Science.gov

Sample records for non-circular streaming motions

  1. EFFECTS OF NON-CIRCULAR MOTIONS ON AZIMUTHAL COLOR GRADIENTS

    SciTech Connect

    Martinez-Garcia, Eric E.; Gonzalez-Lopezlira, Rosa A.; Gomez, Gilberto C. E-mail: r.gonzalez@crya.unam.m

    2009-12-20

    Assuming that density waves trigger star formation, and that young stars preserve the velocity components of the molecular gas where they are born, we analyze the effects that non-circular gas orbits have on color gradients across spiral arms. We try two approaches, one involving semianalytical solutions for spiral shocks, and another with magnetohydrodynamic (MHD) numerical simulation data. We find that, if non-circular motions are ignored, the comparison between observed color gradients and stellar population synthesis models would in principle yield pattern speed values that are systematically too high for regions inside corotation, with the difference between the real and the measured pattern speeds increasing with decreasing radius. On the other hand, image processing and pixel averaging result in systematically lower measured spiral pattern speed values, regardless of the kinematics of stellar orbits. The net effect is that roughly the correct pattern speeds are recovered, although the trend of higher measured OMEGA{sub p} at lower radii (as expected when non-circular motions exist but are neglected) should still be observed. We examine the MartInez-GarcIa et al. photometric data and confirm that this is indeed the case. The comparison of the size of the systematic pattern speed offset in the data with the predictions of the semianalytical and MHD models corroborates that spirals are more likely to end at outer Lindblad resonance, as these authors had already found.

  2. Hα kinematics of S4G spiral galaxies - II. Data description and non-circular motions

    NASA Astrophysics Data System (ADS)

    Erroz-Ferrer, Santiago; Knapen, Johan H.; Leaman, Ryan; Cisternas, Mauricio; Font, Joan; Beckman, John E.; Sheth, Kartik; Muñoz-Mateos, Juan Carlos; Díaz-García, Simón; Bosma, Albert; Athanassoula, E.; Elmegreen, Bruce G.; Ho, Luis C.; Kim, Taehyun; Laurikainen, Eija; Martinez-Valpuesta, Inma; Meidt, Sharon E.; Salo, Heikki

    2015-07-01

    We present a kinematical study of 29 spiral galaxies included in the Spitzer Survey of Stellar Structure in Galaxies, using Hα Fabry-Perot (FP) data obtained with the Galaxy Hα Fabry-Perot System instrument at the William Herschel Telescope in La Palma, complemented with images in the R band and in Hα. The primary goal is to study the evolution and properties of the main structural components of galaxies through the kinematical analysis of the FP data, complemented with studies of morphology, star formation and mass distribution. In this paper we describe how the FP data have been obtained, processed and analysed. We present the resulting moment maps, rotation curves, velocity model maps and residual maps. Images are available in FITS format through the NASA/IPAC Extragalactic Database and the Centre de Données Stellaires. With these data products we study the non-circular motions, in particular those found along the bars and spiral arms. The data indicate that the amplitude of the non-circular motions created by the bar does not correlate with the bar strength indicators. The amplitude of those non-circular motions in the spiral arms does not correlate with either arm class or star formation rate along the spiral arms. This implies that the presence and the magnitude of the streaming motions in the arms is a local phenomenon.

  3. The power spectra of non-circular motions in disk galaxies

    NASA Astrophysics Data System (ADS)

    Westfall, Kyle; Laws, Anna S. E.; MaNGA Team

    2016-01-01

    Using data from the first year of the SDSS-IV/MaNGA survey, we present a preliminary study of the amplitude of non-circular motions in a sample of disk galaxies. We select galaxies that have either a visual classification as a spiral galaxy by the Galaxy Zoo project (Lintott et al. 2011) and/or a measured Sersic index of less than 2.5 from the NASA-Sloan Atlas (nsatlas.org). We also remove high-inclination systems by selecting galaxies with isophotal ellipticity measurements of less than 0.6, implying an inclination of less than 65 degrees. For each galaxy, we fit a tilted-disk model to the observed line-of-sight velocities (Andersen & Bershady 2013). The geometric projection of the circularly rotating disk is simultaneously fit to both the ionized-gas (H-alpha) and stellar kinematics, whereas the rotation curves of the two dynamical tracers are allowed to be independent. We deproject the residuals of the velocity-field fit to the disk-plane polar coordinates and select a radial region that is fully covered in aziumuth, yet not undersampled by the on-sky spaxel. Similar to the approach taken by Bovy et al. (2015) for the Milky Way, we then compute the two-dimensional power spectrum of this velocity-residual map, which provides the amplitude of non-circular motions at all modes probed by the data. Our preliminary analysis reveals disk-plane non-circular motions in both the stars and ionized-gas with typical peak amplitudes of approximately 20 km/s. Additionally, our initial findings appear to demonstrate that non-circular motions in barred galaxies are stronger in the ionized gas than in the stars, a trend not seen in unbarred galaxies.

  4. Exploring the GalMer database: bar properties and non-circular motions

    NASA Astrophysics Data System (ADS)

    Randriamampandry, T. H.; Deg, N.; Carignan, C.; Combes, F.; Spekkens, K.

    2016-10-01

    Context. We use Tree-SPH simulations from the GalMer database to characterize and quantify the non-circular motions induced by the presence of bar-like structures on the observed rotation curve of barred galaxies derived from empirical models of their line-of-sight velocity maps. The GalMer database consists of SPH simulations of galaxies spanning a wide range of morphological types and sizes. Aims: The aim is to compare the intrinsic velocities and bar properties from the simulations with those derived from pseudo-observations. This allows us to estimate the amount of non-circularity and to test the various methods used to derive the bar properties and rotation curves. Methods: The intrinsic velocities in the simulations are calculated from the gravitational forces whereas the observed rotation velocities are derived by applying the ROTCUR and DiskFit algorithms to well-resolved observations of intermediate-inclination, strongly barred galaxies. Results: Our results confirm that the tilted ring method implemented in ROTCUR systematically underestimates or overestimates the rotational velocities by up to 40 percent in the inner part of the galaxy when the bar is aligned with one of the symmetry axes for all the models. For the DiskFit analysis, we find that it produces unrealistic values for all the models used in this work when the bar is within approximately ten degrees of the major or minor axis.

  5. Possible microplate generation at RRR triple junctions due to the non-circular finite motion of plates relative to each other

    NASA Astrophysics Data System (ADS)

    Cronin, V. S.

    2012-12-01

    First generation ideas of the kinematic stability of triple junctions lead to the common belief that the geometry of ridge-ridge-ridge (RRR) triple junctions remains constant over time under conditions of symmetric spreading. Given constant relative motion between each plate pair -- that is, the pole of plate relative motion is fixed to both plates in each pair during finite motion, as assumed in many accounts of plate kinematics -- there would be no boundary mismatch at the triple junction and no apparent kinematic reason why a microplate might develop there. But if, in a given RRR triple junction, the finite motion of one plate as observed from the other plate is not circular (as is generally the case, given the three-plate problem of plate kinematics), the geometry of the ridges and the triple junction will vary with time (Cronin, 1992, Tectonophys 207, 287-301). To explore the possible consequences of non-circular finite motion between plates at an RRR triple junction, a simple model was coded based on the cycloid finite-motion model (e.g., Cronin, 1987, Geology 15, 1006-1009) using NNR-MORVEL56 velocities for individual plates (Argus et al., 2011, G3 12, doi: 10.1029/2011GC003751). Initial assumptions include a spherical Earth, symmetric spreading, and constant angular velocities during the modeled finite time interval. The assumed-constant angular velocity vectors constitute a reference frame for observing finite plate motion. Typical results are [1] that the triple junction migrates relative to a coordinate system fixed to the angular-velocity vectors, [2] ridge axes rotates relative to each other, and [3] a boundary mismatch develops at the synthetic triple junction that might result in microplate nucleation. In a model simulating the Galapagos triple junction between the Cocos, Nazca and Pacific plates whose initial state did not include the Galapagos microplate, the mismatch gap was as much as ~3.4 km during 3 Myr of model displacement (see figure). The

  6. Shock structure in non-circular jets

    NASA Technical Reports Server (NTRS)

    Morris, Philip J.; Bhat, Thonse R. S.

    1989-01-01

    The shock-cell structure of supersonic jets with non-circular exit geometry is modeled using a linearized analysis. The model takes into account the finite thickness of the jet shear layer using realistic velocity and density profiles. The effects of the shear layer turbulence are included by incorporating eddy-viscosity terms. A finite-difference numerical method is used to solve the steady linearized equations of motion. A body-fitted coordinate system is used to describe the shear layer. The variation of the pressure fluctuation with downstream distance is given for circular jets and for an elliptic jet of aspect ratio 2.0. Comparisons with experimental data are made. Difficulties with the numerical technique are also discussed.

  7. Combustor with non-circular head end

    SciTech Connect

    Kim, Won -Wook; McMahan, Kevin Weston

    2015-09-29

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a head end with a non-circular configuration, a number of fuel nozzles positioned about the head end, and a transition piece extending downstream of the head end.

  8. Failure of Non-Circular Composite Cylinders

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.

    2004-01-01

    In this study, a progressive failure analysis is used to investigate leakage in internally pressurized non-circular composite cylinders. This type of approach accounts for the localized loss of stiffness when material failure occurs at some location in a structure by degrading the local material elastic properties by a certain factor. The manner in which this degradation of material properties takes place depends on the failure modes, which are determined by the application of a failure criterion. The finite-element code STAGS, which has the capability to perform progressive failure analysis using different degradation schemes and failure criteria, is utilized to analyze laboratory scale, graphite-epoxy, elliptical cylinders with quasi-isotropic, circumferentially-stiff, and axially-stiff material orthotropies. The results are divided into two parts. The first part shows that leakage, which is assumed to develop if there is material failure in every layer at some axial and circumferential location within the cylinder, does not occur without failure of fibers. Moreover before fibers begin to fail, only matrix tensile failures, or matrix cracking, takes place, and at least one layer in all three cylinders studied remain uncracked, preventing the formation of a leakage path. That determination is corroborated by the use of different degradation schemes and various failure criteria. Among the degradation schemes investigated are the degradation of different engineering properties, the use of various degradation factors, the recursive or non-recursive degradation of the engineering properties, and the degradation of material properties using different computational approaches. The failure criteria used in the analysis include the noninteractive maximum stress criterion and the interactive Hashin and Tsai-Wu criteria. The second part of the results shows that leakage occurs due to a combination of matrix tensile and compressive, fiber tensile and compressive, and inplane

  9. Airfoil in sinusoidal motion in a pulsating stream

    NASA Technical Reports Server (NTRS)

    Greenberg, J Mayo

    1947-01-01

    The forces and moments on a two-dimensional airfoil executing harmonic motions in a pulsating stream are derived on the basis of non-stationary incompressible potential flow theory, with the inclusion of the effect of the continuous sheet of vortices shed from the trailing edge. An assumption as to the form of the wake is made with a certain degree of approximation. A comparison with previous work applicable only to the special case of a stationary airfoil is made by means of a numerical example, and the excellent agreement obtained shows that the wake approximation is quite sufficient. The results obtained are expected to be useful in considerations of forced vibrations and flutter of rotary wing aircraft.

  10. Drops with non-circular footprints

    NASA Astrophysics Data System (ADS)

    Ravazzoli, Pablo D.; González, Alejandro G.; Diez, Javier A.

    2016-04-01

    In this paper we study the morphology of drops formed on partially wetting substrates, whose footprint is not circular. These drops are consequence of the breakup processes occurring in thin films when anisotropic contact line motions take place. The anisotropy is basically due to the hysteresis of the contact angle since there is a wetting process in some parts of the contact line, while a dewetting occurs in other parts. Here, we obtain a characteristic drop shape from the rupture of a long liquid filament sitting on a solid substrate. We analyze its shape and contact angles by means of goniometric and refractive techniques. We also find a non-trivial steady state solution for the drop shape within the long wave approximation (lubrication theory), and we compare most of its features with experimental data. This solution is presented both in Cartesian and polar coordinates, whose constants must be determined by a certain group of measured parameters. Besides, we obtain the dynamics of the drop generation from numerical simulations of the full Navier-Stokes equation, where we emulate the hysteretic effects with an appropriate spatial distribution of the static contact angle over the substrate.

  11. Planetary Rings: Circular and Non-circular

    NASA Astrophysics Data System (ADS)

    French, R. G.; Nicholson, P. D.; Colwell, J.; Marouf, E. A.; Rappaport, N. J.; Hedman, M. M.; McGhee, C.; Lonergan, K.; Sepersky, T.

    2011-12-01

    also reveal the pervasive effects of the strong Mimas 2:1 inner Lindblad resonance (ILR), which has long been recognized to define the outer edge of the B ring. We find that almost all sharp-edged features in the Cassini Division exhibit a small but detectable m = 2 variation whose apoapse is locked to Mimas. The amplitudes of these distortions decrease with distance from the resonance, and conform to a simple analytical model for isolated test particles perturbed by the resonance. We confirm that the Colombo (or Titan) ringlet precesses at virtually the same rate as Titan's mean motion, 22.5770 deg d-1, with an apoapse oriented to within 4 deg of Titan's mean longitude. Both edges of this ringlet also exhibit what appear to be free normal modes, with m = 0 on the inner edge and m = 2, 3 and 4 on the outer edge. In contrast, the Maxwell ringlet is a freely precessing ellipse, and we see no evidence for additional normal modes on either edge. We also find clear evidence for normal modes on the edges of the Bond ringlet and Dawes gap.

  12. Development of laser finishing for non-circular profiles

    SciTech Connect

    Liu, K.W.; Sheng, P.S.

    1995-03-01

    A laser-based technique for finishing of non-circular cylindrical parts is presented. In this process, the frequency characteristics of a desired non-circular shape is extracted from a CAD through a Fast Fourier Transform algorithm and implemented through a CO{sub 2} laser machining system. A galvanometer-based scanner is used in the process to achieve programmable beam trajectories and high-speed finishing. An error estimation scheme can be developed to determine the final dimensional error of the non-circular profile. This process can be selected as both a batch production tool and a rapid prototyping tool based on the designated processing rate and precision. Initial experimental results include the production of two- and three-lobed profiles, as well as definition of part feature using higher-order harmonics, in polymethylmethacrylate (PMMA) with corresponding R{sub a} values of less than 1 {mu}m. The machine tool elements and general procedure for non-circular laser finishing are also presented.

  13. Two-dimensional single-stream electron motion in a coaxial diode with magnetic insulation

    SciTech Connect

    Fuks, Mikhail I.; Schamiloglu, Edl

    2014-05-15

    One of the most widespread models of electrons drifting around the cathode in magnetrons is the single-stream state, which is the Brillouin stream with purely azimuthal motion. We describe a single-stream state in which electrons not only move in the azimuthal direction, but also along the axial direction, which is useful for consideration, for example, of relativistic magnetrons, MILOs, and coaxial transmission lines. Relations are given for the conditions of magnetic insulation for 2D electron motion, for 1D azimuthal and axial motion, and for synchronism of these streams with the operating waves of M-type microwave sources. Relations are also provided for the threshold of generation in magnetrons with 2D electron motion.

  14. Three-dimensional interplanetary stream magnetism and energetic particle motion

    NASA Technical Reports Server (NTRS)

    Barouch, E.; Burlaga, L. F.

    1976-01-01

    Cosmic rays interact with mesoscale configurations of the interplanetary magnetic field. A technique is presented for calculating such configurations in the inner solar system, which are due to streams and source conditions near the sun, and maps of magnetic field are constructed for some plausible stream and source conditions. One effect of these mesoscale configurations on galactic cosmic rays is shown to be an out-of-the-ecliptic gradient drift sufficient to explain Forbush decreases. The effects on solar energetic particles include small polar drifts due to the field gradients and a possibly large modification of the time-intensity profiles and anisotropy characteristics due to the formation of mirror configurations in space. If a diffusion model is applicable to solar particles, the true diffusion coefficient will be masked by the effects of streams. A conceptual model which incorporates these ideas and those of several other models is presented.

  15. AN ASYMMETRIC STREAMING MOTION IN THE GALACTIC BULGE X-SHAPED STRUCTURE REVEALED BY OGLE-III PROPER MOTIONS

    SciTech Connect

    Poleski, Radosław; Gould, Andrew; Udalski, Andrzej; Szymański, M. K.; Soszyński, I.; Kubiak, M.; Pietrzyński, G.; Ulaczyk, K.; Wyrzykowski, Ł.

    2013-10-20

    The Galactic bulge shows a double red clump in sightlines at |b| ∼> 5° and –3° ∼< l ∼< 4°. This dump is interpreted as the signature of an X-shaped structure seen almost edge-on. We measure the proper motions of the stars belonging to the closer and the further arms of the X-shaped structure. The intrinsic kinematic properties of the two arms are found by incorporating information taken from the luminosity function. At b = –5°, we find that the proper motion difference between the two arms is a linear function of Galactic longitude for –0.°1 < l < 0.°5, which we interpret as a streaming motion of the stars within the X-shaped structure. A streaming motion was previously reported based on radial velocity data, not the proper motions. The proper motion difference in longitude is constant for –0.°8 < l < –0.°1, which provides an estimate of the bulge rotational speed of 87.9 ± 8.2 km s{sup –1} kpc{sup –1}.

  16. Details of Tidally Modulated Stick-Slip Motion of Whillans Ice Stream, West Antarctica

    NASA Astrophysics Data System (ADS)

    Bindschadler, R.; Anandakrishnan, S.; Voigt, D.; Joughin, I.; Alley, R.; King, M.; Winberry, P.; Peters, L.; Horgan, H.

    2005-12-01

    Whillans Ice Stream remains the only Antarctic ice stream yet reported where most of the motion occurs as stick-slip. Continued study of this ice stream has revealed a number of other interesting characteristics: the fraction of mean daily motion accomplished by these slips is approximately 90% near the grounding line and decreases upstream; the motion on the ice plain is larger during spring tides than during neap tides, but the slip fraction is constant; and near the grounding line, slip events begin and end more impulsively that farther upstream. Additionally, the mean annual velocity continues to decrease and the slip fraction of daily motion increased from 2003-04 to 2004-05 due to an increase in the slip displacements. Dense grids of GPS receivers and seismometers were established in the mouth of Whillans Ice Stream for approximately one month during the 2004-2005 Antarctic field season to examine further details of these stick-slip characteristics. GPS receivers spaced approximately 25 km apart formed a background grid while a set of mobile receivers were moved to gain a finer resolution picture of the stick-slip phenomenon at specific locations. A majority of the events appear to initiate in a single local and propagate upstream and downstream. Data processing is ongoing. We expect to be able to address issues of propagation speed and mechanism, till properties and the initiation mechanism.

  17. Flow in Tubes of Non-Circular Cross-Sections

    NASA Astrophysics Data System (ADS)

    Quadir, Raushan Ara

    In this thesis steady, laminar, viscous, incompressible flow in tubes of non-circular cross sections is investigated. The specific aims of the investigation are (a) to look at the problems of both developing flow and fully developed flow, (b) to consider non-circular cross sections in a more systematic manner than has been done in the past, and (c) to develop a relatively simple finite element technique for producing accurate numerical solutions of flow in tubes of fairly arbitrary cross sections. Fully developed flow in tubes is governed by a Poisson type equation for the mainstream velocity. Both analytical and numerical solutions are considered. The cross sections studied include elliptic and rectangular cross sections of different aspect ratios, some triangular cross sections, and a series of crescent-shaped cross sections. The physical characteristics of the flow are examined in a systematic manner in order to determine how these characteristics are affected by certain geometrical features of the cross section. Solutions fall into three basic categories depending on the shape of the cross section. In the first category, which includes circular and elliptic cross sections, solutions are possible in closed form. In the second, including rectangular and some triangular cross sections, solutions are in the form of infinite series. In the third, including cross sections of more complicated or irregular shapes, only numerical solutions are possible. Results of calculations of velocity profiles, flow rate, pumping power, and friction factor are presented in a way which can be useful for engineering applications. In numerical studies of both developing and fully developed flow finite element techniques are used. Results are obtained for tubes of rectangular and elliptic cross sections of different aspect ratios, for tubes of crescent -shaped cross sections and a tube whose cross section is an oval of Cassini. For fully developed flow, results are compared with the

  18. Minimal cosmic background fluctuations implied by streaming motions

    NASA Technical Reports Server (NTRS)

    Juszkiewicz, Roman; Gorski, Krzysztof; Silk, Joseph

    1987-01-01

    The minimal cosmic background radiation (CBR) anisotropy implied by the presence of peculiar motions of a given amplitude on some specified scale is calculated using a new, power spectrum-independent approach. If the tentative evidence for deviations from the Hubble flow of magnitude delta V/V roughly 0.1 at V roughly 5000 km/s is confirmed, microwave background fluctuations with a coherence scale of about 2 deg and dispersion delta T/T greater than 10 to the -5th are predicted. It is found that the existing upper limits on delta T/T are not inconsistent with v(r) = 500 km/s at r = 50/h Mpc. A reduction of the observational limits on the CBR anisotropy below the authors' minimal predictions for delta T/T would challenge the current interpretation of measurements of deviations from the Hubble flow. Gravitational instability without reheating as a mechanism for generation of the large-scale structure of the universe would be in severe difficulty.

  19. The minimum free-stream wind speed for initiating motion of surface material on Mars

    NASA Technical Reports Server (NTRS)

    Wood, G. P.; Weaver, W. R.; Henry, R. M.

    1974-01-01

    Estimates of the minimum free-stream wind speed that is required for initiating the motion of surficial material on Mars have ranged from 30 to about 200 meters per second. Thus the best value for this quantity is not well established. Graphical comparison of much of the pertinent data taken in the laboratory and in the field on Earth provides a minimum value for the Bagnold coefficient of 0.08 and this in turn provides a minimum value for the threshold friction velocity of 1.3 meters per second for initiating motion of particulate matter on Mars at low elevations where the pressure is 7 millibars. The most appropriate value of the ratio of friction velocity to free-stream velocity for putative unstable condition appears to be 0.026. Thus the minimum free-stream wind speed for initiating motion is obtained as 50 meters per second. If the surface material on Mars, however, is less cohesive than that on earth, the minimum value may be smaller.

  20. Ice stream motion facilitated by a shallow-deforming and accreting bed

    PubMed Central

    Spagnolo, Matteo; Phillips, Emrys; Piotrowski, Jan A.; Rea, Brice R.; Clark, Chris D.; Stokes, Chris R.; Carr, Simon J.; Ely, Jeremy C.; Ribolini, Adriano; Wysota, Wojciech; Szuman, Izabela

    2016-01-01

    Ice streams drain large portions of ice sheets and play a fundamental role in governing their response to atmospheric and oceanic forcing, with implications for sea-level change. The mechanisms that generate ice stream flow remain elusive. Basal sliding and/or bed deformation have been hypothesized, but ice stream beds are largely inaccessible. Here we present a comprehensive, multi-scale study of the internal structure of mega-scale glacial lineations (MSGLs) formed at the bed of a palaeo ice stream. Analyses were undertaken at macro- and microscales, using multiple techniques including X-ray tomography, thin sections and ground penetrating radar (GPR) acquisitions. Results reveal homogeneity in stratigraphy, kinematics, granulometry and petrography. The consistency of the physical and geological properties demonstrates a continuously accreting, shallow-deforming, bed and invariant basal conditions. This implies that ice stream basal motion on soft sediment beds during MSGL formation is accommodated by plastic deformation, facilitated by continuous sediment supply and an inefficient drainage system. PMID:26898399

  1. Ice stream motion facilitated by a shallow-deforming and accreting bed.

    PubMed

    Spagnolo, Matteo; Phillips, Emrys; Piotrowski, Jan A; Rea, Brice R; Clark, Chris D; Stokes, Chris R; Carr, Simon J; Ely, Jeremy C; Ribolini, Adriano; Wysota, Wojciech; Szuman, Izabela

    2016-01-01

    Ice streams drain large portions of ice sheets and play a fundamental role in governing their response to atmospheric and oceanic forcing, with implications for sea-level change. The mechanisms that generate ice stream flow remain elusive. Basal sliding and/or bed deformation have been hypothesized, but ice stream beds are largely inaccessible. Here we present a comprehensive, multi-scale study of the internal structure of mega-scale glacial lineations (MSGLs) formed at the bed of a palaeo ice stream. Analyses were undertaken at macro- and microscales, using multiple techniques including X-ray tomography, thin sections and ground penetrating radar (GPR) acquisitions. Results reveal homogeneity in stratigraphy, kinematics, granulometry and petrography. The consistency of the physical and geological properties demonstrates a continuously accreting, shallow-deforming, bed and invariant basal conditions. This implies that ice stream basal motion on soft sediment beds during MSGL formation is accommodated by plastic deformation, facilitated by continuous sediment supply and an inefficient drainage system.

  2. Ice stream motion facilitated by a shallow-deforming and accreting bed.

    PubMed

    Spagnolo, Matteo; Phillips, Emrys; Piotrowski, Jan A; Rea, Brice R; Clark, Chris D; Stokes, Chris R; Carr, Simon J; Ely, Jeremy C; Ribolini, Adriano; Wysota, Wojciech; Szuman, Izabela

    2016-01-01

    Ice streams drain large portions of ice sheets and play a fundamental role in governing their response to atmospheric and oceanic forcing, with implications for sea-level change. The mechanisms that generate ice stream flow remain elusive. Basal sliding and/or bed deformation have been hypothesized, but ice stream beds are largely inaccessible. Here we present a comprehensive, multi-scale study of the internal structure of mega-scale glacial lineations (MSGLs) formed at the bed of a palaeo ice stream. Analyses were undertaken at macro- and microscales, using multiple techniques including X-ray tomography, thin sections and ground penetrating radar (GPR) acquisitions. Results reveal homogeneity in stratigraphy, kinematics, granulometry and petrography. The consistency of the physical and geological properties demonstrates a continuously accreting, shallow-deforming, bed and invariant basal conditions. This implies that ice stream basal motion on soft sediment beds during MSGL formation is accommodated by plastic deformation, facilitated by continuous sediment supply and an inefficient drainage system. PMID:26898399

  3. Macroscopic Streaming Associated With Vertical, Cyclic Motion of Interface Confined in a Cylindrical Enclosure

    SciTech Connect

    Jun Shimizu; Takahiro Ito; Yoshiyuki Tsuji; Yutaka Kukita

    2002-07-01

    The interface between overlaid fluids can become unstable when the fluids are excited vertically. The instability caused by the variation in the vertical acceleration is known by the name of the Faraday waves. Ito et al. (1999) studied a combined excitation problem where the fluids were excited vertically in a stationary cylinder while the interface motion was restricted by the mobility of the fluid-fluid-wall contact line. They found that, under such circumstances, the symmetric fundamental mode grows on the interface, even for excitation amplitude and frequency falling in the stable regime of the Faraday wave instability. Furthermore, they found that the contact line exhibits stick-slip-like motion for the combination of fluids and wall material used in their experiments (water and kerosene oil in a cylinder made of acrylic resin). In this paper, we describe and discuss the fluid motions associated with the excitation of fluids and interface wave. It is shown that a unidirectional flow (macroscopic streaming) is induced below the center of the interface when it is excited vertically to produce axisymmetric wave of large amplitudes. This unidirectional, jet-like flow induces a large-scale recirculating flow which extends several cylinder diameters away from the interface, a spatial scale considerably greater than the wavelength or amplitude of the interface waves, and has a time scale much greater than the excitation interval. It is shown that the phase angle between the wave-induced fluid motion and the fluid motion associated with the viscous force along the interface plays an important role in establishing the large scale stream motion of the fluids. (authors)

  4. Effects of a Non-Circular Chainring on Sprint Performance During a Cycle Ergometer Test.

    PubMed

    Hintzy, Frédérique; Grappe, Frédéric; Belli, Alain

    2016-06-01

    Non-circular chainrings have been reported to alter the crank angular velocity profile over a pedal revolution so that more time is spent in the effective power phase. The purpose of this study was to determine whether sprint cycling performance could be improved using a non-circular chainring (Osymetric: ellipticity 1.25 and crank lever mounted nearly perpendicular to the major axis), in comparison with a circular chainring. Twenty sprint cyclists performed an 8 s sprint on a cycle ergometer against a 0.5 N/kg(-1) friction force in four crossing conditions (non-circular or circular chainring with or without clipless pedal). Instantaneous force, velocity and power were continuously measured during each sprint. Three main characteristic pedal downstrokes were selected: maximal force (in the beginning of the sprint), maximal power (towards the middle), and maximal velocity (at the end of the sprint). Both average and instantaneous force, velocity and power were calculated during the three selected pedal downstrokes. The important finding of this study was that the maximal power output was significantly higher (+ 4.3%, p < 0.05) when using the non-circular chainring independent from the shoe-pedal linkage condition. This improvement is mainly explained by a significantly higher instantaneous external force that occurs during the downstroke. Non-circular chainring can have potential benefits on sprint cycling performance. Key pointsThe Osymetric non-circular chainring significantly maximized crank power by 4.3% during sprint cycling, in comparison with a circular chainring.This maximal power output improvement was due to significant higher force developed when the crank was in the effective power phase.This maximal power output improvement was independent from the shoe-pedal linkage condition.Present benefits provided by the non-circular chainring on pedalling kinetics occurred only at high cadences. PMID:27274658

  5. Effects of a Non-Circular Chainring on Sprint Performance During a Cycle Ergometer Test

    PubMed Central

    Hintzy, Frédérique; Grappe, Frédéric; Belli, Alain

    2016-01-01

    Non-circular chainrings have been reported to alter the crank angular velocity profile over a pedal revolution so that more time is spent in the effective power phase. The purpose of this study was to determine whether sprint cycling performance could be improved using a non-circular chainring (Osymetric: ellipticity 1.25 and crank lever mounted nearly perpendicular to the major axis), in comparison with a circular chainring. Twenty sprint cyclists performed an 8 s sprint on a cycle ergometer against a 0.5 N/kg-1 friction force in four crossing conditions (non-circular or circular chainring with or without clipless pedal). Instantaneous force, velocity and power were continuously measured during each sprint. Three main characteristic pedal downstrokes were selected: maximal force (in the beginning of the sprint), maximal power (towards the middle), and maximal velocity (at the end of the sprint). Both average and instantaneous force, velocity and power were calculated during the three selected pedal downstrokes. The important finding of this study was that the maximal power output was significantly higher (+ 4.3%, p < 0.05) when using the non-circular chainring independent from the shoe-pedal linkage condition. This improvement is mainly explained by a significantly higher instantaneous external force that occurs during the downstroke. Non-circular chainring can have potential benefits on sprint cycling performance. Key points The Osymetric non-circular chainring significantly maximized crank power by 4.3% during sprint cycling, in comparison with a circular chainring. This maximal power output improvement was due to significant higher force developed when the crank was in the effective power phase. This maximal power output improvement was independent from the shoe-pedal linkage condition. Present benefits provided by the non-circular chainring on pedalling kinetics occurred only at high cadences. PMID:27274658

  6. Effects of a Non-Circular Chainring on Sprint Performance During a Cycle Ergometer Test.

    PubMed

    Hintzy, Frédérique; Grappe, Frédéric; Belli, Alain

    2016-06-01

    Non-circular chainrings have been reported to alter the crank angular velocity profile over a pedal revolution so that more time is spent in the effective power phase. The purpose of this study was to determine whether sprint cycling performance could be improved using a non-circular chainring (Osymetric: ellipticity 1.25 and crank lever mounted nearly perpendicular to the major axis), in comparison with a circular chainring. Twenty sprint cyclists performed an 8 s sprint on a cycle ergometer against a 0.5 N/kg(-1) friction force in four crossing conditions (non-circular or circular chainring with or without clipless pedal). Instantaneous force, velocity and power were continuously measured during each sprint. Three main characteristic pedal downstrokes were selected: maximal force (in the beginning of the sprint), maximal power (towards the middle), and maximal velocity (at the end of the sprint). Both average and instantaneous force, velocity and power were calculated during the three selected pedal downstrokes. The important finding of this study was that the maximal power output was significantly higher (+ 4.3%, p < 0.05) when using the non-circular chainring independent from the shoe-pedal linkage condition. This improvement is mainly explained by a significantly higher instantaneous external force that occurs during the downstroke. Non-circular chainring can have potential benefits on sprint cycling performance. Key pointsThe Osymetric non-circular chainring significantly maximized crank power by 4.3% during sprint cycling, in comparison with a circular chainring.This maximal power output improvement was due to significant higher force developed when the crank was in the effective power phase.This maximal power output improvement was independent from the shoe-pedal linkage condition.Present benefits provided by the non-circular chainring on pedalling kinetics occurred only at high cadences.

  7. PROPER MOTIONS IN KAPTEYN SELECTED AREA 103: A PRELIMINARY ORBIT FOR THE VIRGO STELLAR STREAM

    SciTech Connect

    Casetti-Dinescu, Dana I.; Girard, Terrence M.; Van Altena, William F.; Majewski, Steven R.; Carlin, Jeffrey L.; Vivas, A. Katherina; Wilhelm, Ronald; Beers, Timothy C.

    2009-08-10

    We present absolute proper motions in Kapteyn Selected Area (SA) 103. This field is located 7 deg. west of the center of the Virgo Stellar Stream (VSS), and has a well-defined main sequence representing the stream. In SA 103, we identify one RR Lyrae star as a member of the VSS, according to its metallicity, radial velocity, and distance. VSS candidate turnoff and subgiant stars have proper motions consistent with that of the RR Lyrae star. The three-dimensional velocity data imply an orbit with a pericenter of {approx}11 kpc and an apocenter of {approx}90 kpc. Thus, the VSS comprises tidal debris found near the pericenter of a highly destructive orbit. Examining the six globular clusters at distances larger than 50 kpc from the Galactic center, and the proposed orbit of the VSS, we find one tentative association, NGC 2419. We speculate that NGC 2419 is possibly the nucleus of a disrupted system of which the VSS is a part.

  8. Simultaneous teleseismic and geodetic observations of the stick-slip motion of an Antarctic ice stream.

    PubMed

    Wiens, Douglas A; Anandakrishnan, Sridhar; Winberry, J Paul; King, Matt A

    2008-06-01

    Long-period seismic sources associated with glacier motion have been recently discovered, and an increase in ice flow over the past decade has been suggested on the basis of secular changes in such measurements. Their significance, however, remains uncertain, as a relationship to ice flow has not been confirmed by direct observation. Here we combine long-period surface-wave observations with simultaneous Global Positioning System measurements of ice displacement to study the tidally modulated stick-slip motion of the Whillans Ice Stream in West Antarctica. The seismic origin time corresponds to slip nucleation at a region of the bed of the Whillans Ice Stream that is likely stronger than in surrounding regions and, thus, acts like an 'asperity' in traditional fault models. In addition to the initial pulse, two seismic arrivals occurring 10-23 minutes later represent stopping phases as the slip terminates at the ice stream edge and the grounding line. Seismic amplitude and average rupture velocity are correlated with tidal amplitude for the different slip events during the spring-to-neap tidal cycle. Although the total seismic moment calculated from ice rigidity, slip displacement, and rupture area is equivalent to an earthquake of moment magnitude seven (M(w) 7), seismic amplitudes are modest (M(s) 3.6-4.2), owing to the source duration of 20-30 minutes. Seismic radiation from ice movement is proportional to the derivative of the moment rate function at periods of 25-100 seconds and very long-period radiation is not detected, owing to the source geometry. Long-period seismic waves are thus useful for detecting and studying sudden ice movements but are insensitive to the total amount of slip.

  9. Performance limits of ion extraction systems with non-circular apertures.

    PubMed

    Shagayda, A; Madeev, S

    2016-04-01

    A three-dimensional computer simulation is used to determine the perveance limitations of ion extraction systems with non-circular apertures. The objective of the study is to analyze the possibilities to improve mechanical strength of the ion optics made of carbon-carbon composite materials. Non-circular grid apertures are better suited to the physical structure of carbon-carbon composite materials, than conventionally used circular holes in a hexagonal pattern, because they allow a fewer number of cut fibers. However, the slit-type accelerating systems, usually regarded as the main alternative to the conventional ion optics, have an intolerably narrow range of operating perveance values at which there is no direct ion impingement on the acceleration grid. This paper presents results of comparative analysis of a number of different ion optical systems with non-circular apertures and conventional ion optical systems with circular apertures. It has been revealed that a relatively wide perveance range without direct ion impingement may be obtained with apertures shaped as a square with rounded corners. Numerical simulations show that this geometry may have equivalent perveance range as the traditional geometry with circular apertures while being more mechanically robust. In addition, such important characteristics, as the effective transparency for both the ions and the neutral atoms, the height of the potential barrier reflecting the downstream plasma electrons and the angular divergence of the beamlet also can be very close to these parameters for the optics with circular apertures. PMID:27131665

  10. Performance limits of ion extraction systems with non-circular apertures

    NASA Astrophysics Data System (ADS)

    Shagayda, A.; Madeev, S.

    2016-04-01

    A three-dimensional computer simulation is used to determine the perveance limitations of ion extraction systems with non-circular apertures. The objective of the study is to analyze the possibilities to improve mechanical strength of the ion optics made of carbon-carbon composite materials. Non-circular grid apertures are better suited to the physical structure of carbon-carbon composite materials, than conventionally used circular holes in a hexagonal pattern, because they allow a fewer number of cut fibers. However, the slit-type accelerating systems, usually regarded as the main alternative to the conventional ion optics, have an intolerably narrow range of operating perveance values at which there is no direct ion impingement on the acceleration grid. This paper presents results of comparative analysis of a number of different ion optical systems with non-circular apertures and conventional ion optical systems with circular apertures. It has been revealed that a relatively wide perveance range without direct ion impingement may be obtained with apertures shaped as a square with rounded corners. Numerical simulations show that this geometry may have equivalent perveance range as the traditional geometry with circular apertures while being more mechanically robust. In addition, such important characteristics, as the effective transparency for both the ions and the neutral atoms, the height of the potential barrier reflecting the downstream plasma electrons and the angular divergence of the beamlet also can be very close to these parameters for the optics with circular apertures.

  11. Does a non-circular chainring improve performance in the bicycle motocross cycling start sprint?

    PubMed

    Mateo-March, Manuel; Fernández-Peña, Eneko; Blasco-Lafarga, Cristina; Morente-Sánchez, Jaime; Zabala, Mikel

    2014-01-01

    Maximising power output during the initial acceleration phase of a bicycle motocross (BMX) race increases the chance to lead the group for the rest of the race. The purpose of this study was to investigate the effect of non-circular chainrings (Q-ring) on performance during the initial acceleration phase of a BMX race. Sixteen male cyclists (Spanish National BMX team) performed two counterbalanced and randomized initial sprints (3.95s), using Q- ring vs. circular chainring, on a BMX track. The sample was divided into two different groups according to their performance (Elite; n = 8 vs. Cadet; n = 8). Elite group covered a greater distance using Q-ring (+0.26 m, p = 0.02; D = 0.23), whilst the improvement for the Cadet (+0.04 m) was not significant (p = 0.87; D = -0.02). Also, there was no significant difference in power output for the Elite group, while the Cadet group revealed larger peak power with the circular chainring. Neither lactate level, nor heart rate showed significant differences due to the different chainring used. The non-circular chainring improved the initial acceleration capacity only in the Elite riders. Key PointsThis work provides novel results demonstrating very significant improvements in the sprint performance of BMX cycling discipline using a non-circular chainring system.This study seeks a practical application from scientific analysisAll data are obtained in a real context of high competition using a sample comprised by the National Spanish Team.Some variables influencing performance as subjects' physical fitness are discussed.Technical equipment approved by International Cycling Union is studied to check its potentially beneficial influence on performance. PMID:24570612

  12. Does a Non-Circular Chainring Improve Performance in the Bicycle Motocross Cycling Start Sprint?

    PubMed Central

    Mateo-March, Manuel; Fernández-Peña, Eneko; Blasco-Lafarga, Cristina; Morente-Sánchez, Jaime; Zabala, Mikel

    2014-01-01

    Maximising power output during the initial acceleration phase of a bicycle motocross (BMX) race increases the chance to lead the group for the rest of the race. The purpose of this study was to investigate the effect of non-circular chainrings (Q-ring) on performance during the initial acceleration phase of a BMX race. Sixteen male cyclists (Spanish National BMX team) performed two counterbalanced and randomized initial sprints (3.95s), using Q- ring vs. circular chainring, on a BMX track. The sample was divided into two different groups according to their performance (Elite; n = 8 vs. Cadet; n = 8). Elite group covered a greater distance using Q-ring (+0.26 m, p = 0.02; D = 0.23), whilst the improvement for the Cadet (+0.04 m) was not significant (p = 0.87; D = -0.02). Also, there was no significant difference in power output for the Elite group, while the Cadet group revealed larger peak power with the circular chainring. Neither lactate level, nor heart rate showed significant differences due to the different chainring used. The non-circular chainring improved the initial acceleration capacity only in the Elite riders. Key Points This work provides novel results demonstrating very significant improvements in the sprint performance of BMX cycling discipline using a non-circular chainring system. This study seeks a practical application from scientific analysis All data are obtained in a real context of high competition using a sample comprised by the National Spanish Team. Some variables influencing performance as subjects’ physical fitness are discussed. Technical equipment approved by International Cycling Union is studied to check its potentially beneficial influence on performance. PMID:24570612

  13. Stick-slip Motion of Whillans Ice Stream: Experimental Constraints on Till Frictional Behavior (Invited)

    NASA Astrophysics Data System (ADS)

    Iverson, N. R.

    2010-12-01

    If basal till helps modulate stick-slip of the downstream portion of Whillans Ice Stream (WIS), the till must satisfy at least two criteria: it must “rate-weaken” during slip episodes, so its strength decreases with increasing slip velocity, and it must also strengthen or “heal” during intervening longer periods of slow slip (6-25 hours). Model calculations indicate that shear stresses fluctuate through 0.20-0.35 kPa during this cycle of weakening and healing (Winberry et al., 2009, JGR). Potential weakening and healing mechanisms that involve pore-pressure diffusion and associated movement of water into or out of the till are limited by its low hydraulic diffusivity, which prevents sub-daily water pressure variations at the glacier sole from affecting most of the till thickness. Experimental results help constrain whether tills meet stick-slip criteria. The critical-state strength of the WIS till does not decrease with increasing strain rate (Tulaczyk et al., 2000; JGR). Some other tills, however, with only slightly different textures exhibit rate-weakening sufficient to account for modeled stress reductions during slip episodes. Thus, potential textural differences within the WIS till between where it was sampled and where stick-slip is observed downstream could help account for stick-slip. High-pressure experiments on fault gouge, of uncertain relevance to till, indicate healing rates sufficient to account for WIS stress fluctuations and rapid-slip recurrence intervals. However, healing rates may be reduced by slow shear during quiescent periods. Moreover, experimental results indicate that if healing is associated with sufficient consolidation, resultant dilation during rapid slip would likely cause abrupt pore-pressure decline and consequent rate-strengthening inconsistent with observed stick-slip. An alternative hypothesis is that motion occurs at the bed surface, as suggested by measurements upstream at WIS and locally at some other soft

  14. Statistical isotropy violation in WMAP CMB maps resulting from non-circular beams

    NASA Astrophysics Data System (ADS)

    Das, Santanu; Mitra, Sanjit; Rotti, Aditya; Pant, Nidhi; Souradeep, Tarun

    2016-06-01

    Statistical isotropy (SI) of cosmic microwave background (CMB) fluctuations is a key observational test to validate the cosmological principle underlying the standard model of cosmology. While a detection of SI violation would have immense cosmological ramification, it is important to recognise their possible origin in systematic effects of observations. The WMAP seven year (WMAP-7) release claimed significant deviation from SI in the bipolar spherical harmonic (BipoSH) coefficients and . Here we present the first explicit reproduction of the measurements reported in WMAP-7, confirming that beam systematics alone can completely account for the measured SI violation. The possibility of such a systematic origin was alluded to in WMAP-7 paper itself and other authors but not as explicitly so as to account for it accurately. We simulate CMB maps using the actual WMAP non-circular beams and scanning strategy. Our estimated BipoSH spectra from these maps match the WMAP-7 results very well. It is also evident that only a very careful and adequately detailed modelling, as carried out here, can conclusively establish that the entire signal arises from non-circular beam effect. This is important since cosmic SI violation signals are expected to be subtle and dismissing a large SI violation signal as observational artefact based on simplistic plausibility arguments run the serious risk of "throwing the baby out with the bathwater".

  15. Experiments in dilution jet mixing effects of multiple rows and non-circular orifices

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Srinivasan, R.; Coleman, E. B.; Meyers, G. D.; White, C. D.

    1985-01-01

    Experimental and empirical model results are presented that extend previous studies of the mixing of single-sided and opposed rows of jets in a confined duct flow to include effects of non-circular orifices and double rows of jets. Analysis of the mean temperature data obtained in this investigation showed that the effects of orifice shape and double rows are significant only in the region close to the injection plane, provided that the orifices are symmetric with respect to the main flow direction. The penetration and mixing of jets from 45-degree slanted slots is slightly less than that from equivalent-area symmetric orifices. The penetration from 2-dimensional slots is similar to that from equivalent-area closely-spaced rows of holes, but the mixing is slower for the 2-D slots. Calculated mean temperature profiles downstream of jets from non-circular and double rows of orifices, made using an extension developed for a previous empirical model, are shown to be in good agreement with the measured distributions.

  16. Interface and process for enhanced transmission of non-circular ion beams between stages at unequal pressure

    DOEpatents

    Tang, Keqi; Shvartsburg, Alexandre A.; Smith, Richard D.

    2008-03-04

    The invention discloses a new interface with non-circular conductance limit aperture(s) useful for effective transmission of non-circular ion beams between stages with different gas pressure. In particular, the invention provides an improved coupling of field asymmetric waveform ion mobility spectrometry (FAIMS) analyzers of planar or side-to-side geometry to downstream stages such as mass spectrometry or ion mobility spectrometry. In this case, the non-circular aperture is rectangular; other geometries may be optimum in other applications. In the preferred embodiment, the non-circular aperture interface is followed by an electrodynamic ion funnel that may focus wide ion beams of any shape into tight circular beams with virtually no losses. The jet disrupter element of the funnel may also have a non-circular geometry, matching the shape of arriving ion beam. The improved sensitivity of planar FAIMS/MS has been demonstrated in experiments using a non-contiguous elongated aperture but other embodiments (e.g., with a contiguous slit aperture) may be preferable, especially in conjunction with an ion funnel operated at high pressures.

  17. A mechanistic model linking insect (Hydropsychidae) silk nets to incipient sediment motion in gravel-bedded streams

    NASA Astrophysics Data System (ADS)

    Albertson, Lindsey K.; Sklar, Leonard S.; Pontau, Patricia; Dow, Michelle; Cardinale, Bradley J.

    2014-09-01

    Plants and animals affect stream morphodynamics across a range of scales, yet including biological traits of organisms in geomorphic process models remains a fundamental challenge. For example, laboratory experiments have shown that silk nets built by caddisfly larvae (Trichoptera: Hydropsychidae) can increase the shear stress required to initiate bed motion by more than a factor of 2. The contributions of specific biological traits are not well understood, however. Here we develop a theoretical model for the effects of insect nets on the threshold of sediment motion, τ*crit, that accounts for the mechanical properties, geometry, and vertical distribution of insect silk, as well as interactions between insect species. To parameterize the model, we measure the tensile strength, diameter, and number of silk threads in nets built by two common species of caddisfly, Arctopsyche californica and Ceratopsyche oslari. We compare model predictions with new measurements of τ*crit in experiments where we varied grain size and caddisfly species composition. The model is consistent with experimental results for single species, which show that the increase in τ*crit above the abiotic control peaks at 40-70% for 10-22 mm sediments and declines with increasing grain size. For the polyculture experiments, however, the model underpredicts the measured increase in τ*crit when two caddisfly species are present in sediments of larger grain sizes. Overall, the model helps explain why the presence of caddisfly silk can substantially increase the forces needed to initiate sediment motion in gravel-bedded streams and also illustrates the challenge of parameterizing the behavior of multiple interacting species in a physical model.

  18. Tunable complete photonic band gap in anisotropic photonic crystal slabs with non-circular air holes using liquid crystals

    NASA Astrophysics Data System (ADS)

    Fathollahi Khalkhali, T.; Bananej, A.

    2016-06-01

    In this study, we analyze the tunability of complete photonic band gap of square and triangular photonic crystal slabs composed of square and hexagonal air holes in anisotropic tellurium background with SiO2 as cladding material. The non-circular holes are infiltrated with liquid crystal. Using the supercell method based on plane wave expansion, we study the variation of complete band gap by changing the optical axis orientation of liquid crystal. Our numerical results show that noticeable tunability of complete photonic band gap can be obtained in both square and triangular structures with non-circular holes.

  19. WE-G-BRF-07: Non-Circular Scanning Trajectories with Varian Developer Mode

    SciTech Connect

    Davis, A; Pearson, E; Pan, X; Pelizzari, C

    2014-06-15

    Purpose: Cone-beam CT (CBCT) in image-guide radiation therapy (IGRT) typicallyacquires scan data via the circular trajectory of the linearaccelerator's (linac) gantry rotation. Though this lends itself toanalytic reconstruction algorithms like FDK, iterative reconstructionalgorithms allow for a broader range of scanning trajectories. Weimplemented a non-circular scanning trajectory with Varian's TrueBeamDeveloper Mode and performed some preliminary reconstructions toverify the geometry. Methods: We used TrueBeam Developer Mode to program a new scanning trajectorythat increases the field of view (FOV) along the gantry rotation axiswithout moving the patient. This trajectory consisted of moving thegantry in a circle, then translating the source and detector along theaxial direction before acquiring another circular scan 19 cm away fromthe first. The linear portion of the trajectory includes an additional4.5 cm above and below the axial planes of the source's circularrotation. We scanned a calibration phantom consisting of a lucite tubewith a spiral pattern of CT spots and used the maximum-likelihoodalgorithm to iteratively reconstruct the CBCT volume. Results: With the TrueBeam trajectory definition, we acquired projection dataof the calibration phantom using the previously described trajectory.We obtained a scan of the treatment couch for log normalization byscanning with the same trajectory but without the phantom present.Using the nominal geometric parameters reported in the projectionheaders with our iterative reconstruction algorithm, we obtained acorrect reconstruction of the calibration phantom. Conclusion: The ability to implement new scanning trajectories with the TrueBeamDeveloper Mode enables us access to a new parameter space for imagingwith CBCT for IGRT. Previous simulations and simple dual circle scanshave shown iterative reconstruction with non-circular trajectories canincrease the axial FOV with CBCT. Use of Developer Mode allowsexperimentally

  20. Will COBE challenge the inflationary paradigm - Cosmic microwave background anisotropies versus large-scale streaming motions revisited

    SciTech Connect

    Gorski, K.M. )

    1991-03-01

    The relation between cosmic microwave background (CMB) anisotropies and large-scale galaxy streaming motions is examined within the framework of inflationary cosmology. The minimal Sachs and Wolfe (1967) CMB anisotropies at large angular scales in the models with initial Harrison-Zel'dovich spectrum of inhomogeneity normalized to the local large-scale bulk flow, which are independent of the Hubble constant and specific nature of dark matter, are found to be within the anticipated ultimate sensitivity limits of COBE's Differential Microwave Radiometer experiment. For example, the most likely value of the quadrupole coefficient is predicted to be a2 not less than 7 x 10 to the -6th, where equality applies to the limiting minimal model. If (1) COBE's DMR instruments perform well throughout the two-year period; (2) the anisotropy data are not marred by the systematic errors; (3) the large-scale motions retain their present observational status; (4) there is no statistical conspiracy in a sense of the measured bulk flow being of untypically high and the large-scale anisotropy of untypically low amplitudes; and (5) the low-order multipoles in the all-sky primordial fireball temperature map are not detected, the inflationary paradigm will have to be questioned. 19 refs.

