The complete mitochondrial genome of Chrysopa pallens (Insecta, Neuroptera, Chrysopidae).
He, Kun; Chen, Zhe; Yu, Dan-Na; Zhang, Jia-Yong
2012-10-01
The complete mitochondrial genome of Chrysopa pallens (Neuroptera, Chrysopidae) was sequenced. It consists of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA (rRNA) genes, and a control region (AT-rich region). The total length of C. pallens mitogenome is 16,723 bp with 79.5% AT content, and the length of control region is 1905 bp with 89.1% AT content. The non-coding regions of C. pallens include control region between 12S rRNA and trnI genes, and a 75-bp space region between trnI and trnQ genes.
Statistical properties of DNA sequences
NASA Technical Reports Server (NTRS)
Peng, C. K.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Mantegna, R. N.; Simons, M.; Stanley, H. E.
1995-01-01
We review evidence supporting the idea that the DNA sequence in genes containing non-coding regions is correlated, and that the correlation is remarkably long range--indeed, nucleotides thousands of base pairs distant are correlated. We do not find such a long-range correlation in the coding regions of the gene. We resolve the problem of the "non-stationarity" feature of the sequence of base pairs by applying a new algorithm called detrended fluctuation analysis (DFA). We address the claim of Voss that there is no difference in the statistical properties of coding and non-coding regions of DNA by systematically applying the DFA algorithm, as well as standard FFT analysis, to every DNA sequence (33301 coding and 29453 non-coding) in the entire GenBank database. Finally, we describe briefly some recent work showing that the non-coding sequences have certain statistical features in common with natural and artificial languages. Specifically, we adapt to DNA the Zipf approach to analyzing linguistic texts. These statistical properties of non-coding sequences support the possibility that non-coding regions of DNA may carry biological information.
Non-coding functions of alternative pre-mRNA splicing in development
Mockenhaupt, Stefan; Makeyev, Eugene V.
2015-01-01
A majority of messenger RNA precursors (pre-mRNAs) in the higher eukaryotes undergo alternative splicing to generate more than one mature product. By targeting the open reading frame region this process increases diversity of protein isoforms beyond the nominal coding capacity of the genome. However, alternative splicing also frequently controls output levels and spatiotemporal features of cellular and organismal gene expression programs. Here we discuss how these non-coding functions of alternative splicing contribute to development through regulation of mRNA stability, translational efficiency and cellular localization. PMID:26493705
Origin and evolution of the long non-coding genes in the X-inactivation center.
Romito, Antonio; Rougeulle, Claire
2011-11-01
Random X chromosome inactivation (XCI), the eutherian mechanism of X-linked gene dosage compensation, is controlled by a cis-acting locus termed the X-inactivation center (Xic). One of the striking features that characterize the Xic landscape is the abundance of loci transcribing non-coding RNAs (ncRNAs), including Xist, the master regulator of the inactivation process. Recent comparative genomic analyses have depicted the evolutionary scenario behind the origin of the X-inactivation center, revealing that this locus evolved from a region harboring protein-coding genes. During mammalian radiation, this ancestral protein-coding region was disrupted in the marsupial group, whilst it provided in eutherian lineage the starting material for the non-translated RNAs of the X-inactivation center. The emergence of non-coding genes occurred by a dual mechanism involving loss of protein-coding function of the pre-existing genes and integration of different classes of mobile elements, some of which modeled the structure and sequence of the non-coding genes in a species-specific manner. The rising genes started to produce transcripts that acquired function in regulating the epigenetic status of the X chromosome, as shown for Xist, its antisense Tsix, Jpx, and recently suggested for Ftx. Thus, the appearance of the Xic, which occurred after the divergence between eutherians and marsupials, was the basis for the evolution of random X inactivation as a strategy to achieve dosage compensation. Copyright © 2011. Published by Elsevier Masson SAS.
The complete mitochondrial genome of the Giant Manta ray, Manta birostris.
Hinojosa-Alvarez, Silvia; Díaz-Jaimes, Pindaro; Marcet-Houben, Marina; Gabaldón, Toni
2015-01-01
The complete mitochondrial genome of the giant manta ray (Manta birostris), consists of 18,075 bp with rich A + T and low G content. Gene organization and length is similar to other species of ray. It comprises of 13 protein-coding genes, 2 rRNAs genes, 23 tRNAs genes and 1 non-coding sequence, and the control region. We identified an AT tandem repeat region, similar to that reported in Mobula japanica.
The complete mitochondrial genome of Pholis nebulosus (Perciformes: Pholidae).
Wang, Zhongquan; Qin, Kaili; Liu, Jingxi; Song, Na; Han, Zhiqiang; Gao, Tianxiang
2016-11-01
In this study, the complete mitochondrial genome (mitogenome) sequence of Pholis nebulosus has been determined by long polymerase chain reaction and primer-walking methods. The mitogenome is a circular molecule of 16 524 bp in length, including the typical structure of 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and 2 non-coding regions (L-strand replication origin and control region), the gene contents of which are identical to those observed in most bony fishes. Within the control region, we identified the termination-associated sequence domain (TAS), and the conserved sequence block domain (CSB-F, CSB-E, CSB-D, CSB-C, CSB-B, CSB-A, CSB-1, CSB-2, CSB-3).
Complete mitochondrial genome of the Tyto longimembris (Strigiformes: Tytonidae).
Xu, Peng; Li, Yankuo; Miao, Lujun; Xie, Guangyong; Huang, Yan
2016-07-01
The complete mitochondrial genome of Tyto longimembris has been determined in this study. It is 18,466 bp in length and consists of 13 protein-coding genes, 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes and a non-coding control region (D-loop). The overall base composition of the heavy strand of the T. longimembris mitochondrial genome is A: 30.1%, T: 23.5%, C: 31.8% and G: 14.6%. The structure of control region should be characterized by a region containing tandem repeats as two definitely separated clusters of tandem repeats were found. This study provided an important data set for phylogenetic and taxonomic analyses of Tyto species.
Ming-Xing, Lu; Zhi-Teng, Chen; Wei-Wei, Yu; Yu-Zhou, Du
2017-03-01
We report the complete mitochondrial genome (mitogenome) of a spiraling whitefly, Aleurodicus dispersus (Hemiptera: Aleyrodidae). The 16 170 bp long genome consists of 13 protein-coding genes, 20 transfer RNAs, 2 ribosomal RNAs, and a control region. The A. dispersus mitogenome also includes a cytb-like non-coding region and shows several variations relative to the typical insect mitogenome. A phylogenetic tree has been constructed using the 13 protein-coding genes of 12 related species from Hemiptera. Our results would contribute to further study of phylogeny in Aleyrodidae and Hemiptera.
Non-coding functions of alternative pre-mRNA splicing in development.
Mockenhaupt, Stefan; Makeyev, Eugene V
2015-12-01
A majority of messenger RNA precursors (pre-mRNAs) in the higher eukaryotes undergo alternative splicing to generate more than one mature product. By targeting the open reading frame region this process increases diversity of protein isoforms beyond the nominal coding capacity of the genome. However, alternative splicing also frequently controls output levels and spatiotemporal features of cellular and organismal gene expression programs. Here we discuss how these non-coding functions of alternative splicing contribute to development through regulation of mRNA stability, translational efficiency and cellular localization. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Lazzarato, F; Franceschinis, G; Botta, M; Cordero, F; Calogero, R A
2004-11-01
RRE allows the extraction of non-coding regions surrounding a coding sequence [i.e. gene upstream region, 5'-untranslated region (5'-UTR), introns, 3'-UTR, downstream region] from annotated genomic datasets available at NCBI. RRE parser and web-based interface are accessible at http://www.bioinformatica.unito.it/bioinformatics/rre/rre.html
Identification of coding and non-coding mutational hotspots in cancer genomes.
Piraino, Scott W; Furney, Simon J
2017-01-05
The identification of mutations that play a causal role in tumour development, so called "driver" mutations, is of critical importance for understanding how cancers form and how they might be treated. Several large cancer sequencing projects have identified genes that are recurrently mutated in cancer patients, suggesting a role in tumourigenesis. While the landscape of coding drivers has been extensively studied and many of the most prominent driver genes are well characterised, comparatively less is known about the role of mutations in the non-coding regions of the genome in cancer development. The continuing fall in genome sequencing costs has resulted in a concomitant increase in the number of cancer whole genome sequences being produced, facilitating systematic interrogation of both the coding and non-coding regions of cancer genomes. To examine the mutational landscapes of tumour genomes we have developed a novel method to identify mutational hotspots in tumour genomes using both mutational data and information on evolutionary conservation. We have applied our methodology to over 1300 whole cancer genomes and show that it identifies prominent coding and non-coding regions that are known or highly suspected to play a role in cancer. Importantly, we applied our method to the entire genome, rather than relying on predefined annotations (e.g. promoter regions) and we highlight recurrently mutated regions that may have resulted from increased exposure to mutational processes rather than selection, some of which have been identified previously as targets of selection. Finally, we implicate several pan-cancer and cancer-specific candidate non-coding regions, which could be involved in tumourigenesis. We have developed a framework to identify mutational hotspots in cancer genomes, which is applicable to the entire genome. This framework identifies known and novel coding and non-coding mutional hotspots and can be used to differentiate candidate driver regions from likely passenger regions susceptible to somatic mutation.
Kocher, Arthur; Gantier, Jean-Charles; Holota, Hélène; Jeziorski, Céline; Coissac, Eric; Bañuls, Anne-Laure; Girod, Romain; Gaborit, Pascal; Murienne, Jérôme
2016-11-01
The nearly complete mitochondrial genome of Lutzomyia umbratilis Ward & Fraiha, 1977 (Psychodidae: Phlebotominae), considered as the main vector of Leishmania guyanensis, is presented. The sequencing has been performed on an Illumina Hiseq 2500 platform, with a genome skimming strategy. The full nuclear ribosomal RNA segment was also assembled. The mitogenome of L. umbratilis was determined to be at least 15,717 bp-long and presents an architecture found in many mitogenomes of insect (13 protein-coding genes, 22 transfer RNAs, two ribosomal RNAs, and one non-coding region also referred as the control region). The control region contains a large repeated element of c. 370 bp and a poly-AT region of unknown length. This is the first mitogenome of Psychodidae to be described.
Hu, Bo; Liu, Dong-Xing; Zhang, Yu-Qing; Song, Jian-Tao; Ji, Xian-Fei; Hou, Zhi-Qiang; Zhang, Zhen-Hai
2016-05-01
In this study we sequenced the complete mitochondrial genome sequencing of a heart failure model of cardiomyopathic Syrian hamster (Mesocricetus auratus) for the first time. The total length of the mitogenome was 16,267 bp. It harbored 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and 1 non-coding control region.
Long non-coding RNA produced by RNA polymerase V determines boundaries of heterochromatin
Böhmdorfer, Gudrun; Sethuraman, Shriya; Rowley, M Jordan; Krzyszton, Michal; Rothi, M Hafiz; Bouzit, Lilia; Wierzbicki, Andrzej T
2016-01-01
RNA-mediated transcriptional gene silencing is a conserved process where small RNAs target transposons and other sequences for repression by establishing chromatin modifications. A central element of this process are long non-coding RNAs (lncRNA), which in Arabidopsis thaliana are produced by a specialized RNA polymerase known as Pol V. Here we show that non-coding transcription by Pol V is controlled by preexisting chromatin modifications located within the transcribed regions. Most Pol V transcripts are associated with AGO4 but are not sliced by AGO4. Pol V-dependent DNA methylation is established on both strands of DNA and is tightly restricted to Pol V-transcribed regions. This indicates that chromatin modifications are established in close proximity to Pol V. Finally, Pol V transcription is preferentially enriched on edges of silenced transposable elements, where Pol V transcribes into TEs. We propose that Pol V may play an important role in the determination of heterochromatin boundaries. DOI: http://dx.doi.org/10.7554/eLife.19092.001 PMID:27779094
Hall, L; Laird, J E; Craig, R K
1984-01-01
Nucleotide sequence analysis of cloned guinea-pig casein B cDNA sequences has identified two casein B variants related to the bovine and rat alpha s1 caseins. Amino acid homology was largely confined to the known bovine or predicted rat phosphorylation sites and within the 'signal' precursor sequence. Comparison of the deduced nucleotide sequence of the guinea-pig and rat alpha s1 casein mRNA species showed greater sequence conservation in the non-coding than in the coding regions, suggesting a functional and possibly regulatory role for the non-coding regions of casein mRNA. The results provide insight into the evolution of the casein genes, and raise questions as to the role of conserved nucleotide sequences within the non-coding regions of mRNA species. Images Fig. 1. PMID:6548375
Newtonian CAFE: a new ideal MHD code to study the solar atmosphere
NASA Astrophysics Data System (ADS)
González, J. J.; Guzmán, F.
2015-12-01
In this work we present a new independent code designed to solve the equations of classical ideal magnetohydrodynamics (MHD) in three dimensions, submitted to a constant gravitational field. The purpose of the code centers on the analysis of solar phenomena within the photosphere-corona region. In special the code is capable to simulate the propagation of impulsively generated linear and non-linear MHD waves in the non-isothermal solar atmosphere. We present 1D and 2D standard tests to demonstrate the quality of the numerical results obtained with our code. As 3D tests we present the propagation of MHD-gravity waves and vortices in the solar atmosphere. The code is based on high-resolution shock-capturing methods, uses the HLLE flux formula combined with Minmod, MC and WENO5 reconstructors. The divergence free magnetic field constraint is controlled using the Flux Constrained Transport method.
2012-01-01
Background Detecting the borders between coding and non-coding regions is an essential step in the genome annotation. And information entropy measures are useful for describing the signals in genome sequence. However, the accuracies of previous methods of finding borders based on entropy segmentation method still need to be improved. Methods In this study, we first applied a new recursive entropic segmentation method on DNA sequences to get preliminary significant cuts. A 22-symbol alphabet is used to capture the differential composition of nucleotide doublets and stop codon patterns along three phases in both DNA strands. This process requires no prior training datasets. Results Comparing with the previous segmentation methods, the experimental results on three bacteria genomes, Rickettsia prowazekii, Borrelia burgdorferi and E.coli, show that our approach improves the accuracy for finding the borders between coding and non-coding regions in DNA sequences. Conclusions This paper presents a new segmentation method in prokaryotes based on Jensen-Rényi divergence with a 22-symbol alphabet. For three bacteria genomes, comparing to A12_JR method, our method raised the accuracy of finding the borders between protein coding and non-coding regions in DNA sequences. PMID:23282225
Hill, Katherine E; Kelly, Andrew D; Kuijjer, Marieke L; Barry, William; Rattani, Ahmed; Garbutt, Cassandra C; Kissick, Haydn; Janeway, Katherine; Perez-Atayde, Antonio; Goldsmith, Jeffrey; Gebhardt, Mark C; Arredouani, Mohamed S; Cote, Greg; Hornicek, Francis; Choy, Edwin; Duan, Zhenfeng; Quackenbush, John; Haibe-Kains, Benjamin; Spentzos, Dimitrios
2017-05-15
A microRNA (miRNA) collection on the imprinted 14q32 MEG3 region has been associated with outcome in osteosarcoma. We assessed the clinical utility of this miRNA set and their association with methylation status. We integrated coding and non-coding RNA data from three independent annotated clinical osteosarcoma cohorts (n = 65, n = 27, and n = 25) and miRNA and methylation data from one in vitro (19 cell lines) and one clinical (NCI Therapeutically Applicable Research to Generate Effective Treatments (TARGET) osteosarcoma dataset, n = 80) dataset. We used time-dependent receiver operating characteristic (tdROC) analysis to evaluate the clinical value of candidate miRNA profiles and machine learning approaches to compare the coding and non-coding transcriptional programs of high- and low-risk osteosarcoma tumors and high- versus low-aggressiveness cell lines. In the cell line and TARGET datasets, we also studied the methylation patterns of the MEG3 imprinting control region on 14q32 and their association with miRNA expression and tumor aggressiveness. In the tdROC analysis, miRNA sets on 14q32 showed strong discriminatory power for recurrence and survival in the three clinical datasets. High- or low-risk tumor classification was robust to using different microRNA sets or classification methods. Machine learning approaches showed that genome-wide miRNA profiles and miRNA regulatory networks were quite different between the two outcome groups and mRNA profiles categorized the samples in a manner concordant with the miRNAs, suggesting potential molecular subtypes. Further, miRNA expression patterns were reproducible in comparing high-aggressiveness versus low-aggressiveness cell lines. Methylation patterns in the MEG3 differentially methylated region (DMR) also distinguished high-aggressiveness from low-aggressiveness cell lines and were associated with expression of several 14q32 miRNAs in both the cell lines and the large TARGET clinical dataset. Within the limits of available CpG array coverage, we observed a potential methylation-sensitive regulation of the non-coding RNA cluster by CTCF, a known enhancer-blocking factor. Loss of imprinting/methylation changes in the 14q32 non-coding region defines reproducible previously unrecognized osteosarcoma subtypes with distinct transcriptional programs and biologic and clinical behavior. Future studies will define the precise relationship between 14q32 imprinting, non-coding RNA expression, genomic enhancer binding, and tumor aggressiveness, with possible therapeutic implications for both early- and advanced-stage patients.
Ferlaino, Michael; Rogers, Mark F.; Shihab, Hashem A.; Mort, Matthew; Cooper, David N.; Gaunt, Tom R.; Campbell, Colin
2018-01-01
Background Small insertions and deletions (indels) have a significant influence in human disease and, in terms of frequency, they are second only to single nucleotide variants as pathogenic mutations. As the majority of mutations associated with complex traits are located outside the exome, it is crucial to investigate the potential pathogenic impact of indels in non-coding regions of the human genome. Results We present FATHMM-indel, an integrative approach to predict the functional effect, pathogenic or neutral, of indels in non-coding regions of the human genome. Our method exploits various genomic annotations in addition to sequence data. When validated on benchmark data, FATHMM-indel significantly outperforms CADD and GAVIN, state of the art models in assessing the pathogenic impact of non-coding variants. FATHMM-indel is available via a web server at indels.biocompute.org.uk. Conclusions FATHMM-indel can accurately predict the functional impact and prioritise small indels throughout the whole non-coding genome. PMID:28985712
Ferlaino, Michael; Rogers, Mark F; Shihab, Hashem A; Mort, Matthew; Cooper, David N; Gaunt, Tom R; Campbell, Colin
2017-10-06
Small insertions and deletions (indels) have a significant influence in human disease and, in terms of frequency, they are second only to single nucleotide variants as pathogenic mutations. As the majority of mutations associated with complex traits are located outside the exome, it is crucial to investigate the potential pathogenic impact of indels in non-coding regions of the human genome. We present FATHMM-indel, an integrative approach to predict the functional effect, pathogenic or neutral, of indels in non-coding regions of the human genome. Our method exploits various genomic annotations in addition to sequence data. When validated on benchmark data, FATHMM-indel significantly outperforms CADD and GAVIN, state of the art models in assessing the pathogenic impact of non-coding variants. FATHMM-indel is available via a web server at indels.biocompute.org.uk. FATHMM-indel can accurately predict the functional impact and prioritise small indels throughout the whole non-coding genome.
Reiche, Kristin; Kasack, Katharina; Schreiber, Stephan; Lüders, Torben; Due, Eldri U.; Naume, Bjørn; Riis, Margit; Kristensen, Vessela N.; Horn, Friedemann; Børresen-Dale, Anne-Lise; Hackermüller, Jörg; Baumbusch, Lars O.
2014-01-01
Breast cancer, the second leading cause of cancer death in women, is a highly heterogeneous disease, characterized by distinct genomic and transcriptomic profiles. Transcriptome analyses prevalently assessed protein-coding genes; however, the majority of the mammalian genome is expressed in numerous non-coding transcripts. Emerging evidence supports that many of these non-coding RNAs are specifically expressed during development, tumorigenesis, and metastasis. The focus of this study was to investigate the expression features and molecular characteristics of long non-coding RNAs (lncRNAs) in breast cancer. We investigated 26 breast tumor and 5 normal tissue samples utilizing a custom expression microarray enclosing probes for mRNAs as well as novel and previously identified lncRNAs. We identified more than 19,000 unique regions significantly differentially expressed between normal versus breast tumor tissue, half of these regions were non-coding without any evidence for functional open reading frames or sequence similarity to known proteins. The identified non-coding regions were primarily located in introns (53%) or in the intergenic space (33%), frequently orientated in antisense-direction of protein-coding genes (14%), and commonly distributed at promoter-, transcription factor binding-, or enhancer-sites. Analyzing the most diverse mRNA breast cancer subtypes Basal-like versus Luminal A and B resulted in 3,025 significantly differentially expressed unique loci, including 682 (23%) for non-coding transcripts. A notable number of differentially expressed protein-coding genes displayed non-synonymous expression changes compared to their nearest differentially expressed lncRNA, including an antisense lncRNA strongly anticorrelated to the mRNA coding for histone deacetylase 3 (HDAC3), which was investigated in more detail. Previously identified chromatin-associated lncRNAs (CARs) were predominantly downregulated in breast tumor samples, including CARs located in the protein-coding genes for CALD1, FTX, and HNRNPH1. In conclusion, a number of differentially expressed lncRNAs have been identified with relation to cancer-related protein-coding genes. PMID:25264628
Reiche, Kristin; Kasack, Katharina; Schreiber, Stephan; Lüders, Torben; Due, Eldri U; Naume, Bjørn; Riis, Margit; Kristensen, Vessela N; Horn, Friedemann; Børresen-Dale, Anne-Lise; Hackermüller, Jörg; Baumbusch, Lars O
2014-01-01
Breast cancer, the second leading cause of cancer death in women, is a highly heterogeneous disease, characterized by distinct genomic and transcriptomic profiles. Transcriptome analyses prevalently assessed protein-coding genes; however, the majority of the mammalian genome is expressed in numerous non-coding transcripts. Emerging evidence supports that many of these non-coding RNAs are specifically expressed during development, tumorigenesis, and metastasis. The focus of this study was to investigate the expression features and molecular characteristics of long non-coding RNAs (lncRNAs) in breast cancer. We investigated 26 breast tumor and 5 normal tissue samples utilizing a custom expression microarray enclosing probes for mRNAs as well as novel and previously identified lncRNAs. We identified more than 19,000 unique regions significantly differentially expressed between normal versus breast tumor tissue, half of these regions were non-coding without any evidence for functional open reading frames or sequence similarity to known proteins. The identified non-coding regions were primarily located in introns (53%) or in the intergenic space (33%), frequently orientated in antisense-direction of protein-coding genes (14%), and commonly distributed at promoter-, transcription factor binding-, or enhancer-sites. Analyzing the most diverse mRNA breast cancer subtypes Basal-like versus Luminal A and B resulted in 3,025 significantly differentially expressed unique loci, including 682 (23%) for non-coding transcripts. A notable number of differentially expressed protein-coding genes displayed non-synonymous expression changes compared to their nearest differentially expressed lncRNA, including an antisense lncRNA strongly anticorrelated to the mRNA coding for histone deacetylase 3 (HDAC3), which was investigated in more detail. Previously identified chromatin-associated lncRNAs (CARs) were predominantly downregulated in breast tumor samples, including CARs located in the protein-coding genes for CALD1, FTX, and HNRNPH1. In conclusion, a number of differentially expressed lncRNAs have been identified with relation to cancer-related protein-coding genes.
Liaw, Yu-Ching; Chen, Cheng-Hsu; Shu, Kuo-Hsiung; Fang, Chiung-Yao; Ou, Wei-Chih; Chen, Pei-Lain; Shen, Cheng-Huang; Lin, Mien-Chun; Chang, Deching; Wang, Meilin
2012-12-01
Kidney cells are the common host for JC virus (JCV) and BK virus (BKV). Reactivation of JCV and/or BKV in patients after organ transplantation, such as renal transplantation, may cause hemorrhagic cystitis and polyomavirus-associated nephropathy. Furthermore, JCV and BKV may be shed in the urine after reactivation in the kidney. Rearranged as well as archetypal non-coding control regions (NCCRs) of JCV and BKV have been frequently identified in human samples. In this study, three JC/BK recombined NCCR sequences were identified in the urine of a patient who had undergone renal transplantation. They were designated as JC-BK hybrids 1, 2, and 3. The three JC/BK recombinant NCCRs contain up-stream JCV as well as down-stream BKV sequences. Deletions of both JCV and BKV sequences were found in these recombined NCCRs. Recombination of DNA sequences between JCV and BKV may occur during co-infection due to the relatively high homology of the two viral genomes.
Juul, Malene; Bertl, Johanna; Guo, Qianyun; Nielsen, Morten Muhlig; Świtnicki, Michał; Hornshøj, Henrik; Madsen, Tobias; Hobolth, Asger; Pedersen, Jakob Skou
2017-01-01
Non-coding mutations may drive cancer development. Statistical detection of non-coding driver regions is challenged by a varying mutation rate and uncertainty of functional impact. Here, we develop a statistically founded non-coding driver-detection method, ncdDetect, which includes sample-specific mutational signatures, long-range mutation rate variation, and position-specific impact measures. Using ncdDetect, we screened non-coding regulatory regions of protein-coding genes across a pan-cancer set of whole-genomes (n = 505), which top-ranked known drivers and identified new candidates. For individual candidates, presence of non-coding mutations associates with altered expression or decreased patient survival across an independent pan-cancer sample set (n = 5454). This includes an antigen-presenting gene (CD1A), where 5’UTR mutations correlate significantly with decreased survival in melanoma. Additionally, mutations in a base-excision-repair gene (SMUG1) correlate with a C-to-T mutational-signature. Overall, we find that a rich model of mutational heterogeneity facilitates non-coding driver identification and integrative analysis points to candidates of potential clinical relevance. DOI: http://dx.doi.org/10.7554/eLife.21778.001 PMID:28362259
Giakountis, Antonis; Moulos, Panagiotis; Zarkou, Vasiliki; Oikonomou, Christina; Harokopos, Vaggelis; Hatzigeorgiou, Artemis G; Reczko, Martin; Hatzis, Pantelis
2016-06-21
The canonical Wnt pathway plays a central role in stem cell maintenance, differentiation, and proliferation in the intestinal epithelium. Constitutive, aberrant activity of the TCF4/β-catenin transcriptional complex is the primary transforming factor in colorectal cancer. We identify a nuclear long non-coding RNA, termed WiNTRLINC1, as a direct target of TCF4/β-catenin in colorectal cancer cells. WiNTRLINC1 positively regulates the expression of its genomic neighbor ASCL2, a transcription factor that controls intestinal stem cell fate. WiNTRLINC1 interacts with TCF4/β-catenin to mediate the juxtaposition of its promoter with the regulatory regions of ASCL2. ASCL2, in turn, regulates WiNTRLINC1 transcriptionally, closing a feedforward regulatory loop that controls stem cell-related gene expression. This regulatory circuitry is highly amplified in colorectal cancer and correlates with increased metastatic potential and decreased patient survival. Our results uncover the interplay between non-coding RNA-mediated regulation and Wnt signaling and point to the diagnostic and therapeutic potential of WiNTRLINC1. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Functional interrogation of non-coding DNA through CRISPR genome editing
Canver, Matthew C.; Bauer, Daniel E.; Orkin, Stuart H.
2017-01-01
Methodologies to interrogate non-coding regions have lagged behind coding regions despite comprising the vast majority of the genome. However, the rapid evolution of clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing has provided a multitude of novel techniques for laboratory investigation including significant contributions to the toolbox for studying non-coding DNA. CRISPR-mediated loss-of-function strategies rely on direct disruption of the underlying sequence or repression of transcription without modifying the targeted DNA sequence. CRISPR-mediated gain-of-function approaches similarly benefit from methods to alter the targeted sequence through integration of customized sequence into the genome as well as methods to activate transcription. Here we review CRISPR-based loss- and gain-of-function techniques for the interrogation of non-coding DNA. PMID:28288828
The complete mitochondrial genome of the Border Collie dog.
Wu, An-Quan; Zhang, Yong-Liang; Li, Li-Li; Chen, Long; Yang, Tong-Wen
2016-01-01
Border Collie dog is one of the famous breed of dog. In the present work we report the complete mitochondrial genome sequence of Border Collie dog for the first time. The total length of the mitogenome was 16,730 bp with the base composition of 31.6% for A, 28.7% for T, 25.5% for C, and 14.2% for G and an A-T (60.3%)-rich feature was detected. It harbored 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes and one non-coding control region (D-loop region). The arrangement of all genes was identical to the typical mitochondrial genomes of dogs.
Complete mitochondrial genome of Eagle Owl (Bubo bubo, Strigiformes; Strigidae) from China.
Hengjiu, Tian; Jianwei, Ji; Shi, Yang; Zhiming, Zhang; Laghari, Muhammad Younis; Narejo, Naeem Tariq; Lashari, Punhal
2016-01-01
In the present study, the complete mitochondrial genome sequence of Bubo bubo using PCR amplification, sequencing and assembling has been obtained for the first time. The total length of the mitochondrial genome was 16,250 bp, with the base composition of 29.88% A, 34.16% C, 14.35% G, and 21.58% T. It contained 37 genes (2 ribosomal RNA genes, 13 protein-coding genes and 22 transfer RNA genes) and a major non-coding control region (D-loop region). The complete mitochondrial genome sequence of Bubo bubo provides an important data set for further investigation on the phylogenetic relationships within Strigiformes.
Oh, Chang Seok; Lee, Soong Deok; Kim, Yi-Suk; Shin, Dong Hoon
2015-01-01
Previous study showed that East Asian mtDNA haplogroups, especially those of Koreans, could be successfully assigned by the coupled use of analyses on coding region SNP markers and control region mutation motifs. In this study, we tried to see if the same triple multiplex analysis for coding regions SNPs could be also applicable to ancient samples from East Asia as the complementation for sequence analysis of mtDNA control region. By the study on Joseon skeleton samples, we know that mtDNA haplogroup determined by coding region SNP markers successfully falls within the same haplogroup that sequence analysis on control region can assign. Considering that ancient samples in previous studies make no small number of errors in control region mtDNA sequencing, coding region SNP analysis can be used as good complimentary to the conventional haplogroup determination, especially of archaeological human bone samples buried underground over long periods. PMID:26345190
Reward Motivation Enhances Task Coding in Frontoparietal Cortex
Etzel, Joset A.; Cole, Michael W.; Zacks, Jeffrey M.; Kay, Kendrick N.; Braver, Todd S.
2016-01-01
Reward motivation often enhances task performance, but the neural mechanisms underlying such cognitive enhancement remain unclear. Here, we used a multivariate pattern analysis (MVPA) approach to test the hypothesis that motivation-related enhancement of cognitive control results from improved encoding and representation of task set information. Participants underwent two fMRI sessions of cued task switching, the first under baseline conditions, and the second with randomly intermixed reward incentive and no-incentive trials. Information about the upcoming task could be successfully decoded from cue-related activation patterns in a set of frontoparietal regions typically associated with task control. More critically, MVPA classifiers trained on the baseline session had significantly higher decoding accuracy on incentive than non-incentive trials, with decoding improvement mediating reward-related enhancement of behavioral performance. These results strongly support the hypothesis that reward motivation enhances cognitive control, by improving the discriminability of task-relevant information coded and maintained in frontoparietal brain regions. PMID:25601237
Analysis and recognition of 5′ UTR intron splice sites in human pre-mRNA
Eden, E.; Brunak, S.
2004-01-01
Prediction of splice sites in non-coding regions of genes is one of the most challenging aspects of gene structure recognition. We perform a rigorous analysis of such splice sites embedded in human 5′ untranslated regions (UTRs), and investigate correlations between this class of splice sites and other features found in the adjacent exons and introns. By restricting the training of neural network algorithms to ‘pure’ UTRs (not extending partially into protein coding regions), we for the first time investigate the predictive power of the splicing signal proper, in contrast to conventional splice site prediction, which typically relies on the change in sequence at the transition from protein coding to non-coding. By doing so, the algorithms were able to pick up subtler splicing signals that were otherwise masked by ‘coding’ noise, thus enhancing significantly the prediction of 5′ UTR splice sites. For example, the non-coding splice site predicting networks pick up compositional and positional bias in the 3′ ends of non-coding exons and 5′ non-coding intron ends, where cytosine and guanine are over-represented. This compositional bias at the true UTR donor sites is also visible in the synaptic weights of the neural networks trained to identify UTR donor sites. Conventional splice site prediction methods perform poorly in UTRs because the reading frame pattern is absent. The NetUTR method presented here performs 2–3-fold better compared with NetGene2 and GenScan in 5′ UTRs. We also tested the 5′ UTR trained method on protein coding regions, and discovered, surprisingly, that it works quite well (although it cannot compete with NetGene2). This indicates that the local splicing pattern in UTRs and coding regions is largely the same. The NetUTR method is made publicly available at www.cbs.dtu.dk/services/NetUTR. PMID:14960723
Polyomavirus BK non-coding control region rearrangements in health and disease.
Sharma, Preety M; Gupta, Gaurav; Vats, Abhay; Shapiro, Ron; Randhawa, Parmjeet S
2007-08-01
BK virus is an increasingly recognized pathogen in transplanted patients. DNA sequencing of this virus shows considerable genomic variability. To understand the clinical significance of rearrangements in the non-coding control region (NCCR) of BK virus (BKV), we report a meta-analysis of 507 sequences, including 40 sequences generated in our own laboratory, for associations between rearrangements and disease, tissue tropism, geographic origin, and viral genotype. NCCR rearrangements were less frequent in (a) asymptomatic BKV viruria compared to patients viral nephropathy (1.7% vs. 22.5%), and (b) viral genotype 1 compared to other genotypes (2.4% vs. 11.2%). Rearrangements were commoner in malignancy (78.6%), and Norwegians (45.7%), and less common in East Indians (0%), and Japanese (4.3%). A surprising number of rearranged sequences were reported from mononuclear cells of healthy subjects, whereas most plasma sequences were archetypal. This difference could not be related to potential recombinase activity in lymphocytes, as consensus recombination signal sequences could not be found in the NCCR region. NCCR rearrangements are neither required nor a sufficient condition to produce clinical disease. BKV nephropathy and hemorrhagic cystitis are not associated with any unique NCCR configuration or nucleotide sequence.
Conserved Non-Coding Sequences are Associated with Rates of mRNA Decay in Arabidopsis.
Spangler, Jacob B; Feltus, Frank Alex
2013-01-01
Steady-state mRNA levels are tightly regulated through a combination of transcriptional and post-transcriptional control mechanisms. The discovery of cis-acting DNA elements that encode these control mechanisms is of high importance. We have investigated the influence of conserved non-coding sequences (CNSs), DNA patterns retained after an ancient whole genome duplication event, on the breadth of gene expression and the rates of mRNA decay in Arabidopsis thaliana. The absence of CNSs near α duplicate genes was associated with a decrease in breadth of gene expression and slower mRNA decay rates while the presence CNSs near α duplicates was associated with an increase in breadth of gene expression and faster mRNA decay rates. The observed difference in mRNA decay rate was fastest in genes with CNSs in both non-transcribed and transcribed regions, albeit through an unknown mechanism. This study supports the notion that some Arabidopsis CNSs regulate the steady-state mRNA levels through post-transcriptional control mechanisms and that CNSs also play a role in controlling the breadth of gene expression.
Conserved Non-Coding Sequences are Associated with Rates of mRNA Decay in Arabidopsis
Spangler, Jacob B.; Feltus, Frank Alex
2013-01-01
Steady-state mRNA levels are tightly regulated through a combination of transcriptional and post-transcriptional control mechanisms. The discovery of cis-acting DNA elements that encode these control mechanisms is of high importance. We have investigated the influence of conserved non-coding sequences (CNSs), DNA patterns retained after an ancient whole genome duplication event, on the breadth of gene expression and the rates of mRNA decay in Arabidopsis thaliana. The absence of CNSs near α duplicate genes was associated with a decrease in breadth of gene expression and slower mRNA decay rates while the presence CNSs near α duplicates was associated with an increase in breadth of gene expression and faster mRNA decay rates. The observed difference in mRNA decay rate was fastest in genes with CNSs in both non-transcribed and transcribed regions, albeit through an unknown mechanism. This study supports the notion that some Arabidopsis CNSs regulate the steady-state mRNA levels through post-transcriptional control mechanisms and that CNSs also play a role in controlling the breadth of gene expression. PMID:23675377
Functional interrogation of non-coding DNA through CRISPR genome editing.
Canver, Matthew C; Bauer, Daniel E; Orkin, Stuart H
2017-05-15
Methodologies to interrogate non-coding regions have lagged behind coding regions despite comprising the vast majority of the genome. However, the rapid evolution of clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing has provided a multitude of novel techniques for laboratory investigation including significant contributions to the toolbox for studying non-coding DNA. CRISPR-mediated loss-of-function strategies rely on direct disruption of the underlying sequence or repression of transcription without modifying the targeted DNA sequence. CRISPR-mediated gain-of-function approaches similarly benefit from methods to alter the targeted sequence through integration of customized sequence into the genome as well as methods to activate transcription. Here we review CRISPR-based loss- and gain-of-function techniques for the interrogation of non-coding DNA. Copyright © 2017 Elsevier Inc. All rights reserved.
Yong, Hoi-Sen; Song, Sze-Looi; Lim, Phaik-Eem; Chan, Kok-Gan; Chow, Wan-Loo; Eamsobhana, Praphathip
2015-01-01
The whole mitochondrial genome of the pest fruit fly Bactrocera arecae was obtained from next-generation sequencing of genomic DNA. It had a total length of 15,900 bp, consisting of 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and a non-coding region (A + T-rich control region). The control region (952 bp) was flanked by rrnS and trnI genes. The start codons included 6 ATG, 3 ATT and 1 each of ATA, ATC, GTG and TCG. Eight TAA, two TAG, one incomplete TA and two incomplete T stop codons were represented in the protein-coding genes. The cloverleaf structure for trnS1 lacked the D-loop, and that of trnN and trnF lacked the TΨC-loop. Molecular phylogeny based on 13 protein-coding genes was concordant with 37 mitochondrial genes, with B. arecae having closest genetic affinity to B. tryoni. The subgenus Bactrocera of Dacini tribe and the Dacinae subfamily (Dacini and Ceratitidini tribes) were monophyletic. The whole mitogenome of B. arecae will serve as a useful dataset for studying the genetics, systematics and phylogenetic relationships of the many species of Bactrocera genus in particular, and tephritid fruit flies in general. PMID:26472633
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massimo, F., E-mail: francesco.massimo@ensta-paristech.fr; Dipartimento SBAI, Università di Roma “La Sapienza“, Via A. Scarpa 14, 00161 Roma; Atzeni, S.
Architect, a time explicit hybrid code designed to perform quick simulations for electron driven plasma wakefield acceleration, is described. In order to obtain beam quality acceptable for applications, control of the beam-plasma-dynamics is necessary. Particle in Cell (PIC) codes represent the state-of-the-art technique to investigate the underlying physics and possible experimental scenarios; however PIC codes demand the necessity of heavy computational resources. Architect code substantially reduces the need for computational resources by using a hybrid approach: relativistic electron bunches are treated kinetically as in a PIC code and the background plasma as a fluid. Cylindrical symmetry is assumed for themore » solution of the electromagnetic fields and fluid equations. In this paper both the underlying algorithms as well as a comparison with a fully three dimensional particle in cell code are reported. The comparison highlights the good agreement between the two models up to the weakly non-linear regimes. In highly non-linear regimes the two models only disagree in a localized region, where the plasma electrons expelled by the bunch close up at the end of the first plasma oscillation.« less
The expanding regulatory universe of p53 in gastrointestinal cancer.
Fesler, Andrew; Zhang, Ning; Ju, Jingfang
2016-01-01
Tumor suppresser gene TP53 is one of the most frequently deleted or mutated genes in gastrointestinal cancers. As a transcription factor, p53 regulates a number of important protein coding genes to control cell cycle, cell death, DNA damage/repair, stemness, differentiation and other key cellular functions. In addition, p53 is also able to activate the expression of a number of small non-coding microRNAs (miRNAs) through direct binding to the promoter region of these miRNAs. Many miRNAs have been identified to be potential tumor suppressors by regulating key effecter target mRNAs. Our understanding of the regulatory network of p53 has recently expanded to include long non-coding RNAs (lncRNAs). Like miRNA, lncRNAs have been found to play important roles in cancer biology. With our increased understanding of the important functions of these non-coding RNAs and their relationship with p53, we are gaining exciting new insights into the biology and function of cells in response to various growth environment changes. In this review we summarize the current understanding of the ever expanding involvement of non-coding RNAs in the p53 regulatory network and its implications for our understanding of gastrointestinal cancer.
Herdewyn, Sarah; Zhao, Hui; Moisse, Matthieu; Race, Valérie; Matthijs, Gert; Reumers, Joke; Kusters, Benno; Schelhaas, Helenius J; van den Berg, Leonard H; Goris, An; Robberecht, Wim; Lambrechts, Diether; Van Damme, Philip
2012-06-01
Motor neuron degeneration in amyotrophic lateral sclerosis (ALS) has a familial cause in 10% of patients. Despite significant advances in the genetics of the disease, many families remain unexplained. We performed whole-genome sequencing in five family members from a pedigree with autosomal-dominant classical ALS. A family-based elimination approach was used to identify novel coding variants segregating with the disease. This list of variants was effectively shortened by genotyping these variants in 2 additional unaffected family members and 1500 unrelated population-specific controls. A novel rare coding variant in SPAG8 on chromosome 9p13.3 segregated with the disease and was not observed in controls. Mutations in SPAG8 were not encountered in 34 other unexplained ALS pedigrees, including 1 with linkage to chromosome 9p13.2-23.3. The shared haplotype containing the SPAG8 variant in this small pedigree was 22.7 Mb and overlapped with the core 9p21 linkage locus for ALS and frontotemporal dementia. Based on differences in coverage depth of known variable tandem repeat regions between affected and non-affected family members, the shared haplotype was found to contain an expanded hexanucleotide (GGGGCC)(n) repeat in C9orf72 in the affected members. Our results demonstrate that rare coding variants identified by whole-genome sequencing can tag a shared haplotype containing a non-coding pathogenic mutation and that changes in coverage depth can be used to reveal tandem repeat expansions. It also confirms (GGGGCC)n repeat expansions in C9orf72 as a cause of familial ALS.
Whole mitochondrial genome sequence for an osteoarthritis model of Guinea pig (Caviidae; Cavia).
Cui, Xin-Gang; Liu, Cheng-Yao; Wei, Bo; Zhao, Wen-Jian; Zhang, Wen-Feng
2016-11-01
Animal models played an important role in osteoarthritis studies. Here, the complete mitochondrial genome sequence of the Guinea pig was reported for the first time. The total length of the mitogenome was 16,797 bp. It contained the typical structure, including two ribosomal RNA genes, 13 protein-coding genes, 22 transfer RNA genes and one non-coding control region (D-loop region). The overall composition of the mitogenome was estimated to be 34.9% for A, 26.1% for T, 26.0% for C and 13.0% for G showing an A-T (61.0%)-rich feature. This mitochondrial genome sequence will provide new genetic resource into osteoarthritis disease.
Unfiltered Talk--A Challenge to Categories.
ERIC Educational Resources Information Center
McCormick, Kay
A study investigated how and why code switching and mixing occurs between English and Afrikaans in a region of South Africa. In District Six, non-standard Afrikaans seems to be a mixed code, and it is unclear whether non-standard English is a mixed code. Consequently, it is unclear when codes are being switched or mixed. The analysis looks at…
Identification of common, unique and polymorphic microsatellites among 73 cyanobacterial genomes.
Kabra, Ritika; Kapil, Aditi; Attarwala, Kherunnisa; Rai, Piyush Kant; Shanker, Asheesh
2016-04-01
Microsatellites also known as Simple Sequence Repeats are short tandem repeats of 1-6 nucleotides. These repeats are found in coding as well as non-coding regions of both prokaryotic and eukaryotic genomes and play a significant role in the study of gene regulation, genetic mapping, DNA fingerprinting and evolutionary studies. The availability of 73 complete genome sequences of cyanobacteria enabled us to mine and statistically analyze microsatellites in these genomes. The cyanobacterial microsatellites identified through bioinformatics analysis were stored in a user-friendly database named CyanoSat, which is an efficient data representation and query system designed using ASP.net. The information in CyanoSat comprises of perfect, imperfect and compound microsatellites found in coding, non-coding and coding-non-coding regions. Moreover, it contains PCR primers with 200 nucleotides long flanking region. The mined cyanobacterial microsatellites can be freely accessed at www.compubio.in/CyanoSat/home.aspx. In addition to this 82 polymorphic, 13,866 unique and 2390 common microsatellites were also detected. These microsatellites will be useful in strain identification and genetic diversity studies of cyanobacteria.
Rao, Shu-Quan; Hu, Hui-Ling; Ye, Ning; Shen, Yan; Xu, Qi
2015-08-01
The heritability of schizophrenia has been reported to be as high as ~80%, but the contribution of genetic variants identified to this heritability remains to be estimated. Long non-coding RNAs (LncRNAs) are involved in multiple processes critical to normal cellular function and dysfunction of lncRNA MIAT may contribute to the pathophysiology of schizophrenia. However, the genetic evidence of lncRNAs involved in schizophrenia has not been documented. Here, we conducted a two-stage association analysis on 8 tag SNPs that cover the whole MIAT locus in two independent Han Chinese schizophrenia case-control cohorts (discovery sample from Shanxi Province: 1093 patients with paranoid schizophrenia and 1180 control subjects; replication cohort from Jilin Province: 1255 cases and 1209 healthy controls). In discovery stage, significant genetic association with paranoid schizophrenia was observed for rs1894720 (χ(2)=74.20, P=7.1E-18), of which minor allele (T) had an OR of 1.70 (95% CI=1.50-1.91). This association was confirmed in the replication cohort (χ(2)=22.66, P=1.9E-06, OR=1.32, 95%CI 1.18-1.49). Besides, a weak genotypic association was detected for rs4274 (χ(2)=4.96, df=2, P=0.03); the AA carriers showed increased disease risk (OR=1.30, 95%CI=1.03-1.64). No significant association was found between any haplotype and paranoid schizophrenia. The present studies showed that lncRNA MIAT was a novel susceptibility gene for paranoid schizophrenia in the Chinese Han population. Considering that most lncRNAs locate in non-coding regions, our result may explain why most susceptibility loci for schizophrenia identified by genome wide association studies were out of coding regions. Copyright © 2015 Elsevier B.V. All rights reserved.
Identification and role of regulatory non-coding RNAs in Listeria monocytogenes.
Izar, Benjamin; Mraheil, Mobarak Abu; Hain, Torsten
2011-01-01
Bacterial regulatory non-coding RNAs control numerous mRNA targets that direct a plethora of biological processes, such as the adaption to environmental changes, growth and virulence. Recently developed high-throughput techniques, such as genomic tiling arrays and RNA-Seq have allowed investigating prokaryotic cis- and trans-acting regulatory RNAs, including sRNAs, asRNAs, untranslated regions (UTR) and riboswitches. As a result, we obtained a more comprehensive view on the complexity and plasticity of the prokaryotic genome biology. Listeria monocytogenes was utilized as a model system for intracellular pathogenic bacteria in several studies, which revealed the presence of about 180 regulatory RNAs in the listerial genome. A regulatory role of non-coding RNAs in survival, virulence and adaptation mechanisms of L. monocytogenes was confirmed in subsequent experiments, thus, providing insight into a multifaceted modulatory function of RNA/mRNA interference. In this review, we discuss the identification of regulatory RNAs by high-throughput techniques and in their functional role in L. monocytogenes.
Simonen, Marja-Leena; Roivainen, Merja; Iber, Jane; Burns, Cara; Hovi, Tapani
2010-01-01
In 1984, a wild type 3 poliovirus (PV3/FIN84) spread all over Finland causing nine cases of paralytic poliomyelitis and one case of aseptic meningitis. The outbreak was ended in 1985 with an intensive vaccination campaign. By limited sequence comparison with previously isolated PV3 strains, closest relatives of PV3/FIN84 were found among strains circulating in the Mediterranean region. Now we wanted to reanalyse the relationships using approaches currently exploited in poliovirus surveillance. Cell lysates of 22 strains isolated during the outbreak and stored frozen were subjected to RT-PCR amplification in three genomic regions without prior subculture. Sequences of the entire VP1 coding region, 150 nucleotides in the VP1-2A junction, most of the 5' non-coding region, partial sequences of the 3D RNA polymerase coding region and partial 3' non-coding region were compared within the outbreak and with sequences available in data banks. In addition, complete nucleotide sequences were obtained for 2 strains isolated from two different cases of disease during the outbreak. The results confirmed the previously described wide intraepidemic variation of the strains, including amino acid substitutions in antigenic sites, as well as the likely Mediterranean region origin of the strains. Simplot and bootscanning analyses of the complete genomes indicated complicated evolutionary history of the non-capsid coding regions of the genome suggesting several recombinations with different HEV-C viruses in the past.
Chen, Zhi-Teng; Du, Yu-Zhou
2015-03-01
The complete mitochondrial genome of the stonefly, Sweltsa longistyla Wu (Plecoptera: Chloroperlidae), was sequenced in this study. The mitogenome of S. longistyla is 16,151bp and contains 37 genes including 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, and a large non-coding region. S. longistyla, Pteronarcys princeps Banks, Kamimuria wangi Du and Cryptoperla stilifera Sivec belong to the Plecoptera, and the gene order and orientation of their mitogenomes were similar. The overall AT content for the four stoneflies was below 72%, and the AT content of tRNA genes was above 69%. The four genomes were compact and contained only 65-127bp of non-coding intergenic DNAs. Overlapping nucleotides existed in all four genomes and ranged from 24 (P. princeps) to 178bp (K. wangi). There was a 7-bp motif ('ATGATAA') of overlapping DNA and an 8-bp motif (AAGCCTTA) conserved in three stonefly species (P. princeps, K. wangi and C. stilifera). The control regions of four stoneflies contained a stem-loop structure. Four conserved sequence blocks (CSBs) were present in the A+T-rich regions of all four stoneflies. Copyright © 2014 Elsevier B.V. All rights reserved.
Van, K; Onoda, S; Kim, M Y; Kim, K D; Lee, S-H
2008-03-01
The Waxy (Wx) gene product controls the formation of a straight chain polymer of amylose in the starch pathway. Dominance/recessiveness of the Wx allele is associated with amylose content, leading to non-waxy/waxy phenotypes. For a total of 113 foxtail millet accessions, agronomic traits and the molecular differences of the Wx gene were surveyed to evaluate genetic diversities. Molecular types were associated with phenotypes determined by four specific primer sets (non-waxy, Type I; low amylose, Type VI; waxy, Type IV or V). Additionally, the insertion of transposable element in waxy was confirmed by ex1/TSI2R, TSI2F/ex2, ex2int2/TSI7R and TSI7F/ex4r. Seventeen single nucleotide polymorphims (SNPs) were observed from non-coding regions, while three SNPs from coding regions were non-synonymous. Interestingly, the phenotype of No. 88 was still non-waxy, although seven nucleotides (AATTGGT) insertion at 2,993 bp led to 78 amino acids shorter. The rapid decline of r (2) in the sequenced region (exon 1-intron 1-exon 2) suggested a low level of linkage disequilibrium and limited haplotype structure. K (s) values and estimation of evolutionary events indicate early divergence of S. italica among cereal crops. This study suggested the Wx gene was one of the targets in the selection process during domestication.
Identification of G-quadruplex forming sequences in three manatee papillomaviruses
Zahin, Maryam; Dean, William L.; Ghim, Shin-je; Joh, Joongho; Gray, Robert D.; Khanal, Sujita; Bossart, Gregory D.; Mignucci-Giannoni, Antonio A.; Rouchka, Eric C.; Jenson, Alfred B.; Trent, John O.; Chaires, Jonathan B.
2018-01-01
The Florida manatee (Trichechus manatus latirotris) is a threatened aquatic mammal in United States coastal waters. Over the past decade, the appearance of papillomavirus-induced lesions and viral papillomatosis in manatees has been a concern for those involved in the management and rehabilitation of this species. To date, three manatee papillomaviruses (TmPVs) have been identified in Florida manatees, one forming cutaneous lesions (TmPV1) and two forming genital lesions (TmPV3 and TmPV4). We identified DNA sequences with the potential to form G-quadruplex structures (G4) across the three genomes. G4 were located on both DNA strands and across coding and non-coding regions on all TmPVs, offering multiple targets for viral control. Although G4 have been identified in several viral genomes, including human PVs, most research has focused on canonical structures comprised of three G-tetrads. In contrast, the vast majority of sequences we identified would allow the formation of non-canonical structures with only two G-tetrads. Our biophysical analysis confirmed the formation of G4 with parallel topology in three such sequences from the E2 region. Two of the structures appear comprised of multiple stacked two G-tetrad structures, perhaps serving to increase structural stability. Computational analysis demonstrated enrichment of G4 sequences on all TmPVs on the reverse strand in the E2/E4 region and on both strands in the L2 region. Several G4 sequences occurred at similar regional locations on all PVs, most notably on the reverse strand in the E2 region. In other cases, G4 were identified at similar regional locations only on PVs forming genital lesions. On all TmPVs, G4 sequences were located in the non-coding region near putative E2 binding sites. Together, these findings suggest that G4 are possible regulatory elements in TmPVs. PMID:29630682
Pietan, Lucas L.; Spradling, Theresa A.
2016-01-01
In animals, mitochondrial DNA (mtDNA) typically occurs as a single circular chromosome with 13 protein-coding genes and 22 tRNA genes. The various species of lice examined previously, however, have shown mitochondrial genome rearrangements with a range of chromosome sizes and numbers. Our research demonstrates that the mitochondrial genomes of two species of chewing lice found on pocket gophers, Geomydoecus aurei and Thomomydoecus minor, are fragmented with the 1,536 base-pair (bp) cytochrome-oxidase subunit I (cox1) gene occurring as the only protein-coding gene on a 1,916–1,964 bp minicircular chromosome in the two species, respectively. The cox1 gene of T. minor begins with an atypical start codon, while that of G. aurei does not. Components of the non-protein coding sequence of G. aurei and T. minor include a tRNA (isoleucine) gene, inverted repeat sequences consistent with origins of replication, and an additional non-coding region that is smaller than the non-coding sequence of other lice with such fragmented mitochondrial genomes. Sequences of cox1 minichromosome clones for each species reveal extensive length and sequence heteroplasmy in both coding and noncoding regions. The highly variable non-gene regions of G. aurei and T. minor have little sequence similarity with one another except for a 19-bp region of phylogenetically conserved sequence with unknown function. PMID:27589589
Shao, Renfu; Barker, Stephen C
2011-02-15
The mitochondrial (mt) genome of the human body louse, Pediculus humanus, consists of 18 minichromosomes. Each minichromosome is 3 to 4 kb long and has 1 to 3 genes. There is unequivocal evidence for recombination between different mt minichromosomes in P. humanus. It is not known, however, how these minichromosomes recombine. Here, we report the discovery of eight chimeric mt minichromosomes in P. humanus. We classify these chimeric mt minichromosomes into two groups: Group I and Group II. Group I chimeric minichromosomes contain parts of two different protein-coding genes that are from different minichromosomes. The two parts of protein-coding genes in each Group I chimeric minichromosome are joined at a microhomologous nucleotide sequence; microhomologous nucleotide sequences are hallmarks of non-homologous recombination. Group II chimeric minichromosomes contain all of the genes and the non-coding regions of two different minichromosomes. The conserved sequence blocks in the non-coding regions of Group II chimeric minichromosomes resemble the "recombination repeats" in the non-coding regions of the mt genomes of higher plants. These repeats are essential to homologous recombination in higher plants. Our analyses of the nucleotide sequences of chimeric mt minichromosomes indicate both homologous and non-homologous recombination between minichromosomes in the mitochondria of the human body louse. Copyright © 2010 Elsevier B.V. All rights reserved.
Mitochondrial genome evolution in the Saccharomyces sensu stricto complex.
Ruan, Jiangxing; Cheng, Jian; Zhang, Tongcun; Jiang, Huifeng
2017-01-01
Exploring the evolutionary patterns of mitochondrial genomes is important for our understanding of the Saccharomyces sensu stricto (SSS) group, which is a model system for genomic evolution and ecological analysis. In this study, we first obtained the complete mitochondrial sequences of two important species, Saccharomyces mikatae and Saccharomyces kudriavzevii. We then compared the mitochondrial genomes in the SSS group with those of close relatives, and found that the non-coding regions evolved rapidly, including dramatic expansion of intergenic regions, fast evolution of introns and almost 20-fold higher rearrangement rates than those of the nuclear genomes. However, the coding regions, and especially the protein-coding genes, are more conserved than those in the nuclear genomes of the SSS group. The different evolutionary patterns of coding and non-coding regions in the mitochondrial and nuclear genomes may be related to the origin of the aerobic fermentation lifestyle in this group. Our analysis thus provides novel insights into the evolution of mitochondrial genomes.
Chen, Kuan-Hua; Lwi, Sandy J.; Hua, Alice Y.; Haase, Claudia M.; Miller, Bruce L.; Levenson, Robert W.
