Sample records for non-circular streaming motions

  1. Estimating non-circular motions in barred galaxies using numerical N-body simulations

    NASA Astrophysics Data System (ADS)

    Randriamampandry, T. H.; Combes, F.; Carignan, C.; Deg, N.

    2015-12-01

    The observed velocities of the gas in barred galaxies are a combination of the azimuthally averaged circular velocity and non-circular motions, primarily caused by gas streaming along the bar. These non-circular flows must be accounted for before the observed velocities can be used in mass modelling. In this work, we examine the performance of the tilted-ring method and the DISKFIT algorithm for transforming velocity maps of barred spiral galaxies into rotation curves (RCs) using simulated data. We find that the tilted-ring method, which does not account for streaming motions, under-/overestimates the circular motions when the bar is parallel/perpendicular to the projected major axis. DISKFIT, which does include streaming motions, is limited to orientations where the bar is not aligned with either the major or minor axis of the image. Therefore, we propose a method of correcting RCs based on numerical simulations of galaxies. We correct the RC derived from the tilted-ring method based on a numerical simulation of a galaxy with similar properties and projections as the observed galaxy. Using observations of NGC 3319, which has a bar aligned with the major axis, as a test case, we show that the inferred mass models from the uncorrected and corrected RCs are significantly different. These results show the importance of correcting for the non-circular motions and demonstrate that new methods of accounting for these motions are necessary as current methods fail for specific bar alignments.

  2. EFFECTS OF NON-CIRCULAR MOTIONS ON AZIMUTHAL COLOR GRADIENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Garcia, Eric E.; Gonzalez-Lopezlira, Rosa A.; Gomez, Gilberto C., E-mail: emartinez@cida.v, E-mail: r.gonzalez@crya.unam.m, E-mail: g.gomez@crya.unam.m

    2009-12-20

    Assuming that density waves trigger star formation, and that young stars preserve the velocity components of the molecular gas where they are born, we analyze the effects that non-circular gas orbits have on color gradients across spiral arms. We try two approaches, one involving semianalytical solutions for spiral shocks, and another with magnetohydrodynamic (MHD) numerical simulation data. We find that, if non-circular motions are ignored, the comparison between observed color gradients and stellar population synthesis models would in principle yield pattern speed values that are systematically too high for regions inside corotation, with the difference between the real and themore » measured pattern speeds increasing with decreasing radius. On the other hand, image processing and pixel averaging result in systematically lower measured spiral pattern speed values, regardless of the kinematics of stellar orbits. The net effect is that roughly the correct pattern speeds are recovered, although the trend of higher measured OMEGA{sub p} at lower radii (as expected when non-circular motions exist but are neglected) should still be observed. We examine the MartInez-GarcIa et al. photometric data and confirm that this is indeed the case. The comparison of the size of the systematic pattern speed offset in the data with the predictions of the semianalytical and MHD models corroborates that spirals are more likely to end at outer Lindblad resonance, as these authors had already found.« less

  3. Circular motion geometry using minimal data.

    PubMed

    Jiang, Guang; Quan, Long; Tsui, Hung-Tat

    2004-06-01

    Circular motion or single axis motion is widely used in computer vision and graphics for 3D model acquisition. This paper describes a new and simple method for recovering the geometry of uncalibrated circular motion from a minimal set of only two points in four images. This problem has been previously solved using nonminimal data either by computing the fundamental matrix and trifocal tensor in three images or by fitting conics to tracked points in five or more images. It is first established that two sets of tracked points in different images under circular motion for two distinct space points are related by a homography. Then, we compute a plane homography from a minimal two points in four images. After that, we show that the unique pair of complex conjugate eigenvectors of this homography are the image of the circular points of the parallel planes of the circular motion. Subsequently, all other motion and structure parameters are computed from this homography in a straighforward manner. The experiments on real image sequences demonstrate the simplicity, accuracy, and robustness of the new method.

  4. Circular motion of bodies of revolution

    NASA Technical Reports Server (NTRS)

    Kaplan, Carl

    1936-01-01

    The circular motion for airship-like bodies has thus far been calculated only for a prolate ellipsoid of revolution (reference 1, p.133 and reference 2). In this paper, however, the circular motion of elongated bodies of revolution more nearly resembling airships will be investigated. The results will give the effect of rotation on the pressure distribution and thus yield some information as to the stresses set up in an airship in circular flight.

  5. Streaming motions and kinematic distances to molecular clouds

    NASA Astrophysics Data System (ADS)

    Ramón-Fox, F. G.; Bonnell, Ian A.

    2018-02-01

    We present high-resolution smoothed particle hydrodynamics simulations of a region of gas flowing in a spiral arm and identify dense gas clouds to investigate their kinematics with respect to a Milky Way model. We find that, on average, the gas in the arms can have a net radial streaming motion of vR ≈ -9 km s-1 and rotate ≈ 6 km s-1 slower than the circular velocity. This translates to average peculiar motions towards the Galaxy centre and opposite to Galactic rotation. These results may be sensitive to the assumed spiral arm perturbation, which is ≈ 3 per cent of the disc potential in our model. We compare the actual distance and the kinematic estimate and we find that streaming motions introduce systematic offsets of ≈1 kpc. We find that the distance error can be as large as ±2 kpc, and the recovered cloud positions have distributions that can extend significantly into the inter-arm regions. We conclude that this poses a difficulty in tracing spiral arm structure in molecular cloud surveys.

  6. Suggested Courseware for the Non-Calculus Physics Student: Projectile Motion, Circular Motion, Rotational Dynamics, and Statics.

    ERIC Educational Resources Information Center

    Mahoney, Joyce; And Others

    1988-01-01

    Evaluates 10 courseware packages covering topics for introductory physics. Discusses the price; sub-topics; program type; interaction; possible hardware; time; calculus required; graphics; and comments on each program. Recommends two packages in projectile and circular motion, and three packages in statics and rotational dynamics. (YP)

  7. Normal form from biological motion despite impaired ventral stream function.

    PubMed

    Gilaie-Dotan, S; Bentin, S; Harel, M; Rees, G; Saygin, A P

    2011-04-01

    We explored the extent to which biological motion perception depends on ventral stream integration by studying LG, an unusual case of developmental visual agnosia. LG has significant ventral stream processing deficits but no discernable structural cortical abnormality. LG's intermediate visual areas and object-sensitive regions exhibit abnormal activation during visual object perception, in contrast to area V5/MT+ which responds normally to visual motion (Gilaie-Dotan, Perry, Bonneh, Malach, & Bentin, 2009). Here, in three studies we used point light displays, which require visual integration, in adaptive threshold experiments to examine LG's ability to detect form from biological and non-biological motion cues. LG's ability to detect and discriminate form from biological motion was similar to healthy controls. In contrast, he was significantly deficient in processing form from non-biological motion. Thus, LG can rely on biological motion cues to perceive human forms, but is considerably impaired in extracting form from non-biological motion. Finally, we found that while LG viewed biological motion, activity in a network of brain regions associated with processing biological motion was functionally correlated with his V5/MT+ activity, indicating that normal inputs from V5/MT+ might suffice to activate his action perception system. These results indicate that processing of biologically moving form can dissociate from other form processing in the ventral pathway. Furthermore, the present results indicate that integrative ventral stream processing is necessary for uncompromised processing of non-biological form from motion. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Precession and circularization of elliptical space-tether motion

    NASA Technical Reports Server (NTRS)

    Chapel, Jim D.; Grosserode, Patrick

    1993-01-01

    In this paper, we present a simplified analytic model for predicting motion of long space tethers. The perturbation model developed here addresses skip rope motion, where each end of the tether is held in place and the middle of the tether swings with a motion similar to that of a child's skip rope. If the motion of the tether midpoint is elliptical rather than circular, precession of the ellipse complicates the procedures required to damp this motion. The simplified analytic model developed in this paper parametrically predicts the precession of elliptical skip rope motion. Furthermore, the model shows that elliptic skip rope motion will circularize when damping is present in the longitudinal direction. Compared with high-fidelity simulation results, this simplified model provides excellent predictions of these phenomena.

  9. Wiimote Experiments: Circular Motion

    ERIC Educational Resources Information Center

    Kouh, Minjoon; Holz, Danielle; Kawam, Alae; Lamont, Mary

    2013-01-01

    The advent of new sensor technologies can provide new ways of exploring fundamental physics. In this paper, we show how a Wiimote, which is a handheld remote controller for the Nintendo Wii video game system with an accelerometer, can be used to study the dynamics of circular motion with a very simple setup such as an old record player or a…

  10. Wiimote Experiments: Circular Motion

    NASA Astrophysics Data System (ADS)

    Kouh, Minjoon; Holz, Danielle; Kawam, Alae; Lamont, Mary

    2013-03-01

    The advent of new sensor technologies can provide new ways of exploring fundamental physics. In this paper, we show how a Wiimote, which is a handheld remote controller for the Nintendo Wii video game system with an accelerometer, can be used to study the dynamics of circular motion with a very simple setup such as an old record player or a bicycle wheel.

  11. Possible microplate generation at RRR triple junctions due to the non-circular finite motion of plates relative to each other

    NASA Astrophysics Data System (ADS)

    Cronin, V. S.

    2012-12-01

    First generation ideas of the kinematic stability of triple junctions lead to the common belief that the geometry of ridge-ridge-ridge (RRR) triple junctions remains constant over time under conditions of symmetric spreading. Given constant relative motion between each plate pair -- that is, the pole of plate relative motion is fixed to both plates in each pair during finite motion, as assumed in many accounts of plate kinematics -- there would be no boundary mismatch at the triple junction and no apparent kinematic reason why a microplate might develop there. But if, in a given RRR triple junction, the finite motion of one plate as observed from the other plate is not circular (as is generally the case, given the three-plate problem of plate kinematics), the geometry of the ridges and the triple junction will vary with time (Cronin, 1992, Tectonophys 207, 287-301). To explore the possible consequences of non-circular finite motion between plates at an RRR triple junction, a simple model was coded based on the cycloid finite-motion model (e.g., Cronin, 1987, Geology 15, 1006-1009) using NNR-MORVEL56 velocities for individual plates (Argus et al., 2011, G3 12, doi: 10.1029/2011GC003751). Initial assumptions include a spherical Earth, symmetric spreading, and constant angular velocities during the modeled finite time interval. The assumed-constant angular velocity vectors constitute a reference frame for observing finite plate motion. Typical results are [1] that the triple junction migrates relative to a coordinate system fixed to the angular-velocity vectors, [2] ridge axes rotates relative to each other, and [3] a boundary mismatch develops at the synthetic triple junction that might result in microplate nucleation. In a model simulating the Galapagos triple junction between the Cocos, Nazca and Pacific plates whose initial state did not include the Galapagos microplate, the mismatch gap was as much as ~3.4 km during 3 Myr of model displacement (see figure). The

  12. Determination of the static friction coefficient from circular motion

    NASA Astrophysics Data System (ADS)

    Molina-Bolívar, J. A.; Cabrerizo-Vílchez, M. A.

    2014-07-01

    This paper describes a physics laboratory exercise for determining the coefficient of static friction between two surfaces. The circular motion of a coin placed on the surface of a rotating turntable has been studied. For this purpose, the motion is recorded with a high-speed digital video camera recording at 240 frames s-1, and the videos are analyzed using Tracker video-analysis software, allowing the students to dynamically model the motion of the coin. The students have to obtain the static friction coefficient by comparing the centripetal and maximum static friction forces. The experiment only requires simple and inexpensive materials. The dynamics of circular motion and static friction forces are difficult for many students to understand. The proposed laboratory exercise addresses these topics, which are relevant to the physics curriculum.

  13. Spiral structure of M51: Streaming motions across the spiral arms

    NASA Technical Reports Server (NTRS)

    Tilanus, R. P. J.; Allen, R. J.

    1990-01-01

    The atomic hydrogen (HI) and the H alpha emission line in the grand-design spiral galaxy M51 have been observed with the Westerbork Synthesis Radio Telescope and the Taurus Fabry-Perot imaging spectrometer, respectively. Across the inner spiral arms significant tangential and radial velocity gradients are detected in the H alpha emission after subtraction of the axi-symmetric component of the velocity field. The shift is positive on the inside and negative on the outside of the northern arm. Across the southern arm this situation is reversed. The direction of the shifts is such that the material is moving inward and faster compared to circular rotation in both arms, consistent with the velocity perturbations predicted by spiral density wave models for gas downstream of a spiral shock. The observed shifts amount to 20 to 30 km (s-1), corresponding to streaming motions of 60 to 90 km (s-1) in the plane of the disk (inclination angle 20 degrees). Comparable velocity gradients have also been observed by Vogel et al. in the CO emission from the inner northern arm of M51. The streaming motions in M51 are about 2 to 3 times as large as the ones found in HI by Rots in M81, and successfully modelled by Visser with a self-consistent density wave model. Researchers have not been able to detect conclusively streaming motions in the HI emission from the arms, perhaps due to the relatively poor angular resolution (approx. 15 seconds) of the HI observations.

  14. Low-energy Lorentz violation from high-energy modified dispersion in inertial and circular motion

    NASA Astrophysics Data System (ADS)

    Louko, Jorma; Upton, Samuel D.

    2018-01-01

    We consider an Unruh-DeWitt detector in inertial and circular motion in Minkowski spacetime of arbitrary dimension, coupled to a quantized scalar field with the Lorentz-violating dispersion relation ω =|k |f (|k |/M⋆) , where M⋆ is the Lorentz-breaking scale. Assuming that f dips below unity somewhere, we show that an inertial detector experiences large low-energy Lorentz violations in all spacetime dimensions greater than two, generalizing previous results in four dimensions. For a detector in circular motion, we show that a similar low-energy Lorentz violation occurs in three spacetime dimensions, and we lay the analytic groundwork for examining circular motion in all dimensions greater than three, generalizing previous work by Stargen, Kajuri and Sriramkumar in four dimensions. The circular motion results may be relevant for the prospects of observing the circular motion Unruh effect in analogue laboratory systems.

  15. Uniform circular motion in general relativity: existence and extendibility of the trajectories

    NASA Astrophysics Data System (ADS)

    de la Fuente, Daniel; Romero, Alfonso; Torres, Pedro J.

    2017-06-01

    The concept of uniform circular motion in a general spacetime is introduced as a particular case of a planar motion. The initial value problem of the corresponding differential equation is analysed in detail. Geometrically, an observer that obeys a uniform circular motion is characterized as a Lorentzian helix. The completeness of inextensible trajectories is studied in generalized Robertson-Walker spacetimes and in a relevant family of pp-wave spacetimes. Under reasonable assumptions, the physical interpretation of such results is that a uniform circular observer lives forever, providing the absence of the singularities defined by these timelike curves.

  16. Uniform circular motion concept attainment through circle share learning model using real media

    NASA Astrophysics Data System (ADS)

    Ponimin; Suparmi; Sarwanto; Sunarno, W.

    2017-01-01

    Uniform circular motion is an important concept and has many applications in life. Student’s concept understanding of uniform circular motion is not optimal because the teaching learning is not carried out properly in accordance with the characteristics of the concept. To improve student learning outcomes required better teaching learning which is match with the characteristics of uniform circular motion. The purpose of the study is to determine the effect of real media and circle share model to the understanding of the uniform circular motion concept. The real media was used to visualize of uniform circular motion concept. The real media consists of toy car, round table and spring balance. Circle share model is a learning model through discussion sequentially and programmed. Each group must evaluate the worksheets of another group in a circular position. The first group evaluates worksheets the second group, the second group evaluates worksheets third group, and the end group evaluates the worksheets of the first group. Assessment of learning outcomes includes experiment worksheets and post-test of students. Based on data analysis we obtained some findings. First, students can explain the understanding of uniform circular motion whose angular velocity and speed is constant correctly. Second, students can distinguish the angular velocity and linear velocity correctly. Third, students can explain the direction of the linear velocity vector and the direction of the centripetal force vector. Fourth, the student can explain the influence of the mass, radius, and velocity toward the centripetal force. Fifth, students can explain the principle of combined of wheels. Sixth, teaching learning used circle share, can increase student activity, experimental results and efficiency of discussion time.

  17. Directional bias of illusory stream caused by relative motion adaptation.

    PubMed

    Tomimatsu, Erika; Ito, Hiroyuki

    2016-07-01

    Enigma is an op-art painting that elicits an illusion of rotational streaming motion. In the present study, we tested whether adaptation to various motion configurations that included relative motion components could be reflected in the directional bias of the illusory stream. First, participants viewed the center of a rotating Enigma stimulus for adaptation. There was no physical motion on the ring area. During the adaptation period, the illusory stream on the ring was mainly seen in the direction opposite to that of the physical rotation. After the physical rotation stopped, the illusory stream on the ring was mainly seen in the same direction as that of the preceding physical rotation. Moreover, adapting to strong relative motion induced a strong bias in the illusory motion direction in the subsequently presented static Enigma stimulus. The results suggest that relative motion detectors corresponding to the ring area may produce the illusory stream of Enigma. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Demonstrating Circular Motion with a Model Satellite/Earth System

    ERIC Educational Resources Information Center

    Whittaker, Jeff

    2008-01-01

    A number of interesting demonstrations of circular and satellite motion have been described in this journal. This paper presents a variation of a centripetal force apparatus found in G.D. Freier and F.J. Anderson's "A Demonstration Handbook for Physics," which has been modified in order to demonstrate both centripetal force and satellite motion.…

  19. Articulated Multimedia Physics, Lesson 10, Circular Motion.

    ERIC Educational Resources Information Center

    New York Inst. of Tech., Old Westbury.

    As the tenth lesson of the Articulated Multimedia Physics Course, instructional materials relating to circular motion are presented in this study guide. The topics are concerned with instantaneous velocity, centripetal force, centrifugal force, and satellite paths. The content is arranged in scrambled form, and the use of matrix transparencies is…

  20. Determination of the Static Friction Coefficient from Circular Motion

    ERIC Educational Resources Information Center

    Molina-Bolívar, J. A.; Cabrerizo-Vílchez, M. A.

    2014-01-01

    This paper describes a physics laboratory exercise for determining the coefficient of static friction between two surfaces. The circular motion of a coin placed on the surface of a rotating turntable has been studied. For this purpose, the motion is recorded with a high-speed digital video camera recording at 240 frames s[superscript-1], and the…

  1. Ion Streaming Instabilities in Pair Ion Plasma and Localized Structure with Non-Thermal Electrons

    NASA Astrophysics Data System (ADS)

    Nasir Khattak, M.; Mushtaq, A.; Qamar, A.

    2015-12-01

    Pair ion plasma with a fraction of non-thermal electrons is considered. We investigate the effects of the streaming motion of ions on linear and nonlinear properties of unmagnetized, collisionless plasma by using the fluid model. A dispersion relation is derived, and the growth rate of streaming instabilities with effect of streaming motion of ions and non-thermal electrons is calculated. A qausi-potential approach is adopted to study the characteristics of ion acoustic solitons. An energy integral equation involving Sagdeev potential is derived during this process. The presence of the streaming term in the energy integral equation affects the structure of the solitary waves significantly along with non-thermal electrons. Possible application of the work to the space and laboratory plasmas are highlighted.

  2. Measuring the circular motion of small objects using laser stroboscopic images.

    PubMed

    Wang, Hairong; Fu, Y; Du, R

    2008-01-01

    Measuring the circular motion of a small object, including its displacement, speed, and acceleration, is a challenging task. This paper presents a new method for measuring repetitive and/or nonrepetitive, constant speed and/or variable speed circular motion using laser stroboscopic images. Under stroboscopic illumination, each image taken by an ordinary camera records multioutlines of an object in motion; hence, processing the stroboscopic image will be able to extract the motion information. We built an experiment apparatus consisting of a laser as the light source, a stereomicroscope to magnify the image, and a normal complementary metal oxide semiconductor camera to record the image. As the object is in motion, the stroboscopic illumination generates a speckle pattern on the object that can be recorded by the camera and analyzed by a computer. Experimental results indicate that the stroboscopic imaging is stable under various conditions. Moreover, the characteristics of the motion, including the displacement, the velocity, and the acceleration can be calculated based on the width of speckle marks, the illumination intensity, the duty cycle, and the sampling frequency. Compared with the popular high-speed camera method, the presented method may achieve the same measuring accuracy, but with much reduced cost and complexity.

  3. Inquiry style interactive virtual experiments: a case on circular motion

    NASA Astrophysics Data System (ADS)

    Zhou, Shaona; Han, Jing; Pelz, Nathaniel; Wang, Xiaojun; Peng, Liangyu; Xiao, Hua; Bao, Lei

    2011-11-01

    Interest in computer-based learning, especially in the use of virtual reality simulations is increasing rapidly. While there are good reasons to believe that technologies have the potential to improve teaching and learning, how to utilize the technology effectively in teaching specific content difficulties is challenging. To help students develop robust understandings of correct physics concepts, we have developed interactive virtual experiment simulations that have the unique feature of enabling students to experience force and motion via an analogue joystick, allowing them to feel the applied force and simultaneously see its effects. The simulations provide students learning experiences that integrate both scientific representations and low-level sensory cues such as haptic cues under a single setting. In this paper, we introduce a virtual experiment module on circular motion. A controlled study has been conducted to evaluate the impact of using this virtual experiment on students' learning of force and motion in the context of circular motion. The results show that the interactive virtual experiment method is preferred by students and is more effective in helping students grasp the physics concepts than the traditional education method such as problem-solving practices. Our research suggests that well-developed interactive virtual experiments can be useful tools in teaching difficult concepts in science.

  4. Topology of the Relative Motion: Circular and Eccentric Reference Orbit Cases

    NASA Technical Reports Server (NTRS)

    FontdecabaiBaig, Jordi; Metris, Gilles; Exertier, Pierre

    2007-01-01

    This paper deals with the topology of the relative trajectories in flight formations. The purpose is to study the different types of relative trajectories, their degrees of freedom, and to give an adapted parameterization. The paper also deals with the research of local circular motions. Even if they exist only when the reference orbit is circular, we extrapolate initial conditions to the eccentric reference orbit case.This alternative approach is complementary with traditional approaches in terms of cartesian coordinates or differences of orbital elements.

  5. Relationship between selected orientation rest frame, circular vection and space motion sickness

    NASA Technical Reports Server (NTRS)

    Harm, D. L.; Parker, D. E.; Reschke, M. F.; Skinner, N. C.

    1998-01-01

    Space motion sickness (SMS) and spatial orientation and motion perception disturbances occur in 70-80% of astronauts. People select "rest frames" to create the subjective sense of spatial orientation. In microgravity, the astronaut's rest frame may be based on visual scene polarity cues and on the internal head and body z axis (vertical body axis). The data reported here address the following question: Can an astronaut's orientation rest frame be related and described by other variables including circular vection response latencies and space motion sickness? The astronaut's microgravity spatial orientation rest frames were determined from inflight and postflight verbal reports. Circular vection responses were elicited by rotating a virtual room continuously at 35 degrees/s in pitch, roll and yaw with respect to the astronaut. Latency to the onset of vection was recorded from the time the crew member opened their eyes to the onset of vection. The astronauts who used visual cues exhibited significantly shorter vection latencies than those who used internal z axis cues. A negative binomial regression model was used to represent the observed total SMS symptom scores for each subject for each flight day. Orientation reference type had a significant effect, resulting in an estimated three-fold increase in the expected motion sickness score on flight day 1 for astronauts who used visual cues. The results demonstrate meaningful classification of astronauts' rest frames and their relationships to sensitivity to circular vection and SMS. Thus, it may be possible to use vection latencies to predict SMS severity and duration.

  6. Finding the Speed of a Bicycle in Circular Motion by Measuring the Lean Angle of the Bicycle

    ERIC Educational Resources Information Center

    Ben-Abu, Yuval; Wolfson, Ira; Yizhaq, Hezi

    2018-01-01

    We suggest an activity for measuring the speed of a bicycle going in circular motion by measuring the bicycle's lean angle. In this activity students will be able to feel the strength that is being activated on their bodies while they are moving in circular motion. They will also understand that it is impossible to ride in a circle without the…

  7. Analytical treatment of particle motion in circularly polarized slab-mode wave fields

    NASA Astrophysics Data System (ADS)

    Schreiner, Cedric; Vainio, Rami; Spanier, Felix

    2018-02-01

    Wave-particle interaction is a key process in particle diffusion in collisionless plasmas. We look into the interaction of single plasma waves with individual particles and discuss under which circumstances this is a chaotic process, leading to diffusion. We derive the equations of motion for a particle in the fields of a magnetostatic, circularly polarized, monochromatic wave and show that no chaotic particle motion can arise under such circumstances. A novel and exact analytic solution for the equations is presented. Additional plasma waves lead to a breakdown of the analytic solution and chaotic particle trajectories become possible. We demonstrate this effect by considering a linearly polarized, monochromatic wave, which can be seen as the superposition of two circularly polarized waves. Test particle simulations are provided to illustrate and expand our analytical considerations.

  8. Finding the speed of a bicycle in circular motion by measuring the lean angle of the bicycle

    NASA Astrophysics Data System (ADS)

    Ben-Abu, Yuval; Wolfson, Ira; Yizhaq, Hezi

    2018-05-01

    We suggest an activity for measuring the speed of a bicycle going in circular motion by measuring the bicycle’s lean angle. In this activity students will be able to feel the strength that is being activated on their bodies while they are moving in circular motion. They will also understand that it is impossible to ride in a circle without the bicycle leaning at an angle, an action that is performed intuitively.

  9. Modeling the effect of initial and free-stream conditions on circular wakes

    NASA Astrophysics Data System (ADS)

    Lewalle, Jacques

    A cascade-transport model is applied to study the effect of initial and free-stream conditions on circular waves. The role of the very-large-eddies (VLEs) is shown and used to derive a new understanding of wakes and their lack of universality. Computational results are reported which show that the VLEs are a determining factor in the development of self-preserving solutions for the axisymmetric wake.

  10. Ventral and dorsal streams processing visual motion perception (FDG-PET study)

    PubMed Central

    2012-01-01

    Background Earlier functional imaging studies on visually induced self-motion perception (vection) disclosed a bilateral network of activations within primary and secondary visual cortex areas which was combined with signal decreases, i.e., deactivations, in multisensory vestibular cortex areas. This finding led to the concept of a reciprocal inhibitory interaction between the visual and vestibular systems. In order to define areas involved in special aspects of self-motion perception such as intensity and duration of the perceived circular vection (CV) or the amount of head tilt, correlation analyses of the regional cerebral glucose metabolism, rCGM (measured by fluorodeoxyglucose positron-emission tomography, FDG-PET) and these perceptual covariates were performed in 14 healthy volunteers. For analyses of the visual-vestibular interaction, the CV data were compared to a random dot motion stimulation condition (not inducing vection) and a control group at rest (no stimulation at all). Results Group subtraction analyses showed that the visual-vestibular interaction was modified during CV, i.e., the activations within the cerebellar vermis and parieto-occipital areas were enhanced. The correlation analysis between the rCGM and the intensity of visually induced vection, experienced as body tilt, showed a relationship for areas of the multisensory vestibular cortical network (inferior parietal lobule bilaterally, anterior cingulate gyrus), the medial parieto-occipital cortex, the frontal eye fields and the cerebellar vermis. The “earlier” multisensory vestibular areas like the parieto-insular vestibular cortex and the superior temporal gyrus did not appear in the latter analysis. The duration of perceived vection after stimulus stop was positively correlated with rCGM in medial temporal lobe areas bilaterally, which included the (para-)hippocampus, known to be involved in various aspects of memory processing. The amount of head tilt was found to be positively

  11. Extending Counter-streaming Motion from an Active Region Filament to a Sunspot Light Bridge

    NASA Astrophysics Data System (ADS)

    Wang, Haimin; Liu, Rui; Li, Qin; Liu, Chang; Deng, Na; Xu, Yan; Jing, Ju; Wang, Yuming; Cao, Wenda

    2018-01-01

    We analyze high-resolution observations from the 1.6 m telescope at Big Bear Solar Observatory that cover an active region filament. Counter-streaming motions are clearly observed in the filament. The northern end of the counter-streaming motions extends to a light bridge, forming a spectacular circulation pattern around a sunspot, with clockwise motion in the blue wing and counterclockwise motion in the red wing, as observed in the Hα off-bands. The apparent speed of the flow is around 10–60 km s‑1 in the filament, decreasing to 5–20 km s‑1 in the light bridge. The most intriguing results are the magnetic structure and the counter-streaming motions in the light bridge. Similar to those in the filament, the magnetic fields show a dominant transverse component in the light bridge. However, the filament is located between opposed magnetic polarities, while the light bridge is between strong fields of the same polarity. We analyze the power of oscillations with the image sequences of constructed Dopplergrams, and find that the filament’s counter-streaming motion is due to physical mass motion along fibrils, while the light bridge’s counter-streaming motion is due to oscillation in the direction along the line-of-sight. The oscillation power peaks around 4 minutes. However, the section of the light bridge next to the filament also contains a component of the extension of the filament in combination with the oscillation, indicating that some strands of the filament are extended to and rooted in that part of the light bridge.

  12. Rotatable non-circular forebody flow controller

    NASA Technical Reports Server (NTRS)

    Moskovitz, Cary A. (Inventor)

    1991-01-01

    The invention is a rotatable, non-circular forebody flow controller. The apparatus comprises a small geometric device located at a nose of a forebody of an aircraft and a non-circular cross-sectional area that extends toward the apex of the aircraft. The device is symmetrical about a reference plane and preferably attaches to an axle which in turn attaches to a rotating motor. The motor rotates the device about an axis of rotation. Preferably, a control unit connected to an aircraft flight control computer signals to the rotating motor the proper rotational positioning of the geometric device.

  13. Projectile motion of a once rotating object: physical quantities at the point of return

    NASA Astrophysics Data System (ADS)

    Arabasi, Sameer

    2016-09-01

    Vertical circular motion is a widely used example to explain non-uniform circular motion in most undergraduate general physics textbooks. However, most of these textbooks do not elaborate on the case when this motion turns into projectile motion under certain conditions. In this paper, we describe thoroughly when a mass attached to a cord, moving in a vertical circular motion, turns into a projectile and its location and velocity when it rejoins the circular orbit. This paper provides an intuitive understanding, supported by basic kinematic equations, to give an interesting elegant connection between circular motion and projectile motion—something lacking in most physics textbooks—and will be very useful to present to an undergraduate class to deepen their understanding of both models of motion.

  14. Topologically non-linked circular duplex DNA.

    PubMed

    Biegeleisen, Ken

    2002-05-01

    The discovery of circular DNA, over 30 years ago, introduced an element of uneasiness in what had been, up to that point, the almost picture-perfect story of the elucidation of the molecular biology of heredity. If DNA indeed has the Watson-Crick right-handed helical secondary structure, then in circular DNA, thousands, or perhaps even millions of twists must be removed in each generation, and re-wound in the next generation. Although enzyme systems adequate for this task have long since been found and characterized, there have nevertheless arisen a number of proposals for alternative DNA structures in which the strands are topologically non-linked, so that they might separate during replication without having to be unwound. These structures have generally been put forth as theory only, and have been largely unaccompanied by experimental evidence to support their applicability to native DNA from living systems. Recently, however, a report has emerged suggesting that it might be possible to separate, intact, the individual single-stranded circular half-chromosomes which constitute the double-stranded circular chromosomes of certain plasmids. This would not be possible unless the chromosomes had one of the alternative, topologically non-linked structures. It is widely believed that after a half-century of worldwide DNA research, any significant change to the Watson-Crick structure is unlikely to stand up to scrutiny. Nevertheless, the present author has found that in many instances in which the behavior of circular duplex DNA is considered to be explicable only in terms of the topologically linked helical model, it is also possible to explain that same behavior in terms of a topologically non-linked model. It is necessary, in these instances, to make certain logical assumptions which cannot be conclusively proven at the present time. The author herein offers an example of one such instance, namely an examination of the behavior of circular duplex DNA in an alkaline

  15. A computational model for reference-frame synthesis with applications to motion perception.

    PubMed

    Clarke, Aaron M; Öğmen, Haluk; Herzog, Michael H

    2016-09-01

    As discovered by the Gestaltists, in particular by Duncker, we often perceive motion to be within a non-retinotopic reference frame. For example, the motion of a reflector on a bicycle appears to be circular, whereas, it traces out a cycloidal path with respect to external world coordinates. The reflector motion appears to be circular because the human brain subtracts the horizontal motion of the bicycle from the reflector motion. The bicycle serves as a reference frame for the reflector motion. Here, we present a general mathematical framework, based on vector fields, to explain non-retinotopic motion processing. Using four types of non-retinotopic motion paradigms, we show how the theory works in detail. For example, we show how non-retinotopic motion in the Ternus-Pikler display can be computed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Extending Counter-Streaming Motion from an Active Region Filament to Sunspot Light Bridge

    NASA Astrophysics Data System (ADS)

    Wang, Haimin; Liu, Rui; Deng, Na; Liu, Chang; Xu, Yan; Jing, Ju; Wang, Yuming; Cao, Wenda

    2017-08-01

    In this study, we analyze the high-resolution observations from the 1.6 m New Solar Telescope at Big Bear Solar Observatory that cover an entire active region filament. The southern end of the filament is well defined by a narrow lane situated in the negative magnetic polarity, while the northern end lies in the positive polarity, extending to a much larger area. Counter-streaming motions are clearly seen in the filament. The northern end of the counter-streaming motions extends to a light bridge, forming a spectacular circulation pattern around a sunspot, with clockwise motion in the blue wing and counterclockwise motion in the red wing as observed in H-alpha off-band. The apparent speed of the flow is around 10 km/s. We show that the southern end of the filament is consistent with that of a flux rope in a NLFFF extrapolation model, but the northern ends of the modeled flux rope and observed H-alpha footpoints have a significant spatial mismatch. The most intriguing results are the magnetic structure and the counter-streaming motions in the light bridge. Similar to those in the filament, magnetic fields show a dominant transverse component in the light bridge. However, the filament is located between opposite magnetic polarities, while the light bridge is between strong fields of the same polarity. We studied the correlation coefficients of image sequences of constructed Dopplergrams, and found that the filament and the section of light bridge next to it do not show oscillation motions, while a small section of light bridge shows a prominent oscillation pattern. Therefore, we conclude that the observed circulating counter-streaming motions are largely collections of physical mass flows in the transverse direction from the filament extending to a large section of the light bridge, rather than a form of periodic oscillatory mass motions in line-of-sight direction generated by perturbations omnipresent in the chromosphere.

  17. Satellite radar interferometry for monitoring ice sheet motion: application to an antarctic ice stream.

    PubMed

    Goldstein, R M; Engelhardt, H; Kamb, B; Frolich, R M

    1993-12-03

    Satellite radar interferometry (SRI) provides a sensitive means of monitoring the flow velocities and grounding-line positions of ice streams, which are indicators of response of the ice sheets to climatic change or internal instability. The detection limit is about 1.5 millimeters for vertical motions and about 4 millimeters for horizontal motions in the radar beam direction. The grounding line, detected by tidal motions where the ice goes afloat, can be mapped at a resolution of approximately 0.5 kilometer. The SRI velocities and grounding line of the Rutford Ice Stream, Antarctica, agree fairly well with earlier ground-based data. The combined use of SRI and other satellite methods is expected to provide data that will enhance the understanding of ice stream mechanics and help make possible the prediction of ice sheet behavior.

  18. The Role of Motion Concepts in Understanding Non-Motion Concepts

    PubMed Central

    Khatin-Zadeh, Omid; Banaruee, Hassan; Khoshsima, Hooshang; Marmolejo-Ramos, Fernando

    2017-01-01

    This article discusses a specific type of metaphor in which an abstract non-motion domain is described in terms of a motion event. Abstract non-motion domains are inherently different from concrete motion domains. However, motion domains are used to describe abstract non-motion domains in many metaphors. Three main reasons are suggested for the suitability of motion events in such metaphorical descriptions. Firstly, motion events usually have high degrees of concreteness. Secondly, motion events are highly imageable. Thirdly, components of any motion event can be imagined almost simultaneously within a three-dimensional space. These three characteristics make motion events suitable domains for describing abstract non-motion domains, and facilitate the process of online comprehension throughout language processing. Extending the main point into the field of mathematics, this article discusses the process of transforming abstract mathematical problems into imageable geometric representations within the three-dimensional space. This strategy is widely used by mathematicians to solve highly abstract and complex problems. PMID:29240715

  19. Performance limits of ion extraction systems with non-circular apertures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shagayda, A., E-mail: shagayda@gmail.com; Madeev, S.

    A three-dimensional computer simulation is used to determine the perveance limitations of ion extraction systems with non-circular apertures. The objective of the study is to analyze the possibilities to improve mechanical strength of the ion optics made of carbon-carbon composite materials. Non-circular grid apertures are better suited to the physical structure of carbon-carbon composite materials, than conventionally used circular holes in a hexagonal pattern, because they allow a fewer number of cut fibers. However, the slit-type accelerating systems, usually regarded as the main alternative to the conventional ion optics, have an intolerably narrow range of operating perveance values at whichmore » there is no direct ion impingement on the acceleration grid. This paper presents results of comparative analysis of a number of different ion optical systems with non-circular apertures and conventional ion optical systems with circular apertures. It has been revealed that a relatively wide perveance range without direct ion impingement may be obtained with apertures shaped as a square with rounded corners. Numerical simulations show that this geometry may have equivalent perveance range as the traditional geometry with circular apertures while being more mechanically robust. In addition, such important characteristics, as the effective transparency for both the ions and the neutral atoms, the height of the potential barrier reflecting the downstream plasma electrons and the angular divergence of the beamlet also can be very close to these parameters for the optics with circular apertures.« less

  20. Performance limits of ion extraction systems with non-circular apertures.

    PubMed

    Shagayda, A; Madeev, S

    2016-04-01

    A three-dimensional computer simulation is used to determine the perveance limitations of ion extraction systems with non-circular apertures. The objective of the study is to analyze the possibilities to improve mechanical strength of the ion optics made of carbon-carbon composite materials. Non-circular grid apertures are better suited to the physical structure of carbon-carbon composite materials, than conventionally used circular holes in a hexagonal pattern, because they allow a fewer number of cut fibers. However, the slit-type accelerating systems, usually regarded as the main alternative to the conventional ion optics, have an intolerably narrow range of operating perveance values at which there is no direct ion impingement on the acceleration grid. This paper presents results of comparative analysis of a number of different ion optical systems with non-circular apertures and conventional ion optical systems with circular apertures. It has been revealed that a relatively wide perveance range without direct ion impingement may be obtained with apertures shaped as a square with rounded corners. Numerical simulations show that this geometry may have equivalent perveance range as the traditional geometry with circular apertures while being more mechanically robust. In addition, such important characteristics, as the effective transparency for both the ions and the neutral atoms, the height of the potential barrier reflecting the downstream plasma electrons and the angular divergence of the beamlet also can be very close to these parameters for the optics with circular apertures.

  1. Combustor with non-circular head end

    DOEpatents

    Kim, Won -Wook; McMahan, Kevin Weston

    2015-09-29

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a head end with a non-circular configuration, a number of fuel nozzles positioned about the head end, and a transition piece extending downstream of the head end.

  2. Structural Concepts Study of Non-circular Fuselage Configurations

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivel

    1996-01-01

    A preliminary study of structural concepts for noncircular fuselage configurations is presented. For an unconventional flying-wing type aircraft, in which the fuselage is inside the wing, multiple fuselage bays with non-circular sections need to be considered. In a conventional circular fuselage section, internal pressure is carried efficiently by a thin skin via hoop tension. If the section is non-circular, internal pressure loads also induce large bending stresses. The structure must also withstand additional bending and compression loads from aerodynamic and gravitational forces. Flat and vaulted shell structural configurations for such an unconventional, non-circular pressurized fuselage of a large flying-wing were studied. A deep honeycomb sandwich-shell and a ribbed double-wall shell construction were considered. Combinations of these structural concepts were analyzed using both analytical and simple finite element models of isolated sections for a comparative conceptual study. Weight, stress, and deflection results were compared to identify a suitable configuration for detailed analyses. The flat sandwich-shell concept was found preferable to the vaulted shell concept due to its superior buckling stiffness. Vaulted double-skin ribbed shell configurations were found to be superior due to their weight savings, load diffusion, and fail-safe features. The vaulted double-skin ribbed shell structure concept was also analyzed for an integrated wing-fuselage finite element model. Additional problem areas such as wing-fuselage junction and pressure-bearing spar were identified.

  3. Non-Circular Wheels: Reuleaux and Squares

    ERIC Educational Resources Information Center

    Mills, Allan

    2011-01-01

    Circular wheels are so familiar on vehicles of all types that it is seldom realized that alternatives do exist. This short non-mathematical article describes Reuleaux and square wheels that, rolling along appropriate tracks, can maintain a moving platform at a constant height. Easily made working models lend themselves to demonstrations at science…

  4. Collective circular motion in synchronized and balanced formations with second-order rotational dynamics

    NASA Astrophysics Data System (ADS)

    Jain, Anoop; Ghose, Debasish

    2018-01-01

    This paper considers collective circular motion of multi-agent systems in which all the agents are required to traverse different circles or a common circle at a prescribed angular velocity. It is required to achieve these collective motions with the heading angles of the agents synchronized or balanced. In synchronization, the agents and their centroid have a common velocity direction, while in balancing, the movement of agents causes the location of the centroid to become stationary. The agents are initially considered to move at unit speed around individual circles at different angular velocities. It is assumed that the agents are subjected to limited communication constraints, and exchange relative information according to a time-invariant undirected graph. We present suitable feedback control laws for each of these motion coordination tasks by considering a second-order rotational dynamics of the agent. Simulations are given to illustrate the theoretical findings.

  5. Ice stream motion facilitated by a shallow-deforming and accreting bed

    PubMed Central

    Spagnolo, Matteo; Phillips, Emrys; Piotrowski, Jan A.; Rea, Brice R.; Clark, Chris D.; Stokes, Chris R.; Carr, Simon J.; Ely, Jeremy C.; Ribolini, Adriano; Wysota, Wojciech; Szuman, Izabela

    2016-01-01

    Ice streams drain large portions of ice sheets and play a fundamental role in governing their response to atmospheric and oceanic forcing, with implications for sea-level change. The mechanisms that generate ice stream flow remain elusive. Basal sliding and/or bed deformation have been hypothesized, but ice stream beds are largely inaccessible. Here we present a comprehensive, multi-scale study of the internal structure of mega-scale glacial lineations (MSGLs) formed at the bed of a palaeo ice stream. Analyses were undertaken at macro- and microscales, using multiple techniques including X-ray tomography, thin sections and ground penetrating radar (GPR) acquisitions. Results reveal homogeneity in stratigraphy, kinematics, granulometry and petrography. The consistency of the physical and geological properties demonstrates a continuously accreting, shallow-deforming, bed and invariant basal conditions. This implies that ice stream basal motion on soft sediment beds during MSGL formation is accommodated by plastic deformation, facilitated by continuous sediment supply and an inefficient drainage system. PMID:26898399

  6. Effects of a Non-Circular Chainring on Sprint Performance During a Cycle Ergometer Test

    PubMed Central

    Hintzy, Frédérique; Grappe, Frédéric; Belli, Alain

    2016-01-01

    Non-circular chainrings have been reported to alter the crank angular velocity profile over a pedal revolution so that more time is spent in the effective power phase. The purpose of this study was to determine whether sprint cycling performance could be improved using a non-circular chainring (Osymetric: ellipticity 1.25 and crank lever mounted nearly perpendicular to the major axis), in comparison with a circular chainring. Twenty sprint cyclists performed an 8 s sprint on a cycle ergometer against a 0.5 N/kg-1 friction force in four crossing conditions (non-circular or circular chainring with or without clipless pedal). Instantaneous force, velocity and power were continuously measured during each sprint. Three main characteristic pedal downstrokes were selected: maximal force (in the beginning of the sprint), maximal power (towards the middle), and maximal velocity (at the end of the sprint). Both average and instantaneous force, velocity and power were calculated during the three selected pedal downstrokes. The important finding of this study was that the maximal power output was significantly higher (+ 4.3%, p < 0.05) when using the non-circular chainring independent from the shoe-pedal linkage condition. This improvement is mainly explained by a significantly higher instantaneous external force that occurs during the downstroke. Non-circular chainring can have potential benefits on sprint cycling performance. Key points The Osymetric non-circular chainring significantly maximized crank power by 4.3% during sprint cycling, in comparison with a circular chainring. This maximal power output improvement was due to significant higher force developed when the crank was in the effective power phase. This maximal power output improvement was independent from the shoe-pedal linkage condition. Present benefits provided by the non-circular chainring on pedalling kinetics occurred only at high cadences. PMID:27274658

  7. Maximum Range of a Projectile Thrown from Constant-Speed Circular Motion

    NASA Astrophysics Data System (ADS)

    Poljak, Nikola

    2016-11-01

    The problem of determining the angle θ at which a point mass launched from ground level with a given speed v0 will reach a maximum distance is a standard exercise in mechanics. There are many possible ways of solving this problem, leading to the well-known answer of θ = π/4, producing a maximum range of D max = v0 2 / g , with g being the free-fall acceleration. Conceptually and calculationally more difficult problems have been suggested to improve student proficiency in projectile motion, with the most famous example being the Tarzan swing problem. The problem of determining the maximum distance of a point mass thrown from constant-speed circular motion is presented and analyzed in detail in this text. The calculational results confirm several conceptually derived conclusions regarding the initial throw position and provide some details on the angles and the way of throwing (underhand or overhand) that produce the maximum throw distance.

  8. Aquatic Plants: Management and Control. Special Circular 222.

    ERIC Educational Resources Information Center

    Wingard, R. G.; And Others

    This publication, produced by the Pennsylvania Cooperative Extension Service, is a non-technical guide to chemical control of aquatic vegetation. The purpose of this circular is to aid the land owner or manager in managing ponds, streams, and other water bodies for desired uses by managing the vegetation in, on, and around the water. Among the…

  9. Using a Computer Microphone Port to Study Circular Motion: Proposal of a Secondary School Experiment

    ERIC Educational Resources Information Center

    Soares, A. A.; Borcsik, F. S.

    2016-01-01

    In this work we present an inexpensive experiment proposal to study the kinematics of uniform circular motion in a secondary school. We used a PC sound card to connect a homemade simple sensor to a computer and used the free sound analysis software "Audacity" to record experimental data. We obtained quite good results even in comparison…

  10. Streaming and particle motion in acoustically-actuated leaky systems

    NASA Astrophysics Data System (ADS)

    Nama, Nitesh; Barnkob, Rune; Jun Huang, Tony; Kahler, Christian; Costanzo, Francesco

    2017-11-01

    The integration of acoustics with microfluidics has shown great promise for applications within biology, chemistry, and medicine. A commonly employed system to achieve this integration consists of a fluid-filled, polymer-walled microchannel that is acoustically actuated via standing surface acoustic waves. However, despite significant experimental advancements, the precise physical understanding of such systems remains a work in progress. In this work, we investigate the nature of acoustic fields that are setup inside the microchannel as well as the fundamental driving mechanism governing the fluid and particle motion in these systems. We provide an experimental benchmark using state-of-art 3D measurements of fluid and particle motion and present a Lagrangian velocity based temporal multiscale numerical framework to explain the experimental observations. Following verification and validation, we employ our numerical model to reveal the presence of a pseudo-standing acoustic wave that drives the acoustic streaming and particle motion in these systems.

  11. Beating motion of a circular cylinder in vortex-induced vibrations

    NASA Astrophysics Data System (ADS)

    Shen, Linwei; Chan, Eng-Soon; Wei, Yan

    2018-04-01

    In this paper, beating phenomenon of a circular cylinder in vortex-induced vibration is studied by numerical simulations in a systematic manner. The cylinder mass coefficients of 2 and 10 are considered, and the Reynolds number is 150. Two distinctive frequencies, namely cylinder oscillation and vortex shedding frequencies, are obtained from the harmonic analysis of the cylinder displacement. The result is consistent with that observed in laboratory experiments. It is found that the cylinder oscillation frequency changes with the natural frequency of the cylinder while the reduced velocity is varied. The added-mass coefficient of the cylinder in beating motion is therefore estimated. Meanwhile, the vortex shedding frequency does not change dramatically in the beating situations. In fact, it is very close to 0.2. Accordingly, the lift force coefficient has two main components associated with these two frequencies. Besides, higher harmonics of the cylinder oscillation frequency appear in the spectrum of the lift coefficient. Moreover, the vortex shedding timing is studied in the beating motion by examining the instantaneous flow fields in the wake, and two scenarios of the vortex formation are observed.

  12. The SAMI Galaxy Survey: gas streaming and dynamical M/L in rotationally supported systems

    NASA Astrophysics Data System (ADS)

    Cecil, G.; Fogarty, L. M. R.; Richards, S.; Bland-Hawthorn, J.; Lange, R.; Moffett, A.; Catinella, B.; Cortese, L.; Ho, I.-T.; Taylor, E. N.; Bryant, J. J.; Allen, J. T.; Sweet, S. M.; Croom, S. M.; Driver, S. P.; Goodwin, M.; Kelvin, L.; Green, A. W.; Konstantopoulos, I. S.; Owers, M. S.; Lawrence, J. S.; Lorente, N. P. F.

    2016-02-01

    Line-of-sight velocities of gas and stars can constrain dark matter (DM) within rotationally supported galaxies if they trace circular orbits extensively. Photometric asymmetries may signify non-circular motions, requiring spectra with dense spatial coverage. Our integral-field spectroscopy of 178 galaxies spanned the mass range of the Sydney-AAO Multi-object integral field spectrograph (SAMI) Galaxy Survey. We derived circular speed curves (CSCs) of gas and stars from non-parametric fits out to r ˜ 2re. For 12/14 with measured H I profiles, ionized gas and H I maximum velocities agreed. We fitted mass-follows-light models to 163 galaxies by approximating the radial light profile as nested, very flattened mass homeoids viewed as a Sérsic form. Fitting broad-band spectral energy distributions to Sloan Digital Sky Survey images gave median stellar mass/light 1.7 assuming a Kroupa initial mass function (IMF) versus 2.6 dynamically. Two-thirds of the dynamical mass/light measures were consistent with star+remnant IMFs. One-fifth required upscaled starlight to fit, hence comparable mass of unobserved baryons and/or DM distributed like starlight across the SAMI aperture that came to dominate motions as the starlight CSCs declined rapidly. The rest had mass distributed differently from light. Subtracting fits of Sérsic radial profiles to 13 VIKING Z-band images revealed residual weak bars. Near the bar major axis, we assessed m = 2 streaming velocities, and found deviations usually <30 km s-1 from the CSC; three showed no deviation. Thus, asymmetries rarely influenced the CSC despite colocated shock-indicating, emission-line flux ratios in more than 2/3 of our sample.

  13. Unruh effect under non-equilibrium conditions: oscillatory motion of an Unruh-DeWitt detector

    NASA Astrophysics Data System (ADS)

    Doukas, Jason; Lin, Shih-Yuin; Hu, B. L.; Mann, Robert B.

    2013-11-01

    The Unruh effect refers to the thermal fluctuations a detector experiences while undergoing linear motion with uniform acceleration in a Minkowski vacuum. This thermality can be demonstrated by tracing the vacuum state of the field over the modes beyond the accelerated detector's event horizon. However, the event horizon is well-defined only if the detector moves with eternal uniform linear acceleration. This idealized condition cannot be fulfilled in realistic situations when the motion unavoidably involves periods of non-uniform acceleration. Many experimental proposals to test the Unruh effect are of this nature. Often circular or oscillatory motion, which lacks an obvious geometric description, is considered in such proposals. The proper perspective for theoretically going beyond, or experimentally testing, the Unruh-Hawking effect in these more general conditions has to be offered by concepts and techniques in non-equilibrium quantum field theory. In this paper we provide a detailed analysis of how an Unruh-DeWitt detector undergoing oscillatory motion responds to the fluctuations of a quantum field. Numerical results for the late-time temperatures of the oscillating detector are presented. We comment on the digressions of these results from what one would obtain from a naive application of Unruh's result.

  14. Computational simulations of hydrogen circular migration in protonated acetylene induced by circularly polarized light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xuetao; Li, Wen; Schlegel, H. Bernhard, E-mail: hbs@chem.wayne.edu

    2016-08-28

    The hydrogens in protonated acetylene are very mobile and can easily migrate around the C{sub 2} core by moving between classical and non-classical structures of the cation. The lowest energy structure is the T-shaped, non-classical cation with a hydrogen bridging the two carbons. Conversion to the classical H{sub 2}CCH{sup +} ion requires only 4 kcal/mol. The effect of circularly polarized light on the migration of hydrogens in oriented C{sub 2}H{sub 3}{sup +} has been simulated by Born-Oppenheimer molecular dynamics. Classical trajectory calculations were carried out with the M062X/6-311+G(3df,2pd) level of theory using linearly and circularly polarized 32 cycle 7 μmmore » cosine squared pulses with peak intensity of 5.6 × 10{sup 13} W/cm{sup 2} and 3.15 × 10{sup 13} W/cm{sup 2}, respectively. These linearly and circularly polarized pulses transfer similar amounts of energy and total angular momentum to C{sub 2}H{sub 3}{sup +}. The average angular momentum vectors of the three hydrogens show opposite directions of rotation for right and left circularly polarized light, but no directional preference for linearly polarized light. This difference results in an appreciable amount of angular displacement of the three hydrogens relative to the C{sub 2} core for circularly polarized light, but only an insignificant amount for linearly polarized light. Over the course of the simulation with circularly polarized light, this corresponds to a propeller-like motion of the three hydrogens around the C{sub 2} core of protonated acetylene.« less

  15. Statistical data mining of streaming motion data for fall detection in assistive environments.

    PubMed

    Tasoulis, S K; Doukas, C N; Maglogiannis, I; Plagianakos, V P

    2011-01-01

    The analysis of human motion data is interesting for the purpose of activity recognition or emergency event detection, especially in the case of elderly or disabled people living independently in their homes. Several techniques have been proposed for identifying such distress situations using either motion, audio or video sensors on the monitored subject (wearable sensors) or the surrounding environment. The output of such sensors is data streams that require real time recognition, especially in emergency situations, thus traditional classification approaches may not be applicable for immediate alarm triggering or fall prevention. This paper presents a statistical mining methodology that may be used for the specific problem of real time fall detection. Visual data captured from the user's environment, using overhead cameras along with motion data are collected from accelerometers on the subject's body and are fed to the fall detection system. The paper includes the details of the stream data mining methodology incorporated in the system along with an initial evaluation of the achieved accuracy in detecting falls.

  16. Effect of Free Stream Turbulence on Flow Past a Circular Cylinder at Low Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    Kumar, Vinoth; Singh, Mrityunjay; Thangadurai, Murugan; Chatterjee, P. K.

    2018-01-01

    Circular cylinders experiencing different upstream flow conditions have been studied for low Reynolds numbers using hot-wire anemometry and smoke flow visualizations. The upstream condition of the cylinder in the test section is varied using a wire mesh placed at the entrance of the test section. The Reynolds number is varied by varying the diameter of the cylinder and the mean velocity in the test section. Smooth cylinders of diameter varying from 1.25 to 25 mm are used in the present study. A multi-channel hot-wire anemometry is used for measuring the fluctuating velocities in the test section and the wake behind the cylinder. The sectional views of the wake behind the cylinder are obtained using a 4 MP CCD camera, 200 mJ pulsed laser and a fog generator. The flow quality in the test section is examined using higher order turbulence statistics. The effect of free stream turbulence levels and their frequencies on wake structures and the shedding frequencies of circular cylinders are studied in detail. It has been observed that the alteration in wake structure and the shedding frequency depend strongly on the frequencies and the amplitudes of upstream disturbances besides the diameter of the circular cylinder.

  17. Interface and process for enhanced transmission of non-circular ion beams between stages at unequal pressure

    DOEpatents

    Tang, Keqi [Richland, WA; Shvartsburg, Alexandre A [Richland, WA; Smith, Richard D [Richland, WA

    2008-03-04

    The invention discloses a new interface with non-circular conductance limit aperture(s) useful for effective transmission of non-circular ion beams between stages with different gas pressure. In particular, the invention provides an improved coupling of field asymmetric waveform ion mobility spectrometry (FAIMS) analyzers of planar or side-to-side geometry to downstream stages such as mass spectrometry or ion mobility spectrometry. In this case, the non-circular aperture is rectangular; other geometries may be optimum in other applications. In the preferred embodiment, the non-circular aperture interface is followed by an electrodynamic ion funnel that may focus wide ion beams of any shape into tight circular beams with virtually no losses. The jet disrupter element of the funnel may also have a non-circular geometry, matching the shape of arriving ion beam. The improved sensitivity of planar FAIMS/MS has been demonstrated in experiments using a non-contiguous elongated aperture but other embodiments (e.g., with a contiguous slit aperture) may be preferable, especially in conjunction with an ion funnel operated at high pressures.

  18. Stereoscopic advantages for vection induced by radial, circular, and spiral optic flows.

    PubMed

    Palmisano, Stephen; Summersby, Stephanie; Davies, Rodney G; Kim, Juno

    2016-11-01

    Although observer motions project different patterns of optic flow to our left and right eyes, there has been surprisingly little research into potential stereoscopic contributions to self-motion perception. This study investigated whether visually induced illusory self-motion (i.e., vection) is influenced by the addition of consistent stereoscopic information to radial, circular, and spiral (i.e., combined radial + circular) patterns of optic flow. Stereoscopic vection advantages were found for radial and spiral (but not circular) flows when monocular motion signals were strong. Under these conditions, stereoscopic benefits were greater for spiral flow than for radial flow. These effects can be explained by differences in the motion aftereffects generated by these displays, which suggest that the circular motion component in spiral flow selectively reduced adaptation to stereoscopic motion-in-depth. Stereoscopic vection advantages were not observed for circular flow when monocular motion signals were strong, but emerged when monocular motion signals were weakened. These findings show that stereoscopic information can contribute to visual self-motion perception in multiple ways.

  19. Polynomial expansions of single-mode motions around equilibrium points in the circular restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Lei, Hanlun; Xu, Bo; Circi, Christian

    2018-05-01

    In this work, the single-mode motions around the collinear and triangular libration points in the circular restricted three-body problem are studied. To describe these motions, we adopt an invariant manifold approach, which states that a suitable pair of independent variables are taken as modal coordinates and the remaining state variables are expressed as polynomial series of them. Based on the invariant manifold approach, the general procedure on constructing polynomial expansions up to a certain order is outlined. Taking the Earth-Moon system as the example dynamical model, we construct the polynomial expansions up to the tenth order for the single-mode motions around collinear libration points, and up to order eight and six for the planar and vertical-periodic motions around triangular libration point, respectively. The application of the polynomial expansions constructed lies in that they can be used to determine the initial states for the single-mode motions around equilibrium points. To check the validity, the accuracy of initial states determined by the polynomial expansions is evaluated.

  20. A numerical algorithm of tooth profile of non-circular cylindrical gear

    NASA Astrophysics Data System (ADS)

    Wang, Xuan

    2017-08-01

    Non-circular cylindrical gear (NCCG) is a common form of non-circular gear. Different from the circular gear, the tooth profile equation of NCCG cannot be obtained. So it is necessary to use a numerical algorithm to calculate the tooth profile of NCCG. For this reason, this paper presents a simple and highly efficient numerical algorithm to obtain the tooth profile of NCCG. Firstly, the mathematical model of tooth profile envelope of NCCG is established based on the principle of gear shaping, and the tooth profile envelope of NCCG is obtained. Secondly, the polar radius and polar angle of shaper cutter tooth profile are chosen as the criterions, by which the points of NCCG tooth cogging can be screened out. Finally, the boundary of tooth cogging points is extracted by a distance criterion and correspondingly the tooth profile of NCCG is obtained.

  1. Classifying Motion.

    ERIC Educational Resources Information Center

    Duzen, Carl; And Others

    1992-01-01

    Presents a series of activities that utilizes a leveling device to classify constant and accelerated motion. Applies this classification system to uniform circular motion and motion produced by gravitational force. (MDH)

  2. Simulating Biological and Non-Biological Motion

    ERIC Educational Resources Information Center

    Bruzzo, Angela; Gesierich, Benno; Wohlschlager, Andreas

    2008-01-01

    It is widely accepted that the brain processes biological and non-biological movements in distinct neural circuits. Biological motion, in contrast to non-biological motion, refers to active movements of living beings. Aim of our experiment was to investigate the mechanisms underlying mental simulation of these two movement types. Subjects had to…

  3. Checking for Circular Dependencies in Distributed Stream Programs

    DTIC Science & Technology

    2011-08-29

    extensions to express new complexities more conve- nient. Teleport messaging ( TMG ) in the StreamIt language [30] is an example. 1.1 StreamIt Language...dynamicities to an FIR computation Thies et al. in [30] give a TMG model for distributed stream pro- grams. TMG is a mechanism that implements control...messages for stream graphs. The TMG mechanism is designed not to interfere with original dataflow graphs’ structures and scheduling, therefore a key

  4. Non-verbal IQ is correlated with visual field advantages for short duration coherent motion detection in deaf signers with varied ASL exposure and etiologies of deafness.

    PubMed

    Samar, Vincent J; Parasnis, Ila

    2007-12-01

    Studies have reported a right visual field (RVF) advantage for coherent motion detection by deaf and hearing signers but not non-signers. Yet two studies [Bosworth R. G., & Dobkins, K. R. (2002). Visual field asymmetries for motion processing in deaf and hearing signers. Brain and Cognition, 49, 170-181; Samar, V. J., & Parasnis, I. (2005). Dorsal stream deficits suggest hidden dyslexia among deaf poor readers: Correlated evidence from reduced perceptual speed and elevated coherent motion detection thresholds. Brain and Cognition, 58, 300-311.] reported a small, non-significant RVF advantage for deaf signers when short duration motion stimuli were used (200-250 ms). Samar and Parasnis (2005) reported that this small RVF advantage became significant when non-verbal IQ was statistically controlled. This paper presents extended analyses of the correlation between non-verbal IQ and visual field asymmetries in the data set of Samar and Parasnis (2005). We speculate that this correlation might plausibly be driven by individual differences either in age of acquisition of American Sign Language (ASL) or in the degree of neurodevelopmental insult associated with various etiologies of deafness. Limited additional analyses are presented that indicate a need for further research on the cause of this apparent IQ-laterality relationship. Some potential implications of this relationship for lateralization studies of deaf signers are discussed. Controlling non-verbal IQ may improve the reliability of short duration coherent motion tasks to detect adaptive dorsal stream lateralization due to exposure to ASL in deaf research participants.

  5. Visual and Non-Visual Contributions to the Perception of Object Motion during Self-Motion

    PubMed Central

    Fajen, Brett R.; Matthis, Jonathan S.

    2013-01-01

    Many locomotor tasks involve interactions with moving objects. When observer (i.e., self-)motion is accompanied by object motion, the optic flow field includes a component due to self-motion and a component due to object motion. For moving observers to perceive the movement of other objects relative to the stationary environment, the visual system could recover the object-motion component – that is, it could factor out the influence of self-motion. In principle, this could be achieved using visual self-motion information, non-visual self-motion information, or a combination of both. In this study, we report evidence that visual information about the speed (Experiment 1) and direction (Experiment 2) of self-motion plays a role in recovering the object-motion component even when non-visual self-motion information is also available. However, the magnitude of the effect was less than one would expect if subjects relied entirely on visual self-motion information. Taken together with previous studies, we conclude that when self-motion is real and actively generated, both visual and non-visual self-motion information contribute to the perception of object motion. We also consider the possible role of this process in visually guided interception and avoidance of moving objects. PMID:23408983

  6. Can walking motions improve visually induced rotational self-motion illusions in virtual reality?

    PubMed

    Riecke, Bernhard E; Freiberg, Jacob B; Grechkin, Timofey Y

    2015-02-04

    Illusions of self-motion (vection) can provide compelling sensations of moving through virtual environments without the need for complex motion simulators or large tracked physical walking spaces. Here we explore the interaction between biomechanical cues (stepping along a rotating circular treadmill) and visual cues (viewing simulated self-rotation) for providing stationary users a compelling sensation of rotational self-motion (circular vection). When tested individually, biomechanical and visual cues were similarly effective in eliciting self-motion illusions. However, in combination they yielded significantly more intense self-motion illusions. These findings provide the first compelling evidence that walking motions can be used to significantly enhance visually induced rotational self-motion perception in virtual environments (and vice versa) without having to provide for physical self-motion or motion platforms. This is noteworthy, as linear treadmills have been found to actually impair visually induced translational self-motion perception (Ash, Palmisano, Apthorp, & Allison, 2013). Given the predominant focus on linear walking interfaces for virtual-reality locomotion, our findings suggest that investigating circular and curvilinear walking interfaces offers a promising direction for future research and development and can help to enhance self-motion illusions, presence and immersion in virtual-reality systems. © 2015 ARVO.

  7. Two-character motion analysis and synthesis.

    PubMed

    Kwon, Taesoo; Cho, Young-Sang; Park, Sang Il; Shin, Sung Yong

    2008-01-01

    In this paper, we deal with the problem of synthesizing novel motions of standing-up martial arts such as Kickboxing, Karate, and Taekwondo performed by a pair of human-like characters while reflecting their interactions. Adopting an example-based paradigm, we address three non-trivial issues embedded in this problem: motion modeling, interaction modeling, and motion synthesis. For the first issue, we present a semi-automatic motion labeling scheme based on force-based motion segmentation and learning-based action classification. We also construct a pair of motion transition graphs each of which represents an individual motion stream. For the second issue, we propose a scheme for capturing the interactions between two players. A dynamic Bayesian network is adopted to build a motion transition model on top of the coupled motion transition graph that is constructed from an example motion stream. For the last issue, we provide a scheme for synthesizing a novel sequence of coupled motions, guided by the motion transition model. Although the focus of the present work is on martial arts, we believe that the framework of the proposed approach can be conveyed to other two-player motions as well.

  8. Projectile and Circular Motion: A Model Four-Week Unit of Study for a High School Physics Class Using Physics Courseware.

    ERIC Educational Resources Information Center

    Geigel, Joan; And Others

    A self-paced program designed to integrate the use of computers and physics courseware into the regular classroom environment is offered for physics high school teachers in this module on projectile and circular motion. A diversity of instructional strategies including lectures, demonstrations, videotapes, computer simulations, laboratories, and…

  9. Natural circular dichroism in non-resonant x-ray emission

    NASA Astrophysics Data System (ADS)

    Vahtras, Olav; Ågren, Hans; Carravetta, Vincenzo

    1997-03-01

    The possibility of observing natural circular dichroism in non-resonant x-ray emission spectroscopy is investigated by means of simulations of the chiral molecules twisted ethylene, propylene oxide and trans-1, 2-dimethylcyclopropane, in a two-step model and at the SCF level, with or without relaxation of the core-hole states. We observe both a chemical and an element dependence of the phenomenon and also an effect of electron relaxation. However, the latter is much less crucial than for circular dichroism in x-ray absorption. The calculations indicate that, at least for the decay of the carbon core-hole states, the effect could be detectable with the present or soon to be available experimental equipment.

  10. Two-Phase Flow in Microchannels with Non-Circular Cross Section

    NASA Astrophysics Data System (ADS)

    Eckett, Chris A.; Strumpf, Hal J.

    2002-11-01

    Two-phase flow in microchannels is of practical importance in several microgravity space technology applications. These include evaporative and condensing heat exchangers for thermal management systems and vapor cycle systems, phase separators, and bioreactors. The flow passages in these devices typically have a rectangular cross-section or some other non-circular cross-section; may include complex flow paths with branches, merges and bends; and may involve channel walls of different wettability. However, previous experimental and analytical investigations of two-phase flow in reduced gravity have focussed on straight, circular tubes. This study is an effort to determine two-phase flow behavior, both with and without heat transfer, in microchannel configurations other than straight, circular tubes. The goals are to investigate the geometrical effects on flow pattern, pressure drop and liquid holdup, as well as to determine the relative importance of capillary, surface tension, inertial, and gravitational forces in such geometries. An evaporative heat exchanger for microgravity thermal management systems has been selected as the target technology in this investigation. Although such a heat exchanger has never been developed at Honeywell, a preliminary sizing has been performed based on knowledge of such devices in normal gravity environments. Fin shapes considered include plain rectangular, offset rectangular, and wavy fin configurations. Each of these fin passages represents a microchannel of non-circular cross section. The pans at the inlet and outlet of the heat exchanger are flow branches and merges, with up to 90-deg bends. R-134a has been used as the refrigerant fluid, although ammonia may well be used in the eventual application.