  1. Do audio-visual motion cues promote segregation of auditory streams?

    PubMed Central

    Shestopalova, Lidia; Bőhm, Tamás M.; Bendixen, Alexandra; Andreou, Andreas G.; Georgiou, Julius; Garreau, Guillaume; Hajdu, Botond; Denham, Susan L.; Winkler, István

    2014-01-01

    An audio-visual experiment using moving sound sources was designed to investigate whether the analysis of auditory scenes is modulated by synchronous presentation of visual information. Listeners were presented with an alternating sequence of two pure tones delivered by two separate sound sources. In different conditions, the two sound sources were either stationary or moving on random trajectories around the listener. Both the sounds and the movement trajectories were derived from recordings in which two humans were moving with loudspeakers attached to their heads. Visualized movement trajectories modeled by a computer animation were presented together with the sounds. In the main experiment, behavioral reports on sound organization were collected from young healthy volunteers. The proportion and stability of the different sound organizations were compared between the conditions in which the visualized trajectories matched the movement of the sound sources and when the two were independent of each other. The results corroborate earlier findings that separation of sound sources in space promotes segregation. However, no additional effect of auditory movement per se on the perceptual organization of sounds was obtained. Surprisingly, the presentation of movement-congruent visual cues did not strengthen the effects of spatial separation on segregating auditory streams. Our findings are consistent with the view that bistability in the auditory modality can occur independently from other modalities. PMID:24778604

  2. Motion.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic of motion. Contents include: (1) "First Word" (Zach Tobias); (2) "Cosmic Collisions" (Robert Irion); (3) "The Mobile Cell" (Karen E. Kalumuck); (4) "The Paths of Paths" (Steven Vogel); (5) "Fragments" (Pearl Tesler); (6) "Moving Pictures" (Amy Snyder); (7) "Plants on the Go" (Katharine…

  3. Transfrontier macroseismic data exchange in NW Europe: examples of non-circular intensity distributions

    NASA Astrophysics Data System (ADS)

    Van Noten, Koen; Lecocq, Thomas; Hinzen, Klaus-G.; Sira, Christophe; Camelbeeck, Thierry

    2016-04-01

    Macroseismic data acquisition recently received a strong increase in interest due to public crowdsourcing through internet-based inquiries and real-time smartphone applications. Macroseismic analysis of felt earthquakes is important as the perception of people can be used to detect local/regional site effects in areas without instrumentation. We will demonstrate how post-processing macroseismic data improves the quality of real-time intensity evaluation of new events. Instead of using the classic DYFI representation in which internet intensities are averaged per community, we, first, geocoded all individual responses and structure the model area into 100 km2grid cells. Second, the average intensity of all answers within a grid cell is calculated. The resulting macroseismic grid cell distribution shows a less subjective and more homogeneous intensity distribution than the classical irregular community distribution and helps to improve the calculation of intensity attenuation functions. In this presentation, the 'Did You Feel It' (DYFI) macroseismic data of several >M4, e.g. the 2002 ML 4.9 Alsdorf and 2011 ML 4.3 Goch (Germany) and the 2015 ML 4.1 Ramsgate (UK), earthquakes felt in Belgium, Germany, The Netherlands, France, Luxemburg and UK are analysed. Integration of transfrontier DYFI data of the ROB-BNS, KNMI, BCSF and BGS networks results in a particular non-circular, distribution of the macroseismic data in which the felt area for all these examples extends significantly more in E-W than N-S direction. This intensity distribution cannot be explained by geometrical amplitude attenuation alone, but rather illustrates a low-pass filtering effect due to the south-to-north increasing thickness of cover sediments above the London-Brabant Massif. For the studied M4 to M5 earthquakes, the thick sediments attenuate seismic energy at higher frequencies and consequently less people feel the vibrations at the surface. This example of successful macroseismic data exchange

  4. SU-E-I-02: Characterizing Low-Contrast Resolution for Non-Circular CBCT Trajectories

    SciTech Connect

    Davis, A; Pan, X; Pelizzari, C; Pearson, E

    2015-06-15

    Purpose: The use of non-circular scanning trajectories with optimization-basedreconstruction algorithms can be used in conjunction with non-planaracquisition geometries for axial field-of-view (FOV) extension incone-beam CT (CBCT). To evaluate the utility of these trajectories,quantitative image quality metrics should be evaluated. Low-contrastresolution (LCR) and CT number accuracy are significant challenges forCBCT. With unprecedented axial coverage provided by thesetrajectories, measuring such metrics throughout the axial range iscritical. There are currently no phantoms designed to measurelow-contrast resolution over such an extended volume. Methods: The CATPHAN (The Phantom Laboratory, Salem NY) is the current standardfor image quality evaluation. While providing several useful modulesfor different evaluation metrics, each module was designed to beevaluated in a single slice and not for comparison across axialpositions. To characterize the LCR and HU accuracy over an extendedaxial length, we have designed and built a phantom with evaluationmodules at multiple and adjustable axial positions. Results: The modules were made from a cast polyurethane resin. Holes rangingfrom 1/8 to 5/8 inch were added at a constant radius from the modulecenter into which rods of two different plastic materials were pressedto provide two nominal levels of contrast (1.0% and 0.5%). Largerholes were bored to accept various RMI plugs with known electrondensities for HU accuracy evaluation. The modules can be inserted intoan acrylic tube long enough to cover the entire axial FOV and theirpositions adjusted to desired evaluation points. Conclusion: This phantom allows us to measure the LCR and HU accuracy across theaxial coverage within a single acquisition. These metrics can be usedto characterize the impact different trajectories and reconstructionparameters have on clinically relevant image quality performancemetrics. Funding was provided in part by Varian Medical Systems and NIH R01

  5. Sediment Mobilization and Storage Dynamics of a Debris Flow Impacted Stream Channel using Multi-Temporal Structure from Motion Photogrammetry

    NASA Astrophysics Data System (ADS)

    Bailey, T. L.; Sutherland-Montoya, D.

    2015-12-01

    High resolution topographic analysis methods have become important tools in geomorphology. Structure from Motion photogrammetry offers a compelling vehicle for geomorphic change detection in fluvial environments. This process can produce arbitrarily high resolution, geographically registered spectral and topographic coverages from a collection of overlapping digital imagery from consumer cameras. Cuneo Creek has had three historically observed episodes of rapid aggradation (1955, 1964, and 1997). The debris flow deposits continue to be major sources of sediment sixty years after the initial slope failure. Previous studies have monitored the sediment storage volume and particle size since 1976 (in 1976, 1982, 1983, 1985, 1986, 1987, 1998, 2003). We reoccupied 3 previously surveyed stream cross sections on Sept 30, 2014 and March 30, 2015, and produced photogrammetric point clouds using a pole mounted camera with a remote view finder to take nadir view images from 4.3 meters above the channel bed. Ground control points were registered using survey grade GPS and typical cross sections used over 100 images to build the structure model. This process simultaneously collects channel geometry and we used it to also generate surface texture metrics, and produced DEMs with point cloud densities above 5000 points / m2. In the period between the surveys, a five year recurrence interval discharge of 20 m3/s scoured the channel. Surface particle size distribution has been determined for each observation period using image segmentation algorithms based on spectral distance and compactness. Topographic differencing between the point clouds shows substantial channel bed mobilization and reorganization. The net decline in sediment storage is in excess of 4 x 10^5 cubic meters since the 1964 aggradation peak, with associated coarsening of surface particle sizes. These new methods provide a promising rapid assessment tool for measurement of channel responses to sediment inputs.

  6. Fabrication of dense non-circular nanomagnetic device arrays using self-limiting low-energy glow-discharge processing.

    PubMed

    Zheng, Zhen; Chang, Long; Nekrashevich, Ivan; Ruchhoeft, Paul; Khizroev, Sakhrat; Litvinov, Dmitri

    2013-01-01

    We describe a low-energy glow-discharge process using reactive ion etching system that enables non-circular device patterns, such as squares or hexagons, to be formed from a precursor array of uniform circular openings in polymethyl methacrylate, PMMA, defined by electron beam lithography. This technique is of a particular interest for bit-patterned magnetic recording medium fabrication, where close packed square magnetic bits may improve its recording performance. The process and results of generating close packed square patterns by self-limiting low-energy glow-discharge are investigated. Dense magnetic arrays formed by electrochemical deposition of nickel over self-limiting formed molds are demonstrated.

  7. Effect of Streaming Motion of Baryons Relative to Dark Matter on the Formation of the First Stars

    NASA Astrophysics Data System (ADS)

    Stacy, Athena; Bromm, Volker; Loeb, Abraham

    2011-03-01

    We evaluate the effect of a supersonic relative velocity between the baryons and dark matter on the thermal and density evolution of the first gas clouds at z <~ 50. Through a series of cosmological simulations, initialized at z i = 100 with a range of relative streaming velocities and minihalo formation redshifts, we find that the typical streaming velocities will have little effect on the gas evolution. Once the collapse begins, the subsequent evolution of the gas will be nearly indistinguishable from the case of no streaming, and star formation will still proceed in the same way, with no change in the characteristic Pop III stellar masses. Reionization is expected to be dominated by halo masses of gsim108 M sun, for which the effect of streaming should be negligible.

  8. A linear shock cell model for non-circular jets using conformal mapping with a pseudo-spectral hybrid scheme

    NASA Technical Reports Server (NTRS)

    Bhat, Thonse R. S.; Baty, Roy S.; Morris, Philip J.

    1990-01-01

    The shock structure in non-circular supersonic jets is predicted using a linear model. This model includes the effects of the finite thickness of the mixing layer and the turbulence in the jet shear layer. A numerical solution is obtained using a conformal mapping grid generation scheme with a hybrid pseudo-spectral discretization method. The uniform pressure perturbation at the jet exit is approximated by a Fourier-Mathieu series. The pressure at downstream locations is obtained from an eigenfunction expansion that is matched to the pressure perturbation at the jet exit. Results are presented for a circular jet and for an elliptic jet of aspect ratio 2.0. Comparisons are made with experimental data.

  9. Structure Damage Simulations Accounting for Inertial Effects and Impact and Optimization of Grid-Stiffened Non-Circular Shells

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Jaunky, Navin

    1999-01-01

    The goal of this research project is to develop modelling and analysis strategy for the penetration of aluminium plates impacted by titanium impactors. Finite element analysis is used to study the penetration of aluminium plates impacted by titanium impactors in order to study the effect of such uncontained engine debris impacts on aircraft-like skin panels. LS-DYNA3D) is used in the simulations to model the impactor, test fixture frame and target barrier plate. The effects of mesh refinement, contact modeling, and impactor initial velocity and orientation were studied. The research project also includes development of a design tool for optimum design of grid-stiffened non-circular shells or panels subjected to buckling.

  10. Propagation and deposition of non-circular finite release particle-laden currents

    NASA Astrophysics Data System (ADS)

    Zgheib, Nadim; Bonometti, Thomas; Balachandar, S.

    2015-08-01

    The dynamics of non-axisymmetric turbidity currents is considered here for a range of Reynolds numbers of O (104) when based on the initial height of the release. The study comprises a series of experiments and highly resolved simulations for which a finite volume of particle-laden solution is released into fresh water. A mixture of water and polystyrene particles of mean diameter d ˜ p = 300 μ m and mixture density ρ ˜ c = 1012 kg / m 3 is initially confined in a hollow cylinder at the centre of a large tank filled with fresh water. Cylinders with two different cross-sectional shapes, but equal cross-sectional areas, are examined: a circle and a rounded rectangle in which the sharp corners are smoothened. The time evolution of the front is recorded as well as the spatial distribution of the thickness of the final deposit via the use of a laser triangulation technique. The dynamics of the front and final deposits are significantly influenced by the initial geometry, displaying substantial azimuthal variation especially for the rectangular case where the current extends farther and deposits more particles along the initial minor axis of the rectangular cross section. Several parameters are varied to assess the dependence on the settling velocity, initial height aspect ratio, and volume fraction. Even though resuspension is not taken into account in our simulations, good agreement with experiments indicates that it does not play an important role in the front dynamics, in terms of velocity and extent of the current. However, wall shear stress measurements show that incipient motion of particles and particle transport along the bed are likely to occur in the body of the current and should be accounted to properly capture the final deposition profile of particles.

  11. Estimating statistical isotropy violation in CMB due to non-circular beam and complex scan in minutes

    NASA Astrophysics Data System (ADS)

    Pant, Nidhi; Das, Santanu; Rotti, Aditya; Mitra, Sanjit; Souradeep, Tarun

    2016-03-01

    Mild, unavoidable deviations from circular-symmetry of instrumental beams along with scan strategy can give rise to measurable Statistical Isotropy (SI) violation in Cosmic Microwave Background (CMB) experiments. If not accounted properly, this spurious signal can complicate the extraction of other SI violation signals (if any) in the data. However, estimation of this effect through exact numerical simulation is computationally intensive and time consuming. A generalized analytical formalism not only provides a quick way of estimating this signal, but also gives a detailed understanding connecting the leading beam anisotropy components to a measurable BipoSH characterisation of SI violation. In this paper, we provide an approximate generic analytical method for estimating the SI violation generated due to a non-circular (NC) beam and arbitrary scan strategy, in terms of the Bipolar Spherical Harmonic (BipoSH) spectra. Our analytical method can predict almost all the features introduced by a NC beam in a complex scan and thus reduces the need for extensive numerical simulation worth tens of thousands of CPU hours into minutes long calculations. As an illustrative example, we use WMAP beams and scanning strategy to demonstrate the easability, usability and efficiency of our method. We test all our analytical results against that from exact numerical simulations.

  12. A Parametric Computational Study of the Impact of Non-circular Configurations on Bioprosthetic Heart Valve Leaflet Deformations and Stresses: Possible Implications for Transcatheter Heart Valves.

    PubMed

    Duraiswamy, Nandini; Weaver, Jason D; Ekrami, Yasamin; Retta, Stephen M; Wu, Changfu

    2016-06-01

    Although generally manufactured as circular devices with symmetric leaflets, transcatheter heart valves can become non-circular post-implantation, the impact of which on the long-term durability of the device is unclear. We investigated the effects of five non-circular (EllipMajor, EllipMinor, D-Shape, TriVertex, TriSides) annular configurations on valve leaflet stresses and valve leaflet deformations through finite element analysis. The highest in-plane principal stresses and strains were observed under an elliptical configuration with an aspect ratio of 1.25 where one of the commissures was on the minor axis of the ellipse. In this elliptical configuration (EllipMinor), the maximum principal stress increased 218% and the maximum principal strain increased 80% as compared with those in the circular configuration, and occurred along the free edge of the leaflet whose commissures were not on the minor axis (i.e., the "stretched" leaflet). The D-Shape configuration was similar to this elliptical configuration, with the degree to which the leaflets were stretched or sagging being less than the EllipMinor configuration. The TriVertex and TriSides configurations had similar leaflet deformation patterns in all three leaflets and similar to the Circular configuration. In the D-Shape, TriVertex, and TriSides configurations, the maximum principal stress was located near the commissures similar to the Circular configuration. In the EllipMinor and EllipMajor configurations, the maximum principal stress occurred near the center of the free edge of the "stretched" leaflets. These results further affirm recommendations by the International Standards Organization (ISO) that pre-clinical testing should consider non-circular configurations for transcatheter valve durability testing. PMID:26864541

  13. The role of independent motion in object segmentation in the ventral visual stream: Learning to recognise the separate parts of the body.

    PubMed

    Higgins, I V; Stringer, S M

    2011-03-25

    This paper investigates how the visual areas of the brain may learn to segment the bodies of humans and other animals into separate parts. A neural network model of the ventral visual pathway, VisNet, was used to study this problem. In particular, the current work investigates whether independent motion of body parts can be sufficient to enable the visual system to learn separate representations of them even when the body parts are never seen in isolation. The network was shown to be able to separate out the independently moving body parts because the independent motion created statistical decoupling between them.

  14. The SAMI Galaxy Survey: gas streaming and dynamical M/L in rotationally supported systems

    NASA Astrophysics Data System (ADS)

    Cecil, G.; Fogarty, L. M. R.; Richards, S.; Bland-Hawthorn, J.; Lange, R.; Moffett, A.; Catinella, B.; Cortese, L.; Ho, I.-T.; Taylor, E. N.; Bryant, J. J.; Allen, J. T.; Sweet, S. M.; Croom, S. M.; Driver, S. P.; Goodwin, M.; Kelvin, L.; Green, A. W.; Konstantopoulos, I. S.; Owers, M. S.; Lawrence, J. S.; Lorente, N. P. F.

    2016-02-01

    Line-of-sight velocities of gas and stars can constrain dark matter (DM) within rotationally supported galaxies if they trace circular orbits extensively. Photometric asymmetries may signify non-circular motions, requiring spectra with dense spatial coverage. Our integral-field spectroscopy of 178 galaxies spanned the mass range of the Sydney-AAO Multi-object integral field spectrograph (SAMI) Galaxy Survey. We derived circular speed curves (CSCs) of gas and stars from non-parametric fits out to r ˜ 2re. For 12/14 with measured H I profiles, ionized gas and H I maximum velocities agreed. We fitted mass-follows-light models to 163 galaxies by approximating the radial light profile as nested, very flattened mass homeoids viewed as a Sérsic form. Fitting broad-band spectral energy distributions to Sloan Digital Sky Survey images gave median stellar mass/light 1.7 assuming a Kroupa initial mass function (IMF) versus 2.6 dynamically. Two-thirds of the dynamical mass/light measures were consistent with star+remnant IMFs. One-fifth required upscaled starlight to fit, hence comparable mass of unobserved baryons and/or DM distributed like starlight across the SAMI aperture that came to dominate motions as the starlight CSCs declined rapidly. The rest had mass distributed differently from light. Subtracting fits of Sérsic radial profiles to 13 VIKING Z-band images revealed residual weak bars. Near the bar major axis, we assessed m = 2 streaming velocities, and found deviations usually <30 km s-1 from the CSC; three showed no deviation. Thus, asymmetries rarely influenced the CSC despite colocated shock-indicating, emission-line flux ratios in more than 2/3 of our sample.

  15. Stream Processors

    NASA Astrophysics Data System (ADS)

    Erez, Mattan; Dally, William J.

    Stream processors, like other multi core architectures partition their functional units and storage into multiple processing elements. In contrast to typical architectures, which contain symmetric general-purpose cores and a cache hierarchy, stream processors have a significantly leaner design. Stream processors are specifically designed for the stream execution model, in which applications have large amounts of explicit parallel computation, structured and predictable control, and memory accesses that can be performed at a coarse granularity. Applications in the streaming model are expressed in a gather-compute-scatter form, yielding programs with explicit control over transferring data to and from on-chip memory. Relying on these characteristics, which are common to many media processing and scientific computing applications, stream architectures redefine the boundary between software and hardware responsibilities with software bearing much of the complexity required to manage concurrency, locality, and latency tolerance. Thus, stream processors have minimal control consisting of fetching medium- and coarse-grained instructions and executing them directly on the many ALUs. Moreover, the on-chip storage hierarchy of stream processors is under explicit software control, as is all communication, eliminating the need for complex reactive hardware mechanisms.

  16. Sparing of Sensitivity to Biological Motion but Not of Global Motion after Early Visual Deprivation

    ERIC Educational Resources Information Center

    Hadad, Bat-Sheva; Maurer, Daphne; Lewis, Terri L.

    2012-01-01

    Patients deprived of visual experience during infancy by dense bilateral congenital cataracts later show marked deficits in the perception of global motion (dorsal visual stream) and global form (ventral visual stream). We expected that they would also show marked deficits in sensitivity to biological motion, which is normally processed in the…

  17. Consider an Ice Stream.

    NASA Astrophysics Data System (ADS)

    Bindschadler, R.

    2002-12-01

    positions in past millennia conform to radically different flow patterns while on the scale of hours an ice stream's motion is halted completely, then released to move at surge-like speeds, in tempo with the tides. Explaining these complexities constantly reminds us that the rigorous physics applied to ice so effectively by Nye still work.

  18. Motion Sickness

    MedlinePlus

    ... people traveling by car, train, airplanes and especially boats. Motion sickness can start suddenly, with a queasy ... motion sickness. For example, down below on a boat, your inner ear senses motion, but your eyes ...

  19. Cross-Modal Dynamic Capture: Congruency Effects in the Perception of Motion Across Sensory Modalities

    ERIC Educational Resources Information Center

    Soto-Faraco, Salvador; Spence, Charles; Kingstone, Alan

    2004-01-01

    This study investigated multisensory interactions in the perception of auditory and visual motion. When auditory and visual apparent motion streams are presented concurrently in opposite directions, participants often fail to discriminate the direction of motion of the auditory stream, whereas perception of the visual stream is unaffected by the…

  20. Mechanics of amoeboid motion

    SciTech Connect

    Dembo, M.

    1986-01-01

    The reactive flow model is a putative description of amoeboid cytoplasm based on the formalism of multifield fluid mechanics. We show by direct numerical computations that the reactive flow model is able to account for various phenomena observed in dissociated cytoplasm and/or in vitro contractile networks. These phenomena include states of relaxation or mechanical equilibrium, as well as transitions between such states, by processes of expansion or contraction. Simulations also indicate the existence of states of chaotic or turbulent cytoplasmic streaming. Finally, simulations yield steady states of coherent motion similar to motions observed in cytoplasm dissociated from the giant amoeba, Chaos carolinensis.

  1. On feathers, bifurcations and shells: the dynamics of tidal streams across the mass scale

    NASA Astrophysics Data System (ADS)

    Amorisco, N. C.

    2015-06-01

    I present an organic description of the spectrum of regimes of collisionless tidal streams and define the orderings between the relevant physical quantities that shape their morphology. Three fundamental dichotomies are identified and described in the form of dimensionless inequalities. These govern (i) the speed of the stream's growth, (ii) the internal coherence of the stream and (iii) its thickness or opening angle, within and outside the orbital plane. The mechanisms through which such main qualitative properties are regulated and the relevant limiting cases are analysed. For example, the slope of the host's density profile strongly influences the speed of the stream's growth, in both length and width, as steeper density profiles enhance differential streaming. Internal coherence is the natural requirement for the appearance of substructure and overdensities in tidal debris, and I concentrate on the characteristic `feathering' typical of streams of star clusters. Overdensities and substructures are associated with minima in the relative streaming velocity of the stream members. For streams with high circularity, these are caused by the epicyclic oscillations of stars; however, for highly non-circular progenitor's orbits, internal substructure is caused by the oscillating differences in energy and actions with which material is shed at different orbital phases of the progenitor. This modulation results in different streaming speeds along the tidal arm: the streakline of material shed between two successive apocentric passages is folded along its length, pulled at its centre by the faster differential streaming of particles released near pericentre, which are therefore more widely scattered. When the stream is coherent enough, the same mechanism is potentially capable of generating a bimodal profile in the density distributions of the longer wraps of more massive progenitors, which I dub `bifurcations'. The conditions that allow streams to be internally coherent

  2. Stream Studies.

    ERIC Educational Resources Information Center

    Hamilton City Board of Education (Ontario).

    This manual provides teachers with some knowledge of ecological study methods and techniques used in collecting data when plants and animals are studied in the field. Most activities deal with the interrelatedness of plant and animal life to the structure and characteristics of a stream and pond. Also included in this unit plan designed for the…

  3. Stream Studies.

    ERIC Educational Resources Information Center

    Stein, Scott

    1997-01-01

    Outlines a science curriculum reform effort aimed at enabling students to collect original data concerning an environmental parameter such as water quality on a yearly basis. Students track the overall health of the stream by analyzing both biotic and abiotic factors. (DDR)

  4. GCN: a gaseous Galactic halo stream?

    NASA Astrophysics Data System (ADS)

    Jin, Shoko

    2010-10-01

    We show that a string of HI clouds that form part of the high-velocity cloud complex known as GCN is a probable gaseous stream extending over more than 50° in the Galactic halo. The radial velocity gradient along the stream is used to deduce transverse velocities as a function of distance, enabling a family of orbits to be computed. We find that a direction of motion towards the Galactic disc coupled with a mid-stream distance of ~20kpc provides a good match to the observed sky positions and radial velocities of the HI clouds comprising the stream. With an estimated mass of 105Msolar, its progenitor is likely to be a dwarf galaxy. However, no stellar counterpart has been found amongst the currently known Galactic dwarf spheroidal galaxies or stellar streams and the exact origin of the stream is therefore currently unknown.

  5. Two-character motion analysis and synthesis.

    PubMed

    Kwon, Taesoo; Cho, Young-Sang; Park, Sang Il; Shin, Sung Yong

    2008-01-01

    In this paper, we deal with the problem of synthesizing novel motions of standing-up martial arts such as Kickboxing, Karate, and Taekwondo performed by a pair of human-like characters while reflecting their interactions. Adopting an example-based paradigm, we address three non-trivial issues embedded in this problem: motion modeling, interaction modeling, and motion synthesis. For the first issue, we present a semi-automatic motion labeling scheme based on force-based motion segmentation and learning-based action classification. We also construct a pair of motion transition graphs each of which represents an individual motion stream. For the second issue, we propose a scheme for capturing the interactions between two players. A dynamic Bayesian network is adopted to build a motion transition model on top of the coupled motion transition graph that is constructed from an example motion stream. For the last issue, we provide a scheme for synthesizing a novel sequence of coupled motions, guided by the motion transition model. Although the focus of the present work is on martial arts, we believe that the framework of the proposed approach can be conveyed to other two-player motions as well.

  6. Plate motion

    SciTech Connect

    Gordon, R.G. )

    1991-01-01

    The motion of tectonic plates on the earth is characterized in a critical review of U.S. research from the period 1987-1990. Topics addressed include the NUVEL-1 global model of current plate motions, diffuse plate boundaries and the oceanic lithosphere, the relation between plate motions and distributed deformations, accelerations and the steadiness of plate motions, the distribution of current Pacific-North America motion across western North America and its margin, plate reconstructions and their uncertainties, hotspots, and plate dynamics. A comprehensive bibliography is provided. 126 refs.

  7. Motion sickness.

    PubMed

    Golding, J F

    2016-01-01

    Over 2000 years ago the Greek physician Hippocrates wrote, "sailing on the sea proves that motion disorders the body." Indeed, the word "nausea" derives from the Greek root word naus, hence "nautical," meaning a ship. The primary signs and symptoms of motion sickness are nausea and vomiting. Motion sickness can be provoked by a wide variety of transport environments, including land, sea, air, and space. The recent introduction of new visual technologies may expose more of the population to visually induced motion sickness. This chapter describes the signs and symptoms of motion sickness and different types of provocative stimuli. The "how" of motion sickness (i.e., the mechanism) is generally accepted to involve sensory conflict, for which the evidence is reviewed. New observations concern the identification of putative "sensory conflict" neurons and the underlying brain mechanisms. But what reason or purpose does motion sickness serve, if any? This is the "why" of motion sickness, which is analyzed from both evolutionary and nonfunctional maladaptive theoretic perspectives. Individual differences in susceptibility are great in the normal population and predictors are reviewed. Motion sickness susceptibility also varies dramatically between special groups of patients, including those with different types of vestibular disease and in migraineurs. Finally, the efficacy and relative advantages and disadvantages of various behavioral and pharmacologic countermeasures are evaluated. PMID:27638085

  8. Brownian motion

    NASA Astrophysics Data System (ADS)

    Lavenda, B. H.

    1985-02-01

    Brownian motion, the doubly random motion of small particles suspended in a liquid due to molecular collisions, and its implications and applications in the history of modern science are discussed. Topics examined include probabilistic phenomena, the kinetic theory of gases, Einstein's atomic theory of Brownian motion, particle displacement, diffusion measurements, the determination of the mass of the atom and of Avogadro's number, the statistical mechanics of thermodynamics, nonequilibrium systems, Langevin's equation of motion, time-reversed evolution, mathematical analogies, and applications in economics and radio navigation. Diagrams and drawings are provided.

  9. Non-Circular Wheels: Reuleaux and Squares

    ERIC Educational Resources Information Center

    Mills, Allan

    2011-01-01

    Circular wheels are so familiar on vehicles of all types that it is seldom realized that alternatives do exist. This short non-mathematical article describes Reuleaux and square wheels that, rolling along appropriate tracks, can maintain a moving platform at a constant height. Easily made working models lend themselves to demonstrations at science…

  10. Basal melt beneath whillans ice stream and ice streams A and C

    NASA Technical Reports Server (NTRS)

    Joughin, I.; Teluezyk, S.; Engelhardt, H.

    2002-01-01

    We have used a recently derived map of the velocity of Whillans Ice Stream and Ice Streams A and C to help estimate basal melt. Temperature was modeled with a simple vertical advection-diffusion equation, 'tuned' to match temperature profiles. We find that most of the melt occurs beneath the tributaries where larger basal shear stresses and thicker ice favors greater melt (e.g., 10-20 mm/yr). The occurrence of basal freezing is predicted beneath much of the ice plains of Ice Stream C and Whillans Ice Stream. Modelled melt rates for when Ice Stream C was active suggest there was just enough melt water generated in its tributaries to balance basal freezing on its ice plain. Net basal melt for Whillans Ice Stream is positive due to smaller basal temperature gradients. Modelled temperatures on Whillans Ice Stream, however, were constrained by a single temperature profile at UpB. Basal temperature gradients for Whillans B1 and Ice Stream A may have conditions more similar to those beneath Ice Streams C and D, in which case, there may not be sufficient melt to sustain motion. This would be consistent with the steady deceleration of Whillans stream over the last few decades.

  11. What's Motion Sickness?

    MedlinePlus

    ... Homework? Here's Help White House Lunch Recipes What's Motion Sickness? KidsHealth > For Kids > What's Motion Sickness? Print ... motion sickness might get even worse. continue Avoiding Motion Sickness To avoid motion sickness: Put your best ...

  12. Simulation of dust streaming in toroidal traps: Stationary flows

    SciTech Connect

    Reichstein, Torben; Piel, Alexander

    2011-08-15

    Molecular-dynamic simulations were performed to study dust motion in a toroidal trap under the influence of the ion drag force driven by a Hall motion of the ions in E x B direction, gravity, inter-particle forces, and friction with the neutral gas. This article is focused on the inhomogeneous stationary streaming motion. Depending on the strength of friction, the spontaneous formation of a stationary shock or a spatial bifurcation into a fast flow and a slow vortex flow is observed. In the quiescent streaming region, the particle flow features a shell structure which undergoes a structural phase transition along the flow direction.

  13. Brownian Motion.

    ERIC Educational Resources Information Center

    Lavenda, Bernard H.

    1985-01-01

    Explains the phenomenon of Brownian motion, which serves as a mathematical model for random processes. Topics addressed include kinetic theory, Einstein's theory, particle displacement, and others. Points out that observations of the random course of a particle suspended in fluid led to the first accurate measurement of atomic mass. (DH)

  14. Predicting Early Reading Skills from Pre-Reading Measures of Dorsal Stream Functioning

    ERIC Educational Resources Information Center

    Kevan, Alison; Pammer, Kristen

    2009-01-01

    It is well documented that good reading skills may be dependent upon adequate dorsal stream processing. However, the degree to which dorsal stream deficits play a causal role in reading failure has not been established. This study used coherent motion and visual frequency doubling to examine whether dorsal stream sensitivity measured before the…

  15. Dorsal and ventral stream sensitivity in normal development and hemiplegia.

    PubMed

    Gunn, Alison; Cory, Elizabeth; Atkinson, Janette; Braddick, Oliver; Wattam-Bell, John; Guzzetta, Andrea; Cioni, Giovanni

    2002-05-01

    Form and motion coherence thresholds can provide comparable measures of global visual processing in the ventral and dorsal streams respectively. Normal development of thresholds was tested in 360 normally developing children aged 4-11 and in normal adults. The two tasks showed similar developmental trends, with some greater variability and a slight delay in motion coherence compared to form coherence performance, in reaching adult levels. To examine the proposal of dorsal stream vulnerability related to specific developmental disorders, we compared 24 children with hemiplegic cerebral palsy with the normally developing group. Hemiplegic children performed significantly worse than controls on the motion coherence task for their age, but not on the form coherence task; however, within this group no specific brain area was significantly associated with poor motion compared to form coherence performance. These results suggest that extrastriate mechanisms mediating these thresholds normally develop in parallel, but that the dorsal stream has a greater, general vulnerability to early neurological impairment. PMID:11997698

  16. Globular Cluster Streams as Galactic High-Precision Scales

    NASA Astrophysics Data System (ADS)

    Küpper, Andreas H. W.; Balbinot, Eduardo; Bonaca, Ana; Johnston, Kathryn V.; Hogg, David W.; Kroupa, Pavel; Santiago, Basilio X.

    2016-08-01

    Tidal streams of globular clusters are ideal tracers of the Galactic gravitational potential. Compared to the few known, complex and diffuse dwarf-galaxy streams, they are kinematically cold, have thin morphologies and are abundant in the halo of the Milky Way. Their coldness and thinness in combination with potential epicyclic substructure in the vicinity of the stream progenitor turns them into high-precision scales. With the example of Palomar 5, we demonstrate how modeling of a globular cluster stream allows us to simultaneously measure the properties of the disrupting globular cluster, its orbital motion, and the gravitational potential of the Milky Way.

  17. User-adaptive mobile video streaming using MPEG-DASH

    NASA Astrophysics Data System (ADS)

    Reznik, Yuriy A.

    2013-09-01

    We describe an implementation of DASH streaming client for mobile devices which uses adaptation to user behavior and viewing conditions as means for improving efficiency of streaming delivery. Proposed design relies on sensors in a mobile device to detect presence of the user, his proximity to the screen, and other factors such as motion, brightness of the screen and ambient lighting conditions. This information is subsequently used to select stream that delivers adequate resolution implied by viewing conditions and natural limits of human vision. We show that in a mobile environment such adaptation can result in significant reduction of bandwidth usage compared to traditional streaming systems.

  18. Two-stream instability with time-dependent drift velocity

    DOE PAGES

    Qin, Hong; Davidson, Ronald C.

    2014-06-26

    The classical two-stream instability driven by a constant relative drift velocity between two plasma components is extended to the case with time-dependent drift velocity. A solution method is developed to rigorously define and calculate the instability growth rate for linear perturbations relative to the time-dependent unperturbed two-stream motions. The stability diagrams for the oscillating two-stream instability are presented over a large region of parameter space. It is shown that the growth rate for the classical two-stream instability can be significantly reduced by adding an oscillatory component to the relative drift velocity.

  19. Two-stream instability with time-dependent drift velocity

    SciTech Connect

    Qin, Hong; Davidson, Ronald C.

    2014-06-15

    The classical two-stream instability driven by a constant relative drift velocity between two plasma components is extended to the case with time-dependent drift velocity. A solution method is developed to rigorously define and calculate the instability growth rate for linear perturbations relative to the time-dependent unperturbed two-stream motions. Stability diagrams for the oscillating two-stream instability are presented over a large region of parameter space. It is shown that the growth rate for the classical two-stream instability can be significantly reduced by adding an oscillatory component to the relative drift velocity.

  20. Regex-Stream

    SciTech Connect

    Goodall, John

    2012-09-01

    Log files are typically semi-or un-structured. To be useable, they need to be parsed into a standard, structured format. Regex-Stream facilitates parsing text files into structured data (JSON) in streams of data.

  1. Saving Our Streams.

    ERIC Educational Resources Information Center

    Firehock, Karen

    1993-01-01

    Presents an Izaak Walton League of America's Save Our Streams (SOS) program that teaches citizens how to protect streams. This organization provides activities for families, school groups, scout troops, 4-H clubs and other youth organizations. (MCO)

  2. Prioritized Contact Transport Stream

    NASA Technical Reports Server (NTRS)

    Hunt, Walter Lee, Jr. (Inventor)

    2015-01-01

    A detection process, contact recognition process, classification process, and identification process are applied to raw sensor data to produce an identified contact record set containing one or more identified contact records. A prioritization process is applied to the identified contact record set to assign a contact priority to each contact record in the identified contact record set. Data are removed from the contact records in the identified contact record set based on the contact priorities assigned to those contact records. A first contact stream is produced from the resulting contact records. The first contact stream is streamed in a contact transport stream. The contact transport stream may include and stream additional contact streams. The contact transport stream may be varied dynamically over time based on parameters such as available bandwidth, contact priority, presence/absence of contacts, system state, and configuration parameters.

  3. [Motion sickness].

    PubMed

    Taillemite, J P; Devaulx, P; Bousquet, F

    1997-01-01

    Motion sickness is a general term covering sea-sickness, car-sickness, air-sickness, and space-sickness. Symptoms can occur when a person is exposed to unfamiliar movement whether real or simulated. Despite progress in the technology and comfort of modern transportation (planes, boats, and overland vehicles), a great number of travelers still experience motion sickness. Bouts are characterized by an initial phase of mild discomfort followed by neurologic and gastro-intestinal manifestations. The delay in onset depends on specific circumstances and individual susceptibility. Attacks are precipitated by conflicting sensory, visual, and vestibular signals but the underlying mechanism is unclear. Most medications used for prevention and treatment (e.g. anticholinergics and antihistamines) induce unwanted sedation. Furthermore no one drug is completely effective or preventive under all conditions.

  4. Fitting orbits to tidal streams

    NASA Astrophysics Data System (ADS)

    Binney, James

    2008-05-01

    Recent years have seen the discovery of many tidal streams through the Galaxy. Relatively straightforward observations of a stream allow one to deduce three phase-space coordinates of an orbit. An algorithm is presented that reconstructs the missing phase-space coordinates from these data. The reconstruction starts from assumed values of the Galactic potential and a distance to one point on the orbit, but with noise-free data the condition that energy be conserved on the orbit enables one to reject incorrect assumptions. The performance of the algorithm is investigated when errors are added to the input data that are comparable to those in published data for the streams of Pal 5. It is found that the algorithm returns distances and proper motions that are accurate to of the order of 1 per cent, and enables one to reject quite resonable but incorrect trial potentials. In practical applications, it will be important to minimize errors in the imput data, and there is considerable scope for doing this.

  5. Interplanetary stream magnetism - Kinematic effects

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Barouch, E.

    1976-01-01

    The particle density and the magnetic-field intensity and direction are calculated for volume elements of the solar wind as a function of the initial magnetic-field direction and the initial speed gradient. It is assumed that the velocity is constant and radial. These assumptions are approximately valid between about 0.1 and 1.0 AU for many streams. Time profiles of the particle density, field intensity, and velocity are calculated for corotating streams, neglecting effects of pressure gradients. The compression and rarefaction of the magnetic field depend sensitively on the initial field direction. By averaging over a typical stream, it is found that the average radial field intensity is inversely proportional to the square of the heliocentric distance, whereas the average intensity in the direction of the planets' motion does not vary in a simple way, consistent with deep space observations. Changes of field direction may be very large, depending on the initial angle; but when the initial angle at 0.1 AU is such that the base of the field line corotates with the sun, the spiral angle is the preferred direction at 1 AU. The theory is also applicable to nonstationary flows.

  6. Coherent Motion Sensitivity Predicts Individual Differences in Subtraction

    ERIC Educational Resources Information Center

    Boets, Bart; De Smedt, Bert; Ghesquiere, Pol

    2011-01-01

    Recent findings suggest deficits in coherent motion sensitivity, an index of visual dorsal stream functioning, in children with poor mathematical skills or dyscalculia, a specific learning disability in mathematics. We extended these data using a longitudinal design to unravel whether visual dorsal stream functioning is able to "predict"…

  7. The psychophysics of Visual Motion and Global form Processing in Autism

    ERIC Educational Resources Information Center

    Koldewyn, Kami; Whitney, David; Rivera, Susan M.

    2010-01-01

    Several groups have recently reported that people with autism may suffer from a deficit in visual motion processing and proposed that these deficits may be related to a general dorsal stream dysfunction. In order to test the dorsal stream deficit hypothesis, we investigated coherent and biological motion perception as well as coherent form…

  8. Perception of biological motion in visual agnosia.

    PubMed

    Huberle, Elisabeth; Rupek, Paul; Lappe, Markus; Karnath, Hans-Otto

    2012-01-01

    Over the past 25 years, visual processing has been discussed in the context of the dual stream hypothesis consisting of a ventral ("what") and a dorsal ("where") visual information processing pathway. Patients with brain damage of the ventral pathway typically present with signs of visual agnosia, the inability to identify and discriminate objects by visual exploration, but show normal perception of motion perception. A dissociation between the perception of biological motion and non-biological motion has been suggested: perception of biological motion might be impaired when "non-biological" motion perception is intact and vice versa. The impact of object recognition on the perception of biological motion remains unclear. We thus investigated this question in a patient with severe visual agnosia, who showed normal perception of non-biological motion. The data suggested that the patient's perception of biological motion remained largely intact. However, when tested with objects constructed of coherently moving dots ("Shape-from-Motion"), recognition was severely impaired. The results are discussed in the context of possible mechanisms of biological motion perception.

  9. The Magellanic Stream: Circumnavigating the Galaxy

    NASA Astrophysics Data System (ADS)

    D'Onghia, Elena; Fox, Andrew J.

    2016-09-01

    The Magellanic Clouds are surrounded by an extended network of gaseous structures. Chief among these is the Magellanic Stream, an interwoven tail of filaments trailing the Clouds in their orbit around the Milky Way. When considered in tandem with its Leading Arm, the Stream stretches over 200° on the sky. The Stream is thought to represent the result of tidal interactions between the Clouds and ram-pressure forces exerted by the Galactic corona, and its kinematic properties reflect the dynamical history of the pair of dwarf galaxies closest to the Milky Way. The Stream is a benchmark for hydrodynamical simulations of accreting gas and cloud/corona interactions. If the Stream survives these interactions and arrives safely in the Galactic disk, its cargo of over a billion solar masses of gas has the potential to maintain or elevate the Galactic star-formation rate. In this article, we review the current state of knowledge of the Stream, including its chemical composition, physical conditions, origin, and fate. We also review the dynamics of the Magellanic System, including the proper motions and orbital history of the Large and Small Magellanic Clouds, the first-passage and second-passage scenarios, and the evidence for a Magellanic Group of galaxies.

  10. Calculation of the transient motion of elastic airfoils forced by control surface motion and gusts

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.; Edwards, J. W.

    1980-01-01

    The time-domain equations of motion of elastic airfoil sections forced by control surface motions and gusts were developed for the case of incompressible flow. Extensive use was made of special functions related to the inverse transform of Theodorsen's function. Approximations for the special cases of zero stream velocity, small time, large and time are given. A numerical solution technique for the solution of the general case is given. Examples of the exact transient response of an airfoil are presented.

  11. The Puzzling Ophiuchus Stream

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Dwarf galaxies or globular clusters orbiting the Milky Way can be pulled apart by tidal forces, leaving behind a trail of stars known as a stellar stream. One such trail, the Ophiuchus stream, has posed a serious dynamical puzzle since its discovery. But a recent study has identified four stars that might help resolve this streams mystery.Conflicting TimescalesThe stellar stream Ophiuchus was discovered around our galaxy in 2014. Based on its length, which appears to be 1.6 kpc, we can calculate the time that has passed since its progenitor was disrupted and the stream was created: ~250 Myr. But the stars within it are ~12 Gyr old, and the stream orbits the galaxy with a period of ~350 Myr.Given these numbers, we can assume that Ophiuchuss progenitor completed many orbits of the Milky Way in its lifetime. So why would it only have been disrupted 250 million years ago?Fanning StreamLed by Branimir Sesar (Max Planck Institute for Astronomy), a team of scientists has proposed an idea that might help solve this puzzle. If the Ophiuchus stellar stream is on a chaotic orbit common in triaxial potentials, which the Milky Ways may be then the stream ends can fan out, with stars spreading in position and velocity.The fanned part of the stream, however, would be difficult to detect because of its low surface brightness. As a result, the Ophiuchus stellar stream could actually be longer than originally measured, implying that it was disrupted longer ago than was believed.Search for Fan StarsTo test this idea, Sesar and collaborators performed a search around the ends of the stream, looking for stars thatare of the right type to match the stream,are at the predicted distance of the stream,are located near the stream ends, andhave velocities that match the stream and dont match the background halo stars.Histogram of the heliocentric velocities of the 43 target stars. Six stars have velocities matching the stream velocity. Two of these are located in the main stream; the other

  12. Motion Simulator

    NASA Technical Reports Server (NTRS)

    1993-01-01

    MOOG, Inc. supplies hydraulic actuators for the Space Shuttle. When MOOG learned NASA was interested in electric actuators for possible future use, the company designed them with assistance from Marshall Space Flight Center. They also decided to pursue the system's commercial potential. This led to partnership with InterActive Simulation, Inc. for production of cabin flight simulators for museums, expositions, etc. The resulting products, the Magic Motion Simulator 30 Series, are the first electric powered simulators. Movements are computer-guided, including free fall to heighten the sense of moving through space. A projection system provides visual effects, and the 11 speakers of a digital laser based sound system add to the realism. The electric actuators are easier to install, have lower operating costs, noise, heat and staff requirements. The U.S. Space & Rocket Center and several other organizations have purchased the simulators.

  13. Gas stream purifier

    NASA Technical Reports Server (NTRS)

    Adam, Steven J.

    1994-01-01

    A gas stream purifier has been developed that is capable of removing corrosive acid, base, solvent, organic, inorganic, and water vapors as well as particulates from an inert mixed gas stream using only solid scrubbing agents. This small, lightweight purifier has demonstrated the ability to remove contaminants from an inert gas stream with a greater than 99 percent removal efficiency. The Gas Stream Purifier has outstanding market and sales potential in manufacturing, laboratory and science industries, medical, automotive, or any commercial industry where pollution, contamination, or gas stream purification is a concern. The purifier was developed under NASA contract NAS9-18200 Schedule A for use in the international Space Station. A patent application for the Gas Stream Purifier is currently on file with the United States Patent and Trademark Office.

  14. Higher-order motion sensitivity in fly visual circuits

    PubMed Central

    Lee, Yu-Jen; Nordström, Karin

    2012-01-01

    In higher-order motion stimuli, the direction of object motion does not follow the direction of luminance change. Such stimuli could be generated by the wing movements of a flying butterfly and further complicated by its motion in and out of shadows. Human subjects readily perceive the direction of higher-order motion, although this stands in stark contrast to prevailing motion vision models. Flies and humans compute motion in similar ways, and because flies behaviorally track bars containing higher-order motion cues, they become an attractive model system for investigating the neurophysiology underlying higher-order motion sensitivity. We here use intracellular electrophysiology of motion-vision–sensitive neurons in the hoverfly lobula plate to quantify responses to stimuli containing higher-order motion. We show that motion sensitivity can be broken down into two separate streams, directionally coding for elementary motion and figure motion, respectively, and that responses to Fourier and theta motion can be predicted from these. The sensitivity is affected both by the stimulus’ time course and by the neuron’s underlying receptive field. Responses to preferred-direction theta motion are sexually dimorphic and particularly robust along the visual midline. PMID:22586123

  15. Dynamics of meteor streams

    NASA Technical Reports Server (NTRS)

    Babadjanov, P. B.; Obrubov, Yu. U.

    1987-01-01

    The overwhelming majority of meteor streams are generally assumed to be formed due to the decay of comets. The most effective process of the release of solid particles from a cometary nucleus is their ejection by sublimating gases when the comet approaches the Sun. The results of investigation of the Geminids and Quadrantids meteor stream evolution show that under the influence of planetary perturbations, the stream may originally be flat but then thicken depending on the variation range of orbital inclinations. Eventually, due to planetary perturbations, a meteor stream may take such a shape as to cause the start of several active showers at different solar longitudes.

  16. Inventory of miscellaneous streams

    SciTech Connect

    Lueck, K.J.

    1995-09-01

    On December 23, 1991, the US Department of Energy, Richland Operations Office (RL) and the Washington State Department of Ecology (Ecology) agreed to adhere to the provisions of the Department of Ecology Consent Order. The Consent Order lists the regulatory milestones for liquid effluent streams at the Hanford Site to comply with the permitting requirements of Washington Administrative Code. The RL provided the US Congress a Plan and Schedule to discontinue disposal of contaminated liquid effluent into the soil column on the Hanford Site. The plan and schedule document contained a strategy for the implementation of alternative treatment and disposal systems. This strategy included prioritizing the streams into two phases. The Phase 1 streams were considered to be higher priority than the Phase 2 streams. The actions recommended for the Phase 1 and 2 streams in the two reports were incorporated in the Hanford Federal Facility Agreement and Consent Order. Miscellaneous Streams are those liquid effluents streams identified within the Consent Order that are discharged to the ground but are not categorized as Phase 1 or Phase 2 Streams. This document consists of an inventory of the liquid effluent streams being discharged into the Hanford soil column.

  17. Tracking the Magellanic Stream(s)

    NASA Astrophysics Data System (ADS)

    Nidever, D. L.; Majewski, S. R.; Burton, W. B.

    2005-12-01

    We use the Leiden-Argentine-Bonn (LAB) all-sky HI survey to explore the HI Magellanic Stream. An automated Gaussian analysis program was run on the southern sky for b<-20 degrees and the results give the clearest picture of the Magellanic Stream to date. While we also find that the Magellanic Stream is composed of two primary filaments, as first indicated by Putman et al. (2003), with a LAB velocity precision of 1 km/s we are able to track the two filaments all of the way from their origin in the Magellanic Clouds to their endpoint 100 degrees away. One of the filaments is found to eminate from the 30 Dor region of the LMC. The filaments provide a new tool to study the dynamics of the Magellanic Clouds.

  18. Evolution of the Quadrantid meteor stream

    NASA Technical Reports Server (NTRS)

    Jones, James; Jones, William

    1992-01-01

    According to previous orbital calculations, the last close approach of the Quadrantid stream with Jupiter occurred 3200 years ago at which time the parent comet of the stream may have been captured into its present short-period orbit. If this is the case the stream may only be a few thousand years old. We have modeled the evolution of the stream to determine if such a short time scale is consistent with the observed features of the Quadrantid/ delta- Aquarid/Arietid/Ursid complex. A detailed modeling of a stream consisting of 500 test particles released 4000 yr ago and which included the effects of the gravitational perturbations of 6 planets as well as the likely spread in the initial orbital elements resulting from the ejection of the grains from the comet was carried out. Our calculations indicate that an intense shower should be seen a few days before the Quadrantid shower, and that, 4000 yr is too short a period for the branch corresponding to the D-Arietid branch to appear. We have considered the quasi-constants of motion 1/a and J, the Tisserand quantity, and find that the Ursids and the D-Arietids are unlikely to be members of the complex, and that, the complex is probably be less than 4000 yr old.

  19. Three-body resonance in meteoroid streams

    NASA Astrophysics Data System (ADS)

    Sekhar, A.; Asher, D. J.; Vaubaillon, J.

    2016-08-01

    Mean-motion resonances play an important role in the evolution of various meteoroid streams. Previous works have studied the effects of two-body resonances in different comets and streams. These already established two-body resonances were mainly induced either by Jovian or Saturnian effects but not both at the same time. Some of these resonances have led to spectacular meteor outbursts and storms in the past. In this work, we find a new resonance mechanism involving three bodies - i.e. meteoroid particle, Jupiter and Saturn, in the Perseid meteoroid stream. Long-term three-body resonances are not very common in real small bodies in our Solar system although they can mathematically exist at many resonant sweet spots in an abstract sense in any dynamical system. This particular resonance combination in the Perseid stream is such that it is close to the ratio of 1:4:10 if the orbital periods of Perseid particle, Saturn and Jupiter are considered, respectively. These resonant Perseid meteoroids stay resonant for typically about 2 kyr. Highly compact dust trails due to this unique resonance phenomenon are present in our simulations. Some past and future years are presented where three-body resonant meteoroids of different sizes (or subject to different radiation pressures) are computed to come near the Earth. This is the first theoretical example of an active and stable three-body resonance mechanism in the realm of meteoroid streams.

  20. Adopt a Stream.

    ERIC Educational Resources Information Center

    Friends of Environmental Education Society of Alberta (Edmonton).

    This environmental education program is designed to increase awareness among junior high school students of stream ecosystems and those habitats which comprise the ecosystems adjacent to streams. The teaching content of the manual is presented in two major sections. The first section provides information and background material for the group…

  1. WADEABLE STREAMS ASSESSMENT

    EPA Science Inventory

    This Wadeable Streams Assessment (WSA) provides the first statistically defensible summary of the condition of the nation’s streams and small rivers, which are so integrally tied to our history. This report brings the results of this ground-breaking study to the American public....

  2. River and Stream Pollution

    MedlinePlus

    ... Pollution Dirt Dirt is a big cause of pollution in our rivers and streams. Rain washes dirt into streams and rivers. Dirt can smother fish and other animals that live in the water. If plants can't get enough sunlight because ...

  3. Citrus waste stream utilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Waste streams, generated during fruit processing, consist of solid fruit residues in addition to liquid waste streams from washing operations which must be handled in an environmentally acceptable manner. Unsound fruit from packing houses are usually sent off to be processed for juice and the solid ...

  4. Auditory motion affects visual biological motion processing.

    PubMed

    Brooks, A; van der Zwan, R; Billard, A; Petreska, B; Clarke, S; Blanke, O

    2007-02-01

    The processing of biological motion is a critical, everyday task performed with remarkable efficiency by human sensory systems. Interest in this ability has focused to a large extent on biological motion processing in the visual modality (see, for example, Cutting, J. E., Moore, C., & Morrison, R. (1988). Masking the motions of human gait. Perception and Psychophysics, 44(4), 339-347). In naturalistic settings, however, it is often the case that biological motion is defined by input to more than one sensory modality. For this reason, here in a series of experiments we investigate behavioural correlates of multisensory, in particular audiovisual, integration in the processing of biological motion cues. More specifically, using a new psychophysical paradigm we investigate the effect of suprathreshold auditory motion on perceptions of visually defined biological motion. Unlike data from previous studies investigating audiovisual integration in linear motion processing [Meyer, G. F. & Wuerger, S. M. (2001). Cross-modal integration of auditory and visual motion signals. Neuroreport, 12(11), 2557-2560; Wuerger, S. M., Hofbauer, M., & Meyer, G. F. (2003). The integration of auditory and motion signals at threshold. Perception and Psychophysics, 65(8), 1188-1196; Alais, D. & Burr, D. (2004). No direction-specific bimodal facilitation for audiovisual motion detection. Cognitive Brain Research, 19, 185-194], we report the existence of direction-selective effects: relative to control (stationary) auditory conditions, auditory motion in the same direction as the visually defined biological motion target increased its detectability, whereas auditory motion in the opposite direction had the inverse effect. Our data suggest these effects do not arise through general shifts in visuo-spatial attention, but instead are a consequence of motion-sensitive, direction-tuned integration mechanisms that are, if not unique to biological visual motion, at least not common to all types of

  5. Ramification of stream networks.

    PubMed

    Devauchelle, Olivier; Petroff, Alexander P; Seybold, Hansjörg F; Rothman, Daniel H

    2012-12-18

    The geometric complexity of stream networks has been a source of fascination for centuries. However, a comprehensive understanding of ramification--the mechanism of branching by which such networks grow--remains elusive. Here we show that streams incised by groundwater seepage branch at a characteristic angle of 2π/5 = 72°. Our theory represents streams as a collection of paths growing and bifurcating in a diffusing field. Our observations of nearly 5,000 bifurcated streams growing in a 100 km(2) groundwater field on the Florida Panhandle yield a mean bifurcation angle of 71.9° ± 0.8°. This good accord between theory and observation suggests that the network geometry is determined by the external flow field but not, as classical theories imply, by the flow within the streams themselves.

