liver aldehyde dehydrogenase: coenzyme binding

    SciTech Connect

    Kosley, L.L.; Pietruszko, R.

    1987-05-01

    The binding of (U-/sup 14/C) NAD to mitochondrial (E2) and cytoplasmin(E1) aldehyde dehydrogenase was measured by gel filtration and sedimentation techniques. The binding data for NAD and (E1) yielded linear Scatchard plots giving a dissociation constant of 25 (+/- 8) uM and the stoichiometry of 2 mol of NAD bound per mol of E1. The binding data for NAD and (E2) gave nonlinear Scatchard plots. The binding of NADH to E2 was measured via fluorescence enhancement; this could not be done with E1 because there was no signal. The dissociation constant for E2 by this technique was 0.7 (+/- 0.4) uM and stoichiometry of 1.0 was obtained. The binding of (U-/sup 14/C) NADH to (E1) and (E2) was also measured by the sedimentation technique. The binding data for (E1) and NADH gave linear Scatchard plots giving a dissociation constant of 13 (+/- 6) uM and the stoichiometry of 2.0. The binding data for NADH to (E2) gave nonlinear Scatchard plots. With (E1), the dissociation constants for both NAD and NADH are similar to those determined kinetically, but the stoichiometry is only half of that found by stopped flow technique. With (E2) the dissociation constant by fluorometric procedure was 2 orders of magnitude less than that from catalytic reaction.

  12. Predicted metal binding sites for phytoremediation.

    PubMed

    Sharma, Ashok; Roy, Sudeep; Tripathi, Kumar Parijat; Roy, Pratibha; Mishra, Manoj; Khan, Feroz; Meena, Abha

    2009-09-05

    Metal ion binding domains are found in proteins that mediate transport, buffering or detoxification of metal ions. The objective of the study is to design and analyze metal binding motifs against the genes involved in phytoremediation. This is being done on the basis of certain pre-requisite amino-acid residues known to bind metal ions/metal complexes in medicinal and aromatic plants (MAP's). Earlier work on MAP's have shown that heavy metals accumulated by aromatic and medicinal plants do not appear in the essential oil and that some of these species are able to grow in metal contaminated sites. A pattern search against the UniProtKB/Swiss-Prot and UniProtKB/TrEMBL databases yielded true positives in each case showing the high specificity of the motifs designed for the ions of nickel, lead, molybdenum, manganese, cadmium, zinc, iron, cobalt and xenobiotic compounds. Motifs were also studied against PDB structures. Results of the study suggested the presence of binding sites on the surface of protein molecules involved. PDB structures of proteins were finally predicted for the binding sites functionality in their respective phytoremediation usage. This was further validated through CASTp server to study its physico-chemical properties. Bioinformatics implications would help in designing strategy for developing transgenic plants with increased metal binding capacity. These metal binding factors can be used to restrict metal update by plants. This helps in reducing the possibility of metal movement into the food chain.

  13. [Binding to chicken liver lactatedehydrogenase (author's transl)].

    PubMed

    Lluís, C; Bozal, J

    1976-06-01

    Some information about the lactate dehydrogenase NAD binding site has been obtained by working with coenzymes analogs of incomplete molecules. 5'AMP, 5'-ADP, ATP, 5'-c-AMP and 3'(2)-AMP inhibit chicken liver LDH activity competitively with NADH. 5"-AMP and 5'-ADP show a stronger inhibition power than ATP, suggesting that the presence of one or two phosphate groups at the 5' position of adenosine, is essential for the binding of the coenzyme analogs at the enzyme binding site. Ribose and ribose-5'-P do not appear to inhibit the LDH activity, proving that purine base lacking mononucleotides do not bind to the enzyme. 5"-ADPG inhibits LDH activity in the exactly as 5'-ADP, showing that ribose moiety may be replaced by glucose, without considerable effects on the coenzyme analog binding. 2'-desoxidenosin-5'-phosphate proves to be a poorer inhibitor of the LDH activity than 5'-AMP, indicating that an interaction between the--OH groups and the amino-acids of the LDH active center takes place. Nicotinamide does not produce any inhibition effect, while NMN and CMP induce a much weaker inhibition than the adenine analogues, thus indicating a lesser binding capacity to the enzyme. Therefore, the LDH binding site seems to show some definite specificity towards the adenina groups of the coenzyme.

  14. Druggability of methyl-lysine binding sites

    NASA Astrophysics Data System (ADS)

    Santiago, C.; Nguyen, K.; Schapira, M.

    2011-12-01

    Structural modules that specifically recognize—or read—methylated or acetylated lysine residues on histone peptides are important components of chromatin-mediated signaling and epigenetic regulation of gene expression. Deregulation of epigenetic mechanisms is associated with disease conditions, and antagonists of acetyl-lysine binding bromodomains are efficacious in animal models of cancer and inflammation, but little is known regarding the druggability of methyl-lysine binding modules. We conducted a systematic structural analysis of readers of methyl marks and derived a predictive druggability landscape of methyl-lysine binding modules. We show that these target classes are generally less druggable than bromodomains, but that some proteins stand as notable exceptions.

  15. Kinetics of ligand binding to nucleic acids.

    PubMed

    Arakelyan, V B; Babayan, S Y; Tairyan, V I; Arakelyan, A V; Parsadanyan, M A; Vardevanyan, P O

    2006-02-01

    Ligand binding to nucleic acids (NA) is considered as a stationary Markov process. It is shown that the probabilistic description of ligand-NA binding allows one to describe not only the kinetics of the change of number of bound ligands at arbitrary fillings but also to calculate stationary values of the number of bound ligands and its dispersion. The general analysis of absorption isotherms and kinetics of ligand binding to NA make it possible to determine of rate constants of ligand-NA complex formation and dissociation.

  16. Measuring Binding Affinity of Protein-Ligand Interaction Using Spectrophotometry: Binding of Neutral Red to Riboflavin-Binding Protein

    ERIC Educational Resources Information Center

    Chenprakhon, Pirom; Sucharitakul, Jeerus; Panijpan, Bhinyo; Chaiyen, Pimchai

    2010-01-01

    The dissociation constant, K[subscript d], of the binding of riboflavin-binding protein (RP) with neutral red (NR) can be determined by titrating RP to a fixed concentration of NR. Upon adding RP to the NR solution, the maximum absorption peak of NR shifts to 545 nm from 450 nm for the free NR. The change of the absorption can be used to determine…

  17. Leukocyte protease binding to nucleic acids promotes nuclear localization and cleavage of nucleic acid binding proteins.

    PubMed

    Thomas, Marshall P; Whangbo, Jennifer; McCrossan, Geoffrey; Deutsch, Aaron J; Martinod, Kimberly; Walch, Michael; Lieberman, Judy

    2014-06-01

    Killer lymphocyte granzyme (Gzm) serine proteases induce apoptosis of pathogen-infected cells and tumor cells. Many known Gzm substrates are nucleic acid binding proteins, and the Gzms accumulate in the target cell nucleus by an unknown mechanism. In this study, we show that human Gzms bind to DNA and RNA with nanomolar affinity. Gzms cleave their substrates most efficiently when both are bound to nucleic acids. RNase treatment of cell lysates reduces Gzm cleavage of RNA binding protein targets, whereas adding RNA to recombinant RNA binding protein substrates increases in vitro cleavage. Binding to nucleic acids also influences Gzm trafficking within target cells. Preincubation with competitor DNA and DNase treatment both reduce Gzm nuclear localization. The Gzms are closely related to neutrophil proteases, including neutrophil elastase (NE) and cathepsin G. During neutrophil activation, NE translocates to the nucleus to initiate DNA extrusion into neutrophil extracellular traps, which bind NE and cathepsin G. These myeloid cell proteases, but not digestive serine proteases, also bind DNA strongly and localize to nuclei and neutrophil extracellular traps in a DNA-dependent manner. Thus, high-affinity nucleic acid binding is a conserved and functionally important property specific to leukocyte serine proteases. Furthermore, nucleic acid binding provides an elegant and simple mechanism to confer specificity of these proteases for cleavage of nucleic acid binding protein substrates that play essential roles in cellular gene expression and cell proliferation.

  18. Structural mechanism of the simultaneous binding of two drugs to a multidrug-binding protein

    PubMed Central

    Schumacher, Maria A; Miller, Marshall C; Brennan, Richard G

    2004-01-01

    The structural basis of simultaneous binding of two or more different drugs by any multidrug-binding protein is unknown and also how this can lead to a noncompetitive, uncompetitive or cooperative binding mechanism. Here, we describe the crystal structure of the Staphylococcus aureus multidrug-binding transcription repressor, QacR, bound simultaneously to ethidium (Et) and proflavin (Pf). The structure underscores the plasticity of the multidrug-binding pocket and reveals an alternative, Pf-induced binding mode for Et. To monitor the simultaneous binding of Pf and Et to QacR, as well as to determine the effects on the binding affinity of one drug when the other drug is prebound, a novel application of near-ultraviolet circular dichroism (UVCD) was developed. The UVCD equilibrium-binding studies revealed identical affinities of Pf for QacR in the presence or absence of Et, but significantly diminished affinity of Et for QacR when Pf is prebound, findings that are readily explicable by their structures. The principles for simultaneous binding of two different drugs discerned here are likely employed by the multidrug efflux transporters. PMID:15257299

  19. FACS binding assay for analysing GDNF interactions.

    PubMed

    Quintino, Luís; Baudet, Aurélie; Larsson, Jonas; Lundberg, Cecilia

    2013-08-15

    Glial cell-line derived neurotrophic factor (GDNF) is a secreted protein with great therapeutic potential. However, in order to analyse the interactions between GDNF and its receptors, researchers have been mostly dependent of radioactive binding assays. We developed a FACS-based binding assay for GDNF as an alternative to current methods. We demonstrated that the FACS-based assay using TGW cells allowed readily detection of GDNF binding and displacement to endogenous receptors. The dissociation constant and half maximal inhibitory concentration obtained were comparable to other studies using standard binding assays. Overall, this FACS-based, simple to perform and adaptable to high throughput setup, provides a safer and reliable alternative to radioactive methods.

  20. Saturation of color forces and nuclear binding

    NASA Astrophysics Data System (ADS)

    Matsuoka, Hiroshi; Sivers, Dennis

    1986-03-01

    We discuss an approach to understanding the saturation of forces in chromodynamics. Our formulation is suggested by the observation that many lattice-gauge-theory calculations give results well approximated by considering the dynamics of stringlike flux tubes. By looking at multiquark Green's functions in the strong-coupling, quenched, approximations of lattice chromodynamics we find examples of configuration mixing which can allow the binding of color-singlet hadrons into larger composite systems. We surmise that this configuration mixing is crucial to the understanding of nuclear binding. As a simple example we discuss the binding of two mesons composed of heavy, static, quarks into a deuteronlike object. Our results suggest that the magnitude of nuclear binding can be deduced by measuring a finite number of Wilson-loop configurations in lattice QCD.

  1. Overlearned responses hinder S-R binding.

    PubMed

    Moeller, Birte; Frings, Christian

    2017-01-01

    Two mechanisms that are important for human action control are the integration of individual action plans (see Hommel, Müsseler, Aschersleben, & Prinz, 2001) and the automatization of overlearned actions to familiar stimuli (see Logan, 1988). In the present study, we analyzed the influence of automatization on action plan integration. Integration with pronunciation responses were compared for response incompatible word and nonword stimuli. Stimulus-response binding effects were observed for nonwords. In contrast, words that automatically triggered an overlearned pronunciation response were not integrated with pronunciation of a different word. That is, automatized response retrieval hindered binding effects regarding the retrieving stimulus and a new response. The results are a first indication of the way that binding and learning processes interact, and might also be a first step to understanding the more complex interdependency of the processes responsible for stimulus-response binding in action control and stimulus-response associations in learning research. (PsycINFO Database Record

  2. Hardware device binding and mutual authentication

    DOEpatents

    Hamlet, Jason R; Pierson, Lyndon G

    2014-03-04

    Detection and deterrence of device tampering and subversion by substitution may be achieved by including a cryptographic unit within a computing device for binding multiple hardware devices and mutually authenticating the devices. The cryptographic unit includes a physically unclonable function ("PUF") circuit disposed in or on the hardware device, which generates a binding PUF value. The cryptographic unit uses the binding PUF value during an enrollment phase and subsequent authentication phases. During a subsequent authentication phase, the cryptographic unit uses the binding PUF values of the multiple hardware devices to generate a challenge to send to the other device, and to verify a challenge received from the other device to mutually authenticate the hardware devices.

  3. Structure and Function of Lipopolysaccharide Binding Protein

    NASA Astrophysics Data System (ADS)

    Schumann, Ralf R.; Leong, Steven R.; Flaggs, Gail W.; Gray, Patrick W.; Wright, Samuel D.; Mathison, John C.; Tobias, Peter S.; Ulevitch, Richard J.

    1990-09-01

    The primary structure of lipopolysaccharide binding protein (LBP), a trace plasma protein that binds to the lipid A moiety of bacterial lipopolysaccharides (LPSs), was deduced by sequencing cloned complementary DNA. LBP shares sequence identity with another LPS binding protein found in granulocytes, bactericidal/permeability-increasing protein, and with cholesterol ester transport protein of the plasma. LBP may control the response to LPS under physiologic conditions by forming high-affinity complexes with LPS that bind to monocytes and macrophages, which then secrete tumor necrosis factor. The identification of this pathway for LPS-induced monocyte stimulation may aid in the development of treatments for diseases in which Gram-negative sepsis or endotoxemia are involved.

  4. Binding agent for molding ceramic items

    NASA Technical Reports Server (NTRS)

    Beshentsev, B. D.; Vityuk, N. P.; Volkov, A. V.; Yevdokimov, A. I.; Novikov, M. N.; Piskunov, Y. G.; Pobortsev, E. P.; Sadovnichaya, L. M.

    1983-01-01

    The invention refers to the fabrication of ceramic items by the molding method. It can be used to produce items of complicated configuration, in particular composition of binding agent for electroceramic items.

  5. Weak binding gases as modulators of hemoglobin function

    SciTech Connect

    Schoenborn, B P; Saxena, A; North, B E

    1980-01-01

    Studies are reported in which the mechanisms of binding of inert gaseous agents to hemoglobin and myoglobin are investigated. Specific binding sites are mapped. Possible effects on sickle cell formation and oxygen binding are discussed. (ACR)

  6. Ligand Binding to Macromolecules: Allosteric and Sequential Models of Cooperativity.

    ERIC Educational Resources Information Center

    Hess, V. L.; Szabo, Attila

    1979-01-01

    A simple model is described for the binding of ligands to macromolecules. The model is applied to the cooperative binding by hemoglobin and aspartate transcarbamylase. The sequential and allosteric models of cooperative binding are considered. (BB)

  7. Bilirubin Binding Capacity in the Preterm Neonate.

    PubMed

    Amin, Sanjiv B

    2016-06-01

    Total serum/plasma bilirubin (TB), the biochemical measure currently used to evaluate and manage hyperbilirubinemia, is not a useful predictor of bilirubin-induced neurotoxicity in premature infants. Altered bilirubin-albumin binding in premature infants limits the usefulness of TB in premature infants. In this article, bilirubin-albumin binding, a modifying factor for bilirubin-induced neurotoxicity, in premature infants is reviewed.

  8. Atomic electron binding energies in fermium

    SciTech Connect

    Das, M.P.

    1981-02-01

    Calculations of the binding energies of electrons in fermium by using a relativistic local-density functional theory are reported. It is found that relaxation effects are nonnegligible for inner core orbitals. Calculated orbital binding energies are compared with those due to nonlocal Dirac-Fock calculations and also with those determined experimentally from conversion electron spectroscopy. Finally the usefulness of the local-density approximation for the study of heavy atomic and condensed systems is discussed.

  9. Antimicrobial Peptides with Differential Bacterial Binding Characteristics

    DTIC Science & Technology

    2013-03-01

    screened also displayed discriminatory binding to pathogenic E. coli O157:H7 relative to non -pathogenic E. coli ML35. The three fragments that were...screened for binding to pathogenic and non -pathogenic Escherichia coli (a Gram- negative bacterium) as well as Staphylococcus aureus (a Gram-positive...strain-specific (pathogenic vs. non -pathogenic E. coli). Several of the peptide fragments demonstrated the ability to discriminate between

  10. The readiness potential reflects intentional binding

    PubMed Central

    Jo, Han-Gue; Wittmann, Marc; Hinterberger, Thilo; Schmidt, Stefan

    2014-01-01

    When a voluntary action is causally linked with a sensory outcome, the action and its consequent effect are perceived as being closer together in time. This effect is called intentional binding. Although many experiments were conducted on this phenomenon, the underlying neural mechanisms are not well understood. While intentional binding is specific to voluntary action, we presumed that preconscious brain activity (the readiness potential, RP), which occurs before an action is made, might play an important role in this binding effect. In this study, the brain dynamics were recorded with electroencephalography (EEG) and analyzed in single-trials in order to estimate whether intentional binding is correlated with the early neural processes. Moreover, we were interested in different behavioral performance between meditators and non-meditators since meditators are expected to be able to keep attention more consistently on a task. Thus, we performed the intentional binding paradigm with 20 mindfulness meditators and compared them to matched controls. Although, we did not observe a group effect on either behavioral data or EEG recordings, we found that self-initiated movements following ongoing negative deflections of slow cortical potentials (SCPs) result in a stronger binding effect compared to positive potentials, especially regarding the perceived time of the consequent effect. Our results provide the first direct evidence that the early neural activity within the range of SCPs affects perceived time of a sensory outcome that is caused by intentional action. PMID:24959135

  11. Surface-Based Protein Binding Pocket Similarity

    PubMed Central

    Spitzer, Russell; Cleves, Ann E.; Jain, Ajay N.

    2011-01-01

    Protein similarity comparisons may be made on a local or global basis and may consider sequence information or differing levels of structural information. We present a local 3D method that compares protein binding site surfaces in full atomic detail. The approach is based on the morphological similarity method which has been widely applied for global comparison of small molecules. We apply the method to all-by-all comparisons two sets of human protein kinases, a very diverse set of ATP-bound proteins from multiple species, and three heterogeneous benchmark protein binding site data sets. Cases of disagreement between sequence-based similarity and binding site similarity yield informative examples. Where sequence similarity is very low, high pocket similarity can reliably identify important binding motifs. Where sequence similarity is very high, significant differences in pocket similarity are related to ligand binding specificity and similarity. Local protein binding pocket similarity provides qualitatively complementary information to other approaches, and it can yield quantitative information in support of functional annotation. PMID:21769944

  12. Cross-modal binding in developmental dyslexia.

    PubMed

    Jones, Manon W; Branigan, Holly P; Parra, Mario A; Logie, Robert H

    2013-11-01

    The ability to learn visual-phonological associations is a unique predictor of word reading, and individuals with developmental dyslexia show impaired ability in learning these associations. In this study, we compared developmentally dyslexic and nondyslexic adults on their ability to form cross-modal associations (or "bindings") based on a single exposure to pairs of visual and phonological features. Reading groups were therefore compared on the very early stages of associative learning. We used a working memory framework-including experimental designs used to investigate cross-modal binding. Two change-detection experiments showed a group discrepancy in binding that was dependent on spatial location encoding: Whereas group performance was similar when location was an inconsistent cue (Experiment 1), nondyslexic readers showed higher accuracy in binding than dyslexics when location was a consistent cue (Experiment 2). A cued-recall task confirmed that location information discriminates binding ability between reading groups in a more explicit memory recall task (Experiment 3). Our results show that recall for ephemeral cross-modal bindings is supported by location information in nondyslexics, but this information cannot be used to similar effect in dyslexic readers. Our findings support previous demonstrations of cross-modal association difficulty in dyslexia and show that a group discrepancy exists even in a single, initial presentation of visual-phonological pairs. Effective use of location information as a retrieval cue is one mechanism that discriminates reading groups, which may contribute to the longer term cross-modal association problems characteristic of dyslexia.

  13. Selective peptide binding using facially amphiphilic dendrimers.

    PubMed

    Gomez-Escudero, Andrea; Azagarsamy, Malar A; Theddu, Naresh; Vachet, Richard W; Thayumanavan, S

    2008-08-20

    Amphiphilic dendrimers, which contain both hydrophobic and hydrophilic groups in every repeat unit, exhibit environment-dependent assemblies both in hydrophilic solvent, water, and in lipophilic solvent, toluene. Upon investigating the status of these assemblies in a mixture of immiscible solvents, these dendrimers were found to be kinetically trapped in the solvent in which they are initially assembled. This property has been exploited to selectively extract peptides from aqueous solution into an organic phase, where the peptides bind to the interior functionalities of the dendritic inverse micelles. While the corresponding small molecule surfactant does not exhibit any selective binding toward peptides, all dendrons (G1-G3) are capable of this selective binding. We show that the inverse micelle-type assembly itself is crucial for the binding event and that the assembly formed by the G1 dendron has a greater capability for binding compared to the G2 or G3 dendrons. We have also shown that the average apparent pKa of the carboxylic acid functionalities varies with generation, and this could be the reason for the observed differences in binding capacity.

  14. Anion binding to the ubiquitin molecule.

    PubMed Central

    Makhatadze, G. I.; Lopez, M. M.; Richardson, J. M.; Thomas, S. T.

    1998-01-01

    Effects of different salts (NaCl, MgCl2, CaCl2, GdmCl, NaBr, NaClO4, NaH2PO4, Na2SO4) on the stability of the ubiquitin molecule at pH 2.0 have been studied by differential scanning calorimetry, circular dichroism, and Tyr fluorescence spectroscopies. It is shown that all of the salts studied significantly increase the thermostability of the ubiquitin molecule, and that this stabilization can be interpreted in terms of anion binding. Estimated thermodynamic parameters of binding for Cl- show that this binding is relatively weak (Kd = 0.15 M) and is characterized by a negative enthalpy of -15 kJ/mol per site. Particularly surprising was the observed stabilizing effect of GdmCl through the entire concentration range studied (0.01-2 M), however, to a lesser extent than stabilization by NaCl. This stabilizing effect of GdmCl appears to arise from the binding of Cl- ions. Analysis of the observed changes in the stability of the ubiquitin molecule in the presence of GdmCl can be adequately described by combining the thermodynamic model of denaturant binding with Cl- binding effects. PMID:9541401

  15. Comparative serum protein binding of anthracycline derivatives.

    PubMed

    Chassany, O; Urien, S; Claudepierre, P; Bastian, G; Tillement, J P

    1996-01-01

    The binding of doxorubicin, iododoxorubicin, daunorubicin, epirubicin, pirarubicin, zorubicin, aclarubicin, and mitoxantrone to 600 microM human serum albumin and 50 microM alpha 1-acid glycoprotein was studied by ultrafiltration at 37 degrees C and pH 7.4. Anthracycline concentrations (total and free) were determined by high-performance liquid chromatography (HPLC) with fluorometric detection. Binding to albumin (600 microM) varied from 61% (daunorubicin) to 94% (iododoxorubicin). The binding to alpha 1-acid glycoprotein (50 microM) was more variable, ranging from 31% (epirubicin) to 64% (zorubicin), and was essentially related to the hydrophobicity of the derivatives. Simulations showed that the total serum binding varied over a broad range from 71% (doxorubicin) to 96% (iododoxorubicin). We recently reported that the binding to lipoproteins of a series of eight anthracycline analogues could be ascribed to chemicophysical determinants of lipophilicity [2]. The present study was conducted to evaluate in vitro the contribution of albumin and alpha 1-acid glycoprotein to the total serum binding of these drugs.

  16. Bridging lectin binding sites by multivalent carbohydrates.

    PubMed

    Wittmann, Valentin; Pieters, Roland J

    2013-05-21

    Carbohydrate-protein interactions are involved in a multitude of biological recognition processes. Since individual protein-carbohydrate interactions are usually weak, multivalency is often required to achieve biologically relevant binding affinities and selectivities. Among the possible mechanisms responsible for binding enhancement by multivalency, the simultaneous attachment of a multivalent ligand to several binding sites of a multivalent receptor (i.e. chelation) has been proven to have a strong impact. This article summarizes recent examples of chelating lectin ligands of different size. Covered lectins include the Shiga-like toxin, where the shortest distance between binding sites is ca. 9 Å, wheat germ agglutinin (WGA) (shortest distance between binding sites 13-14 Å), LecA from Pseudomonas aeruginosa (shortest distance 26 Å), cholera toxin and heat-labile enterotoxin (shortest distance 31 Å), anti-HIV antibody 2G12 (shortest distance 31 Å), concanavalin A (ConA) (shortest distance 72 Å), RCA120 (shortest distance 100 Å), and Erythrina cristagalli (ECL) (shortest distance 100 Å). While chelating binding of the discussed ligands is likely, experimental proof, for example by X-ray crystallography, is limited to only a few cases.

  17. Human ocular carotenoid-binding proteins†

    PubMed Central

    Li, Binxing; Vachali, Preejith

    2014-01-01

    Two dietary carotenoids, lutein and zeaxanthin, are specifically delivered to the human macula at the highest concentration anywhere in the body. Whenever a tissue exhibits highly selective uptake of a compound, it is likely that one or more specific binding proteins are involved in the process. Over the past decade, our laboratory has identified and characterized several carotenoid-binding proteins from human retina including a pi isoform of glutathione S-transferase (GSTP1) as a zeaxanthin-binding protein, a member of the steroidogenic acute regulatory domain (StARD) family as a lutein-binding protein, and tubulin as a less specific, but higher capacity site for carotenoid deposition. In this article, we review the purification and characterization of these carotenoid-binding proteins, and we relate these ocular carotenoid-binding proteins to the transport and uptake role of serum lipoproteins and scavenger receptor proteins in a proposed pathway for macular pigment carotenoid delivery to the human retina. PMID:20820671

  18. Immobilized purified folate-binding protein: binding characteristics and use for quantifying folate in erythrocytes

    SciTech Connect

    Hansen, S.I.; Holm, J.; Nexo, E.

    1987-08-01

    Purified folate-binding protein from cow's milk was immobilized on monodisperse polymer particles (Dynospheres) activated by rho-toluenesulfonyl chloride. Leakage from the spheres was less than 0.1%, and the binding properties were similar to those of the soluble protein with regard to dissociation, pH optimum for binding pteroylglutamic acid, and specificity for binding various folate derivatives. We used the immobilized folate-binding protein as binding protein in an isotope-dilution assay for quantifying folate in erythrocytes. The detection limit was 50 nmol/L and the CV over a six-month period was 2.3% (means = 1.25 mumol/L, n = 15). The reference interval, for folate measured in erythrocytes of 43 blood donors, was 0.4-1.5 mumol/L.

  19. Theoretical studies of binding of mannose-binding protein to monosaccharides

    NASA Astrophysics Data System (ADS)

    Aida-Hyugaji, Sachiko; Takano, Keiko; Takada, Toshikazu; Hosoya, Haruo; Kojima, Naoya; Mizuochi, Tsuguo; Inoue, Yasushi

    2004-11-01

    Binding properties of mannose-binding protein (MBP) to monosaccharides are discussed based on ab initio molecular orbital calculations for cluster models constructed. The calculated binding energies indicate that MBP has an affinity for N-acetyl- D-glucosamine, D-mannose, L-fucose, and D-glucose rather than D-galactose and N-acetyl- D-galactosamine, which is consistent with the biochemical experimental results. Electrostatic potential surfaces at the binding site of four monosaccharides having binding properties matched well with that of MBP. A vacant frontier orbital was found to be localized around the binding site of MBP, suggesting that MBP-monosaccharide interaction may occur through electrostatic and orbital interactions.

  20. Altering the GTP binding site of the DNA/RNA-binding protein, Translin/TB-RBP, decreases RNA binding and may create a dominant negative phenotype.

    PubMed

    Chennathukuzhi, V M; Kurihara, Y; Bray, J D; Yang, J; Hecht, N B

    2001-11-01

    The DNA/RNA-binding protein, Translin/Testis Brain RNA-binding protein (Translin/TB-RBP), contains a putative GTP binding site in its C-terminus which is highly conserved. To determine if guanine nucleotide binding to this site functionally alters nucleic acid binding, electrophoretic mobility shift assays were performed with RNA and DNA binding probes. GTP, but not GDP, reduces RNA binding by approximately 50% and the poorly hydrolyzed GTP analog, GTPgammaS, reduces binding by >90% in gel shift and immunoprecipitation assays. No similar reduction of DNA binding is seen. When the putative GTP binding site of TB-RBP, amino acid sequence VTAGD, is altered to VTNSD by site directed mutagenesis, GTP will no longer bind to TB-RBP(GTP) and TB-RBP(GTP) no longer binds to RNA, although DNA binding is not affected. Yeast two-hybrid assays reveal that like wild-type TB-RBP, TB-RBP(GTP) will interact with itself, with wild-type TB-RBP and with Translin associated factor X (Trax). Transfection of TB-RBP(GTP) into NIH 3T3 cells leads to a marked increase in cell death suggesting a dominant negative function for TB-RBP(GTP) in cells. These data suggest TB-RBP is an RNA-binding protein whose activity is allosterically controlled by nucleotide binding.

  1. Folding funnels, binding funnels, and protein function.

    PubMed Central

    Tsai, C. J.; Kumar, S.; Ma, B.; Nussinov, R.

    1999-01-01

    Folding funnels have been the focus of considerable attention during the last few years. These have mostly been discussed in the general context of the theory of protein folding. Here we extend the utility of the concept of folding funnels, relating them to biological mechanisms and function. In particular, here we describe the shape of the funnels in light of protein synthesis and folding; flexibility, conformational diversity, and binding mechanisms; and the associated binding funnels, illustrating the multiple routes and the range of complexed conformers. Specifically, the walls of the folding funnels, their crevices, and bumps are related to the complexity of protein folding, and hence to sequential vs. nonsequential folding. Whereas the former is more frequently observed in eukaryotic proteins, where the rate of protein synthesis is slower, the latter is more frequent in prokaryotes, with faster translation rates. The bottoms of the funnels reflect the extent of the flexibility of the proteins. Rugged floors imply a range of conformational isomers, which may be close on the energy landscape. Rather than undergoing an induced fit binding mechanism, the conformational ensembles around the rugged bottoms argue that the conformers, which are most complementary to the ligand, will bind to it with the equilibrium shifting in their favor. Furthermore, depending on the extent of the ruggedness, or of the smoothness with only a few minima, we may infer nonspecific, broad range vs. specific binding. In particular, folding and binding are similar processes, with similar underlying principles. Hence, the shape of the folding funnel of the monomer enables making reasonable guesses regarding the shape of the corresponding binding funnel. Proteins having a broad range of binding, such as proteolytic enzymes or relatively nonspecific endonucleases, may be expected to have not only rugged floors in their folding funnels, but their binding funnels will also behave similarly

  2. RNA binding protein and binding site useful for expression of recombinant molecules

    DOEpatents

    Mayfield, Stephen P.

    2006-10-17

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  3. RNA binding protein and binding site useful for expression of recombinant molecules

    DOEpatents

    Mayfield, Stephen

    2000-01-01

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  4. Crystal Structure of the Botulinum Neurotoxin Type G Binding Domain: Insight into Cell Surface Binding

    SciTech Connect

    Stenmark, Pål; Dong, Min; Dupuy, Jérôme; Chapman, Edwin R.; Stevens, Raymond C.

    2011-11-02

    Botulinum neurotoxins (BoNTs) typically bind the neuronal cell surface via dual interactions with both protein receptors and gangliosides. We present here the 1.9-{angstrom} X-ray structure of the BoNT serotype G (BoNT/G) receptor binding domain (residues 868-1297) and a detailed view of protein receptor and ganglioside binding regions. The ganglioside binding motif (SxWY) has a conserved structure compared to the corresponding regions in BoNT serotype A and BoNT serotype B (BoNT/B), but several features of interactions with the hydrophilic face of the ganglioside are absent at the opposite side of the motif in the BoNT/G ganglioside binding cleft. This may significantly reduce the affinity between BoNT/G and gangliosides. BoNT/G and BoNT/B share the protein receptor synaptotagmin (Syt) I/II. The Syt binding site has a conserved hydrophobic plateau located centrally in the proposed protein receptor binding interface (Tyr1189, Phe1202, Ala1204, Pro1205, and Phe1212). Interestingly, only 5 of 14 residues that are important for binding between Syt-II and BoNT/B are conserved in BoNT/G, suggesting that the means by which BoNT/G and BoNT/B bind Syt diverges more than previously appreciated. Indeed, substitution of Syt-II Phe47 and Phe55 with alanine residues had little effect on the binding of BoNT/G, but strongly reduced the binding of BoNT/B. Furthermore, an extended solvent-exposed hydrophobic loop, located between the Syt binding site and the ganglioside binding cleft, may serve as a third membrane association and binding element to contribute to high-affinity binding to the neuronal membrane. While BoNT/G and BoNT/B are homologous to each other and both utilize Syt-I/Syt-II as their protein receptor, the precise means by which these two toxin serotypes bind to Syt appears surprisingly divergent.

  5. Radiation inactivation reveals discrete cation binding sites that modulate dihydropyridine binding sites

    SciTech Connect

    Bolger, G.T.; Skolnick, P.; Kempner, E.S. )

    1989-08-01

    In low ionic strength buffer (5 mM Tris.HCl), the binding of (3H) nitrendipine to dihydropyridine calcium antagonist binding sites of mouse forebrain membranes is increased by both Na{sup +} and Ca{sup 2+}. Radiation inactivation was used to determine the target size of ({sup 3}H)nitrendipine binding sites in 5 mM Tris.HCl buffer, in the presence and absence of these cations. After irradiation, ({sup 3}H) nitrendipine binding in buffer with or without Na+ was diminished, due to a loss of binding sites and also to an increase in Kd. After accounting for radiation effects on the dissociation constant, the target size for the nitrendipine binding site in buffer was 160-170 kDa and was 170-180 kDa in the presence of sodium. In the presence of calcium ions, ({sup 3}H)nitrendipine binding showed no radiation effects on Kd and yielded a target size of 150-170 kDa. These findings suggest, as in the case of opioid receptors, the presence of high molecular weight membrane components that modulate cation-induced alterations in radioligand binding to dihydropyridine binding sites.

  6. Alpine ski bindings and injuries. Current findings.

    PubMed

    Natri, A; Beynnon, B D; Ettlinger, C F; Johnson, R J; Shealy, J E

    1999-07-01

    In spite of the fact that the overall incidence of alpine ski injuries has decreased during the last 25 years, the incidence of serious knee sprains usually involving the anterior cruciate ligament (ACL) has risen dramatically since the late 1970s. This trend runs counter to a dramatic reduction in lower leg injuries that began in the early 1970s and to date has lowered the risk of injury below the knee by almost 90%. One of the primary design objectives of modern ski boots and bindings has been to protect the skier from tibia and ankle fractures. So, in that sense, they have done an excellent job. However, despite advances in equipment design, modern ski bindings have not protected the knee from serious ligament trauma. At the present time, we are unaware of any binding design, settings or function that can protect both the knee and lower extremities from serious ligament sprains. No innovative change in binding design appears to be on the horizon that has the potential to reduce the risk of these severe knee injuries. Indeed, only 1 study has demonstrated a means to help reduce this risk of serious knee sprains, and this study involved education of skiers, not ski equipment. Despite the inability of bindings to reduce the risk of severe knee injuries there can be no doubt that improvement in ski bindings has been the most important factor in the marked reduction in incidence of lower leg and ankle injuries during the last 25 years. The authors strongly endorse the application of present International Standards Organisation (ISO) and American Society for Testing and Materials (ASTM) standards concerning mounting, setting and maintaining modern 'state of the art' bindings.

  7. Allosteric binding sites on muscarinic acetylcholine receptors.

    PubMed

    Wess, Jürgen

    2005-12-01

    In this issue of Molecular Pharmacology, Tränkle et al. (p. 1597) present new findings regarding the existence of a second allosteric site on the M2 muscarinic acetylcholine receptor (M2 mAChR). The M2 mAChR is a prototypic class A G protein-coupled receptor (GPCR) that has proven to be a very useful model system to study the molecular mechanisms involved in the binding of allosteric GPCR ligands. Previous studies have identified several allosteric muscarinic ligands, including the acetylcholinesterase inhibitor tacrine and the bis-pyridinium derivative 4,4'-bis-[(2,6-dichloro-benzyloxy-imino)-methyl]-1,1'-propane-1,3-diyl-bis-pyridinium dibromide (Duo3), which, in contrast to conventional allosteric muscarinic ligands, display concentration-effect curves with slope factors >1. By analyzing the interactions of tacrine and Duo3 with other allosteric muscarinic agents predicted to bind to the previously identified ;common' allosteric binding site, Tränkle et al. provide evidence suggesting that two allosteric agents and one orthosteric ligand may be able to bind to the M2 mAChR simultaneously. Moreover, studies with mutant mAChRs indicated that the M2 receptor epitopes involved in the binding of tacrine and Duo3 may not be identical. Molecular modeling and ligand docking studies suggested that the additional allosteric site probably represents a subdomain of the receptor's allosteric binding cleft. Because allosteric binding sites have been found on many other GPCRs and drugs interacting with these sites are thought to have great therapeutic potential, the study by Tränkle et al. should be of considerable general interest.

  8. Flavor binding: Its nature and cause.

    PubMed

    Stevenson, Richard J

    2014-03-01

    The brain binds inputs from multiple senses to enhance our ability to identify key events in the environment. Understanding this process is based mainly on data from the major senses (vision and audition), yet compelling examples of binding occur in other domains. When we eat, in fact taste, smell, and touch combine to form flavor. This process can be so complete that most people fail to recognize that smell contributes to flavor. The flavor percept has other features: (a) it feels located in the mouth, even though smell is detected in the nose and taste on the tongue, and (b) it feels continuous, yet smell is delivered in pulses to the nose during eating. Furthermore, tastes can modify smell perception and vice versa. Current explanations of these binding-related phenomena are explored. Preattentive processing provides a well-supported account of taste-to-tongue binding. Learning between taste and smell can explain perceptual interactions between these senses and perhaps localization of smell to the mouth. Attentional processes may also be important, especially given their role in binding the major senses. Two are specifically examined. One claims that the failure to recognize smell's role in flavor stems from the role of involuntary attention's "defaulting" to the mouth and taste (i.e., binding by ignoring). Another claims that taste and smell form a common attentional channel in the mouth, in effect becoming one sense. Except for preattentive processing, the mechanisms involved in flavor binding differ markedly from those proposed for the major senses. This distinction may result from functional differences, with flavor supporting future food choice but not current identification.

  9. Exploring the binding dynamics of BAR proteins.

    PubMed

    Kabaso, Doron; Gongadze, Ekaterina; Jorgačevski, Jernej; Kreft, Marko; Van Rienen, Ursula; Zorec, Robert; Iglič, Aleš

    2011-09-01

    We used a continuum model based on the Helfrich free energy to investigate the binding dynamics of a lipid bilayer to a BAR domain surface of a crescent-like shape of positive (e.g. I-BAR shape) or negative (e.g. F-BAR shape) intrinsic curvature. According to structural data, it has been suggested that negatively charged membrane lipids are bound to positively charged amino acids at the binding interface of BAR proteins, contributing a negative binding energy to the system free energy. In addition, the cone-like shape of negatively charged lipids on the inner side of a cell membrane might contribute a positive intrinsic curvature, facilitating the initial bending towards the crescent-like shape of the BAR domain. In the present study, we hypothesize that in the limit of a rigid BAR domain shape, the negative binding energy and the coupling between the intrinsic curvature of negatively charged lipids and the membrane curvature drive the bending of the membrane. To estimate the binding energy, the electric potential at the charged surface of a BAR domain was calculated using the Langevin-Bikerman equation. Results of numerical simulations reveal that the binding energy is important for the initial instability (i.e. bending of a membrane), while the coupling between the intrinsic shapes of lipids and membrane curvature could be crucial for the curvature-dependent aggregation of negatively charged lipids near the surface of the BAR domain. In the discussion, we suggest novel experiments using patch clamp techniques to analyze the binding dynamics of BAR proteins, as well as the possible role of BAR proteins in the fusion pore stability of exovesicles.

  10. Evidence for chemoreceptors with bimodular ligand-binding regions harboring two signal-binding sites

    PubMed Central

    Pineda-Molina, Estela; Reyes-Darias, José-Antonio; Lacal, Jesús; Ramos, Juan L.; García-Ruiz, Juan Manuel; Gavira, Jose A.; Krell, Tino

    2012-01-01

    Chemoreceptor-based signaling is a central mechanism in bacterial signal transduction. Receptors are classified according to the size of their ligand-binding region. The well-studied cluster I proteins have a 100- to 150-residue ligand-binding region that contains a single site for chemoattractant recognition. Cluster II receptors, which contain a 220- to 300-residue ligand-binding region and which are almost as abundant as cluster I receptors, remain largely uncharacterized. Here, we report high-resolution structures of the ligand-binding region of the cluster II McpS chemotaxis receptor (McpS-LBR) of Pseudomonas putida KT2440 in complex with different chemoattractants. The structure of McpS-LBR represents a small-molecule binding domain composed of two modules, each able to bind different signal molecules. Malate and succinate were found to bind to the membrane-proximal module, whereas acetate binds to the membrane-distal module. A structural alignment of the two modules revealed that the ligand-binding sites could be superimposed and that amino acids involved in ligand recognition are conserved in both binding sites. Ligand binding to both modules was shown to trigger chemotactic responses. Further analysis showed that McpS-like receptors were found in different classes of proteobacteria, indicating that this mode of response to different carbon sources may be universally distributed. The physiological relevance of the McpS architecture may lie in its capacity to respond with high sensitivity to the preferred carbon sources malate and succinate and, at the same time, mediate lower sensitivity responses to the less preferred but very abundant carbon source acetate. PMID:23112148

  11. Identification of an imidazoline binding protein: Creatine kinase and an imidazoline-2 binding site

    PubMed Central

    Kimura, Atsuko; Tyacke, Robin J.; Robinson, James J.; Husbands, Stephen M.; Minchin, Michael C.W.; Nutt, David J.; Hudson, Alan L.

    2009-01-01

    Drugs that bind to imidazoline binding proteins have major physiological actions. To date, three subtypes of such proteins, I1, I2 and I3, have been proposed, although characterisations of these binding proteins are lacking. I2 binding sites are found throughout the brain, particularly dense in the arcuate nucleus of the hypothalamus. Selective I2 ligands demonstrate antidepressant-like activity and the identity of the proteins that respond to such ligands remained unknown until now. Here we report the isolation of a ∼ 45 kDa imidazoline binding protein from rabbit and rat brain using a high affinity ligand for the I2 subtype, 2-BFI, to generate an affinity column. Following protein sequencing of the isolated ∼ 45 kDa imidazoline binding protein, we identified it to be brain creatine kinase (B-CK). B-CK shows high binding capacity to selective I2 ligands; [3H]-2-BFI (5 nM) specifically bound to B-CK (2330 ± 815 fmol mg protein− 1). We predicted an I2 binding pocket near the active site of B-CK using molecular modelling. Furthermore, B-CK activity was inhibited by a selective I2 irreversible ligand, where 20 μM BU99006 reduced the enzyme activity by 16%, confirming the interaction between B-CK and the I2 ligand. In summary, we have identified B-CK to be the ∼ 45 kDa imidazoline binding protein and we have demonstrated the existence of an I2 binding site within this enzyme. The importance of B-CK in regulating neuronal activity and neurotransmitter release may well explain the various actions of I2 ligands in brain and the alterations in densities of I2 binding sites in psychiatric disorders. PMID:19410564

  12. Relations between high-affinity binding sites of markers for binding regions on human serum albumin.

    PubMed Central

    Kragh-Hansen, U

    1985-01-01

    Binding of warfarin, digitoxin, diazepam, salicylate and Phenol Red, individually or in different pair combinations, to defatted human serum albumin at ligand/protein molar ratios less than 1:1 was studied at pH 7.0. The binding was determined by ultrafiltration. Some of the experiments were repeated with the use of equilibrium dialysis in order to strengthen the results. Irrespective of the method used, all ligands bind to one high-affinity binding site with an association constant in the range 10(4)-10(6) M-1. High-affinity binding of the following pair of ligands took place independently: warfarin-Phenol Red, warfarin-diazepam, warfarin-digitoxin and digitoxin-diazepam. Simultaneous binding of warfarin and salicylate led to a mutual decrease in binding of one another, as did simultaneous binding of digitoxin and Phenol Red. Both effects could be accounted for by a coupling constant. The coupling constant is the factor by which the primary association constants are affected; in these examples of anti-co-operativity the factor has a value between 0 and 1. In the first example it was calculated to be 0.8 and in the latter 0.5. Finally, digitoxin and salicylate were found to compete for a common high-affinity binding site. The present findings support the proposal of four separate primary binding sites for warfarin, digitoxin (and salicylate), diazepam and Phenol Red. An attempt to correlate this partial binding model for serum albumin with other models in the literature is made. PMID:3977850

  13. Human sex hormone-binding globulin binding affinities of 125 structurally diverse chemicals and comparison with their binding to androgen receptor, estrogen receptor, and α-fetoprotein.

    PubMed

    Hong, Huixiao; Branham, William S; Ng, Hui Wen; Moland, Carrie L; Dial, Stacey L; Fang, Hong; Perkins, Roger; Sheehan, Daniel; Tong, Weida

    2015-02-01

    One endocrine disruption mechanism is through binding to nuclear receptors such as the androgen receptor (AR) and estrogen receptor (ER) in target cells. The concentration of a chemical in serum is important for its entry into the target cells to bind the receptors, which is regulated by the serum proteins. Human sex hormone-binding globulin (SHBG) is the major transport protein in serum that can bind androgens and estrogens and thus change a chemical's availability to enter the target cells. Sequestration of an androgen or estrogen in the serum can alter the chemical elicited AR- and ER-mediated responses. To better understand the chemical-induced endocrine activity, we developed a competitive binding assay using human pregnancy plasma and measured the binding to the human SHBG for 125 structurally diverse chemicals, most of which were known to bind AR and ER. Eighty seven chemicals were able to bind the human SHBG in the assay, whereas 38 chemicals were nonbinders. Binding data for human SHBG are compared with that for rat α-fetoprotein, ER and AR. Knowing the binding profiles between serum and nuclear receptors will improve assessment of a chemical's potential for endocrine disruption. The SHBG binding data reported here represent the largest data set of structurally diverse chemicals tested for human SHBG binding. Utilization of the SHBG binding data with AR and ER binding data could enable better evaluation of endocrine disrupting potential of chemicals through AR- and ER-mediated responses since sequestration in serum could be considered.