  11. Direct Position Determination of Multiple Non-Circular Sources with a Moving Coprime Array.

    PubMed

    Zhang, Yankui; Ba, Bin; Wang, Daming; Geng, Wei; Xu, Haiyun

    2018-05-08

    Direct position determination (DPD) is currently a hot topic in wireless localization research as it is more accurate than traditional two-step positioning. However, current DPD algorithms are all based on uniform arrays, which have an insufficient degree of freedom and limited estimation accuracy. To improve the DPD accuracy, this paper introduces a coprime array to the position model of multiple non-circular sources with a moving array. To maximize the advantages of this coprime array, we reconstruct the covariance matrix by vectorization, apply a spatial smoothing technique, and converge the subspace data from each measuring position to establish the cost function. Finally, we obtain the position coordinates of the multiple non-circular sources. The complexity of the proposed method is computed and compared with that of other methods, and the Cramer⁻Rao lower bound of DPD for multiple sources with a moving coprime array, is derived. Theoretical analysis and simulation results show that the proposed algorithm is not only applicable to circular sources, but can also improve the positioning accuracy of non-circular sources. Compared with existing two-step positioning algorithms and DPD algorithms based on uniform linear arrays, the proposed technique offers a significant improvement in positioning accuracy with a slight increase in complexity.

  12. Monitoring stream temperatures—A guide for non-specialists

    USGS Publications Warehouse

    Heck, Michael P.; Schultz, Luke D.; Hockman-Wert, David; Dinger, Eric C.; Dunham, Jason B.

    2018-04-19

    Executive SummaryWater temperature influences most physical and biological processes in streams, and along with streamflows is a major driver of ecosystem processes. Collecting data to measure water temperature is therefore imperative, and relatively straightforward. Several protocols exist for collecting stream temperature data, but these are frequently directed towards specialists. This document was developed to address the need for a protocol intended for non-specialists (non-aquatic) staff. It provides specific step-by-step procedures on (1) how to launch data loggers, (2) check the factory calibration of data loggers prior to field use, (3) how to install data loggers in streams for year-round monitoring, (4) how to download and retrieve data loggers from the field, and (5) how to input project data into organizational databases.

  13. Dorsal and ventral stream contributions to form-from-motion perception in a patient with form-from motion deficit: a case report.

    PubMed

    Mercier, Manuel R; Schwartz, Sophie; Spinelli, Laurent; Michel, Christoph M; Blanke, Olaf

    2017-03-01

    The main model of visual processing in primates proposes an anatomo-functional distinction between the dorsal stream, specialized in spatio-temporal information, and the ventral stream, processing essentially form information. However, these two pathways also communicate to share much visual information. These dorso-ventral interactions have been studied using form-from-motion (FfM) stimuli, revealing that FfM perception first activates dorsal regions (e.g., MT+/V5), followed by successive activations of ventral regions (e.g., LOC). However, relatively little is known about the implications of focal brain damage of visual areas on these dorso-ventral interactions. In the present case report, we investigated the dynamics of dorsal and ventral activations related to FfM perception (using topographical ERP analysis and electrical source imaging) in a patient suffering from a deficit in FfM perception due to right extrastriate brain damage in the ventral stream. Despite the patient's FfM impairment, both successful (observed for the highest level of FfM signal) and absent/failed FfM perception evoked the same temporal sequence of three processing states observed previously in healthy subjects. During the first period, brain source localization revealed cortical activations along the dorsal stream, currently associated with preserved elementary motion processing. During the latter two periods, the patterns of activity differed from normal subjects: activations were observed in the ventral stream (as reported for normal subjects), but also in the dorsal pathway, with the strongest and most sustained activity localized in the parieto-occipital regions. On the other hand, absent/failed FfM perception was characterized by weaker brain activity, restricted to the more lateral regions. This study shows that in the present case report, successful FfM perception, while following the same temporal sequence of processing steps as in normal subjects, evoked different patterns of

  14. Pitot pressure measurements in flow fields behind circular-arc nozzles with exhaust jets at subsonic free-stream Mach numbers. [langley 16 foot transonic tunnel

    NASA Technical Reports Server (NTRS)

    Mason, M. L.; Putnam, L. E.

    1979-01-01

    The flow field behind a circular arc nozzle with exhaust jet was studied at subsonic free stream Mach numbers. A conical probe was used to measure the pitot pressure in the jet and free stream regions. Pressure data were recorded for two nozzle configurations at nozzle pressure ratios of 2.0, 2.9, and 5.0. At each set of test conditions, the probe was traversed from the jet center line into the free stream region at seven data acquisition stations. The survey began at the nozzle exit and extended downstream at intervals. The pitot pressure data may be applied to the evaluation of computational flow field models, as illustrated by a comparison of the flow field data with results of inviscid jet plume theory.

  15. 75 FR 20342 - Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-19

    ...-Alloy Steel Pipe From Mexico: Final Results of Antidumping Duty Administrative Review and Rescission of...- alloy steel pipe from Mexico. See Certain Circular Welded Non-Alloy Steel Pipe From Mexico; Preliminary... remaining three respondents. See Certain Circular Welded Non-Alloy Steel Pipe from Mexico: Notice of Partial...

  16. Quantification of the multi-streaming effect in redshift space distortion

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Zhang, Pengjie; Oh, Minji

    2017-05-01

    Both multi-streaming (random motion) and bulk motion cause the Finger-of-God (FoG) effect in redshift space distortion (RSD). We apply a direct measurement of the multi-streaming effect in RSD from simulations, proving that it induces an additional, non-negligible FoG damping to the redshift space density power spectrum. We show that, including the multi-streaming effect, the RSD modelling is significantly improved. We also provide a theoretical explanation based on halo model for the measured effect, including a fitting formula with one to two free parameters. The improved understanding of FoG helps break the fσ8-σv degeneracy in RSD cosmology, and has the potential of significantly improving cosmological constraints.

  17. 76 FR 31940 - Circular Welded Non-Alloy Steel Pipe From Taiwan: Notice of Rescission of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... Steel Pipe From Taiwan: Notice of Rescission of Antidumping Duty Administrative Review AGENCY: Import... review of the antidumping duty order on circular welded non-alloy steel pipe from Taiwan. The period of... review of the antidumping duty order on circular welded non-alloy steel pipe from Taiwan. See Antidumping...

  18. Motion prediction of a non-cooperative space target

    NASA Astrophysics Data System (ADS)

    Zhou, Bang-Zhao; Cai, Guo-Ping; Liu, Yun-Meng; Liu, Pan

    2018-01-01

    Capturing a non-cooperative space target is a tremendously challenging research topic. Effective acquisition of motion information of the space target is the premise to realize target capture. In this paper, motion prediction of a free-floating non-cooperative target in space is studied and a motion prediction algorithm is proposed. In order to predict the motion of the free-floating non-cooperative target, dynamic parameters of the target must be firstly identified (estimated), such as inertia, angular momentum and kinetic energy and so on; then the predicted motion of the target can be acquired by substituting these identified parameters into the Euler's equations of the target. Accurate prediction needs precise identification. This paper presents an effective method to identify these dynamic parameters of a free-floating non-cooperative target. This method is based on two steps, (1) the rough estimation of the parameters is computed using the motion observation data to the target, and (2) the best estimation of the parameters is found by an optimization method. In the optimization problem, the objective function is based on the difference between the observed and the predicted motion, and the interior-point method (IPM) is chosen as the optimization algorithm, which starts at the rough estimate obtained in the first step and finds a global minimum to the objective function with the guidance of objective function's gradient. So the speed of IPM searching for the global minimum is fast, and an accurate identification can be obtained in time. The numerical results show that the proposed motion prediction algorithm is able to predict the motion of the target.

  19. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans

    PubMed Central

    Holdt, Lesca M.; Stahringer, Anika; Sass, Kristina; Pichler, Garwin; Kulak, Nils A.; Wilfert, Wolfgang; Kohlmaier, Alexander; Herbst, Andreas; Northoff, Bernd H.; Nicolaou, Alexandros; Gäbel, Gabor; Beutner, Frank; Scholz, Markus; Thiery, Joachim; Musunuru, Kiran; Krohn, Knut; Mann, Matthias; Teupser, Daniel

    2016-01-01

    Circular RNAs (circRNAs) are broadly expressed in eukaryotic cells, but their molecular mechanism in human disease remains obscure. Here we show that circular antisense non-coding RNA in the INK4 locus (circANRIL), which is transcribed at a locus of atherosclerotic cardiovascular disease on chromosome 9p21, confers atheroprotection by controlling ribosomal RNA (rRNA) maturation and modulating pathways of atherogenesis. CircANRIL binds to pescadillo homologue 1 (PES1), an essential 60S-preribosomal assembly factor, thereby impairing exonuclease-mediated pre-rRNA processing and ribosome biogenesis in vascular smooth muscle cells and macrophages. As a consequence, circANRIL induces nucleolar stress and p53 activation, resulting in the induction of apoptosis and inhibition of proliferation, which are key cell functions in atherosclerosis. Collectively, these findings identify circANRIL as a prototype of a circRNA regulating ribosome biogenesis and conferring atheroprotection, thereby showing that circularization of long non-coding RNAs may alter RNA function and protect from human disease. PMID:27539542

  20. Global geometry of non-planar 3-body motions

    NASA Astrophysics Data System (ADS)

    Salehani, Mahdi Khajeh

    2011-12-01

    The aim of this paper is to study the global geometry of non-planar 3-body motions in the realms of equivariant Differential Geometry and Geometric Mechanics. This work was intended as an attempt at bringing together these two areas, in which geometric methods play the major role, in the study of the 3-body problem. It is shown that the Euler equations of a three-body system with non-planar motion introduce non-holonomic constraints into the Lagrangian formulation of mechanics. Applying the method of undetermined Lagrange multipliers to study the dynamics of three-body motions reduced to the level of moduli space {bar{M}} subject to the non-holonomic constraints yields the generalized Euler-Lagrange equations of non-planar three-body motions in {bar{M}} . As an application of the derived dynamical equations in the level of {bar{M}} , we completely settle the question posed by A. Wintner in his book [The analytical foundations of Celestial Mechanics, Sections 394-396, 435 and 436. Princeton University Press (1941)] on classifying the constant inclination solutions of the three-body problem.

  1. Quantification of the multi-streaming effect in redshift space distortion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Yi; Oh, Minji; Zhang, Pengjie, E-mail: yizheng@kasi.re.kr, E-mail: zhangpj@sjtu.edu.cn, E-mail: minjioh@kasi.re.kr

    Both multi-streaming (random motion) and bulk motion cause the Finger-of-God (FoG) effect in redshift space distortion (RSD). We apply a direct measurement of the multi-streaming effect in RSD from simulations, proving that it induces an additional, non-negligible FoG damping to the redshift space density power spectrum. We show that, including the multi-streaming effect, the RSD modelling is significantly improved. We also provide a theoretical explanation based on halo model for the measured effect, including a fitting formula with one to two free parameters. The improved understanding of FoG helps break the f σ{sub 8}−σ {sub v} degeneracy in RSD cosmology,more » and has the potential of significantly improving cosmological constraints.« less

  2. The effect of heat generation on mixed convection flow in nano fluids over a horizontal circular cylinder

    NASA Astrophysics Data System (ADS)

    Juliyanto, Bagus; Widodo, Basuki; Imron, Chairul

    2018-04-01

    The purpose of this research is to study the effect of heat generation on mixed convection flow on Nano fluids over a horizontal circular cylinder of a heated in two dimension form. A stream of fluids are steady and incompressible, a stream flowing vertically upwards for circular cylinder and the boundary layer at the stagnation point. Three different types of nanoparticles considered are Cu, Al2O3, and TiO2. Mixed convection flow in Nano fluids on the surface of a circular cylinder will cause the boundary layer. The governing boundary layer equations are transformed into a non-dimensional form, and then the non-dimensional forms are transformed into a similar boundary equations by using stream function. Furthermore, an implicit finite-difference scheme known as the Keller-box method is applied to solve numerically the resulting similar boundary layer equations. The result of the research by varying the non-dimensional parameters are mixed convection, Prandtl number, nanoparticle volume fraction, heat generation, and radius of a cylinder are as follows. First, the velocity profile increase and temperature profile decrease when mixed convection parameter increase. Second, the velocity and temperature profiles decrease when Prandtl number parameter increase. Third, the velocity profile with the variation of nanoparticle volume fraction (χ) is increased when the value of χ is 0,1 ≤ χ ≤ 0,15 and the velocity profile decreases when the value of χ is 0,19 ≤ χ ≤ 0,5 while the temperature profile is increasing when the value of χ is 0,1 ≤ χ ≤ 0,5. Fourth, the velocity and temperature profiles increase when heat generation and the radius of the cylinder increase. The last, Cu, Al 2 O 3, and TiO 2 nanoparticles produce the same velocity and temperature profiles, but the three types of nanoparticles are different at the velocity and temperature values.

  3. Drag characteristics of circular cylinders in a laminar boundary layer at supersonic free-stream velocities

    NASA Technical Reports Server (NTRS)

    Stallings, R. L., Jr.; Lamb, M.; Howell, D. T.

    1973-01-01

    Drag measurements were obtained with circular cylinders attached to a flat-plate surface with their longitudinal axes perpendicular to the plate surface. When more than one cylinder was tested, they were alined in a spanwise row perpendicular to the free-stream velocity vector. The drag measurements were obtained through a range of Mach numbers from 2.3 to 4.6, cylinder heights ranging from approximately 0.4 to 3 times the undisturbed laminar boundary-layer thickness, and cylinder height-to-diameter ratios of 1.0 and approximately 2. Included in the paper is a complete presentation in figure form of the experimental results and a discussion of the more significant findings. An attempt is made to select the most appropriate parameters for correlating the experimental results and, where possible, these results are compared with theoretical calculations.

  4. Sediment motion and velocity in a glacier-fed stream

    NASA Astrophysics Data System (ADS)

    Mao, L.; Dell'Agnese, A.; Comiti, F.

    2017-08-01

    Current understanding of coarse sediment transport (e.g. threshold for motion, travel length and virtual velocity) in mountain rivers is still quite limited, and even less is known about glacial streams. However, the hydrological characteristics of these systems (strong daily discharge fluctuations, high water turbidity) pose challenges to the use of tracers to monitor bed sediment dynamics, as tagged clasts are usually located after bedload events when flow stage has receded, e.g. by means of portable antennas in the case of Passive Integrated Transponders (PIT). The use of stationary antennas, still scarcely in use worldwide, to detect PIT-tagged particles has potential advantages in glacier-fed streams. If water discharge is monitored continuously, a stationary antenna provides real time data on the actual discharge at the moment of tracer particles passage. This study focuses on incipient motion and virtual velocity of bed particles measured by a stationary antennas system in a steep mountain channel (Saldur River, drainage area 18.6 km2, Italian Alps) where significant daily discharge fluctuations and bedload transport occur as a result of a nivo-glacial regime. Four stationary antennas were installed 50-m apart in the study reach. A total of 629 PIT-tagged clasts were inserted in the studied reach between 2011 and 2014, ranging in size from 35 mm to 580 mm, with an overall recovery rate of around 44%. Critical discharge for sediment entrainment was obtained by detecting the movement of tracers placed immediately upstream of antennas. Virtual velocity was derived by knowing distances between the antennas and travel time of tracers. Results on initiation of motion show that the relationship between the size of transported tracers and the discharge measured at the time clasts were passing the stationary antenna is very weak. The influence of antecedent flows on incipient motion was thus investigated by dividing the highest discharge recorded between each PIT

  5. Dynamics of a flexible splitter plate in the wake of a circular cylinder

    NASA Astrophysics Data System (ADS)

    Shukla, S.; Govardhan, R. N.; Arakeri, J. H.

    2013-08-01

    Rigid splitter plates in the wake of bluff bodies are known to suppress the primary vortex shedding. In the present work, we experimentally study the problem of a flexible splitter plate in the wake of a circular cylinder. In this case, the splitter plate is free to continuously deform along its length due to the fluid forces acting on it; the flexural rigidity (EI) of the plate being an important parameter. Direct visualizations of the splitter plate motions, for very low values of flexural rigidity (EI), indicate periodic traveling wave type deformations of the splitter plate with maximum tip amplitudes of the order of 1 cylinder diameter. As the Reynolds number based on cylinder diameter is varied, two regimes of periodic splitter plate motions are found that are referred to as mode I and mode II, with a regime of aperiodic motions between them. The frequency of plate motions in both periodic modes is found to be close to the plane cylinder Strouhal number of about 0.2, while the average frequencies in the non-periodic regime are substantially lower. The measured normalized phase speed of the traveling wave for both periodic modes is also close to the convection speed of vortices in the plane cylinder wake. As the flexural rigidity of the plate (EI) is increased, the response of the plate was found to shift to the right when plotted with flow speed or Re. To better capture the effect of varying EI, we define and use a non-dimensional bending stiffness, K*, similar to the ones used in the flag flutter problem, K=EI/(0.5ρUL), where U is the free-stream velocity and L is the splitter plate length. Amplitude data for different EI cases when plotted against this parameter appear to collapse on to a single curve for a given splitter plate length. Measurements of the splitter plate motions for varying splitter plate lengths indicate that plates that are substantially larger than the formation length of the plane cylinder wake have similar responses, while shorter

  6. The effectiveness of interactive computer simulations on college engineering student conceptual understanding and problem-solving ability related to circular motion

    NASA Astrophysics Data System (ADS)

    Chien, Cheng-Chih

    In the past thirty years, the effectiveness of computer assisted learning was found varied by individual studies. Today, with drastic technical improvement, computers have been widely spread in schools and used in a variety of ways. In this study, a design model involving educational technology, pedagogy, and content domain is proposed for effective use of computers in learning. Computer simulation, constructivist and Vygotskian perspectives, and circular motion are the three elements of the specific Chain Model for instructional design. The goal of the physics course is to help students remove the ideas which are not consistent with the physics community and rebuild new knowledge. To achieve the learning goal, the strategies of using conceptual conflicts and using language to internalize specific tasks into mental functions were included. Computer simulations and accompanying worksheets were used to help students explore their own ideas and to generate questions for discussions. Using animated images to describe the dynamic processes involved in the circular motion may reduce the complexity and possible miscommunications resulting from verbal explanations. The effectiveness of the instructional material on student learning is evaluated. The results of problem solving activities show that students using computer simulations had significantly higher scores than students not using computer simulations. For conceptual understanding, on the pretest students in the non-simulation group had significantly higher score than students in the simulation group. There was no significant difference observed between the two groups in the posttest. The relations of gender, prior physics experience, and frequency of computer uses outside the course to student achievement were also studied. There were fewer female students than male students and fewer students using computer simulations than students not using computer simulations. These characteristics affect the statistical power

  7. Non-Additive Increases in Sediment Stability Are Generated by Macroinvertebrate Species Interactions in Laboratory Streams

    PubMed Central

    Albertson, Lindsey K.; Cardinale, Bradley J.; Sklar, Leonard S.

    2014-01-01

    Previous studies have shown that biological structures such as plant roots can have large impacts on landscape morphodynamics, and that physical models that do not incorporate biology can generate qualitatively incorrect predictions of sediment transport. However, work to date has focused almost entirely on the impacts of single, usually dominant, species. Here we ask whether multiple, coexisting species of hydropsychid caddisfly larvae have different impacts on sediment mobility compared to single-species systems due to competitive interactions and niche differences. We manipulated the presence of two common species of net-spinning caddisfly (Ceratopsyche oslari, Arctopsyche californica) in laboratory mesocosms and measured how their silk filtration nets influence the critical shear stress required to initiate sediment grain motion when they were in monoculture versus polyculture. We found that critical shear stress increases non-additively in polycultures where species were allowed to interact. Critical shear stress was 26% higher in multi-species assemblages compared to the average single-species monoculture, and 21% greater than levels of stability achieved by the species having the largest impact on sediment motion in monoculture. Supplementary behavioral experiments suggest the non-additive increase in critical shear stress may have occurred as competition among species led to shifts in the spatial distribution of the two populations and complementary habitat use. To explore the implications of these results for field conditions, we used results from the laboratory study to parameterize a common model of sediment transport. We then used this model to estimate potential bed movement in a natural stream for which we had measurements of channel geometry, grain size, and daily discharge. Although this extrapolation is speculative, it illustrates that multi-species impacts could be sufficiently large to reduce bedload sediment flux over annual time scales in

  8. Modal radiation patterns of baffled circular plates and membranes.

    PubMed

    Christiansen, Thomas Lehrmann; Hansen, Ole; Thomsen, Erik Vilain; Jensen, Jørgen Arendt

    2014-05-01

    The far field velocity potential and radiation pattern of baffled circular plates and membranes are found analytically using the full set of modal velocity profiles derived from the corresponding equation of motion. The derivation is valid for a plate or membrane subjected to an external excitation force, which is used as a sound receiver in any medium or as a sound transmitter in a gaseous medium. A general, concise expression is given for the radiation pattern of any mode of the membrane and the plate with arbitrary boundary conditions. Specific solutions are given for the four special cases of a plate with clamped, simply supported, and free edge boundary conditions as well as for the membrane. For all non-axisymmetric modes, the velocity potential along the axis of the radiator is found to be strictly zero. In the long wavelength limit, the radiation pattern of all axisymmetric modes approaches that of a monopole, while the non-axisymmetric modes exhibit multipole behavior. Numerical results are also given, demonstrating the implications of having non-axisymmetric excitation using both a point excitation with varying eccentricity and a homogeneous excitation acting on half of the circular radiator.

  9. Laser Spot Tracking Based on Modified Circular Hough Transform and Motion Pattern Analysis

    PubMed Central

    Krstinić, Damir; Skelin, Ana Kuzmanić; Milatić, Ivan

    2014-01-01

    Laser pointers are one of the most widely used interactive and pointing devices in different human-computer interaction systems. Existing approaches to vision-based laser spot tracking are designed for controlled indoor environments with the main assumption that the laser spot is very bright, if not the brightest, spot in images. In this work, we are interested in developing a method for an outdoor, open-space environment, which could be implemented on embedded devices with limited computational resources. Under these circumstances, none of the assumptions of existing methods for laser spot tracking can be applied, yet a novel and fast method with robust performance is required. Throughout the paper, we will propose and evaluate an efficient method based on modified circular Hough transform and Lucas–Kanade motion analysis. Encouraging results on a representative dataset demonstrate the potential of our method in an uncontrolled outdoor environment, while achieving maximal accuracy indoors. Our dataset and ground truth data are made publicly available for further development. PMID:25350502

  10. Laser spot tracking based on modified circular Hough transform and motion pattern analysis.

    PubMed

    Krstinić, Damir; Skelin, Ana Kuzmanić; Milatić, Ivan

    2014-10-27

    Laser pointers are one of the most widely used interactive and pointing devices in different human-computer interaction systems. Existing approaches to vision-based laser spot tracking are designed for controlled indoor environments with the main assumption that the laser spot is very bright, if not the brightest, spot in images. In this work, we are interested in developing a method for an outdoor, open-space environment, which could be implemented on embedded devices with limited computational resources. Under these circumstances, none of the assumptions of existing methods for laser spot tracking can be applied, yet a novel and fast method with robust performance is required. Throughout the paper, we will propose and evaluate an efficient method based on modified circular Hough transform and Lucas-Kanade motion analysis. Encouraging results on a representative dataset demonstrate the potential of our method in an uncontrolled outdoor environment, while achieving maximal accuracy indoors. Our dataset and ground truth data are made publicly available for further development.

  11. Brownian motion in non-equilibrium systems and the Ornstein-Uhlenbeck stochastic process.

    PubMed

    Donado, F; Moctezuma, R E; López-Flores, L; Medina-Noyola, M; Arauz-Lara, J L

    2017-10-03

    The Ornstein-Uhlenbeck stochastic process is an exact mathematical model providing accurate representations of many real dynamic processes in systems in a stationary state. When applied to the description of random motion of particles such as that of Brownian particles, it provides exact predictions coinciding with those of the Langevin equation but not restricted to systems in thermal equilibrium but only conditioned to be stationary. Here, we investigate experimentally single particle motion in a two-dimensional granular system in a stationary state, consisting of 1 mm stainless balls on a plane circular surface. The motion of the particles is produced by an alternating magnetic field applied perpendicular to the surface of the container. The mean square displacement of the particles is measured for a range of low concentrations and it is found that following an appropriate scaling of length and time, the short-time experimental curves conform a master curve covering the range of particle motion from ballistic to diffusive in accordance with the description of the Ornstein-Uhlenbeck model.

  12. Comparative Study on Interaction of Form and Motion Processing Streams by Applying Two Different Classifiers in Mechanism for Recognition of Biological Movement

    PubMed Central

    2014-01-01

    Research on psychophysics, neurophysiology, and functional imaging shows particular representation of biological movements which contains two pathways. The visual perception of biological movements formed through the visual system called dorsal and ventral processing streams. Ventral processing stream is associated with the form information extraction; on the other hand, dorsal processing stream provides motion information. Active basic model (ABM) as hierarchical representation of the human object had revealed novelty in form pathway due to applying Gabor based supervised object recognition method. It creates more biological plausibility along with similarity with original model. Fuzzy inference system is used for motion pattern information in motion pathway creating more robustness in recognition process. Besides, interaction of these paths is intriguing and many studies in various fields considered it. Here, the interaction of the pathways to get more appropriated results has been investigated. Extreme learning machine (ELM) has been implied for classification unit of this model, due to having the main properties of artificial neural networks, but crosses from the difficulty of training time substantially diminished in it. Here, there will be a comparison between two different configurations, interactions using synergetic neural network and ELM, in terms of accuracy and compatibility. PMID:25276860

  13. Simultaneous teleseismic and geodetic observations of the stick-slip motion of an Antarctic ice stream.

    PubMed

    Wiens, Douglas A; Anandakrishnan, Sridhar; Winberry, J Paul; King, Matt A

    2008-06-05

    Long-period seismic sources associated with glacier motion have been recently discovered, and an increase in ice flow over the past decade has been suggested on the basis of secular changes in such measurements. Their significance, however, remains uncertain, as a relationship to ice flow has not been confirmed by direct observation. Here we combine long-period surface-wave observations with simultaneous Global Positioning System measurements of ice displacement to study the tidally modulated stick-slip motion of the Whillans Ice Stream in West Antarctica. The seismic origin time corresponds to slip nucleation at a region of the bed of the Whillans Ice Stream that is likely stronger than in surrounding regions and, thus, acts like an 'asperity' in traditional fault models. In addition to the initial pulse, two seismic arrivals occurring 10-23 minutes later represent stopping phases as the slip terminates at the ice stream edge and the grounding line. Seismic amplitude and average rupture velocity are correlated with tidal amplitude for the different slip events during the spring-to-neap tidal cycle. Although the total seismic moment calculated from ice rigidity, slip displacement, and rupture area is equivalent to an earthquake of moment magnitude seven (M(w) 7), seismic amplitudes are modest (M(s) 3.6-4.2), owing to the source duration of 20-30 minutes. Seismic radiation from ice movement is proportional to the derivative of the moment rate function at periods of 25-100 seconds and very long-period radiation is not detected, owing to the source geometry. Long-period seismic waves are thus useful for detecting and studying sudden ice movements but are insensitive to the total amount of slip.

  14. Digital anthropomorphic phantoms of non-rigid human respiratory and voluntary body motion for investigating motion correction in emission imaging

    NASA Astrophysics Data System (ADS)

    Könik, Arda; Connolly, Caitlin M.; Johnson, Karen L.; Dasari, Paul; Segars, Paul W.; Pretorius, P. H.; Lindsay, Clifford; Dey, Joyoni; King, Michael A.

    2014-07-01

    The development of methods for correcting patient motion in emission tomography has been receiving increased attention. Often the performance of these methods is evaluated through simulations using digital anthropomorphic phantoms, such as the commonly used extended cardiac torso (XCAT) phantom, which models both respiratory and cardiac motion based on human studies. However, non-rigid body motion, which is frequently seen in clinical studies, is not present in the standard XCAT phantom. In addition, respiratory motion in the standard phantom is limited to a single generic trend. In this work, to obtain a more realistic representation of motion, we developed a series of individual-specific XCAT phantoms, modeling non-rigid respiratory and non-rigid body motions derived from the magnetic resonance imaging (MRI) acquisitions of volunteers. Acquisitions were performed in the sagittal orientation using the Navigator methodology. Baseline (no motion) acquisitions at end-expiration were obtained at the beginning of each imaging session for each volunteer. For the body motion studies, MRI was again acquired only at end-expiration for five body motion poses (shoulder stretch, shoulder twist, lateral bend, side roll, and axial slide). For the respiratory motion studies, an MRI was acquired during free/regular breathing. The magnetic resonance slices were then retrospectively sorted into 14 amplitude-binned respiratory states, end-expiration, end-inspiration, six intermediary states during inspiration, and six during expiration using the recorded Navigator signal. XCAT phantoms were then generated based on these MRI data by interactive alignment of the organ contours of the XCAT with the MRI slices using a graphical user interface. Thus far we have created five body motion and five respiratory motion XCAT phantoms from the MRI acquisitions of six healthy volunteers (three males and three females). Non-rigid motion exhibited by the volunteers was reflected in both respiratory

  15. Identification of Circular RNAs from the Parental Genes Involved in Multiple Aspects of Cellular Metabolism in Barley

    PubMed Central

    Darbani, Behrooz; Noeparvar, Shahin; Borg, Søren

    2016-01-01

    RNA circularization made by head-to-tail back-splicing events is involved in the regulation of gene expression from transcriptional to post-translational levels. By exploiting RNA-Seq data and down-stream analysis, we shed light on the importance of circular RNAs in plants. The results introduce circular RNAs as novel interactors in the regulation of gene expression in plants and imply the comprehensiveness of this regulatory pathway by identifying circular RNAs for a diverse set of genes. These genes are involved in several aspects of cellular metabolism as hormonal signaling, intracellular protein sorting, carbohydrate metabolism and cell-wall biogenesis, respiration, amino acid biosynthesis, transcription and translation, and protein ubiquitination. Additionally, these parental loci of circular RNAs, from both nuclear and mitochondrial genomes, encode for different transcript classes including protein coding transcripts, microRNA, rRNA, and long non-coding/microprotein coding RNAs. The results shed light on the mitochondrial exonic circular RNAs and imply the importance of circular RNAs for regulation of mitochondrial genes. Importantly, we introduce circular RNAs in barley and elucidate their cellular-level alterations across tissues and in response to micronutrients iron and zinc. In further support of circular RNAs' functional roles in plants, we report several cases where fluctuations of circRNAs do not correlate with the levels of their parental-loci encoded linear transcripts. PMID:27375638

  16. Tidally induced variations in vertical and horizontal motion on Rutford Ice Stream, West Antarctica, inferred from remotely sensed observations

    NASA Astrophysics Data System (ADS)

    Minchew, B. M.; Simons, M.; Riel, B.; Milillo, P.

    2017-01-01

    To better understand the influence of stress changes over floating ice shelves on grounded ice streams, we develop a Bayesian method for inferring time-dependent 3-D surface velocity fields from synthetic aperture radar (SAR) and optical remote sensing data. Our specific goal is to observe ocean tide-induced variability in vertical ice shelf position and horizontal ice stream flow. Thus, we consider the special case where observed surface displacement at a given location can be defined by a 3-D secular velocity vector, a family of 3-D sinusoidal functions, and a correction to the digital elevation model used to process the SAR data. Using nearly 9 months of SAR data collected from multiple satellite viewing geometries with the COSMO-SkyMed 4-satellite constellation, we infer the spatiotemporal response of Rutford Ice Stream, West Antarctica, to ocean tidal forcing. Consistent with expected tidal uplift, inferred vertical motion over the ice shelf is dominated by semidiurnal and diurnal tidal constituents. Horizontal ice flow variability, on the other hand, occurs primarily at the fortnightly spring-neap tidal period (Msf). We propose that periodic grounding of the ice shelf is the primary mechanism for translating vertical tidal motion into horizontal flow variability, causing ice flow to accelerate first and most strongly over the ice shelf. Flow variations then propagate through the grounded ice stream at a mean rate of ˜29 km/d and decay quasi-linearly with distance over ˜85 km upstream of the grounding zone.

  17. The role of human ventral visual cortex in motion perception

    PubMed Central

    Saygin, Ayse P.; Lorenzi, Lauren J.; Egan, Ryan; Rees, Geraint; Behrmann, Marlene

    2013-01-01

    Visual motion perception is fundamental to many aspects of visual perception. Visual motion perception has long been associated with the dorsal (parietal) pathway and the involvement of the ventral ‘form’ (temporal) visual pathway has not been considered critical for normal motion perception. Here, we evaluated this view by examining whether circumscribed damage to ventral visual cortex impaired motion perception. The perception of motion in basic, non-form tasks (motion coherence and motion detection) and complex structure-from-motion, for a wide range of motion speeds, all centrally displayed, was assessed in five patients with a circumscribed lesion to either the right or left ventral visual pathway. Patients with a right, but not with a left, ventral visual lesion displayed widespread impairments in central motion perception even for non-form motion, for both slow and for fast speeds, and this held true independent of the integrity of areas MT/V5, V3A or parietal regions. In contrast with the traditional view in which only the dorsal visual stream is critical for motion perception, these novel findings implicate a more distributed circuit in which the integrity of the right ventral visual pathway is also necessary even for the perception of non-form motion. PMID:23983030

  18. Psychophysical scaling of circular vection (CV) produced by optokinetic (OKN) motion: individual differences and effects of practice.

    PubMed

    Kennedy, R S; Hettinger, L J; Harm, D L; Ordy, J M; Dunlap, W P

    1996-01-01

    Vection (V) refers to the compelling visual illusion of self-motion experienced by stationary individuals when viewing moving visual surrounds. The phenomenon is of theoretical interest because of its relevance for understanding the neural basis of ordinary self-motion perception, and of practical importance because it is the experience that makes simulation, virtual reality displays, and entertainment devices more vicarious. This experiment was performed to address whether an optokinetically induced vection illusion exhibits monotonic and stable psychometric properties and whether individuals differ reliably in these (V) perceptions. Subjects were exposed to varying velocities of the circular vection (CV) display in an optokinetic (OKN) drum 2 meters in diameter in 5 one-hour daily sessions extending over a 1 week period. For grouped data, psychophysical scalings of velocity estimates showed that exponents in a Stevens' type power function were essentially linear (slope = 0.95) and largely stable over sessions. Latencies were slightly longer for the slowest and fastest induction stimuli, and the trend over sessions for average latency was longer as a function of practice implying time course adaptation effects. Test-retest reliabilities for individual slope and intercept measures were moderately strong (r = 0.45) and showed no evidence of superdiagonal form. This implies stability of the individual circularvection (CV) sensitivities. Because the individual CV scores were stable, reliabilities were improved by averaging 4 sessions in order to provide a stronger retest reliability (r = 0.80). Individual latency responses were highly reliable (r = 0.80). Mean CV latency and motion sickness symptoms were greater in males than in females. These individual differences in CV could be predictive of other outcomes, such as susceptibility to disorientation or motion sickness, and for CNS localization of visual-vestibular interactions in the experience of self-motion.

  19. Restoration of non-uniform exposure motion blurred image

    NASA Astrophysics Data System (ADS)

    Luo, Yuanhong; Xu, Tingfa; Wang, Ningming; Liu, Feng

    2014-11-01

    Restoring motion-blurred image is the key technologies in the opto-electronic detection system. The imaging sensors such as CCD and infrared imaging sensor, which are mounted on the motion platforms, quickly move together with the platforms of high speed. As a result, the images become blur. The image degradation will cause great trouble for the succeeding jobs such as objects detection, target recognition and tracking. So the motion-blurred images must be restoration before detecting motion targets in the subsequent images. On the demand of the real weapon task, in order to deal with targets in the complex background, this dissertation uses the new theories in the field of image processing and computer vision to research the new technology of motion deblurring and motion detection. The principle content is as follows: 1) When the prior knowledge about degradation function is unknown, the uniform motion blurred images are restored. At first, the blur parameters, including the motion blur extent and direction of PSF(point spread function), are estimated individually in domain of logarithmic frequency. The direction of PSF is calculated by extracting the central light line of the spectrum, and the extent is computed by minimizing the correction between the fourier spectrum of the blurred image and a detecting function. Moreover, in order to remove the strip in the deblurred image, windows technique is employed in the algorithm, which makes the deblurred image clear. 2) According to the principle of infrared image non-uniform exposure, a new restoration model for infrared blurred images is developed. The fitting of infrared image non-uniform exposure curve is performed by experiment data. The blurred images are restored by the fitting curve.

  20. Justification of the Shape of a Non-Circular Cross-Section for Drilling With a Roller Cutter

    NASA Astrophysics Data System (ADS)

    Buyalich, Gennady; Husnutdinov, Mikhail

    2017-11-01

    The parameters of the shape of non-circular cross-section affect not only the process of blasting, but also the design of the tool and the process of drilling as well. In the conditions of open-pit mining, it is reasonable to use a roller cutter to produce a non-circular cross-section of blasting holes. With regard to the roller cutter, the impact of the cross-section shape on the oscillations of the axial force arising upon its rotation is determined. It is determined that a polygonal shape with rounded comers of the borehole walls connections and their convex shape, which ensures a smaller range of the total axial force and the torque deflecting the bit from the axis of its rotation is the rational form of the non-circular cross-section of the borehole in terms of bit design. It has been shown that the ratio of the number of cutters to the number of borehole corners must be taken into account when justifying the shape of the cross-section, both from the point of view of the effectiveness of the explosion action and from the point of view of the rational design of the bit.

  1. Steady-streaming effects on the motion of the cerebrospinal fluid (CSF) in the spinal canal

    NASA Astrophysics Data System (ADS)

    Lawrence, Jenna; Coenen, Wilfried; Sanchez, Antonio; Lasheras, Juan

    2017-11-01

    With each heart beat the oscillatory blood supply to the rigid cranial vault produces a time-periodic variation of the intracranial pressure that drives the cerebrospinal fluid (CSF) periodically in and out of the compliant spinal canal. We have recently conducted an analysis of this flow-structure interaction problem taking advantage of the small compliance of the dura membrane bounding externally the CSF and of the disparity of length scales associated with the geometry of the subarachnoid space. We have shown in an idealized geometry that the steady-streaming motion associated with this periodic flow, resulting from the nonlinear cumulative effects of convective acceleration, causes a bulk recirculation of CSF inside the spinal canal, which has been observed in many radiological studies. We extend here our study to investigate the possible contribution arising from the flow around the nerve roots protruding from the spinal cord, an effect that was neglected in our previous work. For this purpose, we consider the oscillatory motion around a cylindrical post confined between two parallel plates. For large values of the relevant Strouhal number we find at leading order a harmonic Stokes flow, whereas steady-streaming effects enter in the first-order corrections, which are computed for realistic values of the Womersley number and of the cylinder height-to-radius ratio.

  2. Biomechanical analysis of the circular friction hand massage.

    PubMed

    Ryu, Jeseong; Son, Jongsang; Ahn, Soonjae; Shin, Isu; Kim, Youngho

    2015-01-01

    A massage can be beneficial to relieve muscle tension on the neck and shoulder area. Various massage systems have been developed, but their motions are not uniform throughout different body parts nor specifically targeted to the neck and shoulder areas. Pressure pattern and finger movement trajectories of the circular friction hand massage on trapezius, levator scapulae, and deltoid muscles were determined to develop a massage system that can mimic the motion and the pressure of the circular friction massage. During the massage, finger movement trajectories were measured using a 3D motion capture system, and finger pressures were simultaneously obtained using a grip pressure sensor. Results showed that each muscle had different finger movement trajectory and pressure pattern. The trapezius muscle experienced a higher pressure, longer massage time (duration of pressurization), and larger pressure-time integral than the other muscles. These results could be useful to design a better massage system simulating human finger movements.

  3. Sparing of Sensitivity to Biological Motion but Not of Global Motion after Early Visual Deprivation

    ERIC Educational Resources Information Center

    Hadad, Bat-Sheva; Maurer, Daphne; Lewis, Terri L.

    2012-01-01

    Patients deprived of visual experience during infancy by dense bilateral congenital cataracts later show marked deficits in the perception of global motion (dorsal visual stream) and global form (ventral visual stream). We expected that they would also show marked deficits in sensitivity to biological motion, which is normally processed in the…

  4. Kurtosis-Based Blind Source Extraction of Complex Non-Circular Signals with Application in EEG Artifact Removal in Real-Time

    PubMed Central

    Javidi, Soroush; Mandic, Danilo P.; Took, Clive Cheong; Cichocki, Andrzej

    2011-01-01

    A new class of complex domain blind source extraction algorithms suitable for the extraction of both circular and non-circular complex signals is proposed. This is achieved through sequential extraction based on the degree of kurtosis and in the presence of non-circular measurement noise. The existence and uniqueness analysis of the solution is followed by a study of fast converging variants of the algorithm. The performance is first assessed through simulations on well understood benchmark signals, followed by a case study on real-time artifact removal from EEG signals, verified using both qualitative and quantitative metrics. The results illustrate the power of the proposed approach in real-time blind extraction of general complex-valued sources. PMID:22319461

  5. On feathers, bifurcations and shells: the dynamics of tidal streams across the mass scale

    NASA Astrophysics Data System (ADS)

    Amorisco, N. C.

    2015-06-01

    I present an organic description of the spectrum of regimes of collisionless tidal streams and define the orderings between the relevant physical quantities that shape their morphology. Three fundamental dichotomies are identified and described in the form of dimensionless inequalities. These govern (i) the speed of the stream's growth, (ii) the internal coherence of the stream and (iii) its thickness or opening angle, within and outside the orbital plane. The mechanisms through which such main qualitative properties are regulated and the relevant limiting cases are analysed. For example, the slope of the host's density profile strongly influences the speed of the stream's growth, in both length and width, as steeper density profiles enhance differential streaming. Internal coherence is the natural requirement for the appearance of substructure and overdensities in tidal debris, and I concentrate on the characteristic `feathering' typical of streams of star clusters. Overdensities and substructures are associated with minima in the relative streaming velocity of the stream members. For streams with high circularity, these are caused by the epicyclic oscillations of stars; however, for highly non-circular progenitor's orbits, internal substructure is caused by the oscillating differences in energy and actions with which material is shed at different orbital phases of the progenitor. This modulation results in different streaming speeds along the tidal arm: the streakline of material shed between two successive apocentric passages is folded along its length, pulled at its centre by the faster differential streaming of particles released near pericentre, which are therefore more widely scattered. When the stream is coherent enough, the same mechanism is potentially capable of generating a bimodal profile in the density distributions of the longer wraps of more massive progenitors, which I dub `bifurcations'. The conditions that allow streams to be internally coherent

  6. Numerical analysis of two and three dimensional buoyancy driven water-exit of a circular cylinder

    NASA Astrophysics Data System (ADS)

    Moshari, Shahab; Nikseresht, Amir Hossein; Mehryar, Reza

    2014-06-01

    With the development of the technology of underwater moving bodies, the need for developing the knowledge of surface effect interaction of free surface and underwater moving bodies is increased. Hence, the two-phase flow is a subject which is interesting for many researchers all around the world. In this paper, the non-linear free surface deformations which occur during the water-exit of a circular cylinder due to its buoyancy are solved using finite volume discretization based code, and using Volume of Fluid (VOF) scheme for solving two phase flow. Dynamic mesh model is used to simulate dynamic motion of the cylinder. In addition, the effect of cylinder mass in presence of an external force is studied. Moreover, the oblique exit and entry of a circular cylinder with two exit angles is simulated. At last, water-exit of a circular cylinder in six degrees of freedom is simulated in 3D using parallel processing. The simulation errors of present work (using VOF method) for maximum velocity and height of a circular cylinder are less than the corresponding errors of level set method reported by previous researchers. Oblique exit shows interesting results; formation of waves caused by exit of the cylinder, wave motion in horizontal direction and the air trapped between the waves are observable. In 3D simulation the visualization of water motion on the top surface of the cylinder and the free surface breaking on the front and back faces of the 3D cylinder at the exit phase are observed which cannot be seen in 2D simulation. Comparing the results, 3D simulation shows better agreement with experimental data, specially in the maximum height position of the cylinder.

  7. Forensics of subhalo-stream encounters: the three phases of gap growth

    NASA Astrophysics Data System (ADS)

    Erkal, Denis; Belokurov, Vasily

    2015-06-01

    There is hope to discover dark matter subhaloes free of stars (predicted by the current theory of structure formation) by observing gaps they produce in tidal streams. In fact, this is the most promising technique for dark substructure detection and characterization as such gaps grow with time, magnifying small perturbations into clear signatures observable by ongoing and planned Galaxy surveys. To facilitate such future inference, we develop a comprehensive framework for studies of the growth of the stream density perturbations. Starting with simple assumptions and restricting to streams on circular orbits, we derive analytic formulae that describe the evolution of all gap properties (size, density contrast, etc.) at all times. We uncover complex, previously unnoticed behaviour, with the stream initially forming a density enhancement near the subhalo impact point. Shortly after, a gap forms due to the relative change in period induced by the subhalo's passage. There is an intermediate regime where the gap grows linearly in time. At late times, the particles in the stream overtake each other, forming caustics, and the gap grows like √{t}. In addition to the secular growth, we find that the gap oscillates as it grows due to epicyclic motion. We compare this analytic model to N-body simulations and find an impressive level of agreement. Importantly, when analysing the observation of a single gap we find a large degeneracy between the subhalo mass, the impact geometry and kinematics, the host potential, and the time since flyby.

  8. The transformation of regular circular motion into straight motion according to Nasir al din al-Tusi - a genious model for the conscious preservation of a defect of Ptolemy's lunar theory (German Title: Die Umwandlung gleichförmiger Kreisbewegung in geradlinige Bewegung nach Nasir al din al-Tusi - Ein geniales Modell zur bewußten Beibehaltung eines Mangels der Ptolemäischen Mondtheorie)

    NASA Astrophysics Data System (ADS)

    Hein, Olaf; Mader, Rolf

    Nasir al din al-Tusi (1201-1274) was one of the most important universal scholars of Islam. As a convinced Aristotelian, he rejected Ptolemy's modifications of the Aristotelian dogma of uniform circular motion. He created a theory of lunar motion which is only based on uniform circular motion, and which results in the same representation of lunar motion as conceived by Ptolemy. He successfully attempted to consciously preserve, and not to correct, an error of Ptolemy's theory (the doubling of the earth-moon distance in the syzygies as compared to the quadratures). We explain the Tusi mechanism and point out its philosophical consequences (the unwanted dissolution of the difference between the extra- and intralunar world).

  9. Photoexcitation circular dichroism in chiral molecules

    NASA Astrophysics Data System (ADS)

    Beaulieu, S.; Comby, A.; Descamps, D.; Fabre, B.; Garcia, G. A.; Géneaux, R.; Harvey, A. G.; Légaré, F.; Mašín, Z.; Nahon, L.; Ordonez, A. F.; Petit, S.; Pons, B.; Mairesse, Y.; Smirnova, O.; Blanchet, V.

    2018-05-01

    Chiral effects appear in a wide variety of natural phenomena and are of fundamental importance in science, from particle physics to metamaterials. The standard technique of chiral discrimination—photoabsorption circular dichroism—relies on the magnetic properties of a chiral medium and yields an extremely weak chiral response. Here, we propose and demonstrate an orders of magnitude more sensitive type of circular dichroism in neutral molecules: photoexcitation circular dichroism. This technique does not rely on weak magnetic effects, but takes advantage of the coherent helical motion of bound electrons excited by ultrashort circularly polarized light. It results in an ultrafast chiral response and the efficient excitation of a macroscopic chiral density in an initially isotropic ensemble of randomly oriented chiral molecules. We probe this excitation using linearly polarized laser pulses, without the aid of further chiral interactions. Our time-resolved study of vibronic chiral dynamics opens a way to the efficient initiation, control and monitoring of chiral chemical change in neutral molecules at the level of electrons.

  10. Estimation of motion fields by non-linear registration for local lung motion analysis in 4D CT image data.

    PubMed

    Werner, René; Ehrhardt, Jan; Schmidt-Richberg, Alexander; Heiss, Anabell; Handels, Heinz

    2010-11-01

    Motivated by radiotherapy of lung cancer non- linear registration is applied to estimate 3D motion fields for local lung motion analysis in thoracic 4D CT images. Reliability of analysis results depends on the registration accuracy. Therefore, our study consists of two parts: optimization and evaluation of a non-linear registration scheme for motion field estimation, followed by a registration-based analysis of lung motion patterns. The study is based on 4D CT data of 17 patients. Different distance measures and force terms for thoracic CT registration are implemented and compared: sum of squared differences versus a force term related to Thirion's demons registration; masked versus unmasked force computation. The most accurate approach is applied to local lung motion analysis. Masked Thirion forces outperform the other force terms. The mean target registration error is 1.3 ± 0.2 mm, which is in the order of voxel size. Based on resulting motion fields and inter-patient normalization of inner lung coordinates and breathing depths a non-linear dependency between inner lung position and corresponding strength of motion is identified. The dependency is observed for all patients without or with only small tumors. Quantitative evaluation of the estimated motion fields indicates high spatial registration accuracy. It allows for reliable registration-based local lung motion analysis. The large amount of information encoded in the motion fields makes it possible to draw detailed conclusions, e.g., to identify the dependency of inner lung localization and motion. Our examinations illustrate the potential of registration-based motion analysis.

  11. Modification of equation of motion of fluid-conveying pipe for laminar and turbulent flow profiles

    NASA Astrophysics Data System (ADS)

    Guo, C. Q.; Zhang, C. H.; Païdoussis, M. P.

    2010-07-01

    Considering the non-uniformity of the flow velocity distribution in fluid-conveying pipes caused by the viscosity of real fluids, the centrifugal force term in the equation of motion of the pipe is modified for laminar and turbulent flow profiles. The flow-profile-modification factors are found to be 1.333, 1.015-1.040 and 1.035-1.055 for laminar flow in circular pipes, turbulent flow in smooth-wall circular pipes and turbulent flow in rough-wall circular pipes, respectively. The critical flow velocities for divergence in the above-mentioned three cases are found to be 13.4%, 0.74-1.9% and 1.7-2.6%, respectively, lower than that with plug flow, while those for flutter are even lower, which could reach 36% for the laminar flow profile. By introducing two new concepts of equivalent flow velocity and equivalent mass, fluid-conveying pipe problems with different flow profiles can be solved with the equation of motion for plug flow.

  12. A CIRCULAR-RIBBON SOLAR FLARE FOLLOWING AN ASYMMETRIC FILAMENT ERUPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chang; Deng, Na; Lee, Jeongwoo

    The dynamic properties of flare ribbons and the often associated filament eruptions can provide crucial information on the flaring coronal magnetic field. This Letter analyzes the GOES-class X1.0 flare on 2014 March 29 (SOL2014-03-29T17:48), in which we found an asymmetric eruption of a sigmoidal filament and an ensuing circular flare ribbon. Initially both EUV images and a preflare nonlinear force-free field model show that the filament is embedded in magnetic fields with a fan-spine-like structure. In the first phase, which is defined by a weak but still increasing X-ray emission, the western portion of the sigmoidal filament arches upward andmore » then remains quasi-static for about five minutes. The western fan-like and the outer spine-like fields display an ascending motion, and several associated ribbons begin to brighten. Also found is a bright EUV flow that streams down along the eastern fan-like field. In the second phase that includes the main peak of hard X-ray (HXR) emission, the filament erupts, leaving behind two major HXR sources formed around its central dip portion and a circular ribbon brightened sequentially. The expanding western fan-like field interacts intensively with the outer spine-like field, as clearly seen in running difference EUV images. We discuss these observations in favor of a scenario where the asymmetric eruption of the sigmoidal filament is initiated due to an MHD instability and further facilitated by reconnection at a quasi-null in corona; the latter is in turn enhanced by the filament eruption and subsequently produces the circular flare ribbon.« less

  13. Free vibrations of a multilayered non-circular cylindrical shell

    NASA Astrophysics Data System (ADS)

    Zelinskaya, Anna V.

    2018-05-01

    Free vibrations of an elastic non-circular cylindrical shell of intermediate length are considered. The shell is assumed heterogeneous in the thickness direction, in its part it may be multilayered. In order to derive the equations of stability, we use the Timoshenko-Reissner model. According to it, a shell that is heterogeneous can be replaced by a homogeneous shell with the equivalent bending and transversal shear stiffness. We obtain the approximate asymptotic formula for a frequency that takes into account an influence of a transversal shear and a variability of a directrix curvature. As an example, a three-layer elliptical shell with hinged edges and a soft middle layer is analyzed.

  14. Method and system for non-linear motion estimation

    NASA Technical Reports Server (NTRS)

    Lu, Ligang (Inventor)

    2011-01-01

    A method and system for extrapolating and interpolating a visual signal including determining a first motion vector between a first pixel position in a first image to a second pixel position in a second image, determining a second motion vector between the second pixel position in the second image and a third pixel position in a third image, determining a third motion vector between one of the first pixel position in the first image and the second pixel position in the second image, and the second pixel position in the second image and the third pixel position in the third image using a non-linear model, determining a position of the fourth pixel in a fourth image based upon the third motion vector.

  15. Experiments in dilution jet mixing effects of multiple rows and non-circular orifices

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Srinivasan, R.; Coleman, E. B.; Meyers, G. D.; White, C. D.

    1985-01-01

    Experimental and empirical model results are presented that extend previous studies of the mixing of single-sided and opposed rows of jets in a confined duct flow to include effects of non-circular orifices and double rows of jets. Analysis of the mean temperature data obtained in this investigation showed that the effects of orifice shape and double rows are significant only in the region close to the injection plane, provided that the orifices are symmetric with respect to the main flow direction. The penetration and mixing of jets from 45-degree slanted slots is slightly less than that from equivalent-area symmetric orifices. The penetration from 2-dimensional slots is similar to that from equivalent-area closely-spaced rows of holes, but the mixing is slower for the 2-D slots. Calculated mean temperature profiles downstream of jets from non-circular and double rows of orifices, made using an extension developed for a previous empirical model, are shown to be in good agreement with the measured distributions.

  16. Experiments in dilution jet mixing - Effects of multiple rows and non-circular orifices

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Srinivasan, R.; Coleman, E. B.; Meyers, G. D.; White, C. D.

    1985-01-01

    Experimental and empirical model results are presented that extend previous studies of the mixing of single-sided and opposed rows of jets in a confined duct flow to include effects of non-circular orifices and double rows of jets. Analysis of the mean temperature data obtained in this investigation showed that the effects of orifice shape and double rows are significant only in the region close to the injection plane, provided that the orifices are symmetric with respect to the main flow direction. The penetration and mixing of jets from 45-degree slanted slots is slightly less than that from equivalent-area symmetric orifices. The penetration from two-dimensional slots is similar to that from equivalent-area closely-spaced rows of holes, but the mixing is slower for the 2-D slots. Calculated mean temperature profiles downstream of jets from non-circular and double rows of orifices, made using an extension developed for a previous empirical model, are shown to be in good agreement with the measured distributions.

  17. Exploration of bounded motion near binary systems comprised of small irregular bodies

    NASA Astrophysics Data System (ADS)

    Chappaz, Loic; Howell, Kathleen C.

    2015-10-01

    To investigate the behavior of a spacecraft near a pair of irregular bodies, consider a three-body configuration (one massless). Two massive bodies, P_1 and P_2, form the primary system; each primary is modeled as a sphere or an ellipsoid. Two primary configurations are addressed: `synchronous' and `non-synchronous'. Concepts and tools similar to those applied in the circular restricted three-body problem are exploited to construct periodic trajectories for a third body in synchronous systems. In non-synchronous systems, however, the search for third body periodic orbits is complicated by several factors. The mathematical model for the third-body motion is now time-variant and the motion of P_2 is not trivial.

  18. WE-G-BRF-07: Non-Circular Scanning Trajectories with Varian Developer Mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, A; Pearson, E; Pan, X

    2014-06-15

    Purpose: Cone-beam CT (CBCT) in image-guide radiation therapy (IGRT) typicallyacquires scan data via the circular trajectory of the linearaccelerator's (linac) gantry rotation. Though this lends itself toanalytic reconstruction algorithms like FDK, iterative reconstructionalgorithms allow for a broader range of scanning trajectories. Weimplemented a non-circular scanning trajectory with Varian's TrueBeamDeveloper Mode and performed some preliminary reconstructions toverify the geometry. Methods: We used TrueBeam Developer Mode to program a new scanning trajectorythat increases the field of view (FOV) along the gantry rotation axiswithout moving the patient. This trajectory consisted of moving thegantry in a circle, then translating the source and detector alongmore » theaxial direction before acquiring another circular scan 19 cm away fromthe first. The linear portion of the trajectory includes an additional4.5 cm above and below the axial planes of the source's circularrotation. We scanned a calibration phantom consisting of a lucite tubewith a spiral pattern of CT spots and used the maximum-likelihoodalgorithm to iteratively reconstruct the CBCT volume. Results: With the TrueBeam trajectory definition, we acquired projection dataof the calibration phantom using the previously described trajectory.We obtained a scan of the treatment couch for log normalization byscanning with the same trajectory but without the phantom present.Using the nominal geometric parameters reported in the projectionheaders with our iterative reconstruction algorithm, we obtained acorrect reconstruction of the calibration phantom. Conclusion: The ability to implement new scanning trajectories with the TrueBeamDeveloper Mode enables us access to a new parameter space for imagingwith CBCT for IGRT. Previous simulations and simple dual circle scanshave shown iterative reconstruction with non-circular trajectories canincrease the axial FOV with CBCT. Use of Developer Mode

  19. Efficient Generation of Dancing Animation Synchronizing with Music Based on Meta Motion Graphs

    NASA Astrophysics Data System (ADS)

    Xu, Jianfeng; Takagi, Koichi; Sakazawa, Shigeyuki

    This paper presents a system for automatic generation of dancing animation that is synchronized with a piece of music by re-using motion capture data. Basically, the dancing motion is synthesized according to the rhythm and intensity features of music. For this purpose, we propose a novel meta motion graph structure to embed the necessary features including both rhythm and intensity, which is constructed on the motion capture database beforehand. In this paper, we consider two scenarios for non-streaming music and streaming music, where global search and local search are required respectively. In the case of the former, once a piece of music is input, the efficient dynamic programming algorithm can be employed to globally search a best path in the meta motion graph, where an objective function is properly designed by measuring the quality of beat synchronization, intensity matching, and motion smoothness. In the case of the latter, the input music is stored in a buffer in a streaming mode, then an efficient search method is presented for a certain amount of music data (called a segment) in the buffer with the same objective function, resulting in a segment-based search approach. For streaming applications, we define an additional property in the above meta motion graph to deal with the unpredictable future music, which guarantees that there is some motion to match the unknown remaining music. A user study with totally 60 subjects demonstrates that our system outperforms the stat-of-the-art techniques in both scenarios. Furthermore, our system improves the synthesis speed greatly (maximal speedup is more than 500 times), which is essential for mobile applications. We have implemented our system on commercially available smart phones and confirmed that it works well on these mobile phones.

  20. Feature integration and object representations along the dorsal stream visual hierarchy

    PubMed Central

    Perry, Carolyn Jeane; Fallah, Mazyar

    2014-01-01

    The visual system is split into two processing streams: a ventral stream that receives color and form information and a dorsal stream that receives motion information. Each stream processes that information hierarchically, with each stage building upon the previous. In the ventral stream this leads to the formation of object representations that ultimately allow for object recognition regardless of changes in the surrounding environment. In the dorsal stream, this hierarchical processing has classically been thought to lead to the computation of complex motion in three dimensions. However, there is evidence to suggest that there is integration of both dorsal and ventral stream information into motion computation processes, giving rise to intermediate object representations, which facilitate object selection and decision making mechanisms in the dorsal stream. First we review the hierarchical processing of motion along the dorsal stream and the building up of object representations along the ventral stream. Then we discuss recent work on the integration of ventral and dorsal stream features that lead to intermediate object representations in the dorsal stream. Finally we propose a framework describing how and at what stage different features are integrated into dorsal visual stream object representations. Determining the integration of features along the dorsal stream is necessary to understand not only how the dorsal stream builds up an object representation but also which computations are performed on object representations instead of local features. PMID:25140147

  1. Reconfigurable paramagnetic microswimmers: Brownian motion affects non-reciprocal actuation.

    PubMed

    Du, Di; Hilou, Elaa; Biswal, Sibani Lisa

    2018-05-09

    Swimming at low Reynolds number is typically dominated by a large viscous drag, therefore microscale swimmers require non-reciprocal body deformation to generate locomotion. Purcell described a simple mechanical swimmer at the microscale consisting of three rigid components connected together with two hinges. Here we present a simple microswimmer consisting of two rigid paramagnetic particles with different sizes. When placed in an eccentric magnetic field, this simple microswimmer exhibits non-reciprocal body motion and its swimming locomotion can be directed in a controllable manner. Additional components can be added to create a multibody microswimmer, whereby the particles act cooperatively and translate in a given direction. For some multibody swimmers, the stochastic thermal forces fragment the arm, which therefore modifies the swimming strokes and changes the locomotive speed. This work offers insight into directing the motion of active systems with novel time-varying magnetic fields. It also reveals that Brownian motion not only affects the locomotion of reciprocal swimmers that are subject to the Scallop theorem, but also affects that of non-reciprocal swimmers.

  2. Influence of non-integer-order derivatives on unsteady unidirectional motions of an Oldroyd-B fluid with generalized boundary conditions

    NASA Astrophysics Data System (ADS)

    Zafar, A. A.; Riaz, M. B.; Shah, N. A.; Imran, M. A.

    2018-03-01

    The objective of this article is to study some unsteady Couette flows of an Oldroyd-B fluid with non-integer derivatives. The fluid fills an annular region of two infinite co-axial circular cylinders. Flows are due to the motion of the outer cylinder, that rotates about its axis with an arbitrary time-dependent velocity while the inner cylinder is held fixed. Closed form solutions of dimensionless velocity field and tangential tension are obtained by means of the finite Hankel transform and the theory of Laplace transform for fractional calculus. Several results in the literature including the rotational flows through an infinite cylinder can be obtained as limiting cases of our general solutions. Finally, the control of the fractional framework on the dynamics of fluid is analyzed by numerical simulations and graphical illustrations.

  3. Visual Benefits in Apparent Motion Displays: Automatically Driven Spatial and Temporal Anticipation Are Partially Dissociated

    PubMed Central

    Ahrens, Merle-Marie; Veniero, Domenica; Gross, Joachim; Harvey, Monika; Thut, Gregor

    2015-01-01

    Many behaviourally relevant sensory events such as motion stimuli and speech have an intrinsic spatio-temporal structure. This will engage intentional and most likely unintentional (automatic) prediction mechanisms enhancing the perception of upcoming stimuli in the event stream. Here we sought to probe the anticipatory processes that are automatically driven by rhythmic input streams in terms of their spatial and temporal components. To this end, we employed an apparent visual motion paradigm testing the effects of pre-target motion on lateralized visual target discrimination. The motion stimuli either moved towards or away from peripheral target positions (valid vs. invalid spatial motion cueing) at a rhythmic or arrhythmic pace (valid vs. invalid temporal motion cueing). Crucially, we emphasized automatic motion-induced anticipatory processes by rendering the motion stimuli non-predictive of upcoming target position (by design) and task-irrelevant (by instruction), and by creating instead endogenous (orthogonal) expectations using symbolic cueing. Our data revealed that the apparent motion cues automatically engaged both spatial and temporal anticipatory processes, but that these processes were dissociated. We further found evidence for lateralisation of anticipatory temporal but not spatial processes. This indicates that distinct mechanisms may drive automatic spatial and temporal extrapolation of upcoming events from rhythmic event streams. This contrasts with previous findings that instead suggest an interaction between spatial and temporal attention processes when endogenously driven. Our results further highlight the need for isolating intentional from unintentional processes for better understanding the various anticipatory mechanisms engaged in processing behaviourally relevant stimuli with predictable spatio-temporal structure such as motion and speech. PMID:26623650

  4. Wave drift damping acting on multiple circular cylinders (model tests)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinoshita, Takeshi; Sunahara, Shunji; Bao, W.

    1995-12-31

    The wave drift damping for the slow drift motion of a four-column platform is experimentally investigated. The estimation of damping force of the slow drift motion of moored floating structures in ocean waves, is one of the most important topics. Bao et al. calculated an interaction of multiple circular cylinders based on the potential flow theory, and showed that the wave drift damping is significantly influenced by the interaction between cylinders. This calculation method assumes that the slow drift motion is approximately replaced by steady current, that is, structures on slow drift motion are supposed to be equivalent to onesmore » in both regular waves and slow current. To validate semi-analytical solutions of Bao et al., experiments were carried out. At first, added resistance due to waves acting on a structure composed of multiple (four) vertical circular cylinders fixed to a slowly moving carriage, was measured in regular waves. Next, the added resistance of the structure moored by linear spring to the slowly moving carriage were measured in regular waves. Furthermore, to validate the assumption that the slow drift motion is replaced by steady current, free decay tests in still water and in regular waves were compared with the simulation of the slow drift motion using the wave drift damping coefficient obtained by the added resistance tests.« less

  5. SURVEY OF THE NATION'S NON-WADEABLE STREAMS AND RIVERS

    EPA Science Inventory

    The U.S. EPA is engaging states, tribes and other parties in designing a national survey to assess the condition of non-wadeable rivers and streams. The river survey is one of a series of surveys beng implemented as a partnership among states, tribes and U.S. EPA, with the colla...

  6. Non-linear motions in reprocessed GPS station position time series

    NASA Astrophysics Data System (ADS)

    Rudenko, Sergei; Gendt, Gerd

    2010-05-01

    Global Positioning System (GPS) data of about 400 globally distributed stations obtained at time span from 1998 till 2007 were reprocessed using GFZ Potsdam EPOS (Earth Parameter and Orbit System) software within International GNSS Service (IGS) Tide Gauge Benchmark Monitoring (TIGA) Pilot Project and IGS Data Reprocessing Campaign with the purpose to determine weekly precise coordinates of GPS stations located at or near tide gauges. Vertical motions of these stations are used to correct the vertical motions of tide gauges for local motions and to tie tide gauge measurements to the geocentric reference frame. Other estimated parameters include daily values of the Earth rotation parameters and their rates, as well as satellite antenna offsets. The solution GT1 derived is based on using absolute phase center variation model, ITRF2005 as a priori reference frame, and other new models. The solution contributed also to ITRF2008. The time series of station positions are analyzed to identify non-linear motions caused by different effects. The paper presents the time series of GPS station coordinates and investigates apparent non-linear motions and their influence on GPS station height rates.

  7. The Default Mode Network Differentiates Biological From Non-Biological Motion

    PubMed Central

    Dayan, Eran; Sella, Irit; Mukovskiy, Albert; Douek, Yehonatan; Giese, Martin A.; Malach, Rafael; Flash, Tamar

    2016-01-01

    The default mode network (DMN) has been implicated in an array of social-cognitive functions, including self-referential processing, theory of mind, and mentalizing. Yet, the properties of the external stimuli that elicit DMN activity in relation to these domains remain unknown. Previous studies suggested that motion kinematics is utilized by the brain for social-cognitive processing. Here, we used functional MRI to examine whether the DMN is sensitive to parametric manipulations of observed motion kinematics. Preferential responses within core DMN structures differentiating non-biological from biological kinematics were observed for the motion of a realistically looking, human-like avatar, but not for an abstract object devoid of human form. Differences in connectivity patterns during the observation of biological versus non-biological kinematics were additionally observed. Finally, the results additionally suggest that the DMN is coupled more strongly with key nodes in the action observation network, namely the STS and the SMA, when the observed motion depicts human rather than abstract form. These findings are the first to implicate the DMN in the perception of biological motion. They may reflect the type of information used by the DMN in social-cognitive processing. PMID:25217472

  8. The GOES-R Rebroadcast (GRB) Data Stream Simulator

    NASA Astrophysics Data System (ADS)

    Dittberner, G. J.; Gibbons, K.; Czopkiewicz, E.; Miller, C.; Brown-Bergtold, B.; Haman, B.; Marley, S.