  6. Mass streams for spacecraft propulsion and energy generation

    SciTech Connect

    Hammer, J H

    2005-08-31

    A speculative propulsion concept is presented, based on accelerating a spacecraft by impact of a stream of matter in relative motion with respect to the spacecraft. To accelerate the stream to the needed velocity the stream mass is contained in a transit vehicle, launched at low velocity and hence low energy cost, and then sent on a trajectory with near encounters of the planets for gravitational assist. The mass arrives at Earth or wherever the propellant is needed at much higher velocity and kinetic energy, where it is released into an extended stream suitable for propulsion. The stream, moving at a relative velocity in the range of 10 to 30km/s, should be capable of both high thrust and high specific impulse. Means of limiting the transverse expansion of the stream during release and for the {approx}1000 seconds duration of impact are a critical requirement for practicality of the concept. The scheme could potentially lead to a virtually unlimited energy source. One can imagine using a portion of one stream to launch another, larger payload on a similar trajectory. This creates, in effect, an energy amplifier extracting energy from the orbital motions of the planets. The gain of the energy amplifier is only limited by the capacity to prepare mass in transit vehicles.

  7. Smelling directions: olfaction modulates ambiguous visual motion perception.

    PubMed

    Kuang, Shenbing; Zhang, Tao

    2014-07-23

    Senses of smells are often accompanied by simultaneous visual sensations. Previous studies have documented enhanced olfactory performance with concurrent presence of congruent color- or shape- related visual cues, and facilitated visual object perception when congruent smells are simultaneously present. These visual object-olfaction interactions suggest the existences of couplings between the olfactory pathway and the visual ventral processing stream. However, it is not known if olfaction can modulate visual motion perception, a function that is related to the visual dorsal stream. We tested this possibility by examining the influence of olfactory cues on the perceptions of ambiguous visual motion signals. We showed that, after introducing an association between motion directions and olfactory cues, olfaction could indeed bias ambiguous visual motion perceptions. Our result that olfaction modulates visual motion processing adds to the current knowledge of cross-modal interactions and implies a possible functional linkage between the olfactory system and the visual dorsal pathway.

  8. Isentropic Analysis of Convective Motions

    NASA Technical Reports Server (NTRS)

    Pauluis, Olivier M.; Mrowiec, Agnieszka A.

    2013-01-01

    This paper analyzes the convective mass transport by sorting air parcels in terms of their equivalent potential temperature to determine an isentropic streamfunction. By averaging the vertical mass flux at a constant value of the equivalent potential temperature, one can compute an isentropic mass transport that filters out reversible oscillatory motions such as gravity waves. This novel approach emphasizes the fact that the vertical energy and entropy transports by convection are due to the combination of ascending air parcels with high energy and entropy and subsiding air parcels with lower energy and entropy. Such conditional averaging can be extended to other dynamic and thermodynamic variables such as vertical velocity, temperature, or relative humidity to obtain a comprehensive description of convective motions. It is also shown how this approach can be used to determine the mean diabatic tendencies from the three-dimensional dynamic and thermodynamic fields. A two-stream approximation that partitions the isentropic circulation into a mean updraft and a mean downdraft is also introduced. This offers a straightforward way to identify the mean properties of rising and subsiding air parcels. The results from the two-stream approximation are compared with two other definitions of the cloud mass flux. It is argued that the isentropic analysis offers a robust definition of the convective mass transport that is not tainted by the need to arbitrarily distinguish between convection and its environment, and that separates the irreversible convective overturning fromoscillations associated with gravity waves.

  9. Self Motion Perception and Motion Sickness

    NASA Technical Reports Server (NTRS)

    Fox, Robert A. (Principal Investigator)

    1991-01-01

    The studies conducted in this research project examined several aspects of motion sickness in animal models. A principle objective of these studies was to investigate the neuroanatomy that is important in motion sickness with the objectives of examining both the utility of putative models and defining neural mechanisms that are important in motion sickness.

  10. The need to differentiate the magnocellular system from the dorsal stream in connection with dyslexia.

    PubMed

    Skottun, Bernt C

    2015-04-01

    A number of authors have postulated a "magnocellular-dorsal stream" deficit in dyslexia. Combining the magnocellular system and the dorsal stream into a single entity in this context faces the problem that contrast sensitivity data do not point to a magnocellular deficiency linked to dyslexia, while, on the other hand, motion perception data are largely consistent with a dorsal stream dysfunction. Thus, there are data both for and against a "magnocellular-dorsal stream" deficit in connection with dyslexia. It is here pointed out that this inconsistency is abolished once it is recognized that the magnocellular system and the dorsal stream are separate entities.

  11. Explaining the "Pulse of Protoplasm": the search for molecular mechanisms of protoplasmic streaming.

    PubMed

    Dietrich, Michael R

    2015-01-01

    Explanations for protoplasmic streaming began with appeals to contraction in the eighteenth century and ended with appeals to contraction in the twentieth. During the intervening years, biologists proposed a diverse array of mechanisms for streaming motions. This paper focuses on the re-emergence of contraction among the molecular mechanisms proposed for protoplasmic streaming during the twentieth century. The revival of contraction is a result of a broader transition from colloidal chemistry to a macromolecular approach to the chemistry of proteins, the recognition of the phenomena of shuttle streaming and the pulse of protoplasm, and the influential analogy between protoplasmic streaming and muscle contraction.

  12. Twitter Stream Archiver

    SciTech Connect

    Steed, Chad Allen

    2014-07-01

    The Twitter Archiver system allows a user to enter their Twitter developer account credentials (obtained separately from the Twitter developer website) and read from the freely available Twitter sample stream. The Twitter sample stream provides a random sample of the overall volume of tweets that are contributed by users to the system. The Twitter Archiver system consumes the stream and serializes the information to text files at some predefined interval. A separate utility reads the text files and creates a searchable index using the open source Apache Lucene text indexing system.

  13. Twitter Stream Archiver

    2014-07-01

    The Twitter Archiver system allows a user to enter their Twitter developer account credentials (obtained separately from the Twitter developer website) and read from the freely available Twitter sample stream. The Twitter sample stream provides a random sample of the overall volume of tweets that are contributed by users to the system. The Twitter Archiver system consumes the stream and serializes the information to text files at some predefined interval. A separate utility reads themore » text files and creates a searchable index using the open source Apache Lucene text indexing system.« less

  14. Self-Motion Perception and Motion Sickness

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.

    1991-01-01

    Motion sickness typically is considered a bothersome artifact of exposure to passive motion in vehicles of conveyance. This condition seldom has significant impact on the health of individuals because it is of brief duration, it usually can be prevented by simply avoiding the eliciting condition and, when the conditions that produce it are unavoidable, sickness dissipates with continued exposure. The studies conducted examined several aspects of motion sickness in animal models. A principle objective of these studies was to investigate the neuroanatomy that is important in motion sickness with the objectives of examining both the utility of putative models and defining neural mechanisms that are important in motion sickness.

  15. A physical perspective on cytoplasmic streaming.

    PubMed

    Goldstein, Raymond E; van de Meent, Jan-Willem

    2015-08-01

    Organisms show a remarkable range of sizes, yet the dimensions of a single cell rarely exceed 100 µm. While the physical and biological origins of this constraint remain poorly understood, exceptions to this rule give valuable insights. A well-known counterexample is the aquatic plant Chara, whose cells can exceed 10 cm in length and 1 mm in diameter. Two spiralling bands of molecular motors at the cell periphery drive the cellular fluid up and down at speeds up to 100 µm s(-1), motion that has been hypothesized to mitigate the slowness of metabolite transport on these scales and to aid in homeostasis. This is the most organized instance of a broad class of continuous motions known as 'cytoplasmic streaming', found in a wide range of eukaryotic organisms-algae, plants, amoebae, nematodes and flies-often in unusually large cells. In this overview of the physics of this phenomenon, we examine the interplay between streaming, transport and cell size and discuss the possible role of self-organization phenomena in establishing the observed patterns of streaming.

  16. Stochastic ice stream dynamics

    NASA Astrophysics Data System (ADS)

    Mantelli, Elisa; Bertagni, Matteo Bernard; Ridolfi, Luca

    2016-08-01

    Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution.

  17. Stochastic ice stream dynamics.

    PubMed

    Mantelli, Elisa; Bertagni, Matteo Bernard; Ridolfi, Luca

    2016-08-01

    Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution. PMID:27457960

  18. Urban Stream Ecology

    EPA Science Inventory

    Urban watersheds characteristically have high impervious surface cover, resulting in high surface runoff and low infiltration following storms. In response, urban streams experience “flashy” stormflows, reduced baseflows, bank erosion, channel widening, and sedimentation. Urban ...

  19. Discontinuous ephemeral streams

    NASA Astrophysics Data System (ADS)

    Bull, William B.

    1997-07-01

    Many ephemeral streams in western North America flowed over smooth valley floors before transformation from shallow discontinuous channels into deep arroyos. These inherently unstable streams of semiarid regions are sensitive to short-term climatic changes, and to human impacts, because hillslopes supply abundant sediment to infrequent large streamflow events. Discontinuous ephemeral streams appear to be constantly changing as they alternate between two primary modes of operation; either aggradation or degradation may become dominant. Attainment of equilibrium conditions is brief. Disequilibrium is promoted by channel entrenchment that causes the fall of local base level, and by deposition of channel fans that causes the rise of local base level. These opposing base-level processes in adjacent reaches are maintained by self-enhancing feedback mechanisms. The threshold between erosion and deposition is crossed when aggradational or degradational reaches shift upstream or downstream. Extension of entrenched reaches into channel fans tends to create continuous arroyos. Upvalley migration of fan apexes tends to create depositional valley floors with few stream channels. Less than 100 years is required for arroyo cutting, but more than 500 years is required for complete aggradation of entrenched stream channels and valley floors. Discontinuous ephemeral streams have a repetitive sequence of streamflow characteristics that is as distinctive as sequences of meander bends or braided gravel bars in perennial rivers. The sequence changes from degradation to aggradation — headcuts concentrate sheetflow, a single trunk channel conveys flow to the apex of a channel fan, braided distributary channels end in an area of diverging sheetflow, and converging sheetflow drains to headcuts. The sequence is repeated at intervals ranging from 15 m for small streams to more than 10 km for large streams. Lithologic controls on the response of discontinuous ephemeral streams include: (1

  20. Replay-Stream

    SciTech Connect

    Goodall, John

    2012-12-01

    For testing and demonstration purposes, it is often necessary to replay saved network and log data. This library facilitates replaying these saved data streams. This module will take in a stream of JSON strings, read their specified timestamp field, and output according to the given criteria. This can include restricting output to a certain time range, and/or outputting the items with some delay based on their timestamp.

  1. The design and performance of a multi-stream droplet generator for the liquid droplet radiator

    NASA Technical Reports Server (NTRS)

    Orme, Melissa; Farnham, T.; Van Diep, G. Pham; Muntz, E. P.; White, Alan

    1987-01-01

    Results are presented for the performance capabilities of a multistream droplet generator suitable for use in a spacecraft liquid droplet radiator heat-rejection system. The nozzle-motion mode of stream perturbation initiation was tested with a single droplet stream and found to produce data similar to those generated with the resonant cavity mode of perturbation. Tests then proceeded to a 26-orifice array; the streams of the array responded to the perturbation satisfactorily, forming uniformly separated drops.

  2. Coincident vortices in Antarctic wind fields and sea ice motion

    NASA Astrophysics Data System (ADS)

    Wassermann, S.; Schmitt, C.; Kottmeier, C.; Simmonds, I.

    2006-08-01

    This study introduces a method to examine the coincidence of rotational ice drift and winds caused by the forcing of ice motion by Antarctic cyclones. Vortices are automatically detected using the algorithm of Murray and Simmonds (1991) from both ECMWF surface pressures and SSM/I sea ice motions. For compatibility with this algorithm sea ice motion vectors are transformed to a scalar stream function. During a seven-day test period positions of pressure minima and stream function maxima (SFM) of ice drift are within 300 km in 96% of the cases. Lowest pressure minima are related to highest stream function maxima. The results promise the method to provide a complementary tool of detecting and localizing low-pressure systems over sea ice, adding to numerical pressure analyses.

  3. From Headwater Streams to Rivers

    ERIC Educational Resources Information Center

    Cummins, Kenneth W.

    1977-01-01

    Presents generalizations regarding how running water systems change physically, chemically and biologically with stream order, i. e., from the tiny headwater streams (order 1) to those receiving first order headwater tributaries (order 2) and so on. Food chain diagrams respective of stream order are explained. Stream study projects are suggested.…

  4. Inventory of miscellaneous streams

    SciTech Connect

    Atencio, B.P.

    1996-09-01

    On December 23, 1991, the U.S. Dep of Energy, Richland Operations Office (DOE-RL) and the Washington State Department of Ecology (Ecology) agreed to adhere to the provisions of the Department of Ecology Consent Order No. DE 9INM-177 (Consent Order) (Ecology and U.S. DOE 1991). The Consent Order lists the regulatory milestones for liquid effluent at the Hanford Site to comply with the permitting requirements of Washington Administrative Code (WAC) 173-216 (State Waste Discharge Permit Program) or WAC 173-218 (Washington Underground Injection Control Progam) where applicable. DOE-RL provided the U.S Congress a plan and schedule to discontinue disposal of contaminated liquid effluent into the soil column on the Hanford Site (DOE 1987). The plan and schedule document contained a strategy for the implementation of alternative treatment and disposal systems. This strategy included prioritizing the into two phases. The Phase I streams were considered to be higher priority than the Phase II streams. The actions recommended for the Phase I and II streams were incorporated in the Hanford Federal Facility A and Consent Order (Tri Party Agreement ) (Ecology, et al. 1994). Miscellaneous Streams are those liquid effluent identified within the Consent Order that are discharged to the ground but are not categorized as Phase I or Phase II Streams. Miscellaneous discharging to the soil column on the Hanford Site are subject to requirements of several milestones identified in the Consent Order. The Plan and Schedule for Disposition and Regulatory Compliance for Miscellaneous Streams (DOE/RL,93-94) provides a plan and schedule for the disposition of Miscellaneous Streams to satisfy one of the Consent Order requirements. One of the commitments (Activity 6-2.2) established in the plan and schedule is to annually update the Miscellaneous Stream Inventory. The annual update will continue until September of 1998, at which time four categorical permit applications are scheduled to have been

  5. Montana StreamStats

    USGS Publications Warehouse

    2016-04-05

    About this volumeMontana StreamStats is a Web-based geographic information system (http://water.usgs.gov/osw/streamstats/) application that provides users with access to basin and streamflow characteristics for gaged and ungaged streams in Montana. Montana StreamStats was developed by the U.S. Geological Survey (USGS) in cooperation with the Montana Departments of Transportation, Environmental Quality, and Natural Resources and Conservation. The USGS Scientific Investigations Report consists of seven independent but complementary chapters dealing with various aspects of this effort.Chapter A describes the Montana StreamStats application, the basin and streamflow datasets, and provides a brief overview of the streamflow characteristics and regression equations used in the study. Chapters B through E document the datasets, methods, and results of analyses to determine streamflow characteristics, such as peak-flow frequencies, low-flow frequencies, and monthly and annual characteristics, for USGS streamflow-gaging stations in and near Montana. The StreamStats analytical toolsets that allow users to delineate drainage basins and solve regression equations to estimate streamflow characteristics at ungaged sites in Montana are described in Chapters F and G.

  6. Mutual influences of intermodal visual/tactile apparent motion and auditory motion with uncrossed and crossed arms.

    PubMed

    Jiang, Yushi; Chen, Lihan

    2013-01-01

    Intra-modal apparent motion has been shown to be affected or 'captured' by information from another, task-irrelevant modality, as shown in cross-modal dynamic capture effect. Here we created inter-modal apparent motion between visual and tactile stimuli and investigated whether there are mutual influences between auditory apparent motion and inter-modal visual/tactile apparent motion. Moreover, we examined whether and how the spatial remapping between somatotopic and external reference frames of tactile events affect the cross-modal capture between auditory apparent motion and inter-modal visual/tactile apparent motion, by introducing two arm postures: arms-uncrossed and arms-crossed. In Experiment 1, we used auditory stimuli (auditory apparent motion) as distractors and inter-modal visual/tactile stimuli (inter-modal apparent motion) as targets while in Experiment 2 we reversed the distractors and targets. In Experiment 1, we found a general detrimental influence of arms-crossed posture in the task of discrimination of direction in visual/tactile stream, but in Experiment 2, the influence of arms-uncrossed posture played a significant role in modulating the inter-modal visual/tactile stimuli capturing over auditory apparent motion. In both Experiments, the synchronously presented motion streams led to noticeable directional congruency effect in judging the target motion. Among the different modality combinations, tactile to tactile apparent motion (TT) and visual to visual apparent motion (VV) are two signatures revealing the asymmetric congruency effects. When the auditory stimuli were targets, the congruency effect was largest with VV distractors, lowest with TT distractors; the pattern was reversed when the auditory stimuli were distractors. In addition, across both experiments the congruency effect in visual to tactile (VT) and tactile to visual (TV) apparent motion was intermediate between the effect-sizes in VV and TT. We replicated the above findings with a

  7. Meandering stream reservoirs

    SciTech Connect

    Richardson, J.G.; Sangree, J.B.; Sneider, R.M.

    1987-12-01

    Braided stream deposits, described in a previous article in this series, and meandering stream deposits commonly are excellent reservoirs. Meandering high-sinuousity channels are found on flat alluvial plains with slopes less than 1 1/2/sup 0/ (0.026 rad). These rivers have wide ranges of discharges from low-water flow to flood stage. Two main processes are responsible for development of sand bodies. These are point-bar deposits left by channel migration, and oxbow-lake deposits left in loops of the river course abandoned when the stream cuts a new course during flooding. Extremely high floods spill over the banks and deposit sheets of very fine sand, silt, and clay onto the flood plain.

  8. AMUC: Associated Motion capture User Categories.

    PubMed

    Norman, Sally Jane; Lawson, Sian E M; Olivier, Patrick; Watson, Paul; Chan, Anita M-A; Dade-Robertson, Martyn; Dunphy, Paul; Green, Dave; Hiden, Hugo; Hook, Jonathan; Jackson, Daniel G

    2009-07-13

    The AMUC (Associated Motion capture User Categories) project consisted of building a prototype sketch retrieval client for exploring motion capture archives. High-dimensional datasets reflect the dynamic process of motion capture and comprise high-rate sampled data of a performer's joint angles; in response to multiple query criteria, these data can potentially yield different kinds of information. The AMUC prototype harnesses graphic input via an electronic tablet as a query mechanism, time and position signals obtained from the sketch being mapped to the properties of data streams stored in the motion capture repository. As well as proposing a pragmatic solution for exploring motion capture datasets, the project demonstrates the conceptual value of iterative prototyping in innovative interdisciplinary design. The AMUC team was composed of live performance practitioners and theorists conversant with a variety of movement techniques, bioengineers who recorded and processed motion data for integration into the retrieval tool, and computer scientists who designed and implemented the retrieval system and server architecture, scoped for Grid-based applications. Creative input on information system design and navigation, and digital image processing, underpinned implementation of the prototype, which has undergone preliminary trials with diverse users, allowing identification of rich potential development areas. PMID:19487211

  9. Visualizing and Quantifying Oceanic Motion.

    PubMed

    Rossby, T

    2016-01-01

    Here I review the use of two highly complementary acoustical technologies for measuring currents in the ocean: acoustically tracked neutrally buoyant floats and vessel-mounted acoustic Doppler current profilers (ADCPs). The beauty of floats lies in their ability to efficiently and accurately visualize fluid motion in fronts and vortices and the dispersion caused by mesoscale eddy processes. Floats complement classical hydrography by articulating mechanisms and pathways by which waters spread out from their source region. Vessel-mounted ADCPs can profile the water column at O(1 km) horizontal resolution to depths greater than 1,000 m. These vessel-based scans capture in detail the cross-stream structure of fronts and eddies as well as the impact of bathymetry on currents. Sustained sampling along selected routes builds up valuable databases both for statistical studies of the submesoscale velocity field and for accurate estimates of fluid transport, as well as how these vary over time. PMID:26253271

  10. Visualizing and Quantifying Oceanic Motion

    NASA Astrophysics Data System (ADS)

    Rossby, T.

    2016-01-01

    Here I review the use of two highly complementary acoustical technologies for measuring currents in the ocean: acoustically tracked neutrally buoyant floats and vessel-mounted acoustic Doppler current profilers (ADCPs). The beauty of floats lies in their ability to efficiently and accurately visualize fluid motion in fronts and vortices and the dispersion caused by mesoscale eddy processes. Floats complement classical hydrography by articulating mechanisms and pathways by which waters spread out from their source region. Vessel-mounted ADCPs can profile the water column at O(1 km) horizontal resolution to depths greater than 1,000 m. These vessel-based scans capture in detail the cross-stream structure of fronts and eddies as well as the impact of bathymetry on currents. Sustained sampling along selected routes builds up valuable databases both for statistical studies of the submesoscale velocity field and for accurate estimates of fluid transport, as well as how these vary over time.

  11. An Orbit Fit for the Grillmair Dionatos Cold Stellar Stream

    SciTech Connect

    Willett, Benjamin A.; Newberg, Heidi Jo; Zhang, Haotong; Yanny, Brian; Beers, Timothy C.

    2009-01-01

    We use velocity and metallicity information from Sloan Digital Sky Survey and Sloan Extension for Galactic Understanding and Exploration stellar spectroscopy to fit an orbit to the narrow 63{sup o} stellar stream of Grillmair and Dionatos. The stars in the stream have a retrograde orbit with eccentricity e = 0.33 (perigalacticon of 14.4 kpc and apogalacticon of 28.7 kpc) and inclination approximately i {approx} 35{sup o}. In the region of the orbit which is detected, it has a distance of about 7-11 kpc from the Sun. Assuming a standard disk plus bulge and logarithmic halo potential for the Milky Way stars plus dark matter, the stream stars are moving with a large space velocity of approximately 276 km s{sup -1} at perigalacticon. Using this stream alone, we are unable to determine if the dark matter halo is oblate or prolate. The metallicity of the stream is [Fe/H] = -2.1 {+-} 0.1. Observed proper motions for individual stream members above the main sequence turnoff are consistent with the derived orbit. None of the known globular clusters in the Milky Way have positions, radial velocities, and metallicities that are consistent with being the progenitor of the GD-1 stream.

  12. Toward Third Stream Evaluation.

    ERIC Educational Resources Information Center

    Della-Piana, Gabriel M.; Endo, George T.

    Third stream evaluation, the fusing of the ecological perspective with experimental or quasi-experimental evaluation design, is described. The ecological perspective necessitates that the conceptualization and analysis of a setting and the design of the study emphasize the interdependent relations among organisms, behavior and environment in…

  13. Two Phase Streaming Potentials

    SciTech Connect

    Marsden, S S; Wheatall, M W

    1987-01-20

    The streaming potentials generated by the flow of both liquid and gas through either a Pyrex capillary tube or else an unconsolidated Pyrex porous medium were investigated. This mixture of distilled water plus nitrogen gas simulated wet stream but allowed experiments to be run at room temperature. Single-phase flow of distilled water alone resulted in a constant voltage-to-pressure drop ratio, E/Δp, of +0.15 v/psi for the capillary tube and -0.52 v/psi for the porous medium. For both single- and two-phase flow through the capillary tube, the upstream potential was always positive relative to the downstream electrode while the opposite was true for the porous medium. The maximum two-phase potentials generated in the porous medium were about four times as great as those generated in the capillary tube for similar gas fractions, Γ. For the capillary tube experiments the potentials generated when Γ < ≈ 0.5 were equal to or slightly less than those for single-phase flow, while for the porous medium the potentials were always greater than those for single-phase flow. When Γ > ≈ 0.5 for both kinds of flow systems Γ had a profound effect on streaming potential and reached a pronounced maximum when 0.94 < Γ < 0.99. The implications of these streaming potentials for geothermal exploration and delineation of geothermal reservoirs is also discussed in the paper. 7 figs., 10 refs.

  14. Practical Meteor Stream Forecasting

    NASA Technical Reports Server (NTRS)

    Cooke, William J.; Suggs, Robert M.

    2003-01-01

    Inspired by the recent Leonid meteor storms, researchers have made great strides in our ability to predict enhanced meteor activity. However, the necessary calibration of the meteor stream models with Earth-based ZHRs (Zenith Hourly Rates) has placed emphasis on the terran observer and meteor activity predictions are published in such a manner to reflect this emphasis. As a consequence, many predictions are often unusable by the satellite community, which has the most at stake and the greatest interest in meteor forecasting. This paper suggests that stream modelers need to pay more attention to the needs of this community and publish not just durations and times of maxima for Earth, but everything needed to characterize the meteor stream in and out of the plane of the ecliptic, which, at a minimum, consists of the location of maximum stream density (ZHR) and the functional form of the density decay with distance from this point. It is also suggested that some of the terminology associated with meteor showers may need to be more strictly defined in order to eliminate the perception of crying wolf by meteor scientists. An outburst is especially problematic, as it usually denotes an enhancement by a factor of 2 or more to researchers, but conveys the notion of a sky filled with meteors to satellite operators and the public. Experience has also taught that predicted ZHRs often lead to public disappointment, as these values vastly overestimate what is seen.

  15. Essay on Gyroscopic Motions.

    ERIC Educational Resources Information Center

    Tea, Peter L., Jr.

    1988-01-01

    Explains gyroscopic motions to college freshman or high school seniors who have learned about centripetal acceleration and the transformations of a couple. Contains several figures showing the direction of forces and motion. (YP)

  16. A physical perspective on cytoplasmic streaming

    PubMed Central

    Goldstein, Raymond E.; van de Meent, Jan-Willem

    2015-01-01

    Organisms show a remarkable range of sizes, yet the dimensions of a single cell rarely exceed 100 µm. While the physical and biological origins of this constraint remain poorly understood, exceptions to this rule give valuable insights. A well-known counterexample is the aquatic plant Chara, whose cells can exceed 10 cm in length and 1 mm in diameter. Two spiralling bands of molecular motors at the cell periphery drive the cellular fluid up and down at speeds up to 100 µm s−1, motion that has been hypothesized to mitigate the slowness of metabolite transport on these scales and to aid in homeostasis. This is the most organized instance of a broad class of continuous motions known as ‘cytoplasmic streaming’, found in a wide range of eukaryotic organisms—algae, plants, amoebae, nematodes and flies—often in unusually large cells. In this overview of the physics of this phenomenon, we examine the interplay between streaming, transport and cell size and discuss the possible role of self-organization phenomena in establishing the observed patterns of streaming. PMID:26464789

  17. Objects in Motion

    ERIC Educational Resources Information Center

    Damonte, Kathleen

    2004-01-01

    One thing scientists study is how objects move. A famous scientist named Sir Isaac Newton (1642-1727) spent a lot of time observing objects in motion and came up with three laws that describe how things move. This explanation only deals with the first of his three laws of motion. Newton's First Law of Motion says that moving objects will continue…

  18. A Simulated Stream Ecology Study.

    ERIC Educational Resources Information Center

    Zampella, Robert A.

    1979-01-01

    Describes a simulated field experience to study stream ecology in the classroom. Secondary students determine the composition of the stream community, describe the distribution of the benthic invertebrates, and design a food web. (Author/MA)

  19. Stellar streams around the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Belokurov, Vasily; Koposov, Sergey E.

    2016-02-01

    Using blue horizontal branch (BHB) stars identified in the Dark Energy Survey (DES) Year 1 data, we report the detection of an extended and lumpy stellar debris distribution around the Magellanic Clouds. At the heliocentric distance of the Clouds, overdensities of BHBs are seen to reach at least to ˜30°, and perhaps as far as ˜50° from the Large Magellanic Cloud (LMC). In 3D, the stellar halo is traceable to between 25 and 50 kpc from the LMC. We catalogue the most significant of the stellar substructures revealed, and announce the discovery of a number of narrow streams and diffuse debris clouds. Two narrow streams appear approximately aligned with the Magellanic Clouds' proper motion. Moreover, one of these overlaps with the gaseous Magellanic Stream on the sky. Curiously, two diffuse BHB agglomerations seem coincident with several of the recently discovered DES satellites. Given the enormous size and the conspicuous lumpiness of the LMC's stellar halo, we speculate that the dwarf could easily have been more massive than previously had been assumed.

  20. Numerical study of fluid motion in bioreactor with two mixers

    SciTech Connect

    Zheleva, I.; Lecheva, A.

    2015-10-28

    Numerical study of hydrodynamic laminar behavior of a viscous fluid in bioreactor with multiple mixers is provided in the present paper. The reactor is equipped with two disk impellers. The fluid motion is studied in stream function-vorticity formulation. The calculations are made by a computer program, written in MATLAB. The fluid structure is described and numerical results are graphically presented and commented.

  1. Numerical study of fluid motion in bioreactor with two mixers

    NASA Astrophysics Data System (ADS)

    Zheleva, I.; Lecheva, A.

    2015-10-01

    Numerical study of hydrodynamic laminar behavior of a viscous fluid in bioreactor with multiple mixers is provided in the present paper. The reactor is equipped with two disk impellers. The fluid motion is studied in stream function-vorticity formulation. The calculations are made by a computer program, written in MATLAB. The fluid structure is described and numerical results are graphically presented and commented.

  2. Studying snails and stream health

    SciTech Connect

    Krause, C.

    1992-01-01

    A type of snail (Elimia) that is abundant in most streams in east Tennessee is noticeably absent in contaminated Oak Ridge streams, indicating a significant level of pollution. Such a snail could serve as a sensitive indicator of and contributor to improved water quality in Oak Ridge streams as remediation programs take effect.

  3. Autonomous Byte Stream Randomizer

    NASA Technical Reports Server (NTRS)

    Paloulian, George K.; Woo, Simon S.; Chow, Edward T.

    2013-01-01

    Net-centric networking environments are often faced with limited resources and must utilize bandwidth as efficiently as possible. In networking environments that span wide areas, the data transmission has to be efficient without any redundant or exuberant metadata. The Autonomous Byte Stream Randomizer software provides an extra level of security on top of existing data encryption methods. Randomizing the data s byte stream adds an extra layer to existing data protection methods, thus making it harder for an attacker to decrypt protected data. Based on a generated crypto-graphically secure random seed, a random sequence of numbers is used to intelligently and efficiently swap the organization of bytes in data using the unbiased and memory-efficient in-place Fisher-Yates shuffle method. Swapping bytes and reorganizing the crucial structure of the byte data renders the data file unreadable and leaves the data in a deconstructed state. This deconstruction adds an extra level of security requiring the byte stream to be reconstructed with the random seed in order to be readable. Once the data byte stream has been randomized, the software enables the data to be distributed to N nodes in an environment. Each piece of the data in randomized and distributed form is a separate entity unreadable on its own right, but when combined with all N pieces, is able to be reconstructed back to one. Reconstruction requires possession of the key used for randomizing the bytes, leading to the generation of the same cryptographically secure random sequence of numbers used to randomize the data. This software is a cornerstone capability possessing the ability to generate the same cryptographically secure sequence on different machines and time intervals, thus allowing this software to be used more heavily in net-centric environments where data transfer bandwidth is limited.

  4. Multi-stream inflation

    SciTech Connect

    Li, Miao; Wang, Yi E-mail: wangyi@itp.ac.cn

    2009-07-01

    We propose a ''multi-stream'' inflation model, which is a double field model with spontaneous breaking and restoration of an approximate symmetry. We calculate the density perturbation and non-Gaussianity in this model. We find that this model can have large, scale dependent, and probably oscillating non-Gaussianity. We also note that our model can produce features in the CMB power spectrum and hemispherical power asymmetry.

  5. Gas stream cleanup

    SciTech Connect

    Bossart, S.J.; Cicero, D.C.; Zeh, C.M.; Bedick, R.C.

    1990-08-01

    This report describes the current status and recent accomplishments of gas stream cleanup (GSCU) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Gas Stream Cleanup Program is to develop contaminant control strategies that meet environmental regulations and protect equipment in advanced coal conversion systems. Contaminant control systems are being developed for integration into seven advanced coal conversion processes: Pressurized fludized-bed combustion (PFBC), Direct coal-fueled turbine (DCFT), Intergrated gasification combined-cycle (IGCC), Gasification/molten carbonate fuel cell (MCFC), Gasification/solid oxide fuel cell (SOFC), Coal-fueled diesel (CFD), and Mild gasification (MG). These advanced coal conversion systems present a significant challenge for development of contaminant control systems because they generate multi-contaminant gas streams at high-pressures and high temperatures. Each of the seven advanced coal conversion systems incorporates distinct contaminant control strategies because each has different contaminant tolerance limits and operating conditions. 59 refs., 17 figs., 5 tabs.

  6. The LHCb Turbo stream

    NASA Astrophysics Data System (ADS)

    Puig, A.

    2016-07-01

    The LHCb experiment will record an unprecedented dataset of beauty and charm hadron decays during Run II of the LHC, set to take place between 2015 and 2018. A key computing challenge is to store and process this data, which limits the maximum output rate of the LHCb trigger. So far, LHCb has written out a few kHz of events containing the full raw sub-detector data, which are passed through a full offline event reconstruction before being considered for physics analysis. Charm physics in particular is limited by trigger output rate constraints. A new streaming strategy includes the possibility to perform the physics analysis with candidates reconstructed in the trigger, thus bypassing the offline reconstruction. In the Turbo stream the trigger will write out a compact summary of physics objects containing all information necessary for analyses. This will allow an increased output rate and thus higher average efficiencies and smaller selection biases. This idea will be commissioned and developed during 2015 with a selection of physics analyses. It is anticipated that the turbo stream will be adopted by an increasing number of analyses during the remainder of LHC Run II (2015-2018) and ultimately in Run III (starting in 2020) with the upgraded LHCb detector.

  7. Stream processing health card application.

    PubMed

    Polat, Seda; Gündem, Taflan Imre

    2012-10-01

    In this paper, we propose a data stream management system embedded to a smart card for handling and storing user specific summaries of streaming data coming from medical sensor measurements and/or other medical measurements. The data stream management system that we propose for a health card can handle the stream data rates of commonly known medical devices and sensors. It incorporates a type of context awareness feature that acts according to user specific information. The proposed system is cheap and provides security for private data by enhancing the capabilities of smart health cards. The stream data management system is tested on a real smart card using both synthetic and real data.

  8. A direct approach for quantifying stream shading

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excessive stream water temperature causes thermal stress in fish and invertebrates, decreases dissolved oxygen, and encourages bacterial and algal growth. Solar radiation affects stream temperature. Shade cast by riparian vegetation reduces thermal inputs to stream water. Stream shading standards...

  9. Influence of the Gulf Stream on the troposphere.

    PubMed

    Minobe, Shoshiro; Kuwano-Yoshida, Akira; Komori, Nobumasa; Xie, Shang-Ping; Small, Richard Justin

    2008-03-13

    The Gulf Stream transports large amounts of heat from the tropics to middle and high latitudes, and thereby affects weather phenomena such as cyclogenesis and low cloud formation. But its climatic influence, on monthly and longer timescales, remains poorly understood. In particular, it is unclear how the warm current affects the free atmosphere above the marine atmospheric boundary layer. Here we consider the Gulf Stream's influence on the troposphere, using a combination of operational weather analyses, satellite observations and an atmospheric general circulation model. Our results reveal that the Gulf Stream affects the entire troposphere. In the marine boundary layer, atmospheric pressure adjustments to sharp sea surface temperature gradients lead to surface wind convergence, which anchors a narrow band of precipitation along the Gulf Stream. In this rain band, upward motion and cloud formation extend into the upper troposphere, as corroborated by the frequent occurrence of very low cloud-top temperatures. These mechanisms provide a pathway by which the Gulf Stream can affect the atmosphere locally, and possibly also in remote regions by forcing planetary waves. The identification of this pathway may have implications for our understanding of the processes involved in climate change, because the Gulf Stream is the upper limb of the Atlantic meridional overturning circulation, which has varied in strength in the past and is predicted to weaken in response to human-induced global warming in the future.

  10. Predicting early reading skills from pre-reading measures of dorsal stream functioning.

    PubMed

    Kevan, Alison; Pammer, Kristen

    2009-12-01

    It is well documented that good reading skills may be dependent upon adequate dorsal stream processing. However, the degree to which dorsal stream deficits play a causal role in reading failure has not been established. This study used coherent motion and visual frequency doubling to examine whether dorsal stream sensitivity measured before the commencement of formal reading instruction can predict emerging literacy skills in Grade 1. We demonstrate that over age, IQ and Kindergarten Letter knowledge, pre-reading measures of dorsal stream functioning, as assessed by frequency doubling sensitivity, could predict early literacy skills. These findings suggest that the relationship between dorsal stream functioning and poor reading skills exists before children learn to read, strengthening the claim that dorsal stream deficits may play a contributing role in reading failure.

  11. The Personal Motion Platform

    NASA Technical Reports Server (NTRS)

    Park, Brian Vandellyn

    1993-01-01

    The Neutral Body Posture experienced in microgravity creates a biomechanical equilibrium by enabling the internal forces within the body to find their own balance. A patented reclining chair based on this posture provides a minimal stress environment for interfacing with computer systems for extended periods. When the chair is mounted on a 3 or 6 axis motion platform, a generic motion simulator for simulated digital environments is created. The Personal Motion Platform provides motional feedback to the occupant in synchronization with their movements inside the digital world which enhances the simulation experience. Existing HMD based simulation systems can be integrated to the turnkey system. Future developments are discussed.

  12. Biological movement and the encoding of its motion and orientation

    PubMed Central

    Benton, Christopher P.; Thirkettle, Martin; Scott-Samuel, Nicholas E.

    2016-01-01

    Are you walking at me? Biological movement and the encoding of its motion and orientation. A person’s motion conveys a wealth of information that ranges from the complex, such as intention or emotional state, to the simple, such as direction of locomotion. How we recognise and recover people’s motion is addressed by models of biological motion processing. Single channel models propose that this occurs through the operation of form template neurons which respond to viewpoint dependent snapshots of posture. More controversially, a dual channel approach proposes a second stream containing motion template neurons sensitive to view dependent snapshots of biological movement’s characteristic local velocity field. We used behavioural adaptation to look for the co-encoding of viewpoint and walker motion, a hallmark of motion template analysis. We show that opposite viewpoint aftereffects can simultaneously be induced for forwards and reversed walkers. This demonstrates that distinct populations of neurons encode forwards and reversed walking. To account for such aftereffects, these units must either be able to inhibit viewpoint-encoding neurons, or they must encode viewpoint directly. Whereas current single channel models would need extending to incorporate these characteristics, the idea that walker motion is encoded directly, such that viewpoint and motion are intrinsically interlinked, is a fundamental component of the dual channel model. PMID:26925870

  13. Effective stream power and dynamics of bedload transport in experimental braided streams

    NASA Astrophysics Data System (ADS)

    Meunier, P.; Métivier, F.

    2003-04-01

    We report results from a set of microscale braided river experiments with varying slope, length, water flux, input sediment flux and grain size. Our study shows that the output flux of mass carried by the braided stream depends on a nondimensional stream power ψ defined as the ratio of the stream power to the input flux of mass. The linear relationship we obtain remains valid whether the braided stream is aggrading or degrading. This correlation has some important consequences on the mecanics of bed load transport by braided rivers. It enables the definition of both dimensionless stream power and a dimensionless transport efficiency. These dimensionless variables in turn permit the definition of a braide river stability criterion with regard to bed load transport. The existence of such a correlation also suggests that the average critical shear stress or slope of motion may depend on the flux mass input to the system. Using these findings together with a one-dimensional Exner equation for the conservation of mass, a cinematic wave equation for the average evolution of the riverbed is eventually derived and its significance analyzed. The use of different grain sizes does not change the form of the relationship (for a given grain size, our linear relation remains valid). However, the dependance of sediments transport to the grain size is given by a non-monotonic function which needs to be discussed. The size of the flume length does not affect the bedload transport since the river has enough time to reach its steady state. But the varying size is usefull to establish a characteristic time of the river response to disturbances.

  14. Motion-based prediction explains the role of tracking in motion extrapolation.

    PubMed

    Khoei, Mina A; Masson, Guillaume S; Perrinet, Laurent U

    2013-11-01

    During normal viewing, the continuous stream of visual input is regularly interrupted, for instance by blinks of the eye. Despite these frequents blanks (that is the transient absence of a raw sensory source), the visual system is most often able to maintain a continuous representation of motion. For instance, it maintains the movement of the eye such as to stabilize the image of an object. This ability suggests the existence of a generic neural mechanism of motion extrapolation to deal with fragmented inputs. In this paper, we have modeled how the visual system may extrapolate the trajectory of an object during a blank using motion-based prediction. This implies that using a prior on the coherency of motion, the system may integrate previous motion information even in the absence of a stimulus. In order to compare with experimental results, we simulated tracking velocity responses. We found that the response of the motion integration process to a blanked trajectory pauses at the onset of the blank, but that it quickly recovers the information on the trajectory after reappearance. This is compatible with behavioral and neural observations on motion extrapolation. To understand these mechanisms, we have recorded the response of the model to a noisy stimulus. Crucially, we found that motion-based prediction acted at the global level as a gain control mechanism and that we could switch from a smooth regime to a binary tracking behavior where the dot is tracked or lost. Our results imply that a local prior implementing motion-based prediction is sufficient to explain a large range of neural and behavioral results at a more global level. We show that the tracking behavior deteriorates for sensory noise levels higher than a certain value, where motion coherency and predictability fail to hold longer. In particular, we found that motion-based prediction leads to the emergence of a tracking behavior only when enough information from the trajectory has been accumulated

  15. The Phoenix stream: A cold stream in the southern hemisphere

    DOE PAGES

    Balbinot, E.

    2016-03-17

    In this study, we report the discovery of a stellar stream in the Dark Energy Survey (DES) Year 1 (Y1A1) data. The discovery was made through simple color-magnitude filters and visual inspection of the Y1A1 data. We refer to this new object as the Phoenix stream, after its resident constellation. After subtraction of the background stellar population we detect a clear signal of a simple stellar population. By fitting the ridge line of the stream in color-magnitude space, we find that a stellar population with agemore » $$\\tau=11.5\\pm0.5$$ Gyr and $[Fe/H]<-1.6$ located 17.5$$\\pm$$0.9 kpc from the Sun gives an adequate description of the stream stellar population. The stream is detected over an extension of 8$$^{\\circ}.$$1 (2.5 kpc) and has a width of $$\\sim$$54 pc assuming a Gaussian profile, indicating that a globular cluster is a probable progenitor. There is no known globular cluster within 5 kpc compatible with being the progenitor of the stream, assuming that the stream traces its orbit. We examined overdensities along the stream, however no obvious counterpart bound stellar system is visible in the coadded images. We also find overdensities along the stream that appear to be symmetrically distributed - consistent with the epicyclic overdensity scenario for the formation of cold streams - as well as a misalignment between the Northern and Southern part of stream. Despite the close proximity we find no evidence that this stream and the halo cluster NGC 1261 have a common accretion origin linked to the recently found EriPhe overdensity (Li et al. 2016).« less

  16. Emittance Growth in Intense Non-Circular Beams

    NASA Astrophysics Data System (ADS)

    Anderson, O. A.

    1997-05-01

    The electrostatic energy of intense beams in linear uniform focusing channels is minimized when the initial beam configuration is both uniform and round.(In the case of quadrupole focusing, this means round on the average.) Deviations from either uniformity or roundness produce free energy and emittance growth. Over the past 25 years, the consequences of beam nonuniformity have been thoroughly investigated for the case of round beams. Recently, there has been interest in more complex beam configurations such as those that occur in Heavy Ion Fusion (HIF) combiners or splitters. We discuss free energy and emittance growth for a variety of cases: (a) square beams, (b) hexagonal beams, (c) beams bounded by a quadrant or sextant of a circle, (d) rectangular beams, (e) elliptical beams, (f) pairs of beamlets, and (g) arrays of many beamlets. Cases (a) and (b) are approximations for large arrays of beamlets as proposed for HIF combiners or for negative-ion sources. Beam splitting, suggested for a particular HIF final focus scheme, leads to (c). The large emittance growth in cases (d)-(f), calculated by a new method,(O.A. Anderson, Proceedings of EPAC 96 conference.) illustrates the importance of maintaining symmetry. Practical examples are given for several cases.

  17. Flow in tubes of non-circular cross-sections

    NASA Astrophysics Data System (ADS)

    Quadir, Raushan Ara

    Laminar, viscous, incompressible flow in tubes of noncircular cross sections is investigated. The specific aims of the investigation are (1) to look at the problems of both developing flow and fully developed flow, (2) to consider noncircular cross sections in a more systematic manner than has been done in the past, and (3) to develop a relatively simple finite element technique for producing accurate numerical solutions of flow in tubes of fairly arbitrary cross sections. Fully developed flow in tubes is governed by a Poisson type equation for the mainstream velocity. Both analytical and numerical solutions are considered. The cross sections studied include elliptic and rectangular cross sections of different aspect ratios, some triangular cross sections, and a series of crescent-shaped cross sections. The physical characteristics of the flow are examined in a systematic manner in order to determine how these characteristics are affected by certain geometrical features of the cross section. Solutions fall into three basic categories depending on the shape of the cross section. In the first category, which includes circular and elliptic cross sections, solutions are possible in closed form. In the second, including rectangular and some triangular cross sections, solutions are in the form of infinite series. In the third, including cross sections of more complicated or irregular shapes, only numerical solutions are possible. Results of calculations of velocity profiles, flow rate, pumping power, and friction factor are presented in a way which can be useful for engineering applications. In numerical studies of both developing and fully developed flow finite element techniques are used. Results are obtained for tubes of rectangular and elliptic cross sections of different aspect ratios, for tubes of crescent-shaped cross sections, and a tube whose cross section is an oval of Cassini. For fully developed flow, results are compared with the corresponding exact solutions, where available. For rectangular and elliptic cross sections results are also compared with those obtained by using a commercial package (FIDAP). For developing flow, finite element results are compared with corresponding theoretical and experimental results from previous work, where available.

  18. Riparian deforestation, stream narrowing, and loss of stream ecosystem services

    PubMed Central

    Sweeney, Bernard W.; Bott, Thomas L.; Jackson, John K.; Kaplan, Louis A.; Newbold, J. Denis; Standley, Laurel J.; Hession, W. Cully; Horwitz, Richard J.

    2004-01-01

    A study of 16 streams in eastern North America shows that riparian deforestation causes channel narrowing, which reduces the total amount of stream habitat and ecosystem per unit channel length and compromises in-stream processing of pollutants. Wide forest reaches had more macroinvertebrates, total ecosystem processing of organic matter, and nitrogen uptake per unit channel length than contiguous narrow deforested reaches. Stream narrowing nullified any potential advantages of deforestation regarding abundance of fish, quality of dissolved organic matter, and pesticide degradation. These findings show that forested stream channels have a wider and more natural configuration, which significantly affects the total in-stream amount and activity of the ecosystem, including the processing of pollutants. The results reinforce both current policy of the United States that endorses riparian forest buffers as best management practice and federal and state programs that subsidize riparian reforestation for stream restoration and water quality. Not only do forest buffers prevent nonpoint source pollutants from entering small streams, they also enhance the in-stream processing of both nonpoint and point source pollutants, thereby reducing their impact on downstream rivers and estuaries. PMID:15381768

  19. Motion compensator for holographic motion picture camera

    NASA Technical Reports Server (NTRS)

    Kurtz, R. L.

    1973-01-01

    When reference beam strikes target it undergoes Doppler shift dependent upon target velocity. To compensate, object beam is first reflected from rotating cylinder that revolves in direction opposite to target but at same speed. When beam strikes target it is returned to original frequency and is in phase with reference beam. Alternatively this motion compensator may act on reference beam.

  20. Seeing blur: 'motion sharpening' without motion.

    PubMed Central

    Georgeson, Mark A; Hammett, Stephen T

    2002-01-01

    It is widely supposed that things tend to look blurred when they are moving fast. Previous work has shown that this is true for sharp edges but, paradoxically, blurred edges look sharper when they are moving than when stationary. This is 'motion sharpening'. We show that blurred edges also look up to 50% sharper when they are presented briefly (8-24 ms) than at longer durations (100-500 ms) without motion. This argues strongly against high-level models of sharpening based specifically on compensation for motion blur. It also argues against a recent, low-level, linear filter model that requires motion to produce sharpening. No linear filter model can explain our finding that sharpening was similar for sinusoidal and non-sinusoidal gratings, since linear filters can never distort sine waves. We also conclude that the idea of a 'default' assumption of sharpness is not supported by experimental evidence. A possible source of sharpening is a nonlinearity in the contrast response of early visual mechanisms to fast or transient temporal changes, perhaps based on the magnocellular (M-cell) pathway. Our finding that sharpening is not diminished at low contrast sets strong constraints on the nature of the nonlinearity. PMID:12137571

  1. The Southeast Stream Quality Assessment

    USGS Publications Warehouse

    Van Metre, Peter C.; Journey, Celeste A.

    2014-01-01

    In 2014, the U.S. Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) is assessing stream quality across the Piedmont and southern Appalachian Mountains in the southeastern United States. The goal of the Southeast Stream Quality Assessment (SESQA) is to characterize multiple water-quality factors that are stressors to aquatic life—contaminants, nutrients, sediment, and streamflow alteration—and the relation of these stressors to ecological conditions in streams throughout the region. Findings will provide communities and policymakers with information on which human and environmental factors are the most critical in controlling stream quality and, thus, provide insights about possible approaches to protect or improve stream quality. The SESQA study will be the second regional study by the NAWQA program, and it will be of similar design and scope as the Midwest Stream Quality Assessment conducted in 2013 (Van Metre and others, 2012).

  2. Tidal Streams Near and Far

    NASA Astrophysics Data System (ADS)

    Fardal, Mark A.

    2014-06-01

    The Pandas survey of stars in M31's disk and halo is crisscrossed by numerous tidal features from both M31 and the Milky Way. Here I focus on two narrow stellar streams visible in the survey. They have comparable angular extent in the survey (10-13 degrees long versus only 0.3 degree wide), but one is a local Milky Way stream at about 30 kpc and one is in M31, roughly 25 times more distant. I estimate the stellar mass and metallicity in the streams and the distance gradient along them. The kinematics of the M31 stream is sparsely sampled by red giant stars and globular clusters. Bayesian modeling of the stream data yields accurate constraints on the orbital parameters of the streams.

  3. Ion Streaming Instabilities in Pair Ion Plasma and Localized Structure with Non-Thermal Electrons

    NASA Astrophysics Data System (ADS)

    Nasir Khattak, M.; Mushtaq, A.; Qamar, A.

    2015-12-01

    Pair ion plasma with a fraction of non-thermal electrons is considered. We investigate the effects of the streaming motion of ions on linear and nonlinear properties of unmagnetized, collisionless plasma by using the fluid model. A dispersion relation is derived, and the growth rate of streaming instabilities with effect of streaming motion of ions and non-thermal electrons is calculated. A qausi-potential approach is adopted to study the characteristics of ion acoustic solitons. An energy integral equation involving Sagdeev potential is derived during this process. The presence of the streaming term in the energy integral equation affects the structure of the solitary waves significantly along with non-thermal electrons. Possible application of the work to the space and laboratory plasmas are highlighted.

  4. Objects in Motion

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2008-01-01

    Objects in motion attract children. The following activity helps children explore the motion of bodies riding in a vehicle and safely demonstrates the answer to their questions, "Why do I need a seatbelt?" Children will enjoy moving the cup around, even if all they "see" is a cup rather than understanding it represents a car. They will understand…

  5. Object motion analysis study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The use of optical data processing (ODP) techniques for motion analysis in two-dimensional imagery was studied. The basic feasibility of this approach was demonstrated, but inconsistent performance of the photoplastic used for recording spatial filters prevented totally automatic operation. Promising solutions to the problems encountered are discussed, and it is concluded that ODP techniques could be quite useful for motion analysis.

  6. Measuring mandibular motions

    NASA Technical Reports Server (NTRS)

    Dimeff, J.; Rositano, S.; Taylor, R. C.

    1977-01-01

    Mandibular motion along three axes is measured by three motion transducers on floating yoke that rests against mandible. System includes electronics to provide variety of outputs for data display and processing. Head frame is strapped to test subject's skull to provide fixed point of reference for transducers.

  7. Motion through Syntactic Frames

    ERIC Educational Resources Information Center

    Feist, Michele I.

    2010-01-01

    The introduction of (Talmy, 1985), (Talmy, 1985) and (Talmy, 2000) typology sparked significant interest in linguistic relativity in the arena of motion language. Through careful analysis of the conflation patterns evident in the language of motion events, Talmy noted that one class of languages, V-languages, tends to encode path along with the…

  8. Making Sense of Motion

    ERIC Educational Resources Information Center

    King, Kenneth

    2005-01-01

    When watching a small child with a toy car, it is seen that interest in motion comes early. Children often suggest speed through sounds such as "RRRrrrRRRooooommMMMmmmm" as the toy car is made to speed up, slow down, or accelerate through a turn. Older children start to consider force and motion studies in more detail, and experiences in school…

  9. Aristotle, Motion, and Rhetoric.

    ERIC Educational Resources Information Center

    Sutton, Jane

    Aristotle rejects a world vision of changing reality as neither useful nor beneficial to human life, and instead he reaffirms both change and eternal reality, fuses motion and rest, and ends up with "well-behaved" changes. This concept of motion is foundational to his world view, and from it emerges his theory of knowledge, philosophy of nature,…

  10. 41 CFR 60-30.8 - Motions; disposition of motions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 1 2011-07-01 2009-07-01 true Motions; disposition of motions. 60-30.8 Section 60-30.8 Public Contracts and Property Management Other Provisions Relating to... EXECUTIVE ORDER 11246 Prehearing Procedures § 60-30.8 Motions; disposition of motions. (a) Motions....