2017-01-01
Although laboratory procedures are designed to produce specific emotions, participants often experience mixed emotions (i.e., target and non-target emotions). We examined non-target emotions in patients with frontotemporal dementia (FTD), Alzheimer’s disease (AD), other neurodegenerative diseases, and healthy controls. Participants watched film clips designed to produce three target emotions. Subjective experience of non-target emotions was assessed and emotional facial expressions were coded. Compared to patients with other neurodegenerative diseases and healthy controls, FTD patients reported more positive and negative non-target emotions, whereas AD patients reported more positive non-target emotions. There were no group differences in facial expressions of non-target emotions. We interpret these findings as reflecting deficits in processing interoceptive and contextual information resulting from neurodegeneration in brain regions critical for creating subjective emotional experience. PMID:29457053
Sugai, Akihiro; Sato, Hiroki; Yoneda, Misako; Kai, Chieko
2017-08-01
The regulation of transcription during Nipah virus (NiV) replication is poorly understood. Using a bicistronic minigenome system, we investigated the involvement of non-coding regions (NCRs) in the transcriptional re-initiation efficiency of NiV RNA polymerase. Reporter assays revealed that attenuation of NiV gene expression was not constant at each gene junction, and that the attenuating property was controlled by the 3' NCR. However, this regulation was independent of the gene-end, gene-start and intergenic regions. Northern blot analysis indicated that regulation of viral gene expression by the phosphoprotein (P) and large protein (L) 3' NCRs occurred at the transcription level. We identified uridine-rich tracts within the L 3' NCR that are similar to gene-end signals. These gene-end-like sequences were recognized as weak transcription termination signals by the viral RNA polymerase, thereby reducing downstream gene transcription. Thus, we suggest that NiV has a unique mechanism of transcriptional regulation. Copyright © 2017 Elsevier Inc. All rights reserved.
The complete mitochondrial genome of the Feral Rock Pigeon (Columba livia breed feral).
Li, Chun-Hong; Liu, Fang; Wang, Li
2014-10-01
Abstract In the present work, we report the complete mitochondrial genome sequence of feral rock pigeon for the first time. The total length of the mitogenome was 17,239 bp with the base composition of 30.3% for A, 24.0% for T, 31.9% for C, and 13.8% for G and an A-T (54.3 %)-rich feature was detected. It harbored 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and 1 non-coding control region (D-loop region). The arrangement of all genes was identical to the typical mitochondrial genomes of pigeon. The complete mitochondrial genome sequence of feral rock pigeon would serve as an important data set of the germplasm resources for further study.
Véliz, David; Vega-Retter, Caren; Quezada-Romegialli, Claudio
2016-01-01
The complete sequence of the mitochondrial genome for the Chilean silverside Basilichthys microlepidotus is reported for the first time. The entire mitochondrial genome was 16,544 bp in length (GenBank accession no. KM245937); gene composition and arrangement was conformed to that reported for most fishes and contained the typical structure of 2 rRNAs, 13 protein-coding genes, 22 tRNAs and a non-coding region. The assembled mitogenome was validated against sequences of COI and Control Region previously sequenced in our lab, functional genes from RNA-Seq data for the same species and the mitogenome of two other atherinopsid species available in Genbank.
Mind the gap! The mitochondrial control region and its power as a phylogenetic marker in echinoids.
Bronstein, Omri; Kroh, Andreas; Haring, Elisabeth
2018-05-30
In Metazoa, mitochondrial markers are the most commonly used targets for inferring species-level molecular phylogenies due to their extremely low rate of recombination, maternal inheritance, ease of use and fast substitution rate in comparison to nuclear DNA. The mitochondrial control region (CR) is the main non-coding area of the mitochondrial genome and contains the mitochondrial origin of replication and transcription. While sequences of the cytochrome oxidase subunit 1 (COI) and 16S rRNA genes are the prime mitochondrial markers in phylogenetic studies, the highly variable CR is typically ignored and not targeted in such analyses. However, the higher substitution rate of the CR can be harnessed to infer the phylogeny of closely related species, and the use of a non-coding region alleviates biases resulting from both directional and purifying selection. Additionally, complete mitochondrial genome assemblies utilizing next generation sequencing (NGS) data often show exceptionally low coverage at specific regions, including the CR. This can only be resolved by targeted sequencing of this region. Here we provide novel sequence data for the echinoid mitochondrial control region in over 40 species across the echinoid phylogenetic tree. We demonstrate the advantages of directly targeting the CR and adjacent tRNAs to facilitate complementing low coverage NGS data from complete mitochondrial genome assemblies. Finally, we test the performance of this region as a phylogenetic marker both in the lab and in phylogenetic analyses, and demonstrate its superior performance over the other available mitochondrial markers in echinoids. Our target region of the mitochondrial CR (1) facilitates the first thorough investigation of this region across a wide range of echinoid taxa, (2) provides a tool for complementing missing data in NGS experiments, and (3) identifies the CR as a powerful, novel marker for phylogenetic inference in echinoids due to its high variability, lack of selection, and high compatibility across the entire class, outperforming conventional mitochondrial markers.
Prader-Willi Syndrome: Obesity due to Genomic Imprinting
Butler, Merlin G
2011-01-01
Prader-Willi syndrome (PWS) is a complex neurodevelopmental disorder due to errors in genomic imprinting with loss of imprinted genes that are paternally expressed from the chromosome 15q11-q13 region. Approximately 70% of individuals with PWS have a de novo deletion of the paternally derived 15q11-q13 region in which there are two subtypes (i.e., larger Type I or smaller Type II), maternal disomy 15 (both 15s from the mother) in about 25% of cases, and the remaining subjects have either defects in the imprinting center controlling the activity of imprinted genes or due to other chromosome 15 rearrangements. PWS is characterized by a particular facial appearance, infantile hypotonia, a poor suck and feeding difficulties, hypogonadism and hypogenitalism in both sexes, short stature and small hands and feet due to growth hormone deficiency, mild learning and behavioral problems (e.g., skin picking, temper tantrums) and hyperphagia leading to early childhood obesity. Obesity is a significant health problem, if uncontrolled. PWS is considered the most common known genetic cause of morbid obesity in children. The chromosome 15q11-q13 region contains approximately 100 genes and transcripts in which about 10 are imprinted and paternally expressed. This region can be divided into four groups: 1) a proximal non-imprinted region; 2) a PWS paternal-only expressed region containing protein-coding and non-coding genes; 3) an Angelman syndrome region containing maternally expressed genes and 4) a distal non-imprinted region. This review summarizes the current understanding of the genetic causes, the natural history and clinical presentation of individuals with PWS. PMID:22043168
A-to-I editing of coding and non-coding RNAs by ADARs
Nishikura, Kazuko
2016-01-01
Adenosine deaminases acting on RNA (ADARs) convert adenosine to inosine in double-stranded RNA. This A-to-I editing occurs not only in protein-coding regions of mRNAs, but also frequently in non-coding regions that contain inverted Alu repeats. Editing of coding sequences can result in the expression of functionally altered proteins that are not encoded in the genome, whereas the significance of Alu editing remains largely unknown. Certain microRNA (miRNA) precursors are also edited, leading to reduced expression or altered function of mature miRNAs. Conversely, recent studies indicate that ADAR1 forms a complex with Dicer to promote miRNA processing, revealing a new function of ADAR1 in the regulation of RNA interference. PMID:26648264
Zhang, Ai-bing; Feng, Jie; Ward, Robert D; Wan, Ping; Gao, Qiang; Wu, Jun; Zhao, Wei-zhong
2012-01-01
Species identification via DNA barcodes is contributing greatly to current bioinventory efforts. The initial, and widely accepted, proposal was to use the protein-coding cytochrome c oxidase subunit I (COI) region as the standard barcode for animals, but recently non-coding internal transcribed spacer (ITS) genes have been proposed as candidate barcodes for both animals and plants. However, achieving a robust alignment for non-coding regions can be problematic. Here we propose two new methods (DV-RBF and FJ-RBF) to address this issue for species assignment by both coding and non-coding sequences that take advantage of the power of machine learning and bioinformatics. We demonstrate the value of the new methods with four empirical datasets, two representing typical protein-coding COI barcode datasets (neotropical bats and marine fish) and two representing non-coding ITS barcodes (rust fungi and brown algae). Using two random sub-sampling approaches, we demonstrate that the new methods significantly outperformed existing Neighbor-joining (NJ) and Maximum likelihood (ML) methods for both coding and non-coding barcodes when there was complete species coverage in the reference dataset. The new methods also out-performed NJ and ML methods for non-coding sequences in circumstances of potentially incomplete species coverage, although then the NJ and ML methods performed slightly better than the new methods for protein-coding barcodes. A 100% success rate of species identification was achieved with the two new methods for 4,122 bat queries and 5,134 fish queries using COI barcodes, with 95% confidence intervals (CI) of 99.75-100%. The new methods also obtained a 96.29% success rate (95%CI: 91.62-98.40%) for 484 rust fungi queries and a 98.50% success rate (95%CI: 96.60-99.37%) for 1094 brown algae queries, both using ITS barcodes.
Recurrent and functional regulatory mutations in breast cancer.
Rheinbay, Esther; Parasuraman, Prasanna; Grimsby, Jonna; Tiao, Grace; Engreitz, Jesse M; Kim, Jaegil; Lawrence, Michael S; Taylor-Weiner, Amaro; Rodriguez-Cuevas, Sergio; Rosenberg, Mara; Hess, Julian; Stewart, Chip; Maruvka, Yosef E; Stojanov, Petar; Cortes, Maria L; Seepo, Sara; Cibulskis, Carrie; Tracy, Adam; Pugh, Trevor J; Lee, Jesse; Zheng, Zongli; Ellisen, Leif W; Iafrate, A John; Boehm, Jesse S; Gabriel, Stacey B; Meyerson, Matthew; Golub, Todd R; Baselga, Jose; Hidalgo-Miranda, Alfredo; Shioda, Toshi; Bernards, Andre; Lander, Eric S; Getz, Gad
2017-07-06
Genomic analysis of tumours has led to the identification of hundreds of cancer genes on the basis of the presence of mutations in protein-coding regions. By contrast, much less is known about cancer-causing mutations in non-coding regions. Here we perform deep sequencing in 360 primary breast cancers and develop computational methods to identify significantly mutated promoters. Clear signals are found in the promoters of three genes. FOXA1, a known driver of hormone-receptor positive breast cancer, harbours a mutational hotspot in its promoter leading to overexpression through increased E2F binding. RMRP and NEAT1, two non-coding RNA genes, carry mutations that affect protein binding to their promoters and alter expression levels. Our study shows that promoter regions harbour recurrent mutations in cancer with functional consequences and that the mutations occur at similar frequencies as in coding regions. Power analyses indicate that more such regions remain to be discovered through deep sequencing of adequately sized cohorts of patients.
Kress, W John; Erickson, David L
2007-06-06
A useful DNA barcode requires sufficient sequence variation to distinguish between species and ease of application across a broad range of taxa. Discovery of a DNA barcode for land plants has been limited by intrinsically lower rates of sequence evolution in plant genomes than that observed in animals. This low rate has complicated the trade-off in finding a locus that is universal and readily sequenced and has sufficiently high sequence divergence at the species-level. Here, a global plant DNA barcode system is evaluated by comparing universal application and degree of sequence divergence for nine putative barcode loci, including coding and non-coding regions, singly and in pairs across a phylogenetically diverse set of 48 genera (two species per genus). No single locus could discriminate among species in a pair in more than 79% of genera, whereas discrimination increased to nearly 88% when the non-coding trnH-psbA spacer was paired with one of three coding loci, including rbcL. In silico trials were conducted in which DNA sequences from GenBank were used to further evaluate the discriminatory power of a subset of these loci. These trials supported the earlier observation that trnH-psbA coupled with rbcL can correctly identify and discriminate among related species. A combination of the non-coding trnH-psbA spacer region and a portion of the coding rbcL gene is recommended as a two-locus global land plant barcode that provides the necessary universality and species discrimination.
Variation in conserved non-coding sequences on chromosome 5q andsusceptibility to asthma and atopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donfack, Joseph; Schneider, Daniel H.; Tan, Zheng
2005-09-10
Background: Evolutionarily conserved sequences likely havebiological function. Methods: To determine whether variation in conservedsequences in non-coding DNA contributes to risk for human disease, westudied six conserved non-coding elements in the Th2 cytokine cluster onhuman chromosome 5q31 in a large Hutterite pedigree and in samples ofoutbred European American and African American asthma cases and controls.Results: Among six conserved non-coding elements (>100 bp,>70percent identity; human-mouse comparison), we identified one singlenucleotide polymorphism (SNP) in each of two conserved elements and sixSNPs in the flanking regions of three conserved elements. We genotypedour samples for four of these SNPs and an additional three SNPs eachmore » inthe IL13 and IL4 genes. While there was only modest evidence forassociation with single SNPs in the Hutterite and European Americansamples (P<0.05), there were highly significant associations inEuropean Americans between asthma and haplotypes comprised of SNPs in theIL4 gene (P<0.001), including a SNP in a conserved non-codingelement. Furthermore, variation in the IL13 gene was strongly associatedwith total IgE (P = 0.00022) and allergic sensitization to mold allergens(P = 0.00076) in the Hutterites, and more modestly associated withsensitization to molds in the European Americans and African Americans (P<0.01). Conclusion: These results indicate that there is overalllittle variation in the conserved non-coding elements on 5q31, butvariation in IL4 and IL13, including possibly one SNP in a conservedelement, influence asthma and atopic phenotypes in diversepopulations.« less
Tosetti, Valentina; Sassone, Jenny; Ferri, Anna L. M.; Taiana, Michela; Bedini, Gloria; Nava, Sara; Brenna, Greta; Di Resta, Chiara; Pareyson, Davide; Di Giulio, Anna Maria; Carelli, Stephana
2017-01-01
The complex architecture of adult brain derives from tightly regulated migration and differentiation of precursor cells generated during embryonic neurogenesis. Changes at transcriptional level of genes that regulate migration and differentiation may lead to neurodevelopmental disorders. Androgen receptor (AR) is a transcription factor that is already expressed during early embryonic days. However, AR role in the regulation of gene expression at early embryonic stage is yet to be determinate. Long non-coding RNA (lncRNA) Sox2 overlapping transcript (Sox2OT) plays a crucial role in gene expression control during development but its transcriptional regulation is still to be clearly defined. Here, using Bicalutamide in order to pharmacologically inactivated AR, we investigated whether AR participates in the regulation of the transcription of the lncRNASox2OTat early embryonic stage. We identified a new DNA binding region upstream of Sox2 locus containing three androgen response elements (ARE), and found that AR binds such a sequence in embryonic neural stem cells and in mouse embryonic brain. Our data suggest that through this binding, AR can promote the RNA polymerase II dependent transcription of Sox2OT. Our findings also suggest that AR participates in embryonic neurogenesis through transcriptional control of the long non-coding RNA Sox2OT. PMID:28704421
Tosetti, Valentina; Sassone, Jenny; Ferri, Anna L M; Taiana, Michela; Bedini, Gloria; Nava, Sara; Brenna, Greta; Di Resta, Chiara; Pareyson, Davide; Di Giulio, Anna Maria; Carelli, Stephana; Parati, Eugenio A; Gorio, Alfredo
2017-01-01
The complex architecture of adult brain derives from tightly regulated migration and differentiation of precursor cells generated during embryonic neurogenesis. Changes at transcriptional level of genes that regulate migration and differentiation may lead to neurodevelopmental disorders. Androgen receptor (AR) is a transcription factor that is already expressed during early embryonic days. However, AR role in the regulation of gene expression at early embryonic stage is yet to be determinate. Long non-coding RNA (lncRNA) Sox2 overlapping transcript (Sox2OT) plays a crucial role in gene expression control during development but its transcriptional regulation is still to be clearly defined. Here, using Bicalutamide in order to pharmacologically inactivated AR, we investigated whether AR participates in the regulation of the transcription of the lncRNASox2OTat early embryonic stage. We identified a new DNA binding region upstream of Sox2 locus containing three androgen response elements (ARE), and found that AR binds such a sequence in embryonic neural stem cells and in mouse embryonic brain. Our data suggest that through this binding, AR can promote the RNA polymerase II dependent transcription of Sox2OT. Our findings also suggest that AR participates in embryonic neurogenesis through transcriptional control of the long non-coding RNA Sox2OT.
Javierre, Biola M; Burren, Oliver S; Wilder, Steven P; Kreuzhuber, Roman; Hill, Steven M; Sewitz, Sven; Cairns, Jonathan; Wingett, Steven W; Várnai, Csilla; Thiecke, Michiel J; Burden, Frances; Farrow, Samantha; Cutler, Antony J; Rehnström, Karola; Downes, Kate; Grassi, Luigi; Kostadima, Myrto; Freire-Pritchett, Paula; Wang, Fan; Stunnenberg, Hendrik G; Todd, John A; Zerbino, Daniel R; Stegle, Oliver; Ouwehand, Willem H; Frontini, Mattia; Wallace, Chris; Spivakov, Mikhail; Fraser, Peter
2016-11-17
Long-range interactions between regulatory elements and gene promoters play key roles in transcriptional regulation. The vast majority of interactions are uncharted, constituting a major missing link in understanding genome control. Here, we use promoter capture Hi-C to identify interacting regions of 31,253 promoters in 17 human primary hematopoietic cell types. We show that promoter interactions are highly cell type specific and enriched for links between active promoters and epigenetically marked enhancers. Promoter interactomes reflect lineage relationships of the hematopoietic tree, consistent with dynamic remodeling of nuclear architecture during differentiation. Interacting regions are enriched in genetic variants linked with altered expression of genes they contact, highlighting their functional role. We exploit this rich resource to connect non-coding disease variants to putative target promoters, prioritizing thousands of disease-candidate genes and implicating disease pathways. Our results demonstrate the power of primary cell promoter interactomes to reveal insights into genomic regulatory mechanisms underlying common diseases. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
DNA methylation of miRNA coding sequences putatively associated with childhood obesity.
Mansego, M L; Garcia-Lacarte, M; Milagro, F I; Marti, A; Martinez, J A
2017-02-01
Epigenetic mechanisms may be involved in obesity onset and its consequences. The aim of the present study was to evaluate whether DNA methylation status in microRNA (miRNA) coding regions is associated with childhood obesity. DNA isolated from white blood cells of 24 children (identification sample: 12 obese and 12 non-obese) from the Grupo Navarro de Obesidad Infantil study was hybridized in a 450 K methylation microarray. Several CpGs whose DNA methylation levels were statistically different between obese and non-obese were validated by MassArray® in 95 children (validation sample) from the same study. Microarray analysis identified 16 differentially methylated CpGs between both groups (6 hypermethylated and 10 hypomethylated). DNA methylation levels in miR-1203, miR-412 and miR-216A coding regions significantly correlated with body mass index standard deviation score (BMI-SDS) and explained up to 40% of the variation of BMI-SDS. The network analysis identified 19 well-defined obesity-relevant biological pathways from the KEGG database. MassArray® validation identified three regions located in or near miR-1203, miR-412 and miR-216A coding regions differentially methylated between obese and non-obese children. The current work identified three CpG sites located in coding regions of three miRNAs (miR-1203, miR-412 and miR-216A) that were differentially methylated between obese and non-obese children, suggesting a role of miRNA epigenetic regulation in childhood obesity. © 2016 World Obesity Federation.
Fiedler, Jan; Baker, Andrew H; Dimmeler, Stefanie; Heymans, Stephane; Mayr, Manuel; Thum, Thomas
2018-05-23
Non-coding RNAs are increasingly recognized not only as regulators of various biological functions but also as targets for a new generation of RNA therapeutics and biomarkers. We hereby review recent insights relating to non-coding RNAs including microRNAs (e.g. miR-126, miR-146a), long non-coding RNAs (e.g. MIR503HG, GATA6-AS, SMILR) and circular RNAs (e.g. cZNF292) and their role in vascular diseases. This includes identification and therapeutic use of hypoxia-regulated non-coding RNAs and endogenous non-coding RNAs that regulate intrinsic smooth muscle cell signalling, age-related non-coding RNAs and non-coding RNAs involved in the regulation of mitochondrial biology and metabolic control. Finally, we discuss non-coding RNA species with biomarker potential.
Using the NCBI Genome Databases to Compare the Genes for Human & Chimpanzee Beta Hemoglobin
ERIC Educational Resources Information Center
Offner, Susan
2010-01-01
The beta hemoglobin protein is identical in humans and chimpanzees. In this tutorial, students see that even though the proteins are identical, the genes that code for them are not. There are many more differences in the introns than in the exons, which indicates that coding regions of DNA are more highly conserved than non-coding regions.
Design of ACM system based on non-greedy punctured LDPC codes
NASA Astrophysics Data System (ADS)
Lu, Zijun; Jiang, Zihong; Zhou, Lin; He, Yucheng
2017-08-01
In this paper, an adaptive coded modulation (ACM) scheme based on rate-compatible LDPC (RC-LDPC) codes was designed. The RC-LDPC codes were constructed by a non-greedy puncturing method which showed good performance in high code rate region. Moreover, the incremental redundancy scheme of LDPC-based ACM system over AWGN channel was proposed. By this scheme, code rates vary from 2/3 to 5/6 and the complication of the ACM system is lowered. Simulations show that more and more obvious coding gain can be obtained by the proposed ACM system with higher throughput.
Wang, Aishuai; Sun, Yuena; Wu, Changwen
2016-11-01
The complete mitochondrial genome of the Cheilodactylus quadricornis was firstly determined in the present study. The mitochondrial genome of C. quadricornis is 16 521 nucleotides, comprising 13 protein-coding genes and 2 ribosomal RNA genes, 22 tRNA genes and 2 main non-coding regions (the control region and the origin of the light-strand replication). The overall base composition was T, 26.3%; C, 29.6%; A, 27.8% and G, 16.3%. The gene arrangement, base composition, and tRNA structures of the complete mitochondrial genome of C. quadricornis is similar to other teleosts. Only two central conserved sequence blocks (CSB-2 and CSB-3) were identified in the control region. In addition, the conserved motif 5'-GCCGG-3' was identified in the origin of light-strand replication of C. quadricornis. The complete mitochondrial genome of C. quadricornis was used to construct phylogenetic tree, which shows that C. quadricornis and C. variegatus clustered in a clade and formed a sister relationship. This mitogenome sequence data would play an important role in population genetics and phylogenetic analysis of the Cheilodactylidae.
Zhu, Shiyou; Li, Wei; Liu, Jingze; Chen, Chen-Hao; Liao, Qi; Xu, Ping; Xu, Han; Xiao, Tengfei; Cao, Zhongzheng; Peng, Jingyu; Yuan, Pengfei; Brown, Myles; Liu, Xiaole Shirley; Wei, Wensheng
2017-01-01
CRISPR/Cas9 screens have been widely adopted to analyse coding gene functions, but high throughput screening of non-coding elements using this method is more challenging, because indels caused by a single cut in non-coding regions are unlikely to produce a functional knockout. A high-throughput method to produce deletions of non-coding DNA is needed. Herein, we report a high throughput genomic deletion strategy to screen for functional long non-coding RNAs (lncRNAs) that is based on a lentiviral paired-guide RNA (pgRNA) library. Applying our screening method, we identified 51 lncRNAs that can positively or negatively regulate human cancer cell growth. We individually validated 9 lncRNAs using CRISPR/Cas9-mediated genomic deletion and functional rescue, CRISPR activation or inhibition, and gene expression profiling. Our high-throughput pgRNA genome deletion method should enable rapid identification of functional mammalian non-coding elements. PMID:27798563
Effects of GWAS-Associated Genetic Variants on lncRNAs within IBD and T1D Candidate Loci
Brorsson, Caroline A.; Pociot, Flemming
2014-01-01
Long non-coding RNAs are a new class of non-coding RNAs that are at the crosshairs in many human diseases such as cancers, cardiovascular disorders, inflammatory and autoimmune disease like Inflammatory Bowel Disease (IBD) and Type 1 Diabetes (T1D). Nearly 90% of the phenotype-associated single-nucleotide polymorphisms (SNPs) identified by genome-wide association studies (GWAS) lie outside of the protein coding regions, and map to the non-coding intervals. However, the relationship between phenotype-associated loci and the non-coding regions including the long non-coding RNAs (lncRNAs) is poorly understood. Here, we systemically identified all annotated IBD and T1D loci-associated lncRNAs, and mapped nominally significant GWAS/ImmunoChip SNPs for IBD and T1D within these lncRNAs. Additionally, we identified tissue-specific cis-eQTLs, and strong linkage disequilibrium (LD) signals associated with these SNPs. We explored sequence and structure based attributes of these lncRNAs, and also predicted the structural effects of mapped SNPs within them. We also identified lncRNAs in IBD and T1D that are under recent positive selection. Our analysis identified putative lncRNA secondary structure-disruptive SNPs within and in close proximity (+/−5 kb flanking regions) of IBD and T1D loci-associated candidate genes, suggesting that these RNA conformation-altering polymorphisms might be associated with diseased-phenotype. Disruption of lncRNA secondary structure due to presence of GWAS SNPs provides valuable information that could be potentially useful for future structure-function studies on lncRNAs. PMID:25144376
New PAH gene promoter KLF1 and 3'-region C/EBPalpha motifs influence transcription in vitro.
Klaassen, Kristel; Stankovic, Biljana; Kotur, Nikola; Djordjevic, Maja; Zukic, Branka; Nikcevic, Gordana; Ugrin, Milena; Spasovski, Vesna; Srzentic, Sanja; Pavlovic, Sonja; Stojiljkovic, Maja
2017-02-01
Phenylketonuria (PKU) is a metabolic disease caused by mutations in the phenylalanine hydroxylase (PAH) gene. Although the PAH genotype remains the main determinant of PKU phenotype severity, genotype-phenotype inconsistencies have been reported. In this study, we focused on unanalysed sequences in non-coding PAH gene regions to assess their possible influence on the PKU phenotype. We transiently transfected HepG2 cells with various chloramphenicol acetyl transferase (CAT) reporter constructs which included PAH gene non-coding regions. Selected non-coding regions were indicated by in silico prediction to contain transcription factor binding sites. Furthermore, electrophoretic mobility shift assay (EMSA) and supershift assays were performed to identify which transcriptional factors were engaged in the interaction. We found novel KLF1 motif in the PAH promoter, which decreases CAT activity by 50 % in comparison to basal transcription in vitro. The cytosine at the c.-170 promoter position creates an additional binding site for the protein complex involving KLF1 transcription factor. Moreover, we assessed for the first time the role of a multivariant variable number tandem repeat (VNTR) region located in the 3'-region of the PAH gene. We found that the VNTR3, VNTR7 and VNTR8 constructs had approximately 60 % of CAT activity. The regulation is mediated by the C/EBPalpha transcription factor, present in protein complex binding to VNTR3. Our study highlighted two novel promoter KLF1 and 3'-region C/EBPalpha motifs in the PAH gene which decrease transcription in vitro and, thus, could be considered as PAH expression modifiers. New transcription motifs in non-coding regions will contribute to better understanding of the PKU phenotype complexity and may become important for the optimisation of PKU treatment.
Detection of non-coding RNA in bacteria and archaea using the DETR'PROK Galaxy pipeline.
Toffano-Nioche, Claire; Luo, Yufei; Kuchly, Claire; Wallon, Claire; Steinbach, Delphine; Zytnicki, Matthias; Jacq, Annick; Gautheret, Daniel
2013-09-01
RNA-seq experiments are now routinely used for the large scale sequencing of transcripts. In bacteria or archaea, such deep sequencing experiments typically produce 10-50 million fragments that cover most of the genome, including intergenic regions. In this context, the precise delineation of the non-coding elements is challenging. Non-coding elements include untranslated regions (UTRs) of mRNAs, independent small RNA genes (sRNAs) and transcripts produced from the antisense strand of genes (asRNA). Here we present a computational pipeline (DETR'PROK: detection of ncRNAs in prokaryotes) based on the Galaxy framework that takes as input a mapping of deep sequencing reads and performs successive steps of clustering, comparison with existing annotation and identification of transcribed non-coding fragments classified into putative 5' UTRs, sRNAs and asRNAs. We provide a step-by-step description of the protocol using real-life example data sets from Vibrio splendidus and Escherichia coli. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Kress, W. John; Erickson, David L.
2007-01-01
Background A useful DNA barcode requires sufficient sequence variation to distinguish between species and ease of application across a broad range of taxa. Discovery of a DNA barcode for land plants has been limited by intrinsically lower rates of sequence evolution in plant genomes than that observed in animals. This low rate has complicated the trade-off in finding a locus that is universal and readily sequenced and has sufficiently high sequence divergence at the species-level. Methodology/Principal Findings Here, a global plant DNA barcode system is evaluated by comparing universal application and degree of sequence divergence for nine putative barcode loci, including coding and non-coding regions, singly and in pairs across a phylogenetically diverse set of 48 genera (two species per genus). No single locus could discriminate among species in a pair in more than 79% of genera, whereas discrimination increased to nearly 88% when the non-coding trnH-psbA spacer was paired with one of three coding loci, including rbcL. In silico trials were conducted in which DNA sequences from GenBank were used to further evaluate the discriminatory power of a subset of these loci. These trials supported the earlier observation that trnH-psbA coupled with rbcL can correctly identify and discriminate among related species. Conclusions/Significance A combination of the non-coding trnH-psbA spacer region and a portion of the coding rbcL gene is recommended as a two-locus global land plant barcode that provides the necessary universality and species discrimination. PMID:17551588
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myhre, Marit Renee; Olsen, Gunn-Hege; Gosert, Rainer
High-level replication of polyomavirus BK (BKV) in kidney transplant recipients is associated with the emergence of BKV variants with rearranged (rr) non-coding control region (NCCR) increasing viral early gene expression and cytopathology. Cloning and sequencing revealed the presence of a BKV quasispecies which included non-functional variants when assayed in a recombinant virus assay. Here we report that the rr-NCCR of BKV variants RH-3 and RH-12, both bearing a NCCR deletion including the 5' end of the agnoprotein coding sequence, mediated early and late viral reporter gene expression in kidney cells. However, in a recombinant virus they failed to produce infectiousmore » progeny despite large T-antigen and VP1 expression and the formation of nuclear virus-like particles. Infectious progeny was generated when the agnogene was reconstructed in cis or agnoprotein provided in trans from a co-existing BKV rr-NCCR variant. We conclude that complementation can rescue non-functional BKV variants in vitro and possibly in vivo.« less
Reward Motivation Enhances Task Coding in Frontoparietal Cortex.
Etzel, Joset A; Cole, Michael W; Zacks, Jeffrey M; Kay, Kendrick N; Braver, Todd S
2016-04-01
Reward motivation often enhances task performance, but the neural mechanisms underlying such cognitive enhancement remain unclear. Here, we used a multivariate pattern analysis (MVPA) approach to test the hypothesis that motivation-related enhancement of cognitive control results from improved encoding and representation of task set information. Participants underwent two fMRI sessions of cued task switching, the first under baseline conditions, and the second with randomly intermixed reward incentive and no-incentive trials. Information about the upcoming task could be successfully decoded from cue-related activation patterns in a set of frontoparietal regions typically associated with task control. More critically, MVPA classifiers trained on the baseline session had significantly higher decoding accuracy on incentive than non-incentive trials, with decoding improvement mediating reward-related enhancement of behavioral performance. These results strongly support the hypothesis that reward motivation enhances cognitive control, by improving the discriminability of task-relevant information coded and maintained in frontoparietal brain regions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Hundreds of conserved non-coding genomic regions are independently lost in mammals
Hiller, Michael; Schaar, Bruce T.; Bejerano, Gill
2012-01-01
Conserved non-protein-coding DNA elements (CNEs) often encode cis-regulatory elements and are rarely lost during evolution. However, CNE losses that do occur can be associated with phenotypic changes, exemplified by pelvic spine loss in sticklebacks. Using a computational strategy to detect complete loss of CNEs in mammalian genomes while strictly controlling for artifacts, we find >600 CNEs that are independently lost in at least two mammalian lineages, including a spinal cord enhancer near GDF11. We observed several genomic regions where multiple independent CNE loss events happened; the most extreme is the DIAPH2 locus. We show that CNE losses often involve deletions and that CNE loss frequencies are non-uniform. Similar to less pleiotropic enhancers, we find that independently lost CNEs are shorter, slightly less constrained and evolutionarily younger than CNEs without detected losses. This suggests that independently lost CNEs are less pleiotropic and that pleiotropic constraints contribute to non-uniform CNE loss frequencies. We also detected 35 CNEs that are independently lost in the human lineage and in other mammals. Our study uncovers an interesting aspect of the evolution of functional DNA in mammalian genomes. Experiments are necessary to test if these independently lost CNEs are associated with parallel phenotype changes in mammals. PMID:23042682
Khorsandi, Shirin Elizabeth; Salehi, Siamak; Cortes, Miriam; Vilca-Melendez, Hector; Menon, Krishna; Srinivasan, Parthi; Prachalias, Andreas; Jassem, Wayel; Heaton, Nigel
2018-02-15
Mitochondria have their own genomic, transcriptomic and proteomic machinery but are unable to be autonomous, needing both nuclear and mitochondrial genomes. The aim of this work was to use computational biology to explore the involvement of Mitochondrial microRNAs (MitomiRs) and their interactions with the mitochondrial proteome in a clinical model of primary non function (PNF) of the donor after cardiac death (DCD) liver. Archival array data on the differential expression of miRNA in DCD PNF was re-analyzed using a number of publically available computational algorithms. 10 MitomiRs were identified of importance in DCD PNF, 7 with predicted interaction of their seed sequence with the mitochondrial transcriptome that included both coding, and non coding areas of the hypervariability region 1 (HVR1) and control region. Considering miRNA regulation of the nuclear encoded mitochondrial proteome, 7 hypothetical small proteins were identified with homolog function that ranged from co-factor for formation of ATP Synthase, REDOX balance and an importin/exportin protein. In silico, unconventional seed interactions, both non canonical and alternative seed sites, appear to be of greater importance in MitomiR regulation of the mitochondrial genome. Additionally, a number of novel small proteins of relevance in transplantation have been identified which need further characterization.
Gritsun, T S; Venugopal, K; Zanotto, P M; Mikhailov, M V; Sall, A A; Holmes, E C; Polkinghorne, I; Frolova, T V; Pogodina, V V; Lashkevich, V A; Gould, E A
1997-05-01
The complete nucleotide sequence of two tick-transmitted flaviviruses, Vasilchenko (Vs) from Siberia and louping ill (LI) from the UK, have been determined. The genomes were respectively, 10928 and 10871 nucleotides (nt) in length. The coding strategy and functional protein sequence motifs of tick-borne flaviviruses are presented in both Vs and LI viruses. The phylogenies based on maximum likelihood, maximum parsimony and distance analysis of the polyproteins, identified Vs virus as a member of the tick-borne encephalitis virus subgroup within the tick-borne serocomplex, genus Flavivirus, family Flaviviridae. Comparative alignment of the 3'-untranslated regions revealed deletions of different lengths essentially at the same position downstream of the stop codon for all tick-borne viruses. Two direct 27 nucleotide repeats at the 3'-end were found only for Vs and LI virus. Immediately following the deletions a region of 332-334 nt with relatively conserved primary structure (67-94% identity) was observed at the 3'-non-coding end of the virus genome. Pairwise comparisons of the nucleotide sequence data revealed similar levels of variation between the coding region, and the 5' and 3'-termini of the genome, implying an equivalent strong selective control for translated and untranslated regions. Indeed the predicted folding of the 5' and 3'-untranslated regions revealed patterns of stem and loop structures conserved for all tick-borne flaviviruses suggesting a purifying selection for preservation of essential RNA secondary structures which could be involved in translational control and replication. The possible implications of these findings are discussed.
SPATIAL NEGLECT AND ATTENTION NETWORKS
Corbetta, Maurizio; Shulman, Gordon L.
2013-01-01
Unilateral spatial neglect is a common neurological syndrome following predominantly right hemisphere injuries to ventral fronto-parietal cortex. We propose that neglect reflects deficits in the coding of saliency, control of spatial attention, and representation within an egocentric frame of reference, in conjunction with non-spatial deficits of reorienting, target detection, and arousal/vigilance. In contrast to theories that link spatial neglect to structural damage of specific brain regions, we argue that neglect is better explained by the physiological dysfunction of distributed cortical networks. The ventral lesions in right parietal, temporal, and frontal cortex that cause neglect directly impair non-spatial functions and hypoactivate the right hemisphere, inducing abnormalities in task-evoked activity and functional connectivity of a dorsal frontal-parietal network that controls spatial attention. The anatomy and right hemisphere dominance of neglect follows from the anatomy and laterality of the ventral regions that interact with the dorsal attention network. PMID:21692662
Kim, Min Jee; Im, Hyun Hwak; Lee, Kwang Youll; Han, Yeon Soo; Kim, Iksoo
2014-06-01
Abstract The complete nucleotide sequences of the mitochondrial genome from the whiter-spotted flower chafer, Protaetia brevitarsis (Coleoptera: Scarabaeidae), was determined. The 20,319-bp long circular genome is the longest among completely sequenced Coleoptera. As is typical in animals, the P. brevitarsis genome consisted of two ribosomal RNAs, 22 transfer RNAs, 13 protein-coding genes and one A + T-rich region. Although the size of the coding genes was typical, the non-coding A + T-rich region was 5654 bp, which is the longest in insects. The extraordinary length of this region was composed of 28,117-bp tandem repeats and 782-bp tandem repeats. These repeat sequences were encompassed by three non-repeat sequences constituting 1804 bp.
A benchmark study of scoring methods for non-coding mutations.
Drubay, Damien; Gautheret, Daniel; Michiels, Stefan
2018-05-15
Detailed knowledge of coding sequences has led to different candidate models for pathogenic variant prioritization. Several deleteriousness scores have been proposed for the non-coding part of the genome, but no large-scale comparison has been realized to date to assess their performance. We compared the leading scoring tools (CADD, FATHMM-MKL, Funseq2 and GWAVA) and some recent competitors (DANN, SNP and SOM scores) for their ability to discriminate assumed pathogenic variants from assumed benign variants (using the ClinVar, COSMIC and 1000 genomes project databases). Using the ClinVar benchmark, CADD was the best tool for detecting the pathogenic variants that are mainly located in protein coding gene regions. Using the COSMIC benchmark, FATHMM-MKL, GWAVA and SOMliver outperformed the other tools for pathogenic variants that are typically located in lincRNAs, pseudogenes and other parts of the non-coding genome. However, all tools had low precision, which could potentially be improved by future non-coding genome feature discoveries. These results may have been influenced by the presence of potential benign variants in the COSMIC database. The development of a gold standard as consistent as ClinVar for these regions will be necessary to confirm our tool ranking. The Snakemake, C++ and R codes are freely available from https://github.com/Oncostat/BenchmarkNCVTools and supported on Linux. damien.drubay@gustaveroussy.fr or stefan.michiels@gustaveroussy.fr. Supplementary data are available at Bioinformatics online.
Wang, Pei; Song, Fan; Cai, Wanzhi
2014-01-01
Insect mitochondrial genomes are very important to understand the molecular evolution as well as for phylogenetic and phylogeographic studies of the insects. The Miridae are the largest family of Heteroptera encompassing more than 11,000 described species and of great economic importance. For better understanding the diversity and the evolution of plant bugs, we sequence five new mitochondrial genomes and present the first comparative analysis of nine mitochondrial genomes of mirids available to date. Our result showed that gene content, gene arrangement, base composition and sequences of mitochondrial transcription termination factor were conserved in plant bugs. Intra-genus species shared more conserved genomic characteristics, such as nucleotide and amino acid composition of protein-coding genes, secondary structure and anticodon mutations of tRNAs, and non-coding sequences. Control region possessed several distinct characteristics, including: variable size, abundant tandem repetitions, and intra-genus conservation; and was useful in evolutionary and population genetic studies. The AGG codon reassignments were investigated between serine and lysine in the genera Adelphocoris and other cimicomorphans. Our analysis revealed correlated evolution between reassignments of the AGG codon and specific point mutations at the antidocons of tRNALys and tRNASer(AGN). Phylogenetic analysis indicated that mitochondrial genome sequences were useful in resolving family level relationship of Cimicomorpha. Comparative evolutionary analysis of plant bug mitochondrial genomes allowed the identification of previously neglected coding genes or non-coding regions as potential molecular markers. The finding of the AGG codon reassignments between serine and lysine indicated the parallel evolution of the genetic code in Hemiptera mitochondrial genomes. PMID:24988409
SUMIYAMA, KENTA; MIYAKE, TSUTOMU; GRIMWOOD, JANE; STUART, ANDREW; DICKSON, MARK; SCHMUTZ, JEREMY; RUDDLE, FRANK H.; MYERS, RICHARD M.; AMEMIYA, CHRIS T.
2013-01-01
The mammalian Dlx3 and Dlx4 genes are configured as a bigene cluster, and their respective expression patterns are controlled temporally and spatially by cis-elements that largely reside within the intergenic region of the cluster. Previous work revealed that there are conspicuously conserved elements within the intergenic region of the Dlx3–4 bigene clusters of mouse and human. In this paper we have extended these analyses to include 12 additional mammalian taxa (including a marsupial and a monotreme) in order to better define the nature and molecular evolutionary trends of the coding and non-coding functional elements among morphologically divergent mammals. Dlx3–4 regions were fully sequenced from 12 divergent taxa of interest. We identified three theria-specific amino acid replacements in homeodomain of Dlx4 gene that functions in placenta. Sequence analyses of constrained nucleotide sites in the intergenic non-coding region showed that many of the intergenic conserved elements are highly conserved and have evolved slowly within the mammals. In contrast, a branchial arch/craniofacial enhancer I37-2 exhibited accelerated evolution at the branch between the monotreme and therian common ancestor despite being highly conserved among therian species. Functional analysis of I37-2 in transgenic mice has shown that the equivalent region of the platypus fails to drive transcriptional activity in branchial arches. These observations, taken together with our molecular evolutionary data, suggest that theria-specific episodic changes in the I37-2 element may have contributed to craniofacial innovation at the base of the mammalian lineage. PMID:22951979
The complete mitochondrial genome of the ice pigeon (Columba livia breed ice).
Zhang, Rui-Hua; He, Wen-Xiao
2015-02-01
The ice pigeon is a breed of fancy pigeon developed over many years of selective breeding. In the present work, we report the complete mitochondrial genome sequence of ice pigeon for the first time. The total length of the mitogenome was 17,236 bp with the base composition of 30.2% for A, 24.0% for T, 31.9% for C, and 13.9% for G and an A-T (54.2 %)-rich feature was detected. It harbored 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and 1 non-coding control region (D-loop region). The arrangement of all genes was identical to the typical mitochondrial genomes of pigeon. The complete mitochondrial genome sequence of ice pigeon would serve as an important data set of the germplasm resources for further study.
Mitochondrial genome sequence of Egyptian swift Rock Pigeon (Columba livia breed Egyptian swift).
Li, Chun-Hong; Shi, Wei; Shi, Wan-Yu
2015-06-01
The Egyptian swift Rock Pigeon is a breed of fancy pigeon developed over many years of selective breeding. In this work, we report the complete mitochondrial genome sequence of Egyptian swift Rock Pigeon. The total length of the mitogenome was 17,239 bp and its overall base composition was estimated to be 30.2% for A, 24.0% for T, 31.9% for C and 13.9% for G, indicating an A-T (54.2%)-rich feature in the mitogenome. It contained the typical structure of 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and a non-coding control region (D-loop region). The complete mitochondrial genome sequence of Egyptian swift Rock Pigeon would serve as an important data set of the germplasm resources for further study.
The complete mitochondrial genome of the Fancy Pigeon, Columba livia (Columbiformes: Columbidae).
Zhang, Rui-Hua; Xu, Ming-Ju; Wang, Cun-Lian; Xu, Tong; Wei, Dong; Liu, Bao-Jian; Wang, Guo-Hua
2015-02-01
The fancy pigeons are domesticated varieties of the rock pigeon developed over many years of selective breeding. In the present work, we report the complete mitochondrial genome sequence of fancy pigeon for the first time. The total length of the mitogenome was 17,233 bp with the base composition of 30.1% for A, 24.0% for T, 31.9% for C, and 14.0% for G and an A-T (54.2 %)-rich feature was detected. It harbored 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and 1 non-coding control region (D-loop region). The arrangement of all genes was identical to the typical mitochondrial genomes of pigeon. The complete mitochondrial genome sequence of fancy pigeon would serve as an important data set of the germplasm resources for further study.
On fuzzy semantic similarity measure for DNA coding.
Ahmad, Muneer; Jung, Low Tang; Bhuiyan, Md Al-Amin
2016-02-01
A coding measure scheme numerically translates the DNA sequence to a time domain signal for protein coding regions identification. A number of coding measure schemes based on numerology, geometry, fixed mapping, statistical characteristics and chemical attributes of nucleotides have been proposed in recent decades. Such coding measure schemes lack the biologically meaningful aspects of nucleotide data and hence do not significantly discriminate coding regions from non-coding regions. This paper presents a novel fuzzy semantic similarity measure (FSSM) coding scheme centering on FSSM codons׳ clustering and genetic code context of nucleotides. Certain natural characteristics of nucleotides i.e. appearance as a unique combination of triplets, preserving special structure and occurrence, and ability to own and share density distributions in codons have been exploited in FSSM. The nucleotides׳ fuzzy behaviors, semantic similarities and defuzzification based on the center of gravity of nucleotides revealed a strong correlation between nucleotides in codons. The proposed FSSM coding scheme attains a significant enhancement in coding regions identification i.e. 36-133% as compared to other existing coding measure schemes tested over more than 250 benchmarked and randomly taken DNA datasets of different organisms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Araya, Carlos L.; Cenik, Can; Reuter, Jason A.; Kiss, Gert; Pande, Vijay S.; Snyder, Michael P.; Greenleaf, William J.
2015-01-01
Cancer sequencing studies have primarily identified cancer-driver genes by the accumulation of protein-altering mutations. An improved method would be annotation-independent, sensitive to unknown distributions of functions within proteins, and inclusive of non-coding drivers. We employed density-based clustering methods in 21 tumor types to detect variably-sized significantly mutated regions (SMRs). SMRs reveal recurrent alterations across a spectrum of coding and non-coding elements, including transcription factor binding sites and untranslated regions mutated in up to ∼15% of specific tumor types. SMRs reveal spatial clustering of mutations at molecular domains and interfaces, often with associated changes in signaling. Mutation frequencies in SMRs demonstrate that distinct protein regions are differentially mutated among tumor types, as exemplified by a linker region of PIK3CA in which biophysical simulations suggest mutations affect regulatory interactions. The functional diversity of SMRs underscores both the varied mechanisms of oncogenic misregulation and the advantage of functionally-agnostic driver identification. PMID:26691984
Crescenzo-Chaigne, Bernadette; Barbezange, Cyril; Frigard, Vianney; Poulain, Damien; van der Werf, Sylvie
2014-01-01
Exchange of the non coding regions of the NP segment between type A and C influenza viruses was used to demonstrate the importance not only of the proximal panhandle, but also of the initial distal panhandle strength in type specificity. Both elements were found to be compulsory to rescue infectious virus by reverse genetics systems. Interestingly, in type A influenza virus infectious context, the length of the NP segment 5′ NC region once transcribed into mRNA was found to impact its translation, and the level of produced NP protein consequently affected the level of viral genome replication. PMID:25268971
RPS8—a New Informative DNA Marker for Phylogeny of Babesia and Theileria Parasites in China
Tian, Zhan-Cheng; Liu, Guang-Yuan; Yin, Hong; Luo, Jian-Xun; Guan, Gui-Quan; Luo, Jin; Xie, Jun-Ren; Shen, Hui; Tian, Mei-Yuan; Zheng, Jin-feng; Yuan, Xiao-song; Wang, Fang-fang
2013-01-01
Piroplasmosis is a serious debilitating and sometimes fatal disease. Phylogenetic relationships within piroplasmida are complex and remain unclear. We compared the intron–exon structure and DNA sequences of the RPS8 gene from Babesia and Theileria spp. isolates in China. Similar to 18S rDNA, the 40S ribosomal protein S8 gene, RPS8, including both coding and non-coding regions is a useful and novel genetic marker for defining species boundaries and for inferring phylogenies because it tends to have little intra-specific variation but considerable inter-specific difference. However, more samples are needed to verify the usefulness of the RPS8 (coding and non-coding regions) gene as a marker for the phylogenetic position and detection of most Babesia and Theileria species, particularly for some closely related species. PMID:24244571
Mikhailov, Alexander T; Torrado, Mario
2018-05-12
There is growing evidence that putative gene regulatory networks including cardio-enriched transcription factors, such as PITX2, TBX5, ZFHX3, and SHOX2, and their effector/target genes along with downstream non-coding RNAs can play a potentially important role in the process of adaptive and maladaptive atrial rhythm remodeling. In turn, expression of atrial fibrillation-associated transcription factors is under the control of upstream regulatory non-coding RNAs. This review broadly explores gene regulatory mechanisms associated with susceptibility to atrial fibrillation-with key examples from both animal models and patients-within the context of both cardiac transcription factors and non-coding RNAs. These two systems appear to have multiple levels of cross-regulation and act coordinately to achieve effective control of atrial rhythm effector gene expression. Perturbations of a dynamic expression balance between transcription factors and corresponding non-coding RNAs can provoke the development or promote the progression of atrial fibrillation. We also outline deficiencies in current models and discuss ongoing studies to clarify remaining mechanistic questions. An understanding of the function of transcription factors and non-coding RNAs in gene regulatory networks associated with atrial fibrillation risk will enable the development of innovative therapeutic strategies.
Lee, Hwan Young; Yoo, Ji-Eun; Park, Myung Jin; Chung, Ukhee; Kim, Chong-Youl; Shin, Kyoung-Jin
2006-11-01
The present study analyzed 21 coding region SNP markers and one deletion motif for the determination of East Asian mitochondrial DNA (mtDNA) haplogroups by designing three multiplex systems which apply single base extension methods. Using two multiplex systems, all 593 Korean mtDNAs were allocated into 15 haplogroups: M, D, D4, D5, G, M7, M8, M9, M10, M11, R, R9, B, A, and N9. As the D4 haplotypes occurred most frequently in Koreans, the third multiplex system was used to further define D4 subhaplogroups: D4a, D4b, D4e, D4g, D4h, and D4j. This method allowed the complementation of coding region information with control region mutation motifs and the resultant findings also suggest reliable control region mutation motifs for the assignment of East Asian mtDNA haplogroups. These three multiplex systems produce good results in degraded samples as they contain small PCR products (101-154 bp) for single base extension reactions. SNP scoring was performed in 101 old skeletal remains using these three systems to prove their utility in degraded samples. The sequence analysis of mtDNA control region with high incidence of haplogroup-specific mutations and the selective scoring of highly informative coding region SNPs using the three multiplex systems are useful tools for most applications involving East Asian mtDNA haplogroup determination and haplogroup-directed stringent quality control.
1976-01-01
Lymphocytic choriomeningitis virus (LCMV) and ectromelia virus-specific T-cell-mediated cytotoxicity was assayed in various strain combinations using as targets peritoneal macrophages which have been shown to express Ia antigens. Virus-specific cytotoxicity was found only in H-2K- or D-region compatible combinations. I-region compatibility was not necessary nor alone sufficient for lysis. Six different I-region specificities had no obvious effect on the capacity to generate in vivo specific cytotoxicity (expressed in vitro) associated with Dd. Low LCMV- specific cytotoxic activity generated in DBA/2 mice was caused by the non-H-2 genetic background. This trait was inversely related to the infectious virus dose and recessive. Non-H-2 genes, possibly involved in controlling initial spread and multiplication of virus, seem to be, at least in the examples tested, more important in determining virus- specific cytotoxic T-cell activity in spleens than are Ir genes coded in H-2. PMID:1085331
Erturk, Elif; Cecener, Gulsah; Polatkan, Volkan; Gokgoz, Sehsuvar; Egeli, Unal; Tunca, Berrin; Tezcan, Gulcin; Demirdogen, Elif; Ak, Secil; Tasdelen, Ismet
2014-01-01
Although genetic markers identifying women at an increased risk of developing breast cancer exist, the majority of inherited risk factors remain elusive. Mutations in the BRCA1/BRCA2 gene confer a substantial increase in breast cancer risk, yet routine clinical genetic screening is limited to the coding regions and intron- exon boundaries, precluding the identification of mutations in noncoding and untranslated regions. Because 3' untranslated region (3'UTR) polymorphisms disrupting microRNA (miRNA) binding can be functional and can act as genetic markers of cancer risk, we aimed to determine genetic variation in the 3'UTR of BRCA1/BRCA2 in familial and early-onset breast cancer patients with and without mutations in the coding regions of BRCA1/ BRCA2 and to identify specific 3'UTR variants that may be risk factors for cancer development. The 3'UTRs of the BRCA1 and BRCA2 genes were screened by heteroduplex analysis and DNA sequencing in 100 patients from 46 BRCA1/2 families, 54 non-BRCA1/2 families, and 47 geographically matched controls. Two polymorphisms were identified. SNPs c.*1287C>T (rs12516) (BRCA1) and c.*105A>C (rs15869) (BRCA2) were identified in 27% and 24% of patients, respectively. These 2 variants were also identified in controls with no family history of cancer (23.4% and 23.4%, respectively). In comparison to variations in the 3'UTR region of the BRCA1/2 genes and the BRCA1/2 mutational status in patients, there was a statistically significant relationship between the BRCA1 gene polymorphism c.*1287C>T (rs12516) and BRCA1 mutations (p=0.035) by Fisher's Exact Test. SNP c.*1287C>T (rs12516) of the BRCA1 gene may have potential use as a genetic marker of an increased risk of developing breast cancer and likely represents a non-coding sequence variation in BRCA1 that impacts BRCA1 function and leads to increased early-onset and/or familial breast cancer risk in the Turkish population.
Regulation of mammalian cell differentiation by long non-coding RNAs
Hu, Wenqian; Alvarez-Dominguez, Juan R; Lodish, Harvey F
2012-01-01
Differentiation of specialized cell types from stem and progenitor cells is tightly regulated at several levels, both during development and during somatic tissue homeostasis. Many long non-coding RNAs have been recognized as an additional layer of regulation in the specification of cellular identities; these non-coding species can modulate gene-expression programmes in various biological contexts through diverse mechanisms at the transcriptional, translational or messenger RNA stability levels. Here, we summarize findings that implicate long non-coding RNAs in the control of mammalian cell differentiation. We focus on several representative differentiation systems and discuss how specific long non-coding RNAs contribute to the regulation of mammalian development. PMID:23070366
Alvarado, David M; Yang, Ping; Druley, Todd E; Lovett, Michael; Gurnett, Christina A
2014-06-01
Despite declining sequencing costs, few methods are available for cost-effective single-nucleotide polymorphism (SNP), insertion/deletion (INDEL) and copy number variation (CNV) discovery in a single assay. Commercially available methods require a high investment to a specific region and are only cost-effective for large samples. Here, we introduce a novel, flexible approach for multiplexed targeted sequencing and CNV analysis of large genomic regions called multiplexed direct genomic selection (MDiGS). MDiGS combines biotinylated bacterial artificial chromosome (BAC) capture and multiplexed pooled capture for SNP/INDEL and CNV detection of 96 multiplexed samples on a single MiSeq run. MDiGS is advantageous over other methods for CNV detection because pooled sample capture and hybridization to large contiguous BAC baits reduces sample and probe hybridization variability inherent in other methods. We performed MDiGS capture for three chromosomal regions consisting of ∼ 550 kb of coding and non-coding sequence with DNA from 253 patients with congenital lower limb disorders. PITX1 nonsense and HOXC11 S191F missense mutations were identified that segregate in clubfoot families. Using a novel pooled-capture reference strategy, we identified recurrent chromosome chr17q23.1q23.2 duplications and small HOXC 5' cluster deletions (51 kb and 12 kb). Given the current interest in coding and non-coding variants in human disease, MDiGS fulfills a niche for comprehensive and low-cost evaluation of CNVs, coding, and non-coding variants across candidate regions of interest. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Characterization of the complete mitochondrial genome of the king pigeon (Columba livia breed king).
Zhang, Rui-Hua; He, Wen-Xiao; Xu, Tong
2015-06-01
The king pigeon is a breed of pigeon developed over many years of selective breeding primarily as a utility breed. In the present work, we report the complete mitochondrial genome sequence of king pigeon for the first time. The total length of the mitogenome was 17,221 bp with the base composition of 30.14% for A, 24.05% for T, 31.82% for C, and 13.99% for G and an A-T (54.22 %)-rich feature was detected. It harbored 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and one non-coding control region (D-loop region). The arrangement of all genes was identical to the typical mitochondrial genomes of pigeon. The complete mitochondrial genome sequence of king pigeon would serve as an important data set of the germplasm resources for further study.
Complete mitogenome sequencing and phylogenetic analysis of PaLi yak (Bos grunniens).
Bao, Pengjia; Guo, Xian; Pei, Jie; Liang, Chunnian; Ding, Xuezhi; Min, Chu; Wang, Hongbo; Wu, Xiaoyun; Yan, Ping
2016-11-01
PaLi yak is a very important local breed in China; as a year-round grazing animal, it plays a very important role for the economic and native herdsmen. The PaLi yak complete mitochondrial DNA is sequenced in this study, the total length is 16,324 bp, containing 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and a non-coding control region (D-loop region). The order and composition are similar to most of the other vertebrates. The base contents are: 33.72% A, 25.80% C, 13.21% G and 27.27% T; A + T (60.99%) was higher than G + C (39.01%). The phylogenetic relationships were analyzed using the complete mitogenome sequence, results showed that the genetic relationship between yak and cattle is distinct. These information provides useful data for further study on protection of genetic resources and the taxonomy of Bovinae.
Characterization of the complete mitochondrial genome sequence of wild yak (Bos mutus).
Chunnian, Liang; Wu, Xiaoyun; Ding, Xuezhi; Wang, Hongbo; Guo, Xian; Chu, Min; Bao, Pengjia; Yan, Ping
2016-11-01
Wild yak is a special breed in China and it is regarded as an important genetic resource for sustainably developing the animal husbandry in Tibetan area and enriching region's biodiversity. The complete mitochondrial genome of wild yak (16,322 bp in length) displayed 37 typical animal mitochondrial genes and A + T-rich (61.01%), with an overall G + C content of only 38.99%. It contained a non-coding control region (D-loop), 13 protein-coding genes, two rRNA genes, and 22 tRNA genes. Most of the genes have ATG initiation codons, whereas ND2, ND3, and ND5 genes start with ATA and were encoded on H-strand. The gene order of wild yak mitogenome is identical to that observed in most other vertebrates. The complete mitochondrial genome sequence of wild yak reported here could provide valuable information for developing genetic markers and phylogenetic analysis in yak.