  14. Resveratrol binding to human serum albumin.

    PubMed

    N' soukpoe-Kossi, C N; St-Louis, C; Beauregard, M; Subirade, M; Carpentier, R; Hotchandani, S; Tajmir-Riahi, H A

    2006-12-01

    Resveratrol (Res), a polyphenolic compound found largely in the skin of red grape and wine, exhibits a wide range of pharmaceutical properties and plays a role in prevention of human cardiovascular diseases [Pendurthi et al., Arterioscler. Thromb. Vasc. Biol. 19, 419-426 (1999)]. It shows a strong affinity towards protein binding and used as inhibitor for cyclooxygenase and ribonuclease reductase. The aim of this study was to examine the interaction of resveratrol with human serum albumin (HSA) in aqueous solution at physiological conditions, using a constant protein concentration (0.3 mM) and various pigment contents (microM to mM). FTIR, UV-Visible, CD, and fluorescence spectroscopic methods were used to determine the resveratrol binding mode, the binding constant and the effects of pigment complexation on protein secondary structure. Structural analysis showed that resveratrol bind non-specifically (H-bonding) via polypeptide polar groups with overall binding constant of K(Res) = 2.56 x 10(5) M(-1). The protein secondary structure, analysed by CD spectroscopy, showed no major alterations at low resveratrol concentrations (0.125 mM), whereas at high pigment content (1 mM), major increase of alpha-helix from 57% (free HSA) to 62% and a decrease of beta-sheet from 10% (free HSA) to 7% occurred in the resveratrol-HSA complexes. The results indicate a partial stabilization of protein secondary structure at high resveratrol content.

  15. Conformational heterogeneity of the calmodulin binding interface

    PubMed Central

    Shukla, Diwakar; Peck, Ariana; Pande, Vijay S.

    2016-01-01

    Calmodulin (CaM) is a ubiquitous Ca2+ sensor and a crucial signalling hub in many pathways aberrantly activated in disease. However, the mechanistic basis of its ability to bind diverse signalling molecules including G-protein-coupled receptors, ion channels and kinases remains poorly understood. Here we harness the high resolution of molecular dynamics simulations and the analytical power of Markov state models to dissect the molecular underpinnings of CaM binding diversity. Our computational model indicates that in the absence of Ca2+, sub-states in the folded ensemble of CaM's C-terminal domain present chemically and sterically distinct topologies that may facilitate conformational selection. Furthermore, we find that local unfolding is off-pathway for the exchange process relevant for peptide binding, in contrast to prior hypotheses that unfolding might account for binding diversity. Finally, our model predicts a novel binding interface that is well-populated in the Ca2+-bound regime and, thus, a candidate for pharmacological intervention. PMID:27040077

  16. DNA binding studies of tartrazine food additive.

    PubMed

    Kashanian, Soheila; Zeidali, Sahar Heidary

    2011-07-01

    The interaction of native calf thymus DNA with tartrazine in 10 mM Tris-HCl aqueous solution at neutral pH 7.4 was investigated. Tartrazine is a nitrous derivative and may cause allergic reactions, with a potential of toxicological risk. Also, tartrazine induces oxidative stress and DNA damage. Its DNA binding properties were studied by UV-vis and circular dichroism spectra, competitive binding with Hoechst 33258, and viscosity measurements. Tartrazine molecules bind to DNA via groove mode as illustrated by hyperchromism in the UV absorption band of tartrazine, decrease in Hoechst-DNA solution fluorescence, unchanged viscosity of DNA, and conformational changes such as conversion from B-like to C-like in the circular dichroism spectra of DNA. The binding constants (K(b)) of DNA with tartrazine were calculated at different temperatures. Enthalpy and entropy changes were calculated to be +37 and +213 kJ mol(-1), respectively, according to the Van't Hoff equation, which indicated that the reaction is predominantly entropically driven. Also, tartrazine does not cleave plasmid DNA. Tartrazine interacts with calf thymus DNA via a groove interaction mode with an intrinsic binding constant of 3.75 × 10(4) M(-1).

  17. Binding of dissolved strontium by Micrococcus luteus

    SciTech Connect

    Faison, B.D.; Cancel, C.A.; Lewis, S.N.; Adler, H.I. )

    1990-12-01

    Resting cells of Micrococcus luteus have been shown to remove strontium (Sr) from dilute aqueous solutions of SrCl{sub 2} at pH 7. Loadings of 25 mg of Sr per g of cell dry weight were achieved by cells exposed to a solution containing 50 ppm (mg/liter) of Sr. Sr binding occurred in the absence of nutrients and did not require metabolic activity. Initial binding was quite rapid (<0.5 h), although a slow, spontaneous release of Sr was observed over time. Sr binding was inhibited in the presence of polyvalent cations but not monovalent cations. Ca and Sr were bound preferentially over all other cations tested. Sr-binding activity was localized on the cell envelope and was sensitive to various chemical and physical pretreatments. Bound Sr was displaced by divalent ions or by H{sup +}. Other monovalent ions were less effective. Bound Sr was also removed by various chelating agents. It was concluded that Sr binding by M. luteus is a reversible equilibrium process. Both ion exchange mediated by acidic cell surface components and intracellular uptake may be involved in this activity.

  18. Optical binding between dielectric nanowires (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hanna, Simon; Simpson, Stephen H.

    2016-09-01

    Optical binding occurs when micron-sized particles interact through the exchange of scattered photons. It has been observed both in systems of colloidal dielectric particles and between metallic nanoparticles, and can result in the formation of clusters and coupled dynamical behaviour. Optical binding between spherical particles has been studied in some detail, but little work has appeared in the literature to describe binding effects in lower symmetry systems. In the present paper we discuss recent theoretical work and computer simulations of optical binding effects operating between dielectric nanowires in counter propagating beams. The reduction in symmetry from simple spheres introduces new opportunities for binding, including different types of orientational ordering and anisotropies in the spatial arrangements that are possible for the bound particles. Various ordered configurations are possible, including ladder-like structures and oriented lattices. The stability of these structures to thermal perturbations will be discussed. Asymmetric arrangements of the nanowires are also possible, as a consequence of interactions between the nanowires and the underlying counter-propagating laser field. These configurations lead to a diversity of non-conservative effects, including uniform translation in linearly polarised beams and synchronous rotations in circularly polarised beams, suggesting potential applications of such bound structures in micro-machines.

  19. Endocytosis of Integrin-Binding Human Picornaviruses

    PubMed Central

    Merilahti, Pirjo; Koskinen, Satu; Heikkilä, Outi; Karelehto, Eveliina; Susi, Petri

    2012-01-01

    Picornaviruses that infect humans form one of the largest virus groups with almost three hundred virus types. They include significant enteroviral pathogens such as rhino-, polio-, echo-, and coxsackieviruses and human parechoviruses that cause wide range of disease symptoms. Despite the economic importance of picornaviruses, there are no antivirals. More than ten cellular receptors are known to participate in picornavirus infection, but experimental evidence of their role in cellular infection has been shown for only about twenty picornavirus types. Three enterovirus types and one parechovirus have experimentally been shown to bind and use integrin receptors in cellular infection. These include coxsackievirus A9 (CV-A9), echovirus 9, and human parechovirus 1 that are among the most common and epidemic human picornaviruses and bind to αV-integrins via RGD motif that resides on virus capsid. In contrast, echovirus 1 (E-1) has no RGD and uses integrin α2β1 as cellular receptor. Endocytosis of CV-A9 has recently been shown to occur via a novel Arf6- and dynamin-dependent pathways, while, contrary to collagen binding, E-1 binds inactive β1 integrin and enters via macropinocytosis. In this paper, we review what is known about receptors and endocytosis of integrin-binding human picornaviruses. PMID:23227048

  20. Binding in agrammatic aphasia: Processing to comprehension

    PubMed Central

    Janet Choy, Jungwon; Thompson, Cynthia K.

    2010-01-01

    Background Theories of comprehension deficits in Broca’s aphasia have largely been based on the pattern of deficit found with movement constructions. However, some studies have found comprehension deficits with binding constructions, which do not involve movement. Aims This study investigates online processing and offline comprehension of binding constructions, such as reflexive (e.g., himself) and pronoun (e.g., him) constructions in unimpaired and aphasic individuals in an attempt to evaluate theories of agrammatic comprehension. Methods & Procedures Participants were eight individuals with agrammatic Broca’s aphasia and eight age-matched unimpaired individuals. We used eyetracking to examine online processing of binding constructions while participants listened to stories. Offline comprehension was also tested. Outcomes & Results The eye movement data showed that individuals with Broca’s aphasia were able to automatically process the correct antecedent of reflexives and pronouns. In addition, their syntactic processing of binding was not delayed compared to normal controls. Nevertheless, offline comprehension of both pronouns and reflexives was significantly impaired compared to the control participants. This comprehension failure was reflected in the aphasic participants’ eye movements at sentence end, where fixations to the competitor increased. Conclusions These data suggest that comprehension difficulties with binding constructions seen in agrammatic aphasic patients are not due to a deficit in automatic syntactic processing or delayed processing. Rather, they point to a possible deficit in lexical integration. PMID:20535243

  1. Predicting tissue specific transcription factor binding sites

    PubMed Central

    2013-01-01

    Background Studies of gene regulation often utilize genome-wide predictions of transcription factor (TF) binding sites. Most existing prediction methods are based on sequence information alone, ignoring biological contexts such as developmental stages and tissue types. Experimental methods to study in vivo binding, including ChIP-chip and ChIP-seq, can only study one transcription factor in a single cell type and under a specific condition in each experiment, and therefore cannot scale to determine the full set of regulatory interactions in mammalian transcriptional regulatory networks. Results We developed a new computational approach, PIPES, for predicting tissue-specific TF binding. PIPES integrates in vitro protein binding microarrays (PBMs), sequence conservation and tissue-specific epigenetic (DNase I hypersensitivity) information. We demonstrate that PIPES improves over existing methods on distinguishing between in vivo bound and unbound sequences using ChIP-seq data for 11 mouse TFs. In addition, our predictions are in good agreement with current knowledge of tissue-specific TF regulation. Conclusions We provide a systematic map of computationally predicted tissue-specific binding targets for 284 mouse TFs across 55 tissue/cell types. Such comprehensive resource is useful for researchers studying gene regulation. PMID:24238150

  2. ACRIDINE ORANGE BINDING BY MICROCOCCUS LYSODEIKTICUS

    PubMed Central

    Beers, Roland F.

    1964-01-01

    Beers, Roland F., Jr. (Johns Hopkins University, Baltimore, Md). Acridine orange binding by Micrococcus lysodeikticus. J. Bacteriol. 88:1249–1256. 1964.—Micrococcus lysodeikticus cells bind acridine orange (AO) reversibly. The adsorption isotherm is consistent with a highly cooperative-type binding similar to that observed with polyadenylic acid. The cells exhibit a strong buffering action on the concentration of free AO which remains constant (1 μg/ml) over a range from 5 to 95% saturation of the cells by AO. The cells stain either fluorescent orange or green. The fraction stained orange is directly proportional to the quantity of dye adsorbed, indicating that these cells bind a fixed amount of AO (10% of dry weight). The green-stained cells contain less than 1% of the AO bound to orange-stained cells. The results suggest that the abrupt increase in amount of AO bound by the orange-stained cells occurs when the concentration of free AO reaches a threshold concentration. Similar results were obtained with Bacillus cereus. Mg increases the free AO concentration and the extent of binding capacity of the cells. PMID:14234778

  3. Conformational heterogeneity of the calmodulin binding interface

    NASA Astrophysics Data System (ADS)

    Shukla, Diwakar; Peck, Ariana; Pande, Vijay S.

    2016-04-01

    Calmodulin (CaM) is a ubiquitous Ca2+ sensor and a crucial signalling hub in many pathways aberrantly activated in disease. However, the mechanistic basis of its ability to bind diverse signalling molecules including G-protein-coupled receptors, ion channels and kinases remains poorly understood. Here we harness the high resolution of molecular dynamics simulations and the analytical power of Markov state models to dissect the molecular underpinnings of CaM binding diversity. Our computational model indicates that in the absence of Ca2+, sub-states in the folded ensemble of CaM's C-terminal domain present chemically and sterically distinct topologies that may facilitate conformational selection. Furthermore, we find that local unfolding is off-pathway for the exchange process relevant for peptide binding, in contrast to prior hypotheses that unfolding might account for binding diversity. Finally, our model predicts a novel binding interface that is well-populated in the Ca2+-bound regime and, thus, a candidate for pharmacological intervention.

  4. Engineering Escherichia coli to bind to cyanobacteria.

    PubMed

    Zhang, Zijian; Meng, Liuyi; Ni, Congjian; Yao, Lanqiu; Zhang, Fengyu; Jin, Yuji; Mu, Xuelang; Zhu, Shiyu; Lu, Xiaoyu; Liu, Shiyu; Yu, Congyu; Wang, Chenggong; Zheng, Pu; Wu, Jie; Kang, Li; Zhang, Haoqian M; Ouyang, Qi

    2017-03-01

    We engineered Escherichia coli cells to bind to cyanobacteria by heterologously producing and displaying lectins of the target cyanobacteria on their surface. To prove the efficacy of our approach, we tested this design on Microcystis aeruginosa with microvirin (Mvn), the lectin endogenously produced by this cyanobacterium. The coding sequence of Mvn was C-terminally fused to the ice nucleation protein NC (INPNC) gene and expressed in E. coli. Results showed that E. coli cells expressing the INPNC::Mvn fusion protein were able to bind to M. aeruginosa and the average number of E. coli cells bound to each cyanobacterial cell was enhanced 8-fold. Finally, a computational model was developed to simulate the binding reaction and help reconstruct the binding parameters. To our best knowledge, this is the first report on the binding of two organisms in liquid culture mediated by the surface display of lectins and it may serve as a novel approach to mediate microbial adhesion.

  5. Binding of ethidium to the nucleosome core particle. 2. Internal and external binding modes

    SciTech Connect

    McMurray, C.T.; Small, E.W.; van Holde, K.E. )

    1991-06-11

    The authors have previously reported that the binding of ethidium bromide to the nucleosome core particle results in a stepwise dissociation of the structure which involves the initial release of one copy each of H2A and H2B. In this report, they have examined the absorbance and fluorescence properties of intercalated and outside bound forms of ethidium bromide. From these properties, they have measured the extent of external, electrostatic binding of the dye versus internal, intercalation binding to the core particle, free from contribution by linker DNA. They have established that dissociation is induced by the intercalation mode of binding to DNA within the core particle DNA, and not by binding to the histones or by nonintercalative binding to DNA. The covalent binding of ({sup 3}H)-8-azidoethidium to the core particle clearly shows that < 1.0 adduct is formed per histone octamer over a wide range of input ratios. Simultaneously, analyses of steady-state fluorescence enhancement and fluorescence lifetime data from bound ethidium complexes demonstrate extensive intercalation binding. Combined analyses from steady-state fluorescence intensity with equilibrium dialysis or fluorescence lifetime data revealed that dissociation began when {approximately}14 ethidium molecules are bound by intercalation to each core particle and < 1.0 nonintercalated ion pair was formed per core particle.

  6. On the Orientation Problem in Korean 'CAKI' Binding and the Typology of X Reflexive Binding.

    ERIC Educational Resources Information Center

    Cho, Mi-Hui

    1994-01-01

    The purpose of this paper is to demonstrate the existence of nonsubject binding of the so-called long distance anaphor in languages like Korean and Japanese and to give a principled account of why and when it happens. The Korean reflexive pronoun "caki" ('self') is bound by local and long-distance antecedents. Nonsubject binding occurs…

  7. Quantification of Cooperativity in Heterodimer-DNA Binding Improves the Accuracy of Binding Specificity Models.

    PubMed

    Isakova, Alina; Berset, Yves; Hatzimanikatis, Vassily; Deplancke, Bart

    2016-05-06

    Many transcription factors (TFs) have the ability to cooperate on DNA elements as heterodimers. Despite the significance of TF heterodimerization for gene regulation, a quantitative understanding of cooperativity between various TF dimer partners and its impact on heterodimer DNA binding specificity models is still lacking. Here, we used a novel integrative approach, combining microfluidics-steered measurements of dimer-DNA assembly with mechanistic modeling of the implicated protein-protein-DNA interactions to quantitatively interrogate the cooperative DNA binding behavior of the adipogenic peroxisome proliferator-activated receptor γ (PPARγ):retinoid X receptor α (RXRα) heterodimer. Using the high throughput MITOMI (mechanically induced trapping of molecular interactions) platform, we derived equilibrium DNA binding data for PPARγ, RXRα, as well as the PPARγ:RXRα heterodimer to more than 300 target DNA sites and variants thereof. We then quantified cooperativity underlying heterodimer-DNA binding and derived an integrative heterodimer DNA binding constant. Using this cooperativity-inclusive constant, we were able to build a heterodimer-DNA binding specificity model that has superior predictive power than the one based on a regular one-site equilibrium. Our data further revealed that individual nucleotide substitutions within the target site affect the extent of cooperativity in PPARγ:RXRα-DNA binding. Our study therefore emphasizes the importance of assessing cooperativity when generating DNA binding specificity models for heterodimers.

  8. The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules

    PubMed Central

    Lehtiö, Janne; Sugiyama, Junji; Gustavsson, Malin; Fransson, Linda; Linder, Markus; Teeri, Tuula T.

    2003-01-01

    Cellulose binding modules (CBMs) potentiate the action of cellulolytic enzymes on insoluble substrates. Numerous studies have established that three aromatic residues on a CBM surface are needed for binding onto cellulose crystals and that tryptophans contribute to higher binding affinity than tyrosines. However, studies addressing the nature of CBM–cellulose interactions have so far failed to establish the binding site on cellulose crystals targeted by CBMs. In this study, the binding sites of CBMs on Valonia cellulose crystals have been visualized by transmission electron microscopy. Fusion of the CBMs with a modified staphylococcal protein A (ZZ-domain) allowed direct immuno-gold labeling at close proximity of the actual CBM binding site. The transmission electron microscopy images provide unequivocal evidence that the fungal family 1 CBMs as well as the family 3 CBM from Clostridium thermocellum CipA have defined binding sites on two opposite corners of Valonia cellulose crystals. In most samples these corners are worn to display significant area of the hydrophobic (110) plane, which thus constitutes the binding site for these CBMs. PMID:12522267

  9. The RNA-binding protein Gemin5 binds directly to the ribosome and regulates global translation

    PubMed Central

    Francisco-Velilla, Rosario; Fernandez-Chamorro, Javier; Ramajo, Jorge; Martinez-Salas, Encarnación

    2016-01-01

    RNA-binding proteins (RBPs) play crucial roles in all organisms. The protein Gemin5 harbors two functional domains. The N-terminal domain binds to snRNAs targeting them for snRNPs assembly, while the C-terminal domain binds to IRES elements through a non-canonical RNA-binding site. Here we report a comprehensive view of the Gemin5 interactome; most partners copurified with the N-terminal domain via RNA bridges. Notably, Gemin5 sediments with the subcellular ribosome fraction, and His-Gemin5 binds to ribosome particles via its N-terminal domain. The interaction with the ribosome was lost in F381A and Y474A Gemin5 mutants, but not in W14A and Y15A. Moreover, the ribosomal proteins L3 and L4 bind directly with Gemin5, and conversely, Gemin5 mutants impairing the binding to the ribosome are defective in the interaction with L3 and L4. The overall polysome profile was affected by Gemin5 depletion or overexpression, concomitant to an increase or a decrease, respectively, of global protein synthesis. Gemin5, and G5-Nter as well, were detected on the polysome fractions. These results reveal the ribosome-binding capacity of the N-ter moiety, enabling Gemin5 to control global protein synthesis. Our study uncovers a crosstalk between this protein and the ribosome, and provides support for the view that Gemin5 may control translation elongation. PMID:27507887

  10. Molecular simulations of multimodal ligand-protein binding: elucidation of binding sites and correlation with experiments.

    PubMed

    Freed, Alexander S; Garde, Shekhar; Cramer, Steven M

    2011-11-17

    Multimodal chromatography, which employs more than one mode of interaction between ligands and proteins, has been shown to have unique selectivity and high efficacy for protein purification. To test the ability of free solution molecular dynamics (MD) simulations in explicit water to identify binding regions on the protein surface and to shed light on the "pseudo affinity" nature of multimodal interactions, we performed MD simulations of a model protein ubiquitin in aqueous solution of free ligands. Comparisons of MD with NMR spectroscopy of ubiquitin mutants in solutions of free ligands show a good agreement between the two with regard to the preferred binding region on the surface of the protein and several binding sites. MD simulations also identify additional binding sites that were not observed in the NMR experiments. "Bound" ligands were found to be sufficiently flexible and to access a number of favorable conformations, suggesting only a moderate loss of ligand entropy in the "pseudo affinity" binding of these multimodal ligands. Analysis of locations of chemical subunits of the ligand on the protein surface indicated that electrostatic interaction units were located on the periphery of the preferred binding region on the protein. The analysis of the electrostatic potential, the hydrophobicity maps, and the binding of both acetate and benzene probes were used to further study the localization of individual ligand moieties. These results suggest that water-mediated electrostatic interactions help the localization and orientation of the MM ligand to the binding region with additional stability provided by nonspecific hydrophobic interactions.

  11. Opioid binding sites in the guinea pig and rat kidney: Radioligand homogenate binding and autoradiography

    SciTech Connect

    Dissanayake, V.U.; Hughes, J.; Hunter, J.C. )

    1991-07-01

    The specific binding of the selective {mu}-, {delta}-, and {kappa}-opioid ligands (3H)(D-Ala2,MePhe4,Gly-ol5)enkephalin ((3H) DAGOL), (3H)(D-Pen2,D-Pen5)enkephalin ((3H)DPDPE), and (3H)U69593, respectively, to crude membranes of the guinea pig and rat whole kidney, kidney cortex, and kidney medulla was investigated. In addition, the distribution of specific 3H-opioid binding sites in the guinea pig and rat kidney was visualized by autoradiography. Homogenate binding and autoradiography demonstrated the absence of {mu}- and {kappa}-opioid binding sites in the guinea pig kidney. No opioid binding sites were demonstrable in the rat kidney. In the guinea pig whole kidney, cortex, and medulla, saturation studies demonstrated that (3H)DPDPE bound with high affinity (KD = 2.6-3.5 nM) to an apparently homogeneous population of binding sites (Bmax = 8.4-30 fmol/mg of protein). Competition studies using several opioid compounds confirmed the nature of the {delta}-opioid binding site. Autoradiography experiments demonstrated that specific (3H)DPDPE binding sites were distributed radially in regions of the inner and outer medulla and at the corticomedullary junction of the guinea pig kidney. Computer-assisted image analysis of saturation data yielded KD values (4.5-5.0 nM) that were in good agreement with those obtained from the homogenate binding studies. Further investigation of the {delta}-opioid binding site in medulla homogenates, using agonist ((3H)DPDPE) and antagonist ((3H)diprenorphine) binding in the presence of Na+, Mg2+, and nucleotides, suggested that the {delta}-opioid site is linked to a second messenger system via a GTP-binding protein. Further studies are required to establish the precise localization of the {delta} binding site in the guinea pig kidney and to determine the nature of the second messenger linked to the GTP-binding protein in the medulla.

  12. Flow cytometer measurement of binding assays

    DOEpatents

    Saunders, George C.

    1987-01-01

    A method of measuring the result of a binding assay that does not require separation of fluorescent smaller particles is disclosed. In a competitive binding assay the smaller fluorescent particles coated with antigen compete with antigen in the sample being analyzed for available binding sites on larger particles. In a sandwich assay, the smaller, fluorescent spheres coated with antibody attach themselves to molecules containing antigen that are attached to larger spheres coated with the same antibody. The separation of unattached, fluorescent smaller particles is made unnecessary by only counting the fluorescent events triggered by the laser of a flow cytometer when the event is caused by a particle with a light scatter measurement within a certain range corresponding to the presence of larger particles.

  13. Arsenic binding to Fucus vesiculosus metallothionein.

    PubMed

    Merrifield, Maureen E; Ngu, Thanh; Stillman, Martin J

    2004-11-05

    The seaweed Fucus vesiculosus is a member of the brown algae family. Kille and co-workers [Biochem. J. 338 (1999) 553] reported that this species contains the gene for metallothionein. Metallothionein is a metalloprotein having low molecular weight, and high cysteine content, which binds a range of metals. F. vesiculosus bioaccumulates arsenic from the aquatic environment [Mar. Chem. 18 (1986) 321]. In this paper we describe arsenic binding to F. vesiculosus metallothionein, characterized by electrospray ionization mass spectrometry. Five arsenic-MT species were detected with increasing As to protein ratios. These results provide important information about the metal-chelation behaviour of this novel algal metallothionein which is a putative model for arsenic binding to F. vesiculosus in vivo.

  14. Conformation-controlled binding kinetics of antibodies

    PubMed Central

    Galanti, Marta; Fanelli, Duccio; Piazza, Francesco

    2016-01-01

    Antibodies are large, extremely flexible molecules, whose internal dynamics is certainly key to their astounding ability to bind antigens of all sizes, from small hormones to giant viruses. In this paper, we build a shape-based coarse-grained model of IgG molecules and show that it can be used to generate 3D conformations in agreement with single-molecule Cryo-Electron Tomography data. Furthermore, we elaborate a theoretical model that can be solved exactly to compute the binding rate constant of a small antigen to an IgG in a prescribed 3D conformation. Our model shows that the antigen binding process is tightly related to the internal dynamics of the IgG. Our findings pave the way for further investigation of the subtle connection between the dynamics and the function of large, flexible multi-valent molecular machines. PMID:26755272

  15. DNA Origami Seesaws as Comparative Binding Assay

    PubMed Central

    Nickels, Philipp C.; Høiberg, Hans C.; Simmel, Stephanie S.; Holzmeister, Phil; Tinnefeld, Philip

    2016-01-01

    Abstract The application of commonly used force spectroscopy in biological systems is often limited by the need for an invasive tether connecting the molecules of interest to a bead or cantilever tip. Here we present a DNA origami‐based prototype in a comparative binding assay. It has the advantage of in situ readout without any physical connection to the macroscopic world. The seesaw‐like structure has a lever that is able to move freely relative to its base. Binding partners on each side force the structure into discrete and distinguishable conformations. Model experiments with competing DNA hybridisation reactions yielded a drastic shift towards the conformation with the stronger binding interaction. With reference DNA duplexes of tuneable length on one side, this device can be used to measure ligand interactions in comparative assays. PMID:27038073

  16. A review of albumin binding in CKD.

    PubMed

    Meijers, Björn K I; Bammens, Bert; Verbeke, Kristin; Evenepoel, Pieter

    2008-05-01

    Hypoalbuminemia is associated with excess mortality in patients with kidney disease. Albumin is an important oxidant scavenger and an abundant carrier protein for numerous endogenous and exogenous compounds. Several specific binding sites for anionic, neutral, and cationic ligands were described. Overall, the extent of binding depends on the ligand and albumin concentration, albumin-binding affinity, and presence of competing ligands. Chronic kidney disease affects all these determinants. This may result in altered pharmacokinetics and increased risk of toxicity. Renal clearance of albumin-bound solutes mainly depends on tubular clearance. Dialytic clearance by means of conventional hemodialysis/hemofiltration and peritoneal dialysis is limited. Other epuration techniques combining hemodialysis with adsorption have been developed. However, the benefit of these techniques remains to be proved.

  17. ABP: a novel AMPA receptor binding protein.

    PubMed

    Srivastava, S; Ziff, E B

    1999-04-30

    We review the cloning of a novel AMPA receptor binding protein (ABP) that interacts with GluR2/3 and is homologous to GRIP. ABP is enriched in the PSD with GluR2 and is localized to the PSD by EM. ABP binds GluR2 via the C-terminal VXI motif through a Class I PDZ interaction. ABP and GRIP can also homo- and heteromultimerize. Thus, ABP and GRIP may be involved in AMPA receptor regulation and localization, by linking it to other cytoskeletal or signaling molecules. We suggest that the ABP/GRIP and PSD-95 families form distinct scaffolds that anchor, respectively, AMPA and NMDA receptors. We are currently investigating proteins that bind ABP and that may regulate the AMPA receptor.

  18. Heavy quark interactions and quarkonium binding

    NASA Astrophysics Data System (ADS)

    Satz, Helmut

    2009-06-01

    We consider heavy quark interactions in quenched and unquenched lattice QCD. In a region just above the deconfinement point, non-Abelian gluon polarization leads to a strong increase in the binding. Comparing quark-antiquark and quark-quark interaction, the dependence of the binding on the separation distance r is found to be the same for the colorless singlet Q{\\skew3\\bar{Q}} and the colored anti-triplet QQ state. In a potential model description of in-medium J/ψ behavior, this enhancement of the binding leads to a survival up to temperatures of 1.5 Tc or higher; it could also result in J/ψ flow. Based on joint work with O Kaczmarek and F Karsch.

  19. Conformation-controlled binding kinetics of antibodies

    NASA Astrophysics Data System (ADS)

    Galanti, Marta; Fanelli, Duccio; Piazza, Francesco

    2016-01-01

    Antibodies are large, extremely flexible molecules, whose internal dynamics is certainly key to their astounding ability to bind antigens of all sizes, from small hormones to giant viruses. In this paper, we build a shape-based coarse-grained model of IgG molecules and show that it can be used to generate 3D conformations in agreement with single-molecule Cryo-Electron Tomography data. Furthermore, we elaborate a theoretical model that can be solved exactly to compute the binding rate constant of a small antigen to an IgG in a prescribed 3D conformation. Our model shows that the antigen binding process is tightly related to the internal dynamics of the IgG. Our findings pave the way for further investigation of the subtle connection between the dynamics and the function of large, flexible multi-valent molecular machines.

  20. Presence of a highly efficient binding to bacterial contamination can distort data from binding studies

    SciTech Connect

    Balcar, V.J. )

    1990-12-01

    {sup 3}HGABA at low concentrations (5-10 nM) was bound by what appeared to be a GABA receptor binding site in bacterial contamination originating from a batch of distilled water. Under experimental conditions similar to those usually employed in {sup 3}HGABA binding studies, the apparent binding displayed a very high specific component and a high efficiency in terms of {sup 3}HGABA bound per mg of protein. The binding was blocked by muscimol but not by isoguvacine, SR95531 and nipecotic acid. These characteristics suggest that the presence of such spurious binding in the experiments using 3H-labeled ligands in brain homogenates may not always be very obvious and, moreover, it can result in subtle, but serious, distortions of data from such studies, which may not be immediately recognized.

  1. Competition between LIM-binding domains.

    PubMed

    Matthews, Jacqueline M; Bhati, Mugdha; Craig, Vanessa J; Deane, Janet E; Jeffries, Cy; Lee, Christopher; Nancarrow, Amy L; Ryan, Daniel P; Sunde, Margaret

    2008-12-01

    LMO (LIM-only) and LIM-HD (LIM-homeodomain) proteins form a family of proteins that is required for myriad developmental processes and which can contribute to diseases such as T-cell leukaemia and breast cancer. The four LMO and 12 LIM-HD proteins in mammals are expressed in a combinatorial manner in many cell types, forming a transcriptional 'LIM code'. The proteins all contain a pair of closely spaced LIM domains near their N-termini that mediate protein-protein interactions, including binding to the approximately 30-residue LID (LIM interaction domain) of the essential co-factor protein Ldb1 (LIM domain-binding protein 1). In an attempt to understand the molecular mechanisms behind the LIM code, we have determined the molecular basis of binding of LMO and LIM-HD proteins for Ldb1(LID) through a series of structural, mutagenic and biophysical studies. These studies provide an explanation for why Ldb1 binds the LIM domains of the LMO/LIM-HD family, but not LIM domains from other proteins. The LMO/LIM-HD family exhibit a range of affinities for Ldb1, which influences the formation of specific functional complexes within cells. We have also identified an additional LIM interaction domain in one of the LIM-HD proteins, Isl1. Despite low sequence similarity to Ldb1(LID), this domain binds another LIM-HD protein, Lhx3, in an identical manner to Ldb1(LID). Through our and other studies, it is emerging that the multiple layers of competitive binding involving LMO and LIM-HD proteins and their partner proteins contribute significantly to cell fate specification and development.

  2. Lipid binding capacity of spider hemocyanin.

    PubMed

    Cunningham, M; Gómez, C; Pollero, R

    1999-09-01

    The spider hemocyanin capacity to bind different lipid classes was evaluated by measuring some binding kinetic parameters. A very high lipoprotein (VHDL) which contains hemocyanin, was isolated from Polybetes pythagoricus hemolymph plasma and delipidated. Hemocyanin was bound separately to labelled palmitic acid, phosphatidylcholine, cholesterol, and triolein resulting in several artificial lipoprotein structures. It was possible to corroborate in vitro the lipid-hemocyanin interactions which had been previously observed and, consequently, the apolipoprotein role played by the respiratory pigment of spiders. Lipoproteins were analysed by gel filtration chromatography, and three subfractions with different hemocyanin structures were obtained. The four lipid classes were only bound to the hexameric structure (420 Kda), possibly to low polarity sites. Upon radioactivity measurements of the protein-associated lipids, maximal binding ratios (Mr), dissociation constants (Kd), and the maximal binding effectiveness at low lipid concentrations (Eo) were calculated. Lipid/protein ratios were increased proportionally to each available lipid concentration, following a hyperbolic binding model. Values of saturation, affinity, and maximal binding efficiency to hemocyanin were found to be different for each lipid class assayed. The highest lipid/protein ratio (41.5) was obtained with the free fatty acid and the lowest (7.2) with triolein. Phosphatidylcholine and cholesterol showed the highest relative affinities for hemocyanin (Kd = 63 x 10(-5) M and 74 x 10(-5) M, respectively). Phosphatidylcholine at low concentrations, similar to the physiological ones, presented the highest Eo value. Maximal lipid/protein ratios reached in vitro, were greater than those in P. pythagoricus VHDL, pointing out that hemocyanin could play the apolipoprotein role even under physiological conditions with a very high plasma lipid concentration. J. Exp. Zool. 284:368-373, 1999.

  3. Mucin Binding Reduces Colistin Antimicrobial Activity

    PubMed Central

    Huang, Johnny X.; Blaskovich, Mark A. T.; Pelingon, Ruby; Ramu, Soumya; Kavanagh, Angela; Elliott, Alysha G.; Butler, Mark S.

    2015-01-01

    Colistin has found increasing use in treating drug-resistant bacterial lung infections, but potential interactions with pulmonary biomolecules have not been investigated. We postulated that colistin, like aminoglycoside antibiotics, may bind to secretory mucin in sputum or epithelial mucin that lines airways, reducing free drug levels. To test this hypothesis, we measured binding of colistin and other antibiotics to porcine mucin, a family of densely glycosylated proteins used as a surrogate for human sputum and airway mucin. Antibiotics were incubated in dialysis tubing with or without mucin, and concentrations of unbound antibiotics able to penetrate the dialysis tubing were measured over time using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The percentage of antibiotic measured in the dialysate after 4 h in the presence of mucin, relative to the amount without mucin, was 15% for colistin, 16% for polymyxin B, 19% for tobramycin, 52% for ciprofloxacin, and 78% for daptomycin. Antibiotics with the strongest mucin binding had an overall polybasic positive charge, whereas those with comparatively little binding were less basic. When comparing MICs measured with or without added mucin, colistin and polymyxin B showed >100-fold increases in MICs for multiple Gram-negative bacteria. Preclinical evaluation of mucin binding should become a standard procedure when considering the potential pulmonary use of new or existing antibiotics, particularly those with a polybasic overall charge. In the airways, mucin binding may reduce the antibacterial efficacy of inhaled or intravenously administered colistin, and the presence of sub-MIC effective antibiotic concentrations could result in the development of antibiotic resistance. PMID:26169405

  4. Mucin Binding Reduces Colistin Antimicrobial Activity.

    PubMed

    Huang, Johnny X; Blaskovich, Mark A T; Pelingon, Ruby; Ramu, Soumya; Kavanagh, Angela; Elliott, Alysha G; Butler, Mark S; Montgomery, A Bruce; Cooper, Matthew A

    2015-10-01

    Colistin has found increasing use in treating drug-resistant bacterial lung infections, but potential interactions with pulmonary biomolecules have not been investigated. We postulated that colistin, like aminoglycoside antibiotics, may bind to secretory mucin in sputum or epithelial mucin that lines airways, reducing free drug levels. To test this hypothesis, we measured binding of colistin and other antibiotics to porcine mucin, a family of densely glycosylated proteins used as a surrogate for human sputum and airway mucin. Antibiotics were incubated in dialysis tubing with or without mucin, and concentrations of unbound antibiotics able to penetrate the dialysis tubing were measured over time using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The percentage of antibiotic measured in the dialysate after 4 h in the presence of mucin, relative to the amount without mucin, was 15% for colistin, 16% for polymyxin B, 19% for tobramycin, 52% for ciprofloxacin, and 78% for daptomycin. Antibiotics with the strongest mucin binding had an overall polybasic positive charge, whereas those with comparatively little binding were less basic. When comparing MICs measured with or without added mucin, colistin and polymyxin B showed >100-fold increases in MICs for multiple Gram-negative bacteria. Preclinical evaluation of mucin binding should become a standard procedure when considering the potential pulmonary use of new or existing antibiotics, particularly those with a polybasic overall charge. In the airways, mucin binding may reduce the antibacterial efficacy of inhaled or intravenously administered colistin, and the presence of sub-MIC effective antibiotic concentrations could result in the development of antibiotic resistance.

  5. Potential of goat probiotic to bind mutagens.

    PubMed

    Apás, Ana Lidia; González, Silvia Nelina; Arena, Mario Eduardo

    2014-08-01

    The mutagen binding ability of the goat probiotics (Lactobacillus reuteri DDL 19, Lactobacillus alimentarius DDL 48, Enterococcus faecium DDE 39, and Bifidobacterium bifidum DDBA) was evaluated. The oral administration of these probiotics reduced fecal mutagens and intestinal cancer markers in goats. Secondly, the effects of probiotics against the mutagenesis induced by sodium azide (SA), and Benzopyrene (B[α]P) by performing the modified Ames test using Salmonella typhimurium TA 100 was investigated. The capacity to bind benzopyrene and the stability of the bacterial-mutagen complex was analyzed by HPLC. The dismutagenic potential against both mutagens was proportional to probiotic concentration. Results showed that probiotic antimutagenic capacity against SA was ranging from 13 to 78%. The mixture of four goat probiotics (MGP) displayed higher antimutagenic activity against SA than any individual strains at the same cell concentration. This study shows that the highest diminution of mutagenicity in presence of B[α]P (74%) was observed in presence of MGP. The antimutagenic activity of nearly all the individual probiotic and the MGP were in concordance with the B[α]P binding determined by HPLC. According to our results, the B[α]P binding to probiotic was irreversible still after being washed with DMSO solution. The stability of the toxic compounds-bacterial cell binding is a key consideration when probiotic antimutagenic property is evaluated. MGP exhibits the ability to bind and detoxify potent mutagens, and this property can be useful in supplemented foods for goats since it can lead to the removal of potent mutagens and protect and enhance ruminal health and hence food safety of consumers.

  6. Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins

    NASA Technical Reports Server (NTRS)

    Schoeffler, Allyn J.; Ruiz, Carmen R.; Joubert, Allison M.; Yang, Xuemei; LiCata, Vince J.

    2003-01-01

    Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.

  7. Estradiol Binds to Insulin and Insulin Receptor Decreasing Insulin Binding in vitro

    PubMed Central

    Root-Bernstein, Robert; Podufaly, Abigail; Dillon, Patrick F.

    2014-01-01

    Rationale: Insulin (INS) resistance associated with hyperestrogenemias occurs in gestational diabetes mellitus, polycystic ovary syndrome, ovarian hyperstimulation syndrome, estrogen therapies, metabolic syndrome, and obesity. The mechanism by which INS and estrogen interact is unknown. We hypothesize that estrogen binds directly to INS and the insulin receptor (IR) producing INS resistance. Objectives: To determine the binding constants of steroid hormones to INS, the IR, and INS-like peptides derived from the IR; and to investigate the effect of estrogens on the binding of INS to its receptor. Methods: Ultraviolet spectroscopy, capillary electrophoresis, and NMR demonstrated estrogen binding to INS and its receptor. Horse-radish peroxidase-linked INS was used in an ELISA-like procedure to measure the effect of estradiol on binding of INS to its receptor. Measurements: Binding constants for estrogens to INS and the IR were determined by concentration-dependent spectral shifts. The effect of estradiol on INS binding to its receptor was determined by shifts in the INS binding curve. Main Results: Estradiol bound to INS with a Kd of 12 × 10−9 M and to the IR with a Kd of 24 × 10−9 M, while other hormones had significantly less affinity. Twenty-two nanomolars of estradiol shifted the binding curve of INS to its receptor 0.8 log units to the right. Conclusion: Estradiol concentrations in hyperestrogenemic syndromes may interfere with INS binding to its receptor producing significant INS resistance. PMID:25101056

  8. Receptor binding domain based HIV vaccines.

    PubMed

    Liu, Huan; Bi, Wenwen; Wang, Qian; Lu, Lu; Jiang, Shibo

    2015-01-01

    This paper analyzes the main trend of the development of acquired immunodeficiency syndrome (AIDS) vaccines in recent years. Designing an HIV-1 vaccine that provides robust protection from HIV-1 infection remains a challenge despite many years of effort. Therefore, we describe the receptor binding domain of gp120 as a target for developing AIDS vaccines. And we recommend some measures that could induce efficiently and produce cross-reactive neutralizing antibodies with high binding affinity. Those measures may offer a new way of the research and development of the potent and broad AIDS vaccines.

  9. Binding energies of hypernuclei and hypernuclear interactions

    SciTech Connect

    Bodmer, A.R. |; Murali, S.; Usmani, Q.N.

    1996-05-01

    In part 1 the effect of nuclear core dynamics on the binding energies of {Lambda} hypernuclei is discussed in the framework of variational correlated wave functions. In particular, the authors discuss a new rearrangement energy contribution and its effect on the core polarization. In part 2 they consider the interpretation of the {Lambda} single-particle energy in terms of basic {Lambda}-nuclear interactions using a local density approximation based on a Fermi hypernetted chain calculation of the A binding to nuclear matter. To account for the data strongly repulsive 3-body {Lambda}NN forces are required. Also in this framework they discuss core polarization for medium and heavier hypernuclei.

  10. Free-radical-mediated DNA binding.

    PubMed Central

    O'Brien, P J

    1985-01-01

    Free-radical metabolites can be generated metabolically by a one-electron reductase-catalyzed reaction or a "peroxidase" catalyzed oxidation or by photoactivation of a wide variety of aromatic xenobiotics. Radicals may also be generated during lipid peroxidation. Some radicals can react with DNA or bind covalently or noncovalently as a dismutation product or as a dimer, trimer or polymeric product. Modification to the DNA can result in single-strand breaks, loss of template activity, and crosslinking. The binding can prevent enzymic digestion. In some cases, the radicals react with oxygen, resulting before conversion to DNA reactive oxygen species. Most radicals probably do not interact with DNA. PMID:3007090

  11. Tight-Binding study of Boron structures

    NASA Astrophysics Data System (ADS)

    McGrady, Joseph W.; Papaconstantopoulos, Dimitrios A.; Mehl, Michael J.

    2014-10-01

    We have performed Linearized Augmented Plane Wave (LAPW) calculations for five crystal structures (alpha, dhcp, sc, fcc, bcc) of Boron which we then fitted to a non-orthogonal tight-binding model following the Naval Research Laboratory Tight-Binding (NRL-TB) method. The predictions of the NRL-TB approach for complicated Boron structures such as R105 (or β-rhombohedral) and T190 are in agreement with recent first-principles calculations. Fully utilizing the computational speed of the NRL-TB method we calculated the energy differences of various structures, including those containing vacancies using supercells with up to 5000 atoms.

  12. Lateral optical binding between two colloidal particles

    PubMed Central

    Wei, Ming-Tzo; Ng, Jack; Chan, C. T.; Ou-Yang, H. Daniel

    2016-01-01

    An optical binding force between two nearby colloidal particles trapped by two coherent laser beams is measured by phase-sensitive detection. The binding force is long-range and spatially oscillatory. For identical linearly-polarized incident beams, the oscillation period is equal to the optical wavelength. For mutually perpendicular polarizations, a new force appears with half-wavelength periodicity, caused by double inter-particle scattering. This force is observable only with cross-polarized incident beams, for which the stronger single-scattering forces are forbidden by parity. PMID:27982052

  13. Non-DNA-binding cofactors enhance DNA-binding specificity of a transcriptional regulatory complex

    PubMed Central

    Siggers, Trevor; Duyzend, Michael H; Reddy, Jessica; Khan, Sidra; Bulyk, Martha L

    2011-01-01

    Recruitment of cofactors to specific DNA sites is integral for specificity in gene regulation. As a model system, we examined how targeting and transcriptional control of the sulfur metabolism genes in Saccharomyces cerevisiae is governed by recruitment of the transcriptional co-activator Met4. We developed genome-scale approaches to measure transcription factor (TF) DNA-binding affinities and cofactor recruitment to >1300 genomic binding site sequences. We report that genes responding to the TF Cbf1 and cofactor Met28 contain a novel ‘recruitment motif' (RYAAT), adjacent to Cbf1 binding sites, which enhances the binding of a Met4–Met28–Cbf1 regulatory complex, and that abrogation of this motif significantly reduces gene induction under low-sulfur conditions. Furthermore, we show that correct recognition of this composite motif requires both non-DNA-binding cofactors Met4 and Met28. Finally, we demonstrate that the presence of an RYAAT motif next to a Cbf1 site, rather than Cbf1 binding affinity, specifies Cbf1-dependent sulfur metabolism genes. Our results highlight the need to examine TF/cofactor complexes, as novel specificity can result from cofactors that lack intrinsic DNA-binding specificity. PMID:22146299

  14. Novel DNA-binding properties of the RNA-binding protein TIAR.

    PubMed

    Suswam, Esther A; Li, Yan Yan; Mahtani, Harry; King, Peter H

    2005-01-01

    TIA-1 related protein binds avidly to uridine-rich elements in mRNA and pre-mRNAs of a wide range of genes, including interleukin (IL)-8 and vascular endothelial growth factor (VEGF). The protein has diverse regulatory roles, which in part depend on the locus of binding within the transcript, including translational control, splicing and apoptosis. Here, we observed selective and potent inhibition of TIAR-RNP complex formation with IL-8 and VEGF 3'-untranslated regions (3'-UTRs) using thymidine-rich deoxyoligonucleotide (ODN) sequences derived from the VEFG 3'-UTR. We show by ultraviolet crosslinking and electrophoretic mobility shift assays that TIAR can bind directly to single-stranded, thymidine-rich ODNs but not to double-stranded ODNs containing the same sequence. TIAR had a nearly 6-fold greater affinity for DNA than RNA (K(d)app = 1.6x10(-9) M versus 9.4 x 10(-9) M). Truncation of TIAR indicated that the high affinity DNA-binding site overlaps with the RNA-binding site involving RNA recognition motif 2 (RRM2). However, RRM1 alone could also bind to DNA. Finally, we show that TIAR can be displaced from single-stranded DNA by active transcription through the binding site. These results provide a potential mechanism by which TIAR can shuttle between RNA and DNA ligands.