  11. 41 CFR 60-30.8 - Motions; disposition of motions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 1 2014-07-01 2014-07-01 false Motions; disposition of motions. 60-30.8 Section 60-30.8 Public Contracts and Property Management Other Provisions Relating to... EXECUTIVE ORDER 11246 Prehearing Procedures § 60-30.8 Motions; disposition of motions. (a) Motions....

  12. 41 CFR 60-30.8 - Motions; disposition of motions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 1 2012-07-01 2009-07-01 true Motions; disposition of motions. 60-30.8 Section 60-30.8 Public Contracts and Property Management Other Provisions Relating to... EXECUTIVE ORDER 11246 Prehearing Procedures § 60-30.8 Motions; disposition of motions. (a) Motions....

  13. 41 CFR 60-30.8 - Motions; disposition of motions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 1 2013-07-01 2013-07-01 false Motions; disposition of motions. 60-30.8 Section 60-30.8 Public Contracts and Property Management Other Provisions Relating to... EXECUTIVE ORDER 11246 Prehearing Procedures § 60-30.8 Motions; disposition of motions. (a) Motions....

  14. 41 CFR 60-30.8 - Motions; disposition of motions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Motions; disposition of motions. 60-30.8 Section 60-30.8 Public Contracts and Property Management Other Provisions Relating to... EXECUTIVE ORDER 11246 Prehearing Procedures § 60-30.8 Motions; disposition of motions. (a) Motions....

  15. Stream Lifetimes Against Planetary Encounters

    NASA Technical Reports Server (NTRS)

    Valsecchi, G. B.; Lega, E.; Froeschle, Cl.

    2011-01-01

    We study, both analytically and numerically, the perturbation induced by an encounter with a planet on a meteoroid stream. Our analytical tool is the extension of pik s theory of close encounters, that we apply to streams described by geocentric variables. The resulting formulae are used to compute the rate at which a stream is dispersed by planetary encounters into the sporadic background. We have verified the accuracy of the analytical model using a numerical test.

  16. Brownian motion goes ballistic

    NASA Astrophysics Data System (ADS)

    Florin, Ernst-Ludwig

    2012-02-01

    It is the randomness that is considered the hallmark of Brownian motion, but already in Einstein's seminal 1905 paper on Brownian motion it is implied that this randomness must break down at short time scales when the inertia of the particle kicks in. As a result, the particle's trajectories should lose its randomness and become smooth. The characteristic time scale for this transition is given by the ratio of the particle's mass to its viscous drag coefficient. For a 1 μm glass particle in water and at room temperature, this timescale is on the order of 100 ns. Early calculations, however, neglected the inertia of the liquid surrounding the particle which induces a transition from random diffusive to non-diffusive Brownian motion already at much larger timescales. In this first non-diffusive regime, particles of the same size but with different densities still move at almost the same rate as a result of hydrodynamic correlations. To observe Brownian motion that is dominated by the inertia of the particle, i.e. ballistic motion, one has to observe the particle at significantly shorter time scales on the order of nanoseconds. Due to the lack of sufficiently fast and precise detectors, such experiments were so far not possible on individual particles. I will describe how we were able to observe the transition from hydrodynamically dominated Brownian motion to ballistic Brownian motion in a liquid. I will compare our data with current theories for Brownian motion on fast timescales that take into account the inertia of both the liquid and the particle. The newly gained ability to measure the fast Brownian motion of an individual particle paves the way for detailed studies of confined Brownian motion and Brownian motion in heterogeneous media. [4pt] [1] Einstein, A. "Uber die von der molekularkinetischen Theorie der W"arme geforderte Bewegung von in ruhenden Fl"ussigkeiten suspendierten Teilchen. Ann. Phys. 322, 549--560 (1905). [0pt] [2] Lukic, B., S. Jeney, C

  17. Stream salamanders as indicators of stream quality in Maryland, USA

    USGS Publications Warehouse

    Southerland, M.T.; Jung, R.E.; Baxter, D.P.; Chellman, I.C.; Mercurio, G.; Volstad, J.H.

    2004-01-01

    Biological indicators are critical to the protection of small, headwater streams and the ecological values they provide. Maryland and other state monitoring programs have determined that fish indicators are ineffective in small streams, where stream salamanders may replace fish as top predators. Because of their life history, physiology, abundance, and ubiquity, stream salamanders are likely representative of biological integrity in these streams. The goal of this study was to determine whether stream salamanders are effective indicators of ecological conditions across biogeographic regions and gradients of human disturbance. During the summers of 2001 and 2002, we intensively surveyed for stream salamanders at 76 stream sites located west of the Maryland Coastal Plain, sites also monitored by the Maryland Biological Stream Survey (MBSS) and City of Gaithersburg. We found 1,584 stream salamanders, including all eight species known in Maryland, using two 15 ? 2 m transects and two 4 m2 quadrats that spanned both stream bank and channel. We performed removal sampling on transects to estimate salamander species detection probabilities, which ranged from 0.67-0.85. Stepwise regressions identified 15 of 52 non-salamander variables, representing water quality, physical habitat, land use, and biological conditions, which best predicted salamander metrics. Indicator development involved (1) identifying reference (non-degraded) and degraded sites (using percent forest, shading, riparian buffer width, aesthetic rating, and benthic macroinvertebrate and fish indices of biotic integrity); (2) testing 12 candidate salamander metrics (representing species richness and composition, abundance, species tolerance, and reproductive function) for their ability to distinguish reference from degraded sites; and (3) combining metrics into an index that effectively discriminated sites according to known stream conditions. Final indices for Highlands, Piedmont, and Non-Coastal Plain

  18. The Phoenix Stream: A Cold Stream in the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Balbinot, E.; Yanny, B.; Li, T. S.; Santiago, B.; Marshall, J. L.; Finley, D. A.; Pieres, A.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Estrada, J.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; March, M.; Martini, P.; Miquel, R.; Nichol, R. C.; Ogando, R.; Romer, A. K.; Sanchez, E.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.; Tucker, D.; Walker, A. R.; DES Collaboration

    2016-03-01

    We report the discovery of a stellar stream in the Dark Energy Survey Year 1 (Y1A1) data. The discovery was made through simple color-magnitude filters and visual inspection of the Y1A1 data. We refer to this new object as the Phoenix stream, after its resident constellation. After subtraction of the background stellar population we detect a clear signal of a simple stellar population. By fitting the ridge line of the stream in color-magnitude space, we find that a stellar population with age τ = 11.5 ± 0.5 Gyr and [Fe/H] < -1.6, located 17.5 ± 0.9 kpc from the Sun, gives an adequate description of the stream stellar population. The stream is detected over an extension of 8.°1 (2.5 kpc) and has a width of ˜54 pc assuming a Gaussian profile, indicating that a globular cluster (GC) is a probable progenitor. There is no known GC within 5 kpc that is compatible with being the progenitor of the stream, assuming that the stream traces its orbit. We examined overdensities (ODs) along the stream, however, no obvious counterpart-bound stellar system is visible in the coadded images. We also find ODs along the stream that appear to be symmetrically distributed—consistent with the epicyclic OD scenario for the formation of cold streams—as well as a misalignment between the northern and southern part of stream. Despite the close proximity we find no evidence that this stream and the halo cluster NGC 1261 have a common accretion origin linked to the recently found EriPhe OD.

  19. Stochastic ground motion simulation

    USGS Publications Warehouse

    Rezaeian, Sanaz; Xiaodan, Sun; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan

    2014-01-01

    Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.

  20. A Motion-from-Form Mechanism Contributes to Extracting Pattern Motion from Plaids

    PubMed Central

    Optican, Lance M.; Cumming, Bruce G.

    2016-01-01

    Since the discovery of neurons selective for pattern motion direction in primate middle temporal area MT (Albright, 1984; Movshon et al., 1985), the neural computation of this signal has been the subject of intense study. The bulk of this work has explored responses to plaids obtained by summing two drifting sinusoidal gratings. Unfortunately, with these stimuli, many different mechanisms are similarly effective at extracting pattern motion. We devised a new set of stimuli, obtained by summing two random line stimuli with different orientations. This allowed several novel manipulations, including generating plaids that do not contain rigid 2D motion. Importantly, these stimuli do not engage most of the previously proposed mechanisms. We then recorded the ocular following responses that such stimuli induce in human subjects. We found that pattern motion is computed even with stimuli that do not cohere perceptually, including those without rigid motion, and even when the two gratings are presented separately to the two eyes. Moderate temporal and/or spatial separation of the gratings impairs the computation. We show that, of the models proposed so far, only those based on the intersection-of-constraints rule, embedding a motion-from-form mechanism (in which orientation signals are used in the computation of motion direction signals), can account for our results. At least for the eye movements reported here, a motion-from-form mechanism is thus involved in one of the most basic functions of the visual motion system: extracting motion direction from complex scenes. SIGNIFICANCE STATEMENT Anatomical considerations led to the proposal that visual function is organized in separate processing streams: one (ventral) devoted to form and one (dorsal) devoted to motion. Several experimental results have challenged this view, arguing in favor of a more integrated view of visual processing. Here we add to this body of work, supporting a role for form information even in a

  1. Acoustic streaming flows and sample rotation control

    NASA Astrophysics Data System (ADS)

    Trinh, Eugene

    1998-11-01

    Levitated drops in a gas can be driven into rotation by altering their surrounding convective environment. When these drops are placed in an acoustic resonant chamber, the symmetry characteristics of the steady streaming flows in the vicinity of the drops determine the rotational motion of the freely suspended fluid particles. Using ultrasonic standing waves around 22 kHz and millimeter-size electrostatically levitated drops, we have investigated the correlation between the convective flow characteristics and their rotational behavior. The results show that accurate control of the drop rotation axis and rate can be obtained by carefully modifying the symmetry characteristics of the chamber, and that the dominant mechanism for rotation drive is the drag exerted by the air flow over the drop surface. In addition, we found that the rotational acceleration depends on the drop viscosity, suggesting that this torque is initially strongly influenced by differential flows within the drop itself. [Work sponsored by NASA].

  2. Motion sickness in migraine sufferers.

    PubMed

    Marcus, Dawn A; Furman, Joseph M; Balaban, Carey D

    2005-12-01

    Motion sickness commonly occurs after exposure to actual motion, such as car or amusement park rides, or virtual motion, such as panoramic movies. Motion sickness symptoms may be disabling, significantly limiting business, travel and leisure activities. Motion sickness occurs in approximately 50% of migraine sufferers. Understanding motion sickness in migraine patients may improve understanding of the physiology of both conditions. Recent literature suggests important relationships between the trigeminal system and vestibular nuclei that may have implications for both motion sickness and migraine. Studies demonstrating an important relationship between serotonin receptors and motion sickness susceptibility in both rodents and humans suggest possible new motion sickness prevention therapies.

  3. Analyzing indicators of stream health for Minnesota streams

    USGS Publications Warehouse

    Singh, U.; Kocian, M.; Wilson, B.; Bolton, A.; Nieber, J.; Vondracek, B.; Perry, J.; Magner, J.

    2005-01-01

    Recent research has emphasized the importance of using physical, chemical, and biological indicators of stream health for diagnosing impaired watersheds and their receiving water bodies. A multidisciplinary team at the University of Minnesota is carrying out research to develop a stream classification system for Total Maximum Daily Load (TMDL) assessment. Funding for this research is provided by the United States Environmental Protection Agency and the Minnesota Pollution Control Agency. One objective of the research study involves investigating the relationships between indicators of stream health and localized stream characteristics. Measured data from Minnesota streams collected by various government and non-government agencies and research institutions have been obtained for the research study. Innovative Geographic Information Systems tools developed by the Environmental Science Research Institute and the University of Texas are being utilized to combine and organize the data. Simple linear relationships between index of biological integrity (IBI) and channel slope, two-year stream flow, and drainage area are presented for the Redwood River and the Snake River Basins. Results suggest that more rigorous techniques are needed to successfully capture trends in IBI scores. Additional analyses will be done using multiple regression, principal component analysis, and clustering techniques. Uncovering key independent variables and understanding how they fit together to influence stream health are critical in the development of a stream classification for TMDL assessment.

  4. ASSESSING STREAM BED STABILITY AND EXCESS SEDIMENTATION IN MOUNTAIN STREAMS

    EPA Science Inventory

    Land use and resource exploitation in headwaters catchments?such as logging, mining, and road building?often increase sediment supply to streams, potentially causing excess sedimentation. Decreases in mean substrate size and increases in fine stream bed sediments can lead to inc...

  5. Human impacts to mountain streams

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen

    2006-09-01

    Mountain streams are here defined as channel networks within mountainous regions of the world. This definition encompasses tremendous diversity of physical and biological conditions, as well as history of land use. Human effects on mountain streams may result from activities undertaken within the stream channel that directly alter channel geometry, the dynamics of water and sediment movement, contaminants in the stream, or aquatic and riparian communities. Examples include channelization, construction of grade-control structures or check dams, removal of beavers, and placer mining. Human effects can also result from activities within the watershed that indirectly affect streams by altering the movement of water, sediment, and contaminants into the channel. Deforestation, cropping, grazing, land drainage, and urbanization are among the land uses that indirectly alter stream processes. An overview of the relative intensity of human impacts to mountain streams is provided by a table summarizing human effects on each of the major mountainous regions with respect to five categories: flow regulation, biotic integrity, water pollution, channel alteration, and land use. This table indicates that very few mountains have streams not at least moderately affected by land use. The least affected mountainous regions are those at very high or very low latitudes, although our scientific ignorance of conditions in low-latitude mountains in particular means that streams in these mountains might be more altered than is widely recognized. Four case studies from northern Sweden (arctic region), Colorado Front Range (semiarid temperate region), Swiss Alps (humid temperate region), and Papua New Guinea (humid tropics) are also used to explore in detail the history and effects on rivers of human activities in mountainous regions. The overview and case studies indicate that mountain streams must be managed with particular attention to upstream/downstream connections, hillslope

  6. Visualizing motion in video

    NASA Astrophysics Data System (ADS)

    Brown, Lisa M.; Crayne, Susan

    2000-05-01

    In this paper, we present a visualization system and method for measuring, inspecting and analyzing motion in video. Starting from a simple motion video, the system creates a still image representation which we call a digital strobe photograph. Similar to visualization techniques used in conventional film photography to capture high-speed motion using strobe lamps or very fast shutters, and to capture time-lapse motion where the shutter is left open, this methodology creates a single image showing the motion of one or a small number of objects over time. Based on digital background subtraction, we assume that the background is stationary or at most slowing changing and that the camera position is fixed. The method is capable of displaying the motion based on a parameter indicating the time step between successive movements. It can also overcome problems of visualizing movement that is obscured by previous movements. The method is used in an educational software tool for children to measure and analyze various motions. Examples are given using simple physical objects such as balls and pendulums, astronomical events such as the path of the stars around the north pole at night, or the different types of locomotion used by snakes.

  7. Generalized compliant motion primitive

    NASA Technical Reports Server (NTRS)

    Backes, Paul G. (Inventor)

    1994-01-01

    This invention relates to a general primitive for controlling a telerobot with a set of input parameters. The primitive includes a trajectory generator; a teleoperation sensor; a joint limit generator; a force setpoint generator; a dither function generator, which produces telerobot motion inputs in a common coordinate frame for simultaneous combination in sensor summers. Virtual return spring motion input is provided by a restoration spring subsystem. The novel features of this invention include use of a single general motion primitive at a remote site to permit the shared and supervisory control of the robot manipulator to perform tasks via a remotely transferred input parameter set.

  8. Stream, Lake, and Reservoir Management.

    PubMed

    Mei, Ying; Chang, Chein-Chi; Dong, Zhanfeng; Wei, Li

    2016-10-01

    This review on stream, lake, and reservoir management covers selected 2015 publications on the focus of the following sections: • Biota • Climate effect • Models • Remediation and restoration • Reservoir operations • Stream, Lake, and Reservoir Management • Water quality.

  9. We All Stream for Video

    ERIC Educational Resources Information Center

    Technology & Learning, 2008

    2008-01-01

    More than ever, teachers are using digital video to enhance their lessons. In fact, the number of schools using video streaming increased from 30 percent to 45 percent between 2004 and 2006, according to Market Data Retrieval. Why the popularity? For starters, video-streaming products are easy to use. They allow teachers to punctuate lessons with…

  10. Save Our Streams and Waterways.

    ERIC Educational Resources Information Center

    Indiana State Dept. of Education, Indianapolis. Center for School Improvement and Performance.

    Protection of existing water supplies is critical to ensuring good health for people and animals alike. This program is aligned with the Izaak Walton League of American's Save Our Streams program which is based on the concept that students can greatly improve the quality of a nearby stream, pond, or river by regular visits and monitoring. The…

  11. Industrial-Strength Streaming Video.

    ERIC Educational Resources Information Center

    Avgerakis, George; Waring, Becky

    1997-01-01

    Corporate training, financial services, entertainment, and education are among the top applications for streaming video servers, which send video to the desktop without downloading the whole file to the hard disk, saving time and eliminating copyrights questions. Examines streaming video technology, lists ten tips for better net video, and ranks…

  12. Stream, Lake, and Reservoir Management.

    PubMed

    Mei, Ying; Chang, Chein-Chi; Dong, Zhanfeng; Wei, Li

    2016-10-01

    This review on stream, lake, and reservoir management covers selected 2015 publications on the focus of the following sections: • Biota • Climate effect • Models • Remediation and restoration • Reservoir operations • Stream, Lake, and Reservoir Management • Water quality. PMID:27620102

  13. Dynamical modelling of meteoroid streams

    NASA Astrophysics Data System (ADS)

    Clark, D. L.; Wiegert, P. A.

    2014-07-01

    Accurate simulations of meteoroid streams permit the prediction of stream interaction with Earth, and provide a measure of risk to Earth satellites and interplanetary spacecraft. Current cometary ejecta and meteoroid stream models have been somewhat successful in predicting some stream observations, but have required significant assumptions and simplifications. Extending on the approach of Vaubaillon et al. 2005, we model dust ejection from the cometary nucleus, and generate sample particles representing bins of distinct dynamical evolution-regulating characteristics (size, density, direction, albedo). Ephemerides of the sample particles are integrated and recorded for later assignment of weights based on model parameter changes. To assist in model analysis we are developing interactive software to permit the "turning of knobs" of model parameters, allowing for near-real-time 3D visualization of resulting stream structure. Using the tool, we will revisit prior assumptions made, and will observe the impact of introducing non-uniform and time-variant cometary surface attributes and processes.

  14. FireHose Streaming Benchmarks

    SciTech Connect

    Karl Anderson, Steve Plimpton

    2015-01-27

    The FireHose Streaming Benchmarks are a suite of stream-processing benchmarks defined to enable comparison of streaming software and hardware, both quantitatively vis-a-vis the rate at which they can process data, and qualitatively by judging the effort involved to implement and run the benchmarks. Each benchmark has two parts. The first is a generator which produces and outputs datums at a high rate in a specific format. The second is an analytic which reads the stream of datums and is required to perform a well-defined calculation on the collection of datums, typically to find anomalous datums that have been created in the stream by the generator. The FireHose suite provides code for the generators, sample code for the analytics (which users are free to re-implement in their own custom frameworks), and a precise definition of each benchmark calculation.

  15. Dynamical modeling of tidal streams

    SciTech Connect

    Bovy, Jo

    2014-11-01

    I present a new framework for modeling the dynamics of tidal streams. The framework consists of simple models for the initial action-angle distribution of tidal debris, which can be straightforwardly evolved forward in time. Taking advantage of the essentially one-dimensional nature of tidal streams, the transformation to position-velocity coordinates can be linearized and interpolated near a small number of points along the stream, thus allowing for efficient computations of a stream's properties in observable quantities. I illustrate how to calculate the stream's average location (its 'track') in different coordinate systems, how to quickly estimate the dispersion around its track, and how to draw mock stream data. As a generative model, this framework allows one to compute the full probability distribution function and marginalize over or condition it on certain phase-space dimensions as well as convolve it with observational uncertainties. This will be instrumental in proper data analysis of stream data. In addition to providing a computationally efficient practical tool for modeling the dynamics of tidal streams, the action-angle nature of the framework helps elucidate how the observed width of the stream relates to the velocity dispersion or mass of the progenitor, and how the progenitors of 'orphan' streams could be located. The practical usefulness of the proposed framework crucially depends on the ability to calculate action-angle variables for any orbit in any gravitational potential. A novel method for calculating actions, frequencies, and angles in any static potential using a single orbit integration is described in the Appendix.

  16. Dynamical Modeling of Tidal Streams

    NASA Astrophysics Data System (ADS)

    Bovy, Jo

    2014-11-01

    I present a new framework for modeling the dynamics of tidal streams. The framework consists of simple models for the initial action-angle distribution of tidal debris, which can be straightforwardly evolved forward in time. Taking advantage of the essentially one-dimensional nature of tidal streams, the transformation to position-velocity coordinates can be linearized and interpolated near a small number of points along the stream, thus allowing for efficient computations of a stream's properties in observable quantities. I illustrate how to calculate the stream's average location (its "track") in different coordinate systems, how to quickly estimate the dispersion around its track, and how to draw mock stream data. As a generative model, this framework allows one to compute the full probability distribution function and marginalize over or condition it on certain phase-space dimensions as well as convolve it with observational uncertainties. This will be instrumental in proper data analysis of stream data. In addition to providing a computationally efficient practical tool for modeling the dynamics of tidal streams, the action-angle nature of the framework helps elucidate how the observed width of the stream relates to the velocity dispersion or mass of the progenitor, and how the progenitors of "orphan" streams could be located. The practical usefulness of the proposed framework crucially depends on the ability to calculate action-angle variables for any orbit in any gravitational potential. A novel method for calculating actions, frequencies, and angles in any static potential using a single orbit integration is described in the Appendix.

  17. Projectile Motion with Mathematica.

    ERIC Educational Resources Information Center

    de Alwis, Tilak

    2000-01-01

    Describes how to use the computer algebra system (CAS) Mathematica to analyze projectile motion with and without air resistance. These experiments result in several conjectures leading to theorems. (Contains 17 references.) (Author/ASK)

  18. Motional EMF demonstration experiment

    NASA Astrophysics Data System (ADS)

    Kingman, Robert; Popescu, Sabin

    2001-03-01

    A simple quantitative motional emf experiment. The induced voltage is recorded in this computer-based experiment as a coil is moved through the field of a permanent magnet. Results compare closely with predicted values.

  19. Vision and Motion Pictures.

    ERIC Educational Resources Information Center

    Grambo, Gregory

    1998-01-01

    Presents activities on persistence of vision that involve students in a hands-on approach to the study of early methods of creating motion pictures. Students construct flip books, a Zoetrope, and an early movie machine. (DDR)

  20. A Projectile Motion Bullseye.

    ERIC Educational Resources Information Center

    Lamb, William G.

    1985-01-01

    Explains a projectile motion experiment involving a bow and arrow. Procedures to measure "muzzle" velocity, bow elastic potential energy, range, flight time, wind resistance, and masses are considered. (DH)

  1. Dizziness and Motion Sickness

    MedlinePlus

    ... special tests of eye motion after warm or cold water or air is used to stimulate the ... Get enough fluids Treat infections, including ear infections, colds, flu, sinus congestion, and other respiratory infections If ...

  2. Molecular Motion Machine

    ERIC Educational Resources Information Center

    Shourd, Melvin L.

    1977-01-01

    Describes the construction of an inexpensive apparatus which utilizes the oscillatory motion of 60 cycle AC current in conjunction with an electromagnetic to illustrate various principles and processes in geology. (SL)

  3. Toying with Motion.

    ERIC Educational Resources Information Center

    Galus, Pamela J.

    2002-01-01

    Presents a variety of activities that support the development of an understanding of Newton's laws of motion. Activities use toy cars, mobile roads, and a seat-of-nails. Includes a scoring rubric. (DDR)

  4. The role of penetrating gas streams in setting the dynamical state of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Zinger, E.; Dekel, A.; Birnboim, Y.; Kravtsov, A.; Nagai, D.

    2016-09-01

    We utilize cosmological simulations of 16 galaxy clusters at redshifts z = 0 and z = 0.6 to study the effect of inflowing streams on the properties of the X-ray emitting intracluster medium. We find that the mass accretion occurs predominantly along streams that originate from the cosmic web and consist of heated gas. Clusters that are unrelaxed in terms of their X-ray morphology are characterized by higher mass inflow rates and deeper penetration of the streams, typically into the inner third of the virial radius. The penetrating streams generate elevated random motions, bulk flows and cold fronts. The degree of penetration of the streams may change over time such that clusters can switch from being unrelaxed to relaxed over a time-scale of several giga years.

  5. Kinematically Detected Halo Streams

    NASA Astrophysics Data System (ADS)

    Smith, Martin C.

    Clues to the origins and evolution of our Galaxy can be found in the kinematics of stars around us. Remnants of accreted satellite galaxies produce over-densities in velocity-space, which can remain coherent for much longer than spatial over-densities. This chapter reviews a number of studies that have hunted for these accretion relics, both in the nearby solar-neighborhood and the more-distant stellar halo. Many observational surveys have driven this field forwards, from early work with the Hipparcos mission, to contemporary surveys like RAVE and SDSS. This active field continues to flourish, providing many new discoveries, and will be revolutionized as the Gaia mission delivers precise proper motions for a billion stars in our Galaxy.

  6. What a Tangled Web We Weave: Hermus as the Northern Extension of the Phoenix Stream

    NASA Astrophysics Data System (ADS)

    Grillmair, Carl J.; Carlberg, Raymond G.

    2016-04-01

    We investigate whether the recently discovered Phoenix stream may be part of a much longer stream that includes the previously discovered Hermus stream. Using a simple model of the Galaxy with a disk, bulge, and a spherical dark matter halo, we show that a nearly circular orbit, highly inclined with respect to the disk, can be found that fits the positions, orientations, and distances of both streams. While the two streams are somewhat misaligned in the sense that they do not occupy the same plane, nodal precession due to the Milky Way disk potential naturally brings the orbit into line with each stream in the course of half an orbit. We consequently consider a common origin for the two streams as plausible. Based on our best-fitting orbit, we make predictions for the positions, distances, radial velocities, and proper motions along each stream. If our hypothesis is borne out by measurements, then at ≈183° (≈235° with respect to the Galactic center) and ≈76 kpc in length, Phoenix-Hermus would become the longest cold stream yet found. This would make it a particularly valuable new probe of the shape and mass of the Galactic halo out to ≈20 kpc.

  7. Self-organized Motion During Dictyostelium amoebae aggregation

    NASA Astrophysics Data System (ADS)

    Levine, Herbert

    2004-03-01

    After starvation, amoeba of the cellular slime mold Dictyostelium discoideum aggregate to form rudimentary multicellular organisms. The coordination of the individual motions of hundreds of thousands of individual cells is an important ingredient in the success of this process. This coordination is accomplished by chemical signaling during the early stages and by direct cell-cell interactions once the cells reach the nascent mound. This talk will review the basic nonequilibrium physics underlying the spatial patterns formed by these cooperative motions, including high-density incoming streams and spontaneously rotating mounds.

  8. The motion of bubbles inside drops in containerless processing

    NASA Technical Reports Server (NTRS)

    Shankar, N.; Annamalai, P.; Cole, R.; Subramanian, R. S.

    1982-01-01

    A theoretical model of thermocapillary bubble motion inside a drop, located in a space laboratory, due to an arbitrary axisymmetric temperature distribution on the drop surface was constructed. Typical results for the stream function and temperature fields as well as the migration velocity of the bubble were obtained in the quasistatic limit. The motion of bubbles in a rotating body of liquid was studied experimentally, and an approximate theoretical model was developed. Comparison of the experimental observations of the bubble trajectories and centering times with theoretical predictions lends qualified support to the theory.

  9. Role of monitoring in stream restoration

    EPA Science Inventory

    Hydrology and dissolved organic carbon availability dictate nitrate dynamics in urban streams. So to improve N uptake, restore streams to: • Slow down stream flow • Add organic carbon • Reconnect floodplain hydrology and riparian zones

  10. Electronic Eye: Streaming Video On-Demand.

    ERIC Educational Resources Information Center

    Meulen, Kathleen

    2002-01-01

    Discusses the use of on-demand streaming video in school libraries. Explains how streaming works, considers advantages and technical issues, and describes products from three companies that are pioneering streaming in the educational video market. (LRW)

  11. Mixing of Supersonic Streams

    NASA Technical Reports Server (NTRS)

    Hawk, Clark W.; Landrum, D. Brian; Spetman, David

    1997-01-01

    The Strutjet approach to Rocket Based Combined Cycle (RBCC) propulsion depends upon fuel-rich flows from the rocket nozzles and turbine exhaust products mixing with the ambient air for successful operation in the ramjet and scramjet modes. A model of the Strutjet device has been built and is undergoing test to investigate the mixing of the streams as a function of distance from the Strutjet exit plane. The modeling basis was centered on using convective Mach Number as the similarity parameter to establish correlation between subscale, cold flow tests and full scale, hot firing modes. This parameter has been used successfully to correlate supersonic shear layer growth rates. The experiment design includes hot (600 R) air as the rocket exhaust simulant and hot (760 R) carbon dioxide as the turbine exhaust gas simulant. The combination of gases and their elevated temperatures was required to achieve a convective Mach Number which matched the fall scale item design conditions. The carbon dioxide is seeded with Acetone to permit tracing of the mixing processes through Laser Induced Fluorescence (LIF) techniques. The experiment and its design will be discussed in detail. Both the rocket and turbine exhaust duct nozzles are of unique (square and rectangular) shape and the turbine exhaust e)dt intersects the rocket nozzle wall upstream of the exit. Cold flow testing with the individual nozzles has been conducted to ascertain their behavior in comparison to conventional flow theory. These data are presented.

  12. Cross-domain adaptation reveals that a common mechanism computes stereoscopic (cyclopean) and luminance plaid motion.

    PubMed

    Bowd, C; Donnelly, M; Shorter, S; Patterson, R

    2000-01-01

    Across three experiments, this study investigated the visual processing of moving stereoscopic plaid patterns (plaids created with cyclopean components defined by moving binocular disparity embedded in a dynamic random-dot stereogram). Results showed that adaptation to a moving stereoscopic plaid or its components affected the perceived coherence of a luminance test plaid, and vice versa. Cross-domain adaptation suggests that stereoscopic and luminance motion signals feed into a common pattern-motion mechanism, consistent with the idea that stereoscopic motion signals are computed early in the motion processing stream.

  13. The Stream-Catchment (StreamCat) Dataset

    EPA Science Inventory

    Stream environments reflect, in part, the hydrologic integration of upstream landscapes. Characterizing upstream landscape features is critical for effectively understanding, managing, and conserving riverine ecosystems. However, watershed delineation is a major challenge if hund...

  14. Red giants in the Small Magellanic Cloud - I. Disc and tidal stream kinematics

    NASA Astrophysics Data System (ADS)

    Dobbie, P. D.; Cole, A. A.; Subramaniam, A.; Keller, S.

    2014-08-01

    We present results from an extensive spectroscopic survey of field stars in the Small Magellanic Cloud (SMC). 3037 sources, predominantly first-ascent red giants, spread across roughly 37.5 deg2, are analysed. The line-of-sight velocity field is dominated by the projection of the orbital motion of the SMC around the Large Magellanic Cloud/Milky Way. The residuals are inconsistent with both a non-rotating spheroid and a nearly face on disc system. The current sample and previous stellar and H I kinematics can be reconciled by rotating disc models with line-of-nodes position angle Θ ≈ 120°-130°, moderate inclination (25°-70°), and rotation curves rising at 20-40 km s-1 kpc-1. The metal-poor stars exhibit a lower velocity gradient and higher velocity dispersion than the metal-rich stars. If our interpretation of the velocity patterns as bulk rotation is appropriate, then some revision to simulations of the SMC orbit is required since these are generally tuned to the SMC disc line of nodes lying in a north-east-south-west (SW) direction. Residuals show strong spatial structure indicative of non-circular motions that increase in importance with increasing distance from the SMC centre. Kinematic substructure in the north-west part of our survey area is associated with the tidal tail or Counter-Bridge predicted by simulations. Lower line-of-sight velocities towards the Wing and the larger velocities just beyond the SW end of the SMC Bar are probably associated with stellar components of the Magellanic-Bridge and Counter-Bridge, respectively. Our results reinforce the notion that the intermediate-age stellar population of the SMC is subject to substantial stripping by external forces.

  15. PROMOTIONS: PROper MOTION Software

    NASA Astrophysics Data System (ADS)

    Caleb Wherry, John; Sahai, R.

    2009-05-01

    We report on the development of a software tool (PROMOTIONS) to streamline the process of measuring proper motions of material in expanding nebulae. Our tool makes use of IDL's widget programming capabilities to design a unique GUI that is used to compare images of the objects from two epochs. The software allows us to first orient and register the images to a common frame of reference and pixel scale, using field stars in each of the images. We then cross-correlate specific morphological features in order to determine their proper motions, which consist of the proper motion of the nebula as a whole (PM-neb), and expansion motions of the features relative to the center. If the central star is not visible (quite common in bipolar nebulae with dense dusty waists), point-symmetric expansion is assumed and we use the average motion of high-quality symmetric pairs of features on opposite sides of the nebular center to compute PM-neb. This is then subtracted out to determine the individual movements of these and additional features relative to the nebular center. PROMOTIONS should find wide applicability in measuring proper motions in astrophysical objects such as the expanding outflows/jets commonly seen around young and dying stars. We present first results from using PROMOTIONS to successfully measure proper motions in several pre-planetary nebulae (transition objects between the red giant and planetary nebula phases), using images taken 7-10 years apart with the WFPC2 and ACS instruments on board HST. The authors are grateful to NASA's Undergradute Scholars Research Program (USRP) for supporting this research.

  16. Motion Belts: Visualization of Human Motion Data on a Timeline

    NASA Astrophysics Data System (ADS)

    Yasuda, Hiroshi; Kaihara, Ryota; Saito, Suguru; Nakajima, Masayuki

    Because motion capture system enabled us to capture a number of human motions, the demand for a method to easily browse the captured motion database has been increasing. In this paper, we propose a method to generate simple visual outlines of motion clips, for the purpose of efficient motion data browsing. Our method unfolds a motion clip into a 2D stripe of keyframes along a timeline that is based on semantic keyframe extraction and the best view point selection for each keyframes. With our visualization, timing and order of actions in the motions are clearly visible and the contents of multiple motions are easily comparable. In addition, because our method is applicable for a wide variety of motions, it can generate outlines for a large amount of motions fully automatically.

  17. Global motion perception is independent from contrast sensitivity for coherent motion direction discrimination and visual acuity in 4.5-year-old children

    PubMed Central

    Chakraborty, Arijit; Anstice, Nicola S.; Jacobs, Robert J.; Paudel, Nabin; LaGasse, Linda L.; Lester, Barry M.; Wouldes, Trecia A.; Harding, Jane E.; Thompson, Benjamin

    2015-01-01

    Global motion processing depends on a network of brain regions that includes extrastriate area V5 in the dorsal visual stream. For this reason, psychophysical measures of global motion perception have been used to provide a behavioural measure of dorsal stream function. This approach assumes that global motion is relatively independent of visual functions that arise earlier in the visual processing hierarchy such as contrast sensitivity and visual acuity. We tested this assumption by assessing the relationships between global motion perception, contrast sensitivity for coherent motion direction discrimination (henceforth referred to as contrast sensitivity) and habitual visual acuity in a large group of 4.5-year-old children (n = 117). The children were born at risk of abnormal neurodevelopment because of prenatal drug exposure or risk factors for neonatal hypoglycaemia. Motion coherence thresholds, a measure of global motion perception, were assessed using random dot kinematograms. The contrast of the stimuli was fixed at 100% and coherence was varied. Contrast sensitivity was measured using the same stimuli by fixing motion coherence at 100% and varying dot contrast. Stereoacuity was also measured. Motion coherence thresholds were not correlated with contrast sensitivity or visual acuity. However, lower (better) motion coherence thresholds were correlated with finer stereoacuity (rho=0.38, p=0.004). Contrast sensitivity and visual acuity were also correlated (rho= −0.26, p=0.004) with each other. These results indicate that global motion perception for high contrast stimuli is independent of contrast sensitivity and visual acuity and can be used to assess motion integration mechanisms in children. PMID:26318529

  18. Geologically current plate motions

    NASA Astrophysics Data System (ADS)

    DeMets, Charles; Gordon, Richard G.; Argus, Donald F.

    2010-04-01

    We describe best-fitting angular velocities and MORVEL, a new closure-enforced set of angular velocities for the geologically current motions of 25 tectonic plates that collectively occupy 97 per cent of Earth's surface. Seafloor spreading rates and fault azimuths are used to determine the motions of 19 plates bordered by mid-ocean ridges, including all the major plates. Six smaller plates with little or no connection to the mid-ocean ridges are linked to MORVEL with GPS station velocities and azimuthal data. By design, almost no kinematic information is exchanged between the geologically determined and geodetically constrained subsets of the global circuit-MORVEL thus averages motion over geological intervals for all the major plates. Plate geometry changes relative to NUVEL-1A include the incorporation of Nubia, Lwandle and Somalia plates for the former Africa plate, Capricorn, Australia and Macquarie plates for the former Australia plate, and Sur and South America plates for the former South America plate. MORVEL also includes Amur, Philippine Sea, Sundaland and Yangtze plates, making it more useful than NUVEL-1A for studies of deformation in Asia and the western Pacific. Seafloor spreading rates are estimated over the past 0.78 Myr for intermediate and fast spreading centres and since 3.16 Ma for slow and ultraslow spreading centres. Rates are adjusted downward by 0.6-2.6mmyr-1 to compensate for the several kilometre width of magnetic reversal zones. Nearly all the NUVEL-1A angular velocities differ significantly from the MORVEL angular velocities. The many new data, revised plate geometries, and correction for outward displacement thus significantly modify our knowledge of geologically current plate motions. MORVEL indicates significantly slower 0.78-Myr-average motion across the Nazca-Antarctic and Nazca-Pacific boundaries than does NUVEL-1A, consistent with a progressive slowdown in the eastward component of Nazca plate motion since 3.16 Ma. It also

  19. Mixing of Supersonic Streams

    NASA Technical Reports Server (NTRS)

    Hawk, C. W.; Landrum, D. B.; Muller, S.; Turner, M.; Parkinson, D.

    1998-01-01

    The Strutjet approach to Rocket Based Combined Cycle (RBCC) propulsion depends upon fuel-rich flows from the rocket nozzles and turbine exhaust products mixing with the ingested air for successful operation in the ramjet and scramjet modes. It is desirable to delay this mixing process in the air-augmented mode of operation present during low speed flight. A model of the Strutjet device has been built and is undergoing test to investigate the mixing of the streams as a function of distance from the Strutjet exit plane during simulated low speed flight conditions. Cold flow testing of a 1/6 scale Strutjet model is underway and nearing completion. Planar Laser Induced Fluorescence (PLIF) diagnostic methods are being employed to observe the mixing of the turbine exhaust gas with the gases from both the primary rockets and the ingested air simulating low speed, air augmented operation of the RBCC. The ratio of the pressure in the turbine exhaust duct to that in the rocket nozzle wall at the point of their intersection is the independent variable in these experiments. Tests were accomplished at values of 1.0, 1.5 and 2.0 for this parameter. Qualitative results illustrate the development of the mixing zone from the exit plane of the model to a distance of about 19 equivalent rocket nozzle exit diameters downstream. These data show the mixing to be confined in the vertical plane for all cases, The lateral expansion is more pronounced at a pressure ratio of 1.0 and suggests that mixing with the ingested flow would be likely beginning at a distance of 7 nozzle exit diameters downstream of the nozzle exit plane.

  20. Mixing of Supersonic Streams

    NASA Technical Reports Server (NTRS)

    Hawk, C. W.; Landrum, D. B.; Muller, S.; Turner, M.; Parkinson, D.

    1998-01-01

    The Strutjet approach to Rocket Based Combined Cycle (RBCC) propulsion depends upon fuel-rich flows from the rocket nozzles and turbine exhaust products mixing with the ingested air for successful operation in the ramjet and scramjet modes. It is desirable to delay this mixing process in the air-augmented mode of operation present during low speed flight. A model of the Strutjet device has been built and is undergoing test to investigate the mixing of the streams as a function of distance from the Strutjet exit plane during simulated low speed flight conditions. Cold flow testing of a 1/6 scale Strutjet model is underway and nearing completion. Planar Laser Induced Fluorescence (PLIF) diagnostic methods are being employed to observe the mixing of the turbine exhaust gas with the gases from both the primary rockets and the ingested air simulating low speed, air augmented operation of the RBCC. The ratio of the pressure in the turbine exhaust duct to that in the rocket nozzle wall at the point of their intersection is the independent variable in these experiments. Tests were accomplished at values of 1.0, 1.5 and 2.0 for this parameter. Qualitative results illustrate the development of the mixing zone from the exit plane of the model to a distance of about 10 rocket nozzle exit diameters downstream. These data show the mixing to be confined in the vertical plane for all cases, The lateral expansion is more pronounced at a pressure ratio of 1.0 and suggests that mixing with the ingested flow would be likely beginning at a distance of 7 nozzle exit diameters downstream of the nozzle exit plane.

  1. Space motion sickness

    NASA Technical Reports Server (NTRS)

    Homick, J. L.

    1979-01-01

    Research on the etiology, prediction, treatment and prevention of space motion sickness, designed to minimize the impact of this syndrome which was experienced frequently and with severity by individuals on the Skylab missions, on Space Shuttle crews is reviewed. Theories of the cause of space motion sickness currently under investigation by NASA include sensory conflict, which argues that motion sickness symptoms result from a mismatch between the total pattern of information from the spatial senses and that stored from previous experiences, and fluid shift, based upon the redistribution of bodily fluids that occurs upon continued exposure to weightlessness. Attempts are underway to correlate space motion sickness susceptibility to different provocative environments, vestibular and nonvestibular responses, and the rate of acquisition and length of retention of sensory adaptation. Space motion sickness countermeasures under investigation include various drug combinations, of which the equal combination of promethazine and ephedrine has been found to be as effective as the scopolomine and dexedrine combination, and vestibular adaptation and biofeedback training and autogenic therapy.

  2. It's, Like, Relative Motion at the Mall

    NASA Astrophysics Data System (ADS)

    Robinett, R. W.

    2003-03-01

    Almost all introductory textbooks, both algebra- and calculus-based, include sections on relative motion and relative velocity, in both one and two dimensions. The most popular examples in discussions of 2-D relative velocity in such texts seem to be the motion of airplanes/blimps flying in the presence of wind or the conceptually identical cases of boats/rafts piloted across rivers/streams, including the effects of currents. These and similar cases are rather removed from the everyday experience of some students, and the use of simple lecture demonstrations to illustrate these concepts can be quite useful. For example, the motion of a simple toy "wind-up" car moving at constant speed across a horizontal tabletop, with a plastic sheet underneath providing the "moving frame of reference," can illustrate many aspects of such problems, including the need to "point" the plane/boat in an appropriate direction, just as illustrated in many textbook figures. On the other hand, it is also useful if students can directly experience concepts for themselves, especially in a kinesthetic manner, but there are seemingly far fewer human-sized lecture demonstrations on this topic. In this paper, we will point out one such example which might well be just a short drive away.

  3. The Particle--Motion Problem.

    ERIC Educational Resources Information Center

    Demana, Franklin; Waits, Bert K.

    1993-01-01

    Discusses solutions to real-world linear particle-motion problems using graphing calculators to simulate the motion and traditional analytic methods of calculus. Applications include (1) changing circular or curvilinear motion into linear motion and (2) linear particle accelerators in physics. (MDH)

  4. Streaming in English Primary Schools

    ERIC Educational Resources Information Center

    Acland, H.

    1973-01-01

    This paper seeks to extend our knowledge of ability grouping through the reanalysis of two sets of survey data, the Plowden survey (Peaker, 1967) and the NFER streaming survey (Barker Lunn, 1970). (Editor)

  5. FireHose Streaming Benchmarks

    2015-01-27

    The FireHose Streaming Benchmarks are a suite of stream-processing benchmarks defined to enable comparison of streaming software and hardware, both quantitatively vis-a-vis the rate at which they can process data, and qualitatively by judging the effort involved to implement and run the benchmarks. Each benchmark has two parts. The first is a generator which produces and outputs datums at a high rate in a specific format. The second is an analytic which reads the streammore » of datums and is required to perform a well-defined calculation on the collection of datums, typically to find anomalous datums that have been created in the stream by the generator. The FireHose suite provides code for the generators, sample code for the analytics (which users are free to re-implement in their own custom frameworks), and a precise definition of each benchmark calculation.« less

  6. MODELING PLUMES IN SMALL STREAMS

    EPA Science Inventory

    Pesticides accumulate on land surfaces from agricultural, commercial, and domestic application, and wash into streams and rivers during dry and wet weather. Flood water retention basins or structures often collect this contaminated runoff, providing intermediate storage and limit...

  7. ATLAS Live: Collaborative Information Streams

    NASA Astrophysics Data System (ADS)

    Goldfarb, Steven; ATLAS Collaboration

    2011-12-01

    I report on a pilot project launched in 2010 focusing on facilitating communication and information exchange within the ATLAS Collaboration, through the combination of digital signage software and webcasting. The project, called ATLAS Live, implements video streams of information, ranging from detailed detector and data status to educational and outreach material. The content, including text, images, video and audio, is collected, visualised and scheduled using digital signage software. The system is robust and flexible, utilizing scripts to input data from remote sources, such as the CERN Document Server, Indico, or any available URL, and to integrate these sources into professional-quality streams, including text scrolling, transition effects, inter and intra-screen divisibility. Information is published via the encoding and webcasting of standard video streams, viewable on all common platforms, using a web browser or other common video tool. Authorisation is enforced at the level of the streaming and at the web portals, using the CERN SSO system.

  8. Cellular Subcompartments through Cytoplasmic Streaming.

    PubMed

    Pieuchot, Laurent; Lai, Julian; Loh, Rachel Ann; Leong, Fong Yew; Chiam, Keng-Hwee; Stajich, Jason; Jedd, Gregory

    2015-08-24

    Cytoplasmic streaming occurs in diverse cell types, where it generally serves a transport function. Here, we examine streaming in multicellular fungal hyphae and identify an additional function wherein regimented streaming forms distinct cytoplasmic subcompartments. In the hypha, cytoplasm flows directionally from cell to cell through septal pores. Using live-cell imaging and computer simulations, we identify a flow pattern that produces vortices (eddies) on the upstream side of the septum. Nuclei can be immobilized in these microfluidic eddies, where they form multinucleate aggregates and accumulate foci of the HDA-2 histone deacetylase-associated factor, SPA-19. Pores experiencing flow degenerate in the absence of SPA-19, suggesting that eddy-trapped nuclei function to reinforce the septum. Together, our data show that eddies comprise a subcellular niche favoring nuclear differentiation and that subcompartments can be self-organized as a consequence of regimented cytoplasmic streaming.

  9. Brownian motion of graphene.

    PubMed

    Maragó, Onofrio M; Bonaccorso, Francesco; Saija, Rosalba; Privitera, Giulia; Gucciardi, Pietro G; Iatì, Maria Antonia; Calogero, Giuseppe; Jones, Philip H; Borghese, Ferdinando; Denti, Paolo; Nicolosi, Valeria; Ferrari, Andrea C

    2010-12-28

    Brownian motion is a manifestation of the fluctuation-dissipation theorem of statistical mechanics. It regulates systems in physics, biology, chemistry, and finance. We use graphene as prototype material to unravel the consequences of the fluctuation-dissipation theorem in two dimensions, by studying the Brownian motion of optically trapped graphene flakes. These orient orthogonal to the light polarization, due to the optical constants anisotropy. We explain the flake dynamics in the optical trap and measure force and torque constants from the correlation functions of the tracking signals, as well as comparing experiments with a full electromagnetic theory of optical trapping. The understanding of optical trapping of two-dimensional nanostructures gained through our Brownian motion analysis paves the way to light-controlled manipulation and all-optical sorting of biological membranes and anisotropic macromolecules. PMID:21133432

  10. Motion detector and analyzer

    DOEpatents

    Unruh, W.P.

    1987-03-23

    Method and apparatus are provided for deriving positive and negative Doppler spectrum to enable analysis of objects in motion, and particularly, objects having rotary motion. First and second returned radar signals are mixed with internal signals to obtain an in-phase process signal and a quadrature process signal. A broad-band phase shifter shifts the quadrature signal through 90/degree/ relative to the in-phase signal over a predetermined frequency range. A pair of signals is output from the broad-band phase shifter which are then combined to provide a first side band signal which is functionally related to a negative Doppler shift spectrum. The distinct positive and negative Doppler spectra may then be analyzed for the motion characteristics of the object being examined.

  11. Intrinsic Feature Motion Tracking

    SciTech Connect

    Goddard, Jr., James S.

    2013-03-19

    Subject motion during 3D medical scanning can cause blurring and artifacts in the 3D images resulting in either rescans or poor diagnosis. Anesthesia or physical restraints may be used to eliminate motion but are undesirable and can affect results. This software measures the six degree of freedom 3D motion of the subject during the scan under a rigidity assumption using only the intrinsic features present on the subject area being monitored. This movement over time can then be used to correct the scan data removing the blur and artifacts. The software acquires images from external cameras or images stored on disk for processing. The images are from two or three calibrated cameras in a stereo arrangement. Algorithms extract and track the features over time and calculate position and orientation changes relative to an initial position. Output is the 3D position and orientation change measured at each image.

  12. Intrinsic Feature Motion Tracking

    2013-03-19

    Subject motion during 3D medical scanning can cause blurring and artifacts in the 3D images resulting in either rescans or poor diagnosis. Anesthesia or physical restraints may be used to eliminate motion but are undesirable and can affect results. This software measures the six degree of freedom 3D motion of the subject during the scan under a rigidity assumption using only the intrinsic features present on the subject area being monitored. This movement over timemore » can then be used to correct the scan data removing the blur and artifacts. The software acquires images from external cameras or images stored on disk for processing. The images are from two or three calibrated cameras in a stereo arrangement. Algorithms extract and track the features over time and calculate position and orientation changes relative to an initial position. Output is the 3D position and orientation change measured at each image.« less

  13. Diurnal polar motion

    NASA Technical Reports Server (NTRS)

    Mcclure, P.

    1973-01-01

    An analytical theory is developed to describe diurnal polar motion in the earth which arises as a forced response due to lunisolar torques and tidal deformation. Doodson's expansion of the tide generating potential is used to represent the lunisolar torques. Both the magnitudes and the rates of change of perturbations in the earth's inertia tensor are included in the dynamical equations for the polar motion so as to account for rotational and tidal deformation. It is found that in a deformable earth with Love's number k = 0.29, the angular momentum vector departs by as much as 20 cm from the rotation axis rather than remaining within 1 or 2 cm as it would in a rigid earth. This 20 cm separation is significant in the interpretation of submeter polar motion observations because it necessitates an additional coordinate transformation in order to remove what would otherwise be a 20 cm error source in the conversion between inertial and terrestrial reference systems.

  14. Muscle Motion Solenoid Actuator

    NASA Astrophysics Data System (ADS)

    Obata, Shuji

    It is one of our dreams to mechanically recover the lost body for damaged humans. Realistic humanoid robots composed of such machines require muscle motion actuators controlled by all pulling actions. Particularly, antagonistic pairs of bi-articular muscles are very important in animal's motions. A system of actuators is proposed using the electromagnetic force of the solenoids with the abilities of the stroke length over 10 cm and the strength about 20 N, which are needed to move the real human arm. The devised actuators are based on developments of recent modern electro-magnetic materials, where old time materials can not give such possibility. Composite actuators are controlled by a high ability computer and software making genuine motions.

  15. Geomorphology of ice stream beds: recent progress and future challenges

    NASA Astrophysics Data System (ADS)

    Stokes, Chris R.

    2016-04-01

    Ice sheets lose mass primarily by melting and discharge via rapidly-flowing ice streams. Surface and basal melting (e.g. of ice shelves) are closely linked to atmospheric and oceanic conditions, but the mechanisms that drive changes in ice stream discharge are more complex; and are influenced by conditions at their bed which can sustain, enhance or inhibit their motion. Although explicit comparisons are rare, the ice-bed interface is similar to the 'boundary layer' in fluvial and aeolian environments, where shear stresses (both basal and lateral in the case of ice streams) oppose the flow of the overlying medium. The analogy extends further because processes within the boundary layer create a distinctive geomorphology (and roughness) that is characterised by subglacial bedforms that resemble features in fluvial and aeolian environments. Their creation results from erosion, transport and deposition of sediment which is poorly constrained, but which is intimately linked to the mechanisms through which ice streams are able to flow rapidly. The study of ice stream geomorphology is, therefore, critical to our understanding of their dynamics. Despite difficulty in observing the subglacial environment of active ice streams, our understanding of their geomorphology has grown rapidly in the last three decades, from almost complete ignorance to a detailed knowledge of their geomorphological products. This has been brought about by two main approaches: (i) geophysical investigation of modern (active) ice streams, and (ii) sedimentological and geomorphological investigation of palaeo-ice stream beds. The aim of this paper is to review progress in these two areas, highlight the key questions that remain, and discuss the opportunities that are likely to arise that will enable them to be addressed. It is clear that whilst these two main approaches have led to important advances, they have often been viewed as separate sub-disciplines, with minimal cross-pollination of ideas and

  16. A Comprehensive Model for the Monoceros Tidal Stream

    NASA Astrophysics Data System (ADS)

    Peñarrubia, J.; Martínez-Delgado, D.; Rix, H. W.; Gómez-Flechoso, M. A.; Munn, J.; Newberg, H.; Bell, E. F.; Yanny, B.; Zucker, D.; Grebel, E. K.