    2013-12-01

    GOES Rebroadcast (GRB) signals in the GOES-R era will replace the current legacy GOES Variable (GVAR) signal and will have substantially different characteristics, including a change in data rate from a single 2.1 Mbps stream to two digital streams of 15.5 Mbps each. Five GRB Simulators were developed as portable systems that output a high-fidelity stream of Consultative Committee for Space Data Systems (CCSDS) formatted GRB packet data equivalent to live GRB data. The data are used for on-site testing of user ingest and data handling systems known as field terminal sites. The GRB Simulator is a fully self-contained system which includes all software and hardware units needed for operation. The operator manages configurations to edit preferences, define individual test scenarios, and manage event logs and reports. Simulations are controlled by test scenarios, which are scripts that specify the test data and provide a series of actions for the GRB Simulator to perform when generating GRB output. Scenarios allow for the insertion of errors or modification of GRB packet headers for testing purposes. The GRB Simulator provides a built-in editor for managing scenarios. The GRB Simulator provides GRB data as either baseband (digital) or Intermediate Frequency (IF) output to the test system. GRB packet data are sent in the same two output streams used in the operational system: one for Left Hand Circular Polarization (LHCP) and one for Right Hand Circular Polarization (RHCP). Use of circular polarization in the operational system allows the transmitting antenna to multiplex the two digital streams into the same signal, thereby doubling the available bandwidth. The GRB Simulator is designed to be used at sites that receive the GRB downlink.

  9. Statistical isotropy violation in WMAP CMB maps resulting from non-circular beams

    NASA Astrophysics Data System (ADS)

    Das, Santanu; Mitra, Sanjit; Rotti, Aditya; Pant, Nidhi; Souradeep, Tarun

    2016-06-01

    Statistical isotropy (SI) of cosmic microwave background (CMB) fluctuations is a key observational test to validate the cosmological principle underlying the standard model of cosmology. While a detection of SI violation would have immense cosmological ramification, it is important to recognise their possible origin in systematic effects of observations. The WMAP seven year (WMAP-7) release claimed significant deviation from SI in the bipolar spherical harmonic (BipoSH) coefficients and . Here we present the first explicit reproduction of the measurements reported in WMAP-7, confirming that beam systematics alone can completely account for the measured SI violation. The possibility of such a systematic origin was alluded to in WMAP-7 paper itself and other authors but not as explicitly so as to account for it accurately. We simulate CMB maps using the actual WMAP non-circular beams and scanning strategy. Our estimated BipoSH spectra from these maps match the WMAP-7 results very well. It is also evident that only a very careful and adequately detailed modelling, as carried out here, can conclusively establish that the entire signal arises from non-circular beam effect. This is important since cosmic SI violation signals are expected to be subtle and dismissing a large SI violation signal as observational artefact based on simplistic plausibility arguments run the serious risk of "throwing the baby out with the bathwater".

  10. Electron temperature gradient mode instability and stationary vortices with elliptic and circular boundary conditions in non-Maxwellian plasmas

    NASA Astrophysics Data System (ADS)

    Haque, Q.; Zakir, U.; Qamar, A.

    2015-12-01

    Linear and nonlinear dynamics of electron temperature gradient mode along with parallel electron dynamics is investigated by considering hydrodynamic electrons and non-Maxwellian ions. It is noticed that the growth rate of ηe-mode driven linear instability decreases by increasing the value of spectral index and increases by reducing the ion/electron temperature ratio along the magnetic field lines. The eigen mode dispersion relation is also found in the ballooning mode limit. Stationary solutions in the form of dipolar vortices are obtained for both circular and elliptic boundary conditions. It is shown that the dynamics of both circular and elliptic vortices changes with the inclusion of inhomogeneity and non-Maxwellian effects.

  11. Response of non-added solutes during nutrient addition experiments in streams

    NASA Astrophysics Data System (ADS)

    Rodriguez-Cardona, B.; Wymore, A.; Koenig, L.; Coble, A. A.; McDowell, W. H.

    2015-12-01

    Nutrient addition experiments, such as Tracer Additions for Spiraling Curve Characterization (TASCC), have become widely popular as a means to study nutrient uptake dynamics in stream ecosystems. However, the impact of these additions on ambient concentrations of non-added solutes is often overlooked. TASCC addition experiments are ideal for assessing interactions among solutes because it allows for the characterization of multiple solute concentrations across a broad range of added nutrient concentrations. TASCC additions also require the addition of a conservative tracer (NaCl) to track changes in conductivity during the experimental manipulation. Despite its use as a conservative tracer, chloride (Cl) and its associated sodium (Na) might change the concentrations of other ions and non-added nutrients through ion exchange or other processes. Similarly, additions of biologically active solutes might change the concentrations of other non-added solutes. These methodological issues in nutrient addition experiments have been poorly addressed in the literature. Here we examine the response of non-added solutes to pulse additions (i.e. TASCC) of NaCl plus nitrate (NO3-), ammonium, and phosphate across biomes including temperate and tropical forests, and arctic taiga. Preliminary results demonstrate that non-added solutes respond to changes in the concentration of these added nutrients. For example, concentrations of dissolved organic nitrogen (DON) in suburban headwater streams of New Hampshire both increase and decrease in response to NO3- additions, apparently due to biotic processes. Similarly, cations such as potassium, magnesium, and calcium also increase during TASCC experiments, likely due to cation exchange processes associated with Na addition. The response of non-added solutes to short-term pulses of added nutrients and tracers needs to be carefully assessed to ensure that nutrient uptake metrics are accurate, and to detect biotic interactions that may

  12. Stream channel erosion in a rapidly urbanizing region of the US-Mexico border: documenting importance of channel hardpoints with structure-from-motion

    USDA-ARS?s Scientific Manuscript database

    A combination of field surveys and Structure-from-Motion (SfM) techniques were used to document spatial patterns in stream channel geometry in a rapidly urbanizing watershed, Los Laureles Canyon (LLCW), in Tijuana, Mexico. Ground-based SfM was used to map channel dimensions with 10 cm vertical accur...

  13. ECG-gated interventional cardiac reconstruction for non-periodic motion.

    PubMed

    Rohkohl, Christopher; Lauritsch, Günter; Biller, Lisa; Hornegger, Joachim

    2010-01-01

    The 3-D reconstruction of cardiac vasculature using C-arm CT is an active and challenging field of research. In interventional environments patients often do have arrhythmic heart signals or cannot hold breath during the complete data acquisition. This important group of patients cannot be reconstructed with current approaches that do strongly depend on a high degree of cardiac motion periodicity for working properly. In a last year's MICCAI contribution a first algorithm was presented that is able to estimate non-periodic 4-D motion patterns. However, to some degree that algorithm still depends on periodicity, as it requires a prior image which is obtained using a simple ECG-gated reconstruction. In this work we aim to provide a solution to this problem by developing a motion compensated ECG-gating algorithm. It is built upon a 4-D time-continuous affine motion model which is capable of compactly describing highly non-periodic motion patterns. A stochastic optimization scheme is derived which minimizes the error between the measured projection data and the forward projection of the motion compensated reconstruction. For evaluation, the algorithm is applied to 5 datasets of the left coronary arteries of patients that have ignored the breath hold command and/or had arrhythmic heart signals during the data acquisition. By applying the developed algorithm the average visibility of the vessel segments could be increased by 27%. The results show that the proposed algorithm provides excellent reconstruction quality in cases where classical approaches fail. The algorithm is highly parallelizable and a clinically feasible runtime of under 4 minutes is achieved using modern graphics card hardware.

  14. A Gauge-generalized Solution for Non-Keplerian Motion in the Frenet-Serret Frame

    NASA Astrophysics Data System (ADS)

    Garber, Darren D.

    2009-05-01

    The customary modeling of perturbed planetary and spacecraft motion as a continuous sequence of unperturbed two-body orbits (instantaneous ellipses) is conveniently assigned a physical interpretation through the Keplerian and Delaunay elements and complemented mathematically by the Lagrange-type equations which describe the evolution of these variables. If however the actual motion is very non-Keplerian (i.e. the perturbed orbit varies greatly from a two-body orbit), then its modeling by a sequence of conics is not necessarily optimal in terms of its mathematical description and its resulting physical interpretation. Since, in principle a curve of any type can be represented as a sequence of points from a family of curves of any other type (Efroimsky 2005), alternate non-conic curves can be utilized to better describe the perturbed non-Keplerian motion of the body both mathematically and with a physically relevant interpretation. Non-Keplerian motion exists in both celestial mechanics and astrodynamics as evident by the complex interactions within star clusters and also as the result of a spacecraft accelerating via ion propulsion, solar sails and electro-dynamic tethers. For these cases, the sequence of simple orbits to describe the motion is not based on conics, but instead a family of spirals. The selection of spirals as the underlying simple motion is supported by the fact that it is unnecessary to describe the motion in terms of instantaneous orbits tangent to the actual trajectory (Efroimsky 2002, Newman & Efroimsky 2003) and at times there is an advantage to deviate from osculation, in order to greatly simplify the resulting mathematics via gauge freedom (Efroimsky & Goldreich 2003, Slabinski 2003, Gurfil 2004). From these two principles, (1) spirals as instantaneous orbits, and (2) controlled deviation from osculation, new planetary equations are derived for new non-osculating elements in the Frenet-Serret frame with the gauge function as a measure of non-osculation.

  15. The Default Mode Network Differentiates Biological From Non-Biological Motion.

    PubMed

    Dayan, Eran; Sella, Irit; Mukovskiy, Albert; Douek, Yehonatan; Giese, Martin A; Malach, Rafael; Flash, Tamar

    2016-01-01

    The default mode network (DMN) has been implicated in an array of social-cognitive functions, including self-referential processing, theory of mind, and mentalizing. Yet, the properties of the external stimuli that elicit DMN activity in relation to these domains remain unknown. Previous studies suggested that motion kinematics is utilized by the brain for social-cognitive processing. Here, we used functional MRI to examine whether the DMN is sensitive to parametric manipulations of observed motion kinematics. Preferential responses within core DMN structures differentiating non-biological from biological kinematics were observed for the motion of a realistically looking, human-like avatar, but not for an abstract object devoid of human form. Differences in connectivity patterns during the observation of biological versus non-biological kinematics were additionally observed. Finally, the results additionally suggest that the DMN is coupled more strongly with key nodes in the action observation network, namely the STS and the SMA, when the observed motion depicts human rather than abstract form. These findings are the first to implicate the DMN in the perception of biological motion. They may reflect the type of information used by the DMN in social-cognitive processing. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Circular chemiresistors for microchemical sensors

    DOEpatents

    Ho, Clifford K [Albuquerque, NM

    2007-03-13

    A circular chemiresistor for use in microchemical sensors. A pair of electrodes is fabricated on an electrically insulating substrate. The pattern of electrodes is arranged in a circle-filling geometry, such as a concentric, dual-track spiral design, or a circular interdigitated design. A drop of a chemically sensitive polymer (i.e., chemiresistive ink) is deposited on the insulating substrate on the electrodes, which spreads out into a thin, circular disk contacting the pair of electrodes. This circularly-shaped electrode geometry maximizes the contact area between the pair of electrodes and the polymer deposit, which provides a lower and more stable baseline resistance than with linear-trace designs. The circularly-shaped electrode pattern also serves to minimize batch-to-batch variations in the baseline resistance due to non-uniform distributions of conductive particles in the chemiresistive polymer film.

  17. Physical Sensing of Surface Properties by Microswimmers--Directing Bacterial Motion via Wall Slip.

    PubMed

    Hu, Jinglei; Wysocki, Adam; Winkler, Roland G; Gompper, Gerhard

    2015-05-20

    Bacteria such as Escherichia coli swim along circular trajectories adjacent to surfaces. Thereby, the orientation (clockwise, counterclockwise) and the curvature depend on the surface properties. We employ mesoscale hydrodynamic simulations of a mechano-elastic model of E. coli, with a spherocylindrical body propelled by a bundle of rotating helical flagella, to study quantitatively the curvature of the appearing circular trajectories. We demonstrate that the cell is sensitive to nanoscale changes in the surface slip length. The results are employed to propose a novel approach to directing bacterial motion on striped surfaces with different slip lengths, which implies a transformation of the circular motion into a snaking motion along the stripe boundaries. The feasibility of this approach is demonstrated by a simulation of active Brownian rods, which also reveals a dependence of directional motion on the stripe width.

  18. Non-rigid Motion Correction in 3D Using Autofocusing with Localized Linear Translations

    PubMed Central

    Cheng, Joseph Y.; Alley, Marcus T.; Cunningham, Charles H.; Vasanawala, Shreyas S.; Pauly, John M.; Lustig, Michael

    2012-01-01

    MR scans are sensitive to motion effects due to the scan duration. To properly suppress artifacts from non-rigid body motion, complex models with elements such as translation, rotation, shear, and scaling have been incorporated into the reconstruction pipeline. However, these techniques are computationally intensive and difficult to implement for online reconstruction. On a sufficiently small spatial scale, the different types of motion can be well-approximated as simple linear translations. This formulation allows for a practical autofocusing algorithm that locally minimizes a given motion metric – more specifically, the proposed localized gradient-entropy metric. To reduce the vast search space for an optimal solution, possible motion paths are limited to the motion measured from multi-channel navigator data. The novel navigation strategy is based on the so-called “Butterfly” navigators which are modifications to the spin-warp sequence that provide intrinsic translational motion information with negligible overhead. With a 32-channel abdominal coil, sufficient number of motion measurements were found to approximate possible linear motion paths for every image voxel. The correction scheme was applied to free-breathing abdominal patient studies. In these scans, a reduction in artifacts from complex, non-rigid motion was observed. PMID:22307933

  19. The tail of two models: Impact of circularity and biomass non-homogeneity on UV disinfection of wastewater flocs.

    PubMed

    Azimi, Y; Liu, Y; Tan, T C; Allen, D G; Farnood, R R

    2017-12-01

    The effects of floc structural characteristics, i.e. shape and dense biomass distribution, were evaluated on ultraviolet (UV) disinfection resistance, represented by the tailing level of the UV dose response curve (DRC). Ellipsoid-shaped flocs of similar volume and different projected circularities were constructed in-silico and a mathematical model was developed to compare their UV DRC tailing levels (indicative of UV-resistance). It was found that floc shape can significantly influence tailing level, and rounder flocs (i.e. flocs with higher circularity) were more UV-resistant. This result was confirmed experimentally by obtaining UV DRCs of two 75-90 μm floc populations with different percentages (20% vs. 30%) of flocs with circularities higher than 0.5. The population enriched in less circular flocs (i.e. 20% flocs with circularities >0.5) had a lower tailing level (at least by 1-log) compared to the other population. The second model was developed to describe variations in UV disinfection kinetics observed in flocs with transverse vs. radial biomass non-homogeneity, indicative of biofilm-originated vs. suspended flocs. The varied-density hemispheres model and shell-core model were developed to simulate transverse and radial non-homogeneity, respectively. The UV DRCs were mathematically constructed and biofilm-originated flocs showed higher UV resistance compared to suspended flocs. The calculated UV DRCs agreed well with the experimental data collected from activated sludge and trickling filter flocs (no fitting parameters were used). These findings provide useful information in terms of designing/modifying upstream processes for reducing UV disinfection energy demand. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Transcriptome-wide discovery of circular RNAs in Archaea

    PubMed Central

    Danan, Miri; Schwartz, Schraga; Edelheit, Sarit; Sorek, Rotem

    2012-01-01

    Circular RNA forms had been described in all domains of life. Such RNAs were shown to have diverse biological functions, including roles in the life cycle of viral and viroid genomes, and in maturation of permuted tRNA genes. Despite their potentially important biological roles, discovery of circular RNAs has so far been mostly serendipitous. We have developed circRNA-seq, a combined experimental/computational approach that enriches for circular RNAs and allows profiling their prevalence in a whole-genome, unbiased manner. Application of this approach to the archaeon Sulfolobus solfataricus P2 revealed multiple circular transcripts, a subset of which was further validated independently. The identified circular RNAs included expected forms, such as excised tRNA introns and rRNA processing intermediates, but were also enriched with non-coding RNAs, including C/D box RNAs and RNase P, as well as circular RNAs of unknown function. Many of the identified circles were conserved in Sulfolobus acidocaldarius, further supporting their functional significance. Our results suggest that circular RNAs, and particularly circular non-coding RNAs, are more prevalent in archaea than previously recognized, and might have yet unidentified biological roles. Our study establishes a specific and sensitive approach for identification of circular RNAs using RNA-seq, and can readily be applied to other organisms. PMID:22140119

  1. When eyes drive hand: Influence of non-biological motion on visuo-motor coupling.

    PubMed

    Thoret, Etienne; Aramaki, Mitsuko; Bringoux, Lionel; Ystad, Sølvi; Kronland-Martinet, Richard

    2016-01-26

    Many studies stressed that the human movement execution but also the perception of motion are constrained by specific kinematics. For instance, it has been shown that the visuo-manual tracking of a spotlight was optimal when the spotlight motion complies with biological rules such as the so-called 1/3 power law, establishing the co-variation between the velocity and the trajectory curvature of the movement. The visual or kinesthetic perception of a geometry induced by motion has also been shown to be constrained by such biological rules. In the present study, we investigated whether the geometry induced by the visuo-motor coupling of biological movements was also constrained by the 1/3 power law under visual open loop control, i.e. without visual feedback of arm displacement. We showed that when someone was asked to synchronize a drawing movement with a visual spotlight following a circular shape, the geometry of the reproduced shape was fooled by visual kinematics that did not respect the 1/3 power law. In particular, elliptical shapes were reproduced when the circle is trailed with a kinematics corresponding to an ellipse. Moreover, the distortions observed here were larger than in the perceptual tasks stressing the role of motor attractors in such a visuo-motor coupling. Finally, by investigating the direct influence of visual kinematics on the motor reproduction, our result conciliates previous knowledge on sensorimotor coupling of biological motions with external stimuli and gives evidence to the amodal encoding of biological motion. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.H. Little, P.R. Maul, J.S.S. Penfoldag

    2003-02-27

    This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of bothmore » the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible.« less

  3. Drag reduction and thrust generation by tangential surface motion in flow past a cylinder

    NASA Astrophysics Data System (ADS)

    Mao, Xuerui; Pearson, Emily

    2018-03-01

    Sensitivity of drag to tangential surface motion is calculated in flow past a circular cylinder in both two- and three-dimensional conditions at Reynolds number Re ≤ 1000 . The magnitude of the sensitivity maximises in the region slightly upstream of the separation points where the contour lines of spanwise vorticity are normal to the cylinder surface. A control to reduce drag can be obtained by (negatively) scaling the sensitivity. The high correlation of sensitivities of controlled and uncontrolled flow indicates that the scaled sensitivity is a good approximation of the nonlinear optimal control. It is validated through direct numerical simulations that the linear range of the steady control is much higher than the unsteady control, which synchronises the vortex shedding and induces lock-in effects. The steady control injects angular momentum into the separating boundary layer, stabilises the flow and increases the base pressure significantly. At Re=100 , when the maximum tangential motion reaches 50% of the free-stream velocity, the vortex shedding, boundary-layer separation and recirculation bubbles are eliminated and 32% of the drag is reduced. When the maximum tangential motion reaches 2.5 times of the free-stream velocity, thrust is generated and the power savings ratio, defined as the ratio of the reduced drag power to the control input power, reaches 19.6. The mechanism of drag reduction is attributed to the change of the radial gradient of spanwise vorticity (partial r \\hat{ζ } ) and the subsequent accelerated pressure recovery from the uncontrolled separation points to the rear stagnation point.

  4. Nanoparticle Motion in Entangled Melts of Linear and Nonconcatenated Ring Polymers [Nanoparticle Motion in Entangled Melts of Non-Concatenated Ring Polymers].

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Ting; Kalathi, Jagannathan T.; Halverson, Jonathan D.

    The motion of nanoparticles (NPs) in entangled melts of linear polymers and non-concatenated ring polymers are compared by large-scale molecular dynamics simulations. The comparison provides a paradigm for the effects of polymer architecture on the dynamical coupling between NPs and polymers in nanocomposites. Strongly suppressed motion of NPs with diameter d larger than the entanglement spacing a is observed in a melt of linear polymers before the onset of Fickian NP diffusion. This strong suppression of NP motion occurs progressively as d exceeds a, and is related to the hopping diffusion of NPs in the entanglement network. In contrast tomore » the NP motion in linear polymers, the motion of NPs with d > a in ring polymers is not as strongly suppressed prior to Fickian diffusion. The diffusion coefficient D decreases with increasing d much slower in entangled rings than in entangled linear chains. NP motion in entangled non-concatenated ring polymers is understood through a scaling analysis of the coupling between NP motion and the self-similar entangled dynamics of ring polymers.« less

  5. Nanoparticle Motion in Entangled Melts of Linear and Nonconcatenated Ring Polymers [Nanoparticle Motion in Entangled Melts of Non-Concatenated Ring Polymers].

    DOE PAGES

    Ge, Ting; Kalathi, Jagannathan T.; Halverson, Jonathan D.; ...

    2017-02-13

    The motion of nanoparticles (NPs) in entangled melts of linear polymers and non-concatenated ring polymers are compared by large-scale molecular dynamics simulations. The comparison provides a paradigm for the effects of polymer architecture on the dynamical coupling between NPs and polymers in nanocomposites. Strongly suppressed motion of NPs with diameter d larger than the entanglement spacing a is observed in a melt of linear polymers before the onset of Fickian NP diffusion. This strong suppression of NP motion occurs progressively as d exceeds a, and is related to the hopping diffusion of NPs in the entanglement network. In contrast tomore » the NP motion in linear polymers, the motion of NPs with d > a in ring polymers is not as strongly suppressed prior to Fickian diffusion. The diffusion coefficient D decreases with increasing d much slower in entangled rings than in entangled linear chains. NP motion in entangled non-concatenated ring polymers is understood through a scaling analysis of the coupling between NP motion and the self-similar entangled dynamics of ring polymers.« less

  6. 75 FR 44814 - Audits of States, Local Governments, and Non-Profit Organizations; Circular A-133 Compliance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-29

    ... OFFICE OF MANAGEMENT AND BUDGET Audits of States, Local Governments, and Non-Profit Organizations... Budget. ACTION: Notice of availability of the 2010 Circular A-133 Compliance Supplement. SUMMARY: This... Management, Office of Management and Budget, 725 17th Street, NW., Room 6025, New Executive Office Building...

  7. Seeing Circles and Drawing Ellipses: When Sound Biases Reproduction of Visual Motion

    PubMed Central

    Aramaki, Mitsuko; Bringoux, Lionel; Ystad, Sølvi; Kronland-Martinet, Richard

    2016-01-01

    The perception and production of biological movements is characterized by the 1/3 power law, a relation linking the curvature and the velocity of an intended action. In particular, motions are perceived and reproduced distorted when their kinematics deviate from this biological law. Whereas most studies dealing with this perceptual-motor relation focused on visual or kinaesthetic modalities in a unimodal context, in this paper we show that auditory dynamics strikingly biases visuomotor processes. Biologically consistent or inconsistent circular visual motions were used in combination with circular or elliptical auditory motions. Auditory motions were synthesized friction sounds mimicking those produced by the friction of the pen on a paper when someone is drawing. Sounds were presented diotically and the auditory motion velocity was evoked through the friction sound timbre variations without any spatial cues. Remarkably, when subjects were asked to reproduce circular visual motion while listening to sounds that evoked elliptical kinematics without seeing their hand, they drew elliptical shapes. Moreover, distortion induced by inconsistent elliptical kinematics in both visual and auditory modalities added up linearly. These results bring to light the substantial role of auditory dynamics in the visuo-motor coupling in a multisensory context. PMID:27119411

  8. Non-actual motion: phenomenological analysis and linguistic evidence.

    PubMed

    Blomberg, Johan; Zlatev, Jordan

    2015-09-01

    Sentences with motion verbs describing static situations have been seen as evidence that language and cognition are geared toward dynamism and change (Talmy in Toward a cognitive semantics, MIT Press, Cambridge, 2000; Langacker in Concept, image, and symbol: the cognitive basis of grammar, Mouton de Gruyter, Berlin and New York, 1990). Different concepts have been used in the literature, e.g., fictive motion, subjective motion and abstract motion to denote this. Based on phenomenological analysis, we reinterpret such concepts as reflecting different motivations for the use of such constructions (Blomberg and Zlatev in Phenom Cogn Sci 13(3):395-418, 2014). To highlight the multifaceted character of the phenomenon, we propose the concept non-actual motion (NAM), which we argue is more compatible with the situated cognition approach than explanations such as "mental simulation" (e.g., Matlock in Studies in linguistic motivation, Mouton de Gruyter, Berlin, 2004). We investigate the expression of NAM by means of a picture-based elicitation task with speakers of Swedish, French and Thai. Pictures represented figures that either afford human motion or not (±afford); crossed with this, the figure extended either across the picture from a third-person perspective (3 pp) or from a first-person perspective (1 pp). All picture types elicited NAM-sentences with the combination [+afford, 1 pp] producing most NAM-sentences in all three languages. NAM-descriptions also conformed to language-specific patterns for the expression of actual motion. We conclude that NAM shows interaction between pre-linguistic motivations and language-specific conventions.

  9. Learning Relative Motion Concepts in Immersive and Non-Immersive Virtual Environments

    ERIC Educational Resources Information Center

    Kozhevnikov, Michael; Gurlitt, Johannes; Kozhevnikov, Maria

    2013-01-01

    The focus of the current study is to understand which unique features of an immersive virtual reality environment have the potential to improve learning relative motion concepts. Thirty-seven undergraduate students learned relative motion concepts using computer simulation either in immersive virtual environment (IVE) or non-immersive desktop…

  10. Ion-dust streaming instability with non-Maxwellian ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kählert, Hanno, E-mail: kaehlert@theo-physik.uni-kiel.de

    2015-07-15

    The influence of non-Maxwellian ions on the ion-dust streaming instability in a complex plasma is investigated. The ion susceptibility employed for the calculations self-consistently accounts for the acceleration of the ions by a homogeneous background electric field and their collisions with neutral gas particles via a Bhatnagar-Gross-Krook collision term [e.g., A. V. Ivlev et al., Phys. Rev. E 71, 016405 (2005)], leading to significant deviations from a shifted Maxwellian distribution. The dispersion relation and the properties of the most unstable mode are studied in detail and compared with the Maxwellian case. The largest deviations occur at low to intermediate ion-neutralmore » damping. In particular, the growth rate of the instability for ion streaming below the Bohm speed is found to be lower than in the case of Maxwellian ions, yet remains on a significant level even for fast ion flows above the Bohm speed.« less

  11. SAGITTARIUS STREAM THREE-DIMENSIONAL KINEMATICS FROM SLOAN DIGITAL SKY SURVEY STRIPE 82

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koposov, Sergey E.; Belokurov, Vasily; Evans, N. Wyn

    2013-04-01

    Using multi-epoch observations of the Stripe 82 region from the Sloan Digital Sky Survey (SDSS), we measure precise statistical proper motions of the stars in the Sagittarius (Sgr) stellar stream. The multi-band photometry and SDSS radial velocities allow us to efficiently select Sgr members and thus enhance the proper-motion precision to {approx}0.1 mas yr{sup -1}. We measure separately the proper motion of a photometrically selected sample of the main-sequence turn-off stars, as well as spectroscopically selected Sgr giants. The data allow us to determine the proper motion separately for the two Sgr streams in the south found in Koposov etmore » al. Together with the precise velocities from SDSS, our proper motions provide exquisite constraints of the three-dimensional motions of the stars in the Sgr streams.« less

  12. Physical Sensing of Surface Properties by Microswimmers – Directing Bacterial Motion via Wall Slip

    PubMed Central

    Hu, Jinglei; Wysocki, Adam; Winkler, Roland G.; Gompper, Gerhard

    2015-01-01

    Bacteria such as Escherichia coli swim along circular trajectories adjacent to surfaces. Thereby, the orientation (clockwise, counterclockwise) and the curvature depend on the surface properties. We employ mesoscale hydrodynamic simulations of a mechano-elastic model of E. coli, with a spherocylindrical body propelled by a bundle of rotating helical flagella, to study quantitatively the curvature of the appearing circular trajectories. We demonstrate that the cell is sensitive to nanoscale changes in the surface slip length. The results are employed to propose a novel approach to directing bacterial motion on striped surfaces with different slip lengths, which implies a transformation of the circular motion into a snaking motion along the stripe boundaries. The feasibility of this approach is demonstrated by a simulation of active Brownian rods, which also reveals a dependence of directional motion on the stripe width. PMID:25993019

  13. Project Physics Tests 1, Concepts of Motion.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Test items relating to Project Physics Unit 1 are presented in this booklet, consisting of 70 multiple-choice and 20 problem-and-essay questions. Concepts of motion are examined with respect to velocities, acceleration, forces, vectors, Newton's laws, and circular motion. Suggestions are made for time consumption in answering some items. Besides…

  14. Circular polarization of gravitational waves from non-rotating supernova cores: a new probe into the pre-explosion hydrodynamics

    NASA Astrophysics Data System (ADS)

    Hayama, Kazuhiro; Kuroda, Takami; Kotake, Kei; Takiwaki, Tomoya

    2018-04-01

    We present an analysis of the circular polarization of gravitational-waves (GWs) using results from three-dimensional (3D), general relativistic (GR) core-collapse simulations of a non-rotating 15M⊙ star. For the signal detection, we perform a coherent network analysis taking into account the four interferometers of LIGO Hanford, LIGO Livingston, VIRGO, and KAGRA. We focus on the Stokes V parameter, which directly characterizes the asymmetry of the GW circular polarization. We find that the amplitude of the GW polarization becomes bigger for our 3D-GR model that exhibits strong activity of the standing accretion shock instability (SASI). Our results suggest that the SASI-induced accretion flows to the proto-neutron star (PNS) lead to a characteristic, low-frequency modulation (100 ˜ 200 Hz) in both the waveform and the GW circular polarization. By estimating the signal-to-noise ratio of the GW polarization, we demonstrate that the detection horizon of the circular polarization extends by more than a factor of several times farther comparing to that of the GW amplitude. Our results suggest that the GW circular polarization, if detected, could provide a new probe into the pre-explosion hydrodynamics such as the SASI activity and the g-mode oscillation of the PNS.

  15. Circular polarization of gravitational waves from non-rotating supernova cores: a new probe into the pre-explosion hydrodynamics

    NASA Astrophysics Data System (ADS)

    Hayama, Kazuhiro; Kuroda, Takami; Kotake, Kei; Takiwaki, Tomoya

    2018-06-01

    We present an analysis of the circular polarization of gravitational waves (GWs) using results from three-dimensional (3D), general relativistic (GR) core-collapse simulations of a non-rotating 15 M⊙ star. For the signal detection, we perform a coherent network analysis taking into account the four interferometers of LIGO Hanford, LIGO Livingston, VIRGO, and KAGRA. We focus on the Stokes V parameter, which directly characterizes the asymmetry of the GW circular polarization. We find that the amplitude of the GW polarization becomes bigger for our 3D-GR model that exhibits strong activity of the standing accretion shock instability (SASI). Our results suggest that the SASI-induced accretion flows to the proto-neutron star (PNS) lead to a characteristic, low-frequency modulation (100-200 Hz) in both the waveform and the GW circular polarization. By estimating the signal-to-noise ratio of the GW polarization, we demonstrate that the detection horizon of the circular polarization extends by more than a factor of several times farther comparing to that of the GW amplitude. Our results suggest that the GW circular polarization, if detected, could provide a new probe into the pre-explosion hydrodynamics such as the SASI activity and the g-mode oscillation of the PNS.

  16. Failure of Non-Circular Composite Cylinders

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.

    2004-01-01

    In this study, a progressive failure analysis is used to investigate leakage in internally pressurized non-circular composite cylinders. This type of approach accounts for the localized loss of stiffness when material failure occurs at some location in a structure by degrading the local material elastic properties by a certain factor. The manner in which this degradation of material properties takes place depends on the failure modes, which are determined by the application of a failure criterion. The finite-element code STAGS, which has the capability to perform progressive failure analysis using different degradation schemes and failure criteria, is utilized to analyze laboratory scale, graphite-epoxy, elliptical cylinders with quasi-isotropic, circumferentially-stiff, and axially-stiff material orthotropies. The results are divided into two parts. The first part shows that leakage, which is assumed to develop if there is material failure in every layer at some axial and circumferential location within the cylinder, does not occur without failure of fibers. Moreover before fibers begin to fail, only matrix tensile failures, or matrix cracking, takes place, and at least one layer in all three cylinders studied remain uncracked, preventing the formation of a leakage path. That determination is corroborated by the use of different degradation schemes and various failure criteria. Among the degradation schemes investigated are the degradation of different engineering properties, the use of various degradation factors, the recursive or non-recursive degradation of the engineering properties, and the degradation of material properties using different computational approaches. The failure criteria used in the analysis include the noninteractive maximum stress criterion and the interactive Hashin and Tsai-Wu criteria. The second part of the results shows that leakage occurs due to a combination of matrix tensile and compressive, fiber tensile and compressive, and inplane

  17. On a criterion of incipient motion and entrainment into suspension of a particle from cuttings bed in shear flow of non-Newtonian fluid

    NASA Astrophysics Data System (ADS)

    Ignatenko, Yaroslav; Bocharov, Oleg; May, Roland

    2017-10-01

    Solids transport is a major issue in high angle wells. Bed-load forms by sediment while transport and accompanied by intermittent contact with stream-bed by rolling, sliding and bouncing. The study presents the results of a numerical simulation of a laminar steady-state flow around a particle at rest and in free motion in a shear flow of Herschel-Bulkley fluid. The simulation was performed using the OpenFOAM open-source CFD package. A criterion for particle incipient motion and entrainment into suspension from cuttings bed (Shields criteria) based on forces and torques balance is discussed. Deflection of the fluid parameters from the ones of Newtonian fluid leads to decreasing of the drag and lift forces and the hydrodynamic moment. Thus, the critical shear stress (Shields parameter) for the considered non-Newtonian fluid must be greater than the one for a Newtonian fluid.

  18. Learned Non-Rigid Object Motion is a View-Invariant Cue to Recognizing Novel Objects

    PubMed Central

    Chuang, Lewis L.; Vuong, Quoc C.; Bülthoff, Heinrich H.

    2012-01-01

    There is evidence that observers use learned object motion to recognize objects. For instance, studies have shown that reversing the learned direction in which a rigid object rotated in depth impaired recognition accuracy. This motion reversal can be achieved by playing animation sequences of moving objects in reverse frame order. In the current study, we used this sequence-reversal manipulation to investigate whether observers encode the motion of dynamic objects in visual memory, and whether such dynamic representations are encoded in a way that is dependent on the viewing conditions. Participants first learned dynamic novel objects, presented as animation sequences. Following learning, they were then tested on their ability to recognize these learned objects when their animation sequence was shown in the same sequence order as during learning or in the reverse sequence order. In Experiment 1, we found that non-rigid motion contributed to recognition performance; that is, sequence-reversal decreased sensitivity across different tasks. In subsequent experiments, we tested the recognition of non-rigidly deforming (Experiment 2) and rigidly rotating (Experiment 3) objects across novel viewpoints. Recognition performance was affected by viewpoint changes for both experiments. Learned non-rigid motion continued to contribute to recognition performance and this benefit was the same across all viewpoint changes. By comparison, learned rigid motion did not contribute to recognition performance. These results suggest that non-rigid motion provides a source of information for recognizing dynamic objects, which is not affected by changes to viewpoint. PMID:22661939

  19. Two Episodes of Magnetic Reconnections during a Confined Circular-ribbon Flare

    NASA Astrophysics Data System (ADS)

    Li, Ting; Yang, Shuhong; Zhang, Qingmin; Hou, Yijun; Zhang, Jun

    2018-06-01

    We analyze a unique event with an M1.8 confined circular-ribbon flare on 2016 February 13, with successive formations of two circular ribbons at the same location. The flare had two distinct phases of UV and extreme ultraviolet emissions with an interval of about 270 s, of which the second peak was energetically more important. The first episode was accompanied by the eruption of a mini-filament and the fast elongation motion of a thin circular ribbon (CR1) along the counterclockwise direction at a speed of about 220 km s‑1. Two elongated spine-related ribbons were also observed, with the inner ribbon co-temporal with CR1 and the remote brightenings forming ∼20 s later. In the second episode, another mini-filament erupted and formed a blowout jet. The second circular ribbon and two spine-related ribbons showed similar elongation motions with that during the first episode. The extrapolated three-dimensional coronal magnetic fields reveal the existence of a fan-spine topology, together with a quasi-separatrix layer (QSL) halo surrounding the fan plane and another QSL structure outlining the inner spine. We suggest that continuous null-point reconnection between the filament and ambient open field occurs in each episode, leading to the sequential opening of the filament and significant shifts of the fan plane footprint. For the first time, we propose a compound eruption model of circular-ribbon flares consisting of two sets of successively formed ribbons and eruptions of multiple filaments in a fan-spine-type magnetic configuration.

  20. FRD and scrambling properties of recent non-circular fibres

    NASA Astrophysics Data System (ADS)

    Avila, Gerardo

    2012-09-01

    Optical fibres with octagonal, square and rectangular core shapes have been proposed as alternative to the circular fibres to link the telescopes to spectrographs in order to increase the accuracy of radial velocity measurements. Theoretically they offer better scrambling properties than their circular counterparts. First commercial octagonal fibres provided good near field scrambling gains. Unfortunately the far field scrambling did not show important figures. This article shows test results on new fibres from CeramOptec. The measurements show substantial improvements of the far field scrambling gains. In addition, evaluation of their focal ratio degradation (FRD) shows much better performances than previous fibres.

  1. Nonlinear gyrotropic motion of skyrmion in a magnetic nanodisk

    NASA Astrophysics Data System (ADS)

    Chen, Yi-fu; Li, Zhi-xiong; Zhou, Zhen-wei; Xia, Qing-lin; Nie, Yao-zhuang; Guo, Guang-hua

    2018-07-01

    We study the nonlinear gyrotropic motion of a magnetic skyrmion in a nanodisk by means of micromagnetic simulations. The skyrmion is driven by a linearly polarized harmonic field with the frequency of counterclockwise gyrotropic mode. It is found that the motion of the skyrmion displays different patterns with increasing field amplitude. In the linear regime of weak driving field, the skyrmion performs a single counterclockwise gyrotropic motion. The guiding center of the skyrmion moves along a helical line from the centre of the nanodisk to a stable circular orbit. The stable orbital radius increases linearly with the field amplitude. When the driving field is larger than a critical value, the skyrmion exhibits complex nonlinear motion. With the advance of time, the motion trajectory of the skyrmion goes through a series of evolution process, from a single circular motion to a bird nest-like and a flower-like trajectory and finally, to a gear-like steady-state motion. The frequency spectra show that except the counterclockwise gyrotropic mode, the clockwise gyrotropic mode is also nonlinearly excited and its amplitude increases with time. The complex motion trajectory of the skyrmion is the result of superposition of the two gyrotropic motions with changing amplitude. Both the linear and nonlinear gyrotropic motions of the skyrmion can be well described by a generalized Thiele's equation of motion.

  2. Analysis of the Multiple-Solution Response of a Flexible Rotor Supported on Non-Linear Squeeze Film Dampers

    NASA Astrophysics Data System (ADS)

    ZHU, C. S.; ROBB, D. A.; EWINS, D. J.

    2002-05-01

    The multiple-solution response of rotors supported on squeeze film dampers is a typical non-linear phenomenon. The behaviour of the multiple-solution response in a flexible rotor supported on two identical squeeze film dampers with centralizing springs is studied by three methods: synchronous circular centred-orbit motion solution, numerical integration method and slow acceleration method using the assumption of a short bearing and cavitated oil film; the differences of computational results obtained by the three different methods are compared in this paper. It is shown that there are three basic forms for the multiple-solution response in the flexible rotor system supported on the squeeze film dampers, which are the resonant, isolated bifurcation and swallowtail bifurcation multiple solutions. In the multiple-solution speed regions, the rotor motion may be subsynchronous, super-subsynchronous, almost-periodic and even chaotic, besides synchronous circular centred, even if the gravity effect is not considered. The assumption of synchronous circular centred-orbit motion for the journal and rotor around the static deflection line can be used only in some special cases; the steady state numerical integration method is very useful, but time consuming. Using the slow acceleration method, not only can the multiple-solution speed regions be detected, but also the non-synchronous response regions.

  3. A Circularly Arranged Sextuple Triptycene Gear Molecule.

    PubMed

    Ube, Hitoshi; Yamada, Ryo; Ishida, Jun-Ichi; Sato, Hiroyasu; Shiro, Motoo; Shionoya, Mitsuhiko

    2017-11-22

    Herein we report the synthesis of a circularly arranged sextuple triptycene gear molecule, hexakis(10-dodecyloxy-9-triptycyl)ethynylbenzene, via the trimerization of the corresponding triyne with a cobalt catalyst. The six triptycene gears are closely engaged with each other as confirmed by single crystal X-ray structure analysis, and their motion in solution was established by NMR spectroscopy. Notably, when one bulky RuCp* complex was attached to one triptycene gear, the whole movement of the six gears was highly restricted via their mechanical engagement. Development of such a multigear molecule would provide a structural basis for molecular motion transmission systems with a switching function.

  4. 78 FR 41424 - Audits of States, Local Governments, and Non-Profit Organizations; OMB Circular A-133 Compliance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ... OFFICE OF MANAGEMENT AND BUDGET Audits of States, Local Governments, and Non-Profit Organizations... Management and Budget. ACTION: Notice of availability of the 2013 OMB Circular A-133 Compliance Supplement... may be mailed to Gilbert Tran, Office of Federal Financial Management, Office of Management and Budget...

  5. 77 FR 45695 - Audits of States, Local Governments, and Non-Profit Organizations; OMB Circular A-133 Compliance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... OFFICE OF MANAGEMENT AND BUDGET Audits of States, Local Governments, and Non-Profit Organizations... Management and Budget. ACTION: Notice of availability of the 2012 OMB Circular A-133 Compliance Supplement..., Office of Federal Financial Management, Office of Management and Budget, 725 17th Street NW., Room 6025...

  6. 76 FR 32377 - Audits of States, Local Governments, and Non-Profit Organizations; OMB Circular A-133 Compliance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-06

    ... OFFICE OF MANAGEMENT AND BUDGET Audits of States, Local Governments, and Non-Profit Organizations... Management and Budget. ACTION: Notice of availability of the 2011 OMB Circular A-133 Compliance Supplement... Federal Financial Management, Office of Management and Budget, 725 17th Street, NW., Room 6025, New...

  7. Coupling analysis of non-circular-symmetric modes and design of orientation-insensitive few-mode fiber couplers

    NASA Astrophysics Data System (ADS)

    Li, Jiaxiong; Du, Jiangbing; Ma, Lin; Li, Ming-Jun; Jiang, Shoulin; Xu, Xiao; He, Zuyuan

    2017-01-01

    We study the coupling between two identical weakly-coupled few-mode fibers based on coupled-mode theory. The coupling behavior of non-circular-symmetric modes, such as LP11 and LP21, is investigated analytically and numerically. By carefully choosing the fiber core separation and coupler length, we can design orientation-insensitive fiber couplers for non-circular-symmetric modes at arbitrary coupling ratios. Based on the design method, we propose an orientation-insensitive two-mode fiber coupler at 850 nm working as a mode multiplexer/demultiplexer for two-mode transmission using standard single-mode fiber. Within the band from 845 to 855 nm, the insertion losses of LP01 and LP11 modes are less than 0.03 dB and 0.24 dB, respectively. When the two-mode fiber coupler is used as mode demultiplexer, the LP01/LP11 and LP11/LP01 extinction ratios in the separated branches are respectively above 12.6 dB and 21.2 dB. Our design method can be extended to two-mode communication or sensing systems at other wavelengths.

  8. Thermo-aerodynamic efficiency of non-circular ducts with vortex enhancement of heat exchange in different types of compact heat exchangers

    NASA Astrophysics Data System (ADS)

    Vasilev, V. Ya; Nikiforova, S. A.

    2018-03-01

    Experimental studies of thermo-aerodynamic characteristics of non-circular ducts with discrete turbulators on walls and interrupted channels have confirmed the rational enhancement of convective heat transfer, in which the growth of heat transfer outstrips or equals the growth of aerodynamic losses. Determining the regularities of rational (energy-saving) enhancement of heat transfer and the proposed method for comparing the characteristics of smooth-channel (without enhancement) heat exchangers with effective analogs provide new results, confirming the high efficiency of vortex enhancement of convective heat transfer in non-circular ducts of plate-finned heat exchange surfaces. This allows creating heat exchangers with much smaller mass and volume for operation in energy-saving modes.

  9. The interactive effects of climate change, riparian management, and a non-native predators on stream-rearing salmon

    USGS Publications Warehouse

    Lawrence, David J.; Stewart-Koster, Ben; Olden, Julian D.; Ruesch, Aaron S.; Torgersen, Christian E.; Lawler, Joshua J.; Butcher, Don P.; Crown, Julia K.

    2014-01-01

    Predicting how climate change is likely to interact with myriad other stressors that threaten species of conservation concern is an essential challenge in aquatic ecosystems. This study provides a framework to accomplish this task in salmon-bearing streams of the northwestern United States, where land-use related reductions in riparian shading have caused changes in stream thermal regimes, and additional warming from projected climate change may result in significant losses of coldwater fish habitat over the next century. Predatory non-native smallmouth bass have also been introduced into many northwestern streams and their range is likely to expand as streams warm, presenting an additional challenge to the persistence of threatened Pacific salmon. The goal of this work was to forecast the interactive effects of climate change, riparian management, and non-native species on stream-rearing salmon, and to evaluate the capacity of restoration to mitigate these effects. We intersected downscaled global climate forecasts with a local-scale water temperature model to predict mid- and end-of-century temperatures in streams in the Columbia River basin; we compared one stream that is thermally impaired due to the loss of riparian vegetation and another that is cooler and has a largely intact riparian corridor. Using the forecasted stream temperatures in conjunction with fish-habitat models, we predicted how stream-rearing Chinook salmon and bass distributions would change as each stream warmed. In the highly modified stream, end-of-century warming may cause near total loss of Chinook salmon rearing habitat and a complete invasion of the upper watershed by bass. In the less modified stream, bass were thermally restricted from the upstream-most areas. In both systems, temperature increases resulted in higher predicted spatial overlap between stream-rearing Chinook salmon and potentially predatory bass in the early summer (2-4-fold increase) and greater abundance of bass. We

  10. Shifts in stream hydrochemistry in responses to typhoon and non-typhoon precipitation

    NASA Astrophysics Data System (ADS)

    Chang, Chung-Te; Huang, -Chuan, Jr.; Wang, Lixin; Shih, Yu-Ting; Lin, Teng-Chiu

    2018-04-01

    Climate change is projected to increase the intensity and frequency of extreme climatic events such as tropical cyclones. However, few studies have examined the responses of hydrochemical processes to climate extremes. To fill this knowledge gap, we compared the relationship between stream discharge and ion input-output budget during typhoon and non-typhoon periods in four subtropical mountain watersheds with different levels of agricultural land cover in northern Taiwan. The results indicated that the high predictability of ion input-output budgets using stream discharge during the non-typhoon period largely disappeared during the typhoon periods. For ions such as Na+, NH4+, and PO43-, the typhoon period and non-typhoon period exhibited opposite discharge-budget relationships. In other cases, the discharge-budget relationship was driven by the typhoon period, which consisted of only 7 % of the total time period. The striking differences in the discharge-ion budget relationship between the two periods likely resulted from differences in the relative contributions of surface runoff, subsurface runoff and groundwater, which had different chemical compositions, to stream discharge between the two periods. Watersheds with a 17-22 % tea plantation cover showed large increases in NO3- export with increases in stream discharge. In contrast, watersheds with 93-99 % forest cover showed very mild or no increases in NO3- export with increases in discharge and very low levels of NO3- export even during typhoon storms. The results suggest that even mild disruption of the natural vegetation could largely alter hydrochemical processes. Our study clearly illustrates significant shifts in hydrochemical responses between regular and typhoon precipitation. We propose that hydrological models should separate hydrochemical processes into regular and extreme conditions to better capture the whole spectrum of hydrochemical responses to a variety of climate conditions.

  11. Comparing modal noise and FRD of circular and non-circular cross-section fibres

    NASA Astrophysics Data System (ADS)

    Sablowski, D. P.; Plüschke, D.; Weber, M.; Strassmeier, K. G.; Järvinen, A.

    2016-03-01

    Modal noise is a common source of noise introduced to the measurements by optical fibres and is particularly important for fibre-fed spectroscopic instruments, especially for high-resolution measurements. This noise source can limit the signal-to-noise ratio and jeopardize photon-noise limited data. The subject of the present work is to compare measurements of modal noise and focal-ratio degradation (FRD) for several commonly used fibres. We study the influence of a simple mechanical scrambling method (excenter) on both FRD and modal noise. Measurements are performed with circular and octagonal fibres from Polymicro Technology (FBP-Series) with diameters of 100, 200, and 300 μm and for square and rectangular fibres from CeramOptec, among others. FRD measurements for the same sample of fibres are performed as a function of wavelength. Furthermore, we replaced the circular fibre of the STELLA-échelle-spectrograph (SES) in Tenerife with an octagonal and found a SNR increase by a factor of 1.6 at 678 nm. It is shown in the laboratory that an excenter with a large amplitude and low frequency will not influence the FRD but will reduce modal noise rather effectively by up to 180%.

  12. Vibration due to non-circularity of a rotating ring having discrete radial supports - With application to thin-walled rotor/magnetic bearing systems

    NASA Astrophysics Data System (ADS)

    Fakkaew, Wichaphon; Cole, Matthew O. T.

    2018-06-01

    This paper investigates the vibration arising in a thin-walled cylindrical rotor subject to small non-circularity and coupled to discrete space-fixed radial bearing supports. A Fourier series description of rotor non-circularity is incorporated within a mathematical model for vibration of a rotating annulus. This model predicts the multi-harmonic excitation of the rotor wall due to bearing interactions. For each non-circularity harmonic there is a set of distinct critical speeds at which resonance can potentially arise due to flexural mode excitation within the rotor wall. It is shown that whether each potential resonance occurs depends on the multiplicity and symmetry of the bearing supports. Also, a sufficient number of evenly spaced identical supports will eliminate low order resonances. The considered problem is pertinent to the design and operation of thin-walled rotors with active magnetic bearing (AMB) supports, for which small clearances exist between the rotor and bearing and so vibration excitation must be limited to avoid contacts. With this motivation, the mathematical model is further developed for the case of a distributed array of electromagnetic actuators controlled by feedback of measured rotor wall displacements. A case study involving an experimental system with short cylindrical rotor and a single radial AMB support is presented. The results show that flexural mode resonance is largely avoided for the considered design topology. Moreover, numerical predictions based on measured non-circularity show good agreement with measurements of rotor wall vibration, thereby confirming the validity and utility of the theoretical model.

  13. 75 FR 82374 - Notice of Final Results of Antidumping Duty Changed Circumstances Review: Certain Circular Welded...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-30

    ... Antidumping Duty Changed Circumstances Review: Certain Circular Welded Non-Alloy Steel Pipe From Mexico AGENCY... circular welded non-alloy steel pipe (circular welded pipe) from Mexico. DATES: Effective Date: December 30... on November 2, 1992. See Notice of Antidumping Duty Orders: Certain Circular Welded Non-Alloy Steel...

  14. Basal melt beneath whillans ice stream and ice streams A and C

    NASA Technical Reports Server (NTRS)

    Joughin, I.; Teluezyk, S.; Engelhardt, H.

    2002-01-01

    We have used a recently derived map of the velocity of Whillans Ice Stream and Ice Streams A and C to help estimate basal melt. Temperature was modeled with a simple vertical advection-diffusion equation, 'tuned' to match temperature profiles. We find that most of the melt occurs beneath the tributaries where larger basal shear stresses and thicker ice favors greater melt (e.g., 10-20 mm/yr). The occurrence of basal freezing is predicted beneath much of the ice plains of Ice Stream C and Whillans Ice Stream. Modelled melt rates for when Ice Stream C was active suggest there was just enough melt water generated in its tributaries to balance basal freezing on its ice plain. Net basal melt for Whillans Ice Stream is positive due to smaller basal temperature gradients. Modelled temperatures on Whillans Ice Stream, however, were constrained by a single temperature profile at UpB. Basal temperature gradients for Whillans B1 and Ice Stream A may have conditions more similar to those beneath Ice Streams C and D, in which case, there may not be sufficient melt to sustain motion. This would be consistent with the steady deceleration of Whillans stream over the last few decades.

  15. Application of wave mechanics theory to fluid dynamics problems: Boundary layer on a circular cylinder including turbulence

    NASA Technical Reports Server (NTRS)

    Krzywoblocki, M. Z. V.

    1974-01-01

    The application of the elements of quantum (wave) mechanics to some special problems in the field of macroscopic fluid dynamics is discussed. Emphasis is placed on the flow of a viscous, incompressible fluid around a circular cylinder. The following subjects are considered: (1) the flow of a nonviscous fluid around a circular cylinder, (2) the restrictions imposed the stream function by the number of dimensions of space, and (3) the flow past three dimensional bodies in a viscous fluid, particularly past a circular cylinder in the symmetrical case.

  16. Localized, Non-Harmonic Active Flap Motions for Low Frequency In-Plane Rotor Noise Reduction

    NASA Technical Reports Server (NTRS)

    Sim, Ben W.; Potsdam, Mark; Kitaplioglu, Cahit; LeMasurier, Philip; Lorber, Peter; Andrews, Joseph

    2012-01-01

    A first-of-its-kind demonstration of the use of localized, non-harmonic active flap motions, for suppressing low frequency, in-plane rotor noise, is reported in this paper. Operational feasibility is verified via testing of the full-scale AATD/Sikorsky/UTRC active flap demonstration rotor in the NFAC's 40- by 80-Foot anechoic wind tunnel. Effectiveness of using localized, non-harmonic active flap motions are compared to conventional four-per-rev harmonic flap motions, and also active flap motions derived from closed-loop acoustics implementations. All three approaches resulted in approximately the same noise reductions over an in-plane three-by-three microphone array installed forward and near in-plane of the rotor in the nearfield. It is also reported that using an active flap in this localized, non-harmonic manner, resulted in no more that 2% rotor performance penalty, but had the tendency to incur higher hub vibration levels.

  17. Development of the wake behind a circular cylinder impulsively started into rotatory and rectilinear motion

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Ming; Ou, Yuh-Roung; Pearlstein, Arne J.

    1993-01-01

    The temporal development of a 2D viscous incompressible flow generated by a circular cylinder started impulsively into steady rotatory and rectilinear motion is studied by integration of a velocity/vorticity formulation of the governing equations, using an explicit finite-difference/pseudo-spectral technique and an implementation of the Biot-Savart law. Results are presented for a Reynolds number of 200 (based on the cylinder diameter 2a and the magnitude U of the rectilinear velocity) for several values of the angular/rectilinear speed ratio alpha = omega(a)/U (where omega is the angular speed) up to 3.25. Several aspects of the kinematics and dynamics of the flow not considered earlier are discussed. For higher values of alpha, the results indicate that for Re = 200, vortex shedding does indeed occur for alpha = 3.25. However, consecutive vortices shed by the body can be shed from the same side and be of the same sense, in contrast to the nonrotating case, in which mirror-image vortices of opposite sense are shed alternately on opposite sides of the body. The implications of the results are discussed in relation to the possibility of suppressing vortex shedding by open or closed-loop control of the rotation rate.

  18. Circular polarization in a non-magnetic resonant tunneling device.

    PubMed

    Dos Santos, Lara F; Gobato, Yara Galvão; Teodoro, Márcio D; Lopez-Richard, Victor; Marques, Gilmar E; Brasil, Maria Jsp; Orlita, Milan; Kunc, Jan; Maude, Duncan K; Henini, Mohamed; Airey, Robert J

    2011-01-25

    We have investigated the polarization-resolved photoluminescence (PL) in an asymmetric n-type GaAs/AlAs/GaAlAs resonant tunneling diode under magnetic field parallel to the tunnel current. The quantum well (QW) PL presents strong circular polarization (values up to -70% at 19 T). The optical emission from GaAs contact layers shows evidence of highly spin-polarized two-dimensional electron and hole gases which affects the spin polarization of carriers in the QW. However, the circular polarization degree in the QW also depends on various other parameters, including the g-factors of the different layers, the density of carriers along the structure, and the Zeeman and Rashba effects.

  19. Circular polarization in a non-magnetic resonant tunneling device

    PubMed Central

    2011-01-01

    We have investigated the polarization-resolved photoluminescence (PL) in an asymmetric n-type GaAs/AlAs/GaAlAs resonant tunneling diode under magnetic field parallel to the tunnel current. The quantum well (QW) PL presents strong circular polarization (values up to -70% at 19 T). The optical emission from GaAs contact layers shows evidence of highly spin-polarized two-dimensional electron and hole gases which affects the spin polarization of carriers in the QW. However, the circular polarization degree in the QW also depends on various other parameters, including the g-factors of the different layers, the density of carriers along the structure, and the Zeeman and Rashba effects. PMID:21711613

  20. Demonstrating the Direction of Angular Velocity in Circular Motion

    NASA Astrophysics Data System (ADS)

    Demircioglu, Salih; Yurumezoglu, Kemal; Isik, Hakan

    2015-09-01

    Rotational motion is ubiquitous in nature, from astronomical systems to household devices in everyday life to elementary models of atoms. Unlike the tangential velocity vector that represents the instantaneous linear velocity (magnitude and direction), an angular velocity vector is conceptually more challenging for students to grasp. In physics classrooms, the direction of an angular velocity vector is taught by the right-hand rule, a mnemonic tool intended to aid memory. A setup constructed for instructional purposes may provide students with a more easily understood and concrete method to observe the direction of the angular velocity. This article attempts to demonstrate the angular velocity vector using the observable motion of a screw mounted to a remotely operated toy car.

  1. TRACING THE ORPHAN STREAM TO 55 kpc WITH RR LYRAE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sesar, Branimir; Cohen, Judith G.; Bellm, Eric C.

    2013-10-10

    We report positions, velocities, and metallicities of 50 ab-type RR Lyrae (RRab) stars observed in the vicinity of the Orphan stellar stream. Using about 30 RRab stars classified as being likely members of the Orphan stream, we study the metallicity and the spatial extent of the stream. We find that RRab stars in the Orphan stream have a wide range of metallicities, from –1.5 dex to –2.7 dex. The average metallicity of the stream is –2.1 dex, identical to the value obtained by Newberg et al. using blue horizontal branch stars. We find that the most distant parts of themore » stream (40-50 kpc from the Sun) are about 0.3 dex more metal-poor than the closer parts (within ∼30 kpc), suggesting a possible metallicity gradient along the stream's length. We have extended the previous studies and have mapped the stream up to 55 kpc from the Sun. Even after a careful search, we did not identify any more distant RRab stars that could plausibly be members of the Orphan stream. If confirmed with other tracers, this result would indicate a detection of the end of the leading arm of the stream. We have compared the distances of Orphan stream RRab stars with the best-fit orbits obtained by Newberg et al. We find that model 6 of Newberg et al. cannot explain the distances of the most remote Orphan stream RRab stars, and conclude that the best fit to distances of Orphan stream RRab stars and to the local circular velocity is provided by potentials where the total mass of the Galaxy within 60 kpc is M{sub 60} ∼ 2.7 × 10{sup 11} M{sub ☉}, or about 60% of the mass found by previous studies. More extensive modeling that would consider non-spherical potentials and the possibility of misalignment between the stream and the orbit is highly encouraged.« less

  2. An optimal control strategy for two-dimensional motion camouflage with non-holonimic constraints.

    PubMed

    Rañó, Iñaki

    2012-07-01

    Motion camouflage is a stealth behaviour observed both in hover-flies and in dragonflies. Existing controllers for mimicking motion camouflage generate this behaviour on an empirical basis or without considering the kinematic motion restrictions present in animal trajectories. This study summarises our formal contributions to solve the generation of motion camouflage as a non-linear optimal control problem. The dynamics of the system capture the kinematic restrictions to motion of the agents, while the performance index ensures camouflage trajectories. An extensive set of simulations support the technique, and a novel analysis of the obtained trajectories contributes to our understanding of possible mechanisms to obtain sensor based motion camouflage, for instance, in mobile robots.

  3. Finite-sized gas bubble motion in a blood vessel: Non-Newtonian effects

    PubMed Central

    Mukundakrishnan, Karthik; Ayyaswamy, Portonovo S.; Eckmann, David M.

    2009-01-01

    We have numerically investigated the axisymmetric motion of a finite-sized nearly occluding air bubble through a shear-thinning Casson fluid flowing in blood vessels of circular cross section. The numerical solution entails solving a two-layer fluid model—a cell-free layer and a non-Newtonian core together with the gas bubble. This problem is of interest to the field of rheology and for gas embolism studies in health sciences. The numerical method is based on a modified front-tracking method. The viscosity expression in the Casson model for blood (bulk fluid) includes the hematocrit [the volume fraction of red blood cells (RBCs)] as an explicit parameter. Three different flow Reynolds numbers, Reapp=ρlUmaxd/μapp, in the neighborhood of 0.2, 2, and 200 are investigated. Here, ρl is the density of blood, Umax is the centerline velocity of the inlet Casson profile, d is the diameter of the vessel, and μapp is the apparent viscosity of whole blood. Three different hematocrits have also been considered: 0.45, 0.4, and 0.335. The vessel sizes considered correspond to small arteries, and small and large arterioles in normal humans. The degree of bubble occlusion is characterized by the ratio of bubble to vessel radius (aspect ratio), λ, in the range 0.9≤λ≤1.05. For arteriolar flow, where relevant, the Fahraeus-Lindqvist effects are taken into account. Both horizontal and vertical vessel geometries have been investigated. Many significant insights are revealed by our study: (i) bubble motion causes large temporal and spatial gradients of shear stress at the “endothelial cell” (EC) surface lining the blood vessel wall as the bubble approaches the cell, moves over it, and passes it by; (ii) rapid reversals occur in the sign of the shear stress (+ → − → +) imparted to the cell surface during bubble motion; (iii) large shear stress gradients together with sign reversals are ascribable to the development of a recirculation vortex at the rear of the bubble

  4. The effect of transponder motion on the accuracy of the Calypso Electromagnetic localization system.

    PubMed

    Murphy, Martin J; Eidens, Richard; Vertatschitsch, Edward; Wright, J Nelson

    2008-09-01

    To determine position and velocity-dependent effects in the overall accuracy of the Calypso Electromagnetic localization system, under conditions that emulate transponder motion during normal free breathing. Three localization transponders were mounted on a remote-controlled turntable that could move the transponders along a circular trajectory at speeds up to 3 cm/s. A stationary calibration established the coordinates of multiple points on each transponder's circular path. Position measurements taken while the transponders were in motion at a constant speed were then compared with the stationary coordinates. No statistically significant changes in the transponder positions in (x,y,z) were detected when the transponders were in motion. The accuracy of the localization system is unaffected by transponder motion.

  5. Risk management of hazardous substances in a circular economy.

    PubMed

    Bodar, Charles; Spijker, Job; Lijzen, Johannes; Waaijers-van der Loop, Susanne; Luit, Richard; Heugens, Evelyn; Janssen, Martien; Wassenaar, Pim; Traas, Theo

    2018-04-15

    The ambitions for a circular economy are high and unambiguous, but day-to-day experience shows that the transition still has many difficulties to overcome. One of the current hurdles is the presence of hazardous substances in waste streams that enter or re-enter into the environment or the technosphere. The key question is: do we have the appropriate risk management tools to control any risks that might arise from the re-using and recycling of materials? We present some recent cases that illustrate current practice and complexity in the risk management of newly-formed circular economy chains. We also highlight how separate legal frameworks are still disconnected from each other in these cases, and how circular economy initiatives interlink with the European REACH regulation. Furthermore, we introduce a novel scheme describing how to decide whether a(n)(additional) risk assessment is necessary with regard to the re-use of materials containing hazardous substances. Finally, we present our initial views on new concepts for the fundamental integration of sustainability and safety aspects. These concepts should be the building blocks for the near future shifts in both policy frameworks and voluntary initiatives that support a sound circular economy transition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. 75 FR 44763 - Certain Circular Welded Non-Alloy Steel Pipe From Mexico; Extension of Time Limit for Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-29

    ...-Alloy Steel Pipe From Mexico; Extension of Time Limit for Preliminary Results of Antidumping Duty... review of the antidumping duty order on certain circular welded non- alloy steel pipe from Mexico. We... preliminary results of this review within the original time frame because we require additional time with...

  7. NoRMCorre: An online algorithm for piecewise rigid motion correction of calcium imaging data.

    PubMed

    Pnevmatikakis, Eftychios A; Giovannucci, Andrea

    2017-11-01

    Motion correction is a challenging pre-processing problem that arises early in the analysis pipeline of calcium imaging data sequences. The motion artifacts in two-photon microscopy recordings can be non-rigid, arising from the finite time of raster scanning and non-uniform deformations of the brain medium. We introduce an algorithm for fast Non-Rigid Motion Correction (NoRMCorre) based on template matching. NoRMCorre operates by splitting the field of view (FOV) into overlapping spatial patches along all directions. The patches are registered at a sub-pixel resolution for rigid translation against a regularly updated template. The estimated alignments are subsequently up-sampled to create a smooth motion field for each frame that can efficiently approximate non-rigid artifacts in a piecewise-rigid manner. Existing approaches either do not scale well in terms of computational performance or are targeted to non-rigid artifacts arising just from the finite speed of raster scanning, and thus cannot correct for non-rigid motion observable in datasets from a large FOV. NoRMCorre can be run in an online mode resulting in comparable to or even faster than real time motion registration of streaming data. We evaluate its performance with simple yet intuitive metrics and compare against other non-rigid registration methods on simulated data and in vivo two-photon calcium imaging datasets. Open source Matlab and Python code is also made available. The proposed method and accompanying code can be useful for solving large scale image registration problems in calcium imaging, especially in the presence of non-rigid deformations. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  8. The psychophysics of Visual Motion and Global form Processing in Autism

    ERIC Educational Resources Information Center

    Koldewyn, Kami; Whitney, David; Rivera, Susan M.

    2010-01-01

    Several groups have recently reported that people with autism may suffer from a deficit in visual motion processing and proposed that these deficits may be related to a general dorsal stream dysfunction. In order to test the dorsal stream deficit hypothesis, we investigated coherent and biological motion perception as well as coherent form…

  9. A linear shock cell model for non-circular jets using conformal mapping with a pseudo-spectral hybrid scheme

    NASA Technical Reports Server (NTRS)

    Bhat, Thonse R. S.; Baty, Roy S.; Morris, Philip J.

    1990-01-01

    The shock structure in non-circular supersonic jets is predicted using a linear model. This model includes the effects of the finite thickness of the mixing layer and the turbulence in the jet shear layer. A numerical solution is obtained using a conformal mapping grid generation scheme with a hybrid pseudo-spectral discretization method. The uniform pressure perturbation at the jet exit is approximated by a Fourier-Mathieu series. The pressure at downstream locations is obtained from an eigenfunction expansion that is matched to the pressure perturbation at the jet exit. Results are presented for a circular jet and for an elliptic jet of aspect ratio 2.0. Comparisons are made with experimental data.

  10. GENERAL: Application of Symplectic Algebraic Dynamics Algorithm to Circular Restricted Three-Body Problem

    NASA Astrophysics Data System (ADS)

    Lu, Wei-Tao; Zhang, Hua; Wang, Shun-Jin

    2008-07-01

    Symplectic algebraic dynamics algorithm (SADA) for ordinary differential equations is applied to solve numerically the circular restricted three-body problem (CR3BP) in dynamical astronomy for both stable motion and chaotic motion. The result is compared with those of Runge-Kutta algorithm and symplectic algorithm under the fourth order, which shows that SADA has higher accuracy than the others in the long-term calculations of the CR3BP.

  11. Knee arthrodesis with circular external fixation.

    PubMed

    Garberina, M J; Fitch, R D; Hoffmann, E D; Hardaker, W T; Vail, T P; Scully, S P

    2001-01-01

    Knee arthrodesis can enable limb salvage in patients with disability secondary to trauma, infected total knee arthroplasty, pyarthrosis, and other complications. Historically, intramedullary nailing has resulted in the highest overall knee fusion rates. However, intramedullary nailing is relatively contraindicated in the presence of active infection. Nineteen patients who underwent knee arthrodesis with circular external fixation were studied retrospectively. Postoperative radiographs were evaluated for evidence of bony fusion, which was defined as trabecular bridging between the femur and tibia. Patients were interviewed and graded using the functional assessment portion of the Knee Society clinical rating system. Fusion was successful in 13 of 19 (68%) patients. Overall, patients spent an average of 4 months 8 days wearing the circular external fixator. Average time to radiographic and clinical evidence of arthrodesis (defined as lack of motion across the fusion site) was 4 months 18 days. No patient with successful fusion considered himself or herself housebound. All but one of these patients require some form of assistive device for ambulation. Complications occurred in 16 of 19 (84%) patients overall. Superficial pin tract infection (55%) and nonunion (32%) were the most common. Circular external fixation is an effective method for obtaining knee arthrodesis in patients who are not good candidates for intramedullary nailing.