  15. Solution structure and binding specificity of the p63 DNA binding domain

    PubMed Central

    Enthart, Andreas; Klein, Christian; Dehner, Alexander; Coles, Murray; Gemmecker, Gerd; Kessler, Horst; Hagn, Franz

    2016-01-01

    p63 is a close homologue of p53 and, together with p73, is grouped into the p53 family of transcription factors. p63 is known to be involved in the induction of controlled apoptosis important for differentiation processes, germ line integrity and development. Despite its high homology to p53, especially within the DNA binding domain (DBD), p63-DBD does not show cooperative DNA binding properties and is significantly more stable against thermal and chemical denaturation. Here, we determined the solution structure of p63-DBD and show that it is markedly less dynamic than p53-DBD. In addition, we also investigate the effect of a double salt bridge present in p53-DBD, but not in p63-DBD on the cooperative binding behavior and specificity to various DNA sites. Restoration of the salt bridges in p63-DBD by mutagenesis leads to enhanced binding affinity to p53-specific, but not p63-specific response elements. Furthermore, we show that p63-DBD is capable of binding to anti-apoptotic BclxL via its DNA binding interface, a feature that has only been shown for p53 so far. These data suggest that all p53 family members - despite alterations in the specificity and binding affinity - are capable of activating pro-apoptotic pathways in a tissue specific manner. PMID:27225672

  16. Solution structure and binding specificity of the p63 DNA binding domain.

    PubMed

    Enthart, Andreas; Klein, Christian; Dehner, Alexander; Coles, Murray; Gemmecker, Gerd; Kessler, Horst; Hagn, Franz

    2016-05-26

    p63 is a close homologue of p53 and, together with p73, is grouped into the p53 family of transcription factors. p63 is known to be involved in the induction of controlled apoptosis important for differentiation processes, germ line integrity and development. Despite its high homology to p53, especially within the DNA binding domain (DBD), p63-DBD does not show cooperative DNA binding properties and is significantly more stable against thermal and chemical denaturation. Here, we determined the solution structure of p63-DBD and show that it is markedly less dynamic than p53-DBD. In addition, we also investigate the effect of a double salt bridge present in p53-DBD, but not in p63-DBD on the cooperative binding behavior and specificity to various DNA sites. Restoration of the salt bridges in p63-DBD by mutagenesis leads to enhanced binding affinity to p53-specific, but not p63-specific response elements. Furthermore, we show that p63-DBD is capable of binding to anti-apoptotic BclxL via its DNA binding interface, a feature that has only been shown for p53 so far. These data suggest that all p53 family members - despite alterations in the specificity and binding affinity - are capable of activating pro-apoptotic pathways in a tissue specific manner.

  17. Oxytocin binding sites in bovine mammary tissue

    SciTech Connect

    Zhao, Xin.

    1989-01-01

    Oxytocin binding sites were identified and characterized in bovine mammary tissue. ({sup 3}H)-oxytocin binding reached equilibrium by 50 min at 20{degree}C and by 8 hr at 4{degree}C. The half-time of displacement at 20{degree}C was approximately 1 hr. Thyrotropin releasing hormone, adrenocorticotropin, angiotensin I, angiotensin II, pentagastrin, bradykinin, xenopsin and L-valyl-histidyl-L-leucyl-L-threonyl-L-prolyl-L-valyl-L-glutamyl-L-lysine were not competitive. In the presence of 10 nM LiCl, addition of oxytocin to dispersed bovine mammary cells, in which phosphatidylinositol was pre-labelled, caused a time and dose-dependent increase in radioactive inositiol monophosphate incorporation. The possibility that there are distinct vasopressin receptors in bovine mammary tissue was investigated. ({sup 3}H)-vasopressin binding reached equilibrium by 40 min at 20{degree}. The half-time of displacement at 20{degree}C was approximately 1 hr. The ability of the peptides to inhibit ({sup 3}H)-vasopressin binding was: (Thr{sup 4},Gly{sup 7})-oxytocin > Arg{sup 8}-vasopressin > (lys{sup 8})-vasopressin > (Deamino{sup 1},D-arg{sup 8})-vasopressin > oxytocin > d (CH{sub 2}){sub 5}Tyr(Me)AVP.

  18. Nucleic acids encoding a cellulose binding domain

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1996-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  19. Nucleic acids encoding a cellulose binding domain

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1996-03-05

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 15 figs.

  20. Binding Hydrated Anions with Hydrophobic Pockets.

    PubMed

    Sokkalingam, Punidha; Shraberg, Joshua; Rick, Steven W; Gibb, Bruce C

    2016-01-13

    Using a combination of isothermal titration calorimetry and quantum and molecular dynamics calculations, we demonstrate that relatively soft anions have an affinity for hydrophobic concavity. The results are consistent with the anions remaining partially hydrated upon binding, and suggest a novel strategy for anion recognition.

  1. Stabilized sulfur binding using activated fillers

    DOEpatents

    Kalb, Paul D.; Vagin, Vyacheslav P.; Vagin, Sergey P.

    2015-07-21

    A method of making a stable, sulfur binding composite comprising impregnating a solid aggregate with an organic modifier comprising unsaturated hydrocarbons with at least one double or triple covalent bond between adjacent carbon atoms to create a modifier-impregnated aggregate; heating and drying the modifier-impregnated aggregate to activate the surface of the modifier-impregnated aggregate for reaction with sulfur.

  2. Substrate binding to mammalian 15-lipoxygenase

    NASA Astrophysics Data System (ADS)

    Toledo, Lea; Masgrau, Laura; Lluch, José M.; González-Lafont, Àngels

    2011-09-01

    Lipoxygenases (LOs) are implicated in the regulation of metabolic processes and in several human diseases. Revealing their exact role is hindered by an incomplete understanding of their activity, including substrate specificity and substrate alignment in the active site. Recently, it has been proposed that the change in substrate specificity for arachidonic acid (AA) or linoleic acid (LA) could be part of an auto-regulatory mechanism related to cancer grow. Kinetic differences between reactions of 15-hLO with AA and LA have also led to the suggestion that the two substrates could present mechanistic differences. In the absence of a crystal structure for the substrate:15-LO complex, here we present an atomic-level study of catalytically competent binding modes for LA to rabbit 15-LO (15-rLO-1) and compare the results to our previous work on AA. Docking calculations, molecular dynamics simulations, re-docking and cross-docking calculations are all used to analyze the differences and similarities between the binding modes of the two substrates. Interestingly, LA seems to adapt more easily to the enzyme structure and differs from AA on some dynamical aspects that could introduce kinetic differences, as observed experimentally. Still, our study concludes that, despite the different chain lengths and number of insaturations between these two physiological substrates of 15-rLO-1, the enzyme seems to catalyze their hydroperoxidation by binding them with a common binding mode that leads to similar catalytically competent complexes.

  3. Ada To X-Window Bindings

    NASA Technical Reports Server (NTRS)

    Souleles, Dean

    1993-01-01

    Ada to X-Window Bindings computer program developed to provide Ada programmers with complete interfaces to Xt Intrinsics and OSF Motif toolkits. Provides "Ada view" of some mostly C-language programming libraries. Package of software written in Ada and C languages.

  4. Universal binding energy relations in metallic adhesion

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Smith, J. R.; Rose, J. J.

    1984-01-01

    Rose, Smith, and Ferrante have discovered scaling relations which map the adhesive binding energy calculated by Ferrante and Smith onto a single universal binding energy curve. These binding energies are calculated for all combinations of Al(111), Zn(0001), Mg(0001), and Na(110) in contact. The scaling involves normalizing the energy by the maximum binding energy and normalizing distances by a suitable combination of Thomas-Fermi screening lengths. Rose et al. have also found that the calculated cohesive energies of K, Ba, Cu, Mo, and Sm scale by similar simple relations, suggesting the universal relation may be more general than for the simple free electron metals for which it was derived. In addition, the scaling length was defined more generally in order to relate it to measurable physical properties. Further this universality can be extended to chemisorption. A simple and yet quite accurate prediction of a zero temperature equation of state (volume as a function of pressure for metals and alloys) is presented. Thermal expansion coefficients and melting temperatures are predicted by simple, analytic expressions, and results compare favorably with experiment for a broad range of metals.

  5. The Case against Binding Interest Arbitration.

    ERIC Educational Resources Information Center

    Ecker, Charles I.

    1984-01-01

    The author contends that districts should reject binding interest arbitration as a means of resolving an impasse in contract negotiations, charging that it hampers good faith bargaining, adversely affects fiscal and operational management of the school system, and diminishes the governing role of the board of education. (MJL)

  6. Lipid binding proteins from parasitic platyhelminthes.

    PubMed

    Alvite, Gabriela; Esteves, Adriana

    2012-01-01

    TWO MAIN FAMILIES OF LIPID BINDING PROTEINS HAVE BEEN IDENTIFIED IN PARASITIC PLATYHELMINTHES: hydrophobic ligand binding proteins (HLBPs) and fatty acid binding proteins (FABPs). Members of the former family of proteins are specific to the Cestoda class, while FABPs are conserved across a wide range of animal species. Because Platyhelminthes are unable to synthesize their own lipids, these lipid-binding proteins are important molecules in these organisms. HLBPs are a high molecular mass complex of proteins and lipids. They are composed of subunits of low molecular mass proteins and a wide array of lipid molecules ranging from CoA esters to cholesterol. These proteins are excretory-secretory molecules and are key serological tools for diagnosis of diseases caused by cestodes. FABPs are mainly intracellular proteins of low molecular weight. They are also vaccine candidates. Despite that the knowledge of their function is scarce, the differences in their molecular organization, ligand preferences, intra/extracellular localization, evolution, and phylogenetic distribution, suggest that platyhelminths HLBPs and FABPs should play different functions. FABPs might be involved in the removal of fatty acids from the inner surface of the cell membrane and in their subsequent targeting to specific cellular destinations. In contrast, HLBPs might be involved in fatty acid uptake from the host environment.

  7. Binding of fibronectin to Staphylococcus strains.

    PubMed Central

    Switalski, L M; Rydén, C; Rubin, K; Ljungh, A; Höök, M; Wadström, T

    1983-01-01

    Fibronectin, a major protein component of plasma and loose connective tissue has previously been shown to bind to several strains of Staphylococcus aureus. We examined a large number of strains of different species of Staphylococcus with respect to their ability to bind fibronectin. The relative numbers of strains defined as fibronectin-binders among the different species were as follows: S. aureus (22 of 23), S. haemolyticus (5 of 5), S. warneri (8 of 11), S. hyicus (5 of 6), S. hominis (13 of 17), S. saprophyticus (11 of 20), S. epidermidis (4 of 7), and S. simulans (8 of 10). Only three species showed a predominance of nonbinders over binders: S. capitis (4 of 14), S. xylosus (0 of 4), and S. cohnii (3 of 11). These data indicate that staphylococcal species isolated from soft tissue infections frequently have the ability to bind fibronectin and suggest that the ability to bind to this protein may contribute to the virulence of coagulase-positive and coagulase-negative staphylococci. PMID:6315582

  8. Binding of flavonoids to staphylococcal enterotoxin B.

    PubMed

    Benedik, Evgen; Skrt, Mihaela; Podlipnik, Crtomir; Ulrih, Nataša Poklar

    2014-12-01

    Staphylococcal enterotoxins are metabolic products of Staphylococcus aureus that are responsible for the second-most-commonly reported type of food poisoning. Polyphenols are known to interact with proteins to form complexes, the properties of which depend on the structures of both the polyphenols and the protein. In the present study, we investigated the binding of four flavonoid polyphenols to Staphylococcal enterotoxin B (SEB) at pH 7.5 and 25 °C: (-)-epigallocatechin-3-gallate (EGCG), (-)-epigallocatechin (EGC), kaempferol-3-glucoside (KAM-G) and kaempferol (KAM). Fluorescence emission spectrometry and molecular docking were applied to compare experimentally determined binding parameters with molecular modeling. EGCG showed an order of magnitude higher binding constant (1.4 × 10(5) M(-1)) than the other studied polyphenols. Our blind-docking results showed that EGCG and similar polyphenolic ligands is likely to bind to the channel at the surface of SEB that is responsible for the recognition of the T-cell beta chain fragment and influence the adhesion of SEB to T cells.

  9. The Cultural Bind on the American Male

    ERIC Educational Resources Information Center

    Chenoweth, Gene

    2012-01-01

    In this article, the author talks about the cultural bind on the American male. The process starts with conception. If the spermatozoid that fertilizes the egg contains only X chromosomes a girl will be produced. If a single Y chromosome out of the 24 produced by the father is included, the baby will be a boy. From this point on the girls have a…

  10. Selenium binding to human hemoglobin via selenotrisulfide.

    PubMed

    Haratake, Mamoru; Fujimoto, Katsuyoshi; Ono, Masahiro; Nakayama, Morio

    2005-05-25

    Selenotrisulfide (e.g., glutathione selenotrisulfide (GSSeSG)) is an important intermediate in the metabolism of selenite. However, its reactivity with biological substances such as peptides and proteins in the subsequent metabolism is still far from clearly understood, because of its chemical instability under physiological conditions. Penicillamine (Pen) is capable of generating a chemically stable and isolatable selenotrisulfide, PenSSeSPen. To explore the metabolic fate of selenite in red blood cells (RBC), we investigated the reaction of selenotrisulfide with human hemoglobin (Hb) using PenSSeSPen as a model. PenSSeSPen rapidly reacted with Hb under physiological conditions. From the analysis of selenium binding using the Langmuir type binding equation, the apparent binding number of selenium per Hb tetramer almost corresponded to the number of reactive thiol groups of Hb. The thiol group blockade of Hb by iodoacetamide treatment completely inhibited the reaction of PenSSeSPen with Hb. In addition, MALDI-TOF mass spectrometric analysis of the selenium-bound Hb revealed that PenSSe moiety binds to the beta subunits of Hb. Overall, the reaction of PenSSeSPen with Hb appears to involve the thiol exchange between Pen and the cysteine residues on the beta subunit of Hb.

  11. Metal binding components in human amniotic fluid

    SciTech Connect

    Paterson, P.G.; Zlotkin, S.H.; Sarkar, B. )

    1990-02-26

    Amniotic fluid is a potential source of both nutritionally essential and toxic metals for the fetus. As the binding pattern of these metals in amniotic fluid may be one of the determining factors in their availability to the fetus, the objective of this study was to investigate metal binding in vitro. The binding of six trace metals, Mn(II), Ni(II), Zn(II), Cu(II), Cd(II), and Fe(III), to components of human amniotic fluid was studied by Sephadex G-100 gel filtration at physiological pH, using radioisotopes as tracers and 50 mM TRIS/HCl as the elution buffer. The amniotic fluid was collected at 16-16.5 weeks gestation by amniocentesis and pooled for analysis. Extensive amounts of Fe, Cu, Zn, and Cd and small amounts of Mn and Ni were bound to high molecular weight proteins with elution patterns similar to those seen for the binding of these metals in serum. In addition, large amounts of Fe, Mn, Ni and Cd and small amounts of Zn and Cu were associated with low molecular weight component(s). The identity of these latter components is unknown, but they play an important biological role in amniotic fluid.

  12. The Double Bind: The next Generation

    ERIC Educational Resources Information Center

    Malcom, Lindsey E.; Malcom, Shirley M.

    2011-01-01

    In this foreword, Shirley Malcom and Lindsey Malcom speak to the history and current status of women of color in science, technology, engineering, and mathematics (STEM) fields. As the author of the seminal report "The Double Bind: The Price of Being a Minority Woman in Science", Shirley Malcom is uniquely poised to give us an insightful…

  13. Five of Five VHHs Neutralizing Poliovirus Bind the Receptor-Binding Site

    PubMed Central

    Strauss, Mike; Schotte, Lise; Thys, Bert; Filman, David J.

    2016-01-01

    ABSTRACT Nanobodies, or VHHs, that recognize poliovirus type 1 have previously been selected and characterized as candidates for antiviral agents or reagents for standardization of vaccine quality control. In this study, we present high-resolution cryo-electron microscopy reconstructions of poliovirus with five neutralizing VHHs. All VHHs bind the capsid in the canyon at sites that extensively overlap the poliovirus receptor-binding site. In contrast, the interaction involves a unique (and surprisingly extensive) surface for each of the five VHHs. Five regions of the capsid were found to participate in binding with all five VHHs. Four of these five regions are known to alter during the expansion of the capsid associated with viral entry. Interestingly, binding of one of the VHHs, PVSS21E, resulted in significant changes of the capsid structure and thus seems to trap the virus in an early stage of expansion. IMPORTANCE We describe the cryo-electron microscopy structures of complexes of five neutralizing VHHs with the Mahoney strain of type 1 poliovirus at resolutions ranging from 3.8 to 6.3Å. All five VHHs bind deep in the virus canyon at similar sites that overlap extensively with the binding site for the receptor (CD155). The binding surfaces on the VHHs are surprisingly extensive, but despite the use of similar binding surfaces on the virus, the binding surface on the VHHs is unique for each VHH. In four of the five complexes, the virus remains essentially unchanged, but for the fifth there are significant changes reminiscent of but smaller in magnitude than the changes associated with cell entry, suggesting that this VHH traps the virus in a previously undescribed early intermediate state. The neutralizing mechanisms of the VHHs and their potential use as quality control agents for the end game of poliovirus eradication are discussed. PMID:26764003

  14. CD36 binds oxidized low density lipoprotein (LDL) in a mechanism dependent upon fatty acid binding.

    PubMed

    Jay, Anthony G; Chen, Alexander N; Paz, Miguel A; Hung, Justin P; Hamilton, James A

    2015-02-20

    The association of unesterified fatty acid (FA) with the scavenger receptor CD36 has been actively researched, with focuses on FA and oxidized low density lipoprotein (oxLDL) uptake. CD36 has been shown to bind FA, but this interaction has been poorly characterized to date. To gain new insights into the physiological relevance of binding of FA to CD36, we characterized FA binding to the ectodomain of CD36 by the biophysical method surface plasmon resonance. Five structurally distinct FAs (saturated, monounsaturated (cis and trans), polyunsaturated, and oxidized) were pulsed across surface plasmon resonance channels, generating association and dissociation binding curves. Except for the oxidized FA HODE, all FAs bound to CD36, with rapid association and dissociation kinetics similar to HSA. Next, to elucidate the role that each FA might play in CD36-mediated oxLDL uptake, we used a fluorescent oxLDL (Dii-oxLDL) live cell assay with confocal microscopy imaging. CD36-mediated uptake in serum-free medium was very low but greatly increased when serum was present. The addition of exogenous FA in serum-free medium increased oxLDL binding and uptake to levels found with serum and affected CD36 plasma membrane distribution. Binding/uptake of oxLDL was dependent upon the FA dose, except for docosahexaenoic acid, which exhibited binding to CD36 but did not activate the uptake of oxLDL. HODE also did not affect oxLDL uptake. High affinity FA binding to CD36 and the effects of each FA on oxLDL uptake have important implications for protein conformation, binding of other ligands, functional properties of CD36, and high plasma FA levels in obesity and type 2 diabetes.

  15. Retinoblastoma-binding protein 1 has an interdigitated double Tudor domain with DNA binding activity.

    PubMed

    Gong, Weibin; Wang, Jinfeng; Perrett, Sarah; Feng, Yingang

    2014-02-21

    Retinoblastoma-binding protein 1 (RBBP1) is a tumor and leukemia suppressor that binds both methylated histone tails and DNA. Our previous studies indicated that RBBP1 possesses a Tudor domain, which cannot bind histone marks. In order to clarify the function of the Tudor domain, the solution structure of the RBBP1 Tudor domain was determined by NMR and is presented here. Although the proteins are unrelated, the RBBP1 Tudor domain forms an interdigitated double Tudor structure similar to the Tudor domain of JMJD2A, which is an epigenetic mark reader. This indicates the functional diversity of Tudor domains. The RBBP1 Tudor domain structure has a significant area of positively charged surface, which reveals a capability of the RBBP1 Tudor domain to bind nucleic acids. NMR titration and isothermal titration calorimetry experiments indicate that the RBBP1 Tudor domain binds both double- and single-stranded DNA with an affinity of 10-100 μM; no apparent DNA sequence specificity was detected. The DNA binding mode and key interaction residues were analyzed in detail based on a model structure of the Tudor domain-dsDNA complex, built by HADDOCK docking using the NMR data. Electrostatic interactions mediate the binding of the Tudor domain with DNA, which is consistent with NMR experiments performed at high salt concentration. The DNA-binding residues are conserved in Tudor domains of the RBBP1 protein family, resulting in conservation of the DNA-binding function in the RBBP1 Tudor domains. Our results provide further insights into the structure and function of RBBP1.

  16. Neurosteroid binding to the amino terminal and glutamate binding domains of ionotropic glutamate receptors.

    PubMed

    Cameron, Krasnodara; Bartle, Emily; Roark, Ryan; Fanelli, David; Pham, Melissa; Pollard, Beth; Borkowski, Brian; Rhoads, Sarah; Kim, Joon; Rocha, Monica; Kahlson, Martha; Kangala, Melinda; Gentile, Lisa

    2012-06-01

    The endogenous neurosteroids, pregnenolone sulfate (PS) and 3α-hydroxy-5β-pregnan-20-one sulfate (PREGAS), have been shown to differentially regulate the ionotropic glutamate receptor (iGluR) family of ligand-gated ion channels. Upon binding to these receptors, PREGAS decreases current flow through the channels. Upon binding to non-NMDA or NMDA receptors containing an GluN2C or GluN2D subunit, PS also decreases current flow through the channels, however, upon binding to NMDA receptors containing an GluN2A or GluN2B subunit, flow through the channels increases. To begin to understand this differential regulation, we have cloned the S1S2 and amino terminal domains (ATD) of the NMDA GluN2B and GluN2D and AMPA GluA2 subunits. Here we present results that show that PS and PREGAS bind to different sites in the ATD of the GluA2 subunit, which when combined with previous results from our lab, now identifies two binding domains for each neurosteroid. We also show both neurosteroids bind only to the ATD of the GluN2D subunit, suggesting that this binding is distinct from that of the AMPA GluA2 subunit, with both leading to iGluR inhibition. Finally, we provide evidence that both PS and PREGAS bind to the S1S2 domain of the NMDA GluN2B subunit. Neurosteroid binding to the S1S2 domain of NMDA subunits responsible for potentiation of iGluRs and to the ATD of NMDA subunits responsible for inhibition of iGluRs, provides an interesting option for therapeutic design.

  17. Chromate Binding and Removal by the Molybdate-Binding Protein ModA.

    PubMed

    Karpus, Jason; Bosscher, Michael; Ajiboye, Ifedayo; Zhang, Liang; He, Chuan

    2017-02-02

    Effective and cheap methods and techniques for the safe removal of hexavalent chromate from the environment are in increasingly high demand. High concentrations of hexavalent chromate have been shown to have numerous harmful effects on human biology. We show that the E. coli molybdate-binding protein ModA is a genetically encoded tool capable of removing chromate from aqueous solutions. Although previously reported to not bind chromate, we show that ModA binds chromate tightly and is capable of removing chromate to levels well below current US federal standards.

  18. Electrostatic interactions in hirudin-thrombin binding.

    PubMed

    Sharp, K A

    1996-08-30

    Hirudin is a good anticoagulant owing to potent inhibition of the serine protease thrombin. An aspartate- and glutamate-rich portion of hirudin plays an important part in its tight binding to thrombin through a ladder of salt bridges, and these residues have previously been mutated to asparagine or glutamine. Detailed calculations of the electrostatic contribution to changes in binding from these mutations have been performed using the finite-difference Poisson-Boltzmann method which include charge--charge interactions, solvation interactions, the residual electrostatic interaction of mutant residues, pKa shifts, and ionic strength. Single mutant effects on binding energy were close to experimental values, except for the D55N mutant whose effect is overestimated, perhaps because of displacement of a bound chloride ion from the site where it binds. Multiple mutation values were generally overestimated. The effect of pKa shifts upon the binding is significant for one hirudin residue E58, but this appears to be due to a poor salt bridge with thrombin caused by crystal contacts. Electrostatic interaction between the acidic residues is unfavorable. However, analysis of experimental multiple mutation/single mutation data shows apparently negative interactions between these residues, from which it is concluded that structural changes can occur in the complex to relieve an unfavorable interaction when more than one acidic residue is mutated. In all cases, there is a loss in stability of the complex from mutations due to loss of favorable charge--charge interactions with thrombin, but this is largely compensated for by reduced unfavorable desolvation interactions, and by residual polar interactions in the Asn/Gln mutants.

  19. Isothermal titration calorimetry: general formalism using binding polynomials.

    PubMed

    Freire, Ernesto; Schön, Arne; Velazquez-Campoy, Adrian

    2009-01-01

    The theory of the binding polynomial constitutes a very powerful formalism by which many experimental biological systems involving ligand binding can be analyzed under a unified framework. The analysis of isothermal titration calorimetry (ITC) data for systems possessing more than one binding site has been cumbersome because it required the user to develop a binding model to fit the data. Furthermore, in many instances, different binding models give rise to identical binding isotherms, making it impossible to discriminate binding mechanisms using binding data alone. One of the main advantages of the binding polynomials is that experimental data can be analyzed by employing a general model-free methodology that provides essential information about the system behavior (e.g., whether there exists binding cooperativity, whether the cooperativity is positive or negative, and the magnitude of the cooperative energy). Data analysis utilizing binding polynomials yields a set of binding association constants and enthalpy values that conserve their validity after the correct model has been determined. In fact, once the correct model is validated, the binding polynomial parameters can be immediately translated into the model specific constants. In this chapter, we describe the general binding polynomial formalism and provide specific theoretical and experimental examples of its application to isothermal titration calorimetry.

  20. Human cap methyltransferase (RNMT) N-terminal non-catalytic domain mediates recruitment to transcription initiation sites

    PubMed Central

    Aregger, Michael; Cowling, Victoria H.

    2013-01-01

    Gene expression in eukaryotes is dependent on the mRNA methyl cap which mediates mRNA processing and translation initiation. Synthesis of the methyl cap initiates with the addition of 7-methylguanosine to the initiating nucleotide of RNA pol II (polymerase II) transcripts, which occurs predominantly during transcription and in mammals is catalysed by RNGTT (RNA guanylyltransferase and 5′ phosphatase) and RNMT (RNA guanine-7 methyltransferase). RNMT has a methyltransferase domain and an N-terminal domain whose function is unclear; it is conserved in mammals, but not required for cap methyltransferase activity. In the present study we report that the N-terminal domain is necessary and sufficient for RNMT recruitment to transcription initiation sites and that recruitment occurs in a DRB (5,6-dichloro-1-β-D-ribofuranosylbenzimidazole)-dependent manner. The RNMT-activating subunit, RAM (RNMT-activating miniprotein), is also recruited to transcription initiation sites via an interaction with RNMT. The RNMT N-terminal domain is required for transcript expression, translation and cell proliferation. PMID:23863084

  1. Non-catalytic facile synthesis of superhard phase of boron carbide (B13C2) nanoflakes and nanoparticles.

    PubMed

    Xie, Sky Shumao; Su, Liap Tat; Guo, Jun; Vasylkiv, Oleg; Borodianska, Hanna; Xi, Zhu; Krishnan, Gireesh M; Su, Haibin; Tokl, Alfred I Y

    2012-01-01

    Boron Carbide is one the hardest and lightest material that is also relatively easier to synthesis as compared to other superhard ceramics like cubic boron nitride and diamond. However, the brittle nature of monolithic advanced ceramics material hinders its use in various engineering applications. Thus, strategies that can toughen the material are of fundamental and technological importance. One approach is to use nanostructure materials as building blocks, and organize them into a complex hierarchical structure, which could potentially enhance its mechanical properties to exceed that of the monolithic form. In this paper, we demonstrated a simple approach to synthesize one- and two-dimension nanostructure boron carbide by simply changing the mixing ratio of the initial compound to influence the saturation condition of the process at a relatively low temperature of 1500 degrees C with no catalyst involved in the growing process. Characterization of the resulting nano-structures shows B13C2, which is a superhard phase of boron carbide as its hardness is almost twice as hard as the commonly known B4C. Using ab-initio density functional theory study on the elastic properties of both B12C3 and B13C2, the high hardness of B13C2 is consistent to our calculation results, where bulk modulus of B13C2 is higher than that of B4C. High resolution transmission electron microscopy of the nanoflakes also reveals high density of twinning defects which could potentially inhibit the crack propagation, leading to toughening of the materials.

  2. Catalytic and non-catalytic roles of the CtIP endonuclease in double-strand break end resection

    PubMed Central

    Makharashvili, Nodar; Tubbs, Anthony T.; Yang, Soo-Hyun; Wang, Hailong; Barton, Olivia; Zhou, Yi; Deshpande, Rajashree A.; Lee, Ji-Hoon; Lobrich, Markus; Sleckman, Barry P.; Wu, Xiaohua; Paull, Tanya T.

    2014-01-01

    Summary The CtIP protein is known to function in 5′ strand resection during homologous recombination similar to the budding yeast Sae2 protein, although its role in this process is unclear. Here we characterize recombinant human CtIP and find that it exhibits 5′ flap endonuclease activity on branched DNA structures, independent of the MRN complex. Phosphorylation of CtIP at known ATM-dependent sites and other sites is essential for its catalytic activity, although the S327 and T847 phosphorylation sites are dispensable. A catalytic mutant of CtIP that is deficient in endonuclease activity exhibits wild-type levels of homologous recombination at restriction enzyme-generated breaks but is deficient in processing topoisomerase adducts and radiation-induced breaks in human cells, suggesting that the nuclease activity of CtIP is specifically required for the removal of DNA adducts at sites of DNA breaks. PMID:24837676

  3. Structural analysis of ibuprofen binding to human adipocyte fatty-acid binding protein (FABP4).

    PubMed

    González, Javier M; Fisher, S Zoë

    2015-02-01

    Inhibition of human adipocyte fatty-acid binding protein (FABP4) has been proposed as a treatment for type 2 diabetes, fatty liver disease and atherosclerosis. However, FABP4 displays a naturally low selectivity towards hydrophobic ligands, leading to the possibility of side effects arising from cross-inhibition of other FABP isoforms. In a search for structural determinants of ligand-binding selectivity, the binding of FABP4 towards a group of small molecules structurally related to the nonsteroidal anti-inflammatory drug ibuprofen was analyzed through X-ray crystallography. Several specific hydrophobic interactions are shown to enhance the binding affinities of these compounds, whereas an aromatic edge-to-face interaction is proposed to determine the conformation of bound ligands, highlighting the importance of aromatic interactions in hydrophobic environments.

  4. Chloramphenicol binding to human serum albumin: Determination of binding constants and binding sites by steady-state fluorescence

    NASA Astrophysics Data System (ADS)

    Ding, Fei; Zhao, Guangyu; Chen, Shoucong; Liu, Feng; Sun, Ying; Zhang, Li

    2009-07-01

    The interaction between chloramphenicol and human serum albumin (HSA) was studied by fluorescence, UV/vis, circular dichroism (CD) and three-dimensional fluorescence spectroscopy. Fluorescence data revealed that the fluorescence quenching of HSA by chloramphenicol was the result of the formation of drug-HSA complex, and the effective quenching constants ( Ka) were 2.852 × 10 4, 2.765 × 10 4, 2.638 × 10 4 and 2.542 × 10 4 M -1 at 287, 295, 303 and 311 K, respectively. The thermodynamic parameters, enthalpy change (Δ H) and entropy change (Δ S) for the reaction were calculated to be -3.634 kJ mol -1 and 72.66 J mol -1 K -1 according to van't Hoff equation. The results indicated that the hydrophobic and electrostatic interactions played a major role in the binding of drug to HSA. The distance r between donor and acceptor was obtained to be 3.63 nm according to Förster's theory. Site marker competitive experiments indicated that the binding of drug to HSA primarily took place in subdomain IIA. The alterations of HSA secondary structure in the presence of chloramphenicol were confirmed by the evidences from synchronous fluorescence, CD and three-dimensional fluorescence spectra. In addition, the effect of common ions on the binding constants of drug-HSA complex was also discussed.

  5. Carbohydrate-binding protein identification by coupling structural similarity searching with binding affinity prediction.

    PubMed

    Zhao, Huiying; Yang, Yuedong; von Itzstein, Mark; Zhou, Yaoqi

    2014-11-15

    Carbohydrate-binding proteins (CBPs) are potential biomarkers and drug targets. However, the interactions between carbohydrates and proteins are challenging to study experimentally and computationally because of their low binding affinity, high flexibility, and the lack of a linear sequence in carbohydrates as exists in RNA, DNA, and proteins. Here, we describe a structure-based function-prediction technique called SPOT-Struc that identifies carbohydrate-recognizing proteins and their binding amino acid residues by structural alignment program SPalign and binding affinity scoring according to a knowledge-based statistical potential based on the distance-scaled finite-ideal gas reference state (DFIRE). The leave-one-out cross-validation of the method on 113 carbohydrate-binding domains and 3442 noncarbohydrate binding proteins yields a Matthews correlation coefficient of 0.56 for SPalign alone and 0.63 for SPOT-Struc (SPalign + binding affinity scoring) for CBP prediction. SPOT-Struc is a technique with high positive predictive value (79% correct predictions in all positive CBP predictions) with a reasonable sensitivity (52% positive predictions in all CBPs). The sensitivity of the method was changed slightly when applied to 31 APO (unbound) structures found in the protein databank (14/31 for APO versus 15/31 for HOLO). The result of SPOT-Struc will not change significantly if highly homologous templates were used. SPOT-Struc predicted 19 out of 2076 structural genome targets as CBPs. In particular, one uncharacterized protein in Bacillus subtilis (1oq1A) was matched to galectin-9 from Mus musculus. Thus, SPOT-Struc is useful for uncovering novel carbohydrate-binding proteins. SPOT-Struc is available at http://sparks-lab.org.

  6. Biogenic and synthetic polyamines bind cationic dendrimers.

    PubMed

    Mandeville, Jean-Sebastian; Bourassa, Phillipe; Thomas, Thekkumkattil John; Tajmir-Riahi, Heidar-Ali

    2012-01-01

    Biogenic polyamines are essential for cell growth and differentiation, while polyamine analogues exert antitumor activity in multiple experimental model systems, including breast and lung cancer. Dendrimers are widely used for drug delivery in vitro and in vivo. We report the bindings of biogenic polyamines, spermine (spm), and spermidine (spmd), and their synthetic analogues, 3,7,11,15-tetrazaheptadecane.4HCl (BE-333) and 3,7,11,15,19-pentazahenicosane.5HCl (BE-3333) to dendrimers of different compositions, mPEG-PAMAM (G3), mPEG-PAMAM (G4) and PAMAM (G4). FTIR and UV-visible spectroscopic methods as well as molecular modeling were used to analyze polyamine binding mode, the binding constant and the effects of polyamine complexation on dendrimer stability and conformation. Structural analysis showed that polyamines bound dendrimers through both hydrophobic and hydrophilic contacts with overall binding constants of K(spm-mPEG-G3) = 7.6 × 10(4) M(-1), K(spm-mPEG-PAMAM-G4) = 4.6 × 10(4) M(-1), K(spm-PAMAM-G4) = 6.6 × 10(4) M(-1), K(spmd-mPEG-G3) = 1.0 × 10(5) M(-1), K(spmd-mPEG-PAMAM-G4) = 5.5 × 10(4) M(-1), K(spmd-PAMAM-G4) = 9.2 × 10(4) M(-1), K(BE-333-mPEG-G3) = 4.2 × 10(4) M(-1), K(Be-333-mPEG-PAMAM-G4) = 3.2 × 10(4) M(-1), K(BE-333-PAMAM-G4) = 3.6 × 10(4) M(-1), K(BE-3333-mPEG-G3) = 2.2 × 10(4) M(-1), K(Be-3333-mPEG-PAMAM-G4) = 2.4 × 10(4) M(-1), K(BE-3333-PAMAM-G4) = 2.3 × 10(4) M(-1). Biogenic polyamines showed stronger affinity toward dendrimers than those of synthetic polyamines, while weaker interaction was observed as polyamine cationic charges increased. The free binding energies calculated from docking studies were: -3.2 (spermine), -3.5 (spermidine) and -3.03 (BE-3333) kcal/mol, with the following order of binding affinity: spermidine-PAMAM-G-4>spermine-PAMMAM-G4>BE-3333-PAMAM-G4 consistent with spectroscopic data. Our results suggest that dendrimers can act as carrier vehicles for delivering antitumor polyamine analogues to target tissues.

  7. Specific binding of phorbol ester tumor promoters

    PubMed Central

    Driedger, Paul E.; Blumberg, Peter M.

    1980-01-01

    [20-3H]Phorbol 12,13-dibutyrate bound to particulate preparations from chicken embryo fibroblasts in a specific, saturable, reversible fashion. Equilibrium binding occurred with a Kd of 25 nM; this value is very close to the 50% effective dose (ED50), 50 nM, previously determined for the biological response (induction of fibronectin loss) in growing chicken embryo fibroblasts. At saturation, 1.4 pmol of [20-3H]phorbol 12,13-dibutyrate was bound per mg of protein (approximately 7 × 104 molecules per cell). Binding was inhibited by phorbol 12-myristate 13-acetate (Ki = 2 nM), mezerein (Ki = 180 nM), phorbol 12,13-dibenzoate (Ki = 180 nM), phorbol 12,13-diacetate (Ki = 1.7 μM), phorbol 12,13,20-triacetate (Ki = 39 μM), and phorbol 13-acetate (Ki = 120 μM). The measured Ki values are all within a factor of 3.5 of the ED50 values of these derivatives for inducing loss of fibronectin in intact cells. Binding was not inhibited by the inactive compounds phorbol (10 μg/ml) and 4α-phorbol 12,13-didecanoate (10 μg/ml) or by the inflammatory but nonpromoting phorbol-related diterpene esters resiniferatoxin (100 ng/ml) and 12-deoxyphorbol 13-isobutyrate 20-acetate (100 ng/ml). These data suggest that biological responses to the phorbol esters in chicken embryo fibroblasts are mediated by this binding activity and that the binding activity corresponds to the phorbol ester target in mouse skin involved in tumor promotion. Binding was not inhibited by the nonphorbol promoters anthralin (1 μM), phenol (1 mM), iodoacetic acid (1.7 μM), and cantharidin (75 μM), or by epidermal growth factor (100 ng/ml), dexamethasone acetate (2 μM), retinoic acid (10 μM), or prostaglandin E2 (1 μM). These agents thus appear to act at a target distinct from that of the phorbol esters. PMID:6965793

  8. Biogenic and Synthetic Polyamines Bind Cationic Dendrimers

    PubMed Central

    Mandeville, Jean-Sebastian; Bourassa, Phillipe; Thomas, Thekkumkattil John; Tajmir-Riahi, Heidar-Ali

    2012-01-01

    Biogenic polyamines are essential for cell growth and differentiation, while polyamine analogues exert antitumor activity in multiple experimental model systems, including breast and lung cancer. Dendrimers are widely used for drug delivery in vitro and in vivo. We report the bindings of biogenic polyamines, spermine (spm), and spermidine (spmd), and their synthetic analogues, 3,7,11,15-tetrazaheptadecane.4HCl (BE-333) and 3,7,11,15,19-pentazahenicosane.5HCl (BE-3333) to dendrimers of different compositions, mPEG-PAMAM (G3), mPEG-PAMAM (G4) and PAMAM (G4). FTIR and UV-visible spectroscopic methods as well as molecular modeling were used to analyze polyamine binding mode, the binding constant and the effects of polyamine complexation on dendrimer stability and conformation. Structural analysis showed that polyamines bound dendrimers through both hydrophobic and hydrophilic contacts with overall binding constants of Kspm-mPEG-G3 = 7.6×104 M−1, Kspm-mPEG-PAMAM-G4 = 4.6×104 M−1, Kspm-PAMAM-G4 = 6.6×104 M−1, Kspmd-mPEG-G3 = 1.0×105 M−1, Kspmd-mPEG-PAMAM-G4 = 5.5×104 M−1, Kspmd-PAMAM-G4 = 9.2×104 M−1, KBE-333-mPEG-G3 = 4.2×104 M−1, KBe-333-mPEG-PAMAM-G4 = 3.2×104 M−1, KBE-333-PAMAM-G4 = 3.6×104 M−1, KBE-3333-mPEG-G3 = 2.2×104 M−1, KBe-3333-mPEG-PAMAM-G4 = 2.4×104 M−1, KBE-3333-PAMAM-G4 = 2.3×104 M−1. Biogenic polyamines showed stronger affinity toward dendrimers than those of synthetic polyamines, while weaker interaction was observed as polyamine cationic charges increased. The free binding energies calculated from docking studies were: −3.2 (spermine), −3.5 (spermidine) and −3.03 (BE-3333) kcal/mol, with the following order of binding affinity: spermidine-PAMAM-G-4>spermine-PAMMAM-G4>BE-3333-PAMAM-G4 consistent with spectroscopic data. Our results suggest that dendrimers can act as carrier vehicles for delivering antitumor polyamine analogues to target tissues. PMID:22558341

  9. Binding of transition metals to S100 proteins

    PubMed Central

    Gilston, Benjamin A.; Skaar, Eric P.; Chazin, Walter J.

    2016-01-01

    The S100 proteins are a unique class of EF-hand Ca2+ binding proteins distributed in a cell-specific, tissue-specific, and cell cycle-specific manner in humans and other vertebrates. These proteins are distinguished by their distinctive homodimeric structure, both intracellular and extracellular functions, and the ability to bind transition metals at the dimer interface. Here we summarize current knowledge of S100 protein binding of Zn2+, Cu2+ and Mn2+ ions, focusing on binding affinities, conformational changes that arise from metal binding, and the roles of transition metal binding in S100 protein function. PMID:27430886

  10. Is there a link between selectivity and binding thermodynamics profiles?

    PubMed

    Tarcsay, Ákos; Keserű, György M

    2015-01-01

    Thermodynamics of ligand binding is influenced by the interplay between enthalpy and entropy contributions of the binding event. The impact of these binding free energy components, however, is not limited to the primary target only. Here, we investigate the relationship between binding thermodynamics and selectivity profiles by combining publicly available data from broad off-target assay profiling and the corresponding thermodynamics measurements. Our analysis indicates that compounds binding their primary targets with higher entropy contributions tend to hit more off-targets compared with those ligands that demonstrated enthalpy-driven binding.

  11. Being a binding site: characterizing residue composition of binding sites on proteins.

    PubMed

    Iván, Gábor; Szabadka, Zoltán; Grolmusz, Vince

    2007-12-30

    The Protein Data Bank contains the description of more than 45,000 three-dimensional protein and nucleic-acid structures today. Started to exist as the computer-readable depository of crystallographic data complementing printed articles, the proper interpretation of the content of the individual files in the PDB still frequently needs the detailed information found in the citing publication. This fact implies that the fully automatic processing of the whole PDB is a very hard task. We first cleaned and re-structured the PDB data, then analyzed the residue composition of the binding sites in the whole PDB for frequency and for hidden association rules. Main results of the paper: (i) the cleaning and repairing algorithm (ii) redundancy elimination from the data (iii) application of association rule mining to the cleaned non-redundant data set. We have found numerous significant relations of the residue-composition of the ligand binding sites on protein surfaces, summarized in two figures. One of the classical data-mining methods for exploring implication-rules, the association-rule mining, is capable to find previously unknown residue-set preferences of bind ligands on protein surfaces. Since protein-ligand binding is a key step in enzymatic mechanisms and in drug discovery, these uncovered preferences in the study of more than 19,500 binding sites may help in identifying new binding protein-ligand pairs.

  12. Universal protein binding microarrays for the comprehensive characterization of the DNA binding specificities of transcription factors

    PubMed Central

    Berger, Michael F.; Bulyk, Martha L.

    2010-01-01

    Protein binding microarray (PBM) technology provides a rapid, high-throughput means of characterizing the in vitro DNA binding specificities of transcription factors (TFs). Using high-density, custom-designed microarrays containing all 10-mer sequence variants, one can obtain comprehensive binding site measurements for any TF, regardless of its structural class or species of origin. Here, we present a protocol for the examination and analysis of TF binding specificities at high resolution using such ‘all 10-mer’ universal PBMs. This procedure involves double-stranding a commercially synthesized DNA oligonucleotide array, binding a TF directly to the double-stranded DNA microarray, and labeling the protein-bound microarray with a fluorophore-conjugated antibody. We describe how to computationally extract the relative binding preferences of the examined TF for all possible contiguous and gapped 8-mers over the full range of affinities, from highest affinity sites to nonspecific sites. Multiple proteins can be tested in parallel in separate chambers on a single microarray, enabling the processing of a dozen or more TFs in a single day. PMID:19265799

  13. Leucine/isoleucine/valine-binding protein contracts upon binding of ligand.

    PubMed

    Olah, G A; Trakhanov, S; Trewhella, J; Quiocho, F A

    1993-08-05

    Small-angle x-ray scattering and computer modeling have been used to study the effects of ligand binding to the leucine/isoleucine/valine-binding protein, an initial component of the high-affinity active transport system for branched-chain aliphatic amino acids in Escherichia coli. Measurements were made with no ligand present and with either L-leucine or L-valine present. Upon binding of either leucine or valine, there is a decrease in the radius of gyration, from 23.2 +/- 0.2 to 22.2 +/- 0.2 A, and in the maximum particle dimension, from 82 +/- 3 to 73 +/- 3 A. The x-ray structure of the unbound form has been determined and gives a radius of gyration and a maximum dimension consistent with the values found for the solution structure in this study (Sack, J. S., Saper, M. A., and Quiocho, F. A. (1989) J. Mol. Biol. 206, 171-191). The reduction in the radius of gyration and maximum dimension upon ligand binding can be accounted for by a substrate-induced cleft closure in a combined "hinge-twist" motion. Modeling of the substrate-bound state was done by comparison of this protein with another periplasmic binding protein (L-arabinose-binding protein), which possesses a similar two-lobe structure and for which the x-ray structure is known in its ligand-bound form.