    2005-06-01

    We have compiled an extensive data set on potential parts of the Monoceros tidal stream and performed an exhaustive survey of dwarf galaxy semianalytic orbits in order to constrain its orbital properties. The best-fit orbits are subsequently realized as self-consistent N-body simulations in order to reproduce the spatial and velocity distribution of satellite debris. We find that all kinematic and geometric constraints can be fit by a single stream allowing for multiple wraps. The orbital eccentricity and inclination of the progenitor are strongly constrained to be e=0.10+/-0.05 and i=25deg+/-5deg. Ten new estimates of proper motions from the Sloan Digital Sky Survey clearly exclude all retrograde orbits. Particles lost by the satellite populate two nearly concentric rings, naturally explaining the detection of stream stars at both 6-8 kpc (Ibata et al.; Newberg et al.) and 12-18 kpc (the Tri/And stream; Rocha-Pinto et al.) from the Sun. We have attempted to predict the present location of the Monoceros stream progenitor using different information: (1) the kinematical and spatial distribution of detections, and (2) the different mean metallicity in the inner and the outer rings. Because of the lack of observational data in the whole range of Galactic latitudes, the geometrical/kinematical constraints lead to a wide range of possible locations. By associating older parts of the model stream with lower metallicity parts of the observed data, we argue in favor of a current location of l~245deg, b~-18deg, with a distance to the Sun rs~=15 kpc. The mass of the progenitor has been poorly constrained because of the slow orbital decay. Similar fits have been obtained for masses (3-9)×108Msolar. We have analyzed the possible common origin of the Canis Major dwarf and the Monoceros stream. The Canis Major dwarf moves on a prograde, nearly circular orbit (e~=0.16) in the Milky Way disk (i~=4+14-4 deg). This orbital inclination is too low to account for the large vertical

  17. Coherent motion sensitivity predicts individual differences in subtraction.

    PubMed

    Boets, Bart; De Smedt, Bert; Ghesquière, Pol

    2011-01-01

    Recent findings suggest deficits in coherent motion sensitivity, an index of visual dorsal stream functioning, in children with poor mathematical skills or dyscalculia, a specific learning disability in mathematics. We extended these data using a longitudinal design to unravel whether visual dorsal stream functioning is able to predict individual differences in subsequent specific mathematical skills, i.e., single-digit subtraction and multiplication. We measured children's sensitivity to coherent motion in kindergarten (mean age: 5 years 8 months) and evaluated their subtraction and multiplication skills in third grade (mean age 8 years 3 months). Findings revealed an association between subtraction but not multiplication performance and coherent motion sensitivity. This association remained significant even when intellectual ability and reading ability were additionally controlled for. Subtractions are typically solved by means of quantity-based procedural strategies, which reliably recruit the intraparietal sulcus. Against the background of a neural overlap between the intraparietal sulcus and visual dorsal stream functioning, we hypothesize that low-level visuospatial mechanisms might set constraints on the development of quantity representations, which are used during calculation, particularly in subtraction. PMID:21324638

  18. Distillation plus membrane processing of gas streams

    SciTech Connect

    Waldo, R.A.; Burkinshaw, J.R.

    1990-06-26

    This patent describes a process for separating components of a feed gas stream comprising carbon dioxide, hydrogen sulfide, nitrogen, methane, and higher molecular weight hydrocarbons to form a carbon dioxide-rich stream and a methane-rich stream. It comprises: passing the feed gas stream to a first fractional distillation column; withdrawing a first overhead stream from the first fractional distillation column; withdrawing a first bottoms stream from the first fractional distillation column; passing the first overhead stream to a second fractional distillation column; withdrawing a second overhead stream wherein the second overhead stream is withdrawn from the second fractional distillation column; withdrawing a second bottoms stream wherein the second bottoms stream is withdrawn from the second fractional distillation column; passing the second overhead stream to a membrane separation unit; withdrawing a residual gas stream from the membrane separation unit to form the methane-rich stream; and withdrawing a residual gas stream from the membrane separation unit to form a recycle stream having a substantially increased concentration of carbon dioxide relative to the concentration of carbon dioxide in the second overhead stream.

  19. The Northeast Stream Quality Assessment

    USGS Publications Warehouse

    Van Metre, Peter C.; Riva-Murray, Karen; Coles, James F.

    2016-04-22

    In 2016, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) is assessing stream quality in the northeastern United States. The goal of the Northeast Stream Quality Assessment (NESQA) is to assess the quality of streams in the region by characterizing multiple water-quality factors that are stressors to aquatic life and evaluating the relation between these stressors and biological communities. The focus of NESQA in 2016 will be on the effects of urbanization and agriculture on stream quality in all or parts of eight states: Connecticut, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont.Findings will provide the public and policymakers with information about the most critical factors affecting stream quality, thus providing insights about possible approaches to protect the health of streams in the region. The NESQA study will be the fourth regional study conducted as part of NAWQA and will be of similar design and scope to the first three, in the Midwest in 2013, the Southeast in 2014, and the Pacific Northwest in 2015 (http://txpub.usgs.gov/RSQA/).

  20. Analysis of swimming motions.

    NASA Technical Reports Server (NTRS)

    Gallenstein, J.; Huston, R. L.

    1973-01-01

    This paper presents an analysis of swimming motion with specific attention given to the flutter kick, the breast-stroke kick, and the breast stroke. The analysis is completely theoretical. It employs a mathematical model of the human body consisting of frustrums of elliptical cones. Dynamical equations are written for this model including both viscous and inertia forces. These equations are then applied with approximated swimming strokes and solved numerically using a digital computer. The procedure is to specify the input of the swimming motion. The computer solution then provides the output displacement, velocity, and rotation or body roll of the swimmer.

  1. Dislocation motion and instability

    NASA Astrophysics Data System (ADS)

    Zhu, Yichao; Chapman, Stephen Jonathan; Acharya, Amit

    2013-08-01

    The Peach-Koehler expression for the stress generated by a single (non-planar) curvilinear dislocation is evaluated to calculate the dislocation self stress. This is combined with a law of motion to give the self-induced motion of a general dislocation curve. A stability analysis of a rectilinear, uniformly translating dislocation is then performed. The dislocation is found to be susceptible to a helical instability, with the maximum growth rate occurring when the dislocation is almost, but not exactly, pure screw. The non-linear evolution of the instability is determined numerically, and implications for slip band formation and non-Schmid behavior in yielding are discussed.

  2. Online temporal synchronization of pose and endoscopic video streams

    NASA Astrophysics Data System (ADS)

    Güler, Özgür; Yaniv, Ziv; Freysinger, Wolfgang

    2011-03-01

    Computer assisted navigation systems that combine real-time endoscopy images with pre-operative volumetric data sets aim at improving the physician's understanding of the underlying anatomical structures. To achieve accurate and safe guidance these systems are required to provide a consistent representation of the physical world. This implies that all data streams are synchronized. In our case, we are dealing with synchronization of tracking data and a video stream obtained by a tracked endoscope. Previously, such synchronization was obtained pre-operatively using phantoms. This type of approach assumes a constant latency between the data streams and is less desirable for clinical use due to the required additional hardware. In this work we describe an online temporal synchronization method. The method is based on the observation that in clinical practice the endoscope is not in constant motion. By identifying corresponding stationary points in the video and tracking streams temporal synchronization can be performed online in a manner that is transparent to the user. Initial evaluation of our approach in a laboratory study has shown that it provides comparable estimates to a phantom based approach we had previously proposed.

  3. Characterization of HIFU transducers designed for sonochemistry application: Acoustic streaming.

    PubMed

    Hallez, L; Touyeras, F; Hihn, J-Y; Bailly, Y

    2016-03-01

    Cavitation distribution in a High Intensity Focused Ultrasound sonoreactors (HIFU) has been extensively described in the recent literature, including quantification by an optical method (Sonochemiluminescence SCL). The present paper provides complementary measurements through the study of acoustic streaming generated by the same kind of HIFU transducers. To this end, results of mass transfer measurements (electrodiffusional method) were compared to optical method ones (Particle Image Velocimetry). This last one was used in various configurations: with or without an electrode in the acoustic field in order to have the same perturbation of the wave propagation. Results show that the maximum velocity is not located at the focal but shifted near the transducer, and that this shift is greater for high powers. The two cavitation modes (stationary and moving bubbles) are greatly affect the hydrodynamic behavior of our sonoreactors: acoustic streaming and the fluid generated by bubble motion. The results obtained by electrochemical measurements show the same low hydrodynamic activity in the transducer vicinity, the same shift of the active focal toward the transducer, and the same absence of activity in the post-focal axial zone. The comparison with theoretical Eckart's velocities (acoustic streaming in non-cavitating media) confirms a very high activity at the "sonochemical focal", accounted for by wave distortion, which induced greater absorption coefficients. Moreover, the equivalent liquid velocities are one order of magnitude larger than the ones measured by PIV, confirming the enhancement of mass transfer by bubbles oscillation and collapse close to the surface, rather than from a pure streaming effect.

  4. Stray, swing and scatter: angular momentum evolution of orbits and streams in aspherical potentials

    NASA Astrophysics Data System (ADS)

    Erkal, Denis; Sanders, Jason L.; Belokurov, Vasily

    2016-09-01

    In aspherical potentials orbital planes continuously evolve. The gravitational torques impel the angular momentum vector to precess, that is to slowly stray around the symmetry axis, and nutate, i.e. swing up and down periodically in the perpendicular direction. This familiar orbital pole motion - if detected and measured - can reveal the shape of the underlying gravitational potential, the quantity only crudely gauged in the Galaxy so far. Here we demonstrate that the debris poles of stellar tidal streams show a very similar straying and swinging behaviour, and give analytic expressions to link the amplitude and the frequency of the pole evolution to the flattening of the dark matter distribution. While these results are derived for near-circular orbits, we show they are also valid for eccentric orbits. Most importantly, we explain how the differential orbital plane precession leads to the broadening of the stream and show that streams on polar orbits ought to scatter faster. We provide expressions for the stream width evolution as a function of the axisymmetric potential flattening and the angle from the symmetry plane and prove that our models are in good agreement with streams produced in N-body simulations. Interestingly, the same intuition applies to streams whose progenitors are on short- or long-axis loops in a triaxial potential. Finally, we present a compilation of the Galactic cold stream data, and discuss how the simple picture developed here, along with stream modelling, can be used to constrain the symmetry axes and flattening of the Milky Way.

  5. TIDAL STREAM MORPHOLOGY AS AN INDICATOR OF DARK MATTER HALO GEOMETRY: THE CASE OF PALOMAR 5

    SciTech Connect

    Pearson, Sarah; Johnston, Kathryn V.; Price-Whelan, Adrian M.; Küpper, Andreas H. W.

    2015-01-20

    This paper presents an example where the morphology of a single stellar stream can be used to rule out a specific galactic potential form without the need for velocity information. We investigate the globular cluster Palomar 5 (Pal 5), which is tidally disrupting into a cold, thin stream mapped over 22 deg on the sky with a typical width of 0.7 deg. We generate models of this stream by fixing Pal 5's present-day position, distance, and radial velocity via observations, while allowing its proper motion to vary. In a spherical dark matter halo we easily find models that fit the observed morphology. However, no plausible Pal 5 model could be found in the triaxial potential of Law and Majewski, which has been proposed to explain the properties of the Sagittarius stream. In this case, the long, thin, and curved morphology of the Pal 5 stream alone can be used to rule out such a potential configuration. Pal 5-like streams in this potential are either too straight, missing the curvature of the observations, or show an unusual morphology which we dub stream-fanning: a signature sensitive to the triaxiality of a potential. We conclude that the mere existence of other thin tidal streams must provide broad constraints on the orientation and shape of the dark matter halo they inhabit.

  6. Numerical simulation of 3D boundary-driven acoustic streaming in microfluidic devices.

    PubMed

    Lei, Junjun; Hill, Martyn; Glynne-Jones, Peter

    2014-02-01

    This article discusses three-dimensional (3D) boundary-driven streaming in acoustofluidic devices. Firstly, the 3D Rayleigh streaming pattern in a microchannel is simulated and its effect on the movement of microparticles of various sizes is demonstrated. The results obtained from this model show good comparisons with 3D experimental visualisations and demonstrate the fully 3D nature of the acoustic streaming field and the associated acoustophoretic motion of microparticles in acoustofluidic devices. This method is then applied to another acoustofluidic device in order to gain insights into an unusual in-plane streaming pattern. The origin of this streaming has not been fully described and its characteristics cannot be explained from the classical theory of Rayleigh streaming. The simulated in-plane streaming pattern was in good agreement with the experimental visualisation. The mechanism behind it is shown to be related to the active sound intensity field, which supports our previous findings on the mechanism of the in-plane acoustic streaming pattern visualised and modelled in a thin-layered capillary device.

  7. Tornadogenesis Versus Newton's Third Law of Motion

    NASA Astrophysics Data System (ADS)

    Hardwig, R. B.

    2015-12-01

    For over 90 years scientists have tried to explain how tornadoes form and function. The present general consensus is that a tornado is just a function of the thunderstorm. Much research has been done to find the answer and numerous articles and papers have been written, all to no avail. This research explores the fact that a tornado cannot be just a function of a thunderstorm, as there is no opposite force within the thunderstorm to the air drawn up by the tornado, so there must be some external force involved in a tornado's formation. To have compliance with Newton's Third Law of Motion we must see an equal downforce or some other force within the thunderstorm, to that drawn up by the tornado. And if there was a downforce, that force would be virtually as damaging as the tornado itself. But we don't see this downforce or any other opposing force within the thunderstorm. Therefore, we must look for some other force that could cause a tornado's formation. And if that opposing force is not within the thunderstorm we need to be looking for some external force, outside the thunderstorm, that could cause a tornado. Also the fact that we have Waterspouts, Landspouts and Gustnadoes all without a thunderstorm, but since they all look and function just like a tornado, tells us that there must be some other force that is responsible for causing a tornado just like a Waterspout, Landspout or Gustnado. My research shows that there is one other force of energy that could cause all of these vortexes and is most likely the source of energy for a tornado's formation. That force is the High Velocity Overhead Jet Stream. My research shows a direct relationship between the High Velocity Overhead Jet Stream and Tornadogenesis as well as Waterspouts, Landspouts and Gustnadoes. Therefore, with the High Velocity Overhead Jet Stream providing the Action, at its interface with the tornado in the stratosphere, the Reaction is what we see on the ground as a tornado. With this explanation we

  8. TRACSSS-2: Tracing More Cold Stellar Streams with Spitzer

    NASA Astrophysics Data System (ADS)

    Grillmair, Carl; Kupper, Andreas; Sesar, Branimir; Pearson, Sarah; Rich, Jeffrey; Scowcroft, Vicky; Price-Whelan, Adrian; Johnston, Kathryn

    2016-08-01

    Stellar debris streams may be the most sensitive probes we have of the size and shape of the Milky Way's dark matter distribution. Using the remarkably precise infrared period-luminosity relation for RR Lyrae, Spitzer has already demonstrated the ability to measure distances to better than 2% over nearly the entire volume of the Galaxy. By measuring very accurate mean magnitudes for RR Lyrae in the Anticenter and Styx streams, we will immediately be able to put tighter constrains on the mass and shape of the Galactic halo. These measurements will become still more important in coming years, when they can be used to turn Gaia proper motion measurements into accurate transverse space velocities. These measurements are unlikely to be improved upon in the foreseeable future and may ultimately rank among Spitzer's most enduring legacies.

  9. Streaming potential-modulated capillary filling dynamics of immiscible fluids.

    PubMed

    Bandopadhyay, Aditya; Mandal, Shubhadeep; Chakraborty, Suman

    2016-02-21

    The pressure driven transport of two immiscible electrolytes in a narrow channel with prescribed surface potential (zeta potential) is considered under the influence of a flow-induced electric field. The latter consideration is non-trivially and fundamentally different from the problem of electric field-driven motion (electroosmosis) of two immiscible electrolytes in a channel in a sense that in the former case, the genesis of the induced electric field, termed as streaming potential, is the advection of ions in the absence of any external electric field. As the flow occurs, one fluid displaces the other. Consequently, in cases where the conductivities of the two fluids differ, imbibition dynamically alters the net conductivity of the channel. We emphasize, through numerical simulations, that the alteration in the net conductivity has a significant impact on the contact line dynamics and the concomitant induced streaming potential. The results presented herein are expected to shed light on multiphase electrokinetics devices.

  10. Cytoplasmic streaming in plant cells: the role of wall slip.

    PubMed

    Wolff, K; Marenduzzo, D; Cates, M E

    2012-06-01

    We present a computer simulation study, via lattice Boltzmann simulations, of a microscopic model for cytoplasmic streaming in algal cells such as those of Chara corallina. We modelled myosin motors tracking along actin lanes as spheres undergoing directed motion along fixed lines. The sphere dimension takes into account the fact that motors drag vesicles or other organelles, and, unlike previous work, we model the boundary close to which the motors move as walls with a finite slip layer. By using realistic parameter values for actin lane and myosin density, as well as for endoplasmic and vacuole viscosity and the slip layer close to the wall, we find that this simplified view, which does not rely on any coupling between motors, cytoplasm and vacuole other than that provided by viscous Stokes flow, is enough to account for the observed magnitude of streaming velocities in intracellular fluid in living plant cells.

  11. Unique Challenges to (Federal) Enterprise Streaming

    NASA Technical Reports Server (NTRS)

    Walls, Bryan

    2006-01-01

    Enterprise streaming has different parameters than consumer Streaming. The government enterprise has some differences on top of that. I'd like to highlight some issues shared by the Federal government as a whole, with a closer look at streaming within NASA. Then we'll look at NASA's strategy for streaming.

  12. Jet stream related observations by MST radars

    NASA Technical Reports Server (NTRS)

    Gage, K. S.

    1983-01-01

    An overview of the jet stream and its observation by MST radar is presented. The climatology and synoptic and mesoscale structure of jet streams is briefly reviewed. MST radar observations of jet stream winds, and associated waves and turbulence are then considered. The possibility of using a network of ST radars to track jet stream winds in near real time is explored.

  13. THE DYNAMICS OF STAR STREAM GAPS

    SciTech Connect

    Carlberg, R. G.

    2013-10-01

    A massive object crossing a narrow stream of stars orbiting in the halo of the galaxy induces velocity changes both along and transverse to the stream that can lead to the development of a visible gap. For a stream narrow relative to its orbital radius, the stream crossing time is sufficiently short that the impact approximation can be used to derive the changes in angular momenta and radial actions along the star stream. The epicyclic approximation is used to calculate the evolution of the density of the stream as it orbits around in a galactic potential. Analytic expressions are available for a point mass, however, the general expressions are easily numerically evaluated for perturbing objects with arbitrary density profiles. With a simple allowance for the velocity dispersion of the stream, moderately warm streams can be modeled. The predicted evolution agrees well with the outcomes of simulations of stellar streams for streams with widths up to 1% of the orbital radius of the stream. The angular momentum distribution within the stream shears out gaps with time, further reducing the visibility of streams, although the size of the shear effect requires more detailed simulations that account for the creation of the stream. An illustrative model indicates that shear will set a lower limit of a few times the stream width for the length of gaps that persist. In general, the equations are useful for dynamical insights into the development of stream gaps and their measurement.

  14. Marbles in Motion.

    ERIC Educational Resources Information Center

    Brown, Helen; Meyers, Bernice; Schmidt, William

    1999-01-01

    Marbles were successfully used to help primary students develop concepts of motion. Marble-unit activities began with shaking and rattling inference bags and predicting by listening just how many marbles were in each bag. Students made qualitative and quantitative observations of the marbles, manipulated marbles with a partner, and observed…

  15. A Harmonic Motion Experiment

    ERIC Educational Resources Information Center

    Gluck, P.; Krakower, Zeev

    2010-01-01

    We present a unit comprising theory, simulation and experiment for a body oscillating on a vertical spring, in which the simultaneous use of a force probe and an ultrasonic range finder enables one to explore quantitatively and understand many aspects of simple and damped harmonic motions. (Contains 14 figures.)

  16. Introducing Simple Harmonic Motion.

    ERIC Educational Resources Information Center

    Roche, John

    2002-01-01

    Explains the origin and significance of harmonic motion which is an important topic that has wide application in the world. Describes the phenomenon by using an auxiliary circle to help illustrate the key relationships between acceleration, displacement, time, velocity, and phase. (Contains 16 references.) (Author/YDS)

  17. Theory of orthodontic motions

    NASA Technical Reports Server (NTRS)

    Pepe, S.; Pepe, W. D.; Strauss, A. M.

    1976-01-01

    A general theory of orthodontic motion is developed that can be applied to determine the forces necessary to induce a given tooth to move to the predetermined desirable position. It is assumed that the natural (nonorthodontic) forces may be represented by a periodic function and the orthodontic forces may be superimposed upon the natural forces. A simple expression is derived for the applied stress.

  18. Linear motion valve

    NASA Technical Reports Server (NTRS)

    Chandler, J. A. (Inventor)

    1985-01-01

    The linear motion valve is described. The valve spool employs magnetically permeable rings, spaced apart axially, which engage a sealing assembly having magnetically permeable pole pieces in magnetic relationship with a magnet. The gap between the ring and the pole pieces is sealed with a ferrofluid. Depletion of the ferrofluid is minimized.

  19. Wiimote Experiments: Circular Motion

    ERIC Educational Resources Information Center

    Kouh, Minjoon; Holz, Danielle; Kawam, Alae; Lamont, Mary

    2013-01-01

    The advent of new sensor technologies can provide new ways of exploring fundamental physics. In this paper, we show how a Wiimote, which is a handheld remote controller for the Nintendo Wii video game system with an accelerometer, can be used to study the dynamics of circular motion with a very simple setup such as an old record player or a…

  20. Planets in Motion

    ERIC Educational Resources Information Center

    Riddle, Bob

    2005-01-01

    All the planets in the solar system revolve around the Sun in the same direction, clockwise when viewed from above the North Pole. This is referred to as direct motion. From the perspective on the Earth's surface, the planets travel east across the sky in relation to the background of stars. The Sun also moves eastward daily, but this is an…

  1. Wiimote Experiments: Circular Motion

    NASA Astrophysics Data System (ADS)

    Kouh, Minjoon; Holz, Danielle; Kawam, Alae; Lamont, Mary

    2013-03-01

    The advent of new sensor technologies can provide new ways of exploring fundamental physics. In this paper, we show how a Wiimote, which is a handheld remote controller for the Nintendo Wii video game system with an accelerometer, can be used to study the dynamics of circular motion with a very simple setup such as an old record player or a bicycle wheel.

  2. Choosing a Motion Detector.

    ERIC Educational Resources Information Center

    Ballard, David M.

    1990-01-01

    Examines the characteristics of three types of motion detectors: Doppler radar, infrared, and ultrasonic wave, and how they are used on school buses to prevent students from being killed by their own school bus. Other safety devices cited are bus crossing arms and a camera monitor system. (MLF)

  3. A world in motion

    SciTech Connect

    Boynton, J.A.

    1994-12-31

    A World in Motion is a physical science curriculum supplement for grades four, five, and six which responds to the need to promote and teach sound science and mathematics concepts. Using the A World in Motion kits, teachers work in partnership with practicing engineer or scientists volunteers to provide students with fun, exciting, and relevant hands-on science and math experiences. During the A World in Motion experience, students work together in {open_quotes}Engineering Design Teams{close_quotes} exploring physics concepts through a series of activities. Each student is assigned a role as either a facilities engineer, development engineer, test engineer, or project engineer and is given responsibilities paralleling those of engineers in industry. The program culminates in a {open_quotes}Design Review{close_quotes} where students can communicate their results, demonstrate their designs, and receive recognition for their efforts. They are given a chance to take on responsibility and build self-esteem. Since January 1991, over 12,000 volunteers engineers have been involved with the program, with a distribution of 20,000 A World in Motion kit throughout the U.S. and Canada.

  4. Solar Motion from Australia

    ERIC Educational Resources Information Center

    Treschman, Keith

    2009-01-01

    At noon throughout the year the Sun has a north-south and east-west motion around the meridian. Earliest/latest sunrises and sunsets do not occur at the solstices and the effect is more pronounced with decreasing latitude. This phenomenon is calculated for 25 Australian cities and the following observations are recorded: (1) The latest sunrise…

  5. Projectile Motion Revisited.

    ERIC Educational Resources Information Center

    Lucie, Pierre

    1979-01-01

    Analyzes projectile motion using symmetry and simple geometry. Deduces the direction of velocity at any point, range, time of flight, maximum height, safety parabola, and maximum range for a projectile launched upon a plane inclined at any angle with respect to the horizontal. (Author/GA)

  6. The Midwest Stream Quality Assessment

    USGS Publications Warehouse

    ,

    2012-01-01

    In 2013, the U.S. Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) and USGS Columbia Environmental Research Center (CERC) will be collaborating with the U.S. Environmental Protection Agency (EPA) National Rivers and Streams Assessment (NRSA) to assess stream quality across the Midwestern United States. The sites selected for this study are a subset of the larger NRSA, implemented by the EPA, States and Tribes to sample flowing waters across the United States (http://water.epa.gov/type/rsl/monitoring/riverssurvey/index.cfm). The goals are to characterize water-quality stressors—contaminants, nutrients, and sediment—and ecological conditions in streams throughout the Midwest and to determine the relative effects of these stressors on aquatic organisms in the streams. Findings will contribute useful information for communities and policymakers by identifying which human and environmental factors are the most critical in controlling stream quality. This collaborative study enhances information provided to the public and policymakers and minimizes costs by leveraging and sharing data gathered under existing programs. In the spring and early summer, NAWQA will sample streams weekly for contaminants, nutrients, and sediment. During the same time period, CERC will test sediment and water samples for toxicity, deploy time-integrating samplers, and measure reproductive effects and biomarkers of contaminant exposure in fish or amphibians. NRSA will sample sites once during the summer to assess ecological and habitat conditions in the streams by collecting data on algal, macroinvertebrate, and fish communities and collecting detailed physical-habitat measurements. Study-team members from all three programs will work in collaboration with USGS Water Science Centers and State agencies on study design, execution of sampling and analysis, and reporting.

  7. Do Fish Perceive Illusory Motion?

    PubMed Central

    Gori, Simone; Agrillo, Christian; Dadda, Marco; Bisazza, Angelo

    2014-01-01

    Motion illusion refers to a perception of motion that is absent or different in the physical stimulus. These illusions are a powerful non-invasive tool for understanding the neurobiology of vision because they tell us, indirectly, how we process motion. There is general agreement in ascribing motion illusion to higher-level processing in the visual cortex, but debate remains about the exact role of eye movements and cortical networks in triggering it. Surprisingly, there have been no studies investigating global illusory motion evoked by static patterns in animal species other than humans. Herein, we show that fish perceive one of the most studied motion illusions, the Rotating Snakes. Fish responded similarly to real and illusory motion. The demonstration that complex global illusory motion is not restricted to humans and can be found even in species that do not have a cortex paves the way to develop animal models to study the neurobiological bases of motion perception. PMID:25246001

  8. Possible Stick-Slip Mechanism for Whillans Ice Stream

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert; King, Matt; Vornberger, Patricia

    2003-01-01

    Tidally-induced stick-slip motion in the mouth of Whillans Ice Stream provides a unique natural experiment in ice-stream response behavior and from which we might learn a great deal about subglacial till properties and sub-ice-stream conditions. At the IGS Symposium on Fast Glacier Flow (Yakutat, 2002), we reported our observations of stick- slip motion and demonstrated its synchronicity with tidal forcing. Recently, we have completed additional processing of our GPS data in differential mode. It reveals more details of the stick-slip events and illustrates that within 30 seconds, the temporal interval of our data, the ice stream accelerates to a speed corresponding to a completely lubricated bed. While details of individual events vary, there seems to be strong evidence of an elastic rebound on the time scale of one hour following most events. This suggests the event involves the release of stored elastic strain energy in the ice. The similar displacements of events suggest further that till or subglacial hydrologic properties limit the amount of elastic strain released in any single event. We follow a line of reasoning that dilatant strengthening limits the slip displacement and present model of the stick-slip process. To match the observed delay between the peak ocean tide and stick-slip events, our model includes a propagating pressure wave in the subglacial hydrologic system between the grounding line, where the rising tide first increases the subglacial water pressure and regions upstream where stored elastic strain increases the basal shear stress. This high-tide event is released when the increased water pressure reaches the region of increased shear stress. Dilatant strengthening stops the event by increasing pore volume and lowering the water pressure. Following this event, falling tide increases the normal forces, compresses the till and increases pore pressure again, leading to the second falling-tide event we observe every tidal cycle.

  9. Possible Stick-Slip Mechanism for Whillans Ice Stream

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert; King, Matt; Vornberger, Patricia

    2003-01-01

    Tidally-induced stick-slip motion in the mouth of Whillans Ice Stream provides a unique natural experiment in ice-stream response behavior and fiom which we might learn a great deal about subglacial till properties and sub-ice-stream conditions. At the IGS Symposium on Fast Glacier Flow (Yakutat, 2002), we reported our observations of stick- slip motion and demonstrated its synchronicity with tidal forcing. Recently, we have completed additional processing of our GPS data in differential mode. It reveals more details of the stick-slip events and illustrates that within 30 seconds, the temporal interval of our data, the ice stream accelerates to a speed corresponding to a completely lubricated bed. While details of individual events vary, there seems to be strong evidence of an elastic rebound on the time scale of one hour following most events. This suggests the event involves the release of stored elastic strain energy in the ice. The similar displacements of events suggest further that till or subglacial hydrologic properties limit the amount of elastic strain released in any single event. We follow a line of reasoning that dilatant strengthening limits the slip displacement and present model of the stick-slip process. To match the observed delay between the peak ocean tide and stick-slip events, our model includes a propagating pressure wave in the subglacial hydrologic system between the grounding line, where the rising tide first increases the subglacial water pressure and regions upstream where stored elastic strain increases the basal shear stress. This high-tide event is released when the increased water pressure reaches the region of increased shear stress. Dilatant strengthening stops the event by increasing pore volume and lowering the water pressure. Following this event, falling tide increases the normal forces, compresses the till and increases pore pressure again, leading to the second falling-tide event we observe every tidal cycle.

  10. Motion dominance in binocular rivalry depends on extraretinal motions.

    PubMed

    Nakayama, Ryohei; Motoyoshi, Isamu; Sato, Takao

    2016-01-01

    In binocular rivalry, moving stimulus is dominant over stationary stimulus. This is called motion dominance. The motion here is usually a motion defined on the retina (retinal motion). However, motion can be defined in several different coordinates. It can be defined with respect to objects in the background (object-based motion) or to observers' head or body (spatiotopic motion), as well as to the retinal coordinate. In this study, we examined the role of motions defined by these three coordinates. A dichoptic pair of gratings was presented to create a binocular rivalry, one of which was moving and the other stationary. A fixation point and a reference background were either moving with the grating or stationary, depending on the condition. Different combinations of the three types of motions were created by having the observer track the fixation point or the background when they are moving. It was found that the retinal motion does not necessarily yield motion dominance, and that the motion dominance is determined by the combination of motions defined by different coordinate systems.

  11. Plate motion and deformation

    SciTech Connect

    Minster, B.; Prescott, W.; Royden, L.

    1991-02-01

    Our goal is to understand the motions of the plates, the deformation along their boundaries and within their interiors, and the processes that control these tectonic phenomena. In the broadest terms, we must strive to understand the relationships of regional and local deformation to flow in the upper mantle and the rheological, thermal and density structure of the lithosphere. The essential data sets which we require to reach our goal consist of maps of current strain rates at the earth's surface and the distribution of integrated deformation through time as recorded in the geologic record. Our success will depend on the effective synthesis of crustal kinematics with a variety of other geological and geophysical data, within a quantitative theoretical framework describing processes in the earth's interior. Only in this way can we relate the snapshot of current motions and earth structure provided by geodetic and geophysical data with long-term processes operating on the time scales relevant to most geological processes. The wide-spread use of space-based techniques, coupled with traditional geological and geophysical data, promises a revolution in our understanding of the kinematics and dynamics of plate motions over a broad range of spatial and temporal scales and in a variety of geologic settings. The space-based techniques that best address problems in plate motion and deformation are precise space-geodetic positioning -- on land and on the seafloor -- and satellite acquisition of detailed altimetric and remote sensing data in oceanic and continental areas. The overall science objectives for the NASA Solid Earth Science plan for the 1990's, are to Understand the motion and deformation of the lithosphere within and across plate boundaries'', and to understand the dynamics of the mantle, the structure and evolution of the lithosphere, and the landforms that result from local and regional deformation. 57 refs., 7 figs., 2 tabs.

  12. Fuel-cell engine stream conditioning system

    DOEpatents

    DuBose, Ronald Arthur

    2002-01-01

    A stream conditioning system for a fuel cell gas management system or fuel cell engine. The stream conditioning system manages species potential in at least one fuel cell reactant stream. A species transfer device is located in the path of at least one reactant stream of a fuel cell's inlet or outlet, which transfer device conditions that stream to improve the efficiency of the fuel cell. The species transfer device incorporates an exchange media and a sorbent. The fuel cell gas management system can include a cathode loop with the stream conditioning system transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell related to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  13. Visual Benefits in Apparent Motion Displays: Automatically Driven Spatial and Temporal Anticipation Are Partially Dissociated.

    PubMed

    Ahrens, Merle-Marie; Veniero, Domenica; Gross, Joachim; Harvey, Monika; Thut, Gregor

    2015-01-01

    Many behaviourally relevant sensory events such as motion stimuli and speech have an intrinsic spatio-temporal structure. This will engage intentional and most likely unintentional (automatic) prediction mechanisms enhancing the perception of upcoming stimuli in the event stream. Here we sought to probe the anticipatory processes that are automatically driven by rhythmic input streams in terms of their spatial and temporal components. To this end, we employed an apparent visual motion paradigm testing the effects of pre-target motion on lateralized visual target discrimination. The motion stimuli either moved towards or away from peripheral target positions (valid vs. invalid spatial motion cueing) at a rhythmic or arrhythmic pace (valid vs. invalid temporal motion cueing). Crucially, we emphasized automatic motion-induced anticipatory processes by rendering the motion stimuli non-predictive of upcoming target position (by design) and task-irrelevant (by instruction), and by creating instead endogenous (orthogonal) expectations using symbolic cueing. Our data revealed that the apparent motion cues automatically engaged both spatial and temporal anticipatory processes, but that these processes were dissociated. We further found evidence for lateralisation of anticipatory temporal but not spatial processes. This indicates that distinct mechanisms may drive automatic spatial and temporal extrapolation of upcoming events from rhythmic event streams. This contrasts with previous findings that instead suggest an interaction between spatial and temporal attention processes when endogenously driven. Our results further highlight the need for isolating intentional from unintentional processes for better understanding the various anticipatory mechanisms engaged in processing behaviourally relevant stimuli with predictable spatio-temporal structure such as motion and speech.

  14. Visual Benefits in Apparent Motion Displays: Automatically Driven Spatial and Temporal Anticipation Are Partially Dissociated

    PubMed Central

    Ahrens, Merle-Marie; Veniero, Domenica; Gross, Joachim; Harvey, Monika; Thut, Gregor

    2015-01-01

    Many behaviourally relevant sensory events such as motion stimuli and speech have an intrinsic spatio-temporal structure. This will engage intentional and most likely unintentional (automatic) prediction mechanisms enhancing the perception of upcoming stimuli in the event stream. Here we sought to probe the anticipatory processes that are automatically driven by rhythmic input streams in terms of their spatial and temporal components. To this end, we employed an apparent visual motion paradigm testing the effects of pre-target motion on lateralized visual target discrimination. The motion stimuli either moved towards or away from peripheral target positions (valid vs. invalid spatial motion cueing) at a rhythmic or arrhythmic pace (valid vs. invalid temporal motion cueing). Crucially, we emphasized automatic motion-induced anticipatory processes by rendering the motion stimuli non-predictive of upcoming target position (by design) and task-irrelevant (by instruction), and by creating instead endogenous (orthogonal) expectations using symbolic cueing. Our data revealed that the apparent motion cues automatically engaged both spatial and temporal anticipatory processes, but that these processes were dissociated. We further found evidence for lateralisation of anticipatory temporal but not spatial processes. This indicates that distinct mechanisms may drive automatic spatial and temporal extrapolation of upcoming events from rhythmic event streams. This contrasts with previous findings that instead suggest an interaction between spatial and temporal attention processes when endogenously driven. Our results further highlight the need for isolating intentional from unintentional processes for better understanding the various anticipatory mechanisms engaged in processing behaviourally relevant stimuli with predictable spatio-temporal structure such as motion and speech. PMID:26623650

  15. Fronto-temporal regions encode the manner of motion in spatial language.

    PubMed

    Quandt, Lorna C; Cardillo, Eileen R; Kranjec, Alexander; Chatterjee, Anjan

    2015-11-16

    When describing spatial events, dynamic actions can be decomposed into the path of motion (where the object moves), and the manner of motion (how the object moves). These components may be instantiated in two processing streams in the human brain, wherein dorsal parietal areas process path-related information, while ventral temporal regions process manner information. Previous research showed this pattern during the observation of videos showing animate characters in motion [15]. It is unknown whether reading language describing path and manner information - a level of abstraction beyond the perception of visual motion - relies on similar mechanisms. Here, we use functional neuroimaging to show that the left pMTG processes the manner of motion during reading. We also demonstrate the involvement of other ventral fronto-temporal regions in the understanding of manner of motion in spatial language. PMID:26493606

  16. The Proper Motion of Palomar 5

    NASA Astrophysics Data System (ADS)

    Fritz, T. K.; Kallivayalil, N.

    2015-10-01

    Palomar 5 (Pal 5) is a faint halo globular cluster associated with narrow tidal tails. It is a useful system to understand the process of tidal dissolution, as well as to constrain the potential of the Milky Way. A well-determined orbit for Pal 5 would enable detailed study of these open questions. We present here the first CCD-based proper motion measurement of Pal 5 obtained using SDSS as a first epoch and new Large Binocular Telescope/Large Binocular Camera (LBC) images as a second, giving a baseline of 15 years. We perform relative astrometry, using SDSS as a distortion-free reference, and images of the cluster and also of the Pal 5 stream for the derivation of the distortion correction for LBC. The reference frame is made up of background galaxies. We correct for differential chromatic refraction using relations obtained from SDSS colors as well as from flux-calibrated spectra, finding that the correction relations for stars and for galaxies are different. We obtain μα = -2.296 ± 0.186 mas yr-1 and μδ = -2.257 ± 0.181 mas yr-1 for the proper motion of Pal 5. We use this motion, and the publicly available code galpy, to model the disruption of Pal 5 in different Milky Way models consisting of a bulge, a disk, and a spherical dark matter halo. Our fits to the observed stream properties (streak and radial velocity gradient) result in a preference for a relatively large Pal 5 distance of around 24 kpc. A slightly larger absolute proper motion than what we measure also results in better matches but the best solutions need a change in distance. We find that a spherical Milky Way model, with V0 = 220 km s-1 and V20 kpc, i.e., approximately at the apocenter of Pal 5, of 218 km s-1, can match the data well, at least for our choice of disk and bulge parametrization. Based on LBT data. The LBT is an international collaboration among institutions in the United States, Italy and Germany. LBT Corporation partners are: The Ohio State University, and The Research

  17. Efficient Generation of Dancing Animation Synchronizing with Music Based on Meta Motion Graphs

    NASA Astrophysics Data System (ADS)

    Xu, Jianfeng; Takagi, Koichi; Sakazawa, Shigeyuki

    This paper presents a system for automatic generation of dancing animation that is synchronized with a piece of music by re-using motion capture data. Basically, the dancing motion is synthesized according to the rhythm and intensity features of music. For this purpose, we propose a novel meta motion graph structure to embed the necessary features including both rhythm and intensity, which is constructed on the motion capture database beforehand. In this paper, we consider two scenarios for non-streaming music and streaming music, where global search and local search are required respectively. In the case of the former, once a piece of music is input, the efficient dynamic programming algorithm can be employed to globally search a best path in the meta motion graph, where an objective function is properly designed by measuring the quality of beat synchronization, intensity matching, and motion smoothness. In the case of the latter, the input music is stored in a buffer in a streaming mode, then an efficient search method is presented for a certain amount of music data (called a segment) in the buffer with the same objective function, resulting in a segment-based search approach. For streaming applications, we define an additional property in the above meta motion graph to deal with the unpredictable future music, which guarantees that there is some motion to match the unknown remaining music. A user study with totally 60 subjects demonstrates that our system outperforms the stat-of-the-art techniques in both scenarios. Furthermore, our system improves the synthesis speed greatly (maximal speedup is more than 500 times), which is essential for mobile applications. We have implemented our system on commercially available smart phones and confirmed that it works well on these mobile phones.

  18. Development of motion control method for laser soldering process

    SciTech Connect

    Yerganian, S.S.

    1997-05-01

    Development of a method to generate the motion control data for sealing an electronic housing using laser soldering is described. The motion required to move the housing under the laser is a nonstandard application and was performed with a four-axis system using the timed data streaming mode capabilities of a Compumotor AT6400 indexer. A Microsoft Excel 5.0 spreadsheet (named Israuto.xls) was created to calculate the movement of the part under the laser, and macros were written into the spreadsheet to allow the user to easily create this data. A data verification method was developed for simulating the motion data. The geometry of the assembly was generated using Parametric Technology Corporation Pro/E version 15. This geometry was then converted using Pro/DADS version 3.1 from Computer Aided Design Software Inc. (CADSI), and the simulation was carried out using DADS version 8.0 from CADSI.

  19. Visual Target Tracking in the Presence of Unknown Observer Motion

    NASA Technical Reports Server (NTRS)

    Williams, Stephen; Lu, Thomas

    2009-01-01

    Much attention has been given to the visual tracking problem due to its obvious uses in military surveillance. However, visual tracking is complicated by the presence of motion of the observer in addition to the target motion, especially when the image changes caused by the observer motion are large compared to those caused by the target motion. Techniques for estimating the motion of the observer based on image registration techniques and Kalman filtering are presented and simulated. With the effects of the observer motion removed, an additional phase is implemented to track individual targets. This tracking method is demonstrated on an image stream from a buoy-mounted or periscope-mounted camera, where large inter-frame displacements are present due to the wave action on the camera. This system has been shown to be effective at tracking and predicting the global position of a planar vehicle (boat) being observed from a single, out-of-plane camera. Finally, the tracking system has been extended to a multi-target scenario.

  20. Inactive comets within meteoroid streams

    NASA Astrophysics Data System (ADS)

    Kokhirova, Gulchekhra; Babadzhanov, Pulat; Obrubov, Yuri

    2015-08-01

    The modern concepts of formation and evolution of the meteoroid streams originated as a result of disintegration of cometary nuclei are presented. The action of planetary perturbations that defines the orbital evolution of meteoroids is discussed. The main regularities in variations of the orbital elements as well as of the heliocentric distances of ascending and descending nodes are found on the base of calculation of orbital evolution of a sample of NEAs. A dispersion of the orbits is increasing with a time and meteoroid streams in dependence of the type of a parent comet orbit can produce up to eight meteor showers observable at the Earth. It is recognized that some meteoroid streams contain large extinct fragments of cometary nuclei. These fragments have been found among NEAs and should be considered as the constituent parts of meteoroid streams. Consequently, meteoroid streams consist of both small particles and large fireball-producing bodies. This fact supported by the results of investigation of a sample of three asteroid-meteoroid complexes.

  1. Streaming Compression of Hexahedral Meshes

    SciTech Connect

    Isenburg, M; Courbet, C

    2010-02-03

    We describe a method for streaming compression of hexahedral meshes. Given an interleaved stream of vertices and hexahedral our coder incrementally compresses the mesh in the presented order. Our coder is extremely memory efficient when the input stream documents when vertices are referenced for the last time (i.e. when it contains topological finalization tags). Our coder then continuously releases and reuses data structures that no longer contribute to compressing the remainder of the stream. This means in practice that our coder has only a small fraction of the whole mesh in memory at any time. We can therefore compress very large meshes - even meshes that do not file in memory. Compared to traditional, non-streaming approaches that load the entire mesh and globally reorder it during compression, our algorithm trades a less compact compressed representation for significant gains in speed, memory, and I/O efficiency. For example, on the 456k hexahedra 'blade' mesh, our coder is twice as fast and uses 88 times less memory (only 3.1 MB) with the compressed file increasing about 3% in size. We also present the first scheme for predictive compression of properties associated with hexahedral cells.

  2. Dynamical Streams in the Solar Neighbourhood

    NASA Astrophysics Data System (ADS)

    Famaey, B.; Jorissen, A.; Luri, X.; Mayor, M.; Udry, S.; Dejonghe, H.; Turon, C.

    2005-01-01

    The true nature of the Hyades and Sirius superclusters is still an open question. In this contribution, we confront Eggen's hypothesis that they are cluster remnants with the results of a kinematic analysis of more than 6000 K and M giants in the solar neighbourhood. This analysis includes new radial velocity data from a large survey performed with the CORAVEL spectrometer, complemented by Hipparcos parallaxes and Tycho-2 proper motions (Famaey et al. 2004). A maximum-likelihood method, based on a bayesian approach, has been applied to the data, in order to make full use of all the available data (including less precise parallaxes) and to derive the properties of the different kinematic subgroups. Two such subgroups can be identified with the Hyades and Sirius superclusters. Stars belonging to them span a very wide range of age, which is difficult to account for in Eggen's scenario. These groups are thus most probably dynamical streams related to the dynamical perturbation by spiral waves rather than to cluster remnants. An explanation for the presence of young clusters in the same area of velocity-space is that they have been put there by the same wave. Indeed, the scale of a cluster is small in comparison to the scale of the perturbation of the potential linked with a spiral wave. The response of a cluster to a spiral wave is thus similar to the response of a single star. Thus, in this scenario, the Hyades and Ursa Major clusters just happen to be in the Hyades and Sirius streams, which are purely dynamical features that have nothing to do with the remnants of more massive primordial clusters. This mechanism could be the key to understanding the presence of an old metal-rich population, and of many exoplanetary systems in our neighbourhood. Moreover, a strong spiral pattern seems to be needed in order to yield such prominent streams. Since spiral structure is usually baryonic, this would leave very little room for dark matter. This may be an indication that the

  3. Quasilinear saturation of the aperiodic ordinary mode streaming instability

    SciTech Connect

    Stockem Novo, A. Schlickeiser, R.; Yoon, P. H.; Lazar, M.; Poedts, S.; Seough, J.

    2015-09-15

    In collisionless plasmas, only kinetic instabilities and fluctuations are effective in reducing the free energy and scatter plasma particles, preventing an increase of their anisotropy. Solar energetic outflows into the interplanetary plasma give rise to important thermal anisotropies and counterstreaming motions of plasma shells, and the resulting instabilities are expected to regulate the expansion of the solar wind. The present paper combines quasilinear theory and kinetic particle-in-cell simulations in order to study the weakly nonlinear saturation of the ordinary mode in hot counter-streaming plasmas with a temperature anisotropy as a follow-up of the paper by Seough et al. [Phys. Plasmas 22, 082122 (2015)]. This instability provides a plausible mechanism for the origin of dominating, two-dimensional spectrum of transverse magnetic fluctuations observed in the solar wind. Stimulated by the differential motion of electron counterstreams the O mode instability may convert their free large-scale energy by nonlinear collisionless dissipation on plasma particles.

  4. How do object reference frames and motion vector decomposition emerge in laminar cortical circuits?

    PubMed

    Grossberg, Stephen; Léveillé, Jasmin; Versace, Massimiliano

    2011-05-01

    How do spatially disjoint and ambiguous local motion signals in multiple directions generate coherent and unambiguous representations of object motion? Various motion percepts, starting with those of Duncker (Induced motion, 1929/1938) and Johansson (Configurations in event perception, 1950), obey a rule of vector decomposition, in which global motion appears to be subtracted from the true motion path of localized stimulus components, so that objects and their parts are seen as moving relative to a common reference frame. A neural model predicts how vector decomposition results from multiple-scale and multiple-depth interactions within and between the form- and motion-processing streams in V1-V2 and V1-MST, which include form grouping, form-to-motion capture, figure-ground separation, and object motion capture mechanisms. Particular advantages of the model are that these mechanisms solve the aperture problem, group spatially disjoint moving objects via illusory contours, capture object motion direction signals on real and illusory contours, and use interdepth directional inhibition to cause a vector decomposition, whereby the motion directions of a moving frame at a nearer depth suppress those directions at a farther depth, and thereby cause a peak shift in the perceived directions of object parts moving with respect to the frame.

  5. Computational Motion Phantoms and Statistical Models of Respiratory Motion

    NASA Astrophysics Data System (ADS)

    Ehrhardt, Jan; Klinder, Tobias; Lorenz, Cristian

    Breathing motion is not a robust and 100 % reproducible process, and inter- and intra-fractional motion variations form an important problem in radiotherapy of the thorax and upper abdomen. A widespread consensus nowadays exists that it would be useful to use prior knowledge about respiratory organ motion and its variability to improve radiotherapy planning and treatment delivery. This chapter discusses two different approaches to model the variability of respiratory motion. In the first part, we review computational motion phantoms, i.e. computerized anatomical and physiological models. Computational phantoms are excellent tools to simulate and investigate the effects of organ motion in radiation therapy and to gain insight into methods for motion management. The second part of this chapter discusses statistical modeling techniques to describe the breathing motion and its variability in a population of 4D images. Population-based models can be generated from repeatedly acquired 4D images of the same patient (intra-patient models) and from 4D images of different patients (inter-patient models). The generation of those models is explained and possible applications of those models for motion prediction in radiotherapy are exemplified. Computational models of respiratory motion and motion variability have numerous applications in radiation therapy, e.g. to understand motion effects in simulation studies, to develop and evaluate treatment strategies or to introduce prior knowledge into the patient-specific treatment planning.

  6. Dynamic visualization of data streams

    DOEpatents

    Wong, Pak Chung; Foote, Harlan P.; Adams, Daniel R.; Cowley, Wendy E.; Thomas, James J.

    2009-07-07

    One embodiment of the present invention includes a data communication subsystem to receive a data stream, and a data processing subsystem responsive to the data communication subsystem to generate a visualization output based on a group of data vectors corresponding to a first portion of the data stream. The processing subsystem is further responsive to a change in rate of receipt of the data to modify the visualization output with one or more other data vectors corresponding to a second portion of the data stream as a function of eigenspace defined with the group of data vectors. The system further includes a display device responsive to the visualization output to provide a corresponding visualization.

  7. Meteoroid streams and comet disintegration

    NASA Astrophysics Data System (ADS)

    Guliyev, A.

    2016-01-01

    The results of the statistical analysis of the dynamic parameters of 114 comets that have undergone nuclear splitting are presented in the article. The list of the objects contains: comets that have split in the period of the observation; data of twin-comets; lost comets with designation D; comets with large-scale structure in the coma. We will describe these comets as "splitted". Some aspects of the following hypothesis are studied: disintegration of comet nuclei happens as the result of their collision with meteoroid streams. For the verification of this hypothesis, the position of splitted comet orbits relatively to 125 meteor streams from Kronk's list is analyzed. It was found that the total number of comet orbit nodes located close to the meteor stream planes (for the distances up to 0.1 AU) is N = 1041. It is shown that if these comets are replaced by randomly selected different comets, N will be reduced by a factor of approximately three.

  8. Visible Motion Blur

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor); Ahumada, Albert J. (Inventor)

    2014-01-01

    A method of measuring motion blur is disclosed comprising obtaining a moving edge temporal profile r(sub 1)(k) of an image of a high-contrast moving edge, calculating the masked local contrast m(sub1)(k) for r(sub 1)(k) and the masked local contrast m(sub 2)(k) for an ideal step edge waveform r(sub 2)(k) with the same amplitude as r(sub 1)(k), and calculating the measure or motion blur Psi as a difference function, The masked local contrasts are calculated using a set of convolution kernels scaled to simulate the performance of the human visual system, and Psi is measured in units of just-noticeable differences.

  9. Motion restraining device

    NASA Technical Reports Server (NTRS)

    Ford, A. G. (Inventor)

    1977-01-01

    A motion-restraining device for dissipating at a controlled rate the force of a moving body is discussed. The device is characterized by a drive shaft adapted to be driven in rotation by a moving body connected to a tape wound about a reel mounted on the drive shaft, and an elongated pitman link having one end pivotally connected to the crankshaft and the opposite end thereof connected with the mass through an energy dissipating linkage. A shuttle is disposed within a slot and guided by rectilinear motion between a pair of spaced impact surfaces. Reaction forces applied at impact of the shuttle with the impact surfaces include oppositely projected force components angularly related to the direction of the applied impact forces.