Li, Rui; Liao, Xian-Hua; Ye, Jun-Zhao; Li, Min-Rui; Wu, Yan-Qin; Hu, Xuan; Zhong, Bi-Hui
2017-06-14
To test the hypothesis that K8/K18 variants predispose humans to non-alcoholic fatty liver disease (NAFLD) progression and its metabolic phenotypes. We selected a total of 373 unrelated adult subjects from our Physical Examination Department, including 200 unrelated NAFLD patients and 173 controls of both genders and different ages. Diagnoses of NAFLD were established according to ultrasonic signs of fatty liver. All subjects were tested for population characteristics, lipid profile, liver tests, as well as glucose tests. Genomic DNA was obtained from peripheral blood with a DNeasy Tissue Kit. K8/K18 coding regions were analyzed, including 15 exons and exon-intron boundaries. Among 200 NAFLD patients, 10 (5%) heterozygous carriers of keratin variants were identified. There were 5 amino-acid-altering heterozygous variants and 6 non-coding heterozygous variants. One novel amino-acid-altering heterozygous variant (K18 N193S) and three novel non-coding variants were observed (K8 IVS5-9A→G, K8 IVS6+19G→A, K18 T195T). A total of 9 patients had a single variant and 1 patient had compound variants (K18 N193S+K8 IVS3-15C→G). Only one R341H variant was found in the control group (1 of 173, 0.58%). The frequency of keratin variants in NAFLD patients was significantly higher than that in the control group (5% vs 0.58%, P = 0.015). Notably, the keratin variants were significantly associated with insulin resistance (IR) in NAFLD patients (8.86% in NAFLD patients with IR vs 2.5% in NAFLD patients without IR, P = 0.043). K8/K18 variants are overrepresented in Chinese NAFLD patients and might accelerate liver fat storage through IR.
Genome-wide prediction of cis-regulatory regions using supervised deep learning methods.
Li, Yifeng; Shi, Wenqiang; Wasserman, Wyeth W
2018-05-31
In the human genome, 98% of DNA sequences are non-protein-coding regions that were previously disregarded as junk DNA. In fact, non-coding regions host a variety of cis-regulatory regions which precisely control the expression of genes. Thus, Identifying active cis-regulatory regions in the human genome is critical for understanding gene regulation and assessing the impact of genetic variation on phenotype. The developments of high-throughput sequencing and machine learning technologies make it possible to predict cis-regulatory regions genome wide. Based on rich data resources such as the Encyclopedia of DNA Elements (ENCODE) and the Functional Annotation of the Mammalian Genome (FANTOM) projects, we introduce DECRES based on supervised deep learning approaches for the identification of enhancer and promoter regions in the human genome. Due to their ability to discover patterns in large and complex data, the introduction of deep learning methods enables a significant advance in our knowledge of the genomic locations of cis-regulatory regions. Using models for well-characterized cell lines, we identify key experimental features that contribute to the predictive performance. Applying DECRES, we delineate locations of 300,000 candidate enhancers genome wide (6.8% of the genome, of which 40,000 are supported by bidirectional transcription data), and 26,000 candidate promoters (0.6% of the genome). The predicted annotations of cis-regulatory regions will provide broad utility for genome interpretation from functional genomics to clinical applications. The DECRES model demonstrates potentials of deep learning technologies when combined with high-throughput sequencing data, and inspires the development of other advanced neural network models for further improvement of genome annotations.
Genomic Sequence around Butterfly Wing Development Genes: Annotation and Comparative Analysis
Conceição, Inês C.; Long, Anthony D.; Gruber, Jonathan D.; Beldade, Patrícia
2011-01-01
Background Analysis of genomic sequence allows characterization of genome content and organization, and access beyond gene-coding regions for identification of functional elements. BAC libraries, where relatively large genomic regions are made readily available, are especially useful for species without a fully sequenced genome and can increase genomic coverage of phylogenetic and biological diversity. For example, no butterfly genome is yet available despite the unique genetic and biological properties of this group, such as diversified wing color patterns. The evolution and development of these patterns is being studied in a few target species, including Bicyclus anynana, where a whole-genome BAC library allows targeted access to large genomic regions. Methodology/Principal Findings We characterize ∼1.3 Mb of genomic sequence around 11 selected genes expressed in B. anynana developing wings. Extensive manual curation of in silico predictions, also making use of a large dataset of expressed genes for this species, identified repetitive elements and protein coding sequence, and highlighted an expansion of Alcohol dehydrogenase genes. Comparative analysis with orthologous regions of the lepidopteran reference genome allowed assessment of conservation of fine-scale synteny (with detection of new inversions and translocations) and of DNA sequence (with detection of high levels of conservation of non-coding regions around some, but not all, developmental genes). Conclusions The general properties and organization of the available B. anynana genomic sequence are similar to the lepidopteran reference, despite the more than 140 MY divergence. Our results lay the groundwork for further studies of new interesting findings in relation to both coding and non-coding sequence: 1) the Alcohol dehydrogenase expansion with higher similarity between the five tandemly-repeated B. anynana paralogs than with the corresponding B. mori orthologs, and 2) the high conservation of non-coding sequence around the genes wingless and Ecdysone receptor, both involved in multiple developmental processes including wing pattern formation. PMID:21909358
Natural variation in non-coding regions underlying phenotypic diversity in budding yeast
Salinas, Francisco; de Boer, Carl G.; Abarca, Valentina; García, Verónica; Cuevas, Mara; Araos, Sebastian; Larrondo, Luis F.; Martínez, Claudio; Cubillos, Francisco A.
2016-01-01
Linkage mapping studies in model organisms have typically focused their efforts in polymorphisms within coding regions, ignoring those within regulatory regions that may contribute to gene expression variation. In this context, differences in transcript abundance are frequently proposed as a source of phenotypic diversity between individuals, however, until now, little molecular evidence has been provided. Here, we examined Allele Specific Expression (ASE) in six F1 hybrids from Saccharomyces cerevisiae derived from crosses between representative strains of the four main lineages described in yeast. ASE varied between crosses with levels ranging between 28% and 60%. Part of the variation in expression levels could be explained by differences in transcription factors binding to polymorphic cis-regulations and to differences in trans-activation depending on the allelic form of the TF. Analysis on highly expressed alleles on each background suggested ASN1 as a candidate transcript underlying nitrogen consumption differences between two strains. Further promoter allele swap analysis under fermentation conditions confirmed that coding and non-coding regions explained aspartic and glutamic acid consumption differences, likely due to a polymorphism affecting Uga3 binding. Together, we provide a new catalogue of variants to bridge the gap between genotype and phenotype. PMID:26898953
Zhao, Guangyu; Li, Hu; Zhao, Ping; Cai, Wanzhi
2015-01-01
In this study, we sequenced four new mitochondrial genomes and presented comparative mitogenomic analyses of five species in the genus Peirates (Hemiptera: Reduviidae). Mitochondrial genomes of these five assassin bugs had a typical set of 37 genes and retained the ancestral gene arrangement of insects. The A+T content, AT- and GC-skews were similar to the common base composition biases of insect mtDNA. Genomic size ranges from 15,702 bp to 16,314 bp and most of the size variation was due to length and copy number of the repeat unit in the putative control region. All of the control region sequences included large tandem repeats present in two or more copies. Our result revealed similarity in mitochondrial genomes of P. atromaculatus, P. fulvescens and P. turpis, as well as the highly conserved genomic-level characteristics of these three species, e.g., the same start and stop codons of protein-coding genes, conserved secondary structure of tRNAs, identical location and length of non-coding and overlapping regions, and conservation of structural elements and tandem repeat unit in control region. Phylogenetic analyses also supported a close relationship between P. atromaculatus, P. fulvescens and P. turpis, which might be recently diverged species. The present study indicates that mitochondrial genome has important implications on phylogenetics, population genetics and speciation in the genus Peirates. PMID:25689825
Sost, independent of the non-coding enhancer ECR5, is required for bone mechanoadaptation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robling, Alexander G.; Kang, Kyung Shin; Bullock, Whitney A.
Here, sclerostin ( Sost) is a negative regulator of bone formation that acts upon the Wnt signaling pathway. Sost is mechanically regulated at both mRNA and protein level such that loading represses and unloading enhances Sost expression, in osteocytes and in circulation. The non-coding evolutionarily conserved enhancer ECR5 has been previously reported as a transcriptional regulatory element required for modulating Sost expression in osteocytes. Here we explored the mechanisms by which ECR5, or several other putative transcriptional enhancers regulate Sost expression, in response to mechanical stimulation. We found that in vivo ulna loading is equally osteoanabolic in wildtype and Sostmore » –/– mice, although Sost is required for proper distribution of load-induced bone formation to regions of high strain. Using Luciferase reporters carrying the ECR5 non-coding enhancer and heterologous or homologous h SOST promoters, we found that ECR5 is mechanosensitive in vitro and that ECR5-driven Luciferase activity decreases in osteoblasts exposed to oscillatory fluid flow. Yet, ECR5–/– mice showed similar magnitude of load-induced bone formation and similar periosteal distribution of bone formation to high-strain regions compared to wildtype mice. Further, we found that in contrast to Sost–/– mice, which are resistant to disuse-induced bone loss, ECR5–/– mice lose bone upon unloading to a degree similar to wildtype control mice. ECR5 deletion did not abrogate positive effects of unloading on Sost, suggesting that additional transcriptional regulators and regulatory elements contribute to load-induced regulation of Sost.« less
Sost, independent of the non-coding enhancer ECR5, is required for bone mechanoadaptation
Robling, Alexander G.; Kang, Kyung Shin; Bullock, Whitney A.; ...
2016-09-04
Here, sclerostin ( Sost) is a negative regulator of bone formation that acts upon the Wnt signaling pathway. Sost is mechanically regulated at both mRNA and protein level such that loading represses and unloading enhances Sost expression, in osteocytes and in circulation. The non-coding evolutionarily conserved enhancer ECR5 has been previously reported as a transcriptional regulatory element required for modulating Sost expression in osteocytes. Here we explored the mechanisms by which ECR5, or several other putative transcriptional enhancers regulate Sost expression, in response to mechanical stimulation. We found that in vivo ulna loading is equally osteoanabolic in wildtype and Sostmore » –/– mice, although Sost is required for proper distribution of load-induced bone formation to regions of high strain. Using Luciferase reporters carrying the ECR5 non-coding enhancer and heterologous or homologous h SOST promoters, we found that ECR5 is mechanosensitive in vitro and that ECR5-driven Luciferase activity decreases in osteoblasts exposed to oscillatory fluid flow. Yet, ECR5–/– mice showed similar magnitude of load-induced bone formation and similar periosteal distribution of bone formation to high-strain regions compared to wildtype mice. Further, we found that in contrast to Sost–/– mice, which are resistant to disuse-induced bone loss, ECR5–/– mice lose bone upon unloading to a degree similar to wildtype control mice. ECR5 deletion did not abrogate positive effects of unloading on Sost, suggesting that additional transcriptional regulators and regulatory elements contribute to load-induced regulation of Sost.« less
Hybrid 3D model for the interaction of plasma thruster plumes with nearby objects
NASA Astrophysics Data System (ADS)
Cichocki, Filippo; Domínguez-Vázquez, Adrián; Merino, Mario; Ahedo, Eduardo
2017-12-01
This paper presents a hybrid particle-in-cell (PIC) fluid approach to model the interaction of a plasma plume with a spacecraft and/or any nearby object. Ions and neutrals are modeled with a PIC approach, while electrons are treated as a fluid. After a first iteration of the code, the domain is split into quasineutral and non-neutral regions, based on non-neutrality criteria, such as the relative charge density and the Debye length-to-cell size ratio. At the material boundaries of the former quasineutral region, a dedicated algorithm ensures that the Bohm condition is met. In the latter non-neutral regions, the electron density and electric potential are obtained by solving the coupled electron momentum balance and Poisson equations. Boundary conditions for both the electric current and potential are finally obtained with a plasma sheath sub-code and an equivalent circuit model. The hybrid code is validated by applying it to a typical plasma plume-spacecraft interaction scenario, and the physics and capabilities of the model are finally discussed.
Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction.
Do, Ron; Stitziel, Nathan O; Won, Hong-Hee; Jørgensen, Anders Berg; Duga, Stefano; Angelica Merlini, Pier; Kiezun, Adam; Farrall, Martin; Goel, Anuj; Zuk, Or; Guella, Illaria; Asselta, Rosanna; Lange, Leslie A; Peloso, Gina M; Auer, Paul L; Girelli, Domenico; Martinelli, Nicola; Farlow, Deborah N; DePristo, Mark A; Roberts, Robert; Stewart, Alexander F R; Saleheen, Danish; Danesh, John; Epstein, Stephen E; Sivapalaratnam, Suthesh; Hovingh, G Kees; Kastelein, John J; Samani, Nilesh J; Schunkert, Heribert; Erdmann, Jeanette; Shah, Svati H; Kraus, William E; Davies, Robert; Nikpay, Majid; Johansen, Christopher T; Wang, Jian; Hegele, Robert A; Hechter, Eliana; Marz, Winfried; Kleber, Marcus E; Huang, Jie; Johnson, Andrew D; Li, Mingyao; Burke, Greg L; Gross, Myron; Liu, Yongmei; Assimes, Themistocles L; Heiss, Gerardo; Lange, Ethan M; Folsom, Aaron R; Taylor, Herman A; Olivieri, Oliviero; Hamsten, Anders; Clarke, Robert; Reilly, Dermot F; Yin, Wu; Rivas, Manuel A; Donnelly, Peter; Rossouw, Jacques E; Psaty, Bruce M; Herrington, David M; Wilson, James G; Rich, Stephen S; Bamshad, Michael J; Tracy, Russell P; Cupples, L Adrienne; Rader, Daniel J; Reilly, Muredach P; Spertus, John A; Cresci, Sharon; Hartiala, Jaana; Tang, W H Wilson; Hazen, Stanley L; Allayee, Hooman; Reiner, Alex P; Carlson, Christopher S; Kooperberg, Charles; Jackson, Rebecca D; Boerwinkle, Eric; Lander, Eric S; Schwartz, Stephen M; Siscovick, David S; McPherson, Ruth; Tybjaerg-Hansen, Anne; Abecasis, Goncalo R; Watkins, Hugh; Nickerson, Deborah A; Ardissino, Diego; Sunyaev, Shamil R; O'Donnell, Christopher J; Altshuler, David; Gabriel, Stacey; Kathiresan, Sekar
2015-02-05
Myocardial infarction (MI), a leading cause of death around the world, displays a complex pattern of inheritance. When MI occurs early in life, genetic inheritance is a major component to risk. Previously, rare mutations in low-density lipoprotein (LDL) genes have been shown to contribute to MI risk in individual families, whereas common variants at more than 45 loci have been associated with MI risk in the population. Here we evaluate how rare mutations contribute to early-onset MI risk in the population. We sequenced the protein-coding regions of 9,793 genomes from patients with MI at an early age (≤50 years in males and ≤60 years in females) along with MI-free controls. We identified two genes in which rare coding-sequence mutations were more frequent in MI cases versus controls at exome-wide significance. At low-density lipoprotein receptor (LDLR), carriers of rare non-synonymous mutations were at 4.2-fold increased risk for MI; carriers of null alleles at LDLR were at even higher risk (13-fold difference). Approximately 2% of early MI cases harbour a rare, damaging mutation in LDLR; this estimate is similar to one made more than 40 years ago using an analysis of total cholesterol. Among controls, about 1 in 217 carried an LDLR coding-sequence mutation and had plasma LDL cholesterol > 190 mg dl(-1). At apolipoprotein A-V (APOA5), carriers of rare non-synonymous mutations were at 2.2-fold increased risk for MI. When compared with non-carriers, LDLR mutation carriers had higher plasma LDL cholesterol, whereas APOA5 mutation carriers had higher plasma triglycerides. Recent evidence has connected MI risk with coding-sequence mutations at two genes functionally related to APOA5, namely lipoprotein lipase and apolipoprotein C-III (refs 18, 19). Combined, these observations suggest that, as well as LDL cholesterol, disordered metabolism of triglyceride-rich lipoproteins contributes to MI risk.
Pang, Erli; Wu, Xiaomei; Lin, Kui
2016-06-01
Protein evolution plays an important role in the evolution of each genome. Because of their functional nature, in general, most of their parts or sites are differently constrained selectively, particularly by purifying selection. Most previous studies on protein evolution considered individual proteins in their entirety or compared protein-coding sequences with non-coding sequences. Less attention has been paid to the evolution of different parts within each protein of a given genome. To this end, based on PfamA annotation of all human proteins, each protein sequence can be split into two parts: domains or unassigned regions. Using this rationale, single nucleotide polymorphisms (SNPs) in protein-coding sequences from the 1000 Genomes Project were mapped according to two classifications: SNPs occurring within protein domains and those within unassigned regions. With these classifications, we found: the density of synonymous SNPs within domains is significantly greater than that of synonymous SNPs within unassigned regions; however, the density of non-synonymous SNPs shows the opposite pattern. We also found there are signatures of purifying selection on both the domain and unassigned regions. Furthermore, the selective strength on domains is significantly greater than that on unassigned regions. In addition, among all of the human protein sequences, there are 117 PfamA domains in which no SNPs are found. Our results highlight an important aspect of protein domains and may contribute to our understanding of protein evolution.
NASA Astrophysics Data System (ADS)
Duan, Aiying; Jiang, Chaowei; Hu, Qiang; Zhang, Huai; Gary, G. Allen; Wu, S. T.; Cao, Jinbin
2017-06-01
Magnetic field extrapolation is an important tool to study the three-dimensional (3D) solar coronal magnetic field, which is difficult to directly measure. Various analytic models and numerical codes exist, but their results often drastically differ. Thus, a critical comparison of the modeled magnetic field lines with the observed coronal loops is strongly required to establish the credibility of the model. Here we compare two different non-potential extrapolation codes, a nonlinear force-free field code (CESE-MHD-NLFFF) and a non-force-free field (NFFF) code, in modeling a solar active region (AR) that has a sigmoidal configuration just before a major flare erupted from the region. A 2D coronal-loop tracing and fitting method is employed to study the 3D misalignment angles between the extrapolated magnetic field lines and the EUV loops as imaged by SDO/AIA. It is found that the CESE-MHD-NLFFF code with preprocessed magnetogram performs the best, outputting a field that matches the coronal loops in the AR core imaged in AIA 94 Å with a misalignment angle of ˜10°. This suggests that the CESE-MHD-NLFFF code, even without using the information of the coronal loops in constraining the magnetic field, performs as good as some coronal-loop forward-fitting models. For the loops as imaged by AIA 171 Å in the outskirts of the AR, all the codes including the potential field give comparable results of the mean misalignment angle (˜30°). Thus, further improvement of the codes is needed for a better reconstruction of the long loops enveloping the core region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Aiying; Zhang, Huai; Jiang, Chaowei
Magnetic field extrapolation is an important tool to study the three-dimensional (3D) solar coronal magnetic field, which is difficult to directly measure. Various analytic models and numerical codes exist, but their results often drastically differ. Thus, a critical comparison of the modeled magnetic field lines with the observed coronal loops is strongly required to establish the credibility of the model. Here we compare two different non-potential extrapolation codes, a nonlinear force-free field code (CESE–MHD–NLFFF) and a non-force-free field (NFFF) code, in modeling a solar active region (AR) that has a sigmoidal configuration just before a major flare erupted from themore » region. A 2D coronal-loop tracing and fitting method is employed to study the 3D misalignment angles between the extrapolated magnetic field lines and the EUV loops as imaged by SDO /AIA. It is found that the CESE–MHD–NLFFF code with preprocessed magnetogram performs the best, outputting a field that matches the coronal loops in the AR core imaged in AIA 94 Å with a misalignment angle of ∼10°. This suggests that the CESE–MHD–NLFFF code, even without using the information of the coronal loops in constraining the magnetic field, performs as good as some coronal-loop forward-fitting models. For the loops as imaged by AIA 171 Å in the outskirts of the AR, all the codes including the potential field give comparable results of the mean misalignment angle (∼30°). Thus, further improvement of the codes is needed for a better reconstruction of the long loops enveloping the core region.« less
Alterations of CHEK2 forkhead-associated domain increase the risk of Hodgkin lymphoma.
Havranek, O; Spacek, M; Hubacek, P; Mocikova, H; Markova, J; Trneny, M; Kleibl, Z
2011-01-01
Checkpoint kinase 2 gene (CHEK2) codes for an important mediator of DNA damage response pathway. Mutations in the CHEK2 gene increase the risk of several cancer types, however, their role in Hodgkin lymphoma (HL) has not been studied so far. The most frequent CHEK2 alterations (including c.470T>C; p.I157T) cluster into the forkhead-associated (FHA) domain-coding region of the CHEK2 gene. We performed mutation analysis of the CHEK2 gene segment coding for FHA domain using denaturing high-performance liquid chromatography in 298 HL patients and analyzed the impact of characterized CHEK2 gene variants on the risk of HL development and progression-free survival (PFS). The overall frequency of CHEK2 alterations was significantly higher in HL patients (17/298; 5.7%) compared to the previously analyzed non-cancer controls (19/683; 2.8%; p= 0.04). Presence of any alteration within the analyzed region of the CHEK2 gene was associated with increased risk of HL development (OR = 2.11; 95% CI = 1.08 - 4.13; p= 0.04). The most frequent I157T mutation was found in 4.0% of HL patients and 2.5% of controls (p = 0.22), however, the frequency of 5 other alterations (excluding I157T) was significantly higher in HL cases and associated with increased risk of HL development (OR = 5.81; 95% CI = 1.12 - 30.12; p= 0.03). PFS in HL patients did not differ between CHEK2 mutation carriers and non-carriers. The predominant I157T mutation together with other alterations in its proximity represent moderate genetic predisposition factor increasing the risk of HL development.
Tau mRNA 3'UTR-to-CDS ratio is increased in Alzheimer disease.
García-Escudero, Vega; Gargini, Ricardo; Martín-Maestro, Patricia; García, Esther; García-Escudero, Ramón; Avila, Jesús
2017-08-10
Neurons frequently show an imbalance in expression of the 3' untranslated region (3'UTR) relative to the coding DNA sequence (CDS) region of mature messenger RNAs (mRNA). The ratio varies among different cells or parts of the brain. The Map2 protein levels per cell depend on the 3'UTR-to-CDS ratio rather than the total mRNA amount, which suggests powerful regulation of protein expression by 3'UTR sequences. Here we found that MAPT (the microtubule-associated protein tau gene) 3'UTR levels are particularly high with respect to other genes; indeed, the 3'UTR-to-CDS ratio of MAPT is balanced in healthy brain in mouse and human. The tau protein accumulates in Alzheimer diseased brain. We nonetheless observed that the levels of RNA encoding MAPT/tau were diminished in these patients' brains. To explain this apparently contradictory result, we studied MAPT mRNA stoichiometry in coding and non-coding regions, and found that the 3'UTR-to-CDS ratio was higher in the hippocampus of Alzheimer disease patients, with higher tau protein but lower total mRNA levels. Our data indicate that changes in the 3'UTR-to-CDS ratio have a regulatory role in the disease. Future research should thus consider not only mRNA levels, but also the ratios between coding and non-coding regions. Copyright © 2017 Elsevier B.V. All rights reserved.
Zorc, Minja; Kunej, Tanja
2016-05-01
MicroRNAs (miRNAs) are a class of non-coding RNAs involved in posttranscriptional regulation of target genes. Regulation requires complementarity between target mRNA and the mature miRNA seed region, responsible for their recognition and binding. It has been estimated that each miRNA targets approximately 200 genes, and genetic variability of miRNA genes has been reported to affect phenotypic variability and disease susceptibility in humans, livestock species, and model organisms. Polymorphisms in miRNA genes could therefore represent biomarkers for phenotypic traits in livestock animals. In our previous study, we collected polymorphisms within miRNA genes in chicken. In the present study, we identified miRNA-related genomic overlaps to prioritize genomic regions of interest for further functional studies and biomarker discovery. Overlapping genomic regions in chicken were analyzed using the following bioinformatics tools and databases: miRNA SNiPer, Ensembl, miRBase, NCBI Blast, and QTLdb. Out of 740 known pre-miRNA genes, 263 (35.5 %) contain polymorphisms; among them, 35 contain more than three polymorphisms The most polymorphic miRNA genes in chicken are gga-miR-6662, containing 23 single nucleotide polymorphisms (SNPs) within the pre-miRNA region, including five consecutive SNPs, and gga-miR-6688, containing ten polymorphisms including three consecutive polymorphisms. Several miRNA-related genomic hotspots have been revealed in chicken genome; polymorphic miRNA genes are located within protein-coding and/or non-coding transcription units and quantitative trait loci (QTL) associated with production traits. The present study includes the first description of an exonic miRNA in a chicken genome, an overlap between the miRNA gene and the exon of the protein-coding gene (gga-miR-6578/HADHB), and the first report of a missense polymorphism located within a mature miRNA seed region. Identified miRNA-related genomic hotspots in chicken can serve researchers as a starting point for further functional studies and association studies with poultry production and health traits and the basis for systematic screening of exonic miRNAs and missense/miRNA seed polymorphisms in other genomes.
Moralli, Daniela; Nudel, Ron; Chan, May T M; Green, Catherine M; Volpi, Emanuela V; Benítez-Burraco, Antonio; Newbury, Dianne F; García-Bellido, Paloma
2015-01-01
We report on a young female, who presents with a severe speech and language disorder and a balanced de novo complex chromosomal rearrangement, likely to have resulted from a chromosome 7 pericentromeric inversion, followed by a chromosome 7 and 11 translocation. Using molecular cytogenetics, we mapped the four breakpoints to 7p21.1-15.3 (chromosome position: 20,954,043-21,001,537, hg19), 7q31 (chromosome position: 114,528,369-114,556,605, hg19), 7q21.3 (chromosome position: 93,884,065-93,933,453, hg19) and 11p12 (chromosome position: 38,601,145-38,621,572, hg19). These regions contain only non-coding transcripts (ENSG00000232790 on 7p21.1 and TCONS_00013886, TCONS_00013887, TCONS_00014353, TCONS_00013888 on 7q21) indicating that no coding sequences are directly disrupted. The breakpoint on 7q31 mapped 200 kb downstream of FOXP2, a well-known language gene. No splice site or non-synonymous coding variants were found in the FOXP2 coding sequence. We were unable to detect any changes in the expression level of FOXP2 in fibroblast cells derived from the proband, although this may be the result of the low expression level of FOXP2 in these cells. We conclude that the phenotype observed in this patient either arises from a subtle change in FOXP2 regulation due to the disruption of a downstream element controlling its expression, or from the direct disruption of non-coding RNAs.
Chen, Zhi-Teng; Du, Yu-Zhou
2017-01-01
The complete mitochondrial genome (mitogenome) of Nemoura nankinensis (Plecoptera: Nemouridae) was sequenced as the first reported mitogenome from the family Nemouridae. The N. nankinensis mitogenome was the longest (16,602 bp) among reported plecopteran mitogenomes, and it contains 37 genes including 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes and two ribosomal RNA (rRNA) genes. Most PCGs used standard ATN as start codons, and TAN as termination codons. All tRNA genes of N. nankinensis could fold into the cloverleaf secondary structures except for trnSer (AGN), whose dihydrouridine (DHU) arm was reduced to a small loop. There was also a large non-coding region (control region, CR) in the N. nankinensis mitogenome. The 1751 bp CR was the longest and had the highest A+T content (81.8%) among stoneflies. A large tandem repeat region, five potential stem-loop (SL) structures, four tRNA-like structures and four conserved sequence blocks (CSBs) were detected in the elongated CR. The presence of these tRNA-like structures in the CR has never been reported in other plecopteran mitogenomes. These novel features of the elongated CR in N. nankinensis may have functions associated with the process of replication and transcription. Finally, phylogenetic reconstruction suggested that Nemouridae was the sister-group of Capniidae. PMID:28475163
Chen, Zhi-Teng; Du, Yu-Zhou
2017-05-05
The complete mitochondrial genome (mitogenome) of Nemoura nankinensis (Plecoptera: Nemouridae) was sequenced as the first reported mitogenome from the family Nemouridae. The N. nankinensis mitogenome was the longest (16,602 bp) among reported plecopteran mitogenomes, and it contains 37 genes including 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes and two ribosomal RNA (rRNA) genes. Most PCGs used standard ATN as start codons, and TAN as termination codons. All tRNA genes of N. nankinensis could fold into the cloverleaf secondary structures except for trnSer ( AGN ), whose dihydrouridine (DHU) arm was reduced to a small loop. There was also a large non-coding region (control region, CR) in the N. nankinensis mitogenome. The 1751 bp CR was the longest and had the highest A+T content (81.8%) among stoneflies. A large tandem repeat region, five potential stem-loop (SL) structures, four tRNA-like structures and four conserved sequence blocks (CSBs) were detected in the elongated CR. The presence of these tRNA-like structures in the CR has never been reported in other plecopteran mitogenomes. These novel features of the elongated CR in N. nankinensis may have functions associated with the process of replication and transcription. Finally, phylogenetic reconstruction suggested that Nemouridae was the sister-group of Capniidae.
Krzeminska, Urszula; Wilson, Robyn; Rahman, Sadequr; Song, Beng Kah; Seneviratne, Sampath; Gan, Han Ming; Austin, Christopher M
2016-07-01
The complete mitochondrial genomes of two jungle crows (Corvus macrorhynchos) were sequenced. DNA was extracted from tissue samples obtained from shed feathers collected in the field in Sri Lanka and sequenced using the Illumina MiSeq Personal Sequencer. Jungle crow mitogenomes have a structural organization typical of the genus Corvus and are 16,927 bp and 17,066 bp in length, both comprising 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal subunit genes, and a non-coding control region. In addition, we complement already available house crow (Corvus spelendens) mitogenome resources by sequencing an individual from Singapore. A phylogenetic tree constructed from Corvidae family mitogenome sequences available on GenBank is presented. We confirm the monophyly of the genus Corvus and propose to use complete mitogenome resources for further intra- and interspecies genetic studies.
Germ-line and somatic EPHA2 coding variants in lens aging and cataract.
Bennett, Thomas M; M'Hamdi, Oussama; Hejtmancik, J Fielding; Shiels, Alan
2017-01-01
Rare germ-line mutations in the coding regions of the human EPHA2 gene (EPHA2) have been associated with inherited forms of pediatric cataract, whereas, frequent, non-coding, single nucleotide variants (SNVs) have been associated with age-related cataract. Here we sought to determine if germ-line EPHA2 coding SNVs were associated with age-related cataract in a case-control DNA panel (> 50 years) and if somatic EPHA2 coding SNVs were associated with lens aging and/or cataract in a post-mortem lens DNA panel (> 48 years). Micro-fluidic PCR amplification followed by targeted amplicon (exon) next-generation (deep) sequencing of EPHA2 (17-exons) afforded high read-depth coverage (1000x) for > 82% of reads in the cataract case-control panel (161 cases, 64 controls) and > 70% of reads in the post-mortem lens panel (35 clear lens pairs, 22 cataract lens pairs). Novel and reference (known) missense SNVs in EPHA2 that were predicted in silico to be functionally damaging were found in both cases and controls from the age-related cataract panel at variant allele frequencies (VAFs) consistent with germ-line transmission (VAF > 20%). Similarly, both novel and reference missense SNVs in EPHA2 were found in the post-mortem lens panel at VAFs consistent with a somatic origin (VAF > 3%). The majority of SNVs found in the cataract case-control panel and post-mortem lens panel were transitions and many occurred at di-pyrimidine sites that are susceptible to ultraviolet (UV) radiation induced mutation. These data suggest that novel germ-line (blood) and somatic (lens) coding SNVs in EPHA2 that are predicted to be functionally deleterious occur in adults over 50 years of age. However, both types of EPHA2 coding variants were present at comparable levels in individuals with or without age-related cataract making simple genotype-phenotype correlations inconclusive.
Germ-line and somatic EPHA2 coding variants in lens aging and cataract
Bennett, Thomas M.; M’Hamdi, Oussama; Hejtmancik, J. Fielding
2017-01-01
Rare germ-line mutations in the coding regions of the human EPHA2 gene (EPHA2) have been associated with inherited forms of pediatric cataract, whereas, frequent, non-coding, single nucleotide variants (SNVs) have been associated with age-related cataract. Here we sought to determine if germ-line EPHA2 coding SNVs were associated with age-related cataract in a case-control DNA panel (> 50 years) and if somatic EPHA2 coding SNVs were associated with lens aging and/or cataract in a post-mortem lens DNA panel (> 48 years). Micro-fluidic PCR amplification followed by targeted amplicon (exon) next-generation (deep) sequencing of EPHA2 (17-exons) afforded high read-depth coverage (1000x) for > 82% of reads in the cataract case-control panel (161 cases, 64 controls) and > 70% of reads in the post-mortem lens panel (35 clear lens pairs, 22 cataract lens pairs). Novel and reference (known) missense SNVs in EPHA2 that were predicted in silico to be functionally damaging were found in both cases and controls from the age-related cataract panel at variant allele frequencies (VAFs) consistent with germ-line transmission (VAF > 20%). Similarly, both novel and reference missense SNVs in EPHA2 were found in the post-mortem lens panel at VAFs consistent with a somatic origin (VAF > 3%). The majority of SNVs found in the cataract case-control panel and post-mortem lens panel were transitions and many occurred at di-pyrimidine sites that are susceptible to ultraviolet (UV) radiation induced mutation. These data suggest that novel germ-line (blood) and somatic (lens) coding SNVs in EPHA2 that are predicted to be functionally deleterious occur in adults over 50 years of age. However, both types of EPHA2 coding variants were present at comparable levels in individuals with or without age-related cataract making simple genotype-phenotype correlations inconclusive. PMID:29267365
The complete mitochondrial genome of the bagarius yarrelli from honghe river
NASA Astrophysics Data System (ADS)
Du, M.; Zhou, C. J.; Niu, B. Z.; Liu, Y. H.; Li, N.; Ai, J. L.; Xu, G. L.
2016-08-01
The total length of mitochondrial DNA sequence of the Bagarius yarrelli from the Honghe river of China is determined in this paper. The total length of the circular molecule is 16524 base pair which denoted a similar gene order to that of the other bony fishes, which include a non-coding control region, a replicated origin, two ribosome RNA (rRNA) genes, 22 transfer RNA (tRNA) genes as well as 13 protein-coding genes. Its whole base constitution is 31.4% for A, 26.9% for C, 15.7% for G and 26.0% for T, with an A+T bias of 57.4%. Those mitochondrial data would contribute to further study molecular evolution and population genetics of this species.
Complete mitochondrial genome of Chuanzhong black goat in southwest of China (Capra hircus).
Huang, Yong-Fu; Chen, Li-Peng; Zhao, Yong-Ju; Zhang, Hao; Na, Ri-Su; Zhao, Zhong-Quan; Zhang, Jia-Hua; Jiang, Cao-De; Ma, Yue-Hui; Sun, Ya-Wang; E, Guang-Xin
2016-09-01
The Chuanzhong black goat (Capra hircus) is a breed native to southwest of China. Its complete mitochondrial genome is 16,641 nt in length, consisting of 13 protein-coding genes, 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes, and a non-coding control region. As in other mammals, most mitochondrial genes are encoded on the heavy strand, except for ND6 and eight tRNA genes, which are encoded on the light strand. Its overall base composition is A: 33.5%, T: 27.3%, C: 26.1%, and G: 13.1%. The complete mitogenome of the Chinese indigenous breed of goat could provide a basic data for further phylogenetics analysis.
Standing your Ground to Exoribonucleases: Function of Flavivirus Long Non-coding RNAs
Charley, Phillida A.; Wilusz, Jeffrey
2015-01-01
Members of the Flaviviridae (e.g. Dengue virus, West Nile virus, and Hepatitis C virus) contain a positive-sense RNA genome that encodes a large polyprotein. It is now also clear most if not all of these viruses also produce an abundant subgenomic long non-coding RNA. These non-coding RNAs, which are called subgenomicflavivirus RNAs (sfRNAs) or Xrn1-resistant RNAs (xrRNAs), are stable decay intermediates generated from the viral genomic RNA through the stalling of the cellular exoribonuclease Xrn1 at highly structured regions. Several functions of these flavivirus long non-coding RNAs have been revealed in recent years. The generation of these sfRNAs/xrRNAs from viral transcripts results in the repression of Xrn1 and the dysregulation of cellular mRNA stability. The abundant sfRNAs also serve directly as a decoy for important cellular protein regulators of the interferon and RNA interference antiviral pathways. Thus the generation of long non-coding RNAs from flaviviruses, hepaciviruses and pestiviruses likely disrupts aspects of innate immunity and may directly contribute to viral replication, cytopathology and pathogenesis. PMID:26368052
Confinement properties of tokamak plasmas with extended regions of low magnetic shear
NASA Astrophysics Data System (ADS)
Graves, J. P.; Cooper, W. A.; Kleiner, A.; Raghunathan, M.; Neto, E.; Nicolas, T.; Lanthaler, S.; Patten, H.; Pfefferle, D.; Brunetti, D.; Lutjens, H.
2017-10-01
Extended regions of low magnetic shear can be advantageous to tokamak plasmas. But the core and edge can be susceptible to non-resonant ideal fluctuations due to the weakened restoring force associated with magnetic field line bending. This contribution shows how saturated non-linear phenomenology, such as 1 / 1 Long Lived Modes, and Edge Harmonic Oscillations associated with QH-modes, can be modelled accurately using the non-linear stability code XTOR, the free boundary 3D equilibrium code VMEC, and non-linear analytic theory. That the equilibrium approach is valid is particularly valuable because it enables advanced particle confinement studies to be undertaken in the ordinarily difficult environment of strongly 3D magnetic fields. The VENUS-LEVIS code exploits the Fourier description of the VMEC equilibrium fields, such that full Lorenzian and guiding centre approximated differential operators in curvilinear angular coordinates can be evaluated analytically. Consequently, the confinement properties of minority ions such as energetic particles and high Z impurities can be calculated accurately over slowing down timescales in experimentally relevant 3D plasmas.
The complete mitochondrial genome of Pomacea canaliculata (Gastropoda: Ampullariidae).
Zhou, Xuming; Chen, Yu; Zhu, Shanliang; Xu, Haigen; Liu, Yan; Chen, Lian
2016-01-01
The mitochondrial genome of Pomacea canaliculata (Gastropoda: Ampullariidae) is the first complete mtDNA sequence reported in the genus Pomacea. The total length of mtDNA is 15,707 bp, which containing 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs, and a 359 bp non-coding region. The A + T content of the overall base composition of H-strand is 71.7% (T: 41%, C: 12.7%, A: 30.7%, G: 15.6%). ATP6, ATP8, CO1, CO2, ND1-3, ND5, ND6, ND4L and Cyt b genes begin with ATG as start codon, CO3 and ND4 begin with ATA. ATP8, CO2-3, ND4L, ND2-6 and Cyt b genes are terminated with TAA as stop codon, ATP6, ND1, and CO1 end with TAG. A long non-coding region is found and a 23 bp repeat unit repeat 11 times in this region.
Junk DNA and the long non-coding RNA twist in cancer genetics
Ling, Hui; Vincent, Kimberly; Pichler, Martin; Fodde, Riccardo; Berindan-Neagoe, Ioana; Slack, Frank J.; Calin, George A
2015-01-01
The central dogma of molecular biology states that the flow of genetic information moves from DNA to RNA to protein. However, in the last decade this dogma has been challenged by new findings on non-coding RNAs (ncRNAs) such as microRNAs (miRNAs). More recently, long non-coding RNAs (lncRNAs) have attracted much attention due to their large number and biological significance. Many lncRNAs have been identified as mapping to regulatory elements including gene promoters and enhancers, ultraconserved regions, and intergenic regions of protein-coding genes. Yet, the biological function and molecular mechanisms of lncRNA in human diseases in general and cancer in particular remain largely unknown. Data from the literature suggest that lncRNA, often via interaction with proteins, functions in specific genomic loci or use their own transcription loci for regulatory activity. In this review, we summarize recent findings supporting the importance of DNA loci in lncRNA function, and the underlying molecular mechanisms via cis or trans regulation, and discuss their implications in cancer. In addition, we use the 8q24 genomic locus, a region containing interactive SNPs, DNA regulatory elements and lncRNAs, as an example to illustrate how single nucleotide polymorphism (SNP) located within lncRNAs may be functionally associated with the individual’s susceptibility to cancer. PMID:25619839
Comparing TCV experimental VDE responses with DINA code simulations
NASA Astrophysics Data System (ADS)
Favez, J.-Y.; Khayrutdinov, R. R.; Lister, J. B.; Lukash, V. E.
2002-02-01
The DINA free-boundary equilibrium simulation code has been implemented for TCV, including the full TCV feedback and diagnostic systems. First results showed good agreement with control coil perturbations and correctly reproduced certain non-linear features in the experimental measurements. The latest DINA code simulations, presented in this paper, exploit discharges with different cross-sectional shapes and different vertical instability growth rates which were subjected to controlled vertical displacement events (VDEs), extending previous work with the DINA code on the DIII-D tokamak. The height of the TCV vessel allows observation of the non-linear evolution of the VDE growth rate as regions of different vertical field decay index are crossed. The vertical movement of the plasma is found to be well modelled. For most experiments, DINA reproduces the S-shape of the vertical displacement in TCV with excellent precision. This behaviour cannot be modelled using linear time-independent models because of the predominant exponential shape due to the unstable pole of any linear time-independent model. The other most common equilibrium parameters like the plasma current Ip, the elongation κ, the triangularity δ, the safety factor q, the ratio between the averaged plasma kinetic pressure and the pressure of the poloidal magnetic field at the edge of the plasma βp, and the internal self inductance li also show acceptable agreement. The evolution of the growth rate γ is estimated and compared with the evolution of the closed-loop growth rate calculated with the RZIP linear model, confirming the origin of the observed behaviour.
Sanges, Remo; Hadzhiev, Yavor; Gueroult-Bellone, Marion; Roure, Agnes; Ferg, Marco; Meola, Nicola; Amore, Gabriele; Basu, Swaraj; Brown, Euan R.; De Simone, Marco; Petrera, Francesca; Licastro, Danilo; Strähle, Uwe; Banfi, Sandro; Lemaire, Patrick; Birney, Ewan; Müller, Ferenc; Stupka, Elia
2013-01-01
Co-option of cis-regulatory modules has been suggested as a mechanism for the evolution of expression sites during development. However, the extent and mechanisms involved in mobilization of cis-regulatory modules remains elusive. To trace the history of non-coding elements, which may represent candidate ancestral cis-regulatory modules affirmed during chordate evolution, we have searched for conserved elements in tunicate and vertebrate (Olfactores) genomes. We identified, for the first time, 183 non-coding sequences that are highly conserved between the two groups. Our results show that all but one element are conserved in non-syntenic regions between vertebrate and tunicate genomes, while being syntenic among vertebrates. Nevertheless, in all the groups, they are significantly associated with transcription factors showing specific functions fundamental to animal development, such as multicellular organism development and sequence-specific DNA binding. The majority of these regions map onto ultraconserved elements and we demonstrate that they can act as functional enhancers within the organism of origin, as well as in cross-transgenesis experiments, and that they are transcribed in extant species of Olfactores. We refer to the elements as ‘Olfactores conserved non-coding elements’. PMID:23393190
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poliakov, Alexander; Couronne, Olivier
2002-11-04
Aligning large vertebrate genomes that are structurally complex poses a variety of problems not encountered on smaller scales. Such genomes are rich in repetitive elements and contain multiple segmental duplications, which increases the difficulty of identifying true orthologous SNA segments in alignments. The sizes of the sequences make many alignment algorithms designed for comparing single proteins extremely inefficient when processing large genomic intervals. We integrated both local and global alignment tools and developed a suite of programs for automatically aligning large vertebrate genomes and identifying conserved non-coding regions in the alignments. Our method uses the BLAT local alignment program tomore » find anchors on the base genome to identify regions of possible homology for a query sequence. These regions are postprocessed to find the best candidates which are then globally aligned using the AVID global alignment program. In the last step conserved non-coding segments are identified using VISTA. Our methods are fast and the resulting alignments exhibit a high degree of sensitivity, covering more than 90% of known coding exons in the human genome. The GenomeVISTA software is a suite of Perl programs that is built on a MySQL database platform. The scheduler gets control data from the database, builds a queve of jobs, and dispatches them to a PC cluster for execution. The main program, running on each node of the cluster, processes individual sequences. A Perl library acts as an interface between the database and the above programs. The use of a separate library allows the programs to function independently of the database schema. The library also improves on the standard Perl MySQL database interfere package by providing auto-reconnect functionality and improved error handling.« less
Methodological studies on the VVER-440 control assembly calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hordosy, G.; Kereszturi, A.; Maraczy, C.
1995-12-31
The control assembly regions of VVER-440 reactors are represented by 2-group albedo matrices in the global calculations of the KARATE code system. Some methodological aspects of calculating albedo matrices with the COLA transport code are presented. Illustrations are given how these matrices depend on the relevant parameters describing the boron steel and steel regions of the control assemblies. The calculation of the response matrix for a node consisting of two parts filled with different materials is discussed.
The complete mitochondrial genome of Gobiobotia filifer (Teleostei, Cypriniformes: Cyprinidae).
Li, Qiang; Liu, Ya; Zhou, Jian; Gong, Quan; Li, Hua; Lai, Jiansheng; Li, Lianman
2016-09-01
The Gobiobotia filifer is a small economic fish which distributes in the upstream of Yangtze River and its distributaries. For the environmental pollution and overfishing, its population declined drastically in recent decades, so it is essential to protect its resource. In this study, the complete mitochondrial genome sequence of G. filifer was determined with PCR technology, which contains 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and a non-coding control region with the total length of 16,613 bp. The order and composition of genes were similar to most of the other teleost fish. Most of the genes were encoded on heavy strand, except for ND6 genes and eight tRNAs. Just like most other vertebrates, the bias of G and C has been found in different genes/regions. The complete mitochondrial genome sequence of G. filifer would contribute to better understand evolution of this lineage, population genetics, and will help administrative department to make rules and laws to protect this lineage.
The complete mitochondrial genome of Liobagrus marginatus (Teleostei, Siluriformes: Amblycipitidae).
Li, Qiang; Du, Jun; Liu, Ya; Zhou, Jian; Ke, Hongyu; Liu, Chao; Liu, Guangxun
2014-04-01
The Liobagrus marginatus is an economic fish which distribute in the upstream of Yangtze river and its distributary. For its taste fresh, environmental pollution and overfishing, its population declined drastically and body miniaturization in recent decades, so it is essential to protect its resource. In this study, the complete mitochondrial genome sequence of Liobagrus marginatus was sequenced, which contains 22 tRNA genes, 13 protein-coding genes, 2 rRNA genes, and a non-coding control region with the total length of 16,497 bp. The gene arrangement and composition are similar to most of other fish. Most of the genes are encoded on heavy-strand, except for eight tRNA and ND6 genes. Just like most other vertebrates, the bias of G and C has been found in statistics results of different genes/regions. The complete mitochondrial genome sequence of Liobagrus marginatus would contribute to better understand population genetics, evolution of this lineage, and will help administrative departments to make rules and laws to protect it.
Drögemüller, Cord; Jagannathan, Vidhya; Keller, Irene; Wüthrich, Daniel; Bruggmann, Rémy; Schütz, Ekkehard; Demmel, Steffi; Moser, Simon; Signer-Hasler, Heidi; Pieńkowska-Schelling, Aldona; Schelling, Claude; Sande, Marcos; Rongen, Ronald
2017-01-01
Belted cattle have a circular belt of unpigmented hair and skin around their midsection. The belt is inherited as a monogenic autosomal dominant trait. We mapped the causative variant to a 37 kb segment on bovine chromosome 3. Whole genome sequence data of 2 belted and 130 control cattle yielded only one private genetic variant in the critical interval in the two belted animals. The belt-associated variant was a copy number variant (CNV) involving the quadruplication of a 6 kb non-coding sequence located approximately 16 kb upstream of the TWIST2 gene. Increased copy numbers at this CNV were strongly associated with the belt phenotype in a cohort of 333 cases and 1322 controls. We hypothesized that the CNV causes aberrant expression of TWIST2 during neural crest development, which might negatively affect melanoblasts. Functional studies showed that ectopic expression of bovine TWIST2 in neural crest in transgenic zebrafish led to a decrease in melanocyte numbers. Our results thus implicate an unsuspected involvement of TWIST2 in regulating pigmentation and reveal a non-coding CNV underlying a captivating Mendelian character. PMID:28658273
Weisberg, Jill; McCullough, Stephen; Emmorey, Karen
2018-01-01
Code-blends (simultaneous words and signs) are a unique characteristic of bimodal bilingual communication. Using fMRI, we investigated code-blend comprehension in hearing native ASL-English bilinguals who made a semantic decision (edible?) about signs, audiovisual words, and semantically equivalent code-blends. English and ASL recruited a similar fronto-temporal network with expected modality differences: stronger activation for English in auditory regions of bilateral superior temporal cortex, and stronger activation for ASL in bilateral occipitotemporal visual regions and left parietal cortex. Code-blend comprehension elicited activity in a combination of these regions, and no cognitive control regions were additionally recruited. Furthermore, code-blends elicited reduced activation relative to ASL presented alone in bilateral prefrontal and visual extrastriate cortices, and relative to English alone in auditory association cortex. Consistent with behavioral facilitation observed during semantic decisions, the findings suggest that redundant semantic content induces more efficient neural processing in language and sensory regions during bimodal language integration. PMID:26177161
Carr, Michael J; McCormack, Grace P; Mutton, Ken J; Crowley, Brendan
2006-04-01
Hematopoietic stem cell transplant recipients frequently develop BK virus (BKV)-associated hemorrhagic cystitis, which coincides with BK viruria. However, the precise role of BKV in the etiology of hemorrhagic cystitis in hematopoietic stem cell transplant recipients remains unclear, since approximately 50% of all such adult transplant recipients excrete BKV, yet do not develop this clinical condition. In the present study, BKV were analyzed to determine if mutations in the non-coding control region (NCCR), and specific BKV sub-types defined by sequence analysis of major capsid protein VP1, were associated with development of hemorrhagic cystitis in hematopoietic stem cell transplant recipients. The regions encoding VP1 and NCCRs of BKV in urine samples collected from 15 hematopoietic stem cell transplant recipients with hemorrhagic cystitis and 20 without this illness were amplified and sequenced. Sequence variations in the NCCRs of BKV were identified in urine samples from those with and without hemorrhagic cystitis. Furthermore, five unique sequence variations within transcription factor binding sites in the canonical NCCR, O-P-Q-R-S, were identified, representing new BKV variants from a population of cloned quasi-species obtained from patients with and without hemorrhagic cystitis. Thirty-five BKV VP1 sequences were analyzed by phylogenetic analysis but no specific BKV sub-type was associated with hemorrhagic cystitis. Five previously unrecognized naturally occurring variants of the BKV are described which involve amplifications, deletions, and rearrangements of the archetypal BKV NCCRs in individuals with and without hemorrhagic cystitis. Architectural rearrangements in the NCCRs of BKV did not appear to be a prerequisite for development of hemorrhagic cystitis in hematopoietic stem cell transplant recipients. Copyright 2006 Wiley-Liss, Inc.
Divergent transcription is associated with promoters of transcriptional regulators
2013-01-01
Background Divergent transcription is a wide-spread phenomenon in mammals. For instance, short bidirectional transcripts are a hallmark of active promoters, while longer transcripts can be detected antisense from active genes in conditions where the RNA degradation machinery is inhibited. Moreover, many described long non-coding RNAs (lncRNAs) are transcribed antisense from coding gene promoters. However, the general significance of divergent lncRNA/mRNA gene pair transcription is still poorly understood. Here, we used strand-specific RNA-seq with high sequencing depth to thoroughly identify antisense transcripts from coding gene promoters in primary mouse tissues. Results We found that a substantial fraction of coding-gene promoters sustain divergent transcription of long non-coding RNA (lncRNA)/mRNA gene pairs. Strikingly, upstream antisense transcription is significantly associated with genes related to transcriptional regulation and development. Their promoters share several characteristics with those of transcriptional developmental genes, including very large CpG islands, high degree of conservation and epigenetic regulation in ES cells. In-depth analysis revealed a unique GC skew profile at these promoter regions, while the associated coding genes were found to have large first exons, two genomic features that might enforce bidirectional transcription. Finally, genes associated with antisense transcription harbor specific H3K79me2 epigenetic marking and RNA polymerase II enrichment profiles linked to an intensified rate of early transcriptional elongation. Conclusions We concluded that promoters of a class of transcription regulators are characterized by a specialized transcriptional control mechanism, which is directly coupled to relaxed bidirectional transcription. PMID:24365181
Ahmad, Muneer; Jung, Low Tan; Bhuiyan, Al-Amin
2017-10-01
Digital signal processing techniques commonly employ fixed length window filters to process the signal contents. DNA signals differ in characteristics from common digital signals since they carry nucleotides as contents. The nucleotides own genetic code context and fuzzy behaviors due to their special structure and order in DNA strand. Employing conventional fixed length window filters for DNA signal processing produce spectral leakage and hence results in signal noise. A biological context aware adaptive window filter is required to process the DNA signals. This paper introduces a biological inspired fuzzy adaptive window median filter (FAWMF) which computes the fuzzy membership strength of nucleotides in each slide of window and filters nucleotides based on median filtering with a combination of s-shaped and z-shaped filters. Since coding regions cause 3-base periodicity by an unbalanced nucleotides' distribution producing a relatively high bias for nucleotides' usage, such fundamental characteristic of nucleotides has been exploited in FAWMF to suppress the signal noise. Along with adaptive response of FAWMF, a strong correlation between median nucleotides and the Π shaped filter was observed which produced enhanced discrimination between coding and non-coding regions contrary to fixed length conventional window filters. The proposed FAWMF attains a significant enhancement in coding regions identification i.e. 40% to 125% as compared to other conventional window filters tested over more than 250 benchmarked and randomly taken DNA datasets of different organisms. This study proves that conventional fixed length window filters applied to DNA signals do not achieve significant results since the nucleotides carry genetic code context. The proposed FAWMF algorithm is adaptive and outperforms significantly to process DNA signal contents. The algorithm applied to variety of DNA datasets produced noteworthy discrimination between coding and non-coding regions contrary to fixed window length conventional filters. Copyright © 2017 Elsevier B.V. All rights reserved.
An Internal Data Non-hiding Type Real-time Kernel and its Application to the Mechatronics Controller
NASA Astrophysics Data System (ADS)
Yoshida, Toshio
For the mechatronics equipment controller that controls robots and machine tools, high-speed motion control processing is essential. The software system of the controller like other embedded systems is composed of three layers software such as real-time kernel layer, middleware layer, and application software layer on the dedicated hardware. The application layer in the top layer is composed of many numbers of tasks, and application function of the system is realized by the cooperation between these tasks. In this paper we propose an internal data non-hiding type real-time kernel in which customizing the task control is possible only by change in the program code of the task side without any changes in the program code of real-time kernel. It is necessary to reduce the overhead caused by the real-time kernel task control for the speed-up of the motion control of the mechatronics equipment. For this, customizing the task control function is needed. We developed internal data non-cryptic type real-time kernel ZRK to evaluate this method, and applied to the control of the multi system automatic lathe. The effect of the speed-up of the task cooperation processing was able to be confirmed by combined task control processing on the task side program code using an internal data non-hiding type real-time kernel ZRK.
Prosdocimi, Francisco; Souto, Helena Magarinos; Ruschi, Piero Angeli; Furtado, Carolina; Jennings, W Bryan
2016-09-01
The genome of the versicoloured emerald hummingbird (Amazilia versicolor) was partially sequenced in one-sixth of an Illumina HiSeq lane. The mitochondrial genome was assembled using MIRA and MITObim software, yielding a circular molecule of 16,861 bp in length and deposited in GenBank under the accession number KF624601. The mitogenome contained 13 protein-coding genes, 22 transfer tRNAs, 2 ribosomal RNAs and 1 non-coding control region. The molecule was assembled using 21,927 sequencing reads of 100 bp each, resulting in ∼130 × coverage of uniformly distributed reads along the genome. This is the forth mitochondrial genome described for this highly diverse family of birds and may benefit further phylogenetic, phylogeographic, population genetic and species delimitation studies of hummingbirds.
Shen, Kang-Ning; Chen, Ching-Hung; Hsiao, Chung-Der
2016-05-01
In this study, the complete mitogenome sequence of hornlip mullet Plicomugil labiosus (Teleostei: Mugilidae) has been sequenced by next-generation sequencing method. The assembled mitogenome, consisting of 16,829 bp, had the typical vertebrate mitochondrial gene arrangement, including 13 protein coding genes, 22 transfer RNAs, 2 ribosomal RNAs genes and a non-coding control region of D-loop. D-loop contains 1057 bp length is located between tRNA-Pro and tRNA-Phe. The overall base composition of P. labiosus is 28.0% for A, 29.3% for C, 15.5% for G and 27.2% for T. The complete mitogenome may provide essential and important DNA molecular data for further population, phylogenetic and evolutionary analysis for Mugilidae.