  12. Estimation of internal organ motion-induced variance in radiation dose in non-gated radiotherapy

    NASA Astrophysics Data System (ADS)

    Zhou, Sumin; Zhu, Xiaofeng; Zhang, Mutian; Zheng, Dandan; Lei, Yu; Li, Sicong; Bennion, Nathan; Verma, Vivek; Zhen, Weining; Enke, Charles

    2016-12-01

    In the delivery of non-gated radiotherapy (RT), owing to intra-fraction organ motion, a certain degree of RT dose uncertainty is present. Herein, we propose a novel mathematical algorithm to estimate the mean and variance of RT dose that is delivered without gating. These parameters are specific to individual internal organ motion, dependent on individual treatment plans, and relevant to the RT delivery process. This algorithm uses images from a patient’s 4D simulation study to model the actual patient internal organ motion during RT delivery. All necessary dose rate calculations are performed in fixed patient internal organ motion states. The analytical and deterministic formulae of mean and variance in dose from non-gated RT were derived directly via statistical averaging of the calculated dose rate over possible random internal organ motion initial phases, and did not require constructing relevant histograms. All results are expressed in dose rate Fourier transform coefficients for computational efficiency. Exact solutions are provided to simplified, yet still clinically relevant, cases. Results from a volumetric-modulated arc therapy (VMAT) patient case are also presented. The results obtained from our mathematical algorithm can aid clinical decisions by providing information regarding both mean and variance of radiation dose to non-gated patients prior to RT delivery.

  13. Nonlinear Drift-Kinetic Equation in the Presence of a Circularly Polarized Wave

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Krivorutsky, E. N.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Equations of the single particle motion and nonlinear kinetic equation for plasma in the presence of a circularly polarized wave of arbitrary frequency in the drift approximation are presented. The nonstationarity and inhomogeneity of the plasma-wave system are taken into account.

  14. Stream salamanders as indicators of stream quality in Maryland, USA

    USGS Publications Warehouse

    Southerland, M.T.; Jung, R.E.; Baxter, D.P.; Chellman, I.C.; Mercurio, G.; Volstad, J.H.

    2004-01-01

    Biological indicators are critical to the protection of small, headwater streams and the ecological values they provide. Maryland and other state monitoring programs have determined that fish indicators are ineffective in small streams, where stream salamanders may replace fish as top predators. Because of their life history, physiology, abundance, and ubiquity, stream salamanders are likely representative of biological integrity in these streams. The goal of this study was to determine whether stream salamanders are effective indicators of ecological conditions across biogeographic regions and gradients of human disturbance. During the summers of 2001 and 2002, we intensively surveyed for stream salamanders at 76 stream sites located west of the Maryland Coastal Plain, sites also monitored by the Maryland Biological Stream Survey (MBSS) and City of Gaithersburg. We found 1,584 stream salamanders, including all eight species known in Maryland, using two 15 ? 2 m transects and two 4 m2 quadrats that spanned both stream bank and channel. We performed removal sampling on transects to estimate salamander species detection probabilities, which ranged from 0.67-0.85. Stepwise regressions identified 15 of 52 non-salamander variables, representing water quality, physical habitat, land use, and biological conditions, which best predicted salamander metrics. Indicator development involved (1) identifying reference (non-degraded) and degraded sites (using percent forest, shading, riparian buffer width, aesthetic rating, and benthic macroinvertebrate and fish indices of biotic integrity); (2) testing 12 candidate salamander metrics (representing species richness and composition, abundance, species tolerance, and reproductive function) for their ability to distinguish reference from degraded sites; and (3) combining metrics into an index that effectively discriminated sites according to known stream conditions. Final indices for Highlands, Piedmont, and Non-Coastal Plain

  15. Anisotropic interaction rules in circular motions of pigeon flocks: An empirical study based on sparse Bayesian learning

    NASA Astrophysics Data System (ADS)

    Chen, Duxin; Xu, Bowen; Zhu, Tao; Zhou, Tao; Zhang, Hai-Tao

    2017-08-01

    Coordination shall be deemed to the result of interindividual interaction among natural gregarious animal groups. However, revealing the underlying interaction rules and decision-making strategies governing highly coordinated motion in bird flocks is still a long-standing challenge. Based on analysis of high spatial-temporal resolution GPS data of three pigeon flocks, we extract the hidden interaction principle by using a newly emerging machine learning method, namely the sparse Bayesian learning. It is observed that the interaction probability has an inflection point at pairwise distance of 3-4 m closer than the average maximum interindividual distance, after which it decays strictly with rising pairwise metric distances. Significantly, the density of spatial neighbor distribution is strongly anisotropic, with an evident lack of interactions along individual velocity. Thus, it is found that in small-sized bird flocks, individuals reciprocally cooperate with a variational number of neighbors in metric space and tend to interact with closer time-varying neighbors, rather than interacting with a fixed number of topological ones. Finally, extensive numerical investigation is conducted to verify both the revealed interaction and decision-making principle during circular flights of pigeon flocks.

  16. Rotating Magnetic Structures Associated with a Quasi-circular Ribbon Flare

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Haidong; Jiang, Yunchun; Yang, Jiayan

    We present the detection of a small eruption and the associated quasi-circular ribbon flare during the emergence of a bipole occurring on 2015 February 3. Under a fan dome, a sigmoid was rooted in a single magnetic bipole, which was encircled by negative polarity. The nonlinear force-free field extrapolation shows the presence of twisted field lines, which can represent a sigmoid structure. The rotation of the magnetic bipole may cause the twisting of magnetic field lines. An initial brightening appeared at one of the footpoints of the sigmoid, where the positive polarity slides toward a nearby negative polarity field region.more » The sigmoid displayed an ascending motion and then interacted intensively with the spine-like field. This type of null point reconnection in corona led to a violent blowout jet, and a quasi-circular flare ribbon was also produced. The magnetic emergence and rotational motion are the main contributors to the energy buildup for the flare, while the cancellation and collision might act as a trigger.« less

  17. Will COBE challenge the inflationary paradigm - Cosmic microwave background anisotropies versus large-scale streaming motions revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorski, K.M.

    1991-03-01

    The relation between cosmic microwave background (CMB) anisotropies and large-scale galaxy streaming motions is examined within the framework of inflationary cosmology. The minimal Sachs and Wolfe (1967) CMB anisotropies at large angular scales in the models with initial Harrison-Zel'dovich spectrum of inhomogeneity normalized to the local large-scale bulk flow, which are independent of the Hubble constant and specific nature of dark matter, are found to be within the anticipated ultimate sensitivity limits of COBE's Differential Microwave Radiometer experiment. For example, the most likely value of the quadrupole coefficient is predicted to be a2 not less than 7 x 10 tomore » the -6th, where equality applies to the limiting minimal model. If (1) COBE's DMR instruments perform well throughout the two-year period; (2) the anisotropy data are not marred by the systematic errors; (3) the large-scale motions retain their present observational status; (4) there is no statistical conspiracy in a sense of the measured bulk flow being of untypically high and the large-scale anisotropy of untypically low amplitudes; and (5) the low-order multipoles in the all-sky primordial fireball temperature map are not detected, the inflationary paradigm will have to be questioned. 19 refs.« less

  18. Main-streaming NFP into the Department of Health of the Philippines: opportunities and challenges.

    PubMed

    Infantado, R B

    1997-01-01

    In 1994, the Department of Health (DOH) of the Philippines issued a circular which reaffirmed natural family planning (NFP) as one of the basic services to be offered in all government family planning service sites and urged family planning workers to develop competence in teaching NFP methods. Although the circular represented a major policy breakthrough for the main-streaming of NFP it found the department without the capability or experience to directly provide NFP services. The two approaches the department is taking to respond to this new policy initiative are described in this paper. The selection of these approaches was influenced by the devolution of central government authority to local government units. The approaches include developing department capability in NFP training, service provision and service installation and creating a supportive program and policy environment. DOH partnership with an NFP non-government organization (NGO) has been critical in developing NFP capability within the government sector, particularly in NFP training and service installation.

  19. U.S. EPA'S SURVEY OF THE NATION'S NON-WADEABLE STREAMS AND RIVERS

    EPA Science Inventory

    The U.S. EPA is engaging states, tribes and other parties in designing a national survey to assess the condition of non-wadeable rivers and streams. The rivers survey is one of a series of surveys being implemented as a partnership among states, tribes and U.S. EPA, with the coll...

  20. Influence of a non-uniform free stream velocity distribution on performance/acoustics of counterrotating propeller configurations

    NASA Astrophysics Data System (ADS)

    Allen, C. S.; Korkan, K. D.

    1991-01-01

    A methodology for predicting the performance and acoustics of counterrotating propeller configurations was modified to take into account the effects of a non-uniform free stream velocity distribution entering the disk plane. The method utilizes the analytical techniques of Lock and Theodorson as described by Davidson to determine the influence of the non-uniform free stream velocity distribution in the prediction of the steady aerodynamic loads. The unsteady load contribution is determined according to the procedure of Leseture with rigid helical tip vortices simulating the previous rotations of each propeller. The steady and unsteady loads are combined to obtain the total blade loading required for acoustic prediction employing the Ffowcs Williams-Hawking equation as simplified by Succi with the assumption of compact sources. The numerical method is used to redesign the previous commuter class counterrotating propeller configuration of Denner. The specifications, performance, and acoustics of the new design are compared with the results of Denner thereby determining the influence of the non-uniform free stream velocity distribution on these metrics.

  1. Smelling directions: Olfaction modulates ambiguous visual motion perception

    PubMed Central

    Kuang, Shenbing; Zhang, Tao

    2014-01-01

    Senses of smells are often accompanied by simultaneous visual sensations. Previous studies have documented enhanced olfactory performance with concurrent presence of congruent color- or shape- related visual cues, and facilitated visual object perception when congruent smells are simultaneously present. These visual object-olfaction interactions suggest the existences of couplings between the olfactory pathway and the visual ventral processing stream. However, it is not known if olfaction can modulate visual motion perception, a function that is related to the visual dorsal stream. We tested this possibility by examining the influence of olfactory cues on the perceptions of ambiguous visual motion signals. We showed that, after introducing an association between motion directions and olfactory cues, olfaction could indeed bias ambiguous visual motion perceptions. Our result that olfaction modulates visual motion processing adds to the current knowledge of cross-modal interactions and implies a possible functional linkage between the olfactory system and the visual dorsal pathway. PMID:25052162

  2. Near-field non-radial motion generation from underground chemical explosions in jointed granite

    NASA Astrophysics Data System (ADS)

    Vorobiev, Oleg; Ezzedine, Souheil; Hurley, Ryan

    2018-01-01

    This paper describes analysis of non-radial ground motion generated by chemical explosions in a jointed rock formation during the Source Physics Experiment (SPE). Such motion makes it difficult to discriminate between various subsurface events such as explosions, implosions (i.e. mine collapse) and earthquakes. We apply 3-D numerical simulations to understand experimental data collected during the SPEs. The joints are modelled explicitly as compliant thin inclusions embedded into the rock mass. Mechanical properties of the rock and the joints as well as the joint spacing and orientation are inferred from experimental test data, and geophysical and geological characterization of the SPE site which is dominantly Climax Stock granitic outcrop. The role of various factors characterizing the joints such as joint spacing, frictional properties, orientation and persistence in generation of non-radial motion is addressed. The joints in granite at the SPE site are oriented in nearly orthogonal directions with two vertical sets dipping at 70-80 degrees with the same strike angle, one vertical set almost orthogonal to the first two and one shallow angle joint set dipping 15 degrees. In this study we establish the relationship between the joint orientation and azimuthal variations in the polarity of the observed shear motion. The majority of the shear motion is generated due to the effects of non-elastic sliding on the joints near the source, where the wave can create significant shear stress to overcome the cohesive forces at the joints. Near the surface the joints are less confined and are subject to sliding when the pressure waves are reflected. In the far field, where the cohesive forces on the joints cannot be overcome, additional shear motion can be generated due to elastic anisotropy of the rock mass given by preferred spatial orientations of compliant joints.

  3. Near-field non-radial motion generation from underground chemical explosions in jointed granite

    DOE PAGES

    Vorobiev, Oleg; Ezzedine, Souheil; Hurley, Ryan

    2017-09-22

    Here, this paper describes analysis of non-radial ground motion generated by chemical explosions in a jointed rock formation during the Source Physics Experiment (SPE). Such motion makes it difficult to discriminate between various subsurface events such as explosions, implosions (i.e. mine collapse) and earthquakes. We apply 3-D numerical simulations to understand experimental data collected during the SPEs. The joints are modelled explicitly as compliant thin inclusions embedded into the rock mass. Mechanical properties of the rock and the joints as well as the joint spacing and orientation are inferred from experimental test data, and geophysical and geological characterization of themore » SPE site which is dominantly Climax Stock granitic outcrop. The role of various factors characterizing the joints such as joint spacing, frictional properties, orientation and persistence in generation of non-radial motion is addressed. The joints in granite at the SPE site are oriented in nearly orthogonal directions with two vertical sets dipping at 70–80 degrees with the same strike angle, one vertical set almost orthogonal to the first two and one shallow angle joint set dipping 15 degrees. In this study we establish the relationship between the joint orientation and azimuthal variations in the polarity of the observed shear motion. The majority of the shear motion is generated due to the effects of non-elastic sliding on the joints near the source, where the wave can create significant shear stress to overcome the cohesive forces at the joints. Near the surface the joints are less confined and are subject to sliding when the pressure waves are reflected. In the far field, where the cohesive forces on the joints cannot be overcome, additional shear motion can be generated due to elastic anisotropy of the rock mass given by preferred spatial orientations of compliant joints.« less

  4. Near-field non-radial motion generation from underground chemical explosions in jointed granite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vorobiev, Oleg; Ezzedine, Souheil; Hurley, Ryan

    Here, this paper describes analysis of non-radial ground motion generated by chemical explosions in a jointed rock formation during the Source Physics Experiment (SPE). Such motion makes it difficult to discriminate between various subsurface events such as explosions, implosions (i.e. mine collapse) and earthquakes. We apply 3-D numerical simulations to understand experimental data collected during the SPEs. The joints are modelled explicitly as compliant thin inclusions embedded into the rock mass. Mechanical properties of the rock and the joints as well as the joint spacing and orientation are inferred from experimental test data, and geophysical and geological characterization of themore » SPE site which is dominantly Climax Stock granitic outcrop. The role of various factors characterizing the joints such as joint spacing, frictional properties, orientation and persistence in generation of non-radial motion is addressed. The joints in granite at the SPE site are oriented in nearly orthogonal directions with two vertical sets dipping at 70–80 degrees with the same strike angle, one vertical set almost orthogonal to the first two and one shallow angle joint set dipping 15 degrees. In this study we establish the relationship between the joint orientation and azimuthal variations in the polarity of the observed shear motion. The majority of the shear motion is generated due to the effects of non-elastic sliding on the joints near the source, where the wave can create significant shear stress to overcome the cohesive forces at the joints. Near the surface the joints are less confined and are subject to sliding when the pressure waves are reflected. In the far field, where the cohesive forces on the joints cannot be overcome, additional shear motion can be generated due to elastic anisotropy of the rock mass given by preferred spatial orientations of compliant joints.« less

  5. Detecting and characterizing circular RNAs

    PubMed Central

    Jeck, William R.; Sharpless, Norman E.

    2014-01-01

    Circular RNA transcripts were first identified in the early 1990s but knowledge of these species has remained limited, as their study has been difficult through traditional methods of RNA analysis. Now, novel bioinformatic approaches coupled with biochemical enrichment strategies and deep sequencing have allowed comprehensive studies of circular RNA species. Recent studies have revealed thousands of endogenous circular RNAs (circRNAs) in mammalian cells, some of which are highly abundant and evolutionarily conserved. Evidence is emerging that some circRNAs might regulate microRNA (miRNA) function, and roles in transcriptional control have also been suggested. Therefore, study of this class of non-coding RNAs has potential implications for therapeutic and research applications. We believe the key future challenge to the field will be to understand the regulation and function of these unusual molecules. PMID:24811520

  6. Coupled Rolling Motion: A Student Project in Non-Holonomic Mechanics

    ERIC Educational Resources Information Center

    Janova, Jitka; Musilova, Jana; Bartos, Jiri

    2009-01-01

    This paper presents an original undergraduate student project in theoretical mechanics: a demonstration of theory and experiment agreement inspired by a recently theoretically treated mechanical problem of coupled rolling motion of two cylinders. The problem of a mechanical system subjected to non-holonomic constraints is theoretically and…

  7. Compressible liquid flow in nano- or micro-sized circular tubes considering wall-liquid Lifshitz-van der Waals interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Xueling; Zhu, Weiyao; Cai, Qiang; Shi, Yutao; Wu, Xuehong; Jin, Tingxiang; Yang, Lianzhi; Song, Hongqing

    2018-06-01

    Although nano- and micro-scale phenomena for fluid flows are ubiquitous in tight oil reservoirs or in nano- or micro-sized channels, the mechanisms behind them remain unclear. In this study, we consider the wall-liquid interaction to investigate the flow mechanisms behind a compressible liquid flow in nano- or micro-sized circular tubes. We assume that the liquid is attracted by the wall surface primarily by the Lifshitz-van der Waals (LW) force, whereas electrostatic forces are negligible. The long-range LW force is thus introduced into the Navier-Stokes equations. The nonlinear equations of motion are decoupled by using the hydrodynamic vorticity-stream functions, from which an approximate analytical perturbation solution is obtained. The proposed model considers the LW force and liquid compressibility to obtain the velocity and pressure fields, which are consistent with experimentally observed micro-size effects. A smaller tube radius implies smaller dimensionless velocity, and when the tube radius decreases to a certain radius Rm, a fluid no longer flows, where Rm is the lower limit of the movable-fluid radius. The radius Rm is calculated, and the results are consistent with previous experimental results. These results reveal that micro-size effects are caused by liquid compressibility and wall-liquid interactions, such as the LW force, for a liquid flowing in nano- or micro-sized channels or pores. The attractive LW force enhances the flow's radial resistance, and the liquid compressibility transmits the radial resistance to the streaming direction via volume deformation, thereby decreasing the streaming velocity.

  8. Demonstrating the Direction of Angular Velocity in Circular Motion

    ERIC Educational Resources Information Center

    Demircioglu, Salih; Yurumezoglu, Kemal; Isik, Hakan

    2015-01-01

    Rotational motion is ubiquitous in nature, from astronomical systems to household devices in everyday life to elementary models of atoms. Unlike the tangential velocity vector that represents the instantaneous linear velocity (magnitude and direction), an angular velocity vector is conceptually more challenging for students to grasp. In physics…

  9. Communication: Adiabatic and non-adiabatic electron-nuclear motion: Quantum and classical dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, Julian; Kaiser, Dustin; Engel, Volker

    2016-05-07

    Using a model for coupled electronic-nuclear motion we investigate the range from negligible to strong non-adiabatic coupling. In the adiabatic case, the quantum dynamics proceeds in a single electronic state, whereas for strong coupling a complete transition between two adiabatic electronic states takes place. It is shown that in all coupling regimes the short-time wave-packet dynamics can be described using ensembles of classical trajectories in the phase space spanned by electronic and nuclear degrees of freedom. We thus provide an example which documents that the quantum concept of non-adiabatic transitions is not necessarily needed if electronic and nuclear motion ismore » treated on the same footing.« less

  10. Circular RNA profiling reveals that circular RNAs from ANXA2 can be used as new biomarkers for multiple sclerosis.

    PubMed

    Iparraguirre, Leire; Muñoz-Culla, Maider; Prada-Luengo, Iñigo; Castillo-Triviño, Tamara; Olascoaga, Javier; Otaegui, David

    2017-09-15

    Multiple sclerosis is an autoimmune disease, with higher prevalence in women, in whom the immune system is dysregulated. This dysregulation has been shown to correlate with changes in transcriptome expression as well as in gene-expression regulators, such as non-coding RNAs (e.g. microRNAs). Indeed, some of these have been suggested as biomarkers for multiple sclerosis even though few biomarkers have reached the clinical practice. Recently, a novel family of non-coding RNAs, circular RNAs, has emerged as a new player in the complex network of gene-expression regulation. MicroRNA regulation function through a 'sponge system' and a RNA splicing regulation function have been proposed for the circular RNAs. This regulating role together with their high stability in biofluids makes them seemingly good candidates as biomarkers. Given the dysregulation of both protein-coding and non-coding transcriptome that have been reported in multiple sclerosis patients, we hypothesised that circular RNA expression may also be altered. Therefore, we carried out expression profiling of 13.617 circular RNAs in peripheral blood leucocytes from multiple sclerosis patients and healthy controls finding 406 differentially expressed (P-value < 0.05, Fold change > 1.5) and demonstrate after validation that, circ_0005402 and circ_0035560 are underexpressed in multiple sclerosis patients and could be used as biomarkers of the disease. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Circular Coinduction

    NASA Technical Reports Server (NTRS)

    Rosu, Grigore; Goguen, Joseph; Norvig, Peter (Technical Monitor)

    2001-01-01

    Circular coinduction is a technique for behavioral reasoning that extends cobasis coinduction to specifications with circularities. Because behavioral satisfaction is not recursively enumerable, no algorithm can work for every behavioral statement. However. algorithms using circular coinduction can prove every practical behavioral result that we know. This paper proves the correctness of circular coinduction and some consequences.

  12. Circular RNAs: Unexpected outputs of many protein-coding genes

    PubMed Central

    Wilusz, Jeremy E.

    2017-01-01

    ABSTRACT Pre-mRNAs from thousands of eukaryotic genes can be non-canonically spliced to generate circular RNAs, some of which accumulate to higher levels than their associated linear mRNA. Recent work has revealed widespread mechanisms that dictate whether the spliceosome generates a linear or circular RNA. For most genes, circular RNA biogenesis via backsplicing is far less efficient than canonical splicing, but circular RNAs can accumulate due to their long half-lives. Backsplicing is often initiated when complementary sequences from different introns base pair and bring the intervening splice sites close together. This process is further regulated by the combinatorial action of RNA binding proteins, which allow circular RNAs to be expressed in unique patterns. Some genes do not require complementary sequences to generate RNA circles and instead take advantage of exon skipping events. It is still unclear what most mature circular RNAs do, but future investigations into their functions will be facilitated by recently described methods to modulate circular RNA levels. PMID:27571848

  13. Hamilton-Jacobi modelling of relative motion for formation flying.

    PubMed

    Kolemen, Egemen; Kasdin, N Jeremy; Gurfil, Pini

    2005-12-01

    A precise analytic model for the relative motion of a group of satellites in slightly elliptic orbits is introduced. With this aim, we describe the relative motion of an object relative to a circular or slightly elliptic reference orbit in the rotating Hill frame via a low-order Hamiltonian, and solve the Hamilton-Jacobi equation. This results in a first-order solution to the relative motion identical to the Clohessy-Wiltshire approach; here, however, rather than using initial conditions as our constants of the motion, we utilize the canonical momenta and coordinates. This allows us to treat perturbations in an identical manner, as in the classical Delaunay formulation of the two-body problem. A precise analytical model for the base orbit is chosen with the included effect of zonal harmonics (J(2), J(3), J(4)). A Hamiltonian describing the real relative motion is formed and by differing this from the nominal Hamiltonian, the perturbing Hamiltonian is obtained. Using the Hamilton equations, the variational equations for the new constants are found. In a manner analogous to the center manifold reduction procedure, the non-periodic part of the motion is canceled through a magnitude analysis leading to simple boundedness conditions that cancel the drift terms due to the higher order perturbations. Using this condition, the variational equations are integrated to give periodic solutions that closely approximate the results from numerical integration (1 mm/per orbit for higher order and eccentricity perturbations and 30 cm/per orbit for zonal perturbations). This procedure provides a compact and insightful analytic description of the resulting relative motion.

  14. Accuracy and repeatability positioning of high-performancel athe for non-circular turning

    NASA Astrophysics Data System (ADS)

    Majda, Paweł; Powałka, Bartosz

    2017-11-01

    This paper presents research on the accuracy and repeatability of CNC axis positioning in an innovative lathe with an additional Xs axis. This axis is used to perform movements synchronized with the angular position of the main drive, i.e. the spindle, and with the axial feed along the Z axis. This enables the one-pass turning of non-circular surfaces, rope and trapezoidal threads, as well as the surfaces of rotary tools such as a gear cutting hob, etc. The paper presents and discusses the interpretation of results and the calibration effects of positioning errors in the lathe's numerical control system. Finally, it shows the geometric characteristics of the rope thread turned at various spindle speeds, including before and after-correction of the positioning error of the Xs axis.

  15. Learning Relative Motion Concepts in Immersive and Non-immersive Virtual Environments

    NASA Astrophysics Data System (ADS)

    Kozhevnikov, Michael; Gurlitt, Johannes; Kozhevnikov, Maria

    2013-12-01

    The focus of the current study is to understand which unique features of an immersive virtual reality environment have the potential to improve learning relative motion concepts. Thirty-seven undergraduate students learned relative motion concepts using computer simulation either in immersive virtual environment (IVE) or non-immersive desktop virtual environment (DVE) conditions. Our results show that after the simulation activities, both IVE and DVE groups exhibited a significant shift toward a scientific understanding in their conceptual models and epistemological beliefs about the nature of relative motion, and also a significant improvement on relative motion problem-solving tests. In addition, we analyzed students' performance on one-dimensional and two-dimensional questions in the relative motion problem-solving test separately and found that after training in the simulation, the IVE group performed significantly better than the DVE group on solving two-dimensional relative motion problems. We suggest that egocentric encoding of the scene in IVE (where the learner constitutes a part of a scene they are immersed in), as compared to allocentric encoding on a computer screen in DVE (where the learner is looking at the scene from "outside"), is more beneficial than DVE for studying more complex (two-dimensional) relative motion problems. Overall, our findings suggest that such aspects of virtual realities as immersivity, first-hand experience, and the possibility of changing different frames of reference can facilitate understanding abstract scientific phenomena and help in displacing intuitive misconceptions with more accurate mental models.

  16. NCLscan: accurate identification of non-co-linear transcripts (fusion, trans-splicing and circular RNA) with a good balance between sensitivity and precision.

    PubMed

    Chuang, Trees-Juen; Wu, Chan-Shuo; Chen, Chia-Ying; Hung, Li-Yuan; Chiang, Tai-Wei; Yang, Min-Yu

    2016-02-18

    Analysis of RNA-seq data often detects numerous 'non-co-linear' (NCL) transcripts, which comprised sequence segments that are topologically inconsistent with their corresponding DNA sequences in the reference genome. However, detection of NCL transcripts involves two major challenges: removal of false positives arising from alignment artifacts and discrimination between different types of NCL transcripts (trans-spliced, circular or fusion transcripts). Here, we developed a new NCL-transcript-detecting method ('NCLscan'), which utilized a stepwise alignment strategy to almost completely eliminate false calls (>98% precision) without sacrificing true positives, enabling NCLscan outperform 18 other publicly-available tools (including fusion- and circular-RNA-detecting tools) in terms of sensitivity and precision, regardless of the generation strategy of simulated dataset, type of intragenic or intergenic NCL event, read depth of coverage, read length or expression level of NCL transcript. With the high accuracy, NCLscan was applied to distinguishing between trans-spliced, circular and fusion transcripts on the basis of poly(A)- and nonpoly(A)-selected RNA-seq data. We showed that circular RNAs were expressed more ubiquitously, more abundantly and less cell type-specifically than trans-spliced and fusion transcripts. Our study thus describes a robust pipeline for the discovery of NCL transcripts, and sheds light on the fundamental biology of these non-canonical RNA events in human transcriptome. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Stop Faking It! Finally Understanding Science So You Can Teach It. Force and Motion.

    ERIC Educational Resources Information Center

    Robertson, William C.

    This book aims to develop an understanding of basic physics concepts among school teachers in grades 3-8. The concepts covered in this book include force, motion, gravity, and circular motion without intimidating detailed units and formulas. Chapters include: (1) "Newton's First One"; (2) "In Which We Describe Motion and Then Change…

  18. Turbulent flow computation in a circular U-Bend

    NASA Astrophysics Data System (ADS)

    Miloud, Abdelkrim; Aounallah, Mohammed; Belkadi, Mustapha; Adjlout, Lahouari; Imine, Omar; Imine, Bachir

    2014-03-01

    Turbulent flows through a circular 180° curved bend with a curvature ratio of 3.375, defined as the the bend mean radius to pipe diameter is investigated numerically for a Reynolds number of 4.45×104. The computation is performed for a U-Bend with full long pipes at the entrance and at the exit. The commercial ANSYS FLUENT is used to solve the steady Reynolds-Averaged Navier-Stokes (RANS) equations. The performances of standard k-ɛ and the second moment closure RSM models are evaluated by comparing their numerical results against experimental data and testing their capabilities to capture the formation and extend this turbulence driven vortex. It is found that the secondary flows occur in the cross-stream half-plane of such configurations and primarily induced by high anisotropy of the cross-stream turbulent normal stresses near the outer bend.

  19. An application of Galactic parallax: the distance to the tidal stream GD-1

    NASA Astrophysics Data System (ADS)

    Eyre, Andy

    2010-04-01

    We assess the practicality of computing the distance to stellar streams in our Galaxy, using the method of Galactic parallax suggested by Eyre & Binney. We find that the uncertainty in Galactic parallax is dependent upon the specific geometry of the problem in question. In the case of the tidal stream GD-1, the problem geometry indicates that available proper-motion data, with individual accuracy ~4masyr-1, should allow estimation of its distance with about 50 per cent uncertainty. Proper motions accurate to ~1masyr-1, which are expected from the forthcoming Pan-STARRS PS-1 survey, will allow estimation of its distance to about 10 per cent uncertainty. Proper motions from the future Large Synoptic Survey Telescope (LSST) and Gaia projects will be more accurate still, and will allow the parallax for a stream 30 kpc distant to be measured with ~14 per cent uncertainty. We demonstrate the feasibility of the method and show that our uncertainty estimates are accurate by computing Galactic parallax using simulated data for the GD-1 stream. We also apply the method to actual data for the GD-1 stream, published by Koposov, Rix & Hogg. With the exception of one datum, the distances estimated using Galactic parallax match photometric estimates with less than 1 kpc discrepancy. The scatter in the distances recovered using Galactic parallax is very low, suggesting that the proper-motion uncertainty reported by Koposov et al. is in fact overestimated. We conclude that the GD-1 stream is (8 +/- 1)kpc distant, on a retrograde orbit inclined 37° to the plane, and that the visible portion of the stream is likely to be near pericentre.

  20. Two-stream instability with time-dependent drift velocity

    DOE PAGES

    Qin, Hong; Davidson, Ronald C.

    2014-06-26

    The classical two-stream instability driven by a constant relative drift velocity between two plasma components is extended to the case with time-dependent drift velocity. A solution method is developed to rigorously define and calculate the instability growth rate for linear perturbations relative to the time-dependent unperturbed two-stream motions. The stability diagrams for the oscillating two-stream instability are presented over a large region of parameter space. It is shown that the growth rate for the classical two-stream instability can be significantly reduced by adding an oscillatory component to the relative drift velocity.

  1. The National Stream Quality Accounting Network (NASQAN) - Some questions and answers

    USGS Publications Warehouse

    Ficke, John F.; Hawkinson, Richard O.

    1975-01-01

    One of the major new efforts of the U.S. Geological Survey is the National Stream Quality Accounting Network (NASQAN). This circular is intended to answer some of the frequently asked questions concerning concepts used in establishing NASQAN, its purposes, design, value, and future plans.

  2. Non-rigid, but not rigid, motion interferes with the processing of structural face information in developmental prosopagnosia.

    PubMed

    Maguinness, Corrina; Newell, Fiona N

    2015-04-01

    There is growing evidence to suggest that facial motion is an important cue for face recognition. However, it is poorly understood whether motion is integrated with facial form information or whether it provides an independent cue to identity. To provide further insight into this issue, we compared the effect of motion on face perception in two developmental prosopagnosics and age-matched controls. Participants first learned faces presented dynamically (video), or in a sequence of static images, in which rigid (viewpoint) or non-rigid (expression) changes occurred. Immediately following learning, participants were required to match a static face image to the learned face. Test face images varied by viewpoint (Experiment 1) or expression (Experiment 2) and were learned or novel face images. We found similar performance across prosopagnosics and controls in matching facial identity across changes in viewpoint when the learned face was shown moving in a rigid manner. However, non-rigid motion interfered with face matching across changes in expression in both individuals with prosopagnosia compared to the performance of control participants. In contrast, non-rigid motion did not differentially affect the matching of facial expressions across changes in identity for either prosopagnosics (Experiment 3). Our results suggest that whilst the processing of rigid motion information of a face may be preserved in developmental prosopagnosia, non-rigid motion can specifically interfere with the representation of structural face information. Taken together, these results suggest that both form and motion cues are important in face perception and that these cues are likely integrated in the representation of facial identity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Coherent Motion Sensitivity Predicts Individual Differences in Subtraction

    ERIC Educational Resources Information Center

    Boets, Bart; De Smedt, Bert; Ghesquiere, Pol

    2011-01-01

    Recent findings suggest deficits in coherent motion sensitivity, an index of visual dorsal stream functioning, in children with poor mathematical skills or dyscalculia, a specific learning disability in mathematics. We extended these data using a longitudinal design to unravel whether visual dorsal stream functioning is able to "predict"…

  4. The motion of an Earth satellite after imposition of a non-holonomic third-order constraint

    NASA Astrophysics Data System (ADS)

    Dodonov, V. V.; Soltakhanov, Sh. Kh.; Yushkov, M. P.

    2018-05-01

    We consider the motion of an Earth satellite in the case when, starting from a certain instant of time, the magnitude of its acceleration remains unchanged. This requirement is equivalent to a second-order nonlinear non-holonomic constraint imposed to the satellite motion. The results of calculations are given for the motion of three Soviet satellites, two of which are located on highly elliptical orbits.

  5. A Simplified Design with a Toothed Belt and Non-Circular Pulleys to Separate Parts from a Magazine File

    NASA Astrophysics Data System (ADS)

    Hanke, U.; Modler, K.-H.; Neumann, R.; Fischer, C.

    The objective of this paper is to simplify a very complex guidance mechanism, currently used for lid separating issues in a packaging-machine. The task of this machine is to pick up a lid from a magazine file, rotate it around 180° and place it on tins. The developed mechanism works successfully but with a very complex construction. It consists of a planetary cam mechanism, combined with a toothed gear (with a constant transmission ratio) and a guiding mechanism with a toothed belt and circular pulleys. Such complex constructions are very common in industrial solutions. The idea of the authors is to show a much simpler design in solving the same problem. They developed a guidance mechanism realizing the same function, consisting only of a toothed belt with non-circular pulleys. The used parts are common trade articles.

  6. Nonlinear Drift-Kinetic Equation in the Presence of a Circularly Polarized Wave

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Krivorutsky, E. N.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Equations of the single particle motion and nonlinear kinetic equation for plasma in the presence of a circularly polarized wave of arbitrary frequency in the drift approximation are presented. The nonstationarity and inhomogeneity of the plasma-wave system are taken into account. The time dependent part of the ponderomotive force is discussed.

  7. Groundtruthing and potential for predicting acid deposition impacts in headwater streams using bedrock geology, GIS, angling, and stream chemistry.

    PubMed

    Kirby, C S; McInerney, B; Turner, M D

    2008-04-15

    Atmospheric acid deposition is of environmental concern worldwide, and the determination of impacts in remote areas can be problematic. Rainwater in central Pennsylvania, USA, has a mean pH of approximately 4.4. Bedrock varies dramatically in its ability to neutralize acidity. A GIS database simplified reconnaissance of non-carbonate bedrock streams in the Valley and Ridge Province and identified potentially chronically impacted headwater streams, which were sampled for chemistry and brook trout. Stream sites (n=26) that originate in and flow through the Tuscarora had a median pH of 5.0 that was significantly different from other formations. Shawangunk streams (n=6) and non-Tuscarora streams (n=20) had a median pH of 6.0 and 6.3, respectively. Mean alkalinity for non-Tuscarora streams (2.6 mg/L CaCO(3)) was higher than the mean for Tuscarora streams (0.5 mg/L). Lower pH and alkalinity suggest that the buffering capability of the Tuscarora is inferior to that of adjacent sandstones. Dissolved aluminum concentrations were much higher for Tuscarora streams (0.2 mg/L; approximately the lethal limit for brook trout) than for non-Tuscarora streams (0.03 mg/L) or Shawangunk streams (0.02 mg/L). Hook-and-line methods determined the presence/absence of brook trout in 47 stream reaches with suitable habitat. Brook trout were observed in 21 of 22 non-Tuscarora streams, all 6 Shawangunk streams, and only 9 of 28 Tuscarora stream sites. Carefully-designed hook-and-line sampling can determine the presence or absence of brook trout and help confirm biological impacts of acid deposition. 15% of 334 km of Tuscarora stream lengths are listed as "impaired" due to atmospheric deposition by the Pennsylvania Department of Environmental Protection. 65% of the 101 km of Tuscarora stream lengths examined in this study were impaired.

  8. Self-similar motion of a Nambu-Goto string

    NASA Astrophysics Data System (ADS)

    Igata, Takahisa; Houri, Tsuyoshi; Harada, Tomohiro

    2016-09-01

    We study the self-similar motion of a string in a self-similar spacetime by introducing the concept of a self-similar string, which is defined as the world sheet to which a homothetic vector field is tangent. It is shown that in Nambu-Goto theory, the equations of motion for a self-similar string reduce to those for a particle. Moreover, under certain conditions such as the hypersurface orthogonality of the homothetic vector field, the equations of motion for a self-similar string simplify to the geodesic equations on a (pseudo)Riemannian space. As a concrete example, we investigate a self-similar Nambu-Goto string in a spatially flat Friedmann-Lemaître-Robertson-Walker expanding universe with self-similarity and obtain solutions of open and closed strings, which have various nontrivial configurations depending on the rate of the cosmic expansion. For instance, we obtain a circular solution that evolves linearly in the cosmic time while keeping its configuration by the balance between the effects of the cosmic expansion and string tension. We also show the instability for linear radial perturbation of the circular solutions.

  9. Non-conscious processing of motion coherence can boost conscious access.

    PubMed

    Kaunitz, Lisandro; Fracasso, Alessio; Lingnau, Angelika; Melcher, David

    2013-01-01

    Research on the scope and limits of non-conscious vision can advance our understanding of the functional and neural underpinnings of visual awareness. Here we investigated whether distributed local features can be bound, outside of awareness, into coherent patterns. We used continuous flash suppression (CFS) to create interocular suppression, and thus lack of awareness, for a moving dot stimulus that varied in terms of coherence with an overall pattern (radial flow). Our results demonstrate that for radial motion, coherence favors the detection of patterns of moving dots even under interocular suppression. Coherence caused dots to break through the masks more often: this indicates that the visual system was able to integrate low-level motion signals into a coherent pattern outside of visual awareness. In contrast, in an experiment using meaningful or scrambled biological motion we did not observe any increase in the sensitivity of detection for meaningful patterns. Overall, our results are in agreement with previous studies on face processing and with the hypothesis that certain features are spatiotemporally bound into coherent patterns even outside of attention or awareness.

  10. Two-year-olds with autism orient to non-social contingencies rather than biological motion.

    PubMed

    Klin, Ami; Lin, David J; Gorrindo, Phillip; Ramsay, Gordon; Jones, Warren

    2009-05-14

    Typically developing human infants preferentially attend to biological motion within the first days of life. This ability is highly conserved across species and is believed to be critical for filial attachment and for detection of predators. The neural underpinnings of biological motion perception are overlapping with brain regions involved in perception of basic social signals such as facial expression and gaze direction, and preferential attention to biological motion is seen as a precursor to the capacity for attributing intentions to others. However, in a serendipitous observation, we recently found that an infant with autism failed to recognize point-light displays of biological motion, but was instead highly sensitive to the presence of a non-social, physical contingency that occurred within the stimuli by chance. This observation raised the possibility that perception of biological motion may be altered in children with autism from a very early age, with cascading consequences for both social development and the lifelong impairments in social interaction that are a hallmark of autism spectrum disorders. Here we show that two-year-olds with autism fail to orient towards point-light displays of biological motion, and their viewing behaviour when watching these point-light displays can be explained instead as a response to non-social, physical contingencies--physical contingencies that are disregarded by control children. This observation has far-reaching implications for understanding the altered neurodevelopmental trajectory of brain specialization in autism.

  11. Bounded Kalman filter method for motion-robust, non-contact heart rate estimation

    PubMed Central

    Prakash, Sakthi Kumar Arul; Tucker, Conrad S.

    2018-01-01

    The authors of this work present a real-time measurement of heart rate across different lighting conditions and motion categories. This is an advancement over existing remote Photo Plethysmography (rPPG) methods that require a static, controlled environment for heart rate detection, making them impractical for real-world scenarios wherein a patient may be in motion, or remotely connected to a healthcare provider through telehealth technologies. The algorithm aims to minimize motion artifacts such as blurring and noise due to head movements (uniform, random) by employing i) a blur identification and denoising algorithm for each frame and ii) a bounded Kalman filter technique for motion estimation and feature tracking. A case study is presented that demonstrates the feasibility of the algorithm in non-contact estimation of the pulse rate of subjects performing everyday head and body movements. The method in this paper outperforms state of the art rPPG methods in heart rate detection, as revealed by the benchmarked results. PMID:29552419

  12. Non-translational Molecular Diffusive Motion on Two Different Time Scales in Alkane Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, S.-K.; Bai, M.; Taub, H.; Mamontov, E.; Herwig, K. W.; Hansen, F. Y.; Copley, J. R. D.; Jenkins, T.; Tyagi, M.; Volkmann, U. G.

    2009-03-01

    Using quasielastic neutron scattering, we have investigated molecular diffusive motion in n-C32H66 nanoparticles whose structure and phase transitions have been studied previously.^2 The spectra reveal non-translational (dispersionless) diffusive motion occurring simultaneously on time scales of ˜1 ns and ˜40 ps. The onset of the faster motion occurs in the crystalline phase at least 15 K below the melting point and is tentatively identified with rotation about the long molecular axis. Similarly, we suggest that the slower motion involves molecular conformational changes whose onset appears to coincide with the abrupt transition to the bulk rotator phase about 3 K below melting. These two types of diffusive motion bear a strong resemblance to those observed previously in C24 monolayers adsorbed on a graphite surface.^3 ^2M. Bai et al., Europhys. Lett. 79, 26003 (2007). ^3F. Y. Hansen et al., Phys. Rev. Lett. 92, 046103 (2004)].

  13. 76 FR 62148 - Title VI; Proposed Circular, Environmental Justice; Proposed Circular

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ...-0055] Title VI; Proposed Circular, Environmental Justice; Proposed Circular AGENCY: Federal Transit... the September 29, 2011, Federal Register Notices titled ``Title VI; Proposed Circular'' and... September 29, 2011, Federal Register Notices titled ``Title VI; Proposed Circular'' (76 FR 60593) and...

  14. Effectiveness of backpack electrofishing for removal of non-native fishes from a small warm-water stream

    USGS Publications Warehouse

    Ward, David L.; O'neill, Matthew W.; Ka'apu-Lyons, Cassie

    2015-01-01

    Electrofishing is commonly used when renovating small streams to remove nuisance fishes but the likelihood of complete eradication of unwanted species, particularly warm-water fishes, is unknown. In October of 2008, we electrofished Bonita Creek, a small stream with base flows (<0.56 m3/s) in southern Arizona, and then treated the stream with rotenone to kill all of the remaining fish and quantify the effectiveness of single and multiple-pass electro fishing. Six, 100-m transects were electro fished on three consecutive days followed by a single treatment with rotenone. Fish caught using electrofishing were identified, counted and removed from each transect daily and then compared to numbers of dead fish collected during the subsequent rotenone application. Electrofishing effectiveness was highly variable among transects. Single-pass electrofishing caught an average of 23% (95% CI=5 to 40%) of the fish present, and three-pass electrofishing on consecutive days caught on average 55% (95% CI=28 to 83%) of the fish in each transect. Native Arizona fishes were more susceptible to electrofishing (77 % captured) than non-native species (54% captured), though native fish were rare. Transects in Bonita Creek averaged 3.6±1.5 m wide and 0.25±0.20 m deep (max depth 1.2 m). Bonita Creek is a small first-order stream which exhibits ideal conditions for backpack electrofishing, yet we captured a relatively small percentage of the fish present. This suggests that complete removal of non-native warm-water fishes using backpack electrofishing is not likely to be successful, especially in larger more complex streams.

  15. A Galerkin method for linear PDE systems in circular geometries with structural acoustic applications

    NASA Technical Reports Server (NTRS)

    Smith, Ralph C.

    1994-01-01

    A Galerkin method for systems of PDE's in circular geometries is presented with motivating problems being drawn from structural, acoustic, and structural acoustic applications. Depending upon the application under consideration, piecewise splines or Legendre polynomials are used when approximating the system dynamics with modifications included to incorporate the analytic solution decay near the coordinate singularity. This provides an efficient method which retains its accuracy throughout the circular domain without degradation at singularity. Because the problems under consideration are linear or weakly nonlinear with constant or piecewise constant coefficients, transform methods for the problems are not investigated. While the specific method is developed for the two dimensional wave equations on a circular domain and the equation of transverse motion for a thin circular plate, examples demonstrating the extension of the techniques to a fully coupled structural acoustic system are used to illustrate the flexibility of the method when approximating the dynamics of more complex systems.

  16. Genome-wide Discovery of Circular RNAs in the Leaf and Seedling Tissues of Arabidopsis Thaliana

    PubMed Central

    Dou, Yongchao; Li, Shengjun; Yang, Weilong; Liu, Kan; Du, Qian; Ren, Guodong; Yu, Bin; Zhang, Chi

    2017-01-01

    Background: Recently, identification and functional studies of circular RNAs, a type of non-coding RNAs arising from a ligation of 3’ and 5’ ends of a linear RNA molecule, were conducted in mammalian cells with the development of RNA-seq technology. Method: Since compared with animals, studies on circular RNAs in plants are less thorough, a genome-wide identification of circular RNA candidates in Arabidopsis was conducted with our own developed bioinformatics tool to several existing RNA-seq datasets specifically for non-coding RNAs. Results: A total of 164 circular RNA candidates were identified from RNA-seq data, and 4 circular RNA transcripts, including both exonic and intronic circular RNAs, were experimentally validated. Interestingly, our results show that circular RNA transcripts are enriched in the photosynthesis system for the leaf tissue and correlated to the higher expression levels of their parent genes. Sixteen out of all 40 genes that have circular RNA candidates are related to the photosynthesis system, and out of the total 146 exonic circular RNA candidates, 63 are found in chloroplast. PMID:29081691

  17. Interaction of Perceptual Grouping and Crossmodal Temporal Capture in Tactile Apparent-Motion

    PubMed Central

    Chen, Lihan; Shi, Zhuanghua; Müller, Hermann J.

    2011-01-01

    Previous studies have shown that in tasks requiring participants to report the direction of apparent motion, task-irrelevant mono-beeps can “capture” visual motion perception when the beeps occur temporally close to the visual stimuli. However, the contributions of the relative timing of multimodal events and the event structure, modulating uni- and/or crossmodal perceptual grouping, remain unclear. To examine this question and extend the investigation to the tactile modality, the current experiments presented tactile two-tap apparent-motion streams, with an SOA of 400 ms between successive, left-/right-hand middle-finger taps, accompanied by task-irrelevant, non-spatial auditory stimuli. The streams were shown for 90 seconds, and participants' task was to continuously report the perceived (left- or rightward) direction of tactile motion. In Experiment 1, each tactile stimulus was paired with an auditory beep, though odd-numbered taps were paired with an asynchronous beep, with audiotactile SOAs ranging from −75 ms to 75 ms. Perceived direction of tactile motion varied systematically with audiotactile SOA, indicative of a temporal-capture effect. In Experiment 2, two audiotactile SOAs—one short (75 ms), one long (325 ms)—were compared. The long-SOA condition preserved the crossmodal event structure (so the temporal-capture dynamics should have been similar to that in Experiment 1), but both beeps now occurred temporally close to the taps on one side (even-numbered taps). The two SOAs were found to produce opposite modulations of apparent motion, indicative of an influence of crossmodal grouping. In Experiment 3, only odd-numbered, but not even-numbered, taps were paired with auditory beeps. This abolished the temporal-capture effect and, instead, a dominant percept of apparent motion from the audiotactile side to the tactile-only side was observed independently of the SOA variation. These findings suggest that asymmetric crossmodal grouping leads to an

  18. Post-Newtonian Circular Restricted 3-Body Problem: Schwarzschild primaries

    NASA Astrophysics Data System (ADS)

    Dubeibe, F. L.; Lora-Clavijo, F. D.; González, G. A.

    2017-07-01

    The restricted three-body problem (RTBP) has been extensively studied to investigate the stability of the solar system, extra-solar subsystems, asteroid capture, and the dynamics of two massive black holes orbited by a sun. In the present work, we study the stability of the planar circular restricted three-body problem in the context of post-Newtonian approximations. First of all, we review the results obtained from the post-Newtonian equations of motion calculated in the framework of the Einstein-Infeld-Hoffmann formalism (EIH). Therefore, using the Fodor-Hoenselers-Perjes formalism (FHP), we have performed an expansion of the gravitational potential for two primaries, deriving a new system of equations of motion, which unlike the EIH-approach, preserves the Jacobian integral of motion. Additionally, we have obtained approximate expressions for the Lagrange points in terms of a mass parameter μ, where it is found that the deviations from the classical regime are larger for the FHP than for the EIH equations.

  19. Circularly polarized luminescence of syndiotactic polystyrene

    NASA Astrophysics Data System (ADS)

    Rizzo, Paola; Abbate, Sergio; Longhi, Giovanna; Guerra, Gaetano

    2017-11-01

    Syndiotactic polystyrene (s-PS) films, when crystallized from the amorphous state by temporary sorption of non-racemic guest molecules (like carvone) not only exhibit unusually high optical activity, both in the UV-Visible and Infrared ranges, but also present circularly polarized luminescence (CPL) with high dissymmetry ratios (g = ΔI/I values in the range 0.02-0.03). Experimental evidences provide support, rather than to the usual molecular circular dichroism, to a supramolecular chiral optical response being extrinsic to the site of photon absorption and emission, possibly associated with a helical morphology of s-PS crystallites.

  20. Regional Curves of Bankfull Channel Geometry for Non-Urban Streams in the Piedmont Physiographic Province, Virginia

    USGS Publications Warehouse

    Lotspeich, R. Russell

    2009-01-01

    Natural-channel design involves constructing a stream channel with the dimensions, slope, and plan-view pattern that would be expected to transport water and sediment and yet maintain habitat and aesthetics consistent with unimpaired stream segments, or reaches. Regression relations for bankfull stream characteristics based on drainage area, referred to as 'regional curves,' are used in natural stream channel design to verify field determinations of bankfull discharge and stream channel characteristics. One-variable, ordinary least-squares regressions relating bankfull discharge, bankfull cross-sectional area, bankfull width, bankfull mean depth, and bankfull slope to drainage area were developed on the basis of data collected at 17 streamflow-gaging stations in rural areas with less than 20 percent urban land cover within the basin area (non-urban areas) of the Piedmont Physiographic Province in Virginia. These regional curves can be used to estimate the bankfull discharge and bankfull channel geometry when the drainage area of a watershed is known. Data collected included bankfull cross-sectional geometry, flood-plain geometry, and longitudinal profile data. In addition, particle-size distributions of streambed material were determined, and data on basin characteristics were compiled for each reach. Field data were analyzed to determine bankfull cross-sectional area, bankfull width, bankfull mean depth, bankfull discharge, bankfull channel slope, and D50 and D84 particle sizes at each site. The bankfull geometry from the 17 sites surveyed during this study represents the average of two riffle cross sections for each site. Regional curves developed for the 17 sites had coefficient of determination (R2) values of 0.950 for bankfull cross-sectional area, 0.913 for bankfull width, 0.915 for bankfull mean depth, 0.949 for bankfull discharge, and 0.497 for bankfull channel slope. The regional curves represent conditions for streams with defined channels and bankfull

  1. Circular RNA biogenesis can proceed through an exon-containing lariat precursor.

    PubMed

    Barrett, Steven P; Wang, Peter L; Salzman, Julia

    2015-06-09

    Pervasive expression of circular RNA is a recently discovered feature of eukaryotic gene expression programs, yet its function remains largely unknown. The presumed biogenesis of these RNAs involves a non-canonical 'backsplicing' event. Recent studies in mammalian cell culture posit that backsplicing is facilitated by inverted repeats flanking the circularized exon(s). Although such sequence elements are common in mammals, they are rare in lower eukaryotes, making current models insufficient to describe circularization. Through systematic splice site mutagenesis and the identification of splicing intermediates, we show that circular RNA in Schizosaccharomyces pombe is generated through an exon-containing lariat precursor. Furthermore, we have performed high-throughput and comprehensive mutagenesis of a circle-forming exon, which enabled us to discover a systematic effect of exon length on RNA circularization. Our results uncover a mechanism for circular RNA biogenesis that may account for circularization in genes that lack noticeable flanking intronic secondary structure.

  2. LED downlights with non-circular spots

    NASA Astrophysics Data System (ADS)

    Parkyn, William A.; Pelka, David G.

    2005-09-01

    The ubiquitous downlight inhabits our ceilings by the millions. Hot, inefficient, and electrically wasteful, it is next in line for replacement by the latest high-brightness, high-efficacy white LEDs. The conventional downlight configuration of a large incandescent spotlight in a low-cost, ceiling-recessed metal can, represents the culmination of old technology, fated never to improve significantly. Incandescent downlights add greatly both to direct and indirect electrical consumption, with the lamps requiring relatively frequent replacement. The small size of LED emitters means small optical elements can produce much higher-quality beams than incandescent spotlight-lamps can produce. Herein we introduce compact high-luminosity LED downlights with lenses that deliver uniform illumination to delimited targets such as tables. One version utilizes circular lenses and micro-diffuser films to deliver square outputs. The other uses lenses cut to the target shape. In particular, one of these lenses is the first to offer a semicircular spot suitable for gambling tables.

  3. 2. Northwest circular bastion, seen from edge of southwest circular ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Northwest circular bastion, seen from edge of southwest circular bastion wall. Metal roof beams extend up to form peak. World War II gun installation at right. - Fort Hamilton, Northwest Circular Bastion, Rose Island, Newport, Newport County, RI

  4. Prevention of Bridge Scour with Non-uniform Circular Piers Plane under Steady Flows

    NASA Astrophysics Data System (ADS)

    Chen, Hsing-Ting; Wang, Chuan-Yi

    2017-04-01

    River bed scour and deposit variation extremely severe because of most of rivers are steep and rapid flows, and river discharge extremely unstable and highly unsteady during different seasons in Taiwan. In addition to the obstruction of piers foundation, it causes local scour and threatens the safety of bridges. In the past, riprap, wire gabion or wrap pier works were adopted as the protections of piers foundation, but there were no effectual outcomes. The events of break off piers still happen sometimes. For example, typhoon Kalmaegi (2008) and Morakot (2009) caused heavy damages on Ho-Fon bridge in the Da-jia river and Shuang-Yuan bridge in the Kao-Ping river, respectively. Accordingly, to understand the piers scour system and propose an appropriate protection of piers foundation becomes an important topic for this study currently. This research improves the protection works of the existing uniform bridge pier (diameter D) to ensure the safety of the bridge. The non-uniform plane of circular piers (diameter D*) are placed on the top of a bridge pier foundation to reduce the down flow impacting energy and scour by its' surface roughness characteristics. This study utilize hydraulic models to simulate local scour depth and scour depth change with time for non-uniform pier diameter ratio D/D* of 0.3,0.4,0.5,0.6,0.7 and 0.8, and different type pier and initial bed level (Y) relative under the foundation top elevation under steady flows of V/Vc=0.95,0.80 and 0.65. The research results show that the scour depth increases with an increase of flow intensity (V/Vc) under different types of steady flow hydrographs. The scour depth decreases with increase of initial bed level (Y=+0.2D*,0D*and -0.2D*) relative under the foundation top elevation of the different type pier. The maximum scour depth occurred in the front of the pier for all conditions. Because of the scouring retardation by the non-uniform plane of foundation, the scour depth is reduced for the un-exposed bridge

  5. Motion-based nearest vector metric for reference frame selection in the perception of motion.

    PubMed

    Agaoglu, Mehmet N; Clarke, Aaron M; Herzog, Michael H; Ögmen, Haluk

    2016-05-01

    We investigated how the visual system selects a reference frame for the perception of motion. Two concentric arcs underwent circular motion around the center of the display, where observers fixated. The outer (target) arc's angular velocity profile was modulated by a sine wave midflight whereas the inner (reference) arc moved at a constant angular speed. The task was to report whether the target reversed its direction of motion at any point during its motion. We investigated the effects of spatial and figural factors by systematically varying the radial and angular distances between the arcs, and their relative sizes. We found that the effectiveness of the reference frame decreases with increasing radial- and angular-distance measures. Drastic changes in the relative sizes of the arcs did not influence motion reversal thresholds, suggesting no influence of stimulus form on perceived motion. We also investigated the effect of common velocity by introducing velocity fluctuations to the reference arc as well. We found no effect of whether or not a reference frame has a constant motion. We examined several form- and motion-based metrics, which could potentially unify our findings. We found that a motion-based nearest vector metric can fully account for all the data reported here. These findings suggest that the selection of reference frames for motion processing does not result from a winner-take-all process, but instead, can be explained by a field whose strength decreases with the distance between the nearest motion vectors regardless of the form of the moving objects.

  6. The Non-Gaussian Nature of Prostate Motion Based on Real-Time Intrafraction Tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yuting; Liu, Tian; Yang, Wells

    2013-10-01

    Purpose: The objective of this work is to test the validity of the Gaussian approximation for prostate motion through characterization of its spatial distribution. Methods and Materials: Real-time intrafraction prostate motion was observed using Calypso 4-dimensional (4D) nonradioactive electromagnetic tracking system. We report the results from a total of 1024 fractions from 31 prostate cancer patients. First, the correlation of prostate motion in right/left (RL), anteroposterior (AP), and superoinferior (SI) direction were determined using Pearson's correlation of coefficient. Then the spatial distribution of prostate motion was analyzed for individual fraction, individual patient including all fractions, and all patients including allmore » fractions. The displacement in RL, AP, SI, oblique, or total direction is fitted into a Gaussian distribution, and a Lilliefors test was used to evaluate the validity of the hypothesis that the displacement is normally distributed. Results: There is high correlation in AP/SI direction (61% of fractions with medium or strong correlation). This is consistent with the longitudinal oblique motion of the prostate, and likely the effect from respiration on an organ confined within the genitourinary diaphragm with the rectum sitting posteriorly and bladder sitting superiorly. In all directions, the non-Gaussian distribution is more common for individual fraction, individual patient including all fractions, and all patients including all fractions. The spatial distribution of prostate motion shows an elongated shape in oblique direction, indicating a higher range of motion in the AP and SI directions. Conclusions: Our results showed that the prostate motion is highly correlated in AP and SI direction, indicating an oblique motion preference. In addition, the spatial distribution of prostate motion is elongated in an oblique direction, indicating that the organ motion dosimetric modeling using Gaussian kernel may need to be modified

  7. The non-Gaussian nature of prostate motion based on real-time intrafraction tracking.

    PubMed

    Lin, Yuting; Liu, Tian; Yang, Wells; Yang, Xiaofeng; Khan, Mohammad K

    2013-10-01

    The objective of this work is to test the validity of the Gaussian approximation for prostate motion through characterization of its spatial distribution. Real-time intrafraction prostate motion was observed using Calypso 4-dimensional (4D) nonradioactive electromagnetic tracking system. We report the results from a total of 1024 fractions from 31 prostate cancer patients. First, the correlation of prostate motion in right/left (RL), anteroposterior (AP), and superoinferior (SI) direction were determined using Pearson's correlation of coefficient. Then the spatial distribution of prostate motion was analyzed for individual fraction, individual patient including all fractions, and all patients including all fractions. The displacement in RL, AP, SI, oblique, or total direction is fitted into a Gaussian distribution, and a Lilliefors test was used to evaluate the validity of the hypothesis that the displacement is normally distributed. There is high correlation in AP/SI direction (61% of fractions with medium or strong correlation). This is consistent with the longitudinal oblique motion of the prostate, and likely the effect from respiration on an organ confined within the genitourinary diaphragm with the rectum sitting posteriorly and bladder sitting superiorly. In all directions, the non-Gaussian distribution is more common for individual fraction, individual patient including all fractions, and all patients including all fractions. The spatial distribution of prostate motion shows an elongated shape in oblique direction, indicating a higher range of motion in the AP and SI directions. Our results showed that the prostate motion is highly correlated in AP and SI direction, indicating an oblique motion preference. In addition, the spatial distribution of prostate motion is elongated in an oblique direction, indicating that the organ motion dosimetric modeling using Gaussian kernel may need to be modified to account for the particular organ motion character of

  8. The Milky Way's Circular Velocity Curve and Its Constraint on the Galactic Mass with RR Lyrae Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ablimit, Iminhaji; Zhao, Gang, E-mail: iminhaji@nao.cas.cn, E-mail: gzhao@nao.cas.cn

    We present a sample of 1148 ab-type RR Lyrae (RRLab) variables identified from Catalina Surveys Data Release 1, combined with SDSS DR8 and LAMOST DR4 spectral data. We first use a large sample of 860 Galactic halo RRLab stars and derive the circular velocity distributions for the stellar halo. With the precise distances and carefully determined radial velocities (the center-of-mass radial velocities) and by considering the pulsation of the RRLab stars in our sample, we can obtain a reliable and comparable stellar halo circular velocity curve. We follow two different prescriptions for the velocity anisotropy parameter β in the Jeansmore » equation to study the circular velocity curve and mass profile. Additionally, we test two different solar peculiar motions in our calculation. The best result we obtained with the adopted solar peculiar motion 1 of ( U , V , W ) = (11.1, 12, 7.2) km s{sup −1} is that the enclosed mass of the Milky Way within 50 kpc is (3.75 ± 1.33) × 10{sup 11} M {sub ⊙} based on β = 0 and the circular velocity 180 ± 31.92 (km s{sup −1}) at 50 kpc. This result is consistent with dynamical model results, and it is also comparable to the results of previous similar works.« less

  9. DETECTION OF A STELLAR STREAM BEHIND OPEN CLUSTER NGC 188: ANOTHER PART OF THE MONOCEROS STREAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casetti-Dinescu, Dana I.; Girard, Terrence M.; Van Altena, William F.

    2010-05-15

    We present results from a WIYN/Orthogonal Parallel Transfer Imaging Camera photometric and astrometric survey of the field of the open cluster NGC 188 ((l, b) = (122.{sup 0}8, 22.{sup 0}5)). We combine these results with the proper-motion and photometry catalog of Platais et al. and demonstrate the existence of a stellar overdensity in the background of NGC 188. The theoretical isochrone fits to the color-magnitude diagram of the overdensity are consistent with an age between 6 and 10 Gyr and an intermediately metal poor population ([Fe/H] = -0.5 to -1.0). The distance to the overdensity is estimated to be betweenmore » 10.0 and 12.6 kpc. The proper motions indicate that the stellar population of the overdensity is kinematically cold. The distance estimate and the absolute proper motion of the overdensity agree reasonably well with the predictions of the Penarrubia et al. model of the formation of the Monoceros stream. Orbits for this material constructed with plausible radial-velocity values, indicate that dynamically, this material is unlikely to belong to the thick disk. Taken together, this evidence suggests that the newly found overdensity is part of the Monoceros stream.« less

  10. Comprehensive circular RNA profiling reveals that circular RNA100783 is involved in chronic CD28-associated CD8(+)T cell ageing.

    PubMed

    Wang, Yu-Hong; Yu, Xu-Hui; Luo, Shan-Shun; Han, Hui

    2015-01-01

    Ageing brings about the gradual deterioration of the immune system, also known as immunosenescence. The role of non-coding circular RNA in immunosenescence is under studied. Using circular RNA microarray data, we assembled Comparison groups (C1, C2, C3 and C4) that allowed us to compare the circular RNA expression profiles between CD28(+)CD8(+) T cells and CD28(-)CD8(+) T cells isolated from healthy elderly or adult control subjects. Using a step-wise biomathematical strategy, the differentially-expressed circRNAs were identified in C1 (CD28(+)CD8(+) vs CD28(-)CD8(+)T cells in the elderly) and C4 (CD28(-)CD8(+)T cells in the elderly vs in the adult), and the commonly-expressed circRNA species from these profiles were optimized as immunosenescence biomarkers. Four overlapping upregulated circular RNAs (100550, 100783, 101328 and 102592) expressed in cross-comparison between C1 and C4 were validated using quantitative polymerase chain reaction. Of these, only circular RNA100783 exhibited significant validation. None of the down-regulated circular RNAs were expressed in the C1 and the C4 cross-comparisons. Therefore, we further predicted circular RNA100783-targeted miRNA-gene interactions using online DAVID annotation. The analysis revealed that a circular RNA100783-targeted miRNA-mRNA network may be involved in alternative splicing, the production of splice variants, and in the regulation of phosphoprotein expression. Considering the hypothesis of splicing-related biogenesis of circRNAs, we propose that circular RNA100783 may play a role in phosphoprotein-associated functions duringCD28-related CD8(+) T cell ageing. This study is the first to employ circular RNA profiling to investigate circular RNA-micro RNA interactions in ageing human CD8(+)T cell populations and the accompanying loss of CD28 expression. The overlapping expression of circular RNA100783 may represent a novel biomarker for the longitudinal tracking ofCD28-related CD8(+) T cell ageing and global

  11. Circular RNA biogenesis can proceed through an exon-containing lariat precursor

    PubMed Central

    Barrett, Steven P; Wang, Peter L; Salzman, Julia

    2015-01-01

    Pervasive expression of circular RNA is a recently discovered feature of eukaryotic gene expression programs, yet its function remains largely unknown. The presumed biogenesis of these RNAs involves a non-canonical ‘backsplicing’ event. Recent studies in mammalian cell culture posit that backsplicing is facilitated by inverted repeats flanking the circularized exon(s). Although such sequence elements are common in mammals, they are rare in lower eukaryotes, making current models insufficient to describe circularization. Through systematic splice site mutagenesis and the identification of splicing intermediates, we show that circular RNA in Schizosaccharomyces pombe is generated through an exon-containing lariat precursor. Furthermore, we have performed high-throughput and comprehensive mutagenesis of a circle-forming exon, which enabled us to discover a systematic effect of exon length on RNA circularization. Our results uncover a mechanism for circular RNA biogenesis that may account for circularization in genes that lack noticeable flanking intronic secondary structure. DOI: http://dx.doi.org/10.7554/eLife.07540.001 PMID:26057830

  12. NON-NAVIGABLE STREAMS AND ADJACENT WETLANDS: ADDRESSING SCIENCE NEEDS FOLLOWING THE SUPREME COURT'S RAPANOS DECISION

    EPA Science Inventory

    In June of 2006, the US Supreme Court ruled in two cases concerning jurisdiction under the Clean Water Act (CWA). The decisions suggest that hydrological permanence of non-navigable streams and adjacent wetlands (NNSAWs) and their effects on the chemical, physical, and biological...

  13. OpenCFU, a new free and open-source software to count cell colonies and other circular objects.

    PubMed

    Geissmann, Quentin

    2013-01-01

    Counting circular objects such as cell colonies is an important source of information for biologists. Although this task is often time-consuming and subjective, it is still predominantly performed manually. The aim of the present work is to provide a new tool to enumerate circular objects from digital pictures and video streams. Here, I demonstrate that the created program, OpenCFU, is very robust, accurate and fast. In addition, it provides control over the processing parameters and is implemented in an intuitive and modern interface. OpenCFU is a cross-platform and open-source software freely available at http://opencfu.sourceforge.net.