  10. Temperature of the Gulf Stream

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Gulf Stream is one of the strong ocean currents that carries warm water from the sunny tropics to higher latitudes. The current stretches from the Gulf of Mexico up the East Coast of the United States, departs from North America south of the Chesapeake Bay, and heads across the Atlantic to the British Isles. The water within the Gulf Stream moves at the stately pace of 4 miles per hour. Even though the current cools as the water travels thousands of miles, it remains strong enough to moderate the Northern European climate. The image above was derived from the infrared measurements of the Moderate-resolution Imaging Spectroradiometer (MODIS) on a nearly cloud-free day over the east coast of the United States. The coldest waters are shown as purple, with blue, green, yellow, and red representing progressively warmer water. Temperatures range from about 7 to 22 degrees Celsius. The core of the Gulf Stream is very apparent as the warmest water, dark red. It departs from the coast at Cape Hatteras, North Carolina. The cool, shelf water from the north entrains the warmer outflows from the Chesapeake and Delaware Bays. The north wall of the Gulf Stream reveals very complex structure associated with frontal instabilities that lead to exchanges between the Gulf Stream and inshore waters. Several clockwise-rotating warm core eddies are evident north of the core of the Gulf Stream, which enhance the exchange of heat and water between the coastal and deep ocean. Cold core eddies, which rotate counter clockwise, are seen south of the Gulf Stream. The one closest to Cape Hatteras is entraining very warm Gulf Stream waters on its northwest circumference. Near the coast, shallower waters have warmed due to solar heating, while the deeper waters offshore are markedly cooler (dark blue). MODIS made this observation on May 8, 2000, at 11:45 a.m. EDT. For more information, see the MODIS-Ocean web page. The sea surface temperature image was created at the University of Miami using

  11. Aging scaled Brownian motion.

    PubMed

    Safdari, Hadiseh; Chechkin, Aleksei V; Jafari, Gholamreza R; Metzler, Ralf

    2015-04-01

    Scaled Brownian motion (SBM) is widely used to model anomalous diffusion of passive tracers in complex and biological systems. It is a highly nonstationary process governed by the Langevin equation for Brownian motion, however, with a power-law time dependence of the noise strength. Here we study the aging properties of SBM for both unconfined and confined motion. Specifically, we derive the ensemble and time averaged mean squared displacements and analyze their behavior in the regimes of weak, intermediate, and strong aging. A very rich behavior is revealed for confined aging SBM depending on different aging times and whether the process is sub- or superdiffusive. We demonstrate that the information on the aging factorizes with respect to the lag time and exhibits a functional form that is identical to the aging behavior of scale-free continuous time random walk processes. While SBM exhibits a disparity between ensemble and time averaged observables and is thus weakly nonergodic, strong aging is shown to effect a convergence of the ensemble and time averaged mean squared displacement. Finally, we derive the density of first passage times in the semi-infinite domain that features a crossover defined by the aging time. PMID:25974439

  12. Salamander occupancy in headwater stream networks

    USGS Publications Warehouse

    Grant, E.H.C.; Green, L.E.; Lowe, W.H.

    2009-01-01

    1. Stream ecosystems exhibit a highly consistent dendritic geometry in which linear habitat units intersect to create a hierarchical network of connected branches. 2. Ecological and life history traits of species living in streams, such as the potential for overland movement, may interact with this architecture to shape patterns of occupancy and response to disturbance. Specifically, large-scale habitat alteration that fragments stream networks and reduces connectivity may reduce the probability a stream is occupied by sensitive species, such as stream salamanders. 3. We collected habitat occupancy data on four species of stream salamanders in first-order (i.e. headwater) streams in undeveloped and urbanised regions of the eastern U.S.A. We then used an information-theoretic approach to test alternative models of salamander occupancy based on a priori predictions of the effects of network configuration, region and salamander life history. 4. Across all four species, we found that streams connected to other first-order streams had higher occupancy than those flowing directly into larger streams and rivers. For three of the four species, occupancy was lower in the urbanised region than in the undeveloped region. 5. These results demonstrate that the spatial configuration of stream networks within protected areas affects the occurrences of stream salamander species. We strongly encourage preservation of network connections between first-order streams in conservation planning and management decisions that may affect stream species.

  13. Riparian influences on stream fish assemblage structure in urbanizing streams

    USGS Publications Warehouse

    Roy, A.H.; Freeman, B.J.; Freeman, Mary C.

    2007-01-01

    We assessed the influence of land cover at multiple spatial extents on fish assemblage integrity, and the degree to which riparian forests can mitigate the negative effects of catchment urbanization on stream fish assemblages. Riparian cover (urban, forest, and agriculture) was determined within 30 m buffers at longitudinal distances of 200 m, 1 km, and the entire network upstream of 59 non-nested fish sampling locations. Catchment and riparian land cover within the upstream network were highly correlated, so we were unable to distinguish between those variables. Most fish assemblage variables were related to % forest and % urban land cover, with the strongest relations at the largest spatial extent of land cover (catchment), followed by riparian land cover in the 1-km and 200-m reach, respectively. For fish variables related to urban land cover in the catchment, we asked whether the influence of riparian land cover on fish assemblages was dependent on the amount of urban development in the catchment. Several fish assemblage metrics (endemic richness, endemic:cosmopolitan abundance, insectivorous cyprinid richness and abundance, and fluvial specialist richness) were all best predicted by single variable models with % urban land cover. However, endemic:cosmopolitan richness, cosmopolitan abundance, and lentic tolerant abundance were related to % forest cover in the 1-km stream reach, but only in streams that had <15% catchment urban land cover. In these cases, catchment urbanization overwhelmed the potential mitigating effects of riparian forests on stream fishes. Together, these results suggest that catchment land cover is an important driver of fish assemblages in urbanizing catchments, and riparian forests are important but not sufficient for protecting stream ecosystems from the impacts of high levels of urbanization.

  14. Controlling acoustic streaming in an ultrasonic heptagonal tweezers with application to cell manipulation.

    PubMed

    Bernassau, A L; Glynne-Jones, P; Gesellchen, F; Riehle, M; Hill, M; Cumming, D R S

    2014-01-01

    Acoustic radiation force has been demonstrated as a method for manipulating micron-scale particles, but is frequently affected by unwanted streaming. In this paper the streaming in a multi-transducer quasi-standing wave acoustic particle manipulation device is assessed, and found to be dominated by a form of Eckart streaming. The experimentally observed streaming takes the form of two main vortices that have their highest velocity in the region where the standing wave is established. A finite element model is developed that agrees well with experimental results, and shows that the Reynolds stresses that give rise to the fluid motion are strongest in the high velocity region. A technical solution to reduce the streaming is explored that entails the introduction of a biocompatible agar gel layer at the bottom of the chamber so as to reduce the fluid depth and volume. By this means, we reduce the region of fluid that experiences the Reynolds stresses; the viscous drag per unit volume of fluid is also increased. Particle Image Velocimetry data is used to observe the streaming as a function of agar-modified cavity depth. It was found that, in an optimised structure, Eckart streaming could be reduced to negligible levels so that we could make a sonotweezers device with a large working area of up to 13 mm × 13 mm.

  15. Using gaps in N-body tidal streams to probe missing satellites

    SciTech Connect

    Ngan, W. H. W.; Carlberg, R. G.

    2014-06-20

    We use N-body simulations to model the tidal disruption of a star cluster in a Milky-Way-sized dark matter halo, which results in a narrow stream comparable to (but slightly wider than) Pal-5 or GD-1. The mean Galactic dark matter halo is modeled by a spherical Navarro-Frenk-White potential with subhalos predicted by the ΛCDM cosmological model. The distribution and mass function of the subhalos follow the results from the Aquarius simulation. We use a matched filter approach to look for 'gaps' in tidal streams at 12 length scales from 0.1 kpc to 5 kpc, which appear as characteristic dips in the linear densities along the streams. We find that, in addition to the subhalos' perturbations, the epicyclic overdensities (EOs) due to the coherent epicyclic motions of particles in a stream also produce gap-like signals near the progenitor. We measure the gap spectra—the gap formation rates as functions of gap length—due to both subhalo perturbations and EOs, which have not been accounted for together by previous studies. Finally, we project the simulated streams onto the sky to investigate issues when interpreting gap spectra in observations. In particular, we find that gap spectra from low signal-to-noise observations can be biased by the orbital phase of the stream. This indicates that the study of stream gaps will benefit greatly from high-quality data from future missions.

  16. Tidal Modulation of the Flow of Rutford Ice Stream, West Antarctica

    NASA Astrophysics Data System (ADS)

    Adalgeirsdottir, G.; Murray, T.; Smith, A.; Nicholls, K.; Makinson, K.; King, M.; Behar, A.

    2005-12-01

    Ice from the interior of Antarctica is delivered to the ice shelves and the oceans through fast flowing ice streams and glaciers. The ice streams flow up to two orders of magnitude faster than the surrounding ice and are the most dynamic components of the ice sheet system. As a part of the RABID project an array of 5 GPS receivers, was operated continuously on the Rutford Ice stream, West Antarctica, from 28 December 2004 - 3 February 2005, about 40 km upstream from the grounding line. The chosen sampling rate was 10 sec, which gives high resolution data on the ice stream motion. A base station was deployed on rock in the Ellsworth Mountains, ~30 km from the array, providing a fixed control for the ice stream network. The data are processed with rigorous kinematic methods. The measured velocity of the ice stream is about 1 m per day. After removing the mean velocity along the ice stream from the measurement the residual of the horizontal displacement shows periodicity of ~15 days, which is related to the spring-neap tides. The variation in velocity is about 5%. Highest velocity is measured during the transition from spring to neap tide, with the largest increase in speed during spring tide and decrease during neap tides. A weak diurnal signal is visible during spring tides. The amplitude of the diurnal signal decreases during neap tides.

  17. Oxygen Sag and Stream Purification.

    ERIC Educational Resources Information Center

    Neal, Larry; Herwig, Roy

    1978-01-01

    Presents a literature review of water quality related to oxygen sag and stream purification, covering publications of 1976-77. This review includes: (1) self-purification models; (2) oxygen demand; and (3) reaeration and oxygen transfer. A list of 60 references is also presented. (HM)

  18. Frequency response of ice streams.

    PubMed

    Williams, C Rosie; Hindmarsh, Richard C A; Arthern, Robert J

    2012-11-01

    Changes at the grounding line of ice streams have consequences for inland ice dynamics and hence sea level. Despite substantial evidence documenting upstream propagation of frontal change, the mechanisms by which these changes are transmitted inland are not well understood. In this vein, the frequency response of an idealized ice stream to periodic forcing in the downstream strain rate is examined for basally and laterally resisted ice streams using a one-dimensional, linearized membrane stress approximation. This reveals two distinct behavioural branches, which we find to correspond to different mechanisms of upstream velocity and thickness propagation, depending on the forcing frequency. At low frequencies (centennial to millennial periods), slope and thickness covary hundreds of kilometres inland, and the shallow-ice approximation is sufficient to explain upstream propagation, which occurs through changes in grounding-line flow and geometry. At high frequencies (decadal to sub-decadal periods), penetration distances are tens of kilometres; while velocity adjusts rapidly to such forcing, thickness varies little and upstream propagation occurs through the direct transmission of membrane stresses. Propagation properties vary significantly between 29 Antarctic ice streams considered. A square-wave function in frontal stress is explored by summing frequency solutions, simulating some aspects of the dynamical response to sudden ice-shelf change.

  19. Stream Profiles, An Environmental Investigation.

    ERIC Educational Resources Information Center

    National Wildlife Federation, Washington, DC.

    This environmental unit is one of a series designed for integration within an existing curriculum. The unit is self-contained and requires minimal teacher preparation. The philosophy of the units is based on an experience-oriented process that encourages self-paced independent student work. In this unit, students construct a stream profile based…

  20. POPULATION DECLINE IN STREAM FISH

    EPA Science Inventory

    Over half of the streams in the Mid-Atlantic Highlands have fish communities that are in fair or poor condition, and the EPA concluded that physical habitat alteration represents the greatest potential stressor across this region. A quantitative method for relating habitat quali...

  1. Characterization of gluten processing streams.

    PubMed

    Rausch, K D; Thompson, C I; Belyea, R L; Clevenger, T E; Tumbleson, M E

    2003-09-01

    Corn gluten meal (CGM) is a major coproduct of corn wet milling; it has value because of high protein. However, variation in composition and high P content reduce market value. Data that characterize gluten streams would be helpful in identifying key processing steps that could be modified to improve the quality of CGM and increase processing efficiency. Few data are published in the literature on the detailed composition of gluten processing streams. The objective was to characterize the gluten process streams in a corn wet milling plant. Samples were obtained from one plant over a six month period and analyzed for dry matter (DM), total N (protein), ash and elements. DM and macroelement content of the streams were increased significantly during processing. Ash, priority pollutant elements and microelement concentrations were low and of little concern. About 38% of the N (protein) in light gluten was not recovered in the CGM; most of this was lost at the gluten thickener step into the gluten thickener overflow. Much of the P also was removed at this step. Modification of the gluten thickener overflow to increase N and reduce P could make CGM a more valuable coproduct and improve processing efficiency.

  2. Frequency response of ice streams.

    PubMed

    Williams, C Rosie; Hindmarsh, Richard C A; Arthern, Robert J

    2012-11-01

    Changes at the grounding line of ice streams have consequences for inland ice dynamics and hence sea level. Despite substantial evidence documenting upstream propagation of frontal change, the mechanisms by which these changes are transmitted inland are not well understood. In this vein, the frequency response of an idealized ice stream to periodic forcing in the downstream strain rate is examined for basally and laterally resisted ice streams using a one-dimensional, linearized membrane stress approximation. This reveals two distinct behavioural branches, which we find to correspond to different mechanisms of upstream velocity and thickness propagation, depending on the forcing frequency. At low frequencies (centennial to millennial periods), slope and thickness covary hundreds of kilometres inland, and the shallow-ice approximation is sufficient to explain upstream propagation, which occurs through changes in grounding-line flow and geometry. At high frequencies (decadal to sub-decadal periods), penetration distances are tens of kilometres; while velocity adjusts rapidly to such forcing, thickness varies little and upstream propagation occurs through the direct transmission of membrane stresses. Propagation properties vary significantly between 29 Antarctic ice streams considered. A square-wave function in frontal stress is explored by summing frequency solutions, simulating some aspects of the dynamical response to sudden ice-shelf change. PMID:23197934

  3. ALIENS IN WESTERN STREAM ECOSYSTEMS

    EPA Science Inventory

    The USEPA's Environmental Monitoring and Assessment Program conducted a five year probability sample of permanent mapped streams in 12 western US states. The study design enables us to determine the extent of selected riparian invasive plants, alien aquatic vertebrates, and some ...

  4. Video Streaming in Online Learning

    ERIC Educational Resources Information Center

    Hartsell, Taralynn; Yuen, Steve Chi-Yin

    2006-01-01

    The use of video in teaching and learning is a common practice in education today. As learning online becomes more of a common practice in education, streaming video and audio will play a bigger role in delivering course materials to online learners. This form of technology brings courses alive by allowing online learners to use their visual and…

  5. Real-time visualization of pulsatile tissue-motion in B-mode ultrasonogram for assistance in bedside diagnosis of ischemic diseases of neonatal cranium

    NASA Astrophysics Data System (ADS)

    Fukuzawa, M.; Yamada, M.; Nakamori, N.; Kitsunezuka, Y.

    2008-03-01

    By developing a real-time visualization system, pulsatile tissue-motion caused by artery pulsation of blood flow has been visualized continuously from a video stream of ultrasonogram in brightness mode. The system concurrently executes the three processes: (1) capturing an input B-mode video stream (640×480 pixels/frame, 30 fps) into a ring buffer of 256 frames, (2) detecting intensity and phase of pulsatile tissue-motion at each pixel from a heartbeat-frequency component in Fourier transform of a series of pixel value through the latest 64 frames as a function of time, and (3) generating an output video-stream of pulsatile-phase image, in which the motion phase is superimposed as color gradation on an input video-stream when the motion intensity exceeds a proper threshold. By optimizing the visualization software with the streaming SIMD extensions, the pulsatile-phase image has been continuously updated at more than 10 fps, which was enough to observe pulsatile tissue-motion in real time. Compared to the retrospective technique, the real-time visualization had clear advantages not only in enabling bedside observation and quick snapshot of pulsatile tissue-motion but also in giving useful feedback to probe handling for avoiding unwanted motion-artifacts, which may strongly assist pediatricians in bedside diagnosis of ischemic diseases.

  6. Sediment transported by Georgia streams

    USGS Publications Warehouse

    Kennedy, Vance C.

    1964-01-01

    A reconnaissance investigation of the sediment transported by selected Georgia streams during the period December 1957 to June 1959 was made to provide a general understanding of the physical quality of stream water in Georgia and to supply facts needed in planning more detailed work. The investigation was made by studying the variation of sediment concentration and sediment load with stream discharge at 33 sites and by relating the available data to topographic, geologic, climatic, and soil conditions in the State. In the Blue Ridge Mountains area of northern Georgia the great relief, moderately heavy precipitation, fast runoff, and loamy soils cause sediment concentrations and sediment loads which are above average for the State. During periods of moderate to low streamflow, the concentration of suspended sediment ranges from 1 to 25 ppm (parts per million). After heavy rainfall, sediment concentration increases rapidly as water discharge rises, and occasionally exceeds 1,000 ppm before decreasing again. The concentration may reach a maximum and decrease before the discharge peak is reached. A major part of the annual sediment load can be carried during a short period of time because of the great increase in both water discharge and sediment concentration during floods. The lower Coastal Plain differs from the mountainous areas in several respects. The topography is gently rolling to almost level, precipitation and runoff are less than average for the State, and topsoils generally consist of hard and loamy sand. Concentration of suspended sediment in streamflow commonly ranges from 1 to 20 ppm during periods of low to moderate discharge and increases to 15 to 60 ppm at high discharge. Because of the small increase in concentration with increasing stream discharge, the sediment load varies approximately in proportion to the discharge. The sediment characteristics of streams in the Piedmont, the Valley and Ridge area. and the upper Coastal Plain are intermediate

  7. Relativistic kinematics and stationary motions

    NASA Astrophysics Data System (ADS)

    Russo, Jorge G.; Townsend, Paul K.

    2009-11-01

    The relativistic jerk, snap and all higher-order kinematical D-vectors are defined for the motion of a massive particle in a D-dimensional Minkowski spacetime. We illustrate the formalism with stationary motions, for which we provide a new, Lorentz covariant, classification. We generalize some cases to branes, explaining the relevance to uniform motion in a heat bath. We also consider some non-stationary motions, including motion with constant proper jerk, and free fall into a black hole as viewed from a GEMS perspective.

  8. EDITORIAL: Nanotechnology in motion Nanotechnology in motion

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2012-02-01

    , Toshio Ando from the University of Kanazawa provides an overview of developments that have allowed atomic force microscopy to move from rates of the order of one frame a minute to over a thousand frames per second in constant height mode, as reported by Mervyn Miles and colleagues at Bristol University and University College London [8]. Among the pioneers in the field, Ando's group demonstrated the ability to record the Brownian motion of myosin V molecules on mica with image capture rates of 100 x 100 pixels in 80 ms over a decade ago [9]. The developments unleash the potential of atomic force microscopy to observe the dynamics of biological and materials systems. If seeing is believing, the ability to present real motion pictures of the nanoworld cannot fail to capture the public imagination and stimulate burgeoning new avenues of scientific endeavour. Nearly 350 years on from the publication Micrographia, images in microscopy have moved from the page to the movies. References [1] Binnig G, Quate C F, and Gerber Ch 1986 Phys. Rev. Lett. 56 930-3 [2] Ando T 2012 Nanotechnology 23 062001 [3] J G 1934 Nature 134 635-6 [4] Bharadwaj P, Anger P and Novotny L 2007 Nanotechnology 18 044017 [5] The Nobel Prize in Physics 1986 Nobelprize.org [6] Kim K K, Reina A, Shi Y, Park H, Li L-J, Lee Y H and Kong J 2010 Nanotechnology 21 285205 [7] Phillips D B, Grieve J A, Olof S N, Kocher S J, Bowman R, Padgett M J, Miles M J and Carberry D M 2011 Nanotechnology 22 285503 [8] Picco L M, Bozec L, Ulcinas A, Engledew D J, Antognozzi M, Horton M A and Miles M J 2007 Nanotechnology 18 044030 [9] Ando T, Kodera N, Takai E, Maruyama D, Saito K and Toda A 2001 Proc. Natl. Acad. Sci. 98 12468

  9. Dynamical Modelling of Meteoroid Streams

    NASA Astrophysics Data System (ADS)

    Clark, David; Wiegert, P. A.

    2012-10-01

    Accurate simulations of meteoroid streams permit the prediction of stream interaction with Earth, and provide a measure of risk to Earth satellites and interplanetary spacecraft. Current cometary ejecta and meteoroid stream models have been somewhat successful in predicting some stream observations, but have required questionable assumptions and significant simplifications. Extending on the approach of Vaubaillon et al. (2005)1, we model dust ejection from the cometary nucleus, and generate sample particles representing bins of distinct dynamical evolution-regulating characteristics (size, density, direction, albedo). Ephemerides of the sample particles are integrated and recorded for later assignment of frequency based on model parameter changes. To assist in model analysis we are developing interactive software to permit the “turning of knobs” of model parameters, allowing for near-real-time 3D visualization of resulting stream structure. With this tool, we will revisit prior assumptions made, and will observe the impact of introducing non-uniform cometary surface attributes and temporal activity. The software uses a single model definition and implementation throughout model verification, sample particle bin generation and integration, and analysis. It supports the adjustment with feedback of both independent and independent model values, with the intent of providing an interface supporting multivariate analysis. Propagations of measurement uncertainties and model parameter precisions are tracked rigorously throughout. We maintain a separation of the model itself from the abstract concepts of model definition, parameter manipulation, and real-time analysis and visualization. Therefore we are able to quickly adapt to fundamental model changes. It is hoped the tool will also be of use in other solar system dynamics problems. 1 Vaubaillon, J.; Colas, F.; Jorda, L. (2005) A new method to predict meteor showers. I. Description of the model. Astronomy and

  10. Aeroacoustics of Three-Stream Jets

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.

    2012-01-01

    Results from acoustic measurements of noise radiated from a heated, three-stream, co-annular exhaust system operated at subsonic conditions are presented. The experiments were conducted for a range of core, bypass, and tertiary stream temperatures and pressures. The nozzle system had a fan-to-core area ratio of 2.92 and a tertiary-to-core area ratio of 0.96. The impact of introducing a third stream on the radiated noise for third-stream velocities below that of the bypass stream was to reduce high frequency noise levels at broadside and peak jet-noise angles. Mid-frequency noise radiation at aft observation angles was impacted by the conditions of the third stream. The core velocity had the greatest impact on peak noise levels and the bypass-to-core mass flow ratio had a slight impact on levels in the peak jet-noise direction. The third-stream jet conditions had no impact on peak noise levels. Introduction of a third jet stream in the presence of a simulated forward-flight stream limits the impact of the third stream on radiated noise. For equivalent ideal thrust conditions, two-stream and three-stream jets can produce similar acoustic spectra although high-frequency noise levels tend to be lower for the three-stream jet.

  11. Effects of Stream Channel Characteristics on Nitrate Delivery to Streams and In-Stream Denitrification Rates, Raccoon River, Iowa

    NASA Astrophysics Data System (ADS)

    Prestegaard, K. L.; O'Connell, M.

    2004-05-01

    Streams in agricultural areas often exhibit significant channel and sediment modifications; they are often incised and transport more fine sediment than non-agricultural streams. These channel characteristics can influence stream water quality by modifying surface-groundwater interactions. In the Raccoon River basin, channel incision increases the delivery of nitrate from the groundwater to the streams. The sandy in-stream sediments, however, serve as very effective sites for in-stream denitrification. Nitrate delivery and in-stream denitrification was examined in 3 subwatersheds of the Raccoon River. Stream morphology, water quality, and sediment characteristics were measured at 35 sites with varying land uses. Headwater stream nitrate concentration increased with percent row crops and the amount of channel incision. Downstream sites showed a wide variation in nitrate concentration with land use. Stream nitrate concentrations were measured at 6 sites in each of 3 streams with high percentages of row crop land uses during high summer baseflow following the 1993 floods and during average summer baseflow in 1995. Nitrate concentrations were systematically higher for the high baseflow conditions of 1993 than the average year (1995). This change in nitrate concentration is interpreted as the increased effectiveness of nitrate delivery to the stream during periods of high water tables. The effect was most pronounced in incised reaches. All 3 streams show downstream decreases in nitrate concentration. Water samples for all the sites in the watersheds were analyzed for nitrogen isotopic composition. The nitrogen isotopic composition shifts with towards higher d 15N values with decreasing nitrate concentration. This is consistent with denitrification reactions that selectively remove the 14N leaving a higher proportion of 15N in the nitrate. This suggests that most of the downstream decrease in nitrate concentrations is a result of in-stream denitrification. The high rates

  12. GROUND MOTION ASSESSMENT BASED ON WEAK MOTION DATA IN TAIWAN Ground Motion Assessment Based on Weak Motion Data in Taiwan

    NASA Astrophysics Data System (ADS)

    Akinci, A.; D'Amico, S.; Malagnini, L.

    2010-12-01

    In this study, we characterize the scaling of the ground motions for frequencies ranging between 0.25 and 5 Hz, obtaining results for seismic attenuation, geometrical spreading, and source parameters in Taiwan. We regressed this large number of weak-motion data in order to characterize the regional propagation and the absolute source scaling. Stochastic simulations are generated for finite-fault ruptures using the obtained parameters to predict the absolute peaks of the ground acceleration and velocity for several magnitude and distance range, as well as beyond the magnitude range of the weak-motion data set on which they are calculated. The predictions are then compared with recorded strong motion data and empirical ground motion prediction equation obtained for the study region. We showed that our regional parameters, obtained from independent weak-motion database, may be applied for evaluation of ground motion parameters for earthquakes of magnitude up to 7.6.

  13. Motion analysis report

    NASA Technical Reports Server (NTRS)

    Badler, N. I.

    1985-01-01

    Human motion analysis is the task of converting actual human movements into computer readable data. Such movement information may be obtained though active or passive sensing methods. Active methods include physical measuring devices such as goniometers on joints of the body, force plates, and manually operated sensors such as a Cybex dynamometer. Passive sensing de-couples the position measuring device from actual human contact. Passive sensors include Selspot scanning systems (since there is no mechanical connection between the subject's attached LEDs and the infrared sensing cameras), sonic (spark-based) three-dimensional digitizers, Polhemus six-dimensional tracking systems, and image processing systems based on multiple views and photogrammetric calculations.

  14. Sperm motion analysis

    NASA Astrophysics Data System (ADS)

    Salari, Valiollah

    1991-07-01

    This paper presents a computerized technique for quantitative analysis of the movement characteristics of spermatozoa. Stored video images of spermatozoa are digitized at a fixed time interval. The digital images are stored as a sequence of frames in a microcomputer. The analysis of the sequence comprises two main tasks: finding the location of the centroid for each sperm and tracking them over the entire sequences. Information from the motion of each moving cell will be used for tracking. Experimental results are presented to show the merits of the proposed algorithm for tracking.

  15. Detecting and Analyzing Multiple Moving Objects in Crowded Environments with Coherent Motion Regions

    SciTech Connect

    Cheriyadat, Anil M.

    2013-01-04

    Understanding the world around us from large-scale video data requires vision systems that can perform automatic interpretation. While human eyes can unconsciously perceive independent objects in crowded scenes and other challenging operating environments, automated systems have difficulty detecting, counting, and understanding their behavior in similar scenes. Computer scientists at ORNL have a developed a technology termed as "Coherent Motion Region Detection" that invloves identifying multiple indepedent moving objects in crowded scenes by aggregating low-level motion cues extracted from moving objects. Humans and other species exploit such low-level motion cues seamlessely to perform perceptual grouping for visual understanding. The algorithm detects and tracks feature points on moving objects resulting in partial trajectories that span coherent 3D region in the space-time volume defined by the video. In the case of multi-object motion, many possible coherent motion regions can be constructed around the set of trajectories. The unique approach in the algorithm is to identify all possible coherent motion regions, then extract a subset of motion regions based on an innovative measure to automatically locate moving objects in crowded environments.The software reports snapshot of the object, count, and derived statistics ( count over time) from input video streams. The software can directly process videos streamed over the internet or directly from a hardware device (camera).

  16. Optimising rigid motion compensation for small animal brain PET imaging

    NASA Astrophysics Data System (ADS)

    Spangler-Bickell, Matthew G.; Zhou, Lin; Kyme, Andre Z.; De Laat, Bart; Fulton, Roger R.; Nuyts, Johan

    2016-10-01

    Motion compensation (MC) in PET brain imaging of awake small animals is attracting increased attention in preclinical studies since it avoids the confounding effects of anaesthesia and enables behavioural tests during the scan. A popular MC technique is to use multiple external cameras to track the motion of the animal’s head, which is assumed to be represented by the motion of a marker attached to its forehead. In this study we have explored several methods to improve the experimental setup and the reconstruction procedures of this method: optimising the camera-marker separation; improving the temporal synchronisation between the motion tracker measurements and the list-mode stream; post-acquisition smoothing and interpolation of the motion data; and list-mode reconstruction with appropriately selected subsets. These techniques have been tested and verified on measurements of a moving resolution phantom and brain scans of an awake rat. The proposed techniques improved the reconstructed spatial resolution of the phantom by 27% and of the rat brain by 14%. We suggest a set of optimal parameter values to use for awake animal PET studies and discuss the relative significance of each parameter choice.

  17. Optimization of blade motion of vertical axis turbine

    NASA Astrophysics Data System (ADS)

    Ma, Yong; Zhang, Liang; Zhang, Zhi-yang; Han, Duan-feng

    2016-04-01

    In this paper, a method is proposed to improve the energy efficiency of the vertical axis turbine. First of all, a single disk multiple stream-tube model is used to calculate individual fitness. Genetic algorithm is adopted to optimize blade pitch motion of vertical axis turbine with the maximum energy efficiency being selected as the optimization objective. Then, a particular data processing method is proposed, fitting the result data into a cosine-like curve. After that, a general formula calculating the blade motion is developed. Finally, CFD simulation is used to validate the blade pitch motion formula. The results show that the turbine's energy efficiency becomes higher after the optimization of blade pitch motion; compared with the fixed pitch turbine, the efficiency of variable-pitch turbine is significantly improved by the active blade pitch control; the energy efficiency declines gradually with the growth of speed ratio; besides, compactness has lager effect on the blade motion while the number of blades has little effect on it.

  18. Stream Channelization: Conflict Between Ditchers, Conservationists

    ERIC Educational Resources Information Center

    Gillette, Robert

    1972-01-01

    Summarizes the argument between the advocates of stream straightening for flood control, drainage, and navigation, and those concerned with the maintenance of ecological communities and the aesthetic values of natural" streams. (AL)

  19. Stream Tables and Watershed Geomorphology Education.

    ERIC Educational Resources Information Center

    Lillquist, Karl D.; Kinner, Patricia W.

    2002-01-01

    Reviews copious stream tables and provides a watershed approach to stream table exercises. Results suggest that this approach to learning the concepts of fluvial geomorphology is effective. (Contains 39 references.) (DDR)

  20. Simulations of the Magellanic Stream in a First Infall Scenario

    NASA Astrophysics Data System (ADS)

    Besla, G.; Kallivayalil, N.; Hernquist, L.; van der Marel, R. P.; Cox, T. J.; Kereš, D.

    2010-10-01

    Recent high-precision proper motions from the Hubble Space Telescope suggest that the Large and Small Magellanic Clouds (LMC and SMC, respectively) are either on their first passage or on an eccentric long period (>6 Gyr) orbit about the Milky Way (MW). This differs markedly from the canonical picture in which the Clouds travel on a quasi-periodic orbit about the MW (period of ~2 Gyr). Without a short-period orbit about the MW, the origin of the Magellanic Stream, a young (1-2 Gyr old) coherent stream of H I gas that trails the Clouds ~150° across the sky, can no longer be attributed to stripping by MW tides and/or ram pressure stripping by MW halo gas. We propose an alternative formation mechanism in which material is removed by LMC tides acting on the SMC before the system is accreted by the MW. We demonstrate the feasibility and generality of this scenario using an N-body/smoothed particle hydrodynamics simulation with cosmologically motivated initial conditions constrained by the observations. Under these conditions, we demonstrate that it is possible to explain the origin of the Magellanic Stream in a first infall scenario. This picture is generically applicable to any gas-rich dwarf galaxy pair infalling toward a massive host or interacting in isolation.

  1. Simulations of the Magellanic Stream in a First Infall Scenario

    NASA Astrophysics Data System (ADS)

    Besla, Gurtina; Kallivayalil, N.; Hernquist, L.; van der Marel, R.; Cox, T.; Keres, D.

    2011-01-01

    Recent high precision proper motions from the Hubble Space Telescope (HST) suggest that the Large and Small Magellanic Clouds (LMC and SMC, respectively) are either on their first passage or on an eccentric long period (≥6 Gyr) orbit about the Milky Way (MW). This differs markedly from the canonical picture in which the Clouds travel on a quasi-periodic orbit about the MW (period of 2 Gyr). Without a short period orbit about the MW, the origin of the Magellanic Stream, a young (1-2 Gyr old) coherent stream of HI gas that trails the Clouds 150 degrees across the sky, can no longer be attributed to stripping by MW tides and/or ram pressure stripping by MW halo gas. We propose an alternative formation mechanism in which material is removed by LMC tides acting on the SMC before the system is accreted by the MW. We demonstrate the feasibility and generality of this scenario using an N-body/SPH simulation with cosmologically motivated initial conditions constrained by the observations. Under these conditions we demonstrate that it is possible to explain the origin of the Magellanic Stream in a first infall scenario. This picture is generically applicable to any gas-rich dwarf galaxy pair infalling towards a massive host or interacting in isolation.

  2. SIMULATIONS OF THE MAGELLANIC STREAM IN A FIRST INFALL SCENARIO

    SciTech Connect

    Besla, G.; Hernquist, L.; Keres, D.; Kallivayalil, N.; Van der Marel, R. P.; Cox, T. J.

    2010-10-01

    Recent high-precision proper motions from the Hubble Space Telescope suggest that the Large and Small Magellanic Clouds (LMC and SMC, respectively) are either on their first passage or on an eccentric long period (>6 Gyr) orbit about the Milky Way (MW). This differs markedly from the canonical picture in which the Clouds travel on a quasi-periodic orbit about the MW (period of {approx}2 Gyr). Without a short-period orbit about the MW, the origin of the Magellanic Stream, a young (1-2 Gyr old) coherent stream of H I gas that trails the Clouds {approx}150{sup 0} across the sky, can no longer be attributed to stripping by MW tides and/or ram pressure stripping by MW halo gas. We propose an alternative formation mechanism in which material is removed by LMC tides acting on the SMC before the system is accreted by the MW. We demonstrate the feasibility and generality of this scenario using an N-body/smoothed particle hydrodynamics simulation with cosmologically motivated initial conditions constrained by the observations. Under these conditions, we demonstrate that it is possible to explain the origin of the Magellanic Stream in a first infall scenario. This picture is generically applicable to any gas-rich dwarf galaxy pair infalling toward a massive host or interacting in isolation.

  3. Stream Gauges and Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Alsdorf, D. E.

    2010-12-01

    Satellite measurements should not be viewed as a replacement for stream gauges. However, occasionally it is suggested that because satellite-based measurements can provide river discharge, a motivation for satellite approaches is an increasing lack of stream gauges. This is an argument for more stream gauges, but not necessarily for satellite measurements. Rather, in-situ and spaceborne methods of estimating discharge are complementary. Stream gauges provide frequent measurements at one point in the river reach whereas satellites have the potential to measure throughout all reaches but at orbital repeat intervals of days to weeks. The Surface Water and Ocean Topography satellite mission (SWOT) is an opportunity to further develop these complements. The motivation for SWOT, and indeed for any satellite based method of estimating discharge, should not be as a replacement for stream gauges. Scientific and application uses should motivate the measurements. For example, understanding floods with their dynamic water surfaces are best sampled from remote platforms that provide water surface elevations throughout the floodwave. As another example, today’s water and energy balance models are giving outputs at increasing spatial resolution and are making use of water surface elevations throughout the modeled basin. These models require a similar resolution in the calibrating and validating observations. We should also be aware of practical limitations. In addition to providing spatially distributed hydrodynamic measurements on rivers, SWOT will be able to measure storage changes in the estimated 30 million lakes in the world that are larger than a hectare. Knowing the storage changes in these lakes is especially important in certain regions such as the Arctic but gauging even a small fraction of these is impractical. Another motivator for satellite methods is that even in the presence of stream gauges, discharge data is not always well shared throughout all countries

  4. Fast local motion estimation algorithm using elementary motion detectors

    NASA Astrophysics Data System (ADS)

    Nakamura, Eiji; Nakamura, Takehito; Sawada, Katsutoshi

    2003-06-01

    This paper presnts a fast local motion estimation algorithm based on so called elementary motion detectors or EMDs. EMDs, modeling insect"s visual signal processing systems, have low computational complexity aspects and can thus be key components to realize such a fast local motion estimation algorithm. The contribution of the presented work is to introduce dual parameter estimators or DPEs by configuring EMDs so that they can estimate local motions in terms of both direction and speed mode parameters simultaneously. The estimated local motion vectors are displayed as arrows superimposed over video image frames. The developed algorithm is implmented in a DirectShow application by using Mircosoft"s DirectX runtime library and is evaluated using various types of video image sequences. It is found to be able to estimate local motion vectors in real time even in moderate PC computing platforms and hece no high profile hardware devices are needed for its real time operation.

  5. Integrated Reproduction of Human Motion Components by Motion Copying System

    NASA Astrophysics Data System (ADS)

    Tsunashima, Noboru; Katsura, Seiichiro

    Currently, the development of leading-edge technology for recording and loading human motion on the basis of haptic information is required in the field of manufacturing and human support. Human movement is an assembly of motion components. Since human movements should be supported by a robot in real time, it is necessary to integrate the morion components, which were saved earlier. Once such motion integration is realized, future technology for use in daily human life is developed. This paper proposes the integrated reproduction of the decomposed components of human motion by using a motion copying system. This system is the key technology for the realization of the acquisition, saving and reproduction of the real-world haptic information. By the proposed method, it is possible not only to achieve expert skill acquisition, skill transfer to robots, and power assist for each motion component but also to open up new areas of applications.

  6. Tiling Motion Patches.

    PubMed

    Hyun, Kyunglyul; Kim, Manmyung; Hwang, Youngseok; Lee, Jehee

    2013-05-01

    Simulating multiple character interaction is challenging because character actions must be carefully coordinated to align their spatial locations and synchronized with each other. We present an algorithm to create a dense crowd of virtual characters interacting with each other. The interaction may involve physical contacts, such as hand shaking, hugging, and carrying a heavy object collaboratively. We address the problem by collecting deformable motion patches, each of which describes an episode of multiple interacting characters, and tiling them spatially and temporally. The tiling of motion patches generates a seamless simulation of virtual characters interacting with each other in a non-trivial manner. Our tiling algorithm uses a combination of stochastic sampling and deterministic search to address the discrete and continuous aspects of the tiling problem. Our tiling algorithm made it possible to automatically generate highly-complex animation of multiple interacting characters. We achieved the level of complexity far beyond the current state-of-the-art animation techniques could generate, in terms of the diversity of human behaviors and the spatial/temporal density of interpersonal interactions. PMID:23669532

  7. Tiling motion patches.

    PubMed

    Hyun, Kyunglyul; Kim, Manmyung; Hwang, Youngseok; Lee, Jehee

    2013-11-01

    Simulating multiple character interaction is challenging because character actions must be carefully coordinated to align their spatial locations and synchronized with each other. We present an algorithm to create a dense crowd of virtual characters interacting with each other. The interaction may involve physical contacts, such as hand shaking, hugging, and carrying a heavy object collaboratively. We address the problem by collecting deformable motion patches, each of which describes an episode of multiple interacting characters, and tiling them spatially and temporally. The tiling of motion patches generates a seamless simulation of virtual characters interacting with each other in a nontrivial manner. Our tiling algorithm uses a combination of stochastic sampling and deterministic search to address the discrete and continuous aspects of the tiling problem. Our tiling algorithm made it possible to automatically generate highly complex animation of multiple interacting characters. We achieve the level of interaction complexity far beyond the current state of the art that animation techniques could generate, in terms of the diversity of human behaviors and the spatial/temporal density of interpersonal interactions. PMID:24029911

  8. Stochastic blind motion deblurring.

    PubMed

    Xiao, Lei; Gregson, James; Heide, Felix; Heidrich, Wolfgang

    2015-10-01

    Blind motion deblurring from a single image is a highly under-constrained problem with many degenerate solutions. A good approximation of the intrinsic image can, therefore, only be obtained with the help of prior information in the form of (often nonconvex) regularization terms for both the intrinsic image and the kernel. While the best choice of image priors is still a topic of ongoing investigation, this research is made more complicated by the fact that historically each new prior requires the development of a custom optimization method. In this paper, we develop a stochastic optimization method for blind deconvolution. Since this stochastic solver does not require the explicit computation of the gradient of the objective function and uses only efficient local evaluation of the objective, new priors can be implemented and tested very quickly. We demonstrate that this framework, in combination with different image priors produces results with Peak Signal-to-Noise Ratio (PSNR) values that match or exceed the results obtained by much more complex state-of-the-art blind motion deblurring algorithms. PMID:25974941

  9. Highly scalable differential JPEG 2000 wavelet video codec for Internet video streaming

    NASA Astrophysics Data System (ADS)

    Zhao, Lifeng; Kim, JongWon; Bao, Yiliang; Kuo, C.-C. Jay

    2000-12-01

    A highly scalable wavelet video codec is proposed for Internet video streaming applications based on the simplified JPEG-2000 compression core. Most existing video coding solutions utilize a fixed temporal grouping structure, resulting in quality degradation due to structural mismatch with inherent motion and scene change. Thus, by adopting an adaptive frame grouping scheme based on fast scene change detection, a flexible temporal grouping is proposed according to motion activities. To provide good temporal scalability regardless of packet loss, the dependency structure inside a temporal group is simplified by referencing only the initial intra-frame in telescopic motion estimation at the cost of coding efficiency. In addition, predictive-frames in a temporal group are prioritized according to their relative motion and coding cost. Finally, the joint spatio-temporal scalability support of the proposed video solution is demonstrated in terms of the network adaptation capability.

  10. Maximizing Resource Utilization in Video Streaming Systems

    ERIC Educational Resources Information Center

    Alsmirat, Mohammad Abdullah

    2013-01-01

    Video streaming has recently grown dramatically in popularity over the Internet, Cable TV, and wire-less networks. Because of the resource demanding nature of video streaming applications, maximizing resource utilization in any video streaming system is a key factor to increase the scalability and decrease the cost of the system. Resources to…

  11. The Stream Table in Physical Geography Instruction.

    ERIC Educational Resources Information Center

    Wikle, Thomas A.; Lightfoot, Dale R.

    1997-01-01

    Outlines a number of activities to be conducted with a stream table (large wooden box filled with sediment and designed for water to pass through) in class. Activities illustrate such fluvial processes as stream meandering, erosion, transportation, and deposition. Includes a diagram for constructing a stream table. (MJP)

  12. Olefin Recovery from Chemical Industry Waste Streams

    SciTech Connect

    A.R. Da Costa; R. Daniels; A. Jariwala; Z. He; A. Morisato; I. Pinnau; J.G. Wijmans

    2003-11-21

    The objective of this project was to develop a membrane process to separate olefins from paraffins in waste gas streams as an alternative to flaring or distillation. Flaring these streams wastes their chemical feedstock value; distillation is energy and capital cost intensive, particularly for small waste streams.

  13. An investigation into the turbulence parameter responsible for the onset of grain motion

    NASA Astrophysics Data System (ADS)

    Smith, H. J.; Yager, E. M.

    2012-12-01

    Most bedload transport equations overpredict sediment fluxes in steep streams by orders of magnitude. These equations often use excess shear stress, which is a function of the difference between the average applied and critical shear stresses. However, the occurrence of wide distributions of both applied and critical stresses in steep streams mean that average stresses do no accurately represent grain motion. Turbulence is partially responsible for the wide variability of applied shear stresses, but we currently do not understand the mechanics of turbulence-induced grain motion. We therefore conducted a set of flume experiments in which we measured detailed turbulence during movement of a test grain to determine what turbulence parameters most influence motion. Specifically, we measured (1) velocities using 3D particle imaging velocimetry along a stream-wise transect over a grain, (2) spatial distributions of pressure fluctuations using seven sensors embedded inside the mobile grain, and (3) forces on the grain using three load cells. The critical shear stress of the mobile grain was held relatively constant through all experiments by fixing its pocket geometry, whereas mean slope, water depth and velocity were varied between experiments. Preliminary results suggest that the integrative effect of velocity along the entire upstream side of a grain may influence motion. We observed that particle motion does not correspond to a particular velocity profile shape, or the average velocity upstream of a grain. However, particle motion occurred with (1) a large area of the grain being subjected to statistically high velocities, and (2) a large value of summed statistically high velocities. These results suggest that turbulence excursions of a certain size and magnitude must occur over enough of the grain for motion to occur. This also suggests that a single measurement location upstream of a grain does not sufficiently describe the turbulence that causes motion.

  14. 24 CFR 26.16 - Motions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 1 2014-04-01 2014-04-01 false Motions. 26.16 Section 26.16... PROCEDURES Hearings Before Hearing Officers Pleadings and Motions § 26.16 Motions. (a) Motions. Requests for... a motion. All motions from the commencement of the action until the issuance of a decision shall...

  15. 24 CFR 26.16 - Motions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Motions. 26.16 Section 26.16... PROCEDURES Hearings Before Hearing Officers Pleadings and Motions § 26.16 Motions. (a) Motions. Requests for... a motion. All motions from the commencement of the action until the issuance of a decision shall...

  16. 24 CFR 26.16 - Motions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 1 2011-04-01 2011-04-01 false Motions. 26.16 Section 26.16... PROCEDURES Hearings Before Hearing Officers Pleadings and Motions § 26.16 Motions. (a) Motions. Requests for... a motion. All motions from the commencement of the action until the issuance of a decision shall...

  17. 24 CFR 26.16 - Motions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 1 2012-04-01 2012-04-01 false Motions. 26.16 Section 26.16... PROCEDURES Hearings Before Hearing Officers Pleadings and Motions § 26.16 Motions. (a) Motions. Requests for... a motion. All motions from the commencement of the action until the issuance of a decision shall...

  18. 24 CFR 26.16 - Motions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 1 2013-04-01 2013-04-01 false Motions. 26.16 Section 26.16... PROCEDURES Hearings Before Hearing Officers Pleadings and Motions § 26.16 Motions. (a) Motions. Requests for... a motion. All motions from the commencement of the action until the issuance of a decision shall...

  19. Lessons learned on reliable transmission of real-time MPEG-2 streams over ATM

    NASA Astrophysics Data System (ADS)

    Basso, Andrea; Civanlar, Mehmet R.; Cash, Glenn L.

    1996-09-01

    This paper describes a system that has been designed and built at AT&T Bell Labs for studying transmission of real- time MPEG-2 video over ATM networks for multi-cast applications. The set-up comprises a hardware real-time MPEG-2 video, audio and system encoder, an ATM network adaptation module for MPEG-2 transport over AAL-5, and ATM switch, a software system decoder and a hardware elementary stream decoder. The MPEG-2 transport stream has been characterized in terms of robustness to errors. This preliminary study showed the higher importance of the structural information of the stream (PES packet headers TS headers, sequence, picture headers, etc.) with respect to the coded video data (motion vectors, DCT coefficients, etc.). A brief study of the current MPEG-2 hardware decoding architectures allowed us to better understand the effects of bit-stream errors on the resulting video quality. In our experiments, while the loss of some structural data such as picture start codes led the hardware decoder to loose synchronization or to freeze, the loss of video data only affected the image quality. Furthermore the recovery times from a loss of synchronization were orders of magnitude higher than the recovery from some video data loss. An error-resilient real-time software transport stream decoder has been developed. In multiplex-wide operations (i.e. operations on the entire transport stream) it takes advantage of ring buffers and manages the timing information appropriately. In video-stream specific operations it uses resynchronization mechanisms at the picture level which exploit the redundancy of the PES and transport stream syntax. Furthermore time data transfers between the system decoder and the elementary stream decoder are employed. Experiments show that proper use of these methods can significantly improve the system performance.

  20. Thermal loading of natural streams

    USGS Publications Warehouse

    Jackman, Alan P.; Yotsukura, Nobuhiro

    1977-01-01

    The impact of thermal loading on the temperature regime of natural streams is investigated by mathematical models, which describe both transport (convection-diffusion) and decay (surface dissipation) of waste heat over 1-hour or shorter time intervals. The models are derived from the principle of conservation of thermal energy for application to one- and two-dimensional spaces. The basic concept in these models is to separate water temperature into two parts, (1) excess temperature due to thermal loading and (2) natural (ambient) temperature. This separation allows excess temperature to be calculated from the models without incoming radiation data. Natural temperature may either be measured in prototypes or calculated from the model. If use is made of the model, however, incoming radiation is required as input data. Comparison of observed and calculated temperatures in seven natural streams shows that the models are capable of predicting transient temperature regimes satisfactorily in most cases. (Woodard-USGS)

  1. Metamers of the ventral stream

    PubMed Central

    Freeman, Jeremy; Simoncelli, Eero P.

    2011-01-01

    The human capacity to recognize complex visual patterns emerges in a sequence of brain areas known as the ventral stream, beginning with primary visual cortex (V1). We develop a population model for mid-ventral processing, in which non-linear combinations of V1 responses are averaged within receptive fields that grow with eccentricity. To test the model, we generate novel forms of visual metamers — stimuli that differ physically, but look the same. We develop a behavioral protocol that uses metameric stimuli to estimate the receptive field sizes in which the model features are represented. Because receptive field sizes change along the ventral stream, the behavioral results can identify the visual area corresponding to the representation. Measurements in human observers implicate V2, providing a new functional account of this area. The model explains deficits of peripheral vision known as “crowding”, and provides a quantitative framework for assessing the capabilities of everyday vision. PMID:21841776

  2. Streaming visualization for collaborative environments.

    SciTech Connect

    Hereld, M.; Olson, E.; Papka, M. E.; Uram, T. D.

    2008-01-01

    Connecting expensive and scarce visual data analysis resources to end-users is a major challenge today. We describe a flexible mechanism for meeting this challenge based on commodity compression technologies for streaming video. The advantages of this approach include simplified application development, access to generic client components for viewing, and simplified incorporation of improved codecs as they become available. In this paper we report newly acquired experimental results for two different applications being developed to exploit this approach and test its merits. One is based on a new plugin for ParaView that adds video streaming cleanly and transparently to existing applications. The other is a custom volume rendering application with new remote capabilities. Using typical datasets under realistic conditions, we find the performance for both is satisfactory.

  3. Streaming visualization for collaborative environments

    NASA Astrophysics Data System (ADS)

    Hereld, M.; Olson, E.; Papka, M. E.; Uram, T. D.

    2008-07-01

    Connecting expensive and scarce visual data analysis resources to end-users is a major challenge today. We describe a flexible mechanism for meeting this challenge based on commodity compression technologies for streaming video. The advantages of this approach include simplified application development, access to generic client components for viewing, and simplified incorporation of improved codecs as they become available. In this paper we report newly acquired experimental results for two different applications being developed to exploit this approach and test its merits. One is based on a new plugin for ParaView that adds video streaming cleanly and transparently to existing applications. The other is a custom volume rendering application with new remote capabilities. Using typical datasets under realistic conditions, we find the performance for both is satisfactory.

  4. Where Did All the Streams Go? Effects of Urbanization on Hydrologic Permanence of Headwater Streams

    EPA Science Inventory

    Headwater streams represent a majority (up to 70%) of the stream length in the United States; however, these small streams are often piped or filled to accommodate residential, commercial, and industrial development. Legal protection of headwater streams under the Clean Water Ac...

  5. Academic Self-Concepts in Ability Streams: Considering Domain Specificity and Same-Stream Peers

    ERIC Educational Resources Information Center

    Liem, Gregory Arief D.; McInerney, Dennis M.; Yeung, Alexander S.

    2015-01-01

    The study examined the relations between academic achievement and self-concepts in a sample of 1,067 seventh-grade students from 3 core ability streams in Singapore secondary education. Although between-stream differences in achievement were large, between-stream differences in academic self-concepts were negligible. Within each stream, levels of…

  6. Tvashtar in Motion

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This five-frame sequence of New Horizons images captures the giant plume from Io's Tvashtar volcano. Snapped by the probe's Long Range Reconnaissance Imager (LORRI) as the spacecraft flew past Jupiter earlier this year, this first-ever 'movie' of an Io plume clearly shows motion in the cloud of volcanic debris, which extends 330 kilometers (200 miles) above the moon's surface. Only the upper part of the plume is visible from this vantage point -- the plume's source is 130 kilometers (80 miles) below the edge of Io's disk, on the far side of the moon.

    The appearance and motion of the plume is remarkably similar to an ornamental fountain on Earth, replicated on a gigantic scale. The knots and filaments that allow us to track the plume's motion are still mysterious, but this movie is likely to help scientists understand their origin, as well as provide unique information on the plume dynamics.

    Io's hyperactive nature is emphasized by the fact that two other volcanic plumes are also visible off the edge of Io's disk: Masubi at the 7 o'clock position, and a very faint plume, possibly from the volcano Zal, at the 10 o'clock position. Jupiter illuminates the night side of Io, and the most prominent feature visible on the disk is the dark horseshoe shape of the volcano Loki, likely an enormous lava lake. Boosaule Mons, which at 18 kilometers (11 miles) is the highest mountain on Io and one of the highest mountains in the solar system, pokes above the edge of the disk on the right side.

    The five images were obtained over an 8-minute span, with two minutes between frames, from 23:50 to 23:58 Universal Time on March 1, 2007. Io was 3.8 million kilometers (2.4 million miles) from New Horizons; the image is centered at Io coordinates 0 degrees north, 342 degrees west.

    The pictures were part of a sequence designed to look at Jupiter's rings, but planners included Io in the sequence because the moon was passing behind Jupiter's rings at the time.

  7. Stream biogeochemical and suspended sediment responses to permafrost degradation in stream banks in Taylor Valley, Antarctica

    NASA Astrophysics Data System (ADS)

    Gooseff, Michael N.; Van Horn, David; Sudman, Zachary; McKnight, Diane M.; Welch, Kathleene A.; Lyons, William B.