  14. Fucosyl neoglycoprotein binds to mouse epididymal spermatozoa and inhibits sperm binding to the egg zona pellucida.

    PubMed

    Oh, Y S; Ahn, H S; Gye, M C

    2013-12-01

    Glycan epitopes of cellular glycoconjugates act as versatile biochemical signals, and this sugar coding plays an important role in cell-to-cell recognition processes. In this study, our aims were to determine the distribution of sperm receptors with activity for fucosyl- and galactosyl glycans and to address whether monosugar neoglycoproteins functionally mimic the binding between zona pellucida (ZP) glycoproteins and spermatozoa. In mouse epididymal spermatozoa with intact acrosomes, fucopyranosyl bovine serum albumin (BSA-Fuc) bound to the segment of the acrosome, the equatorial segment, and the postacrosome region of the sperm head. Galactosyl BSA (BSA-Gal) binding activity was similar to that of BSA-Fuc, but was weaker. In acrosome-reacted spermatozoa treated with the Ca(2+) ionophore A23187, BSA-zuc binding was lost in the apical segment of the acrosome but remained in the equatorial segment and postacrosome regions. BSA-Gal binding to the equatorial region was increased. In the presence of 2.5 μg ml(-1) BSA-Fuc, in vitro sperm-ZP binding was significantly decreased, indicating that fucosyl BSA functionally mimics ZP glycoproteins during sperm-egg ZP interactions. At the same concentration, BSA-Gal was not effective. Fucosyl BSA that efficiently inhibited the sperm-ZP binding can mimic the ZP glycoconjugate and has potential for use as a sperm fertility control agent in mouse.

  15. The biotin repressor: thermodynamic coupling of corepressor binding, protein assembly, and sequence-specific DNA binding.

    PubMed

    Streaker, Emily D; Gupta, Aditi; Beckett, Dorothy

    2002-12-03

    The Escherichia coli biotin repressor, an allosteric transcriptional regulator, is activated for binding to the biotin operator by the small molecule biotinyl-5'-AMP. Results of combined thermodynamic, kinetic, and structural studies of the protein have revealed that corepressor binding results in disorder to order transitions in the protein monomer that facilitate tighter dimerization. The enhanced stability of the dimer leads to stabilization of the resulting biotin repressor-biotin operator complex. It is not clear, however, that the allosteric response in the system is transmitted solely through the protein-protein interface. In this work, the allosteric mechanism has been quantitatively probed by measuring the biotin operator binding and dimerization properties of three biotin repressor species: the apo or unliganded form, the biotin-bound form, and the holo or bio-5'-AMP-bound form. Comparisons of the pairwise differences in the bioO binding and dimerization energetics for the apo and holo species reveal that the enhanced DNA binding energetics resulting from adenylate binding track closely with the enhanced assembly energetics. However, when the results for repressor pairs that include the biotin-bound species are compared, no such equivalence is observed.

  16. Binding of glutathione and melatonin to pepsin occurs via different binding mechanisms.

    PubMed

    Li, Xiangrong; Ni, Tianjun

    2016-03-01

    Glutathione is a hydrophilic antioxidant and melatonin is a hydrophobic antioxidant, thus, the binding mechanism of the two antioxidants interacting with protease may be different. In this study, binding of glutathione and melatonin to pepsin has been studied using isothermal titration calorimetry (ITC), equilibrium microdialysis, UV-Vis absorption spectroscopy, circular dichroism (CD) spectroscopy, and molecular modeling. Thermodynamic investigations reveal that the binding of glutathione/melatonin to pepsin is driven by favorable enthalpy and unfavorable entropy, and the major driving forces are hydrogen bond and van der Waals force. ITC, equilibrium microdialysis, and molecular modeling reveal that the binding of glutathione to pepsin is characterized by a high number of binding sites. For melatonin, one molecule of melatonin combines with one molecule of pepsin. These results confirm that glutathione/melatonin interact with pepsin through two different binding mechanisms. In addition, the UV-Vis absorption and CD experiments indicate that glutathione and melatonin may induce conformational and microenvironmental changes of pepsin. The conformational changes of pepsin may affect its biological function as protease.

  17. Fibrinogen and Fibronectin Binding Activity and Immunogenic Nature of Choline Binding Protein M

    PubMed Central

    AFSHAR, Davoud; POURMAND, Mohammad Reza; JEDDI-TEHRANI, Mahmood; SABOOR YARAGHI, Ali Akbar; AZARSA, Mohammad; SHOKRI, Fazel

    2016-01-01

    Background: Choline-binding proteins (CBPs) are a group of surface-exposed proteins, which play crucial and physiological roles in Streptococcus pneumoniae. The novel member of CBPs, choline-binding protein M (CbpM) may have binding activity to plasma proteins. This study aimed to clone and express CbpM and demonstrate its interaction with plasma proteins and patients’ sera. Methods: The total length of cbpM gene was cloned in pET21a vector and expressed in BL21 expression host. Verification of recombinant protein was evaluated by Western blot using anti-His tag monoclonal antibody. Binding ability of the recombinant protein to plasma proteins and the interaction with patients’ sera were assessed by Western blot and ELISA methods. Results: The cbpM gene was successfully cloned into pET21a and expressed in BL21 host. Binding activity to fibronectin and fibrinogen and antibody reaction of CbpM to patients’ sera was demonstrated by Western blot and ELISA methods, respectively. Conclusion: CbpM is one of the pneumococcal surface-exposed proteins, which mediates pneumococcal binding to fibronectin and fibrinogen proteins. PMID:28053927

  18. Specific binding of GM1-binding peptides to high-density GM1 in lipid membranes.

    PubMed

    Matsubara, Teruhiko; Iijima, Kazutoshi; Nakamura, Miwa; Taki, Takao; Okahata, Yoshio; Sato, Toshinori

    2007-01-16

    The ganglioside Galbeta1-3GalNAcbeta1-4(Neu5Acalpha2-3)Galbeta1-4Glcbeta1-1'Cer (GM1) is an important receptor. We have previously identified GM1-binding peptides based on affinity selection from a random peptide library. In the present study, we determined the amino acids essential for binding GM1 and investigated the specific interaction with GM1 in the lipid membrane. Arginines and aromatic amino acids in the consensus sequence (W/F)RxL(xP/Px)xFxx(Rx/xR)xP contributed to the ability of the peptides to bind GM1. The peptide p3, VWRLLAPPFSNRLLP, having the consensus sequence, showed high affinity for GM1 with a dissociation constant of 1.2 microM. Furthermore, the density-dependent binding of p3 was investigated using mixed monolayers of GM1 and Glcbeta1-1'Cer (GlcCer). p3 binds preferentially to high-density GM1, and its interaction with GM1 was found to be cooperative based on a Hill plot. These results indicated that a lateral assembly of GM1 molecules was required for the recognition of carbohydrates by p3. The GM1-binding peptide played a role as a unique anti-GM1 probe differing from the cholera toxin B subunit or antibodies.

  19. Matrix Metalloproteinase Inhibition by Heterotrimeric Triple-Helical Peptide Transition State Analogs

    PubMed Central

    Bhowmick, Manishabrata; Stawikowska, Roma; Tokmina-Roszyk, Dorota; Fields, Gregg B.

    2015-01-01

    Matrix metalloproteinases (MMPs) have been implicated in numerous pathologies. An overall lack of selectivity has rendered active site targeted MMP inhibitors problematic. The present study describes MMP inhibitors that function by binding both secondary binding sites (exosites) and the active site. Heterotrimeric triple-helical peptide transition-state analog inhibitors (THPIs) were assembled utilizing click chemistry. Three different heterotrimers were constructed, allowing for the inhibitory phosphinate moiety to be present uniquely in the leading, middle, or trailing strand of the triple-helix. All heterotrimeric constructs had sufficient thermally stability to warrant analysis as inhibitors. The heterotrimeric THPIs were effective against MMP-13 and MT1-MMP, with Ki spanning 100–400 nM. Unlike homotrimeric THPIs, the heterotrimeric THPIs offered complete selectivity between MT1-MMP and MMP-1. Exosite-based approaches are providing inhibitors with desired MMP selectivities. PMID:25766890

  20. Direct DNA binding by Brca1

    PubMed Central

    Paull, Tanya T.; Cortez, David; Bowers, Blair; Elledge, Stephen J.; Gellert, Martin

    2001-01-01

    The tumor suppressor Brca1 plays an important role in protecting mammalian cells against genomic instability, but little is known about its modes of action. In this work we demonstrate that recombinant human Brca1 protein binds strongly to DNA, an activity conferred by a domain in the center of the Brca1 polypeptide. As a result of this binding, Brca1 inhibits the nucleolytic activities of the Mre11/Rad50/Nbs1 complex, an enzyme implicated in numerous aspects of double-strand break repair. Brca1 displays a preference for branched DNA structures and forms protein–DNA complexes cooperatively between multiple DNA strands, but without DNA sequence specificity. This fundamental property of Brca1 may be an important part of its role in DNA repair and transcription. PMID:11353843

  1. Autologous antibodies that bind neuroblastoma cells.

    PubMed

    Sun, Yujing; Sholler, Giselle S; Shukla, Girja S; Pero, Stephanie C; Carman, Chelsea L; Zhao, Ping; Krag, David N

    2015-11-01

    Antibody therapy of neuroblastoma is promising and our goal is to derive antibodies from patients with neuroblastoma for developing new therapeutic antibodies. The feasibility of using residual bone marrow obtained for clinical indications as a source of tumor cells and a source of antibodies was assessed. From marrow samples, neuroblastoma cells were recovered, grown in cell culture and also implanted into mice to create xenografts. Mononuclear cells from the marrow were used as a source to generate phage display antibody libraries and also hybridomas. Growth of neuroblastoma patient cells was possible both in vitro and as xenografts. Antibodies from the phage libraries and from the monoclonal hybridomas bound autologous neuroblastoma cells with some selectivity. It appears feasible to recover neuroblastoma cells from residual marrow specimens and to generate human antibodies that bind autologous neuroblastoma cells. Expansion of this approach is underway to collect more specimens, optimize methods to generate antibodies, and to evaluate the bioactivity of neuroblastoma-binding antibodies.

  2. Folding, Binding, Misfolding and Aggregation with AWSEM

    NASA Astrophysics Data System (ADS)

    Schafer, Nicholas P.

    This thesis discusses our recent results using the Associative-memory, Water-mediated, Structure and Energy Model (AWSEM), an optimized, coarse-grained molecular dynamics protein folding model, to fold, bind, and predict the misfolding behavior of proteins. AWSEM is capable of performing de novo structure prediction on small alpha-helical protein domains and predict the binding interfaces of homo- and hetero-dimers. More recent work demonstrates how the misfolding behavior of tandem constructs in AWSEM is consistent with crucial aspects of ensemble and single molecule experiments on the aggregation and misfolding of these constructs. The first chapter is a review of the energy landscape theory of protein folding as it applies to the problem of protein structure prediction, and more specifically how energy landscape theory and the principle of minimal frustration can be used to optimize parameters of coarse-grained protein folding simulation models. The subsequent four chapters are reports of novel research performed with one such model.

  3. Single molecule junction conductance and binding geometry

    NASA Astrophysics Data System (ADS)

    Kamenetska, Maria

    This Thesis addresses the fundamental problem of controlling transport through a metal-organic interface by studying electronic and mechanical properties of single organic molecule-metal junctions. Using a Scanning Tunneling Microscope (STM) we image, probe energy-level alignment and perform STM-based break junction (BJ) measurements on molecules bound to a gold surface. Using Scanning Tunneling Microscope-based break-junction (STM-BJ) techniques, we explore the effect of binding geometry on single-molecule conductance by varying the structure of the molecules, metal-molecule binding chemistry and by applying sub-nanometer manipulation control to the junction. These experiments are performed both in ambient conditions and in ultra high vacuum (UHV) at cryogenic temperatures. First, using STM imaging and scanning tunneling spectroscopy (STS) measurements we explore binding configurations and electronic properties of an amine-terminated benzene derivative on gold. We find that details of metal-molecule binding affect energy-level alignment at the interface. Next, using the STM-BJ technique, we form and rupture metal-molecule-metal junctions ˜104 times to obtain conductance-vs-extension curves and extract most likely conductance values for each molecule. With these measurements, we demonstrated that the control of junction conductance is possible through a choice of metal-molecule binding chemistry and sub-nanometer positioning. First, we show that molecules terminated with amines, sulfides and phosphines bind selectively on gold and therefore demonstrate constant conductance levels even as the junction is elongated and the metal-molecule attachment point is modified. Such well-defined conductance is also obtained with paracyclophane molecules which bind to gold directly through the pi system. Next, we are able to create metal-molecule-metal junctions with more than one reproducible conductance signatures that can be accessed by changing junction geometry. In the

  4. Causal binding of actions to their effects.

    PubMed

    Buehner, Marc J; Humphreys, Gruffydd R

    2009-10-01

    According to widely held views in cognitive science harking back to David Hume, causality cannot be perceived directly, but instead is inferred from patterns of sensory experience, and the quality of these inferences is determined by perceivable quantities such as contingency and contiguity. We report results that suggest a reversal of Hume's conjecture: People's sense of time is warped by the experience of causality. In a stimulus-anticipation task, participants' response behavior reflected a shortened experience of time in the case of target stimuli participants themselves had generated, relative to equidistant, equally predictable stimuli they had not caused. These findings suggest that causality in the mind leads to temporal binding of cause and effect, and extend and generalize beyond earlier claims of intentional binding between action and outcome.

  5. The Sunscreen Octyl Methoxycinnamate Binds to DNA

    NASA Astrophysics Data System (ADS)

    Norrell, Johannes; Vohra, Shikhar; Nordlund, T. M.

    2000-03-01

    Sunscreens are designed to prevent skin cancer by absorbing ultraviolet radiation from the sun before it gets to the DNA in skin cells. The purpose of this work is to determine whether or not octyl methoxycinnamate, an active ingredient in many sunscreens, will bind to DNA. If so, the sunscreen could transfer the energy it absorbed from the sun to the DNA and cause damage. To determine this, we prepared samples with varying concentrations of cinnamate added to herring sperm DNA, sonicating the mixture to disperse the hydrophobic sunscreen into solution. Absorption and fluorescence spectra of the mixtures showed (i) much more sunscreen was dispersed into solution when DNA was present, and (ii) the spectra of both DNA and sunscreen differed from those of the separate solutions. We conclude that the octyl methoxycinnamate can indeed bind to DNA in aqueous solution. Energy transfer experiments from DNA to sunscreen and from sunscreen to 2-aminopurine- (a fluorescent DNA base) labeled DNA will be presented.

  6. Computational analysis of maltose binding protein translocation

    NASA Astrophysics Data System (ADS)

    Chinappi, Mauro; Cecconi, Fabio; Massimo Casciola, Carlo

    2011-05-01

    We propose a computational model for the study of maltose binding protein translocation across α-hemolysin nanopores. The phenomenological approach simplifies both the pore and the polypeptide chain; however it retains the basic structural protein-like properties of the maltose binding protein by promoting the correct formation of its native key interactions. By considering different observables characterising the channel blockade and molecule transport, we verified that MD simulations reproduce qualitatively the behaviour observed in a recent experiment. Simulations reveal that blockade events consist of a capture stage, to some extent related to the unfolding kinetics, and a single file translocation process in the channel. A threshold mechanics underlies the process activation with a critical force depending on the protein denaturation state. Finally, our results support the simple interpretation of translocation via first-passage statistics of a driven diffusion process of a single reaction coordinate.

  7. Quantifying drug-protein binding in vivo.

    SciTech Connect

    Buchholz, B; Bench, G; Keating III, G; Palmblad, M; Vogel, J; Grant, P G; Hillegonds, D

    2004-02-17

    Accelerator mass spectrometry (AMS) provides precise quantitation of isotope labeled compounds that are bound to biological macromolecules such as DNA or proteins. The sensitivity is high enough to allow for sub-pharmacological (''micro-'') dosing to determine macromolecular targets without inducing toxicities or altering the system under study, whether it is healthy or diseased. We demonstrated an application of AMS in quantifying the physiologic effects of one dosed chemical compound upon the binding level of another compound in vivo at sub-toxic doses [4].We are using tissues left from this study to develop protocols for quantifying specific binding to isolated and identified proteins. We also developed a new technique to quantify nanogram to milligram amounts of isolated protein at precisions that are comparable to those for quantifying the bound compound by AMS.

  8. Novel retinoid-binding proteins from filarial parasites.

    PubMed Central

    Sani, B P; Vaid, A; Comley, J C; Montgomery, J A

    1985-01-01

    The present study deals with the discovery and partial characterization of specific binding proteins for retinol and retinoic acid from filarial parasites (worms of the superfamily Filarioidea), including those from two species of Onchocerca. These binding proteins, which are distinct in their physicochemical properties and in the mode of ligand interactions from the host-tissue retinoid-binding proteins, may be involved in the mediation of the putative biological roles of retinoids in the control of parasitic growth, differentiation and reproduction. Parasite retinol-binding protein and retinoic acid-binding protein exhibited specificity for binding retinol and retinoic acid respectively. Both the binding proteins showed an s20,w value of 2.0 S. On gel filtration, both proteins were retarded to a position corresponding to the same molecular size (19.0 kDa). On preparative columns, the parasite binding proteins exhibited isoelectric points at pH 5.7 and 5.75. Unlike the retinoid-binding proteins of mammalian and avian origin, the parasite retinoid-binding proteins showed a lack of mercurial sensitivity in ligand binding. The comparative amounts of retinoic acid-binding protein in five parasites, Onchocerca volvulus, Onchocerca gibsoni, Dipetalonema viteae, Brugia pahangi and Dirofilaria immitis, were between 2.7 and 3.1 pmol of retinoic acid bound/mg of extractable protein. However, the levels of parasite retinol-binding protein were between 4.8 and 5.8 pmol/mg, which is considerably higher than the corresponding levels of cellular retinol-binding protein of mammalian and avian origin. Both retinol- and retinoic acid-binding-protein levels in O. volvulus-infected human nodules and O. gibsoni-infected bovine nodules were similar to their levels in mammalian tissues. Also, these nodular binding proteins, like the host-binding proteins, exhibited mercurial sensitivity to ligand interactions. PMID:3004410

  9. Binding Pose Flip Explained via Enthalpic and Entropic Contributions

    PubMed Central

    2017-01-01

    The anomalous binding modes of five highly similar fragments of TIE2 inhibitors, showing three distinct binding poses, are investigated. We report a quantitative rationalization for the changes in binding pose based on molecular dynamics simulations. We investigated five fragments in complex with the transforming growth factor β receptor type 1 kinase domain. Analyses of these simulations using Grid Inhomogeneous Solvation Theory (GIST), pKA calculations, and a tool to investigate enthalpic differences upon binding unraveled the various thermodynamic contributions to the different binding modes. While one binding mode flip can be rationalized by steric repulsion, the second binding pose flip revealed a different protonation state for one of the ligands, leading to different enthalpic and entropic contributions to the binding free energy. One binding pose is stabilized by the displacement of entropically unfavored water molecules (binding pose determined by solvation entropy), ligands in the other binding pose are stabilized by strong enthalpic interactions, overcompensating the unfavorable water entropy in this pose (binding pose determined by enthalpic interactions). This analysis elucidates unprecedented details determining the flipping of the binding modes, which can elegantly explain the experimental findings for this system. PMID:28079371

  10. Gene encoding herbicide safener binding protein

    SciTech Connect

    Walton, J.D.; Scott-Craig, J.S.

    1999-10-26

    The cDNA encoding safener binding protein (SafBP), also referred to as SBP1, is presented. The deduced amino acid sequence is provided. Methods of making and using SBP1 and SafBP to alter a plant's sensitivity to certain herbicides or a plant's responsiveness to certain safeners are also provided, as well as expression vectors, transgenic plants or other organisms transfected with vectors and seeds from the plants.

  11. Curcumin binding to DNA and RNA.

    PubMed

    Nafisi, Shohreh; Adelzadeh, Maryam; Norouzi, Zeinab; Sarbolouki, Mohammad Nabi

    2009-04-01

    Curcumin, the yellow pigment from the rhizoma of Curcuma longa, is a widely studied phytochemical with a variety of biological activities. The ongoing research and clinical trials have proved that this natural phenolic compound has great and diverse pharmacological potencies. Beside its effective antioxidant, antiinflammatory, and antimicrobial/antiviral properties, curcumin is also considered as a cancer chemopreventive agent. While the antioxidant activity of curcumin is well documented, its interaction with DNA and RNA is not fully investigated. This study was designed to examine the interactions of curcumin with calf thymus DNA and yeast RNA in aqueous solution at physiological conditions, using constant DNA and RNA concentration (6.25 mM) and various curcumin/polynucleotide (phosphate) ratios of 1/120, 1/80, 1/40, 1/20, and 1/10. Fourier transform infrared (FTIR) and UV-visible spectroscopic methods were used to determine the ligand binding modes, the binding constants, and the stability of curcumin-DNA and curcumin-RNA complexes in aqueous solution. Spectroscopic evidence showed that curcumin binds to the major and minor grooves of DNA duplex and to RNA bases as well as to the back bone phosphate group with overall binding constants of K(curcumin-DNA) = 4.255 x 10(4) M(-1) and K(curcumin-RNA) = 1.262 x 10(4) M(-1). Major DNA and RNA aggregation occurred at high pigment concentration. No conformational changes were observed upon curcumin interaction with these biopolymers; that is, DNA remains in the B, and RNA retains its A-family structure.

  12. Characterization of MIPs Using Heterogeneous Binding Models

    DTIC Science & Technology

    2002-04-05

    properties than by previous methods such as the limiting slopes analysese of curved Scatchard plots INTRODUCTION Molecularly imprinted polymers ( MIPs ...properties of molecularly imprinted polymers ( MiPs ) are their most important characteristic. The comparison of the binding properties of MIPs ... imprinted EA9A polymers . The imprinted polymers differ in the concentration of EA9A in the polymerization mixture: 2.5 mM (gray), 5.0 mM (broken), and 12.5

  13. Predicting protein-binding RNA nucleotides with consideration of binding partners.

    PubMed

    Tuvshinjargal, Narankhuu; Lee, Wook; Park, Byungkyu; Han, Kyungsook

    2015-06-01

    In recent years several computational methods have been developed to predict RNA-binding sites in protein. Most of these methods do not consider interacting partners of a protein, so they predict the same RNA-binding sites for a given protein sequence even if the protein binds to different RNAs. Unlike the problem of predicting RNA-binding sites in protein, the problem of predicting protein-binding sites in RNA has received little attention mainly because it is much more difficult and shows a lower accuracy on average. In our previous study, we developed a method that predicts protein-binding nucleotides from an RNA sequence. In an effort to improve the prediction accuracy and usefulness of the previous method, we developed a new method that uses both RNA and protein sequence data. In this study, we identified effective features of RNA and protein molecules and developed a new support vector machine (SVM) model to predict protein-binding nucleotides from RNA and protein sequence data. The new model that used both protein and RNA sequence data achieved a sensitivity of 86.5%, a specificity of 86.2%, a positive predictive value (PPV) of 72.6%, a negative predictive value (NPV) of 93.8% and Matthews correlation coefficient (MCC) of 0.69 in a 10-fold cross validation; it achieved a sensitivity of 58.8%, a specificity of 87.4%, a PPV of 65.1%, a NPV of 84.2% and MCC of 0.48 in independent testing. For comparative purpose, we built another prediction model that used RNA sequence data alone and ran it on the same dataset. In a 10 fold-cross validation it achieved a sensitivity of 85.7%, a specificity of 80.5%, a PPV of 67.7%, a NPV of 92.2% and MCC of 0.63; in independent testing it achieved a sensitivity of 67.7%, a specificity of 78.8%, a PPV of 57.6%, a NPV of 85.2% and MCC of 0.45. In both cross-validations and independent testing, the new model that used both RNA and protein sequences showed a better performance than the model that used RNA sequence data alone in

  14. Shiga toxin binds to activated platelets.

    PubMed

    Ghosh, S A; Polanowska-Grabowska, R K; Fujii, J; Obrig, T; Gear, A R L

    2004-03-01

    Hemolytic uremic syndrome (HUS) is associated with acute renal failure in children and can be caused by Shiga toxin (Stx)-producing Escherichia coli. Thrombocytopenia and formation of renal thrombi are characteristic of HUS, suggesting that platelet activation is involved in its pathogenesis. However, whether Shiga toxin directly activates platelets is controversial. The present study evaluates if potential platelet sensitization during isolation by different procedures influences platelet interaction with Shiga toxin. Platelets isolated from sodium citrate anticoagulated blood were exposed during washing to EDTA and higher g forces than platelets prepared from acid-citrate-dextrose (ACD) plasma. Platelet binding of Stx was significantly higher in EDTA-washed preparations relative to ACD-derived platelets. Binding of Stx was also increased with ACD-derived platelets when activated with thrombin (1 U mL-1) and exposure of the Gb3 Stx receptor was detected only on platelets subjected to EDTA, higher g forces or thrombin. EDTA-exposed platelets lost their normal discoid shape and were larger. P-selectin (CD62P) exposure was significantly increased in EDTA-washed preparations relative to ACD-derived platelets, suggesting platelet activation. Taken together, these results suggest that direct binding of Stx occurs only on 'activated' platelets rather than on resting platelets. The ability of Stx to interact with previously activated platelets may be an important element in understanding the pathogenesis of HUS.

  15. Radiobrominated triphenylethylenes as estrogen receptor binding radiopharmaceuticals

    SciTech Connect

    Seevers, R.H.; Meese, R.C.; Friedman, A.M.; DeSombre, E.R.

    1985-05-01

    Estrogen receptor binding radiopharmaceuticals have potential for use in the diagnosis and treatment of cancers of the female reproductive system. Tamoxifen is an antiestrogen derived from the triphenylethylene skeleton which is used in the treatment of mammary carcinoma. Hydroxytamoxifen is a metabolite of tamoxifen which binds tightly to the estrogen receptor. Two triphenylethylene derivatives based on the structure of hydroxytamoxifen have been prepared: 1-bromo-1-phenyl-2- (2-dimethylamino)-4-ethoxyphenyl -2-(4-hydroxyphenyl) ethene (1) where the ethyl group of hydroxytamoxifen has been replaced by a bromine, and 1-bromo-1-phenyl-2,2-(4-hydroxyphenyl) ethene (2) with a similar substitution and also lacking the aminoethoxy side chain believed to confer antiestrogenicity. Both 1 and 2 bind strongly to the estrogen receptor. 2 has been labeled with the Auger electron emitting nuclide Br-80m in moderate yields in high specific activity using either N-bromosuccinimide or N-bromophthalimide and shows promise as a potential radiotherapy agent.

  16. Steroid binding domain of porcine estrogen receptor

    SciTech Connect

    Koike, S.; Nii, A.; Sakai, M.; Muramatsu, M.

    1987-05-05

    For the purpose of characterizing the estrogen binding domain of porcine estrogen receptor (ER), the authors have made use of affinity labeling of partially purified ER with (/sup 3/H)tamoxifen aziridine. The labeling is very efficient and selective particularly after partial purification of ER. A 65,000-dalton (65-kDa) band was detected on the fluorogram of a sodium dodecyl sulfate-polyacrylamide gel, together with a 50-kDa band and a few more smaller bands. The 50-kDa protein appears to be a degradation product of the 65-kDa protein in view of the similar peptide map. ER was affinity labeled before or after controlled limited proteolysis with either trypsin, papain, or ..cap alpha..-chymotrypsin. The labeling patterns of limited digests indicate that a fragment of about 30 kDa is relatively resistant to proteases and has a full and specific binding activity to estrogen, whereas smaller fragments have lost much of the binding activity. This fragment is very hydrophobic and probably corresponds to the carboxy half of ER.

  17. Caffeine inhibits glucose transport by binding at the GLUT1 nucleotide-binding site.

    PubMed

    Sage, Jay M; Cura, Anthony J; Lloyd, Kenneth P; Carruthers, Anthony

    2015-05-15

    Glucose transporter 1 (GLUT1) is the primary glucose transport protein of the cardiovascular system and astroglia. A recent study proposes that caffeine uncompetitive inhibition of GLUT1 results from interactions at an exofacial GLUT1 site. Intracellular ATP is also an uncompetitive GLUT1 inhibitor and shares structural similarities with caffeine, suggesting that caffeine acts at the previously characterized endofacial GLUT1 nucleotide-binding site. We tested this by confirming that caffeine uncompetitively inhibits GLUT1-mediated 3-O-methylglucose uptake in human erythrocytes [Vmax and Km for transport are reduced fourfold; Ki(app) = 3.5 mM caffeine]. ATP and AMP antagonize caffeine inhibition of 3-O-methylglucose uptake in erythrocyte ghosts by increasing Ki(app) for caffeine inhibition of transport from 0.9 ± 0.3 mM in the absence of intracellular nucleotides to 2.6 ± 0.6 and 2.4 ± 0.5 mM in the presence of 5 mM intracellular ATP or AMP, respectively. Extracellular ATP has no effect on sugar uptake or its inhibition by caffeine. Caffeine and ATP displace the fluorescent ATP derivative, trinitrophenyl-ATP, from the GLUT1 nucleotide-binding site, but d-glucose and the transport inhibitor cytochalasin B do not. Caffeine, but not ATP, inhibits cytochalasin B binding to GLUT1. Like ATP, caffeine renders the GLUT1 carboxy-terminus less accessible to peptide-directed antibodies, but cytochalasin B and d-glucose do not. These results suggest that the caffeine-binding site bridges two nonoverlapping GLUT1 endofacial sites-the regulatory, nucleotide-binding site and the cytochalasin B-binding site. Caffeine binding to GLUT1 mimics the action of ATP but not cytochalasin B on sugar transport. Molecular docking studies support this hypothesis.

  18. Oxidized cellulose binding to allergens with a carbohydrate-binding module attenuates allergic reactions.

    PubMed

    Shani, Nir; Shani, Ziv; Shoseyov, Oded; Mruwat, Rufayda; Shoseyov, David

    2011-01-15

    Grass and mite allergens are of the main causes of allergy and asthma. A carbohydrate-binding module (CBM) represents a common motif to groups I (β-expansin) and II/III (expansin-like) grass allergens and is suggested to mediate allergen-IgE binding. House dust mite group II allergen (Der p 2 and Der f 2) structures bear strong similarity to expansin's CBM, suggesting their ability to bind carbohydrates. Thus, this study proposes the design of a carbohydrate-based treatment in which allergen binding to carbohydrate particles will promote allergen airway clearance and prevent allergic reactions. The aim of the study was to identify a polysaccharide with high allergen-binding capacities and to explore its ability to prevent allergy. Oxidized cellulose (OC) demonstrated allergen-binding capacities toward grass and mite allergens that surpassed those of any other polysaccharide examined in this study. Furthermore, inhalant preparations of OC microparticles attenuated allergic lung inflammation in rye grass-sensitized Brown Norway rats and OVA-sensitized BALB/c mice. Fluorescently labeled OC efficiently cleared from the mouse airways and body organs. Moreover, long-term administration of OC inhalant to Wistar rats did not result in toxicity. In conclusion, many allergens, such as grass and dust mite, contain a common CBM motif. OC demonstrates a strong and relatively specific allergen-binding capacity to CBM-containing allergens. OC's ability to attenuate allergic inflammation, together with its documented safety record, forms a firm basis for its application as an alternative treatment for prevention and relief of allergy and asthma.

  19. AB-Bind: Antibody binding mutational database for computational affinity predictions.

    PubMed

    Sirin, Sarah; Apgar, James R; Bennett, Eric M; Keating, Amy E

    2016-02-01

    Antibodies (Abs) are a crucial component of the immune system and are often used as diagnostic and therapeutic agents. The need for high-affinity and high-specificity antibodies in research and medicine is driving the development of computational tools for accelerating antibody design and discovery. We report a diverse set of antibody binding data with accompanying structures that can be used to evaluate methods for modeling antibody interactions. Our Antibody-Bind (AB-Bind) database includes 1101 mutants with experimentally determined changes in binding free energies (ΔΔG) across 32 complexes. Using the AB-Bind data set, we evaluated the performance of protein scoring potentials in their ability to predict changes in binding free energies upon mutagenesis. Numerical correlations between computed and observed ΔΔG values were low (r = 0.16-0.45), but the potentials exhibited predictive power for classifying variants as improved vs weakened binders. Performance was evaluated using the area under the curve (AUC) for receiver operator characteristic (ROC) curves; the highest AUC values for 527 mutants with |ΔΔG| > 1.0 kcal/mol were 0.81, 0.87, and 0.88 using STATIUM, FoldX, and Discovery Studio scoring potentials, respectively. Some methods could also enrich for variants with improved binding affinity; FoldX and Discovery Studio were able to correctly rank 42% and 30%, respectively, of the 80 most improved binders (those with ΔΔG < -1.0 kcal/mol) in the top 5% of the database. This modest predictive performance has value but demonstrates the continuing need to develop and improve protein energy functions for affinity prediction.

  20. Identification of novel anionic phospholipid binding domains in neutral sphingomyelinase 2 with selective binding preference.

    PubMed

    Wu, Bill X; Clarke, Christopher J; Matmati, Nabil; Montefusco, David; Bartke, Nana; Hannun, Yusuf A

    2011-06-24

    Sphingolipids such as ceramide are recognized as vital regulators of many biological processes. Neutral sphingomyelinase 2 (nSMase2) is one of the key enzymes regulating ceramide production. It was previously shown that the enzymatic activity of nSMase2 was dependent on anionic phospholipids (APLs). In this study, the structural requirements for APL-selective binding of nSMase2 were determined and characterized. Using lipid-protein overlay assays, nSMase2 interacted specifically and directly with several APLs, including phosphatidylserine and phosphatidic acid. Lipid-protein binding studies of deletion mutants identified two discrete APL binding domains in the N terminus of nSMase2. Further, mutagenesis experiments pinpointed the core sequences and major cationic amino acids in the domains that are necessary for the cooperative activation of nSMase2 by APLs. The first domain included the first amino-terminal hydrophobic segment and Arg-33, which were essential for nSMase2 to interact with APLs. The second binding domain was comprised of the second hydrophobic segment and Arg-92 and Arg-93. Moreover, mutation of one or both domains decreased APL binding and APL-dependent catalytic activity of nSMase2. Further, mutation of both domains in nSMase2 reduced its plasma membrane localization. Finally, these binding domains are also important for the capability of nSMase2 to rescue the defects of yeast lacking the nSMase homologue, ISC1. In conclusion, these data have identified the APL binding domains of nSMase2 for the first time. The analysis of interactions between nSMase2 and APLs will contribute to our understanding of signaling pathways mediated by sphingolipid metabolites.

  1. Ligand-binding characteristics of feline insulin-binding immunoglobulin G

    PubMed Central

    SUZUKI, Takafumi; NISHII, Naohito; TAKASHIMA, Satoshi; MATSUBARA, Tatsuya; IWASAWA, Atsushi; TAKEUCHI, Hirofumi; TAHARA, Kohei; HACHISU, Tatsuyuki; KITAGAWA, Hitoshi

    2015-01-01

    Polyclonal immunoglobulin (Ig) G autoantibodies against insulin have been identified in sera of healthy cats. We purified and fractionated insulin-binding IgGs from cat sera by affinity chromatography and analyzed affinity of insulin-binding IgGs for insulin and their epitopes. Following the passing of fraction A, which did not bind to insulin, insulin-binding IgGs were eluted into two fractions, B and C, by affinity chromatography using a column fixed with bovine insulin. Dissociation constant (KD) values between insulin-binding IgGs and insulin, determined by surface plasmon resonance analysis (Biacore™system), were 1.64e−4 M for fraction B (low affinity IgGs) and 2e−5 M for fraction C (high affinity IgGs). Epitope analysis was conducted using 16 peptide fragments synthesized in concord with the amino acid sequence of feline insulin by an enzyme-linked immunosorbent assay. Fractions B and C showed higher absorbance (affinity) of the peptide fragment of 10 amino acid residues at the carboxyl-terminal of the B chain (peptide No. 19), followed by peptide fragments of 6 to 15 amino acid residues of the B chain (peptide No. 8). Fraction C showed a higher absorbance to 7 to 16 amino acid residues of the B chain (peptide No. 5) compared with the absorbance of fraction B. Polyclonal insulin-binding IgGs may form a macromolecule complex with insulin through the multiple affinity sites of IgG molecules. Feline insulin-binding IgGs are multifocal and may be composed of multiple IgG components and insulin. PMID:26062435

  2. Molecular modelling and competition binding study of Br-noscapine and colchicine provide insight into noscapinoid-tubulin binding site.

    PubMed

    Naik, Pradeep K; Santoshi, Seneha; Rai, Ankit; Joshi, Harish C

    2011-06-01

    We have previously discovered the tubulin-binding anti-cancer properties of noscapine and its derivatives (noscapinoids). Here, we present three lines of evidence that noscapinoids bind at or near the well studied colchicine binding site of tubulin: (1) in silico molecular docking studies of Br-noscapine and noscapine yield highest docking score with the well characterised colchicine-binding site from the co-crystal structure; (2) the molecular mechanics-generalized Born/surface area (MM-GB/SA) scoring results ΔΔG(bind-cald) for both noscapine and Br-noscapine (3.915 and 3.025 kcal/mol) are in reasonably good agreement with our experimentally determined binding affinity (ΔΔG(bind-Expt) of 3.570 and 2.988 kcal/mol, derived from K(d) values); and (3) Br-noscapine competes with colchicine binding to tubulin. The simplest interpretation of these collective data is that Br-noscapine binds tubulin at a site overlapping with, or very close to colchicine-binding site of tubulin. Although we cannot rule out a formal possibility that Br-noscapine might bind to a site distinct and distant from the colchicine-binding site that might negatively influence the colchicine binding to tubulin.

  3. Novel stereospecificity of the L-arabinose-binding protein

    NASA Astrophysics Data System (ADS)

    Quiocho, Florante A.; Vyas, Nand K.

    1984-08-01

    Tertiary structure refinement at 1.7 Å resolution of the liganded form of L-arabinose-binding protein from Escherichia coli has revealed a novel binding site geometry which accommodates both α- and β-anomers of L-arabinose. This detailed structure analysis provides new understanding of protein-sugar interaction, the process by which the binding protein minimizes the difference in the stability of the two bound sugar anomers, and the roles of periplasmic binding proteins in active transport

  4. Binding of Intrinsic and Extrinsic Features in Working Memory

    ERIC Educational Resources Information Center

    Ecker, Ullrich K. H.; Maybery, Murray; Zimmer, Hubert D.

    2013-01-01

    There is ongoing debate concerning the mechanisms of feature binding in working memory. In particular, there is controversy regarding the extent to which these binding processes are automatic. The present article demonstrates that binding mechanisms differ depending on whether the to-be-integrated features are perceived as forming a coherent…

  5. Fractionating the Binding Process: Neuropsychological Evidence from Reversed Search Efficiencies

    ERIC Educational Resources Information Center

    Humphreys, Glyn W.; Hodsoll, John; Riddoch, M. Jane

    2009-01-01

    The authors present neuropsychological evidence distinguishing binding between form, color, and size (cross-domain binding) and binding between form elements. They contrasted conjunctive search with difficult feature search using control participants and patients with unilateral parietal or fronto/temporal lesions. To rule out effects of task…

  6. Thioredoxin binding site of phosphoribulokinase overlaps the catalytic site. [R

    SciTech Connect

    Porter, M.A.; Hartman, F.C.

    1986-01-01

    The ATP-regulatory binding site of phosphoribulokinase was studied using bromoacetylethanolamine phosphate (BrAcNHEtOP). BrAcNHEtOP binds to the active-regulatory binding site of the protein. Following trypsin degradation of the labeled protein, fragments were separated by HPLC and sequenced. (DT)

  7. Nucleic acid-binding specificity of human FUS protein

    PubMed Central

    Wang, Xueyin; Schwartz, Jacob C.; Cech, Thomas R.

    2015-01-01

    FUS, a nuclear RNA-binding protein, plays multiple roles in RNA processing. Five specific FUS-binding RNA sequence/structure motifs have been proposed, but their affinities for FUS have not been directly compared. Here we find that human FUS binds all these sequences with Kdapp values spanning a 10-fold range. Furthermore, some RNAs that do not contain any of these motifs bind FUS with similar affinity. FUS binds RNA in a length-dependent manner, consistent with a substantial non-specific component to binding. Finally, investigation of FUS binding to different nucleic acids shows that it binds single-stranded DNA with three-fold lower affinity than ssRNA of the same length and sequence, while binding to double-stranded nucleic acids is weaker. We conclude that FUS has quite general nucleic acid-binding activity, with the various proposed RNA motifs being neither necessary for FUS binding nor sufficient to explain its diverse binding partners. PMID:26150427

  8. Landscape of protein–small ligand binding modes

    PubMed Central

    Kinoshita, Kengo

    2016-01-01

    Abstract Elucidating the mechanisms of specific small‐molecule (ligand) recognition by proteins is a long‐standing conundrum. While the structures of these molecules, proteins and ligands, have been extensively studied, protein–ligand interactions, or binding modes, have not been comprehensively analyzed. Although methods for assessing similarities of binding site structures have been extensively developed, the methods for the computational treatment of binding modes have not been well established. Here, we developed a computational method for encoding the information about binding modes as graphs, and assessing their similarities. An all‐against‐all comparison of 20,040 protein–ligand complexes provided the landscape of the protein–ligand binding modes and its relationships with protein‐ and chemical spaces. While similar proteins in the same SCOP Family tend to bind relatively similar ligands with similar binding modes, the correlation between ligand and binding similarities was not very high (R 2 = 0.443). We found many pairs with novel relationships, in which two evolutionally distant proteins recognize dissimilar ligands by similar binding modes (757,474 pairs out of 200,790,780 pairs were categorized into this relationship, in our dataset). In addition, there were an abundance of pairs of homologous proteins binding to similar ligands with different binding modes (68,217 pairs). Our results showed that many interesting relationships between protein–ligand complexes are still hidden in the structure database, and our new method for assessing binding mode similarities is effective to find them. PMID:27327045

  9. Identification of a fibronectin-binding protein from Staphylococcus epidermidis.

    PubMed

    Williams, Rachel J; Henderson, Brian; Sharp, Lindsay J; Nair, Sean P

    2002-12-01

    Staphylococcus epidermidis has been reported to bind to a number of host cell extracellular matrix proteins, including fibronectin. Here we report the identification of a fibronectin-binding protein from S. epidermidis. A phage display library of S. epidermidis genomic DNA was constructed and panned against immobilized fibronectin. A number of phagemid clones containing overlapping inserts were identified, and one of these clones, pSE109FN, contained a 1.4-kb insert. Phage pSE109FN was found to bind to fibronectin but not to collagen, fibrinogen, laminin, or vitronectin. However, pSE109FN also bound to heparin, hyaluronate, and plasminogen, although to a lesser extent than it bound to fibronectin. Analysis of The Institute for Genomic Research S. epidermidis genome sequence database revealed a 1.85-kb region within a putative 30.5-kb open reading frame, to which the overlapping DNA inserts contained within the fibronectin-binding phagemids mapped. We have designated the gene encoding the fibronectin-binding domain embp. A recombinant protein, Embp32, which encompassed the fibronectin-binding domain of Embp, blocked the binding of S. epidermidis, but not the binding of Staphylococcus aureus, to fibronectin. In contrast, a recombinant protein, FnBPB[D1-D4], spanning the fibronectin-binding domain of the S. aureus fibronectin-binding protein FnBPB, blocked binding of S. aureus to fibronectin but had a negligible effect on the binding of S. epidermidis.

  10. The binding interactions of imidacloprid with earthworm fibrinolytic enzyme

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Qing; Zhang, Hong-Mei; Chen, Tao

    2014-08-01

    In this paper, several studies were conducted to elucidate the binding mechanism of earthworm fibrinolytic enzyme (EFE) with imidocloprid (IMI) by using theoretical calculation, fluorescence, UV-vis, circular dichroism spectroscopy and an enzymatic inhibition assay. The spectral data showed that the binding interactions existed between IMI and EFE. The binding constants, binding site, thermodynamic parameters and binding forces were analyzed in detail. The results indicate a single class of binding sites for IMI in EFE and that this binding interaction is a spontaneous process with the estimated enthalpy and entropy changes being 2.195 kJ mol-1 and 94.480 J mol-1 K-1, respectively. A single class of binding site existed for IMI in EFE. The tertiary or secondary structure of EFE was partly destroyed by IMI. The visualized binding details were also exhibited by the theoretical calculation and the results indicated that the interaction between IMI and Phe (Tyr, or Trp) or EFE occurred. Combining the experimental data with the theoretical calculation data, we showed that the binding forces between IMI and EFE were mainly hydrophobic force accompanied by hydrogen binding, and π-π stacking. In addition, IMI did not obviously influence the activity of EFE. In a word, the above analysis offered insights into the binding mechanism of IMI with EFE and could provide some important information for the molecular toxicity of IMI for earthworms.

  11. Quantitative in vivo receptor binding. III. Tracer kinetic modeling of muscarinic cholinergic receptor binding

    SciTech Connect

    Frey, K.A.; Hichwa, R.D.; Ehrenkaufer, R.L.; Agranoff, B.W.

    1985-10-01

    A tracer kinetic method is developed for the in vivo estimation of high-affinity radioligand binding to central nervous system receptors. Ligand is considered to exist in three brain pools corresponding to free, nonspecifically bound, and specifically bound tracer. These environments, in addition to that of intravascular tracer, are interrelated by a compartmental model of in vivo ligand distribution. A mathematical description of the model is derived, which allows determination of regional blood-brain barrier permeability, nonspecific binding, the rate of receptor-ligand association, and the rate of dissociation of bound ligand, from the time courses of arterial blood and tissue tracer concentrations. The term ''free receptor density'' is introduced to describe the receptor population measured by this method. The technique is applied to the in vivo determination of regional muscarinic acetylcholine receptors in the rat, with the use of (TH)scopolamine. Kinetic estimates of free muscarinic receptor density are in general agreement with binding capacities obtained from previous in vivo and in vitro equilibrium binding studies. In the striatum, however, kinetic estimates of free receptor density are less than those in the neocortex--a reversal of the rank ordering of these regions derived from equilibrium determinations. A simplified model is presented that is applicable to tracers that do not readily dissociate from specific binding sites during the experimental period.