  14. Variability of pesticide exposure in a stream mesocosm system: macrophyte-dominated vs. non-vegetated sections.

    PubMed

    Beketov, Mikhail A; Liess, Matthias

    2008-12-01

    For flowing water bodies no information is available about patterns of contaminant distribution in flowing water compared to macrophyte-dominated structures. The aim of the study was to examine temporal dynamic and spatial cross-channel variability of pulse exposure of the insecticide thiacloprid in outdoor stream mesocosms. Two distinct cross-channel sections have been considered: macrophyte-dominated littoral and non-vegetated midstream. Median disappearance time ranged from 17 to 43 h (water phase, midstream). We showed that during the exposure pulse (10h) thiacloprid concentrations in the macrophyte-dominated section were 20-60% lower than those in the non-vegetated section. This suggests that spatial variability in contaminant concentrations, particularly in streams containing macrophytes, should be taken into account to enable a more realistic assessment of (i) exposure and associated effects and (ii) mass transport of pesticides and other chemicals into river systems (e.g. losses with surface runoff).

  15. A Review of Major Non-Power-Related Carbon Dioxide Stream Compositions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Last, George V.; Schmick, Mary T.

    A critical component in the assessment of long-term risk from geologic sequestration of carbon dioxide (CO2) is the ability to predict mineralogical and geochemical changes within storage reservoirs as a result of rock-brine-CO2 reactions. Impurities and/or other constituents in CO2 source streams selected for sequestration can affect both the chemical and physical (e.g., density, viscosity, interfacial tension) properties of CO2 in the deep subsurface. The nature and concentrations of these impurities are a function of both the industrial source(s) of CO2, as well as the carbon capture technology used to extract the CO2 and produce a concentrated stream for subsurfacemore » injection and geologic sequestration. This article reviews the relative concentrations of CO2 and other constituents in exhaust gases from major non-energy-related industrial sources of CO2. Assuming that carbon capture technology would remove most of the incondensable gases N2, O2, and Ar, leaving SO2 and NOx as the main impurities, the authors then summarize the relative proportions of the remaining impurities assumed to be present in CO2 source streams that could be targeted for geologic sequestration. The summary is presented relative to five potential sources of CO2: 1) Flue Gas with Flue Gas Desulfurization, 2) Combustion Stack from Coke Production, 3) Portland Cement Kilns, 4) Natural Gas Combustion, and 5) Lime Production.« less

  16. Circular economy and waste to energy

    NASA Astrophysics Data System (ADS)

    Rada, E. C.; Ragazzi, M.; Torretta, V.; Castagna, G.; Adami, L.; Cioca, L. I.

    2018-05-01

    Waste management in European Union has long being regulated by the 4Rs principle, i.e. reduction, reuse, recycling, recovery, with landfill disposal as the last option. This vision recently led the European Union (especially since 2015) to the introduction of virtuous goals based on the rejection of linear economy in favour of circular economy strongly founded on materials recovery. In this scenario, landfill disposal option will disappear, while energy recovery may appear controversial when not applied to biogas production from anaerobic digestion. The present work aims to analyse the effects that circular economy principles introduced in the European Union context will have on the thermochemical waste treatment plants design. Results demonstrate that indirect combustion (gasification + combustion) along with integrated vitrification of the non-combustible fraction of treated waste will have a more relevant role in the field of waste treatment than in the past, thanks to the compliance of this option with the principles of circular economy.

  17. Convergence and non-convergence in ecological, phenotypic, and genetic divergence across replicate population pairs of lake and stream stickleback

    PubMed Central

    Kaeuffer, Renaud; Peichel, Catherine L.; Bolnick, Daniel I.; Hendry, Andrew P.

    2015-01-01

    Convergent (or parallel) evolution provides strong evidence for a deterministic role of natural selection: similar phenotypes evolve when independent populations colonize similar environments. In reality, however, independent populations in similar environments always show some differences: some non-convergent evolution is present. It is therefore important to explicitly quantify the convergent and non-convergent aspects of trait variation, and to investigate the ecological and genetic explanations for each. We performed such an analysis for threespine stickleback (Gasterosteus aculeatus) populations inhabiting lake and stream habitats in independent watersheds. Morphological traits differed in the degree to which lake-stream divergence was convergent across watersheds. Some aspects of this variation were correlated with ecological variables related to diet, presumably reflecting the strength and specifics of divergent selection. Furthermore, a genetic scan revealed some markers that diverged between lakes and streams in many of the watersheds and some that diverged in only a few watersheds. Moreover, some of the lake-stream divergence in genetic markers was associated within some of the lake-stream divergence in morphological traits. Our results suggest that convergent evolution, and deviations from it, are primarily the result of natural selection, which corresponds in only some respect to the dichotomous habitat classifications frequently used in such studies. PMID:22276537

  18. Real-time motion compensated patient positioning and non-rigid deformation estimation using 4-D shape priors.

    PubMed

    Wasza, Jakob; Bauer, Sebastian; Hornegger, Joachim

    2012-01-01

    Over the last years, range imaging (RI) techniques have been proposed for patient positioning and respiration analysis in motion compensation. Yet, current RI based approaches for patient positioning employ rigid-body transformations, thus neglecting free-form deformations induced by respiratory motion. Furthermore, RI based respiration analysis relies on non-rigid registration techniques with run-times of several seconds. In this paper we propose a real-time framework based on RI to perform respiratory motion compensated positioning and non-rigid surface deformation estimation in a joint manner. The core of our method are pre-procedurally obtained 4-D shape priors that drive the intra-procedural alignment of the patient to the reference state, simultaneously yielding a rigid-body table transformation and a free-form deformation accounting for respiratory motion. We show that our method outperforms conventional alignment strategies by a factor of 3.0 and 2.3 in the rotation and translation accuracy, respectively. Using a GPU based implementation, we achieve run-times of 40 ms.

  19. Twisting/Swirling Motions during a Prominence Eruption as Seen from SDO/AIA

    NASA Astrophysics Data System (ADS)

    Pant, V.; Datta, A.; Banerjee, D.; Chandrashekhar, K.; Ray, S.

    2018-06-01

    A quiescent prominence was observed at the northwest limb of the Sun using different channels of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. We report and analyze twisting/swirling motions during and after the prominence eruption. We segregate the observed rotational motions into small and large scales. Small-scale rotational motions manifest in the barbs of the prominence, while the large-scale rotation manifests as the roll motion during the prominence eruption. We noticed that both footpoints of the prominence rotate in the counterclockwise direction. We propose that a similar sense of rotation in both footpoints leads to a prominence eruption. The prominence erupted asymmetrically near the southern footpoint, which may be due to an uneven mass distribution and location of the cavity near the southern footpoint. Furthermore, we study the swirling motion of the plasma along different circular paths in the cavity of the prominence after the prominence eruption. The rotational velocities of the plasma moving along different circular paths are estimated to be ∼9–40 km s‑1. These swirling motions can be explained in terms of twisted magnetic field lines in the prominence cavity. Finally we observe the twist built up in the prominence, being carried away by the coronal mass ejection, as seen in the Large Angle Spectrometric Coronagraph on board the Solar and Heliospheric Observatory.

  20. Circular free-electron laser

    DOEpatents

    Brau, Charles A.; Kurnit, Norman A.; Cooper, Richard K.

    1984-01-01

    A high efficiency, free electron laser utilizing a circular relativistic electron beam accelerator and a circular whispering mode optical waveguide for guiding optical energy in a circular path in the circular relativistic electron beam accelerator such that the circular relativistic electron beam and the optical energy are spatially contiguous in a resonant condition for free electron laser operation. Both a betatron and synchrotron are disclosed for use in the present invention. A free electron laser wiggler is disposed around the circular relativistic electron beam accelerator for generating a periodic magnetic field to transform energy from the circular relativistic electron beam to optical energy.

  1. Non-Unitary Boson Mapping and Its Application to Nuclear Collective Motions

    NASA Astrophysics Data System (ADS)

    Takada, K.

    First, the general theory of boson mapping for even-number many-fermion systems is surveyed. In order to overcome the confusion concerning the so-called unphysical or spurious states in the boson mapping, the correct concept of the unphysical states is precisely given in a clear-cut way. Next, a method to apply the boson mapping to a truncated many-fermion Hilbert space consisting of collective phonons is proposed, by putting special emphasis on the Dyson-type non-unitary boson mapping. On the basis of this method, it becomes possible for the first time to apply the Dyson-type boson mapping to analyses of collective motions in realistic nuclei. This method is also extended to be applicable to odd-number-fermion systems. As known well, the Dyson-type boson mapping is a non-unitary transformation and it gives a non-Hermitian boson Hamiltonian. It is not easy (but not impossible) to solve the eigenstates of the non-Hermitian Hamiltonian. A Hermitian treatment of this non-Hermitian eigenvalue problem is discussed and it is shown that this treatment is a very good approximation. Using this Hermitian treatment, we can obtain the normal-ordered Holstein-Primakoff-type boson expansion in the multi-collective-phonon subspace. Thereby the convergence of the boson expansion can be tested. Some examples of application of the Dyson-type non-unitary boson mapping to simplified models and realistic nuclei are also shown, and we can see that it is quite useful for analysis of the collective motions in realistic nuclei. In contrast to the above-mentioned ordinary type of boson mapping, which may be called a ``static'' boson mapping, the Dyson-type non-unitary selfconsistent-collective-coordinate method is discussed. The latter is, so to speak, a ``dynamical'' boson mapping, which is a dynamical extension of the ordinary boson mapping to be capable to include the coupling effects from the non-collective degrees of freedom selfconsistently. Thus all of the Dyson-type non

  2. Non-intrusive investigation of flow and heat transfer characteristics of a channel with a built-in circular cylinder

    NASA Astrophysics Data System (ADS)

    Vyas, Apoorv; Mishra, Biswajit; Agrawal, Atul; Srivastava, Atul

    2018-03-01

    Interferometry-based experimental investigation of heat transfer phenomena associated with a channel fitted with a circular cylinder has been reported. Experiments have been performed with water as the working fluid, and the range of Reynolds number considered is 75 ≤ Re ≤ 165. The circular cylinder, placed at the inlet section of the channel, provides a blockage ratio of 0.5. The experimental methodology has been benchmarked against the results of transient numerical simulations. In order to assess the performance of the channel fitted with a circular cylinder for possible heat transfer enhancement from the channel wall(s), experiments have also been performed on a plane channel (without a cylinder). The interferometry-based experiments clearly highlighted the influence of the built-in cylinder in generating the flow instabilities and alterations in the thermal boundary layer profile along the heated wall of the channel. The phenomenon of vortex shedding behind the cylinder was successfully captured. A gradual increase in the vortex shedding frequency was observed with increasing Reynolds number. Quantitative data in the form of two-dimensional temperature distributions revealed an increase in the strength of wall thermal gradients in the wake region of the cylinder due to the periodic shedding of the vortices. In turn, a clear enhancement in the wall heat transfer rates was observed for the case of the channel fitted with a cylinder vis-à-vis the plane channel. To the best of the knowledge of the authors, the work reported is one of the first attempts to provide the planar field experimental data for a channel configuration with a built-in circular cylinder using non-intrusive imaging techniques and has the potential to serve as one of the benchmark studies for validating the existing as well as future numerical studies in the related area.

  3. Disorders of motion and depth.

    PubMed

    Nawrot, Mark

    2003-08-01

    Damage to the human homologue of area MT produces a motion perception deficit similar to that found in the monkey with MT lesions. Even temporary disruption of MT processing with transcranial magnetic stimulation can produce a temporary akinetopsia [127]. Motion perception deficits, however, also are found with a variety of subcortical lesions and other neurologic disorders that can best be described as causing a disconnection within the motion processing stream. The precise role of these subcortical structures, such as the cerebellum, remains to be determined. Simple motion perception, moreover, is only a part of MT function. It undoubtedly has an important role in the perception of depth from motion and stereopsis [112]. Psychophysical studies using aftereffects in normal observers suggest a link between stereo mechanisms and the perception of depth from motion [9-11]. There is even a simple correlation between stereo acuity and the perception of depth from motion [128]. Future studies of patients with cortical lesions will take a closer look at depth perception in association with motion perception and should provide a better understanding of how motion and depth are processed together.

  4. Problems of gaseous motion around stars

    NASA Technical Reports Server (NTRS)

    Huang, S.-S.

    1973-01-01

    A distinction is drawn between radial and tangential modes of ejection from stars, and the possible flow patterns are described. They are: expanding streams, falling streams, jet streams, circulatory streams, and gaseous envelopes. Motion around Be stars is discussed at some length, as a preliminary to studying more complicated flow in binary systems. The rotational velocity of the Be star is insufficient to form the ring. It appears likely that radial instability is temperature sensitive. Rings and disks in binary systems are discussed from the point of view of periodic orbits for particles within the gravitational field of such a system. The formation of these rings is discussed. The expected relation between rotational velocity of the ring and the orbital period is discussed. The relation of circumstellar streams to period changes is mentioned. Finally, the influence of magnetic fields on the circumstellar material and the system is discussed.

  5. Non-thermal Motions in and above Flare Loop Tops Measured by the Extreme-ultraviolet Imaging Spectrometer on Hinode

    NASA Astrophysics Data System (ADS)

    Doschek, G. A.; Warren, H. P.

    2013-12-01

    The plasma volume above the soft X-ray emitting loop tops is of particular interest for studying the formation of flare loops. We present observations of non-thermal motions (turbulence) determined from spectral line profiles Fe XXIII and Fe XXIV ions. We compare the non-thermal motions at temperatures near 10 MK with the motions along the same lines-of-sight determined from lines of coronal ions such as Fe XII, Fe XIV, and Fe XV formed at 1-2 MK. We discuss the results in terms of predictions of the effects of magnetic reconnection and non-thermal motion results obtained in flares from earlier X-ray Yohkoh observations of line profiles of Fe XXV and Ca XIX. Fe XXV is formed at significantly higher temperatures than any strong flare EUV spectral line observed by EIS or by imaging telescopes such as AIA or TRACE. This work is supported by a NASA Hinode grant.

  6. Analyzing indicators of stream health for Minnesota streams

    USGS Publications Warehouse

    Singh, U.; Kocian, M.; Wilson, B.; Bolton, A.; Nieber, J.; Vondracek, B.; Perry, J.; Magner, J.

    2005-01-01

    Recent research has emphasized the importance of using physical, chemical, and biological indicators of stream health for diagnosing impaired watersheds and their receiving water bodies. A multidisciplinary team at the University of Minnesota is carrying out research to develop a stream classification system for Total Maximum Daily Load (TMDL) assessment. Funding for this research is provided by the United States Environmental Protection Agency and the Minnesota Pollution Control Agency. One objective of the research study involves investigating the relationships between indicators of stream health and localized stream characteristics. Measured data from Minnesota streams collected by various government and non-government agencies and research institutions have been obtained for the research study. Innovative Geographic Information Systems tools developed by the Environmental Science Research Institute and the University of Texas are being utilized to combine and organize the data. Simple linear relationships between index of biological integrity (IBI) and channel slope, two-year stream flow, and drainage area are presented for the Redwood River and the Snake River Basins. Results suggest that more rigorous techniques are needed to successfully capture trends in IBI scores. Additional analyses will be done using multiple regression, principal component analysis, and clustering techniques. Uncovering key independent variables and understanding how they fit together to influence stream health are critical in the development of a stream classification for TMDL assessment.

  7. [Non vascularized toe phalangeal transfers for symbrachydactyly. Active range of motion without joint reconstruction].

    PubMed

    Leca, J-B; Auquit Auckbur, I; Bachy, B; Milliez, P-Y

    2008-12-01

    Symbrachydactyly is a rare congenital malformation of the hand and its treatment is controversial. Non vascularized toe phalangeal transfers have been used for management of short digits for three children. Six phalanges have been harvested complete with their periosteum. No joint reconstruction has been performed and all children have undergone surgery at a young age. Four of six digits involved have an active range of motion (range 30 to 105 degrees ). All authors who have reported active range of motion of toe phalangeal transfers have performed joint reconstruction. Here, we report obtaining active range of motion of phalangeal transfers without necessity of joint reconstruction.

  8. Multisensory processing of naturalistic objects in motion: a high-density electrical mapping and source estimation study.

    PubMed

    Senkowski, Daniel; Saint-Amour, Dave; Kelly, Simon P; Foxe, John J

    2007-07-01

    In everyday life, we continuously and effortlessly integrate the multiple sensory inputs from objects in motion. For instance, the sound and the visual percept of vehicles in traffic provide us with complementary information about the location and motion of vehicles. Here, we used high-density electrical mapping and local auto-regressive average (LAURA) source estimation to study the integration of multisensory objects in motion as reflected in event-related potentials (ERPs). A randomized stream of naturalistic multisensory-audiovisual (AV), unisensory-auditory (A), and unisensory-visual (V) "splash" clips (i.e., a drop falling and hitting a water surface) was presented among non-naturalistic abstract motion stimuli. The visual clip onset preceded the "splash" onset by 100 ms for multisensory stimuli. For naturalistic objects early multisensory integration effects beginning 120-140 ms after sound onset were observed over posterior scalp, with distributed sources localized to occipital cortex, temporal lobule, insular, and medial frontal gyrus (MFG). These effects, together with longer latency interactions (210-250 and 300-350 ms) found in a widespread network of occipital, temporal, and frontal areas, suggest that naturalistic objects in motion are processed at multiple stages of multisensory integration. The pattern of integration effects differed considerably for non-naturalistic stimuli. Unlike naturalistic objects, no early interactions were found for non-naturalistic objects. The earliest integration effects for non-naturalistic stimuli were observed 210-250 ms after sound onset including large portions of the inferior parietal cortex (IPC). As such, there were clear differences in the cortical networks activated by multisensory motion stimuli as a consequence of the semantic relatedness (or lack thereof) of the constituent sensory elements.

  9. On the local standard of rest

    NASA Technical Reports Server (NTRS)

    Yuan, C.

    1982-01-01

    Under the influence of a spiral gravitational field, there should be differences among the mean motions of different types of objects with different dispersion velocities in a sipral galaxy. The old stars with high dispersion velocity should have essentially no mean motion normal to the galactic rotation. On the other hand, young objects and interstellar gas may be moving relative to the old stars at a velocity of a few kilometer per second in both the radial (galacto-centric), and circular directions, depending on the spiral model adopted. Such a velocity is usually referred as the systematic motion or the streaming motion. The conventionally adopted local standard of rest is indeed co-moving with the young objects of the solar vicinity. Therefore, it has a net systematic motion with respect to the circular motion of an equilibrium galactic model, defined by the old stars.

  10. Optimal rendezvous in the neighborhood of a circular orbit

    NASA Technical Reports Server (NTRS)

    Jones, J. B.

    1976-01-01

    The minimum velocity-change rendezvous solutions, when the motion may be linearized about a circular orbit, fall into two separate regions; the phase-for-free region and the general region. Phase-for-free solutions are derived from the optimum transfer solutions, require the same velocity-change expenditure, but may not be unique. Analytic solutions are presented in two of the three subregions. An algorithm is presented for determining the unique solutions in the general region. Various sources of initial conditions are discussed and three examples are presented.

  11. Optimal rendezvous in the neighborhood of a circular orbit

    NASA Technical Reports Server (NTRS)

    Jones, J. B.

    1975-01-01

    The minimum velocity change rendezvous solutions, when the motion may be linearized about a circular orbit, fall into two separate regions; the phase-for-free region and the general region. Phase-for-free solutions are derived from the optimum transfer solutions, require the same velocity change expenditure, but may not be unique. Analytic solutions are presented in two of the three subregions. An algorithm is presented for determining the unique solutions in the general region. Various sources of initial conditions are discussed and three examples presented.

  12. Circular dichroism measurements at an x-ray free-electron laser with polarization control

    NASA Astrophysics Data System (ADS)

    Hartmann, G.; Lindahl, A. O.; Knie, A.; Hartmann, N.; Lutman, A. A.; MacArthur, J. P.; Shevchuk, I.; Buck, J.; Galler, A.; Glownia, J. M.; Helml, W.; Huang, Z.; Kabachnik, N. M.; Kazansky, A. K.; Liu, J.; Marinelli, A.; Mazza, T.; Nuhn, H.-D.; Walter, P.; Viefhaus, J.; Meyer, M.; Moeller, S.; Coffee, R. N.; Ilchen, M.

    2016-08-01

    A non-destructive diagnostic method for the characterization of circularly polarized, ultraintense, short wavelength free-electron laser (FEL) light is presented. The recently installed Delta undulator at the LCLS (Linac Coherent Light Source) at SLAC National Accelerator Laboratory (USA) was used as showcase for this diagnostic scheme. By applying a combined two-color, multi-photon experiment with polarization control, the degree of circular polarization of the Delta undulator has been determined. Towards this goal, an oriented electronic state in the continuum was created by non-resonant ionization of the O2 1s core shell with circularly polarized FEL pulses at hν ≃ 700 eV. An also circularly polarized, highly intense UV laser pulse with hν ≃ 3.1 eV was temporally and spatially overlapped, causing the photoelectrons to redistribute into so-called sidebands that are energetically separated by the photon energy of the UV laser. By determining the circular dichroism of these redistributed electrons using angle resolving electron spectroscopy and modeling the results with the strong-field approximation, this scheme allows to unambiguously determine the absolute degree of circular polarization of any pulsed, ultraintense XUV or X-ray laser source.

  13. Probe systems for static pressure and cross-stream turbulence intensity

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon, J.

    1991-01-01

    A recent study of total-pressure probes for use in highly turbulent streams is extended herein by developing probe systems that measure time-averaged static or ambient pressure and turbulence intensity. Arrangements of tubular probes of circular and elliptical cross section are described that measure the pressure at orifices on the sides of the probes to obtain different responses to the cross-stream velocity fluctuations. When the measured data are combined to remove the effect of the presence of the probes on the local pressure, the time-averaged static pressure and the cross-stream components of turbulence intensity can be determined. If a system of total pressure tubes, as described in an accompanying paper, is added to the static pressure group to form a single cluster, redundant measurements are obtained that permit accuracy and consistency checks.

  14. Geometric effects resulting from square and circular confinements for a particle constrained to a space curve

    NASA Astrophysics Data System (ADS)

    Wang, Yong-Long; Lai, Meng-Yun; Wang, Fan; Zong, Hong-Shi; Chen, Yan-Feng

    2018-04-01

    Investigating the geometric effects resulting from the detailed behaviors of the confining potential, we consider square and circular confinements to constrain a particle to a space curve. We find a torsion-induced geometric potential and a curvature-induced geometric momentum just in the square case, while a geometric gauge potential solely in the circular case. In the presence of electromagnetic field, a geometrically induced magnetic moment couples with magnetic field as an induced Zeeman coupling only for the circular confinement also. As spin-orbit interaction is considered, we find some additional terms for the spin-orbit coupling, which are induced not only by torsion, but also curvature. Moreover, in the circular case, the spin also couples with an intrinsic angular momentum, which describes the azimuthal motions mapped on the space curve. As an important conclusion for the thin-layer quantization approach, some substantial geometric effects result from the confinement boundaries. Finally, these results are proved on a helical wire.

  15. FIELD OPERATIONS AND METHODS FOR MEASURING THE ECOLOGICAL CONDITION OF NON-WADEABLE RIVERS AND STREAMS

    EPA Science Inventory

    The methods and instructions for field operations presented in this manual for surveys of non-wadeable streams and rivers were developed and tested based on 55 sample sites in the Mid-Atlantic region and 53 sites in an Oregon study during two years of pilot and demonstration proj...

  16. Development of the wake behind a circular cylinder impulsively started into rotatory and rectilinear motion: Intermediate rotation rates

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Ming; Ou, Yuh-Roung; Pearlstein, Arne J.

    1991-01-01

    The temporal development of two-dimensional viscous incompressible flow generated by a circular cylinder started impulsively into steady rotatory and rectilinear motion is studied by integration of a velocity/vorticity formulation of the governing equations, using an explicit finite-difference/pseudo-spectral technique and an implementation of the Biot-Savart law. Results are presented for a Reynolds number of 200 (based on the cylinder diameter 2a and the magnitude U of the rectilinear velocity) for several values of the angular/rectilinear speed ratio alpha = (omega x a)/U (where omega is the angular speed) up to 3.25. Several aspects of the kinematics and dynamics of the flow not considered earlier are discussed. For higher values of alpha, the results indicate that for Re = 200, vortex shedding does indeed occur for alpha = 3.25. The shedding process is; however, very different from that which gives rise to the usual Karman vortex street for alpha = 0. In particular, consecutive vortices shed by the body can be shed from the same side and be of the same sense, in contrast to the nonrotating case, in which mirror-image vortices of opposite sense are shed alternately on opposite sides of the body. The implications of the results are discussed in relation to the possibility of suppressing vortex shedding by open or closed-loop control of the rotation rate.

  17. Spectral analysis of point-vortex dynamics: first application to vortex polygons in a circular domain

    NASA Astrophysics Data System (ADS)

    Speetjens, M. F. M.; Meleshko, V. V.; van Heijst, G. J. F.

    2014-06-01

    The present study addresses the classical problem of the dynamics and stability of a cluster of N-point vortices of equal strength arranged in a polygonal configuration (‘N-vortex polygons’). In unbounded domains, such N-vortex polygons are unconditionally stable for N\\leqslant 7. Confinement in a circular domain tightens the stability conditions to N\\leqslant 6 and a maximum polygon size relative to the domain radius. This work expands on existing studies on stability and integrability by a first giving an exploratory spectral analysis of the dynamics of N vortex polygons in circular domains. Key to this is that the spectral signature of the time evolution of vortex positions reflects their qualitative behaviour. Expressing vortex motion by a generic evolution operator (the so-called Koopman operator) provides a rigorous framework for such spectral analyses. This paves the way to further differentiation and classification of point-vortex behaviour beyond stability and integrability. The concept of Koopman-based spectral analysis is demonstrated for N-vortex polygons. This reveals that conditional stability can be seen as a local form of integrability and confirms an important generic link between spectrum and dynamics: discrete spectra imply regular (quasi-periodic) motion; continuous (sub-)spectra imply chaotic motion. Moreover, this exposes rich nonlinear dynamics as intermittency between regular and chaotic motion and quasi-coherent structures formed by chaotic vortices. Dedicated to the memory of Slava Meleshko, a dear friend and inspiring colleague.

  18. Resonant responses and chaotic dynamics of composite laminated circular cylindrical shell with membranes

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Liu, T.; Xi, A.; Wang, Y. N.

    2018-06-01

    This paper is focused on the resonant responses and chaotic dynamics of a composite laminated circular cylindrical shell with radially pre-stretched membranes at both ends and clamped along a generatrix. Based on the two-degree-of-freedom non-autonomous nonlinear equations of this system, the method of multiple scales is employed to obtain the four-dimensional nonlinear averaged equation. The resonant case considered here is the primary parametric resonance-1/2 subharmonic resonance and 1:1 internal resonance. Corresponding to several selected parameters, the frequency-response curves are obtained. From the numerical results, we find that the hardening-spring-type behaviors and jump phenomena are exhibited. The jump phenomena also occur in the amplitude curves of the temperature parameter excitation. Moreover, it is found that the temperature parameter excitation, the coupling degree of two order modes and the detuning parameters can effect the nonlinear oscillations of this system. The periodic and chaotic motions of the composite laminated circular cylindrical shell clamped along a generatrix are demonstrated by the bifurcation diagrams, the maximum Lyapunov exponents, the phase portraits, the waveforms, the power spectrums and the Poincaré map. The temperature parameter excitation shows that the Pomeau-Manneville type intermittent chaos occur under the certain initial conditions. It is also found that there exist the twin phenomena between the Pomeau-Manneville type intermittent chaos and the period-doubling bifurcation.

  19. Estimating statistical isotropy violation in CMB due to non-circular beam and complex scan in minutes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pant, Nidhi; Das, Santanu; Mitra, Sanjit

    Mild, unavoidable deviations from circular-symmetry of instrumental beams along with scan strategy can give rise to measurable Statistical Isotropy (SI) violation in Cosmic Microwave Background (CMB) experiments. If not accounted properly, this spurious signal can complicate the extraction of other SI violation signals (if any) in the data. However, estimation of this effect through exact numerical simulation is computationally intensive and time consuming. A generalized analytical formalism not only provides a quick way of estimating this signal, but also gives a detailed understanding connecting the leading beam anisotropy components to a measurable BipoSH characterisation of SI violation. In this paper,more » we provide an approximate generic analytical method for estimating the SI violation generated due to a non-circular (NC) beam and arbitrary scan strategy, in terms of the Bipolar Spherical Harmonic (BipoSH) spectra. Our analytical method can predict almost all the features introduced by a NC beam in a complex scan and thus reduces the need for extensive numerical simulation worth tens of thousands of CPU hours into minutes long calculations. As an illustrative example, we use WMAP beams and scanning strategy to demonstrate the easability, usability and efficiency of our method. We test all our analytical results against that from exact numerical simulations.« less

  20. OpenCFU, a New Free and Open-Source Software to Count Cell Colonies and Other Circular Objects

    PubMed Central

    Geissmann, Quentin

    2013-01-01

    Counting circular objects such as cell colonies is an important source of information for biologists. Although this task is often time-consuming and subjective, it is still predominantly performed manually. The aim of the present work is to provide a new tool to enumerate circular objects from digital pictures and video streams. Here, I demonstrate that the created program, OpenCFU, is very robust, accurate and fast. In addition, it provides control over the processing parameters and is implemented in an intuitive and modern interface. OpenCFU is a cross-platform and open-source software freely available at http://opencfu.sourceforge.net. PMID:23457446

  1. Stick-slip Cycles and Tidal Modulation of Ice Stream Flow

    NASA Astrophysics Data System (ADS)

    Lipovsky, B.; Dunham, E. M.

    2016-12-01

    The reactivation of a single dormant Antarctic ice stream would double the continent's mass imbalance. Despite importance of understanding the likelihood of such an event, direct observation of the basal processes that lead to the activation and stagnation of streaming ice are minimal. As the only ice stream undergoing stagnation, the Whillans Ice Plain (WIP) occupies a central role in our understanding of these subglacial processes. Complicating matters is the observation, from GPS records, that the WIP experiences most of its motion during episodes of rapid sliding. These sliding events are tidally modulated and separated by 12 hour periods of quiescence. We conduct numerical simulations of ice stream stick-slip cycles. Our simulations include rate- and state-dependent frictional sliding, tidal forcing, inertia, upstream loading in a cross-stream, thickness-averaged formulation. Our principal finding is that ice stream motion may respond to ocean tidal forcing with one of two end member behaviors. In one limit, tidally modulated slip events have rupture velocities that approach the shear wave speed and slip events have a duration that scales with the ice stream width divided by the shear wave speed. In the other limit, tidal modulation results in ice stream sliding velocities with lower amplitude variation but at much longer timescales, i.e. semi-diurnal and longer. This latter behavior more closely mimics the behavior of several active ice streams (Bindschadler, Rutford). We find that WIP slip events exist between these two end member behaviors: rupture velocities are far below the inertial limit yet sliding occurs only episodically. The continuum of sliding behaviors is governed by a critical ice stream width over which slip event nucleate. When the critical width is much longer than the ice stream width, slip events are unable to nucleate. The critical width depends on the subglacial effective pressure, ice thickness, and frictional and elastic constitutive

  2. Physical conditions at the base of a fast moving antarctic ice stream.

    PubMed

    Engelhardt, H; Humphrey, N; Kamb, B; Fahnestock, M

    1990-04-06

    Boreholes drilled to the bottom of ice stream B in the West Antarctic Ice Sheet reveal that the base of the ice stream is at the melting point and the basal water pressure is within about 1.6 bars of the ice overburden pressure. These conditions allow the rapid ice streaming motion to occur by basal sliding or by shear deformation of unconsolidated sediments that underlie the ice in a layer at least 2 meters thick. The mechanics of ice streaming plays a role in the response of the ice sheet to climatic change.

  3. The Spatiotemporal Characteristics of Visual Motion Priming

    DTIC Science & Technology

    1994-07-01

    859. Barden, W. (1982, June). A general-purpose I/O board for the Color Computer. BYTE Magazine, pp. 260-281. B . ->,.. H . & Levick , W. (1965). The... B y ...... . ........ Distribution I Availability Codes Avail and i or Dist Special DTIC qU(A~ry niNPETEM 3 iii ABSTRACT THE...bistable diamond, apparent motion figure 52 (after Ramachandran & Anstis, 1983). ( b ) "Streaming" and "bouncing" percepts of apparent 52 motion dot

  4. The implication of non-cyclic intrafractional longitudinal motion in SBRT by TomoTherapy

    NASA Astrophysics Data System (ADS)

    Yang, Wensha; Van Ausdal, Ray; Read, Paul; Larner, James; Benedict, Stan; Sheng, Ke

    2009-05-01

    To determine the dosimetric impact of non-cyclic longitudinal intrafractional motion, TomoTherapy plans with different field sizes were interrupted during a phantom delivery, and a displacement between -5 mm and 5 mm was induced prior to the delivery of the completion procedure. The planar dose was measured by film and a cylindrical phantom, and under-dosed or over-dosed volume was observed for either positive or negative displacement. For a 2.5 cm field, there was a 4% deviation for every mm of motion and for a 1 cm field, the deviation was 8% per mm. The dimension of the under/over-dosed area was independent of the motion but dependent on the field size. The results have significant implication in small-field high-dose treatments (i.e. stereotactic body radiation therapy (SBRT)) that deliver doses in only a few fractions. Our studies demonstrate that a small longitudinal motion may cause a dose error that is difficult to compensate; however, dividing a SBRT fraction into smaller passes is helpful to reduce such adverse effects.

  5. The motion near L{sub 4} equilibrium point under non-point mass primaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huda, I. N., E-mail: ibnu.nurul@students.itb.ac.id; Utama, J. A.; Madley, D.

    2015-09-30

    The Circular Restricted Three-Body Problem (CRTBP) possesses five equilibrium points, that comprise three collinear (L{sub 1}, L{sub 2}, and L{sub 3}) and two triangular points (L{sub 4} and L{sub 5}). The classical study (with the primaries are point mass) suggests that the equilibrium points may cause the velocity of infinitesimal object relatively becomes zero and reveals the zero velocity curve. We study the motion of infinitesimal object near triangular equilibrium point (L{sub 4}) and determine its zero velocity curve. We extend the study by taking into account the effects of radiation of the bigger primary (q{sub 1} ≠ 1, q{submore » 2} = 1) and oblateness of the smaller primary (A{sub 1} = 0, A{sub 2} ≠ 0). The location of L{sub 4} is analytically derived then the stability of L{sub 4} and its zero velocity curves are studied numerically. Our study suggests that the oblateness and the radiation of primaries may affect the stability and zero velocity curve around L{sub 4}.« less

  6. A physical perspective on cytoplasmic streaming

    PubMed Central

    Goldstein, Raymond E.; van de Meent, Jan-Willem

    2015-01-01

    Organisms show a remarkable range of sizes, yet the dimensions of a single cell rarely exceed 100 µm. While the physical and biological origins of this constraint remain poorly understood, exceptions to this rule give valuable insights. A well-known counterexample is the aquatic plant Chara, whose cells can exceed 10 cm in length and 1 mm in diameter. Two spiralling bands of molecular motors at the cell periphery drive the cellular fluid up and down at speeds up to 100 µm s−1, motion that has been hypothesized to mitigate the slowness of metabolite transport on these scales and to aid in homeostasis. This is the most organized instance of a broad class of continuous motions known as ‘cytoplasmic streaming’, found in a wide range of eukaryotic organisms—algae, plants, amoebae, nematodes and flies—often in unusually large cells. In this overview of the physics of this phenomenon, we examine the interplay between streaming, transport and cell size and discuss the possible role of self-organization phenomena in establishing the observed patterns of streaming. PMID:26464789

  7. Integration and segregation in auditory streaming

    NASA Astrophysics Data System (ADS)

    Almonte, Felix; Jirsa, Viktor K.; Large, Edward W.; Tuller, Betty

    2005-12-01

    We aim to capture the perceptual dynamics of auditory streaming using a neurally inspired model of auditory processing. Traditional approaches view streaming as a competition of streams, realized within a tonotopically organized neural network. In contrast, we view streaming to be a dynamic integration process which resides at locations other than the sensory specific neural subsystems. This process finds its realization in the synchronization of neural ensembles or in the existence of informational convergence zones. Our approach uses two interacting dynamical systems, in which the first system responds to incoming acoustic stimuli and transforms them into a spatiotemporal neural field dynamics. The second system is a classification system coupled to the neural field and evolves to a stationary state. These states are identified with a single perceptual stream or multiple streams. Several results in human perception are modelled including temporal coherence and fission boundaries [L.P.A.S. van Noorden, Temporal coherence in the perception of tone sequences, Ph.D. Thesis, Eindhoven University of Technology, The Netherlands, 1975], and crossing of motions [A.S. Bregman, Auditory Scene Analysis: The Perceptual Organization of Sound, MIT Press, 1990]. Our model predicts phenomena such as the existence of two streams with the same pitch, which cannot be explained by the traditional stream competition models. An experimental study is performed to provide proof of existence of this phenomenon. The model elucidates possible mechanisms that may underlie perceptual phenomena.

  8. Brownian motion under dynamic disorder: effects of memory on the decay of the non-Gaussianity parameter

    NASA Astrophysics Data System (ADS)

    Tyagi, Neha; Cherayil, Binny J.

    2018-03-01

    The increasingly widespread occurrence in complex fluids of particle motion that is both Brownian and non-Gaussian has recently been found to be successfully modeled by a process (frequently referred to as ‘diffusing diffusivity’) in which the white noise that governs Brownian diffusion is itself stochastically modulated by either Ornstein–Uhlenbeck dynamics or by two-state noise. But the model has so far not been able to account for an aspect of non-Gaussian Brownian motion that is also commonly observed: a non-monotonic decay of the parameter that quantifies the extent of deviation from Gaussian behavior. In this paper, we show that the inclusion of memory effects in the model—via a generalized Langevin equation—can rationalise this phenomenon.

  9. Supermarkets and unhealthy food marketing: An international comparison of the content of supermarket catalogues/circulars.

    PubMed

    Charlton, Emma L; Kähkönen, Laila A; Sacks, Gary; Cameron, Adrian J

    2015-12-01

    Supermarket marketing activities have a major influence on consumer food purchases. This study aimed to assess and compare the contents of supermarket marketing circulars from a range of countries worldwide from an obesity prevention perspective. The contents of supermarket circulars from major supermarket chains in 12 non-random countries were collected and analysed over an eight week period from July to September 2014 (n=89 circulars with 12,563 food products). Circulars were largely English language and from countries representing most continents. Food products in 25 sub-categories were categorised as discretionary or non-discretionary (core) food or drinks based on the Australian Guide to Healthy Eating. The total number of products in each subcategory in the whole circular, and on front covers only, was calculated. Circulars from most countries advertised a high proportion of discretionary foods. The only exceptions were circulars from the Philippines (no discretionary foods) and India (11% discretionary food). Circulars from six countries advertised more discretionary foods than core foods. Front covers tended to include a much greater proportion of healthy products than the circulars overall. Supermarket circulars in most of the countries examined include a high percentage of discretionary foods, and therefore promote unhealthy eating behaviours that contribute to the global obesity epidemic. A clear opportunity exists for supermarket circulars to promote rather than undermine healthy eating behaviours of populations. Governments need to ensure that supermarket marketing is included as part of broader efforts to restrict unhealthy food marketing. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. On the local standard of rest. [comoving with young objects in gravitational field of spiral galaxies

    NASA Technical Reports Server (NTRS)

    Yuan, C.

    1983-01-01

    Under the influence of a spiral gravitational field, there should be differences among the mean motions of different types of objects with different dispersion velocities in a spiral galaxy. The old stars with high dispersion velocity should have essentially no mean motion normal to the galactic rotation. On the other hand, young objects and interstellar gas may be moving relative to the old stars at a velocity of a few kilometer per second in both the radial (galacto-centric), and circular directions, depending on the spiral model adopted. Such a velocity is usually referred as the systematic motion or the streaming motion. The conventionally adopted local standard of rest is indeed co-moving with the young objects of the solar vicinity. Therefore, it has a net systematic motion with respect to the circular motion of an equilibrium galactic model, defined by the old stars. Previously announced in STAR as N83-24443

  11. Is the Milky Way still breathing? RAVE-Gaia streaming motions

    NASA Astrophysics Data System (ADS)

    Carrillo, I.; Minchev, I.; Kordopatis, G.; Steinmetz, M.; Binney, J.; Anders, F.; Bienaymé, O.; Bland-Hawthorn, J.; Famaey, B.; Freeman, K. C.; Gilmore, G.; Gibson, B. K.; Grebel, E. K.; Helmi, A.; Just, A.; Kunder, A.; McMillan, P.; Monari, G.; Munari, U.; Navarro, J.; Parker, Q. A.; Reid, W.; Seabroke, G.; Sharma, S.; Siebert, A.; Watson, F.; Wojno, J.; Wyse, R. F. G.; Zwitter, T.

    2018-04-01

    We use data from the Radial Velocity Experiment (RAVE) and the Tycho-Gaia astrometric solution (TGAS) catalogue to compute the velocity fields yielded by the radial (VR), azimuthal (Vϕ),and vertical (Vz) components of associated Galactocentric velocity. We search in particular for variation in all three velocity components with distance above and below the disc mid-plane, as well as how each component of Vz (line-of-sight and tangential velocity projections) modifies the obtained vertical structure. To study the dependence of velocity on proper motion and distance, we use two main samples: a RAVE sample including proper motions from the Tycho-2, PPMXL, and UCAC4 catalogues, and a RAVE-TGAS sample with inferred distances and proper motions from the TGAS and UCAC5 catalogues. In both samples, we identify asymmetries in VR and Vz. Below the plane, we find the largest radial gradient to be ∂VR/∂R = -7.01 ± 0.61 km s-1 kpc-1, in agreement with recent studies. Above the plane, we find a similar gradient with ∂VR/∂R = -9.42 ± 1.77 km s-1 kpc-1. By comparing our results with previous studies, we find that the structure in Vz is strongly dependent on the adopted proper motions. Using the Galaxia Milky Way model, we demonstrate that distance uncertainties can create artificial wave-like patterns. In contrast to previous suggestions of a breathing mode seen in RAVE data, our results support a combination of bending and breathing modes, likely generated by a combination of external or internal and external mechanisms.

  12. Absorbed Power Minimization in Cellular Users with Circular Antenna Arrays

    NASA Astrophysics Data System (ADS)

    Christofilakis, Vasilis; Votis, Constantinos; Tatsis, Giorgos; Raptis, Vasilis; Kostarakis, Panos

    2010-01-01

    Nowadays electromagnetic pollution of non ionizing radiation generated by cellular phones concerns millions of people. In this paper the use of circular antenna array as a means of minimizing the absorbed power by cellular phone users is introduced. In particular, the different characteristics of radiation patterns produced by a helical conventional antenna used in mobile phones operating at 900 MHz and those produced by a circular antenna array, hypothetically used in the same mobile phones, are in detail examined. Furthermore, the percentage of decrement of the power absorbed in the head as a function of direction of arrival is estimated for the circular antenna array.

  13. Rotational Motion of Axisymmetric Marangoni Swimmers

    NASA Astrophysics Data System (ADS)

    Rothstein, Jonathan; Uvanovic, Nick

    2017-11-01

    A series of experiments will be presented investigating the motion of millimeter-sized particles on the surface of water. The particles were partially coated with ethanol and carefully placed on a water interface in a series of Petri dishes with different diameters. High speed particle motion was driven by strong surface tension gradients as the ethanol slowly diffuses from the particles into the water resulting in a Marangoni flow. The velocity and acceleration of the particles where measured. In addition to straight line motion, the presence of the bounding walls of the circular Petri dish was found to induce an asymmetric, rotational motion of the axisymmetric Marangoni swimmers. The rotation rate and radius of curvature was found to be a function of the size of the Petri dish and the curvature of the air-water interface near the edge of the dish. For large Petri dishes or small particles, rotation motion was observed far from the bounding walls. In these cases, the symmetry break appears to be the result of the onset of votex shedding. Finally, multiple spherical particles were observed to undergo assembly driven by capillary forces followed by explosive disassembly.

  14. Second-order motions contribute to vection.

    PubMed

    Gurnsey, R; Fleet, D; Potechin, C

    1998-09-01

    First- and second-order motions differ in their ability to induce motion aftereffects (MAEs) and the kinetic depth effect (KDE). To test whether second-order stimuli support computations relating to motion-in-depth we examined the vection illusion (illusory self motion induced by image flow) using a vection stimulus (V, expanding concentric rings) that depicted a linear path through a circular tunnel. The set of vection stimuli contained differing amounts of first- and second-order motion energy (ME). Subjects reported the duration of the perceived MAEs and the duration of their vection percept. In Experiment 1 both MAEs and vection durations were longest when the first-order (Fourier) components of V were present in the stimulus. In Experiment 2, V was multiplicatively combined with static noise carriers having different check sizes. The amount of first-order ME associated with V increases with check size. MAEs were found to increase with check size but vection durations were unaffected. In general MAEs depend on the amount of first-order ME present in the signal. Vection, on the other hand, appears to depend on a representation of image flow that combines first- and second-order ME.

  15. Water entry and exit of horizontal circular cylinders

    NASA Astrophysics Data System (ADS)

    Greenhow, M.; Moyo, S.

    This paper describes fully nonlinear two-dimensional numerical calculations of the free-surface deformations of initially calm water caused by the forced motion of totally or partially submerged horizontal circular cylinders. The paper considers the following. (i) Totally submerged cylinders moving with constant velocity in vertical, horizontal or combined motions. Results are compared with the small-time asymptotic solution obtained by Tyvand and Milohin 1995. Their results, which are taken to third-order (which is when gravity terms first appear in the expansions), are in excellent agreement with the numerical calculations for small times; beyond this only the numerical method gives accurate results until the free surface breaks or the cylinder emerges from the free surface. Breaking can occur during exit due to strongly negative pressures arising on the cylinder surface, or during the downwards motion causing a free-surface depression which closes up rapidly, forming splashes. Downwards motion is also shown to give rise to high-frequency waves in some cases. (ii) The free-surface deformations, pressures and forces acting on a cylinder in vertical or oblique forced motion during engulfment when it submerges from being initially half-submerged. The initial stages, when the cylinder still pierces the free surface, specify the initial conditions for a separate program for a completely submerged body, thereby allowing complete engulfment to be studied. The free surface closes up violently over the top of the cylinder resulting in jet flow, which, while difficult to handle numerically, has been shown to be insignificant for the bulk flow and the cylinder pressures and forces.

  16. Particle motion around magnetized black holes: Preston-Poisson space-time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konoplya, R. A.

    We analyze the motion of massless and massive particles around black holes immersed in an asymptotically uniform magnetic field and surrounded by some mechanical structure, which provides the magnetic field. The space-time is described by the Preston-Poisson metric, which is the generalization of the well-known Ernst metric with a new parameter, tidal force, characterizing the surrounding structure. The Hamilton-Jacobi equations allow the separation of variables in the equatorial plane. The presence of a tidal force from the surroundings considerably changes the parameters of the test particle motion: it increases the radius of circular orbits of particles and increases the bindingmore » energy of massive particles going from a given circular orbit to the innermost stable orbit near the black hole. In addition, it increases the distance of the minimal approach, time delay, and bending angle for a ray of light propagating near the black hole.« less

  17. Quantification and visualization of coordination during non-cyclic upper extremity motion.

    PubMed

    Fineman, Richard A; Stirling, Leia A

    2017-10-03

    There are many design challenges in creating at-home tele-monitoring systems that enable quantification and visualization of complex biomechanical behavior. One such challenge is robustly quantifying joint coordination in a way that is intuitive and supports clinical decision-making. This work defines a new measure of coordination called the relative coordination metric (RCM) and its accompanying normalization schemes. RCM enables quantification of coordination during non-constrained discrete motions. Here RCM is applied to a grasping task. Fifteen healthy participants performed a reach, grasp, transport, and release task with a cup and a pen. The measured joint angles were then time-normalized and the RCM time-series were calculated between the shoulder-elbow, shoulder-wrist, and elbow-wrist. RCM was normalized using four differing criteria: the selected joint degree of freedom, angular velocity, angular magnitude, and range of motion. Percent time spent in specified RCM ranges was used asa composite metric and was evaluated for each trial. RCM was found to vary based on: (1) chosen normalization scheme, (2) the stage within the task, (3) the object grasped, and (4) the trajectory of the motion. The RCM addresses some of the limitations of current measures of coordination because it is applicable to discrete motions, does not rely on cyclic repetition, and uses velocity-based measures. Future work will explore clinically relevant differences in the RCM as it is expanded to evaluate different tasks and patient populations. Copyright © 2017. Published by Elsevier Ltd.

  18. Simulated atmospheric response to Gulf Stream variability

    NASA Astrophysics Data System (ADS)

    Hand, Ralf; Keenlyside, Noel; Omrani, Nour-Eddine; Latif, Mojib; Minobe, Shoshiro

    2010-05-01

    Though the ocean variability has a distinct low-frequent component on interannual to interdecadal timescales, a better understanding of the main features of air-sea interaction in the extratropical ocean might increase the predictive skill of climate models significantly. An insufficiently understood region in this context are the sharp SST-fronts connected to western boundary currents, which interact with the overlaying atmosphere by forcing low-level winds and evaporation. Recent studies show, that this response extends beyond the marine boundary layer and so might influence also the large-scale atmospheric circulation. In this work a 5 member ensemble of model runs from the AGCM ECHAM5 was analyzed focussing on the atmospheric response to the Gulf Stream. The analyzed experiment covered a time period of 138 years from 1870 to 2007 and was forced by observed SSTs and sea-ice concentration from the HadISST dataset. The experiment was performed at T106 horizontal resolution (~100km) and with 31 vertical levels up to 1 hPa. Simulated seasonal mean circulation indicate a convective response of the atmosphere in the Gulf Stream region similar to observations, with distinct low-level wind convergence, strong upward motion, and low-pressure over the warm SST flank of the Gulf Stream. An analysis of variance (ANOVA) suggests, that up to 25-30% of the variability of the summer precipitation in the Gulf Stream region are connected to the boundary conditions. The link between oceanic and atmospheric variability on seasonal to interannual timescales is investigated with composite and linear regression analysis. Results indicate that increased (decreased) precipitation is associated with stronger (weaker) low-level wind convergence, enhanced (reduced) upward motion, low (high) pressure, and warm (cold) SST anomalies in the region of the Gulf Stream. Currently sensitivity experiments with the same AGCM configuration are in progress.

  19. Trophic Interactions Between Insects and Stream-Associated Amphibians in Steep, Cobble-Bottom Streams of the Pacific Coast of North America

    PubMed Central

    Atwood, Trisha; Richardson, John S.

    2012-01-01

    Two native, stream-associated amphibians are found in coastal streams of the west coast of North America, the tailed frog and the coastal giant salamander, and each interacts with stream insects in contrasting ways. For tailed frogs, their tadpoles are the primary life stage found in steep streams and they consume biofilm from rock surfaces, which can have trophic and non-trophic effects on stream insects. By virtue of their size the tadpoles are relatively insensitive to stream insect larvae, and tadpoles are capable of depleting biofilm levels directly (exploitative competition), and may also “bulldoze” insect larvae from the surfaces of stones (interference competition). Coastal giant salamander larvae, and sometimes adults, are found in small streams where they prey primarily on stream insects, as well as other small prey. This predator-prey interaction with stream insects does not appear to result in differences in the stream invertebrate community between streams with and without salamander larvae. These two examples illustrate the potential for trophic and non-trophic interactions between stream-associated amphibians and stream insects, and also highlights the need for further research in these systems. PMID:26466536

  20. Global motion perception is associated with motor function in 2-year-old children.

    PubMed

    Thompson, Benjamin; McKinlay, Christopher J D; Chakraborty, Arijit; Anstice, Nicola S; Jacobs, Robert J; Paudel, Nabin; Yu, Tzu-Ying; Ansell, Judith M; Wouldes, Trecia A; Harding, Jane E

    2017-09-29

    The dorsal visual processing stream that includes V1, motion sensitive area V5 and the posterior parietal lobe, supports visually guided motor function. Two recent studies have reported associations between global motion perception, a behavioural measure of processing in V5, and motor function in pre-school and school aged children. This indicates a relationship between visual and motor development and also supports the use of global motion perception to assess overall dorsal stream function in studies of human neurodevelopment. We investigated whether associations between vision and motor function were present at 2 years of age, a substantially earlier stage of development. The Bayley III test of Infant and Toddler Development and measures of vision including visual acuity (Cardiff Acuity Cards), stereopsis (Lang stereotest) and global motion perception were attempted in 404 2-year-old children (±4 weeks). Global motion perception (quantified as a motion coherence threshold) was assessed by observing optokinetic nystagmus in response to random dot kinematograms of varying coherence. Linear regression revealed that global motion perception was modestly, but statistically significantly associated with Bayley III composite motor (r 2 =0.06, P<0.001, n=375) and gross motor scores (r 2 =0.06, p<0.001, n=375). The associations remained significant when language score was included in the regression model. In addition, when language score was included in the model, stereopsis was significantly associated with composite motor and fine motor scores, but unaided visual acuity was not statistically significantly associated with any of the motor scores. These results demonstrate that global motion perception and binocular vision are associated with motor function at an early stage of development. Global motion perception can be used as a partial measure of dorsal stream function from early childhood. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Adaptation disrupts motion integration in the primate dorsal stream

    PubMed Central

    Patterson, Carlyn A.; Wissig, Stephanie C.; Kohn, Adam

    2014-01-01

    Summary Sensory systems adjust continuously to the environment. The effects of recent sensory experience—or adaptation—are typically assayed by recording in a relevant subcortical or cortical network. However, adaptation effects cannot be localized to a single, local network. Adjustments in one circuit or area will alter the input provided to others, with unclear consequences for computations implemented in the downstream circuit. Here we show that prolonged adaptation with drifting gratings, which alters responses in the early visual system, impedes the ability of area MT neurons to integrate motion signals in plaid stimuli. Perceptual experiments reveal a corresponding loss of plaid coherence. A simple computational model shows how the altered representation of motion signals in early cortex can derail integration in MT. Our results suggest that the effects of adaptation cascade through the visual system, derailing the downstream representation of distinct stimulus attributes. PMID:24507198

  2. Quantized circular photogalvanic effect in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    de Juan, Fernando; Grushin, Adolfo G.; Morimoto, Takahiro; Moore, Joel E.

    The circular photogalvanic effect (CPGE) is the part of a photocurrent that switches depending on the sense of circular polarization of the incident light. It has been consistently observed in systems without inversion symmetry and depends on non-universal material details. We find that in a class of Weyl semimetals (e.g. SrSi2) and three-dimensional Rashba materials (e.g. doped Te) without inversion and mirror symmetries, the CPGE trace is effectively Quantized in terms of the combination of fundamental constants e3/h2 cɛ0 with no material-dependent parameters. This is so because the CPGE directly measures the topological charge of Weyl points near the Fermi surface, and non-quantized corrections from disorder and additional bands can be small over a significant range of incident frequencies. Moreover, the magnitude of the CPGE induced by a Weyl node is relatively large, which enables the direct detection of the monopole charge with current techniques.

  3. Quantized circular photogalvanic effect in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    de Juan, Fernando; Grushin, Adolfo G.; Morimoto, Takahiro; Moore, Joel E.

    2017-07-01

    The circular photogalvanic effect (CPGE) is the part of a photocurrent that switches depending on the sense of circular polarization of the incident light. It has been consistently observed in systems without inversion symmetry and depends on non-universal material details. Here we find that in a class of Weyl semimetals (for example, SrSi2) and three-dimensional Rashba materials (for example, doped Te) without inversion and mirror symmetries, the injection contribution to the CPGE trace is effectively quantized in terms of the fundamental constants e, h, c and with no material-dependent parameters. This is so because the CPGE directly measures the topological charge of Weyl points, and non-quantized corrections from disorder and additional bands can be small over a significant range of incident frequencies. Moreover, the magnitude of the CPGE induced by a Weyl node is relatively large, which enables the direct detection of the monopole charge with current techniques.

  4. Periodic motion near non-principal-axis rotation asteroids

    NASA Astrophysics Data System (ADS)

    Shang, Haibin; Wu, Xiaoyu; Qin, Xiao; Qiao, Dong

    2017-11-01

    The periodic motion near non-principal-axis (NPA) rotation asteroids is proved to be markedly different from that near uniformly rotating bodies due to the complex spin state with precession, raising challenges in terms of the theoretical implications of dynamical systems. This paper investigates the various periodic motions near the typical NPA asteroid 4179 Toutatis, which will contribute to the understanding of the dynamical environments near the widespread asteroids in the Solar system. A novel method with the incorporation of the ellipsoid-mascon gravitational field model and global optimization is developed to efficiently locate periodic solutions in the system. The numerical results indicate that abundant periodic orbits appear near the NPA asteroids. These various orbits are theoretically classified into five topological types with special attention paid to the cycle stability. Although the concept of classical family disappears in our results, some orbits with the same topological structure constitute various generalized `families' as the period increases. Among these `families' a total of 4 kinds of relationships between orbits, including rotation, evolution, distortion and quasi-symmetry, are found to construct the global mapping of these types. To cover the rotation statuses of various NPA asteroids, this paper also discusses the variation of periodic orbits with diverse asteroid spin rates, showing that the scales of some orbits expand, shrink or almost annihilate as the system period changes; meanwhile, their morphology and topology remain unchanged.

  5. Neural dynamics of motion perception: direction fields, apertures, and resonant grouping.

    PubMed

    Grossberg, S; Mingolla, E

    1993-03-01

    A neural network model of global motion segmentation by visual cortex is described. Called the motion boundary contour system (BCS), the model clarifies how ambiguous local movements on a complex moving shape are actively reorganized into a coherent global motion signal. Unlike many previous researchers, we analyze how a coherent motion signal is imparted to all regions of a moving figure, not only to regions at which unambiguous motion signals exist. The model hereby suggests a solution to the global aperture problem. The motion BCS describes how preprocessing of motion signals by a motion oriented contrast (MOC) filter is joined to long-range cooperative grouping mechanisms in a motion cooperative-competitive (MOCC) loop to control phenomena such as motion capture. The motion BCS is computed in parallel with the static BCS of Grossberg and Mingolla (1985a, 1985b, 1987). Homologous properties of the motion BCS and the static BCS, specialized to process motion directions and static orientations, respectively, support a unified explanation of many data about static form perception and motion form perception that have heretofore been unexplained or treated separately. Predictions about microscopic computational differences of the parallel cortical streams V1-->MT and V1-->V2-->MT are made--notably, the magnocellular thick stripe and parvocellular interstripe streams. It is shown how the motion BCS can compute motion directions that may be synthesized from multiple orientations with opposite directions of contrast. Interactions of model simple cells, complex cells, hyper-complex cells, and bipole cells are described, with special emphasis given to new functional roles in direction disambiguation for endstopping at multiple processing stages and to the dynamic interplay of spatially short-range and long-range interactions.

  6. Non-Markovian quantum Brownian motion in one dimension in electric fields

    NASA Astrophysics Data System (ADS)

    Shen, H. Z.; Su, S. L.; Zhou, Y. H.; Yi, X. X.

    2018-04-01

    Quantum Brownian motion is the random motion of quantum particles suspended in a field (or an effective field) resulting from their collision with fast-moving modes in the field. It provides us with a fundamental model to understand various physical features concerning open systems in chemistry, condensed-matter physics, biophysics, and optomechanics. In this paper, without either the Born-Markovian or rotating-wave approximation, we derive a master equation for a charged-Brownian particle in one dimension coupled with a thermal reservoir in electric fields. The effect of the reservoir and the electric fields is manifested as time-dependent coefficients and coherent terms, respectively, in the master equation. The two-photon correlation between the Brownian particle and the reservoir can induce nontrivial squeezing dynamics to the particle. We derive a current equation including the source from the driving fields, transient current from the system flowing into the environment, and the two-photon current caused by the non-rotating-wave term. The presented results then are compared with that given by the rotating-wave approximation in the weak-coupling limit, and these results are extended to a more general quantum network involving an arbitrary number of coupled-Brownian particles. The presented formalism might open a way to better understand exactly the non-Markovian quantum network.

  7. Identification of differentially expressed circular RNAs in human colorectal cancer.

    PubMed

    Zhang, Peili; Zuo, Zhigui; Shang, Wenjing; Wu, Aihua; Bi, Ruichun; Wu, Jianbo; Li, Shaotang; Sun, Xuecheng; Jiang, Lei

    2017-03-01

    Circular RNA, a class of non-coding RNA, is a new group of RNAs and is related to tumorigenesis. Circular RNAs are suggested to be ideal candidate biomarkers with potential diagnostic and therapeutic implications. However, little is known about their expression in human colorectal cancer. In our study, differentially expressed circular RNAs were detected using circular RNA array in paired tumor and adjacent non-tumorous tissues from six colorectal cancer patients. Expression levels of selected circular RNAs (hsa_circRNA_103809 and hsa_circRNA_104700) were measured by real-time polymerase chain reaction in 170 paired colorectal cancer samples for validation. Statistical analyses were conducted to investigate the association between hsa_circRNA_103809 and hsa_circRNA_104700 expression levels and respective patient clinicopathological features. Receiver operating characteristic curve was constructed to evaluate the diagnostic values. Our results indicated that there were 125 downregulated and 76 upregulated circular RNAs in colorectal cancer tissues compared with normal tissues. We also first demonstrated that the expression levels of hsa_circRNA_103809 ( p < 0.0001) and hsa_circRNA_104700 ( p = 0.0003) were significantly lower in colorectal cancer than in normal tissues. The expression level of hsa_circRNA_103809 was significantly correlated with lymph node metastasis ( p = 0.021) and tumor-node-metastasis stage ( p = 0.011), and the expression level of hsa_circRNA_104700 was significantly correlated with distal metastasis ( p = 0.036). The area under receiver operating characteristic curves of hsa_circRNA_103809 and hsa_circRNA_104700 were 0.699 ( p < 0.0001) and 0.616 ( p < 0.0001), respectively. In conclusion, these results suggest that hsa_circRNA_103809 and hsa_circRNA_104700 may be potentially involved in the development of colorectal cancer and serve as potential biomarkers for the diagnosis of colorectal cancer.

  8. A Bio-Inspired, Motion-Based Analysis of Crowd Behavior Attributes Relevance to Motion Transparency, Velocity Gradients, and Motion Patterns

    PubMed Central

    Raudies, Florian; Neumann, Heiko

    2012-01-01

    The analysis of motion crowds is concerned with the detection of potential hazards for individuals of the crowd. Existing methods analyze the statistics of pixel motion to classify non-dangerous or dangerous behavior, to detect outlier motions, or to estimate the mean throughput of people for an image region. We suggest a biologically inspired model for the analysis of motion crowds that extracts motion features indicative for potential dangers in crowd behavior. Our model consists of stages for motion detection, integration, and pattern detection that model functions of the primate primary visual cortex area (V1), the middle temporal area (MT), and the medial superior temporal area (MST), respectively. This model allows for the processing of motion transparency, the appearance of multiple motions in the same visual region, in addition to processing opaque motion. We suggest that motion transparency helps to identify “danger zones” in motion crowds. For instance, motion transparency occurs in small exit passages during evacuation. However, motion transparency occurs also for non-dangerous crowd behavior when people move in opposite directions organized into separate lanes. Our analysis suggests: The combination of motion transparency and a slow motion speed can be used for labeling of candidate regions that contain dangerous behavior. In addition, locally detected decelerations or negative speed gradients of motions are a precursor of danger in crowd behavior as are globally detected motion patterns that show a contraction toward a single point. In sum, motion transparency, image speeds, motion patterns, and speed gradients extracted from visual motion in videos are important features to describe the behavioral state of a motion crowd. PMID:23300930

  9. Effects of pressure distribution on parallel circular porous plates with combined effect of piezo-viscous dependency and non-Newtonian couple stress fluid

    NASA Astrophysics Data System (ADS)

    Vijayakumar, B.; Kesavan, Sundarammal

    2018-04-01

    Piezo-viscous effect i.e., Viscosity-pressure dependency has an important part in the applications of fluid flows like fluid lubrication, micro fluidics and geophysics. In this paper, the joint effects of piezo-viscous dependency and non-Newtonian couple stresses on the performance of circular porous plate’s squeeze film bearing have been studied. The results for pressure with various values of viscosity-pressure parameters are numerically calculated and compared with iso-viscous couple stress and Newtonian lubricants. Due to piezo-viscous effect, the pressure with piezo-viscous Non-Newtonian is significantly higher than the pressure with iso-viscous Newtonian and iso-viscous Non-Newtonian fluid.

  10. Circular Migration by Mexican Female Sex Workers Who are Injection Drug Users: Implications for HIV in Mexican Sending Communities

    PubMed Central

    Ojeda, Victoria D.; Burgos, José Luis; Hiller, Sarah P.; Lozada, Remedios; Rangel, Gudelia; Vera, Alicia; Artamonova, Irina; Rodriguez, Carlos Magis

    2013-01-01

    Background Circular migration and injection drug use increase the risk of HIV transmission in sending communities. We describe female sex workers who are injection drug users’ (FSW-IDUs) circular migration and drug use behaviors. Methods Between 2008-2010, 258 migrant FSW-IDUs residing in Tijuana and Ciudad Juarez, Mexico responded to questionnaires. Results 24% of FSW-IDUs were circular migrants. HIV prevalence was 3.3% in circular migrants and 6.1% in non-circular migrants; 50% of circular and 82% of non-circular migrants were unaware of their HIV infection. Among circular migrants, 44% (n=27) consumed illicit drugs in their birthplace; 70% of these (n=20) injected drugs and one-half of injectors shared injection equipment in their birthplace. Women reporting active social relationships were significantly more likely to return home. Discussion Circular migrant FSW-IDUs exhibit multiple HIV risks and opportunities for bridging populations. Regular HIV testing and treatment and access to substance use services is critical for FSW-IDUs and their sexual/drug-using contacts. PMID:21833727

  11. Multiple Streaming and the Probability Distribution of Density in Redshift Space

    NASA Astrophysics Data System (ADS)

    Hui, Lam; Kofman, Lev; Shandarin, Sergei F.

    2000-07-01

    We examine several aspects of redshift distortions by expressing the redshift-space density in terms of the eigenvalues and orientation of the local Lagrangian deformation tensor. We explore the importance of multiple streaming using the Zeldovich approximation (ZA), and compute the average number of streams in both real and redshift space. We find that multiple streaming can be significant in redshift space but negligible in real space, even at moderate values of the linear fluctuation amplitude (σl<~1). Moreover, unlike their real-space counterparts, redshift-space multiple streams can flow past each other with minimal interactions. Such nonlinear redshift-space effects, which are physically distinct from the fingers-of-God due to small-scale virialized motions, might in part explain the well-known departure of redshift distortions from the classic linear prediction by Kaiser, even at relatively large scales where the corresponding density field in real space is well described by linear perturbation theory. We also compute, using the ZA, the probability distribution function (PDF) of the density, as well as S3, in real and redshift space, and compare it with the PDF measured from N-body simulations. The role of caustics in defining the character of the high-density tail is examined. We find that (non-Lagrangian) smoothing, due to both finite resolution or discreteness and small-scale velocity dispersions, is very effective in erasing caustic structures, unless the initial power spectrum is sufficiently truncated.

  12. Comparison of glacial and non-glacial-fed streams to evaluate the loading of persistent organic pollutants through seasonal snow/ice melt.

    PubMed

    Bizzotto, E C; Villa, S; Vaj, C; Vighi, M

    2009-02-01

    The release of persistent organic pollutants (PCBs, HCB, HCHs and DDTs) accumulated in Alpine glaciers, was studied during spring-summer 2006 on the Frodolfo glacial-fed stream (Italian Alps). Samples were also taken on a non-glacial stream in the same valley, to compare POP contribution from different water sources (glacier ice, recent snow and spring). In late spring and early summer (May, June) recent snow melting is the most important process. POP contamination is more affected by local emissions and transport, and comparable levels have been measured in both streams for all studied compounds. In late summer and autumn (July-October), the contribution of ice melting strongly increases. In the glacial-fed stream the concentration of chlorinated pesticides (HCHs and DDTs) is about one order of magnitude higher than in the non-glacial-fed. A different behaviour was observed for PCBs, characterised by a peak in June showing, in both streams, concentrations three orders of magnitude higher than the background levels measured in May and in October. This result should be attributed to local emissions rather than long range atmospheric transport (LRAT). This hypothesis is supported by the PCB congener profile in June strictly comparable to the most commonly used Aroclor technical mixtures. The different seasonal behaviour observed for the different groups of chemicals indicates the POP loading in glacial streams is a combined role of long range atmospheric transport and local emission.