Shen, Kang-Ning; Tsai, Shiou-Yi; Chen, Ching-Hung; Hsiao, Chung-Der; Durand, Jean-Dominique
2016-11-01
In this study, the complete mitogenome sequence of largescale mullet (Teleostei: Mugilidae) has been sequenced by the next-generation sequencing method. The assembled mitogenome, consisting of 16,832 bp, had the typical vertebrate mitochondrial gene arrangement, including 13 protein-coding genes, 22 transfer RNAs, two ribosomal RNAs genes, and a non-coding control region of D-loop. D-loop which has a length of 1094 bp is located between tRNA-Pro and tRNA-Phe. The overall base composition of largescale mullet is 27.8% for A, 30.1% for C, 16.2% for G, and 25.9% for T. The complete mitogenome may provide essential and important DNA molecular data for further phylogenetic and evolutionary analysis for Mugilidae.
Biochemical and genetic analysis of the role of the viral polymerase in enterovirus recombination.
Woodman, Andrew; Arnold, Jamie J; Cameron, Craig E; Evans, David J
2016-08-19
Genetic recombination in single-strand, positive-sense RNA viruses is a poorly understand mechanism responsible for generating extensive genetic change and novel phenotypes. By moving a critical cis-acting replication element (CRE) from the polyprotein coding region to the 3' non-coding region we have further developed a cell-based assay (the 3'CRE-REP assay) to yield recombinants throughout the non-structural coding region of poliovirus from dually transfected cells. We have additionally developed a defined biochemical assay in which the only protein present is the poliovirus RNA dependent RNA polymerase (RdRp), which recapitulates the strand transfer events of the recombination process. We have used both assays to investigate the role of the polymerase fidelity and nucleotide turnover rates in recombination. Our results, of both poliovirus intertypic and intratypic recombination in the CRE-REP assay and using a range of polymerase variants in the biochemical assay, demonstrate that RdRp fidelity is a fundamental determinant of recombination frequency. High fidelity polymerases exhibit reduced recombination and low fidelity polymerases exhibit increased recombination in both assays. These studies provide the basis for the analysis of poliovirus recombination throughout the non-structural region of the virus genome and provide a defined biochemical assay to further dissect this important evolutionary process. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Long Non-Coding RNAs Regulating Immunity in Insects
Satyavathi, Valluri; Ghosh, Rupam; Subramanian, Srividya
2017-01-01
Recent advances in modern technology have led to the understanding that not all genetic information is coded into protein and that the genomes of each and every organism including insects produce non-coding RNAs that can control different biological processes. Among RNAs identified in the last decade, long non-coding RNAs (lncRNAs) represent a repertoire of a hidden layer of internal signals that can regulate gene expression in physiological, pathological, and immunological processes. Evidence shows the importance of lncRNAs in the regulation of host–pathogen interactions. In this review, an attempt has been made to view the role of lncRNAs regulating immune responses in insects. PMID:29657286
Cenik, Can; Chua, Hon Nian; Singh, Guramrit; Akef, Abdalla; Snyder, Michael P; Palazzo, Alexander F; Moore, Melissa J; Roth, Frederick P
2017-03-01
Introns are found in 5' untranslated regions (5'UTRs) for 35% of all human transcripts. These 5'UTR introns are not randomly distributed: Genes that encode secreted, membrane-bound and mitochondrial proteins are less likely to have them. Curiously, transcripts lacking 5'UTR introns tend to harbor specific RNA sequence elements in their early coding regions. To model and understand the connection between coding-region sequence and 5'UTR intron status, we developed a classifier that can predict 5'UTR intron status with >80% accuracy using only sequence features in the early coding region. Thus, the classifier identifies transcripts with 5 ' proximal- i ntron- m inus-like-coding regions ("5IM" transcripts). Unexpectedly, we found that the early coding sequence features defining 5IM transcripts are widespread, appearing in 21% of all human RefSeq transcripts. The 5IM class of transcripts is enriched for non-AUG start codons, more extensive secondary structure both preceding the start codon and near the 5' cap, greater dependence on eIF4E for translation, and association with ER-proximal ribosomes. 5IM transcripts are bound by the exon junction complex (EJC) at noncanonical 5' proximal positions. Finally, N 1 -methyladenosines are specifically enriched in the early coding regions of 5IM transcripts. Taken together, our analyses point to the existence of a distinct 5IM class comprising ∼20% of human transcripts. This class is defined by depletion of 5' proximal introns, presence of specific RNA sequence features associated with low translation efficiency, N 1 -methyladenosines in the early coding region, and enrichment for noncanonical binding by the EJC. © 2017 Cenik et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Quantitative Profiling of Peptides from RNAs classified as non-coding
Prabakaran, Sudhakaran; Hemberg, Martin; Chauhan, Ruchi; Winter, Dominic; Tweedie-Cullen, Ry Y.; Dittrich, Christian; Hong, Elizabeth; Gunawardena, Jeremy; Steen, Hanno; Kreiman, Gabriel; Steen, Judith A.
2014-01-01
Only a small fraction of the mammalian genome codes for messenger RNAs destined to be translated into proteins, and it is generally assumed that a large portion of transcribed sequences - including introns and several classes of non-coding RNAs (ncRNAs) do not give rise to peptide products. A systematic examination of translation and physiological regulation of ncRNAs has not been conducted. Here, we use computational methods to identify the products of non-canonical translation in mouse neurons by analyzing unannotated transcripts in combination with proteomic data. This study supports the existence of non-canonical translation products from both intragenic and extragenic genomic regions, including peptides derived from anti-sense transcripts and introns. Moreover, the studied novel translation products exhibit temporal regulation similar to that of proteins known to be involved in neuronal activity processes. These observations highlight a potentially large and complex set of biologically regulated translational events from transcripts formerly thought to lack coding potential. PMID:25403355
RNA-Seq Based Transcriptional Map of Bovine Respiratory Disease Pathogen “Histophilus somni 2336”
Kumar, Ranjit; Lawrence, Mark L.; Watt, James; Cooksey, Amanda M.; Burgess, Shane C.; Nanduri, Bindu
2012-01-01
Genome structural annotation, i.e., identification and demarcation of the boundaries for all the functional elements in a genome (e.g., genes, non-coding RNAs, proteins and regulatory elements), is a prerequisite for systems level analysis. Current genome annotation programs do not identify all of the functional elements of the genome, especially small non-coding RNAs (sRNAs). Whole genome transcriptome analysis is a complementary method to identify “novel” genes, small RNAs, regulatory regions, and operon structures, thus improving the structural annotation in bacteria. In particular, the identification of non-coding RNAs has revealed their widespread occurrence and functional importance in gene regulation, stress and virulence. However, very little is known about non-coding transcripts in Histophilus somni, one of the causative agents of Bovine Respiratory Disease (BRD) as well as bovine infertility, abortion, septicemia, arthritis, myocarditis, and thrombotic meningoencephalitis. In this study, we report a single nucleotide resolution transcriptome map of H. somni strain 2336 using RNA-Seq method. The RNA-Seq based transcriptome map identified 94 sRNAs in the H. somni genome of which 82 sRNAs were never predicted or reported in earlier studies. We also identified 38 novel potential protein coding open reading frames that were absent in the current genome annotation. The transcriptome map allowed the identification of 278 operon (total 730 genes) structures in the genome. When compared with the genome sequence of a non-virulent strain 129Pt, a disproportionate number of sRNAs (∼30%) were located in genomic region unique to strain 2336 (∼18% of the total genome). This observation suggests that a number of the newly identified sRNAs in strain 2336 may be involved in strain-specific adaptations. PMID:22276113
RNA-seq based transcriptional map of bovine respiratory disease pathogen "Histophilus somni 2336".
Kumar, Ranjit; Lawrence, Mark L; Watt, James; Cooksey, Amanda M; Burgess, Shane C; Nanduri, Bindu
2012-01-01
Genome structural annotation, i.e., identification and demarcation of the boundaries for all the functional elements in a genome (e.g., genes, non-coding RNAs, proteins and regulatory elements), is a prerequisite for systems level analysis. Current genome annotation programs do not identify all of the functional elements of the genome, especially small non-coding RNAs (sRNAs). Whole genome transcriptome analysis is a complementary method to identify "novel" genes, small RNAs, regulatory regions, and operon structures, thus improving the structural annotation in bacteria. In particular, the identification of non-coding RNAs has revealed their widespread occurrence and functional importance in gene regulation, stress and virulence. However, very little is known about non-coding transcripts in Histophilus somni, one of the causative agents of Bovine Respiratory Disease (BRD) as well as bovine infertility, abortion, septicemia, arthritis, myocarditis, and thrombotic meningoencephalitis. In this study, we report a single nucleotide resolution transcriptome map of H. somni strain 2336 using RNA-Seq method.The RNA-Seq based transcriptome map identified 94 sRNAs in the H. somni genome of which 82 sRNAs were never predicted or reported in earlier studies. We also identified 38 novel potential protein coding open reading frames that were absent in the current genome annotation. The transcriptome map allowed the identification of 278 operon (total 730 genes) structures in the genome. When compared with the genome sequence of a non-virulent strain 129Pt, a disproportionate number of sRNAs (∼30%) were located in genomic region unique to strain 2336 (∼18% of the total genome). This observation suggests that a number of the newly identified sRNAs in strain 2336 may be involved in strain-specific adaptations.
A Dual Origin of the Xist Gene from a Protein-Coding Gene and a Set of Transposable Elements
Elisaphenko, Eugeny A.; Kolesnikov, Nikolay N.; Shevchenko, Alexander I.; Rogozin, Igor B.; Nesterova, Tatyana B.; Brockdorff, Neil; Zakian, Suren M.
2008-01-01
X-chromosome inactivation, which occurs in female eutherian mammals is controlled by a complex X-linked locus termed the X-inactivation center (XIC). Previously it was proposed that genes of the XIC evolved, at least in part, as a result of pseudogenization of protein-coding genes. In this study we show that the key XIC gene Xist, which displays fragmentary homology to a protein-coding gene Lnx3, emerged de novo in early eutherians by integration of mobile elements which gave rise to simple tandem repeats. The Xist gene promoter region and four out of ten exons found in eutherians retain homology to exons of the Lnx3 gene. The remaining six Xist exons including those with simple tandem repeats detectable in their structure have similarity to different transposable elements. Integration of mobile elements into Xist accompanies the overall evolution of the gene and presumably continues in contemporary eutherian species. Additionally we showed that the combination of remnants of protein-coding sequences and mobile elements is not unique to the Xist gene and is found in other XIC genes producing non-coding nuclear RNA. PMID:18575625
The development of non-coding RNA ontology.
Huang, Jingshan; Eilbeck, Karen; Smith, Barry; Blake, Judith A; Dou, Dejing; Huang, Weili; Natale, Darren A; Ruttenberg, Alan; Huan, Jun; Zimmermann, Michael T; Jiang, Guoqian; Lin, Yu; Wu, Bin; Strachan, Harrison J; de Silva, Nisansa; Kasukurthi, Mohan Vamsi; Jha, Vikash Kumar; He, Yongqun; Zhang, Shaojie; Wang, Xiaowei; Liu, Zixing; Borchert, Glen M; Tan, Ming
2016-01-01
Identification of non-coding RNAs (ncRNAs) has been significantly improved over the past decade. On the other hand, semantic annotation of ncRNA data is facing critical challenges due to the lack of a comprehensive ontology to serve as common data elements and data exchange standards in the field. We developed the Non-Coding RNA Ontology (NCRO) to handle this situation. By providing a formally defined ncRNA controlled vocabulary, the NCRO aims to fill a specific and highly needed niche in semantic annotation of large amounts of ncRNA biological and clinical data.
Diehl, William E.; Johnson, Welkin E.; Hunter, Eric
2013-01-01
All genes in the TRIM6/TRIM34/TRIM5/TRIM22 locus are type I interferon inducible, with TRIM5 and TRIM22 possessing antiviral properties. Evolutionary studies involving the TRIM6/34/5/22 locus have predominantly focused on the coding sequence of the genes, finding that TRIM5 and TRIM22 have undergone high rates of both non-synonymous nucleotide replacements and in-frame insertions and deletions. We sought to understand if divergent evolutionary pressures on TRIM6/34/5/22 coding regions have selected for modifications in the non-coding regions of these genes and explore whether such non-coding changes may influence the biological function of these genes. The transcribed genomic regions, including the introns, of TRIM6, TRIM34, TRIM5, and TRIM22 from ten Haplorhini primates and one prosimian species were analyzed for transposable element content. In Haplorhini species, TRIM5 displayed an exaggerated interspecies variability, predominantly resulting from changes in the composition of transposable elements in the large first and fourth introns. Multiple lineage-specific endogenous retroviral long terminal repeats (LTRs) were identified in the first intron of TRIM5 and TRIM22. In the prosimian genome, we identified a duplication of TRIM5 with a concomitant loss of TRIM22. The transposable element content of the prosimian TRIM5 genes appears to largely represent the shared Haplorhini/prosimian ancestral state for this gene. Furthermore, we demonstrated that one such differentially fixed LTR provides for species-specific transcriptional regulation of TRIM22 in response to p53 activation. Our results identify a previously unrecognized source of species-specific variation in the antiviral TRIM genes, which can lead to alterations in their transcriptional regulation. These observations suggest that there has existed long-term pressure for exaptation of retroviral LTRs in the non-coding regions of these genes. This likely resulted from serial viral challenges and provided a mechanism for rapid alteration of transcriptional regulation. To our knowledge, this represents the first report of persistent evolutionary pressure for the capture of retroviral LTR insertions. PMID:23516500
Ruoff, Chad M; Reaven, Nancy L; Funk, Susan E; McGaughey, Karen J; Ohayon, Maurice M; Guilleminault, Christian; Black, Jed
2017-02-01
To evaluate psychiatric comorbidity patterns in patients with a narcolepsy diagnosis in the United States. Truven Health Analytics MarketScan Research Databases were accessed to identify individuals ≥ 18 years of age with ≥ 1 ICD-9 diagnosis code(s) for narcolepsy continuously insured between 2006 and 2010 and non-narcolepsy controls matched 5:1 (age, gender, region, payer). Extensive subanalyses were conducted to confirm the validity of narcolepsy definitions. Narcolepsy subjects and controls were compared for frequency of psychiatric comorbid conditions (based on ICD-9 codes/Clinical Classification Software [CCS] level 2 categories) and psychiatric medication use. The final population included 9,312 narcolepsy subjects and 46,559 controls (each group, mean age = 46.1 years; 59% female). All categories of mental illness were significantly more prevalent in patients with narcolepsy versus controls, with the highest excess prevalence noted for CCS 5.8 Mood disorders (37.9% vs 13.8%; odds ratio [OR] = 4.0; 95% CI, 3.8-4.2), CCS 5.8.2 Depressive disorders (35.8% vs 13.0%; OR = 3.9; 95% CI, 3.7-4.1), and CCS 5.2 Anxiety disorders (25.1% vs 11.9%; OR = 2.5; 95% CI, 2.4-2.7). Excess prevalence of anxiety and mood disorders (narcolepsy vs controls) was higher in younger age groups versus older age groups. Psychiatric medication usage was higher in the narcolepsy group versus controls in the following categories: selective serotonin reuptake inhibitors (36% vs 17%), anxiolytic benzodiazepines (34% vs 19%), hypnotics (29% vs 13%), serotonin-norepinephrine reuptake inhibitors (21% vs 6%), and tricyclic antidepressants (13% vs 4%) (all P values < .0001). Narcolepsy is associated with significant comorbid psychiatric illness burden and higher psychiatric medication usage compared with the non-narcolepsy population. © Copyright 2016 Physicians Postgraduate Press, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helfenbein, Kevin G.; Brown, Wesley M.; Boore, Jeffrey L.
We have sequenced the complete mitochondrial DNA (mtDNA) of the articulate brachiopod Terebratalia transversa. The circular genome is 14,291 bp in size, relatively small compared to other published metazoan mtDNAs. The 37 genes commonly found in animal mtDNA are present; the size decrease is due to the truncation of several tRNA, rRNA, and protein genes, to some nucleotide overlaps, and to a paucity of non-coding nucleotides. Although the gene arrangement differs radically from those reported for other metazoans, some gene junctions are shared with two other articulate brachiopods, Laqueus rubellus and Terebratulina retusa. All genes in the T. transversa mtDNA,more » unlike those in most metazoan mtDNAs reported, are encoded by the same strand. The A+T content (59.1 percent) is low for a metazoan mtDNA, and there is a high propensity for homopolymer runs and a strong base-compositional strand bias. The coding strand is quite G+T-rich, a skew that is shared by the confamilial (laqueid) specie s L. rubellus, but opposite to that found in T. retusa, a cancellothyridid. These compositional skews are strongly reflected in the codon usage patterns and the amino acid compositions of the mitochondrial proteins, with markedly different usage observed between T. retusa and the two laqueids. This observation, plus the similarity of the laqueid non-coding regions to the reverse complement of the non-coding region of the cancellothyridid, suggest that an inversion that resulted in a reversal in the direction of first-strand replication has occurred in one of the two lineages. In addition to the presence of one non-coding region in T. transversa that is comparable to those in the other brachiopod mtDNAs, there are two others with the potential to form secondary structures; one or both of these may be involved in the process of transcript cleavage.« less
The complete mitochondrial genome of Rapana venosa (Gastropoda, Muricidae).
Sun, Xiujun; Yang, Aiguo
2016-01-01
The complete mitochondrial (mt) genome of the veined rapa whelk, Rapana venosa, was determined using genome walking techniques in this study. The total length of the mt genome sequence of R. venosa was 15,271 bp, which is comparable to the reported Muricidae mitogenomes to date. It contained 13 protein-coding genes, 21 transfer RNA genes, and two ribosomal RNA genes. A bias towards a higher representation of nucleotides A and T (69%) was detected in the mt genome of R. venosa. A small number of non-coding nucleotides (302 bp) was detected, and the largest non-coding region was 74 bp in length.
Small non-coding RNAs in streptomycetes.
Heueis, Nona; Vockenhuber, Michael-Paul; Suess, Beatrix
2014-01-01
Streptomycetes are Gram-positive, GC-rich, soil dwelling bacteria, occurring ubiquitary throughout nature. They undergo extensive morphological changes from spores to filamentous mycelia and produce a plethora of secondary metabolites. Owing to their complex life cycle, streptomycetes require efficient regulatory machinery for the control of gene expression. Therefore, they possess a large diversity of regulators. Within this review we summarize the current knowledge about the importance of small non-coding RNA for the control of gene expression in these organisms.
Fayaz, Shima; Fard-Esfahani, Pezhman; Fard-Esfahani, Armaghan; Mostafavi, Ehsan; Meshkani, Reza; Mirmiranpour, Hossein; Khaghani, Shahnaz
2012-01-01
Homologous recombination (HR) is the major pathway for repairing double strand breaks (DSBs) in eukaryotes and XRCC2 is an essential component of the HR repair machinery. To evaluate the potential role of mutations in gene repair by HR in individuals susceptible to differentiated thyroid carcinoma (DTC) we used high resolution melting (HRM) analysis, a recently introduced method for detecting mutations, to examine the entire XRCC2 coding region in an Iranian population. HRM analysis was used to screen for mutations in three XRCC2 coding regions in 50 patients and 50 controls. There was no variation in the HRM curves obtained from the analysis of exons 1 and 2 in the case and control groups. In exon 3, an Arg188His polymorphism (rs3218536) was detected as a new melting curve group (OR: 1.46; 95%CI: 0.432–4.969; p = 0.38) compared with the normal melting curve. We also found a new Ser150Arg polymorphism in exon 3 of the control group. These findings suggest that genetic variations in the XRCC2 coding region have no potential effects on susceptibility to DTC. However, further studies with larger populations are required to confirm this conclusion. PMID:22481871
Carver, Melissa N.; Müller, Ulrika; Bekiranov, Stefan; Auble, David T.
2017-01-01
Transcriptome studies on eukaryotic cells have revealed an unexpected abundance and diversity of noncoding RNAs synthesized by RNA polymerase II (Pol II), some of which influence the expression of protein-coding genes. Yet, much less is known about biogenesis of Pol II non-coding RNA than mRNAs. In the budding yeast Saccharomyces cerevisiae, initiation of non-coding transcripts by Pol II appears to be similar to that of mRNAs, but a distinct pathway is utilized for termination of most non-coding RNAs: the Sen1-dependent or “NNS” pathway. Here, we examine the effect on the S. cerevisiae transcriptome of conditional mutations in the genes encoding six different essential proteins that influence Sen1-dependent termination: Sen1, Nrd1, Nab3, Ssu72, Rpb11, and Hrp1. We observe surprisingly diverse effects on transcript abundance for the different proteins that cannot be explained simply by differing severity of the mutations. Rather, we infer from our results that termination of Pol II transcription of non-coding RNA genes is subject to complex combinatorial control that likely involves proteins beyond those studied here. Furthermore, we identify new targets and functions of Sen1-dependent termination, including a role in repression of meiotic genes in vegetative cells. In combination with other recent whole-genome studies on termination of non-coding RNAs, our results provide promising directions for further investigation. PMID:28665995
Sounds of silence: synonymous nucleotides as a key to biological regulation and complexity
Shabalina, Svetlana A.; Spiridonov, Nikolay A.; Kashina, Anna
2013-01-01
Messenger RNA is a key component of an intricate regulatory network of its own. It accommodates numerous nucleotide signals that overlap protein coding sequences and are responsible for multiple levels of regulation and generation of biological complexity. A wealth of structural and regulatory information, which mRNA carries in addition to the encoded amino acid sequence, raises the question of how these signals and overlapping codes are delineated along non-synonymous and synonymous positions in protein coding regions, especially in eukaryotes. Silent or synonymous codon positions, which do not determine amino acid sequences of the encoded proteins, define mRNA secondary structure and stability and affect the rate of translation, folding and post-translational modifications of nascent polypeptides. The RNA level selection is acting on synonymous sites in both prokaryotes and eukaryotes and is more common than previously thought. Selection pressure on the coding gene regions follows three-nucleotide periodic pattern of nucleotide base-pairing in mRNA, which is imposed by the genetic code. Synonymous positions of the coding regions have a higher level of hybridization potential relative to non-synonymous positions, and are multifunctional in their regulatory and structural roles. Recent experimental evidence and analysis of mRNA structure and interspecies conservation suggest that there is an evolutionary tradeoff between selective pressure acting at the RNA and protein levels. Here we provide a comprehensive overview of the studies that define the role of silent positions in regulating RNA structure and processing that exert downstream effects on proteins and their functions. PMID:23293005
Cheng, Hui; Li, Jinfeng; Zhang, Hong; Cai, Binhua; Gao, Zhihong
2017-01-01
Compared with other members of the family Rosaceae, the chloroplast genomes of Fragaria species exhibit low variation, and this situation has limited phylogenetic analyses; thus, complete chloroplast genome sequencing of Fragaria species is needed. In this study, we sequenced the complete chloroplast genome of F. × ananassa ‘Benihoppe’ using the Illumina HiSeq 2500-PE150 platform and then performed a combination of de novo assembly and reference-guided mapping of contigs to generate complete chloroplast genome sequences. The chloroplast genome exhibits a typical quadripartite structure with a pair of inverted repeats (IRs, 25,936 bp) separated by large (LSC, 85,531 bp) and small (SSC, 18,146 bp) single-copy (SC) regions. The length of the F. × ananassa ‘Benihoppe’ chloroplast genome is 155,549 bp, representing the smallest Fragaria chloroplast genome observed to date. The genome encodes 112 unique genes, comprising 78 protein-coding genes, 30 tRNA genes and four rRNA genes. Comparative analysis of the overall nucleotide sequence identity among ten complete chloroplast genomes confirmed that for both coding and non-coding regions in Rosaceae, SC regions exhibit higher sequence variation than IRs. The Ka/Ks ratio of most genes was less than 1, suggesting that most genes are under purifying selection. Moreover, the mVISTA results also showed a high degree of conservation in genome structure, gene order and gene content in Fragaria, particularly among three octoploid strawberries which were F. × ananassa ‘Benihoppe’, F. chiloensis (GP33) and F. virginiana (O477). However, when the sequences of the coding and non-coding regions of F. × ananassa ‘Benihoppe’ were compared in detail with those of F. chiloensis (GP33) and F. virginiana (O477), a number of SNPs and InDels were revealed by MEGA 7. Six non-coding regions (trnK-matK, trnS-trnG, atpF-atpH, trnC-petN, trnT-psbD and trnP-psaJ) with a percentage of variable sites greater than 1% and no less than five parsimony-informative sites were identified and may be useful for phylogenetic analysis of the genus Fragaria. PMID:29038765
Program Aids In Printing FORTRAN-Coded Output
NASA Technical Reports Server (NTRS)
Akian, Richard A.
1993-01-01
FORPRINT computer program prints FORTRAN-coded output files on most non-Postscript printers with such extra features as control of fonts for Epson and Hewlett Packard printers. Rewrites data to printer and inserts correct printer-control codes. Alternative uses include ability to separate data or ASCII file during printing by use of editing software to insert "1" in first column of data line that starts new page. Written in FORTRAN 77.
Modeling and Control of a Fixed Wing Tilt-Rotor Tri-Copter
NASA Astrophysics Data System (ADS)
Summers, Alexander
The following thesis considers modeling and control of a fixed wing tilt-rotor tri-copter. An emphasis of the conceptual design is made toward payload transport. Aerodynamic panel code and CAD design provide the base aerodynamic, geometric, mass, and inertia properties. A set of non-linear dynamics are created considering gravity, aerodynamics in vertical takeoff and landing (VTOL) and forward flight, and propulsion applied to a three degree of freedom system. A transition strategy, that removes trajectory planning by means of scheduled inputs, is theorized. Three discrete controllers, utilizing separate control techniques, are applied to ensure stability in the aerodynamic regions of VTOL, transition, and forward flight. The controller techniques include linear quadratic regulation, full state integral action, gain scheduling, and proportional integral derivative (PID) flight control. Simulation of the model control system for flight from forward to backward transition is completed with mass and center of gravity variation.
Nicolas, Laura; Cols, Montserrat; Choi, Jee Eun; Chaudhuri, Jayanta; Vuong, Bao
2018-01-01
Adaptive immune responses require the generation of a diverse repertoire of immunoglobulins (Igs) that can recognize and neutralize a seemingly infinite number of antigens. V(D)J recombination creates the primary Ig repertoire, which subsequently is modified by somatic hypermutation (SHM) and class switch recombination (CSR). SHM promotes Ig affinity maturation whereas CSR alters the effector function of the Ig. Both SHM and CSR require activation-induced cytidine deaminase (AID) to produce dU:dG mismatches in the Ig locus that are transformed into untemplated mutations in variable coding segments during SHM or DNA double-strand breaks (DSBs) in switch regions during CSR. Within the Ig locus, DNA repair pathways are diverted from their canonical role in maintaining genomic integrity to permit AID-directed mutation and deletion of gene coding segments. Recently identified proteins, genes, and regulatory networks have provided new insights into the temporally and spatially coordinated molecular interactions that control the formation and repair of DSBs within the Ig locus. Unravelling the genetic program that allows B cells to selectively alter the Ig coding regions while protecting non-Ig genes from DNA damage advances our understanding of the molecular processes that maintain genomic integrity as well as humoral immunity. PMID:29744038
Zhang, Wenping; Yue, Bisong; Wang, Xiaofang; Zhang, Xiuyue; Xie, Zhong; Liu, Nonglin; Fu, Wenyuan; Yuan, Yaohua; Chen, Daqing; Fu, Danghua; Zhao, Bo; Yin, Yuzhong; Yan, Xiahui; Wang, Xinjing; Zhang, Rongying; Liu, Jie; Li, Maoping; Tang, Yao; Hou, Rong; Zhang, Zhihe
2011-10-01
In order to investigate the mitochondrial genome of Panthera tigris amoyensis, two South China tigers (P25 and P27) were analyzed following 15 cymt-specific primer sets. The entire mtDNA sequence was found to be 16,957 bp and 17,001 bp long for P25 and P27 respectively, and this difference in length between P25 and P27 occurred in the number of tandem repeats in the RS-3 segment of the control region. The structural characteristics of complete P. t. amoyensis mitochondrial genomes were also highly similar to those of P. uncia. Additionally, the rate of point mutation was only 0.3% and a total of 59 variable sites between P25 and P27 were found. Out of the 59 variable sites, 6 were located in 6 different tRNA genes, 6 in the 2 rRNA genes, 7 in non-coding regions (one located between tRNA-Asn and tRNA-Tyr and six in the D-loop), and 40 in 10 protein-coding genes. COI held the largest amount of variable sites (9 sites) and Cytb contained the highest variable rate (0.7%) in the complete sequences. Moreover, out of the 40 variable sites located in 10 protein-coding genes, 12 sites were nonsynonymous.
NASA Astrophysics Data System (ADS)
Karakatsanis, L. P.; Pavlos, G. P.; Iliopoulos, A. C.; Pavlos, E. G.; Clark, P. M.; Duke, J. L.; Monos, D. S.
2018-09-01
This study combines two independent domains of science, the high throughput DNA sequencing capabilities of Genomics and complexity theory from Physics, to assess the information encoded by the different genomic segments of exonic, intronic and intergenic regions of the Major Histocompatibility Complex (MHC) and identify possible interactive relationships. The dynamic and non-extensive statistical characteristics of two well characterized MHC sequences from the homozygous cell lines, PGF and COX, in addition to two other genomic regions of comparable size, used as controls, have been studied using the reconstructed phase space theorem and the non-extensive statistical theory of Tsallis. The results reveal similar non-linear dynamical behavior as far as complexity and self-organization features. In particular, the low-dimensional deterministic nonlinear chaotic and non-extensive statistical character of the DNA sequences was verified with strong multifractal characteristics and long-range correlations. The nonlinear indices repeatedly verified that MHC sequences, whether exonic, intronic or intergenic include varying levels of information and reveal an interaction of the genes with intergenic regions, whereby the lower the number of genes in a region, the less the complexity and information content of the intergenic region. Finally we showed the significance of the intergenic region in the production of the DNA dynamics. The findings reveal interesting content information in all three genomic elements and interactive relationships of the genes with the intergenic regions. The results most likely are relevant to the whole genome and not only to the MHC. These findings are consistent with the ENCODE project, which has now established that the non-coding regions of the genome remain to be of relevance, as they are functionally important and play a significant role in the regulation of expression of genes and coordination of the many biological processes of the cell.
A subset of conserved mammalian long non-coding RNAs are fossils of ancestral protein-coding genes.
Hezroni, Hadas; Ben-Tov Perry, Rotem; Meir, Zohar; Housman, Gali; Lubelsky, Yoav; Ulitsky, Igor
2017-08-30
Only a small portion of human long non-coding RNAs (lncRNAs) appear to be conserved outside of mammals, but the events underlying the birth of new lncRNAs in mammals remain largely unknown. One potential source is remnants of protein-coding genes that transitioned into lncRNAs. We systematically compare lncRNA and protein-coding loci across vertebrates, and estimate that up to 5% of conserved mammalian lncRNAs are derived from lost protein-coding genes. These lncRNAs have specific characteristics, such as broader expression domains, that set them apart from other lncRNAs. Fourteen lncRNAs have sequence similarity with the loci of the contemporary homologs of the lost protein-coding genes. We propose that selection acting on enhancer sequences is mostly responsible for retention of these regions. As an example of an RNA element from a protein-coding ancestor that was retained in the lncRNA, we describe in detail a short translated ORF in the JPX lncRNA that was derived from an upstream ORF in a protein-coding gene and retains some of its functionality. We estimate that ~ 55 annotated conserved human lncRNAs are derived from parts of ancestral protein-coding genes, and loss of coding potential is thus a non-negligible source of new lncRNAs. Some lncRNAs inherited regulatory elements influencing transcription and translation from their protein-coding ancestors and those elements can influence the expression breadth and functionality of these lncRNAs.
Yao, Chiou-Ju; Chen, Ching-Hung; Hsiao, Chung-Der
2016-07-01
In this study, we used the next-generation sequencing method to deduce the complete mitogenome of Ginkgo-toothed beaked whale (Mesoplodon ginkgodens) for the first time. The nucleotide composition was asymmetric (33.3% A, 25.3% C, 12.6% G, and 28.7% T) with an overall GC content of 37.9%. The length of the assembled mitogenome was 16,339 bp and follows the typical vertebrate arrangement, including 13 protein coding genes, 22 transfer RNAs, 2 ribosomal RNAs genes, and a non-coding control region of D-loop. The D-loop contains 870 bp and is located between tRNA-Pro and tRNA-Phe. The complete mitogenome of Ginkgo-toothed beaked whale deduced in this study provides essential and important DNA molecular data for further phylogenetic and evolutionary analysis for cetaceans.
The complete mitochondrial genome of the Jacobin pigeon (Columba livia breed Jacobin).
He, Wen-Xiao; Jia, Jin-Feng
2015-06-01
The Jacobin is a breed of fancy pigeon developed over many years of selective breeding that originated in Asia. In the present work, we report the complete mitochondrial genome sequence of Jacobin pigeon for the first time. The total length of the mitogenome was 17,245 bp with the base composition of 30.18% for A, 23.98% for T, 31.88% for C, and 13.96% for G and an A-T (54.17 %)-rich feature was detected. It harbored 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and 1 non-coding control region. The arrangement of all genes was identical to the typical mitochondrial genomes of pigeon. The complete mitochondrial genome sequence of Jacobin pigeon would serve as an important data set of the germplasm resources for further study.
Egawa, Jun; Watanabe, Yuichiro; Shibuya, Masako; Endo, Taro; Sugimoto, Atsunori; Igeta, Hirofumi; Nunokawa, Ayako; Inoue, Emiko; Someya, Toshiyuki
2015-03-01
The oxytocin receptor (OXTR) is implicated in the pathophysiology of autism spectrum disorder (ASD). A recent study found a rare non-synonymous OXTR gene variation, rs35062132 (R376G), associated with ASD in a Japanese population. In order to investigate the association between rare non-synonymous OXTR variations and ASD, we resequenced OXTR and performed association analysis with ASD in a Japanese population. We resequenced the OXTR coding region in 213 ASD patients. Rare non-synonymous OXTR variations detected by resequencing were genotyped in 213 patients and 667 controls. We detected three rare non-synonymous variations: rs35062132 (R376G/C), rs151257822 (G334D), and g.8809426G>T (R150S). However, there was no significant association between these rare non-synonymous variations and ASD. Our present study does not support the contribution of rare non-synonymous OXTR variations to ASD susceptibility in the Japanese population. © 2014 The Authors. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.
Many human accelerated regions are developmental enhancers
Capra, John A.; Erwin, Genevieve D.; McKinsey, Gabriel; Rubenstein, John L. R.; Pollard, Katherine S.
2013-01-01
The genetic changes underlying the dramatic differences in form and function between humans and other primates are largely unknown, although it is clear that gene regulatory changes play an important role. To identify regulatory sequences with potentially human-specific functions, we and others used comparative genomics to find non-coding regions conserved across mammals that have acquired many sequence changes in humans since divergence from chimpanzees. These regions are good candidates for performing human-specific regulatory functions. Here, we analysed the DNA sequence, evolutionary history, histone modifications, chromatin state and transcription factor (TF) binding sites of a combined set of 2649 non-coding human accelerated regions (ncHARs) and predicted that at least 30% of them function as developmental enhancers. We prioritized the predicted ncHAR enhancers using analysis of TF binding site gain and loss, along with the functional annotations and expression patterns of nearby genes. We then tested both the human and chimpanzee sequence for 29 ncHARs in transgenic mice, and found 24 novel developmental enhancers active in both species, 17 of which had very consistent patterns of activity in specific embryonic tissues. Of these ncHAR enhancers, five drove expression patterns suggestive of different activity for the human and chimpanzee sequence at embryonic day 11.5. The changes to human non-coding DNA in these ncHAR enhancers may modify the complex patterns of gene expression necessary for proper development in a human-specific manner and are thus promising candidates for understanding the genetic basis of human-specific biology. PMID:24218637
Kapranov, Philipp; St Laurent, Georges; Raz, Tal; Ozsolak, Fatih; Reynolds, C Patrick; Sorensen, Poul H B; Reaman, Gregory; Milos, Patrice; Arceci, Robert J; Thompson, John F; Triche, Timothy J
2010-12-21
Discovery that the transcriptional output of the human genome is far more complex than predicted by the current set of protein-coding annotations and that most RNAs produced do not appear to encode proteins has transformed our understanding of genome complexity and suggests new paradigms of genome regulation. However, the fraction of all cellular RNA whose function we do not understand and the fraction of the genome that is utilized to produce that RNA remain controversial. This is not simply a bookkeeping issue because the degree to which this un-annotated transcription is present has important implications with respect to its biologic function and to the general architecture of genome regulation. For example, efforts to elucidate how non-coding RNAs (ncRNAs) regulate genome function will be compromised if that class of RNAs is dismissed as simply 'transcriptional noise'. We show that the relative mass of RNA whose function and/or structure we do not understand (the so called 'dark matter' RNAs), as a proportion of all non-ribosomal, non-mitochondrial human RNA (mt-RNA), can be greater than that of protein-encoding transcripts. This observation is obscured in studies that focus only on polyA-selected RNA, a method that enriches for protein coding RNAs and at the same time discards the vast majority of RNA prior to analysis. We further show the presence of a large number of very long, abundantly-transcribed regions (100's of kb) in intergenic space and further show that expression of these regions is associated with neoplastic transformation. These overlap some regions found previously in normal human embryonic tissues and raises an interesting hypothesis as to the function of these ncRNAs in both early development and neoplastic transformation. We conclude that 'dark matter' RNA can constitute the majority of non-ribosomal, non-mitochondrial-RNA and a significant fraction arises from numerous very long, intergenic transcribed regions that could be involved in neoplastic transformation.
Zhang, Yue; Feng, Shiqian; Zeng, Yiying; Ning, Hong; Liu, Lijun; Zhao, Zihua; Jiang, Fan; Li, Zhihong
2018-06-23
Bactrocera tsuneonis (Miyake), generally known as the Japanese orange fly, is considered to be a major pest of commercial citrus crops. It has a limited distribution in China, Japan and Vietnam, but it has the potential to invade areas outside of Asia. More genetic information of B. tsuneonis should be obtained in order to develop effective methodologies for rapid and accurate molecular identification due to the difficulty of distinguishing it from Bactrocera minax based on morphological features. We report here the whole mitochondrial genome of B. tsuneonis sequenced by next-generation sequencing. This mitogenome sequence had a total length of 15,865 bp, a typical circular molecule comprising 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and a non-coding region (A + T-rich control region). The structure and organization of the molecule were typical and similar compared with the published homologous sequences of other fruit flies in Tephritidae. The phylogenetic analyses based on the mitochondrial genome data presented a close genetic relationship between B. tsuneonis and B. minax. This is the first report of the complete mitochondrial genome of B. tsuneonis, and it can be used in further studies of species diagnosis, evolutionary biology, prevention and control. Copyright © 2018. Published by Elsevier B.V.
MicroRNAs and non-coding RNAs in virus-infected cells
Ouellet, Dominique L.; Provost, Patrick
2010-01-01
Within the past few years, microRNAs (miRNAs) and other non-coding RNAs (ncRNAs) have emerged as elements with critically high importance in post-transcriptional control of cellular and, more recently, viral processes. Endogenously produced by a component of the miRNA-guided RNA silencing machinery known as Dicer, miRNAs are known to control messenger RNA (mRNA) translation through recognition of specific binding sites usually located in their 3′ untranslated region. Recent evidences indicate that the host miRNA pathway may represent an adapted antiviral defense mechanism that can act either by direct miRNA-mediated modulation of viral gene expression or through recognition and inactivation of structured viral RNA species by the protein components of the RNA silencing machinery, such as Dicer. This latter process, however, is a double-edge sword, as it may yield viral miRNAs exerting gene regulatory properties on both host and viral mRNAs. Our knowledge of the interaction between viruses and host RNA silencing machineries, and how this influences the course of infection, is becoming increasingly complex. This review article aims to summarize our current knowledge about viral miRNAs/ncRNAs and their targets, as well as cellular miRNAs that are modulated by viruses upon infection. PMID:20217543
Evaluation of non-coding variation in GLUT1 deficiency.
Liu, Yu-Chi; Lee, Jia Wei Audrey; Bellows, Susannah T; Damiano, John A; Mullen, Saul A; Berkovic, Samuel F; Bahlo, Melanie; Scheffer, Ingrid E; Hildebrand, Michael S
2016-12-01
Loss-of-function mutations in SLC2A1, encoding glucose transporter-1 (GLUT-1), lead to dysfunction of glucose transport across the blood-brain barrier. Ten percent of cases with hypoglycorrhachia (fasting cerebrospinal fluid [CSF] glucose <2.2mmol/L) do not have mutations. We hypothesized that GLUT1 deficiency could be due to non-coding SLC2A1 variants. We performed whole exome sequencing of one proband with a GLUT1 phenotype and hypoglycorrhachia negative for SLC2A1 sequencing and copy number variants. We studied a further 55 patients with different epilepsies and low CSF glucose who did not have exonic mutations or copy number variants. We sequenced non-coding promoter and intronic regions. We performed mRNA studies for the recurrent intronic variant. The proband had a de novo splice site mutation five base pairs from the intron-exon boundary. Three of 55 patients had deep intronic SLC2A1 variants, including a recurrent variant in two. The recurrent variant produced less SLC2A1 mRNA transcript. Fasting CSF glucose levels show an age-dependent correlation, which makes the definition of hypoglycorrhachia challenging. Low CSF glucose levels may be associated with pathogenic SLC2A1 mutations including deep intronic SLC2A1 variants. Extending genetic screening to non-coding regions will enable diagnosis of more patients with GLUT1 deficiency, allowing implementation of the ketogenic diet to improve outcomes. © 2016 Mac Keith Press.
Neuropathology of Cervical Dystonia
Prudente, C.N.; Pardo, C.A.; Xiao, J.; Hanfelt, J.; Hess, E.J.; LeDoux, M.S.; Jinnah, H.A.
2012-01-01
The aim of this study was to search for neuropathological changes in postmortem brain tissue of individuals with cervical dystonia (CD). Multiple regions of formalin-preserved brains were collected from patients with CD and controls and examined with an extensive battery of histopathological stains in a two-stage study design. In stage one, 4 CD brains underwent a broad screening neuropathological examination. In stage two, these 4 CD brains were combined with 2 additional CD brains, and the subjective findings were quantified and compared to 16 age-matched controls. The initial subjective neuropathological assessment revealed only two regions with relatively consistent changes. The substantia nigra had frequent ubiquitin-positive intranuclear inclusions known as Marinesco bodies. Additionally, the cerebellum showed patchy loss of Purkinje cells, areas of focal gliosis and torpedo bodies. Other brain regions showed minor or inconsistent changes. In the second stage of the analysis, quantitative studies failed to reveal significant differences in the numbers of Marinesco bodies in CD versus controls, but confirmed a significantly lower Purkinje cell density in CD. Molecular investigations revealed 4 of the CD cases and 2 controls to harbor sequence variants in non-coding regions of THAP1, and these cases had lower Purkinje cell densities regardless of whether they had CD. The findings suggest that subtle neuropathological changes such as lower Purkinje cell density may be found in primary CD when relevant brain regions are investigated with appropriate methods. PMID:23195594
The 1985 Army Experience Survey: Tabular Descriptions of First-Term Attritees. Volume 2
1986-01-01
survey receipt control and sample management systems . Data were also keyed, edited, coded, and weighted. The coding schemes developed to classify... R136 REGION OF RESIDENCE WHEN YOU JOINED ARMY. .. ................. 272-273 049 El37 U TERMS OF ACTIVE ENLISTMENT .. ........ ................ 274...272 R136 -- REGION OF RESIDENCE WHEN YOU JOINED ARMY RECODED - WHAT STATE WERE YOU LIVING IN WHEN YOU JOINED THE ARMY! (RECODED TO REGION OF RSID) I
The 1985 Army Experience Survey: Tabular Descriptions of Enlisted Retirees. Volume 1
1986-01-01
processed through survey receipt control and sample management systems . Data were also keyed, edited, coded, and weighted. The coding schemes...222-223 047A R135 AGE OF OLDEST CHILD .............-.-.-.-.-.-.-.-.-.-.-.-... . 224-225 048 R136 REGION OF RESIDENCE WHEN... R136 -- REGION OF RESIDENCE WHEN YOU JOINED ARMY 7 RECODED - WHAT STATE WERE YOU LIVING IN WHEN YOU JOItNED THE ARMY? (RECODED TO REGION OF RSID) I
Complete mitochondrial genome of a Asian lion (Panthera leo goojratensis).
Li, Yu-Fei; Wang, Qiang; Zhao, Jian-ning
2016-01-01
The entire mitochondrial genome of this Asian lion (Panthera leo goojratensis) was 17,183 bp in length, gene composition and arrangement conformed to other lions, which contained the typical structure of 22 tRNAs, 2 rRNAs, 13 protein-coding genes and a non-coding region. The characteristic of the mitochondrial genome was analyzed in detail.
USDA-ARS?s Scientific Manuscript database
Single-nucleotide Polymorphism (SNP) markers are by far the most common form of DNA polymorphism in a genome. The objectives of this study were to discover SNPs in common bean comparing sequences from coding and non-coding regions obtained from Genbank and genomic DNA and to compare sequencing resu...
Association of Amine-Receptor DNA Sequence Variants with Associative Learning in the Honeybee.
Lagisz, Malgorzata; Mercer, Alison R; de Mouzon, Charlotte; Santos, Luana L S; Nakagawa, Shinichi
2016-03-01
Octopamine- and dopamine-based neuromodulatory systems play a critical role in learning and learning-related behaviour in insects. To further our understanding of these systems and resulting phenotypes, we quantified DNA sequence variations at six loci coding octopamine-and dopamine-receptors and their association with aversive and appetitive learning traits in a population of honeybees. We identified 79 polymorphic sequence markers (mostly SNPs and a few insertions/deletions) located within or close to six candidate genes. Intriguingly, we found that levels of sequence variation in the protein-coding regions studied were low, indicating that sequence variation in the coding regions of receptor genes critical to learning and memory is strongly selected against. Non-coding and upstream regions of the same genes, however, were less conserved and sequence variations in these regions were weakly associated with between-individual differences in learning-related traits. While these associations do not directly imply a specific molecular mechanism, they suggest that the cross-talk between dopamine and octopamine signalling pathways may influence olfactory learning and memory in the honeybee.
Users manual for the NASA Lewis three-dimensional ice accretion code (LEWICE 3D)
NASA Technical Reports Server (NTRS)
Bidwell, Colin S.; Potapczuk, Mark G.
1993-01-01
A description of the methodology, the algorithms, and the input and output data along with an example case for the NASA Lewis 3D ice accretion code (LEWICE3D) has been produced. The manual has been designed to help the user understand the capabilities, the methodologies, and the use of the code. The LEWICE3D code is a conglomeration of several codes for the purpose of calculating ice shapes on three-dimensional external surfaces. A three-dimensional external flow panel code is incorporated which has the capability of calculating flow about arbitrary 3D lifting and nonlifting bodies with external flow. A fourth order Runge-Kutta integration scheme is used to calculate arbitrary streamlines. An Adams type predictor-corrector trajectory integration scheme has been included to calculate arbitrary trajectories. Schemes for calculating tangent trajectories, collection efficiencies, and concentration factors for arbitrary regions of interest for single droplets or droplet distributions have been incorporated. A LEWICE 2D based heat transfer algorithm can be used to calculate ice accretions along surface streamlines. A geometry modification scheme is incorporated which calculates the new geometry based on the ice accretions generated at each section of interest. The three-dimensional ice accretion calculation is based on the LEWICE 2D calculation. Both codes calculate the flow, pressure distribution, and collection efficiency distribution along surface streamlines. For both codes the heat transfer calculation is divided into two regions, one above the stagnation point and one below the stagnation point, and solved for each region assuming a flat plate with pressure distribution. Water is assumed to follow the surface streamlines, hence starting at the stagnation zone any water that is not frozen out at a control volume is assumed to run back into the next control volume. After the amount of frozen water at each control volume has been calculated the geometry is modified by adding the ice at each control volume in the surface normal direction.
Integrative Annotation of 21,037 Human Genes Validated by Full-Length cDNA Clones
Imanishi, Tadashi; Itoh, Takeshi; Suzuki, Yutaka; O'Donovan, Claire; Fukuchi, Satoshi; Koyanagi, Kanako O; Barrero, Roberto A; Tamura, Takuro; Yamaguchi-Kabata, Yumi; Tanino, Motohiko; Yura, Kei; Miyazaki, Satoru; Ikeo, Kazuho; Homma, Keiichi; Kasprzyk, Arek; Nishikawa, Tetsuo; Hirakawa, Mika; Thierry-Mieg, Jean; Thierry-Mieg, Danielle; Ashurst, Jennifer; Jia, Libin; Nakao, Mitsuteru; Thomas, Michael A; Mulder, Nicola; Karavidopoulou, Youla; Jin, Lihua; Kim, Sangsoo; Yasuda, Tomohiro; Lenhard, Boris; Eveno, Eric; Suzuki, Yoshiyuki; Yamasaki, Chisato; Takeda, Jun-ichi; Gough, Craig; Hilton, Phillip; Fujii, Yasuyuki; Sakai, Hiroaki; Tanaka, Susumu; Amid, Clara; Bellgard, Matthew; Bonaldo, Maria de Fatima; Bono, Hidemasa; Bromberg, Susan K; Brookes, Anthony J; Bruford, Elspeth; Carninci, Piero; Chelala, Claude; Couillault, Christine; de Souza, Sandro J.; Debily, Marie-Anne; Devignes, Marie-Dominique; Dubchak, Inna; Endo, Toshinori; Estreicher, Anne; Eyras, Eduardo; Fukami-Kobayashi, Kaoru; R. Gopinath, Gopal; Graudens, Esther; Hahn, Yoonsoo; Han, Michael; Han, Ze-Guang; Hanada, Kousuke; Hanaoka, Hideki; Harada, Erimi; Hashimoto, Katsuyuki; Hinz, Ursula; Hirai, Momoki; Hishiki, Teruyoshi; Hopkinson, Ian; Imbeaud, Sandrine; Inoko, Hidetoshi; Kanapin, Alexander; Kaneko, Yayoi; Kasukawa, Takeya; Kelso, Janet; Kersey, Paul; Kikuno, Reiko; Kimura, Kouichi; Korn, Bernhard; Kuryshev, Vladimir; Makalowska, Izabela; Makino, Takashi; Mano, Shuhei; Mariage-Samson, Regine; Mashima, Jun; Matsuda, Hideo; Mewes, Hans-Werner; Minoshima, Shinsei; Nagai, Keiichi; Nagasaki, Hideki; Nagata, Naoki; Nigam, Rajni; Ogasawara, Osamu; Ohara, Osamu; Ohtsubo, Masafumi; Okada, Norihiro; Okido, Toshihisa; Oota, Satoshi; Ota, Motonori; Ota, Toshio; Otsuki, Tetsuji; Piatier-Tonneau, Dominique; Poustka, Annemarie; Ren, Shuang-Xi; Saitou, Naruya; Sakai, Katsunaga; Sakamoto, Shigetaka; Sakate, Ryuichi; Schupp, Ingo; Servant, Florence; Sherry, Stephen; Shiba, Rie; Shimizu, Nobuyoshi; Shimoyama, Mary; Simpson, Andrew J; Soares, Bento; Steward, Charles; Suwa, Makiko; Suzuki, Mami; Takahashi, Aiko; Tamiya, Gen; Tanaka, Hiroshi; Taylor, Todd; Terwilliger, Joseph D; Unneberg, Per; Veeramachaneni, Vamsi; Watanabe, Shinya; Wilming, Laurens; Yasuda, Norikazu; Yoo, Hyang-Sook; Stodolsky, Marvin; Makalowski, Wojciech; Go, Mitiko; Nakai, Kenta; Takagi, Toshihisa; Kanehisa, Minoru; Sakaki, Yoshiyuki; Quackenbush, John; Okazaki, Yasushi; Hayashizaki, Yoshihide; Hide, Winston; Chakraborty, Ranajit; Nishikawa, Ken; Sugawara, Hideaki; Tateno, Yoshio; Chen, Zhu; Oishi, Michio; Tonellato, Peter; Apweiler, Rolf; Okubo, Kousaku; Wagner, Lukas; Wiemann, Stefan; Strausberg, Robert L; Isogai, Takao; Auffray, Charles; Nomura, Nobuo; Sugano, Sumio
2004-01-01
The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/). It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs), identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly) may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci) did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA genes. In addition, among 72,027 uniquely mapped SNPs and insertions/deletions localized within human genes, 13,215 nonsynonymous SNPs, 315 nonsense SNPs, and 452 indels occurred in coding regions. Together with 25 polymorphic microsatellite repeats present in coding regions, they may alter protein structure, causing phenotypic effects or resulting in disease. The H-InvDB platform represents a substantial contribution to resources needed for the exploration of human biology and pathology. PMID:15103394
Arthur-Farraj, Peter J; Morgan, Claire C; Adamowicz, Martyna; Gomez-Sanchez, Jose A; Fazal, Shaline V; Beucher, Anthony; Razzaghi, Bonnie; Mirsky, Rhona; Jessen, Kristjan R; Aitman, Timothy J
2017-09-12
Repair Schwann cells play a critical role in orchestrating nerve repair after injury, but the cellular and molecular processes that generate them are poorly understood. Here, we perform a combined whole-genome, coding and non-coding RNA and CpG methylation study following nerve injury. We show that genes involved in the epithelial-mesenchymal transition are enriched in repair cells, and we identify several long non-coding RNAs in Schwann cells. We demonstrate that the AP-1 transcription factor C-JUN regulates the expression of certain micro RNAs in repair Schwann cells, in particular miR-21 and miR-34. Surprisingly, unlike during development, changes in CpG methylation are limited in injury, restricted to specific locations, such as enhancer regions of Schwann cell-specific genes (e.g., Nedd4l), and close to local enrichment of AP-1 motifs. These genetic and epigenomic changes broaden our mechanistic understanding of the formation of repair Schwann cell during peripheral nervous system tissue repair. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Pérez, Astrid; Gómez, Manuel J.; Gayoso, Carmen; Vallejo, Juan A.; Ohneck, Emily J.; Valle, Jaione; Actis, Luis A.; Beceiro, Alejandro; Bou, Germán
2017-01-01
Many strains of Acinetobacter baumannii have been described as being able to form biofilm. Small non-coding RNAs (sRNAs) control gene expression in many regulatory circuits in bacteria. The aim of the present work was to provide a global description of the sRNAs produced both by planktonic and biofilm-associated (sessile) cells of A. baumannii ATCC 17978, and to compare the corresponding gene expression profiles to identify sRNAs molecules associated to biofilm formation and virulence. sRNA was extracted from both planktonic and sessile cells and reverse transcribed. cDNA was subjected to 454-pyrosequencing using the GS-FLX Titanium chemistry. The global analysis of the small RNA transcriptome revealed different sRNA expression patterns in planktonic and biofilm associated cells, with some of the transcripts only expressed or repressed in sessile bacteria. A total of 255 sRNAs were detected, with 185 of them differentially expressed in the different types of cells. A total of 9 sRNAs were expressed only in biofilm cells, while the expression of other 21 coding regions were repressed only in biofilm cells. Strikingly, the expression level of the sRNA 13573 was 120 times higher in biofilms than in planktonic cells, an observation that prompted us to further investigate the biological role of this non-coding transcript. Analyses of an isogenic mutant and over-expressing strains revealed that the sRNA 13573 gene is involved in biofilm formation and attachment to A549 human alveolar epithelial cells. The present work serves as a basis for future studies examining the complex regulatory network that regulate biofilm biogenesis and attachment to eukaryotic cells in A. baumannii ATCC 17978. PMID:28763494
2004-12-09
We present here a draft genome sequence of the red jungle fowl, Gallus gallus. Because the chicken is a modern descendant of the dinosaurs and the first non-mammalian amniote to have its genome sequenced, the draft sequence of its genome--composed of approximately one billion base pairs of sequence and an estimated 20,000-23,000 genes--provides a new perspective on vertebrate genome evolution, while also improving the annotation of mammalian genomes. For example, the evolutionary distance between chicken and human provides high specificity in detecting functional elements, both non-coding and coding. Notably, many conserved non-coding sequences are far from genes and cannot be assigned to defined functional classes. In coding regions the evolutionary dynamics of protein domains and orthologous groups illustrate processes that distinguish the lineages leading to birds and mammals. The distinctive properties of avian microchromosomes, together with the inferred patterns of conserved synteny, provide additional insights into vertebrate chromosome architecture.
Transient Ejector Analysis (TEA) code user's guide
NASA Technical Reports Server (NTRS)
Drummond, Colin K.
1993-01-01
A FORTRAN computer program for the semi analytic prediction of unsteady thrust augmenting ejector performance has been developed, based on a theoretical analysis for ejectors. That analysis blends classic self-similar turbulent jet descriptions with control-volume mixing region elements. Division of the ejector into an inlet, diffuser, and mixing region allowed flexibility in the modeling of the physics for each region. In particular, the inlet and diffuser analyses are simplified by a quasi-steady-analysis, justified by the assumption that pressure is the forcing function in those regions. Only the mixing region is assumed to be dominated by viscous effects. The present work provides an overview of the code structure, a description of the required input and output data file formats, and the results for a test case. Since there are limitations to the code for applications outside the bounds of the test case, the user should consider TEA as a research code (not as a production code), designed specifically as an implementation of the proposed ejector theory. Program error flags are discussed, and some diagnostic routines are presented.