  12. Camptothecin-binding site in human serum albumin and protein transformations induced by drug binding.

    PubMed

    Fleury, F; Ianoul, A; Berjot, M; Feofanov, A; Alix, A J; Nabiev, I

    1997-07-14

    Circular dichroism (CD) and Raman spectroscopy were employed in order to locate a camptothecin (CPT)-binding site within human serum albumin (HSA) and to identify protein structural transformations induced by CPT binding. A competitive binding of CPT and 3'-azido-3'-deoxythymidine (a ligand occupying IIIA structural sub-domain of the protein) to HSA does not show any competition and demonstrates that the ligands are located in the different binding sites, whereas a HSA-bound CPT may be replaced by warfarin, occupying IIA structural sub-domain of the protein. Raman and CD spectra of HSA and HSA/CPT complexes show that the CPT-binding does not induce changes of the global protein secondary structure. On the other hand, Raman spectra reveal pronounced CPT-induced local structural modifications of the HSA molecule, involving changes in configuration of the two disulfide bonds and transfer of a single Trp-residue to hydrophilic environment. These data suggest that CPT is bound in the region of interdomain connections within the IIA structural domain of HSA and it induces relative movement of the protein structural domains.

  13. High-affinity RNA binding by a hyperthermophilic single-stranded DNA-binding protein.

    PubMed

    Morten, Michael J; Gamsjaeger, Roland; Cubeddu, Liza; Kariawasam, Ruvini; Peregrina, Jose; Penedo, J Carlos; White, Malcolm F

    2017-03-01

    Single-stranded DNA-binding proteins (SSBs), including replication protein A (RPA) in eukaryotes, play a central role in DNA replication, recombination, and repair. SSBs utilise an oligonucleotide/oligosaccharide-binding (OB) fold domain to bind DNA, and typically oligomerise in solution to bring multiple OB fold domains together in the functional SSB. SSBs from hyperthermophilic crenarchaea, such as Sulfolobus solfataricus, have an unusual structure with a single OB fold coupled to a flexible C-terminal tail. The OB fold resembles those in RPA, whilst the tail is reminiscent of bacterial SSBs and mediates interaction with other proteins. One paradigm in the field is that SSBs bind specifically to ssDNA and much less strongly to RNA, ensuring that their functions are restricted to DNA metabolism. Here, we use a combination of biochemical and biophysical approaches to demonstrate that the binding properties of S. solfataricus SSB are essentially identical for ssDNA and ssRNA. These features may represent an adaptation to a hyperthermophilic lifestyle, where DNA and RNA damage is a more frequent event.

  14. Plasmodium falciparum AMA-1 erythrocyte binding peptides implicate AMA-1 as erythrocyte binding protein.

    PubMed

    Urquiza, M; Suarez, J E; Cardenas, C; Lopez, R; Puentes, A; Chavez, F; Calvo, J C; Patarroyo, M E

    2000-10-15

    The role of AMA-1 during merozoite invasion has not yet been determined. However, reported experimental evidence suggests that this protein can be used, in particular as erythrocyte-binding protein, since, Fab fragments against this protein are able to block merozoite invasion. Using a previously described methodology, eight peptides with high binding activity to human erythrocyte, scattered along the different domains and having around 130 nM affinity constants, were identified in the Plasmodium falciparum AMA-1 protein. Their binding activity was sialic acid independent. Some of these peptides showed homology with the erythrocyte binding domains of one of the apical organelle protein family, MAEBL, identified in rodent malarial parasites. One of these peptides shares amino acid sequence with a previously reported B-cell epitope which induces antibodies to block parasite growth. The critical residues were identified for erythrocyte binding conserved peptides 4313 (DAEVAGTQYRLPSGKCPVFG), 4321 (VVDNWEKVCPRKNLQNAKFG), 4325 (MIKSAFLPTGAFKADRYKSH) and 4337 (WGEEKRASHTTPVLMEKPYY). All conserved peptides were able to block merozoite invasion of new RBC and development, suggesting that these peptides are involved in P. falciparum invasion.

  15. Behind the scenes of vitamin D binding protein: more than vitamin D binding.

    PubMed

    Delanghe, Joris R; Speeckaert, Reinhart; Speeckaert, Marijn M

    2015-10-01

    Although being discovered in 1959, the number of published papers in recent years reveals that vitamin D binding protein (DBP), a member of the albuminoid superfamily, is a hot research topic. Besides the three major phenotypes (DBP1F, DBP1S and DBP2), more than 120 unique variants have been described of this polymorphic protein. The presence of DBP has been demonstrated in different body fluids (serum, urine, breast milk, ascitic fluid, cerebrospinal fluid, saliva and seminal fluid) and organs (brain, heart, lungs, kidneys, placenta, spleen, testes and uterus). Although the major function is binding, solubilization and transport of vitamin D and its metabolites, the name of this glycoprotein hides numerous other important biological functions. In this review, we will focus on the analytical aspects of the determination of DBP and discuss in detail the multifunctional capacity [actin scavenging, binding of fatty acids, chemotaxis, binding of endotoxins, influence on T cell response and influence of vitamin D binding protein-macrophage activating factor (DBP-MAF) on bone metabolism and cancer] of this abundant plasma protein.

  16. The Receptor Binding Domain of Botulinum Neurotoxin Stereotype C Binds Phosphoinositides

    SciTech Connect

    Zhang, Yanfeng; Varnum, Susan M.

    2012-03-01

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known for humans and animals with an extremely low LD50 of {approx} 1 ng/kg. BoNTs generally require a protein and a ganglioside on the cell membrane surface for binding, which is known as a 'dual receptor' mechanism for host intoxication. Recent studies have suggested that in addition to gangliosides, other membrane lipids such as phosphoinositides may be involved in the interactions with the receptor binding domain (HCR) of BoNTs for better membrane penetration. Here, using two independent lipid-binding assays, we tested the interactions of BoNT/C-HCR with lipids in vitro. BoNT/C-HCR was found to bind negatively charged phospholipids, preferentially phosphoinositides. Additional interactions to phosphoinositides may help BoNT/C bind membrane more tightly and transduct signals for subsequent steps of intoxication. Our results provide new insights into the mechanisms of host cell membrane recognition by BoNTs.

  17. Tritium NMR spectroscopy of ligand binding to maltose-binding protein

    SciTech Connect

    Gehring, K.; Williams, P.G.; Pelton, J.G.; Morimoto, H.; Wemmer, D.E. )

    1991-06-04

    Tritium-labeled {alpha}- and {beta}-maltodextrins have been used to study their complexes with maltose-binding protein (MBP), a 40-kDa bacterial protein. Five substrates, from maltose to maltohexaose, were labeled at their reducing ends and their binding studied. Tritium NMR specctroscopy of the labeled sugars showed large upfield chamical shift changes upon binding and strong anomeric specficity. At 10{degrees}C, MBP bound {alpha}-maltose with 2.7 {plus minus} 0.5-fold higher affinity than {beta}-maltose, and, for longer maltodextrins, the ratio of affinities was even larger. The maximum chemical shift change was 2.2 ppm, suggesting that the reducing end of bound {alpha}-maltodextrin makes close contact with an aromatic residue in the MBP-binding site. Experiments with maltotriose (and longer maltodextrins) also revealed the presence of two bound {beta}-maltotriose resonances in rapid exchange. The authors interpret these two resonances as arising from two distinct sugar-protein complexes. In one complex, the {beta}-maltodextrin is bound by its reducing end, and, in the other complex, the {beta}-maltodextrin is bound by the middle glucose residue(s). This interpretation also suggests how MBP is able to bind both linear and circular maltodextrins.

  18. MODELING THE BINDING OF THE METABOLITES OF SOME POLYCYCLIC AROMTIC HYDROCARBONS TO THE LIGAND BINDING DOMAIN OF THE ESTROGEN RECEPTOR

    EPA Science Inventory

    Modeling the binding of the metabolites of some Polycyclic Aromatic Hydrocarbons to the ligand binding domain of the estrogen receptor
    James Rabinowitz, Stephen Little, Katrina Brown, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC; Un...

  19. Multiple allosteric sites are involved in the modulation of insulin-degrading-enzyme activity by somatostatin.

    PubMed

    Tundo, Grazia R; Di Muzio, Elena; Ciaccio, Chiara; Sbardella, Diego; Di Pierro, Donato; Polticelli, Fabio; Coletta, Massimo; Marini, Stefano

    2016-10-01

    Somatostatin is a cyclic peptide, released in the gastrointestinal system and the central nervous system, where it is involved in the regulation of cognitive and sensory functions, motor activity and sleep. It is a substrate of insulin-degrading enzyme (IDE), as well as a modulator of its activity and expression. In the present study, we have investigated the modulatory role of somatostatin on IDE activity at 37 °C and pH 7.3 for various substrates [i.e. insulin, β-amyloid (Aβ)1-40 and bradykinin], aiming to quantitatively characterize the correlation between the specific features of the substrates and the regulatory mechanism. Functional data indicate that somatostatin, in addition to the catalytic site of IDE (being a substrate), is also able to bind to two additional exosites, which play different roles according to the size of the substrate and its binding mode to the IDE catalytic cleft. In particular, one exosite, which displays high affinity for somatostatin, regulates only the interaction of IDE with larger substrates (such as insulin and Aβ1-40 ) in a differing fashion according to their various modes of binding to the enzyme. A second exosite, which is involved in the regulation of enzymatic processing by IDE of all substrates investigated (including a 10-25 amino acid long amyloid-like peptide, bradykinin and somatostatin itself, which had been studied previously), probably acts through the alteration of an 'open-closed' equilibrium.

  20. Coenzyme A Binding to the Aminoglycoside Acetyltransferase (3)-IIIb Increases Conformational Sampling of Antibiotic Binding Site

    SciTech Connect

    Hu, Xiaohu; Norris, Adrianne; Baudry, Jerome Y; Serpersu, Engin H

    2011-01-01

    NMR spectroscopy experiments and molecular dynamics simulations were performed to describe the dynamic properties of the aminoglycoside acetyltransferase (3)-IIIb (AAC) in its apo and coenzyme A (CoASH) bound forms. The {sup 15}N-{sup 1}H HSQC spectra indicate a partial structural change and coupling of the CoASH binding site with another region in the protein upon the CoASH titration into the apo enzyme. Molecular dynamics simulations indicate a significant structural and dynamic variation of the long loop in the antibiotic binding domain in the form of a relatively slow (250 ns), concerted opening motion in the CoASH enzyme complex and that binding of the CoASH increases the structural flexibility of the loop, leading to an interchange between several similar equally populated conformations.

  1. Spatial Analysis and Quantification of the Thermodynamic Driving Forces in Protein-Ligand Binding: Binding Site Variability

    PubMed Central

    Raman, E. Prabhu; MacKerell, Alexander D.

    2015-01-01

    The thermodynamic driving forces behind small molecule-protein binding are still not well understood, including the variability of those forces associated with different types of ligands in different binding pockets. To better understand these phenomena we calculate spatially resolved thermodynamic contributions of the different molecular degrees of freedom for the binding of propane and methanol to multiple pockets on the proteins Factor Xa and p38 MAP kinase. Binding thermodynamics are computed using a statistical thermodynamics based end-point method applied on a canonical ensemble comprising the protein-ligand complexes and the corresponding free states in an explicit solvent environment. Energetic and entropic contributions of water and ligand degrees of freedom computed from the configurational ensemble provides an unprecedented level of detail into the mechanisms of binding. Direct protein-ligand interaction energies play a significant role in both non-polar and polar binding, which is comparable to water reorganization energy. Loss of interactions with water upon binding strongly compensates these contributions leading to relatively small binding enthalpies. For both solutes, the entropy of water reorganization is found to favor binding in agreement with the classical view of the “hydrophobic effect”. Depending on the specifics of the binding pocket, both energy-entropy compensation and reinforcement mechanisms are observed. Notable is the ability to visualize the spatial distribution of the thermodynamic contributions to binding at atomic resolution showing significant differences in the thermodynamic contributions of water to the binding of propane versus methanol. PMID:25625202

  2. Loss of cargo binding in the human myosin VI deafness mutant (R1166X) leads to increased actin filament binding

    PubMed Central

    Arden, Susan D.; Tumbarello, David A.; Butt, Tariq; Kendrick-Jones, John; Buss, Folma

    2016-01-01

    Mutations in myosin VI have been associated with autosomal-recessive (DFNB37) and autosomal-dominant (DFNA22) deafness in humans. Here, we characterise an myosin VI nonsense mutation (R1166X) that was identified in a family with hereditary hearing loss in Pakistan. This mutation leads to the deletion of the C-terminal 120 amino acids of the myosin VI cargo-binding domain, which includes the WWY-binding motif for the adaptor proteins LMTK2, Tom1 as well as Dab2. Interestingly, compromising myosin VI vesicle-binding ability by expressing myosin VI with the R1166X mutation or with single point mutations in the adaptor-binding sites leads to increased F-actin binding of this myosin in vitro and in vivo. As our results highlight the importance of cargo attachment for regulating actin binding to the motor domain, we perform a detailed characterisation of adaptor protein binding and identify single amino acids within myosin VI required for binding to cargo adaptors. We not only show that the adaptor proteins can directly interact with the cargo-binding tail of myosin VI, but our in vitro studies also suggest that multiple adaptor proteins can bind simultaneously to non-overlapping sites in the myosin VI tail. In conclusion, our characterisation of the human myosin VI deafness mutant (R1166X) suggests that defects in cargo binding may leave myosin VI in a primed/activated state with an increased actin-binding ability. PMID:27474411

  3. Analysis of bicarbonate binding to crocodilian hemoglobin.

    PubMed

    Bauer, C; Forster, M; Gros, G; Mosca, A; Perrella, M; Rollema, H S; Vogel, D

    1981-08-25

    Crocodilian hemoglobin has a high intrinsic oxygen affinity but does not react with those organic phosphate esters that normally control the oxygen affinity of blood in higher vertebrates. Instead, its oxygen affinity is greatly lowered by CO2. The present study was undertaken to determine the nature of the CO2 binding to the hemoglobin of a crocodilian species, the Caiman, both qualitatively and quantitatively. The following parameters were measured: (a) carbamino compounds of deoxy- and oxyhemoglobin, (b) the effect of CO2 (at constant pH) on the oxygen affinity of Caiman hemoglobin, (c) total CO2 concentration of hemoglobin solutions at different pH and pCO2 values, and (d) the effect of CO2 on CD spectra of Caiman aquomethemoglobin. An analysis of the results of these measurements revealed that CO2 binding in the form of carbamate was not oxygen-linked and cannot, therefore, mediate the CO2 effect on the oxygen affinity. It was found, however, that 2 mol of bicarbonate can be bound/hemoglobin tetramer and that the association constant of the bicarbonate anion greatly depends upon the state of ligation. At pH 7.02 and 25 degrees C, a numerical value of 2.0 X 10(3) M-1 was obtained for deoxyhemoglobin, while for oxyhemoglobin no significant bicarbonate binding could be observed. At more alkaline pH (pH greater than or equal to 7.5), the association constant for deoxyhemoglobin decreases. Circular dichroism of Caiman aquomethemoglobin decreased considerably in the 287-nm region upon addition of CO2 at constant pH, an effect very similar to the one caused by inositol hexaphosphate in human aquomethemoglobin.

  4. Metal ion binding to iron oxides

    NASA Astrophysics Data System (ADS)

    Ponthieu, M.; Juillot, F.; Hiemstra, T.; van Riemsdijk, W. H.; Benedetti, M. F.

    2006-06-01

    The biogeochemistry of trace elements (TE) is largely dependent upon their interaction with heterogeneous ligands including metal oxides and hydrous oxides of iron. The modeling of TE interactions with iron oxides has been pursued using a variety of chemical models. The objective of this work is to show that it is possible to model the adsorption of protons and TE on a crystallized oxide (i.e., goethite) and on an amorphous oxide (HFO) in an identical way. Here, we use the CD-MUSIC approach in combination with valuable and reliable surface spectroscopy information about the nature of surface complexes of the TE. The other objective of this work is to obtain generic parameters to describe the binding of the following elements (Cd, Co, Cu, Ni, Pb, and Zn) onto both iron oxides for the CD-MUSIC approach. The results show that a consistent description of proton and metal ion binding is possible for goethite and HFO with the same set of model parameters. In general a good prediction of almost all the collected experimental data sets corresponding to metal ion binding to HFO is obtained. Moreover, dominant surface species are in agreement with the recently published surface complexes derived from X-ray absorption spectroscopy (XAS) data. Until more detailed information on the structure of the two iron oxides is available, the present option seems a reasonable approximation and can be used to describe complex geochemical systems. To improve our understanding and modeling of multi-component systems we need more data obtained at much lower metal ion to iron oxide ratios in order to be able to account eventually for sites that are not always characterized in spectroscopic studies.

  5. Pharmacological characterization of actin-binding (-)-doliculide.

    PubMed

    Foerster, Florian; Braig, Simone; Chen, Tao; Altmann, Karl-Heinz; Vollmar, Angelika M

    2014-09-15

    Natural compounds offer a broad spectrum of potential drug candidates against human malignancies. Several cytostatic drugs, which are in clinical use for decades, derive directly from natural sources or are synthetically optimized derivatives of natural lead structures. An eukaryote target molecule to which many natural derived anti-cancer drugs bind to is the microtubule network. Of similar importance for the cell is the actin cytoskeleton, responsible for cell movements, migration of cells and cytokinesis. Nature provides also a broad range of compounds directed against actin as intracellular target, but none of these actin-targeting compounds has ever been brought to clinical trials. One reason why actin-binding compounds have not yet been considered for further clinical investigations is that little is known about their pharmacological properties in cancer cells. Herein, we focused on the closer characterization of doliculide, an actin binding natural compound of marine origin in the breast cancer cell lines MCF7 and MDA-MB-231. We used fluorescence-recovery-after-photobleaching (FRAP) analysis to determine doliculide's early effects on the actin cytoskeleton and rhodamin-phalloidin staining for long-term effects on the actin CSK. After validating the disruption of the actin network, we further investigated the functional effects of doliculide. Doliculide treatment leads to inhibition of proliferation and impairs the migratory potential. Finally, we could also show that doliculide leads to the induction of apoptosis in both cell lines. Our data for the first time provide a closer characterization of doliculide in breast cancer cells and propagate doliculide for further investigations as lead structure and potential therapeutic option as actin-targeting compound.

  6. Polyamine analogues bind human serum albumin.

    PubMed

    Beauchemin, R; N'soukpoé-Kossi, C N; Thomas, T J; Thomas, T; Carpentier, R; Tajmir-Riahi, H A

    2007-10-01

    Polyamine analogues show antitumor activity in experimental models, and their ability to alter activity of cytotoxic chemotherapeutic agents in breast cancer is well documented. Association of polyamines with nucleic acids and protein is included in their mechanism of action. The aim of this study was to examine the interaction of human serum albumin (HSA) with several polyamine analogues, such as 1,11-diamino-4,8-diazaundecane (333), 3,7,11,15-tetrazaheptadecane.4HCl (BE-333), and 3,7,11,15,19-pentazahenicosane.5HCl (BE-3333), in aqueous solution at physiological conditions using a constant protein concentration and various polyamine contents (microM to mM). FTIR, UV-visible, and CD spectroscopic methods were used to determine the polyamine binding mode and the effects of polyamine complexation on protein stability and secondary structure. Structural analysis showed that polyamines bind nonspecifically (H-bonding) via polypeptide polar groups with binding constants of K333 = 9.30 x 10(3) M(-1), KBE-333 = 5.63 x 10(2) M(-1), and KBE-3333 = 3.66 x 10(2) M(-1). The protein secondary structure showed major alterations with a reduction of alpha-helix from 55% (free protein) to 43-50% and an increase of beta-sheet from 17% (free protein) to 29-36% in the 333, BE-333, and BE-3333 complexes, indicating partial protein unfolding upon polyamine interaction. HSA structure was less perturbed by polyamine analogues compared to those of the biogenic polyamines.

  7. Antioxidant flavonoids bind human serum albumin

    NASA Astrophysics Data System (ADS)

    Kanakis, C. D.; Tarantilis, P. A.; Polissiou, M. G.; Diamantoglou, S.; Tajmir-Riahi, H. A.

    2006-10-01

    Human serum albumin (HSA) is a principal extracellular protein with a high concentration in blood plasma and carrier for many drugs to different molecular targets. Flavonoids are powerful antioxidants and prevent DNA damage. The antioxidative protections are related to their binding modes to DNA duplex and complexation with free radicals in vivo. However, flavonoids are known to inhibit the activities of several enzymes such as calcium phospholipid-dependent protein kinase, tyrosine protein kinase from rat lung, phosphorylase kinase, phosphatidylinositol 3-kinase and DNA topoisomerases that exhibit the importance of flavonoid-protein interaction. This study was designed to examine the interaction of human serum albumin (HSA) with quercetin (que), kaempferol (kae) and delphinidin (del) in aqueous solution at physiological conditions, using constant protein concentration of 0.25 mM (final) and various drug contents of 1 μM-1 mM. FTIR and UV-vis spectroscopic methods were used to determine the polyphenolic binding mode, the binding constant and the effects of flavonoid complexation on protein secondary structure. The spectroscopic results showed that flavonoids are located along the polypeptide chains through H-bonding interactions with overall affinity constant of Kque = 1.4 × 10 4 M -1, Kkae = 2.6 × 10 5 M -1 and Kdel = 4.71 × 10 5 M -1. The protein secondary structure showed no alterations at low pigment concentration (1 μM), whereas at high flavonoid content (1 mM), major reduction of α-helix from 55% (free HSA) to 42-46% and increase of β-sheet from 15% (free HSA) to 17-19% and β-anti from 7% (free HSA) to 10-20% occurred in the flavonoid-HSA adducts. The major reduction of HSA α-helix is indicative of a partial protein unfolding upon flavonoid interaction.

  8. Cooperative binding of Ets-1 and core binding factor to DNA.

    PubMed Central

    Wotton, D; Ghysdael, J; Wang, S; Speck, N A; Owen, M J

    1994-01-01

    Two phorbol ester-inducible elements (beta E2 and beta E3) within the human T-cell receptor beta gene enhancer each contain consensus binding sites for the Ets and core binding factor (CBF) transcription factor families. Recombinant Ets-1 and purified CBF bound individually to beta E2 and beta E3, in which the Ets and core sites are directly adjacent. In this report, we show that CBF and Ets-1 bind together to beta E2 and beta E3 and that Ets-1-CBF-DNA complexes are favored over the binding of either protein alone to beta E2. Formation of Ets-1-CBF-DNA complexes increased the affinity of Ets-1-DNA interactions and decreased the rate of dissociation of CBF from DNA. Ets-1-CBF-DNA complexes were not observed when either the Ets or core site was mutated. The spatial requirements for the cooperative interaction of Ets-1 and CBF were analyzed by oligonucleotide mutagenesis and binding site selection experiments. Core and Ets sites were coselected, and there appeared to be little constraint on the relative orientation and spacing of the two sites. These results demonstrate that CBF and Ets-1 form a high-affinity DNA-binding complex when both of their cognate sites are present and that the relative spacing and orientation of the two sites are unimportant. Ets and core sites are found in several T-cell-specific enhancers, suggesting that this interaction is of general importance in T-cell-specific transcription. Images PMID:8264651

  9. Calcium binding to Procambarus clarkii sarcoplasmic calcium binding protein splice variants.

    PubMed

    E Rohrback, Suzanne; Wheatly, Michele G; Gillen, Christopher M

    2015-01-01

    Sarcoplasmic calcium binding protein (SCP) is a high-affinity calcium buffering protein expressed in muscle of crayfish and other invertebrates. In previous work, we identified three splice variants of Procambarus clarkii SCP (pcSCP1a, pcSCP1b, and pcSCP1c) that differ in a 37 amino acid region that lies mainly between the 2nd and 3ed EF-hand calcium binding domain. To evaluate the function of the proteins encoded by the pcSCP1 transcripts, we produced recombinant pcSCP1 and used tryptophan fluorescence to characterize calcium binding. Tryptophan fluorescence of pcSCP1a decreased in response to increased calcium, while tryptophan fluorescence of the pcSCP1b and pcSCP1c variants increased. We estimated calcium binding constants and Hill coefficients with two different equations: the standard Hill equation and a modified Hill equation that accounts for contributions from two different tryptophans. The approaches gave similar results. Steady-state calcium binding constants (Kd) ranged from 2.7±0.7×10(-8)M to 5.6±0.1×10(-7)M, consistent with previous work. Variants displayed significantly different apparent calcium affinities, which were decreased in the presence of magnesium. Calcium Kd was lowest for pcSCP1a and highest for pcSCP1c. Site-directed mutagenesis of pcSCP1c residues to the amino acids of pcSCP1b decreased the calcium Kd, identifying residues outside the EF-hand domains that contribute to calcium binding in crayfish SCP.

  10. E2F in vivo binding specificity: Comparison of consensus versus nonconsensus binding sites

    PubMed Central

    Rabinovich, Alina; Jin, Victor X.; Rabinovich, Roman; Xu, Xiaoqin; Farnham, Peggy J.

    2008-01-01

    We have previously shown that most sites bound by E2F family members in vivo do not contain E2F consensus motifs. However, differences between in vivo target sites that contain or lack a consensus E2F motif have not been explored. To understand how E2F binding specificity is achieved in vivo, we have addressed how E2F family members are recruited to core promoter regions that lack a consensus motif and are excluded from other regions that contain a consensus motif. Using chromatin immunoprecipitation coupled with DNA microarray analysis (ChIP-chip) assays, we have shown that the predominant factors specifying whether E2F is recruited to an in vivo binding site are (1) the site must be in a core promoter and (2) the region must be utilized as a promoter in that cell type. We have tested three models for recruitment of E2F to core promoters lacking a consensus site, including (1) indirect recruitment, (2) looping to the core promoter mediated by an E2F bound to a distal motif, and (3) assisted binding of E2F to a site that weakly resembles an E2F motif. To test these models, we developed a new in vivo assay, termed eChIP, which allows analysis of transcription factor binding to isolated fragments. Our findings suggest that in vivo (1) a consensus motif is not sufficient to recruit E2Fs, (2) E2Fs can bind to isolated regions that lack a consensus motif, and (3) binding can require regions other than the best match to the E2F motif. PMID:18836037

  11. Characterization of the cellulose-binding domain of the Clostridium cellulovorans cellulose-binding protein A.

    PubMed Central

    Goldstein, M A; Takagi, M; Hashida, S; Shoseyov, O; Doi, R H; Segel, I H

    1993-01-01

    Cellulose-binding protein A (CbpA), a component of the cellulase complex of Clostridium cellulovorans, contains a unique sequence which has been demonstrated to be a cellulose-binding domain (CBD). The DNA coding for this putative CBD was subcloned into pET-8c, an Escherichia coli expression vector. The protein produced under the direction of the recombinant plasmid, pET-CBD, had a high affinity for crystalline cellulose. Affinity-purified CBD protein was used in equilibrium binding experiments to characterize the interaction of the protein with various polysaccharides. It was found that the binding capacity of highly crystalline cellulose samples (e.g., cotton) was greater than that of samples of low crystallinity (e.g., fibrous cellulose). At saturating CBD concentration, about 6.4 mumol of protein was bound by 1 g of cotton. Under the same conditions, fibrous cellulose bound only 0.2 mumol of CBD per g. The measured dissociation constant was in the 1 microM range for all cellulose samples. The results suggest that the CBD binds specifically to crystalline cellulose. Chitin, which has a crystal structure similar to that of cellulose, also was bound by the CBD. The presence of high levels of cellobiose or carboxymethyl cellulose in the assay mixture had no effect on the binding of CBD protein to crystalline cellulose. This result suggests that the CBD recognition site is larger than a simple cellobiose unit or more complex than a repeating cellobiose moiety. This CBD is of particular interest because it is the first CBD from a completely sequenced nonenzymatic protein shown to be an independently functional domain. Images PMID:8376323

  12. Disulfide bridge regulates ligand-binding site selectivity in liver bile acid-binding proteins.

    PubMed

    Cogliati, Clelia; Tomaselli, Simona; Assfalg, Michael; Pedò, Massimo; Ferranti, Pasquale; Zetta, Lucia; Molinari, Henriette; Ragona, Laura

    2009-10-01

    Bile acid-binding proteins (BABPs) are cytosolic lipid chaperones that play central roles in driving bile flow, as well as in the adaptation to various pathological conditions, contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Understanding the mode of binding of bile acids with their cytoplasmic transporters is a key issue in providing a model for the mechanism of their transfer from the cytoplasm to the nucleus, for delivery to nuclear receptors. A number of factors have been shown to modulate bile salt selectivity, stoichiometry, and affinity of binding to BABPs, e.g. chemistry of the ligand, protein plasticity and, possibly, the formation of disulfide bridges. Here, the effects of the presence of a naturally occurring disulfide bridge on liver BABP ligand-binding properties and backbone dynamics have been investigated by NMR. Interestingly, the disulfide bridge does not modify the protein-binding stoichiometry, but has a key role in modulating recognition at both sites, inducing site selectivity for glycocholic and glycochenodeoxycholic acid. Protein conformational changes following the introduction of a disulfide bridge are small and located around the inner binding site, whereas significant changes in backbone motions are observed for several residues distributed over the entire protein, both in the apo form and in the holo form. Site selectivity appears, therefore, to be dependent on protein mobility rather than being governed by steric factors. The detected properties further establish a parallelism with the behaviour of human ileal BABP, substantiating the proposal that BABPs have parallel functions in hepatocytes and enterocytes.

  13. Protein-Binding RNA Aptamers Affect Molecular Interactions Distantly from Their Binding Sites

    PubMed Central

    Dupont, Daniel M.; Thuesen, Cathrine K.; Bøtkjær, Kenneth A.; Behrens, Manja A.; Dam, Karen; Sørensen, Hans P.; Pedersen, Jan S.; Ploug, Michael; Jensen, Jan K.; Andreasen, Peter A.

    2015-01-01

    Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless, there are only a few studies on the molecular basis underlying aptamer-protease interactions and the associated mechanisms of inhibition. In the present study, we use site-directed mutagenesis to delineate the binding sites of two 2´-fluoropyrimidine RNA aptamers (upanap-12 and upanap-126) with therapeutic potential, both binding to the serine protease urokinase-type plasminogen activator (uPA). We determine the subsequent impact of aptamer binding on the well-established molecular interactions (plasmin, PAI-1, uPAR, and LRP-1A) controlling uPA activities. One of the aptamers (upanap-126) binds to the area around the C-terminal α-helix in pro-uPA, while the other aptamer (upanap-12) binds to both the β-hairpin of the growth factor domain and the kringle domain of uPA. Based on the mapping studies, combined with data from small-angle X-ray scattering analysis, we construct a model for the upanap-12:pro-uPA complex. The results suggest and highlight that the size and shape of an aptamer as well as the domain organization of a multi-domain protein such as uPA, may provide the basis for extensive sterical interference with protein ligand interactions considered distant from the aptamer binding site. PMID:25793507

  14. Glycan Masking of Plasmodium vivax Duffy Binding Protein for Probing Protein Binding Function and Vaccine Development

    PubMed Central

    Janes, Joel; Gurumoorthy, Sairam; Gibson, Claire; Melcher, Martin; Chitnis, Chetan E.; Wang, Ruobing; Schief, William R.; Smith, Joseph D.

    2013-01-01

    Glycan masking is an emerging vaccine design strategy to focus antibody responses to specific epitopes, but it has mostly been evaluated on the already heavily glycosylated HIV gp120 envelope glycoprotein. Here this approach was used to investigate the binding interaction of Plasmodium vivax Duffy Binding Protein (PvDBP) and the Duffy Antigen Receptor for Chemokines (DARC) and to evaluate if glycan-masked PvDBPII immunogens would focus the antibody response on key interaction surfaces. Four variants of PVDBPII were generated and probed for function and immunogenicity. Whereas two PvDBPII glycosylation variants with increased glycan surface coverage distant from predicted interaction sites had equivalent binding activity to wild-type protein, one of them elicited slightly better DARC-binding-inhibitory activity than wild-type immunogen. Conversely, the addition of an N-glycosylation site adjacent to a predicted PvDBP interaction site both abolished its interaction with DARC and resulted in weaker inhibitory antibody responses. PvDBP is composed of three subdomains and is thought to function as a dimer; a meta-analysis of published PvDBP mutants and the new DBPII glycosylation variants indicates that critical DARC binding residues are concentrated at the dimer interface and along a relatively flat surface spanning portions of two subdomains. Our findings suggest that DARC-binding-inhibitory antibody epitope(s) lie close to the predicted DARC interaction site, and that addition of N-glycan sites distant from this site may augment inhibitory antibodies. Thus, glycan resurfacing is an attractive and feasible tool to investigate protein structure-function, and glycan-masked PvDBPII immunogens might contribute to P. vivax vaccine development. PMID:23853575

  15. Mechanisms for Binding between Methylene Blue and DNA

    NASA Astrophysics Data System (ADS)

    Vardevanyan, P. O.; Antonyan, A. P.; Parsadanyan, M. A.; Shahinyan, M. A.; Hambardzumyan, L. A.

    2013-09-01

    We have used absorption and fl uorimetric methods to study the interaction between methylene blue (MB) and calfthymus DNA. Based on Scatchard analysis of the experimental data, we plotted the methylene blue-DNA binding curve. This curve consists of two linear sections, which indicates two types of interaction, for which we determined the constants K and the number of binding sites n for binding of this ligand to DNA. Comparison of the data obtained with analogous values found for interaction between ethidium bromide and DNA allowed us to conclude that there are two modes of interaction between methylene blue and DNA: strong binding (semi-intercalation) and weak binding (electrostatic).

  16. Type II oestrogen binding sites in human colorectal carcinoma.

    PubMed Central

    Piantelli, M; Ricci, R; Larocca, L M; Rinelli, A; Capelli, A; Rizzo, S; Scambia, G; Ranelletti, F O

    1990-01-01

    Seven cases of colorectal adenocarcinomas were investigated for the presence of oestrogen receptors and progesterone receptors. The tumours specifically bound oestradiol. This binding almost exclusively resulted from the presence of high numbers of type II oestrogen binding sites. Oestrogen receptors were absent or present at very low concentrations. Immunohistochemical investigation of nuclear oestrogen receptors gave negative results. This indicates that antioestrogen receptor antibodies recognise oestrogen receptors but not type II oestrogen binding sites. The presence of specific type II oestrogen binding sites and progesterone binding offers further evidence for a potential role for these steroids and their receptors in colorectal carcinoma. PMID:2266171

  17. Dual chain synthetic heparin-binding growth factor analogs

    DOEpatents

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua

    2009-10-06

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  18. Dual chain synthetic heparin-binding growth factor analogs

    DOEpatents

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY

    2012-04-24

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  19. Ionic binding properties of carrier ampholytes

    NASA Technical Reports Server (NTRS)

    Rodkey, L. Scott

    1988-01-01

    Radioactive ampholytes were synthesized with specific activity of 638 microCi/g. These were used in studies of ampholyte binding to target proteins under nonionic conditions. These radioactive ampholytes bound to target proteins but were dissociable in sodium chloride solutions with dissociation occurring in a concentration dependent way. The ampholytes could be dissociated from target molecules using excess unlabelled ampholytes synthesized in the laboratory as well as commercial ampholytes. Radioactive ampholytes were bound to target proteins with different isoelectric points, and the bound ampholytes were eluted and analyzed by recycling isoelectric focusing. The results showed that acidic proteins bound basic ampholytes and basic proteins bound acidic ampholytes.

  20. Gene encoding herbicide safener binding protein

    SciTech Connect

    Walton, Jonathan D.; Scott-Craig, John S.

    1999-01-01

    The cDNA encoding safener binding protein (SafBP), also referred to as SBP1, is set forth in FIG. 5 and SEQ ID No. 1. The deduced amino acid sequence is provided in FIG. 5 and SEQ ID No. 2. Methods of making and using SBP1 and SafBP to alter a plant's sensitivity to certain herbicides or a plant's responsiveness to certain safeners are also provided, as well as expression vectors, transgenic plants or other organisms transfected with said vectors and seeds from said plants.

  1. Polynucleotides encoding TRF1 binding proteins

    DOEpatents

    Campisi, Judith; Kim, Sahn-Ho

    2002-01-01

    The present invention provides a novel telomere associated protein (Trf1-interacting nuclear protein 2 "Tin2") that hinders the binding of Trf1 to its specific telomere repeat sequence and mediates the formation of a Tin2-Trf1-telomeric DNA complex that limits telomerase access to the telomere. Also included are the corresponding nucleic acids that encode the Tin2 of the present invention, as well as mutants of Tin2. Methods of making, purifying and using Tin2 of the present invention are described. In addition, drug screening assays to identify drugs that mimic and/or complement the effect of Tin2 are presented.

  2. Collective binding properties of receptor arrays.

    PubMed

    Agmon, N; Edelstein, A L

    1997-04-01

    Binding kinetics of receptor arrays can differ dramatically from that of the isolated receptor. We simulate synaptic transmission using a microscopically accurate Brownian dynamics routine. We study the factors governing the rise and decay of the activation probability as a function of the number of transmitter molecules released. Using a realistic receptor array geometry, the simulation reproduces the time course of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-mediated excitatory postsynaptic currents. A consistent interpretation of experimentally observed synaptic currents in terms of rebinding and spatial correlations is discussed.

  3. Binding of germanium of Pseudomonas putida cells

    SciTech Connect

    Klapcinska, B.; Chmielowski, J.

    1986-05-01

    The binding of germanium to Pseudomonas putida ATCC 33015 was investigated by using whole intact cells grown in a medium supplemented with GeO/sub 2/ and catechol or acetate. Electron-microscopic examination of the control and metal-loaded samples revealed that germanium was bound within the cell envelope. A certain number of small electron-dense deposits of the bound element were found in the cytoplasm when the cells were grown in the presence of GeO/sub 2/ and catechol. The study of germanium distribution in cellular fractions revealed that catechol facilitated the intracellular accumulation of this element.

  4. Characterization of the DNA binding properties of polyomavirus capsid protein

    NASA Technical Reports Server (NTRS)

    Chang, D.; Cai, X.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The DNA binding properties of the polyomavirus structural proteins VP1, VP2, and VP3 were studied by Southwestern analysis. The major viral structural protein VP1 and host-contributed histone proteins of polyomavirus virions were shown to exhibit DNA binding activity, but the minor capsid proteins VP2 and VP3 failed to bind DNA. The N-terminal first five amino acids (Ala-1 to Lys-5) were identified as the VP1 DNA binding domain by genetic and biochemical approaches. Wild-type VP1 expressed in Escherichia coli (RK1448) exhibited DNA binding activity, but the N-terminal truncated VP1 mutants (lacking Ala-1 to Lys-5 and Ala-1 to Cys-11) failed to bind DNA. The synthetic peptide (Ala-1 to Cys-11) was also shown to have an affinity for DNA binding. Site-directed mutagenesis of the VP1 gene showed that the point mutations at Pro-2, Lys-3, and Arg-4 on the VP1 molecule did not affect DNA binding properties but that the point mutation at Lys-5 drastically reduced DNA binding affinity. The N-terminal (Ala-1 to Lys-5) region of VP1 was found to be essential and specific for DNA binding, while the DNA appears to be non-sequence specific. The DNA binding domain and the nuclear localization signal are located in the same N-terminal region.

  5. RNA recognition by the DNA end-binding Ku heterodimer.

    PubMed

    Dalby, Andrew B; Goodrich, Karen J; Pfingsten, Jennifer S; Cech, Thomas R

    2013-06-01

    Most nucleic acid-binding proteins selectively bind either DNA or RNA, but not both nucleic acids. The Saccharomyces cerevisiae Ku heterodimer is unusual in that it has two very different biologically relevant binding modes: (1) Ku is a sequence-nonspecific double-stranded DNA end-binding protein with prominent roles in nonhomologous end-joining and telomeric capping, and (2) Ku associates with a specific stem-loop of TLC1, the RNA subunit of budding yeast telomerase, and is necessary for proper nuclear localization of this ribonucleoprotein enzyme. TLC1 RNA-binding and dsDNA-binding are mutually exclusive, so they may be mediated by the same site on Ku. Although dsDNA binding by Ku is well studied, much less is known about what features of an RNA hairpin enable specific recognition by Ku. To address this question, we localized the Ku-binding site of the TLC1 hairpin with single-nucleotide resolution using phosphorothioate footprinting, used chemical modification to identify an unpredicted motif within the hairpin secondary structure, and carried out mutagenesis of the stem-loop to ascertain the critical elements within the RNA that permit Ku binding. Finally, we provide evidence that the Ku-binding site is present in additional budding yeast telomerase RNAs and discuss the possibility that RNA binding is a conserved function of the Ku heterodimer.

  6. Biophysical characterization of DNA binding from single molecule force measurements

    NASA Astrophysics Data System (ADS)

    Chaurasiya, Kathy R.; Paramanathan, Thayaparan; McCauley, Micah J.; Williams, Mark C.

    2010-09-01

    Single molecule force spectroscopy is a powerful method that uses the mechanical properties of DNA to explore DNA interactions. Here we describe how DNA stretching experiments quantitatively characterize the DNA binding of small molecules and proteins. Small molecules exhibit diverse DNA binding modes, including binding into the major and minor grooves and intercalation between base pairs of double-stranded DNA (dsDNA). Histones bind and package dsDNA, while other nuclear proteins such as high mobility group proteins bind to the backbone and bend dsDNA. Single-stranded DNA (ssDNA) binding proteins slide along dsDNA to locate and stabilize ssDNA during replication. Other proteins exhibit binding to both dsDNA and ssDNA. Nucleic acid chaperone proteins can switch rapidly between dsDNA and ssDNA binding modes, while DNA polymerases bind both forms of DNA with high affinity at distinct binding sites at the replication fork. Single molecule force measurements quantitatively characterize these DNA binding mechanisms, elucidating small molecule interactions and protein function.

  7. Biophysical characterization of DNA binding from single molecule force measurements

    PubMed Central

    Chaurasiya, Kathy R.; Paramanathan, Thayaparan; McCauley, Micah J.; Williams, Mark C.

    2010-01-01

    Single molecule force spectroscopy is a powerful method that uses the mechanical properties of DNA to explore DNA interactions. Here we describe how DNA stretching experiments quantitatively characterize the DNA binding of small molecules and proteins. Small molecules exhibit diverse DNA binding modes, including binding into the major and minor grooves and intercalation between base pairs of double-stranded DNA (dsDNA). Histones bind and package dsDNA, while other nuclear proteins such as high mobility group proteins bind to the backbone and bend dsDNA. Single-stranded DNA (ssDNA) binding proteins slide along dsDNA to locate and stabilize ssDNA during replication. Other proteins exhibit binding to both dsDNA and ssDNA. Nucleic acid chaperone proteins can switch rapidly between dsDNA and ssDNA binding modes, while DNA polymerases bind both forms of DNA with high affinity at distinct binding sites at the replication fork. Single molecule force measurements quantitatively characterize these DNA binding mechanisms, elucidating small molecule interactions and protein function. PMID:20576476

  8. Specific albumin binding to microvascular endothelium in culture

    SciTech Connect

    Schnitzer, J.E.; Carley, W.W.; Palade, G.E. )

    1988-03-01

    The specific binding of rat serum albumin (RSA) to confluent microvascular endothelial cells in culture derived from the vasculature of the rat epididymal fat pad was studied at 4{degree}C by radioassay and immunocytochemistry. Radioiodinated RSA ({sup 125}I-RSA) binding to the cells reached equilibrium at {approximately} 20 min incubation. Albumin binding was a slowly saturating function over concentrations ranging from 0.01 to 50 mg/ml. Specific RSA binding with a moderate apparent affinity constant of 1.0 mg/ml and with a maximum binding concentration of 90 ng/cm{sup 2} was immunolocalized with anti-RSA antibody to the outer (free) side of the enothelium. Scatchard analysis of the binding yielded a nonlinear binding curve with a concave-upward shape. Dissociation rate analysis supports negative cooperativity of albumin binding, but multiple binding sites may also be present. Albumin binding fulfilled many requirements for ligand specificity including saturability, reversibility, competibility, and dependence on both cell type and cell number. The results are discussed in terms of past in situ investigations on the localization of albumin binding to vascular endothelium and its effect on transendothelial molecular transport.

  9. RNA recognition by the DNA end-binding Ku heterodimer

    PubMed Central

    Dalby, Andrew B.; Goodrich, Karen J.; Pfingsten, Jennifer S.; Cech, Thomas R.

    2013-01-01

    Most nucleic acid-binding proteins selectively bind either DNA or RNA, but not both nucleic acids. The Saccharomyces cerevisiae Ku heterodimer is unusual in that it has two very different biologically relevant binding modes: (1) Ku is a sequence-nonspecific double-stranded DNA end-binding protein with prominent roles in nonhomologous end-joining and telomeric capping, and (2) Ku associates with a specific stem–loop of TLC1, the RNA subunit of budding yeast telomerase, and is necessary for proper nuclear localization of this ribonucleoprotein enzyme. TLC1 RNA-binding and dsDNA-binding are mutually exclusive, so they may be mediated by the same site on Ku. Although dsDNA binding by Ku is well studied, much less is known about what features of an RNA hairpin enable specific recognition by Ku. To address this question, we localized the Ku-binding site of the TLC1 hairpin with single-nucleotide resolution using phosphorothioate footprinting, used chemical modification to identify an unpredicted motif within the hairpin secondary structure, and carried out mutagenesis of the stem–loop to ascertain the critical elements within the RNA that permit Ku binding. Finally, we provide evidence that the Ku-binding site is present in additional budding yeast telomerase RNAs and discuss the possibility that RNA binding is a conserved function of the Ku heterodimer. PMID:23610127

  10. Retroactivity effects dependency on the transcription factors binding mechanisms.

    PubMed

    Pantoja-Hernández, Libertad; Álvarez-Buylla, Elena; Aguilar-Ibáñez, Carlos F; Garay-Arroyo, Adriana; Soria-López, Alberto; Martínez-García, Juan Carlos

    2016-12-07

    Downstream connection effects on transcription are caused by retroactivity. When biomolecular dynamical systems interconnect retroactivity is a property that becomes important. The biological functional meaning of these effects is increasingly becoming an area of interest. Downstream targets, which are operator binding sites in transcriptional networks, may induce behaviors such as ultrasensitive responses or even represent an undesired issue in regulation. To the best of our knowledge, the role of the binding mechanisms of transcription factors in relation to minimizing - or enhancing - retroactivity effects has not been previously addressed. Our aim is to evaluate retroactivity effects considering how the binding mechanism impacts the number of free functional transcription factor (FFTF) molecules using a simple model via deterministic and stochastic simulations. We study four transcription factor binding mechanisms (BM): simple monomer binding (SMB), dimer binding (DB), cooperative sequential binding (CSB) and cooperative sequential binding with dimerization (CSB_D). We consider weak and strong binding regimes for each mechanism, where we contrast the cases when the FFTF is bound or unbound to the downstream loads. Upon interconnection, the number of FFTF molecules changed less for the SMB mechanism while for DB they changed the most. Our results show that for the chosen mechanisms (in terms of the corresponding described dynamics), retroactivity effects depend on transcription binding mechanisms. This contributes to the understanding of how the transcription factor regulatory function-such as decision making-and its dynamic needs for the response, may determine the nature of the selected binding mechanism.