  13. Attentive Motion Discrimination Recruits an Area in Inferotemporal Cortex

    PubMed Central

    Stemmann, Heiko

    2016-01-01

    Attentional selection requires the interplay of multiple brain areas. Theoretical accounts of selective attention predict different areas with different functional properties to support endogenous covert attention. To test these predictions, we devised a demanding attention task requiring motion discrimination and spatial selection and performed whole-brain imaging in macaque monkeys. Attention modulated the early visual cortex, motion-selective dorsal stream areas, the lateral intraparietal area, and the frontal eye fields. This pattern of activation supports early selection, feature-based, and biased-competition attention accounts, as well as the frontoparietal theory of attentional control. While high-level motion-selective dorsal stream areas did not exhibit strong attentional modulation, ventral stream areas V4d and the dorsal posterior inferotemporal cortex (PITd) did. The PITd in fact was, consistently across task variations, the most significantly and most strongly attention-modulated area, even though it did not exhibit signs of motion selectivity. Thus the recruitment of the PITd in attention tasks involving different kinds of motion analysis is not predicted by any theoretical account of attention. These functional data, together with known anatomical connections, suggest a general and possibly critical role of the PITd in attentional selection. SIGNIFICANCE STATEMENT Attention is the key cognitive function that selects sensory information relevant to the current goals, relegating other information to the shadows of consciousness. To better understand the neural mechanisms of this interplay between sensory processing and internal cognitive state, we must learn more about the brain areas supporting attentional selection. Here, to test theoretical accounts of attentional selection, we used a novel task requiring sustained attention to motion. We found that, surprisingly, among the most strongly attention-modulated areas is one that is neither selective for

  14. Circularly Polarized Luminescence from Simple Organic Molecules.

    PubMed

    Sánchez-Carnerero, Esther M; Agarrabeitia, Antonia R; Moreno, Florencio; Maroto, Beatriz L; Muller, Gilles; Ortiz, María J; de la Moya, Santiago

    2015-09-21

    This article aims to show the identity of "circularly polarized luminescent active simple organic molecules" as a new concept in organic chemistry due to the potential interest of these molecules, as availed by the exponentially growing number of research articles related to them. In particular, it describes and highlights the interest and difficulty in developing chiral simple (small and non-aggregated) organic molecules able to emit left- or right-circularly polarized light efficiently, the efforts realized up to now to reach this challenging objective, and the most significant milestones achieved to date. General guidelines for the preparation of these interesting molecules are also presented. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Optimum stacking sequence design of laminated composite circular plates with curvilinear fibres by a layer-wise optimization method

    NASA Astrophysics Data System (ADS)

    Guenanou, A.; Houmat, A.

    2018-05-01

    The optimum stacking sequence design for the maximum fundamental frequency of symmetrically laminated composite circular plates with curvilinear fibres is investigated for the first time using a layer-wise optimization method. The design variables are two fibre orientation angles per layer. The fibre paths are constructed using the method of shifted paths. The first-order shear deformation plate theory and a curved square p-element are used to calculate the objective function. The blending function method is used to model accurately the geometry of the circular plate. The equations of motion are derived using Lagrange's method. The numerical results are validated by means of a convergence test and comparison with published values for symmetrically laminated composite circular plates with rectilinear fibres. The material parameters, boundary conditions, number of layers and thickness are shown to influence the optimum solutions to different extents. The results should serve as a benchmark for optimum stacking sequences of symmetrically laminated composite circular plates with curvilinear fibres.

  16. Circular RNAs are abundant, conserved, and associated with ALU repeats

    PubMed Central

    Jeck, William R.; Sorrentino, Jessica A.; Wang, Kai; Slevin, Michael K.; Burd, Christin E.; Liu, Jinze; Marzluff, William F.; Sharpless, Norman E.

    2013-01-01

    Circular RNAs composed of exonic sequence have been described in a small number of genes. Thought to result from splicing errors, circular RNA species possess no known function. To delineate the universe of endogenous circular RNAs, we performed high-throughput sequencing (RNA-seq) of libraries prepared from ribosome-depleted RNA with or without digestion with the RNA exonuclease, RNase R. We identified >25,000 distinct RNA species in human fibroblasts that contained non-colinear exons (a “backsplice”) and were reproducibly enriched by exonuclease degradation of linear RNA. These RNAs were validated as circular RNA (ecircRNA), rather than linear RNA, and were more stable than associated linear mRNAs in vivo. In some cases, the abundance of circular molecules exceeded that of associated linear mRNA by >10-fold. By conservative estimate, we identified ecircRNAs from 14.4% of actively transcribed genes in human fibroblasts. Application of this method to murine testis RNA identified 69 ecircRNAs in precisely orthologous locations to human circular RNAs. Of note, paralogous kinases HIPK2 and HIPK3 produce abundant ecircRNA from their second exon in both humans and mice. Though HIPK3 circular RNAs contain an AUG translation start, it and other ecircRNAs were not bound to ribosomes. Circular RNAs could be degraded by siRNAs and, therefore, may act as competing endogenous RNAs. Bioinformatic analysis revealed shared features of circularized exons, including long bordering introns that contained complementary ALU repeats. These data show that ecircRNAs are abundant, stable, conserved and nonrandom products of RNA splicing that could be involved in control of gene expression. PMID:23249747

  17. Propelling plastics into the circular economy - weeding out the toxics first.

    PubMed

    Leslie, H A; Leonards, P E G; Brandsma, S H; de Boer, J; Jonkers, N

    2016-09-01

    The Stockholm Convention bans toxic chemicals on its persistent organic pollutants (POPs) list in order to promote cleaner production and prevent POPs accumulation in the global environment. The original 'dirty dozen' set of POPs has been expanded to include some of the brominated diphenyl ether flame retardants (POP-BDEs). In addition to cleaner production, there is an urgent need for increased resource efficiency to address the finite amount of raw materials on Earth. Recycling plastic enhances resource efficiency and is part of the circular economy approach, but how clean are the materials we are recycling? With the help of a new screening method and detailed analyses, we set out to investigate where these largely obsolete BDEs were showing up in Dutch automotive and electronics waste streams, calculate mass flows and determine to what extent they are entering the new product chains. Our study revealed that banned BDEs and other toxic flame retardants are found at high concentrations in certain plastic materials destined for recycling markets. They were also found in a variety of new consumer products, including children's toys. A mass flow analysis showed that 22% of all the POP-BDE in waste electrical and electronic equipment (WEEE) is expected to end up in recycled plastics because these toxic, bioaccumulative and persistent substances are currently not effectively separated out of plastic waste streams. In the automotive sector, this is 14%, while an additional 19% is expected to end up in second-hand parts (reuse). These results raise the issue of delicate trade-offs between consumer safety/cleaner production and resource efficiency. As petroleum intensive materials, plastic products ought to be repaired, reused, remanufactured and recycled, making good use of the 'inner circles' of the circular economy. Keeping hazardous substances - whether they are well known POPs or emerging contaminants - out of products and plastic waste streams could make these

  18. Neural network architecture for form and motion perception (Abstract Only)

    NASA Astrophysics Data System (ADS)

    Grossberg, Stephen

    1991-08-01

    Evidence is given for a new neural network theory of biological motion perception, a motion boundary contour system. This theory clarifies why parallel streams V1 yields V2 and V1 yields MT exist for static form and motion form processing among the areas V1, V2, and MT of visual cortex. The motion boundary contour system consists of several parallel copies, such that each copy is activated by a different range of receptive field sizes. Each copy is further subdivided into two hierarchically organized subsystems: a motion oriented contrast (MOC) filter, for preprocessing moving images; and a cooperative-competitive feedback (CC) loop, for generating emergent boundary segmentations of the filtered signals. The present work uses the MOC filter to explain a variety of classical and recent data about short-range and long- range apparent motion percepts that have not yet been explained by alternative models. These data include split motion; reverse-contrast gamma motion; delta motion; visual inertia; group motion in response to a reverse-contrast Ternus display at short interstimulus intervals; speed- up of motion velocity as interflash distance increases or flash duration decreases; dependence of the transition from element motion to group motion on stimulus duration and size; various classical dependencies between flash duration, spatial separation, interstimulus interval, and motion threshold known as Korte''s Laws; and dependence of motion strength on stimulus orientation and spatial frequency. These results supplement earlier explanations by the model of apparent motion data that other models have not explained; a recent proposed solution of the global aperture problem including explanations of motion capture and induced motion; an explanation of how parallel cortical systems for static form perception and motion form perception may develop, including a demonstration that these parallel systems are variations on a common cortical design; an explanation of why the

  19. Time-Varying Expression of the Formation Flying along Circular Trajectories

    NASA Technical Reports Server (NTRS)

    Kawaguchi, Jun'ichiro

    2007-01-01

    Usually, the formation flying associated with circular orbits is discussed through the well-known Hill s or C-W equations of motion. This paper dares to present and discuss the coordinates that may contain time-varying coefficients. The discussion presents how the controller s performance is affected by the selection of coordinates, and also looks at the special coordinate suitable for designating a target bin to which each spacecraft in the formation has only to be guided. It is revealed that the latter strategy may incorporate the J2 disturbance automatically.

  20. Precise Measurement of Velocity Dependent Friction in Rotational Motion

    ERIC Educational Resources Information Center

    Alam, Junaid; Hassan, Hafsa; Shamim, Sohaib; Mahmood, Waqas; Anwar, Muhammad Sabieh

    2011-01-01

    Frictional losses are experimentally determined for a uniform circular disc exhibiting rotational motion. The clockwise and anticlockwise rotations of the disc, that result when a hanger tied to a thread is released from a certain height, give rise to vertical oscillations of the hanger as the thread winds and unwinds over a pulley attached to the…

  1. 77 FR 41967 - Certain Circular Welded Carbon Steel Pipes and Tubes From India, Thailand, and Turkey; Certain...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-17

    ... Pipes and Tubes From India, Thailand, and Turkey; Certain Circular Welded Non-Alloy Steel Pipe From... on (1) certain circular welded carbon steel pipes and tubes from India, Thailand, and Turkey; (2... circular welded carbon steel pipes and tubes from Turkey would likely lead to continuation or recurrence of...

  2. On the damping of right hand circularly polarized waves in spin quantum plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iqbal, Z.; Hussain, A., E-mail: ah-gcu@yahoo.com; Department of Physics, Quaid-i-Azam University Islamabad, Islamabad 45320

    2014-12-15

    General dispersion relation for the right hand circularly polarized waves has been derived using non-relativistic spin quantum kinetic theory. Employing the derived dispersion relation, temporal and spatial damping of the right hand circularly polarized waves are studied for both the degenerate and non-degenerate plasma regimes for two different frequency domains: (i) k{sub ∥}v≫(ω+ω{sub ce}),(ω+ω{sub cg}) and (ii) k{sub ∥}v≪(ω+ω{sub ce}),(ω+ω{sub cg}). Comparison of the cold and hot plasma regimes shows that the right hand circularly polarized wave with spin-effects exists for larger k-values as compared to the spinless case, before it damps completely. It is also found that the spin-effectsmore » can significantly influence the phase and group velocities of the whistler waves in both the degenerate and non-degenerate regimes. The results obtained are also analyzed graphically for some laboratory parameters to demonstrate the physical significance of the present work.« less

  3. Variations in rotation rate and polar motion of a non-hydrostatic Titan

    NASA Astrophysics Data System (ADS)

    Coyette, Alexis; Baland, Rose-Marie; Van Hoolst, Tim

    2018-06-01

    Observation of the rotation of synchronously rotating satellites can help to probe their interior. Previous studies mostly assume that these large icy satellites are in hydrostatic equilibrium, although several measurements indicate that they deviate from such a state. Here we investigate the effect of non-hydrostatic equilibrium and of flow in the subsurface ocean on the rotation of Titan. We consider the variations in rotation rate and the polar motion due to (1) the gravitational force exerted by Saturn at orbital period and (2) exchanges of angular momentum between the seasonally varying atmosphere and the solid surface. The deviation of the mass distribution from hydrostaticity can significantly increase the diurnal libration and decrease the amplitude of the seasonal libration. The effect of the non-hydrostatic mass distribution is less important for polar motion, which is more sensitive to flow in the subsurface ocean. By including a large spectrum of atmospheric perturbations, the smaller than synchronous rotation rate measured by Cassini in the 2004-2009 period (Meriggiola et al., 2016) could be explained by the atmospheric forcing. If our interpretation is correct, we predict a larger than synchronous rotation rate in the 2009-2014 period.

  4. Circular Polarizations of Gravitational Waves from Core-Collapse Supernovae: A Clear Indication of Rapid Rotation.

    PubMed

    Hayama, Kazuhiro; Kuroda, Takami; Nakamura, Ko; Yamada, Shoichi

    2016-04-15

    We propose to employ the circular polarization of gravitational waves emitted by core-collapse supernovae as an unequivocal indication of rapid rotation deep in their cores just prior to collapse. It has been demonstrated by three dimensional simulations that nonaxisymmetric accretion flows may develop spontaneously via hydrodynamical instabilities in the postbounce cores. It is not surprising, then, that the gravitational waves emitted by such fluid motions are circularly polarized. We show, in this Letter, that a network of the second generation detectors of gravitational waves worldwide may be able to detect such polarizations up to the opposite side of the Galaxy as long as the rotation period of the core is shorter than a few seconds prior to collapse.

  5. Evolution of the Quadrantid meteor stream

    NASA Technical Reports Server (NTRS)

    Jones, James; Jones, William

    1992-01-01

    According to previous orbital calculations, the last close approach of the Quadrantid stream with Jupiter occurred 3200 years ago at which time the parent comet of the stream may have been captured into its present short-period orbit. If this is the case the stream may only be a few thousand years old. We have modeled the evolution of the stream to determine if such a short time scale is consistent with the observed features of the Quadrantid/ delta- Aquarid/Arietid/Ursid complex. A detailed modeling of a stream consisting of 500 test particles released 4000 yr ago and which included the effects of the gravitational perturbations of 6 planets as well as the likely spread in the initial orbital elements resulting from the ejection of the grains from the comet was carried out. Our calculations indicate that an intense shower should be seen a few days before the Quadrantid shower, and that, 4000 yr is too short a period for the branch corresponding to the D-Arietid branch to appear. We have considered the quasi-constants of motion 1/a and J, the Tisserand quantity, and find that the Ursids and the D-Arietids are unlikely to be members of the complex, and that, the complex is probably be less than 4000 yr old.

  6. Characterization of HIFU transducers designed for sonochemistry application: Acoustic streaming.

    PubMed

    Hallez, L; Touyeras, F; Hihn, J-Y; Bailly, Y

    2016-03-01

    Cavitation distribution in a High Intensity Focused Ultrasound sonoreactors (HIFU) has been extensively described in the recent literature, including quantification by an optical method (Sonochemiluminescence SCL). The present paper provides complementary measurements through the study of acoustic streaming generated by the same kind of HIFU transducers. To this end, results of mass transfer measurements (electrodiffusional method) were compared to optical method ones (Particle Image Velocimetry). This last one was used in various configurations: with or without an electrode in the acoustic field in order to have the same perturbation of the wave propagation. Results show that the maximum velocity is not located at the focal but shifted near the transducer, and that this shift is greater for high powers. The two cavitation modes (stationary and moving bubbles) are greatly affect the hydrodynamic behavior of our sonoreactors: acoustic streaming and the fluid generated by bubble motion. The results obtained by electrochemical measurements show the same low hydrodynamic activity in the transducer vicinity, the same shift of the active focal toward the transducer, and the same absence of activity in the post-focal axial zone. The comparison with theoretical Eckart's velocities (acoustic streaming in non-cavitating media) confirms a very high activity at the "sonochemical focal", accounted for by wave distortion, which induced greater absorption coefficients. Moreover, the equivalent liquid velocities are one order of magnitude larger than the ones measured by PIV, confirming the enhancement of mass transfer by bubbles oscillation and collapse close to the surface, rather than from a pure streaming effect. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Non-indigenous bamboo along headwater streams of the Luquillo Mountains, Puerto Rico: leaf fall, aquatic leaf decay and patterns of invasion

    Treesearch

    PAUL J. O' CONNOR; ALAN P. COVICH; F. N. SCATENA; LLOYD L. LOOPE

    2000-01-01

    The introduction of bamboo to montane rain forests of the Luquillo Mountains, Puerto Rico in the 1930s and 1940s has led to present-day bamboo monocultures in numerous riparian areas. When a non-native species invades a riparian ecosystem, in-stream detritivores can be affected. Bamboo dynamics expected to in¯uence stream communities in the Luquillo Experimental Forest...

  8. A New Limit on CMB Circular Polarization from SPIDER

    DOE PAGES

    Nagy, J. M.; Ade, P. A. R.; Amiri, M.; ...

    2017-08-01

    We present a new upper limit on CMB circular polarization from the 2015 flight of SPIDER, a balloon-borne telescope designed to search formore » $B$-mode linear polarization from cosmic inflation. Although the level of circular polarization in the CMB is predicted to be very small, experimental limits provide a valuable test of the underlying models. By exploiting the non-zero circular-to-linear polarization coupling of the HWP polarization modulators, data from SPIDER's 2015 Antarctic flight provides a constraint on Stokes $V$ at 95 and 150 GHz from $$33<\\ell<307$$. No other limits exist over this full range of angular scales, and SPIDER improves upon the previous limit by several orders of magnitude, providing 95% C.L. constraints on $$\\ell (\\ell+1)C_{\\ell}^{VV}/(2\\pi)$$ ranging from 141 $$\\mu K ^2$$ to 203 $$\\mu K ^2$$ at 150 GHz for a thermal CMB spectrum. As linear CMB polarization experiments become increasingly sensitive, the techniques described in this paper can be applied to obtain stronger constraints on circular polarization.« less

  9. A New Limit on CMB Circular Polarization from SPIDER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagy, J. M.; Ade, P. A. R.; Amiri, M.

    We present a new upper limit on CMB circular polarization from the 2015 flight of SPIDER, a balloon-borne telescope designed to search formore » $B$-mode linear polarization from cosmic inflation. Although the level of circular polarization in the CMB is predicted to be very small, experimental limits provide a valuable test of the underlying models. By exploiting the non-zero circular-to-linear polarization coupling of the HWP polarization modulators, data from SPIDER's 2015 Antarctic flight provides a constraint on Stokes $V$ at 95 and 150 GHz from $$33<\\ell<307$$. No other limits exist over this full range of angular scales, and SPIDER improves upon the previous limit by several orders of magnitude, providing 95% C.L. constraints on $$\\ell (\\ell+1)C_{\\ell}^{VV}/(2\\pi)$$ ranging from 141 $$\\mu K ^2$$ to 203 $$\\mu K ^2$$ at 150 GHz for a thermal CMB spectrum. As linear CMB polarization experiments become increasingly sensitive, the techniques described in this paper can be applied to obtain stronger constraints on circular polarization.« less

  10. Dragging force on galaxies due to streaming dark matter

    NASA Technical Reports Server (NTRS)

    Hara, Tetsuya; Miyoshi, Shigeru

    1990-01-01

    It has been reported that galaxies in large regions (approx. 10(exp 2) Mpc), including some clusters of galaxies, may be streaming coherently with velocities up to 600 km/sec or more with respect to the rest frame determined by the microwave background radiation. On the other hand, it is suggested that the dominant mass component of the universe is dark matter. Because we can only speculate the motion of dark matter from the galaxy motions, much attention should be paid to the correlation of velocities between the observed galaxies and cold dark matter. So the authors investigated whether such coherent large-scale streaming velocities are due to dark matter or only to baryonic objects which may be formed by piling up of gases due to some explosive events. It seems that, although each galaxy will not follow the motion of dark matter, clusters of galaxies may represent the velocity field of dark matter. The origin of the velocity field of dark matter would be due to the initial adiabatic perturbations and, in fact, the observed peculiar velocities of clusters are within the allowed region constrained from the isotropy of the microwave background radiation.

  11. Media additives to promote spheroid circularity and compactness in hanging drop platform.

    PubMed

    Leung, Brendan M; Lesher-Perez, Sasha Cai; Matsuoka, Toshiki; Moraes, Christopher; Takayama, Shuichi

    2015-02-01

    Three-dimensional spheroid cultures have become increasingly popular as drug screening platforms, especially with the advent of different high throughput spheroid forming technologies. However, comparing drug efficacy across different cell types in spheroid culture can be difficult due to variations in spheroid morphologies and transport characteristics. Improving the reproducibility of compact, circular spheroids contributes to standardizing and increasing the fidelity of the desired gradient profiles in these drug screening three-dimensional tissue cultures. In this study we discuss the role that circularity and compaction has on spheroids, and demonstrate the impact methylcellulose (MethoCel) and collagen additives in the culture media can contribute to more compact and circular spheroid morphology. We demonstrate that improved spheroid formation is not a simple function of increased viscosity of the different macromolecule additives, suggesting that other macromolecular characteristics contribute to improved spheroid formation. Of the various macromolecular additives tested for hanging drop culture, MethoCel provided the most desirable spheroid formation. Additionally, the higher viscosity of MethoCel-containing media improved the ease of imaging of cellular spheroids within hanging drop cultures by reducing motion-induced image blur.

  12. Experimental and numerical investigation on heat transfer augmentation in a circular tube under forced convection with annular differential blockages/inserts

    NASA Astrophysics Data System (ADS)

    Waghole, D. R.

    2018-06-01

    Investigation on heat transfer by generating turbulence in the fluid stream inside the circular tube is an innovative area of research for researchers. Hence, many techniques are been investigated and adopted for enhancement of heat transfer rate to reduce the size and the cost of the heat exchanger/circular tube. In the present study the effect of differential solid ring inserts /turbulators on heat transfer, friction factor of heat exchanger/circular tube was evaluated through experimentally and numerically. The experiments were conducted in range of 3000 ≤Re≤ 6500 and annular blockages 0 ≤ɸ≤50 %. The heat transfer rate was higher for differential combination of inserts as compared to tube fitted with uniform inserts. The maximum heat transfer was obtained by the use of differential metal circular ring inserts/blockages. From this study, Nusselt number, friction factor and enhancement factor are found as 2.5-3.5 times, 12% - 50.5% and 155% - 195%, respectively with water. Finally new possible correlations for predicting heat transfer and friction factor in the flow of water through the circular tube with differential blockages/inserts are proposed.

  13. Auditory motion-specific mechanisms in the primate brain

    PubMed Central

    Baumann, Simon; Dheerendra, Pradeep; Joly, Olivier; Hunter, David; Balezeau, Fabien; Sun, Li; Rees, Adrian; Petkov, Christopher I.; Thiele, Alexander; Griffiths, Timothy D.

    2017-01-01

    This work examined the mechanisms underlying auditory motion processing in the auditory cortex of awake monkeys using functional magnetic resonance imaging (fMRI). We tested to what extent auditory motion analysis can be explained by the linear combination of static spatial mechanisms, spectrotemporal processes, and their interaction. We found that the posterior auditory cortex, including A1 and the surrounding caudal belt and parabelt, is involved in auditory motion analysis. Static spatial and spectrotemporal processes were able to fully explain motion-induced activation in most parts of the auditory cortex, including A1, but not in circumscribed regions of the posterior belt and parabelt cortex. We show that in these regions motion-specific processes contribute to the activation, providing the first demonstration that auditory motion is not simply deduced from changes in static spatial location. These results demonstrate that parallel mechanisms for motion and static spatial analysis coexist within the auditory dorsal stream. PMID:28472038

  14. Evaluation of motion artifact metrics for coronary CT angiography.

    PubMed

    Ma, Hongfeng; Gros, Eric; Szabo, Aniko; Baginski, Scott G; Laste, Zachary R; Kulkarni, Naveen M; Okerlund, Darin; Schmidt, Taly G

    2018-02-01

    This study quantified the performance of coronary artery motion artifact metrics relative to human observer ratings. Motion artifact metrics have been used as part of motion correction and best-phase selection algorithms for Coronary Computed Tomography Angiography (CCTA). However, the lack of ground truth makes it difficult to validate how well the metrics quantify the level of motion artifact. This study investigated five motion artifact metrics, including two novel metrics, using a dynamic phantom, clinical CCTA images, and an observer study that provided ground-truth motion artifact scores from a series of pairwise comparisons. Five motion artifact metrics were calculated for the coronary artery regions on both phantom and clinical CCTA images: positivity, entropy, normalized circularity, Fold Overlap Ratio (FOR), and Low-Intensity Region Score (LIRS). CT images were acquired of a dynamic cardiac phantom that simulated cardiac motion and contained six iodine-filled vessels of varying diameter and with regions of soft plaque and calcifications. Scans were repeated with different gantry start angles. Images were reconstructed at five phases of the motion cycle. Clinical images were acquired from 14 CCTA exams with patient heart rates ranging from 52 to 82 bpm. The vessel and shading artifacts were manually segmented by three readers and combined to create ground-truth artifact regions. Motion artifact levels were also assessed by readers using a pairwise comparison method to establish a ground-truth reader score. The Kendall's Tau coefficients were calculated to evaluate the statistical agreement in ranking between the motion artifacts metrics and reader scores. Linear regression between the reader scores and the metrics was also performed. On phantom images, the Kendall's Tau coefficients of the five motion artifact metrics were 0.50 (normalized circularity), 0.35 (entropy), 0.82 (positivity), 0.77 (FOR), 0.77(LIRS), where higher Kendall's Tau signifies higher

  15. Sub-Auroral Polarization Stream (SAPS) Events Under Non-storm Conditions

    NASA Astrophysics Data System (ADS)

    Sazykin, S. Y.; Coster, A. J.; Huba, J.; Spiro, R. W.; Baker, J. B.; Kunduri, B.; Ruohoniemi, J. M.; Erickson, P. J.; Wolf, R.

    2017-12-01

    The occurrence of Sub-Auroral Polarization Stream, or SAPS, structures, defined here as latitudinally narrow channels of enhanced westward plasma convection in the evening ionosphere equatorward of the auroral electron precipitation boundary, is most dramatic during geomagnetic storms. However, SAPS-like structures known as Polarization Jets or SAIDs (Sub-Auroral Ion Drift events) are also frequently observed during non-storm conditions, typically during periods of isolated substorm activity or during bursts of enhanced convection associated with southward IMF Bz component. This paper presents results from data analysis and numerical simulations of several SAPS/SAID events observed during non-storm conditions. We use convection velocity measurements from the mid-latitude chain of SuperDARN radars and cross-track drift meter data from DMSP spacecraft to identify SAPS/SAID and to characterize their structure and temporal evolution. DMSP topside ion density data and high-resolution ground-based GPS total electron content (TEC) maps are used to determine the ionospheric and plasmaspheric morphology of SAPS regions. DMSP electron precipitation data are used to determine auroral boundaries. We also present simulation results of the chosen event intervals obtained with the SAMI3-RCM ionosphere-magnetosphere coupled model. Observational results are analyzed to identify systematic differences between non-storm SAPS/SAID and the picture that has emerged based on previous storm time studies. Simulation results are used to provide physical interpretation of these differences.

  16. Visual motion disambiguation by a subliminal sound.

    PubMed

    Dufour, Andre; Touzalin, Pascale; Moessinger, Michèle; Brochard, Renaud; Després, Olivier

    2008-09-01

    There is growing interest in the effect of sound on visual motion perception. One model involves the illusion created when two identical objects moving towards each other on a two-dimensional visual display can be seen to either bounce off or stream through each other. Previous studies show that the large bias normally seen toward the streaming percept can be modulated by the presentation of an auditory event at the moment of coincidence. However, no reports to date provide sufficient evidence to indicate whether the sound bounce-inducing effect is due to a perceptual binding process or merely to an explicit inference resulting from the transient auditory stimulus resembling a physical collision of two objects. In the present study, we used a novel experimental design in which a subliminal sound was presented either 150 ms before, at, or 150 ms after the moment of coincidence of two disks moving towards each other. The results showed that there was an increased perception of bouncing (rather than streaming) when the subliminal sound was presented at or 150 ms after the moment of coincidence compared to when no sound was presented. These findings provide the first empirical demonstration that activation of the human auditory system without reaching consciousness affects the perception of an ambiguous visual motion display.

  17. Dynamic ASXL1 Exon Skipping and Alternative Circular Splicing in Single Human Cells

    PubMed Central

    Natarajan, Sivaraman; Carter, Robert; Brown, Patrick O.

    2016-01-01

    Circular RNAs comprise a poorly understood new class of noncoding RNA. In this study, we used a combination of targeted deletion, high-resolution splicing detection, and single-cell sequencing to deeply probe ASXL1 circular splicing. We found that efficient circular splicing required the canonical transcriptional start site and inverted AluSx elements. Sequencing-based interrogation of isoforms after ASXL1 overexpression identified promiscuous linear splicing between all exons, with the two most abundant non-canonical linear products skipping the exons that produced the circular isoforms. Single-cell sequencing revealed a strong preference for either the linear or circular ASXL1 isoforms in each cell, and found the predominant exon skipping product is frequently co-expressed with its reciprocal circular isoform. Finally, absolute quantification of ASXL1 isoforms confirmed our findings and suggests that standard methods overestimate circRNA abundance. Taken together, these data reveal a dynamic new view of circRNA genesis, providing additional framework for studying their roles in cellular biology. PMID:27736885

  18. Attitude motion of a non-attitude-controlled cylindrical satellite

    NASA Technical Reports Server (NTRS)

    Wilkinson, C. K.

    1988-01-01

    In 1985, two non-attitude-controlled satellites were each placed in a low earth orbit by the Scout Launch Vehicle. The satellites were cylindrical in shape and contained reservoirs of hydrazine fuel. Three-axis magnetometer measurements, telemetered in real time, were used to derive the attitude motion of each satellite. Algorithms are generated to deduce possible orientations (and magnitudes) of each vehicle's angular momentum for each telemetry contact. To resolve ambiguities at each contact, a force model was derived to simulate the significant long-term effects of magnetic, gravity gradient, and aerodynamic torques on the angular momentum of the vehicles. The histories of the orientation and magnitude of the angular momentum are illustrated.

  19. Validation of simultaneous reverse optimization reconstruction algorithm in a practical circular subaperture stitching interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Li, Dong; Liu, Yu; Liu, Jingxiao; Li, Jingsong; Yu, Benli

    2017-11-01

    We demonstrate the validity of the simultaneous reverse optimization reconstruction (SROR) algorithm in circular subaperture stitching interferometry (CSSI), which is previously proposed for non-null aspheric annular subaperture stitching interferometry (ASSI). The merits of the modified SROR algorithm in CSSI, such as auto retrace error correction, no need of overlap and even permission of missed coverage, are analyzed in detail in simulations and experiments. Meanwhile, a practical CSSI system is proposed for this demonstration. An optical wedge is employed to deflect the incident beam for subaperture scanning by its rotation and shift instead of the six-axis motion-control system. Also the reference path can provide variable Zernike defocus for each subaperture test, which would decrease the fringe density. Experiments validating the SROR algorithm in this CSSI is implemented with cross validation by testing of paraboloidal mirror, flat mirror and astigmatism mirror. It is an indispensable supplement in SROR application in general subaperture stitching interferometry.

  20. Circular RNA: New Regulatory Molecules.

    PubMed

    Belousova, E A; Filipenko, M L; Kushlinskii, N E

    2018-04-01

    Circular RNA are a family of covalently closed circular RNA molecules, formed from pre-mRNA of coding genes by means of splicing (canonical and alternative noncanonical splicing). Maturation of circular RNA is regulated by cis- and trans-elements. Complete list of biological functions of these RNA is not yet compiled; however, their capacity to interact with specific microRNA and play a role of a depot attracts the greatest interest. This property makes circular RNA active regulatory transcription factors. Circular RNA have many advantages over their linear analogs: synthesis of these molecules is conservative, they are universal, characterized by clearly determined specificity, and are resistant to exonucleases. In addition, the level of their expression is often higher than that of their linear forms. It should be noted that expression of circular RNA is tissue-specific. Moreover, some correlations between changes in the repertoire and intensity of expression of circular RNA and the development of some pathologies have been detected. Circular RNA have certain advantages and can serve as new biomarkers for the diagnosis, prognosis, and evaluation of response to therapy.

  1. Nutrients in the Nation?s streams and groundwater: National Findings and Implications

    USGS Publications Warehouse

    Dubrovsky, Neil M.; Hamilton, Pixie A.

    2010-01-01

    A comprehensive national analysis of the distribution and trends of nutrient concentrations in streams and groundwater from 1992 through 2004 is provided by the National Water-Quality Assessment (NAWQA) Program of the United States Geological Survey (USGS). Findings describe the distribution and causes of varying nutrient concentrations in streams and groundwater throughout the Nation and examine the primary sources that contribute to elevated concentrations. Results show that excessive nutrient enrichment is a widespread cause of ecological degradation in streams and that nitrate contamination of groundwater used for drinking water, particularly shallow domestic wells in agricultural areas, is a continuing human-health concern. Finally, despite major Federal, State and local nonpoint-source nutrient control efforts for streams and watersheds across the Nation, USGS trend analyses for 1993?2003 suggest limited national progress to reduce the impacts of nonpoint sources of nutrients during this period. Instead, concentrations have remained the same or increased in many streams and aquifers across the Nation, and continue to pose risks to aquatic life and human health. This Fact Sheet highlights selected national findings and their implications, and serves as a companion product to the complete analysis reported in the USGS Circular titled ?The Quality of Our Nation?s Waters?Nutrients in the Nation?s Streams and Groundwater, 1992?2004.?

  2. Modeling radio circular polarization in the Crab nebula

    NASA Astrophysics Data System (ADS)

    Bucciantini, N.; Olmi, B.

    2018-03-01

    In this paper, we present, for the first time, simulated maps of the circularly polarized synchrotron emission from the Crab nebula, using multidimensional state of the art models for the magnetic field geometry. Synchrotron emission is the signature of non-thermal emitting particles, typical of many high-energy astrophysical sources, both Galactic and extragalactic ones. Its spectral and polarization properties allow us to infer key information on the particles distribution function and magnetic field geometry. In recent years, our understanding of pulsar wind nebulae has improved substantially thanks to a combination of observations and numerical models. A robust detection or non-detection of circular polarization will enable us to discriminate between an electron-proton plasma and a pair plasma, clarifying once for all the origin of the radio emitting particles, setting strong constraints on the pair production in pulsar magnetosphere, and the role of turbulence in the nebula. Previous attempts at measuring the circular polarization have only provided upper limits, but the lack of accurate estimates, based on reliable models, makes their interpretation ambiguous. We show here that those results are above the expected values, and that current polarimetric techniques are not robust enough for conclusive result, suggesting that improvements in construction and calibration of next generation radio facilities are necessary to achieve the desired sensitivity.

  3. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA

    PubMed Central

    Hansen, Thomas B; Wiklund, Erik D; Bramsen, Jesper B; Villadsen, Sune B; Statham, Aaron L; Clark, Susan J; Kjems, Jørgen

    2011-01-01

    MicroRNAs (miRNAs) are ∼22 nt non-coding RNAs that typically bind to the 3′ UTR of target mRNAs in the cytoplasm, resulting in mRNA destabilization and translational repression. Here, we report that miRNAs can also regulate gene expression by targeting non-coding antisense transcripts in human cells. Specifically, we show that miR-671 directs cleavage of a circular antisense transcript of the Cerebellar Degeneration-Related protein 1 (CDR1) locus in an Ago2-slicer-dependent manner. The resulting downregulation of circular antisense has a concomitant decrease in CDR1 mRNA levels, independently of heterochromatin formation. This study provides the first evidence for non-coding antisense transcripts as functional miRNA targets, and a novel regulatory mechanism involving a positive correlation between mRNA and antisense circular RNA levels. PMID:21964070

  4. [Integrated evaluation of circular agriculture system: a life cycle perspective].

    PubMed

    Liang, Long; Chen, Yuan-Quan; Gao, Wang-Sheng

    2010-11-01

    For the point of view that recycling economy system is one of ways to achieve the low-carbon economy, we have made an evaluation on a typical circular agriculture duck industry in Hunan Province, China, through improving the framework of life cycle assessment (LCA). The analysis indicated that the consumption of non-renewable resources, land and water were 48.629 MJ, 2.36 m2 and 1 321.41 kg, while the potential greenhouse gas (GHGs), acidification, eutrophication, human toxicity, freshwater ecotoxicity and terrestrial ecotoxicity were 11 543.26 g (CO2 eq), 52.36g (SO2eq), 25.83g (PO4eq), 1.26, 60.74 and 24.65 g (1,4-DCBeq), respectively. The potential damage of aquatic eutrophication, freshwater ecotoxicity and terrestrial ecotoxicity was more serious than that of GHGs. Main results were following: i. the circular agricultural chain promoted the principle of "moderate circulation", which based on the traditional production methods; ii. circular agriculture could not blindly pursue low carbon development. Instead, soil and biological carbon sequestration should be considered, in addition to reducing carbon emissions; iii. circular economy and circular agriculture should take other potential environmental impacts into account such as acidification, eutrophication and ecotoxicity,with the exception to carbon emissions,to developed integrated system assessment; iv. LCA could provide a comprehensive assessment of circular agriculture, and it was worth of further study.

  5. Assessment of myoblast circular RNA dynamics and its correlation with miRNA during myogenic differentiation.

    PubMed

    Zhang, Pengpeng; Xu, Haixia; Li, Rui; Wu, Wei; Chao, Zhe; Li, Cencen; Xia, Wei; Wang, Lei; Yang, Jinzeng; Xu, Yongjie

    2018-06-01

    Myoblast differentiation is a highly complex process that is regulated by proteins as well as by non-coding RNAs. Circular RNAs have been identified as an emerging new class of non-coding RNA in the modulation of skeletal muscle development, whereas their expression profiles and functional regulation in myoblast differentiation remain unknown. In the present study, we performed deep RNA-sequencing of C2C12 myoblasts during cell differentiation and uncovered 37,751 unique circular RNAs derived from 6943 hosting genes. The ensuing qRT-PCR and RNA fluorescence in situ hybridization verification were carried out to confirm the RNA-sequencing results. An unbiased analysis demonstrated dynamic circular RNA expression changes in the process of myoblast differentiation, and the circular RNA abundances were independent from their cognate linear RNAs. Gene ontology analysis showed that many down-regulated circular RNAs were exclusive to cell division and the cell cycle, whereas up-regulated circular RNAs were related to the cell development process. Furthermore, interaction networks of circular RNA-microRNA were constructed. Several microRNAs well-known for myoblast regulation, such as miR-133, miR-24 and miR-23a, were in this network. In summary, this study showed that circular RNA expression dynamics changed during myoblast differentiation. Circular RNAs play a role in regulating the myoblast cell cycle and development by acting as microRNA binding sites to facilitate their regulation of gene expression during myoblast differentiation. These findings open a new avenue for future investigation of this emerging RNA class in skeletal muscle growth and development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism.

    PubMed

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J; Mancuso, Christopher A; Hogle, Craig W; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L; Dorney, Kevin M; Chen, Cong; Shpyrko, Oleg G; Fullerton, Eric E; Cohen, Oren; Oppeneer, Peter M; Milošević, Dejan B; Becker, Andreas; Jaroń-Becker, Agnieszka A; Popmintchev, Tenio; Murnane, Margaret M; Kapteyn, Henry C

    2015-11-17

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.

  7. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism

    PubMed Central

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D.; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J.; Mancuso, Christopher A.; Hogle, Craig W.; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L.; Dorney, Kevin M.; Chen, Cong; Shpyrko, Oleg G.; Fullerton, Eric E.; Cohen, Oren; Oppeneer, Peter M.; Milošević, Dejan B.; Becker, Andreas; Jaroń-Becker, Agnieszka A.; Popmintchev, Tenio; Murnane, Margaret M.; Kapteyn, Henry C.

    2015-01-01

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform. PMID:26534992

  8. Self-organized Motion During Dictyostelium amoebae aggregation

    NASA Astrophysics Data System (ADS)

    Levine, Herbert

    2004-03-01

    After starvation, amoeba of the cellular slime mold Dictyostelium discoideum aggregate to form rudimentary multicellular organisms. The coordination of the individual motions of hundreds of thousands of individual cells is an important ingredient in the success of this process. This coordination is accomplished by chemical signaling during the early stages and by direct cell-cell interactions once the cells reach the nascent mound. This talk will review the basic nonequilibrium physics underlying the spatial patterns formed by these cooperative motions, including high-density incoming streams and spontaneously rotating mounds.

  9. Structure Damage Simulations Accounting for Inertial Effects and Impact and Optimization of Grid-Stiffened Non-Circular Shells

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Jaunky, Navin

    1999-01-01

    The goal of this research project is to develop modelling and analysis strategy for the penetration of aluminium plates impacted by titanium impactors. Finite element analysis is used to study the penetration of aluminium plates impacted by titanium impactors in order to study the effect of such uncontained engine debris impacts on aircraft-like skin panels. LS-DYNA3D) is used in the simulations to model the impactor, test fixture frame and target barrier plate. The effects of mesh refinement, contact modeling, and impactor initial velocity and orientation were studied. The research project also includes development of a design tool for optimum design of grid-stiffened non-circular shells or panels subjected to buckling.

  10. Motion-based prediction explains the role of tracking in motion extrapolation.

    PubMed

    Khoei, Mina A; Masson, Guillaume S; Perrinet, Laurent U

    2013-11-01

    During normal viewing, the continuous stream of visual input is regularly interrupted, for instance by blinks of the eye. Despite these frequents blanks (that is the transient absence of a raw sensory source), the visual system is most often able to maintain a continuous representation of motion. For instance, it maintains the movement of the eye such as to stabilize the image of an object. This ability suggests the existence of a generic neural mechanism of motion extrapolation to deal with fragmented inputs. In this paper, we have modeled how the visual system may extrapolate the trajectory of an object during a blank using motion-based prediction. This implies that using a prior on the coherency of motion, the system may integrate previous motion information even in the absence of a stimulus. In order to compare with experimental results, we simulated tracking velocity responses. We found that the response of the motion integration process to a blanked trajectory pauses at the onset of the blank, but that it quickly recovers the information on the trajectory after reappearance. This is compatible with behavioral and neural observations on motion extrapolation. To understand these mechanisms, we have recorded the response of the model to a noisy stimulus. Crucially, we found that motion-based prediction acted at the global level as a gain control mechanism and that we could switch from a smooth regime to a binary tracking behavior where the dot is tracked or lost. Our results imply that a local prior implementing motion-based prediction is sufficient to explain a large range of neural and behavioral results at a more global level. We show that the tracking behavior deteriorates for sensory noise levels higher than a certain value, where motion coherency and predictability fail to hold longer. In particular, we found that motion-based prediction leads to the emergence of a tracking behavior only when enough information from the trajectory has been accumulated

  11. AMUC: Associated Motion capture User Categories.

    PubMed

    Norman, Sally Jane; Lawson, Sian E M; Olivier, Patrick; Watson, Paul; Chan, Anita M-A; Dade-Robertson, Martyn; Dunphy, Paul; Green, Dave; Hiden, Hugo; Hook, Jonathan; Jackson, Daniel G

    2009-07-13

    The AMUC (Associated Motion capture User Categories) project consisted of building a prototype sketch retrieval client for exploring motion capture archives. High-dimensional datasets reflect the dynamic process of motion capture and comprise high-rate sampled data of a performer's joint angles; in response to multiple query criteria, these data can potentially yield different kinds of information. The AMUC prototype harnesses graphic input via an electronic tablet as a query mechanism, time and position signals obtained from the sketch being mapped to the properties of data streams stored in the motion capture repository. As well as proposing a pragmatic solution for exploring motion capture datasets, the project demonstrates the conceptual value of iterative prototyping in innovative interdisciplinary design. The AMUC team was composed of live performance practitioners and theorists conversant with a variety of movement techniques, bioengineers who recorded and processed motion data for integration into the retrieval tool, and computer scientists who designed and implemented the retrieval system and server architecture, scoped for Grid-based applications. Creative input on information system design and navigation, and digital image processing, underpinned implementation of the prototype, which has undergone preliminary trials with diverse users, allowing identification of rich potential development areas.

  12. Multiple Streaming and the Probability Distribution of Density in Redshift Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui, Lam; Kofman, Lev; Shandarin, Sergei F.

    2000-07-01

    We examine several aspects of redshift distortions by expressing the redshift-space density in terms of the eigenvalues and orientation of the local Lagrangian deformation tensor. We explore the importance of multiple streaming using the Zeldovich approximation (ZA), and compute the average number of streams in both real and redshift space. We find that multiple streaming can be significant in redshift space but negligible in real space, even at moderate values of the linear fluctuation amplitude ({sigma}{sub l}(less-or-similar sign)1). Moreover, unlike their real-space counterparts, redshift-space multiple streams can flow past each other with minimal interactions. Such nonlinear redshift-space effects, which aremore » physically distinct from the fingers-of-God due to small-scale virialized motions, might in part explain the well-known departure of redshift distortions from the classic linear prediction by Kaiser, even at relatively large scales where the corresponding density field in real space is well described by linear perturbation theory. We also compute, using the ZA, the probability distribution function (PDF) of the density, as well as S{sub 3}, in real and redshift space, and compare it with the PDF measured from N-body simulations. The role of caustics in defining the character of the high-density tail is examined. We find that (non-Lagrangian) smoothing, due to both finite resolution or discreteness and small-scale velocity dispersions, is very effective in erasing caustic structures, unless the initial power spectrum is sufficiently truncated. (c) 2000 The American Astronomical Society.« less

  13. Analysis in Motion Initiative – Summarization Capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arendt, Dustin; Pirrung, Meg; Jasper, Rob

    2017-06-22

    Analysts are tasked with integrating information from multiple data sources for important and timely decision making. What if sense making and overall situation awareness could be improved through visualization techniques? The Analysis in Motion initiative is advancing the ability to summarize and abstract multiple streams and static data sources over time.

  14. Predictive local receptive fields based respiratory motion tracking for motion-adaptive radiotherapy.

    PubMed

    Yubo Wang; Tatinati, Sivanagaraja; Liyu Huang; Kim Jeong Hong; Shafiq, Ghufran; Veluvolu, Kalyana C; Khong, Andy W H

    2017-07-01

    Extracranial robotic radiotherapy employs external markers and a correlation model to trace the tumor motion caused by the respiration. The real-time tracking of tumor motion however requires a prediction model to compensate the latencies induced by the software (image data acquisition and processing) and hardware (mechanical and kinematic) limitations of the treatment system. A new prediction algorithm based on local receptive fields extreme learning machines (pLRF-ELM) is proposed for respiratory motion prediction. All the existing respiratory motion prediction methods model the non-stationary respiratory motion traces directly to predict the future values. Unlike these existing methods, the pLRF-ELM performs prediction by modeling the higher-level features obtained by mapping the raw respiratory motion into the random feature space of ELM instead of directly modeling the raw respiratory motion. The developed method is evaluated using the dataset acquired from 31 patients for two horizons in-line with the latencies of treatment systems like CyberKnife. Results showed that pLRF-ELM is superior to that of existing prediction methods. Results further highlight that the abstracted higher-level features are suitable to approximate the nonlinear and non-stationary characteristics of respiratory motion for accurate prediction.

  15. Vection: the contributions of absolute and relative visual motion.

    PubMed

    Howard, I P; Howard, A

    1994-01-01

    Inspection of a visual scene rotating about the vertical body axis induces a compelling sense of self rotation, or circular vection. Circular vection is suppressed by stationary objects seen beyond the moving display but not by stationary objects in the foreground. We hypothesised that stationary objects in the foreground facilitate vection because they introduce a relative-motion signal into what would otherwise be an absolute-motion signal. Vection latency and magnitude were measured with a full-field moving display and with stationary objects of various sizes and at various positions in the visual field. The results confirmed the hypothesis. Vection latency was longer when there were no stationary objects in view than when stationary objects were in view. The effect of stationary objects was particularly evident at low stimulus velocities. At low velocities a small stationary point significantly increased vection magnitude in spite of the fact that, at higher stimulus velocities and with other stationary objects in view, fixation on a stationary point, if anything, reduced vection. Changing the position of the stationary objects in the field of view did not affect vection latencies or magnitudes.

  16. THE CHANGING PATTERN OF BIREFRINGENCE IN PLASMODIA OF THE SLIME MOLD, PHYSARUM POLYCEPHALUM

    PubMed Central

    Nakajima, Hiromichi; Allen, Robert D.

    1965-01-01

    Plasmodia of the acellular slime mold, Physarum polycephalum, reveal a complex and changing pattern of birefringence when examined with a sensitive polarizing microscope. Positively birefringent fibrils are found throughout the ectoplasmic region of the plasmodium. In the larger strands they may be oriented parallel to the strand axis, or arranged circularly or spirally along the periphery of endoplasmic channels. Some fibrils exist for only a few minutes, others for a longer period. Some, particularly the circular fibrils, undergo changes in birefringence as they undergo cyclic deformations. In the ramifying strand region and the advancing margin there is a tendency for fibrils of various sizes to become organized into mutually orthogonal arrays. In some plasmodia the channel wall material immediately adjacent to the endoplasm has been found to be birefringent. The sign of endoplasmic birefringence is negative, and its magnitude is apparently constant over the streaming cycle. The pattern of plasmodial birefringence and its changes during the shuttle streaming cycle of Physarum are considered in the light of several models designed to explain either cytoplasmic streaming alone or the entire gamut of plasmodial motions. The results of this and other recent physical studies suggest that both streaming and the various other motions of the plasmodium may very likely be explained in terms of coordinated contractions taking place in the fibrils which are rendered visible in polarized light. PMID:14287186

  17. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism

    DOE PAGES

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; ...

    2015-11-03

    Here, we demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantummore » trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N 4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.« less

  18. Ice Streams as the Critical Link Between the Interior Ice Reservoir of the Antarctic Ice Sheet and the Global Climate System - a WISSARD Perspective (Invited)

    NASA Astrophysics Data System (ADS)

    Tulaczyk, S. M.; Beem, L.; Walter, J. I.; Hossainzadeh, S.; Mankoff, K. D.

    2010-12-01

    Fast flowing ice streams represent crucial features of the Antarctic ice sheet because they provide discharge ‘valves’ for the interior ice reservoir and because their grounding lines are exposed to ocean thermal forcing. Even with no/little topographic control ice flow near the perimeter of a polar ice sheet self-organizes into discrete, fast-flowing ice streams. Within these features basal melting (i.e. lubrication for ice sliding) is sustained through elevated basal shear heating in a region of thin ice that would otherwise be characterized by basal freezing and slow ice motion. Because faster basal ice motion is typically associated with faster subglacial erosion, ice streams tend to localize themselves over time by carving troughs into underlying rocks and sediments. Debris generated by this erosional activity is carried to the continental shelf and/or continental slope where it may be deposited at very high rates, rivaling these associated with deposition by some of the largest rivers on Earth. In terms of their hydrologic and geological functions, Antarctic ice streams play pretty much the same role as rivers do on non-glaciated continents. However, understanding of their dynamics is still quite rudimentary, largely because of the relative inaccessibility of the key basal and marine boundaries of ice streams where pertinent measurements need to be made. The present elevated interest in predicting future contribution of Antarctica to global sea level changes is driving ambitious research programs aimed at scientific exploration of these poorly investigated environments that will play a key role in defining the response of the ice sheet to near future climate changes. We will review one of these programs, the Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) with particular focus on its planned contributions to understanding of ice stream dynamics.

  19. Identification of Novel Long Non-coding and Circular RNAs in Human Papillomavirus-Mediated Cervical Cancer

    PubMed Central

    Wang, Hongbo; Zhao, Yingchao; Chen, Mingyue; Cui, Jie

    2017-01-01

    Cervical cancer is the third most common cancer worldwide and the fourth leading cause of cancer-associated mortality in women. Accumulating evidence indicates that long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) may play key roles in the carcinogenesis of different cancers; however, little is known about the mechanisms of lncRNAs and circRNAs in the progression and metastasis of cervical cancer. In this study, we explored the expression profiles of lncRNAs, circRNAs, miRNAs, and mRNAs in HPV16 (human papillomavirus genotype 16) mediated cervical squamous cell carcinoma and matched adjacent non-tumor (ATN) tissues from three patients with high-throughput RNA sequencing (RNA-seq). In total, we identified 19 lncRNAs, 99 circRNAs, 28 miRNAs, and 304 mRNAs that were commonly differentially expressed (DE) in different patients. Among the non-coding RNAs, 3 lncRNAs and 44 circRNAs are novel to our knowledge. Functional enrichment analysis showed that DE lncRNAs, miRNAs, and mRNAs were enriched in pathways crucial to cancer as well as other gene ontology (GO) terms. Furthermore, the co-expression network and function prediction suggested that all 19 DE lncRNAs could play different roles in the carcinogenesis and development of cervical cancer. The competing endogenous RNA (ceRNA) network based on DE coding and non-coding RNAs showed that each miRNA targeted a number of lncRNAs and circRNAs. The link between part of the miRNAs in the network and cervical cancer has been validated in previous studies, and these miRNAs targeted the majority of the novel non-coding RNAs, thus suggesting that these novel non-coding RNAs may be involved in cervical cancer. Taken together, our study shows that DE non-coding RNAs could be further developed as diagnostic and therapeutic biomarkers of cervical cancer. The complex ceRNA network also lays the foundation for future research of the roles of coding and non-coding RNAs in cervical cancer. PMID:28970820

  20. Circular epidemiology.

    PubMed

    Kuller, L H

    1999-11-01

    Circular epidemiology can be defined as the continuation of specific types of epidemiologic studies beyond the point of reasonable doubt of the true existence of an important association or the absence of such an association. Circular epidemiology is an extreme example of studies of the consistency of associations. A basic problem for epidemiology is the lack of a systematic approach to acquiring new knowledge to reach a goal of improving public health and preventive medicine. For epidemiologists, research support unfortunately is biased toward the continued study of already proven hypotheses. Circular epidemiology, however, freezes at one point in the evolution of epidemiologic studies, failing to move from descriptive to analytical case-control and longitudinal studies, for example, to experimental, clinical trials. Good epidemiology journals are filled with very well-conducted epidemiologic studies that primarily repeat the obvious or are variations on the theme.

  1. Dating the Tidal Disruption of Globular Clusters with GAIA Data on Their Stellar Streams

    NASA Astrophysics Data System (ADS)

    Bose, Sownak; Ginsburg, Idan; Loeb, Abraham

    2018-05-01

    The Gaia mission promises to deliver precision astrometry at an unprecedented level, heralding a new era for discerning the kinematic and spatial coordinates of stars in our Galaxy. Here, we present a new technique for estimating the age of tidally disrupted globular cluster streams using the proper motions and parallaxes of tracer stars. We evolve the collisional dynamics of globular clusters within the evolving potential of a Milky Way-like halo extracted from a cosmological ΛCDM simulation and analyze the resultant streams as they would be observed by Gaia. The simulations sample a variety of globular cluster orbits, and account for stellar evolution and the gravitational influence of the disk of the Milky Way. We show that a characteristic timescale, obtained from the dispersion of the proper motions and parallaxes of stars within the stream, is a good indicator for the time elapsed since the stream has been freely expanding away due to the tidal disruption of the globular cluster. This timescale, in turn, places a lower limit on the age of the cluster. The age can be deduced from astrometry using a modest number of stars, with the error on this estimate depending on the proximity of the stream and the number of tracer stars used.

  2. How visual illusions illuminate complementary brain processes: illusory depth from brightness and apparent motion of illusory contours

    PubMed Central

    Grossberg, Stephen

    2014-01-01

    Neural models of perception clarify how visual illusions arise from adaptive neural processes. Illusions also provide important insights into how adaptive neural processes work. This article focuses on two illusions that illustrate a fundamental property of global brain organization; namely, that advanced brains are organized into parallel cortical processing streams with computationally complementary properties. That is, in order to process certain combinations of properties, each cortical stream cannot process complementary properties. Interactions between these streams, across multiple processing stages, overcome their complementary deficiencies to compute effective representations of the world, and to thereby achieve the property of complementary consistency. The two illusions concern how illusory depth can vary with brightness, and how apparent motion of illusory contours can occur. Illusory depth from brightness arises from the complementary properties of boundary and surface processes, notably boundary completion and surface-filling in, within the parvocellular form processing cortical stream. This illusion depends upon how surface contour signals from the V2 thin stripes to the V2 interstripes ensure complementary consistency of a unified boundary/surface percept. Apparent motion of illusory contours arises from the complementary properties of form and motion processes across the parvocellular and magnocellular cortical processing streams. This illusion depends upon how illusory contours help to complete boundary representations for object recognition, how apparent motion signals can help to form continuous trajectories for target tracking and prediction, and how formotion interactions from V2-to-MT enable completed object representations to be continuously tracked even when they move behind intermittently occluding objects through time. PMID:25389399

  3. Tables for Supersonic Flow of Helium Around Right Circular Cones at Zero Angle of Attack

    NASA Technical Reports Server (NTRS)

    Sims, J. L.

    1973-01-01

    The results of the calculation of supersonic flow of helium about right circular cones at zero angle of attack are presented in tabular form. The calculations were performed using the Taylor-Maccoll theory. Numerical integrations were performed using a Runge-Kutta method for second-order differential equations. Results were obtained for cone angles from 2.5 to 30 degrees in regular increments of 2.5 degrees. In all calculations the desired free-stream Mach number was obtained to five or more significant figures.

  4. Conjunctions between motion and disparity are encoded with the same spatial resolution as disparity alone.

    PubMed

    Allenmark, Fredrik; Read, Jenny C A

    2012-10-10

    Neurons in cortical area MT respond well to transparent streaming motion in distinct depth planes, such as caused by observer self-motion, but do not contain subregions excited by opposite directions of motion. We therefore predicted that spatial resolution for transparent motion/disparity conjunctions would be limited by the size of MT receptive fields, just as spatial resolution for disparity is limited by the much smaller receptive fields found in primary visual cortex, V1. We measured this using a novel "joint motion/disparity grating," on which human observers detected motion/disparity conjunctions in transparent random-dot patterns containing dots streaming in opposite directions on two depth planes. Surprisingly, observers showed the same spatial resolution for these as for pure disparity gratings. We estimate the limiting receptive field diameter at 11 arcmin, similar to V1 and much smaller than MT. Higher internal noise for detecting joint motion/disparity produces a slightly lower high-frequency cutoff of 2.5 cycles per degree (cpd) versus 3.3 cpd for disparity. This suggests that information on motion/disparity conjunctions is available in the population activity of V1 and that this information can be decoded for perception even when it is invisible to neurons in MT.

  5. Cresting the wave: proper motions of the Eastern Banded Structure

    NASA Astrophysics Data System (ADS)

    Deason, Alis J.; Belokurov, Vasily; Koposov, Sergey E.

    2018-01-01

    We study the kinematic properties of the Eastern Banded Structure (EBS) and Hydra I overdensity using exquisite proper motions derived from the Sloan Digital Sky Survey (SDSS) and Gaia source catalogue. Main sequence turn-off stars in the vicinity of the EBS are identified from SDSS photometry; we use the proper motions and, where applicable, spectroscopic measurements of these stars to probe the kinematics of this apparent stream. We find that the EBS and Hydra I share common kinematic and chemical properties with the nearby Monoceros Ring. In particular, the proper motions of the EBS, like Monoceros, are indicative of prograde rotation (Vϕ ∼ 180-220 km s-1), which is similar to the Galactic thick disc. The kinematic structure of stars in the vicinity of the EBS suggests that it is not a distinct stellar stream, but rather marks the 'edge' of the Monoceros Ring. The EBS and Hydra I are the latest substructures to be linked with Monoceros, leaving the Galactic anti-centre a mess of interlinked overdensities which likely share a unified, Galactic disc origin.

  6. Compact waveguide circular polarizer

    DOEpatents

    Tantawi, Sami G.

    2016-08-16

    A multi-port waveguide is provided having a rectangular waveguide that includes a Y-shape structure with first top arm having a first rectangular waveguide port, a second top arm with second rectangular waveguide port, and a base arm with a third rectangular waveguide port for supporting a TE.sub.10 mode and a TE.sub.20 mode, where the end of the third rectangular waveguide port includes rounded edges that are parallel to a z-axis of the waveguide, a circular waveguide having a circular waveguide port for supporting a left hand and a right hand circular polarization TE.sub.11 mode and is coupled to a base arm broad wall, and a matching feature disposed on the base arm broad wall opposite of the circular waveguide for terminating the third rectangular waveguide port, where the first rectangular waveguide port, the second rectangular waveguide port and the circular waveguide port are capable of supporting 4-modes of operation.

  7. Illusory object motion in the centre of a radial pattern: The Pursuit–Pursuing illusion

    PubMed Central

    Ito, Hiroyuki

    2012-01-01

    A circular object placed in the centre of a radial pattern consisting of thin sectors was found to cause a robust motion illusion. During eye-movement pursuit of a moving target, the presently described stimulus produced illusory background-object motion in the same direction as that of the eye movement. In addition, the display induced illusory stationary perception of a moving object against the whole display motion. In seven experiments, the characteristics of the illusion were examined in terms of luminance relationships and figural characteristics of the radial pattern. Some potential explanations for these findings are discussed. PMID:23145267

  8. Illusory object motion in the centre of a radial pattern: The Pursuit-Pursuing illusion.

    PubMed

    Ito, Hiroyuki

    2012-01-01

    A circular object placed in the centre of a radial pattern consisting of thin sectors was found to cause a robust motion illusion. During eye-movement pursuit of a moving target, the presently described stimulus produced illusory background-object motion in the same direction as that of the eye movement. In addition, the display induced illusory stationary perception of a moving object against the whole display motion. In seven experiments, the characteristics of the illusion were examined in terms of luminance relationships and figural characteristics of the radial pattern. Some potential explanations for these findings are discussed.

  9. Motion processing with two eyes in three dimensions.

    PubMed

    Rokers, Bas; Czuba, Thaddeus B; Cormack, Lawrence K; Huk, Alexander C

    2011-02-11

    The movement of an object toward or away from the head is perhaps the most critical piece of information an organism can extract from its environment. Such 3D motion produces horizontally opposite motions on the two retinae. Little is known about how or where the visual system combines these two retinal motion signals, relative to the wealth of knowledge about the neural hierarchies involved in 2D motion processing and binocular vision. Canonical conceptions of primate visual processing assert that neurons early in the visual system combine monocular inputs into a single cyclopean stream (lacking eye-of-origin information) and extract 1D ("component") motions; later stages then extract 2D pattern motion from the cyclopean output of the earlier stage. Here, however, we show that 3D motion perception is in fact affected by the comparison of opposite 2D pattern motions between the two eyes. Three-dimensional motion sensitivity depends systematically on pattern motion direction when dichoptically viewing gratings and plaids-and a novel "dichoptic pseudoplaid" stimulus provides strong support for use of interocular pattern motion differences by precluding potential contributions from conventional disparity-based mechanisms. These results imply the existence of eye-of-origin information in later stages of motion processing and therefore motivate the incorporation of such eye-specific pattern-motion signals in models of motion processing and binocular integration.

  10. Acoustic streaming induced by two orthogonal ultrasound standing waves in a microfluidic channel.

    PubMed

    Doinikov, Alexander A; Thibault, Pierre; Marmottant, Philippe

    2018-07-01

    A mathematical model is derived for acoustic streaming in a microfluidic channel confined between a solid wall and a rigid reflector. Acoustic streaming is produced by two orthogonal ultrasound standing waves of the same frequency that are created by two pairs of counter-propagating leaky surface waves induced in the solid wall. The magnitudes and phases of the standing waves are assumed to be different. Full analytical solutions are found for the equations of acoustic streaming. The obtained solutions are used in numerical simulations to reveal the structure of the acoustic streaming. It is shown that the interaction of two standing waves leads to the appearance of a cross term in the equations of acoustic streaming. If the phase lag between the standing waves is nonzero, the cross term brings about circular vortices with rotation axes perpendicular to the solid wall of the channel. The vortices make fluid particles rotate and move alternately up and down between the solid wall and the reflector. The obtained results are of immediate interest for acoustomicrofluidic applications such as the ultrasonic micromixing of fluids and the manipulation of microparticles. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. [Circular migration in Indonesia].

    PubMed

    Mantra, I B

    1979-12-01

    The author examines circular migration in Indonesia, with primary focus on the 1970s. It is found that circular, or repeated return migration, generally occurs over short distances and for short periods and is more frequent than lifetime migration. The relationships between improvements in the national transport system, access to labor force opportunities in both the formal and informal sectors of the economy, and circular migration are discussed.

  12. Effects of Spatial Attention on Motion Discrimination are Greater in the Left than Right Visual Field

    PubMed Central

    Bosworth, Rain G.; Petrich, Jennifer A.; Dobkins, Karen R.

    2012-01-01

    In order to investigate differences in the effects of spatial attention between the left visual field (LVF) and the right visual field (RVF), we employed a full/poor attention paradigm using stimuli presented in the LVF vs. RVF. In addition, to investigate differences in the effects of spatial attention between the Dorsal and Ventral processing streams, we obtained motion thresholds (motion coherence thresholds and fine direction discrimination thresholds) and orientation thresholds, respectively. The results of this study showed negligible effects of attention on the orientation task, in either the LVF or RVF. In contrast, for both motion tasks, there was a significant effect of attention in the LVF, but not in the RVF. These data provide psychophysical evidence for greater effects of spatial attention in the LVF/right hemisphere, specifically, for motion processing in the Dorsal stream. PMID:22051893

  13. Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis.

    PubMed

    Yang, W; Du, W W; Li, X; Yee, A J; Yang, B B

    2016-07-28

    It has recently been shown that the upregulation of a pseudogene specific to a protein-coding gene could function as a sponge to bind multiple potential targeting microRNAs (miRNAs), resulting in increased gene expression. Similarly, it was recently demonstrated that circular RNAs can function as sponges for miRNAs, and could upregulate expression of mRNAs containing an identical sequence. Furthermore, some mRNAs are now known to not only translate protein, but also function to sponge miRNA binding, facilitating gene expression. Collectively, these appear to be effective mechanisms to ensure gene expression and protein activity. Here we show that expression of a member of the forkhead family of transcription factors, Foxo3, is regulated by the Foxo3 pseudogene (Foxo3P), and Foxo3 circular RNA, both of which bind to eight miRNAs. We found that the ectopic expression of the Foxo3P, Foxo3 circular RNA and Foxo3 mRNA could all suppress tumor growth and cancer cell proliferation and survival. Our results showed that at least three mechanisms are used to ensure protein translation of Foxo3, which reflects an essential role of Foxo3 and its corresponding non-coding RNAs.

  14. Detecting and Analyzing Multiple Moving Objects in Crowded Environments with Coherent Motion Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheriyadat, Anil M.

    Understanding the world around us from large-scale video data requires vision systems that can perform automatic interpretation. While human eyes can unconsciously perceive independent objects in crowded scenes and other challenging operating environments, automated systems have difficulty detecting, counting, and understanding their behavior in similar scenes. Computer scientists at ORNL have a developed a technology termed as "Coherent Motion Region Detection" that invloves identifying multiple indepedent moving objects in crowded scenes by aggregating low-level motion cues extracted from moving objects. Humans and other species exploit such low-level motion cues seamlessely to perform perceptual grouping for visual understanding. The algorithm detectsmore » and tracks feature points on moving objects resulting in partial trajectories that span coherent 3D region in the space-time volume defined by the video. In the case of multi-object motion, many possible coherent motion regions can be constructed around the set of trajectories. The unique approach in the algorithm is to identify all possible coherent motion regions, then extract a subset of motion regions based on an innovative measure to automatically locate moving objects in crowded environments.The software reports snapshot of the object, count, and derived statistics ( count over time) from input video streams. The software can directly process videos streamed over the internet or directly from a hardware device (camera).« less

  15. Insights from event-related potentials into the temporal and hierarchical organization of the ventral and dorsal streams of the visual system in selective attention.

    PubMed

    Martín-Loeches, M; Hinojosa, J A; Rubia, F J

    1999-11-01

    The temporal and hierarchical relationships between the dorsal and the ventral streams in selective attention are known only in relation to the use of spatial location as the attentional cue mediated by the dorsal stream. To improve this state of affairs, event-related brain potentials were recorded while subjects attended simultaneously to motion direction (mediated by the dorsal stream) and to a property mediated by the ventral stream (color or shape). At about the same time, a selection positivity (SP) started for attention mediated by both streams. However, the SP for color and shape peaked about 60 ms later than motion SP. Subsequently, a selection negativity (SN) followed by a late positive component (LPC) were found simultaneously for attention mediated by both streams. A hierarchical relationship between the two streams was not observed, but neither SN nor LPC for one property was completely insensitive to the values of the other property.