Global characterization of copy number variants in epilepsy patients from whole genome sequencing
Meloche, Caroline; Andrade, Danielle M.; Lafreniere, Ron G.; Gravel, Micheline; Spiegelman, Dan; Dionne-Laporte, Alexandre; Boelman, Cyrus; Hamdan, Fadi F.; Michaud, Jacques L.; Rouleau, Guy; Minassian, Berge A.; Bourque, Guillaume; Cossette, Patrick
2018-01-01
Epilepsy will affect nearly 3% of people at some point during their lifetime. Previous copy number variants (CNVs) studies of epilepsy have used array-based technology and were restricted to the detection of large or exonic events. In contrast, whole-genome sequencing (WGS) has the potential to more comprehensively profile CNVs but existing analytic methods suffer from limited accuracy. We show that this is in part due to the non-uniformity of read coverage, even after intra-sample normalization. To improve on this, we developed PopSV, an algorithm that uses multiple samples to control for technical variation and enables the robust detection of CNVs. Using WGS and PopSV, we performed a comprehensive characterization of CNVs in 198 individuals affected with epilepsy and 301 controls. For both large and small variants, we found an enrichment of rare exonic events in epilepsy patients, especially in genes with predicted loss-of-function intolerance. Notably, this genome-wide survey also revealed an enrichment of rare non-coding CNVs near previously known epilepsy genes. This enrichment was strongest for non-coding CNVs located within 100 Kbp of an epilepsy gene and in regions associated with changes in the gene expression, such as expression QTLs or DNase I hypersensitive sites. Finally, we report on 21 potentially damaging events that could be associated with known or new candidate epilepsy genes. Our results suggest that comprehensive sequence-based profiling of CNVs could help explain a larger fraction of epilepsy cases. PMID:29649218
Singer, Meromit; Engström, Alexander; Schönhuth, Alexander; Pachter, Lior
2011-09-23
Recent experimental and computational work confirms that CpGs can be unmethylated inside coding exons, thereby showing that codons may be subjected to both genomic and epigenomic constraint. It is therefore of interest to identify coding CpG islands (CCGIs) that are regions inside exons enriched for CpGs. The difficulty in identifying such islands is that coding exons exhibit sequence biases determined by codon usage and constraints that must be taken into account. We present a method for finding CCGIs that showcases a novel approach we have developed for identifying regions of interest that are significant (with respect to a Markov chain) for the counts of any pattern. Our method begins with the exact computation of tail probabilities for the number of CpGs in all regions contained in coding exons, and then applies a greedy algorithm for selecting islands from among the regions. We show that the greedy algorithm provably optimizes a biologically motivated criterion for selecting islands while controlling the false discovery rate. We applied this approach to the human genome (hg18) and annotated CpG islands in coding exons. The statistical criterion we apply to evaluating islands reduces the number of false positives in existing annotations, while our approach to defining islands reveals significant numbers of undiscovered CCGIs in coding exons. Many of these appear to be examples of functional epigenetic specialization in coding exons.
Dubey, Bhawna; Meganathan, P R; Haque, Ikramul
2012-07-01
This paper reports the complete mitochondrial genome sequence of an endangered Indian snake, Python molurus molurus (Indian Rock Python). A typical snake mitochondrial (mt) genome of 17258 bp length comprising of 37 genes including the 13 protein coding genes, 22 tRNA genes, and 2 ribosomal RNA genes along with duplicate control regions is described herein. The P. molurus molurus mt. genome is relatively similar to other snake mt. genomes with respect to gene arrangement, composition, tRNA structures and skews of AT/GC bases. The nucleotide composition of the genome shows that there are more A-C % than T-G% on the positive strand as revealed by positive AT and CG skews. Comparison of individual protein coding genes, with other snake genomes suggests that ATP8 and NADH3 genes have high divergence rates. Codon usage analysis reveals a preference of NNC codons over NNG codons in the mt. genome of P. molurus. Also, the synonymous and non-synonymous substitution rates (ka/ks) suggest that most of the protein coding genes are under purifying selection pressure. The phylogenetic analyses involving the concatenated 13 protein coding genes of P. molurus molurus conformed to the previously established snake phylogeny.
Simard, Frédéric; Licht, Monica; Besansky, Nora J.; Lehmann, Tovi
2007-01-01
Genetic variation in defensin, a gene encoding a major effector molecule of insects immune response was analyzed within and between populations of three members of the Anopheles gambiae complex. The species selected included the two anthropophilic species, An. gambiae and An. arabiensis and the most zoophilic species of the complex, An. quadriannulatus. The first species was represented by four populations spanning its extreme genetic and geographical ranges, whereas each of the other two species was represented by a single population. We found (i) reduced overall polymorphism in the mature peptide region and in the total coding region, together with specific reductions in rare and moderately frequent mutations (sites) in the coding region compared with non coding regions, (ii) markedly reduced rate of nonsynonymous diversity compared with synonymous variation in the mature peptide and virtually identical mature peptide across the three species, and (iii) increased divergence between species in the mature peptide together with reduced differentiation between populations of An. gambiae in the same DNA region. These patterns suggest a strong purifying selection on the mature peptide and probably the whole coding region. Because An. quadriannulatus is not exposed to human pathogens, identical mature peptide and similar pattern of polymorphism across species implies that human pathogens played no role as selective agents on this peptide. PMID:17161659
NASA Astrophysics Data System (ADS)
Durmaz, Murat; Karslioglu, Mahmut Onur
2015-04-01
There are various global and regional methods that have been proposed for the modeling of ionospheric vertical total electron content (VTEC). Global distribution of VTEC is usually modeled by spherical harmonic expansions, while tensor products of compactly supported univariate B-splines can be used for regional modeling. In these empirical parametric models, the coefficients of the basis functions as well as differential code biases (DCBs) of satellites and receivers can be treated as unknown parameters which can be estimated from geometry-free linear combinations of global positioning system observables. In this work we propose a new semi-parametric multivariate adaptive regression B-splines (SP-BMARS) method for the regional modeling of VTEC together with satellite and receiver DCBs, where the parametric part of the model is related to the DCBs as fixed parameters and the non-parametric part adaptively models the spatio-temporal distribution of VTEC. The latter is based on multivariate adaptive regression B-splines which is a non-parametric modeling technique making use of compactly supported B-spline basis functions that are generated from the observations automatically. This algorithm takes advantage of an adaptive scale-by-scale model building strategy that searches for best-fitting B-splines to the data at each scale. The VTEC maps generated from the proposed method are compared numerically and visually with the global ionosphere maps (GIMs) which are provided by the Center for Orbit Determination in Europe (CODE). The VTEC values from SP-BMARS and CODE GIMs are also compared with VTEC values obtained through calibration using local ionospheric model. The estimated satellite and receiver DCBs from the SP-BMARS model are compared with the CODE distributed DCBs. The results show that the SP-BMARS algorithm can be used to estimate satellite and receiver DCBs while adaptively and flexibly modeling the daily regional VTEC.
Miller-Delaney, Suzanne F.C.; Bryan, Kenneth; Das, Sudipto; McKiernan, Ross C.; Bray, Isabella M.; Reynolds, James P.; Gwinn, Ryder; Stallings, Raymond L.
2015-01-01
Temporal lobe epilepsy is associated with large-scale, wide-ranging changes in gene expression in the hippocampus. Epigenetic changes to DNA are attractive mechanisms to explain the sustained hyperexcitability of chronic epilepsy. Here, through methylation analysis of all annotated C-phosphate-G islands and promoter regions in the human genome, we report a pilot study of the methylation profiles of temporal lobe epilepsy with or without hippocampal sclerosis. Furthermore, by comparative analysis of expression and promoter methylation, we identify methylation sensitive non-coding RNA in human temporal lobe epilepsy. A total of 146 protein-coding genes exhibited altered DNA methylation in temporal lobe epilepsy hippocampus (n = 9) when compared to control (n = 5), with 81.5% of the promoters of these genes displaying hypermethylation. Unique methylation profiles were evident in temporal lobe epilepsy with or without hippocampal sclerosis, in addition to a common methylation profile regardless of pathology grade. Gene ontology terms associated with development, neuron remodelling and neuron maturation were over-represented in the methylation profile of Watson Grade 1 samples (mild hippocampal sclerosis). In addition to genes associated with neuronal, neurotransmitter/synaptic transmission and cell death functions, differential hypermethylation of genes associated with transcriptional regulation was evident in temporal lobe epilepsy, but overall few genes previously associated with epilepsy were among the differentially methylated. Finally, a panel of 13, methylation-sensitive microRNA were identified in temporal lobe epilepsy including MIR27A, miR-193a-5p (MIR193A) and miR-876-3p (MIR876), and the differential methylation of long non-coding RNA documented for the first time. The present study therefore reports select, genome-wide DNA methylation changes in human temporal lobe epilepsy that may contribute to the molecular architecture of the epileptic brain. PMID:25552301
Error rates and resource overheads of encoded three-qubit gates
NASA Astrophysics Data System (ADS)
Takagi, Ryuji; Yoder, Theodore J.; Chuang, Isaac L.
2017-10-01
A non-Clifford gate is required for universal quantum computation, and, typically, this is the most error-prone and resource-intensive logical operation on an error-correcting code. Small, single-qubit rotations are popular choices for this non-Clifford gate, but certain three-qubit gates, such as Toffoli or controlled-controlled-Z (ccz), are equivalent options that are also more suited for implementing some quantum algorithms, for instance, those with coherent classical subroutines. Here, we calculate error rates and resource overheads for implementing logical ccz with pieceable fault tolerance, a nontransversal method for implementing logical gates. We provide a comparison with a nonlocal magic-state scheme on a concatenated code and a local magic-state scheme on the surface code. We find the pieceable fault-tolerance scheme particularly advantaged over magic states on concatenated codes and in certain regimes over magic states on the surface code. Our results suggest that pieceable fault tolerance is a promising candidate for fault tolerance in a near-future quantum computer.
Zhuo, Chuanjun; Hou, Weihong; Hu, Lirong; Lin, Chongguang; Chen, Ce; Lin, Xiaodong
2017-01-01
Schizophrenia is a genetically related mental illness, in which the majority of genetic alterations occur in the non-coding regions of the human genome. In the past decade, a growing number of regulatory non-coding RNAs (ncRNAs) including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have been identified to be strongly associated with schizophrenia. However, the studies of these ncRNAs in the pathophysiology of schizophrenia and the reverting of their genetic defects in restoration of the normal phenotype have been hampered by insufficient technology to manipulate these ncRNA genes effectively as well as a lack of appropriate animal models. Most recently, a revolutionary gene editing technology known as Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9; CRISPR/Cas9) has been developed that enable researchers to overcome these challenges. In this review article, we mainly focus on the schizophrenia-related ncRNAs and the use of CRISPR/Cas9-mediated editing on the non-coding regions of the genomic DNA in proving causal relationship between the genetic defects and the pathophysiology of schizophrenia. We subsequently discuss the potential of translating this advanced technology into a clinical therapy for schizophrenia, although the CRISPR/Cas9 technology is currently still in its infancy and immature to put into use in the treatment of diseases. Furthermore, we suggest strategies to accelerate the pace from the bench to the bedside. This review describes the application of the powerful and feasible CRISPR/Cas9 technology to manipulate schizophrenia-associated ncRNA genes. This technology could help researchers tackle this complex health problem and perhaps other genetically related mental disorders due to the overlapping genetic alterations of schizophrenia with other mental illnesses. PMID:28217082
Error Control Coding Techniques for Space and Satellite Communications
NASA Technical Reports Server (NTRS)
Costello, Daniel J., Jr.; Takeshita, Oscar Y.; Cabral, Hermano A.; He, Jiali; White, Gregory S.
1997-01-01
Turbo coding using iterative SOVA decoding and M-ary differentially coherent or non-coherent modulation can provide an effective coding modulation solution: (1) Energy efficient with relatively simple SOVA decoding and small packet lengths, depending on BEP required; (2) Low number of decoding iterations required; and (3) Robustness in fading with channel interleaving.
The Hippo pathway in hepatocellular carcinoma: Non-coding RNAs in action.
Shi, Xuan; Zhu, Hai-Rong; Liu, Tao-Tao; Shen, Xi-Zhong; Zhu, Ji-Min
2017-08-01
Hepatocellular carcinoma (HCC) is the sixth most common cancer and the third leading cause of cancer-related death worldwide. However, current strategies curing HCC are far from satisfaction. The Hippo pathway is an evolutionarily conserved tumor suppressive pathway that plays crucial roles in organ size control and tissue homeostasis. Its dysregulation is commonly observed in various types of cancer including HCC. Recently, the prominent role of non-coding RNAs in the Hippo pathway during normal development and neoplastic progression is also emerging in liver. Thus, further investigation into the regulatory network between non-coding RNAs and the Hippo pathway and their connections with HCC may provide new therapeutic avenues towards developing an effective preventative or perhaps curative treatment for HCC. Herein we summarize the role of non-coding RNAs in the Hippo pathway, with an emphasis on their contribution to carcinogenesis, diagnosis, treatment and prognosis of HCC. Copyright © 2017 Elsevier B.V. All rights reserved.
Expression of versican 3'-untranslated region modulates endogenous microRNA functions.
Lee, Daniel Y; Jeyapalan, Zina; Fang, Ling; Yang, Jennifer; Zhang, Yaou; Yee, Albert Y; Li, Minhui; Du, William W; Shatseva, Tatiana; Yang, Burton B
2010-10-25
Mature microRNAs (miRNAs) are single-stranded RNAs that regulate post-transcriptional gene expression. In our previous study, we have shown that versican 3'UTR, a fragment of non-coding transcript, has the ability to antagonize miR-199a-3p function thereby regulating expression of the matrix proteins versican and fibronectin, and thus resulting in enhanced cell-cell adhesion and organ adhesion. However, the impact of this non-coding fragment on tumorigenesis is yet to be determined. Using computational prediction confirmed with in vitro and in vivo experiments, we report that the expression of versican 3'UTR not only antagonizes miR-199a-3p but can also lower its steady state expression. We found that expression of versican 3'UTR in a mouse breast carcinoma cell line, 4T1, decreased miR-199a-3p levels. The decrease in miRNA activity consequently translated into differences in tumor growth. Computational analysis indicated that both miR-199a-3p and miR-144 targeted a cell cycle regulator, Rb1. In addition, miR-144 and miR-136, which have also been shown to interact with versican 3'UTR, was found to target PTEN. Expression of Rb1 and PTEN were up-regulated synergistically in vitro and in vivo, suggesting that the 3'UTR binds and modulates miRNA activities, freeing Rb1 and PTEN mRNAs for translation. In tumor formation assays, cells transfected with the 3'UTR formed smaller tumors compared with cells transfected with a control vector. Our results demonstrated that a 3'UTR fragment can be used to modulate miRNA functions. Our study also suggests that miRNAs in the cancer cells are more susceptible to degradation, due to its interaction with a non-coding 3'UTR. This non-coding component of mRNA may be used retrospectively to modulate miRNA activities.
Schmouth, Jean-François; Castellarin, Mauro; Laprise, Stéphanie; Banks, Kathleen G; Bonaguro, Russell J; McInerny, Simone C; Borretta, Lisa; Amirabbasi, Mahsa; Korecki, Andrea J; Portales-Casamar, Elodie; Wilson, Gary; Dreolini, Lisa; Jones, Steven J M; Wasserman, Wyeth W; Goldowitz, Daniel; Holt, Robert A; Simpson, Elizabeth M
2013-10-14
The next big challenge in human genetics is understanding the 98% of the genome that comprises non-coding DNA. Hidden in this DNA are sequences critical for gene regulation, and new experimental strategies are needed to understand the functional role of gene-regulation sequences in health and disease. In this study, we build upon our HuGX ('high-throughput human genes on the X chromosome') strategy to expand our understanding of human gene regulation in vivo. In all, ten human genes known to express in therapeutically important brain regions were chosen for study. For eight of these genes, human bacterial artificial chromosome clones were identified, retrofitted with a reporter, knocked single-copy into the Hprt locus in mouse embryonic stem cells, and mouse strains derived. Five of these human genes expressed in mouse, and all expressed in the adult brain region for which they were chosen. This defined the boundaries of the genomic DNA sufficient for brain expression, and refined our knowledge regarding the complexity of gene regulation. We also characterized for the first time the expression of human MAOA and NR2F2, two genes for which the mouse homologs have been extensively studied in the central nervous system (CNS), and AMOTL1 and NOV, for which roles in CNS have been unclear. We have demonstrated the use of the HuGX strategy to functionally delineate non-coding-regulatory regions of therapeutically important human brain genes. Our results also show that a careful investigation, using publicly available resources and bioinformatics, can lead to accurate predictions of gene expression.
Shen, Kang-Ning; Chen, Ching-Hung; Hsiao, Chung-Der; Durand, Jean-Dominique
2016-09-01
In this study, the complete mitogenome sequence of a cryptic species from East Australia (Mugil sp. H) belonging to the worldwide Mugil cephalus species complex (Teleostei: Mugilidae) has been sequenced by next-generation sequencing method. The assembled mitogenome, consisting of 16,845 bp, had the typical vertebrate mitochondrial gene arrangement, including 13 protein-coding genes, 22 transfer RNAs, 2 ribosomal RNAs genes and a non-coding control region of D-loop. D-loop consists of 1067 bp length, and is located between tRNA-Pro and tRNA-Phe. The overall base composition of East Australia M. cephalus is 28.4% for A, 29.3% for C, 15.4% for G and 26.9% for T. The complete mitogenome may provide essential and important DNA molecular data for further phylogenetic and evolutionary analysis for flathead mullet species complex.
Shen, Kang-Ning; Yen, Ta-Chi; Chen, Ching-Hung; Li, Huei-Ying; Chen, Pei-Lung; Hsiao, Chung-Der
2016-05-01
In this study, the complete mitogenome sequence of Northwestern Pacific 2 (NWP2) cryptic species of flathead mullet, Mugil cephalus (Teleostei: Mugilidae) has been amplified by long-range PCR and sequenced by next-generation sequencing method. The assembled mitogenome, consisting of 16,686 bp, had the typical vertebrate mitochondrial gene arrangement, including 13 protein-coding genes, 22 transfer RNAs, 2 ribosomal RNAs genes and a non-coding control region of D-loop. D-loop was 909 bp length and was located between tRNA-Pro and tRNA-Phe. The overall base composition of NWP2 M. cephalus was 28.4% for A, 29.8% for C, 26.5% for T and 15.3% for G. The complete mitogenome may provide essential and important DNA molecular data for further phylogenetic and evolutionary analysis for flathead mullet species complex.
Fan, SiGang; Hu, ChaoQun; Wen, Jing; Zhang, LvPing
2011-05-01
The complete mitochondrial DNA sequence contains useful information for phylogenetic analyses of metazoa. In this study, the complete mitochondrial DNA sequence of sea cucumber Stichopus horrens (Holothuroidea: Stichopodidae: Stichopus) is presented. The complete sequence was determined using normal and long PCRs. The mitochondrial genome of Stichopus horrens is a circular molecule 16257 bps long, composed of 13 protein-coding genes, two ribosomal RNA genes and 22 transfer RNA genes. Most of these genes are coded on the heavy strand except for one protein-coding gene (nad6) and five tRNA genes (tRNA ( Ser(UCN) ), tRNA ( Gln ), tRNA ( Ala ), tRNA ( Val ), tRNA ( Asp )) which are coded on the light strand. The composition of the heavy strand is 30.8% A, 23.7% C, 16.2% G, and 29.3% T bases (AT skew=0.025; GC skew=-0.188). A non-coding region of 675 bp was identified as a putative control region because of its location and AT richness. The intergenic spacers range from 1 to 50 bp in size, totaling 227 bp. A total of 25 overlapping nucleotides, ranging from 1 to 10 bp in size, exist among 11 genes. All 13 protein-coding genes are initiated with an ATG. The TAA codon is used as the stop codon in all the protein coding genes except nad3 and nad4 that use TAG as their termination codon. The most frequently used amino acids are Leu (16.29%), Ser (10.34%) and Phe (8.37%). All of the tRNA genes have the potential to fold into typical cloverleaf secondary structures. We also compared the order of the genes in the mitochondrial DNA from the five holothurians that are now available and found a novel gene arrangement in the mitochondrial DNA of Stichopus horrens.
Turco, Gina; Schnable, James C.; Pedersen, Brent; Freeling, Michael
2013-01-01
Conserved non-coding sequences (CNS) are islands of non-coding sequence that, like protein coding exons, show less divergence in sequence between related species than functionless DNA. Several CNSs have been demonstrated experimentally to function as cis-regulatory regions. However, the specific functions of most CNSs remain unknown. Previous searches for CNS in plants have either anchored on exons and only identified nearby sequences or required years of painstaking manual annotation. Here we present an open source tool that can accurately identify CNSs between any two related species with sequenced genomes, including both those immediately adjacent to exons and distal sequences separated by >12 kb of non-coding sequence. We have used this tool to characterize new motifs, associate CNSs with additional functions, and identify previously undetected genes encoding RNA and protein in the genomes of five grass species. We provide a list of 15,363 orthologous CNSs conserved across all grasses tested. We were also able to identify regulatory sequences present in the common ancestor of grasses that have been lost in one or more extant grass lineages. Lists of orthologous gene pairs and associated CNSs are provided for reference inbred lines of arabidopsis, Japonica rice, foxtail millet, sorghum, brachypodium, and maize. PMID:23874343
Gordon, Christopher T.; Attanasio, Catia; Bhatia, Shipra; Benko, Sabina; Ansari, Morad; Tan, Tiong Y.; Munnich, Arnold; Pennacchio, Len A.; Abadie, Véronique; Temple, I. Karen; Goldenberg, Alice; van Heyningen, Veronica; Amiel, Jeanne; FitzPatrick, David; Kleinjan, Dirk A.; Visel, Axel; Lyonnet, Stanislas
2015-01-01
Mutations in the coding sequence of SOX9 cause campomelic dysplasia (CD), a disorder of skeletal development associated with 46,XY disorders of sex development (DSDs). Translocations, deletions and duplications within a ~2 Mb region upstream of SOX9 can recapitulate the CD-DSD phenotype fully or partially, suggesting the existence of an unusually large cis-regulatory control region. Pierre Robin sequence (PRS) is a craniofacial disorder that is frequently an endophenotype of CD and a locus for isolated PRS at ~1.2-1.5 Mb upstream of SOX9 has been previously reported. The craniofacial regulatory potential within this locus, and within the greater genomic domain surrounding SOX9, remains poorly defined. We report two novel deletions upstream of SOX9 in families with PRS, allowing refinement of the regions harbouring candidate craniofacial regulatory elements. In parallel, ChIP-Seq for p300 binding sites in mouse craniofacial tissue led to the identification of several novel craniofacial enhancers at the SOX9 locus, which were validated in transgenic reporter mice and zebrafish. Notably, some of the functionally validated elements fall within the PRS deletions. These studies suggest that multiple non-coding elements contribute to the craniofacial regulation of SOX9 expression, and that their disruption results in PRS. PMID:24934569
NASA Astrophysics Data System (ADS)
Rakowsky, N.; Harig, S.; Androsov, A.; Fuchs, A.; Immerz, A.; Schröter, J.; Hiller, W.
2012-04-01
Starting in 2005, the GITEWS project (German-Indonesian Tsunami Early Warning System) established from scratch a fully operational tsunami warning system at BMKG in Jakarta. Numerical simulations of prototypic tsunami scenarios play a decisive role in a priori risk assessment for coastal regions and in the early warning process itself. Repositories with currently 3470 regional tsunami scenarios for GITEWS and 1780 Indian Ocean wide scenarios in support of Indonesia as a Regional Tsunami Service Provider (RTSP) were computed with the non-linear shallow water modell TsunAWI. It is based on a finite element discretisation, employs unstructured grids with high resolution along the coast and includes inundation. This contribution gives an overview on the model itself, the enhancement of the model physics, and the experiences gained during the process of establishing an operational code suited for thousands of model runs. Technical aspects like computation time, disk space needed for each scenario in the repository, or post processing techniques have a much larger impact than they had in the beginning when TsunAWI started as a research code. Of course, careful testing on artificial benchmarks and real events remains essential, but furthermore, quality control for the large number of scenarios becomes an important issue.
Iannetta, Marco; Bellizzi, Anna; Lo Menzo, Sara; Anzivino, Elena; D'Abramo, Alessandra; Oliva, Alessandra; D'Agostino, Claudia; d'Ettorre, Gabriella; Pietropaolo, Valeria; Vullo, Vincenzo; Ciardi, Maria Rosa
2013-06-01
John Cunningham virus (JCV), the etiological agent of progressive multifocal leukoencephalopathy (PML), contains a hyper-variable non-coding control region usually detected in urine of healthy individuals as archetype form and in the brain and cerebrospinal fluid (CSF) of PML patients as rearranged form. We report a case of HIV-related PML with clinical, immunological and virological data longitudinally collected. On admission (t0), after 8-week treatment with a rescue highly active antiretroviral therapy (HAART), the patient showed a CSF-JCV load of 16,732 gEq/ml, undetectable HIV-RNA and an increase of CD4+ cell count. Brain magnetic resonance imaging (MRI) showed PML-compatible lesions without contrast enhancement. We considered PML-immune reconstitution inflammatory syndrome as plausible because of the sudden onset of neurological symptoms after the effective HAART. An experimental JCV treatment with mefloquine and mirtazapine was added to steroid boli. Two weeks later (t1), motor function worsened and MRI showed expanded lesions with cytotoxic oedema. CSF JCV-DNA increased (26,263 gEq/ml) and JCV viremia was detected. After 4 weeks (t2), JCV was detected only in CSF (37,719 gEq/ml), and 8 weeks after admission (t3), JC viral load decreased in CSF and JCV viremia reappeared. The patient showed high level of immune activation both in peripheral blood and CSF. He died 4 weeks later. Considering disease progression, combined therapy failure and immune hyper-activation, we finally classified the case as classical PML. The archetype variant found in CSF at t0/t3 and a rearranged sequence detected at t1/t2 suggest that PML can develop from an archetype virus and that the appearance of rearranged genotypes contribute to faster disease progression.
The first 62 AGN observed with SDSS-IV MaNGA - II: resolved stellar populations
NASA Astrophysics Data System (ADS)
Mallmann, Nícolas Dullius; Riffel, Rogério; Storchi-Bergmann, Thaisa; Barboza Rembold, Sandro; Riffel, Rogemar A.; Schimoia, Jaderson; da Costa, Luiz Nicolaci; Ávila-Reese, Vladimir; Sanchez, Sebastian F.; Machado, Alice D.; Cirolini, Rafael; Ilha, Gabriele S.; do Nascimento, Janaína C.
2018-05-01
We present spatially resolved stellar population age maps, average radial profiles and gradients for the first 62 Active Galactic Nuclei (AGN) observed with SDSS-IV MaNGA to study the effects of the active nuclei on the star formation history of the host galaxies. These results, derived using the STARLIGHT code, are compared with a control sample of non-active galaxies matching the properties of the AGN hosts. We find that the fraction of young stellar populations (SP) in high-luminosity AGN is higher in the inner (R≤0.5 Re) regions when compared with the control sample; low-luminosity AGN, on the other hand, present very similar fractions of young stars to the control sample hosts for the entire studied range (1 Re). The fraction of intermediate age SP of the AGN hosts increases outwards, with a clear enhancement when compared with the control sample. The inner region of the galaxies (AGN and control galaxies) presents a dominant old SP, whose fraction decreases outwards. We also compare our results (differences between AGN and control galaxies) for the early and late-type hosts and find no significant differences. In summary, our results suggest that the most luminous AGN seems to have been triggered by a recent supply of gas that has also triggered recent star formation (t ≤ 40 Myrs) in the central region.
The physics of symbols: bridging the epistemic cut.
Pattee, H H
2001-01-01
Evolution requires the genotype-phenotype distinction, a primeval epistemic cut that separates energy-degenerate, rate-independent genetic symbols from the rate-dependent dynamics of construction that they control. This symbol-matter or subject-object distinction occurs at all higher levels where symbols are related to a referent by an arbitrary code. The converse of control is measurement in which a rate-dependent dynamical state is coded into quiescent symbols. Non-integrable constraints are one necessary condition for bridging the epistemic cut by measurement, control, and coding. Additional properties of heteropolymer constraints are necessary for biological evolution.
Perspectives of Long Non-Coding RNAs in Cancer Diagnostics
Reis, Eduardo M.; Verjovski-Almeida, Sergio
2012-01-01
Long non-coding RNAs (lncRNAs) transcribed from intergenic and intronic regions of the human genome constitute a broad class of cellular transcripts that are under intensive investigation. While only a handful of lncRNAs have been characterized, their involvement in fundamental cellular processes that control gene expression highlights a central role in cell homeostasis. Not surprisingly, aberrant expression of regulatory lncRNAs has been increasingly documented in different types of cancer, where they can mediate both oncogenic or tumor suppressor effects. Interaction with chromatin remodeling complexes that promote silencing of specific genes or modulation of splicing factor proteins seem to be two general modes of lncRNA regulation, but it is conceivable that additional mechanisms of action are yet to be unveiled. LncRNAs show greater tissue specificity compared to protein-coding mRNAs making them attractive in the search of novel diagnostics/prognostics cancer biomarkers in body fluid samples. In fact, lncRNA prostate cancer antigen 3 can be detected in urine samples and has been shown to improve diagnosis of prostate cancer. We suggest that an unbiased screening of the presence of RNAs in easily accessible body fluids such as serum and urine might reveal novel circulating lncRNAs as potential biomarkers in many types of cancer. Annotation and functional characterization of the lncRNA complement of the cancer transcriptome will conceivably provide new venues for early diagnosis and treatment of the disease. PMID:22408643
Extracellular Vesicle-Associated RNA as a Carrier of Epigenetic Information
2017-01-01
Post-transcriptional regulation of messenger RNA (mRNA) metabolism and subcellular localization is of the utmost importance both during development and in cell differentiation. Besides carrying genetic information, mRNAs contain cis-acting signals (zip codes), usually present in their 5′- and 3′-untranslated regions (UTRs). By binding to these signals, trans-acting factors, such as RNA-binding proteins (RBPs), and/or non-coding RNAs (ncRNAs), control mRNA localization, translation and stability. RBPs can also form complexes with non-coding RNAs of different sizes. The release of extracellular vesicles (EVs) is a conserved process that allows both normal and cancer cells to horizontally transfer molecules, and hence properties, to neighboring cells. By interacting with proteins that are specifically sorted to EVs, mRNAs as well as ncRNAs can be transferred from cell to cell. In this review, we discuss the mechanisms underlying the sorting to EVs of different classes of molecules, as well as the role of extracellular RNAs and the associated proteins in altering gene expression in the recipient cells. Importantly, if, on the one hand, RBPs play a critical role in transferring RNAs through EVs, RNA itself could, on the other hand, function as a carrier to transfer proteins (i.e., chromatin modifiers, and transcription factors) that, once transferred, can alter the cell’s epigenome. PMID:28937658
Intact coding region of the serotonin transporter gene in obsessive-compulsive disorder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altemus, M.; Murphy, D.L.; Greenberg, B.
1996-07-26
Epidemiologic studies indicate that obsessive-compulsive disorder is genetically transmitted in some families, although no genetic abnormalities have been identified in individuals with this disorder. The selective response of obsessive-compulsive disorder to treatment with agents which block serotonin reuptake suggests the gene coding for the serotonin transporter as a candidate gene. The primary structure of the serotonin-transporter coding region was sequenced in 22 patients with obsessive-compulsive disorder, using direct PCR sequencing of cDNA synthesized from platelet serotonin-transporter mRNA. No variations in amino acid sequence were found among the obsessive-compulsive disorder patients or healthy controls. These results do not support a rolemore » for alteration in the primary structure of the coding region of the serotonin-transporter gene in the pathogenesis of obsessive-compulsive disorder. 27 refs.« less
Low-Pressure Turbine Separation Control: Comparison With Experimental Data
NASA Technical Reports Server (NTRS)
Garg, Vijay K.
2002-01-01
The present work details a computational study, using the Glenn HT code, that analyzes the use of vortex generator jets (VGJs) to control separation on a low-pressure turbine (LPT) blade at low Reynolds numbers. The computational results are also compared with the experimental data for steady VGJs. It is found that the code determines the proper location of the separation point on the suction surface of the baseline blade (without any VGJ) for Reynolds numbers of 50,000 or less. Also, the code finds that the separated region on the suction surface of the blade vanishes with the use of VGJs. However, the separated region and the wake characteristics are not well predicted. The wake width is generally over-predicted while the wake depth is under-predicted.
Sorimachi, Kenji; Okayasu, Teiji
2015-01-01
The complete vertebrate mitochondrial genome consists of 13 coding genes. We used this genome to investigate the existence of natural selection in vertebrate evolution. From the complete mitochondrial genomes, we predicted nucleotide contents and then separated these values into coding and non-coding regions. When nucleotide contents of a coding or non-coding region were plotted against the nucleotide content of the complete mitochondrial genomes, we obtained linear regression lines only between homonucleotides and their analogs. On every plot using G or A content purine, G content in aquatic vertebrates was higher than that in terrestrial vertebrates, while A content in aquatic vertebrates was lower than that in terrestrial vertebrates. Based on these relationships, vertebrates were separated into two groups, terrestrial and aquatic. However, using C or T content pyrimidine, clear separation between these two groups was not obtained. The hagfish (Eptatretus burgeri) was further separated from both terrestrial and aquatic vertebrates. Based on these results, nucleotide content relationships predicted from the complete vertebrate mitochondrial genomes reveal the existence of natural selection based on evolutionary separation between terrestrial and aquatic vertebrate groups. In addition, we propose that separation of the two groups might be linked to ammonia detoxification based on high G and low A contents, which encode Glu rich and Lys poor proteins.
O’Doherty, John P.
2015-01-01
Neural correlates of value have been extensively reported in a diverse set of brain regions. However, in many cases it is difficult to determine whether a particular neural response pattern corresponds to a value-signal per se as opposed to an array of alternative non-value related processes, such as outcome-identity coding, informational coding, encoding of autonomic and skeletomotor consequences, alongside previously described “salience” or “attentional” effects. Here, I review a number of experimental manipulations that can be used to test for value, and I identify the challenges in ascertaining whether a particular neural response is or is not a value signal. Finally, I emphasize that some non-value related signals may be especially informative as a means of providing insight into the nature of the decision-making related computations that are being implemented in a particular brain region. PMID:24726573
Phylogenetic Network for European mtDNA
Finnilä, Saara; Lehtonen, Mervi S.; Majamaa, Kari
2001-01-01
The sequence in the first hypervariable segment (HVS-I) of the control region has been used as a source of evolutionary information in most phylogenetic analyses of mtDNA. Population genetic inference would benefit from a better understanding of the variation in the mtDNA coding region, but, thus far, complete mtDNA sequences have been rare. We determined the nucleotide sequence in the coding region of mtDNA from 121 Finns, by conformation-sensitive gel electrophoresis and subsequent sequencing and by direct sequencing of the D loop. Furthermore, 71 sequences from our previous reports were included, so that the samples represented all the mtDNA haplogroups present in the Finnish population. We found a total of 297 variable sites in the coding region, which allowed the compilation of unambiguous phylogenetic networks. The D loop harbored 104 variable sites, and, in most cases, these could be localized within the coding-region networks, without discrepancies. Interestingly, many homoplasies were detected in the coding region. Nucleotide variation in the rRNA and tRNA genes was 6%, and that in the third nucleotide positions of structural genes amounted to 22% of that in the HVS-I. The complete networks enabled the relationships between the mtDNA haplogroups to be analyzed. Phylogenetic networks based on the entire coding-region sequence in mtDNA provide a rich source for further population genetic studies, and complete sequences make it easier to differentiate between disease-causing mutations and rare polymorphisms. PMID:11349229
Carapelli, Antonio; Comandi, Sara; Convey, Peter; Nardi, Francesco; Frati, Francesco
2008-01-01
Background Mitogenomics data, i.e. complete mitochondrial genome sequences, are popular molecular markers used for phylogenetic, phylogeographic and ecological studies in different animal lineages. Their comparative analysis has been used to shed light on the evolutionary history of given taxa and on the molecular processes that regulate the evolution of the mitochondrial genome. A considerable literature is available in the fields of invertebrate biochemical and ecophysiological adaptation to extreme environmental conditions, exemplified by those of the Antarctic. Nevertheless, limited molecular data are available from terrestrial Antarctic species, and this study represents the first attempt towards the description of a mitochondrial genome from one of the most widespread and common collembolan species of Antarctica. Results In this study we describe the mitochondrial genome of the Antarctic collembolan Cryptopygus antarcticus Willem, 1901. The genome contains the standard set of 37 genes usually present in animal mtDNAs and a large non-coding fragment putatively corresponding to the region (A+T-rich) responsible for the control of replication and transcription. All genes are arranged in the gene order typical of Pancrustacea. Three additional short non-coding regions are present at gene junctions. Two of these are located in positions of abrupt shift of the coding polarity of genes oriented on opposite strands suggesting a role in the attenuation of the polycistronic mRNA transcription(s). In addition, remnants of an additional copy of trnL(uag) are present between trnS(uga) and nad1. Nucleotide composition is biased towards a high A% and T% (A+T = 70.9%), as typically found in hexapod mtDNAs. There is also a significant strand asymmetry, with the J-strand being more abundant in A and C. Within the A+T-rich region, some short sequence fragments appear to be similar (in position and primary sequence) to those involved in the origin of the N-strand replication of the Drosophila mtDNA. Conclusion The mitochondrial genome of C. antarcticus shares several features with other pancrustacean genomes, although the presence of unusual non-coding regions is also suggestive of molecular rearrangements that probably occurred before the differentiation of major collembolan families. Closer examination of gene boundaries also confirms previous observations on the presence of unusual start and stop codons, and suggests a role for tRNA secondary structures as potential cleavage signals involved in the maturation of the primary transcript. Sequences potentially involved in the regulation of replication/transcription are present both in the A+T-rich region and in other areas of the genome. Their position is similar to that observed in a limited number of insect species, suggesting unique replication/transcription mechanisms for basal and derived hexapod lineages. This initial description and characterization of the mitochondrial genome of C. antarcticus will constitute the essential foundation prerequisite for investigations of the evolutionary history of one of the most speciose collembolan genera present in Antarctica and other localities of the Southern Hemisphere. PMID:18593463
Seim, Inge; Carter, Shea L; Herington, Adrian C; Chopin, Lisa K
2008-01-01
Background The peptide hormone ghrelin has many important physiological and pathophysiological roles, including the stimulation of growth hormone (GH) release, appetite regulation, gut motility and proliferation of cancer cells. We previously identified a gene on the opposite strand of the ghrelin gene, ghrelinOS (GHRLOS), which spans the promoter and untranslated regions of the ghrelin gene (GHRL). Here we further characterise GHRLOS. Results We have described GHRLOS mRNA isoforms that extend over 1.4 kb of the promoter region and 106 nucleotides of exon 4 of the ghrelin gene, GHRL. These GHRLOS transcripts initiate 4.8 kb downstream of the terminal exon 4 of GHRL and are present in the 3' untranslated exon of the adjacent gene TATDN2 (TatD DNase domain containing 2). Interestingly, we have also identified a putative non-coding TATDN2-GHRLOS chimaeric transcript, indicating that GHRLOS RNA biogenesis is extremely complex. Moreover, we have discovered that the 3' region of GHRLOS is also antisense, in a tail-to-tail fashion to a novel terminal exon of the neighbouring SEC13 gene, which is important in protein transport. Sequence analyses revealed that GHRLOS is riddled with stop codons, and that there is little nucleotide and amino-acid sequence conservation of the GHRLOS gene between vertebrates. The gene spans 44 kb on 3p25.3, is extensively spliced and harbours multiple variable exons. We have also investigated the expression of GHRLOS and found evidence of differential tissue expression. It is highly expressed in tissues which are emerging as major sites of non-coding RNA expression (the thymus, brain, and testis), as well as in the ovary and uterus. In contrast, very low levels were found in the stomach where sense, GHRL derived RNAs are highly expressed. Conclusion GHRLOS RNA transcripts display several distinctive features of non-coding (ncRNA) genes, including 5' capping, polyadenylation, extensive splicing and short open reading frames. The gene is also non-conserved, with differential and tissue-restricted expression. The overlapping genomic arrangement of GHRLOS with the ghrelin gene indicates that it is likely to have interesting regulatory and functional roles in the ghrelin axis. PMID:18954468
Seim, Inge; Carter, Shea L; Herington, Adrian C; Chopin, Lisa K
2008-10-28
The peptide hormone ghrelin has many important physiological and pathophysiological roles, including the stimulation of growth hormone (GH) release, appetite regulation, gut motility and proliferation of cancer cells. We previously identified a gene on the opposite strand of the ghrelin gene, ghrelinOS (GHRLOS), which spans the promoter and untranslated regions of the ghrelin gene (GHRL). Here we further characterise GHRLOS. We have described GHRLOS mRNA isoforms that extend over 1.4 kb of the promoter region and 106 nucleotides of exon 4 of the ghrelin gene, GHRL. These GHRLOS transcripts initiate 4.8 kb downstream of the terminal exon 4 of GHRL and are present in the 3' untranslated exon of the adjacent gene TATDN2 (TatD DNase domain containing 2). Interestingly, we have also identified a putative non-coding TATDN2-GHRLOS chimaeric transcript, indicating that GHRLOS RNA biogenesis is extremely complex. Moreover, we have discovered that the 3' region of GHRLOS is also antisense, in a tail-to-tail fashion to a novel terminal exon of the neighbouring SEC13 gene, which is important in protein transport. Sequence analyses revealed that GHRLOS is riddled with stop codons, and that there is little nucleotide and amino-acid sequence conservation of the GHRLOS gene between vertebrates. The gene spans 44 kb on 3p25.3, is extensively spliced and harbours multiple variable exons. We have also investigated the expression of GHRLOS and found evidence of differential tissue expression. It is highly expressed in tissues which are emerging as major sites of non-coding RNA expression (the thymus, brain, and testis), as well as in the ovary and uterus. In contrast, very low levels were found in the stomach where sense, GHRL derived RNAs are highly expressed. GHRLOS RNA transcripts display several distinctive features of non-coding (ncRNA) genes, including 5' capping, polyadenylation, extensive splicing and short open reading frames. The gene is also non-conserved, with differential and tissue-restricted expression. The overlapping genomic arrangement of GHRLOS with the ghrelin gene indicates that it is likely to have interesting regulatory and functional roles in the ghrelin axis.
Neural synchrony within the motor system: what have we learned so far?
van Wijk, Bernadette C. M.; Beek, Peter J.; Daffertshofer, Andreas
2012-01-01
Synchronization of neural activity is considered essential for information processing in the nervous system. Both local and inter-regional synchronization are omnipresent in different frequency regimes and relate to a variety of behavioral and cognitive functions. Over the years, many studies have sought to elucidate the question how alpha/mu, beta, and gamma synchronization contribute to motor control. Here, we review these studies with the purpose to delineate what they have added to our understanding of the neural control of movement. We highlight important findings regarding oscillations in primary motor cortex, synchronization between cortex and spinal cord, synchronization between cortical regions, as well as abnormal synchronization patterns in a selection of motor dysfunctions. The interpretation of synchronization patterns benefits from combining results of invasive and non-invasive recordings, different data analysis tools, and modeling work. Importantly, although synchronization is deemed to play a vital role, it is not the only mechanism for neural communication. Spike timing and rate coding act together during motor control and should therefore both be accounted for when interpreting movement-related activity. PMID:22969718
Evidence for regulation of columnar habit in apple by a putative 2OG-Fe(II) oxygenase.
Wolters, Pieter J; Schouten, Henk J; Velasco, Riccardo; Si-Ammour, Azeddine; Baldi, Paolo
2013-12-01
Understanding the genetic mechanisms controlling columnar-type growth in the apple mutant 'Wijcik' will provide insights on how tree architecture and growth are regulated in fruit trees. In apple, columnar-type growth is controlled by a single major gene at the Columnar (Co) locus. By comparing the genomic sequence of the Co region of 'Wijcik' with its wild-type 'McIntosh', a novel non-coding DNA element of 1956 bp specific to Pyreae was found to be inserted in an intergenic region of 'Wijcik'. Expression analysis of selected genes located in the vicinity of the insertion revealed the upregulation of the MdCo31 gene encoding a putative 2OG-Fe(II) oxygenase in axillary buds of 'Wijcik'. Constitutive expression of MdCo31 in Arabidopsis thaliana resulted in compact plants with shortened floral internodes, a phenotype reminiscent of the one observed in columnar apple trees. We conclude that MdCo31 is a strong candidate gene for the control of columnar growth in 'Wijcik'. No claim to original European Union works. New Phytologist © 2013 New Phytologist Trust.
Statistical and linguistic features of DNA sequences
NASA Technical Reports Server (NTRS)
Havlin, S.; Buldyrev, S. V.; Goldberger, A. L.; Mantegna, R. N.; Peng, C. K.; Simons, M.; Stanley, H. E.
1995-01-01
We present evidence supporting the idea that the DNA sequence in genes containing noncoding regions is correlated, and that the correlation is remarkably long range--indeed, base pairs thousands of base pairs distant are correlated. We do not find such a long-range correlation in the coding regions of the gene. We resolve the problem of the "non-stationary" feature of the sequence of base pairs by applying a new algorithm called Detrended Fluctuation Analysis (DFA). We address the claim of Voss that there is no difference in the statistical properties of coding and noncoding regions of DNA by systematically applying the DFA algorithm, as well as standard FFT analysis, to all eukaryotic DNA sequences (33 301 coding and 29 453 noncoding) in the entire GenBank database. We describe a simple model to account for the presence of long-range power-law correlations which is based upon a generalization of the classic Levy walk. Finally, we describe briefly some recent work showing that the noncoding sequences have certain statistical features in common with natural languages. Specifically, we adapt to DNA the Zipf approach to analyzing linguistic texts, and the Shannon approach to quantifying the "redundancy" of a linguistic text in terms of a measurable entropy function. We suggest that noncoding regions in plants and invertebrates may display a smaller entropy and larger redundancy than coding regions, further supporting the possibility that noncoding regions of DNA may carry biological information.
Sequence variations of the bovine prion protein gene (PRNP) in native Korean Hanwoo cattle
Choi, Sangho
2012-01-01
Bovine spongiform encephalopathy (BSE) is one of the fatal neurodegenerative diseases known as transmissible spongiform encephalopathies (TSEs) caused by infectious prion proteins. Genetic variations correlated with susceptibility or resistance to TSE in humans and sheep have not been reported for bovine strains including those from Holstein, Jersey, and Japanese Black cattle. Here, we investigated bovine prion protein gene (PRNP) variations in Hanwoo cattle [Bos (B.) taurus coreanae], a native breed in Korea. We identified mutations and polymorphisms in the coding region of PRNP, determined their frequency, and evaluated their significance. We identified four synonymous polymorphisms and two non-synonymous mutations in PRNP, but found no novel polymorphisms. The sequence and number of octapeptide repeats were completely conserved, and the haplotype frequency of the coding region was similar to that of other B. taurus strains. When we examined the 23-bp and 12-bp insertion/deletion (indel) polymorphisms in the non-coding region of PRNP, Hanwoo cattle had a lower deletion allele and 23-bp del/12-bp del haplotype frequency than healthy and BSE-affected animals of other strains. Thus, Hanwoo are seemingly less susceptible to BSE than other strains due to the 23-bp and 12-bp indel polymorphisms. PMID:22705734
Webb, Kristen M; Rosenthal, Benjamin M
2011-01-01
The mitochondrial genome's non-recombinant mode of inheritance and relatively rapid rate of evolution has promoted its use as a marker for studying the biogeographic history and evolutionary interrelationships among many metazoan species. A modest portion of the mitochondrial genome has been defined for 12 species and genotypes of parasites in the genus Trichinella, but its adequacy in representing the mitochondrial genome as a whole remains unclear, as the complete coding sequence has been characterized only for Trichinella spiralis. Here, we sought to comprehensively describe the extent and nature of divergence between the mitochondrial genomes of T. spiralis (which poses the most appreciable zoonotic risk owing to its capacity to establish persistent infections in domestic pigs) and Trichinella murrelli (which is the most prevalent species in North American wildlife hosts, but which poses relatively little risk to the safety of pork). Next generation sequencing methodologies and scaffold and de novo assembly strategies were employed. The entire protein-coding region was sequenced (13,917 bp), along with a portion of the highly repetitive non-coding region (1524 bp) of the mitochondrial genome of T. murrelli with a combined average read depth of 250 reads. The accuracy of base calling, estimated from coding region sequence was found to exceed 99.3%. Genome content and gene order was not found to be significantly different from that of T. spiralis. An overall inter-species sequence divergence of 9.5% was estimated. Significant variation was identified when the amount of variation between species at each gene is compared to the average amount of variation between species across the coding region. Next generation sequencing is a highly effective means to obtain previously unknown mitochondrial genome sequence. Particular to parasites, the extremely deep coverage achieved through this method allows for the detection of sequence heterogeneity between the multiple individuals that necessarily comprise such templates. Copyright © 2010 Elsevier B.V. All rights reserved.
NCAD, a database integrating the intrinsic conformational preferences of non-coded amino acids
Revilla-López, Guillem; Torras, Juan; Curcó, David; Casanovas, Jordi; Calaza, M. Isabel; Zanuy, David; Jiménez, Ana I.; Cativiela, Carlos; Nussinov, Ruth; Grodzinski, Piotr; Alemán, Carlos
2010-01-01
Peptides and proteins find an ever-increasing number of applications in the biomedical and materials engineering fields. The use of non-proteinogenic amino acids endowed with diverse physicochemical and structural features opens the possibility to design proteins and peptides with novel properties and functions. Moreover, non-proteinogenic residues are particularly useful to control the three-dimensional arrangement of peptidic chains, which is a crucial issue for most applications. However, information regarding such amino acids –also called non-coded, non-canonical or non-standard– is usually scattered among publications specialized in quite diverse fields as well as in patents. Making all these data useful to the scientific community requires new tools and a framework for their assembly and coherent organization. We have successfully compiled, organized and built a database (NCAD, Non-Coded Amino acids Database) containing information about the intrinsic conformational preferences of non-proteinogenic residues determined by quantum mechanical calculations, as well as bibliographic information about their synthesis, physical and spectroscopic characterization, conformational propensities established experimentally, and applications. The architecture of the database is presented in this work together with the first family of non-coded residues included, namely, α-tetrasubstituted α-amino acids. Furthermore, the NCAD usefulness is demonstrated through a test-case application example. PMID:20455555
Tsien, Joe Z.
2013-01-01
Mapping and decoding brain activity patterns underlying learning and memory represents both great interest and immense challenge. At present, very little is known regarding many of the very basic questions regarding the neural codes of memory: are fear memories retrieved during the freezing state or non-freezing state of the animals? How do individual memory traces give arise to a holistic, real-time associative memory engram? How are memory codes regulated by synaptic plasticity? Here, by applying high-density electrode arrays and dimensionality-reduction decoding algorithms, we investigate hippocampal CA1 activity patterns of trace fear conditioning memory code in inducible NMDA receptor knockout mice and their control littermates. Our analyses showed that the conditioned tone (CS) and unconditioned foot-shock (US) can evoke hippocampal ensemble responses in control and mutant mice. Yet, temporal formats and contents of CA1 fear memory engrams differ significantly between the genotypes. The mutant mice with disabled NMDA receptor plasticity failed to generate CS-to-US or US-to-CS associative memory traces. Moreover, the mutant CA1 region lacked memory traces for “what at when” information that predicts the timing relationship between the conditioned tone and the foot shock. The degraded associative fear memory engram is further manifested in its lack of intertwined and alternating temporal association between CS and US memory traces that are characteristic to the holistic memory recall in the wild-type animals. Therefore, our study has decoded real-time memory contents, timing relationship between CS and US, and temporal organizing patterns of fear memory engrams and demonstrated how hippocampal memory codes are regulated by NMDA receptor synaptic plasticity. PMID:24302990
Analysis of correlation structures in the Synechocystis PCC6803 genome.
Wu, Zuo-Bing
2014-12-01
Transfer of nucleotide strings in the Synechocystis sp. PCC6803 genome is investigated to exhibit periodic and non-periodic correlation structures by using the recurrence plot method and the phase space reconstruction technique. The periodic correlation structures are generated by periodic transfer of several substrings in long periodic or non-periodic nucleotide strings embedded in the coding regions of genes. The non-periodic correlation structures are generated by non-periodic transfer of several substrings covering or overlapping with the coding regions of genes. In the periodic and non-periodic transfer, some gaps divide the long nucleotide strings into the substrings and prevent their global transfer. Most of the gaps are either the replacement of one base or the insertion/reduction of one base. In the reconstructed phase space, the points generated from two or three steps for the continuous iterative transfer via the second maximal distance can be fitted by two lines. It partly reveals an intrinsic dynamics in the transfer of nucleotide strings. Due to the comparison of the relative positions and lengths, the substrings concerned with the non-periodic correlation structures are almost identical to the mobile elements annotated in the genome. The mobile elements are thus endowed with the basic results on the correlation structures. Copyright © 2014 Elsevier Ltd. All rights reserved.
Quantum image coding with a reference-frame-independent scheme
NASA Astrophysics Data System (ADS)
Chapeau-Blondeau, François; Belin, Etienne
2016-07-01
For binary images, or bit planes of non-binary images, we investigate the possibility of a quantum coding decodable by a receiver in the absence of reference frames shared with the emitter. Direct image coding with one qubit per pixel and non-aligned frames leads to decoding errors equivalent to a quantum bit-flip noise increasing with the misalignment. We show the feasibility of frame-invariant coding by using for each pixel a qubit pair prepared in one of two controlled entangled states. With just one common axis shared between the emitter and receiver, exact decoding for each pixel can be obtained by means of two two-outcome projective measurements operating separately on each qubit of the pair. With strictly no alignment information between the emitter and receiver, exact decoding can be obtained by means of a two-outcome projective measurement operating jointly on the qubit pair. In addition, the frame-invariant coding is shown much more resistant to quantum bit-flip noise compared to the direct non-invariant coding. For a cost per pixel of two (entangled) qubits instead of one, complete frame-invariant image coding and enhanced noise resistance are thus obtained.
Deep sequencing approaches for the analysis of prokaryotic transcriptional boundaries and dynamics.
James, Katherine; Cockell, Simon J; Zenkin, Nikolay
2017-05-01
The identification of the protein-coding regions of a genome is straightforward due to the universality of start and stop codons. However, the boundaries of the transcribed regions, conditional operon structures, non-coding RNAs and the dynamics of transcription, such as pausing of elongation, are non-trivial to identify, even in the comparatively simple genomes of prokaryotes. Traditional methods for the study of these areas, such as tiling arrays, are noisy, labour-intensive and lack the resolution required for densely-packed bacterial genomes. Recently, deep sequencing has become increasingly popular for the study of the transcriptome due to its lower costs, higher accuracy and single nucleotide resolution. These methods have revolutionised our understanding of prokaryotic transcriptional dynamics. Here, we review the deep sequencing and data analysis techniques that are available for the study of transcription in prokaryotes, and discuss the bioinformatic considerations of these analyses. Copyright © 2017 Elsevier Inc. All rights reserved.
Mitochondrial genomes of parasitic flatworms.
Le, Thanh H; Blair, David; McManus, Donald P
2002-05-01
Complete or near-complete mitochondrial genomes are now available for 11 species or strains of parasitic flatworms belonging to the Trematoda and the Cestoda. The organization of these genomes is not strikingly different from those of other eumetazoans, although one gene (atp8) commonly found in other phyla is absent from flatworms. The gene order in most flatworms has similarities to those seen in higher protostomes such as annelids. However, the gene order has been drastically altered in Schistosoma mansoni, which obscures this possible relationship. Among the sequenced taxa, base composition varies considerably, creating potential difficulties for phylogeny reconstruction. Long non-coding regions are present in all taxa, but these vary in length from only a few hundred to approximately 10000 nucleotides. Among Schistosoma spp., the long non-coding regions are rich in repeats and length variation among individuals is known. Data from mitochondrial genomes are valuable for studies on species identification, phylogenies and biogeography.
Molecular characterization of Banana streak virus isolate from Musa Acuminata in China.
Zhuang, Jun; Wang, Jian-Hua; Zhang, Xin; Liu, Zhi-Xin
2011-12-01
Banana streak virus (BSV), a member of genus Badnavirus, is a causal agent of banana streak disease throughout the world. The genetic diversity of BSVs from different regions of banana plantations has previously been investigated, but there are relatively few reports of the genetic characteristic of episomal (non-integrated) BSV genomes isolated from China. Here, the complete genome, a total of 7722bp (GenBank accession number DQ092436), of an isolate of Banana streak virus (BSV) on cultivar Cavendish (BSAcYNV) in Yunnan, China was determined. The genome organises in the typical manner of badnaviruses. The intergenic region of genomic DNA contains a large stem-loop, which may contribute to the ribosome shift into the following open reading frames (ORFs). The coding region of BSAcYNV consists of three overlapping ORFs, ORF1 with a non-AUG start codon and ORF2 encoding two small proteins are individually involved in viral movement and ORF3 encodes a polyprotein. Besides the complete genome, a defective genome lacking the whole RNA leader region and a majority of ORF1 and which encompasses 6525bp was also isolated and sequenced from this BSV DNA reservoir in infected banana plants. Sequence analyses showed that BSAcYNV has closest similarity in terms of genome organization and the coding assignments with an BSV isolate from Vietnam (BSAcVNV). The corresponding coding regions shared identities of 88% and -95% at nucleotide and amino acid levels, respectively. Phylogenetic analysis also indicated BSAcYNV shared the closest geographical evolutionary relationship to BSAcVNV among sequenced banana streak badnaviruses.