  11. Synthetic actin-binding domains reveal compositional constraints for function.

    PubMed

    Lorenzi, Maria; Gimona, Mario

    2008-01-01

    The actin-binding domains of many proteins consist of a canonical type 1/type 2 arrangement of the structurally conserved calponin homology domain. Using the actin-binding domain of alpha-actinin-1 as a scaffold we have generated synthetic actin-binding domains by altering position and composition of the calponin homology domains. We show that the presence of two calponin homology domains alone and in the context of an actin-binding domain is not sufficient for actin-binding, and that both single and homotypic type 2 calponin homology domain tandems fail to bind to actin in vitro and in transfected cells. In contrast, single and tandem type 1 calponin homology domain arrays bind actin directly but result in defective turnover rates on actin filaments, and in aberrant actin bundling when introduced into the full-length alpha-actinin molecule. An actin-binding domain harboring the calponin homology domains in an inverted position, however, functions both in isolation and in the context of the dimeric alpha-actinin molecule. Our data demonstrate that the dynamics and specificity of actin-binding via actin-binding domains requires both the filament binding properties of the type 1, and regulation by type 2 calponin homology domains, and appear independent of their position.

  12. Autoradiographic localization of endothelin-1 binding sites in porcine skin

    SciTech Connect

    Zhao, Y.D.; Springall, D.R.; Wharton, J.; Polak, J.M. )

    1991-01-01

    Autoradiographic techniques and {sup 125}I-labeled endothelin-1 were used to study the distribution of endothelin-1 binding sites in porcine skin. Specific endothelin-1 binding sites were localized to blood vessels (capillaries, deep cutaneous vascular plexus, arteries, and arterioles), the deep dermal and connective tissue sheath of hair follicles, sebaceous and sweat glands, and arrector pili muscle. Specific binding was inhibited by endothelin-2 and endothelin-3 as well as endothelin-1. Non-specific binding was found in the epidermis and the medulla of hair follicles. No binding was found in connective tissue or fat. These vascular binding sites may represent endothelin receptors, in keeping with the known cutaneous vasoconstrictor actions of the peptide. If all binding sites are receptors, the results suggest that endothelin could also regulate the function of sweat glands and may have trophic effects in the skin.

  13. Cooperative binding modes of Cu(II) in prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Chisnell, Robin; Lu, Wenchang; Bernholc, Jerry

    2007-03-01

    The misfolding of the prion protein, PrP, is responsible for a group of neurodegenerative diseases including mad cow disease and Creutzfeldt-Jakob disease. It is known that the PrP can efficiently bind copper ions; four high-affinity binding sites located in the octarepeat region of PrP are now well known. Recent experiments suggest that at low copper concentrations new binding modes, in which one copper ion is shared between two or more binding sites, are possible. Using our hybrid Thomas-Fermi/DFT computational scheme, which is well suited for simulations of biomolecules in solution, we investigate the geometries and energetics of two, three and four binding sites cooperatively binding one copper ion. These geometries are then used as inputs for classical molecular dynamics simulations. We find that copper binding affects the secondary structure of the PrP and that it stabilizes the unstructured (unfolded) part of the protein.

  14. Structure-function relationship of monocot mannose-binding lectins.

    PubMed Central

    Barre, A; Van Damme, E J; Peumans, W J; Rougé, P

    1996-01-01

    The monocot mannose-binding lectins are an extended superfamily of structurally and evolutionarily related proteins, which until now have been isolated from species of the Amaryllidaceae, Alliaceae, Araceae, Orchidaceae, and Liliaceae. To explain the obvious differences in biological activities, the structure-function relationships of the monocot mannose-binding lectins were studied by a combination of glycan-binding studies and molecular modeling using the deduced amino acid sequences of the currently known lectins. Molecular modeling indicated that the number of active mannose-binding sites per monomer varies between three and zero. Since the number of binding sites is fairly well correlated with the binding activity measured by surface plasmon resonance, and is also in good agreement with the results of previous studies of the biological activities of the mannose-binding lectins, molecular modeling is of great value for predicting which lectins are best suited for a particular application. PMID:8972598

  15. Structural Analysis of Botulinum Neurotoxin Type G Receptor Binding

    SciTech Connect

    Schmitt, John; Karalewitz, Andrew; Benefield, Desire A.; Mushrush, Darren J.; Pruitt, Rory N.; Spiller, Benjamin W.; Barbieri, Joseph T.; Lacy, D. Borden

    2010-10-19

    Botulinum neurotoxin (BoNT) binds peripheral neurons at the neuromuscular junction through a dual-receptor mechanism that includes interactions with ganglioside and protein receptors. The receptor identities vary depending on BoNT serotype (A-G). BoNT/B and BoNT/G bind the luminal domains of synaptotagmin I and II, homologous synaptic vesicle proteins. We observe conditions under which BoNT/B binds both Syt isoforms, but BoNT/G binds only SytI. Both serotypes bind ganglioside G{sub T1b}. The BoNT/G receptor-binding domain crystal structure provides a context for examining these binding interactions and a platform for understanding the physiological relevance of different Syt receptor isoforms in vivo.

  16. Development of cholecystokinin binding sites in rat upper gastrointestinal tract

    SciTech Connect

    Robinson, P.H.; Moran, T.H.; Goldrich, M.; McHugh, P.R.

    1987-04-01

    Autoradiography using /sup 125/I-labeled Bolton Hunter-CCK-33 was used to study the distribution of cholecystokinin binding sites at different stages of development in the rat upper gastrointestinal tract. Cholecystokinin (CCK) binding was present in the distal stomach, esophagus, and gastroduodenal junction in the rat fetus of gestational age of 17 days. In the 20-day fetus, specific binding was found in the gastric mucosa, antral circular muscle, and pyloric sphincter. Mucosal binding declined during postnatal development and had disappeared by day 15. Antral binding declined sharply between day 10 and day 15 and disappeared by day 50. Pyloric muscle binding was present in fetal stomach and persisted in the adult. Pancreatic CCK binding was not observed before day 10. These results suggest that CCK may have a role in the control of gastric emptying and ingestive behavior in the neonatal rat.

  17. Substrate and drug binding sites in LeuT.

    PubMed

    Nyola, Ajeeta; Karpowich, Nathan K; Zhen, Juan; Marden, Jennifer; Reith, Maarten E; Wang, Da-Neng

    2010-08-01

    LeuT is a member of the neurotransmitter/sodium symporter family, which includes the neuronal transporters for serotonin, norepinephrine, and dopamine. The original crystal structure of LeuT shows a primary leucine-binding site at the center of the protein. LeuT is inhibited by different classes of antidepressants that act as potent inhibitors of the serotonin transporter. The newly determined crystal structures of LeuT-antidepressant complexes provide opportunities to probe drug binding in the serotonin transporter, of which the exact position remains controversial. Structure of a LeuT-tryptophan complex shows an overlapping binding site with the primary substrate site. A secondary substrate binding site was recently identified, where the binding of a leucine triggers the cytoplasmic release of the primary substrate. This two binding site model presents opportunities for a better understanding of drug binding and the mechanism of inhibition for mammalian transporters.

  18. Predicting Ca2+-binding Sites Using Refined Carbon Clusters

    PubMed Central

    Zhao, Kun; Wang, Xue; Wong, Hing C.; Wohlhueter, Robert; Kirberger, Michael P.; Chen, Guantao; Yang, Jenny J.

    2012-01-01

    Identifying Ca2+-binding sites in proteins is the first step towards understanding the molecular basis of diseases related to Ca2+-binding proteins. Currently, these sites are identified in structures either through X-ray crystallography or NMR analysis. However, Ca2+-binding sites are not always visible in X-ray structures due to flexibility in the binding region or low occupancy in a Ca2+-binding site. Similarly, both Ca2+ and its ligand oxygens are not directly observed in NMR structures. To improve our ability to predict Ca2+-binding sites in both X-ray and NMR structures, we report a new graph theory algorithm (MUGC) to predict Ca2+-binding sites. Using carbon atoms covalently bonded to the chelating oxygen atoms, and without explicit reference to side-chain oxygen ligand coordinates, MUGC is able to achieve 94% sensitivity with 76% selectivity on a dataset of X-ray structures comprised of 43 Ca2+-binding proteins. Additionally, prediction of Ca2+-binding sites in NMR structures were obtained by MUGC using a different set of parameters determined by analysis of both Ca2+-constrained and unconstrained Ca2+-loaded structures derived from NMR data. MUGC identified 20 out of 21 Ca2+-binding sites in NMR structures inferred without the use of Ca2+ constraints. MUGC predictions are also highly-selective for Ca2+-binding sites as analyses of binding sites for Mg2+, Zn2+, and Pb2+ were not identified as Ca2+-binding sites. These results indicate that the geometric arrangement of the second-shell carbon cluster is sufficient for both accurate identification of Ca2+-binding sites in NMR and X-ray structures, and for selective differentiation between Ca2+ and other relevant divalent cations. PMID:22821762

  19. Resistance of bromelain to SDS binding.

    PubMed

    Bhattacharya, Reema; Bhattacharyya, Debasish

    2009-04-01

    Interaction of the plant cysteine protease bromelain with SDS has been studied using CD spectroscopy, intrinsic fluorescence emission, extrinsic fluorescence probe pyrene, isothermal calorimetric (ITC) investigations and inhibition of hydrolyzing activity. Results exhibit number of synchronous transitions when plotted against the total SDS concentration. SDS at submicellar level caused conformation change of bromelain leading to a stable entity. ITC and pyrene experiments suggest that the structural modifications below 5 mM, the cmc(app) of SDS solutions containing bromelain, are the result of alterations of solvent hydrophobicity or non-specific weak binding and/or adsorption of SDS monomers. Melting temperature (T(m)) and the free energy change for thermal unfolding (DeltaG(unf)) of the SDS induced conformers was decreased by 5 degrees C and 0.5 kcal/mol respectively, compared to native bromelain. Below 5 mM, SDS caused large decrease in V(max) without affecting K(m) for the substrate Z-Arg-Arg-NHMec. Analysis of kinetic data imply that SDS acts as a partial non-competitive inhibitor since even at 100 mM, the residual activity of bromelain was retained by 3%. Inhibition studies show an IC(50) of 0.55 mM and a high K(i) of 0.145 mM. These demonstrate that bromelain is resistant to SDS binding and denaturation, a property known for beta-sheet rich kinetically stable proteins.

  20. Chloride binding site of neurotransmitter sodium symporters

    PubMed Central

    Kantcheva, Adriana K.; Quick, Matthias; Shi, Lei; Winther, Anne-Marie Lund; Stolzenberg, Sebastian; Weinstein, Harel; Javitch, Jonathan A.; Nissen, Poul

    2013-01-01

    Neurotransmitter:sodium symporters (NSSs) play a critical role in signaling by reuptake of neurotransmitters. Eukaryotic NSSs are chloride-dependent, whereas prokaryotic NSS homologs like LeuT are chloride-independent but contain an acidic residue (Glu290 in LeuT) at a site where eukaryotic NSSs have a serine. The LeuT-E290S mutant displays chloride-dependent activity. We show that, in LeuT-E290S cocrystallized with bromide or chloride, the anion is coordinated by side chain hydroxyls from Tyr47, Ser290, and Thr254 and the side chain amide of Gln250. The bound anion and the nearby sodium ion in the Na1 site organize a connection between their coordinating residues and the extracellular gate of LeuT through a continuous H-bond network. The specific insights from the structures, combined with results from substrate binding studies and molecular dynamics simulations, reveal an anion-dependent occlusion mechanism for NSS and shed light on the functional role of chloride binding. PMID:23641004

  1. Phosphorylation of native porcine olfactory binding proteins.

    PubMed

    Nagnan-Le Meillour, Patricia; Le Danvic, Chrystelle; Brimau, Fanny; Chemineau, Philippe; Michalski, Jean-Claude

    2009-07-01

    The identification of various isoforms of olfactory binding proteins is of major importance to elucidate their involvement in detection of pheromones and other odors. Here, we report the characterization of the phosphorylation of OBP (odorant binding protein) and Von Ebner's gland protein (VEG) from the pig, Sus scrofa. After labeling with specific antibodies raised against the three types of phosphorylation (Ser, Thr, Tyr), the phosphate-modified residues were mapped by using the beta-elimination followed by Michael addition of dithiothreitol (BEMAD) method. Eleven phosphorylation sites were localized in the pOBP sequence and nine sites in the VEG sequence. OBPs are secreted by Bowman's gland cells in the extracellular mucus lining the nasal cavity. After tracking the secretion pathway in the rough endoplasmic reticulum of these cells, we hypothesize that these proteins may be phosphorylated by ectokinases that remain to be characterized. The existence of such a regulatory mechanism theoretically increases the number of OBP variants, and it suggests a more specific role for OBPs in odorant coding than the one of odorant solubilizer and transporter.

  2. Characterizing the morphology of protein binding patches.

    PubMed

    Malod-Dognin, Noël; Bansal, Achin; Cazals, Frédéric

    2012-12-01

    Let the patch of a partner in a protein complex be the collection of atoms accounting for the interaction. To improve our understanding of the structure-function relationship, we present a patch model decoupling the topological and geometric properties. While the geometry is classically encoded by the atomic positions, the topology is recorded in a graph encoding the relative position of concentric shells partitioning the interface atoms. The topological-geometric duality provides the basis of a generic dynamic programming-based algorithm comparing patches at the shell level, which may favor topological or geometric features. On the biological side, we address four questions, using 249 cocrystallized heterodimers organized in biological families. First, we dissect the morphology of binding patches and show that Nature enjoyed the topological and geometric degrees of freedom independently while retaining a finite set of qualitatively distinct topological signatures. Second, we argue that our shell-based comparison is effective to perform atomic-level comparisons and show that topological similarity is a less stringent than geometric similarity. We also use the topological versus geometric duality to exhibit topo-rigid patches, whose topology (but not geometry) remains stable upon docking. Third, we use our comparison algorithms to infer specificity-related information amidst a database of complexes. Finally, we exhibit a descriptor outperforming its contenders to predict the binding affinities of the affinity benchmark. The softwares developed with this article are availablefrom http://team.inria.fr/abs/vorpatch_compatch/.

  3. Electrochemical binding and wiring in battery materials

    NASA Astrophysics Data System (ADS)

    Pejovnik, S.; Dominko, R.; Bele, M.; Gaberscek, M.; Jamnik, J.

    Binders in battery electrodes not only provide mechanical cohesiveness during battery operation but can also affect the electrode properties via the surface modification. Using atomic force microscopy (AFM), we study the surface structuring of three binders: polyvinylidene fluoride (PVdF), carboxymethyl cellulose (CMC) and gelatin. We try to find correlation between the observed structures and the measured electrochemical charge-discharge characteristics. We further measure the binding ability of gelatin adsorbed from solutions of different pHs. While the best binding ability of gelatin is obtained at pH about 9, the least polarization is observed at pH 12. Both properties are explained based on the observed gelatin structuring as a function of pH. In the second part of this study, gelatin is used as a surface agent that dictates the organization of nanometre-sized carbon black particles around micrometre-sized cathodic active particles. Using microcontact impedance measurements on polished pellets we show that using gelatin-forced carbon black deposition the average electronic resistance around LiMn 2O 4 particles is decreased by more than two orders of magnitude. We believe that it is this decrease in resistance that improves significantly the rate performance of various cathode materials, such as LiMn 2O 4 and LiCoO 2.

  4. Prediction of zinc finger DNA binding protein.

    PubMed

    Nakata, K

    1995-04-01

    Using the neural network algorithm with back-propagation training procedure, we analysed the zinc finger DNA binding protein sequences. We incorporated the characteristic patterns around the zinc finger motifs TFIIIA type (Cys-X2-5-Cys-X12-13-His-X2-5-His) and the steroid hormone receptor type (Cys-X2-5-Cys-X12-15-Cys-X2-5-Cys-X15-16-Cys-X4-5-Cys-X8-10- Cys-X2-3-Cys) in the neural network algorithm. The patterns used in the neural network were the amino acid pattern, the electric charge and polarity pattern, the side-chain chemical property and subproperty patterns, the hydrophobicity and hydrophilicity patterns and the secondary structure propensity pattern. Two consecutive patterns were also considered. Each pattern was incorporated in the single layer perceptron algorithm and the combinations of patterns were considered in the two-layer perceptron algorithm. As for the TFIIIA type zinc finger DNA binding motifs, the prediction results of the two-layer perceptron algorithm reached up to 96.9% discrimination, and the prediction results of the discriminant analysis using the combination of several characters reached up to 97.0%. As for the steroid hormone receptor type zinc finger, the prediction results of neural network algorithm and the discriminant analyses reached up to 96.0%.

  5. Reflection-Based Python-C++ Bindings

    SciTech Connect

    Generowicz, Jacek; Lavrijsen, Wim T.L.P.; Marino, Massimo; Mato, Pere

    2004-10-14

    Python is a flexible, powerful, high-level language with excellent interactive and introspective capabilities and a very clean syntax. As such, it can be a very effective tool for driving physics analysis. Python is designed to be extensible in low-level C-like languages, and its use as a scientific steering language has become quite widespread. To this end, existing and custom-written C or C++ libraries are bound to the Python environment as so-called extension modules. A number of tools for easing the process of creating such bindings exist, such as SWIG and Boost. Python. Yet, the process still requires a considerable amount of effort and expertise. The C++ language has few built-in introspective capabilities, but tools such as LCGDict and CINT add this by providing so-called dictionaries: libraries that contain information about the names, entry points, argument types, etc. of other libraries. The reflection information from these dictionaries can be used for the creation of bindings and so the process can be fully automated, as dictionaries are already provided for many end-user libraries for other purposes, such as object persistency. PyLCGDict is a Python extension module that uses LCG dictionaries, as PyROOT uses CINT reflection information, to allow /cwPython users to access C++ libraries with essentially no preparation on the users' behalf. In addition, and in a similar way, PyROOT gives ROOT users access to Python libraries.

  6. Oligosaccharide Binding in Escherichia coli Glycogen Synthase

    SciTech Connect

    Sheng, Fang; Yep, Alejandra; Feng, Lei; Preiss, Jack; Geiger, James H.

    2010-11-17

    Glycogen/starch synthase elongates glucan chains and is the key enzyme in the synthesis of glycogen in bacteria and starch in plants. Cocrystallization of Escherichia coli wild-type glycogen synthase (GS) with substrate ADPGlc and the glucan acceptor mimic HEPPSO produced a closed form of GS and suggests that domain-domain closure accompanies glycogen synthesis. Cocrystallization of the inactive GS mutant E377A with substrate ADPGlc and oligosaccharide results in the first oligosaccharide-bound glycogen synthase structure. Four bound oligosaccharides are observed, one in the interdomain cleft (G6a) and three on the N-terminal domain surface (G6b, G6c, and G6d). Extending from the center of the enzyme to the interdomain cleft opening, G6a mostly interacts with the highly conserved N-terminal domain residues lining the cleft of GS. The surface-bound oligosaccharides G6c and G6d have less interaction with enzyme and exhibit a more curled, helixlike structural arrangement. The observation that oligosaccharides bind only to the N-terminal domain of GS suggests that glycogen in vivo probably binds to only one side of the enzyme to ensure unencumbered interdomain movement, which is required for efficient, continuous glucan-chain synthesis.

  7. Penicillin-binding proteins in Actinobacteria.

    PubMed

    Ogawara, Hiroshi

    2015-04-01

    Because some Actinobacteria, especially Streptomyces species, are β-lactam-producing bacteria, they have to have some self-resistant mechanism. The β-lactam biosynthetic gene clusters include genes for β-lactamases and penicillin-binding proteins (PBPs), suggesting that these are involved in self-resistance. However, direct evidence for the involvement of β-lactamases does not exist at the present time. Instead, phylogenetic analysis revealed that PBPs in Streptomyces are distinct in that Streptomyces species have much more PBPs than other Actinobacteria, and that two to three pairs of similar PBPs are present in most Streptomyces species examined. Some of these PBPs bind benzylpenicillin with very low affinity and are highly similar in their amino-acid sequences. Furthermore, other low-affinity PBPs such as SCLAV_4179 in Streptomyces clavuligerus, a β-lactam-producing Actinobacterium, may strengthen further the self-resistance against β-lactams. This review discusses the role of PBPs in resistance to benzylpenicillin in Streptomyces belonging to Actinobacteria.

  8. Structure and mechanism of purine binding riboswitches

    PubMed Central

    Batey, Robert T.

    2013-01-01

    A riboswitch is a non-protein coding sequence capable of directly binding a small molecule effector without the assistance of accessory proteins to regulate expression of the mRNA in which it is embedded. Currently, over 20 different classes of riboswitches have been validated in bacteria with the promise of many more to come, making them an important means of regulation of the genome in the bacterial kingdom. Strikingly, half of the known riboswitches recognize effector compounds that contain a purine or related moiety. In the last decade significant progress has been made to determine how riboswitches specifically recognize these compounds against the background of many other similar cellular metabolites and transduce this signal into a regulatory response. Of the known riboswitches, the purine family containing guanine, adenine, and 2’-deoxyguanosine binding classes are the most extensively studied, serving as a simple and useful paradigm for understanding how these regulatory RNAs function. This review provides a comprehensive summary of the current state of knowledge regarding the structure and mechanism of these riboswitches, as well as insights into how they might be exploited as therapeutic targets and novel biosensors. PMID:22850604

  9. Chloride binding site of neurotransmitter sodium symporters.

    PubMed

    Kantcheva, Adriana K; Quick, Matthias; Shi, Lei; Winther, Anne-Marie Lund; Stolzenberg, Sebastian; Weinstein, Harel; Javitch, Jonathan A; Nissen, Poul

    2013-05-21

    Neurotransmitter:sodium symporters (NSSs) play a critical role in signaling by reuptake of neurotransmitters. Eukaryotic NSSs are chloride-dependent, whereas prokaryotic NSS homologs like LeuT are chloride-independent but contain an acidic residue (Glu290 in LeuT) at a site where eukaryotic NSSs have a serine. The LeuT-E290S mutant displays chloride-dependent activity. We show that, in LeuT-E290S cocrystallized with bromide or chloride, the anion is coordinated by side chain hydroxyls from Tyr47, Ser290, and Thr254 and the side chain amide of Gln250. The bound anion and the nearby sodium ion in the Na1 site organize a connection between their coordinating residues and the extracellular gate of LeuT through a continuous H-bond network. The specific insights from the structures, combined with results from substrate binding studies and molecular dynamics simulations, reveal an anion-dependent occlusion mechanism for NSS and shed light on the functional role of chloride binding.

  10. Quinine binding by the cocaine-binding aptamer. Thermodynamic and hydrodynamic analysis of high-affinity binding of an off-target ligand.

    PubMed

    Reinstein, Oren; Yoo, Mina; Han, Chris; Palmo, Tsering; Beckham, Simone A; Wilce, Matthew C J; Johnson, Philip E

    2013-12-03

    The cocaine-binding aptamer is unusual in that it tightly binds molecules other than the ligand it was selected for. Here, we study the interaction of the cocaine-binding aptamer with one of these off-target ligands, quinine. Isothermal titration calorimetry was used to quantify the quinine-binding affinity and thermodynamics of a set of sequence variants of the cocaine-binding aptamer. We find that the affinity of the cocaine-binding aptamer for quinine is 30-40 times stronger than it is for cocaine. Competitive-binding studies demonstrate that both quinine and cocaine bind at the same site on the aptamer. The ligand-induced structural-switching binding mechanism of an aptamer variant that contains three base pairs in stem 1 is retained with quinine as a ligand. The short stem 1 aptamer is unfolded or loosely folded in the free form and becomes folded when bound to quinine. This folding is confirmed by NMR spectroscopy and by the short stem 1 construct having a more negative change in heat capacity of quinine binding than is seen when stem 1 has six base pairs. Small-angle X-ray scattering (SAXS) studies of the free aptamer and both the quinine- and the cocaine-bound forms show that, for the long stem 1 aptamers, the three forms display similar hydrodynamic properties, and the ab initio shape reconstruction structures are very similar. For the short stem 1 aptamer there is a greater variation among the SAXS-derived ab initio shape reconstruction structures, consistent with the changes expected with its structural-switching binding mechanism.

  11. The Tomato Nucleotide-binding Leucine-rich Repeat Immune Receptor I-2 Couples DNA-binding to Nucleotide-binding Domain Nucleotide Exchange*

    PubMed Central

    Fenyk, Stepan; Dixon, Christopher H.; Gittens, William H.; Townsend, Philip D.; Sharples, Gary J.; Pålsson, Lars-Olof; Takken, Frank L. W.; Cann, Martin J.

    2016-01-01

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable plants to recognize and respond to pathogen attack. Previously, we demonstrated that the Rx1 NLR of potato is able to bind and bend DNA in vitro. DNA binding in situ requires its genuine activation following pathogen perception. However, it is unknown whether other NLR proteins are also able to bind DNA. Nor is it known how DNA binding relates to the ATPase activity intrinsic to NLR switch function required to immune activation. Here we investigate these issues using a recombinant protein corresponding to the N-terminal coiled-coil and nucleotide-binding domain regions of the I-2 NLR of tomato. Wild type I-2 protein bound nucleic acids with a preference of ssDNA ≈ dsDNA > ssRNA, which is distinct from Rx1. I-2 induced bending and melting of DNA. Notably, ATP enhanced DNA binding relative to ADP in the wild type protein, the null P-loop mutant K207R, and the autoactive mutant S233F. DNA binding was found to activate the intrinsic ATPase activity of I-2. Because DNA binding by I-2 was decreased in the presence of ADP when compared with ATP, a cyclic mechanism emerges; activated ATP-associated I-2 binds to DNA, which enhances ATP hydrolysis, releasing ADP-bound I-2 from the DNA. Thus DNA binding is a general property of at least a subset of NLR proteins, and NLR activation is directly linked to its activity at DNA. PMID:26601946

  12. Binding Ensemble PROfiling with (F)photoaffinity Labeling (BEProFL) Approach: Mapping the Binding Poses of HDAC8 Inhibitors

    PubMed Central

    He, Bai; Velaparthi, Subash; Pieffet, Gilles; Pennington, Chris; Mahesh, Aruna; Holzle, Denise L.; Brunsteiner, Michael; van Breemen, Richard; Blond, Sylvie Y.; Petukhov, Pavel A.

    2009-01-01

    A Binding Ensemble PROfiling with (F)photoaffinity Labeling (BEProFL) approach that utilizes photolabeling of HDAC8 with a probe containing a UV-activated aromatic azide, mapping the covalent modifications by liquid chromatography-tandem mass-spectrometry, and a computational method to characterize the multiple binding poses of the probe is described. Using the BEProFL approach two distinct binding poses of the HDAC8 probe were identified. The data also suggest that an “upside-down” pose with the surface binding group of the probe bound in an alternative pocket near the catalytic site may contribute to the binding. PMID:19886628

  13. BindUP: a web server for non-homology-based prediction of DNA and RNA binding proteins.

    PubMed

    Paz, Inbal; Kligun, Efrat; Bengad, Barak; Mandel-Gutfreund, Yael

    2016-07-08

    Gene expression is a multi-step process involving many layers of regulation. The main regulators of the pathway are DNA and RNA binding proteins. While over the years, a large number of DNA and RNA binding proteins have been identified and extensively studied, it is still expected that many other proteins, some with yet another known function, are awaiting to be discovered. Here we present a new web server, BindUP, freely accessible through the website http://bindup.technion.ac.il/, for predicting DNA and RNA binding proteins using a non-homology-based approach. Our method is based on the electrostatic features of the protein surface and other general properties of the protein. BindUP predicts nucleic acid binding function given the proteins three-dimensional structure or a structural model. Additionally, BindUP provides information on the largest electrostatic surface patches, visualized on the server. The server was tested on several datasets of DNA and RNA binding proteins, including proteins which do not possess DNA or RNA binding domains and have no similarity to known nucleic acid binding proteins, achieving very high accuracy. BindUP is applicable in either single or batch modes and can be applied for testing hundreds of proteins simultaneously in a highly efficient manner.

  14. Measurement of internal substrate binding in dehaloperoxidase-hemoglobin by competition with the heme-fluoride binding equilibrium.

    PubMed

    Zhao, Jing; Moretto, Justin; Le, Peter; Franzen, Stefan

    2015-02-19

    The application of fluoride anion as a probe for investigating the internal substrate binding has been developed and applied to dehaloperoxidase-hemoglobin (DHP) from Amphitrite ornata. By applying the fluoride titration strategy using UV-vis spectroscopy, we have studied series of halogenated phenols, other substituted phenols, halogenated indoles, and several natural amino acids that bind internally (and noncovalently) in the distal binding pocket of the heme. This approach has identified 2,4-dibromophenol (2,4-DBP) as the tightest binding substrate discovered thus far, with approximately 20-fold tighter binding affinity than that of 4-bromophenol (4-BP), a known internally binding inhibitor in DHP. Combined with resonance Raman spectroscopy, we have confirmed that competitive binding equilibria exist between fluoride anion and internally bound molecules. We have further investigated the hydrogen bonding network of the active site of DHP that stabilizes the exogenous fluoride ligand. These measurements demonstrate a general method for determination of differences in substrate binding affinity based on detection of a competitive fluoride binding equilibrium. The significance of the binding that 2,4-dibromophenol binds more tightly than any other substrate is evident when the structural and mechanistic data are taken into consideration.

  15. Characterization of nicotine binding in mouse brain and comparison with the binding of alpha-bungarotoxin and quinuclidinyl benzilate

    SciTech Connect

    Marks, M.J.; Collins, A.C.

    1982-11-01

    The binding of (/sup 3/H)nicotine to mouse brain has been measured and subsequently compared with the binding of (/sup 125/I)alpha-bungarotoxin (alpha-BTX) and L-(/sup 3/H)quinuclidinyl benzilate (QNB). The binding of nicotine was saturable, reversible, and stereospecific. The average KD and Bmax were 59 nM and 88 fmoles/mg of protein, respectively. Although the rates of association and dissociation of nicotine were temperature-dependent, the incubation temperature had no effect on either KD or Bmax. When measured at 20 degrees or 37 degrees, nicotine appeared to bind to a single class of binding sites, but a second, very low-affinity, binding site was observed at 4 degrees. Nicotine binding was unaffected by the addition of NaCl, KCl, CaCl/sub 2/, or MgSO/sub 4/ to the incubation medium. Nicotinic cholinergic agonists were potent inhibitors of nicotine binding; however, nicotinic antagonists were poor inhibitors. The regional distribution of binding was not uniform: midbrain and striatum contained the highest number of receptors, whereas cerebellum had the fewest. Differences in site densities, regional distribution, inhibitor potencies, and thermal denaturation indicated that nicotine binding was not the same as either QNB or alpha-BTX binding, and therefore that receptors for nicotine may represent a unique population of cholinergic receptors.

  16. Identification of the Binding Position of Amilorides in the Quinone Binding Pocket of Mitochondrial Complex I.

    PubMed

    Ito, Takeshi; Murai, Masatoshi; Morisaka, Hironobu; Miyoshi, Hideto

    2015-06-16

    We previously demonstrated that amilorides bind to the quinone binding pocket of bovine mitochondrial complex I, not to the hitherto suspected Na⁺/H⁺ antiporter-like subunits (ND2, ND4, and ND5) [Murai, M., et al. (2015) Biochemistry 54, 2739-2746]. To characterize the binding position of amilorides within the pocket in more detail, we conducted specific chemical labeling [alkynylation (-C≡CH)] of complex I via ligand-directed tosyl (LDT) chemistry using a newly synthesized amide-type amiloride AAT as a LDT chemistry reagent. The inhibitory potency of AAT, in terms of its IC50 value, was markedly higher (∼1000-fold) than that of prototypical guanidine-type amilorides such as commercially available EIPA and benzamil. Detailed proteomic analyses in combination with click chemistry revealed that the chemical labeling occurred at Asp160 of the 49 kDa subunit (49 kDa Asp160). This labeling was significantly suppressed in the presence of an excess amount of other amilorides or ordinary inhibitors such as quinazoline and acetogenin. Taking into consideration the fact that 49 kDa Asp160 was also specifically labeled by LDT chemistry reagents derived from acetogenin [Masuya, T., et al. (2014) Biochemistry 53, 2307-2317, 7816-7823], we found this aspartic acid to elicit very strong nucleophilicity in the local protein environment. The structural features of the quinone binding pocket in bovine complex I are discussed on the basis of this finding.

  17. Molecular spectroscopy evidence of berberine binding to DNA: comparative binding and thermodynamic profile of intercalation.

    PubMed

    Li, Xiao-Ling; Hu, Yan-Jun; Wang, Hong; Yu, Bing-Qiong; Yue, Hua-Li

    2012-03-12

    Berberine (BH) is an important traditional medicinal herb endowed with diverse pharmacological and biological activities. In this work, the binding characteristics and molecular mechanism of the interaction between the BH and herring sperm DNA were explored by UV-vis absorbance and fluorescence spectroscopy. In the mechanism discussion, fluorescence quenching, absorption spectra, competition experiment, and iodide quenching experiment studies hinted at an intercalative mode of binding for BH to DNA. Fluorescence studies revealed the binding constant (K) of BH-DNA was ∼10(4) L·mol(-1). The effects of temperature, chemical denaturants, thermal denaturation, and pH were studied to show the factors of the interaction and provided further support for the intercalative binding mode. The results of thermodynamic parameters ΔG, ΔH, and ΔS at different temperatures indicated that the hydrogen bonds and van der Waals interactions played major roles in the reaction, and the effect of ionic strength indicated that electrostatic attraction between the BH and DNA was also a component of the interaction.

  18. Calcyclin Binding Protein/Siah-1 Interacting Protein Is a Hsp90 Binding Chaperone

    PubMed Central

    Góral, Agnieszka; Bieganowski, Paweł; Prus, Wiktor; Krzemień-Ojak, Łucja; Kądziołka, Beata; Fabczak, Hanna; Filipek, Anna

    2016-01-01

    The Hsp90 chaperone activity is tightly regulated by interaction with many co-chaperones. Since CacyBP/SIP shares some sequence homology with a known Hsp90 co-chaperone, Sgt1, in this work we performed a set of experiments in order to verify whether CacyBP/SIP can interact with Hsp90. By applying the immunoprecipitation assay we have found that CacyBP/SIP binds to Hsp90 and that the middle (M) domain of Hsp90 is responsible for this binding. Furthermore, the proximity ligation assay (PLA) performed on HEp-2 cells has shown that the CacyBP/SIP-Hsp90 complexes are mainly localized in the cytoplasm of these cells. Using purified proteins and applying an ELISA we have shown that Hsp90 interacts directly with CacyBP/SIP and that the latter protein does not compete with Sgt1 for the binding to Hsp90. Moreover, inhibitors of Hsp90 do not perturb CacyBP/SIP-Hsp90 binding. Luciferase renaturation assay and citrate synthase aggregation assay with the use of recombinant proteins have revealed that CacyBP/SIP exhibits chaperone properties. Also, CacyBP/SIP-3xFLAG expression in HEp-2 cells results in the appearance of more basic Hsp90 forms in 2D electrophoresis, which may indicate that CacyBP/SIP dephosphorylates Hsp90. Altogether, the obtained results suggest that CacyBP/SIP is involved in regulation of the Hsp90 chaperone machinery. PMID:27249023

  19. Identification of actin binding protein, ABP-280, as a binding partner of human Lnk adaptor protein.

    PubMed

    He, X; Li, Y; Schembri-King, J; Jakes, S; Hayashi, J

    2000-08-01

    Human Lnk (hLnk) is an adaptor protein with multiple functional domains that regulates T cell activation signaling. In order to identify cellular Lnk binding partners, a yeast two-hybrid screening of human spleen cDNA library was carried out using human hLnk as bait. A polypeptide sequence identical to the C-terminal segment of the actin binding protein (ABP-280) was identified as a hLnk binding protein. The expressed hLnk and the FLAG tagged C-terminal 673 amino acid residues of ABP-280 or the endogenous ABP-280 in COS-7 cells could be co-immunoprecipitated using antibodies either to hLnk, FLAG or ABP-280, respectively. Furthermore, immunofluorescence confocal microscope showed that hLnk and ABP-280 co-localized at the plasma membrane and at juxtanuclear region of COS-7 cells. In Jurkat cells, the endogenous hLnk also associates with the endogenous ABP-280 indicating that the association of these two proteins is physiological. The interacting domains of both proteins were mapped using yeast two-hybrid assays. Our results indicate that hLnk binds to the residues 2006-2454 (repeats 19-23C) of ABP-280. The domain in hLnk that associates with ABP-280 was mapped to an interdomain region of 56 amino acids between pleckstrin homology and Src homology 2 domains. These results suggest that hLnk may exert its regulatory role through its association with ABP-280.

  20. Lipid binding to the carotenoid binding site in photosynthetic reaction centers.

    PubMed

    Deshmukh, Sasmit S; Tang, Kai; Kálmán, László

    2011-10-12

    Lipid binding to the carotenoid binding site near the inactive bacteriochlorophyll monomer was probed in the reaction centers of carotenoid-less mutant, R-26 from Rhodobacter sphaeroides. Recently, a marked light-induced change of the local dielectric constant in the vicinity of the inactive bacteriochlorophyll monomer was reported in wild type that was attributed to structural changes that ultimately lengthened the lifetime of the charge-separated state by 3 orders of magnitude (Deshmukh, S. S.; Williams, J. C.; Allen, J. P.; Kalman, L. Biochemistry 2011, 50, 340). Here in the R-26 reaction centers, the combination of light-induced structural changes and lipid binding resulted in a 5 orders of magnitude increase in the lifetime of the charge-separated state involving the oxidized dimer and the reduced primary quinone in proteoliposomes. Only saturated phospholipids with fatty acid chains of 12 and 14 carbon atoms long were bound successfully at 8 °C by cooling the reaction center protein slowly from room temperature. In addition to reporting a dramatic increase of the lifetime of the charge-separated state at physiologically relevant temperatures, this study reveals a novel lipid binding site in photosynthetic reaction center. These results shed light on a new potential application of the reaction center in energy storage as a light-driven biocapacitor since the charges separated by ∼30 Å in a low-dielectric medium can be prevented from recombination for hours.

  1. Difference in DNA-binding abilities of Fur-homolog DNA binding protein from Neisseria gonorrhoeae.

    PubMed

    Bagchi, Angshuman

    2016-10-01

    Gonorrhea is a severe disease infecting both men and women worldwide. The causative agent of the disease is Neisseria gonorrhoeae. The organism mostly affects human beings in iron restricted environments. In such an environment the organism produces a set of proteins which are mostly absent in iron rich environments. The expressions of the genes for the proteins are regulated by the transcription factor (TF) belonging to the Fur family. Interestingly, the same TF acts as the activator and repressor of genes. In this present work, an attempt has been made to analyze the molecular details of the differential DNA-binding activities of the TF from Neisseria gonorrhoeae to come up with a plausible molecular reason behind the difference DNA binding activities of the same TF. Computational modelling technique was used to build the three dimensional structure of the TF. Molecular docking and molecular dynamics simulations were employed to determine the binding interactions between the TF and the promoter DNA. With the help of the computational techniques, the biochemical reason behind the different modes of DNA binding by the TF was analyzed. Results from this analysis may be useful to future drug development endeavours to curtail the spread of Gonorrhea.

  2. Expression patterns and binding properties of three pheromone binding proteins in the diamondback moth, Plutella xyllotella.

    PubMed

    Sun, Mengjing; Liu, Yang; Wang, Guirong

    2013-01-01

    Pheromone binding proteins (PBPs) play a key role in transporting hydrophobic sex pheromone components emitted by con-specific female across aqueous sensillar lymph to the surface of olfactory receptor neurons. A number of PBPs have been cloned, however, details of their function are still largely unknown. Here three pheromone binding protein genes in the diamondback moth, Plutella xyllotella were cloned. The three PxylPBP genes are not only expressed in chemosensory tissues but also expressed in female reproductive organs and male legs. To better understand the functions of PxylPBPs in the initial steps of pheromone recognition, three PxylPBPs were expressed in Escherichia coli and the ligand-binding specificities of purified recombinant PBPs were investigated. Fluorescence binding assays indicate that three PxylPBPs not only robustly bound all four sex pheromone components but also significantly bound pheromone analogs with at least one double bond, while weakly bound tested plant volatiles. Although pheromone analogs bound PBPs, they could not elicit the moth's electrophysiological response. These experiments provide evidence that PxylPBPs have limited selectivity of pheromone components and analogs and some downstream components such as odor receptors might be involved in selectivity and specificity of pheromone perception in P. xyllotella.

  3. Polyclonal and monoclonal IgG binding on Protein A resins - Evidence of competitive binding effects.

    PubMed

    Weinberg, Justin; Zhang, Shaojie; Crews, Gillian; Healy, Edward; Carta, Giorgio; Przybycien, Todd

    2017-03-14

    Protein A (ProA) chromatography is used extensively in the biopharmaceutical industry for the selective capture of both polyclonal and monoclonal antibodies (mAbs). This work provides a comparison of the adsorptive behavior of a highly heterogeneous polyclonal hIgG versus that of a mAb as well as the behavior of their mixtures on representative ProA resins. Both pH gradient elution and frontal loading experiments using human polyclonal IgG (hIgG) reveal a distribution of IgG-ProA binding strengths likely associated with multiple IgG subclasses and the heterogeneity of the variable region. pH gradient analysis of fractions collected along the breakthrough curve demonstrate a clear progression from weaker binding (higher pH eluting) to stronger binding (lower pH eluting) IgG species leaving the column suggesting the possibility of stronger binding species displacing the weaker binding ones. Displacement is directly observed by visualizing the adsorption of fluorescently labeled mAb and hIgG using confocal laser scanning microscopy (CLSM). Here, the displacement of hIgG results in a broad adsorption front compared to the sharp, 'shrinking core' behavior typically observed with mAbs. Sequential CLSM adsorption experiments with a mAb and hIgG confirm that stronger or equivalent-binding hIgG species are able to displace and desorb bound mAb molecules. These phenomena are examined using a variety of ProA resins including CaptivA PriMAB, MabSelect, and MabSelect SuRe to understand the effect of different ligand properties on binding strength and competition among different IgG species. The results of these comparisons suggest that the competition kinetics are slower with ligands that have a single-point covalent attachment to the base matrix compared to a multi-point attachment. This article is protected by copyright. All rights reserved.

  4. Conformational changes in the metal-binding sites of cardiac troponin C induced by calcium binding

    SciTech Connect

    Krudy, G.A.; Brito, R.M.M.; Putkey, J.A.; Rosevear, P.R. )

    1992-02-18

    Isotope labeling of recombinant normal cardiac troponin C (cTnC3) with {sup 15}N-enriched amino acids and multidimensional NMR were used to assign the downfield-shifted amide protons of Gly residues at position 6 in Ca{sup 2+}-binding loops II, III, and IV, as well a tightly hydrogen-bonded amides within the short antiparallel {beta}-sheets between pairs of Ca{sup 2+}-binding loops. The amide protons of Gly70, Gly110, and Gly146 were found to be shifted significantly downfield from the remaining amide proton resonances in Ca{sup 2+}-saturated cTnC3. No downfield-shifted Gly resonance was observed from the naturally inactive site I. Comparison of downfield-shifted amide protons in the Ca{sup 2+}-saturated forms of cTnC3 and CBM-IIA, a mutant having Asp65 replaced by Ala, demonstrated the Gly70 is hydrogen bonded to the carboxylate side chain of Asp65. Thus, the hydrogen bond between Gly and Asp in positions 6 and 1, respectively, of the Ca{sup 2+}-binding loop appears crucial for maintaining the integrity of the helix-loop-helix Ca{sup 2+}-binding sites. The amide protons of Ile112 and Ile148 in the C-terminal domain and Ile36 in the N-terminal domain {beta}-sheets exhibit chemical shifts consistent with hydrogen-bond formation between the pair of Ca{sup 2+}-binding loops in each domain of Ca{sup 2+}-saturated cTnC3. In the absence of Ca{sup 2+}, no strong hydrogen bonds were detected between the {beta}-strands in the N-terminal domain of cTnC3. Thus, Ca{sup 2+} binding at site II results in a tightening of the Ca{sup 2+}-binding loop and formation of one strong hydrogen bond between {beta}-strands in the N-terminal domain. These changes may initiate movement of helices in the N-terminal domain responsible for the interaction of TnC with troponin I.