  16. 5 CFR 1310.5 - List of current circulars.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Principles for Non-Profit Organizations” A-123—“Management Accountability and Control” A-125—“Prompt Payment... Organizations” A-134—“Financial Accounting Principles and Standards” A-135—“Management of Federal Advisory... 1310.5 Administrative Personnel OFFICE OF MANAGEMENT AND BUDGET OMB DIRECTIVES OMB CIRCULARS § 1310.5...

  17. 5 CFR 1310.5 - List of current circulars.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Principles for Non-Profit Organizations” A-123—“Management Accountability and Control” A-125—“Prompt Payment... Organizations” A-134—“Financial Accounting Principles and Standards” A-135—“Management of Federal Advisory... 1310.5 Administrative Personnel OFFICE OF MANAGEMENT AND BUDGET OMB DIRECTIVES OMB CIRCULARS § 1310.5...

  18. 5 CFR 1310.5 - List of current circulars.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Principles for Non-Profit Organizations” A-123—“Management Accountability and Control” A-125—“Prompt Payment... Organizations” A-134—“Financial Accounting Principles and Standards” A-135—“Management of Federal Advisory... 1310.5 Administrative Personnel OFFICE OF MANAGEMENT AND BUDGET OMB DIRECTIVES OMB CIRCULARS § 1310.5...

  19. 5 CFR 1310.5 - List of current circulars.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 1310.5 Administrative Personnel OFFICE OF MANAGEMENT AND BUDGET OMB DIRECTIVES OMB CIRCULARS § 1310.5...-11—“Preparation and Submission of Budget Estimates” (Part 1) “Preparation and Submission of Strategic... Principles for Non-Profit Organizations” A-123—“Management Accountability and Control” A-125—“Prompt Payment...

  20. Human joint motion estimation for electromyography (EMG)-based dynamic motion control.

    PubMed

    Zhang, Qin; Hosoda, Ryo; Venture, Gentiane

    2013-01-01

    This study aims to investigate a joint motion estimation method from Electromyography (EMG) signals during dynamic movement. In most EMG-based humanoid or prosthetics control systems, EMG features were directly or indirectly used to trigger intended motions. However, both physiological and nonphysiological factors can influence EMG characteristics during dynamic movements, resulting in subject-specific, non-stationary and crosstalk problems. Particularly, when motion velocity and/or joint torque are not constrained, joint motion estimation from EMG signals are more challenging. In this paper, we propose a joint motion estimation method based on muscle activation recorded from a pair of agonist and antagonist muscles of the joint. A linear state-space model with multi input single output is proposed to map the muscle activity to joint motion. An adaptive estimation method is proposed to train the model. The estimation performance is evaluated in performing a single elbow flexion-extension movement in two subjects. All the results in two subjects at two load levels indicate the feasibility and suitability of the proposed method in joint motion estimation. The estimation root-mean-square error is within 8.3% ∼ 10.6%, which is lower than that being reported in several previous studies. Moreover, this method is able to overcome subject-specific problem and compensate non-stationary EMG properties.

  1. Regional bankfull-channel dimensions of non-urban wadeable streams in Indiana

    USGS Publications Warehouse

    Robinson, Bret A.

    2013-01-01

    During floods, damage to properties and community infrastructure may result from inundation and the processes of erosion. The damages imparted by erosion are collectively termed the fluvial erosion hazard (FEH), and the Indiana Silver Jackets Multi-agency Hazard Mitigation Taskforce is supporting a program to build tools that will assist Indiana property owners and communities with FEH-mitigation efforts. As part of that program, regional channel-dimension relations are identified for non-urban wadeable streams in Indiana. With a site-selection process that targeted the three largest physiographic regions of the state, field work was completed to measure channel-dimension and channel-geometry characteristics across Indiana. In total, 82 sites were identified for data collection; 25 in the Northern Moraine and Lake region, 31 in the Central Till Plain region, and 26 in the Southern Hills and Lowlands region. Following well established methods, for each data-collection site, effort was applied to identify bankfull stage, determine bankfull-channel dimensions, and document channel-geometry characteristics that allowed for determinations of channel classification. In this report, regional bankfull-channel dimension results are presented as a combination of plots and regression equations that identify the relations between drainage area and the bankfull-channel dimensions of width, mean depth, and cross-sectional area. This investigation found that the channel-dimension data support independent relations for each of the three physiographic regions noted above. Furthermore, these relations show that, for any given drainage area, northern Indiana channels have the smallest predicted dimensions, southern Indiana channels have the largest predicted dimensions, and central Indiana channels are intermediate in their predicted dimensions. When considering the suite of variables that influence bankfull-channel dimensions, it appears that contrasting runoff characteristics

  2. Potential population and assemblage influences of non-native trout on native nongame fish in Nebraska headwater streams

    USGS Publications Warehouse

    Turek, Kelly C.; Pegg, Mark A.; Pope, Kevin L.; Schainost, Steve

    2014-01-01

    Non-native trout are currently stocked to support recreational fisheries in headwater streams throughout Nebraska. The influence of non-native trout introductions on native fish populations and their role in structuring fish assemblages in these systems is unknown. The objectives of this study were to determine (i) if the size structure or relative abundance of native fish differs in the presence and absence of non-native trout, (ii) if native fish-assemblage structure differs in the presence and absence of non-native trout and (iii) if native fish-assemblage structure differs across a gradient in abundances of non-native trout. Longnose dace Rhinichthys cataractae were larger in the presence of brown trout Salmo trutta and smaller in the presence of rainbow trout Oncorhynchus mykiss compared to sites without trout. There was also a greater proportion of larger white suckers Catostomus commersonii in the presence of brown trout. Creek chub Semotilus atromaculatus and fathead minnow Pimephales promelas size structures were similar in the presence and absence of trout. Relative abundances of longnose dace, white sucker, creek chub and fathead minnow were similar in the presence and absence of trout, but there was greater distinction in native fish-assemblage structure between sites with trout compared to sites without trout as trout abundances increased. These results suggest increased risk to native fish assemblages in sites with high abundances of trout. However, more research is needed to determine the role of non-native trout in structuring native fish assemblages in streams, and the mechanisms through which introduced trout may influence native fish populations.

  3. Decoding conjunctions of direction-of-motion and binocular disparity from human visual cortex.

    PubMed

    Seymour, Kiley J; Clifford, Colin W G

    2012-05-01

    Motion and binocular disparity are two features in our environment that share a common correspondence problem. Decades of psychophysical research dedicated to understanding stereopsis suggest that these features interact early in human visual processing to disambiguate depth. Single-unit recordings in the monkey also provide evidence for the joint encoding of motion and disparity across much of the dorsal visual stream. Here, we used functional MRI and multivariate pattern analysis to examine where in the human brain conjunctions of motion and disparity are encoded. Subjects sequentially viewed two stimuli that could be distinguished only by their conjunctions of motion and disparity. Specifically, each stimulus contained the same feature information (leftward and rightward motion and crossed and uncrossed disparity) but differed exclusively in the way these features were paired. Our results revealed that a linear classifier could accurately decode which stimulus a subject was viewing based on voxel activation patterns throughout the dorsal visual areas and as early as V2. This decoding success was conditional on some voxels being individually sensitive to the unique conjunctions comprising each stimulus, thus a classifier could not rely on independent information about motion and binocular disparity to distinguish these conjunctions. This study expands on evidence that disparity and motion interact at many levels of human visual processing, particularly within the dorsal stream. It also lends support to the idea that stereopsis is subserved by early mechanisms also tuned to direction of motion.

  4. [Motion sickness in motion: from carsickness to cybersickness].

    PubMed

    Bos, J E; van Leeuwen, R B; Bruintjes, T D

    2018-01-01

    - Motion sickness is not a disorder, but a normal response to a non-normal situation in which movement plays a central role, such as car travel, sailing, flying, or virtual reality.- Almost anyone can suffer from motion sickness, as long as at least one of the organs of balance functions. If neither of the organs of balance functions the individual will not suffer from carsickness, seasickness, airsickness, nor from cybersickness. - 'Cybersickness' is a form of motion sickness that is stimulated by artificial moving images such as in videogames. Because we are now exposed more often and for longer periods of time to increasingly realistic artificial images, doctors will also encounter cases of motion sickness more often. - The basis for motion sickness is the vestibular system, which can be modulated by visual-vestibular conflicts, i.e. when the movements seen by the eyes are not the same as those experienced by the organs of balance.- Antihistamines can be effective against motion sickness in everyday situations such as car travel if taken before departure, but the effectiveness of medication for motion sickness is limited.

  5. Betatron motion with coupling of horizontal and vertical degrees of freedom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. A. Bogacz; V. A. Lebedev

    2002-11-21

    The Courant-Snyder parameterization of one-dimensional linear betatron motion is generalized to two-dimensional coupled linear motion. To represent the 4 x 4 symplectic transfer matrix the following ten parameters were chosen: four beta-functions, four alpha-functions and two betatron phase advances which have a meaning similar to the Courant-Snyder parameterization. Such a parameterization works equally well for weak and strong coupling and can be useful for analysis of coupled betatron motion in circular accelerators as well as in transfer lines. Similarly, the transfer matrix, the bilinear form describing the phase space ellipsoid and the second order moments are related to the eigen-vectors.more » Corresponding equations can be useful in interpreting tracking results and experimental data.« less

  6. A Wideband Circularly Polarized Antenna with a Multiple-Circular-Sector Dielectric Resonator.

    PubMed

    Trinh-Van, Son; Yang, Youngoo; Lee, Kang-Yoon; Hwang, Keum Cheol

    2016-11-03

    This paper presents the design of a wideband circularly polarized antenna using a multiple-circular-sector dielectric resonator (DR). The DR is composed of twelve circular-sector DRs with identical central angles of 30 ∘ but with different radii. A genetic algorithm is utilized to optimize the radii of the twelve circular-sector DRs to realize wideband circular polarization. The proposed antenna is excited using an aperture-coupled feeding technique through a narrow rectangular slot etched onto the ground plane. An antenna prototype is experimentally verified. The measured -10 dB reflection and 3 dB axial ratio (AR) bandwidths are 31.39% (1.88-2.58 GHz) and 19.30% (2.06-2.50 GHz), respectively, covering the operating bands of the following systems: UMTS-2100 (2.145 GHz), WiMAX (2.3 GHz), and Wi-Fi (2.445 GHz). A measured peak gain of 7.65 dBic at 2.225 GHz and gain variation of less than 2.70 dBic within the measured 3 dB AR bandwidth are achieved. In addition, the radiation patterns of the proposed antenna are presented and discussed.

  7. A Wideband Circularly Polarized Antenna with a Multiple-Circular-Sector Dielectric Resonator

    PubMed Central

    Trinh-Van, Son; Yang, Youngoo; Lee, Kang-Yoon; Hwang, Keum Cheol

    2016-01-01

    This paper presents the design of a wideband circularly polarized antenna using a multiple-circular-sector dielectric resonator (DR). The DR is composed of twelve circular-sector DRs with identical central angles of 30∘ but with different radii. A genetic algorithm is utilized to optimize the radii of the twelve circular-sector DRs to realize wideband circular polarization. The proposed antenna is excited using an aperture-coupled feeding technique through a narrow rectangular slot etched onto the ground plane. An antenna prototype is experimentally verified. The measured −10 dB reflection and 3 dB axial ratio (AR) bandwidths are 31.39% (1.88–2.58 GHz) and 19.30% (2.06–2.50 GHz), respectively, covering the operating bands of the following systems: UMTS-2100 (2.145 GHz), WiMAX (2.3 GHz), and Wi-Fi (2.445 GHz). A measured peak gain of 7.65 dBic at 2.225 GHz and gain variation of less than 2.70 dBic within the measured 3 dB AR bandwidth are achieved. In addition, the radiation patterns of the proposed antenna are presented and discussed. PMID:27827881

  8. Potential generated inner and outside a circular wire in its plane. Application to Saturn's ring

    NASA Astrophysics Data System (ADS)

    Najid, N.-E.; Zegoumou, M.; El Ourabi, E. H.

    2012-12-01

    In this article we derive the development of the potential generated by a homogeneous wire bent into a circular shape (Najid, Jammari & Zegoumou, 2005). We develop the potential as a power series of the distance from an appropriate origin to the test particle. The potential is expressed as a function of Legendre polynomials. We study both, the case where the test particle is inside or outside the circular wire. By Lagrangian formulation, we establish the differential equation of motion. The numerical resolution leads us to different orbits. Outside the wire we get a case where the test particle is confined between a maxima and minima of the radial position; while inner the wire the test particle is subjected to an escape case depending on the time of integration.

  9. Variations in Rotation Rate and Polar Motion of a Non-hydrostatic Titan

    NASA Astrophysics Data System (ADS)

    Van Hoolst, T.; Coyette, A.; Baland, R. M.

    2017-12-01

    Observations of the rotation of large synchronously rotating satellites such as Titan can help to probe their interior. Previous studies (Van Hoolst et al. 2013, Richard et al. 2014, Coyette et al. 2016) mostly assume that Titan is in hydrostatic equilibrium, although several measurements indicate that it deviates from such a state. Here we investigate the effect of non-hydrostatic equilibrium and of flow in the subsurface ocean on the rotation of Titan. We consider (1) the periodic changes in Titan's rotation rate with a period equal to Titan's orbital period (diurnal librations) as a result of the gravitational torque exerted by Saturn, (2) the periodic changes in Titan's rotation rate with a main period equal to half the orbital period of Saturn (seasonal librations) and due to the dynamic variations in the atmosphere of Titan and (3) the periodic changes of the axis of rotation with respect to the figure axis of Titan (polar motion) with a main period equal to the orbital period of Saturn and due to the dynamic variations in the atmosphere of Titan. The non-hydrostatic mass distribution significantly influences the amplitude of the diurnal and seasonal librations. It is less important for polar motion, which is sensitive to flow in the subsurface ocean. The smaller than synchronous rotation rate measured by Cassini (Meriggiola 2016) can be explained by the atmospheric forcing.

  10. Motion sickness and gastric myoelectric activity as a function of speed of rotation of a circular vection drum

    NASA Technical Reports Server (NTRS)

    Hu, Senqi; Stern, Robert M.; Vasey, Michael W.; Koch, Kenneth L.

    1989-01-01

    Motion sickness symptoms and electrogastrograms (EGGs) were obtained from 60 healthy subjects while they viewed an optokinetic drum rotated at one of four speeds: 15, 30, 60 or 90 deg/s. All subjects experienced vection, illusory self-motion. Motion sickness symptoms increased as drums speed increased up to 60 deg/s. Power, spectral intensity, of the EGG at the tachygastria frequencies (4-9 cpm) was calculated at each drum rotation speed. The correlation between the motion sickness symptoms and the power at 4-9 cpm was significant. Thus, drum rotation speed influenced the spectral power of the EGG at 4-9 cpm, tachygastria, and the intensity of motion sickness symptoms.

  11. Optimization of blade motion of vertical axis turbine

    NASA Astrophysics Data System (ADS)

    Ma, Yong; Zhang, Liang; Zhang, Zhi-yang; Han, Duan-feng

    2016-04-01

    In this paper, a method is proposed to improve the energy efficiency of the vertical axis turbine. First of all, a single disk multiple stream-tube model is used to calculate individual fitness. Genetic algorithm is adopted to optimize blade pitch motion of vertical axis turbine with the maximum energy efficiency being selected as the optimization objective. Then, a particular data processing method is proposed, fitting the result data into a cosine-like curve. After that, a general formula calculating the blade motion is developed. Finally, CFD simulation is used to validate the blade pitch motion formula. The results show that the turbine's energy efficiency becomes higher after the optimization of blade pitch motion; compared with the fixed pitch turbine, the efficiency of variable-pitch turbine is significantly improved by the active blade pitch control; the energy efficiency declines gradually with the growth of speed ratio; besides, compactness has lager effect on the blade motion while the number of blades has little effect on it.

  12. Non-coding effects of circular RNA CCDC66 promote colon cancer growth and metastasis

    PubMed Central

    Hsiao, Kuei-Yang; Lin, Ya-Chi; Gupta, Sachin Kumar; Chang, Ning; Yen, Laising; Sun, H. Sunny; Tsai, Shaw-Jenq

    2018-01-01

    Circular RNA (circRNA) is a class of non-coding RNA whose functions remain mostly unknown. Recent studies indicate circRNA may be involved in disease pathogenesis, but direct evidence is scarce. Here we characterize the functional role of a novel circRNA, circCCDC66, in colorectal cancer (CRC). RNA-Seq data from matched normal and tumor colon tissue samples identified numerous circRNAs specifically elevated in cancer cells, several of which were verified by quantitative RT-PCR. CircCCDC66 expression was elevated in polyps and colon cancer and was associated with poor prognosis. Gain-of-function and loss-of-function studies in CRC cell-lines demonstrated that circCCDC66 controlled multiple pathological processes, including cell proliferation, migration, invasion, and anchorage-independent growth. In-depth characterization revealed that circCCDC66 exerts its function via regulation of a subset of oncogenes, and knockdown of circCCDC66 inhibited tumor growth and cancer invasion in xenograft and orthotopic mouse models, respectively. Taken together, these findings highlight a novel oncogenic function of circRNA in cancer progression and metastasis. PMID:28249903

  13. Circular array of stable atmospheric pressure microplasmas

    NASA Astrophysics Data System (ADS)

    Wu, C.; Zhang, Z.-B.; Hoskinson, A.; Hopwood, J.

    2010-12-01

    A circular array composed of six quarter-wavelength microstripline resonators sustains a stable ring-shaped microplasma in atmospheric pressure argon. A single power source (1 GHz, <5 W) drives all six resonators. The operation of the array is modeled by coupled mode theory (CMT) and confirmed by electromagnetic simulations. Non-uniformities in the plasma ring are attributed to parasitic plasma sheath capacitance and confirmed by CMT.

  14. Imaging linear and circular polarization features in leaves with complete Mueller matrix polarimetry.

    PubMed

    Patty, C H Lucas; Luo, David A; Snik, Frans; Ariese, Freek; Buma, Wybren Jan; Ten Kate, Inge Loes; van Spanning, Rob J M; Sparks, William B; Germer, Thomas A; Garab, Győző; Kudenov, Michael W

    2018-06-01

    Spectropolarimetry of intact plant leaves allows to probe the molecular architecture of vegetation photosynthesis in a non-invasive and non-destructive way and, as such, can offer a wealth of physiological information. In addition to the molecular signals due to the photosynthetic machinery, the cell structure and its arrangement within a leaf can create and modify polarization signals. Using Mueller matrix polarimetry with rotating retarder modulation, we have visualized spatial variations in polarization in transmission around the chlorophyll a absorbance band from 650 nm to 710 nm. We show linear and circular polarization measurements of maple leaves and cultivated maize leaves and discuss the corresponding Mueller matrices and the Mueller matrix decompositions, which show distinct features in diattenuation, polarizance, retardance and depolarization. Importantly, while normal leaf tissue shows a typical split signal with both a negative and a positive peak in the induced fractional circular polarization and circular dichroism, the signals close to the veins only display a negative band. The results are similar to the negative band as reported earlier for single macrodomains. We discuss the possible role of the chloroplast orientation around the veins as a cause of this phenomenon. Systematic artefacts are ruled out as three independent measurements by different instruments gave similar results. These results provide better insight into circular polarization measurements on whole leaves and options for vegetation remote sensing using circular polarization. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  15. Near shot-noise limited time-resolved circular dichroism pump-probe spectrometer

    NASA Astrophysics Data System (ADS)

    Stadnytskyi, Valentyn; Orf, Gregory S.; Blankenship, Robert E.; Savikhin, Sergei

    2018-03-01

    We describe an optical near shot-noise limited time-resolved circular dichroism (TRCD) pump-probe spectrometer capable of reliably measuring circular dichroism signals in the order of μdeg with nanosecond time resolution. Such sensitivity is achieved through a modification of existing TRCD designs and introduction of a new data processing protocol that eliminates approximations that have caused substantial nonlinearities in past measurements and allows the measurement of absorption and circular dichroism transients simultaneously with a single pump pulse. The exceptional signal-to-noise ratio of the described setup makes the TRCD technique applicable to a large range of non-biological and biological systems. The spectrometer was used to record, for the first time, weak TRCD kinetics associated with the triplet state energy transfer in the photosynthetic Fenna-Matthews-Olson antenna pigment-protein complex.

  16. Breaking Symmetry in Time-Dependent Electronic Structure Theory to Describe Spectroscopic Properties of Non-Collinear and Chiral Molecules

    NASA Astrophysics Data System (ADS)

    Goings, Joshua James

    Time-dependent electronic structure theory has the power to predict and probe the ways electron dynamics leads to useful phenomena and spectroscopic data. Here we report several advances and extensions of broken-symmetry time-dependent electronic structure theory in order to capture the flexibility required to describe non-equilibrium spin dynamics, as well as electron dynamics for chiroptical properties and vibrational effects. In the first half, we begin by discussing the generalization of self-consistent field methods to the so-called two-component structure in order to capture non-collinear spin states. This means that individual electrons are allowed to take a superposition of spin-1/2 projection states, instead of being constrained to either spin-up or spin-down. The system is no longer a spin eigenfunction, and is known a a spin-symmetry broken wave function. This flexibility to break spin symmetry may lead to variational instabilities in the approximate wave function, and we discuss how these may be overcome. With a stable non-collinear wave function in hand, we then discuss how to obtain electronic excited states from the non-collinear reference, along with associated challenges in their physical interpretation. Finally, we extend the two-component methods to relativistic Hamiltonians, which is the proper setting for describing spin-orbit driven phenomena. We describe the first implementation of the explicit time propagation of relativistic two-component methods and how this may be used to capture spin-forbidden states in electronic absorption spectra. In the second half, we describe the extension of explicitly time-propagated wave functions to the simulation of chiroptical properties, namely circular dichroism (CD) spectra of chiral molecules. Natural circular dichroism, that is, CD in the absence of magnetic fields, originates in the broken parity symmetry of chiral molecules. This proves to be an efficient method for computing circular dichroism spectra

  17. Turning Passive Brownian Motion Into Active Motion

    NASA Astrophysics Data System (ADS)

    Sevilla, Francisco J.; VáSquez-Arzola, Alejandro; Puga-Cital, Enrique

    We consider out-of-equilibrium phenomena, specifically, the pattern of motion of active particles. These particles absorb energy from the environment and transform it into self-locomotion, generally, through complex mechanisms. Though the out-of-equilibrium nature of on the motion of these systems is well recognized, is generally difficult to pinpoint how far from equilibrium these systems are. In this work we elucidate the out-of-equilibrium nature of non-interacting, trapped, active particles, whose pattern of motion is described by a run-and-tumble dynamics. We show that the stationary distributions of these run-and-tumble particles, moving under the effects of an external potential, is equivalent to the stationary distribution of non-interacting, passive Brownian particles moving in the same potential but in an inhomogeneous source of heat. The interest in this topic has recently regrown due to the experimental possibility to design man-made active particles that emulate the ones that exist in the biological realm. F.J.S kindly acknowledges support from Grant UNAM-DGAPA-PAPIIT-IN113114.

  18. Identification of the Viscous Superlayer on the Low-Speed Side of a Single-Stream Shear Layer

    NASA Astrophysics Data System (ADS)

    Foss, John; Peabody, Jason

    2010-11-01

    Image pairs (elevation/plan views) have been acquired of a smoke streakline originating in the irrotational region on the low-speed side of a high Re single-stream shear layer of Morris and Foss (2003). The viscous superlayer (VSL) is identified as the terminus of the streak; 1800 such images provide VSL position statistics. Hot-wire data acquired concurrently at the shear layer edge and interior are used to investigate the relationship between these velocity magnitudes and the large-scale motions. Distinctive features (plumes) along the streakline are tracked between images to provide discrete irrotational region velocity magnitudes and material trajectories. A non-diffusive marker, introduced in the separating (high speed) boundary layer and imaged at x/θo=352, has revealed an unexpected bias in the streak-defined VSL locations. The interpretation of this bias clarifies the induced flow patterns in the entrainment region. The observations are consistent with a conception of the large-scale shear layer motions as "billows" of vortical fluid separated by re-entrant "wedges" of irrotational fluid, per Phillips (1972). Morris, S.C. and Foss, J.F. (2003). "Turbulent Boundary Layer to Single Stream Shear Layer: The Transition Region." Journal of Fluid Mechanics. Vol. 494, pp. 187-221. Phillips, O. M. (1972). "The Entrainment Interface." Journal of Fluid Mechanics. Vol. 51, pp. 97-118.

  19. Experimental and numerical investigation of Acoustic streaming (Eckart streaming)

    NASA Astrophysics Data System (ADS)

    Dridi, Walid; Botton, Valery; Henry, Daniel; Ben Hadid, Hamda

    The application of sound waves in the bulk of a fluid can generate steady or quasi-steady flows reffered to as Acoustic streaming flows. We can distinguish two kind of acoustic streaming: The Rayleigh Streaming is generated when a standing acoustic waves interfere with solid walls to give birth to an acoustic boundary layer. Steady recirculations are then driven out of the boundary layer and can be used in micro-gravity, where the free convection is too weak or absent, to enhance the convective heat or mass transfer and cooling the electronic devises [1]. The second kind is the Eckart streaming, which is a flow generated far from the solid boundaries, it can be used to mix a chemical solutions [2], and to drive a viscous liquids in channels [3-4], in micro-gravity area. Our study focuses on the Eckart streaming configuration, which is investigated both numerical and experimental means. The experimental configuration is restricted to the case of a cylindrical non-heated cavity full of water or of a water+glycerol mixture. At the middle of one side of the cavity, a plane ultrasonic transducer generates a 2MHz wave; an absorber is set at the opposite side of the cavity to avoid any reflections. The velocity field is measured with a standard PIV system. [1] P. Vainshtein, M. Fichman and C. Gutfinger, "Acoustic enhancement of heat transfer between two parallel plates", International Journal of Heat and Mass Transfert, 1995, 38(10), 1893. [2] C. Suri, K. Tekenaka, H. Yanagida, Y. Kojima and K. Koyama, "Chaotic mixing generated by acoustic streaming", Ultrasonics, 2002, 40, 393 [3] O.V. Rudenko and A.A. Sukhorukov, "Nonstationnary Eckart streaming and pumping of liquid in ultrasonic field", Acoustical Physics, 1998, 44, 653. [4] Kenneth D. Frampton, Shawn E. Martin and Keith Minor, "The scaling of acoustic streaming for application in micro-fluidic devices", Applied Acoustics, 2003, 64,681

  20. Near-Fault Ground Motion Velocity Pulses Input and Its Non-Stationary Characteristics from 2015 Gorkha Nepal Mw7.8 Earthquake KATNP Station

    NASA Astrophysics Data System (ADS)

    Chen, Bo; Wen, Zengping; Wang, Fang

    2017-04-01

    Using near-fault strong motions from Nepal Mw7.8 earthquake at KATNP station in the city center of Kathmandu, velocity-pulse and non-stationary characteristics of the strong motions are shown, and the reason and potential effect on earthquake damage for intense non-stationary characteristics of near fault velocity-pulse strong motions are mainly studied. The observed strong ground motions of main shock were collected from KATNP station located in 76 kilometers south-east away from epicenter along with forward direction of the rupture fault at an inter-montane basin of the Himalaya. Large velocity pulse show the period of velocity pulse reach up to 6.6s and peak ground velocity of the pulse ground motion is 120 cm/s. Compared with the median spectral acceleration value of NGA prediction equation, significant long-period amplification effect due to velocity pulse is detected at period more than 3.2s. Wavelet analysis shows that the two horizontal component of ground motion is intensely concentration of energy in a short time range of 25-38s and period range of 4-8s. The maximum wavelet-coefficient of horizontal component is 2455, which is about four time of vertical component of strong ground motion. On the perspective of this study, large velocity pulses are identified from two orthogonal components using wavelet method. Intense non-stationary characteristics amplitude and frequency content are mainly caused by site conditions and fault rupture mechanism, which will help to understand the damage evaluation and serve local seismic design.

  1. Note: Reliable and non-contact 6D motion tracking system based on 2D laser scanners for cargo transportation.

    PubMed

    Kim, Young-Keun; Kim, Kyung-Soo

    2014-10-01

    Maritime transportation demands an accurate measurement system to track the motion of oscillating container boxes in real time. However, it is a challenge to design a sensor system that can provide both reliable and non-contact methods of 6-DOF motion measurements of a remote object for outdoor applications. In the paper, a sensor system based on two 2D laser scanners is proposed for detecting the relative 6-DOF motion of a crane load in real time. Even without implementing a camera, the proposed system can detect the motion of a remote object using four laser beam points. Because it is a laser-based sensor, the system is expected to be highly robust to sea weather conditions.

  2. Note: Reliable and non-contact 6D motion tracking system based on 2D laser scanners for cargo transportation

    NASA Astrophysics Data System (ADS)

    Kim, Young-Keun; Kim, Kyung-Soo

    2014-10-01

    Maritime transportation demands an accurate measurement system to track the motion of oscillating container boxes in real time. However, it is a challenge to design a sensor system that can provide both reliable and non-contact methods of 6-DOF motion measurements of a remote object for outdoor applications. In the paper, a sensor system based on two 2D laser scanners is proposed for detecting the relative 6-DOF motion of a crane load in real time. Even without implementing a camera, the proposed system can detect the motion of a remote object using four laser beam points. Because it is a laser-based sensor, the system is expected to be highly robust to sea weather conditions.

  3. Testing the magnetar scenario for superluminous supernovae with circular polarimetry

    NASA Astrophysics Data System (ADS)

    Cikota, Aleksandar; Leloudas, Giorgos; Bulla, Mattia; Inserra, Cosimo; Chen, Ting-Wan; Spyromilio, Jason; Patat, Ferdinando; Cano, Zach; Cikota, Stefan; Coughlin, Michael W.; Kankare, Erkki; Lowe, Thomas B.; Maund, Justyn R.; Rest, Armin; Smartt, Stephen J.; Smith, Ken W.; Wainscoat, Richard J.; Young, David R.

    2018-05-01

    Superluminous supernovae (SLSNe) are at least ˜5 times more luminous than common supernovae (SNe). Especially hydrogen-poor SLSN-I are difficult to explain with conventional powering mechanisms. One possible scenario that might explain such luminosities is that SLSNe-I are powered by an internal engine, such as a magnetar or an accreting black hole. Strong magnetic fields or collimated jets can circularly polarize light. In this work, we measured circular polarization of two SLSNe-I with the FOcal Reducer and low dispersion Spectrograph (FORS2) mounted at the ESO's Very Large Telescope (VLT). PS17bek, a fast evolving SLSN-I, was observed around peak, while OGLE16dmu, a slowly evolving SLSN-I, was observed 100 days after maximum. Neither SLSN shows evidence of circularly polarized light, however, these non-detections do not rule out the magnetar scenario as the powering engine for SLSNe-I. We calculate the strength of the magnetic field and the expected circular polarization as a function of distance from the magnetar, which decreases very fast. Additionally, we observed no significant linear polarization for PS17bek at four epochs, suggesting that the photosphere near peak is close to spherical symmetry.

  4. Force-motion phase relations and aerodynamic performance of a plunging plate

    NASA Astrophysics Data System (ADS)

    Son, Onur; Cetiner, Oksan

    2018-02-01

    Due to the unsteady motion of a plunging plate, forces acting on the body experience a phase difference with respect to the motion. These phase relations are investigated experimentally for a harmonically plunging plate within an amplitude range of 0.05≤ {a/c}≤ 0.6, reduced frequency range of 0.78<{k}<7.06, and at a constant Reynolds number of 10,000. Both streamwise and cross-stream force components are found to have a phase lag following the motion; however, their variations are different. The phase lag of the force on the cross-stream direction increases as the amplitude increases. Drag-thrust transition has an influence on the streamwise force phase lags, which starts to increase when the thrust starts to be produced. Particle image velocimetry measurements are also performed to reveal the relations between vortex structures and force measurements. Leading edge vortex shedding characteristics are observed to be changing from drag occurring cases to thrust producing cases in parallel with the increment in phase lags.

  5. Unusual Circularly Polarized and Aggregation-Induced Near-Infrared Phosphorescence of Helical Platinum(II) Complexes with Tetradentate Salen Ligands.

    PubMed

    Song, Jintong; Wang, Man; Zhou, Xiangge; Xiang, Haifeng

    2018-05-17

    A series of chiral and helical Pt II -Salen complexes with 1,1'-binaphthyl linkers were synthesized and characterized. Owing to the restriction of intramolecular motions of central 1,1'-binaphthyls, the complexes exhibit unusual near-infrared aggregation-induced phosphorescence (AIP). The (R)/(S) enantiopure complexes were characterized by X-ray diffraction, circular dichroism spectra, time-dependent density functional theory calculations, and circularly polarized luminescence (CPL). The present work explores the use of tetradentate ligands that can be easily prepared from commercially available enantiopure compounds, and the subsequent preparation of stable CPL-active square planar Pt II complexes with AIP effect that may have interest in many applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Robust, Flexible Motion Control for the Mars Explorer Rovers

    NASA Technical Reports Server (NTRS)

    Maimone, Mark; Biesiadecki, Jeffrey

    2007-01-01

    The Mobility Flight Software, running on computers aboard the Mars Explorer Rover (MER) robotic vehicles Spirit and Opportunity, affords the robustness and flexibility of control to enable safe and effective operation of these vehicles in traversing natural terrain. It can make the vehicles perform specific maneuvers commanded from Earth, and/or can autonomously administer multiple aspects of mobility, including choice of motion, measurement of actual motion, and even selection of targets to be approached. Motion of a vehicle can be commanded by use of multiple layers of control, ranging from motor control at a low level, direct drive operations (e.g., motion along a circular arc, motion along a straight line, or turn in place) at an intermediate level to goal-position driving (that is, driving to a specified location) at a high level. The software can also perform high-level assessment of terrain and selection of safe paths across the terrain: this involves processing of the digital equivalent of a local traversability map generated from images acquired by stereoscopic pairs of cameras aboard the vehicles. Other functions of the software include interacting with the rest of the MER flight software and performing safety checks.

  7. Wave Propagation Analysis of Edge Cracked Circular Beams under Impact Force

    PubMed Central

    Akbaş, Şeref Doğuşcan

    2014-01-01

    This paper presents responses of an edge circular cantilever beam under the effect of an impact force. The beam is excited by a transverse triangular force impulse modulated by a harmonic motion. The Kelvin–Voigt model for the material of the beam is used. The cracked beam is modelled as an assembly of two sub-beams connected through a massless elastic rotational spring. The considered problem is investigated within the Bernoulli-Euler beam theory by using energy based finite element method. The system of equations of motion is derived by using Lagrange's equations. The obtained system of linear differential equations is reduced to a linear algebraic equation system and solved in the time domain by using Newmark average acceleration method. In the study, the effects of the location of crack, the depth of the crack, on the characteristics of the reflected waves are investigated in detail. Also, the positions of the cracks are calculated by using reflected waves. PMID:24972050

  8. Mathematical Model of Stress-Strain State of Curved Tube of Non-Circular Cross-Section with Account of Technological Wall Thickness Variation

    NASA Astrophysics Data System (ADS)

    Pirogov, S. P.; Ustinov, N. N.; Smolin, N. I.

    2018-05-01

    A mathematical model of the stress-strain state of a curved tube of a non-circular cross-section is presented, taking into account the technological wall thickness variation. On the basis of the semi-membrane shell theory, a system of linear differential equations describing the deformation of a tube under the effect of pressure is obtained. To solve the boundary value problem, the method of shooting is applied. The adequacy of the proposed mathematical model is verified by comparison with the experimental data and the results of the calculation of tubes by the energy method.

  9. Political and Economic Geomorphology: The Effect of Market Forces on Stream Restoration Designs

    NASA Astrophysics Data System (ADS)

    Singh, J.; Doyle, M. W.; Lave, R.; Robertson, M.

    2013-12-01

    Stream restoration in the U.S. is increasingly driven by compensatory mitigation; impacts to streams associated with typical land development activities must be offset via restoration of streams elsewhere. This policy application creates conditions in which restored stream ';credits' are traded under market-like conditions, comparable to wetland mitigation, carbon offsets, or endangered species habitat banking. The effect of this relatively new mechanism to finance stream restoration on design and construction is unknown. This research explores whether the introduction of a credit-based mitigation apparatus results in streams designed to maximize credit yields (i.e., ';credit-chasing') rather than focusing on restoring natural systems or functions. In other words, are market-based restored streams different from those designed for non-market purposes? We quantified geomorphic characteristics (e.g. hydraulic geometry, sinuosity, profile, bed sediment, LWD) of three types of streams: (1) a random sample of non-restored reaches, (2) streams restored for compensatory mitigation, and (3) streams restored under alternative funding sources (e.g., government grant programs, non-profit activities). We also compared the location of the types of stream reaches to determine whether there is a spatiality of restored streams. Physical data were complemented with a series of semi-structured interviews with key personnel in the stream restoration industry to solicit information on the influence of policy interpretation and market-driven factors on the design process. Preliminary analysis suggests that restoration is driving a directional shift in stream morphology in North Carolina. As a simple example, in the Piedmont, non-restored and restored channels had mean sinuosity of 1.17 and 1.23, respectively (p < 0.10). In the mountain region, non-restored and restored channels had mean sinuosity of 1.07 and 1.21, respectively (p < 0.01). In addition, restored streams were

  10. Suggested Courseware for the Non-Calculus Physics Student: Simple Harmonic Motion, Wave Motion, and Sound.

    ERIC Educational Resources Information Center

    Grable-Wallace, Lisa; And Others

    1989-01-01

    Evaluates 5 courseware packages covering the topics of simple harmonic motion, 7 packages for wave motion, and 10 packages for sound. Discusses the price range, sub-topics, program type, interaction, time, calculus required, graphics, and comments of each courseware. Selects several packages based on the criteria. (YP)

  11. Modeling Coupled Physical and Chemical Erosional Processes Using Structure from Motion Reconstruction and Multiphysics Simulation: Applications to Knickpoints in Bedrock Streams in Limestone Caves and on Earth's Surface

    NASA Astrophysics Data System (ADS)

    Bosch, R.; Ward, D.

    2017-12-01

    Investigation of erosion rates and processes at knickpoints in surface bedrock streams is an active area of research, involving complex feedbacks in the coupled relationships between dissolution, abrasion, and plucking that have not been sufficiently addressed. Even less research has addressed how these processes operate to propagate knickpoints through cave passages in layered sedimentary rocks, despite these features being common along subsurface streams. In both settings, there is evidence for mechanical and chemical erosion, but in cave passages the different hydrologic and hydraulic regimes, combined with an important role for the dissolution process, affect the relative roles and coupled interactions between these processes, and distinguish them from surface stream knickpoints. Using a novel approach of imaging cave passages using Structure from Motion (SFM), we create 3D geometry meshes to explore these systems using multiphysics simulation, and compare the processes as they occur in caves with those in surface streams. Here we focus on four field sites with actively eroding streambeds that include knickpoints: Upper River Acheron and Devil's Cooling Tub in Mammoth Cave, Kentucky; and two surface streams in Clermont County, Ohio, Avey's Run and Fox Run. SFM 3D reconstructions are built using images exported from 4K video shot at each field location. We demonstrate that SFM is a viable imaging approach for reconstructing cave passages with complex morphologies. We then use these reconstructions to create meshes upon which to run multiphysics simulations using STAR-CCM+. Our approach incorporates multiphase free-surface computational fluid dynamics simulations with sediment transport modeled using discrete element method grains. Physical and chemical properties of the water, bedrock, and sediment enable computation of shear stress, sediment impact forces, and chemical kinetic conditions at the bed surface. Preliminary results prove the efficacy of commercially

  12. Correlation of circular RNA abundance with proliferation--exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues.

    PubMed

    Bachmayr-Heyda, Anna; Reiner, Agnes T; Auer, Katharina; Sukhbaatar, Nyamdelger; Aust, Stefanie; Bachleitner-Hofmann, Thomas; Mesteri, Ildiko; Grunt, Thomas W; Zeillinger, Robert; Pils, Dietmar

    2015-01-27

    Circular RNAs are a recently (re-)discovered abundant RNA species with presumed function as miRNA sponges, thus part of the competing endogenous RNA network. We analysed the expression of circular and linear RNAs and proliferation in matched normal colon mucosa and tumour tissues. We predicted >1,800 circular RNAs and proved the existence of five randomly chosen examples using RT-qPCR. Interestingly, the ratio of circular to linear RNA isoforms was always lower in tumour compared to normal colon samples and even lower in colorectal cancer cell lines. Furthermore, this ratio correlated negatively with the proliferation index. The correlation of global circular RNA abundance (the circRNA index) and proliferation was validated in a non-cancerous proliferative disease, idiopathic pulmonary fibrosis, ovarian cancer cells compared to cultured normal ovarian epithelial cells, and 13 normal human tissues. We are the first to report a global reduction of circular RNA abundance in colorectal cancer cell lines and cancer compared to normal tissues and discovered a negative correlation of global circular RNA abundance and proliferation. This negative correlation seems to be a general principle in human tissues as validated with three different settings. Finally, we present a simple model how circular RNAs could accumulate in non-proliferating cells.

  13. Investigation of air stream from combustor-liner air entry holes, 3

    NASA Technical Reports Server (NTRS)

    Aiba, T.; Nakano, T.

    1979-01-01

    Jets flowing from air entry holes of the combustor liner of a gas turbine were investigated. Cold air was supplied through the air entry holes into the primary hot gas flows. The mass flow of the primary hot gas and issuing jets was measured, and the behavior of the air jets was studied by the measurement of the temperature distribution of the gas mixture. The air jets flowing from three circular air entry holes, single streamwise long holes, and two opposing circular holes, parallel to the primary flow were studied along with the effects of jet and gas stream velocities, and of gas temperature. The discharge coefficient, the maximum penetration of the jets, the jet flow path, the mixing of the jets, and temperature distribution across the jets were investigated. Empirical expressions which describe the characteristics of the jets under the conditions of the experiments were formulated.

  14. Circular states of atomic hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutwak, R.; Holley, J.; Chang, P.P.

    1997-08-01

    We describe the creation of circular states of hydrogen by adiabatic transfer of a Rydberg state in crossed electric and magnetic fields, and also by adiabatic passage in a rotating microwave field. The latter method permits rapid switching between the two circular states of a given n manifold. The two methods are demonstrated experimentally, and results are presented of an analysis of the field ionization properties of the circular states. An application for the circular states is illustrated by millimeter-wave resonance in hydrogen of the n=29{r_arrow}n=30 transition. {copyright} {ital 1997} {ital The American Physical Society}

  15. Comparison of Current and Field Driven Domain Wall Motion in Beaded Permalloy Nanowires

    NASA Astrophysics Data System (ADS)

    Lage, Enno; Dutta, Sumit; Ross, Caroline A.

    2015-03-01

    Domain wall based devices are promising candidates for non-volatile memory devices with no static power consumption. A common approach is the use of (field assisted) current driven domain wall motion in magnetic nanowires. In such systems local variations in linewidth act as obstacles for propagating domain walls. In this study we compare simulated field driven and current driven domain wall motion in permalloy nanowires with anti-notches. The simulations were obtained using the Object Oriented MicroMagnetics Framework (OOMMF). The wires with a constant thickness of 8 nm exhibit linewidths ranging from 40 nm to 300 nm. Circular shaped anti-notches extend the linewidth locally by 10% to 30% and raise information about the domain wall propagation in such beaded nanowires. The results are interpreted in terms of the observed propagation behavior and summarized in maps indicating ranges of different ability to overcome the pinning caused by anti-notches of different sizes. Furthermore, regimes of favored domain wall type (transverse walls or vortex walls) and complex propagation effects like walker breakdown behavior or dynamic change between domain wall structures are identified The authors thank the German Academic Exchange Service (DAAD) for funding.

  16. Secondary Instability of Stationary Crossflow Vortices in Mach 6 Boundary Layer Over a Circular Cone

    NASA Technical Reports Server (NTRS)

    Li, Fei; Choudhari, Meelan M.; Paredes-Gonzalez, Pedro; Duan, Lian

    2015-01-01

    Hypersonic boundary layer flows over a circular cone at moderate incidence can support strong crossflow instability. Due to more efficient excitation of stationary crossflow vortices by surface roughness, such boundary layer flows may transition to turbulence via rapid amplification of the high-frequency secondary instabilities of finite amplitude stationary crossflow vortices. The amplification characteristics of these secondary instabilities are investigated for crossflow vortices generated by an azimuthally periodic array of roughness elements over a 7-degree half-angle circular cone in a Mach 6 free stream. Depending on the local amplitude of the stationary crossflow mode, the most unstable secondary disturbances either originate from the second (i.e., Mack) mode instabilities of the unperturbed boundary layer or correspond to genuine secondary instabilities that reduce to stable disturbances at sufficiently small amplitudes of the stationary crossflow vortex. The predicted frequencies of dominant secondary disturbances are similar to those measured during wind tunnel experiments at Purdue University and the Technical University of Braunschweig, Germany.

  17. Assessment of Different Turbulence Models for the Motion of Non-metallic Inclusion in Induction Crucible Furnace

    NASA Astrophysics Data System (ADS)

    Barati, H.; Wu, M.; Kharicha, A.; Ludwig, A.

    2016-07-01

    Turbulent fluid flow due to the electromagnetic forces in induction crucible furnace (ICF) is modeled using k-ɛ, k-ω SST and Large Eddy Simulation (LES) turbulence models. Fluid flow patterns calculated by different turbulence models and their effects on the motion of non-metallic inclusions (NMI) in the bulk melt have been investigated. Results show that the conventional k-ɛ model cannot solve the transient flow in ICF properly. With k-ω model transient flow and oscillation behavior of the flow pattern can be solved, and the motion of NMI can be tracked fairly well. LES model delivers the best modeling result on both details of the transient flow pattern and motion trajectories of NMI without the limitation of NMI size. The drawback of LES model is the long calculation time. Therefore, for general purpose to estimate the dynamic behavior of NMI in ICF both k-ω SST and LES are recommended. For the precise calculation of the motion of NMI smaller than 10 μm only LES model is appropriate.

  18. Circular polarization of twilight.

    NASA Technical Reports Server (NTRS)

    Angel, J. R. P.; Illing, R.; Martin, P. G.

    1972-01-01

    Review of observations of circular polarization of twilight performed with a polarimeter which uses an electronically switched Pockels cell operated as a reversible quarter-wave plate to convert circular into linear polarization. The latter was then analyzed by a Wollaston prism followed by two gallium-arsenide photomultipliers. The discovery of a definite natural circular polarization at twilight does suggest that, with increased observation precision, measurements of the small daylight component are possible. These could give useful information about particles in the atmosphere and be valuable in studies of meteorology and air pollution.

  19. An experimental trace gas investigation of fluid transport and mixing in a circular-to-rectangular transition duct

    NASA Technical Reports Server (NTRS)

    Reichert, B. A.; Hingst, W. R.; Okiishi, T. H.

    1991-01-01

    An ethylene trace gas technique was used to map out fluid transport and mixing within a circular to rectangular transition duct. Ethylene gas was injected at several points in a cross stream plane upstream of the transition duct. Ethylene concentration contours were determined at several cross stream measurement planes spaced axially within the duct. The flow involved a uniform inlet flow at a Mach number level of 0.5. Statistical analyses were used to quantitatively interpret the trace gas results. Also, trace gas data were considered along with aerodynamic and surface flow visualization results to ascertain transition duct flow phenomena. Convection of wall boundary layer fluid by vortices produced regions of high total pressure loss in the duct. The physical extent of these high loss regions is governed by turbulent diffusion.

  20. Bubble Motion through a Generalized Power-Law Fluid Flowing in a Vertical Tube

    PubMed Central

    Mukundakrishnan, Karthik; Eckmann, David M.; Ayyaswamy, P. S.

    2009-01-01

    Intravascular gas embolism may occur with decompression in space flight, as well as during cardiac and vascular surgery. Intravascular bubbles may be deposited into any end organ, such as the heart or the brain. Surface interactions between the bubble and the endothelial cells lining the vasculature result in serious impairment of blood flow and can lead to heart attack, stroke, or even death. To develop effective therapeutic strategies, there is a need for understanding the dynamics of bubble motion through blood and its interaction with the vessel wall through which it moves. Toward this goal, we numerically investigate the axisymmetric motion of a bubble moving through a vertical circular tube in a shear-thinning generalized power-law fluid, using a front-tracking method. The formulation is characterized by the inlet Reynolds number, capillary number, Weber number, and Froude number. The flow dynamics and the associated wall shear stresses are documented for a combination of two different inlet flow conditions (inlet Reynolds numbers) and three different effective bubble radii (ratio of the undeformed bubble radii to the tube radii). The results of the non-Newtonian model are then compared with that of the model assuming a Newtonian blood viscosity. Specifically, for an almost occluding bubble (effective bubble radius = 0.9), the wall shear stress and the bubble residence time are compared for both Newtonian and non-Newtonian cases. Results show that at low shear rates, for a given pressure gradient the residence time for a non-Newtonian flow is higher than that for a Newtonian flow. PMID:19426324

  1. Study of periodic motions of a satellite with a magnetic damper

    NASA Technical Reports Server (NTRS)

    Sadov, Y. A.; Teterin, A. D.

    1979-01-01

    The motion of a satellite with a magnetic damper in the plane of a circular polar orbit is studied. The asymptotics of periodic solutions are constructed for a satellite close to axisymmetric and the radius of convergence is evaluated for the power series obtained. In a broad range of values of parameters, a periodic solution is obtained by numerical integration of equations of motion of the satellite. The asymptotics of a bifurcated curve obtained (the curve on which origin of a pair of periodic solutions occurs) in the space of the parameters agrees well with the results of numerical computation with all physical values of these parameters. A breakdown is made of the space of the initial data of phase variables in the field of effect of different types of periodic motion.

  2. Corotating pressure waves without streams in the solar wind

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.

    1983-01-01

    Voyager 1 and 2 magnetic field and plasma data are presented which demonstrate the existence of large scale, corotating, non-linear pressure waves between 2 AU and 4 AU that are not accompanied by fast streams. The pressure waves are presumed to be generated by corotating streams near the Sun. For two of the three pressure waves that are discussed, the absence of a stream is probably a real, physical effect, viz., a consequence of deceleration of the stream by the associated compression wave. For the third pressure wave, the apparent absence of a stream may be a geometrical effect; it is likely that the stream was at latitudes just above those of the spacecraft, while the associated shocks and compression wave extended over a broader range of latitudes so that they could be observed by the spacecraft. It is suggested that the development of large-scale non-linear pressure waves at the expense of the kinetic energy of streams produces a qualitative change in the solar wind in the outer heliosphere. Within a few AU the quasi-stationary solar wind structure is determined by corotating streams whose structure is determined by the boundary conditions near the Sun.

  3. The role of penetrating gas streams in setting the dynamical state of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Zinger, E.; Dekel, A.; Birnboim, Y.; Kravtsov, A.; Nagai, D.

    2016-09-01

    We utilize cosmological simulations of 16 galaxy clusters at redshifts z = 0 and z = 0.6 to study the effect of inflowing streams on the properties of the X-ray emitting intracluster medium. We find that the mass accretion occurs predominantly along streams that originate from the cosmic web and consist of heated gas. Clusters that are unrelaxed in terms of their X-ray morphology are characterized by higher mass inflow rates and deeper penetration of the streams, typically into the inner third of the virial radius. The penetrating streams generate elevated random motions, bulk flows and cold fronts. The degree of penetration of the streams may change over time such that clusters can switch from being unrelaxed to relaxed over a time-scale of several giga years.

  4. Nonlinear water waves generated by impulsive motion of submerged obstacle

    NASA Astrophysics Data System (ADS)

    Makarenko, N.; Kostikov, V.

    2012-04-01

    The fully nonlinear problem on generation of unsteady water waves by impulsively moving obstacle is studied analytically. The method involves the reduction of basic Euler equations to the integral-differential system for the wave elevation together with normal and tangential fluid velocities at the free surface. Exact model equations are derived in explicit form when the isolated obstacle is presented by totally submerged circular- or elliptic cylinder. Small-time asymptotic solution is constructed for the cylinder which starts moving with constant acceleration from rest. It is demonstrated that the leading-order solution terms describe several wave regimes such as the formation of non-stationary splash jets by vertical rising or vertical submersion of the obstacle, as well as the generation of diverging waves by horizontal- and combined motion of the obstacle under free surface. This work was supported by RFBR (grant No 10-01-00447) and by Research Program of the Russian Government (grant No 11.G34.31.0035).

  5. Note: Reliable and non-contact 6D motion tracking system based on 2D laser scanners for cargo transportation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Young-Keun, E-mail: ykkim@handong.edu; Kim, Kyung-Soo

    Maritime transportation demands an accurate measurement system to track the motion of oscillating container boxes in real time. However, it is a challenge to design a sensor system that can provide both reliable and non-contact methods of 6-DOF motion measurements of a remote object for outdoor applications. In the paper, a sensor system based on two 2D laser scanners is proposed for detecting the relative 6-DOF motion of a crane load in real time. Even without implementing a camera, the proposed system can detect the motion of a remote object using four laser beam points. Because it is a laser-basedmore » sensor, the system is expected to be highly robust to sea weather conditions.« less

  6. Symmetry and Circularization in the Damped Kepler Problem

    NASA Astrophysics Data System (ADS)

    Crescimanno, Michael; Hamilton, Brian

    2007-05-01

    Generically, a Hamiltonian system to which damping (non-Hamiltonian) forces are added loses its symmetry. It is a non-trivial fact that the eccentricity vector of lightly damped Kepler orbits is a constant for linear damping only. We describe the group theoretic background necessary to understand this fact and to relate it to that analogue of the Landau criterion for superfluidity associated with the general problem of orbit circularization. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.OSS07.C2.4

  7. The motion of bubbles inside drops in containerless processing

    NASA Technical Reports Server (NTRS)

    Shankar, N.; Annamalai, P.; Cole, R.; Subramanian, R. S.

    1982-01-01

    A theoretical model of thermocapillary bubble motion inside a drop, located in a space laboratory, due to an arbitrary axisymmetric temperature distribution on the drop surface was constructed. Typical results for the stream function and temperature fields as well as the migration velocity of the bubble were obtained in the quasistatic limit. The motion of bubbles in a rotating body of liquid was studied experimentally, and an approximate theoretical model was developed. Comparison of the experimental observations of the bubble trajectories and centering times with theoretical predictions lends qualified support to the theory.

  8. Tile prediction schemes for wide area motion imagery maps in GIS

    NASA Astrophysics Data System (ADS)

    Michael, Chris J.; Lin, Bruce Y.

    2017-11-01

    Wide-area surveillance, traffic monitoring, and emergency management are just several of many applications benefiting from the incorporation of Wide-Area Motion Imagery (WAMI) maps into geographic information systems. Though the use of motion imagery as a GIS base map via the Web Map Service (WMS) standard is not a new concept, effectively streaming imagery is particularly challenging due to its large scale and the multidimensionally interactive nature of clients that use WMS. Ineffective streaming from a server to one or more clients can unnecessarily overwhelm network bandwidth and cause frustratingly large amounts of latency in visualization to the user. Seamlessly streaming WAMI through GIS requires good prediction to accurately guess the tiles of the video that will be traversed in the near future. In this study, we present an experimental framework for such prediction schemes by presenting a stochastic interaction model that represents a human user's interaction with a GIS video map. We then propose several algorithms by which the tiles of the stream may be predicted. Results collected both within the experimental framework and using human analyst trajectories show that, though each algorithm thrives under certain constraints, the novel Markovian algorithm yields the best results overall. Furthermore, we make the argument that the proposed experimental framework is sufficient for the study of these prediction schemes.

  9. Visual Target Tracking in the Presence of Unknown Observer Motion

    NASA Technical Reports Server (NTRS)

    Williams, Stephen; Lu, Thomas

    2009-01-01

    Much attention has been given to the visual tracking problem due to its obvious uses in military surveillance. However, visual tracking is complicated by the presence of motion of the observer in addition to the target motion, especially when the image changes caused by the observer motion are large compared to those caused by the target motion. Techniques for estimating the motion of the observer based on image registration techniques and Kalman filtering are presented and simulated. With the effects of the observer motion removed, an additional phase is implemented to track individual targets. This tracking method is demonstrated on an image stream from a buoy-mounted or periscope-mounted camera, where large inter-frame displacements are present due to the wave action on the camera. This system has been shown to be effective at tracking and predicting the global position of a planar vehicle (boat) being observed from a single, out-of-plane camera. Finally, the tracking system has been extended to a multi-target scenario.

  10. Ice-Shelf Flexure and Tidal Forcing of Bindschadler Ice Stream, West Antarctica

    NASA Technical Reports Server (NTRS)

    Walker, Ryan T.; Parizek, Bryron R.; Alley, Richard B.; Brunt, Kelly M.; Anandakrishnan, Sridhar

    2014-01-01

    Viscoelastic models of ice-shelf flexure and ice-stream velocity perturbations are combined into a single efficient flowline model to study tidal forcing of grounded ice. The magnitude and timing of icestream response to tidally driven changes in hydrostatic pressure and/or basal drag are found to depend significantly on bed rheology, with only a perfectly plastic bed allowing instantaneous velocity response at the grounding line. The model can reasonably reproduce GPS observations near the grounding zone of Bindschadler Ice Stream (formerly Ice Stream D) on semidiurnal time scales; however, other forcings such as tidally driven ice-shelf slope transverse to the flowline and flexurally driven till deformation must also be considered if diurnal motion is to be matched

  11. Center of Pressure Motion After Calf Vibration Is More Random in Fallers Than Non-fallers: Prospective Study of Older Individuals

    PubMed Central

    van den Hoorn, Wolbert; Kerr, Graham K.; van Dieën, Jaap H.; Hodges, Paul W.

    2018-01-01

    Aging is associated with changes in balance control and elderly take longer to adapt to changing sensory conditions, which may increase falls risk. Low amplitude calf muscle vibration stimulates local sensory afferents/receptors and affects sense of upright when applied in stance. It has been used to assess the extent the nervous system relies on calf muscle somatosensory information and to rapidly change/perturb part of the somatosensory information causing balance unsteadiness by addition and removal of the vibratory stimulus. This study assessed the effect of addition and removal of calf vibration on balance control (in the absence of vision) in elderly individuals (>65 years, n = 99) who did (n = 41) or did not prospectively report falls (n = 58), and in a group of young individuals (18–25 years, n = 23). Participants stood barefoot and blindfolded on a force plate for 135 s. Vibrators (60 Hz, 1 mm) attached bilaterally over the triceps surae muscles were activated twice for 15 s; after 15 and 75 s (45 s for recovery). Balance measures were applied in a windowed (15 s epoch) manner to compare center-of-pressure (CoP) motion before, during and after removal of calf vibration between groups. In each epoch, CoP motion was quantified using linear measures, and non-linear measures to assess temporal structure of CoP motion [using recurrence quantification analysis (RQA) and detrended fluctuation analysis]. Mean CoP displacement during and after vibration did not differ between groups, which suggests that calf proprioception and/or weighting assigned by the nervous system to calf proprioception was similar for the young and both groups of older individuals. Overall, compared to the elderly, CoP motion of young was more predictable and persistent. Balance measures were not different between fallers and non-fallers before and during vibration. However, non-linear aspects of CoP motion of fallers and non-fallers differed after removal of vibration, when dynamic re

  12. Free stream capturing in fluid conservation law for moving coordinates in three dimensions

    NASA Technical Reports Server (NTRS)

    Obayashi, Shigeru

    1991-01-01

    The free-stream capturing technique for both the finite-volume (FV) and finite-difference (FD) framework is summarized. For an arbitrary motion of the grid, the FV analysis shows that volumes swept by all six surfaces of the cell have to be computed correctly. This means that the free-stream capturing time-metric terms should be calculated not only from a surface vector of a cell at a single time level, but also from a volume swept by the cell surface in space and time. The FV free-stream capturing formulation is applicable to the FD formulation by proper translation from an FV cell to an FD mesh.

  13. Numerical Calculation and Experiment of Coupled Dynamics of the Differential Velocity Vane Pump Driven by the Hybrid Higher-order Fourier Non-circular Gears

    NASA Astrophysics Data System (ADS)

    Xu, Gaohuan; Chen, Jianneng; Zhao, Huacheng

    2018-06-01

    The transmission systems of the differential velocity vane pumps (DVVP) have periodic vibrations under loads. And it is not easy to find the reason. In order to optimize the performance of the pump, the authors proposed DVVP driven by the hybrid Higher-order Fourier non-circular gears and tested it. There were also similar periodic vibrations and noises under loads. Taking into account this phenomenon, the paper proposes fluid mechanics and solid mechanics simulation methodology to analyze the coupling dynamics between fluid and transmission system and reveals the reason. The results show that the pump has the reverse drive phenomenon, which is that the blades drive the non-circular gears when the suction and discharge is alternating. The reverse drive phenomenon leads the sign of the shaft torque to be changed in positive and negative way. So the transmission system produces torsional vibrations. In order to confirm the simulation results, micro strains of the input shaft of the pump impeller are measured by the Wheatstone bridge and wireless sensor technology. The relationships between strain and torque are obtained by experimental calibration, and then the true torque of input shaft is calculated indirectly. The experimental results are consistent to the simulation results. It is proven that the periodic vibrations are mainly caused by fluid solid coupling, which leads to periodic torsional vibration of the transmission system.

  14. Correlation of circular RNA abundance with proliferation – exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues

    PubMed Central

    Bachmayr-Heyda, Anna; Reiner, Agnes T.; Auer, Katharina; Sukhbaatar, Nyamdelger; Aust, Stefanie; Bachleitner-Hofmann, Thomas; Mesteri, Ildiko; Grunt, Thomas W.; Zeillinger, Robert; Pils, Dietmar

    2015-01-01

    Circular RNAs are a recently (re-)discovered abundant RNA species with presumed function as miRNA sponges, thus part of the competing endogenous RNA network. We analysed the expression of circular and linear RNAs and proliferation in matched normal colon mucosa and tumour tissues. We predicted >1,800 circular RNAs and proved the existence of five randomly chosen examples using RT-qPCR. Interestingly, the ratio of circular to linear RNA isoforms was always lower in tumour compared to normal colon samples and even lower in colorectal cancer cell lines. Furthermore, this ratio correlated negatively with the proliferation index. The correlation of global circular RNA abundance (the circRNA index) and proliferation was validated in a non-cancerous proliferative disease, idiopathic pulmonary fibrosis, ovarian cancer cells compared to cultured normal ovarian epithelial cells, and 13 normal human tissues. We are the first to report a global reduction of circular RNA abundance in colorectal cancer cell lines and cancer compared to normal tissues and discovered a negative correlation of global circular RNA abundance and proliferation. This negative correlation seems to be a general principle in human tissues as validated with three different settings. Finally, we present a simple model how circular RNAs could accumulate in non-proliferating cells. PMID:25624062

  15. Global motion perception is related to motor function in 4.5-year-old children born at risk of abnormal development

    PubMed Central

    Chakraborty, Arijit; Anstice, Nicola S.; Jacobs, Robert J.; Paudel, Nabin; LaGasse, Linda L.; Lester, Barry M.; McKinlay, Christopher J. D.; Harding, Jane E.; Wouldes, Trecia A.; Thompson, Benjamin

    2017-01-01

    Global motion perception is often used as an index of dorsal visual stream function in neurodevelopmental studies. However, the relationship between global motion perception and visuomotor control, a primary function of the dorsal stream, is unclear. We measured global motion perception (motion coherence threshold; MCT) and performance on standardized measures of motor function in 606 4.5-year-old children born at risk of abnormal neurodevelopment. Visual acuity, stereoacuity and verbal IQ were also assessed. After adjustment for verbal IQ or both visual acuity and stereoacuity, MCT was modestly, but significantly, associated with all components of motor function with the exception of gross motor scores. In a separate analysis, stereoacuity, but not visual acuity, was significantly associated with both gross and fine motor scores. These results indicate that the development of motion perception and stereoacuity are associated with motor function in pre-school children. PMID:28435122

  16. The comet Halley meteoroid stream: just one more model

    NASA Astrophysics Data System (ADS)

    Ryabova, G. O.

    2003-05-01

    The present attempt to simulate the formation and evolution of the comet Halley meteoroid stream is based on a tentative physical model of dust ejection of large particles from comet Halley. Model streams consisting of 500-5000 test particles have been constructed according to the following ejection scheme. The particles are ejected from the nucleus along the cometary orbit (r < 9 au) within the sunward 70° cone, and the rate of ejection has been taken as proportional to r-4. Two kinds of spherical particles have been considered: 1 and 0.001 g with density equal to 0.25 g cm-3. Ejections have been simulated for 1404 BC, 141 AD and 837 AD. The equations of motion have been numerically integrated using the Everhart procedure. As a result, a complicated fine structure of the comet Halley meteoroid stream, consisting not of filaments but of layers, has been revealed.

  17. Caged circular antisense oligonucleotides for photomodulation of RNA digestion and gene expression in cells

    PubMed Central

    Wu, Li; Wang, Yuan; Wu, Junzhou; Lv, Cong; Wang, Jie; Tang, Xinjing

    2013-01-01

    We synthesized three 20mer caged circular antisense oligodeoxynucleotides (R20, R20B2 and R20B4) with a photocleavable linker and an amide bond linker between two 10mer oligodeoxynucleotides. With these caged circular antisense oligodeoxynucleotides, RNA-binding affinity and its digestion by ribonuclease H were readily photomodulated. RNA cleavage rates were upregulated ∼43-, 25- and 15-fold for R20, R20B2 and R20B4, respectively, upon light activation in vitro. R20B2 and R20B4 with 2- or 4-nt gaps in the target RNA lost their ability to bind the target RNA even though a small amount of RNA digestion was still observed. The loss of binding ability indicated promising gene photoregulation through a non-enzymatic strategy. To test this strategy, three caged circular antisense oligonucleotides (PS1, PS2 and PS3) with 2′-OMe RNA and phosphorothioate modifications were synthesized to target GFP expression. Upon light activation, photomodulation of target hybridization and GFP expression in cells was successfully achieved with PS1, PS2 and PS3. These caged circular antisense oligonucleotides show promising applications of photomodulating gene expression through both ribonuclease H and non-enzyme involved antisense strategies. PMID:23104375

  18. The velocity and vorticity fields of the turbulent near wake of a circular cylinder

    NASA Technical Reports Server (NTRS)

    Wallace, James; Ong, Lawrence; Moin, Parviz

    1995-01-01

    The purpose of this research is to provide a detailed experimental database of velocity and vorticity statistics in the very near wake (x/d less than 10) of a circular cylinder at Reynolds number of 3900. This study has determined that estimations of the streamwise velocity component in flow fields with large nonzero cross-stream components are not accurate. Similarly, X-wire measurements of the u and v velocity components in flows containing large w are also subject to the errors due to binormal cooling. Using the look-up table (LUT) technique, and by calibrating the X-wire probe used here to include the range of expected angles of attack (+/- 40 deg), accurate X-wire measurements of instantaneous u and v velocity components in the very near wake region of a circular cylinder has been accomplished. The approximate two-dimensionality of the present flow field was verified with four-wire probe measurements, and to some extent the spanwise correlation measurements with the multisensor rake. Hence, binormal cooling errors in the present X-wire measurements are small.

  19. 5 CFR 1310.3 - Availability of circulars.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Availability of circulars. 1310.3 Section 1310.3 Administrative Personnel OFFICE OF MANAGEMENT AND BUDGET OMB DIRECTIVES OMB CIRCULARS § 1310.3 Availability of circulars. Copies of individual circulars are available at OMB's Internet home page; you may...