    2016-03-01

    Stream channels in the McMurdo Dry Valleys are characteristically wide, incised, and stable. At typical flows, streams occupy a fraction of the oversized channels, providing habitat for algal mats. In January 2012, we discovered substantial channel erosion and subsurface thermomechanical erosion undercutting banks of the Crescent Stream. We sampled stream water along the impacted reach and compared concentrations of solutes to the long-term data from this stream ( ˜ 20 years of monitoring). Thermokarst-impacted stream water demonstrated higher electrical conductivity, and concentrations of chloride, sulfate, sodium, and nitrate than the long-term medians. These results suggest that this mode of lateral permafrost degradation may substantially impact stream solute loads and potentially fertilize stream and lake ecosystems. The potential for sediment to scour or bury stream algal mats is yet to be determined, though it may offset impacts of associated increased nutrient loads to streams.

  8. Representations of motion and direction.

    PubMed

    Price, C M; Gilden, D L

    2000-02-01

    In 6 experiments, incidental memory was tested for direction of motion in an old-new recognition paradigm. Ability to recognize previously shown directions depended greatly on motion type. Memory for translation and expansion-contraction direction was highly veridical, whereas memory for rotation direction was conspicuously absent. Similar results were obtained in conditions in which motions were illustrated with pictures. Results suggest that explicit representations of direction in long-term memory are not so much related to motion per se as to the consequences of motion, the displacements of objects. Memory for all motions following circular pathways was found to be corrupted by a generic bias to regard the clockwise direction as familiar. Assessment of memory in these cases required disentangling familiarity bias for the clockwise direction from explicit recognition of direction.

  9. Compressed domain moving object extraction algorithm for MPEG-2 video stream

    NASA Astrophysics Data System (ADS)

    Yang, Gaobo; Wang, Xiaojing; Zhang, Zhaoyang

    2007-11-01

    In this paper, a compressed domain moving object extraction algorithm is proposed for MPEG-2 video stream. It is mainly based on the histogram analysis of motion vectors, which can be easily obtained by partially decoding the MPEG-2 video stream. The whole algorithm framework can be divided into three key steps: motion vector pre-processing, histogram analysis of motion vector and motion vector similarity based region growing for final mask generation. A piecewise cubic hermit interpolation is utilized to form a dense motion field. The outputs of region growing algorithm based on similarity matching are the final segmentation results of moving object. These final segmentation results are further smoothed and interpolated by B-spline curve estimation. Experimental results on several test sequences demonstrate that desirable segmentation results are obtained. The accuracy of segmentation results is improved obviously, nearly to pixel level accuracy because of B-spline curve representation of segmented object. For segmentation efficiency, the processing speed is about 30ms per frame, which can meet the requirements of real time applications.

  10. Towards Flexible Exascale Stream Processing System Simulation

    SciTech Connect

    Li, Cheng-Hong; Nair, Ravi; Ohba, Noboyuki; Shvadron, Uzi; Zaks, Ayal; Schenfeld, Eugen

    2012-01-01

    Stream processing is an important emerging computational model for performing complex operations on and across multi-source, high-volume, unpredictable dataflows. We present Flow, a platform for parallel and distributed stream processing system simulation that provides a flexible modeling environment for analyzing stream processing applications. The Flow stream processing system simulator is a high-performance, scalable simulator that automatically parallelizes chunks of the model space and incurs near-zero synchronization overhead for acyclic stream application graphs. We show promising parallel and distributed event rates exceeding 149 million events per second on a cluster with 512 processor cores.

  11. Managing space motion sickness.

    PubMed

    Jennings, R T

    1998-01-01

    Space motion sickness is a well-recognized problem for space flight and affects 73% of crewmembers on the first 2 or 3 days of their initial flight. Illness severity is variable, but over half of cases are categorized as moderate to severe. Management has included elimination of provocative activities and delay of critical performance-related procedures such as extra-vehicular activity (EVA) or Shuttle landing during the first three days of missions. Pharmacological treatment strategies have had variable results, but intramuscular promethazine has been the most effective to date with a 90% initial response rate and important reduction in residual symptoms the next flight day. Oral prophylactic treatment of crewmembers with difficulty on prior flights has had mixed results. In order to accommodate more aggressive pharmacologic management, crew medical officers receive additional training in parenteral administration of medications. Preflight medication testing is accomplished to reduce the risk of unexpected performance decrements or idiosyncratic reactions. When possible, treatment is offered in the presleep period to mask potential treatment-related drowsiness. Another phenomenon noted by crewmembers and physicians as flights have lengthened is readaptation difficulty or motion sickness on return to Earth. These problems have included nausea, vomiting, and difficulty with locomotion or coordination upon early exposure to gravity. Since landing and egress are principal concerns during this portion of the flight, these deficits are of operational concern. Postflight therapy has been directed at nausea and vomiting, and meclizine and promethazine are the principal agents used. There has been no official attempt at prophylactic treatment prior to entry. Since there is considerable individual variation in postflight deficit and since adaptation from prior flights seems to persist, it has been recommended that commanders with prior shuttle landing experience be named to

  12. Multivariate respiratory motion prediction

    NASA Astrophysics Data System (ADS)

    Dürichen, R.; Wissel, T.; Ernst, F.; Schlaefer, A.; Schweikard, A.

    2014-10-01

    In extracranial robotic radiotherapy, tumour motion is compensated by tracking external and internal surrogates. To compensate system specific time delays, time series prediction of the external optical surrogates is used. We investigate whether the prediction accuracy can be increased by expanding the current clinical setup by an accelerometer, a strain belt and a flow sensor. Four previously published prediction algorithms are adapted to multivariate inputs—normalized least mean squares (nLMS), wavelet-based least mean squares (wLMS), support vector regression (SVR) and relevance vector machines (RVM)—and evaluated for three different prediction horizons. The measurement involves 18 subjects and consists of two phases, focusing on long term trends (M1) and breathing artefacts (M2). To select the most relevant and least redundant sensors, a sequential forward selection (SFS) method is proposed. Using a multivariate setting, the results show that the clinically used nLMS algorithm is susceptible to large outliers. In the case of irregular breathing (M2), the mean root mean square error (RMSE) of a univariate nLMS algorithm is 0.66 mm and can be decreased to 0.46 mm by a multivariate RVM model (best algorithm on average). To investigate the full potential of this approach, the optimal sensor combination was also estimated on the complete test set. The results indicate that a further decrease in RMSE is possible for RVM (to 0.42 mm). This motivates further research about sensor selection methods. Besides the optical surrogates, the sensors most frequently selected by the algorithms are the accelerometer and the strain belt. These sensors could be easily integrated in the current clinical setup and would allow a more precise motion compensation.

  13. Earthquake ground motion: Chapter 3

    USGS Publications Warehouse

    Luco, Nicolas; Valley, Michael; Crouse, C.B.

    2012-01-01

    Most of the effort in seismic design of buildings and other structures is focused on structural design. This chapter addresses another key aspect of the design process—characterization of earthquake ground motion. Section 3.1 describes the basis of the earthquake ground motion maps in the Provisions and in ASCE 7. Section 3.2 has examples for the determination of ground motion parameters and spectra for use in design. Section 3.3 discusses and provides an example for the selection and scaling of ground motion records for use in response history analysis.

  14. Low-cost multi-hypothesis motion compensation for video coding

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Dong, Shengfu; Wang, Ronggang; Wang, Zhenyu; Ma, Siwei; Wang, Wenmin; Gao, Wen

    2014-02-01

    In conventional motion compensation, prediction block is related only with one motion vector for P frame. Multihypothesis motion compensation (MHMC) is proposed to improve the prediction performance of conventional motion compensation. However, multiple motion vectors have to be searched and coded for MHMC. In this paper, we propose a new low-cost multi-hypothesis motion compensation (LMHMC) scheme. In LMHMC, a block can be predicted from multiple-hypothesis with only one motion vector to be searched and coded into bit-stream, other motion vectors are predicted from motion vectors of neighboring blocks, and so both the encoding complexity and bit-rate of MHMC can be saved by our proposed LMHMC. By adding LMHMC as an additional mode in MPEG internet video coding (IVC) platform, the B-D rate saving is up to 10%, and the average B-D rate saving is close to 5% in Low Delay configure. We also compare the performance between MHMC and LMHMC in IVC platform, the performance of MHMC is improved about 2% on average by LMHMC.

  15. Global perspectives on the urban stream syndrome

    USGS Publications Warehouse

    Roy, Allison; Booth, Derek B.; Capps, Krista A.; Smith, Benjamin

    2016-01-01

    Urban streams commonly express degraded physical, chemical, and biological conditions that have been collectively termed the “urban stream syndrome”. The description of the syndrome highlights the broad similarities among these streams relative to their less-impaired counterparts. Awareness of these commonalities has fostered rapid improvements in the management of urban stormwater for the protection of downstream watercourses, but the focus on the similarities among urban streams has obscured meaningful differences among them. Key drivers of stream responses to urbanization can vary greatly among climatological and physiographic regions of the globe, and the differences can be manifested in individual stream channels even through the homogenizing veneer of urban development. We provide examples of differences in natural hydrologic and geologic settings (within similar regions) that can result in different mechanisms of stream ecosystem response to urbanization and, as such, should lead to different management approaches. The idea that all urban streams can be cured using the same treatment is simplistic, but overemphasizing the tremendous differences among natural (or human-altered) systems also can paralyze management. Thoughtful integration of work that recognizes the commonalities of the urban stream syndrome across the globe has benefitted urban stream management. Now we call for a more nuanced understanding of the regional, subregional, and local attributes of any given urban stream and its watershed to advance the physical, chemical, and ecological recovery of these systems.

  16. Gas-rich and gas-poor structures through the stream velocity effect

    NASA Astrophysics Data System (ADS)

    Popa, Cristina; Naoz, Smadar; Marinacci, Federico; Vogelsberger, Mark

    2016-08-01

    Using adiabatic high-resolution numerical simulations, we quantify the effect of the streaming motion of baryons with respect to dark matter at the time of recombination on structure formation and evolution. Formally a second-order effect, the baryonic stream velocity has proven to have significant impact on dark matter halo abundance, as well as on the gas content and morphology of small galaxy clusters. In this work, we study the impact of stream velocity on the formation and gas content of haloes with masses up to 109 M⊙, an order of magnitude larger than previous studies. We find that the non-zero stream velocity has a sizable impact on the number density of haloes with masses ≲ few × 107 M⊙ up to z = 10, the final redshift of our simulations. Furthermore, the gas stream velocity induces a suppression of the gas fraction in haloes, which at z = 10 is ˜10 per cent for objects with M ˜ 107 M⊙, as well as a flattening of the gas density profiles in the inner regions of haloes. We further identify and study the formation, in the context of a non-zero stream velocity, of moderately long lived gas-dominated structures at intermediate redshifts 10 < z < 20, which Naoz and Narayan have recently proposed as potential progenitors of globular clusters.

  17. Motion parallax links visual motion areas and scene regions.

    PubMed

    Schindler, Andreas; Bartels, Andreas

    2016-01-15

    When we move, the retinal velocities of objects in our surrounding differ according to their relative distances and give rise to a powerful three-dimensional visual cue referred to as motion parallax. Motion parallax allows us to infer our surrounding's 3D structure as well as self-motion based on 2D retinal information. However, the neural substrates mediating the link between visual motion and scene processing are largely unexplored. We used fMRI in human observers to study motion parallax by means of an ecologically relevant yet highly controlled stimulus that mimicked the observer's lateral motion past a depth-layered scene. We found parallax selective responses in parietal regions IPS3 and IPS4, and in a region lateral to scene selective occipital place area (OPA). The traditionally defined scene responsive regions OPA, the para-hippocampal place area (PPA) and the retrosplenial cortex (RSC) did not respond to parallax. During parallax processing, the occipital parallax selective region entertained highly specific functional connectivity with IPS3 and with scene selective PPA. These results establish a network linking dorsal motion and ventral scene processing regions specifically during parallax processing, which may underlie the brain's ability to derive 3D scene information from motion parallax. PMID:26515906

  18. Motion-Matching: A Challenge Game to Generate Motion Concepts

    ERIC Educational Resources Information Center

    Schuster, David; Adams, Betty; Brookes, David; Milner-Bolotin, Marina; Undreiu, Adriana

    2009-01-01

    Motion is a topic that is taught from elementary grades through to university at various levels of sophistication. It is an area that can be challenging for learning in a conceptually meaningful way, and formal kinematics instruction can sometimes seem dry and boring. Thus, the nature of students' initial introduction to motion is important in…

  19. Fast motion deblurring using sensor-aided motion trajectory estimation.

    PubMed

    Lee, Eunsung; Chae, Eunjung; Cheong, Hejin; Paik, Joonki

    2014-01-01

    This paper presents an image deblurring algorithm to remove motion blur using analysis of motion trajectories and local statistics based on inertial sensors. The proposed method estimates a point-spread-function (PSF) of motion blur by accumulating reweighted projections of the trajectory. A motion blurred image is then adaptively restored using the estimated PSF and spatially varying activity map to reduce both restoration artifacts and noise amplification. Experimental results demonstrate that the proposed method outperforms existing PSF estimation-based motion deconvolution methods in the sense of both objective and subjective performance measures. The proposed algorithm can be employed in various imaging devices because of its efficient implementation without an iterative computational structure.

  20. Non-Fourier motion analysis.

    PubMed

    Chubb, C; McGowan, J; Sperling, G; Werkhoven, P

    1994-01-01

    It has been realized for some time that the visual system performs at least two general sorts of motion processing. First-order motion processing applies some variant of standard motion analysis (i.e. spatiotemporal Fourier energy analysis) directly to stimulus luminance, whereas second-order motion processing applies standard motion analysis to one or another grossly non-linear transformation of stimulus luminance. We have developed a method for disentangling the different sorts of mechanisms that may operate in human vision to detect second-order motion. This method hinges on an empirical condition called transition invariance that may or may not be satisfied by a family psi of textures. Any failure of this condition indicates that more than one mechanism is involved in detecting the motion of stimuli composed of the textures in psi. We have shown that the family of sinusoidal gratings oriented orthogonally to the direction of motion and varying in contrast and spatial frequency is transition invariant. We modelled the results in terms of a single-channel motion computation. We have new results indicating that a specific class of textures differing in texture element density and texture element contrast decisively fails the test of transition invariance. These findings suggest that in addition to the single second-order motion channel required by our earlier results there exists at least one other second-order motion channel. We argue that the preprocessing transformation used by this channel is a pointwise non-linearity that maps stimulus contrasts of absolute value less than some relatively high threshold tau onto 0, but increases with magnitude of c-tau for contrasts. c of absolute value greater than tau.

  1. Acoustic radiation- and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane.

    PubMed

    Barnkob, Rune; Augustsson, Per; Laurell, Thomas; Bruus, Henrik

    2012-11-01

    We present microparticle image velocimetry measurements of suspended microparticles of diameters from 0.6 to 10 μm undergoing acoustophoresis in an ultrasound symmetry plane in a microchannel. The motion of the smallest particles is dominated by the Stokes drag from the induced acoustic streaming flow, while the motion of the largest particles is dominated by the acoustic radiation force. For all particle sizes we predict theoretically how much of the particle velocity is due to radiation and streaming, respectively. These predictions include corrections for particle-wall interactions and ultrasonic thermoviscous effects and match our measurements within the experimental uncertainty. Finally, we predict theoretically and confirm experimentally that the ratio between the acoustic radiation- and streaming-induced particle velocities is proportional to the actuation frequency, the acoustic contrast factor, and the square of the particle size, while it is inversely proportional to the kinematic viscosity.

  2. Detecting and Analyzing Multiple Moving Objects in Crowded Environments with Coherent Motion Regions

    2013-01-04

    Understanding the world around us from large-scale video data requires vision systems that can perform automatic interpretation. While human eyes can unconsciously perceive independent objects in crowded scenes and other challenging operating environments, automated systems have difficulty detecting, counting, and understanding their behavior in similar scenes. Computer scientists at ORNL have a developed a technology termed as "Coherent Motion Region Detection" that invloves identifying multiple indepedent moving objects in crowded scenes by aggregating low-level motionmore » cues extracted from moving objects. Humans and other species exploit such low-level motion cues seamlessely to perform perceptual grouping for visual understanding. The algorithm detects and tracks feature points on moving objects resulting in partial trajectories that span coherent 3D region in the space-time volume defined by the video. In the case of multi-object motion, many possible coherent motion regions can be constructed around the set of trajectories. The unique approach in the algorithm is to identify all possible coherent motion regions, then extract a subset of motion regions based on an innovative measure to automatically locate moving objects in crowded environments.The software reports snapshot of the object, count, and derived statistics ( count over time) from input video streams. The software can directly process videos streamed over the internet or directly from a hardware device (camera).« less

  3. Topographic Structure from Motion

    NASA Astrophysics Data System (ADS)

    Fonstad, M. A.; Dietrich, J. T.; Courville, B. C.; Jensen, J.; Carbonneau, P.

    2011-12-01

    The production of high-resolution topographic datasets is of increasing concern and application throughout the geomorphic sciences, and river science is no exception. Consequently, a wide range of topographic measurement methods have evolved. Despite the range of available methods, the production of high resolution, high quality digital elevation models (DEMs) generally requires a significant investment in personnel time, hardware and/or software. However, image-based methods such as digital photogrammetry have steadily been decreasing in costs. Initially developed for the purpose of rapid, inexpensive and easy three dimensional surveys of buildings or small objects, the "structure from motion" photogrammetric approach (SfM) is a purely image based method which could deliver a step-change if transferred to river remote sensing, and requires very little training and is extremely inexpensive. Using the online SfM program Microsoft Photosynth, we have created high-resolution digital elevation models (DEM) of rivers from ordinary photographs produced from a multi-step workflow that takes advantage of free and open source software. This process reconstructs real world scenes from SfM algorithms based on the derived positions of the photographs in three-dimensional space. One of the products of the SfM process is a three-dimensional point cloud of features present in the input photographs. This point cloud can be georeferenced from a small number of ground control points collected via GPS in the field. The georeferenced point cloud can then be used to create a variety of digital elevation model products. Among several study sites, we examine the applicability of SfM in the Pedernales River in Texas (USA), where several hundred images taken from a hand-held helikite are used to produce DEMs of the fluvial topographic environment. This test shows that SfM and low-altitude platforms can produce point clouds with point densities considerably better than airborne LiDAR, with

  4. Depletion force induced collective motion of microtubules driven by kinesin

    NASA Astrophysics Data System (ADS)

    Inoue, Daisuke; Mahmot, Bulbul; Kabir, Arif Md. Rashedul; Farhana, Tamanna Ishrat; Tokuraku, Kiyotaka; Sada, Kazuki; Konagaya, Akihiko; Kakugo, Akira

    2015-10-01

    Collective motion is a fascinating example of coordinated behavior of self-propelled objects, which is often associated with the formation of large scale patterns. Nowadays, the in vitro gliding assay is being considered a model system to experimentally investigate various aspects of group behavior and pattern formation by self-propelled objects. In the in vitro gliding assay, cytoskeletal filaments F-actin or microtubules are driven by the surface immobilized associated biomolecular motors myosin or dynein respectively. Although the F-actin/myosin or microtubule/dynein system was found to be promising in understanding the collective motion and pattern formation by self-propelled objects, the most widely used biomolecular motor system microtubule/kinesin could not be successfully employed so far in this regard. Failure in exhibiting collective motion by kinesin driven microtubules is attributed to the intrinsic properties of kinesin, which was speculated to affect the behavior of individual gliding microtubules and mutual interactions among them. In this work, for the first time, we have demonstrated the collective motion of kinesin driven microtubules by regulating the mutual interaction among the gliding microtubules, by employing a depletion force among them. Proper regulation of the mutual interaction among the gliding microtubules through the employment of the depletion force was found to allow the exhibition of collective motion and stream pattern formation by the microtubules. This work offers a universal means for demonstrating the collective motion using the in vitro gliding assay of biomolecular motor systems and will help obtain a meticulous understanding of the fascinating coordinated behavior and pattern formation by self-propelled objects.Collective motion is a fascinating example of coordinated behavior of self-propelled objects, which is often associated with the formation of large scale patterns. Nowadays, the in vitro gliding assay is being

  5. Motion perception under mesopic vision.

    PubMed

    Yoshimoto, Sanae; Okajima, Katsunori; Takeuchi, Tatsuto

    2016-01-01

    Mesopic and scotopic vision extend over an illuminance range of 106. The goal of the present study was to determine the effect of decreasing light level on the underlying motion mechanism that integrates spatiotemporally separated motion signals. To accomplish this, we took advantage of the phenomenon of visual motion priming, in which the perceived direction of a directionally ambiguous test stimulus is influenced by the directional movement of a preceding priming stimulus. After terminating a drifting priming stimulus, a 180° phase-shifted grating was presented as a test stimulus. The priming and test stimuli were separately presented to the central and peripheral retinas, respectively. The participants judged the perceived direction of this test stimulus at various light levels from photopic to scotopic levels. We found that the effects of motion priming disappeared over 1 log unit of mesopic light levels. When the test stimulus was presented before the offset of the priming stimulus to compensate for the temporal delay in the rod pathway or when both stimuli were presented at the same location in the periphery, a motion-priming effect appeared at mesopic light levels. These results suggest that different temporal characteristics between the cone pathway and rod pathway disturb the function of the putative motion mechanism responsible for the spatiotemporal integration of motion signals, which leads to specific modulation of motion perception over a wide range of mesopic vision. PMID:26818969

  6. An open architecture motion controller

    NASA Technical Reports Server (NTRS)

    Rossol, Lothar

    1994-01-01

    Nomad, an open architecture motion controller, is described. It is formed by a combination of TMOS, C-WORKS, and other utilities. Nomad software runs in a UNIX environment and provides for sensor-controlled robotic motions, with user replaceable kinematics. It can also be tailored for highly specialized applications. Open controllers such as Nomad should have a major impact on the robotics industry.

  7. Simulation Data as Data Streams

    SciTech Connect

    Abdulla, G; Arrighi, W; Critchlow, T

    2003-11-18

    Computational or scientific simulations are increasingly being applied to solve a variety of scientific problems. Domains such as astrophysics, engineering, chemistry, biology, and environmental studies are benefiting from this important capability. Simulations, however, produce enormous amounts of data that need to be analyzed and understood. In this overview paper, we describe scientific simulation data, its characteristics, and the way scientists generate and use the data. We then compare and contrast simulation data to data streams. Finally, we describe our approach to analyzing simulation data, present the AQSim (Ad-hoc Queries for Simulation data) system, and discuss some of the challenges that result from handling this kind of data.

  8. The Magellanic Stream and the Density of Coronal Gas in the Galactic Halo.

    PubMed

    Murali

    2000-02-01

    The properties of the Magellanic Stream constrain the density of coronal gas in the distant Galactic halo. We show that motion through ambient gas can strongly heat Stream clouds, driving mass loss and causing evaporation. If the ambient gas density is too high, then evaporation occurs on unreasonably short timescales. Since heating dominates drag, tidal stripping appears to be responsible for producing the Stream. Requiring the survival of the cloud MS IV for 500 Myr sets an upper limit on the halo gas density of nh<10-5 cm -3 at 50 kpc, roughly a factor of 10 lower than that estimated from the drag model of Moore & Davis. Implications for models of the evolution of gas in galaxy halos are discussed.

  9. Ice-Shelf Flexure and Tidal Forcing of Bindschadler Ice Stream, West Antarctica

    NASA Technical Reports Server (NTRS)

    Walker, Ryan T.; Parizek, Bryron R.; Alley, Richard B.; Brunt, Kelly M.; Anandakrishnan, Sridhar

    2014-01-01

    Viscoelastic models of ice-shelf flexure and ice-stream velocity perturbations are combined into a single efficient flowline model to study tidal forcing of grounded ice. The magnitude and timing of icestream response to tidally driven changes in hydrostatic pressure and/or basal drag are found to depend significantly on bed rheology, with only a perfectly plastic bed allowing instantaneous velocity response at the grounding line. The model can reasonably reproduce GPS observations near the grounding zone of Bindschadler Ice Stream (formerly Ice Stream D) on semidiurnal time scales; however, other forcings such as tidally driven ice-shelf slope transverse to the flowline and flexurally driven till deformation must also be considered if diurnal motion is to be matched

  10. Free stream capturing in fluid conservation law for moving coordinates in three dimensions

    NASA Technical Reports Server (NTRS)

    Obayashi, Shigeru

    1991-01-01

    The free-stream capturing technique for both the finite-volume (FV) and finite-difference (FD) framework is summarized. For an arbitrary motion of the grid, the FV analysis shows that volumes swept by all six surfaces of the cell have to be computed correctly. This means that the free-stream capturing time-metric terms should be calculated not only from a surface vector of a cell at a single time level, but also from a volume swept by the cell surface in space and time. The FV free-stream capturing formulation is applicable to the FD formulation by proper translation from an FV cell to an FD mesh.

  11. The Perception of Auditory Motion

    PubMed Central

    Leung, Johahn

    2016-01-01

    The growing availability of efficient and relatively inexpensive virtual auditory display technology has provided new research platforms to explore the perception of auditory motion. At the same time, deployment of these technologies in command and control as well as in entertainment roles is generating an increasing need to better understand the complex processes underlying auditory motion perception. This is a particularly challenging processing feat because it involves the rapid deconvolution of the relative change in the locations of sound sources produced by rotational and translations of the head in space (self-motion) to enable the perception of actual source motion. The fact that we perceive our auditory world to be stable despite almost continual movement of the head demonstrates the efficiency and effectiveness of this process. This review examines the acoustical basis of auditory motion perception and a wide range of psychophysical, electrophysiological, and cortical imaging studies that have probed the limits and possible mechanisms underlying this perception. PMID:27094029

  12. Crowding of biological motion stimuli.

    PubMed

    Ikeda, Hanako; Watanabe, Katsumi; Cavanagh, Patrick

    2013-01-01

    It is difficult to identify a target in the peripheral visual field when it is flanked by distractors. In the present study, we investigated this "crowding" effect for biological motion stimuli. Three walking biological motion stimuli were presented horizontally in the periphery with various distances between them, and observers reported the walking direction of the central figure. When the inter-walker distance was small, discriminating the direction became difficult. Moreover, the reported direction for the central target was not simply noisier, but reflected a degree of pooling of the three directions from the target and two flankers. However, when the two flanking distractors were scrambled walking biological motion stimuli, crowding was not seen. This result suggests that the crowding of biological motion stimuli occurs at a high-level of motion perception.

  13. Motion blur detection in radiographs

    NASA Astrophysics Data System (ADS)

    Luo, Hui; Sehnert, William J.; Ellinwood, Jacquelyn S.; Foos, David; Reiner, Bruce; Siegel, Eliot

    2008-03-01

    Image blur introduced by patient motion is one of the most frequently cited reasons for image rejection in radiographic diagnostic imaging. The goal of the present work is to provide an automated method for the detection of anatomical motion blur in digital radiographic images to help improve image quality and facilitate workflow in the radiology department. To achieve this goal, the method first reorients the image to a predetermined hanging protocol. Then it locates the primary anatomy in the radiograph and extracts the most indicative region for motion blur, i.e., the region of interest (ROI). The third step computes a set of motion-sensitive features from the extracted ROI. Finally, the extracted features are evaluated by using a classifier that has been trained to detect motion blur. Preliminary experiments show promising results with 86% detection sensitivity, 72% specificity, and an overall accuracy of 76%.

  14. Forces in rotary motion systems

    NASA Astrophysics Data System (ADS)

    Tilsch, Markus K.; Elliott, Gregory K.

    2008-09-01

    In many coating chambers substrates are moved by simple or planetary rotary motion systems. Isaac Newton already taught that an object in uniform motion tends to stay in uniform motion unless acted upon by a net external force. To move a substrate on a rotary trajectory, centripetal and gravitational forces must act upon the substrate. The substrate must be somehow confined. Confinement options range from firm attachment to a fixture to loose placement in a pocket. Depending on the rotary motion pattern, a loosely held substrate may slide once against a confinement boundary and then stay, or may constantly slide around. 'Rattling around' may be undesirable as it could lead to edge destruction, debris formation, precession of the substrate, and other adverse effects. Firm attachment is advantageous in most cases, but often adds process complexity. We examine the forces present on substrates in typical rotary motion systems and discuss the implications of different confinement methods.

  15. The Equations of Oceanic Motions

    NASA Astrophysics Data System (ADS)

    Müller, Peter

    2006-10-01

    Modeling and prediction of oceanographic phenomena and climate is based on the integration of dynamic equations. The Equations of Oceanic Motions derives and systematically classifies the most common dynamic equations used in physical oceanography, from large scale thermohaline circulations to those governing small scale motions and turbulence. After establishing the basic dynamical equations that describe all oceanic motions, M|ller then derives approximate equations, emphasizing the assumptions made and physical processes eliminated. He distinguishes between geometric, thermodynamic and dynamic approximations and between the acoustic, gravity, vortical and temperature-salinity modes of motion. Basic concepts and formulae of equilibrium thermodynamics, vector and tensor calculus, curvilinear coordinate systems, and the kinematics of fluid motion and wave propagation are covered in appendices. Providing the basic theoretical background for graduate students and researchers of physical oceanography and climate science, this book will serve as both a comprehensive text and an essential reference.

  16. Probing the time course of head-motion cues integration during auditory scene analysis.

    PubMed

    Kondo, Hirohito M; Toshima, Iwaki; Pressnitzer, Daniel; Kashino, Makio

    2014-01-01

    The perceptual organization of auditory scenes is a hard but important problem to solve for human listeners. It is thus likely that cues from several modalities are pooled for auditory scene analysis, including sensory-motor cues related to the active exploration of the scene. We previously reported a strong effect of head motion on auditory streaming. Streaming refers to an experimental paradigm where listeners hear sequences of pure tones, and rate their perception of one or more subjective sources called streams. To disentangle the effects of head motion (changes in acoustic cues at the ear, subjective location cues, and motor cues), we used a robotic telepresence system, Telehead. We found that head motion induced perceptual reorganization even when the acoustic scene had not changed. Here we reanalyzed the same data to probe the time course of sensory-motor integration. We show that motor cues had a different time course compared to acoustic or subjective location cues: motor cues impacted perceptual organization earlier and for a shorter time than other cues, with successive positive and negative contributions to streaming. An additional experiment controlled for the effects of volitional anticipatory components, and found that arm or leg movements did not have any impact on scene analysis. These data provide a first investigation of the time course of the complex integration of sensory-motor cues in an auditory scene analysis task, and they suggest a loose temporal coupling between the different mechanisms involved. PMID:25009456

  17. Nanoparticle mediated micromotor motion.

    PubMed

    Liu, Mei; Liu, Limei; Gao, Wenlong; Su, Miaoda; Ge, Ya; Shi, Lili; Zhang, Hui; Dong, Bin; Li, Christopher Y

    2015-03-21

    In this paper, we report the utilization of nanoparticles to mediate the motion of a polymer single crystal catalytic micromotor. Micromotors have been fabricated by directly self-assembling functional nanoparticles (platinum and iron oxide nanoparticles) onto one or both sides of two-dimensional polymer single crystals. We show that the moving velocity of these micromotors in fluids can be readily tuned by controlling the nanoparticles' surface wettability and catalytic activity. A 3 times velocity increase has been achieved for a hydrophobic micromotor as opposed to the hydrophilic ones. Furthermore, we demonstrate that the catalytic activity of platinum nanoparticles inside the micromotor can be enhanced by their synergetic interactions with iron oxide nanoparticles and an electric field. Both strategies lead to dramatically increased moving velocities, with the highest value reaching ∼200 μm s(-1). By decreasing the nanoparticles' surface wettability and increasing their catalytic activity, a maximum of a ∼10-fold increase in the moving speed of the nanoparticle based micromotor can be achieved. Our results demonstrate the advantages of using nanoparticles in micromotor systems.

  18. Ageing single file motion

    NASA Astrophysics Data System (ADS)

    Metzler, R.; Sanders, L.; Lomholt, M. A.; Lizana, L.; Fogelmark, K.; Ambjörnsson, Tobias

    2014-12-01

    The mean squared displacement of a tracer particle in a single file of identical particles with excluded volume interactions shows the famed Harris scaling ≃ K1/2t1/2 as function of time. Here we study what happens to this law when each particle of the single file interacts with the environment such that it is transiently immobilised for times τ with a power-law distribution ψ(τ) ≃ (τ★)α, and different ranges of the exponent α are considered. We find a dramatic slow-down of the motion of a tracer particle from Harris' law to an ultraslow, logarithmic time evolution ≃ K0 log 1/2(t) when 0 < α < 1. In the intermediate case 1 < α < 2, we observe a power-law form for the mean squared displacement, with a modified scaling exponent as compared to Harris' law. Once α is larger than two, the Brownian single file behaviour and thus Harris' law are restored. We also point out that this process is weakly non-ergodic in the sense that the time and ensemble averaged mean squared displacements are disparate.

  19. Motion words selectively modulate direction discrimination sensitivity for threshold motion

    PubMed Central

    Pavan, Andrea; Skujevskis, Māris; Baggio, Giosuè

    2013-01-01

    Can speech selectively modulate the sensitivity of a sensory system so that, in the presence of a suitable linguistic context, the discrimination of certain perceptual features becomes more or less likely? In this study, participants heard upward or downward motion words followed by a single visual field of random dots moving upwards or downwards. The time interval between the onsets of the auditory and the visual stimuli was varied parametrically. Motion direction could be either discriminable (suprathreshold motion) or non-discriminable (threshold motion). Participants had to judge whether the dots were moving upward or downward. Results show a double dissociation between discrimination sensitivity (d′) and reaction times depending on whether vertical motion was above or at threshold. With suprathreshold motion, responses were faster for congruent directions of words and dots, but sensitivity was equal across conditions. With threshold motion, sensitivity was higher for congruent directions of words and dots, but responses were equally fast across conditions. The observed differences in sensitivity and response times were largest when the dots appeared 450 ms after word onset, that is, consistently with electrophysiology, at the time the up/down semantics of the word had become available. These data suggest that word meanings can alter the balance between signal and noise within the visual system and affect the perception of low-level sensory features. PMID:23596407

  20. Cloud motions on Venus - Global structure and organization

    NASA Technical Reports Server (NTRS)

    Limaye, S. S.; Suomi, V. E.

    1981-01-01

    Results on cloud motions on Venus obtained over a period of 3.5 days from Mariner 10 television images are presented. The implied atmosphere flow is almost zonal everywhere on the visible disk, and is in the same retrograde sense as the solid planet. Objective analysis of motions suggests the presence of jet cores (-130 m/s) and organized atmospheric waves. The longitudinal mean meridional profile of the zonal component of motion of the ultraviolet features shows presence of a midlatitude jet stream (-110 m/s). The mean zonal component is -97 m/s at the equator. The mean meridional motion at most latitudes is directed toward the pole in either hemisphere and is at least an order of magnitude smaller so that the flow is nearly zonal. A tentative conclusion from the limited coverage available from Mariner 10 is that at the level of ultraviolet features mean meridional circulation is the dominant mode of poleward angular momentum transfer as opposed to the eddy circulation.

  1. Depletion force induced collective motion of microtubules driven by kinesin.

    PubMed

    Inoue, Daisuke; Mahmot, Bulbul; Kabir, Arif Md Rashedul; Farhana, Tamanna Ishrat; Tokuraku, Kiyotaka; Sada, Kazuki; Konagaya, Akihiko; Kakugo, Akira

    2015-11-21

    Collective motion is a fascinating example of coordinated behavior of self-propelled objects, which is often associated with the formation of large scale patterns. Nowadays, the in vitro gliding assay is being considered a model system to experimentally investigate various aspects of group behavior and pattern formation by self-propelled objects. In the in vitro gliding assay, cytoskeletal filaments F-actin or microtubules are driven by the surface immobilized associated biomolecular motors myosin or dynein respectively. Although the F-actin/myosin or microtubule/dynein system was found to be promising in understanding the collective motion and pattern formation by self-propelled objects, the most widely used biomolecular motor system microtubule/kinesin could not be successfully employed so far in this regard. Failure in exhibiting collective motion by kinesin driven microtubules is attributed to the intrinsic properties of kinesin, which was speculated to affect the behavior of individual gliding microtubules and mutual interactions among them. In this work, for the first time, we have demonstrated the collective motion of kinesin driven microtubules by regulating the mutual interaction among the gliding microtubules, by employing a depletion force among them. Proper regulation of the mutual interaction among the gliding microtubules through the employment of the depletion force was found to allow the exhibition of collective motion and stream pattern formation by the microtubules. This work offers a universal means for demonstrating the collective motion using the in vitro gliding assay of biomolecular motor systems and will help obtain a meticulous understanding of the fascinating coordinated behavior and pattern formation by self-propelled objects. PMID:26260025

  2. Exploring the reality of density substructures in the Palomar 5 stellar stream

    NASA Astrophysics Data System (ADS)

    Thomas, Guillaume F.; Ibata, R.; Famaey, B.; Martin, N. F.; Lewis, G. F.

    2016-08-01

    We present an analysis of the presence of substructures in the stellar stream of the Palomar 5 globular cluster, as derived from Sloan Digital Sky Survey data. Using a matched filter technique, we recover the positions and sizes of overdensities reported in previous studies. To explore the reality of these structures, we also create an artificial model of the stream, in which we construct a realistic background on top of which we add a perfectly smooth stream structure, taking into account the effects of photometric completeness and interstellar extinction. We find that the smooth artificial stream then shows similarly pronounced substructures as the real structure. Interestingly, our best-fitting N-body simulation does display real projected density variations linked to stellar epicyclic motions, but these become less significant when taking into account the SDSS star-count constraints. The substructures found when applying our matched filter technique to the N-body particles converted into observable stars are thus mostly unrelated to these epicyclic motions. This analysis suggests that the majority of the previously detected substructures along the tidal tail of Palomar 5 are artefacts of observational inhomogeneities.

  3. On the surging potential of polar ice streams: Antarctic surges: A clear and present danger

    SciTech Connect

    Radok, U.; Jenssen, D.; McInnes, B.

    1987-07-01

    Antarctic ice streams typically move hundreds of meters in a year. This investigation was carried out to determine whether polar ice streams can accelerate their motion from time to time by one or two orders of magnitude in the span of a few years, with appreciable effects on global sea level. The mass gains and losses of the Antarctic ice sheet as a whole closely balance one another. Three-dimensional steady-state fields of ice velocity and temperature in broad agreement with the as yet very scant observational record for the ice sheet. A numerical model which links the sliding motion of the ice to the energy dissipated by the friction between the ice and the underlying rock, was used to simulate the time-dependent behavior of eight ice streams representing the full range of Antarctic conditions. In contrast to the realistic alternation between fast advances and stagnating retreats which the model had produced for some mountain glaciers known to surge, the modeled ice streams instead went from steady to irregular continuous fast sliding when the prescribed ice deformability was reduced and/or the implied lubrication by frictional heating was increased. Substantial rapid advances did not develop, except as transient phases in two experiments. The inability of the model in general to create surges in ice streams could be due solely to its over-simplified treatment of the complex hydraulic processes taking place below the ice. More adequate treatments of these processes are being developed and, when expanded into new self-propelled models, could show ice stream surges to be feasible.

  4. Persistence probabilities for stream populations.

    PubMed

    Samia, Yasmine; Lutscher, Frithjof

    2012-07-01

    Individuals in streams and rivers are constantly at risk of being washed downstream and thereby lost to their population. The possibility of diffusion-mediated persistence of populations in advective environments has been the focus of a multitude of recent modeling efforts. Most of these recent models are deterministic, and they predict the existence of a critical advection velocity, above which a population cannot persist. In this work, we present a stochastic approach to the persistence problem in streams and rivers. We use the dominant eigenvalue of the advection-diffusion operator to transition from a spatially explicit description to a spatially implicit birth-death process, in which individual washout from the domain appears as an additional death term. We find that the deterministic persistence threshold is replaced by a smooth transition from almost sure persistence to extinction as advection velocity increases. More interestingly, we explore how temporal variation in flow rate and other parameters affect the persistence probability. In line with general expectations, we find that temporal variation often decreases the persistence probability, and we focus on a few examples of how variation can increase population persistence.

  5. Streaming potential measurements of biosurfaces

    NASA Technical Reports Server (NTRS)

    Van Wagenen, R. A.; Andrade, J. D.; Hibbs, J. B., Jr.

    1976-01-01

    A technique based on the measurement of streaming potentials has been developed to evaluate the electrokinetic region of the cell periphery. This approach is feasible for cell lines propagated in in-vitro cell cultures in monolayer form. The advantage of this system is that cells may be evaluated in the living state atttached to a substrate; it is not necessary to subject the cells to enzymatic, chemical, or mechanical trauma required to obtain monodisperse suspensions which are then normally evaluated by microelectrophoresis. In this manner, it should be possible to study the influence of substrate and environmental factors on the charge density and potential at the cell periphery. The apparatus and procedure are described as well as some results concerning the electrokinetic potential of borosilicate capillaries as a function of ionic strength, pH, and temperature. The effect that turbulence and entrance flow conditions have on accurate streaming-potential measurements is discussed. The electrokinetic potential of BALB/c 3T12 fibroblasts has been quantified as a function of pH, ionic strength, glutaraldehyde fixation, and Giemsa staining.

  6. 22 CFR 1423.22 - Motions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 2 2014-04-01 2014-04-01 false Motions. 1423.22 Section 1423.22 Foreign... PROCEEDINGS § 1423.22 Motions. (a) Filing of Motions. (1) Motions made prior to a hearing and any response... issuance of a complaint by the Regional Director any motion to postpone the hearing should be filed...

  7. 22 CFR 1423.22 - Motions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 2 2012-04-01 2009-04-01 true Motions. 1423.22 Section 1423.22 Foreign... PROCEEDINGS § 1423.22 Motions. (a) Filing of Motions. (1) Motions made prior to a hearing and any response... issuance of a complaint by the Regional Director any motion to postpone the hearing should be filed...

  8. 43 CFR 35.28 - Motions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Motions. 35.28 Section 35.28 Public Lands... STATEMENTS § 35.28 Motions. (a) Any application to the ALJ for an order or ruling shall be by motion. Motions... the ALJ and served on all other parties. (b) Except for motions made during a pre-hearing...

  9. 45 CFR 672.9 - Motions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 3 2012-10-01 2012-10-01 false Motions. 672.9 Section 672.9 Public Welfare... PROCEDURES § 672.9 Motions. (a) General. All motions, except those made orally on the record during a hearing... memorandum relied upon. (b) Response to motions. A party must file a response to any written motion...

  10. 40 CFR 305.23 - Motions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 29 2012-07-01 2012-07-01 false Motions. 305.23 Section 305.23... Motions. (a) General. All motions, except those made orally on the record during a hearing, shall: be in... motions shall be served as provided by § 305.5(b)(2)(i). (b) Response to motions. A party's response...

  11. 40 CFR 305.23 - Motions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 28 2011-07-01 2011-07-01 false Motions. 305.23 Section 305.23... Motions. (a) General. All motions, except those made orally on the record during a hearing, shall: be in... motions shall be served as provided by § 305.5(b)(2)(i). (b) Response to motions. A party's response...

  12. 22 CFR 224.28 - Motions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Motions. 224.28 Section 224.28 Foreign....28 Motions. (a) Any application to the ALJ for an order or ruling shall be by motion. Motions shall... ALJ and served on all other parties. (b) Except for motions made during a prehearing conference or...

  13. 20 CFR 498.213 - Motions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false Motions. 498.213 Section 498.213 Employees... § 498.213 Motions. (a) An application to the ALJ for an order or ruling will be by motion. Motions will... the ALJ and served on all other parties. (b) Except for motions made during a prehearing conference...

  14. 29 CFR 1603.208 - Motions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 4 2012-07-01 2012-07-01 false Motions. 1603.208 Section 1603.208 Labor Regulations... GOVERNMENT EMPLOYEE RIGHTS ACT OF 1991 Hearings § 1603.208 Motions. (a) All motions shall state the specific relief requested. All motions shall be in writing, except that a motion may be made orally during...

  15. 40 CFR 305.23 - Motions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 27 2010-07-01 2010-07-01 false Motions. 305.23 Section 305.23... Motions. (a) General. All motions, except those made orally on the record during a hearing, shall: be in... motions shall be served as provided by § 305.5(b)(2)(i). (b) Response to motions. A party's response...

  16. 45 CFR 672.9 - Motions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 3 2013-10-01 2013-10-01 false Motions. 672.9 Section 672.9 Public Welfare... PROCEDURES § 672.9 Motions. (a) General. All motions, except those made orally on the record during a hearing... memorandum relied upon. (b) Response to motions. A party must file a response to any written motion...

  17. 43 CFR 35.28 - Motions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Motions. 35.28 Section 35.28 Public Lands... STATEMENTS § 35.28 Motions. (a) Any application to the ALJ for an order or ruling shall be by motion. Motions... the ALJ and served on all other parties. (b) Except for motions made during a pre-hearing...

  18. 22 CFR 224.28 - Motions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Motions. 224.28 Section 224.28 Foreign....28 Motions. (a) Any application to the ALJ for an order or ruling shall be by motion. Motions shall... ALJ and served on all other parties. (b) Except for motions made during a prehearing conference or...

  19. 22 CFR 1422.10 - Motions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 2 2012-04-01 2009-04-01 true Motions. 1422.10 Section 1422.10 Foreign... § 1422.10 Motions. (a) General. (1) A motion shall state briefly the order or relief sought and the grounds for the motion: Provided, however, That a motion to intervene will not be entertained by...

  20. 22 CFR 1423.22 - Motions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 2 2011-04-01 2009-04-01 true Motions. 1423.22 Section 1423.22 Foreign... PROCEEDINGS § 1423.22 Motions. (a) Filing of Motions. (1) Motions made prior to a hearing and any response... issuance of a complaint by the Regional Director any motion to postpone the hearing should be filed...

  1. 45 CFR 81.56 - Motions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 1 2011-10-01 2011-10-01 false Motions. 81.56 Section 81.56 Public Welfare... 80 OF THIS TITLE Proceedings Prior to Hearing § 81.56 Motions. Motions and petitions shall state the... as a formal motion. Motions, answers, and replies shall be addressed to the presiding officer, if...

  2. 43 CFR 35.28 - Motions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Motions. 35.28 Section 35.28 Public Lands... STATEMENTS § 35.28 Motions. (a) Any application to the ALJ for an order or ruling shall be by motion. Motions... the ALJ and served on all other parties. (b) Except for motions made during a pre-hearing...

  3. 29 CFR 1603.208 - Motions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 4 2011-07-01 2011-07-01 false Motions. 1603.208 Section 1603.208 Labor Regulations... GOVERNMENT EMPLOYEE RIGHTS ACT OF 1991 Hearings § 1603.208 Motions. (a) All motions shall state the specific relief requested. All motions shall be in writing, except that a motion may be made orally during...

  4. 7 CFR 1.327 - Motions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 1 2011-01-01 2011-01-01 false Motions. 1.327 Section 1.327 Agriculture Office of the... Program Fraud Civil Remedies Act of 1986 § 1.327 Motions. (a) Motions shall state the relief sought, the... parties. (b) Except for motions made during a prehearing conference or at the hearing, all motions...

  5. 20 CFR 498.213 - Motions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Motions. 498.213 Section 498.213 Employees... § 498.213 Motions. (a) An application to the ALJ for an order or ruling will be by motion. Motions will... the ALJ and served on all other parties. (b) Except for motions made during a prehearing conference...

  6. 20 CFR 498.213 - Motions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Motions. 498.213 Section 498.213 Employees... § 498.213 Motions. (a) An application to the ALJ for an order or ruling will be by motion. Motions will... the ALJ and served on all other parties. (b) Except for motions made during a prehearing conference...

  7. 20 CFR 498.213 - Motions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Motions. 498.213 Section 498.213 Employees... § 498.213 Motions. (a) An application to the ALJ for an order or ruling will be by motion. Motions will... the ALJ and served on all other parties. (b) Except for motions made during a prehearing conference...

  8. 24 CFR 180.430 - Motions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 1 2013-04-01 2013-04-01 false Motions. 180.430 Section 180.430....430 Motions. (a) Motions. Any application for an order or other request shall be made by a motion... relief requested and the basis therefor. Motions made during an appearance before the ALJ shall be...

  9. 45 CFR 81.56 - Motions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Motions. 81.56 Section 81.56 Public Welfare... 80 OF THIS TITLE Proceedings Prior to Hearing § 81.56 Motions. Motions and petitions shall state the... as a formal motion. Motions, answers, and replies shall be addressed to the presiding officer, if...

  10. 7 CFR 1.327 - Motions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 1 2012-01-01 2012-01-01 false Motions. 1.327 Section 1.327 Agriculture Office of the... Program Fraud Civil Remedies Act of 1986 § 1.327 Motions. (a) Motions shall state the relief sought, the... parties. (b) Except for motions made during a prehearing conference or at the hearing, all motions...

  11. 22 CFR 224.28 - Motions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Motions. 224.28 Section 224.28 Foreign....28 Motions. (a) Any application to the ALJ for an order or ruling shall be by motion. Motions shall... ALJ and served on all other parties. (b) Except for motions made during a prehearing conference or...

  12. 22 CFR 1422.10 - Motions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 2 2013-04-01 2009-04-01 true Motions. 1422.10 Section 1422.10 Foreign... § 1422.10 Motions. (a) General. (1) A motion shall state briefly the order or relief sought and the grounds for the motion: Provided, however, That a motion to intervene will not be entertained by...

  13. 24 CFR 180.430 - Motions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 1 2012-04-01 2012-04-01 false Motions. 180.430 Section 180.430....430 Motions. (a) Motions. Any application for an order or other request shall be made by a motion... relief requested and the basis therefor. Motions made during an appearance before the ALJ shall be...

  14. 5 CFR 185.130 - Motions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 1 2013-01-01 2013-01-01 false Motions. 185.130 Section 185.130... § 185.130 Motions. (a) Any application to the ALJ for an order or ruling shall be by motion. Motions... the ALJ and served on all other parties. (b) Except for motions made during a prehearing conference...

  15. 12 CFR 1081.212 - Dispositive motions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 8 2013-01-01 2013-01-01 false Dispositive motions. 1081.212 Section 1081.212... Initiation of Proceedings and Prehearing Rules § 1081.212 Dispositive motions. (a) Dispositive motions. This section governs the filing of motions to dismiss and motions for summary disposition. The filing of...

  16. 45 CFR 672.9 - Motions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Motions. 672.9 Section 672.9 Public Welfare... PROCEDURES § 672.9 Motions. (a) General. All motions, except those made orally on the record during a hearing... memorandum relied upon. (b) Response to motions. A party must file a response to any written motion...

  17. 40 CFR 305.23 - Motions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 28 2014-07-01 2014-07-01 false Motions. 305.23 Section 305.23... Motions. (a) General. All motions, except those made orally on the record during a hearing, shall: be in... motions shall be served as provided by § 305.5(b)(2)(i). (b) Response to motions. A party's response...

  18. 24 CFR 180.430 - Motions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 1 2011-04-01 2011-04-01 false Motions. 180.430 Section 180.430....430 Motions. (a) Motions. Any application for an order or other request shall be made by a motion... relief requested and the basis therefor. Motions made during an appearance before the ALJ shall be...

  19. 7 CFR 1.327 - Motions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 1 2013-01-01 2013-01-01 false Motions. 1.327 Section 1.327 Agriculture Office of the... Program Fraud Civil Remedies Act of 1986 § 1.327 Motions. (a) Motions shall state the relief sought, the... parties. (b) Except for motions made during a prehearing conference or at the hearing, all motions...

  20. 43 CFR 35.28 - Motions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Motions. 35.28 Section 35.28 Public Lands... STATEMENTS § 35.28 Motions. (a) Any application to the ALJ for an order or ruling shall be by motion. Motions... the ALJ and served on all other parties. (b) Except for motions made during a pre-hearing...

  1. 49 CFR 230.105 - Lateral motion.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Lateral motion. 230.105 Section 230.105... Tenders Running Gear § 230.105 Lateral motion. (a) Condemning limits. The total lateral motion or play... require additional lateral motion. (c) Non-interference with other parts. The lateral motion shall in...

  2. 22 CFR 521.28 - Motions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 2 2014-04-01 2014-04-01 false Motions. 521.28 Section 521.28 Foreign... Motions. (a) Any application to the ALJ for an order or ruling shall be by motion. Motions shall state the... served on all other parties. (b) Except for motions made during a prehearing conference or at the...

  3. 22 CFR 1422.10 - Motions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Motions. 1422.10 Section 1422.10 Foreign... § 1422.10 Motions. (a) General. (1) A motion shall state briefly the order or relief sought and the grounds for the motion: Provided, however, That a motion to intervene will not be entertained by...

  4. 5 CFR 185.130 - Motions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 1 2012-01-01 2012-01-01 false Motions. 185.130 Section 185.130... § 185.130 Motions. (a) Any application to the ALJ for an order or ruling shall be by motion. Motions... the ALJ and served on all other parties. (b) Except for motions made during a prehearing conference...

  5. 22 CFR 224.28 - Motions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Motions. 224.28 Section 224.28 Foreign....28 Motions. (a) Any application to the ALJ for an order or ruling shall be by motion. Motions shall... ALJ and served on all other parties. (b) Except for motions made during a prehearing conference or...

  6. 22 CFR 1422.10 - Motions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 2 2011-04-01 2009-04-01 true Motions. 1422.10 Section 1422.10 Foreign... § 1422.10 Motions. (a) General. (1) A motion shall state briefly the order or relief sought and the grounds for the motion: Provided, however, That a motion to intervene will not be entertained by...

  7. 5 CFR 185.130 - Motions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Motions. 185.130 Section 185.130... § 185.130 Motions. (a) Any application to the ALJ for an order or ruling shall be by motion. Motions... the ALJ and served on all other parties. (b) Except for motions made during a prehearing conference...