González-Herrera, Lizbeth; Gamas-Trujillo, Pablo Alejandro; Medina-Escobedo, Gilberto; Oaxaca-Castillo, David; Pérez-Mendoza, Gerardo; Williams-Jacquez, Dayana; Canto-Cetina, Thelma; Vargas-García, Rubén Darío
2015-09-01
To evaluate the association of the paraoxonase 1 (PON1) gene polymorphisms c.-108C>T, p.L55M, and p.Q192R with the risk of glioma in Southeast Mexico. Decreased PON1 activity caused by polymorphisms has been observed in gliomas, thus supporting the theory that PON1 is involved in tumorigenesis in the brain. Sixty-seven glioma patients and 58 control individuals were included. Three PON1 polymorphisms were genotyped by real-time PCR allelic discrimination using TaqMan probes: c.-108C>T in the promoter region, p.Q192R and p.L55M, both of which were in the coding region. Allele, genotype, and haplotype frequencies were assessed in cases and controls to test for statistical associations (STATA 10.2 package). Significant differences were found for the PON1 c.-108C>T polymorphism between the cases and controls. Compared to the controls the cases were more likely to be CT heterozygous (p = 0.002) or TT homozygous (p = 0.036); similarly cases were more likely to possess a T allele (p = 0.032). In contrast, the p.L55M and p.Q192R polymorphisms did not show significant differences between the glioma cases and controls (p > 0.05). The PON1 c.-108C>T polymorphism in the promoter region is associated with genetic risk for glioma. Conversely, p.L55M and p.Q192R polymorphisms in the coding region do not seem to have an influence in this population.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Tammie Renee; Tretiak, Sergei
2017-01-06
Understanding and controlling excited state dynamics lies at the heart of all our efforts to design photoactive materials with desired functionality. This tailor-design approach has become the standard for many technological applications (e.g., solar energy harvesting) including the design of organic conjugated electronic materials with applications in photovoltaic and light-emitting devices. Over the years, our team has developed efficient LANL-based codes to model the relevant photophysical processes following photoexcitation (spatial energy transfer, excitation localization/delocalization, and/or charge separation). The developed approach allows the non-radiative relaxation to be followed on up to ~10 ps timescales for large realistic molecules (hundreds of atomsmore » in size) in the realistic solvent dielectric environment. The Collective Electronic Oscillator (CEO) code is used to compute electronic excited states, and the Non-adiabatic Excited State Molecular Dynamics (NA-ESMD) code is used to follow the non-adiabatic dynamics on multiple coupled Born-Oppenheimer potential energy surfaces. Our preliminary NA-ESMD simulations have revealed key photoinduced mechanisms controlling competing interactions and relaxation pathways in complex materials, including organic conjugated polymer materials, and have provided a detailed understanding of photochemical products and intermediates and the internal conversion process during the initiation of energetic materials. This project will be using LANL-based CEO and NA-ESMD codes to model nonradiative relaxation in organic and energetic materials. The NA-ESMD and CEO codes belong to a class of electronic structure/quantum chemistry codes that require large memory, “long-queue-few-core” distribution of resources in order to make useful progress. The NA-ESMD simulations are trivially parallelizable requiring ~300 processors for up to one week runtime to reach a meaningful restart point.« less
Al-Dmour, Hayat; Al-Ani, Ahmed
2016-04-01
The present work has the goal of developing a secure medical imaging information system based on a combined steganography and cryptography technique. It attempts to securely embed patient's confidential information into his/her medical images. The proposed information security scheme conceals coded Electronic Patient Records (EPRs) into medical images in order to protect the EPRs' confidentiality without affecting the image quality and particularly the Region of Interest (ROI), which is essential for diagnosis. The secret EPR data is converted into ciphertext using private symmetric encryption method. Since the Human Visual System (HVS) is less sensitive to alterations in sharp regions compared to uniform regions, a simple edge detection method has been introduced to identify and embed in edge pixels, which will lead to an improved stego image quality. In order to increase the embedding capacity, the algorithm embeds variable number of bits (up to 3) in edge pixels based on the strength of edges. Moreover, to increase the efficiency, two message coding mechanisms have been utilized to enhance the ±1 steganography. The first one, which is based on Hamming code, is simple and fast, while the other which is known as the Syndrome Trellis Code (STC), is more sophisticated as it attempts to find a stego image that is close to the cover image through minimizing the embedding impact. The proposed steganography algorithm embeds the secret data bits into the Region of Non Interest (RONI), where due to its importance; the ROI is preserved from modifications. The experimental results demonstrate that the proposed method can embed large amount of secret data without leaving a noticeable distortion in the output image. The effectiveness of the proposed algorithm is also proven using one of the efficient steganalysis techniques. The proposed medical imaging information system proved to be capable of concealing EPR data and producing imperceptible stego images with minimal embedding distortions compared to other existing methods. In order to refrain from introducing any modifications to the ROI, the proposed system only utilizes the Region of Non Interest (RONI) in embedding the EPR data. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Conrad, Cheyenne C; Gilroyed, Brandon H; McAllister, Tim A; Reuter, Tim
2012-10-01
Non-O157 Shiga toxin producing Escherichia coli (STEC) are gaining recognition as human pathogens, but no standardized method exists to identify them. Sequence analysis revealed that STEC can be classified on the base of variable O antigen regions into different O serotypes. Polymerase chain reaction is a powerful technique for thorough screening and complex diagnosis for these pathogens, but requires a positive control to verify qualitative and/or quantitative DNA-fragment amplification. Due to the pathogenic nature of STEC, controls are not readily available and cell culturing of STEC reference strains requires biosafety conditions of level 2 or higher. In order to bypass this limitation, controls of stacked O-type specific DNA-fragments coding for primer recognition sites were designed to screen for nine STEC serotypes frequently associated with human infection. The synthetic controls were amplified by PCR, cloned into a plasmid vector and transferred into bacteria host cells. Plasmids amplified by bacterial expression were purified, serially diluted and tested as standards for real-time PCR using SYBR Green and TaqMan assays. Utility of synthetic DNA controls was demonstrated in conventional and real-time PCR assays and validated with DNA from natural STEC strains. Copyright © 2012 Elsevier B.V. All rights reserved.
Development and Validation of a Supersonic Helium-Air Coannular Jet Facility
NASA Technical Reports Server (NTRS)
Carty, Atherton A.; Cutler, Andrew D.
1999-01-01
Data are acquired in a simple coannular He/air supersonic jet suitable for validation of CFD (Computational Fluid Dynamics) codes for high speed propulsion. Helium is employed as a non-reacting hydrogen fuel simulant, constituting the core of the coannular flow while the coflow is composed of air. The mixing layer interface between the two flows in the near field and the plume region which develops further downstream constitute the primary regions of interest, similar to those present in all hypersonic air breathing propulsion systems. A computational code has been implemented from the experiment's inception, serving as a tool for model design during the development phase.
The 1985 Army Experience Survey: Tabular Descriptions of First-Term Separatees. Volume 2
1986-01-01
through survey receipt control and sample management systems . Data were also keyed, edited, coded, and weighted. The coding schemes developed to...270-271 048 R136 REGION OF RESIDENCE WHEN YOU JOINED ARMY ...... .................. ... 272-273 049 E137 # TERMS OF ACTIVE ENLISTMENT...STATISTIC VALUE D.F. PROB. CHISQUARE APPROX. 7.830 5 0.1658 e. U 272 R136 -- REGION OF RIESIDENCE WHEN YOU JOINED ARMY RECODED - WHAT STATE WERE YOU LIVING
The 1985 Army Experience Survey: Tabular Descriptions of Mid-Career Separatees. Volume 2
1986-01-01
Survey data were processed through survey receipt control and sample management systems . Data were also keyed, edited, coded, and weighted. The coding...270-271 048 R136 REGION OF RESIDENCE WHEN YOU JOINED ARMY ................. . 272-273 049 E137 # TERMS OF ACTIVE ENLISTMENT...STATISTIC VALUE D.F. PROB. CHISQUARE APPROX. 4.449 5 0.4868 I 272 R136 -- REGION OF RESIDENCE WHEN YOU JOINED ARMY RECODED - WHAT STATE WERE YOU LIVING IN
Permuth-Wey, Jennifer; Lawrenson, Kate; Shen, Howard C.; Velkova, Aneliya; Tyrer, Jonathan P.; Chen, Zhihua; Lin, Hui-Yi; Chen, Y. Ann; Tsai, Ya-Yu; Qu, Xiaotao; Ramus, Susan J.; Karevan, Rod; Lee, Janet; Lee, Nathan; Larson, Melissa C.; Aben, Katja K.; Anton-Culver, Hoda; Antonenkova, Natalia; Antoniou, Antonis; Armasu, Sebastian M.; Bacot, François; Baglietto, Laura; Bandera, Elisa V.; Barnholtz-Sloan, Jill; Beckmann, Matthias W.; Birrer, Michael J.; Bloom, Greg; Bogdanova, Natalia; Brinton, Louise A.; Brooks-Wilson, Angela; Brown, Robert; Butzow, Ralf; Cai, Qiuyin; Campbell, Ian; Chang-Claude, Jenny; Chanock, Stephen; Chenevix-Trench, Georgia; Cheng, Jin Q.; Cicek, Mine S.; Coetzee, Gerhard A.; Cook, Linda S.; Couch, Fergus J.; Cramer, Daniel W.; Cunningham, Julie M.; Dansonka-Mieszkowska, Agnieszka; Despierre, Evelyn; Doherty, Jennifer A; Dörk, Thilo; du Bois, Andreas; Dürst, Matthias; Easton, Douglas F; Eccles, Diana; Edwards, Robert; Ekici, Arif B.; Fasching, Peter A.; Fenstermacher, David A.; Flanagan, James M.; Garcia-Closas, Montserrat; Gentry-Maharaj, Aleksandra; Giles, Graham G.; Glasspool, Rosalind M.; Gonzalez-Bosquet, Jesus; Goodman, Marc T.; Gore, Martin; Górski, Bohdan; Gronwald, Jacek; Hall, Per; Halle, Mari K.; Harter, Philipp; Heitz, Florian; Hillemanns, Peter; Hoatlin, Maureen; Høgdall, Claus K.; Høgdall, Estrid; Hosono, Satoyo; Jakubowska, Anna; Jensen, Allan; Jim, Heather; Kalli, Kimberly R.; Karlan, Beth Y.; Kaye, Stanley B.; Kelemen, Linda E.; Kiemeney, Lambertus A.; Kikkawa, Fumitaka; Konecny, Gottfried E.; Krakstad, Camilla; Kjaer, Susanne Krüger; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Lancaster, Johnathan M.; Le, Nhu D.; Leminen, Arto; Levine, Douglas A.; Liang, Dong; Lim, Boon Kiong; Lin, Jie; Lissowska, Jolanta; Lu, Karen H.; Lubiński, Jan; Lurie, Galina; Massuger, Leon F.A.G.; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; Menon, Usha; Modugno, Francesmary; Moysich, Kirsten B.; Nakanishi, Toru; Narod, Steven A.; Nedergaard, Lotte; Ness, Roberta B.; Nevanlinna, Heli; Nickels, Stefan; Noushmehr, Houtan; Odunsi, Kunle; Olson, Sara H.; Orlow, Irene; Paul, James; Pearce, Celeste L; Pejovic, Tanja; Pelttari, Liisa M.; Pike, Malcolm C.; Poole, Elizabeth M.; Raska, Paola; Renner, Stefan P.; Risch, Harvey A.; Rodriguez-Rodriguez, Lorna; Rossing, Mary Anne; Rudolph, Anja; Runnebaum, Ingo B.; Rzepecka, Iwona K.; Salvesen, Helga B.; Schwaab, Ira; Severi, Gianluca; Shridhar, Vijayalakshmi; Shu, Xiao-Ou; Shvetsov, Yurii B.; Sieh, Weiva; Song, Honglin; Southey, Melissa C.; Spiewankiewicz, Beata; Stram, Daniel; Sutphen, Rebecca; Teo, Soo-Hwang; Terry, Kathryn L.; Tessier, Daniel C.; Thompson, Pamela J.; Tworoger, Shelley S.; van Altena, Anne M.; Vergote, Ignace; Vierkant, Robert A.; Vincent, Daniel; Vitonis, Allison F.; Wang-Gohrke, Shan; Weber, Rachel Palmieri; Wentzensen, Nicolas; Whittemore, Alice S.; Wik, Elisabeth; Wilkens, Lynne R.; Winterhoff, Boris; Woo, Yin Ling; Wu, Anna H.; Xiang, Yong-Bing; Yang, Hannah P.; Zheng, Wei; Ziogas, Argyrios; Zulkifli, Famida; Phelan, Catherine M.; Iversen, Edwin; Schildkraut, Joellen M.; Berchuck, Andrew; Fridley, Brooke L.; Goode, Ellen L.; Pharoah, Paul D. P.; Monteiro, Alvaro N.A.; Sellers, Thomas A.; Gayther, Simon A.
2013-01-01
Epithelial ovarian cancer (EOC) has a heritable component that remains to be fully characterized. Most identified common susceptibility variants lie in non-protein-coding sequences. We hypothesized that variants in the 3′ untranslated region at putative microRNA (miRNA) binding sites represent functional targets that influence EOC susceptibility. Here, we evaluate the association between 767 miRNA binding site single nucleotide polymorphisms (miRSNPs) and EOC risk in 18,174 EOC cases and 26,134 controls from 43 studies genotyped through the Collaborative Oncological Gene-environment Study. We identify several miRSNPs associated with invasive serous EOC risk (OR=1.12, P=10−8) mapping to an inversion polymorphism at 17q21.31. Additional genotyping of non-miRSNPs at 17q21.31 reveals stronger signals outside the inversion (P=10−10). Variation at 17q21.31 associates with neurological diseases, and our collaboration is the first to report an association with EOC susceptibility. An integrated molecular analysis in this region provides evidence for ARHGAP27 and PLEKHM1 as candidate EOC susceptibility genes. PMID:23535648
2011-09-01
tectonically active regions such as the Middle East. For example, we previously applied the code to determine the crust and upper mantle structure...Objective Optimization (MOO) for Multiple Datasets The primary goal of our current project is to develop a tool for estimating crustal structure that...be used to obtain crustal velocity structures by modeling broadband waveform, receiver function, and surface wave dispersion data. The code has been
Bio—Cryptography: A Possible Coding Role for RNA Redundancy
NASA Astrophysics Data System (ADS)
Regoli, M.
2009-03-01
The RNA-Crypto System (shortly RCS) is a symmetric key algorithm to cipher data. The idea for this new algorithm starts from the observation of nature. In particular from the observation of RNA behavior and some of its properties. The RNA sequences have some sections called Introns. Introns, derived from the term "intragenic regions," are non-coding sections of precursor mRNA (pre-mRNA) or other RNAs, that are removed (spliced out of the RNA) before the mature RNA is formed. Once the introns have been spliced out of a pre-mRNA, the resulting mRNA sequence is ready to be translated into a protein. The corresponding parts of a gene are known as introns as well. The nature and the role of Introns in the pre-mRNA is not clear and it is under ponderous researches by biologists but, in our case, we will use the presence of Introns in the RNA-Crypto System output as a strong method to add chaotic non coding information and an unnecessary behavior in the access to the secret key to code the messages. In the RNA-Crypto System algorithm the introns are sections of the ciphered message with non-coding information as well as in the precursor mRNA.
Beuhler, Michael C; Wittler, Mary A; Ford, Marsha; Dulaney, Anna R
2011-08-01
Many public health entities employ computer-based syndromic surveillance to monitor for aberrations including possible exposures to weapons of mass destruction (WMD). Often, this is done by screening signs and symptoms reported for cases against syndromic definitions. Poison centers (PCs) may offer significant contributions to public health surveillance because of their detailed clinical effect data field coding and real-time data entry. Because improper clinical effect coding may impede syndromic surveillance, it is important to assess this accuracy for PCs. An AAPCC-certified regional PC assessed the accuracy of clinical effect coding by specialists in poison information (SPIs) listening to audio recordings of standard cases. Eighteen different standardized cases were used, consisting of six cyanide, six botulism, and six control cases. Cases were scripted to simulate clinically relevant telephone conversations and converted to audio recordings. Ten SPIs were randomly selected from the center's staff to listen to and code case information from the recorded cases. Kappa scores and the percentage of correctly coding a present clinical effect were calculated for individual clinical effects summed over all test cases along with corresponding 95% confidence intervals. The rate of the case coding by the SPIs triggering the PC's automated botulism and cyanide alerts was also determined. The kappa scores and the percentage of correctly coding a present clinical effect varied depending on the specific clinical effect, with greater accuracy observed for the clinical effects of vomiting and agitation/irritability, and poor accuracy observed for the clinical effects of visual defect and anion gap increase. Lack of correct coding resulted in only 60 and 86% of the cases that met the botulism and cyanide surveillance definitions, respectively, triggering the corresponding alert. There was no difference observed in the percentage of coding a present clinical effect between certified (9.0 years experience) and non-certified (2.4 years experience) specialists. There were no cases of coding errors that resulted in the triggering of a false positive alert. The success of syndromic surveillance depends on accurate coding of signs and symptoms. Although PCs generally contribute high-quality data to public health surveillance, it is important to recognize this potential weak link in surveillance methods.
Shibuya, Masako; Watanabe, Yuichiro; Nunokawa, Ayako; Egawa, Jun; Kaneko, Naoshi; Igeta, Hirofumi; Someya, Toshiyuki
2014-01-01
Interleukin-1 beta (IL-1β) has been implicated in the pathophysiology of schizophrenia. To assess whether the IL1B gene confers increased susceptibility to schizophrenia, we conducted case-control and family-based studies and an updated meta-analysis. We tested the association between IL1B and schizophrenia in 1229 case-control and 112 trio samples using 12 markers, including common tagging single nucleotide variations (SNVs) and a rare non-synonymous variation detected by resequencing the coding regions. We also performed a meta-analysis of rs16944 using a total of 8724 case-control and 201 trio samples from 16 independent populations. We found no significant associations between any of the 12 SNVs examined and schizophrenia in either case-control or trio samples. Moreover, our meta-analysis results showed no significant association between the common SNV, rs16944, and schizophrenia. The present study does not support a role for IL1B in schizophrenia susceptibility.
Association Analysis of the Ephrin-B2 Gene in African-Americans with End-Stage Renal Disease
Hicks, Pamela J.; Staten, Jennifer L.; Palmer, Nicholette D.; Langefeld, Carl D.; Ziegler, Julie T.; Keene, Keith L.; Sale, Michele M.; Bowden, Donald W.; Freedman, Barry I.
2008-01-01
Background Genome scans in African-Americans with end-stage renal disease (ESRD) identified linkage on chromosome 13q33 in the region containing the ephrin-B2 ligand (EFNB2) genes. Interactions between the ephrin-B2 receptor and ephrin-B2 ligand play essential roles in renal angiogenesis, blood vessel maturation, and kidney disease. Methods The EFNB2 gene was evaluated as a positional candidate for non-diabetic and diabetic ESRD susceptibility in 1,071 unrelated African-American subjects; 316 with non-diabetic etiologies of ESRD, 394 with type 2 diabetes-associated ESRD and 361 healthy controls. Single nucleotide polymorphism (SNP) genotyping was performed on the Sequenom Mass Array System. Statistical analyses were computed using Dandelion version 1.26, Snpaddmix version 1.4 and Haploview version 3.32. Results Twenty-eight HapMap tag SNPs were genotyped spanning the 39 kilobases (kb) of the EFNB2 coding region, with average spacing of 1.43 kb. Analysis of 710 ESRD patient samples and 361 controls provided no evidence of single SNP associations in either diabetic or non-diabetic ESRD; although nominal evidence of association with all-cause ESRD was observed with a two SNP (p = 0.022) and three SNP (p = 0.023) haplotype, both containing SNPs rs7490924 and rs2391335 in intron 1. Conclusions Although an attractive positional candidate gene, polymorphisms in the EFNB2 gene do not appear to contribute in a substantial way to non-diabetic, diabetic or all-cause ESRD susceptibility in African-Americans. Additional genes within the chromosome 13q33 linkage interval are likely contributors to African-American non-diabetic ESRD. PMID:18580054
Dynamic wavefront creation for processing units using a hybrid compactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puthoor, Sooraj; Beckmann, Bradford M.; Yudanov, Dmitri
A method, a non-transitory computer readable medium, and a processor for repacking dynamic wavefronts during program code execution on a processing unit, each dynamic wavefront including multiple threads are presented. If a branch instruction is detected, a determination is made whether all wavefronts following a same control path in the program code have reached a compaction point, which is the branch instruction. If no branch instruction is detected in executing the program code, a determination is made whether all wavefronts following the same control path have reached a reconvergence point, which is a beginning of a program code segment tomore » be executed by both a taken branch and a not taken branch from a previous branch instruction. The dynamic wavefronts are repacked with all threads that follow the same control path, if all wavefronts following the same control path have reached the branch instruction or the reconvergence point.« less
Classification of breast tissue in mammograms using efficient coding.
Costa, Daniel D; Campos, Lúcio F; Barros, Allan K
2011-06-24
Female breast cancer is the major cause of death by cancer in western countries. Efforts in Computer Vision have been made in order to improve the diagnostic accuracy by radiologists. Some methods of lesion diagnosis in mammogram images were developed based in the technique of principal component analysis which has been used in efficient coding of signals and 2D Gabor wavelets used for computer vision applications and modeling biological vision. In this work, we present a methodology that uses efficient coding along with linear discriminant analysis to distinguish between mass and non-mass from 5090 region of interest from mammograms. The results show that the best rates of success reached with Gabor wavelets and principal component analysis were 85.28% and 87.28%, respectively. In comparison, the model of efficient coding presented here reached up to 90.07%. Altogether, the results presented demonstrate that independent component analysis performed successfully the efficient coding in order to discriminate mass from non-mass tissues. In addition, we have observed that LDA with ICA bases showed high predictive performance for some datasets and thus provide significant support for a more detailed clinical investigation.
Insights into HLA-G Genetics Provided by Worldwide Haplotype Diversity
Castelli, Erick C.; Ramalho, Jaqueline; Porto, Iane O. P.; Lima, Thálitta H. A.; Felício, Leandro P.; Sabbagh, Audrey; Donadi, Eduardo A.; Mendes-Junior, Celso T.
2014-01-01
Human leukocyte antigen G (HLA-G) belongs to the family of non-classical HLA class I genes, located within the major histocompatibility complex (MHC). HLA-G has been the target of most recent research regarding the function of class I non-classical genes. The main features that distinguish HLA-G from classical class I genes are (a) limited protein variability, (b) alternative splicing generating several membrane bound and soluble isoforms, (c) short cytoplasmic tail, (d) modulation of immune response (immune tolerance), and (e) restricted expression to certain tissues. In the present work, we describe the HLA-G gene structure and address the HLA-G variability and haplotype diversity among several populations around the world, considering each of its major segments [promoter, coding, and 3′ untranslated region (UTR)]. For this purpose, we developed a pipeline to reevaluate the 1000Genomes data and recover miscalled or missing genotypes and haplotypes. It became clear that the overall structure of the HLA-G molecule has been maintained during the evolutionary process and that most of the variation sites found in the HLA-G coding region are either coding synonymous or intronic mutations. In addition, only a few frequent and divergent extended haplotypes are found when the promoter, coding, and 3′UTRs are evaluated together. The divergence is particularly evident for the regulatory regions. The population comparisons confirmed that most of the HLA-G variability has originated before human dispersion from Africa and that the allele and haplotype frequencies have probably been shaped by strong selective pressures. PMID:25339953
The Identification of Software Failure Regions
1990-06-01
be used to detect non-obviously redundant test cases. A preliminary examination of the manual analysis method is performed with a set of programs ...failure regions are defined and a method of failure region analysis is described in detail. The thesis describes how this analysis may be used to detect...is the termination of the ability of a functional unit to perform its required function. (Glossary, 1983) The presence of faults in program code
Computer Controlled Microwave Oven System for Rapid Water Content Determination
1988-11-01
Codes - .d/or CONTENTS Page PREFACE .................................................................... 1 CONVERSION FACTORS, NON- SI TO SI (METRIC...CONVERSION FACTORS, NON- SI TO SI (METRIC) UNITS OF MEASUREMENT Non- SI units of measurement used in this report can be converted to SI (metric) units as...formula: C = (5/9)(F - 32) . To obtain Kelvin ( K ) readings, use: K = (5/9)(F - 32) + 273.15 3 COMPUTER CONTROLLED MICROWAVE OVEN SYSTEM FOR RAPID WATER
2010-01-01
Background The identification of non-coding transcripts in human, mouse, and Escherichia coli has revealed their widespread occurrence and functional importance in both eukaryotic and prokaryotic life. In prokaryotes, studies have shown that non-coding transcripts participate in a broad range of cellular functions like gene regulation, stress and virulence. However, very little is known about non-coding transcripts in Streptococcus pneumoniae (pneumococcus), an obligate human respiratory pathogen responsible for significant worldwide morbidity and mortality. Tiling microarrays enable genome wide mRNA profiling as well as identification of novel transcripts at a high-resolution. Results Here, we describe a high-resolution transcription map of the S. pneumoniae clinical isolate TIGR4 using genomic tiling arrays. Our results indicate that approximately 66% of the genome is expressed under our experimental conditions. We identified a total of 50 non-coding small RNAs (sRNAs) from the intergenic regions, of which 36 had no predicted function. Half of the identified sRNA sequences were found to be unique to S. pneumoniae genome. We identified eight overrepresented sequence motifs among sRNA sequences that correspond to sRNAs in different functional categories. Tiling arrays also identified approximately 202 operon structures in the genome. Conclusions In summary, the pneumococcal operon structures and novel sRNAs identified in this study enhance our understanding of the complexity and extent of the pneumococcal 'expressed' genome. Furthermore, the results of this study open up new avenues of research for understanding the complex RNA regulatory network governing S. pneumoniae physiology and virulence. PMID:20525227
Evolution of the unspliced transcriptome.
Engelhardt, Jan; Stadler, Peter F
2015-08-20
Despite their abundance, unspliced EST data have received little attention as a source of information on non-coding RNAs. Very little is know, therefore, about the genomic distribution of unspliced non-coding transcripts and their relationship with the much better studied regularly spliced products. In particular, their evolution has remained virtually unstudied. We systematically study the evidence on unspliced transcripts available in EST annotation tracks for human and mouse, comprising 104,980 and 66,109 unspliced EST clusters, respectively. Roughly one third of these are located totally inside introns of known genes (TINs) and another third overlaps exonic regions (PINs). Eleven percent are "intergenic", far away from any annotated gene. Direct evidence for the independent transcription of many PINs and TINs is obtained from CAGE tag and chromatin data. We predict more than 2000 3'UTR-associated RNA candidates for each human and mouse. Fifteen to twenty percent of the unspliced EST cluster are conserved between human and mouse. With the exception of TINs, the sequences of unspliced EST clusters evolve significantly slower than genomic background. Furthermore, like spliced lincRNAs, they show highly tissue-specific expression patterns. Unspliced long non-coding RNAs are an important, rapidly evolving, component of mammalian transcriptomes. Their analysis is complicated by their preferential association with complex transcribed loci that usually also harbor a plethora of spliced transcripts. Unspliced EST data, although typically disregarded in transcriptome analysis, can be used to gain insights into this rarely investigated transcriptome component. The frequently postulated connection between lack of splicing and nuclear retention and the surprising overlap of chromatin-associated transcripts suggests that this class of transcripts might be involved in chromatin organization and possibly other mechanisms of epigenetic control.
Zhang, Xun; Gejman, Roger; Mahta, Ali; Zhong, Ying; Rice, Kimberley A.; Zhou, Yunli; Cheunsuchon, Pornsuk; Louis, David N.; Klibanski, Anne
2010-01-01
Meningiomas are common tumors, representing 15-25% of all central nervous system tumors. NF2 gene inactivation on chromosome 22 has been shown as an early event in tumorigenesis; however, few factors underlying tumor growth and progression have been identified. Chromosomal abnormalities of 14q32 are often associated with meningioma pathogenesis and progression; therefore it has been proposed that an as yet unidentified tumor suppressor is present at this locus. MEG3 is an imprinted gene located at 14q32 that encodes a non-coding RNA with an anti-proliferative function. We found that MEG3 mRNA is highly expressed in normal arachnoidal cells. However, MEG3 is not expressed in the majority of human meningiomas or the human meningioma cell lines IOMM-Lee and CH157-MN. There is a strong association between loss of MEG3 expression and tumor grade. Allelic loss at the MEG3 locus is also observed in meningiomas, with increasing prevalence in higher grade tumors. In addition, there is an increase in CpG methylation within the promoter and the imprinting control region of MEG3 gene in meningiomas. Functionally, MEG3 suppresses DNA synthesis in both IOMM-Lee and CH157-MN cells by approximately 60% in BrdU incorporation assays. Colony-forming efficiency assays show that MEG3 inhibits colony formation in CH157-MN cells by approximately 80%. Furthermore, MEG3 stimulates p53-mediated transactivation in these cell lines. Therefore, these data are consistent with the hypothesis that MEG3, which encodes a non-coding RNA, may be a tumor suppressor gene at chromosome 14q32 involved in meningioma progression via a novel mechanism. PMID:20179190
75 FR 75496 - Importer of Controlled Substances; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-03
... controlled substances listed in schedule I and II: Drug Schedule Marijuana (7360) I Tetrahydrocannabinols... customers for non- clinical, laboratory-based research only. In reference to drug code 7360 (Marijuana), the...
Peng, Huizhen; Liu, Qiaolin; Xiao, Tiaoyi
2016-09-01
In this study, 15 sets of primers were used to amplify contiguous, overlapping segments of the complete mitochondrial DNA (mtDNA) of C. capio furong(♀) × C. carpio var.singguonensis(♂) in order to characterize and compare their mitochondrial genomes. The total length of the mitochondrial genome was 16,581 bp and deposited in the GenBank with the accession number KP210473. The organization of the mitochondrial genomes contained 37 genes (13 protein-coding genes, 2 ribosomal RNA and 22 transfer RNAs) and a major non-coding control region which was similar to those reported mitochondrial genomes. Most genes were encoded on the H-strand, except for the ND6 and 8 tRNA genes, encoding on the L-strand. The nucleotide skewness for the coding strands of C. capio furong(♀) × C. carpio var.singguonensis(♂) (AT-skew = 0.12, GC-skew = -0.27) were biased toward T and G. The complete mitogenome may provide important date for the study of genetic mechanism of C. capio furong(♀) × C. carpio var.singguonensis(♂).
Kinaro, Zachary Omambia; Xue, Liangyi; Volatiana, Josies Ancella
2016-07-01
The Cichlid fishes have played an important role in evolutionary biology, population studies and aquaculture industry with East African species representing a model suited for studying adaptive radiation and speciation for cichlid genome projects in which closely related genomes are fast emerging presenting questions on phenotype-genotype relations. The complete mitochondrial genomes presented here are for two closely related but eco-morphologically distinct Lake Victoria basin cichlids, Oreochromis variabilis, an endangered native species and Tilapia zilli, an invasive species, both of which are important economic fishes in local areas. The complete mitochondrial genomes determined for O. variabilis and T. zilli are 16 626 and 16,619 bp, respectively. Both the mitogenomes contain 13 protein-coding genes, 22 tRNAs, 2 rRNAs and a non-coding control region, which are typical of vertebrate mitogenomes. Phylogenetic analyses of the two species revealed that though both lie within family Cichlidae, they are remotely related.
Henderson, James B.; Sellas, Anna B.; Fuchs, Jérôme; Bowie, Rauri C.K.; Dumbacher, John P.
2017-01-01
We report here the successful assembly of the complete mitochondrial genomes of the northern spotted owl (Strix occidentalis caurina) and the barred owl (S. varia). We utilized sequence data from two sequencing methodologies, Illumina paired-end sequence data with insert lengths ranging from approximately 250 nucleotides (nt) to 9,600 nt and read lengths from 100–375 nt and Sanger-derived sequences. We employed multiple assemblers and alignment methods to generate the final assemblies. The circular genomes of S. o. caurina and S. varia are comprised of 19,948 nt and 18,975 nt, respectively. Both code for two rRNAs, twenty-two tRNAs, and thirteen polypeptides. They both have duplicated control region sequences with complex repeat structures. We were not able to assemble the control regions solely using Illumina paired-end sequence data. By fully spanning the control regions, Sanger-derived sequences enabled accurate and complete assembly of these mitochondrial genomes. These are the first complete mitochondrial genome sequences of owls (Aves: Strigiformes) possessing duplicated control regions. We searched the nuclear genome of S. o. caurina for copies of mitochondrial genes and found at least nine separate stretches of nuclear copies of gene sequences originating in the mitochondrial genome (Numts). The Numts ranged from 226–19,522 nt in length and included copies of all mitochondrial genes except tRNAPro, ND6, and tRNAGlu. Strix occidentalis caurina and S. varia exhibited an average of 10.74% (8.68% uncorrected p-distance) divergence across the non-tRNA mitochondrial genes. PMID:29038757
Rozhdestvensky, Timofey S; Robeck, Thomas; Galiveti, Chenna R; Raabe, Carsten A; Seeger, Birte; Wolters, Anna; Gubar, Leonid V; Brosius, Jürgen; Skryabin, Boris V
2016-02-05
Prader-Willi syndrome (PWS) is a neurogenetic disorder caused by loss of paternally expressed genes on chromosome 15q11-q13. The PWS-critical region (PWScr) contains an array of non-protein coding IPW-A exons hosting intronic SNORD116 snoRNA genes. Deletion of PWScr is associated with PWS in humans and growth retardation in mice exhibiting ~15% postnatal lethality in C57BL/6 background. Here we analysed a knock-in mouse containing a 5'HPRT-LoxP-Neo(R) cassette (5'LoxP) inserted upstream of the PWScr. When the insertion was inherited maternally in a paternal PWScr-deletion mouse model (PWScr(p-/m5'LoxP)), we observed compensation of growth retardation and postnatal lethality. Genomic methylation pattern and expression of protein-coding genes remained unaltered at the PWS-locus of PWScr(p-/m5'LoxP) mice. Interestingly, ubiquitous Snord116 and IPW-A exon transcription from the originally silent maternal chromosome was detected. In situ hybridization indicated that PWScr(p-/m5'LoxP) mice expressed Snord116 in brain areas similar to wild type animals. Our results suggest that the lack of PWScr RNA expression in certain brain areas could be a primary cause of the growth retardation phenotype in mice. We propose that activation of disease-associated genes on imprinted regions could lead to general therapeutic strategies in associated diseases.
A candidate gene for choanal atresia in alpaca.
Reed, Kent M; Bauer, Miranda M; Mendoza, Kristelle M; Armién, Aníbal G
2010-03-01
Choanal atresia (CA) is a common nasal craniofacial malformation in New World domestic camelids (alpaca and llama). CA results from abnormal development of the nasal passages and is especially debilitating to newborn crias. CA in camelids shares many of the clinical manifestations of a similar condition in humans (CHARGE syndrome). Herein we report on the regulatory gene CHD7 of alpaca, whose homologue in humans is most frequently associated with CHARGE. Sequence of the CHD7 coding region was obtained from a non-affected cria. The complete coding region was 9003 bp, corresponding to a translated amino acid sequence of 3000 aa. Additional genomic sequences corresponding to a significant portion of the CHD7 gene were identified and assembled from the 2x alpaca whole genome sequence, providing confirmatory sequence for much of the CHD7 coding region. The alpaca CHD7 mRNA sequence was 97.9% similar to the human sequence, with the greatest sequence difference being an insertion in exon 38 that results in a polyalanine repeat (A12). Polymorphism in this repeat was tested for association with CA in alpaca by cloning and sequencing the repeat from both affected and non-affected individuals. Variation in length of the poly-A repeat was not associated with CA. Complete sequencing of the CHD7 gene will be necessary to determine whether other mutations in CHD7 are the cause of CA in camelids.
Hrdlickova, Barbara; Kumar, Vinod; Kanduri, Kartiek; Zhernakova, Daria V; Tripathi, Subhash; Karjalainen, Juha; Lund, Riikka J; Li, Yang; Ullah, Ubaid; Modderman, Rutger; Abdulahad, Wayel; Lähdesmäki, Harri; Franke, Lude; Lahesmaa, Riitta; Wijmenga, Cisca; Withoff, Sebo
2014-01-01
Although genome-wide association studies (GWAS) have identified hundreds of variants associated with a risk for autoimmune and immune-related disorders (AID), our understanding of the disease mechanisms is still limited. In particular, more than 90% of the risk variants lie in non-coding regions, and almost 10% of these map to long non-coding RNA transcripts (lncRNAs). lncRNAs are known to show more cell-type specificity than protein-coding genes. We aimed to characterize lncRNAs and protein-coding genes located in loci associated with nine AIDs which have been well-defined by Immunochip analysis and by transcriptome analysis across seven populations of peripheral blood leukocytes (granulocytes, monocytes, natural killer (NK) cells, B cells, memory T cells, naive CD4(+) and naive CD8(+) T cells) and four populations of cord blood-derived T-helper cells (precursor, primary, and polarized (Th1, Th2) T-helper cells). We show that lncRNAs mapping to loci shared between AID are significantly enriched in immune cell types compared to lncRNAs from the whole genome (α <0.005). We were not able to prioritize single cell types relevant for specific diseases, but we observed five different cell types enriched (α <0.005) in five AID (NK cells for inflammatory bowel disease, juvenile idiopathic arthritis, primary biliary cirrhosis, and psoriasis; memory T and CD8(+) T cells in juvenile idiopathic arthritis, primary biliary cirrhosis, psoriasis, and rheumatoid arthritis; Th0 and Th2 cells for inflammatory bowel disease, juvenile idiopathic arthritis, primary biliary cirrhosis, psoriasis, and rheumatoid arthritis). Furthermore, we show that co-expression analyses of lncRNAs and protein-coding genes can predict the signaling pathways in which these AID-associated lncRNAs are involved. The observed enrichment of lncRNA transcripts in AID loci implies lncRNAs play an important role in AID etiology and suggests that lncRNA genes should be studied in more detail to interpret GWAS findings correctly. The co-expression results strongly support a model in which the lncRNA and protein-coding genes function together in the same pathways.
Structural architecture of the human long non-coding RNA, steroid receptor RNA activator
Novikova, Irina V.; Hennelly, Scott P.; Sanbonmatsu, Karissa Y.
2012-01-01
While functional roles of several long non-coding RNAs (lncRNAs) have been determined, the molecular mechanisms are not well understood. Here, we report the first experimentally derived secondary structure of a human lncRNA, the steroid receptor RNA activator (SRA), 0.87 kB in size. The SRA RNA is a non-coding RNA that coactivates several human sex hormone receptors and is strongly associated with breast cancer. Coding isoforms of SRA are also expressed to produce proteins, making the SRA gene a unique bifunctional system. Our experimental findings (SHAPE, in-line, DMS and RNase V1 probing) reveal that this lncRNA has a complex structural organization, consisting of four domains, with a variety of secondary structure elements. We examine the coevolution of the SRA gene at the RNA structure and protein structure levels using comparative sequence analysis across vertebrates. Rapid evolutionary stabilization of RNA structure, combined with frame-disrupting mutations in conserved regions, suggests that evolutionary pressure preserves the RNA structural core rather than its translational product. We perform similar experiments on alternatively spliced SRA isoforms to assess their structural features. PMID:22362738
Influence of Gene Expression on Hardness in Wheat.
Nirmal, Ravi C; Furtado, Agnelo; Wrigley, Colin; Henry, Robert J
2016-01-01
Puroindoline (Pina and Pinb) genes control grain texture or hardness in wheat. Wild-type/soft alleles lead to softer grain while a mutation in one or both of these genes results in a hard grain. Variation in hardness in genotypes with identical Pin alleles (wild-type or mutant) is known but the molecular basis of this is not known. We now report the identification of wheat genotypes with hard grain texture and wild-type/soft Pin alleles indicating that hardness in wheat may be controlled by factors other than mutations in the coding region of the Pin genes. RNA-Seq analysis was used to determine the variation in the transcriptome of developing grains of thirty three diverse wheat genotypes including hard (mutant Pin) and soft (wild type) and those that were hard without having Pin mutations. This defined the role of pin gene expression and identified other candidate genes associated with hardness. Pina was not expressed in hard wheat with a mutation in the Pina gene. The ratio of Pina to Pinb expression was generally lower in the hard non mutant genotypes. Hardness may be associated with differences in Pin expression and other factors and is not simply associated with mutations in the PIN protein coding sequences.
Lozano, Gloria; Trenado, Helena P.; Fiallo-Olivé, Elvira; Chirinos, Dorys; Geraud-Pouey, Francis; Briddon, Rob W.; Navas-Castillo, Jesús
2016-01-01
Begomoviruses (family Geminiviridae) are whitefly-transmitted, plant-infecting single-stranded DNA viruses that cause crop losses throughout the warmer parts of the World. Sweepoviruses are a phylogenetically distinct group of begomoviruses that infect plants of the family Convolvulaceae, including sweet potato (Ipomoea batatas). Two classes of subviral molecules are often associated with begomoviruses, particularly in the Old World; the betasatellites and the alphasatellites. An analysis of sweet potato and Ipomoea indica samples from Spain and Merremia dissecta samples from Venezuela identified small non-coding subviral molecules in association with several distinct sweepoviruses. The sequences of 18 clones were obtained and found to be structurally similar to tomato leaf curl virus-satellite (ToLCV-sat, the first DNA satellite identified in association with a begomovirus), with a region with significant sequence identity to the conserved region of betasatellites, an A-rich sequence, a predicted stem–loop structure containing the nonanucleotide TAATATTAC, and a second predicted stem–loop. These sweepovirus-associated satellites join an increasing number of ToLCV-sat-like non-coding satellites identified recently. Although sharing some features with betasatellites, evidence is provided to suggest that the ToLCV-sat-like satellites are distinct from betasatellites and should be considered a separate class of satellites, for which the collective name deltasatellites is proposed. PMID:26925037
Expression of Versican 3′-Untranslated Region Modulates Endogenous MicroRNA Functions
Lee, Daniel Y.; Jeyapalan, Zina; Fang, Ling; Yang, Jennifer; Zhang, Yaou; Yee, Albert Y.; Li, Minhui; Du, William W.; Shatseva, Tatiana; Yang, Burton B.
2010-01-01
Background Mature microRNAs (miRNAs) are single-stranded RNAs that regulate post-transcriptional gene expression. In our previous study, we have shown that versican 3′UTR, a fragment of non-coding transcript, has the ability to antagonize miR-199a-3p function thereby regulating expression of the matrix proteins versican and fibronectin, and thus resulting in enhanced cell-cell adhesion and organ adhesion. However, the impact of this non-coding fragment on tumorigenesis is yet to be determined. Methods and Findings Using computational prediction confirmed with in vitro and in vivo experiments, we report that the expression of versican 3′UTR not only antagonizes miR-199a-3p but can also lower its steady state expression. We found that expression of versican 3′UTR in a mouse breast carcinoma cell line, 4T1, decreased miR-199a-3p levels. The decrease in miRNA activity consequently translated into differences in tumor growth. Computational analysis indicated that both miR-199a-3p and miR-144 targeted a cell cycle regulator, Rb1. In addition, miR-144 and miR-136, which have also been shown to interact with versican 3′UTR, was found to target PTEN. Expression of Rb1 and PTEN were up-regulated synergistically in vitro and in vivo, suggesting that the 3′UTR binds and modulates miRNA activities, freeing Rb1 and PTEN mRNAs for translation. In tumor formation assays, cells transfected with the 3′UTR formed smaller tumors compared with cells transfected with a control vector. Conclusion Our results demonstrated that a 3′UTR fragment can be used to modulate miRNA functions. Our study also suggests that miRNAs in the cancer cells are more susceptible to degradation, due to its interaction with a non-coding 3′UTR. This non-coding component of mRNA may be used retrospectively to modulate miRNA activities. PMID:21049042
Cross-separatrix Coupling in Nonlinear Global Electrostatic Turbulent Transport in C-2U
NASA Astrophysics Data System (ADS)
Lau, Calvin; Fulton, Daniel; Bao, Jian; Lin, Zhihong; Binderbauer, Michl; Tajima, Toshiki; Schmitz, Lothar; TAE Team
2017-10-01
In recent years, the progress of the C-2/C-2U advanced beam-driven field-reversed configuration (FRC) experiments at Tri Alpha Energy, Inc. has pushed FRCs to transport limited regimes. Understanding particle and energy transport is a vital step towards an FRC reactor, and two particle-in-cell microturbulence codes, the Gyrokinetic Toroidal Code (GTC) and A New Code (ANC), are being developed and applied toward this goal. Previous local electrostatic GTC simulations find the core to be robustly stable with drift-wave instability only in the scrape-off layer (SOL) region. However, experimental measurements showed fluctuations in both regions; one possibility is that fluctuations in the core originate from the SOL, suggesting the need for non-local simulations with cross-separatrix coupling. Current global ANC simulations with gyrokinetic ions and adiabatic electrons find that non-local effects (1) modify linear growth-rates and frequencies of instabilities and (2) allow instability to move from the unstable SOL to the linearly stable core. Nonlinear spreading is also seen prior to mode saturation. We also report on the progress of the first turbulence simulations in the SOL. This work is supported by the Norman Rostoker Fellowship.
Urantowka, Adam Dawid; Hajduk, Kacper; Kosowska, Barbara
2013-08-01
Amazona barbadensis is an endangered species of parrot living in northern coastal Venezuela and in several Caribbean islands. In this study, we sequenced full mitochondrial genome of the considered species. The total length of the mitogenome was 18,983 bp and contained 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, duplicated control region, and degenerate copies of ND6 and tRNA (Glu) genes. High degree of identity between two copies of control region suggests their coincident evolution and functionality. Comparative analysis of both the control region sequences from four Amazona species revealed their 89.1% identity over a region of 1300 bp and indicates the presence of distinctive parts of two control region copies.
Gan, Han Ming; Tan, Mun Hua; Lee, Yin Peng; Austin, Christopher M
2016-05-01
The mitogenome of the Australian freshwater blackfish, Gadopsis marmoratus was recovered coverage by genome skimming using the MiSeq sequencer (GenBank Accession Number: NC_024436). The blackfish mitogenome has 16,407 base pairs made up of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a 819 bp non-coding AT-rich region. This is the 5th mitogenome sequence to be reported for the family Percichthyidae.
Complete mitochondrial genome of Cynopterus sphinx (Pteropodidae: Cynopterus).
Li, Linmiao; Li, Min; Wu, Zhengjun; Chen, Jinping
2015-01-01
We have characterized the complete mitochondrial genome of Cynopterus sphinx (Pteropodidae: Cynopterus) and described its organization in this study. The total length of C. sphinx complete mitochondrial genome was 16,895 bp with the base composition of 32.54% A, 14.05% G, 25.82% T and 27.59% C. The complete mitochondrial genome included 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes (12S rRNA and 16S rRNA) and 1 control region (D-loop). The control region was 1435 bp long with the sequence CATACG repeat 64 times. Three protein-coding genes (ND1, COI and ND4) were ended with incomplete stop codon TA or T.
The Long Non-Coding RNA Transcriptome Landscape in CHO Cells Under Batch and Fed-Batch Conditions.
Vito, Davide; Smales, C Mark
2018-05-21
The role of non-coding RNAs in determining growth, productivity and recombinant product quality attributes in Chinese hamster ovary (CHO) cells has received much attention in recent years, exemplified by studies into microRNAs in particular. However, other classes of non-coding RNAs have received less attention. One such class are the non-coding RNAs known collectively as long non-coding RNAs (lncRNAs). We have undertaken the first landscape analysis of the lncRNA transcriptome in CHO using a mouse based microarray that also provided for the surveillance of the coding transcriptome. We report on those lncRNAs present in a model host CHO cell line under batch and fed-batch conditions on two different days and relate the expression of different lncRNAs to each other. We demonstrate that the mouse microarray was suitable for the detection and analysis of thousands of CHO lncRNAs and validated a number of these by qRT-PCR. We then further analysed the data to identify those lncRNAs whose expression changed the most between growth and stationary phases of culture or between batch and fed-batch culture to identify potential lncRNA targets for further functional studies with regard to their role in controlling growth of CHO cells. We discuss the implications for the publication of this rich dataset and how this may be used by the community. This article is protected by copyright. All rights reserved.
Avraham, Karen B.
2016-01-01
The vertebrate inner ear houses highly specialized sensory organs, tuned to detect and encode sound, head motion and gravity. Gene expression programs under the control of transcription factors orchestrate the formation and specialization of the non-sensory inner ear labyrinth and its sensory constituents. More recently, epigenetic factors and non-coding RNAs emerged as an additional layer of gene regulation, both in inner ear development and disease. In this review, we provide an overview on how epigenetic modifications and non-coding RNAs, in particular microRNAs (miRNAs), influence gene expression and summarize recent discoveries that highlight their critical role in the proper formation of the inner ear labyrinth and its sensory organs. In contrast to non-mammalian vertebrates, adult mammals lack the ability to regenerate inner ear mechano-sensory hair cells. Finally, we discuss recent insights into how epigenetic factors and miRNAs may facilitate, or in the case of mammals, restrict sensory hair cell regeneration. PMID:27836639
Wheeler, Bayly S
2013-12-01
Transposons are mobile genetic elements that are a major constituent of most genomes. Organisms regulate transposable element expression, transposition, and insertion site preference, mitigating the genome instability caused by uncontrolled transposition. A recent burst of research has demonstrated the critical role of small non-coding RNAs in regulating transposition in fungi, plants, and animals. While mechanistically distinct, these pathways work through a conserved paradigm. The presence of a transposon is communicated by the presence of its RNA or by its integration into specific genomic loci. These signals are then translated into small non-coding RNAs that guide epigenetic modifications and gene silencing back to the transposon. In addition to being regulated by the host, transposable elements are themselves capable of influencing host gene expression. Transposon expression is responsive to environmental signals, and many transposons are activated by various cellular stresses. TEs can confer local gene regulation by acting as enhancers and can also confer global gene regulation through their non-coding RNAs. Thus, transposable elements can act as stress-responsive regulators that control host gene expression in cis and trans.
Omeire, Destiny; Abdin, Shaunte; Brooks, Daniel M; Miranda, Hector C
2015-04-01
The Germain's Peacock-Pheasant Polyplectron germaini (Aves, Galliformes, Phasianidae) is classified as Near Threatened on the IUCN Red List. The complete mitochondrial genome of P. germaini is 16,699 bp, consisting of 13 protein-coding genes, 2 rRNA, 22 tRNA genes and 1 control region. All of the 13 protein-coding genes have ATG as start codon. Eight of the 13 protein-coding genes have TAA as stop codon.
Landon, Jane; Lobstein, Tim; Godfrey, Fiona; Johns, Paula; Brookes, Chris; Jernigan, David
2017-01-01
Background and aims The 2011 UN Summit on Non-Communicable Disease failed to call for global action on alcohol marketing despite calls in the World Health Organization (WHO) Global Action Plan on Non-Communicable Diseases 2013-20 to restrict or ban alcohol advertising. In this paper we ask what it might take to match the global approach to tobacco enshrined in the Framework Convention on Tobacco Control (FCTC), and suggest that public health advocates can learn from the development of the FCTC and the Code of Marketing on infant formula milks and the recent recommendations on restricting food marketing to children. Methods Narrative review of qualitative accounts of the processes that created and monitor existing codes and treaties to restrict the marketing of consumer products, specifically breast milk substitutes, unhealthy foods and tobacco. Findings The development of treaties and codes for market restrictions include: (i) evidence of a public health crisis; (ii) the cost of inaction; (iii) civil society advocacy; (iv) the building of capacity; (v) the management of conflicting interests in policy development; and (vi) the need to consider monitoring and accountability to ensure compliance. Conclusion International public health treaties and codes provide an umbrella under which national governments can strengthen their own legislation, assisted by technical support from international agencies and non-governmental organizations. Three examples of international agreements, those for breast milk substitutes, unhealthy foods and tobacco, can provide lessons for the public health community to make progress on alcohol controls. Lessons include stronger alliances of advocates and health professionals and better tools and capacity to monitor and report current marketing practices and trends. © 2016 Society for the Study of Addiction.
Bowden, Deborah L; Vargas-Caro, Carolina; Ovenden, Jennifer R; Bennett, Michael B; Bustamante, Carlos
2016-11-01
The complete mitochondrial genome of the grey nurse shark Carcharias taurus is described from 25 963 828 sequences obtained using Illumina NGS technology. Total length of the mitogenome is 16 715 bp, consisting of 2 rRNAs, 13 protein-coding regions, 22 tRNA and 2 non-coding regions thus updating the previously published mitogenome for this species. The phylogenomic reconstruction inferred from the mitogenome of 15 species of Lamniform and Carcharhiniform sharks supports the inclusion of C. taurus in a clade with the Lamnidae and Cetorhinidae. This complete mitogenome contributes to ongoing investigation into the monophyly of the Family Odontaspididae.
Hoskins, Wayne; Pollard, Henry; Daff, Chris; Odell, Andrew; Garbutt, Peter; McHardy, Andrew; Hardy, Kate; Dragasevic, George
2009-04-17
Our understanding of the effects of football code participation on low back pain (LBP) is limited. It is unclear whether LBP is more prevalent in athletic populations or differs between levels of competition. Thus it was the aim of this study to document and compare the prevalence, intensity, quality and frequency of LBP between elite and semi-elite male Australian football code participants and a non-athletic group. A cross-sectional survey of elite and semi-elite male Australian football code participants and a non-athletic group was performed. Participants completed a self-reported questionnaire incorporating the Quadruple Visual Analogue Scale (QVAS) and McGill Pain Questionnaire (short form) (MPQ-SF), along with additional questions adapted from an Australian epidemiological study. Respondents were 271 elite players (mean age 23.3, range 17-39), 360 semi-elite players (mean age 23.8, range 16-46) and 148 non-athletic controls (mean age 23.9, range 18-39). Groups were matched for age (p = 0.42) and experienced the same age of first onset LBP (p = 0.40). A significant linear increase in LBP from the non-athletic group, to the semi-elite and elite groups for the QVAS and the MPQ-SF was evident (p < 0.001). Elite subjects were more likely to experience more frequent (daily or weekly OR 1.77, 95% CI 1.29-2.42) and severe LBP (discomforting and greater OR 1.75, 95% CI 1.29-2.38). Foolers in Australia have significantly more severe and frequent LBP than a non-athletic group and this escalates with level of competition.
Musculoskeletal disorder costs and medical claim filing in the US retail trade sector.
Bhattacharya, Anasua; Leigh, J Paul
2011-01-01
The average costs of Musculoskeletal Disorder (MSD) and odds ratios for filing medical claims related to MSD were examined. The medical claims were identified by ICD 9 codes for four US Census regions within retail trade. Large private firms' medical claims data from Thomson Reuters Inc. MarketScan databases for the years 2003 through 2006 were used. Average costs were highest for claims related to lumbar region (ICD 9 Code: 724.02) and number of claims were largest for low back syndrome (ICD 9 Code: 724.2). Whereas the odds of filing an MSD claim did not vary greatly over time, average costs declined over time. The odds of filing claims rose with age and were higher for females and southerners than men and non-southerners. Total estimated national medical costs for MSDs within retail trade were $389 million (2007 USD).
Braiding by Majorana tracking and long-range CNOT gates with color codes
NASA Astrophysics Data System (ADS)
Litinski, Daniel; von Oppen, Felix
2017-11-01
Color-code quantum computation seamlessly combines Majorana-based hardware with topological error correction. Specifically, as Clifford gates are transversal in two-dimensional color codes, they enable the use of the Majoranas' non-Abelian statistics for gate operations at the code level. Here, we discuss the implementation of color codes in arrays of Majorana nanowires that avoid branched networks such as T junctions, thereby simplifying their realization. We show that, in such implementations, non-Abelian statistics can be exploited without ever performing physical braiding operations. Physical braiding operations are replaced by Majorana tracking, an entirely software-based protocol which appropriately updates the Majoranas involved in the color-code stabilizer measurements. This approach minimizes the required hardware operations for single-qubit Clifford gates. For Clifford completeness, we combine color codes with surface codes, and use color-to-surface-code lattice surgery for long-range multitarget CNOT gates which have a time overhead that grows only logarithmically with the physical distance separating control and target qubits. With the addition of magic state distillation, our architecture describes a fault-tolerant universal quantum computer in systems such as networks of tetrons, hexons, or Majorana box qubits, but can also be applied to nontopological qubit platforms.
Chen, Caihui; Zheng, Yongjie; Liu, Sian; Zhong, Yongda; Wu, Yanfang; Li, Jiang; Xu, Li-An; Xu, Meng
2017-01-01
Cinnamomum camphora , a member of the Lauraceae family, is a valuable aromatic and timber tree that is indigenous to the south of China and Japan. All parts of Cinnamomum camphora have secretory cells containing different volatile chemical compounds that are utilized as herbal medicines and essential oils. Here, we reported the complete sequencing of the chloroplast genome of Cinnamomum camphora using illumina technology. The chloroplast genome of Cinnamomum camphora is 152,570 bp in length and characterized by a relatively conserved quadripartite structure containing a large single copy region of 93,705 bp, a small single copy region of 19,093 bp and two inverted repeat (IR) regions of 19,886 bp. Overall, the genome contained 123 coding regions, of which 15 were repeated in the IR regions. An analysis of chloroplast sequence divergence revealed that the small single copy region was highly variable among the different genera in the Lauraceae family. A total of 40 repeat structures and 83 simple sequence repeats were detected in both the coding and non-coding regions. A phylogenetic analysis indicated that Calycanthus is most closely related to Lauraceae , both being members of Laurales , which forms a sister group to Magnoliids . The complete sequence of the chloroplast of Cinnamomum camphora will aid in in-depth taxonomical studies of the Lauraceae family in the future. The genetic sequence information will also have valuable applications for chloroplast genetic engineering.
Systematic screening for mutations in the promoter and the coding region of the 5-HT{sub 1A} gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erdmann, J.; Shimron-Abarbanell, D.; Cichon, S.