  5. DBD2BS: connecting a DNA-binding protein with its binding sites

    PubMed Central

    Chien, Ting-Ying; Lin, Chih-Kang; Lin, Chih-Wei; Weng, Yi-Zhong; Chen, Chien-Yu; Chang, Darby Tien-Hao

    2012-01-01

    By binding to short and highly conserved DNA sequences in genomes, DNA-binding proteins initiate, enhance or repress biological processes. Accurately identifying such binding sites, often represented by position weight matrices (PWMs), is an important step in understanding the control mechanisms of cells. When given coordinates of a DNA-binding domain (DBD) bound with DNA, a potential function can be used to estimate the change of binding affinity after base substitutions, where the changes can be summarized as a PWM. This technique provides an effective alternative when the chromatin immunoprecipitation data are unavailable for PWM inference. To facilitate the procedure of predicting PWMs based on protein–DNA complexes or even structures of the unbound state, the web server, DBD2BS, is presented in this study. The DBD2BS uses an atom-level knowledge-based potential function to predict PWMs characterizing the sequences to which the query DBD structure can bind. For unbound queries, a list of 1066 DBD–DNA complexes (including 1813 protein chains) is compiled for use as templates for synthesizing bound structures. The DBD2BS provides users with an easy-to-use interface for visualizing the PWMs predicted based on different templates and the spatial relationships of the query protein, the DBDs and the DNAs. The DBD2BS is the first attempt to predict PWMs of DBDs from unbound structures rather than from bound ones. This approach increases the number of existing protein structures that can be exploited when analyzing protein–DNA interactions. In a recent study, the authors showed that the kernel adopted by the DBD2BS can generate PWMs consistent with those obtained from the experimental data. The use of DBD2BS to predict PWMs can be incorporated with sequence-based methods to discover binding sites in genome-wide studies. Available at: http://dbd2bs.csie.ntu.edu.tw/, http://dbd2bs.csbb.ntu.edu.tw/, and http://dbd2bs.ee.ncku.edu.tw. PMID:22693214

  6. T antigen origin-binding domain of simian virus 40: determinants of specific DNA binding.

    PubMed

    Bradshaw, Elizabeth M; Sanford, David G; Luo, Xuelian; Sudmeier, James L; Gurard-Levin, Zachary A; Bullock, Peter A; Bachovchin, William W

    2004-06-08

    To better understand origin recognition and initiation of DNA replication, we have examined by NMR complexes formed between the origin-binding domain of SV40 T antigen (T-ag-obd), the initiator protein of the SV40 virus, and cognate and noncognate DNA oligomers. The results reveal two structural effects associated with "origin-specific" binding that are absent in nonspecific DNA binding. The first is the formation of a hydrogen bond (H-bond) involving His 203, a residue that genetic studies have previously identified as crucial to both specific and nonspecific DNA binding in full-length T antigen. In free T-ag-obd, the side chain of His 203 has a pK(a) value of approximately 5, titrating to the N(epsilon)(1)H tautomer at neutral pH (Sudmeier, J. L., et al. (1996) J. Magn. Reson., Ser. B 113, 236-247). In complexes with origin DNA, His 203 N(delta)(1) becomes protonated and remains nontitrating as the imidazolium cation at all pH values from 4 to 8. The H-bonded N(delta1)H resonates at 15.9 ppm, an unusually large N-H proton chemical shift, of a magnitude previously observed only in the catalytic triad of serine proteases at low pH. The formation of this H-bond requires the middle G/C base pair of the recognition pentanucleotide, GAGGC. The second structural effect is a selective distortion of the A/T base pair characterized by a large (0.6 ppm) upfield chemical-shift change of its Watson-Crick proton, while nearby H-bonded protons remain relatively unaffected. The results indicate that T antigen, like many other DNA-binding proteins, may employ "catalytic" or "transition-state-like" interactions in binding its cognate DNA (Jen-Jacobson, L. (1997) Biopolymers 44, 153-180), which may be the solution to the well-known paradox between the relatively modest DNA-binding specificity exhibited by initiator proteins and the high specificity of initiation.

  7. Structural Basis of Rnd1 Binding to Plexin Rho GTPase Binding Domains (RBDs)

    SciTech Connect

    Wang, Hui; Hota, Prasanta K.; Tong, Yufeng; Li, Buren; Shen, Limin; Nedyalkova, Lyudmila; Borthakur, Susmita; Kim, SoonJeung; Tempel, Wolfram; Buck, Matthias; Park, Hee-Won

    2011-09-20

    Plexin receptors regulate cell adhesion, migration, and guidance. The Rho GTPase binding domain (RBD) of plexin-A1 and -B1 can bind GTPases, including Rnd1. By contrast, plexin-C1 and -D1 reportedly bind Rnd2 but associate with Rnd1 only weakly. The structural basis of this differential Rnd1 GTPase binding to plexin RBDs remains unclear. Here, we solved the structure of the plexin-A2 RBD in complex with Rnd1 and the structures of the plexin-C1 and plexin-D1 RBDs alone, also compared with the previously determined plexin-B1 RBD.Rnd1 complex structure. The plexin-A2 RBD {center_dot} Rnd1 complex is a heterodimer, whereas plexin-B1 and -A2 RBDs homodimerize at high concentration in solution, consistent with a proposed model for plexin activation. Plexin-C1 and -D1 RBDs are monomeric, consistent with major residue changes in the homodimerization loop. In plexin-A2 and -B1, the RBD {beta}3-{beta}4 loop adjusts its conformation to allow Rnd1 binding, whereas minimal structural changes occur in Rnd1. The plexin-C1 and -D1 RBDs lack several key non-polar residues at the corresponding GTPase binding surface and do not significantly interact with Rnd1. Isothermal titration calorimetry measurements on plexin-C1 and -D1 mutants reveal that the introduction of non-polar residues in this loop generates affinity for Rnd1. Structure and sequence comparisons suggest a similar mode of Rnd1 binding to the RBDs, whereas mutagenesis suggests that the interface with the highly homologous Rnd2 GTPase is different in detail. Our results confirm, from a structural perspective, that Rnd1 does not play a role in the activation of plexin-C1 and -D1. Plexin functions appear to be regulated by subfamily-specific mechanisms, some of which involve different Rho family GTPases.

  8. Defining the binding site of homotetrameric R67 dihydrofolate reductase and correlating binding enthalpy with catalysis.

    PubMed

    Strader, Michael Brad; Chopra, Shaileja; Jackson, Michael; Smiley, R Derike; Stinnett, Lori; Wu, Jun; Howell, Elizabeth E

    2004-06-15

    R67 dihydrofolate reductase (DHFR) is a novel protein that possesses 222 symmetry. A single active site pore traverses the length of the homotetramer. Although the 222 symmetry implies that four symmetry-related binding sites should exist for each substrate as well as each cofactor, isothermal titration calorimetry (ITC) studies indicate only two molecules bind. Three possible combinations include two dihydrofolate molecules, two NADPH molecules, or one substrate with one cofactor. The latter is the productive ternary complex. To evaluate the roles of A36, Y46, T51, G64, and V66 residues in binding and catalysis, a site-directed mutagenesis approach was employed. One mutation per gene produces four mutations per active site pore, which often result in large cumulative effects. Conservative mutations at these positions either eliminate the ability of the gene to confer trimethoprim resistance or have no effect on catalysis. This result, in conjunction with previous mutagenesis studies on K32, K33, S65, Q67, I68, and Y69 [Strader, M. B., et al. (2001) Biochemistry 40, 11344-11352; Hicks, S. N., et al. (2003) Biochemistry 42, 10569-10578; Park, H., et al. (1997) Protein Eng. 10, 1415-1424], allows mapping of the active site surface. Residues for which conservative mutations have large effects on binding and catalysis include K32, Q67, I68, and Y69. These residues form a stripe that establishes the ligand binding surface. Residues that accommodate conservative mutations that do not greatly affect catalysis include K33, Y46, T51, S65, and V66. Isothermal titration calorimetry studies were also conducted on many of the mutants described above to determine the enthalpy of folate binding to the R67 DHFR.NADPH complex. A linear correlation between this DeltaH value and log k(cat)/K(m) is observed. Since structural tightness appears to be correlated with the exothermicity of the binding interaction, this leads to the hypothesis that enthalpy-driven formation of the ternary

  9. Cell membrane chromatography competitive binding analysis for characterization of α1A adrenoreceptor binding interactions.

    PubMed

    Du, Hui; Ren, Jing; Wang, Sicen; He, Langchong

    2011-07-01

    A new high α(1A) adrenoreceptor (α(1A)AR) expression cell membrane chromatography (CMC) method was developed for characterization of α(1A)AR binding interactions. HEK293 α(1A) cell line, which expresses stably high levels of α(1A)AR, was used to prepare the stationary phase in the CMC model. The HEK293 α(1A)/CMC-offline-HPLC system was applied to specifically recognize the ligands which interact with the α(1A)AR, and the dissociation equilibrium constants (K (D)) obtained from the model were (1.87 ± 0.13) × 10(-6) M for tamsulosin, (2.86 ± 0.20) × 10(-6) M for 5-methylurapidil, (3.01 ± 0.19) × 10(-6) M for doxazosin, (3.44 ± 0.19) × 10(-6) M for terazosin, (3.50 ± 0.21) × 10(-6) M for alfuzosin, and (7.57 ± 0.31) × 10(-6) M for phentolamine, respectively. The competitive binding study between tamsulosin and terazosin indicated that the two drugs interacted at the common binding site of α(1A)AR. However, that was not the case between tamsulosin and oxymetazoline. The results had a positive correlation with those from radioligand binding assay and indicated that the CMC method combined modified competitive binding could be a quick and efficient way for characterizing the drug-receptor interactions.

  10. Lectin binding patterns and carbohydrate mediation of sperm binding to llama oviductal cells in vitro.

    PubMed

    Apichela, Silvana A; Valz-Gianinet, Jorge N; Schuster, Stefanie; Jiménez-Díaz, María A; Roldán-Olarte, Eugenia M; Miceli, Dora C

    2010-04-01

    Sperm binding to oviductal epithelium would be involved in sperm reservoir formation in the utero tubal junction (UTJ). Although in other mammals sperm-oviduct interaction has been proved to be mediated by carbohydrate-recognition mechanisms, the factors implicated in the sperm adhesion to oviductal epithelium of llama are still unknown. In order to assess the role of carbohydrates present in the mucosa surface, we examined the distribution of glycoconjugates in the llama oviduct by confocal lectin-histochemistry. Mannosyl, glucosyl, N-acetylglucosaminyl, galactosyl, N-acetylgalactosaminyl and sialic acid residues were detected in the oviductal mucose glycocalyx. By incubation of UTJ oviductal explants with LCA, DBA, UEA-1 or PNA lectin previous to co-culture with sperm, we observed a significant decrease in sperm binding only with LCA lectin. In the mucosa surface there were numerous d-glucosyl and D-manosyl residues, which were spotted by this lectin. Probably, this fact promotes the whole covering of the oviduct luminal surface by the sugar-lectin complex, preventing sperm access and adhesion of further residues. However, sperm incubation with mannose or glucose does not significantly prevent binding, which means that glucose and mannose would not be involved in a specific sperm-oviduct interaction. On the other hand, we observed a high reduction in sperm binding to UTJ explants with N-acetylgalactosamine and galactose (p<0.001). Coincidentally, binding sites for N-acetylgalactosamine-PAA-FITC conjugate were observed on the whole surface of the sperm, supporting the concept that llama sperm have lectin-like molecules in their surface, as is the case in other mammals. Probably, these lectin-like molecules, by means of N-acetylgalactosamine and galactose recognition, could link the sperm to the oviductal mucosa with the purpose of forming storing sites in the UTJ. Our results support the idea that more than one carbohydrate could participate in sperm reservoir

  11. RNA binding and replication by the poliovirus RNA polymerase

    SciTech Connect

    Oberste, M.S.

    1988-01-01

    RNA binding and RNA synthesis by the poliovirus RNA-dependent RNA polymerase were studied in vitro using purified polymerase. Templates for binding and RNA synthesis studies were natural RNAs, homopolymeric RNAs, or subgenomic poliovirus-specific RNAs synthesized in vitro from cDNA clones using SP6 or T7 RNA polymerases. The binding of the purified polymerase to poliovirion and other RNAs was studied using a protein-RNA nitrocellulose filter binding assay. A cellular poly(A)-binding protein was found in the viral polymerase preparations, but was easily separated from the polymerase by chromatography on poly(A) Sepharose. The binding of purified polymerase to {sup 32}P-labeled ribohomopolymeric RNAs was examined, and the order of binding observed was poly(G) >>> poly(U) > poly(C) > poly(A). The K{sub a} for polymerase binding to poliovirion RNA and to a full-length negative strand transcript was about 1 {times} 10{sup 9} M{sup {minus}1}. The polymerase binds to a subgenomic RNAs which contain the 3{prime} end of the genome with a K{sub a} similar to that for virion RNA, but binds less well to 18S rRNA, globin mRNA, and subgenomic RNAs which lack portions of the 3{prime} noncoding region.

  12. Cooperativity in Binding Processes: New Insights from Phenomenological Modeling

    PubMed Central

    Cattoni, Diego I.; Chara, Osvaldo; Kaufman, Sergio B.; González Flecha, F. Luis

    2015-01-01

    Cooperative binding is one of the most interesting and not fully understood phenomena involved in control and regulation of biological processes. Here we analyze the simplest phenomenological model that can account for cooperativity (i.e. ligand binding to a macromolecule with two binding sites) by generating equilibrium binding isotherms from deterministically simulated binding time courses. We show that the Hill coefficients determined for cooperative binding, provide a good measure of the Gibbs free energy of interaction among binding sites, and that their values are independent of the free energy of association for empty sites. We also conclude that although negative cooperativity and different classes of binding sites cannot be distinguished at equilibrium, they can be kinetically differentiated. This feature highlights the usefulness of pre-equilibrium time-resolved strategies to explore binding models as a key complement of equilibrium experiments. Furthermore, our analysis shows that under conditions of strong negative cooperativity, the existence of some binding sites can be overlooked, and experiments at very high ligand concentrations can be a valuable tool to unmask such sites. PMID:26717487

  13. Why Transcription Factor Binding Sites Are Ten Nucleotides Long

    PubMed Central

    Stewart, Alexander J.; Hannenhalli, Sridhar; Plotkin, Joshua B.

    2012-01-01

    Gene expression is controlled primarily by transcription factors, whose DNA binding sites are typically 10 nt long. We develop a population-genetic model to understand how the length and information content of such binding sites evolve. Our analysis is based on an inherent trade-off between specificity, which is greater in long binding sites, and robustness to mutation, which is greater in short binding sites. The evolutionary stable distribution of binding site lengths predicted by the model agrees with the empirical distribution (5–31 nt, with mean 9.9 nt for eukaryotes), and it is remarkably robust to variation in the underlying parameters of population size, mutation rate, number of transcription factor targets, and strength of selection for proper binding and selection against improper binding. In a systematic data set of eukaryotic and prokaryotic transcription factors we also uncover strong relationships between the length of a binding site and its information content per nucleotide, as well as between the number of targets a transcription factor regulates and the information content in its binding sites. Our analysis explains these features as well as the remarkable conservation of binding site characteristics across diverse taxa. PMID:22887818

  14. An Electrostatic Funnel in the GABA-Binding Pathway

    PubMed Central

    Lightstone, Felice C.

    2016-01-01

    The γ-aminobutyric acid type A receptor (GABAA-R) is a major inhibitory neuroreceptor that is activated by the binding of GABA. The structure of the GABAA-R is well characterized, and many of the binding site residues have been identified. However, most of these residues are obscured behind the C-loop that acts as a cover to the binding site. Thus, the mechanism by which the GABA molecule recognizes the binding site, and the pathway it takes to enter the binding site are both unclear. Through the completion and detailed analysis of 100 short, unbiased, independent molecular dynamics simulations, we have investigated this phenomenon of GABA entering the binding site. In each system, GABA was placed quasi-randomly near the binding site of a GABAA-R homology model, and atomistic simulations were carried out to observe the behavior of the GABA molecules. GABA fully entered the binding site in 19 of the 100 simulations. The pathway taken by these molecules was consistent and non-random; the GABA molecules approach the binding site from below, before passing up behind the C-loop and into the binding site. This binding pathway is driven by long-range electrostatic interactions, whereby the electrostatic field acts as a ‘funnel’ that sweeps the GABA molecules towards the binding site, at which point more specific atomic interactions take over. These findings define a nuanced mechanism whereby the GABAA-R uses the general zwitterionic features of the GABA molecule to identify a potential ligand some 2 nm away from the binding site. PMID:27119953

  15. Pulmonary surfactant protein A (SP-A) specifically binds dipalmitoylphosphatidylcholine

    SciTech Connect

    Kuroki, Y.; Akino, T. )

    1991-02-15

    Phospholipids are the major components of pulmonary surfactant. Dipalmitoylphosphatidylcholine is believed to be especially essential for the surfactant function of reducing the surface tension at the air-liquid interface. Surfactant protein A (SP-A) with a reduced denatured molecular mass of 26-38 kDa, characterized by a collagen-like structure and N-linked glycosylation, interacts strongly with a mixture of surfactant-like phospholipids. In the present study the direct binding of SP-A to phospholipids on a thin layer chromatogram was visualized using 125I-SP-A as a probe, so that the phospholipid specificities of SP-A binding and the structural requirements of SP-A and phospholipids for the binding could be examined. Although 125I-SP-A bound phosphatidylcholine and sphingomyeline, it was especially strong in binding dipalmitoylphosphatidylcholine, but failed to bind phosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine, and phosphatidylserine. Labeled SP-A also exhibited strong binding to distearoylphosphatidylcholine, but weak binding to dimyristoyl-, 1-palmitoyl-2-linoleoyl-, and dilinoleoylphosphatidylcholine. Unlabeled SP-A readily competed with labeled SP-A for phospholipid binding. SP-A strongly bound dipalmitoylglycerol produced by phospholipase C treatment of dipalmitoylphosphatidylcholine, but not palmitic acid. This protein also failed to bind lysophosphatidylcholine produced by phospholipase A2 treatment of dipalmitoylphosphatidylcholine. 125I-SP-A shows almost no binding to dipalmitoylphosphatidylglycerol and dipalmitoylphosphatidylethanolamine. The addition of 10 mM EGTA into the binding buffer reduced much of the 125I-SP-A binding to phospholipids. Excess deglycosylated SP-A competed with labeled SP-A for binding to dipalmitoylphosphatidylcholine, but the excess collagenase-resistant fragment of SP-A failed.

  16. Memory binding and white matter integrity in familial Alzheimer's disease.

    PubMed

    Parra, Mario A; Saarimäki, Heini; Bastin, Mark E; Londoño, Ana C; Pettit, Lewis; Lopera, Francisco; Della Sala, Sergio; Abrahams, Sharon

    2015-05-01

    Binding information in short-term and long-term memory are functions sensitive to Alzheimer's disease. They have been found to be affected in patients who meet criteria for familial Alzheimer's disease due to the mutation E280A of the PSEN1 gene. However, only short-term memory binding has been found to be affected in asymptomatic carriers of this mutation. The neural correlates of this dissociation are poorly understood. The present study used diffusion tensor magnetic resonance imaging to investigate whether the integrity of white matter structures could offer an account. A sample of 19 patients with familial Alzheimer's disease, 18 asymptomatic carriers and 21 non-carrier controls underwent diffusion tensor magnetic resonance imaging, neuropsychological and memory binding assessment. The short-term memory binding task required participants to detect changes across two consecutive screens displaying arrays of shapes, colours, or shape-colour bindings. The long-term memory binding task was a Paired Associates Learning Test. Performance on these tasks were entered into regression models. Relative to controls, patients with familial Alzheimer's disease performed poorly on both memory binding tasks. Asymptomatic carriers differed from controls only in the short-term memory binding task. White matter integrity explained poor memory binding performance only in patients with familial Alzheimer's disease. White matter water diffusion metrics from the frontal lobe accounted for poor performance on both memory binding tasks. Dissociations were found in the genu of corpus callosum which accounted for short-term memory binding impairments and in the hippocampal part of cingulum bundle which accounted for long-term memory binding deficits. The results indicate that white matter structures in the frontal and temporal lobes are vulnerable to the early stages of familial Alzheimer's disease and their damage is associated with impairments in two memory binding functions known to

  17. Neurofilaments bind tubulin and modulate its polymerization.

    PubMed

    Bocquet, Arnaud; Berges, Raphael; Frank, Ronald; Robert, Patrick; Peterson, Alan C; Eyer, Joël

    2009-09-02

    Neurofilaments assemble from three intermediate-filament proteins, contribute to the radial growth of axons, and are exceptionally stable. Microtubules are dynamic structures that assemble from tubulin dimers to support intracellular transport of molecules and organelles. We show here that neurofilaments, and other intermediate-filament proteins, contain motifs in their N-terminal domains that bind unassembled tubulin. Peptides containing such motifs inhibit the in vitro polymerization of microtubules and can be taken up by cultured cells in which they disrupt microtubules leading to altered cell shapes and an arrest of division. In transgenic mice in which neurofilaments are withheld from the axonal compartment, axonal tubulin accumulation is normal but microtubules assemble in excessive numbers. These observations suggest a model in which axonal neurofilaments modulate local microtubule assembly. This capacity also suggests novel mechanisms through which inherited or acquired disruptions in intermediate filaments might contribute to pathogenesis in multiple conditions.

  18. FHA domains: Phosphopeptide binding and beyond.

    PubMed

    Almawi, Ahmad W; Matthews, Lindsay A; Guarné, Alba

    2016-12-08

    Forkhead-associated (FHA) domains are small phosphopeptide recognition modules found in eubacterial and eukaryotic, but not archeal, genomes. Although they were originally found in forkhead-type transcription factors, they have now been identified in many other signaling proteins. FHA domains share a remarkably conserved fold despite very low sequence conservation. They only have five conserved amino acids that are important for binding to phosphorylated epitopes. Recent work from several laboratories has demonstrated that FHA domains can mediate many interactions that do not depend on their ability to recognize a phosphorylated threonine. In this review, we present structural and biochemical work that has unveiled novel interaction interfaces on FHA domains. We discuss how these non-canonical interactions modulate the recognition of phosphorylated and non-phosphorylated substrates, as well as protein oligomerization - events that collectively determine FHA function.

  19. Engineering short peptide sequences for uranyl binding.

    PubMed

    Lebrun, Colette; Starck, Matthieu; Gathu, Vicky; Chenavier, Yves; Delangle, Pascale

    2014-12-08

    Peptides are interesting tools to rationalize uranyl-protein interactions, which are relevant to uranium toxicity in vivo. Structured cyclic peptide scaffolds were chosen as promising candidates to coordinate uranyl thanks to four amino acid side chains pre-oriented towards the dioxo cation equatorial plane. The binding of uranyl by a series of decapeptides has been investigated with complementary analytical and spectroscopic methods to determine the key parameters for the formation of stable uranyl-peptide complexes. The molar ellipticity of the uranyl complex at 195 nm is directly correlated to its stability, which demonstrates that the β-sheet structure is optimal for high stability in the peptide series. Cyclodecapeptides with four glutamate residues exhibit the highest affinities for uranyl with log KC =8.0-8.4 and, therefore, appear as good starting points for the design of high-affinity uranyl-chelating peptides.

  20. Binding Rubicon to cross the Rubicon.

    PubMed

    Matsunaga, Kohichi; Noda, Takeshi; Yoshimori, Tamotsu

    2009-08-01

    Beclin 1 is an antitumor protein, required for mammalian autophagy, but its precise molecular function is poorly understood. Mass spectrometry analysis reveals that two novel proteins, Atg14L and Rubicon, associate with Beclin 1, together with a known Beclin 1-binding protein, UVRAG. The interactions of Atg14L and UVRAG with the Beclin 1-Vps34 (class III PI3-kinase)-Vps15 core complex are mutually exclusive; Rubicon associates with a subpopulation of UVRAG-containing complexes. The Atg14L complex, which positively regulates autophagy at an early step, localizes to the phagophore/isolation membrane, autophagosome and endoplasmic reticulum. In contrast, the Rubicon-UVRAG complex localizes to the late endosome/lysosome and negatively regulates both autophagy at a later step and the endocytic pathway. Thus, the Beclin 1-Vps34-Vps15 complex functions in autophagy and the endocytic pathway, but its function in a given context depends on the identity of its interacting subunits.

  1. Lactation-induced cadmium-binding proteins

    SciTech Connect

    Bhattacharyya, M.H.; Solaiman, D.; Garvey, J.S.; Miyazaki, W.Y.

    1987-01-01

    Previously we have demonstrated an increase during midlactation in /sup 109/Cd adsorption and increased retention by the duodenum, kidney, and mammary tissue of mouse dams receiving environmental levels of cadmium//sup 109/Cd via drinking water, with little change in /sup 109/Cd retention in liver and jejunum compared to nonpregnant controls. Results are reported here of a study of cadmium deposition during midlactation as associated with induction of metallothionein (MT). A cadmium/hemoglobin (Cd/Hb) assay and radioimmunoassay for MT which measures heat-stable cadmium binding capacity in tissues was used to determine MT concentrations in fractions of kidney, liver, duodenum, and jejunum from female mice. Both assays demonstrated clear lactation-induced increases in MT concentrations in liver, kidney, and duodenum, with MT concentrations falling rapidly to control levels after weaning. 4 refs., 1 tab.

  2. Content Sharing in User Binding DRM

    NASA Astrophysics Data System (ADS)

    Lee, Byung-Rae

    Content sharing mechanisms in current DRM systems are based on a domain where multiple devices have the same domain key. This can lead to a security weakness as failure of one device means revocation of a domain itself. Furthermore, if a device leaves the domain, all the other devices should update their domain key. This also leads to efficiency problem. This paper proposes the new content sharing scheme based on the user binding DRM without the use of domain key. The proposed scheme improves the previous domain technology in terms of security and efficiency as it removes the use of domain key and only allows content sharing for multiple devices owned by the same user.

  3. Method And Apparatus For Detecting Chemical Binding

    DOEpatents

    Warner, Benjamin P.; Havrilla, George J.; Miller, Thomasin C.; Wells, Cyndi A.

    2005-02-22

    The method for screening binding between a target binder and potential pharmaceutical chemicals involves sending a solution (preferably an aqueous solution) of the target binder through a conduit to a size exclusion filter, the target binder being too large to pass through the size exclusion filter, and then sending a solution of one or more potential pharmaceutical chemicals (preferably an aqueous solution) through the same conduit to the size exclusion filter after target binder has collected on the filter. The potential pharmaceutical chemicals are small enough to pass through the filter. Afterwards, x-rays are sent from an x-ray source to the size exclusion filter, and if the potential pharmaceutical chemicals form a complex with the target binder, the complex produces an x-ray fluorescence signal having an intensity that indicates that a complex has formed.

  4. Method and apparatus for detecting chemical binding

    DOEpatents

    Warner, Benjamin P.; Havrilla, George J.; Miller, Thomasin C.; Wells, Cyndi A.

    2007-07-10

    The method for screening binding between a target binder and potential pharmaceutical chemicals involves sending a solution (preferably an aqueous solution) of the target binder through a conduit to a size exclusion filter, the target binder being too large to pass through the size exclusion filter, and then sending a solution of one or more potential pharmaceutical chemicals (preferably an aqueous solution) through the same conduit to the size exclusion filter after target binder has collected on the filter. The potential pharmaceutical chemicals are small enough to pass through the filter. Afterwards, x-rays are sent from an x-ray source to the size exclusion filter, and if the potential pharmaceutical chemicals form a complex with the target binder, the complex produces an x-ray fluorescence signal having an intensity that indicates that a complex has formed.

  5. Neurodegeneration and RNA-binding proteins.

    PubMed

    De Conti, Laura; Baralle, Marco; Buratti, Emanuele

    2017-03-01

    In the eukaryotic nucleus, RNA-binding proteins (RBPs) play a very important role in the life cycle of both coding and noncoding RNAs. As soon as they are transcribed, in fact, all RNA molecules within a cell are bound by distinct sets of RBPs that have the task of regulating its correct processing, transport, stability, and function/translation up to its final degradation. These tasks are particularly important in cells that have a complex RNA metabolism, such as neurons. Not surprisingly, therefore, recent findings have shown that the misregulation of genes involved in RNA metabolism or the autophagy/proteasome pathway plays an important role in the onset and progression of several neurodegenerative diseases. In this article, we aim to review the recent advances that link neurodegenerative processes and RBP proteins. WIREs RNA 2017, 8:e1394. doi: 10.1002/wrna.1394 For further resources related to this article, please visit the WIREs website.

  6. Physical factors affecting chloroquine binding to melanin.

    PubMed

    Schroeder, R L; Pendleton, P; Gerber, J P

    2015-10-01

    Chloroquine is an antimalarial drug but is also prescribed for conditions such as rheumatoid arthritis. Long-term users risk toxic side effects, including retinopathy, thought to be caused by chloroquine accumulation on ocular melanin. Although the binding potential of chloroquine to melanin has been investigated previously, our study is the first to demonstrate clear links between chloroquine adsorption by melanin and system factors including temperature, pH, melanin type, and particle size. In the current work, two Sepia melanins were compared with bovine eye as a representative mammalian melanin. Increasing the surface anionic character due to a pH change from 4.7 to 7.4 increased each melanin's affinity for chloroquine. Although the chloroquine isotherms exhibited an apparently strong interaction with each melanin, isosteric heat analysis indicated a competitive interaction. Buffer solution cations competed effectively at low surface coverage; chloroquine adsorption occurs via buffer cation displacement and is promoted by temperature-influenced secondary structure swelling.

  7. Phylointeractomics reconstructs functional evolution of protein binding

    PubMed Central

    Kappei, Dennis; Scheibe, Marion; Paszkowski-Rogacz, Maciej; Bluhm, Alina; Gossmann, Toni Ingolf; Dietz, Sabrina; Dejung, Mario; Herlyn, Holger; Buchholz, Frank; Mann, Matthias; Butter, Falk

    2017-01-01

    Molecular phylogenomics investigates evolutionary relationships based on genomic data. However, despite genomic sequence conservation, changes in protein interactions can occur relatively rapidly and may cause strong functional diversification. To investigate such functional evolution, we here combine phylogenomics with interaction proteomics. We develop this concept by investigating the molecular evolution of the shelterin complex, which protects telomeres, across 16 vertebrate species from zebrafish to humans covering 450 million years of evolution. Our phylointeractomics screen discovers previously unknown telomere-associated proteins and reveals how homologous proteins undergo functional evolution. For instance, we show that TERF1 evolved as a telomere-binding protein in the common stem lineage of marsupial and placental mammals. Phylointeractomics is a versatile and scalable approach to investigate evolutionary changes in protein function and thus can provide experimental evidence for phylogenomic relationships. PMID:28176777

  8. The time course of intentional binding.

    PubMed

    Ruess, Miriam; Thomaschke, Roland; Kiesel, Andrea

    2017-02-09

    Stimuli caused by actions (i.e., effects) are perceived earlier than stimuli not caused by actions. This phenomenon is termed intentional binding (IB) and serves as implicit measure of sense of agency. We investigated the influence of effect delay and temporal predictability on IB, operationalized as the bias to perceive the effect as temporally shifted toward the action. For short delays, IB increased with delay (Experiment 1: 200 ms, 250 ms, 300 ms). The initial increase declined for longer delays (Experiment 2: 100 ms, 250 ms, 400 ms). This extends previous findings showing IB to decrease with increasing delays for delay ranges of 250 ms to 650 ms. Further, the hypothesis that IB, that is, sense of agency, might be maximal for different delays depending on the specific characteristics and context of action and effect, has important implications for human-machine interfaces.

  9. Identification of a common hyaluronan binding motif in the hyaluronan binding proteins RHAMM, CD44 and link protein.

    PubMed Central

    Yang, B; Yang, B L; Savani, R C; Turley, E A

    1994-01-01

    We have previously identified two hyaluronan (HA) binding domains in the HA receptor, RHAMM, that occur near the carboxyl-terminus of this protein. We show here that these two HA binding domains are the only HA binding regions in RHAMM, and that they contribute approximately equally to the HA binding ability of this receptor. Mutation of domain II using recombinant polypeptides of RHAMM demonstrates that K423 and R431, spaced seven amino acids apart, are critical for HA binding activity. Domain I contains two sets of two basic amino acids, each spaced seven residues apart, and mutation of these basic amino acids reduced their binding to HA--Sepharose. These results predict that two basic amino acids flanking a seven amino acid stretch [hereafter called B(X7)B] are minimally required for HA binding activity. To assess whether this motif predicts HA binding in the intact RHAMM protein, we mutated all basic amino acids in domains I and II that form part of these motifs using site-directed mutagenesis and prepared fusion protein from the mutated cDNA. The altered RHAMM protein did not bind HA, confirming that the basic amino acids and their spacing are critical for binding. A specific requirement for arginine or lysine residues was identified since mutation of K430, R431 and K432 to histidine residues abolished binding. Clustering of basic amino acids either within or at either end of the motif enhanced HA binding activity while the occurrence of acidic residues between the basic amino acids reduced binding. The B(X7)B motif, in which B is either R or K and X7 contains no acidic residues and at least one basic amino acid, was found in all HA binding proteins molecularly characterized to date. Recombinant techniques were used to generate chimeric proteins containing either the B(X7)B motifs present in CD44 or link protein, with the amino-terminus of RHAMM (amino acids 1-238) that does not bind HA. All chimeric proteins containing the motif bound HA in transblot analyses

  10. C-Terminus of Botulinum A Protease Has Profound and Unanticipated Kinetic Consequences upon the Catalytic Cleft

    PubMed Central

    2012-01-01

    Botulinum neurotoxins (BoNTs) are among the most deadly poisons known, though ironically, they also are of great therapeutic utility. A number of research programs have been initiated to discover small molecule inhibitors of BoNTs metalloprotease activity. Many, though not all, of these programs have screened against a truncated and more stable form of the enzyme, that possesses comparable catalytic properties to the full length enzyme. Interestingly, several classes of inhibitors, notably the hydroxamates, display a large shift in potency between the two enzyme forms. In this report we compare the kinetics of active-site, α-exosite and β-exosite inhibitors versus truncated and full length enzyme. Molecular dynamics simulations conducted with the truncated and homology models of the full length BoNT LC/A indicate the flexibility of the C-terminus of the full length enzyme is responsible for the potency shifts of active-site proximally binding inhibitors while distal binding (α-exosite) inhibitors remain equipotent. PMID:23565325

  11. Crystal Structure of Thrombin Bound to the Uncleaved Extracellular Fragment of PAR1

    SciTech Connect

    Gandhi, Prafull S.; Chen, Zhiwei; Di Cera, Enrico

    2010-05-11

    Abundant structural information exists on how thrombin recognizes ligands at the active site or at exosites separate from the active site region, but remarkably little is known about how thrombin recognizes substrates that bridge both the active site and exosite I. The case of the protease-activated receptor PAR1 is particularly relevant in view of the plethora of biological effects associated with its activation by thrombin. Here, we present the 1.8 {angstrom} resolution structure of thrombin S195A in complex with a 30-residue long uncleaved extracellular fragment of PAR1 that documents for the first time a productive binding mode bridging the active site and exosite I. The structure reveals two unexpected features of the thrombin-PAR1 interaction. The acidic P3 residue of PAR1, Asp{sup 39}, does not hinder binding to the active site and actually makes favorable interactions with Gly{sup 219} of thrombin. The tethered ligand domain shows a considerable degree of disorder even when bound to thrombin. The results fill a significant gap in our understanding of the molecular mechanisms of recognition by thrombin in ways that are relevant to other physiological substrates.

  12. DNABP: Identification of DNA-Binding Proteins Based on Feature Selection Using a Random Forest and Predicting Binding Residues

    PubMed Central

    Guo, Jing; Sun, Xiao

    2016-01-01

    DNA-binding proteins are fundamentally important in cellular processes. Several computational-based methods have been developed to improve the prediction of DNA-binding proteins in previous years. However, insufficient work has been done on the prediction of DNA-binding proteins from protein sequence information. In this paper, a novel predictor, DNABP (DNA-binding proteins), was designed to predict DNA-binding proteins using the random forest (RF) classifier with a hybrid feature. The hybrid feature contains two types of novel sequence features, which reflect information about the conservation of physicochemical properties of the amino acids, and the binding propensity of DNA-binding residues and non-binding propensities of non-binding residues. The comparisons with each feature demonstrated that these two novel features contributed most to the improvement in predictive ability. Furthermore, to improve the prediction performance of the DNABP model, feature selection using the minimum redundancy maximum relevance (mRMR) method combined with incremental feature selection (IFS) was carried out during the model construction. The results showed that the DNABP model could achieve 86.90% accuracy, 83.76% sensitivity, 90.03% specificity and a Matthews correlation coefficient of 0.727. High prediction accuracy and performance comparisons with previous research suggested that DNABP could be a useful approach to identify DNA-binding proteins from sequence information. The DNABP web server system is freely available at http://www.cbi.seu.edu.cn/DNABP/. PMID:27907159

  13. Adrenocortical nuclear progesterone-binding protein: Identification by photoaffinity labeling and evidence for deoxyribonucleic acid binding and stimulation by adrenocorticotropin

    SciTech Connect

    Demura, T.; Driscoll, W.J.; Lee, Y.C.; Strott, C.A. )

    1991-01-01

    Nuclei of the guinea pig adrenal cortex contain a protein that specifically binds progesterone and that, biochemically, is clearly distinct from the classical progesterone receptor. The adrenocortical nuclear progesterone-binding protein has now been purified more than 2000-fold by steroid-affinity chromatography with a 75% yield. The purified protein preparation demonstrated three major bands on sodium dodecyl sulfate-polyacrylamide gel of 79K, 74K, and 50K. To determine which of the three might represent the progesterone-binding protein, steroid photoaffinity labeling was performed which resulted in the specific and exclusive labeling of a 50K band. Thus, the adrenocortical nuclear progesterone-binding protein appears to be distinct from the classical progesterone receptor not only biochemically, but also on the basis of molecular size. To test whether the adrenocortical nuclear progesterone-binding protein can be hormonally stimulated, guinea pigs were treated with ACTH. The chronic administration of ACTH caused a 4- to 6-fold increase in the specific progesterone binding capacity without a change in the binding affinity. There appeared to be no significant difference in nuclear progesterone binding between the zona fasciculata and zona reticularis. This finding suggests a mediating role for the progesterone-binding protein in ACTH action. In addition, the nuclear progesterone-binding protein bound to nonspecific DNA sequences, further suggesting a possible transcriptional regulatory role.

  14. Unexpected binding of an octapeptide to the angiotensin II receptor

    SciTech Connect

    Soffer, R.L.; Bandyopadhyay, S.; Rosenberg, E.; Hoeprich, P.; Teitelbaum, A.; Brunck, T.; Colby, C.B.; Gloff, C.

    1987-12-01

    An octapeptide, TBI-22 (Lys-Gly-Val-Tyr-Ile, His-Ala-Leu), inhibited binding of angiotensin II by a solubilized angiotensin receptor partially purified from rabbit liver. This inhibition appears to result from competition for binding to the same receptor. Radioiodinated TBI-22, like angiotensin II, bound to the solubilized receptor with an affinity such that the binding was inhibited 50% by unlabeled TBI-22 or angiotensin II at nanomolar concentrations. The binding reaction, like that for angiotensin II, required p-chloromercuriphenylsulfonic acid and was reversed in the presence of dithiothreitol. TBI-22 and angiotensin II share the sequence Val-Tyr-Ile-His; this tetrapeptide alone, however, did not inhibit binding of angiotensin II. Replacement of the tyrosine residue by aspartic acid in TBI-22 greatly reduced the ability of the peptide to compete with angiotensin II for binding, suggesting an important contribution of this residue to the configuration required for recognition by the receptor.

  15. Binding of rabies virus to purified Torpedo acetylcholine receptor.

    PubMed

    Lentz, T L; Benson, R J; Klimowicz, D; Wilson, P T; Hawrot, E

    1986-12-01

    The binding of 125I- and 35S-labeled rabies virus (CVS strain) to affinity-purified acetylcholine receptor from Torpedo electric organ was demonstrated. The binding of rabies virus to the acetylcholine receptor increased with increasing receptor concentration, was dependent on the pH of the incubation medium, and was saturable with increasing virus concentration. Binding of radioactively labeled virus was effectively competed by unlabeled homologous virus particles. Binding of 35S-labeled rabies virus to the AChR was inhibited up to 50% by alpha-bungarotoxin and up to 30% by (+)-tubocurarine but was not affected by atropine. These results demonstrate direct binding of rabies virus to a well-defined neurotransmitter receptor, namely the acetylcholine receptor and indicate that at least a portion of the virus interaction occurs near the acetylcholine binding site on the receptor. These findings support the hypothesis that the acetylcholine receptor may serve as a rabies virus receptor in vivo.

  16. Gliadins bind to reticulin in a lectin-like manner.

    PubMed

    Unsworth, D J; Leonard, J N; Hobday, C M; Griffiths, C E; Powles, A V; Haffenden, G P; Fry, L

    1987-01-01

    It has previously been reported that gliadins bind to reticulin in tissue sections. Three lines of evidence are reported in this study which indicate that the gliadins bind to reticulins because they are lectins which bind to sugars expressed on glycoproteins in reticulin and other sites. First, immunofluorescence studies on tissue sections showed that although gliadin binding is largely confined to areas rich in reticulin, it is, nonetheless, also seen in one or two other sites devoid of reticulin. Second, by using fluorescein-labelled lectins of known specificity, it has been shown that the areas to which gliadins bind in tissue sections (including those sites devoid of reticulin) are rich in particular sugars. Third, it has been shown that one of these sugars, alpha-D-mannose, partially inhibited gliadin binding to tissue sections.

  17. Concentration-dependent Cu(II) binding to prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Lu, Wenchang; Bernholc, Jerry

    2008-03-01

    The prion protein plays a causative role in several neurodegenerative diseases, including mad cow disease in cattle and Creutzfeldt-Jakob disease in humans. The normal function of the prion protein is unknown, but it has been linked to its ability to bind copper ions. Experimental evidence suggests that copper can be bound in three distinct modes depending on its concentration, but only one of those binding modes has been fully characterized experimentally. Using a newly developed hybrid DFT/DFT method [1], which combines Kohn-Sham DFT with orbital-free DFT, we have examined all the binding modes and obtained their detailed binding geometries and copper ion binding energies. Our results also provide explanation for experiments, which have found that when the copper concentration increases the copper binding mode changes, surprisingly, from a stronger to a weaker one. Overall, our results indicate that prion protein can function as a copper buffer. 1. Hodak, Lu, Bernholc, JCP, in press.

  18. DNA binding studies of Vinca alkaloids: experimental and computational evidence.

    PubMed

    Pandya, Prateek; Gupta, Surendra P; Pandav, Kumud; Barthwal, Ritu; Jayaram, B; Kumar, Surat

    2012-03-01

    Fluorescence studies on the indole alkaloids vinblastine sulfate, vincristine sulfate, vincamine and catharanthine have demonstrated the DNA binding ability of these molecules. The binding mode of these molecules in the minor groove of DNA is non-specific. A new parameter of the purine-pyrimidine base sequence specificty was observed in order to define the non-specific DNA binding of ligands. Catharanthine had shown 'same' pattern of 'Pu-Py' specificity while evaluating its DNA binding profile. The proton resonances of a DNA decamer duplex were assigned. The models of the drug:DNA complexes were analyzed for DNA binding features. The effect of temperature on the DNA binding was also evaluated.

  19. Studies on the binding of amylopectin sulfate with gastric mucin.

    PubMed

    Kim, Y S; Bella, A; Whitehead, J S; Isaacs, R; Remer, L

    1975-07-01

    Amylopectin sulfate, a sulfated polysaccharide that has an antipeptic property, was examined for its ability to bind gastric mucins. After chemically cross-linking the amylopectin sulfate into an insoluble gel, its binding with mucins isolated from antral and fundic mucosa of canine stomachs was studied with chromatography. A component present in both mucin fractions bound to the amylopectin sulfate gel below pH 4.5. This binding was reversible, and the complex dissociated above pH 5. Similar binding properties were found with soluble amylopectin sulfate. The component of the mucine which bound to amylopectin sulfate differed from the one which did not bind in its electrophoretic mobility and in its higher proportion of basic amino acids and a lower hexosamine, serine, and threonine content. This study suggests that amylopectin sulfate may bind to gastric mucins only under conditions of low pH.

  20. Partial characterization of GTP-binding proteins in Neurospora

    SciTech Connect

    Hasunuma, K.; Miyamoto-Shinohara, Y.; Furukawa, K.

    1987-08-14

    Six fractions of GTP-binding proteins separated by gel filtration of a mycelial extract containing membrane components of Neurospora crassa were partially characterized. (/sup 35/S)GTP gamma S bound to GTP-binding protein was assayed by repeated treatments with a Norit solution and centrifugation. The binding of (/sup 35/S)GTP gamma S to GTP-binding proteins was competitively prevented in the presence of 0.1 to 1 mM GTP but not in the presence of ATP. These GTP-binding proteins fractionated by the gel column had Km values of 20, 7, 4, 4, 80 and 2 nM. All six fractions of these GTP-binding proteins showed the capacity to be ADP-ribosylated by pertussis toxin.

  1. Paramagnetic Ligand Tagging To Identify Protein Binding Sites

    PubMed Central

    2015-01-01

    Transient biomolecular interactions are the cornerstones of the cellular machinery. The identification of the binding sites for low affinity molecular encounters is essential for the development of high affinity pharmaceuticals from weakly binding leads but is hindered by the lack of robust methodologies for characterization of weakly binding complexes. We introduce a paramagnetic ligand tagging approach that enables localization of low affinity protein–ligand binding clefts by detection and analysis of intermolecular protein NMR pseudocontact shifts, which are invoked by the covalent attachment of a paramagnetic lanthanoid chelating tag to the ligand of interest. The methodology is corroborated by identification of the low millimolar volatile anesthetic interaction site of the calcium sensor protein calmodulin. It presents an efficient route to binding site localization for low affinity complexes and is applicable to rapid screening of protein–ligand systems with varying binding affinity. PMID:26289584

  2. Somatostatin binding to dissociated cells from rat cerebral cortex

    SciTech Connect

    Colas, B.; Prieto, J.C.; Arilla, E. )

    1990-11-01

    A method has been developed for the study of somatostatin (SS) binding to dissociated cells from rat cerebral cortex. Binding of {sup 125}I (Tyr11)SS to cells obtained by mechanical dissociation of rat cerebral cortex was dependent on time and temperature, saturable, reversible and highly specific. Under conditions of equilibrium, i.e., 60 min at 25 degrees C, native SS inhibited tracer binding in a dose-dependent manner. The Scatchard analysis of binding data was linear and yielded a dissociation constant of 0.60 +/- 0.08 nM with a maximal binding capacity of 160 +/- 16 fmol/mg protein. The binding of {sup 125}I (Tyr11)SS was specific as shown in experiments on tracer displacement by the native peptides, SS analogues, and unrelated peptides.