  8. 22 CFR 1423.22 - Motions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Motions. 1423.22 Section 1423.22 Foreign... PROCEEDINGS § 1423.22 Motions. (a) Filing of Motions. (1) Motions made prior to a hearing and any response... issuance of a complaint by the Regional Director any motion to postpone the hearing should be filed...

  9. 22 CFR 1423.22 - Motions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 2 2013-04-01 2009-04-01 true Motions. 1423.22 Section 1423.22 Foreign... PROCEEDINGS § 1423.22 Motions. (a) Filing of Motions. (1) Motions made prior to a hearing and any response... issuance of a complaint by the Regional Director any motion to postpone the hearing should be filed...

  10. 45 CFR 81.56 - Motions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Motions. 81.56 Section 81.56 Public Welfare... 80 OF THIS TITLE Proceedings Prior to Hearing § 81.56 Motions. Motions and petitions shall state the... as a formal motion. Motions, answers, and replies shall be addressed to the presiding officer, if...

  11. 29 CFR 1603.208 - Motions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Motions. 1603.208 Section 1603.208 Labor Regulations... GOVERNMENT EMPLOYEE RIGHTS ACT OF 1991 Hearings § 1603.208 Motions. (a) All motions shall state the specific relief requested. All motions shall be in writing, except that a motion may be made orally during...

  12. 22 CFR 224.28 - Motions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Motions. 224.28 Section 224.28 Foreign....28 Motions. (a) Any application to the ALJ for an order or ruling shall be by motion. Motions shall... ALJ and served on all other parties. (b) Except for motions made during a prehearing conference or...

  13. 40 CFR 164.60 - Motions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Motions. 164.60 Section 164.60... (Other Than Expedited Hearings) Motions § 164.60 Motions. (a) General. All motions, except those made..., and shall be filed with the hearing clerk and served on all parties. (b) Response to motions....

  14. 7 CFR 1.327 - Motions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 1 2014-01-01 2014-01-01 false Motions. 1.327 Section 1.327 Agriculture Office of the... Program Fraud Civil Remedies Act of 1986 § 1.327 Motions. (a) Motions shall state the relief sought, the... parties. (b) Except for motions made during a prehearing conference or at the hearing, all motions...

  15. 7 CFR 1.327 - Motions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Motions. 1.327 Section 1.327 Agriculture Office of the... Program Fraud Civil Remedies Act of 1986 § 1.327 Motions. (a) Motions shall state the relief sought, the... parties. (b) Except for motions made during a prehearing conference or at the hearing, all motions...

  16. 29 CFR 102.65 - Motions; interventions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 2 2010-07-01 2010-07-01 false Motions; interventions. 102.65 Section 102.65 Labor... Act § 102.65 Motions; interventions. (a) All motions, including motions for intervention pursuant to... on the record and shall briefly state the order or relief sought and the grounds for such motion....

  17. 5 CFR 185.130 - Motions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Motions. 185.130 Section 185.130... § 185.130 Motions. (a) Any application to the ALJ for an order or ruling shall be by motion. Motions... the ALJ and served on all other parties. (b) Except for motions made during a prehearing conference...

  18. 40 CFR 305.23 - Motions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 29 2013-07-01 2013-07-01 false Motions. 305.23 Section 305.23... Motions. (a) General. All motions, except those made orally on the record during a hearing, shall: be in... motions shall be served as provided by § 305.5(b)(2)(i). (b) Response to motions. A party's response...

  19. 40 CFR 164.60 - Motions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Motions. 164.60 Section 164.60... (Other Than Expedited Hearings) Motions § 164.60 Motions. (a) General. All motions, except those made..., and shall be filed with the hearing clerk and served on all parties. (b) Response to motions....

  20. 24 CFR 180.430 - Motions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Motions. 180.430 Section 180.430....430 Motions. (a) Motions. Any application for an order or other request shall be made by a motion... relief requested and the basis therefor. Motions made during an appearance before the ALJ shall be...

  1. 45 CFR 81.56 - Motions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 1 2013-10-01 2013-10-01 false Motions. 81.56 Section 81.56 Public Welfare... 80 OF THIS TITLE Proceedings Prior to Hearing § 81.56 Motions. Motions and petitions shall state the... as a formal motion. Motions, answers, and replies shall be addressed to the presiding officer, if...

  2. 5 CFR 185.130 - Motions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Motions. 185.130 Section 185.130... § 185.130 Motions. (a) Any application to the ALJ for an order or ruling shall be by motion. Motions... the ALJ and served on all other parties. (b) Except for motions made during a prehearing conference...

  3. 20 CFR 498.213 - Motions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Motions. 498.213 Section 498.213 Employees... § 498.213 Motions. (a) An application to the ALJ for an order or ruling will be by motion. Motions will... the ALJ and served on all other parties. (b) Except for motions made during a prehearing conference...

  4. 45 CFR 81.56 - Motions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 1 2014-10-01 2014-10-01 false Motions. 81.56 Section 81.56 Public Welfare... 80 OF THIS TITLE Proceedings Prior to Hearing § 81.56 Motions. Motions and petitions shall state the... as a formal motion. Motions, answers, and replies shall be addressed to the presiding officer, if...

  5. 40 CFR 164.60 - Motions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Motions. 164.60 Section 164.60... (Other Than Expedited Hearings) Motions § 164.60 Motions. (a) General. All motions, except those made..., and shall be filed with the hearing clerk and served on all parties. (b) Response to motions....

  6. 29 CFR 1603.208 - Motions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 4 2014-07-01 2014-07-01 false Motions. 1603.208 Section 1603.208 Labor Regulations... GOVERNMENT EMPLOYEE RIGHTS ACT OF 1991 Hearings § 1603.208 Motions. (a) All motions shall state the specific relief requested. All motions shall be in writing, except that a motion may be made orally during...

  7. 24 CFR 180.430 - Motions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 1 2014-04-01 2014-04-01 false Motions. 180.430 Section 180.430....430 Motions. (a) Motions. Any application for an order or other request shall be made by a motion... relief requested and the basis therefor. Motions made during an appearance before the ALJ shall be...

  8. 40 CFR 164.60 - Motions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Motions. 164.60 Section 164.60... (Other Than Expedited Hearings) Motions § 164.60 Motions. (a) General. All motions, except those made..., and shall be filed with the hearing clerk and served on all parties. (b) Response to motions....

  9. 40 CFR 164.60 - Motions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Motions. 164.60 Section 164.60... (Other Than Expedited Hearings) Motions § 164.60 Motions. (a) General. All motions, except those made..., and shall be filed with the hearing clerk and served on all parties. (b) Response to motions....

  10. 43 CFR 35.28 - Motions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Motions. 35.28 Section 35.28 Public Lands... STATEMENTS § 35.28 Motions. (a) Any application to the ALJ for an order or ruling shall be by motion. Motions... the ALJ and served on all other parties. (b) Except for motions made during a pre-hearing...

  11. 22 CFR 1422.10 - Motions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 2 2014-04-01 2014-04-01 false Motions. 1422.10 Section 1422.10 Foreign... § 1422.10 Motions. (a) General. (1) A motion shall state briefly the order or relief sought and the grounds for the motion: Provided, however, That a motion to intervene will not be entertained by...

  12. 29 CFR 1603.208 - Motions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 4 2013-07-01 2013-07-01 false Motions. 1603.208 Section 1603.208 Labor Regulations... GOVERNMENT EMPLOYEE RIGHTS ACT OF 1991 Hearings § 1603.208 Motions. (a) All motions shall state the specific relief requested. All motions shall be in writing, except that a motion may be made orally during...

  13. Sentiment Knowledge Discovery in Twitter Streaming Data

    NASA Astrophysics Data System (ADS)

    Bifet, Albert; Frank, Eibe

    Micro-blogs are a challenging new source of information for data mining techniques. Twitter is a micro-blogging service built to discover what is happening at any moment in time, anywhere in the world. Twitter messages are short, and generated constantly, and well suited for knowledge discovery using data stream mining. We briefly discuss the challenges that Twitter data streams pose, focusing on classification problems, and then consider these streams for opinion mining and sentiment analysis. To deal with streaming unbalanced classes, we propose a sliding window Kappa statistic for evaluation in time-changing data streams. Using this statistic we perform a study on Twitter data using learning algorithms for data streams.

  14. National Stream Survey data-base guide

    SciTech Connect

    Mitch, M.E.; Kaufmann, P.R.; Herlihy, A.T.; Overton, W.S.; Sale, M.J.

    1990-07-01

    The National Stream Survey (NSS), conducted in the spring of 1985 and 1986, is one component of the U.S. Environmental Protection Agency's National Surface Water Survey. This effort is in support of the National Acid Precipitation Assessment Program. The NSS was a synoptic, spring survey of 500 streams in regions of the Southeastern and Mid-Atlantic United States expected to contain larger numbers of low alkalinity streams. The NSS is based on a probability sample from an explicitly defined population of surface waters. In the NSS, 500 streams were sampled, representing a regional population of 64,700 stream reaches. The NSS database includes stream and watershed physical characteristics, in situ measurements, and water chemistry data. Accompanying the database is a comprehensive user's guide that provides an overview of the NSS design, database structure, and transfer media.

  15. Spectrum of turbulence in a contracting stream

    NASA Technical Reports Server (NTRS)

    Ribner, H S; Tucker, M

    1953-01-01

    The spectrum concept is employed to study the selective effect of a stream contraction on the longitudinal and lateral turbulent velocity fluctuations of the stream. By a consideration of the effect of the stream contraction on a single plane sinusoidal disturbance wave, mathematically not dissimilar to a triply periodic disturbance treated by G. I. Taylor, the effect on the spectrum tensor of the turbulence and hence on the correlation tensor is determined.

  16. Stream Centerline for Fanno Creek, Oregon

    USGS Publications Warehouse

    Sobieszczyk, Steven

    2011-01-01

    Fanno Creek is a tributary to the Tualatin River and flows though parts of the southwest Portland metropolitan area. The stream is heavily influenced by urban runoff and shows characteristic flashy streamflow and poor water quality commonly associated with urban streams. This data set represents the stream centerline of the current active channel as derived from light detection and ranging (LiDAR) data and aerial photographic imagery.

  17. Mab's orbital motion explained

    NASA Astrophysics Data System (ADS)

    Kumar, K.; de Pater, I.; Showalter, M. R.

    2015-07-01

    We explored the hypothesis that Mab's anomalous orbital motion, as deduced from Hubble Space Telescope (HST) data (Showalter, M.R., Lissauer, J.J. [2006]. Science (New York, NY) 311, 973-977), is the result of gravitational interactions with a putative suite of large bodies in the μ-ring. We conducted simulations to compute the gravitational effect of Mab (a recently discovered Uranian moon) on a cloud of test particles. Subsequently, by employing the data extracted from the test particle simulations, we executed random walk simulations to compute the back-reaction of nearby perturbers on Mab. By generating simulated observation metrics, we compared our results to the data retrieved from the HST. Our results indicate that the longitude residual change noted in the HST data (Δλr,Mab ≈ 1 deg) is well matched by our simulations. The eccentricity variations (ΔeMab ≈10-3) are however typically two orders of magnitude too small. We present a variety of reasons that could account for this discrepancy. The nominal scenario that we investigated assumes a perturber ring mass (mring) of 1 mMab (Mab's mass) and a perturber ring number density (ρn,ring) of 10 perturbers per 3 RHill,Mab (Mab's Hill radius). This effectively translates to a few tens of perturbers with radii of approximately 2-3 km, depending on the albedo assumed. The results obtained also include an interesting litmus test: variations of Mab's inclination on the order of the eccentricity changes should be observable. Our work provides clues for further investigation into the tantalizing prospect that the Mab/μ-ring system is undergoing re-accretion after a recent catastrophic disruption.

  18. Muon motion in titanium hydride

    NASA Technical Reports Server (NTRS)

    Kempton, J. R.; Petzinger, K. G.; Kossler, W. J.; Schone, H. E.; Hitti, B. S.; Stronach, C. E.; Adu, N.; Lankford, W. F.; Reilly, J. J.; Seymour, E. F. W.

    1988-01-01

    Motional narrowing of the transverse-field muon spin rotation signal was observed in gamma-TiH(x) for x = 1.83, 1.97, and 1.99. An analysis of the data for TiH1.99 near room temperature indicates that the mechanism responsible for the motion of the muon out of the octahedral site is thermally activated diffusion with an attempt frequency comparable to the optical vibrations of the lattice. Monte Carlo calculations to simulate the effect of muon and proton motion upon the muon field-correlation time were used to interpret the motional narrowing in TiH1.97 near 500 K. The interpretation is dependent upon whether the Bloembergen, Purcell, and Pound (BPP) theory or an independent spin-pair relaxation model is used to obtain the vacancy jump rate from proton NMR T1 measurements. Use of BPP theory shows that the field-correction time can be obtained if the rate of motion of the muon with respect to the rate of the motion for the protons is decreased. An independent spin-pair relaxation model indicates that the field-correlation time can be obtained if the rate of motion for the nearest-neighbor protons is decreased.

  19. Seeing liquids from visual motion.

    PubMed

    Kawabe, Takahiro; Maruya, Kazushi; Fleming, Roland W; Nishida, Shin'ya

    2015-04-01

    Most research on human visual recognition focuses on solid objects, whose identity is defined primarily by shape. In daily life, however, we often encounter materials that have no specific form, including liquids whose shape changes dynamically over time. Here we show that human observers can recognize liquids and their viscosities solely from image motion information. Using a two-dimensional array of noise patches, we presented observers with motion vector fields derived from diverse computer rendered scenes of liquid flow. Our observers perceived liquid-like materials in the noise-based motion fields, and could judge the simulated viscosity with surprising accuracy, given total absence of non-motion information including form. We find that the critical feature for apparent liquid viscosity is local motion speed, whereas for the impression of liquidness, image statistics related to spatial smoothness-including the mean discrete Laplacian of motion vectors-is important. Our results show the brain exploits a wide range of motion statistics to identify non-solid materials. PMID:25102388

  20. A database of macromolecular motions.

    PubMed Central

    Gerstein, M; Krebs, W

    1998-01-01

    We describe a database of macromolecular motions meant to be of general use to the structural community. The database, which is accessible on the World Wide Web with an entry point at http://bioinfo.mbb.yale.edu/MolMovDB , attempts to systematize all instances of protein and nucleic acid movement for which there is at least some structural information. At present it contains >120 motions, most of which are of proteins. Protein motions are further classified hierarchically into a limited number of categories, first on the basis of size (distinguishing between fragment, domain and subunit motions) and then on the basis of packing. Our packing classification divides motions into various categories (shear, hinge, other) depending on whether or not they involve sliding over a continuously maintained and tightly packed interface. In addition, the database provides some indication about the evidence behind each motion (i.e. the type of experimental information or whether the motion is inferred based on structural similarity) and attempts to describe many aspects of a motion in terms of a standardized nomenclature (e.g. the maximum rotation, the residue selection of a fixed core, etc.). Currently, we use a standard relational design to implement the database. However, the complexity and heterogeneity of the information kept in the database makes it an ideal application for an object-relational approach, and we are moving it in this direction. Specifically, in terms of storing complex information, the database contains plausible representations for motion pathways, derived from restrained 3D interpolation between known endpoint conformations. These pathways can be viewed in a variety of movie formats, and the database is associated with a server that can automatically generate these movies from submitted coordinates. PMID:9722650

  1. Ghost removing for HDR real-time video stream generation

    NASA Astrophysics Data System (ADS)

    Bouderbane, Mustapha; Dubois, Julien; Heyrman, Barthélémy; Lapray, Pierre-Jean; Ginhac, Dominique

    2016-04-01

    High dynamic range (HDR) imaging generation from a set of low dynamic range images taken in different exposure times is a low cost and an easy technique. This technique provides a good result for static scenes. Temporal exposure bracketing cannot be applied directly for dynamic scenes, since camera or object motion in bracketed exposures creates ghosts in the resulting HDR image. In this paper we describe a real-time ghost removing hardware implementation on high dynamic range video ow added for our HDR FPGA based smart camera which is able to provide full resolution (1280 x 1024) HDR video stream at 60 fps. We present experimental results to show the efficiency of our implemented method in ghost removing.

  2. Towards social interaction detection in egocentric photo-streams

    NASA Astrophysics Data System (ADS)

    Aghaei, Maedeh; Dimiccoli, Mariella; Radeva, Petia

    2015-12-01

    Detecting social interaction in videos relying solely on visual cues is a valuable task that is receiving increasing attention in recent years. In this work, we address this problem in the challenging domain of egocentric photo-streams captured by a low temporal resolution wearable camera (2fpm). The major difficulties to be handled in this context are the sparsity of observations as well as unpredictability of camera motion and attention orientation due to the fact that the camera is worn as part of clothing. Our method consists of four steps: multi-faces localization and tracking, 3D localization, pose estimation and analysis of f-formations. By estimating pair-to-pair interaction probabilities over the sequence, our method states the presence or absence of interaction with the camera wearer and specifies which people are more involved in the interaction. We tested our method over a dataset of 18.000 images and we show its reliability on our considered purpose.

  3. Assessment of Tidal Stream Energy Potential for the United States

    NASA Astrophysics Data System (ADS)

    Haas, K. A.; Defne, Z.; Jiang, L.; Fritz, H. M.

    2010-12-01

    Tidal streams are high velocity sea currents created by periodic horizontal movement of the tides, often magnified by local topographical features such as headlands, inlets to inland lagoons, and straits. Tidal stream energy extraction is derived from the kinetic energy of the moving flow; analogous to the way a wind turbine operates in air, and as such differs from tidal barrages, which relies on providing a head of water for energy extraction. With the constantly increasing effort in promoting alternative energy, tidal streams have become promising energy sources due to their continuous, predictable and concentrated characteristics. However, the present lack of a full spatial-temporal assessment of tidal currents for the U.S. coastline down to the scale of individual devices is a barrier to the comprehensive development of tidal current energy technology. A methodology for creating a national database of tidal stream energy potential, as well as a GIS tool usable by industry in order to accelerate the market for tidal energy conversion technology has been developed. The tidal flows are simulated using the Regional Ocean Modeling System (ROMS). The model is calibrated and validated using observations and tidal predictions. The calibration includes adjustments to model parameters such as bottom friction coefficient, changed land/water masks, or increased grid resolutions. A systematic validation process has been developed after defining various parameters to quantify the validation results. In order to determine the total tidal stream power resource, a common method frequently proposed is to estimate it as a fraction of the total kinetic energy flux passing through a vertical section; however, this now has been shown to generally underestimate the total available resource. The total tidal energy flux includes not just the kinetic energy but also the energy flux due to the work done by the pressure force associated with the tidal motion on the water column as well

  4. The mathematics of motion camouflage.

    PubMed Central

    Glendinning, Paul

    2004-01-01

    Motion camouflage is a strategy whereby an aggressor moves towards a target while appearing stationary to the target except for the inevitable change in perceived size of the aggressor as it approaches. The strategy has been observed in insects, and mathematical models using discrete time or neural-network control have been used to simulate the behaviour. Here, the differential equations for motion camouflage are derived and some simple cases are analysed. These equations are easy to simulate numerically, and simulations indicate that motion camouflage is more efficient than the classical pursuit strategy ('move directly towards the target'). PMID:15129957

  5. Neural mechanisms of motion sickness

    NASA Technical Reports Server (NTRS)

    Crampton, G. H.; Daunton, N. G.

    1983-01-01

    The possibility that there might be a neuro-homoral cerebrospinal fluid link in motion sickness was directly tested by blocking the flow of CSF from the third into the fourth ventricle in cats. Evidence obtained thus far is consistent with the hypothesis. Cats with demonstrably sound plugs did not vomit in response to an accelerative motion sickness stimulus, whereas cats with imperfect 'leaky' plugs vomited with little or no delay in latency. Althoough there are several putative candidates, the identification of a humoral motion sickness substance is a matter of conjecture.

  6. THERMAL HETEROGENEITY, STREAM CHANNEL MORPHOLOGY, AND SALMONID ABUNDANCE IN NORTHEASTERN OREGON STREAMS

    EPA Science Inventory

    Heterogeneity in stream water temperatures created by local influx of cooler subsurface waters into geomorphically complex stream channels was associated with increased abundance of rainbow trout (Oncorhynchus mykiss) and chinook salmon (O. tshawytscha) in northeastern Oregon. Th...

  7. Motion transparency: making models of motion perception transparent.

    PubMed

    Snowden; Verstraten

    1999-10-01

    In daily life our visual system is bombarded with motion information. We see cars driving by, flocks of birds flying in the sky, clouds passing behind trees that are dancing in the wind. Vision science has a good understanding of the first stage of visual motion processing, that is, the mechanism underlying the detection of local motions. Currently, research is focused on the processes that occur beyond the first stage. At this level, local motions have to be integrated to form objects, define the boundaries between them, construct surfaces and so on. An interesting, if complicated case is known as motion transparency: the situation in which two overlapping surfaces move transparently over each other. In that case two motions have to be assigned to the same retinal location. Several researchers have tried to solve this problem from a computational point of view, using physiological and psychophysical results as a guideline. We will discuss two models: one uses the traditional idea known as 'filter selection' and the other a relatively new approach based on Bayesian inference. Predictions from these models are compared with our own visual behaviour and that of the neural substrates that are presumed to underlie these perceptions.

  8. Asymmetry of Drosophila ON and OFF motion detectors enhances real-world velocity estimation.

    PubMed

    Leonhardt, Aljoscha; Ammer, Georg; Meier, Matthias; Serbe, Etienne; Bahl, Armin; Borst, Alexander

    2016-05-01

    The reliable estimation of motion across varied surroundings represents a survival-critical task for sighted animals. How neural circuits have adapted to the particular demands of natural environments, however, is not well understood. We explored this question in the visual system of Drosophila melanogaster. Here, as in many mammalian retinas, motion is computed in parallel streams for brightness increments (ON) and decrements (OFF). When genetically isolated, ON and OFF pathways proved equally capable of accurately matching walking responses to realistic motion. To our surprise, detailed characterization of their functional tuning properties through in vivo calcium imaging and electrophysiology revealed stark differences in temporal tuning between ON and OFF channels. We trained an in silico motion estimation model on natural scenes and discovered that our optimized detector exhibited differences similar to those of the biological system. Thus, functional ON-OFF asymmetries in fly visual circuitry may reflect ON-OFF asymmetries in natural environments.

  9. Source characteristics of a West Antarctic ice stream

    NASA Astrophysics Data System (ADS)

    Pratt, M.; Winberry, J.; Wiens, D. A.; Anandakrishnan, S.; Alley, R. B.

    2012-12-01

    Whillans Ice Stream (WIS) displays tidally modulated stick-slip motion, with many similarities to an earthquake system including producing surface waves observable up to 1000 km away. WIS motion typically is achieved almost entirely in two events per day; however, decadal slowdown is being accommodated by more-frequent skipping of one of the daily events with no reduction in magnitude of the slips that occur. Each slip event produces teleseismic arrivals from three distinct rupture phases. New data from seismic and GPS deployments during the austral summers of 2010-2011 and 2011-2012, along with seismic observations with data from far-field seismic stations such as VNDA and the West Antarctic POLENET A-NET provide an improved view of these events. Beamforming and frequency-wavenumber analysis of the slip pulse as recorded by broadband seismographs resolve source locations and rupture velocities. Initiation of the first phase of fast rupture occurs from one of two sticky-spots, after a few-minutes interval of 'pre-slip' from the opposite spot. The azimuthal directivity of seismic signals of first phase rupture shows strong asymmetry with a maximum in the downstream direction, suggesting that the initial onset of rupture may be close to the Rayleigh wave velocity (3.8 km s-1) in the direction of ice stream flow. A second-phase of acceleration, also observed teleseismically, starts near the downstream end of a subglacial lake, triggering both faster expansion of the rupture into previously static regions, and a slip pulse that propagates back into already moving areas. A similar re-acceleration is seen when the rupture crosses the grounding zone to the ice shelf. The downstream initial sticky spot, as well as the two later loci of accelerated slip (asperities), are located at or near the grounding line, suggesting the grounding line rheology may be important for controlling the stick-slip behavior.

  10. Tracking Radio-Tagged Bedload in an Alpine Stream

    NASA Astrophysics Data System (ADS)

    Bradley, D. N.; Tucker, G. E.

    2009-12-01

    Sediment transport models based on the concept of the random walk rely on statistical descriptions of how often and how far individual sediment particles move. To obtain probability distributions of travel distance and frequency in a natural stream, the trajectories of a large number of individual particles must be observed. We use Passive Integrated Transponder (PIT) tags to track individual cobbles in a small alpine stream. PIT tags, also known as Radio Frequency Identification (RFID) tags, are a relatively new technology that have been used extensively to monitor migrating fish but only recently as fluvial bedload tracers. In the spring of 2007, we installed 893 PIT-tagged rocks in Halfmoon Creek, near Leadville, Colorado. The PIT tags equip each tracer stone with a unique ID that can be read from a distance of up to one meter, even when the tracer is buried beneath other sediment. Because of this, we can detect and survey tracers without altering the streambed. The tracers move only a few weeks a year, during the spring snowmelt flood. We recover the tracers and survey their locations in the late summer, after the water level has dropped enough to make the search possible. We report technical details of tracer preparation, installation, and recovery, as well as particle motion data from three transport seasons. We have recovered more than 90% of the tracers each year. The travel distance distribution is strongly skewed to the right, with most tracers moving very little and a few moving hundreds of meters. This travel distance distribution suggests that the motion of the tracer plume is dominated by dispersion rather than advection.

  11. Visual motion integration for perception and pursuit

    NASA Technical Reports Server (NTRS)

    Stone, L. S.; Beutter, B. R.; Lorenceau, J.

    2000-01-01

    To examine the relationship between visual motion processing for perception and pursuit, we measured the pursuit eye-movement and perceptual responses to the same complex-motion stimuli. We show that humans can both perceive and pursue the motion of line-figure objects, even when partial occlusion makes the resulting image motion vastly different from the underlying object motion. Our results show that both perception and pursuit can perform largely accurate motion integration, i.e. the selective combination of local motion signals across the visual field to derive global object motion. Furthermore, because we manipulated perceived motion while keeping image motion identical, the observed parallel changes in perception and pursuit show that the motion signals driving steady-state pursuit and perception are linked. These findings disprove current pursuit models whose control strategy is to minimize retinal image motion, and suggest a new framework for the interplay between visual cortex and cerebellum in visuomotor control.

  12. Collaborating with beaver: An affordable, process-based approach to stream restoration

    NASA Astrophysics Data System (ADS)

    Pollock, M. M.; Jordan, C.; Bouwes, N. W.; Volk, C.; Tattam, I.

    2009-12-01

    We review the initial results of a long-term restoration and monitoring project to restore the lower 32 km of Bridge Creek, an incised and degraded tributary to the John Day River in eastern Oregon, USA. The goal of the project is to cause a detectable population-level benefit to the anadromous steelhead trout (Oncorhynchus mykiss) that use this system. The project takes a process-based restoration approach that involves installing a series of beaver dam support structures designed to mimic beaver dams and to assist beaver (Castor canadensis) in the construction of stable dams. Currently beaver are active in the system, but the lack of structure in the incised stream trench prevents them from establishing dams that last more than one or two years. The lack of stream sinuosity and lack of access to a floodplain concentrates flow forces within the confined incision trench and the dams are regularly breached during high flows in spring or summer. A major goal of this project is to have the beaver do the bulk of the restoration work while we facilitate establishing stable beaver colonies in this degraded stream system such that the small population can expand. As such, the project is not an “engineered” approach to stream restoration with a spatially fixed outcome. Providing some short term assistance to set in motion natural processes by which the stream restores its natural dynamics is the expected outcome. Initial results suggest that increasing the number of beaver dams facilitate stream geomorphic changes that include sediment retention, stream bed aggradation, increased stream sinuosity, pool formation, increased stream length, reduced stream slope, reduced bed shear stress and a shift in the bed composition from cobble towards gravel. The beaver dams also raise water tables in the alluvial aquifer, expand the riparian forest and reduce stream temperatures. Beaver Dam Support Structure colonized by beaver shortly after installation. A plunge pool has formed

  13. Drawdown and stream depletion produced by pumping in the vicinity of a partially penetrating stream

    USGS Publications Warehouse

    Butler, J.J.; Zlotnik, V.A.; Tsou, M.-S.

    2001-01-01

    Commonly used analytical approaches for estimation of pumping-induced drawdown and stream depletion are based on a series of idealistic assumptions about the stream-aquifer system. A new solution has been developed for estimation of drawdown and stream depletion under conditions that are more representative of those in natural systems (finite width stream of shallow penetration adjoining an aquifer of limited lateral extent). This solution shows that the conventional assumption of a fully penetrating stream will lead to a significant overestimation of stream depletion (> 100 %) in many practical applications. The degree of overestimation will depend on the value of the stream leakance parameter and the distance from the pumping well to the stream. Although leakance will increase with stream width, a very wide stream will not necessarily be well represented by a model of a fully penetrating stream. The impact of lateral boundaries depends upon the distance from the pumping well to the stream and the stream leakance parameter. In most cases, aquifer width must be on the order of hundreds of stream widths before the assumption of a laterally infinite aquifer is appropriate for stream-depletion calculations. An important assumption underlying this solution is that stream-channel penetration is negligible relative to aquifer thickness. However, an approximate extension to the case of nonnegligible penetration provides reasonable results for the range of relative penetrations found in most natural systems (up to 85%). Since this solution allows consideration of a much wider range of conditions than existing analytical approaches, it could prove to be a valuable new tool for water management design and water rights adjudication purposes.

  14. Comet disintegration and meteor streams

    NASA Astrophysics Data System (ADS)

    Guliyev, Ayyub S.; Poladova, Ulviyya J.

    2013-01-01

    The possibilities for disintegration of a cometary nucleus by collision with meteoroid streams, pre- dicted by one of authors (Guliyev, 2010) are considered in three zones of the Solar System. A list of disintegrating comets consisting of 118 cases has been made by the authors. The list contains data about observed cases of comet splitting, comet twins, and data about disappeared comets. Testing the comet parameters by applying the methods of mathematical statistics confirms the hypothesis underlying this article. The frequency of passing through the three zones where there might be a collapse of a proto-comet is rather high for the proto-comets of the Sun-grazer group. The results of the statistical analysis of comet outbursts yields additional arguments in favor of our hypothesis.

  15. Streaming Multiframe Deconvolutions on GPUs

    NASA Astrophysics Data System (ADS)

    Lee, M. A.; Budavári, T.

    2015-09-01

    Atmospheric turbulence distorts all ground-based observations, which is especially detrimental to faint detections. The point spread function (PSF) defining this blur is unknown for each exposure and varies significantly over time, making image analysis difficult. Lucky imaging and traditional co-adding throws away lots of information. We developed blind deconvolution algorithms that can simultaneously obtain robust solutions for the background image and all the PSFs. It is done in a streaming setting, which makes it practical for large number of big images. We implemented a new tool that runs of GPUs and achieves exceptional running times that can scale to the new time-domain surveys. Our code can quickly and effectively recover high-resolution images exceeding the quality of traditional co-adds. We demonstrate the power of the method on the repeated exposures in the Sloan Digital Sky Survey's Stripe 82.

  16. Multicellular Streaming in Solid Tumours

    NASA Astrophysics Data System (ADS)

    Kas, Josef

    As early as 400 BCE, the Roman medical encyclopaedist Celsus recognized that solid tumours are stiffer than surrounding tissue. However, cancer cell lines are softer, and softer cells facilitate invasion. This paradox raises several questions: Does softness emerge from adaptation to mechanical and chemical cues in the external microenvironment, or are soft cells already present inside a primary solid tumour? If the latter, how can a more rigid tissue contain more soft cells? Here we show that in primary tumour samples from patients with mammary and cervix carcinomas, cells do exhibit a broad distribution of rigidities, with a higher fraction of softer and more contractile cells compared to normal tissue. Mechanical modelling based on patient data reveals that, surprisingly, tumours with a significant fraction of very soft cells can still remain rigid. Moreover, in tissues with the observed distributions of cell stiffnesses, softer cells spontaneously self-organize into lines or streams, possibly facilitating cancer metastasis.

  17. Video summarization using motion descriptors

    NASA Astrophysics Data System (ADS)

    Divakaran, Ajay; Peker, Kadir A.; Sun, Huifang

    2001-01-01

    We describe a technique for video summarization that uses motion descriptors computed in the compressed domain to speed up conventional color based video summarization technique. The basic hypothesis of the work is that the intensity of motion activity of a video segment is a direct indication of its 'summarizability.' We present experimental verification of this hypothesis. We are thus able to quickly identify easy to summarize segments of a video sequence since they have a low intensity of motion activity. Moreover, the compressed domain extraction of motion activity intensity is much simpler than the color-based calculations. We are able to easily summarize these segments by simply choosing a key-frame at random from each low- activity segment. We can then apply conventional color-based summarization techniques to the remaining segments. We are thus able to speed up color-based summarization techniques by reducing the number of segments on which computationally more expensive color-based computation is needed.

  18. Video summarization using motion descriptors

    NASA Astrophysics Data System (ADS)

    Divakaran, Ajay; Peker, Kadir A.; Sun, Huifang

    2000-12-01

    We describe a technique for video summarization that uses motion descriptors computed in the compressed domain to speed up conventional color based video summarization technique. The basic hypothesis of the work is that the intensity of motion activity of a video segment is a direct indication of its 'summarizability.' We present experimental verification of this hypothesis. We are thus able to quickly identify easy to summarize segments of a video sequence since they have a low intensity of motion activity. Moreover, the compressed domain extraction of motion activity intensity is much simpler than the color-based calculations. We are able to easily summarize these segments by simply choosing a key-frame at random from each low- activity segment. We can then apply conventional color-based summarization techniques to the remaining segments. We are thus able to speed up color-based summarization techniques by reducing the number of segments on which computationally more expensive color-based computation is needed.

  19. Hydrological excitation of polar motion

    NASA Astrophysics Data System (ADS)

    Nastula, Y.; Kolaczek, B.

    2006-08-01

    Hydrological excitation of the polar motion (HAM) were computed from the available recently hydrological data series (NCEP, ECMWF, CPC water storage and LaD World simulations of global continental water) and compared. Time variable seasonal spectra of these hydrological excitation functions and of the geodetic excitation function of polar motion computed from the polar motion COMB03 data were compared showing big differences in their temporal characteristics and the necessity of the further improvement of the HAM models. Seasonal oscillations of the global geophysical excitation functions (AAM + OAM + HAM) and their time variations were compared also. These hydrological excitation functions do not close the budget of the global geophysical excitation function of polar motion.

  20. Organized motion in turbulent flow

    NASA Astrophysics Data System (ADS)

    Cantwell, B. J.

    A review of organized motion in turbulent flow indicates that the transport properties of most shear flows are dominated by large-scale vortex nonrandom motions. The mean velocity profile of a turbulent boundary layer consists of a viscous sublayer, buffer layer, and a logarithmic outer layer; an empirical formula of Coles (1956) applies to various pressure gradients. The boundary layer coherent structure was isolated by the correlation methods of Townsend (1956) and flow visualization by direct observations of complex unsteady turbulent motions. The near-wall studies of Willmart and Wooldridge (1962) used the space-time correlation for pressure fluctuations at the wall under a thick turbulent boundary layer; finally, organized motion in free shear flows and transition-control of mixing demonstrated that the Reynolds number invariance of turbulence shows wide scatter.

  1. Introducing Motion in a Circle.

    ERIC Educational Resources Information Center

    Roche, John

    2001-01-01

    Motion in a circle troubled Newton and his contemporaries and troubles students today. Presents a clear presentation of certain aspects, particularly centripetal acceleration and centrifugal force. (Author/MM)

  2. Projectile Motion in Special Relativity.

    ERIC Educational Resources Information Center

    Naddy, Cory J.; Dudley, Scott C.; Haaland, Ryan K.

    2000-01-01

    Explains the motion that occurs when a particle with an initial velocity to the right is acted upon by a constant downward force. Considers what happens when the speed of the particle approaches the speed of light in particular. (WRM)

  3. Is Diaphragm Motion a Good Surrogate for Liver Tumor Motion?

    SciTech Connect

    Yang, Juan; Cai, Jing; Wang, Hongjun; Chang, Zheng; Czito, Brian G.; Bashir, Mustafa R.; Palta, Manisha; Yin, Fang-Fang

    2014-11-15

    Purpose: To evaluate the relationship between liver tumor motion and diaphragm motion. Methods and Materials: Fourteen patients with hepatocellular carcinoma (10 of 14) or liver metastases (4 of 14) undergoing radiation therapy were included in this study. All patients underwent single-slice cine–magnetic resonance imaging simulations across the center of the tumor in 3 orthogonal planes. Tumor and diaphragm motion trajectories in the superior–inferior (SI), anterior–posterior (AP), and medial–lateral (ML) directions were obtained using an in-house-developed normalized cross-correlation–based tracking technique. Agreement between the tumor and diaphragm motion was assessed by calculating phase difference percentage, intraclass correlation coefficient, and Bland-Altman analysis (Diff). The distance between the tumor and tracked diaphragm area was analyzed to understand its impact on the correlation between the 2 motions. Results: Of all patients, the mean (±standard deviation) phase difference percentage values were 7.1% ± 1.1%, 4.5% ± 0.5%, and 17.5% ± 4.5% in the SI, AP, and ML directions, respectively. The mean intraclass correlation coefficient values were 0.98 ± 0.02, 0.97 ± 0.02, and 0.08 ± 0.06 in the SI, AP, and ML directions, respectively. The mean Diff values were 2.8 ± 1.4 mm, 2.4 ± 1.1 mm, and 2.2 ± 0.5 mm in the SI, AP, and ML directions, respectively. Tumor and diaphragm motions had high concordance when the distance between the tumor and tracked diaphragm area was small. Conclusions: This study showed that liver tumor motion had good correlation with diaphragm motion in the SI and AP directions, indicating diaphragm motion in the SI and AP directions could potentially be used as a reliable surrogate for liver tumor motion.

  4. Stream bank erosion in grazed pasture stream reaches of southern Iowa, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stream bank erosion in agricultural landscapes is a major pathway for non-point source sediment and phosphorus loading of receiving waters. The objective of this study was to assess the relationship between the numbers of high stream stage events, as they directly reflect higher erosive stream flow,...

  5. Gulf Stream Ring Coalescence with the Gulf Stream off Cape Hatteras.

    PubMed

    Watts, D R; Olson, D B

    1978-12-01

    A cyclonic ring, which had separated from the Gulf Stream 7 months earlier and traveled 500 kilometers westward, collided with the stream in September 1977. Within 3 days the ring and stream joined to form a sharp S-shaped meander. Shipboard expendable temperature probes and four bottom-moored inverted echo sounders were used to obtain synoptic descriptions of the rejoining process.

  6. Towards adaptive, streaming analysis of x-ray tomography data

    SciTech Connect

    Thomas, Mathew; Kleese van Dam, Kerstin; Marshall, Matthew J.; Kuprat, Andrew P.; Carson, James P.; Lansing, Carina S.; Guillen, Zoe C.; Miller, Erin A.; Lanekoff, Ingela; Laskin, Julia

    2015-03-04

    Temporal and spatial resolution of chemical imaging methodologies such as x-ray tomography are rapidly increasing, leading to more complex experimental procedures and fast growing data volumes. Automated analysis pipelines and big data analytics are becoming essential to effectively evaluate the results of such experiments. Offering those data techniques in an adaptive, streaming environment can further substantially improve the scientific discovery process, by enabling experimental control and steering based on the evaluation of emerging phenomena as they are observed by the experiment. Pacific Northwest National Laboratory (PNNL)’ Chemical Imaging Initiative (CII - http://imaging.pnnl.gov/ ) has worked since 2011 towards developing a framework that allows users to rapidly compose and customize high throughput experimental analysis pipelines for multiple instrument types. The framework, named ‘Rapid Experimental Analysis’ (REXAN) Framework [1], is based on the idea of reusable component libraries and utilizes the PNNL developed collaborative data management and analysis environment ‘Velo’, to provide a user friendly analysis and data management environment for experimental facilities. This article will, discuss the capabilities established for X-Ray tomography, discuss lessons learned, and provide an overview of our more recent work in the Analysis in Motion Initiative (AIM - http://aim.pnnl.gov/ ) at PNNL to provide REXAN capabilities in a streaming environment.

  7. Brownian motion from Boltzmann's equation.

    NASA Technical Reports Server (NTRS)

    Montgomery, D.

    1971-01-01

    Two apparently disparate lines of inquiry in kinetic theory are shown to be equivalent: (1) Brownian motion as treated by the (stochastic) Langevin equation and Fokker-Planck equation; and (2) Boltzmann's equation. The method is to derive the kinetic equation for Brownian motion from the Boltzmann equation for a two-component neutral gas by a simultaneous expansion in the density and mass ratios.

  8. Tilts in strong ground motion

    USGS Publications Warehouse

    Graizer, V.

    2006-01-01

    Most instruments used in seismological practice to record ground motion are pendulum seismographs, velocigraphs, or accelerographs. In most cases it is assumed that seismic instruments are only sensitive to the translational motion of the instrument's base. In this study the full equation of pendulum motion, including the inputs of rotations and tilts, is considered. It is shown that tilting the accelerograph's base can severely impact its response to the ground motion. The method of tilt evaluation using uncorrected strong-motion accelerograms was first suggested by Graizer (1989), and later tested in several laboratory experiments with different strong-motion instruments. The method is based on the difference in the tilt sensitivity of the horizontal and vertical pendulums. The method was applied to many of the strongest records of the Mw 6.7 Northridge earthquake of 1994. Examples are shown when relatively large tilts of up to a few degrees occurred during strong earthquake ground motion. Residual tilt extracted from the strong-motion record at the Pacoima Dam-Upper Left Abutment reached 3.1?? in N45??E direction, and was a result of local earthquake-induced tilting due to high-amplitude shaking. This value is in agreement with the residual tilt measured by using electronic level a few days after the earthquake. The method was applied to the building records from the Northridge earthquake. According to the estimates, residual tilt reached 2.6?? on the ground floor of the 12-story Hotel in Ventura. Processing of most of the strongest records of the Northridge earthquake shows that tilts, if happened, were within the error of the method, or less than about 0.5??.

  9. Construction of the programmed motion

    SciTech Connect

    Man, T.B.

    1982-08-01

    The objective of this paper is to outline some problems of the programmed motion. The Erugin's method for the construction of the set of differential equations according to the prescribed integrals, which plays a crucial role in the development of such motions, is discussed. Possible modifications of the inverse problem of dynamics is pointed out. One of the modifications, such as the construction of the functional, which takes stationary value on the solution of the constructed equations, has been worked out in detail.

  10. The Cross-Stream Structure of the Crests of Breaking Waves

    NASA Astrophysics Data System (ADS)

    Duncan, J. H.; Diorio, J. D.; Liu, X.

    2008-11-01

    Surface profiles and flow fields in the crests of breaking waves are usually measured in vertical stream-wise planes. However, measurements of the turbulent flow in boundary layers along flat rigid walls have indicated the importance of streamwise flow structures. In the present study, breaking waves are examined in a tank that is 12.8 m long and 1.2 m wide with a water depth of 0.91 m. A programmable wave maker is used to generate wave packets (central frequencies 1.15 - 1.42 Hz) that create breakers by dispersive focusing. Different amplitudes of the wave maker motion are used to generate various breaking waves ranging from weakly spilling to plunging breakers. A cinematic 2D LIF technique is used to measure the crest profile histories and the light-sheet plane is oriented to measure both the stream-wise and cross-stream crest profiles in separate experiments. It is found that the development of ripples due to turbulence-free surface interactions is highly repeatable and that even though the waves are two-dimensional before breaking, the amplitude of the cross-stream components quickly reaches 50% of the stream-wise ripple amplitude.

  11. Forensics of subhalo-stream encounters: the three phases of gap growth

    NASA Astrophysics Data System (ADS)

    Erkal, Denis; Belokurov, Vasily

    2015-06-01

    There is hope to discover dark matter subhaloes free of stars (predicted by the current theory of structure formation) by observing gaps they produce in tidal streams. In fact, this is the most promising technique for dark substructure detection and characterization as such gaps grow with time, magnifying small perturbations into clear signatures observable by ongoing and planned Galaxy surveys. To facilitate such future inference, we develop a comprehensive framework for studies of the growth of the stream density perturbations. Starting with simple assumptions and restricting to streams on circular orbits, we derive analytic formulae that describe the evolution of all gap properties (size, density contrast, etc.) at all times. We uncover complex, previously unnoticed behaviour, with the stream initially forming a density enhancement near the subhalo impact point. Shortly after, a gap forms due to the relative change in period induced by the subhalo's passage. There is an intermediate regime where the gap grows linearly in time. At late times, the particles in the stream overtake each other, forming caustics, and the gap grows like √{t}. In addition to the secular growth, we find that the gap oscillates as it grows due to epicyclic motion. We compare this analytic model to N-body simulations and find an impressive level of agreement. Importantly, when analysing the observation of a single gap we find a large degeneracy between the subhalo mass, the impact geometry and kinematics, the host potential, and the time since flyby.

  12. Basal characteristics of the main sticky spot on the ice plain of Whillans Ice Stream, Antarctica

    NASA Astrophysics Data System (ADS)

    Luthra, Tarun; Anandakrishnan, Sridhar; Winberry, J. Paul; Alley, Richard B.; Holschuh, Nicholas

    2016-04-01

    Understanding the processes that affect streaming ice flow and the mass balance of glaciers and ice sheets requires sound knowledge of their subglacial environments. Previous studies have shown that an extensive deformable subglacial sediment layer favors fast ice-stream flow. However, areas of high basal drag, termed sticky spots, are of particular interest because they inhibit the fast flow of the overriding ice. The stick-slip behavior of Whillans Ice Stream (WIS) is perhaps the most conspicuous manifestation of a subglacial sticky spot. We present new ice-thickness and seismic-reflection measurements collected over the main sticky spot in the ice plain of WIS, allowing us to elucidate its role in the behavior of the ice stream. Ice-thickness and surface-elevation data show that the sticky spot occupies a subglacial topographic high. Water flow in response to the hydrological potential gradient will be routed around the sticky spot if effective pressures are similar on the sticky spot and elsewhere. The seismic experiment imaged a laterally continuous basal layer approximately 6 m thick, having compressional wave velocities of greater than 1800 m s-1 and density greater than 1800 kg m-3, indicative of a till layer that is stiffer than corresponding till beneath well-lubricated parts of the ice stream. This layer likely continues to deform under the higher shear stress of the sticky spot, and some water may be pumped up onto the sticky spot during motion events.

  13. Acoustophoretic particle motion in a square glass capillary

    NASA Astrophysics Data System (ADS)

    Barnkob, Rune; Marin, Alvaro; Rossi, Massimiliano; Kähler, Christian J.

    2014-11-01

    Acoustofluidics applications often use complex resonator geometries and complex acoustic actuation, which complicates the prediction of the acoustic resonances and the induced forces from the acoustic radiation and the acoustic streaming. Recently, it was shown that simultaneous actuation of two perpendicular half-wave resonances in a square channel can lead to acoustic streaming that will spiral small particles towards the pressure nodal center (Antfolk, Anal. Chem. 84, 2012). This we investigate in details experimentally by examining a square glass capillary with a 400- μm microchannel acoustically actuated around its 2-MHz half-wave transverse resonance. The acoustic actuation leads to the formation of a half-wave resonance in both the vertical and horizontal direction of the microchannel. Due to viscous and dissipative losses both resonances have finite widths, but are shifted in frequency due to asymmetric actuation and fabrication tolerances making the channel not perfectly square. We determine the resonance widths and shift by measuring the 3D3C trajectories of large particles whose motion is fully dominated by acoustic radiation forces, while the induced acoustic streaming is determined by measuring smaller particles weakly influenced by the acoustic radiation force. DFG KA 1808/16-1.

  14. Slow motion increases perceived intent.

    PubMed

    Caruso, Eugene M; Burns, Zachary C; Converse, Benjamin A

    2016-08-16

    To determine the appropriate punishment for a harmful action, people must often make inferences about the transgressor's intent. In courtrooms and popular media, such inferences increasingly rely on video evidence, which is often played in "slow motion." Four experiments (n = 1,610) involving real surveillance footage from a murder or broadcast replays of violent contact in professional football demonstrate that viewing an action in slow motion, compared with regular speed, can cause viewers to perceive an action as more intentional. This slow motion intentionality bias occurred, in part, because slow motion video caused participants to feel like the actor had more time to act, even when they knew how much clock time had actually elapsed. Four additional experiments (n = 2,737) reveal that allowing viewers to see both regular speed and slow motion replay mitigates the bias, but does not eliminate it. We conclude that an empirical understanding of the effect of slow motion on mental state attribution should inform the life-or-death decisions that are currently based on tacit assumptions about the objectivity of human perception.

  15. Slow motion increases perceived intent

    PubMed Central

    Caruso, Eugene M.; Burns, Zachary C.; Converse, Benjamin A.

    2016-01-01

    To determine the appropriate punishment for a harmful action, people must often make inferences about the transgressor’s intent. In courtrooms and popular media, such inferences increasingly rely on video evidence, which is often played in “slow motion.” Four experiments (n = 1,610) involving real surveillance footage from a murder or broadcast replays of violent contact in professional football demonstrate that viewing an action in slow motion, compared with regular speed, can cause viewers to perceive an action as more intentional. This slow motion intentionality bias occurred, in part, because slow motion video caused participants to feel like the actor had more time to act, even when they knew how much clock time had actually elapsed. Four additional experiments (n = 2,737) reveal that allowing viewers to see both regular speed and slow motion replay mitigates the bias, but does not eliminate it. We conclude that an empirical understanding of the effect of slow motion on mental state attribution should inform the life-or-death decisions that are currently based on tacit assumptions about the objectivity of human perception. PMID:27482091

  16. Slow motion increases perceived intent.

    PubMed

    Caruso, Eugene M; Burns, Zachary C; Converse, Benjamin A

    2016-08-16

    To determine the appropriate punishment for a harmful action, people must often make inferences about the transgressor's intent. In courtrooms and popular media, such inferences increasingly rely on video evidence, which is often played in "slow motion." Four experiments (n = 1,610) involving real surveillance footage from a murder or broadcast replays of violent contact in professional football demonstrate that viewing an action in slow motion, compared with regular speed, can cause viewers to perceive an action as more intentional. This slow motion intentionality bias occurred, in part, because slow motion video caused participants to feel like the actor had more time to act, even when they knew how much clock time had actually elapsed. Four additional experiments (n = 2,737) reveal that allowing viewers to see both regular speed and slow motion replay mitigates the bias, but does not eliminate it. We conclude that an empirical understanding of the effect of slow motion on mental state attribution should inform the life-or-death decisions that are currently based on tacit assumptions about the objectivity of human perception. PMID:27482091

  17. Neotropical Amphibian Declines Affect Stream Ecosystem Properties

    NASA Astrophysics Data System (ADS)

    Connelly, S.; Pringle, C. M.; Bixby, R. J.; Whiles, M. R.; Lips, K. R.; Brenes, R.; Colon-Gaud, J. C.; Kilham, S.; Hunte-Brown, M.

    2005-05-01

    Global declines of amphibians are well documented, yet effects of these dramatic losses on ecosystem structure and function are poorly understood. As part of a larger collaborative project, we compared two upland Panamanian streams. Both streams are biologically and geologically similar; however, one stream (Fortuna) has recently experienced almost complete extirpation of stream-dwelling frogs, while the other (Cope) still has intact populations. We experimentally excluded tadpoles from localized areas in each stream. We then compared chlorophyll a, algal community composition, ash-free dry mass (AFDM), inorganic matter, and insect assemblages in control and exclusion areas. Additionally, we sampled the natural substrate of both streams monthly for chlorophyll a, algal community composition, AFDM, and inorganic matter. At Cope, chlorophyll a, AFDM, and inorganic matter were greater in areas where tadpoles were excluded than in their presence. Numbers of dominant algal species (e.g., Nupela praecipua and Eunotia siolii) were greater in the exclusion versus control treatments. Monthly sampling of natural substrate indicated higher chlorophyll a and AFDM at Cope compared to Fortuna. Our data suggest that stream-dwelling anuran larvae have significant impacts on algal communities. These results also have implications for predicting the relevance of short-term experimental manipulations to long-term, whole-stream processes.

  18. National River and Stream Assessment Monitoring Design

    EPA Science Inventory

    The USEPA designed the National River and Stream Assessment (NRSA) in 2007 and field sampling was completed in 2008-9. The objective of the assessment is to estimate the ecological condition of river and streams nationally. This paper describes the national survey design and re...

  19. Fire Service Training. Fire Stream Practices. (Revised).

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Community Colleges, Raleigh.

    One of a set of fourteen instructional outlines for use in a course to train novice firemen, this guide covers the topic of fire streams. The various types of fire streams are identified as well as the methods used to produce them, emphasizing the operation of nozzles and the different kinds of friction loss. Designed to be used with the Robert J.…

  20. STREAM2 for Aqueous Release Emergency Response

    SciTech Connect

    Chen, K.F.

    1998-09-23

    This report documents the STREAM2 code and its input models developed for the WIND System. STREAM2 is a modification of the STREAM code, which is the transport and diffusion module of the WIND System aqueous emergency response program. STREAM predicts downstream pollutant concentrations for releases from the Savannah River Site to the Savannah River. The STREAM calculation module uses an algebraic equation to approximate the solution of the differential one-dimensional advective transport equation. The advantage of this simplified approach is that the time required to obtain a solution is shortened to a matter of minutes. However, this approach generates spurious oscillations in the concentration profile when modeling long duration releases. To improve the capability of the STREAM code to model long-term releases, its calculation module was replaced by the transport module of the WASP5 code. WASP5 is a US EPA water quality analysis program that simulates pollutant transport and fate through surface water. The revised STREAM code is named STREAM2.