1995-10-09
In the present study we sought to identify genetic variation in the 5-HT{sub 1A} receptor gene which through alteration of protein function or level of expression might contribute to the genetic predisposition to neuropsychiatric diseases. Genomic DNA samples from 159 unrelated subjects (including 45 schizophrenic, 46 bipolar affective, and 43 patients with Tourette`s syndrome, as well as 25 healthy controls) were investigated by single-strand conformation analysis. Overlapping PCR (polymerase chain reaction) fragments covered the whole coding sequence as well as the 5{prime} untranslated region of the 5-HT{sub 1A} gene. The region upstream to the coding sequence we investigated contains amore » functional promoter. We found two rare nucleotide sequence variants. Both mutations are located in the coding region of the gene: a coding mutation (A{yields}G) in nucleotide position 82 which leads to an amino acid exchange (Ile{yields}Val) in position 28 of the receptor protein and a silent mutation (C{yields}T) in nucleotide position 549. The occurrence of the Ile-28-Val substitution was studied in an extended sample of patients (n = 352) and controls (n = 210) but was found in similar frequencies in all groups. Thus, this mutation is unlikely to play a significant role in the genetic predisposition to the diseases investigated. In conclusion, our study does not provide evidence that the 5-HT{sub 1A} gene plays either a major or a minor role in the genetic predisposition to schizophrenia, bipolar affective disorder, or Tourette`s syndrome. 29 refs., 4 figs., 1 tab.« less
Analysis of 16S-23S rRNA intergenic spacer regions of Vibrio cholerae and Vibrio mimicus.
Chun, J; Huq, A; Colwell, R R
1999-05-01
Vibrio cholerae identification based on molecular sequence data has been hampered by a lack of sequence variation from the closely related Vibrio mimicus. The two species share many genes coding for proteins, such as ctxAB, and show almost identical 16S DNA coding for rRNA (rDNA) sequences. Primers targeting conserved sequences flanking the 3' end of the 16S and the 5' end of the 23S rDNAs were used to amplify the 16S-23S rRNA intergenic spacer regions of V. cholerae and V. mimicus. Two major (ca. 580 and 500 bp) and one minor (ca. 750 bp) amplicons were consistently generated for both species, and their sequences were determined. The largest fragment contains three tRNA genes (tDNAs) coding for tRNAGlu, tRNALys, and tRNAVal, which has not previously been found in bacteria examined to date. The 580-bp amplicon contained tDNAIle and tDNAAla, whereas the 500-bp fragment had single tDNA coding either tRNAGlu or tRNAAla. Little variation, i.e., 0 to 0.4%, was found among V. cholerae O1 classical, O1 El Tor, and O139 epidemic strains. Slightly more variation was found against the non-O1/non-O139 serotypes (ca. 1% difference) and V. mimicus (2 to 3% difference). A pair of oligonucleotide primers were designed, based on the region differentiating all of V. cholerae strains from V. mimicus. The PCR system developed was subsequently evaluated by using representatives of V. cholerae from environmental and clinical sources, and of other taxa, including V. mimicus. This study provides the first molecular tool for identifying the species V. cholerae.
Fine-coarse semantic processing in schizophrenia: a reversed pattern of hemispheric dominance.
Zeev-Wolf, Maor; Goldstein, Abraham; Levkovitz, Yechiel; Faust, Miriam
2014-04-01
Left lateralization for language processing is a feature of neurotypical brains. In individuals with schizophrenia, lack of left lateralization is associated with the language impairments manifested in this population. Beeman׳s fine-coarse semantic coding model asserts left hemisphere specialization in fine (i.e., conventionalized) semantic coding and right hemisphere specialization in coarse (i.e., non-conventionalized) semantic coding. Applying this model to schizophrenia would suggest that language impairments in this population are a result of greater reliance on coarse semantic coding. We investigated this hypothesis and examined whether a reversed pattern of hemispheric involvement in fine-coarse semantic coding along the time course of activation could be detected in individuals with schizophrenia. Seventeen individuals with schizophrenia and 30 neurotypical participants were presented with two word expressions of four types: literal, conventional metaphoric, unrelated (exemplars of fine semantic coding) and novel metaphoric (an exemplar of coarse semantic coding). Expressions were separated by either a short (250 ms) or long (750 ms) delay. Findings indicate that whereas during novel metaphor processing, controls displayed a left hemisphere advantage at 250 ms delay and right hemisphere advantage at 750 ms, individuals with schizophrenia displayed the opposite. For conventional metaphoric and unrelated expressions, controls showed left hemisphere advantage across times, while individuals with schizophrenia showed a right hemisphere advantage. Furthermore, whereas individuals with schizophrenia were less accurate than control at judging literal, conventional metaphoric and unrelated expressions they were more accurate when judging novel metaphors. Results suggest that individuals with schizophrenia display a reversed pattern of lateralization for semantic coding which causes them to rely more heavily on coarse semantic coding. Thus, for individuals with schizophrenia, speech situation are always non-conventional, compelling them to constantly seek for meanings and prejudicing them toward novel or atypical speech acts. This, in turn, may disadvantage them in conventionalized communication and result in language impairment. Copyright © 2014 Elsevier Ltd. All rights reserved.
LOOPREF: A Fluid Code for the Simulation of Coronal Loops
NASA Technical Reports Server (NTRS)
deFainchtein, Rosalinda; Antiochos, Spiro; Spicer, Daniel
1998-01-01
This report documents the code LOOPREF. LOOPREF is a semi-one dimensional finite element code that is especially well suited to simulate coronal-loop phenomena. It has a full implementation of adaptive mesh refinement (AMR), which is crucial for this type of simulation. The AMR routines are an improved version of AMR1D. LOOPREF's versatility makes is suitable to simulate a wide variety of problems. In addition to efficiently providing very high resolution in rapidly changing regions of the domain, it is equipped to treat loops of variable cross section, any non-linear form of heat conduction, shocks, gravitational effects, and radiative loss.
Current Research on Non-Coding Ribonucleic Acid (RNA).
Wang, Jing; Samuels, David C; Zhao, Shilin; Xiang, Yu; Zhao, Ying-Yong; Guo, Yan
2017-12-05
Non-coding ribonucleic acid (RNA) has without a doubt captured the interest of biomedical researchers. The ability to screen the entire human genome with high-throughput sequencing technology has greatly enhanced the identification, annotation and prediction of the functionality of non-coding RNAs. In this review, we discuss the current landscape of non-coding RNA research and quantitative analysis. Non-coding RNA will be categorized into two major groups by size: long non-coding RNAs and small RNAs. In long non-coding RNA, we discuss regular long non-coding RNA, pseudogenes and circular RNA. In small RNA, we discuss miRNA, transfer RNA, piwi-interacting RNA, small nucleolar RNA, small nuclear RNA, Y RNA, single recognition particle RNA, and 7SK RNA. We elaborate on the origin, detection method, and potential association with disease, putative functional mechanisms, and public resources for these non-coding RNAs. We aim to provide readers with a complete overview of non-coding RNAs and incite additional interest in non-coding RNA research.
Abdollahi-Arpanahi, Rostam; Morota, Gota; Valente, Bruno D; Kranis, Andreas; Rosa, Guilherme J M; Gianola, Daniel
2016-02-03
Genome-wide association studies in humans have found enrichment of trait-associated single nucleotide polymorphisms (SNPs) in coding regions of the genome and depletion of these in intergenic regions. However, a recent release of the ENCyclopedia of DNA elements showed that ~80 % of the human genome has a biochemical function. Similar studies on the chicken genome are lacking, thus assessing the relative contribution of its genic and non-genic regions to variation is relevant for biological studies and genetic improvement of chicken populations. A dataset including 1351 birds that were genotyped with the 600K Affymetrix platform was used. We partitioned SNPs according to genome annotation data into six classes to characterize the relative contribution of genic and non-genic regions to genetic variation as well as their predictive power using all available quality-filtered SNPs. Target traits were body weight, ultrasound measurement of breast muscle and hen house egg production in broiler chickens. Six genomic regions were considered: intergenic regions, introns, missense, synonymous, 5' and 3' untranslated regions, and regions that are located 5 kb upstream and downstream of coding genes. Genomic relationship matrices were constructed for each genomic region and fitted in the models, separately or simultaneously. Kernel-based ridge regression was used to estimate variance components and assess predictive ability. Contribution of each class of genomic regions to dominance variance was also considered. Variance component estimates indicated that all genomic regions contributed to marked additive genetic variation and that the class of synonymous regions tended to have the greatest contribution. The marked dominance genetic variation explained by each class of genomic regions was similar and negligible (~0.05). In terms of prediction mean-square error, the whole-genome approach showed the best predictive ability. All genic and non-genic regions contributed to phenotypic variation for the three traits studied. Overall, the contribution of additive genetic variance to the total genetic variance was much greater than that of dominance variance. Our results show that all genomic regions are important for the prediction of the targeted traits, and the whole-genome approach was reaffirmed as the best tool for genome-enabled prediction of quantitative traits.
2010-01-01
Background Snake mitochondrial genomes are of great interest in understanding mitogenomic evolution because of gene duplications and rearrangements and the fast evolutionary rate of their genes compared to other vertebrates. Mitochondrial gene sequences have also played an important role in attempts to resolve the contentious phylogenetic relationships of especially the early divergences among alethinophidian snakes. Two recent innovative studies found dramatic gene- and branch-specific relative acceleration in snake protein-coding gene evolution, particularly along internal branches leading to Serpentes and Alethinophidia. It has been hypothesized that some of these rate shifts are temporally (and possibly causally) associated with control region duplication and/or major changes in ecology and anatomy. Results The near-complete mitochondrial (mt) genomes of three henophidian snakes were sequenced: Anilius scytale, Rhinophis philippinus, and Charina trivirgata. All three genomes share a duplicated control region and translocated tRNALEU, derived features found in all alethinophidian snakes studied to date. The new sequence data were aligned with mt genome data for 21 other species of snakes and used in phylogenetic analyses. Phylogenetic results agreed with many other studies in recovering several robust clades, including Colubroidea, Caenophidia, and Cylindrophiidae+Uropeltidae. Nodes within Henophidia that have been difficult to resolve robustly in previous analyses remained uncompellingly resolved here. Comparisons of relative rates of evolution of rRNA vs. protein-coding genes were conducted by estimating branch lengths across the tree. Our expanded sampling revealed dramatic acceleration along the branch leading to Typhlopidae, particularly long rRNA terminal branches within Scolecophidia, and that most of the dramatic acceleration in protein-coding gene rate along Serpentes and Alethinophidia branches occurred before Anilius diverged from other alethinophidians. Conclusions Mitochondrial gene sequence data alone may not be able to robustly resolve basal divergences among alethinophidian snakes. Taxon sampling plays an important role in identifying mitogenomic evolutionary events within snakes, and in testing hypotheses explaining their origin. Dramatic rate shifts in mitogenomic evolution occur within Scolecophidia as well as Alethinophidia, thus falsifying the hypothesis that these shifts in snakes are associated exclusively with evolution of a non-burrowing lifestyle, macrostomatan feeding ecology and/or duplication of the control region, both restricted to alethinophidians among living snakes. PMID:20055998
RNA editing differently affects protein-coding genes in D. melanogaster and H. sapiens.
Grassi, Luigi; Leoni, Guido; Tramontano, Anna
2015-07-14
When an RNA editing event occurs within a coding sequence it can lead to a different encoded amino acid. The biological significance of these events remains an open question: they can modulate protein functionality, increase the complexity of transcriptomes or arise from a loose specificity of the involved enzymes. We analysed the editing events in coding regions that produce or not a change in the encoded amino acid (nonsynonymous and synonymous events, respectively) in D. melanogaster and in H. sapiens and compared them with the appropriate random models. Interestingly, our results show that the phenomenon has rather different characteristics in the two organisms. For example, we confirm the observation that editing events occur more frequently in non-coding than in coding regions, and report that this effect is much more evident in H. sapiens. Additionally, in this latter organism, editing events tend to affect less conserved residues. The less frequently occurring editing events in Drosophila tend to avoid drastic amino acid changes. Interestingly, we find that, in Drosophila, changes from less frequently used codons to more frequently used ones are favoured, while this is not the case in H. sapiens.
Causes of Death Data in the Global Burden of Disease Estimates for Ischemic and Hemorrhagic Stroke.
Truelsen, Thomas; Krarup, Lars-Henrik; Iversen, Helle K; Mensah, George A; Feigin, Valery L; Sposato, Luciano A; Naghavi, Mohsen
2015-01-01
Stroke mortality estimates in the Global Burden of Disease (GBD) study are based on routine mortality statistics and redistribution of ill-defined codes that cannot be a cause of death, the so-called 'garbage codes' (GCs). This study describes the contribution of these codes to stroke mortality estimates. All available mortality data were compiled and non-specific cause codes were redistributed based on literature review and statistical methods. Ill-defined codes were redistributed to their specific cause of disease by age, sex, country and year. The reassignment was done based on the International Classification of Diseases and the pathology behind each code by checking multiple causes of death and literature review. Unspecified stroke and primary and secondary hypertension are leading contributing 'GCs' to stroke mortality estimates for hemorrhagic stroke (HS) and ischemic stroke (IS). There were marked differences in the fraction of death assigned to IS and HS for unspecified stroke and hypertension between GBD regions and between age groups. A large proportion of stroke fatalities are derived from the redistribution of 'unspecified stroke' and 'hypertension' with marked regional differences. Future advancements in stroke certification, data collections and statistical analyses may improve the estimation of the global stroke burden. © 2015 S. Karger AG, Basel.
MATLAB Stability and Control Toolbox Trim and Static Stability Module
NASA Technical Reports Server (NTRS)
Kenny, Sean P.; Crespo, Luis
2012-01-01
MATLAB Stability and Control Toolbox (MASCOT) utilizes geometric, aerodynamic, and inertial inputs to calculate air vehicle stability in a variety of critical flight conditions. The code is based on fundamental, non-linear equations of motion and is able to translate results into a qualitative, graphical scale useful to the non-expert. MASCOT was created to provide the conceptual aircraft designer accurate predictions of air vehicle stability and control characteristics. The code takes as input mass property data in the form of an inertia tensor, aerodynamic loading data, and propulsion (i.e. thrust) loading data. Using fundamental nonlinear equations of motion, MASCOT then calculates vehicle trim and static stability data for the desired flight condition(s). Available flight conditions include six horizontal and six landing rotation conditions with varying options for engine out, crosswind, and sideslip, plus three take-off rotation conditions. Results are displayed through a unique graphical interface developed to provide the non-stability and control expert conceptual design engineer a qualitative scale indicating whether the vehicle has acceptable, marginal, or unacceptable static stability characteristics. If desired, the user can also examine the detailed, quantitative results.
Non-coding recurrent mutations in chronic lymphocytic leukaemia.
Puente, Xose S; Beà, Silvia; Valdés-Mas, Rafael; Villamor, Neus; Gutiérrez-Abril, Jesús; Martín-Subero, José I; Munar, Marta; Rubio-Pérez, Carlota; Jares, Pedro; Aymerich, Marta; Baumann, Tycho; Beekman, Renée; Belver, Laura; Carrio, Anna; Castellano, Giancarlo; Clot, Guillem; Colado, Enrique; Colomer, Dolors; Costa, Dolors; Delgado, Julio; Enjuanes, Anna; Estivill, Xavier; Ferrando, Adolfo A; Gelpí, Josep L; González, Blanca; González, Santiago; González, Marcos; Gut, Marta; Hernández-Rivas, Jesús M; López-Guerra, Mónica; Martín-García, David; Navarro, Alba; Nicolás, Pilar; Orozco, Modesto; Payer, Ángel R; Pinyol, Magda; Pisano, David G; Puente, Diana A; Queirós, Ana C; Quesada, Víctor; Romeo-Casabona, Carlos M; Royo, Cristina; Royo, Romina; Rozman, María; Russiñol, Nuria; Salaverría, Itziar; Stamatopoulos, Kostas; Stunnenberg, Hendrik G; Tamborero, David; Terol, María J; Valencia, Alfonso; López-Bigas, Nuria; Torrents, David; Gut, Ivo; López-Guillermo, Armando; López-Otín, Carlos; Campo, Elías
2015-10-22
Chronic lymphocytic leukaemia (CLL) is a frequent disease in which the genetic alterations determining the clinicobiological behaviour are not fully understood. Here we describe a comprehensive evaluation of the genomic landscape of 452 CLL cases and 54 patients with monoclonal B-lymphocytosis, a precursor disorder. We extend the number of CLL driver alterations, including changes in ZNF292, ZMYM3, ARID1A and PTPN11. We also identify novel recurrent mutations in non-coding regions, including the 3' region of NOTCH1, which cause aberrant splicing events, increase NOTCH1 activity and result in a more aggressive disease. In addition, mutations in an enhancer located on chromosome 9p13 result in reduced expression of the B-cell-specific transcription factor PAX5. The accumulative number of driver alterations (0 to ≥4) discriminated between patients with differences in clinical behaviour. This study provides an integrated portrait of the CLL genomic landscape, identifies new recurrent driver mutations of the disease, and suggests clinical interventions that may improve the management of this neoplasia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
von Nickisch-Rosenegk, Markus; Brown, Wesley M.; Boore, Jeffrey L.
2001-01-01
Using ''long-PCR'' we have amplified in overlapping fragments the complete mitochondrial genome of the tapeworm Hymenolepis diminuta (Platyhelminthes: Cestoda) and determined its 13,900 nucleotide sequence. The gene content is the same as that typically found for animal mitochondrial DNA (mtDNA) except that atp8 appears to be lacking, a condition found previously for several other animals. Despite the small size of this mtDNA, there are two large non-coding regions, one of which contains 13 repeats of a 31 nucleotide sequence and a potential stem-loop structure of 25 base pairs with an 11-member loop. Large potential secondary structures are identified also formore » the non-coding regions of two other cestode mtDNAs. Comparison of the mitochondrial gene arrangement of H. diminuta with those previously published supports a phylogenetic position of flatworms as members of the Eutrochozoa, rather than being basal to either a clade of protostomes or a clade of coelomates.« less
Yallowitz, Alisha R.; Gong, Ke-Qin; Swinehart, Ilea T.; Nelson, Lisa T.; Wellik, Deneen M.
2009-01-01
Summary Hox genes control many developmental events along the AP axis, but few target genes have been identified. Whether target genes are activated or repressed, what enhancer elements are required for regulation, and how different domains of the Hox proteins contribute to regulatory specificity is poorly understood. Six2 is genetically downstream of both the Hox11 paralogous genes in the developing mammalian kidney and Hoxa2 in branchial arch and facial mesenchyme. Loss-of-function of Hox11 leads to loss of Six2 expression and loss-of-function of Hoxa2 leads to expanded Six2 expression. Herein we demonstrate that a single enhancer site upstream of the Six2 coding sequence is responsible for both activation by Hox11 proteins in the kidney and repression by Hoxa2 in the branchial arch and facial mesenchyme in vivo. DNA binding activity is required for both activation and repression, but differential activity is not controlled by differences in the homeodomains. Rather, protein domains N- and C-terminal to the homeodomain confer activation versus repression activity. These data support a model in which the DNA binding specificity of Hox proteins in vivo may be similar, consistent with accumulated in vitro data, and that unique functions result mainly from differential interactions mediated by non-homeodomain regions of Hox proteins. PMID:19716816
Zhang, Yong; Zhang, Fan; Zhu, Shuangli; Chen, Li; Yan, Dongmei; Wang, Dongyan; Tang, Ruiyan; Zhu, Hui; Hou, Xiaohui; An, Hongqiu; Zhang, Hong; Xu, Wenbo
2010-02-01
A type 2 vaccine-related poliovirus (strain CHN3024), differing from the Sabin 2 strain by 0.44% in the VP1 coding region was isolated from a patient with vaccine-associated paralytic poliomyelitis. Sequences downstream of nucleotide position 6735 (3D(pol) coding region) were derived from an unidentified sequence; no close match for a potential parent was found, but it could be classified into a non-polio human enteroviruses species C (HEV-C) phylogeny. The virus differed antigenically from the parental Sabin strain, having an amino acid substitution in the neutralizing antigenic site 1. The similarity between CHN3024 and Sabin 2 sequences suggests that the recombination was recent; this is supported by the estimation that the initiating OPV dose was given only 36-75 days before sampling. The patient's clinical manifestations, intratypic differentiation examination, and whole-genome sequencing showed that this recombinant exhibited characteristics of neurovirulent vaccine-derived polioviruses (VDPV), which may, thus, pose a potential threat to a polio-free world.
NASA Astrophysics Data System (ADS)
Testa, P.; Polito, V.; De Pontieu, B.; Carlsson, M.; Reale, F.; Allred, J. C.; Hansteen, V. H.
2017-12-01
We investigate coronal heating properties in active region cores in non-flaring conditions, using high spatial, spectral, and temporal resolution chromospheric/transition region/coronal observations coupled with detailed modeling. We will focus, in particular, on observations with the Interface Region Imaging Spectrograph (IRIS), joint with observations with Hinode (XRT and EIS) and SDO/AIA. We will discuss how these observations and models (1D HD and 3D MHD, with the RADYN and Bifrost codes) provide useful diagnostics of the coronal heating processes and mechanisms of energy transport.
An Adaptive Source-Channel Coding with Feedback for Progressive Transmission of Medical Images
Lo, Jen-Lung; Sanei, Saeid; Nazarpour, Kianoush
2009-01-01
A novel adaptive source-channel coding with feedback for progressive transmission of medical images is proposed here. In the source coding part, the transmission starts from the region of interest (RoI). The parity length in the channel code varies with respect to both the proximity of the image subblock to the RoI and the channel noise, which is iteratively estimated in the receiver. The overall transmitted data can be controlled by the user (clinician). In the case of medical data transmission, it is vital to keep the distortion level under control as in most of the cases certain clinically important regions have to be transmitted without any visible error. The proposed system significantly reduces the transmission time and error. Moreover, the system is very user friendly since the selection of the RoI, its size, overall code rate, and a number of test features such as noise level can be set by the users in both ends. A MATLAB-based TCP/IP connection has been established to demonstrate the proposed interactive and adaptive progressive transmission system. The proposed system is simulated for both binary symmetric channel (BSC) and Rayleigh channel. The experimental results verify the effectiveness of the design. PMID:19190770
Intergenic disease-associated regions are abundant in novel transcripts.
Bartonicek, N; Clark, M B; Quek, X C; Torpy, J R; Pritchard, A L; Maag, J L V; Gloss, B S; Crawford, J; Taft, R J; Hayward, N K; Montgomery, G W; Mattick, J S; Mercer, T R; Dinger, M E
2017-12-28
Genotyping of large populations through genome-wide association studies (GWAS) has successfully identified many genomic variants associated with traits or disease risk. Unexpectedly, a large proportion of GWAS single nucleotide polymorphisms (SNPs) and associated haplotype blocks are in intronic and intergenic regions, hindering their functional evaluation. While some of these risk-susceptibility regions encompass cis-regulatory sites, their transcriptional potential has never been systematically explored. To detect rare tissue-specific expression, we employed the transcript-enrichment method CaptureSeq on 21 human tissues to identify 1775 multi-exonic transcripts from 561 intronic and intergenic haploblocks associated with 392 traits and diseases, covering 73.9 Mb (2.2%) of the human genome. We show that a large proportion (85%) of disease-associated haploblocks express novel multi-exonic non-coding transcripts that are tissue-specific and enriched for GWAS SNPs as well as epigenetic markers of active transcription and enhancer activity. Similarly, we captured transcriptomes from 13 melanomas, targeting nine melanoma-associated haploblocks, and characterized 31 novel melanoma-specific transcripts that include fusion proteins, novel exons and non-coding RNAs, one-third of which showed allelically imbalanced expression. This resource of previously unreported transcripts in disease-associated regions ( http://gwas-captureseq.dingerlab.org ) should provide an important starting point for the translational community in search of novel biomarkers, disease mechanisms, and drug targets.
Comparative architecture of silks, fibrous proteins and their encoding genes in insects and spiders.
Craig, Catherine L; Riekel, Christian
2002-12-01
The known silk fibroins and fibrous glues are thought to be encoded by members of the same gene family. All silk fibroins sequenced to date contain regions of long-range order (crystalline regions) and/or short-range order (non-crystalline regions). All of the sequenced fibroin silks (Flag or silk from flagelliform gland in spiders; Fhc or heavy chain fibroin silks produced by Lepidoptera larvae) are made up of hierarchically organized, repetitive arrays of amino acids. Fhc fibroin genes are characterized by a similar molecular genetic architecture of two exons and one intron, but the organization and size of these units differs. The Flag, Ser (sericin gene) and BR (Balbiani ring genes; both fibrous proteins) genes are made up of multiple exons and introns. Sequences coding for crystalline and non-crystalline protein domains are integrated in the repetitive regions of Fhc and MA exons, but not in the protein glues Ser1 and BR-1. Genetic 'hot-spots' promote recombination errors in Fhc, MA, and Flag. Codon bias, structural constraint, point mutations, and shortened coding arrays may be alternative means of stabilizing precursor mRNA transcripts. Differential regulation of gene expression and selective splicing of the mRNA transcript may allow rapid adaptation of silk functional properties to different physical environments.
Elder, D
1984-06-07
The logic of genetic control of development may be based on a binary epigenetic code. This paper revises the author's previous scheme dealing with the numerology of annelid metamerism in these terms. Certain features of the code had been deduced to be combinatorial, others not. This paradoxical contrast is resolved here by the interpretation that these features relate to different operations of the code; the combinatiorial to coding identity of units, the non-combinatorial to coding production of units. Consideration of a second paradox in the theory of epigenetic coding leads to a new solution which further provides a basis for epimorphic regeneration, and may in particular throw light on the "regeneration-duplication" phenomenon. A possible test of the model is also put forward.
Soreq, Lilach; Guffanti, Alessandro; Salomonis, Nathan; Simchovitz, Alon; Israel, Zvi; Bergman, Hagai; Soreq, Hermona
2014-01-01
The continuously prolonged human lifespan is accompanied by increase in neurodegenerative diseases incidence, calling for the development of inexpensive blood-based diagnostics. Analyzing blood cell transcripts by RNA-Seq is a robust means to identify novel biomarkers that rapidly becomes a commonplace. However, there is lack of tools to discover novel exons, junctions and splicing events and to precisely and sensitively assess differential splicing through RNA-Seq data analysis and across RNA-Seq platforms. Here, we present a new and comprehensive computational workflow for whole-transcriptome RNA-Seq analysis, using an updated version of the software AltAnalyze, to identify both known and novel high-confidence alternative splicing events, and to integrate them with both protein-domains and microRNA binding annotations. We applied the novel workflow on RNA-Seq data from Parkinson's disease (PD) patients' leukocytes pre- and post- Deep Brain Stimulation (DBS) treatment and compared to healthy controls. Disease-mediated changes included decreased usage of alternative promoters and N-termini, 5′-end variations and mutually-exclusive exons. The PD regulated FUS and HNRNP A/B included prion-like domains regulated regions. We also present here a workflow to identify and analyze long non-coding RNAs (lncRNAs) via RNA-Seq data. We identified reduced lncRNA expression and selective PD-induced changes in 13 of over 6,000 detected leukocyte lncRNAs, four of which were inversely altered post-DBS. These included the U1 spliceosomal lncRNA and RP11-462G22.1, each entailing sequence complementarity to numerous microRNAs. Analysis of RNA-Seq from PD and unaffected controls brains revealed over 7,000 brain-expressed lncRNAs, of which 3,495 were co-expressed in the leukocytes including U1, which showed both leukocyte and brain increases. Furthermore, qRT-PCR validations confirmed these co-increases in PD leukocytes and two brain regions, the amygdala and substantia-nigra, compared to controls. This novel workflow allows deep multi-level inspection of RNA-Seq datasets and provides a comprehensive new resource for understanding disease transcriptome modifications in PD and other neurodegenerative diseases. PMID:24651478
Video coding for 3D-HEVC based on saliency information
NASA Astrophysics Data System (ADS)
Yu, Fang; An, Ping; Yang, Chao; You, Zhixiang; Shen, Liquan
2016-11-01
As an extension of High Efficiency Video Coding ( HEVC), 3D-HEVC has been widely researched under the impetus of the new generation coding standard in recent years. Compared with H.264/AVC, its compression efficiency is doubled while keeping the same video quality. However, its higher encoding complexity and longer encoding time are not negligible. To reduce the computational complexity and guarantee the subjective quality of virtual views, this paper presents a novel video coding method for 3D-HEVC based on the saliency informat ion which is an important part of Human Visual System (HVS). First of all, the relationship between the current coding unit and its adjacent units is used to adjust the maximum depth of each largest coding unit (LCU) and determine the SKIP mode reasonably. Then, according to the saliency informat ion of each frame image, the texture and its corresponding depth map will be divided into three regions, that is, salient area, middle area and non-salient area. Afterwards, d ifferent quantization parameters will be assigned to different regions to conduct low complexity coding. Finally, the compressed video will generate new view point videos through the renderer tool. As shown in our experiments, the proposed method saves more bit rate than other approaches and achieves up to highest 38% encoding time reduction without subjective quality loss in compression or rendering.
Correlation approach to identify coding regions in DNA sequences
NASA Technical Reports Server (NTRS)
Ossadnik, S. M.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Mantegna, R. N.; Peng, C. K.; Simons, M.; Stanley, H. E.
1994-01-01
Recently, it was observed that noncoding regions of DNA sequences possess long-range power-law correlations, whereas coding regions typically display only short-range correlations. We develop an algorithm based on this finding that enables investigators to perform a statistical analysis on long DNA sequences to locate possible coding regions. The algorithm is particularly successful in predicting the location of lengthy coding regions. For example, for the complete genome of yeast chromosome III (315,344 nucleotides), at least 82% of the predictions correspond to putative coding regions; the algorithm correctly identified all coding regions larger than 3000 nucleotides, 92% of coding regions between 2000 and 3000 nucleotides long, and 79% of coding regions between 1000 and 2000 nucleotides. The predictive ability of this new algorithm supports the claim that there is a fundamental difference in the correlation property between coding and noncoding sequences. This algorithm, which is not species-dependent, can be implemented with other techniques for rapidly and accurately locating relatively long coding regions in genomic sequences.
Ivancic-Jelecki, Jelena; Slovic, Anamarija; Šantak, Maja; Tešović, Goran; Forcic, Dubravko
2016-07-29
The canonical genome organization of measles virus (MV) is characterized by total size of 15 894 nucleotides (nts) and defined length of every genomic region, both coding and non-coding. Only rarely have reports of strains possessing non-canonical genomic properties (possessing indels, with or without the change of total genome length) been published. The observed mutations are mutually compensatory in a sense that the total genome length remains polyhexameric. Although programmed and highly precise pseudo-templated nucleotide additions during transcription are inherent to polymerases of all viruses belonging to family Paramyxoviridae, a similar mechanism that would serve to non-randomly correct genome length, if an indel has occurred during replication, has so far not been described in the context of a complete virus genome. We compiled all complete MV genomic sequences (64 in total) available in open access sequence databases. Multiple sequence comparisons and phylogenetic analyses were performed with the aim of exploring whether non-recombinant and non-evolutionary linked measles strains that show deviations from canonical genome organization possess a common genetic characteristic. In 11 MV sequences we detected deviations from canonical genome organization due to short indels located within homopolymeric stretches or next to them. In nine out of 11 identified non-canonical MV sequences, a common feature was observed: one mutation, either an insertion or a deletion, was located in a 28 nts long region in F gene 5' untranslated region (positions 5051-5078 in genomic cDNA of canonical strains). This segment is composed of five tandemly linked homopolymeric stretches, its consensus sequence is G6-7C7-8A6-7G1-3C5-6. Although none of the mononucleotide repeats within this segment has fixed length, the total number of nts in canonical strains is always 28. These nine non-canonical strains, as well as the tenth (not mutated in 5051-5078 segment), can be grouped in three clusters, based on their passage histories/epidemiological data/genetic similarities. There are no indications that the 3 clusters are evolutionary linked, other than the fact that they all belong to clade D. A common narrow genomic region was found to be mutated in different, non-related, wild type strains suggesting that this region might have a function in non-random genome length corrections occurring during MV replication.
A Study to Determine the Need for a Standard Limiting the Horsepower of Recreational Boats.
1978-09-01
Acceptance Number of Number Fatal Accidents Non -Fatal Accidents - (Lost control ) 1 93 2 :No attempt to avoid collision) 1 19 72 fAttempted to avoic, not enough...base, and an explanation of the computer SModel designed to aid in organizing and analyzing the data are presented with the results of the analyses. An...Standard 75 S 3.2 Non -Powering Related Accident Sample 76 3.3 Coded Information and Coding Form 77 • - 3.4 Effectiveness Evaluation of the Current
2014-01-01
Linear algebraic concept of subspace plays a significant role in the recent techniques of spectrum estimation. In this article, the authors have utilized the noise subspace concept for finding hidden periodicities in DNA sequence. With the vast growth of genomic sequences, the demand to identify accurately the protein-coding regions in DNA is increasingly rising. Several techniques of DNA feature extraction which involves various cross fields have come up in the recent past, among which application of digital signal processing tools is of prime importance. It is known that coding segments have a 3-base periodicity, while non-coding regions do not have this unique feature. One of the most important spectrum analysis techniques based on the concept of subspace is the least-norm method. The least-norm estimator developed in this paper shows sharp period-3 peaks in coding regions completely eliminating background noise. Comparison of proposed method with existing sliding discrete Fourier transform (SDFT) method popularly known as modified periodogram method has been drawn on several genes from various organisms and the results show that the proposed method has better as well as an effective approach towards gene prediction. Resolution, quality factor, sensitivity, specificity, miss rate, and wrong rate are used to establish superiority of least-norm gene prediction method over existing method. PMID:24386895
Rozhdestvensky, Timofey S.; Robeck, Thomas; Galiveti, Chenna R.; Raabe, Carsten A.; Seeger, Birte; Wolters, Anna; Gubar, Leonid V.; Brosius, Jürgen; Skryabin, Boris V.
2016-01-01
Prader-Willi syndrome (PWS) is a neurogenetic disorder caused by loss of paternally expressed genes on chromosome 15q11-q13. The PWS-critical region (PWScr) contains an array of non-protein coding IPW-A exons hosting intronic SNORD116 snoRNA genes. Deletion of PWScr is associated with PWS in humans and growth retardation in mice exhibiting ~15% postnatal lethality in C57BL/6 background. Here we analysed a knock-in mouse containing a 5′HPRT-LoxP-NeoR cassette (5′LoxP) inserted upstream of the PWScr. When the insertion was inherited maternally in a paternal PWScr-deletion mouse model (PWScrp−/m5′LoxP), we observed compensation of growth retardation and postnatal lethality. Genomic methylation pattern and expression of protein-coding genes remained unaltered at the PWS-locus of PWScrp−/m5′LoxP mice. Interestingly, ubiquitous Snord116 and IPW-A exon transcription from the originally silent maternal chromosome was detected. In situ hybridization indicated that PWScrp−/m5′LoxP mice expressed Snord116 in brain areas similar to wild type animals. Our results suggest that the lack of PWScr RNA expression in certain brain areas could be a primary cause of the growth retardation phenotype in mice. We propose that activation of disease-associated genes on imprinted regions could lead to general therapeutic strategies in associated diseases. PMID:26848093
Molecular Evolution of the Non-Coding Eosinophil Granule Ontogeny Transcript
Rose, Dominic; Stadler, Peter F.
2011-01-01
Eukaryotic genomes are pervasively transcribed. A large fraction of the transcriptional output consists of long, mRNA-like, non-protein-coding transcripts (mlncRNAs). The evolutionary history of mlncRNAs is still largely uncharted territory. In this contribution, we explore in detail the evolutionary traces of the eosinophil granule ontogeny transcript (EGOT), an experimentally confirmed representative of an abundant class of totally intronic non-coding transcripts (TINs). EGOT is located antisense to an intron of the ITPR1 gene. We computationally identify putative EGOT orthologs in the genomes of 32 different amniotes, including orthologs from primates, rodents, ungulates, carnivores, afrotherians, and xenarthrans, as well as putative candidates from basal amniotes, such as opossum or platypus. We investigate the EGOT gene phylogeny, analyze patterns of sequence conservation, and the evolutionary conservation of the EGOT gene structure. We show that EGO-B, the spliced isoform, may be present throughout the placental mammals, but most likely dates back even further. We demonstrate here for the first time that the whole EGOT locus is highly structured, containing several evolutionary conserved, and thermodynamic stable secondary structures. Our analyses allow us to postulate novel functional roles of a hitherto poorly understood region at the intron of EGO-B which is highly conserved at the sequence level. The region contains a novel ITPR1 exon and also conserved RNA secondary structures together with a conserved TATA-like element, which putatively acts as a promoter of an independent regulatory element. PMID:22303364
Pre-Mrna Introns as a Model for Cryptographic Algorithm:. Theory and Experiments
NASA Astrophysics Data System (ADS)
Regoli, Massimo
2010-01-01
The RNA-Crypto System (shortly RCS) is a symmetric key algorithm to cipher data. The idea for this new algorithm starts from the observation of nature. In particular from the observation of RNA behavior and some of its properties. In particular the RNA sequences have some sections called Introns. Introns, derived from the term "intragenic regions", are non-coding sections of precursor mRNA (pre-mRNA) or other RNAs, that are removed (spliced out of the RNA) before the mature RNA is formed. Once the introns have been spliced out of a pre-mRNA, the resulting mRNA sequence is ready to be translated into a protein. The corresponding parts of a gene are known as introns as well. The nature and the role of Introns in the pre-mRNA is not clear and it is under ponderous researches by Biologists but, in our case, we will use the presence of Introns in the RNA-Crypto System output as a strong method to add chaotic non coding information and an unnecessary behaviour in the access to the secret key to code the messages. In the RNA-Crypto System algorithm the introns are sections of the ciphered message with non-coding information as well as in the precursor mRNA.
a Simple Symmetric Algorithm Using a Likeness with Introns Behavior in RNA Sequences
NASA Astrophysics Data System (ADS)
Regoli, Massimo
2009-02-01
The RNA-Crypto System (shortly RCS) is a symmetric key algorithm to cipher data. The idea for this new algorithm starts from the observation of nature. In particular from the observation of RNA behavior and some of its properties. The RNA sequences has some sections called Introns. Introns, derived from the term "intragenic regions", are non-coding sections of precursor mRNA (pre-mRNA) or other RNAs, that are removed (spliced out of the RNA) before the mature RNA is formed. Once the introns have been spliced out of a pre-mRNA, the resulting mRNA sequence is ready to be translated into a protein. The corresponding parts of a gene are known as introns as well. The nature and the role of Introns in the pre-mRNA is not clear and it is under ponderous researches by Biologists but, in our case, we will use the presence of Introns in the RNA-Crypto System output as a strong method to add chaotic non coding information and an unnecessary behaviour in the access to the secret key to code the messages. In the RNA-Crypto System algoritnm the introns are sections of the ciphered message with non-coding information as well as in the precursor mRNA.
Meher, J K; Meher, P K; Dash, G N; Raval, M K
2012-01-01
The first step in gene identification problem based on genomic signal processing is to convert character strings into numerical sequences. These numerical sequences are then analysed spectrally or using digital filtering techniques for the period-3 peaks, which are present in exons (coding areas) and absent in introns (non-coding areas). In this paper, we have shown that single-indicator sequences can be generated by encoding schemes based on physico-chemical properties. Two new methods are proposed for generating single-indicator sequences based on hydration energy and dipole moments. The proposed methods produce high peak at exon locations and effectively suppress false exons (intron regions having greater peak than exon regions) resulting in high discriminating factor, sensitivity and specificity.
The complete mitochondrial genome sequence of the Datong yak (Bos grunniens).
Wu, Xiaoyun; Chu, Min; Liang, Chunnian; Ding, Xuezhi; Guo, Xian; Bao, Pengjia; Yan, Ping
2016-01-01
Datong yak is a famous artificially cultivated breed in China. In the present work, we report the complete mitochondrial genome sequence of Datong yak for the first time. The total length of the mitogenome is 16,323 bp long, containing 13 protein-coding genes, 22 tRNA genes, two rRNA genes and one non-coding region (D-loop region). The gene order of Datong yak mitogenome is identical to that observed in most other vertebrates. The overall base composition is 33.71% A, 25.8.0% C, 13.21% G and 27.27% T, with an A + T content of 60.98%. The complete mitogenome sequence information of Datong yak can provide useful data for further studies on molecular breeding and taxonomic status.
Characterization of the complete mitochondrial genome sequence of Gannan yak (Bos grunniens).
Wu, Xiaoyun; Ding, Xuezhi; Chu, Min; Guo, Xian; Bao, Pengjia; Liang, Chunnian; Yan, Ping
2016-01-01
Gannan yak is the native breed of Gansu province in China. In this work, the complete mitochondrial genome sequence of Gannan yak was determined for the first time. The total length of the mitogenome is 16,322 bp long, with the base composition of 33.74% A, 25.84% T, 13.18% C, and 27.24% G. It contained 13 protein-coding genes, 22 tRNA genes, two rRNA genes and one non-coding region (D-loop region). The gene order of Gannan yak mitogenome is identical to that observed in most other vertebrates. The complete mitogenome sequence information of Gannan yak can provide useful data for further studies on protection of genetic resources and phylogenetic relationships within Bos grunniens.
Fine mapping of the chromosome 10q11-q21 linkage region in Alzheimer's disease cases and controls.
Fallin, Margaret Daniele; Szymanski, Megan; Wang, Ruihua; Gherman, Adrian; Bassett, Susan S; Avramopoulos, Dimitrios
2010-07-01
We have previously reported strong linkage on chromosome 10q in pedigrees transmitting Alzheimer's disease through the mother, overlapping with many significant linkage reports including the largest reported study. Here, we report the most comprehensive fine mapping of this region to date. In a sample of 638 late-onset Alzheimer's disease (LOAD) cases and controls including 104 maternal LOAD cases, we genotyped 3,884 single nucleotide polymorphisms (SNPs) covering 15.2 Mb. We then used imputations and publicly available data to generate an extended dataset including 4,329 SNPs for 1,209 AD cases and 839 controls in the same region. Further, we screened eight genes in this region for rare alleles in 283 individuals by nucleotide sequencing, and we tested for possible monoallelic expression as it might underlie our maternal parent of origin linkage. We excluded the possibility of multiple rare coding risk variants for these genes and monoallelic expression when we could test for it. One SNP, rs10824310 in the PRKG1 gene, showed study-wide significant association without a parent of origin effect, but the effect size estimate is not of sufficient magnitude to explain the linkage, and no association is observed in an independent genome-wide association studies (GWAS) report. Further, no causative variants were identified though sequencing. Analysis of cases with maternal disease origin pointed to a few regions of interest that included the genes PRKG1 and PCDH15 and an intergenic interval of 200 Kb. It is likely that non-transcribed rare variants or other mechanisms involving these genomic regions underlie the observed linkage and parent of origin effect. Acquiring additional support and clarifying the mechanisms of such involvement is important for AD and other complex disorder genetics research.
A deep learning method for lincRNA detection using auto-encoder algorithm.
Yu, Ning; Yu, Zeng; Pan, Yi
2017-12-06
RNA sequencing technique (RNA-seq) enables scientists to develop novel data-driven methods for discovering more unidentified lincRNAs. Meantime, knowledge-based technologies are experiencing a potential revolution ignited by the new deep learning methods. By scanning the newly found data set from RNA-seq, scientists have found that: (1) the expression of lincRNAs appears to be regulated, that is, the relevance exists along the DNA sequences; (2) lincRNAs contain some conversed patterns/motifs tethered together by non-conserved regions. The two evidences give the reasoning for adopting knowledge-based deep learning methods in lincRNA detection. Similar to coding region transcription, non-coding regions are split at transcriptional sites. However, regulatory RNAs rather than message RNAs are generated. That is, the transcribed RNAs participate the biological process as regulatory units instead of generating proteins. Identifying these transcriptional regions from non-coding regions is the first step towards lincRNA recognition. The auto-encoder method achieves 100% and 92.4% prediction accuracy on transcription sites over the putative data sets. The experimental results also show the excellent performance of predictive deep neural network on the lincRNA data sets compared with support vector machine and traditional neural network. In addition, it is validated through the newly discovered lincRNA data set and one unreported transcription site is found by feeding the whole annotated sequences through the deep learning machine, which indicates that deep learning method has the extensive ability for lincRNA prediction. The transcriptional sequences of lincRNAs are collected from the annotated human DNA genome data. Subsequently, a two-layer deep neural network is developed for the lincRNA detection, which adopts the auto-encoder algorithm and utilizes different encoding schemes to obtain the best performance over intergenic DNA sequence data. Driven by those newly annotated lincRNA data, deep learning methods based on auto-encoder algorithm can exert their capability in knowledge learning in order to capture the useful features and the information correlation along DNA genome sequences for lincRNA detection. As our knowledge, this is the first application to adopt the deep learning techniques for identifying lincRNA transcription sequences.
Evolution of coding and non-coding genes in HOX clusters of a marsupial.
Yu, Hongshi; Lindsay, James; Feng, Zhi-Ping; Frankenberg, Stephen; Hu, Yanqiu; Carone, Dawn; Shaw, Geoff; Pask, Andrew J; O'Neill, Rachel; Papenfuss, Anthony T; Renfree, Marilyn B
2012-06-18
The HOX gene clusters are thought to be highly conserved amongst mammals and other vertebrates, but the long non-coding RNAs have only been studied in detail in human and mouse. The sequencing of the kangaroo genome provides an opportunity to use comparative analyses to compare the HOX clusters of a mammal with a distinct body plan to those of other mammals. Here we report a comparative analysis of HOX gene clusters between an Australian marsupial of the kangaroo family and the eutherians. There was a strikingly high level of conservation of HOX gene sequence and structure and non-protein coding genes including the microRNAs miR-196a, miR-196b, miR-10a and miR-10b and the long non-coding RNAs HOTAIR, HOTAIRM1 and HOXA11AS that play critical roles in regulating gene expression and controlling development. By microRNA deep sequencing and comparative genomic analyses, two conserved microRNAs (miR-10a and miR-10b) were identified and one new candidate microRNA with typical hairpin precursor structure that is expressed in both fibroblasts and testes was found. The prediction of microRNA target analysis showed that several known microRNA targets, such as miR-10, miR-414 and miR-464, were found in the tammar HOX clusters. In addition, several novel and putative miRNAs were identified that originated from elsewhere in the tammar genome and that target the tammar HOXB and HOXD clusters. This study confirms that the emergence of known long non-coding RNAs in the HOX clusters clearly predate the marsupial-eutherian divergence 160 Ma ago. It also identified a new potentially functional microRNA as well as conserved miRNAs. These non-coding RNAs may participate in the regulation of HOX genes to influence the body plan of this marsupial.
Evolution of coding and non-coding genes in HOX clusters of a marsupial
2012-01-01
Background The HOX gene clusters are thought to be highly conserved amongst mammals and other vertebrates, but the long non-coding RNAs have only been studied in detail in human and mouse. The sequencing of the kangaroo genome provides an opportunity to use comparative analyses to compare the HOX clusters of a mammal with a distinct body plan to those of other mammals. Results Here we report a comparative analysis of HOX gene clusters between an Australian marsupial of the kangaroo family and the eutherians. There was a strikingly high level of conservation of HOX gene sequence and structure and non-protein coding genes including the microRNAs miR-196a, miR-196b, miR-10a and miR-10b and the long non-coding RNAs HOTAIR, HOTAIRM1 and HOXA11AS that play critical roles in regulating gene expression and controlling development. By microRNA deep sequencing and comparative genomic analyses, two conserved microRNAs (miR-10a and miR-10b) were identified and one new candidate microRNA with typical hairpin precursor structure that is expressed in both fibroblasts and testes was found. The prediction of microRNA target analysis showed that several known microRNA targets, such as miR-10, miR-414 and miR-464, were found in the tammar HOX clusters. In addition, several novel and putative miRNAs were identified that originated from elsewhere in the tammar genome and that target the tammar HOXB and HOXD clusters. Conclusions This study confirms that the emergence of known long non-coding RNAs in the HOX clusters clearly predate the marsupial-eutherian divergence 160 Ma ago. It also identified a new potentially functional microRNA as well as conserved miRNAs. These non-coding RNAs may participate in the regulation of HOX genes to influence the body plan of this marsupial. PMID:22708672
Tobacco outlet density and converted versus native non-daily cigarette use in a national US sample
Kirchner, Thomas R; Anesetti-Rothermel, Andrew; Bennett, Morgane; Gao, Hong; Carlos, Heather; Scheuermann, Taneisha S; Reitzel, Lorraine R; Ahluwalia, Jasjit S
2017-01-01
Objective Investigate whether non-daily smokers’ (NDS) cigarette price and purchase preferences, recent cessation attempts, and current intentions to quit are associated with the density of the retail cigarette product landscape surrounding their residential address. Participants Cross-sectional assessment of N=904 converted NDS (CNDS). who previously smoked every day, and N=297 native NDS (NNDS) who only smoked non-daily, drawn from a national panel. Outcome measures Kernel density estimation was used to generate a nationwide probability surface of tobacco outlets linked to participants’ residential ZIP code. Hierarchically nested log-linear models were compared to evaluate associations between outlet density, non-daily use patterns, price sensitivity and quit intentions. Results Overall, NDS in ZIP codes with greater outlet density were less likely than NDS in ZIP codes with lower outlet density to hold 6-month quit intentions when they also reported that price affected use patterns (G2=66.1, p<0.001) and purchase locations (G2=85.2, p<0.001). CNDS were more likely than NNDS to reside in ZIP codes with higher outlet density (G2=322.0, p<0.001). Compared with CNDS in ZIP codes with lower outlet density, CNDS in high-density ZIP codes were more likely to report that price influenced the amount they smoke (G2=43.9, p<0.001), and were more likely to look for better prices (G2=59.3, p<0.001). NDS residing in high-density ZIP codes were not more likely to report that price affected their cigarette brand choice compared with those in ZIP codes with lower density. Conclusions This paper provides initial evidence that the point-of-sale cigarette environment may be differentially associated with the maintenance of CNDS versus NNDS patterns. Future research should investigate how tobacco control efforts can be optimised to both promote cessation and curb the rising tide of non-daily smoking in the USA. PMID:26969172
Lafuente, M J; Petit, T; Gancedo, C
1997-12-22
We have constructed a series of plasmids to facilitate the fusion of promoters with or without coding regions of genes of Schizosaccharomyces pombe to the lacZ gene of Escherichia coli. These vectors carry a multiple cloning region in which fission yeast DNA may be inserted in three different reading frames with respect to the coding region of lacZ. The plasmids were constructed with the ura4+ or the his3+ marker of S. pombe. Functionality of the plasmids was tested measuring in parallel the expression of fructose 1,6-bisphosphatase and beta-galactosidase under the control of the fbp1+ promoter in different conditions.
Shi, Lihua; Zhang, Zhe; Yu, Angela M; Wang, Wei; Wei, Zhi; Akhter, Ehtisham; Maurer, Kelly; Costa Reis, Patrícia; Song, Li; Petri, Michelle; Sullivan, Kathleen E
2014-01-01
Gene expression studies of peripheral blood mononuclear cells from patients with systemic lupus erythematosus (SLE) have demonstrated a type I interferon signature and increased expression of inflammatory cytokine genes. Studies of patients with Aicardi Goutières syndrome, commonly cited as a single gene model for SLE, have suggested that accumulation of non-coding RNAs may drive some of the pathologic gene expression, however, no RNA sequencing studies of SLE patients have been performed. This study was designed to define altered expression of coding and non-coding RNAs and to detect globally altered RNA processing in SLE. Purified monocytes from eight healthy age/gender matched controls and nine SLE patients (with low-moderate disease activity and lack of biologic drug use or immune suppressive treatment) were studied using RNA-seq. Quantitative RT-PCR was used to validate findings. Serum levels of endotoxin were measured by ELISA. We found that SLE patients had diminished expression of most endogenous retroviruses and small nucleolar RNAs, but exhibited increased expression of pri-miRNAs. Splicing patterns and polyadenylation were significantly altered. In addition, SLE monocytes expressed novel transcripts, an effect that was replicated by LPS treatment of control monocytes. We further identified increased circulating endotoxin in SLE patients. Monocytes from SLE patients exhibit globally dysregulated gene expression. The transcriptome is not simply altered by the transcriptional activation of a set of genes, but is qualitatively different in SLE. The identification of novel loci, inducible by LPS, suggests that chronic microbial translocation could contribute to the immunologic dysregulation in SLE, a new potential disease mechanism.
Biological significance of long non-coding RNA FTX expression in human colorectal cancer.
Guo, Xiao-Bo; Hua, Zhu; Li, Chen; Peng, Li-Pan; Wang, Jing-Shen; Wang, Bo; Zhi, Qiao-Ming
2015-01-01
The purpose of this study was to determine the expression of long non-coding RNA (lncRNA) FTX and analyze its prognostic and biological significance in colorectal cancer (CRC). A quantitative reverse transcription PCR was performed to detect the expression of long non-coding RNA FTX in 35 pairs of colorectal cancer and corresponding noncancerous tissues. The expression of long non-coding RNA FTX was detected in 187 colorectal cancer tissues and its correlations with clinicopathological factors of patients were examined. Univariate and multivariate analyses were performed to analyze the prognostic significance of Long Non-coding RNA FTX expression. The effects of long non-coding RNA FTX expression on malignant phenotypes of colorectal cancer cells and its possible biological significances were further determined. Long non-coding RNA FTX was significantly upregulated in colorectal cancer tissues, and low long non-coding RNA FTX expression was significantly correlated with differentiation grade, lymph vascular invasion, and clinical stage. Patients with high long non-coding RNA FTX showed poorer overall survival than those with low long non-coding RNA FTX. Multivariate analyses indicated that status of long non-coding RNA FTX was an independent prognostic factor for patients. Functional analyses showed that upregulation of long non-coding RNA FTX significantly promoted growth, migration, invasion, and increased colony formation in colorectal cancer cells. Therefore, long non-coding RNA FTX may be a potential biomarker for predicting the survival of colorectal cancer patients and might be a molecular target for treatment of human colorectal cancer.
Eisenberger, Tobias; Neuhaus, Christine; Khan, Arif O.; Decker, Christian; Preising, Markus N.; Friedburg, Christoph; Bieg, Anika; Gliem, Martin; Issa, Peter Charbel; Holz, Frank G.; Baig, Shahid M.; Hellenbroich, Yorck; Galvez, Alberto; Platzer, Konrad; Wollnik, Bernd; Laddach, Nadja; Ghaffari, Saeed Reza; Rafati, Maryam; Botzenhart, Elke; Tinschert, Sigrid; Börger, Doris; Bohring, Axel; Schreml, Julia; Körtge-Jung, Stefani; Schell-Apacik, Chayim; Bakur, Khadijah; Al-Aama, Jumana Y.; Neuhann, Teresa; Herkenrath, Peter; Nürnberg, Gudrun; Nürnberg, Peter; Davis, John S.; Gal, Andreas; Bergmann, Carsten; Lorenz, Birgit; Bolz, Hanno J.
2013-01-01
Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are major causes of blindness. They result from mutations in many genes which has long hampered comprehensive genetic analysis. Recently, targeted next-generation sequencing (NGS) has proven useful to overcome this limitation. To uncover “hidden mutations” such as copy number variations (CNVs) and mutations in non-coding regions, we extended the use of NGS data by quantitative readout for the exons of 55 RP and LCA genes in 126 patients, and by including non-coding 5′ exons. We detected several causative CNVs which were key to the diagnosis in hitherto unsolved constellations, e.g. hemizygous point mutations in consanguineous families, and CNVs complemented apparently monoallelic recessive alleles. Mutations of non-coding exon 1 of EYS revealed its contribution to disease. In view of the high carrier frequency for retinal disease gene mutations in the general population, we considered the overall variant load in each patient to assess if a mutation was causative or reflected accidental carriership in patients with mutations in several genes or with single recessive alleles. For example, truncating mutations in RP1, a gene implicated in both recessive and dominant RP, were causative in biallelic constellations, unrelated to disease when heterozygous on a biallelic mutation background of another gene, or even non-pathogenic if close to the C-terminus. Patients with mutations in several loci were common, but without evidence for di- or oligogenic inheritance. Although the number of targeted genes was low compared to previous studies, the mutation detection rate was highest (70%) which likely results from completeness and depth of coverage, and quantitative data analysis. CNV analysis should routinely be applied in targeted NGS, and mutations in non-coding exons give reason to systematically include 5′-UTRs in disease gene or exome panels. Consideration of all variants is indispensable because even truncating mutations may be misleading. PMID:24265693
Eisenberger, Tobias; Neuhaus, Christine; Khan, Arif O; Decker, Christian; Preising, Markus N; Friedburg, Christoph; Bieg, Anika; Gliem, Martin; Charbel Issa, Peter; Holz, Frank G; Baig, Shahid M; Hellenbroich, Yorck; Galvez, Alberto; Platzer, Konrad; Wollnik, Bernd; Laddach, Nadja; Ghaffari, Saeed Reza; Rafati, Maryam; Botzenhart, Elke; Tinschert, Sigrid; Börger, Doris; Bohring, Axel; Schreml, Julia; Körtge-Jung, Stefani; Schell-Apacik, Chayim; Bakur, Khadijah; Al-Aama, Jumana Y; Neuhann, Teresa; Herkenrath, Peter; Nürnberg, Gudrun; Nürnberg, Peter; Davis, John S; Gal, Andreas; Bergmann, Carsten; Lorenz, Birgit; Bolz, Hanno J
2013-01-01
Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are major causes of blindness. They result from mutations in many genes which has long hampered comprehensive genetic analysis. Recently, targeted next-generation sequencing (NGS) has proven useful to overcome this limitation. To uncover "hidden mutations" such as copy number variations (CNVs) and mutations in non-coding regions, we extended the use of NGS data by quantitative readout for the exons of 55 RP and LCA genes in 126 patients, and by including non-coding 5' exons. We detected several causative CNVs which were key to the diagnosis in hitherto unsolved constellations, e.g. hemizygous point mutations in consanguineous families, and CNVs complemented apparently monoallelic recessive alleles. Mutations of non-coding exon 1 of EYS revealed its contribution to disease. In view of the high carrier frequency for retinal disease gene mutations in the general population, we considered the overall variant load in each patient to assess if a mutation was causative or reflected accidental carriership in patients with mutations in several genes or with single recessive alleles. For example, truncating mutations in RP1, a gene implicated in both recessive and dominant RP, were causative in biallelic constellations, unrelated to disease when heterozygous on a biallelic mutation background of another gene, or even non-pathogenic if close to the C-terminus. Patients with mutations in several loci were common, but without evidence for di- or oligogenic inheritance. Although the number of targeted genes was low compared to previous studies, the mutation detection rate was highest (70%) which likely results from completeness and depth of coverage, and quantitative data analysis. CNV analysis should routinely be applied in targeted NGS, and mutations in non-coding exons give reason to systematically include 5'-UTRs in disease gene or exome panels. Consideration of all variants is indispensable because even truncating mutations may be misleading.