  20. Circular spectropolarimetric sensing of chiral photosystems in decaying leaves

    NASA Astrophysics Data System (ADS)

    Patty, C. H. Lucas; Visser, Luuk J. J.; Ariese, Freek; Buma, Wybren Jan; Sparks, William B.; van Spanning, Rob J. M.; Röling, Wilfred F. M.; Snik, Frans

    2017-03-01

    Circular polarization spectroscopy has proven to be an indispensable tool in photosynthesis research and (bio)molecular research in general. Oxygenic photosystems typically display an asymmetric Cotton effect around the chlorophyll absorbance maximum with a signal ≤ 1 % . In vegetation, these signals are the direct result of the chirality of the supramolecular aggregates. The circular polarization is thus directly influenced by the composition and architecture of the photosynthetic macrodomains, and is thereby linked to photosynthetic functioning. Although ordinarily measured only on a molecular level, we have developed a new spectropolarimetric instrument, TreePol, that allows for both laboratory and in-the-field measurements. Through spectral multiplexing, TreePol is capable of fast measurements with a sensitivity of ∼ 1 *10-4 and is therefore suitable of non-destructively probing the molecular architecture of whole plant leaves. We have measured the chiroptical evolution of Hedera helix leaves for a period of 22 days. Spectrally resolved circular polarization measurements (450-900 nm) on whole leaves in transmission exhibit a strong decrease in the polarization signal over time after plucking, which we accredit to the deterioration of chiral macro-aggregates. Chlorophyll a levels measured over the same period by means of UV-vis absorption and fluorescence spectroscopy showed a much smaller decrease. With these results we are able to distinguish healthy from deteriorating leaves. Hereby we indicate the potency of circular polarization spectroscopy on whole and intact leaves as a nondestructive tool for structural and plant stress assessment. Additionally, we underline the establishment of circular polarization signals as remotely accessible means of detecting the presence of extraterrestrial life.

  1. Numerical Simulation of Particle Motion in a Curved Channel

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Nie, Deming

    2018-01-01

    In this work the lattice Boltzmann method (LBM) is used to numerically study the motion of a circular particle in a curved channel at intermediate Reynolds numbers (Re). The effects of the Reynolds number and the initial particle position are taken into account. Numerical results include the streamlines, particle trajectories and final equilibrium positions. It has been found that the particle is likely to migrate to a similar equilibrium position irrespective of its initial position when Re is large.

  2. The motion of a charged particle on a Riemannian surface under a non-zero magnetic field

    NASA Astrophysics Data System (ADS)

    Castilho, Cesar Augusto Rodrigues

    In this thesis we study the motion of a charged particle on a Riemmanian surface under the influence of a positive magnetic field B. Using Moser's Twist Theorem and ideas from classical pertubation theory we find sufficient conditions to perpetually trap the motion of a particle with a sufficient large charge in a neighborhood of a level set of the magnetic field. The conditions on the level set of the magnetic field that guarantee the trapping are local and hold near all non- degenerate critical local minima or maxima of B. Using sympletic reduction we apply the results of our work to certain S1-invariant magnetic fields on R3.

  3. The Motion of a Charged Particle on a Riemannian Surface under a Non-Zero Magnetic Field

    NASA Astrophysics Data System (ADS)

    Castilho, César

    2001-03-01

    In this paper we study the motion of a charged particle on a Riemmanian surface under the influence of a positive magnetic field B. Using Moser's Twist Theorem and ideas from classical pertubation theory we find sufficient conditions to perpetually trap the motion of a particle with a sufficient large charge in a neighborhood of a level set of the magnetic field. The conditions on the level set of the magnetic field that guarantee the trapping are local and hold near all non-degenerate critical local minima or maxima of B. Using symplectic reduction we apply the results of our work to certain S1-invariant magnetic fields on R3.

  4. Cloud motions on Venus - Global structure and organization

    NASA Technical Reports Server (NTRS)

    Limaye, S. S.; Suomi, V. E.

    1981-01-01

    Results on cloud motions on Venus obtained over a period of 3.5 days from Mariner 10 television images are presented. The implied atmosphere flow is almost zonal everywhere on the visible disk, and is in the same retrograde sense as the solid planet. Objective analysis of motions suggests the presence of jet cores (-130 m/s) and organized atmospheric waves. The longitudinal mean meridional profile of the zonal component of motion of the ultraviolet features shows presence of a midlatitude jet stream (-110 m/s). The mean zonal component is -97 m/s at the equator. The mean meridional motion at most latitudes is directed toward the pole in either hemisphere and is at least an order of magnitude smaller so that the flow is nearly zonal. A tentative conclusion from the limited coverage available from Mariner 10 is that at the level of ultraviolet features mean meridional circulation is the dominant mode of poleward angular momentum transfer as opposed to the eddy circulation.

  5. Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials

    PubMed Central

    Khanikaev, A. B.; Arju, N.; Fan, Z.; Purtseladze, D.; Lu, F.; Lee, J.; Sarriugarte, P.; Schnell, M.; Hillenbrand, R.; Belkin, M. A.; Shvets, G.

    2016-01-01

    Optical activity and circular dichroism are fascinating physical phenomena originating from the interaction of light with chiral molecules or other nano objects lacking mirror symmetries in three-dimensional (3D) space. While chiral optical properties are weak in most of naturally occurring materials, they can be engineered and significantly enhanced in synthetic optical media known as chiral metamaterials, where the spatial symmetry of their building blocks is broken on a nanoscale. Although originally discovered in 3D structures, circular dichroism can also emerge in a two-dimensional (2D) metasurface. The origin of the resulting circular dichroism is rather subtle, and is related to non-radiative (Ohmic) dissipation of the constituent metamolecules. Because such dissipation occurs on a nanoscale, this effect has never been experimentally probed and visualized. Using a suite of recently developed nanoscale-measurement tools, we establish that the circular dichroism in a nanostructured metasurface occurs due to handedness-dependent Ohmic heating. PMID:27329108

  6. Evidence of 3-D Reconnection at Null Point from the Observations of Circular Flares and Homologous Jets

    NASA Astrophysics Data System (ADS)

    Wang, Haimin; Liu, C.

    2012-05-01

    In recent studies by Pariat, Antiochos and DeVore (2009, 2010), fan-separatrix topology and magnetic reconnection at the null-point were simulated and found to produce homologous jets. This motivates us to search for axisymmetric magnetic structure and associated flaring/jetting activity. Using high-resolution ( 0.15" per pixel) and high-cadence ( 15 s) H-alpha center/offband observations obtained from the recently digitized films of Big Bear Solar Observatory, we were able to identify five large circular flares with associated surges. All the events exhibit a central parasite magnetic field surrounded by opposite polarity, forming a circular polarity inversion line (PIL). Consequently, a compact flare kernel at the center is surrounded by a circular ribbon, and together with the upward ejecting dark surge, these seem to depict a dome-like magnetic structure. Very interestingly, (1) the circular ribbon brightens sequentially rather than simultaneously, (2) the central compact flare kernel shows obvious motion, and (3) a remote elongated, co-temporal flare ribbon at a region with the same polarity as the central parasite site is seen in the series of four homologous events on 1991 March 17 and 18. The remote ribbon is 120" away from the jet location. Moreover, magnetic reconnection across the circular PIL is evident from the magnetic flux cancellation. These rarely observed homologous surges with circular as well as central and remote flare ribbons provide valuable evidence concerning the dynamics of magnetic reconnection in a null-point topology. This study is dedicated to Professor Hal Zirin, the founder of Big Bear Solar Observatory, who passed away on January 3, 2012.

  7. Non-model-based correction of respiratory motion using beat-to-beat 3D spiral fat-selective imaging.

    PubMed

    Keegan, Jennifer; Gatehouse, Peter D; Yang, Guang-Zhong; Firmin, David N

    2007-09-01

    To demonstrate the feasibility of retrospective beat-to-beat correction of respiratory motion, without the need for a respiratory motion model. A high-resolution three-dimensional (3D) spiral black-blood scan of the right coronary artery (RCA) of six healthy volunteers was acquired over 160 cardiac cycles without respiratory gating. One spiral interleaf was acquired per cardiac cycle, prior to each of which a complete low-resolution fat-selective 3D spiral dataset was acquired. The respiratory motion (3D translation) on each cardiac cycle was determined by cross-correlating a region of interest (ROI) in the fat around the artery in the low-resolution datasets with that on a reference end-expiratory dataset. The measured translations were used to correct the raw data of the high-resolution spiral interleaves. Beat-to-beat correction provided consistently good results, with the image quality being better than that obtained with a fixed superior-inferior tracking factor of 0.6 and better than (N = 5) or equal to (N = 1) that achieved using a subject-specific retrospective 3D translation motion model. Non-model-based correction of respiratory motion using 3D spiral fat-selective imaging is feasible, and in this small group of volunteers produced better-quality images than a subject-specific retrospective 3D translation motion model. (c) 2007 Wiley-Liss, Inc.

  8. 21 CFR 606.122 - Instruction circular.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... instruction circular shall contain: (1) Instructions to administer a suitable plasma volume expander if Red... circular shall contain: (1) The approximate volume of plasma from which a sample unit of Platelets is... entering the container. (m) For Plasma, the instruction circular shall contain: (1) A warning against...

  9. 21 CFR 606.122 - Instruction circular.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... instruction circular shall contain: (1) Instructions to administer a suitable plasma volume expander if Red... circular shall contain: (1) The approximate volume of plasma from which a sample unit of Platelets is... entering the container. (m) For Plasma, the instruction circular shall contain: (1) A warning against...

  10. Effects of Concrete Channels on Stream Biogeochemistry, Maryland Coastal Plain

    NASA Astrophysics Data System (ADS)

    Prestegaard, K. L.; Gilbert, L.; Phemister, K.

    2005-05-01

    In the 1950's and 60's, extensive networks of cement-lined channels were built in suburban watersheds near Washington, D.C. to convey storm water to downstream locations. These cement-lined stream channels limit interactions between surface and groundwater and they provide sources of alkalinity in Maryland Coastal Plain watersheds that normally have low alkalinity. This project was designed to 1) compare base flow water chemistry in headwater reaches of urban and non-urban streams, and 2) to evaluate downstream changes in water chemistry in channelized urban streams in comparison with non-urban reference streams. During a drought year, headwater streams in both urban and non-urban sites had significant concentrations of Fe(II) that were discharged from groundwater sources and rapidly oxidized by iron-oxidizing bacteria. During a wet year, the concentrations of Fe(II) were higher in headwater urban streams than in the non-urban streams. This suggests that impervious surfaces in headwater urban watersheds prevent the recharge of oxygen-rich waters during storm events, which maintains iron-rich groundwater discharge to the stream. Downstream changes in water chemistry are prominent in cement-lined urban channels because they are associated with distinctive microbial communities. The headwater zones of channelized streams are dominated by iron-ozidizing bacteria, that are replaced downstream by manganese-oxidizing zones, and replaced further downstream by biofilms dominated by photosynthesizing cyanobacteria. The reaches dominated by cyanobacteria exhibit diurnal changes in pH due to uptake of CO2 for photosynthesis. Diurnal changes range from 7.5 to 8.8 in the summer months to 7.0 to 7.5 in the cooler months, indicating both the impact of photosynthesis and the additional source of alkalinity provided by concrete. The dissolved oxygen, pH, and other characteristics of tributaries dominated by cyanobacteria are similar to the water chemistry characteristics observed in

  11. Origin and continuation of 3/2, 5/2, 3/1, 4/1 and 5/1 resonant periodic orbits in the circular and elliptic restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Antoniadou, Kyriaki I.; Libert, Anne-Sophie

    2018-06-01

    We consider a planetary system consisting of two primaries, namely a star and a giant planet, and a massless secondary, say a terrestrial planet or an asteroid, which moves under their gravitational attraction. We study the dynamics of this system in the framework of the circular and elliptic restricted three-body problem, when the motion of the giant planet describes circular and elliptic orbits, respectively. Originating from the circular family, families of symmetric periodic orbits in the 3/2, 5/2, 3/1, 4/1 and 5/1 mean-motion resonances are continued in the circular and the elliptic problems. New bifurcation points from the circular to the elliptic problem are found for each of the above resonances, and thus, new families continued from these points are herein presented. Stable segments of periodic orbits were found at high eccentricity values of the already known families considered as whole unstable previously. Moreover, new isolated (not continued from bifurcation points) families are computed in the elliptic restricted problem. The majority of the new families mainly consists of stable periodic orbits at high eccentricities. The families of the 5/1 resonance are investigated for the first time in the restricted three-body problems. We highlight the effect of stable periodic orbits on the formation of stable regions in their vicinity and unveil the boundaries of such domains in phase space by computing maps of dynamical stability. The long-term stable evolution of the terrestrial planets or asteroids is dependent on the existence of regular domains in their dynamical neighbourhood in phase space, which could host them for long-time spans. This study, besides other celestial architectures that can be efficiently modelled by the circular and elliptic restricted problems, is particularly appropriate for the discovery of terrestrial companions among the single-giant planet systems discovered so far.

  12. Brownian motion of arbitrarily shaped particles in two dimensions.

    PubMed

    Chakrabarty, Ayan; Konya, Andrew; Wang, Feng; Selinger, Jonathan V; Sun, Kai; Wei, Qi-Huo

    2014-11-25

    We implement microfabricated boomerang particles with unequal arm lengths as a model for nonsymmetric particles and study their Brownian motion in a quasi-two-dimensional geometry by using high-precision single-particle motion tracking. We show that because of the coupling between translation and rotation, the mean squared displacements of a single asymmetric boomerang particle exhibit a nonlinear crossover from short-time faster to long-time slower diffusion, and the mean displacements for fixed initial orientation are nonzero and saturate out at long times. The measured anisotropic diffusion coefficients versus the tracking point position indicate that there exists one unique point, i.e., the center of hydrodynamic stress (CoH), at which all coupled diffusion coefficients vanish. This implies that in contrast to motion in three dimensions where the CoH exists only for high-symmetry particles, the CoH always exists for Brownian motion in two dimensions. We develop an analytical model based on Langevin theory to explain the experimental results and show that among the six anisotropic diffusion coefficients only five are independent because the translation-translation coupling originates from the translation-rotation coupling. Finally, we classify the behavior of two-dimensional Brownian motion of arbitrarily shaped particles into four groups based on the particle shape symmetry group and discussed potential applications of the CoH in simplifying understanding of the circular motions of microswimmers.

  13. Transonic shock-induced dynamics of a flexible wing with a thick circular-arc airfoil

    NASA Technical Reports Server (NTRS)

    Bennett, Robert M.; Dansberry, Bryan E.; Farmer, Moses G.; Eckstrom, Clinton V.; Seidel, David A.; Rivera, Jose A., Jr.

    1991-01-01

    Transonic shock boundary layer oscillations occur on rigid models over a small range of Mach numbers on thick circular-arc airfoils. Extensive tests and analyses of this phenomena have been made in the past but essentially all of them were for rigid models. A simple flexible wing model with an 18 pct. circular arc airfoil was constructed and tested in the Langley Transonic Dynamics Tunnel to study the dynamic characteristics that a wing might have under these circumstances. In the region of shock boundary layer oscillations, buffeting of the first bending mode was obtained. This mode was well separated in frequency from the shock boundary layer oscillations. A limit cycle oscillation was also measured in a third bending like mode, involving wind vertical bending and splitter plate motion, which was in the frequency range of the shock boundary layer oscillations. Several model configurations were tested, and a few potential fixes were investigated.

  14. Force effects on rotor of squeeze film damper using Newtonian and non-Newtonian fluid

    NASA Astrophysics Data System (ADS)

    Dominik, Šedivý; Petr, Ferfecki; Simona, Fialová

    2017-09-01

    This article presents the evaluation of force effects on rotor of squeeze film damper. Rotor is eccentric placed and its motion is translate-circular. The amplitude of rotor motion is smaller than its initial eccentricity. The force effects are calculated from pressure and viscous forces which were gained by using computational modeling. Two types of fluid were considered as filling of damper. First type of fluid is Newtonian (has constant viscosity) and second type is magnetorheological fluid (does not have constant viscosity). Viscosity of non-Newtonian fluid is given using Bingham rheology model. Yield stress is a function of magnetic induction which is described by many variables. The most important variables of magnetic induction are electric current and gap width which is between rotor and stator. Comparison of application two given types of fluids is shown in results.

  15. Collisions with meteoroid streams as one possible mechanism for the formation of hyperbolic cometary orbits

    NASA Astrophysics Data System (ADS)

    Guliyev, Ayyub; Nabiyev, Shaig

    2017-07-01

    This paper presents the results of a statistical analysis of the dynamic parameters of 300 comets that have osculating hyperbolic orbits. It is shown that such comets differ from other comets by their large perihelion distances and by a predominance of retrograde motion. It is shown that the values of i, the inclination of the hyperbolic comets, are in comparative excess over the interval 90-120°. The dominance by q, the perihelion distance, renders it difficult to suggest that the excess hyperbolic velocity of these comets can be the result of physical processes that take place in their nuclei. Aspects of the following working hypothesis, that the hyperbolic excess of parameter e might be formed after comets pass through meteoroid streams, are also studied. To evaluate this hypothesis, the distribution of the orbits of hyperbolic comets relative to the plane of motion of 112 established meteoroid streams are analyzed. The number (N) of orbit nodes for hyperbolic comets with respect to the plane of each stream at various distances is calculated. To determine the degree of redundancy of N, a special computing algorithm was applied that provided the expected value nav as well as the standard deviation σ for the number of cometary nodes at the plane of each stream. A comparative analysis of the N and nav values that take σ into account suggests an excess in 40 stream cases. This implies that the passage of comets through meteoroid streams can lead to an acceleration of the comets' heliocentric velocity.

  16. Concentric circular focusing reflector realized using high index contrast gratings

    NASA Astrophysics Data System (ADS)

    Fang, Wenjing; Huang, Yongqing; Fei, Jiarui; Duan, Xiaofeng; Liu, Kai; Ren, Xiaomin

    2017-11-01

    A non-periodic concentric circular high index contrast grating (CC-HCG) focusing reflector on 500 nm silicon-on-insulator (SOI) platform is fabricated and experimentally demonstrated. The proposed mirror is realized with phase modulation of wave front in a high reflectivity region. The circular structure based HCG focusing reflector has a spot of high concentration at the 10.87 mm with normal incidence for radially polarization, along with the center wavelength set at 1550 nm. The FWHM spot size of the focusing beam decreases to 260 μm, and the intensity increases to 1.26 compared with the incident beam. The focusing efficiency of about 80% is observed at 1550 nm in the experimental measurement.

  17. Response of a Circular Tunnel Through Rock to a Harmonic Rayleigh Wave

    NASA Astrophysics Data System (ADS)

    Kung, Chien-Lun; Wang, Tai-Tien; Chen, Cheng-Hsun; Huang, Tsan-Hwei

    2018-02-01

    A factor that combines tunnel depth and incident wavelength has been numerically determined to dominate the seismic responses of a tunnel in rocks that are subjected to harmonic P- and S-waves. This study applies the dynamic finite element method to investigate the seismic response of shallow overburden tunnels. Seismically induced stress increments in the lining of a circular tunnel that is subjected to an incident harmonic R-wave are examined. The determination of R-wave considers the dominant frequency of acceleration history of the 1999 Chi-Chi earthquake measured near the site with damage to two case tunnels at specifically shallow depth. An analysis reveals that the normalized seismically induced axial, shear and flexural stress increments in the lining of a tunnel reach their respective peaks at the depth h/ λ = 0.15, where the ground motion that is generated by an incident of R-wave has its maximum. The tunnel radius has a stronger effect on seismically induced stress increments than does tunnel depth. A greater tunnel radius yields higher normalized seismically induced axial stress increments and lower normalized seismically induced shear and flexural stress increments. The inertia of the thin overburden layer above the tunnel impedes the propagation of the wave and affects the motion of the ground around the tunnel. With an extremely shallow overburden, such an effect can change the envelope of the normalized seismically induced stress increments from one with a symmetric four-petal pattern into one with a non-symmetric three-petal pattern. The simulated results may partially elucidate the spatial distributions of cracks that were observed in the lining of the case tunnels.

  18. Digital stereophotogrammetry based on circular markers and zooming cameras: evaluation of a method for 3D analysis of small motions in orthopaedic research

    PubMed Central

    2011-01-01

    Background Orthopaedic research projects focusing on small displacements in a small measurement volume require a radiation free, three dimensional motion analysis system. A stereophotogrammetrical motion analysis system can track wireless, small, light-weight markers attached to the objects. Thereby the disturbance of the measured objects through the marker tracking can be kept at minimum. The purpose of this study was to develop and evaluate a non-position fixed compact motion analysis system configured for a small measurement volume and able to zoom while tracking small round flat markers in respect to a fiducial marker which was used for the camera pose estimation. Methods The system consisted of two web cameras and the fiducial marker placed in front of them. The markers to track were black circles on a white background. The algorithm to detect a centre of the projected circle on the image plane was described and applied. In order to evaluate the accuracy (mean measurement error) and precision (standard deviation of the measurement error) of the optical measurement system, two experiments were performed: 1) inter-marker distance measurement and 2) marker displacement measurement. Results The first experiment of the 10 mm distances measurement showed a total accuracy of 0.0086 mm and precision of ± 0.1002 mm. In the second experiment, translations from 0.5 mm to 5 mm were measured with total accuracy of 0.0038 mm and precision of ± 0.0461 mm. The rotations of 2.25° amount were measured with the entire accuracy of 0.058° and the precision was of ± 0.172°. Conclusions The description of the non-proprietary measurement device with very good levels of accuracy and precision may provide opportunities for new, cost effective applications of stereophotogrammetrical analysis in musculoskeletal research projects, focusing on kinematics of small displacements in a small measurement volume. PMID:21284867

  19. Global motion perception is related to motor function in 4.5-year-old children born at risk of abnormal development.

    PubMed

    Chakraborty, Arijit; Anstice, Nicola S; Jacobs, Robert J; Paudel, Nabin; LaGasse, Linda L; Lester, Barry M; McKinlay, Christopher J D; Harding, Jane E; Wouldes, Trecia A; Thompson, Benjamin

    2017-06-01

    Global motion perception is often used as an index of dorsal visual stream function in neurodevelopmental studies. However, the relationship between global motion perception and visuomotor control, a primary function of the dorsal stream, is unclear. We measured global motion perception (motion coherence threshold; MCT) and performance on standardized measures of motor function in 606 4.5-year-old children born at risk of abnormal neurodevelopment. Visual acuity, stereoacuity and verbal IQ were also assessed. After adjustment for verbal IQ or both visual acuity and stereoacuity, MCT was modestly, but significantly, associated with all components of motor function with the exception of fine motor scores. In a separate analysis, stereoacuity, but not visual acuity, was significantly associated with both gross and fine motor scores. These results indicate that the development of motion perception and stereoacuity are associated with motor function in pre-school children. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Motion in a central field in the presence of a constant perturbing acceleration in a co-moving coordinate system

    NASA Astrophysics Data System (ADS)

    Sannikova, T. N.; Kholshevnikov, K. V.

    2015-08-01

    The motion of a point mass under the action of a gravitational force toward a central body and a perturbing acceleration P is considered. The magnitude of P is taken to be small compared to the main gravitational acceleration due to the central body, and the direction of P to be constant in a standard astronomical coordinate system with its origin at the central body and axes directed along the radius vector, the transversal, and the binormal. Consideration of a constant vector perturbing acceleration simplifies averaging of the Euler equations for the motion in osculating elements, making it straightforward to obtain evolutionary differential equations of motion in the mean elements, as was done earlier in a first small-parameter approximation. This paper is devoted to integration of the mean equations. The system is integratable by quadratures if at least one component of the perturbing acceleration is zero, and also if the orbit is initially circular. Moreover, all the quadratures can be expressed in terms of elementary functions and elliptical integrals of the first kind in Jacobi form. If all three components of P are non-zero, this problem reduces to a system of two first-order differential equations, which are apparently not integrable. Possible applications include the motion of natural and artificial satellites taking into account light pressure, the motion of a spacecraft with low thrust, and the motion of an asteroid subject to a thrust from an engine mounted on it or to a gravitational tractor designed, for example, to avoid a collision with Earth.

  1. Cell-type specific features of circular RNA expression.

    PubMed

    Salzman, Julia; Chen, Raymond E; Olsen, Mari N; Wang, Peter L; Brown, Patrick O

    2013-01-01

    Thousands of loci in the human and mouse genomes give rise to circular RNA transcripts; at many of these loci, the predominant RNA isoform is a circle. Using an improved computational approach for circular RNA identification, we found widespread circular RNA expression in Drosophila melanogaster and estimate that in humans, circular RNA may account for 1% as many molecules as poly(A) RNA. Analysis of data from the ENCODE consortium revealed that the repertoire of genes expressing circular RNA, the ratio of circular to linear transcripts for each gene, and even the pattern of splice isoforms of circular RNAs from each gene were cell-type specific. These results suggest that biogenesis of circular RNA is an integral, conserved, and regulated feature of the gene expression program.

  2. Fast, Safe, Propellant-Efficient Spacecraft Motion Planning Under Clohessy-Wiltshire-Hill Dynamics

    NASA Technical Reports Server (NTRS)

    Starek, Joseph A.; Schmerling, Edward; Maher, Gabriel D.; Barbee, Brent W.; Pavone, Marco

    2016-01-01

    This paper presents a sampling-based motion planning algorithm for real-time and propellant-optimized autonomous spacecraft trajectory generation in near-circular orbits. Specifically, this paper leverages recent algorithmic advances in the field of robot motion planning to the problem of impulsively actuated, propellant- optimized rendezvous and proximity operations under the Clohessy-Wiltshire-Hill dynamics model. The approach calls upon a modified version of the FMT* algorithm to grow a set of feasible trajectories over a deterministic, low-dispersion set of sample points covering the free state space. To enforce safety, the tree is only grown over the subset of actively safe samples, from which there exists a feasible one-burn collision-avoidance maneuver that can safely circularize the spacecraft orbit along its coasting arc under a given set of potential thruster failures. Key features of the proposed algorithm include 1) theoretical guarantees in terms of trajectory safety and performance, 2) amenability to real-time implementation, and 3) generality, in the sense that a large class of constraints can be handled directly. As a result, the proposed algorithm offers the potential for widespread application, ranging from on-orbit satellite servicing to orbital debris removal and autonomous inspection missions.

  3. Representations of non-suicidal self-injury in motion pictures.

    PubMed

    Trewavas, Christopher; Hasking, Penelope; McAllister, Margaret

    2010-01-01

    The aim of this study was to investigate representations of non-suicidal self-injury (NSSI) in popular media. Forty-one motion pictures were viewed, coded, and analyzed. NSSI was correlated with mental illness, child maltreatment, and substance abuse. NSSI was generally portrayed as severe, habitual and covert. Further, depictions of NSSI were often sensationalized and featured prominently. NSSI was less likely to be associated with completed suicide than other psychological factors, but more closely associated with suicide than NSSI is in the community. Although NSSI was associated with psychiatric illness, few characters were receiving psychiatric care at the time of NSSI. However a significant proportion received support after engaging in NSSI. The portrayal of NSSI is generally accurate regarding correlates and function, but is inaccurately associated with suicide. Implications of the relatively accurate portrayal of NSSI are discussed in light of the potential for imitation, and the possibility of using cinematherapy to promote effective problem resolution.

  4. Selectivity to Translational Egomotion in Human Brain Motion Areas

    PubMed Central

    Pitzalis, Sabrina; Sdoia, Stefano; Bultrini, Alessandro; Committeri, Giorgia; Di Russo, Francesco; Fattori, Patrizia; Galletti, Claudio; Galati, Gaspare

    2013-01-01

    The optic flow generated when a person moves through the environment can be locally decomposed into several basic components, including radial, circular, translational and spiral motion. Since their analysis plays an important part in the visual perception and control of locomotion and posture it is likely that some brain regions in the primate dorsal visual pathway are specialized to distinguish among them. The aim of this study is to explore the sensitivity to different types of egomotion-compatible visual stimulations in the human motion-sensitive regions of the brain. Event-related fMRI experiments, 3D motion and wide-field stimulation, functional localizers and brain mapping methods were used to study the sensitivity of six distinct motion areas (V6, MT, MST+, V3A, CSv and an Intra-Parietal Sulcus motion [IPSmot] region) to different types of optic flow stimuli. Results show that only areas V6, MST+ and IPSmot are specialized in distinguishing among the various types of flow patterns, with a high response for the translational flow which was maximum in V6 and IPSmot and less marked in MST+. Given that during egomotion the translational optic flow conveys differential information about the near and far external objects, areas V6 and IPSmot likely process visual egomotion signals to extract information about the relative distance of objects with respect to the observer. Since area V6 is also involved in distinguishing object-motion from self-motion, it could provide information about location in space of moving and static objects during self-motion, particularly in a dynamically unstable environment. PMID:23577096

  5. Application of turbulence modeling to predict surface heat transfer in stagnation flow region of circular cylinder

    NASA Technical Reports Server (NTRS)

    Wang, Chi R.; Yeh, Frederick C.

    1987-01-01

    A theoretical analysis and numerical calculations for the turbulent flow field and for the effect of free-stream turbulence on the surface heat transfer rate of a stagnation flow are presented. The emphasis is on the modeling of turbulence and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow. The free stream is steady and incompressible with a Reynolds number of the order of 10 to the 5th power and turbulence intensity of less than 5 percent. For this analysis, the flow field is divided into three regions: (1) a uniform free-stream region where the turbulence is homogeneous and isotropic; (2) an external viscid flow region where the turbulence is distorted by the variation of the mean flow velocity; and, (3) an anisotropic turbulent boundary layer region over the cylinder surface. The turbulence modeling techniques used are the kappa-epsilon two-equation model in the external flow region and the time-averaged turbulence transport equation in the boundary layer region. The turbulence double correlations, the mean velocity, and the mean temperature within the boundary layer are solved numerically from the transport equations. The surface heat transfer rate is calculated as functions of the free-stream turbulence longitudinal microlength scale, the turbulence intensity, and the Reynolds number.

  6. Effect of stationary objects on illusory forward self-motion induced by a looming display.

    PubMed

    Ohmi, M; Howard, I P

    1988-01-01

    It has previously been shown that when a moving and a stationary display are superimposed, illusory self-rotation (circular vection) is induced only when the moving display appears as the background. Three experiments are reported on the extent to which illusory forward self-motion (forward vection) induced by a looming display is inhibited by a superimposed stationary display as a function of the size and location of the stationary display and of the depth between the stationary and looming displays. Results showed that forward vection was controlled by the display that was perceived as the background, and background stationary displays suppressed forward vection by about the same amount whatever their size and eccentricity. Also, the perception of foreground-background properties of competing displays determined which controlled forward vection, and this control was not tied to specific depth cues. The inhibitory effect of a stationary background on forward vection was, however, weaker than that found with circular vection. This difference makes sense because, for forward body motion, the image of a distant scene is virtually stationary whereas, when the body rotates, it is not.

  7. The Influence of Subglacial Hydrology on Ice Stream Velocity in a Physical Model

    NASA Astrophysics Data System (ADS)

    Wagman, B. M.; Catania, G.; Buttles, J. L.

    2011-12-01

    We use a physical model to investigate how changes in subglacial hydrology affect ice motion in ice streams found in the West Antarctic Ice Sheet. Ice streams are modeled using silicone polymer placed over a thin water layer to simulate ice flow dominated by basal sliding. Dynamic similarity between modeled and natural ice streams is achieved through direct comparison of the glacier force balance using the conditions on Whillans Ice Stream (WIS) as our goal.This ice stream has a force balance that has evolved through time due to increased basal resistance. Currently, between 50-90% of the driving stress is supported by the ice stream shear margins [Stearns et al., JGlac 2005]. A similar force balance can be achieved in our model with a surface slope of 0.025. We test two hypotheses; 1) the distribution and thickness of the subglacial water layer influences the ice flow speed and thus the force balance and can reproduce the observed slowdown of WIS and; 2) shear margins are locations where transitions in water layer thickness occur.

  8. Flow Mapping Based on the Motion-Integration Errors of Autonomous Underwater Vehicles

    NASA Astrophysics Data System (ADS)

    Chang, D.; Edwards, C. R.; Zhang, F.

    2016-02-01

    Knowledge of a flow field is crucial in the navigation of autonomous underwater vehicles (AUVs) since the motion of AUVs is affected by ambient flow. Due to the imperfect knowledge of the flow field, it is typical to observe a difference between the actual and predicted trajectories of an AUV, which is referred to as a motion-integration error (also known as a dead-reckoning error if an AUV navigates via dead-reckoning). The motion-integration error has been essential for an underwater glider to compute its flow estimate from the travel information of the last leg and to improve navigation performance by using the estimate for the next leg. However, the estimate by nature exhibits a phase difference compared to ambient flow experienced by gliders, prohibiting its application in a flow field with strong temporal and spatial gradients. In our study, to mitigate the phase problem, we have developed a local ocean model by combining the flow estimate based on the motion-integration error with flow predictions from a tidal ocean model. Our model has been used to create desired trajectories of gliders for guidance. Our method is validated by Long Bay experiments in 2012 and 2013 in which we deployed multiple gliders on the shelf of South Atlantic Bight and near the edge of Gulf Stream. In our recent study, the application of the motion-integration error is further extended to create a spatial flow map. Considering that the motion-integration errors of AUVs accumulate along their trajectories, the motion-integration error is formulated as a line integral of ambient flow which is then reformulated into algebraic equations. By solving an inverse problem for these algebraic equations, we obtain the knowledge of such flow in near real time, allowing more effective and precise guidance of AUVs in a dynamic environment. This method is referred to as motion tomography. We provide the results of non-parametric and parametric flow mapping from both simulated and experimental data.

  9. Cell-Type Specific Features of Circular RNA Expression

    PubMed Central

    Salzman, Julia; Chen, Raymond E.; Olsen, Mari N.; Wang, Peter L.; Brown, Patrick O.

    2013-01-01

    Thousands of loci in the human and mouse genomes give rise to circular RNA transcripts; at many of these loci, the predominant RNA isoform is a circle. Using an improved computational approach for circular RNA identification, we found widespread circular RNA expression in Drosophila melanogaster and estimate that in humans, circular RNA may account for 1% as many molecules as poly(A) RNA. Analysis of data from the ENCODE consortium revealed that the repertoire of genes expressing circular RNA, the ratio of circular to linear transcripts for each gene, and even the pattern of splice isoforms of circular RNAs from each gene were cell-type specific. These results suggest that biogenesis of circular RNA is an integral, conserved, and regulated feature of the gene expression program. PMID:24039610

  10. Global Motions of the Nuclear Pore Complex: Insights from Elastic Network Models

    PubMed Central

    Lezon, Timothy R.; Sali, Andrej; Bahar, Ivet

    2009-01-01

    The nuclear pore complex (NPC) is the gate to the nucleus. Recent determination of the configuration of proteins in the yeast NPC at ∼5 nm resolution permits us to study the NPC global dynamics using coarse-grained structural models. We investigate these large-scale motions by using an extended elastic network model (ENM) formalism applied to several coarse-grained representations of the NPC. Two types of collective motions (global modes) are predicted by the ENMs to be intrinsically favored by the NPC architecture: global bending and extension/contraction from circular to elliptical shapes. These motions are shown to be robust against tested variations in the representation of the NPC, and are largely captured by a simple model of a toroid with axially varying mass density. We demonstrate that spoke multiplicity significantly affects the accessible number of symmetric low-energy modes of motion; the NPC-like toroidal structures composed of 8 spokes have access to highly cooperative symmetric motions that are inaccessible to toroids composed of 7 or 9 spokes. The analysis reveals modes of motion that may facilitate macromolecular transport through the NPC, consistent with previous experimental observations. PMID:19730674

  11. Global motions of the nuclear pore complex: insights from elastic network models.

    PubMed

    Lezon, Timothy R; Sali, Andrej; Bahar, Ivet

    2009-09-01

    The nuclear pore complex (NPC) is the gate to the nucleus. Recent determination of the configuration of proteins in the yeast NPC at approximately 5 nm resolution permits us to study the NPC global dynamics using coarse-grained structural models. We investigate these large-scale motions by using an extended elastic network model (ENM) formalism applied to several coarse-grained representations of the NPC. Two types of collective motions (global modes) are predicted by the ENMs to be intrinsically favored by the NPC architecture: global bending and extension/contraction from circular to elliptical shapes. These motions are shown to be robust against tested variations in the representation of the NPC, and are largely captured by a simple model of a toroid with axially varying mass density. We demonstrate that spoke multiplicity significantly affects the accessible number of symmetric low-energy modes of motion; the NPC-like toroidal structures composed of 8 spokes have access to highly cooperative symmetric motions that are inaccessible to toroids composed of 7 or 9 spokes. The analysis reveals modes of motion that may facilitate macromolecular transport through the NPC, consistent with previous experimental observations.

  12. Seeing blur: 'motion sharpening' without motion.

    PubMed Central

    Georgeson, Mark A; Hammett, Stephen T

    2002-01-01

    It is widely supposed that things tend to look blurred when they are moving fast. Previous work has shown that this is true for sharp edges but, paradoxically, blurred edges look sharper when they are moving than when stationary. This is 'motion sharpening'. We show that blurred edges also look up to 50% sharper when they are presented briefly (8-24 ms) than at longer durations (100-500 ms) without motion. This argues strongly against high-level models of sharpening based specifically on compensation for motion blur. It also argues against a recent, low-level, linear filter model that requires motion to produce sharpening. No linear filter model can explain our finding that sharpening was similar for sinusoidal and non-sinusoidal gratings, since linear filters can never distort sine waves. We also conclude that the idea of a 'default' assumption of sharpness is not supported by experimental evidence. A possible source of sharpening is a nonlinearity in the contrast response of early visual mechanisms to fast or transient temporal changes, perhaps based on the magnocellular (M-cell) pathway. Our finding that sharpening is not diminished at low contrast sets strong constraints on the nature of the nonlinearity. PMID:12137571

  13. Asymptotic theory of circular polarization memory.

    PubMed

    Dark, Julia P; Kim, Arnold D

    2017-09-01

    We establish a quantitative theory of circular polarization memory, which is the unexpected persistence of the incident circular polarization state in a strongly scattering medium. Using an asymptotic analysis of the three-dimensional vector radiative transfer equation (VRTE) in the limit of strong scattering, we find that circular polarization memory must occur in a boundary layer near the portion of the boundary on which polarized light is incident. The boundary layer solution satisfies a one-dimensional conservative scattering VRTE. Through a spectral analysis of this boundary layer problem, we introduce the dominant mode, which is the slowest-decaying mode in the boundary layer. To observe circular polarization memory for a particular set of optical parameters, we find that this dominant mode must pass three tests: (1) this dominant mode is given by the largest, discrete eigenvalue of a reduced problem that corresponds to Fourier mode k=0 in the azimuthal angle, and depends only on Stokes parameters U and V; (2) the polarization state of this dominant mode is largely circular polarized so that |V|≫|U|; and (3) the circular polarization of this dominant mode is maintained for all directions so that V is sign-definite. By applying these three tests to numerical calculations for monodisperse distributions of Mie scatterers, we determine the values of the size and relative refractive index when circular polarization memory occurs. In addition, we identify a reduced, scalar-like problem that provides an accurate approximation for the dominant mode when circular polarization memory occurs.

  14. Effect of Non-Alignment/Alignment of Attenuation Map Without/With Emission Motion Correction in Cardiac SPECT/CT

    NASA Astrophysics Data System (ADS)

    Dey, Joyoni; Segars, W. Paul; Pretorius, P. Hendrik; King, Michael A.

    2015-08-01

    Purpose: We investigate the differences without/with respiratory motion correction in apparent imaging agent localization induced in reconstructed emission images when the attenuation maps used for attenuation correction (from CT) are misaligned with the patient anatomy during emission imaging due to differences in respiratory state. Methods: We investigated use of attenuation maps acquired at different states of a 2 cm amplitude respiratory cycle (at end-expiration, at end-inspiration, the center map, the average transmission map, and a large breath-hold beyond range of respiration during emission imaging) to correct for attenuation in MLEM reconstruction for several anatomical variants of the NCAT phantom which included both with and without non-rigid motion between heart and sub-diaphragmatic regions (such as liver, kidneys etc). We tested these cases with and without emission motion correction and attenuation map alignment/non-alignment. Results: For the NCAT default male anatomy the false count-reduction due to breathing was largely removed upon emission motion correction for the large majority of the cases. Exceptions (for the default male) were for the cases when using the large-breathhold end-inspiration map (TI_EXT), when we used the end-expiration (TE) map, and to a smaller extent, the end-inspiration map (TI). However moving the attenuation maps rigidly to align the heart region, reduced the remaining count-reduction artifacts. For the female patient count-reduction remained post motion correction using rigid map-alignment due to the breast soft-tissue misalignment. Quantitatively, after the transmission (rigid) alignment correction, the polar-map 17-segment RMS error with respect to the reference (motion-less case) reduced by 46.5% on average for the extreme breathhold case. The reductions were 40.8% for end-expiration map and 31.9% for end-inspiration cases on the average, comparable to the semi-ideal case where each state uses its own attenuation map

  15. Linear and angular control of circular walking in healthy older adults and subjects with cerebellar ataxia.

    PubMed

    Goodworth, Adam D; Paquette, Caroline; Jones, Geoffrey Melvill; Block, Edward W; Fletcher, William A; Hu, Bin; Horak, Fay B

    2012-05-01

    Linear and angular control of trunk and leg motion during curvilinear navigation was investigated in subjects with cerebellar ataxia and age-matched control subjects. Subjects walked with eyes open around a 1.2-m circle. The relationship of linear to angular motion was quantified by determining the ratios of trunk linear velocity to trunk angular velocity and foot linear position to foot angular position. Errors in walking radius (the ratio of linear to angular motion) also were quantified continuously during the circular walk. Relative variability of linear and angular measures was compared using coefficients of variation (CoV). Patterns of variability were compared using power spectral analysis for the trunk and auto-covariance analysis for the feet. Errors in radius were significantly increased in patients with cerebellar damage as compared to controls. Cerebellar subjects had significantly larger CoV of feet and trunk in angular, but not linear, motion. Control subjects also showed larger CoV in angular compared to linear motion of the feet and trunk. Angular and linear components of stepping differed in that angular, but not linear, foot placement had a negative correlation from one stride to the next. Thus, walking in a circle was associated with more, and a different type of, variability in angular compared to linear motion. Results are consistent with increased difficulty of, and role of the cerebellum in, control of angular trunk and foot motion for curvilinear locomotion.

  16. On Stellar Flash Echoes from Circular Rings

    NASA Astrophysics Data System (ADS)

    Nemiroff, Robert; Mukherjee, Oindabi

    2018-01-01

    A flash -- or any episode of variability -- that occurs in the vicinity of a circular ring might be seen several times later, simultaneously, as echoes on the ring. Effective images of the flash are created and annihilated in pairs, with as many as four flash images visible concurrently. Videos detailing sequences of image pair creation, tandem motion, and subsequent image annihilation are shown, given simple opacity and scattering assumptions. It is proven that, surprisingly, images from a second pair creation event always annihilate with images from the first. Caustic surfaces between flash locations yielding two and four images are computed. Although such ring echos surely occur, their practical detection might be difficult as it could require dedicated observing programs involving sensitive photometry of extended objects. Potential flash sources include planetary and interstellar gas and dust rings near and around variable stars, flare stars, novae, supernovae, and GRBs. Potentially recoverable information includes size, distance, temporal history, and angular isotropy of both the ring and flash.

  17. Circular economy of plastic packaging: Current practice and perspectives in Austria.

    PubMed

    Van Eygen, Emile; Laner, David; Fellner, Johann

    2018-02-01

    Plastics, especially from packaging, have gained increasing attention in waste management, driving many policy initiatives to improve the circularity of these materials in the economy to increase resource efficiency. In this context, the EU has proposed increasing targets to encourage the recycling of (plastic) packaging. To accurately calculate the recycling rates, detailed information on the flows of plastic packaging is needed. Therefore, the aim of this paper is to quantitatively and qualitatively investigate the waste management system for plastic packaging in Austria in 2013 using material flow analysis, taking into account the used product types and the polymer composition. The results show that 300,000 ± 3% t/a (35 kg/cap·a) of waste plastic packaging were produced, mainly composed of large and small films and small hollow bodies, including PET bottles. Correspondingly, the polymer composition of the waste stream was dominated by LDPE (46% ± 6%), PET (19% ± 4%) and PP (14% ± 6%). 58% ± 3% was collected separately, and regarding the final treatment, 26% ± 7% of the total waste stream was recovered as re-granulates, whereas the rest was thermally recovered in waste-to-energy plants (40% ± 3%) and the cement industry (33% ± 6%). The targets set by the EU and Austria were reached comfortably, although to reach the proposed future target major technological steps regarding collection and sorting will be needed. However, the current calculation point of the targets, i.e. on the input side of the recycling plant, is not deemed to be fully in line with the overall objective of the circular economy, namely to keep materials in the economy and prevent losses. It is therefore recommended that the targets be calculated with respect to the actual output of the recycling process, provided that the quality of the output products is maintained, to accurately assess the performance of the waste management system. Copyright © 2017

  18. Study of Running Stability in Side-Suspended HTS-PMG Maglev Circular Line System

    NASA Astrophysics Data System (ADS)

    Zhou, Dajin; Zhao, Lifeng; Li, Linbo; Cui, Chenyu; Hsieh, Chang-Chun; Zhang, Yong; Guo, Jianqiang; Zhao, Yong

    2017-07-01

    A research on stability of the side-suspended HTS-PMG maglev circular line system is carried out through simulation experiment. The results show that the maglev vehicle will gradually get close to the track surface during acceleration under the action of centrifugal force, leading to decay of guidance force and occurrence of vertical eccentric motion. In case of linear array of YBa2Cu3O7-x (YBCO) bulks, the guidance force will be changed with the decreasing of the levitation gap. It can be suppressed through the complex arrangement of YBCO bulks. Fortunately, triangle array of YBCO bulks can effectively keep the guidance force constant and realize stable running during accelerating process of the prototype vehicle. Based on the research on stability of side-suspended maglev vehicle, a side-suspended PMG circular test track with diameter of 6.5 m and circumference of 20.4 m is successfully designed and established, enabling the prototype vehicle to run stably at up to 82.5 km/h under open atmosphere (9.6 × 104 Pa).

  19. Colliding Stellar Wind Models with Orbital Motion

    NASA Astrophysics Data System (ADS)

    Wilkin, Francis P.; O'Connor, Brendan

    2018-01-01

    We present thin-shell models for the collision between two ballistic stellar winds, including orbital motion.The stellar orbits are assumed circular, so that steady-state solutions exist in the rotating frame, where we include centrifugal and Coriolis forces. Exact solutions for the pre-shock winds are incorporated. Here we discuss 2-D model results for equal wind momentum-loss rates, although we allow for the winds to have distinct speeds and mass loss rates. For these unequal wind conditions, we obtain a clear violation of skew-symmetry, despite equal momentum loss rates, due to the Coriolis force.

  20. Isentropic Analysis of Convective Motions

    NASA Technical Reports Server (NTRS)

    Pauluis, Olivier M.; Mrowiec, Agnieszka A.

    2013-01-01

    This paper analyzes the convective mass transport by sorting air parcels in terms of their equivalent potential temperature to determine an isentropic streamfunction. By averaging the vertical mass flux at a constant value of the equivalent potential temperature, one can compute an isentropic mass transport that filters out reversible oscillatory motions such as gravity waves. This novel approach emphasizes the fact that the vertical energy and entropy transports by convection are due to the combination of ascending air parcels with high energy and entropy and subsiding air parcels with lower energy and entropy. Such conditional averaging can be extended to other dynamic and thermodynamic variables such as vertical velocity, temperature, or relative humidity to obtain a comprehensive description of convective motions. It is also shown how this approach can be used to determine the mean diabatic tendencies from the three-dimensional dynamic and thermodynamic fields. A two-stream approximation that partitions the isentropic circulation into a mean updraft and a mean downdraft is also introduced. This offers a straightforward way to identify the mean properties of rising and subsiding air parcels. The results from the two-stream approximation are compared with two other definitions of the cloud mass flux. It is argued that the isentropic analysis offers a robust definition of the convective mass transport that is not tainted by the need to arbitrarily distinguish between convection and its environment, and that separates the irreversible convective overturning fromoscillations associated with gravity waves.

  1. Effects of Crowding and Attention on High-Levels of Motion Processing and Motion Adaptation

    PubMed Central

    Pavan, Andrea; Greenlee, Mark W.

    2015-01-01

    The motion after-effect (MAE) persists in crowding conditions, i.e., when the adaptation direction cannot be reliably perceived. The MAE originating from complex moving patterns spreads into non-adapted sectors of a multi-sector adapting display (i.e., phantom MAE). In the present study we used global rotating patterns to measure the strength of the conventional and phantom MAEs in crowded and non-crowded conditions, and when attention was directed to the adapting stimulus and when it was diverted away from the adapting stimulus. The results show that: (i) the phantom MAE is weaker than the conventional MAE, for both non-crowded and crowded conditions, and when attention was focused on the adapting stimulus and when it was diverted from it, (ii) conventional and phantom MAEs in the crowded condition are weaker than in the non-crowded condition. Analysis conducted to assess the effect of crowding on high-level of motion adaptation suggests that crowding is likely to affect the awareness of the adapting stimulus rather than degrading its sensory representation, (iii) for high-level of motion processing the attentional manipulation does not affect the strength of either conventional or phantom MAEs, neither in the non-crowded nor in the crowded conditions. These results suggest that high-level MAEs do not depend on attention and that at high-level of motion adaptation the effects of crowding are not modulated by attention. PMID:25615577

  2. Interactive collision detection for deformable models using streaming AABBs.

    PubMed

    Zhang, Xinyu; Kim, Young J

    2007-01-01

    We present an interactive and accurate collision detection algorithm for deformable, polygonal objects based on the streaming computational model. Our algorithm can detect all possible pairwise primitive-level intersections between two severely deforming models at highly interactive rates. In our streaming computational model, we consider a set of axis aligned bounding boxes (AABBs) that bound each of the given deformable objects as an input stream and perform massively-parallel pairwise, overlapping tests onto the incoming streams. As a result, we are able to prevent performance stalls in the streaming pipeline that can be caused by expensive indexing mechanism required by bounding volume hierarchy-based streaming algorithms. At runtime, as the underlying models deform over time, we employ a novel, streaming algorithm to update the geometric changes in the AABB streams. Moreover, in order to get only the computed result (i.e., collision results between AABBs) without reading back the entire output streams, we propose a streaming en/decoding strategy that can be performed in a hierarchical fashion. After determining overlapped AABBs, we perform a primitive-level (e.g., triangle) intersection checking on a serial computational model such as CPUs. We implemented the entire pipeline of our algorithm using off-the-shelf graphics processors (GPUs), such as nVIDIA GeForce 7800 GTX, for streaming computations, and Intel Dual Core 3.4G processors for serial computations. We benchmarked our algorithm with different models of varying complexities, ranging from 15K up to 50K triangles, under various deformation motions, and the timings were obtained as 30 approximately 100 FPS depending on the complexity of models and their relative configurations. Finally, we made comparisons with a well-known GPU-based collision detection algorithm, CULLIDE [4] and observed about three times performance improvement over the earlier approach. We also made comparisons with a SW-based AABB

  3. No evidence for behavioral responses to circularly polarized light in four scarab beetle species with circularly polarizing exocuticle.

    PubMed

    Blahó, Miklós; Egri, Adám; Hegedüs, Ramón; Jósvai, Júlia; Tóth, Miklós; Kertész, Krisztián; Biró, László Péter; Kriska, György; Horváth, Gábor

    2012-02-28

    The strongest known circular polarization of biotic origin is the left-circularly polarized (LCP) light reflected from the metallic shiny exocuticle of certain beetles of the family Scarabaeidae. This phenomenon has been discovered by Michelson in 1911. Although since 1955 it has been known that the human eye perceives a visual illusion when stimulated by circularly polarized (CP) light, it was discovered only recently that a stomatopod shrimp is able to perceive circular polarization. It is pertinent to suppose that scarab beetles reflecting LCP light in an optical environment (vegetation) being deficient in CP signals may also perceive circular polarization and use it to find each other (mate/conspecifics) as until now it has been believed. We tested this hypothesis in six choice experiments with several hundred individuals of four scarab species: Anomala dubia, Anomala vitis (Coleoptera, Scarabaeidae, Rutelinae), and Cetonia aurata, Potosia cuprea (Coleoptera, Scarabaeidae, Cetoniinae), all possessing left-circularly polarizing exocuticle. From the results of our experiments we conclude that the studied four scarab species are not attracted to CP light when feeding or looking for mate or conspecifics. We demonstrated that the light reflected by host plants of the investigated scarabs is circularly unpolarized. Our results finally solve a puzzle raised over one hundred years ago, when Michaelson discovered that scarab beetles reflect circularly polarized light. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. The Dynamics of Oblate Drop Between Heterogeneous Plates Under Alternating Electric Field. Non-uniform Field

    NASA Astrophysics Data System (ADS)

    Kashina, M. A.; Alabuzhev, A. A.

    2018-02-01

    The dynamics of the incompressible fluid drop under the non-uniform electric field are considered. The drop is bounded axially by two parallel solid planes and the case of heterogeneous plates is investigated. The external electric field acts as an external force that causes motion of the contact line. We assume that the electric current is alternative current and the AC filed amplitude is a spatially non-uniform function. In equilibrium, the drop has the form of a circular cylinder. The equilibrium contact angle is 0.5 π. In order to describe this contact line motion the modified Hocking boundary condition is applied: the velocity of the contact line is proportional to the deviation of the contact angle and the speed of the fast relaxation processes, which frequency is proportional to twice the frequency of the electric field. The Hocking parameter depends on the polar angle, i.e. the coefficient of the interaction between the plate and the fluid (the contact line) is a function of the plane coordinates. This function is expanded in a series of the Laplace operator eigenfunctions.

  5. A Review on Data Stream Classification

    NASA Astrophysics Data System (ADS)

    Haneen, A. A.; Noraziah, A.; Wahab, Mohd Helmy Abd

    2018-05-01

    At this present time, the significance of data streams cannot be denied as many researchers have placed their focus on the research areas of databases, statistics, and computer science. In fact, data streams refer to some data points sequences that are found in order with the potential to be non-binding, which is generated from the process of generating information in a manner that is not stationary. As such the typical tasks of searching data have been linked to streams of data that are inclusive of clustering, classification, and repeated mining of pattern. This paper presents several data stream clustering approaches, which are based on density, besides attempting to comprehend the function of the related algorithms; both semi-supervised and active learning, along with reviews of a number of recent studies.

  6. Effects of predators on fish and crayfish survival in intermittent streams

    USGS Publications Warehouse

    Dekar, Matthew P.; Magoulick, Daniel D.

    2013-01-01

    Predation from aquatic and terrestrial predators arc important factors structuring the size and depth distribution of aquatic prey. We conducted mesocosm and tethering experiments on Little Mulberry Creek in northwest Arkansas during low flows to examine the effects of predators on fish and crayfish survival in intermittent streams Using shallow artificial pools (10 cm deep) and predator exclusions, we tested the hypothesis that large-bodied fish are at greater risk from terrestrial predators in shallow habitats compared to small-bodied individuals. Twenty-four circular pools (12 open top. 12 closed top) were stocked with two size classes of Campostoma anomalum (Central Stonerller) and deployed systematically in a single stream pool. In addition, we used a crayfish tethering experiment to test the hypothesis that the survival of small and large crayfish is greater in shallow and deep habitats, respectively. We tethered two size classes of Orconectes meeki meeki (Meek's Crayfish) along shallow and deep transects in two adjacent stream pools and measured survival for 15 days. During both experiments, we monitored the presence or absence of predators by visual observation and from scat surveys. We demonstrated a negative effect of terrestrial predators on Central Stonerller survival in the artificial pools, and larger individuals were more susceptible to predation. In contrast, small crayfish experienced low survival at all depths and large crayfish were preyed upon much less intensively during the tethering study, particularly in the pool with larger substrate. More studies are needed to understand how stream drying and environmental heterogeneity influence the complex interactions between predator and prey populations in intermittent streams.

  7. Soccer athletes are superior to non-athletes at perceiving soccer-specific and non-sport specific human biological motion

    PubMed Central

    Romeas, Thomas; Faubert, Jocelyn

    2015-01-01

    Recent studies have shown that athletes’ domain specific perceptual-cognitive expertise can transfer to everyday tasks. Here we assessed the perceptual-cognitive expertise of athletes and non-athletes using sport specific and non-sport specific biological motion perception (BMP) tasks. Using a virtual environment, university-level soccer players and university students’ non-athletes were asked to perceive the direction of a point-light walker and to predict the trajectory of a masked-ball during a point-light soccer kick. Angles of presentation were varied for orientation (upright, inverted) and distance (2 m, 4 m, 16 m). Accuracy and reaction time were measured to assess observers’ performance. The results highlighted athletes’ superior ability compared to non-athletes to accurately predict the trajectory of a masked soccer ball presented at 2 m (reaction time), 4 m (accuracy and reaction time), and 16 m (accuracy) of distance. More interestingly, experts also displayed greater performance compared to non-athletes throughout the more fundamental and general point-light walker direction task presented at 2 m (reaction time), 4 m (accuracy and reaction time), and 16 m (reaction time) of distance. In addition, athletes showed a better performance throughout inverted conditions in the walker (reaction time) and soccer kick (accuracy and reaction time) tasks. This implies that during human BMP, athletes demonstrate an advantage for recognizing body kinematics that goes beyond sport specific actions. PMID:26388828

  8. Neural dynamics of motion processing and speed discrimination.

    PubMed

    Chey, J; Grossberg, S; Mingolla, E

    1998-09-01

    A neural network model of visual motion perception and speed discrimination is presented. The model shows how a distributed population code of speed tuning, that realizes a size-speed correlation, can be derived from the simplest mechanisms whereby activations of multiple spatially short-range filters of different size are transformed into speed-turned cell responses. These mechanisms use transient cell responses to moving stimuli, output thresholds that covary with filter size, and competition. These mechanisms are proposed to occur in the V1-->MT cortical processing stream. The model reproduces empirically derived speed discrimination curves and simulates data showing how visual speed perception and discrimination can be affected by stimulus contrast, duration, dot density and spatial frequency. Model motion mechanisms are analogous to mechanisms that have been used to model 3-D form and figure-ground perception. The model forms the front end of a larger motion processing system that has been used to simulate how global motion capture occurs, and how spatial attention is drawn to moving forms. It provides a computational foundation for an emerging neural theory of 3-D form and motion perception.

  9. A simple method to design non-collision relative orbits for close spacecraft formation flying

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Li, JunFeng; Jiang, FangHua; Bernelli-Zazzera, Franco

    2018-05-01

    A set of linearized relative motion equations of spacecraft flying on unperturbed elliptical orbits are specialized for particular cases, where the leader orbit is circular or equatorial. Based on these extended equations, we are able to analyze the relative motion regulation between a pair of spacecraft flying on arbitrary unperturbed orbits with the same semi-major axis in close formation. Given the initial orbital elements of the leader, this paper presents a simple way to design initial relative orbital elements of close spacecraft with the same semi-major axis, thus preventing collision under non-perturbed conditions. Considering the mean influence of J 2 perturbation, namely secular J 2 perturbation, we derive the mean derivatives of orbital element differences, and then expand them to first order. Thus the first order expansion of orbital element differences can be added to the relative motion equations for further analysis. For a pair of spacecraft that will never collide under non-perturbed situations, we present a simple method to determine whether a collision will occur when J 2 perturbation is considered. Examples are given to prove the validity of the extended relative motion equations and to illustrate how the methods presented can be used. The simple method for designing initial relative orbital elements proposed here could be helpful to the preliminary design of the relative orbital elements between spacecraft in a close formation, when collision avoidance is necessary.

  10. Gravitational self-force correction to the innermost stable circular equatorial orbit of a Kerr black hole.

    PubMed

    Isoyama, Soichiro; Barack, Leor; Dolan, Sam R; Le Tiec, Alexandre; Nakano, Hiroyuki; Shah, Abhay G; Tanaka, Takahiro; Warburton, Niels

    2014-10-17

    For a self-gravitating particle of mass μ in orbit around a Kerr black hole of mass M ≫ μ, we compute the O(μ/M) shift in the frequency of the innermost stable circular equatorial orbit due to the conservative piece of the gravitational self-force acting on the particle. Our treatment is based on a Hamiltonian formulation of the dynamics in terms of geodesic motion in a certain locally defined effective smooth spacetime. We recover the same result using the so-called first law of binary black-hole mechanics. We give numerical results for the innermost stable circular equatorial orbit frequency shift as a function of the black hole's spin amplitude, and compare with predictions based on the post-Newtonian approximation and the effective one-body model. Our results provide an accurate strong-field benchmark for spin effects in the general-relativistic two-body problem.

  11. WIYN Open Cluster Study: Binary Orbits and Tidal Circularization in NGC 6819

    NASA Astrophysics Data System (ADS)

    Morscher, Meagan B.; Mathieu, R. D.; Kaeppler, S.; Hole, K. T.; Meibom, S.

    2006-12-01

    We are conducting a comprehensive stellar radial-velocity survey in NGC 6819, a rich, intermediate age ( 2.4 Gyr) open cluster with [Fe/H] -0.05. As of October 2006, we have obtained 7065 radial-velocity measurements of 1409 stars using the WIYN Hydra Multi-Object Spectrograph, with typical velocity measurement precisions of 0.4 km/s. Using an E/I criterion of 3, we have identified 282 velocity variables. In the past year we have expanded the number of final orbital solutions by 45 to a total of more than 80 solutions. In coeval stellar populations, circular binaries tend to have the shortest orbital periods, while longer period binaries show a distribution of non-zero eccentricities. The circularization of the shortest period orbits is the result of an exchange of stellar and orbital angular momentum due to tidal interactions. We defined a population’s tidal circularization period as the longest orbital period at which a binary of typical initial eccentricity has become circularized (e.g., has evolved to an eccentricity e = 0.01) over the lifetime of the cluster (Meibom & Mathieu, 2005, ApJ, 620, 970). We are studying the trend of increasing tidal circularization periods with population age. Preliminary results in NGC 6819 indicate a tidal circularization period of 7.5 days, which is consistent with this overall trend. We will recalculate the tidal circularization period in order to include the latest sample of orbital solutions. This comprehensive survey also allows us to investigate the relative spatial distributions of spectroscopic binaries and other constant-velocity cluster members of similar mass. We find the spectroscopic binaries to be more centrally concentrated at a statistically significant level, which we attribute to energy equipartition processes. MM was supported by REU NSF grant AST-0453442. RDM, SK, KTH, and SM were supported by NSF grant AST-0406615.

  12. Quantifying circular RNA expression from RNA-seq data using model-based framework.

    PubMed

    Li, Musheng; Xie, Xueying; Zhou, Jing; Sheng, Mengying; Yin, Xiaofeng; Ko, Eun-A; Zhou, Tong; Gu, Wanjun

    2017-07-15

    Circular RNAs (circRNAs) are a class of non-coding RNAs that are widely expressed in various cell lines and tissues of many organisms. Although the exact function of many circRNAs is largely unknown, the cell type-and tissue-specific circRNA expression has implicated their crucial functions in many biological processes. Hence, the quantification of circRNA expression from high-throughput RNA-seq data is becoming important to ascertain. Although many model-based methods have been developed to quantify linear RNA expression from RNA-seq data, these methods are not applicable to circRNA quantification. Here, we proposed a novel strategy that transforms circular transcripts to pseudo-linear transcripts and estimates the expression values of both circular and linear transcripts using an existing model-based algorithm, Sailfish. The new strategy can accurately estimate transcript expression of both linear and circular transcripts from RNA-seq data. Several factors, such as gene length, amount of expression and the ratio of circular to linear transcripts, had impacts on quantification performance of circular transcripts. In comparison to count-based tools, the new computational framework had superior performance in estimating the amount of circRNA expression from both simulated and real ribosomal RNA-depleted (rRNA-depleted) RNA-seq datasets. On the other hand, the consideration of circular transcripts in expression quantification from rRNA-depleted RNA-seq data showed substantial increased accuracy of linear transcript expression. Our proposed strategy was implemented in a program named Sailfish-cir. Sailfish-cir is freely available at https://github.com/zerodel/Sailfish-cir . tongz@medicine.nevada.edu or wanjun.gu@gmail.com. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  13. Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion

    PubMed Central

    Bodrova, Anna S.; Chechkin, Aleksei V.; Cherstvy, Andrey G.; Safdari, Hadiseh; Sokolov, Igor M.; Metzler, Ralf

    2016-01-01

    It is quite generally assumed that the overdamped Langevin equation provides a quantitative description of the dynamics of a classical Brownian particle in the long time limit. We establish and investigate a paradigm anomalous diffusion process governed by an underdamped Langevin equation with an explicit time dependence of the system temperature and thus the diffusion and damping coefficients. We show that for this underdamped scaled Brownian motion (UDSBM) the overdamped limit fails to describe the long time behaviour of the system and may practically even not exist at all for a certain range of the parameter values. Thus persistent inertial effects play a non-negligible role even at significantly long times. From this study a general questions on the applicability of the overdamped limit to describe the long time motion of an anomalously diffusing particle arises, with profound consequences for the relevance of overdamped anomalous diffusion models. We elucidate our results in view of analytical and simulations results for the anomalous diffusion of particles in free cooling granular gases. PMID:27462008

  14. Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion.

    PubMed

    Bodrova, Anna S; Chechkin, Aleksei V; Cherstvy, Andrey G; Safdari, Hadiseh; Sokolov, Igor M; Metzler, Ralf

    2016-07-27

    It is quite generally assumed that the overdamped Langevin equation provides a quantitative description of the dynamics of a classical Brownian particle in the long time limit. We establish and investigate a paradigm anomalous diffusion process governed by an underdamped Langevin equation with an explicit time dependence of the system temperature and thus the diffusion and damping coefficients. We show that for this underdamped scaled Brownian motion (UDSBM) the overdamped limit fails to describe the long time behaviour of the system and may practically even not exist at all for a certain range of the parameter values. Thus persistent inertial effects play a non-negligible role even at significantly long times. From this study a general questions on the applicability of the overdamped limit to describe the long time motion of an anomalously diffusing particle arises, with profound consequences for the relevance of overdamped anomalous diffusion models. We elucidate our results in view of analytical and simulations results for the anomalous diffusion of particles in free cooling granular gases.

  15. Twitter and Non-Elites: Interpreting Power Dynamics in the Life Story of the (#)BRCA Twitter Stream.

    PubMed

    Vicari, Stefania

    2017-09-01

    In May 2013 and March 2015, actress Angelina Jolie wrote in the New York Times about her choice to undergo preventive surgery. In her two op-eds, she explained that - as a carrier of the BRCA1 gene mutation - preventive surgery was the best way to lower her heightened risk of developing breast and ovarian cancer. By applying a digital methods approach to BRCA-related tweets from 2013 and 2015, before, during, and after the exposure of Jolie's story, this study maps and interprets Twitter discursive dynamics at two time points of the BRCA Twitter stream. Findings show an evolution in curation and framing dynamics occurring between 2013 and 2015, with individual patient advocates replacing advocacy organizations as top curators of BRCA content and coming to prominence as providers of specialist illness narratives. These results suggest that between 2013 and 2015, Twitter went from functioning primarily as an organization-centered news reporting mechanism, to working as a crowdsourced specialist awareness system. This article advances a twofold contribution. First, it points at Twitter's fluid functionality for an issue public and suggests that by looking at the life story-rather than at a single time point-of an issue-based Twitter stream, we can track the evolution of power roles underlying discursive practices and better interpret the emergence of non-elite actors in the public arena. Second, the study provides evidence of the rise of activist cultures that rely on fluid, non-elite, collective, and individual social media engagement.

  16. Circular permutant GFP insertion folding reporters

    DOEpatents

    Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM

    2008-06-24

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  17. Circular permutant GFP insertion folding reporters

    DOEpatents

    Waldo, Geoffrey S; Cabantous, Stephanie

    2013-02-12

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  18. Circular permutant GFP insertion folding reporters

    DOEpatents

    Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM

    2011-06-14

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  19. Circular permutant GFP insertion folding reporters

    DOEpatents

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2013-04-16

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  20. Removing sulphur oxides from a fluid stream

    DOEpatents

    Katz, Torsten; Riemann, Christian; Bartling, Karsten; Rigby, Sean Taylor; Coleman, Luke James Ivor; Lail, Marty Alan

    2014-04-08

    A process for removing sulphur oxides from a fluid stream, such as flue gas, comprising: providing a non-aqueous absorption liquid containing at least one hydrophobic amine, the liquid being incompletely miscible with water; treating the fluid stream in an absorption zone with the non-aqueous absorption liquid to transfer at least part of the sulphur oxides into the non-aqueous absorption liquid and to form a sulphur oxide-hydrophobic amine-complex; causing the non-aqueous absorption liquid to be in liquid-liquid contact with an aqueous liquid whereby at least part of the sulphur oxide-hydrophobic amine-complex is hydrolyzed to release the hydrophobic amine and sulphurous hydrolysis products, and at least part of the sulphurous hydrolysis products is transferred into the aqueous liquid; separating the aqueous liquid from the non-aqueous absorption liquid. The process mitigates absorbent degradation problems caused by sulphur dioxide and oxygen in flue gas.