  3. Hardware device to physical structure binding and authentication

    DOEpatents

    Hamlet, Jason R.; Stein, David J.; Bauer, Todd M.

    2013-08-20

    Detection and deterrence of device tampering and subversion may be achieved by including a cryptographic fingerprint unit within a hardware device for authenticating a binding of the hardware device and a physical structure. The cryptographic fingerprint unit includes an internal physically unclonable function ("PUF") circuit disposed in or on the hardware device, which generate an internal PUF value. Binding logic is coupled to receive the internal PUF value, as well as an external PUF value associated with the physical structure, and generates a binding PUF value, which represents the binding of the hardware device and the physical structure. The cryptographic fingerprint unit also includes a cryptographic unit that uses the binding PUF value to allow a challenger to authenticate the binding.

  4. Structure and localisation of drug binding sites on neurotransmitter transporters.

    PubMed

    Ravna, Aina W; Sylte, Ingebrigt; Dahl, Svein G

    2009-10-01

    The dopamine (DAT), serotontin (SERT) and noradrenalin (NET) transporters are molecular targets for different classes of psychotropic drugs. The crystal structure of Aquifex aeolicus LeuT(Aa) was used as a template for molecular modeling of DAT, SERT and NET, and two putative drug binding sites (pocket 1 and 2) in each transporter were identified. Cocaine was docked into binding pocket 1 of DAT, corresponding to the leucine binding site in LeuT(Aa), which involved transmembrane helices (TMHs) 1, 3, 6 and 8. Clomipramine was docked into binding pocket 2 of DAT, involving TMHs 1, 3, 6, 10 and 11, and extracellular loops 4 and 6, corresponding to the clomipramine binding site in a crystal structure of a LeuT(Aa)-clomipramine complex. The structures of the proposed cocaine- and tricyclic antidepressant-binding sites may be of particular interest for the design of novel DAT interacting ligands.

  5. Diversity of Cyclic Di-GMP-Binding Proteins and Mechanisms

    PubMed Central

    2015-01-01

    ABSTRACT Cyclic di-GMP (c-di-GMP) synthetases and hydrolases (GGDEF, EAL, and HD-GYP domains) can be readily identified in bacterial genome sequences by using standard bioinformatic tools. In contrast, identification of c-di-GMP receptors remains a difficult task, and the current list of experimentally characterized c-di-GMP-binding proteins is likely incomplete. Several classes of c-di-GMP-binding proteins have been structurally characterized; for some others, the binding sites have been identified; and for several potential c-di-GMP receptors, the binding sites remain to be determined. We present here a comparative structural analysis of c-di-GMP-protein complexes that aims to discern the common themes in the binding mechanisms that allow c-di-GMP receptors to bind it with (sub)micromolar affinities despite the 1,000-fold excess of GTP. The available structures show that most receptors use their Arg and Asp/Glu residues to bind c-di-GMP monomers, dimers, or tetramers with stacked guanine bases. The only exception is the EAL domains that bind c-di-GMP monomers in an extended conformation. We show that in c-di-GMP-binding signature motifs, Arg residues bind to the O-6 and N-7 atoms at the Hoogsteen edge of the guanine base, while Asp/Glu residues bind the N-1 and N-2 atoms at its Watson-Crick edge. In addition, Arg residues participate in stacking interactions with the guanine bases of c-di-GMP and the aromatic rings of Tyr and Phe residues. This may account for the presence of Arg residues in the active sites of every receptor protein that binds stacked c-di-GMP. We also discuss the implications of these structural data for the improved understanding of the c-di-GMP signaling mechanisms. PMID:26055114

  6. Hydrolysis at One of the Two Nucleotide-binding Sites Drives the Dissociation of ATP-binding Cassette Nucleotide-binding Domain Dimers

    SciTech Connect

    Zoghbi, M. E.; Altenberg, G. A.

    2013-10-15

    The functional unit of ATP-binding cassette (ABC) transporters consists of two transmembrane domains and two nucleotide-binding domains (NBDs). ATP binding elicits association of the two NBDs, forming a dimer in a head-to-tail arrangement, with two nucleotides “sandwiched” at the dimer interface. Each of the two nucleotide-binding sites is formed by residues from the two NBDs. We recently found that the prototypical NBD MJ0796 from Methanocaldococcus jannaschii dimerizes in response to ATP binding and dissociates completely following ATP hydrolysis. However, it is still unknown whether dissociation of NBD dimers follows ATP hydrolysis at one or both nucleotide-binding sites. Here, we used luminescence resonance energy transfer to study heterodimers formed by one active (donor-labeled) and one catalytically defective (acceptor-labeled) NBD. Rapid mixing experiments in a stop-flow chamber showed that NBD heterodimers with one functional and one inactive site dissociated at a rate indistinguishable from that of dimers with two hydrolysis-competent sites. Comparison of the rates of NBD dimer dissociation and ATP hydrolysis indicated that dissociation followed hydrolysis of one ATP. We conclude that ATP hydrolysis at one nucleotide-binding site drives NBD dimer dissociation.

  7. Distinct binding properties of TIAR RRMs and linker region

    PubMed Central

    Kim, Henry S.; Headey, Stephen J.; Yoga, Yano M.K.; Scanlon, Martin J.; Gorospe, Myriam; Wilce, Matthew C.J.; Wilce, Jacqueline A.

    2013-01-01

    The RNA-binding protein TIAR is an mRNA-binding protein that acts as a translational repressor, particularly important under conditions of cellular stress. It binds to target mRNA and DNA via its RNA recognition motif (RRM) domains and is involved in both splicing regulation and translational repression via the formation of “stress granules.” TIAR has also been shown to bind ssDNA and play a role in the regulation of transcription. Here we show, using surface plasmon resonance and nuclear magnetic resonance spectroscopy, specific roles of individual TIAR domains for high-affinity binding to RNA and DNA targets. We confirm that RRM2 of TIAR is the major RNA- and DNA-binding domain. However, the strong nanomolar affinity binding to U-rich RNA and T-rich DNA depends on the presence of the six amino acid residues found in the linker region C-terminal to RRM2. On its own, RRM1 shows preferred binding to DNA over RNA. We further characterize the interaction between RRM2 with the C-terminal extension and an AU-rich target RNA sequence using NMR spectroscopy to identify the amino acid residues involved in binding. We demonstrate that TIAR RRM2, together with its C-terminal extension, is the major contributor for the high-affinity (nM) interactions of TIAR with target RNA sequences. PMID:23603827

  8. Distinct binding properties of TIAR RRMs and linker region.

    PubMed

    Kim, Henry S; Headey, Stephen J; Yoga, Yano M K; Scanlon, Martin J; Gorospe, Myriam; Wilce, Matthew C J; Wilce, Jacqueline A

    2013-04-01

    The RNA-binding protein TIAR is an mRNA-binding protein that acts as a translational repressor, particularly important under conditions of cellular stress. It binds to target mRNA and DNA via its RNA recognition motif (RRM) domains and is involved in both splicing regulation and translational repression via the formation of "stress granules." TIAR has also been shown to bind ssDNA and play a role in the regulation of transcription. Here we show, using surface plasmon resonance and nuclear magnetic resonance spectroscopy, specific roles of individual TIAR domains for high-affinity binding to RNA and DNA targets. We confirm that RRM2 of TIAR is the major RNA- and DNA-binding domain. However, the strong nanomolar affinity binding to U-rich RNA and T-rich DNA depends on the presence of the six amino acid residues found in the linker region C-terminal to RRM2. On its own, RRM1 shows preferred binding to DNA over RNA. We further characterize the interaction between RRM2 with the C-terminal extension and an AU-rich target RNA sequence using NMR spectroscopy to identify the amino acid residues involved in binding. We demonstrate that TIAR RRM2, together with its C-terminal extension, is the major contributor for the high-affinity (nM) interactions of TIAR with target RNA sequences.

  9. Penicillin-binding site on the Escherichia coli cell envelope

    SciTech Connect

    Amaral, L.; Lee, Y.; Schwarz, U.; Lorian, V.

    1986-08-01

    The binding of /sup 35/S-labeled penicillin to distinct penicillin-binding proteins (PBPs) of the cell envelope obtained from the sonication of Escherichia coli was studied at different pHs ranging from 4 to 11. Experiments distinguishing the effect of pH on penicillin binding by PBP 5/6 from its effect on beta-lactamase activity indicated that although substantial binding occurred at the lowest pH, the amount of binding increased with pH, reaching a maximum at pH 10. Based on earlier studies, it is proposed that the binding at high pH involves the formation of a covalent bond between the C-7 of penicillin and free epsilon amino groups of the PBPs. At pHs ranging from 4 to 8, position 1 of penicillin, occupied by sulfur, is considered to be the site that establishes a covalent bond with the sulfhydryl groups of PBP 5. The use of specific blockers of free epsilon amino groups or sulfhydryl groups indicated that wherever the presence of each had little or no effect on the binding of penicillin by PBP 5, the presence of both completely prevented binding. The specific blocker of the hydroxyl group of serine did not affect the binding of penicillin.

  10. Critical electron binding to linear electric quadrupole systems.

    PubMed

    Garrett, W R

    2008-05-21

    Results for critical quadrupolar moments for electron binding to fixed, point-charge systems are normalized, extended, and displayed in graphical forms. The influence of rotational degrees of freedom on critical binding to quadrupolar systems is examined through calculations of critical moments for electron binding to linear electric quadrupolar rotors. The results are presented for rotors covering useful ranges of size and inertial parameters. The effect of rotational degrees of freedom on critical binding is found to be less important for quadrupolar as compared to dipolar rotors.

  11. Binding Affinities Controlled by Shifting Conformational Equilibria: Opportunities and Limitations

    PubMed Central

    Michielssens, Servaas; de Groot, Bert L.; Grubmüller, Helmut

    2015-01-01

    Conformational selection is an established mechanism in molecular recognition. Despite its power to explain binding events, it is hardly used in protein/ligand design to modulate molecular recognition. Here, we explore the opportunities and limitations of design by conformational selection. Using appropriate thermodynamic cycles, our approach predicts the effects of a conformational shift on binding affinity and also allows one to disentangle the effects induced by a conformational shift from other effects influencing the binding affinity. The method is assessed and applied to explain the contribution of a conformational shift on the binding affinity of six ubiquitin mutants showing different conformational shifts in six different complexes. PMID:25992736

  12. Oxytocin receptor binding in the hypothalamus during gestation in rats.

    PubMed

    Bealer, Steven L; Lipschitz, David L; Ramoz, Gina; Crowley, William R

    2006-07-01

    Central oxytocin receptors (OTR) may be involved in adaptations of the brain oxytocin (OT) system during gestation, which are critical for systemic release of OT during parturition and lactation. We used quantitative autoradiography to determine changes in OTR binding in numerous brain sites during the course of gestation in the rat. Furthermore, to evaluate the importance of ovarian steroids in mediating pregnancy-related changes in OTR binding, we measured binding in ovariectomized animals treated with progesterone and/or estrogen, and in pregnant animals treated with exogenous progesterone during late gestation. We found that OTR binding was significantly increased in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) by midgestation (day 15) compared with control. In addition, there was a further significant increase in OTR binding in these nuclei by late gestation (day 20). The bed nucleus of the stria terminalis (BNST) and the medial preoptic area (MPOA) also showed significant gestation-associated increases in OTR binding, which were similar during mid- and late pregnancy. Treatment with exogenous progesterone throughout pregnancy did not alter the increase in OTR binding characteristic of late gestation in any of these brain sites. Finally, estrogen treatment in ovariectomized animals resulted in increased OTR binding in the SON, BNST, and MPOA, but not the PVN. These data demonstrate that OTR binding in the hypothalamus is increased during mid- and late-gestation, compared with ovariectomized control animals, which may be mediated by increased estradiol.

  13. Fibrinopeptide A binds Gly-Pro-Arg-Pro.

    PubMed Central

    Root-Bernstein, R S; Westall, F C

    1984-01-01

    The tetrapeptide Gly-Pro-Arg-Pro inhibits fibrinogen aggregation, probably by binding to the same sites used during initiation of fibrin formation. The Gly-Pro-Arg-Pro binding sites have not yet been identified. However, their possible sequence and locations have been predicted on the basis of the amino acid pairing hypothesis. One of these predicted sites is on fibrinopeptide A. We report here that nuclear magnetic resonance studies indicate that Gly-Pro-Arg-Pro binds to fibrinopeptide A with a binding constant, K, of ca. 10(4) per mol. We also report results of 19 related peptide combinations used as controls. PMID:6589598

  14. Binding of ATP by pertussis toxin and isolated toxin subunits

    SciTech Connect

    Hausman, S.Z.; Manclark, C.R.; Burns, D.L. )

    1990-07-03

    The binding of ATP to pertussis toxin and its components, the A subunit and B oligomer, was investigated. Whereas, radiolabeled ATP bound to the B oligomer and pertussis toxin, no binding to the A subunit was observed. The binding of ({sup 3}H)ATP to pertussis toxin and the B oligomer was inhibited by nucleotides. The relative effectiveness of the nucleotides was shown to be ATP > GTP > CTP > TTP for pertussis toxin and ATP > GTP > TTP > CTP for the B oligomer. Phosphate ions inhibited the binding of ({sup 3}H)ATP to pertussis toxin in a competitive manner; however, the presence of phosphate ions was essential for binding of ATP to the B oligomer. The toxin substrate, NAD, did not affect the binding of ({sup 3}H)ATP to pertussis toxin, although the glycoprotein fetuin significantly decreased binding. These results suggest that the binding site for ATP is located on the B oligomer and is distinct from the enzymatically active site but may be located near the eukaryotic receptor binding site.

  15. Plasmon resonance enhanced mechanical detection of ligand binding

    SciTech Connect

    Ariyaratne, Amila; Zocchi, Giovanni

    2015-01-05

    Small molecule binding to the active site of enzymes typically modifies the mechanical stiffness of the enzyme. We exploit this effect, in a setup which combines nano-mechanics and surface plasmon resonance (SPR) enhanced optics, for the label free detection of ligand binding to an enzyme. The large dynamic range of the signal allows to easily obtain binding curves for small ligands, in contrast to traditional SPR methods which rely on small changes in index of refraction. Enzyme mechanics, assessed by nano-rheology, thus emerges as an alternative to electronic and spin resonances, assessed by traditional spectroscopies, for detecting ligand binding.

  16. In vitro auxin binding to cellular membranes of cucumber fruits.

    PubMed

    Narayanan, K R; Mudge, K W; Poovaiah, B W

    1981-04-01

    Specific binding of 1-naphthaleneacetic acid (NAA) to crude membrane preparations from cucumber (Cucumis sativus L.) was demonstrated. This in vitro binding had a pH optimum of 3.75 and an equilibrium dissociation constant of 10 to 20 micromolar with 1250 picomoles binding sites per gram fresh weight. The NAA-binding sites were pronase sensitive. The supernatant from the fruit partially inhibited the in vitro NAA binding to fruit membranes. NAA, 2-naphthoxyacetic acid, 3-indoleacetic acid, 2-4-dichlorophenoxyacetic acid, and 2,3,5-triiodobenzoic acid, which are reported to be very good inducers of parthenocarpy in cucumber, showed a high degree of specific binding to cucumber fruit membranes. In comparison, 2-naphthaleneacetic acid and indolepropionic acid, which are reported to be very weak auxins in corn coleoptile, pea stem, and strawberry fruit growth bioassays, did not bind efficiently to cucumber fruit membranes. In vitro binding studies with fruit membranes suggest that auxin stimulated fruit growth may be mediated by membrane-associated, auxin-binding protein(s).

  17. Cognitive Binding in Schizophrenia: Weakened Integration of Temporal Intersensory Information

    PubMed Central

    Tschacher, Wolfgang; Bergomi, Claudia

    2011-01-01

    Cognitive functioning is based on binding processes, by which different features and elements of neurocognition are integrated and coordinated. Binding is an essential ingredient of, for instance, Gestalt perception. We have implemented a paradigm of causality perception based on the work of Albert Michotte, in which 2 identical discs move from opposite sides of a monitor, steadily toward, and then past one another. Their coincidence generates an ambiguous percept of either “streaming” or “bouncing,” which the subjects (34 schizophrenia spectrum patients and 34 controls with mean age 27.9 y) were instructed to report. The latter perception is a marker of the binding processes underlying perceived causality (type I binding). In addition to this visual task, acoustic stimuli were presented at different times during the task (150 ms before and after visual coincidence), which can modulate perceived causality. This modulation by intersensory and temporally delayed stimuli is viewed as a different type of binding (type II). We show here, using a mixed-effects hierarchical analysis, that type II binding distinguishes schizophrenia spectrum patients from healthy controls, whereas type I binding does not. Type I binding may even be excessive in some patients, especially those with positive symptoms; Type II binding, however, was generally attenuated in patients. The present findings point to ways in which the disconnection (or Gestalt) hypothesis of schizophrenia can be refined, suggesting more specific markers of neurocognitive functioning and potential targets of treatment. PMID:21860043

  18. Discodermolide interferes with the binding of tau protein to microtubules.

    PubMed

    Kar, Santwana; Florence, Gordon J; Paterson, Ian; Amos, Linda A

    2003-03-27

    We investigated whether discodermolide, a novel antimitotic agent, affects the binding to microtubules of tau protein repeat motifs. Like taxol, the new drug reduces the proportion of tau that pellets with microtubules. Despite their differing structures, discodermolide, taxol and tau repeats all bind to a site on beta-tubulin that lies within the microtubule lumen and is crucial in controlling microtubule assembly. Low concentrations of tau still bind strongly to the outer surfaces of preformed microtubules when the acidic C-terminal regions of at least six tubulin dimers are available for interaction with each tau molecule; otherwise binding is very weak.

  19. Comparative binding energy COMBINE analysis for understanding the binding determinants of type II dehydroquinase inhibitors.

    PubMed

    Peón, Antonio; Coderch, Claire; Gago, Federico; González-Bello, Concepción

    2013-05-01

    Herein we report comparative binding energy (COMBINE) analyses to derive quantitative structure-activity relationship (QSAR) models that help rationalize the determinants of binding affinity for inhibitors of type II dehydroquinase (DHQ2), the third enzyme of the shikimic acid pathway. Independent COMBINE models were derived for Helicobacter pylori and Mycobacterium tuberculosis DHQ2, which is an essential enzyme in both these pathogenic bacteria that has no counterpart in human cells. These studies quantify the importance of the hydrogen bonding interactions between the ligands and the water molecule involved in the DHQ2 reaction mechanism. They also highlight important differences in the ligand interactions with the interface pocket close to the active site that could provide guides for future inhibitor design.

  20. FAD binding, cobinamide binding and active site communication in the corrin reductase (CobR)

    PubMed Central

    Lawrence, Andrew D.; Taylor, Samantha L.; Scott, Alan; Rowe, Michelle L.; Johnson, Christopher M.; Rigby, Stephen E. J.; Geeves, Michael A.; Pickersgill, Richard W.; Howard, Mark J.; Warren, Martin J.

    2014-01-01

    Adenosylcobalamin, the coenzyme form of vitamin B12, is one Nature's most complex coenzyme whose de novo biogenesis proceeds along either an anaerobic or aerobic metabolic pathway. The aerobic synthesis involves reduction of the centrally chelated cobalt metal ion of the corrin ring from Co(II) to Co(I) before adenosylation can take place. A corrin reductase (CobR) enzyme has been identified as the likely agent to catalyse this reduction of the metal ion. Herein, we reveal how Brucella melitensis CobR binds its coenzyme FAD (flavin dinucleotide) and we also show that the enzyme can bind a corrin substrate consistent with its role in reduction of the cobalt of the corrin ring. Stopped-flow kinetics and EPR reveal a mechanistic asymmetry in CobR dimer that provides a potential link between the two electron reduction by NADH to the single electron reduction of Co(II) to Co(I). PMID:24909839

  1. Oligosaccharyltransferase directly binds to ribosome at a location near the translocon-binding site

    SciTech Connect

    Harada, Y.; Li, H.; Li, Hua; Lennarz, W. J.

    2009-04-28

    Oligosaccharyltransferase (OT) transfers high mannose-type glycans to the nascent polypeptides that are translated by the membrane-bound ribosome and translocated into the lumen of the endoplasmic reticulum through the Sec61 translocon complex. In this article, we show that purified ribosomes and OT can form a binary complex with a stoichiometry of {approx}1 to 1 in the presence of detergent. We present evidence that OT may bind to the large ribosomal subunit near the site where nascent polypeptides exit. We further show that OT and the Sec61 complex can simultaneously bind to ribosomes in vitro. Based on existing data and our findings, we propose that cotranslational translocation and N-glycosylation of nascent polypeptides are mediated by a ternary supramolecular complex consisting of OT, the Sec61 complex, and ribosomes.

  2. E1 initiator DNA binding specificity is unmasked by selective inhibition of non-specific DNA binding

    PubMed Central

    Stenlund, Arne

    2003-01-01

    Initiator proteins are critical components of the DNA replication machinery and mark the site of initiation. This activity probably requires highly selective DNA binding; however, many initiators display modest specificity in vitro. We demonstrate that low specificity of the papillomavirus E1 initiator results from the presence of a non-specific DNA-binding activity, involved in melting, which masks the specificity intrinsic to the E1 DNA-binding domain. The viral factor E2 restores specificity through a physical interaction with E1 that suppresses non-specific binding. We propose that this arrangement, where one DNA-binding activity tethers the initiator to ori while another alters DNA structure, is a characteristic of other viral and cellular initiator proteins. This arrangement would provide an explanation for the low selectivity observed for DNA binding by initiator proteins. PMID:12574131

  3. Resolving protein structure-function-binding site relationships from a binding site similarity network perspective.

    PubMed

    Mudgal, Richa; Srinivasan, Narayanaswamy; Chandra, Nagasuma

    2017-03-25

    Functional annotation is seldom straightforward with complexities arising due to functional divergence in protein families or functional convergence between non-homologous protein families, leading to mis-annotations. An enzyme may contain multiple domains and not all domains may be involved in a given function, adding to the complexity in function annotation. To address this, we use binding site information from bound cognate ligands and catalytic residues, since it can help in resolving fold-function relationships at a finer level and with higher confidence. A comprehensive database of 2,020 fold-function-binding site relationships has been systematically generated. A network-based approach is employed to capture the complexity in these relationships, from which different types of associations are deciphered, that identify versatile protein folds performing diverse functions, same function associated with multiple folds and one-to-one relationships. Binding site similarity networks integrated with fold, function and ligand similarity information are generated to understand the depth of these relationships. Apart from the observed continuity in the functional site space, network properties of these revealed versatile families with topologically different or dissimilar binding sites and structural families that perform very similar functions. As a case study, subtle changes in the active site of a set of evolutionarily related superfamilies are studied using these networks. Tracing of such similarities in evolutionarily related proteins provide clues into the transition and evolution of protein functions. Insights from this study will be helpful in accurate and reliable functional annotations of uncharacterized proteins, poly-pharmacology and designing enzymes with new functional capabilities. This article is protected by copyright. All rights reserved.

  4. Cortisol levels, binding, and properties of corticosteroid-binding globulin in the serum of primates.

    PubMed

    Klosterman, L L; Murai, J T; Siiteri, P K

    1986-01-01

    New World primates have exceptionally high plasma levels of cortisol and other steroid hormones when compared with humans and other primates. It has been suggested that this difference can be explained by either low affinity or concentration of cellular steroid receptors. We have assessed cortisol availability in serum from several species of New and Old World primates under physiological conditions (whole serum at 37 degrees C). Measurements were made of total and free cortisol, corticosteroid-binding globulin (CBG) binding capacity and affinity for cortisol, distribution of cortisol in serum, and its binding to albumin. In agreement with earlier reports, plasma free cortisol levels in Old World primates, prosimians, and humans range from 10-300 nM. However, very high total plasma cortisol together with low CBG binding capacity and affinity result in free cortisol concentrations of 1-4 microM in some New World primates (squirrel monkey and marmosets) but not in others such as the titi and capuchin. In squirrel monkeys, free cortisol levels are far greater than might be predicted from the affinity of the glucocorticoid receptor estimated in cultured skin fibroblasts. In addition to low affinity, CBG from squirrel monkeys and other New World primates exhibits differences in electrophoretic mobility and sedimentation behavior in sucrose density ultracentrifugation, suggestive of a molecular weight that is approximately twice that of CBG from other species. Together with other data these results indicate that the apparent glucocorticoid resistance found in New World primates is a complex phenomenon that is not easily explained by present concepts of glucocorticoid action.

  5. Discover binding pathways using the sliding binding-box docking approach: application to binding pathways of oseltamivir to avian influenza H5N1 neuraminidase

    NASA Astrophysics Data System (ADS)

    Tran, Diem-Trang T.; Le, Ly T.; Truong, Thanh N.

    2013-08-01

    Drug binding and unbinding are transient processes which are hardly observed by experiment and difficult to analyze by computational techniques. In this paper, we employed a cost-effective method called "pathway docking" in which molecular docking was used to screen ligand-receptor binding free energy surface to reveal possible paths of ligand approaching protein binding pocket. A case study was applied on oseltamivir, the key drug against influenza a virus. The equilibrium pathways identified by this method are found to be similar to those identified in prior studies using highly expensive computational approaches.

  6. Specific binding of the methyl binding domain protein 2 at the BRCA1-NBR2 locus.

    PubMed

    Auriol, Emilie; Billard, Lise-Marie; Magdinier, Frédérique; Dante, Robert

    2005-01-01

    The methyl-CpG binding domain (MBD) proteins are key molecules in the interpretation of DNA methylation signals leading to gene silencing. We investigated their binding specificity at the constitutively methylated region of a CpG island containing the bidirectional promoter of the Breast cancer predisposition gene 1, BRCA1, and the Near BRCA1 2 (NBR2) gene. In HeLa cells, quantitative chromatin immunoprecipitation assays indicated that MBD2 is associated with the methylated region, while MeCP2 and MBD1 were not detected at this locus. MBD2 depletion (approximately 90%), mediated by a transgene expressing a small interfering RNA (siRNA), did not induce MeCP2 or MBD1 binding at the methylated area. Furthermore, the lack of MBD2 at the BRCA1-NBR2 CpG island is associated with an elevated level of NBR2 transcripts and with a significant reduction of induced-DNA-hypomethylation response. In MBD2 knockdown cells, transient expression of a Mbd2 cDNA, refractory to siRNA-mediated decay, shifted down the NBR2 mRNA level to that observed in unmodified HeLa cells. Variations in MBD2 levels did not affect BRCA1 expression despite its stimulation by DNA hypomethylation. Collectively, our data indicate that MBD2 has specific targets and its presence at these targets is indispensable for gene repression.

  7. Paracetamol and cytarabine binding competition in high affinity binding sites of transporting protein

    NASA Astrophysics Data System (ADS)

    Sułkowska, A.; Bojko, B.; Równicka, J.; Sułkowski, W. W.

    2006-07-01

    Paracetamol (acetaminophen, AA) the most popular analgesic drug is commonly used in the treatment of pain in patients suffering from cancer. In our studies, we evaluated the competition in binding with serum albumin between paracetamol (AA) and cytarabine, antyleukemic drug (araC). The presence of one drug can alter the binding affinity of albumin towards the second one. Such interaction can result in changing of the free fraction of the one of these drugs in blood. Two spectroscopic methods were used to determine high affinity binding sites and the competition of the drugs. Basing on the change of the serum albumin fluorescence in the presence of either of the drugs the quenching ( KQ) constants for the araC-BSA and AA-BSA systems were calculated. Analysis of UV difference spectra allowed us to describe the changes in drug-protein complexes (araC-albumin and AA-albumin) induced by the presence of the second drug (AA and araC, respectively). The mechanism of competition between araC and AA has been proposed.

  8. GATA1 Binding Kinetics on Conformation-Specific Binding Sites Elicit Differential Transcriptional Regulation.

    PubMed

    Hasegawa, Atsushi; Kaneko, Hiroshi; Ishihara, Daishi; Nakamura, Masahiro; Watanabe, Akira; Yamamoto, Masayuki; Trainor, Cecelia D; Shimizu, Ritsuko

    2016-08-15

    GATA1 organizes erythroid and megakaryocytic differentiation by orchestrating the expression of multiple genes that show diversified expression profiles. Here, we demonstrate that GATA1 monovalently binds to a single GATA motif (Single-GATA) while a monomeric GATA1 and a homodimeric GATA1 bivalently bind to two GATA motifs in palindromic (Pal-GATA) and direct-repeat (Tandem-GATA) arrangements, respectively, and form higher stoichiometric complexes on respective elements. The amino-terminal zinc (N) finger of GATA1 critically contributes to high occupancy of GATA1 on Pal-GATA. GATA1 lacking the N finger-DNA association fails to trigger a rate of target gene expression comparable to that seen with the wild-type GATA1, especially when expressed at low level. This study revealed that Pal-GATA and Tandem-GATA generate transcriptional responses from GATA1 target genes distinct from the response of Single-GATA. Our results support the notion that the distinct alignments in binding motifs are part of a critical regulatory strategy that diversifies and modulates transcriptional regulation by GATA1.

  9. GATA1 Binding Kinetics on Conformation-Specific Binding Sites Elicit Differential Transcriptional Regulation

    PubMed Central

    Hasegawa, Atsushi; Kaneko, Hiroshi; Ishihara, Daishi; Nakamura, Masahiro; Watanabe, Akira; Yamamoto, Masayuki

    2016-01-01

    GATA1 organizes erythroid and megakaryocytic differentiation by orchestrating the expression of multiple genes that show diversified expression profiles. Here, we demonstrate that GATA1 monovalently binds to a single GATA motif (Single-GATA) while a monomeric GATA1 and a homodimeric GATA1 bivalently bind to two GATA motifs in palindromic (Pal-GATA) and direct-repeat (Tandem-GATA) arrangements, respectively, and form higher stoichiometric complexes on respective elements. The amino-terminal zinc (N) finger of GATA1 critically contributes to high occupancy of GATA1 on Pal-GATA. GATA1 lacking the N finger-DNA association fails to trigger a rate of target gene expression comparable to that seen with the wild-type GATA1, especially when expressed at low level. This study revealed that Pal-GATA and Tandem-GATA generate transcriptional responses from GATA1 target genes distinct from the response of Single-GATA. Our results support the notion that the distinct alignments in binding motifs are part of a critical regulatory strategy that diversifies and modulates transcriptional regulation by GATA1. PMID:27215385

  10. Magnesium-binding architectures in RNA crystal structures: validation, binding preferences, classification and motif detection

    PubMed Central

    Zheng, Heping; Shabalin, Ivan G.; Handing, Katarzyna B.; Bujnicki, Janusz M.; Minor, Wladek

    2015-01-01

    The ubiquitous presence of magnesium ions in RNA has long been recognized as a key factor governing RNA folding, and is crucial for many diverse functions of RNA molecules. In this work, Mg2+-binding architectures in RNA were systematically studied using a database of RNA crystal structures from the Protein Data Bank (PDB). Due to the abundance of poorly modeled or incorrectly identified Mg2+ ions, the set of all sites was comprehensively validated and filtered to identify a benchmark dataset of 15 334 ‘reliable’ RNA-bound Mg2+ sites. The normalized frequencies by which specific RNA atoms coordinate Mg2+ were derived for both the inner and outer coordination spheres. A hierarchical classification system of Mg2+ sites in RNA structures was designed and applied to the benchmark dataset, yielding a set of 41 types of inner-sphere and 95 types of outer-sphere coordinating patterns. This classification system has also been applied to describe six previously reported Mg2+-binding motifs and detect them in new RNA structures. Investigation of the most populous site types resulted in the identification of seven novel Mg2+-binding motifs, and all RNA structures in the PDB were screened for the presence of these motifs. PMID:25800744

  11. Beyond feature binding: interference from episodic context binding creates the bivalency effect in task-switching.

    PubMed

    Meier, Beat; Rey-Mermet, Alodie

    2012-01-01

    When switching between different tasks and bivalent stimuli occur only occasionally on one of them, performance is slowed on subsequent univalent trials even if they have no overlapping features with the bivalent stimulus. This phenomenon has been labeled the "bivalency effect." Recent evidence has revealed that this effect is robust, general, and enduring. Moreover, it challenges current theories of task-switching and cognitive control. Here, we review these theories and propose a new, episodic context binding account. According to this account, binding does not only occur between stimuli, responses, and tasks, but also for the more general context in which the stimuli occur. The result of this binding process is a complex representation that includes each of these components. When bivalent stimuli occur, the resulting conflict is associated with the general context, creating a new conflict-loaded representation. The reactivation of this representation causes interference on subsequent trials, that is, the bivalency effect. We evaluate this account in light of the empirical evidence.

  12. Direct GR Binding Sites Potentiate Clusters of TF Binding across the Human Genome.

    PubMed

    Vockley, Christopher M; D'Ippolito, Anthony M; McDowell, Ian C; Majoros, William H; Safi, Alexias; Song, Lingyun; Crawford, Gregory E; Reddy, Timothy E

    2016-08-25

    The glucocorticoid receptor (GR) binds the human genome at >10,000 sites but only regulates the expression of hundreds of genes. To determine the functional effect of each site, we measured the glucocorticoid (GC) responsive activity of nearly all GR binding sites (GBSs) captured using chromatin immunoprecipitation (ChIP) in A549 cells. 13% of GBSs assayed had GC-induced activity. The responsive sites were defined by direct GR binding via a GC response element (GRE) and exclusively increased reporter-gene expression. Meanwhile, most GBSs lacked GC-induced reporter activity. The non-responsive sites had epigenetic features of steady-state enhancers and clustered around direct GBSs. Together, our data support a model in which clusters of GBSs observed with ChIP-seq reflect interactions between direct and tethered GBSs over tens of kilobases. We further show that those interactions can synergistically modulate the activity of direct GBSs and may therefore play a major role in driving gene activation in response to GCs.

  13. Structures and binding specificity of galactose- and mannose-binding lectins from champedak: differences from jackfruit lectins.

    PubMed

    Gabrielsen, Mads; Abdul-Rahman, Puteri Shafinaz; Othman, Shatrah; Hashim, Onn H; Cogdell, Richard J

    2014-06-01

    Galactose-binding and mannose-binding lectins from the champedak fruit, which is native to South-east Asia, exhibit useful potential clinical applications. The specificity of the two lectins for their respective ligands allows the detection of potential cancer biomarkers and monitoring of the glycosylated state of proteins in human serum and/or urine. To fully understand and expand the use of these natural proteins, their complete sequences and crystal structures are presented here, together with details of sugar binding.

  14. Dynamics of biomolecules, ligand binding & biological functions

    NASA Astrophysics Data System (ADS)

    Yi, Myunggi

    Proteins are flexible and dynamic. One static structure alone does not often completely explain biological functions of the protein, and some proteins do not even have high resolution structures. In order to provide better understanding to the biological functions of nicotinic acetylcholine receptor, Diphtheria toxin repressor and M2 proton channel, the dynamics of these proteins are investigated using molecular modeling and molecular dynamics (MD) simulations. With absence of high resolution structure of alpha7 receptor, the homology models of apo and cobra toxin bound forms have been built. From the MD simulations of these model structures, we observed one subunit of apo simulation moved away from other four subunits. With local movement of flexible loop regions, the whole subunit tilted clockwise. These conformational changes occurred spontaneously, and were strongly correlated with the conformational change when the channel is activated by agonists. Unlike other computational studies, we directly compared our model of open conformation with the experimental data. However, the subunits of toxin bound form were stable, and conformational change is restricted by the bound cobra toxin. These results provide activation and inhibition mechanisms of alpha7 receptors and a possible explanation for intermediate conductance of the channel. Intramolecular complex of SH3-like domain with a proline-rich (Pr) peptide segment in Diphtheria toxin repressor (DtxR) is stabilized in inactive state. Upon activation of DtxR by transition metal binding, this intramolecular complex should be dissociated. The dynamics of this intramolecular complex is investigated using MD simulations and NMR spectroscopy. We observed spontaneous opening and closing motions of the Pr segment binding pockets in both Pr-SH3 and SH3 simulations. The MD simulation results and NMR relaxation data suggest that the Pr segment exhibits a binding ↔ unbinding equilibrium. Despite a wealth of experimental

  15. Predicting DNA-binding proteins and binding residues by complex structure prediction and application to human proteome.

    PubMed

    Zhao, Huiying; Wang, Jihua; Zhou, Yaoqi; Yang, Yuedong

    2014-01-01

    As more and more protein sequences are uncovered from increasingly inexpensive sequencing techniques, an urgent task is to find their functions. This work presents a highly reliable computational technique for predicting DNA-binding function at the level of protein-DNA complex structures, rather than low-resolution two-state prediction of DNA-binding as most existing techniques do. The method first predicts protein-DNA complex structure by utilizing the template-based structure prediction technique HHblits, followed by binding affinity prediction based on a knowledge-based energy function (Distance-scaled finite ideal-gas reference state for protein-DNA interactions). A leave-one-out cross validation of the method based on 179 DNA-binding and 3797 non-binding protein domains achieves a Matthews correlation coefficient (MCC) of 0.77 with high precision (94%) and high sensitivity (65%). We further found 51% sensitivity for 82 newly determined structures of DNA-binding proteins and 56% sensitivity for the human proteome. In addition, the method provides a reasonably accurate prediction of DNA-binding residues in proteins based on predicted DNA-binding complex structures. Its application to human proteome leads to more than 300 novel DNA-binding proteins; some of these predicted structures were validated by known structures of homologous proteins in APO forms. The method [SPOT-Seq (DNA)] is available as an on-line server at http://sparks-lab.org.

  16. Structural basis for cooperative DNA binding by two dimers of the multidrug-binding protein QacR

    PubMed Central

    Schumacher, Maria A.; Miller, Marshall C.; Grkovic, Steve; Brown, Melissa H.; Skurray, Ronald A.; Brennan, Richard G.

    2002-01-01

    The Staphylococcus aureus multidrug-binding protein QacR represses transcription of the qacA multidrug transporter gene and is induced by multiple structurally dissimilar drugs. QacR is a member of the TetR/CamR family of transcriptional regulators, which share highly homologous N-terminal DNA-binding domains connected to seemingly non-homologous ligand-binding domains. Unlike other TetR members, which bind ∼15 bp operators, QacR recognizes an unusually long 28 bp operator, IR1, which it appears to bind cooperatively. To elucidate the DNA-binding mechanism of QacR, we determined the 2.90 Å resolution crystal structure of a QacR–IR1 complex. Strikingly, our data reveal that the DNA recognition mode of QacR is distinct from TetR and involves the binding of a pair of QacR dimers. In this unique binding mode, recognition at each IR1 half-site is mediated by a complement of DNA contacts made by two helix–turn–helix motifs. The inferred cooperativity does not arise from cross-dimer protein–protein contacts, but from the global undertwisting and major groove widening elicited by the binding of two QacR dimers. PMID:11867549

  17. GE23077 binds to the RNA polymerase 'i' and 'i+1' sites and prevents the binding of initiating nucleotides.

    PubMed

    Zhang, Yu; Degen, David; Ho, Mary X; Sineva, Elena; Ebright, Katherine Y; Ebright, Yon W; Mekler, Vladimir; Vahedian-Movahed, Hanif; Feng, Yu; Yin, Ruiheng; Tuske, Steve; Irschik, Herbert; Jansen, Rolf; Maffioli, Sonia; Donadio, Stefano; Arnold, Eddy; Ebright, Richard H

    2014-04-22

    Using a combination of genetic, biochemical, and structural approaches, we show that the cyclic-peptide antibiotic GE23077 (GE) binds directly to the bacterial RNA polymerase (RNAP) active-center 'i' and 'i+1' nucleotide binding sites, preventing the binding of initiating nucleotides, and thereby preventing transcription initiation. The target-based resistance spectrum for GE is unusually small, reflecting the fact that the GE binding site on RNAP includes residues of the RNAP active center that cannot be substituted without loss of RNAP activity. The GE binding site on RNAP is different from the rifamycin binding site. Accordingly, GE and rifamycins do not exhibit cross-resistance, and GE and a rifamycin can bind simultaneously to RNAP. The GE binding site on RNAP is immediately adjacent to the rifamycin binding site. Accordingly, covalent linkage of GE to a rifamycin provides a bipartite inhibitor having very high potency and very low susceptibility to target-based resistance. DOI: http://dx.doi.org/10.7554/eLife.02450.001.

  18. Scatter factor binds to thrombospondin and other extracellular matrix components.

    PubMed Central

    Lamszus, K.; Joseph, A.; Jin, L.; Yao, Y.; Chowdhury, S.; Fuchs, A.; Polverini, P. J.; Goldberg, I. D.; Rosen, E. M.

    1996-01-01

    Scatter factor (SF) is an angiogenic growth factor that stimulates motility and invasion of carcinoma cells. SF is present in the extracellular matrix (ECM) of breast cancers, where it might act to promote tumor cell invasion and angiogenesis. To investigate how SF is incorporated into the ECM, we studied the binding of SF to various ECM components using a solid-phase binding assay based on the SF enzyme-linked immunosorbent assay. We found that SF binds to a variety of ECM molecules, with different binding capacities. The highest SF binding capacities were observed for thrombospondin-1 (TSP-1), fibronectin (Fn), and heparan sulfate proteoglycan, although SF did not bind to albumin. Mature two-chain SF and precursor single-chain SF bound approximately equally well to TSP-1 and Fn. Moreover, two SF alpha-chain peptides (NK1 and NK2) both bound to TSP-1 and Fn, suggesting that the whole SF molecule is not required for binding. Based on binding competition assays, TSP-1 exhibited higher affinity for SF than did nine other ECM molecules, including Fn and heparan sulfate proteoglycan. Although heparin in solution potently inhibited the binding of SF to TSP-1-coated surfaces, even very high concentrations of heparin could not elute SF already bound to TSP-1. SF binding was modulated by binding interactions among ECM molecules (TSP-1-Fn, TSP-1-collagen I, and Fn-collagen I), suggesting that the matrix capacity to bind SF depends upon its exact composition. SF bound in a dose-dependent fashion to ECMs secreted by three human breast carcinoma cell lines. Binding of SF to matrices from all three cell lines was significantly inhibited by preincubation of the matrices with antibodies against TSP-1, whereas antibodies against several other ECM components were less effective or ineffective in inhibiting SF binding. In addition, TSP-1 markedly inhibited chemotaxis of microvascular endothelial cells toward SF and SF-induced angiogenesis in the rat cornea neovascularization assay

  19. Whole-genome cartography of estrogen receptor alpha binding sites.

    PubMed

    Lin, Chin-Yo; Vega, Vinsensius B; Thomsen, Jane S; Zhang, Tao; Kong, Say Li; Xie, Min; Chiu, Kuo Ping; Lipovich, Leonard; Barnett, Daniel H; Stossi, Fabio; Yeo, Ailing; George, Joshy; Kuznetsov, Vladimir A; Lee, Yew Kok; Charn, Tze Howe; Palanisamy, Nallasivam; Miller, Lance D; Cheung, Edwin; Katzenellenbogen, Benita S; Ruan, Yijun; Bourque, Guillaume; Wei, Chia-Lin; Liu, Edison T

    2007-06-01

    Using a chromatin immunoprecipitation-paired end diTag cloning and sequencing strategy, we mapped estrogen receptor alpha (ERalpha) binding sites in MCF-7 breast cancer cells. We identified 1,234 high confidence binding clusters of which 94% are projected to be bona fide ERalpha binding regions. Only 5% of the mapped estrogen receptor binding sites are located within 5 kb upstream of the transcriptional start sites of adjacent genes, regions containing the proximal promoters, whereas vast majority of the sites are mapped to intronic or distal locations (>5 kb from 5' and 3' ends of adjacent transcript), suggesting transcriptional regulatory mechanisms over significant physical distances. Of all the identified sites, 71% harbored putative full estrogen response elements (EREs), 25% bore ERE half sites, and only 4% had no recognizable ERE sequences. Genes in the vicinity of ERalpha binding sites were enriched for regulation by estradiol in MCF-7 cells, and their expression profiles in patient samples segregate ERalpha-positive from ERalpha-negative breast tumors. The expression dynamics of the genes adjacent to ERalpha binding sites suggest a direct induction of gene expression through binding to ERE-like sequences, whereas transcriptional repression by ERalpha appears to be through indirect mechanisms. Our analysis also indicates a number of candidate transcription factor binding sites adjacent to occupied EREs at frequencies much greater than by chance, including the previously reported FOXA1 sites, and demonstrate the potential involvement of one such putative adjacent factor, Sp1, in the global regulation of ERalpha target genes. Unexpectedly, we found that only 22%-24% of the bona fide human ERalpha binding sites were overlapping conserved regions in whole genome vertebrate alignments, which suggest limited conservation of functional binding sites. Taken together, this genome-scale analysis suggests complex but definable rules governing ERalpha binding and gene

  20. Characterization of C1 inhibitor binding to neutrophils.

    PubMed Central

    Chang, N S; Boackle, R J; Leu, R W

    1991-01-01

    In a previous study we have isolated neutrophil membrane proteins that non-covalently bind to native C1-INH (105,000 MW) and a non-functional, degraded C1-INH (88,000 MW; C1-INH-88). To further characterize the binding nature, we have designed a novel kinetic C1 titration assay which enables not only a quantification of the removal of fluid-phase C1-INH by neutrophils, but also a concomitant measure of residual C1-INH function. Native C1-INH, when adsorbed to EDTA-pretreated neutrophils, lost its function in the inhibition of fluid-phase C1. The non-functional C1-INH-88, which is probably devoid of a reactive centre, was found to block the binding of native C1-INH to neutrophils. Pretreatment of neutrophils with serine esterase inhibitors did not abrogate binding capacity of the cells for C1-INH, whereas the binding affinity for C1-INH was lost when the cells were pretreated with trypsin. An array of human peripheral blood leucocytes and several lymphoid cell lines has surface binding sites for C1-INH, but not on human erythrocytes and U937 cells. Binding was further confirmed using (i) C1-INH-microsphere beads to neutrophils, in which the binding was blocked when pretreating neutrophils with excess C1-INH or with trypsin, and (ii) radiolabelled C1-INH to neutrophils, which was competitively blocked by unlabelled non-functional C1-INH-88. Desialylation of C1-INH significantly reduced its binding affinity for neutrophils, indicating that the membrane receptor sites on neutrophils could be specific for the binding of sialic acid residues on C1-INH. Overall, our studies indicate that neutrophils or other leucocytes possess specific surface binding sites for the sialic acid-containing portion of C1-INH. PMID:2045131