ERIC Educational Resources Information Center
Elbro, Carsten; And Others
1994-01-01
Compared to controls, adults (n=102) who reported a history of difficulties in learning to read were disabled in phonological coding, but less disabled in reading comprehension. Adults with poor phonological coding skills had basic deficits in phonological representations of spoken words, even when semantic word knowledge, phonemic awareness,…
2018 Ground Robotics Capabilities Conference and Exhibiton
2018-04-11
Transportable Robot System (MTRS) Inc 1 Non -standard Equipment (approved) Explosive Ordnance Disposal Common Robotic System-Heavy (CRS-H) Inc 1 AROC: 3-Star...and engineering • AI risk mitigation methodologies and techniques are at best immature – E.g., V&V; Probabilistic software analytics; code level...controller to minimize potential UxS mishaps and unauthorized Command and Control (C2). • PSP-10 – Ensure that software systems which exhibit non
Bacteriophage 5' untranslated regions for control of plastid transgene expression.
Yang, Huijun; Gray, Benjamin N; Ahner, Beth A; Hanson, Maureen R
2013-02-01
Expression of foreign proteins from transgenes incorporated into plastid genomes requires regulatory sequences that can be recognized by the plastid transcription and translation machinery. Translation signals harbored by the 5' untranslated region (UTR) of plastid transcripts can profoundly affect the level of accumulation of proteins expressed from chimeric transgenes. Both endogenous 5' UTRs and the bacteriophage T7 gene 10 (T7g10) 5' UTR have been found to be effective in combination with particular coding regions to mediate high-level expression of foreign proteins. We investigated whether two other bacteriophage 5' UTRs could be utilized in plastid transgenes by fusing them to the aadA (aminoglycoside-3'-adenyltransferase) coding region that is commonly used as a selectable marker in plastid transformation. Transplastomic plants containing either the T7g1.3 or T4g23 5' UTRs fused to Myc-epitope-tagged aadA were successfully obtained, demonstrating the ability of these 5' UTRs to regulate gene expression in plastids. Placing the Thermobifida fusca cel6A gene under the control of the T7g1.3 or T4g23 5' UTRs, along with a tetC downstream box, resulted in poor expression of the cellulase in contrast with high-level accumulation while using the T7g10 5' UTR. However, transplastomic plants with the bacteriophage 5' UTRs controlling the aadA coding region exhibited fewer undesired recombinant species than plants containing the same marker gene regulated by the Nicotiana tabacum psbA 5' UTR. Furthermore, expression of the T7g1.3 and T4g23 5' UTR::aadA fusions downstream of the cel6A gene provided sufficient spectinomycin resistance to allow selection of homoplasmic transgenic plants and had no effect on Cel6A accumulation.
Influence of Gene Expression on Hardness in Wheat
Nirmal, Ravi C.; Wrigley, Colin
2016-01-01
Puroindoline (Pina and Pinb) genes control grain texture or hardness in wheat. Wild-type/soft alleles lead to softer grain while a mutation in one or both of these genes results in a hard grain. Variation in hardness in genotypes with identical Pin alleles (wild-type or mutant) is known but the molecular basis of this is not known. We now report the identification of wheat genotypes with hard grain texture and wild-type/soft Pin alleles indicating that hardness in wheat may be controlled by factors other than mutations in the coding region of the Pin genes. RNA-Seq analysis was used to determine the variation in the transcriptome of developing grains of thirty three diverse wheat genotypes including hard (mutant Pin) and soft (wild type) and those that were hard without having Pin mutations. This defined the role of pin gene expression and identified other candidate genes associated with hardness. Pina was not expressed in hard wheat with a mutation in the Pina gene. The ratio of Pina to Pinb expression was generally lower in the hard non mutant genotypes. Hardness may be associated with differences in Pin expression and other factors and is not simply associated with mutations in the PIN protein coding sequences. PMID:27741295
Association of Germline CHEK2 Gene Variants with Risk and Prognosis of Non-Hodgkin Lymphoma
Havranek, Ondrej; Kleiblova, Petra; Hojny, Jan; Lhota, Filip; Soucek, Pavel; Trneny, Marek; Kleibl, Zdenek
2015-01-01
The checkpoint kinase 2 gene (CHEK2) codes for the CHK2 protein, an important mediator of the DNA damage response pathway. The CHEK2 gene has been recognized as a multi-cancer susceptibility gene; however, its role in non-Hodgkin lymphoma (NHL) remains unclear. We performed mutation analysis of the entire CHEK2 coding sequence in 340 NHL patients using denaturing high-performance liquid chromatography (DHPLC) and multiplex ligation-dependent probe amplification (MLPA). Identified hereditary variants were genotyped in 445 non-cancer controls. The influence of CHEK2 variants on disease risk was statistically evaluated. Identified CHEK2 germline variants included four truncating mutations (found in five patients and no control; P = 0.02) and nine missense variants (found in 21 patients and 12 controls; P = 0.02). Carriers of non-synonymous variants had an increased risk of NHL development [odds ratio (OR) 2.86; 95% confidence interval (CI) 1.42–5.79] and an unfavorable prognosis [hazard ratio (HR) of progression-free survival (PFS) 2.1; 95% CI 1.12–4.05]. In contrast, the most frequent intronic variant c.319+43dupA (identified in 22% of patients and 31% of controls) was associated with a decreased NHL risk (OR = 0.62; 95% CI 0.45–0.86), but its positive prognostic effect was limited to NHL patients with diffuse large B-cell lymphoma (DLBCL) treated by conventional chemotherapy without rituximab (HR-PFS 0.4; 94% CI 0.17–0.74). Our results show that germ-line CHEK2 mutations affecting protein coding sequence confer a moderately-increased risk of NHL, they are associated with an unfavorable NHL prognosis, and they may represent a valuable predictive biomarker for patients with DLBCL. PMID:26506619
Association of Germline CHEK2 Gene Variants with Risk and Prognosis of Non-Hodgkin Lymphoma.
Havranek, Ondrej; Kleiblova, Petra; Hojny, Jan; Lhota, Filip; Soucek, Pavel; Trneny, Marek; Kleibl, Zdenek
2015-01-01
The checkpoint kinase 2 gene (CHEK2) codes for the CHK2 protein, an important mediator of the DNA damage response pathway. The CHEK2 gene has been recognized as a multi-cancer susceptibility gene; however, its role in non-Hodgkin lymphoma (NHL) remains unclear. We performed mutation analysis of the entire CHEK2 coding sequence in 340 NHL patients using denaturing high-performance liquid chromatography (DHPLC) and multiplex ligation-dependent probe amplification (MLPA). Identified hereditary variants were genotyped in 445 non-cancer controls. The influence of CHEK2 variants on disease risk was statistically evaluated. Identified CHEK2 germline variants included four truncating mutations (found in five patients and no control; P = 0.02) and nine missense variants (found in 21 patients and 12 controls; P = 0.02). Carriers of non-synonymous variants had an increased risk of NHL development [odds ratio (OR) 2.86; 95% confidence interval (CI) 1.42-5.79] and an unfavorable prognosis [hazard ratio (HR) of progression-free survival (PFS) 2.1; 95% CI 1.12-4.05]. In contrast, the most frequent intronic variant c.319+43dupA (identified in 22% of patients and 31% of controls) was associated with a decreased NHL risk (OR = 0.62; 95% CI 0.45-0.86), but its positive prognostic effect was limited to NHL patients with diffuse large B-cell lymphoma (DLBCL) treated by conventional chemotherapy without rituximab (HR-PFS 0.4; 94% CI 0.17-0.74). Our results show that germ-line CHEK2 mutations affecting protein coding sequence confer a moderately-increased risk of NHL, they are associated with an unfavorable NHL prognosis, and they may represent a valuable predictive biomarker for patients with DLBCL.
Complete mitochondrial genome of the larch hawk moth, Sphinx morio (Lepidoptera: Sphingidae).
Kim, Min Jee; Choi, Sei-Woong; Kim, Iksoo
2013-12-01
The larch hawk moth, Sphinx morio, belongs to the lepidopteran family Sphingidae that has long been studied as a family of model insects in a diverse field. In this study, we describe the complete mitochondrial genome (mitogenome) sequences of the species in terms of general genomic features and characteristic short repetitive sequences found in the A + T-rich region. The 15,299-bp-long genome consisted of a typical set of genes (13 protein-coding genes, 2 rRNA genes, and 22 tRNA genes) and one major non-coding A + T-rich region, with the typical arrangement found in Lepidoptera. The 316-bp-long A + T-rich region located between srRNA and tRNA(Met) harbored the conserved sequence blocks that are typically found in lepidopteran insects. Additionally, the A + T-rich region of S. morio contained three characteristic repeat sequences that are rarely found in Lepidoptera: two identical 12-bp repeat, three identical 5-bp-long tandem repeat, and six nearly identical 5-6 bp long repeat sequences.
Zhang, Hong-Li; Ye, Fei
2017-01-01
Praying mantises are a diverse group of predatory insects. Although some Mantodea mitogenomes have been reported, a comprehensive comparative and evolutionary genomic study is lacking for this group. In the present study, four new mitogenomes were sequenced, annotated, and compared to the previously published mitogenomes of other Mantodea species. Most Mantodea mitogenomes share a typical set of mitochondrial genes and a putative control region (CR). Additionally, and most intriguingly, another large non-coding region (LNC) was detected between trnM and ND2 in all six Paramantini mitogenomes examined. The main section in this common region of Paramantini may have initially originated from the corresponding control region for each species, whereas sequence differences between the LNCs and CRs and phylogenetic analyses indicate that LNC and CR are largely independently evolving. Namely, the LNC (the duplicated CR) may have subsequently degenerated during evolution. Furthermore, evidence suggests that special intergenic gaps have been introduced in some species through gene rearrangement and duplication. These gaps are actually the original abutting sequences of migrated or duplicated genes. Some gaps (G5 and G6) are homologous to the 5' and 3' surrounding regions of the duplicated gene in the original gene order, and another specific gap (G7) has tandem repeats. We analysed the phylogenetic relationships of fifteen Mantodea species using 37 concatenated mitochondrial genes and detected several synapomorphies unique to species in some clades. PMID:28367101
Semiconductor laser having a non-absorbing passive region with beam guiding
NASA Technical Reports Server (NTRS)
Botez, Dan (Inventor)
1986-01-01
A laser comprises a semiconductor body having a pair of end faces and including an active region comprising adjacent active and guide layers which is spaced a distance from the end face and a passive region comprising adjacent non-absorbing guide and mode control layers which extends between the active region and the end face. The combination of the guide and mode control layers provides a weak positive index waveguide in the lateral direction thereby providing lateral mode control in the passive region between the active region and the end face.
The complete mitochondrial genome of the stomatopod crustacean Squilla mantis
Cook, Charles E
2005-01-01
Background Animal mitochondrial genomes are physically separate from the much larger nuclear genomes and have proven useful both for phylogenetic studies and for understanding genome evolution. Within the phylum Arthropoda the subphylum Crustacea includes over 50,000 named species with immense variation in body plans and habitats, yet only 23 complete mitochondrial genomes are available from this subphylum. Results I describe here the complete mitochondrial genome of the crustacean Squilla mantis (Crustacea: Malacostraca: Stomatopoda). This 15994-nucleotide genome, the first described from a hoplocarid, contains the standard complement of 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and a non-coding AT-rich region that is found in most other metazoans. The gene order is identical to that considered ancestral for hexapods and crustaceans. The 70% AT base composition is within the range described for other arthropods. A single unusual feature of the genome is a 230 nucleotide non-coding region between a serine transfer RNA and the nad1 gene, which has no apparent function. I also compare gene order, nucleotide composition, and codon usage of the S. mantis genome and eight other malacostracan crustaceans. A translocation of the histidine transfer RNA gene is shared by three taxa in the order Decapoda, infraorder Brachyura; Callinectes sapidus, Portunus trituberculatus and Pseudocarcinus gigas. This translocation may be diagnostic for the Brachyura. For all nine taxa nucleotide composition is biased towards AT-richness, as expected for arthropods, and is within the range reported for other arthropods. Codon usage is biased, and much of this bias is probably due to the skew in nucleotide composition towards AT-richness. Conclusion The mitochondrial genome of Squilla mantis contains one unusual feature, a 230 base pair non-coding region has so far not been described in any other malacostracan. Comparisons with other Malacostraca show that all nine genomes, like most other mitochondrial genomes, share a bias toward AT-richness and a related bias in codon usage. The nine malacostracans included in this analysis are not representative of the diversity of the class Malacostraca, and additional malacostracan sequences would surely reveal other unusual genomic features that could be useful in understanding mitochondrial evolution in this taxon. PMID:16091132
Mutation Screening of 1,237 Cancer Genes across Six Model Cell Lines of Basal-Like Breast Cancer.
Olsson, Eleonor; Winter, Christof; George, Anthony; Chen, Yilun; Törngren, Therese; Bendahl, Pär-Ola; Borg, Åke; Gruvberger-Saal, Sofia K; Saal, Lao H
2015-01-01
Basal-like breast cancer is an aggressive subtype generally characterized as poor prognosis and lacking the expression of the three most important clinical biomarkers, estrogen receptor, progesterone receptor, and HER2. Cell lines serve as useful model systems to study cancer biology in vitro and in vivo. We performed mutational profiling of six basal-like breast cancer cell lines (HCC38, HCC1143, HCC1187, HCC1395, HCC1954, and HCC1937) and their matched normal lymphocyte DNA using targeted capture and next-generation sequencing of 1,237 cancer-associated genes, including all exons, UTRs and upstream flanking regions. In total, 658 somatic variants were identified, of which 378 were non-silent (average 63 per cell line, range 37-146) and 315 were novel (not present in the Catalogue of Somatic Mutations in Cancer database; COSMIC). 125 novel mutations were confirmed by Sanger sequencing (59 exonic, 48 3'UTR and 10 5'UTR, 1 splicing), with a validation rate of 94% of high confidence variants. Of 36 mutations previously reported for these cell lines but not detected in our exome data, 36% could not be detected by Sanger sequencing. The base replacements C/G>A/T, C/G>G/C, C/G>T/A and A/T>G/C were significantly more frequent in the coding regions compared to the non-coding regions (OR 3.2, 95% CI 2.0-5.3, P<0.0001; OR 4.3, 95% CI 2.9-6.6, P<0.0001; OR 2.4, 95% CI 1.8-3.1, P<0.0001; OR 1.8, 95% CI 1.2-2.7, P = 0.024, respectively). The single nucleotide variants within the context of T[C]T/A[G]A and T[C]A/T[G]A were more frequent in the coding than in the non-coding regions (OR 3.7, 95% CI 2.2-6.1, P<0.0001; OR 3.8, 95% CI 2.0-7.2, P = 0.001, respectively). Copy number estimations were derived from the targeted regions and correlated well to Affymetrix SNP array copy number data (Pearson correlation 0.82 to 0.96 for all compared cell lines; P<0.0001). These mutation calls across 1,237 cancer-associated genes and identification of novel variants will aid in the design and interpretation of biological experiments using these six basal-like breast cancer cell lines.
40 CFR 147.2250 - State-administered program-Class I, III, IV, and V wells.
Code of Federal Regulations, 2011 CFR
2011-07-01
... of the Federal Register on June 25, 1984. (1) Utah Water Pollution Control Act, Utah Code Annotated... Executive Secretary of Utah Water Pollution Control Committee on August 16, 1990). (b) Other laws. The... Department of Health, Division of Environmental Health, Bureau of Water Pollution Control, to EPA Region VIII...
40 CFR 147.2250 - State-administered program-Class I, III, IV, and V wells.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of the Federal Register on June 25, 1984. (1) Utah Water Pollution Control Act, Utah Code Annotated... Executive Secretary of Utah Water Pollution Control Committee on August 16, 1990). (b) Other laws. The... Department of Health, Division of Environmental Health, Bureau of Water Pollution Control, to EPA Region VIII...
Timofeeva, Maria N.; Kinnersley, Ben; Farrington, Susan M.; Whiffin, Nicola; Palles, Claire; Svinti, Victoria; Lloyd, Amy; Gorman, Maggie; Ooi, Li-Yin; Hosking, Fay; Barclay, Ella; Zgaga, Lina; Dobbins, Sara; Martin, Lynn; Theodoratou, Evropi; Broderick, Peter; Tenesa, Albert; Smillie, Claire; Grimes, Graeme; Hayward, Caroline; Campbell, Archie; Porteous, David; Deary, Ian J.; Harris, Sarah E.; Northwood, Emma L.; Barrett, Jennifer H.; Smith, Gillian; Wolf, Roland; Forman, David; Morreau, Hans; Ruano, Dina; Tops, Carli; Wijnen, Juul; Schrumpf, Melanie; Boot, Arnoud; Vasen, Hans F A; Hes, Frederik J.; van Wezel, Tom; Franke, Andre; Lieb, Wolgang; Schafmayer, Clemens; Hampe, Jochen; Buch, Stephan; Propping, Peter; Hemminki, Kari; Försti, Asta; Westers, Helga; Hofstra, Robert; Pinheiro, Manuela; Pinto, Carla; Teixeira, Manuel; Ruiz-Ponte, Clara; Fernández-Rozadilla, Ceres; Carracedo, Angel; Castells, Antoni; Castellví-Bel, Sergi; Campbell, Harry; Bishop, D. Timothy; Tomlinson, Ian P M; Dunlop, Malcolm G.; Houlston, Richard S.
2015-01-01
Whilst common genetic variation in many non-coding genomic regulatory regions are known to impart risk of colorectal cancer (CRC), much of the heritability of CRC remains unexplained. To examine the role of recurrent coding sequence variation in CRC aetiology, we genotyped 12,638 CRCs cases and 29,045 controls from six European populations. Single-variant analysis identified a coding variant (rs3184504) in SH2B3 (12q24) associated with CRC risk (OR = 1.08, P = 3.9 × 10−7), and novel damaging coding variants in 3 genes previously tagged by GWAS efforts; rs16888728 (8q24) in UTP23 (OR = 1.15, P = 1.4 × 10−7); rs6580742 and rs12303082 (12q13) in FAM186A (OR = 1.11, P = 1.2 × 10−7 and OR = 1.09, P = 7.4 × 10−8); rs1129406 (12q13) in ATF1 (OR = 1.11, P = 8.3 × 10−9), all reaching exome-wide significance levels. Gene based tests identified associations between CRC and PCDHGA genes (P < 2.90 × 10−6). We found an excess of rare, damaging variants in base-excision (P = 2.4 × 10−4) and DNA mismatch repair genes (P = 6.1 × 10−4) consistent with a recessive mode of inheritance. This study comprehensively explores the contribution of coding sequence variation to CRC risk, identifying associations with coding variation in 4 genes and PCDHG gene cluster and several candidate recessive alleles. However, these findings suggest that recurrent, low-frequency coding variants account for a minority of the unexplained heritability of CRC. PMID:26553438
Addison, Paul S; Wang, Rui; Uribe, Alberto A; Bergese, Sergio D
2015-06-01
DPOP (∆POP or Delta-POP) is a non-invasive parameter which measures the strength of respiratory modulations present in the pulse oximetry photoplethysmogram (pleth) waveform. It has been proposed as a non-invasive surrogate parameter for pulse pressure variation (PPV) used in the prediction of the response to volume expansion in hypovolemic patients. Many groups have reported on the DPOP parameter and its correlation with PPV using various semi-automated algorithmic implementations. The study reported here demonstrates the performance gains made by adding increasingly sophisticated signal processing components to a fully automated DPOP algorithm. A DPOP algorithm was coded and its performance systematically enhanced through a series of code module alterations and additions. Each algorithm iteration was tested on data from 20 mechanically ventilated OR patients. Correlation coefficients and ROC curve statistics were computed at each stage. For the purposes of the analysis we split the data into a manually selected 'stable' region subset of the data containing relatively noise free segments and a 'global' set incorporating the whole data record. Performance gains were measured in terms of correlation against PPV measurements in OR patients undergoing controlled mechanical ventilation. Through increasingly advanced pre-processing and post-processing enhancements to the algorithm, the correlation coefficient between DPOP and PPV improved from a baseline value of R = 0.347 to R = 0.852 for the stable data set, and, correspondingly, R = 0.225 to R = 0.728 for the more challenging global data set. Marked gains in algorithm performance are achievable for manually selected stable regions of the signals using relatively simple algorithm enhancements. Significant additional algorithm enhancements, including a correction for low perfusion values, were required before similar gains were realised for the more challenging global data set.
Ma, Yuanyuan; Zheng, Xiaodong; Cheng, Rubin; Li, Qi
2016-01-01
In this paper, we determined the complete mitochondrial genome of Octopus conispadiceus (Cephalopoda: Octopodidae). The whole mitogenome of O. conispadiceus is 16,027 basepairs (bp) in length with a base composition of 41.4% A, 34.8% T, 16.1% C, 7.7% G and contains 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes, and a major non-coding region (MNR). The gene arrangements of O. conispadiceus showed remarkable similarity to that of O. vulgaris, Amphioctopus fangsiao, Cistopus chinensis and C. taiwanicus.
Bustamante, Carlos; Ovenden, Jennifer R
2016-01-01
The silver gemfish Rexea solandri is an important economic resource but Vulnerable to overfishing in Australian waters. The complete mitochondrial genome sequence is described from 1.6 million reads obtained via next generation sequencing. The total length of the mitogenome is 16,350 bp comprising 2 rRNA, 13 protein-coding genes, 22 tRNA and 2 non-coding regions. The mitogenome sequence was validated against sequences of PCR fragments and BLAST queries of Genbank. Gene order was equivalent to that found in marine fishes.
Vargas-Caro, Carolina; Bustamante, Carlos; Lamilla, Julio; Bennett, Michael B; Ovenden, Jennifer R
2016-07-01
The complete mitochondrial genome of the roughskin skate Dipturus trachyderma is described from 1 455 724 sequences obtained using Illumina NGS technology. Total length of the mitogenome was 16 909 base pairs, comprising 2 rRNAs, 13 protein-coding genes, 22 tRNAs and 2 non-coding regions. Phylogenetic analysis based on mtDNA revealed low genetic divergence among longnose skates, in particular, those dwelling the continental shelf and slope off the coasts of Chile and Argentina.
Biological significance of long non-coding RNA FTX expression in human colorectal cancer
Guo, Xiao-Bo; Hua, Zhu; Li, Chen; Peng, Li-Pan; Wang, Jing-Shen; Wang, Bo; Zhi, Qiao-Ming
2015-01-01
The purpose of this study was to determine the expression of long non-coding RNA (lncRNA) FTX and analyze its prognostic and biological significance in colorectal cancer (CRC). A quantitative reverse transcription PCR was performed to detect the expression of long non-coding RNA FTX in 35 pairs of colorectal cancer and corresponding noncancerous tissues. The expression of long non-coding RNA FTX was detected in 187 colorectal cancer tissues and its correlations with clinicopathological factors of patients were examined. Univariate and multivariate analyses were performed to analyze the prognostic significance of Long Non-coding RNA FTX expression. The effects of long non-coding RNA FTX expression on malignant phenotypes of colorectal cancer cells and its possible biological significances were further determined. Long non-coding RNA FTX was significantly upregulated in colorectal cancer tissues, and low long non-coding RNA FTX expression was significantly correlated with differentiation grade, lymph vascular invasion, and clinical stage. Patients with high long non-coding RNA FTX showed poorer overall survival than those with low long non-coding RNA FTX. Multivariate analyses indicated that status of long non-coding RNA FTX was an independent prognostic factor for patients. Functional analyses showed that upregulation of long non-coding RNA FTX significantly promoted growth, migration, invasion, and increased colony formation in colorectal cancer cells. Therefore, long non-coding RNA FTX may be a potential biomarker for predicting the survival of colorectal cancer patients and might be a molecular target for treatment of human colorectal cancer. PMID:26629053
González, Carolina; Tabernero, David; Cortese, Maria Francesca; Gregori, Josep; Casillas, Rosario; Riveiro-Barciela, Mar; Godoy, Cristina; Sopena, Sara; Rando, Ariadna; Yll, Marçal; Lopez-Martinez, Rosa; Quer, Josep; Esteban, Rafael; Buti, Maria; Rodríguez-Frías, Francisco
2018-05-21
To detect hyper-conserved regions in the hepatitis B virus (HBV) X gene ( HBX ) 5' region that could be candidates for gene therapy. The study included 27 chronic hepatitis B treatment-naive patients in various clinical stages (from chronic infection to cirrhosis and hepatocellular carcinoma, both HBeAg-negative and HBeAg-positive), and infected with HBV genotypes A-F and H. In a serum sample from each patient with viremia > 3.5 log IU/mL, the HBX 5' end region [nucleotide (nt) 1255-1611] was PCR-amplified and submitted to next-generation sequencing (NGS). We assessed genotype variants by phylogenetic analysis, and evaluated conservation of this region by calculating the information content of each nucleotide position in a multiple alignment of all unique sequences (haplotypes) obtained by NGS. Conservation at the HBx protein amino acid (aa) level was also analyzed. NGS yielded 1333069 sequences from the 27 samples, with a median of 4578 sequences/sample (2487-9279, IQR 2817). In 14/27 patients (51.8%), phylogenetic analysis of viral nucleotide haplotypes showed a complex mixture of genotypic variants. Analysis of the information content in the haplotype multiple alignments detected 2 hyper-conserved nucleotide regions, one in the HBX upstream non-coding region (nt 1255-1286) and the other in the 5' end coding region (nt 1519-1603). This last region coded for a conserved amino acid region (aa 63-76) that partially overlaps a Kunitz-like domain. Two hyper-conserved regions detected in the HBX 5' end may be of value for targeted gene therapy, regardless of the patients' clinical stage or HBV genotype.
Satb2 determines miRNA expression and long-term memory in the adult central nervous system.
Jaitner, Clemens; Reddy, Chethan; Abentung, Andreas; Whittle, Nigel; Rieder, Dietmar; Delekate, Andrea; Korte, Martin; Jain, Gaurav; Fischer, Andre; Sananbenesi, Farahnaz; Cera, Isabella; Singewald, Nicolas; Dechant, Georg; Apostolova, Galina
2016-11-29
SATB2 is a risk locus for schizophrenia and encodes a DNA-binding protein that regulates higher-order chromatin configuration. In the adult brain Satb2 is almost exclusively expressed in pyramidal neurons of two brain regions important for memory formation, the cerebral cortex and the CA1-hippocampal field. Here we show that Satb2 is required for key hippocampal functions since deletion of Satb2 from the adult mouse forebrain prevents the stabilization of synaptic long-term potentiation and markedly impairs long-term fear and object discrimination memory. At the molecular level, we find that synaptic activity and BDNF up-regulate Satb2, which itself binds to the promoters of coding and non-coding genes. Satb2 controls the hippocampal levels of a large cohort of miRNAs, many of which are implicated in synaptic plasticity and memory formation. Together, our findings demonstrate that Satb2 is critically involved in long-term plasticity processes in the adult forebrain that underlie the consolidation and stabilization of context-linked memory.
Steurer-Stey, Claudia; Zoller, Marco; Chmiel Moshinsky, Corinne; Senn, Oliver; Rosemann, Thomas
2010-04-14
Insufficient blood pressure control is a frequent problem despite the existence of effective treatment. Insufficient adherence to self-monitoring as well as to therapy is a common reason. Blood pressure self-measurement at home (Home Blood Pressure Measurement, HBPM) has positive effects on treatment adherence and is helpful in achieving the target blood pressure. Only a few studies have investigated whether adherence to HBPM can be improved through simple measures resulting also in better blood pressure control. Improvement of self-monitoring and improved blood pressure control by using a new colour-coded blood pressure diary. Change in systolic and/or diastolic blood pressure 6 months after using the new colour-coded blood pressure diary.Secondary outcome: Adherence to blood pressure self-measurement (number of measurements/entries). Randomised controlled study. 138 adult patients in primary care with uncontrolled hypertension despite therapy. The control group uses a conventional blood pressure diary; the intervention group uses the new colour-coded blood pressure diary (green, yellow, red according a traffic light system). EXPECTED RESULTS/CONCLUSION: The visual separation and entries in three colour-coded areas reflecting risk (green: blood pressure in the target range
Weng, Jianfeng; Li, Bo; Liu, Changlin; Yang, Xiaoyan; Wang, Hongwei; Hao, Zhuanfang; Li, Mingshun; Zhang, Degui; Ci, Xiaoke; Li, Xinhai; Zhang, Shihuang
2013-07-05
Kernel weight, controlled by quantitative trait loci (QTL), is an important component of grain yield in maize. Cytokinins (CKs) participate in determining grain morphology and final grain yield in crops. ZmIPT2, which is expressed mainly in the basal transfer cell layer, endosperm, and embryo during maize kernel development, encodes an isopentenyl transferase (IPT) that is involved in CK biosynthesis. The coding region of ZmIPT2 was sequenced across a panel of 175 maize inbred lines that are currently used in Chinese maize breeding programs. Only 16 single nucleotide polymorphisms (SNPs) and seven haplotypes were detected among these inbred lines. Nucleotide diversity (π) within the ZmIPT2 window and coding region were 0.347 and 0.0047, respectively, and they were significantly lower than the mean nucleotide diversity value of 0.372 for maize Chromosome 2 (P < 0.01). Association mapping revealed that a single nucleotide change from cytosine (C) to thymine (T) in the ZmIPT2 coding region, which converted a proline residue into a serine residue, was significantly associated with hundred kernel weight (HKW) in three environments (P <0.05), and explained 4.76% of the total phenotypic variation. In vitro characterization suggests that the dimethylallyl diphospate (DMAPP) IPT activity of ZmIPT2-T is higher than that of ZmIPT2-C, as the amounts of adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) consumed by ZmIPT2-T were 5.48-, 2.70-, and 1.87-fold, respectively, greater than those consumed by ZmIPT2-C. The effects of artificial selection on the ZmIPT2 coding region were evaluated using Tajima's D tests across six subgroups of Chinese maize germplasm, with the most frequent favorable allele identified in subgroup PB (Partner B). These results showed that ZmIPT2, which is associated with kernel weight, was subjected to artificial selection during the maize breeding process. ZmIPT2-T had higher IPT activity than ZmIPT2-C, and this favorable allele for kernel weight could be used in molecular marker-assisted selection for improvement of grain yield components in Chinese maize breeding programs.
Comparison and correlation of Simple Sequence Repeats distribution in genomes of Brucella species
Kiran, Jangampalli Adi Pradeep; Chakravarthi, Veeraraghavulu Praveen; Kumar, Yellapu Nanda; Rekha, Somesula Swapna; Kruti, Srinivasan Shanthi; Bhaskar, Matcha
2011-01-01
Computational genomics is one of the important tools to understand the distribution of closely related genomes including simple sequence repeats (SSRs) in an organism, which gives valuable information regarding genetic variations. The central objective of the present study was to screen the SSRs distributed in coding and non-coding regions among different human Brucella species which are involved in a range of pathological disorders. Computational analysis of the SSRs in the Brucella indicates few deviations from expected random models. Statistical analysis also reveals that tri-nucleotide SSRs are overrepresented and tetranucleotide SSRs underrepresented in Brucella genomes. From the data, it can be suggested that over expressed tri-nucleotide SSRs in genomic and coding regions might be responsible in the generation of functional variation of proteins expressed which in turn may lead to different pathogenicity, virulence determinants, stress response genes, transcription regulators and host adaptation proteins of Brucella genomes. Abbreviations SSRs - Simple Sequence Repeats, ORFs - Open Reading Frames. PMID:21738309
VLF Trimpi modelling on the path NWC-Dunedin using both finite element and 3D Born modelling
NASA Astrophysics Data System (ADS)
Nunn, D.; Hayakawa, K. B. M.
1998-10-01
This paper investigates the numerical modelling of VLF Trimpis, produced by a D region inhomogeneity on the great circle path. Two different codes are used to model Trimpis on the path NWC-Dunedin. The first is a 2D Finite Element Method Code (FEM), whose solutions are rigorous and valid in the strong scattering or non-Born limit. The second code is a 3D model that invokes the Born approximation. The predicted Trimpis from these codes compare very closely, thus confirming the validity of both models. The modal scattering matrices for both codes are analysed in some detail and are found to have a comparable structure. They indicate strong scattering between the dominant TM modes. Analysis of the scattering matrix from the FEM code shows that departure from linear Born behaviour occurs when the inhomogeneity has a horizontal scale size of about 100 km and a maximum electron density enhancement at 75 km altitude of about 6 electrons.
He, Hongjuan; Xiu, Youcheng; Guo, Jing; Liu, Hui; Liu, Qi; Zeng, Tiebo; Chen, Yan; Zhang, Yan; Wu, Qiong
2013-01-01
Long non-coding RNAs (lncRNAs) as a key group of non-coding RNAs have gained widely attention. Though lncRNAs have been functionally annotated and systematic explored in higher mammals, few are under systematical identification and annotation. Owing to the expression specificity, known lncRNAs expressed in embryonic brain tissues remain still limited. Considering a large number of lncRNAs are only transcribed in brain tissues, studies of lncRNAs in developmental brain are therefore of special interest. Here, publicly available RNA-sequencing (RNA-seq) data in embryonic brain are integrated to identify thousands of embryonic brain lncRNAs by a customized pipeline. A significant proportion of novel transcripts have not been annotated by available genomic resources. The putative embryonic brain lncRNAs are shorter in length, less spliced and show less conservation than known genes. The expression of putative lncRNAs is in one tenth on average of known coding genes, while comparable with known lncRNAs. From chromatin data, putative embryonic brain lncRNAs are associated with active chromatin marks, comparable with known lncRNAs. Embryonic brain expressed lncRNAs are also indicated to have expression though not evident in adult brain. Gene Ontology analysis of putative embryonic brain lncRNAs suggests that they are associated with brain development. The putative lncRNAs are shown to be related to possible cis-regulatory roles in imprinting even themselves are deemed to be imprinted lncRNAs. Re-analysis of one knockdown data suggests that four regulators are associated with lncRNAs. Taken together, the identification and systematic analysis of putative lncRNAs would provide novel insights into uncharacterized mouse non-coding regions and the relationships with mammalian embryonic brain development. PMID:23967161
Loh, Alvin; Soman, Teesta; Brian, Jessica; Bryson, Susan E; Roberts, Wendy; Szatmari, Peter; Smith, Isabel M; Zwaigenbaum, Lonnie
2007-01-01
This study examined motor behaviors in a longitudinal cohort of infant siblings of children with autism. Stereotypic movements and postures occurring during standardized observational assessments at 12 and 18 months were coded from videotapes. Participants included eight infant siblings later diagnosed with autism spectrum disorder (ASD), a random sample of nine non-diagnosed siblings, and 15 controls. Videos were coded blind to diagnostic group. At 12 and 18 months the ASD group "arm waved" more frequently and at 18 months, one posture ("hands to ears") was more frequently observed in the ASD and non-diagnosed group compared to the controls. Overall, the siblings subsequently diagnosed with ASD and the comparison groups had considerable overlap in their repertoires of stereotyped behaviors.
Enuka, Yehoshua; Lauriola, Mattia; Feldman, Morris E.; Sas-Chen, Aldema; Ulitsky, Igor; Yarden, Yosef
2016-01-01
Circular RNAs (circRNAs) are widespread circles of non-coding RNAs with largely unknown function. Because stimulation of mammary cells with the epidermal growth factor (EGF) leads to dynamic changes in the abundance of coding and non-coding RNA molecules, and culminates in the acquisition of a robust migratory phenotype, this cellular model might disclose functions of circRNAs. Here we show that circRNAs of EGF-stimulated mammary cells are stably expressed, while mRNAs and microRNAs change within minutes. In general, the circRNAs we detected are relatively long-lived and weakly expressed. Interestingly, they are almost ubiquitously co-expressed with the corresponding linear transcripts, and the respective, shared promoter regions are more active compared to genes producing linear isoforms with no detectable circRNAs. These findings imply that altered abundance of circRNAs, unlike changes in the levels of other RNAs, might not play critical roles in signaling cascades and downstream transcriptional networks that rapidly commit cells to specific outcomes. PMID:26657629
Non-contact assessment of melanin distribution via multispectral temporal illumination coding
NASA Astrophysics Data System (ADS)
Amelard, Robert; Scharfenberger, Christian; Wong, Alexander; Clausi, David A.
2015-03-01
Melanin is a pigment that is highly absorptive in the UV and visible electromagnetic spectra. It is responsible for perceived skin tone, and protects against harmful UV effects. Abnormal melanin distribution is often an indicator for melanoma. We propose a novel approach for non-contact melanin distribution via multispectral temporal illumination coding to estimate the two-dimensional melanin distribution based on its absorptive characteristics. In the proposed system, a novel multispectral, cross-polarized, temporally-coded illumination sequence is synchronized with a camera to measure reflectance under both multispectral and ambient illumination. This allows us to eliminate the ambient illumination contribution from the acquired reflectance measurements, and also to determine the melanin distribution in an observed region based on the spectral properties of melanin using the Beer-Lambert law. Using this information, melanin distribution maps can be generated for objective, quantitative assessment of skin type of individuals. We show that the melanin distribution map correctly identifies areas with high melanin densities (e.g., nevi).
Methodology for fast detection of false sharing in threaded scientific codes
Chung, I-Hsin; Cong, Guojing; Murata, Hiroki; Negishi, Yasushi; Wen, Hui-Fang
2014-11-25
A profiling tool identifies a code region with a false sharing potential. A static analysis tool classifies variables and arrays in the identified code region. A mapping detection library correlates memory access instructions in the identified code region with variables and arrays in the identified code region while a processor is running the identified code region. The mapping detection library identifies one or more instructions at risk, in the identified code region, which are subject to an analysis by a false sharing detection library. A false sharing detection library performs a run-time analysis of the one or more instructions at risk while the processor is re-running the identified code region. The false sharing detection library determines, based on the performed run-time analysis, whether two different portions of the cache memory line are accessed by the generated binary code.
O'Leary, Valerie Bríd; Maugg, Doris; Smida, Jan; Baumhoer, Daniel; Nathrath, Michaela; Ovsepian, Saak Victor; Atkinson, Michael John
2017-10-20
Breakage of the fragile site FRA16D disrupts the WWOX (WW Domain Containing Oxidoreductase) tumor suppressor gene in osteosarcoma. However, the frequency of breakage is not sufficient to explain the rate of WWOX loss in pathogenesis. The involvement of non-coding RNA transcripts is proposed due to their accumulation at fragile sites, where they are advocated to influence specific chromosomal regions associated with malignancy. The long ncRNA PARTICLE (promoter of MAT2A antisense radiation-induced circulating long non-coding RNA) is transiently elevated in response to irradiation and influences epigenetic silencing modification within WWOX . It now emerges that elevated PARTICLE levels are significantly associated with FRA16D non-breakage in OS patients. Although not associated with overall survival, high PARTICLE levels were found to be significantly linked to metastasis free outcome. The transcription of both PARTICLE and WWOX are transiently responsive to exposure to low doses of radiation in osteosarcoma cell lines. Herein, a relationship between WWOX and PARTICLE transcription is suggested in human osteosarcoma cell lines representing alternative genetic backgrounds. PARTICLE over-expression ameliorated WWOX promoter activity in U2OS harboring FRA16D non-breakage. It can be concluded that the lncRNA PARTICLE influences the WWOX tumor suppressor and in the absence of WWOX FRA16D breakage, it is associated with OS metastasis-free survival.
Rangannan, Vetriselvi; Bansal, Manju
2009-12-01
The rapid increase in genome sequence information has necessitated the annotation of their functional elements, particularly those occurring in the non-coding regions, in the genomic context. Promoter region is the key regulatory region, which enables the gene to be transcribed or repressed, but it is difficult to determine experimentally. Hence an in silico identification of promoters is crucial in order to guide experimental work and to pin point the key region that controls the transcription initiation of a gene. In this analysis, we demonstrate that while the promoter regions are in general less stable than the flanking regions, their average free energy varies depending on the GC composition of the flanking genomic sequence. We have therefore obtained a set of free energy threshold values, for genomic DNA with varying GC content and used them as generic criteria for predicting promoter regions in several microbial genomes, using an in-house developed tool PromPredict. On applying it to predict promoter regions corresponding to the 1144 and 612 experimentally validated TSSs in E. coli (50.8% GC) and B. subtilis (43.5% GC) sensitivity of 99% and 95% and precision values of 58% and 60%, respectively, were achieved. For the limited data set of 81 TSSs available for M. tuberculosis (65.6% GC) a sensitivity of 100% and precision of 49% was obtained.
Causes of Death Data in the Global Burden of Disease Estimates for Ischemic and Hemorrhagic Stroke
Truelsen, Thomas; Krarup, Lars-Henrik; Iversen, Helle; Mensah, George A.; Feigin, Valery; Sposato, Luciano; Naghavi, Mohsen
2015-01-01
Background Stroke mortality estimates in the Global Burden of Disease (GBD) study are based on routine mortality statistics and redistribution of ill-defined codes that cannot be a cause of death, the so-called “garbage codes”. This study describes the contribution of these codes to stroke mortality estimates. Methods All available mortality data were compiled and non-specific cause codes were redistributed based on literature review and statistical methods. Ill-defined codes were redistributed to their specific cause of disease by age, sex, country, and year. The reassignment was done based on the international classification of diseases and the pathology behind each code by checking multiple causes of death and literature review. Results Unspecified stroke, and primary and secondary hypertension are leading contributing “garbage codes” to stroke mortality estimates for intracranial hemorrhagic stroke and ischemic stroke. There were marked differences in the fraction of death assigned to ischemic stroke and hemorrhagic stroke for unspecified stroke and hypertension between GBD regions and between age groups. Conclusions A large proportion of stroke fatalities is derived from the redistribution of “unspecified stroke” and “hypertension” with marked regional differences. Future advancements in stroke certification, data collections, and statistical analyses may improve the estimation of the global stroke burden. PMID:26505189
Photon migration in non-scattering tissue and the effects on image reconstruction
NASA Astrophysics Data System (ADS)
Dehghani, H.; Delpy, D. T.; Arridge, S. R.
1999-12-01
Photon propagation in tissue can be calculated using the relationship described by the transport equation. For scattering tissue this relationship is often simplified and expressed in terms of the diffusion approximation. This approximation, however, is not valid for non-scattering regions, for example cerebrospinal fluid (CSF) below the skull. This study looks at the effects of a thin clear layer in a simple model representing the head and examines its effect on image reconstruction. Specifically, boundary photon intensities (total number of photons exiting at a point on the boundary due to a source input at another point on the boundary) are calculated using the transport equation and compared with data calculated using the diffusion approximation for both non-scattering and scattering regions. The effect of non-scattering regions on the calculated boundary photon intensities is presented together with the advantages and restrictions of the transport code used. Reconstructed images are then presented where the forward problem is solved using the transport equation for a simple two-dimensional system containing a non-scattering ring and the inverse problem is solved using the diffusion approximation to the transport equation.
Non-coding RNAs in virology: an RNA genomics approach.
Isaac, Christopher; Patel, Trushar R; Zovoilis, Athanasios
2018-04-01
Advances in sequencing technologies and bioinformatic analysis techniques have greatly improved our understanding of various classes of RNAs and their functions. Despite not coding for proteins, non-coding RNAs (ncRNAs) are emerging as essential biomolecules fundamental for cellular functions and cell survival. Interestingly, ncRNAs produced by viruses not only control the expression of viral genes, but also influence host cell regulation and circumvent host innate immune response. Correspondingly, ncRNAs produced by the host genome can play a key role in host-virus interactions. In this article, we will first discuss a number of types of viral and mammalian ncRNAs associated with viral infections. Subsequently, we also describe the new possibilities and opportunities that RNA genomics and next-generation sequencing technologies provide for studying ncRNAs in virology.
1989-09-30
to accommodate peripherally non -uniform flow modelling free of experimental uncertainties. It was effects (blockage) in the throughflow code...combines that experimental control functions with a detail in this thesis, and the results of a computer menu-driven, diagnostic subsystem to ensure...equations and design a complete (DSL) for both linear and non -linear models and automatic control system for the three dimensional compared. Cross
2018-01-01
FAM230C, a long intergenic non-coding RNA (lincRNA) gene in human chromosome 13 (chr13) is a member of lincRNA genes termed family with sequence similarity 230. An analysis using bioinformatics search tools and alignment programs was undertaken to determine properties of FAM230C and its related genes. Results reveal that the DNA translocation element, the Translocation Breakpoint Type A (TBTA) sequence, which consists of satellite DNA, Alu elements, and AT-rich sequences is embedded in the FAM230C gene. Eight lincRNA genes related to FAM230C also carry the TBTA sequences. These genes were formed from a large segment of the 3’ half of the FAM230C sequence duplicated in chr22, and are specifically in regions of low copy repeats (LCR22)s, in or close to the 22q.11.2 region. 22q11.2 is a chromosomal segment that undergoes a high rate of DNA translocation and is prone to genetic deletions. FAM230C-related genes present in other chromosomes do not carry the TBTA motif and were formed from the 5’ half region of the FAM230C sequence. These findings identify a high specificity in lincRNA gene formation by gene sequence duplication in different chromosomes. PMID:29668722
Kapil, Aditi; Rai, Piyush Kant; Shanker, Asheesh
2014-01-01
Simple sequence repeats (SSRs) are regions in DNA sequence that contain repeating motifs of length 1–6 nucleotides. These repeats are ubiquitously present and are found in both coding and non-coding regions of genome. A total of 534 complete chloroplast genome sequences (as on 18 September 2014) of Viridiplantae are available at NCBI organelle genome resource. It provides opportunity to mine these genomes for the detection of SSRs and store them in the form of a database. In an attempt to properly manage and retrieve chloroplastic SSRs, we designed ChloroSSRdb which is a relational database developed using SQL server 2008 and accessed through ASP.NET. It provides information of all the three types (perfect, imperfect and compound) of SSRs. At present, ChloroSSRdb contains 124 430 mined SSRs, with majority lying in non-coding region. Out of these, PCR primers were designed for 118 249 SSRs. Tetranucleotide repeats (47 079) were found to be the most frequent repeat type, whereas hexanucleotide repeats (6414) being the least abundant. Additionally, in each species statistical analyses were performed to calculate relative frequency, correlation coefficient and chi-square statistics of perfect and imperfect SSRs. In accordance with the growing interest in SSR studies, ChloroSSRdb will prove to be a useful resource in developing genetic markers, phylogenetic analysis, genetic mapping, etc. Moreover, it will serve as a ready reference for mined SSRs in available chloroplast genomes of green plants. Database URL: www.compubio.in/chlorossrdb/ PMID:25380781
Kapil, Aditi; Rai, Piyush Kant; Shanker, Asheesh
2014-01-01
Simple sequence repeats (SSRs) are regions in DNA sequence that contain repeating motifs of length 1-6 nucleotides. These repeats are ubiquitously present and are found in both coding and non-coding regions of genome. A total of 534 complete chloroplast genome sequences (as on 18 September 2014) of Viridiplantae are available at NCBI organelle genome resource. It provides opportunity to mine these genomes for the detection of SSRs and store them in the form of a database. In an attempt to properly manage and retrieve chloroplastic SSRs, we designed ChloroSSRdb which is a relational database developed using SQL server 2008 and accessed through ASP.NET. It provides information of all the three types (perfect, imperfect and compound) of SSRs. At present, ChloroSSRdb contains 124 430 mined SSRs, with majority lying in non-coding region. Out of these, PCR primers were designed for 118 249 SSRs. Tetranucleotide repeats (47 079) were found to be the most frequent repeat type, whereas hexanucleotide repeats (6414) being the least abundant. Additionally, in each species statistical analyses were performed to calculate relative frequency, correlation coefficient and chi-square statistics of perfect and imperfect SSRs. In accordance with the growing interest in SSR studies, ChloroSSRdb will prove to be a useful resource in developing genetic markers, phylogenetic analysis, genetic mapping, etc. Moreover, it will serve as a ready reference for mined SSRs in available chloroplast genomes of green plants. Database URL: www.compubio.in/chlorossrdb/ © The Author(s) 2014. Published by Oxford University Press.
Onufrak, Stephen; Wilking, Cara; Cradock, Angie
2018-01-01
We examined community-level characteristics associated with free drinking water access policies in U.S. municipalities using data from a nationally representative survey of city managers/officials from 2,029 local governments in 2014. Outcomes were 4 free drinking water access policies. Explanatory measures were population size, rural/urban status, census region, poverty prevalence, education, and racial/ethnic composition. We used multivariable logistic regression to test differences and presented only significant findings. Many (56.3%) local governments had at least one community plan with a written objective to provide free drinking water in outdoor areas; municipalities in the Northeast and South regions and municipalities with ≤ 50% of non-Hispanic whites were less likely and municipalities with larger population size were more likely to have a plan. About 59% had polices/budget provisions for free drinking water in parks/outdoor recreation areas; municipalities in the Northeast and South regions were less likely and municipalities with larger population size were more likely to have it. Only 9.3% provided development incentives for placing drinking fountains in outdoor, publicly accessible areas; municipalities with larger population size were more likely to have it. Only 7.7% had a municipal plumbing code with a drinking fountain standard that differed from the statewide plumbing code; municipalities with a lower proportion of non-Hispanic whites were more likely to have it. In conclusion, over half of municipalities had written plans or a provision for providing free drinking water in parks, but providing development incentives or having a local plumbing code provision were rare. PMID:29713617
Park, Sohyun; Onufrak, Stephen; Wilking, Cara; Cradock, Angie
2018-04-01
We examined community-level characteristics associated with free drinking water access policies in U.S. municipalities using data from a nationally representative survey of city managers/officials from 2,029 local governments in 2014. Outcomes were 4 free drinking water access policies. Explanatory measures were population size, rural/urban status, census region, poverty prevalence, education, and racial/ethnic composition. We used multivariable logistic regression to test differences and presented only significant findings. Many (56.3%) local governments had at least one community plan with a written objective to provide free drinking water in outdoor areas; municipalities in the Northeast and South regions and municipalities with ≤ 50% of non-Hispanic whites were less likely and municipalities with larger population size were more likely to have a plan. About 59% had polices/budget provisions for free drinking water in parks/outdoor recreation areas; municipalities in the Northeast and South regions were less likely and municipalities with larger population size were more likely to have it. Only 9.3% provided development incentives for placing drinking fountains in outdoor, publicly accessible areas; municipalities with larger population size were more likely to have it. Only 7.7% had a municipal plumbing code with a drinking fountain standard that differed from the statewide plumbing code; municipalities with a lower proportion of non-Hispanic whites were more likely to have it. In conclusion, over half of municipalities had written plans or a provision for providing free drinking water in parks, but providing development incentives or having a local plumbing code provision were rare.
The complete sequence of mitochondrial genome of polled yak (Bos grunniens).
Chu, Min; Wu, Xiaoyun; Liang, Chunnian; Pei, Jie; Ding, Xuezhi; Guo, Xian; Bao, Pengjia; Yan, Ping
2016-05-01
Generally speaking, the hornless trait is also known as polled. Although the POLL locus could be assigned to a 1.36-Mb interval in the centromeric region of BTA1 (Georges et al., 1993; Drögemüller et al., 2005)), and (Liu et al., 2014) reported a 147-kb segment that included three protein-coding genes was the most likely location of the POLL mutation in domestic yaks, the underlying genetic basis for the polled trait is still unknown. In this work, the complete mitochondrial genome sequence of polled yak was determined for the first time. The total length of the mitogenome is 16,324 bp long, with the base composition of 33.72% A, 27.25% T, 25.83% C, and 13.20% G. It contained 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and 1 non-coding region (D-loop region). The gene order of polled yak mitogenome is identical to that observed in most other vertebrates. The complete mitogenome sequence information of polled yak will provide useful data for further studies on protection of genetic resources and phylogenetic relationships within Bos grunniens.
Self-organizing approach for meta-genomes.
Zhu, Jianfeng; Zheng, Wei-Mou
2014-12-01
We extend the self-organizing approach for annotation of a bacterial genome to analyze the raw sequencing data of the human gut metagenome without sequence assembling. The original approach divides the genomic sequence of a bacterium into non-overlapping segments of equal length and assigns to each segment one of seven 'phases', among which one is for the noncoding regions, three for the direct coding regions to indicate the three possible codon positions of the segment starting site, and three for the reverse coding regions. The noncoding phase and the six coding phases are described by two frequency tables of the 64 triplet types or 'codon usages'. A set of codon usages can be used to update the phase assignment and vice versa. An iteration after an initialization leads to a convergent phase assignment to give an annotation of the genome. In the extension of the approach to a metagenome, we consider a mixture model of a number of categories described by different codon usages. The Illumina Genome Analyzer sequencing data of the total DNA from faecal samples are then examined to understand the diversity of the human gut microbiome. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wang, Jiajia; Li, Hu; Dai, Renhuai
2017-12-01
Here, we describe the first complete mitochondrial genome (mitogenome) sequence of the leafhopper Taharana fasciana (Coelidiinae). The mitogenome sequence contains 15,161 bp with an A + T content of 77.9%. It includes 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and one non-coding (A + T-rich) region; in addition, a repeat region is also present (GenBank accession no. KY886913). These genes/regions are in the same order as in the inferred insect ancestral mitogenome. All protein-coding genes have ATN as the start codon, and TAA or single T as the stop codons, except the gene ND3, which ends with TAG. Furthermore, we predicted the secondary structures of the rRNAs in T. fasciana. Six domains (domain III is absent in arthropods) and 41 helices were predicted for 16S rRNA, and 12S rRNA comprised three structural domains and 24 helices. Phylogenetic tree analysis confirmed that T. fasciana and other members of the Cicadellidae are clustered into a clade, and it identified the relationships among the subfamilies Deltocephalinae, Coelidiinae, Idiocerinae, Cicadellinae, and Typhlocybinae.
Study of SOL in DIII-D tokamak with SOLPS suite of codes.
NASA Astrophysics Data System (ADS)
Pankin, Alexei; Bateman, Glenn; Brennan, Dylan; Coster, David; Hogan, John; Kritz, Arnold; Kukushkin, Andrey; Schnack, Dalton; Snyder, Phil
2005-10-01
The scrape-of-layer (SOL) region in DIII-D tokamak is studied with the SOLPS integrated suite of codes. The SOLPS package includes the 3D multi-species Monte-Carlo neutral code EIRINE and 2D multi-fluid code B2. The EIRINE and B2 codes are cross-coupled through B2-EIRINE interface. The results of SOLPS simulations are used in the integrated modeling of the plasma edge in DIII-D tokamak with the ASTRA transport code. Parameterized dependences for neutral particle fluxes that are computed with the SOLPS code are implemented in a model for the H-mode pedestal and ELMs [1] in the ASTRA code. The effects of neutrals on the H-mode pedestal and ELMs are studied in this report. [1] A. Y. Pankin, I. Voitsekhovitch, G. Bateman, et al., Plasma Phys. Control. Fusion 47, 483 (2005).
VaDiR: an integrated approach to Variant Detection in RNA.
Neums, Lisa; Suenaga, Seiji; Beyerlein, Peter; Anders, Sara; Koestler, Devin; Mariani, Andrea; Chien, Jeremy
2018-02-01
Advances in next-generation DNA sequencing technologies are now enabling detailed characterization of sequence variations in cancer genomes. With whole-genome sequencing, variations in coding and non-coding sequences can be discovered. But the cost associated with it is currently limiting its general use in research. Whole-exome sequencing is used to characterize sequence variations in coding regions, but the cost associated with capture reagents and biases in capture rate limit its full use in research. Additional limitations include uncertainty in assigning the functional significance of the mutations when these mutations are observed in the non-coding region or in genes that are not expressed in cancer tissue. We investigated the feasibility of uncovering mutations from expressed genes using RNA sequencing datasets with a method called Variant Detection in RNA(VaDiR) that integrates 3 variant callers, namely: SNPiR, RVBoost, and MuTect2. The combination of all 3 methods, which we called Tier 1 variants, produced the highest precision with true positive mutations from RNA-seq that could be validated at the DNA level. We also found that the integration of Tier 1 variants with those called by MuTect2 and SNPiR produced the highest recall with acceptable precision. Finally, we observed a higher rate of mutation discovery in genes that are expressed at higher levels. Our method, VaDiR, provides a possibility of uncovering mutations from RNA sequencing datasets that could be useful in further functional analysis. In addition, our approach allows orthogonal validation of DNA-based mutation discovery by providing complementary sequence variation analysis from paired RNA/DNA sequencing datasets.
Baurens, Franc-Christophe; Bocs, Stéphanie; Rouard, Mathieu; Matsumoto, Takashi; Miller, Robert N G; Rodier-Goud, Marguerite; MBéguié-A-MBéguié, Didier; Yahiaoui, Nabila
2010-07-16
Comparative sequence analysis of complex loci such as resistance gene analog clusters allows estimating the degree of sequence conservation and mechanisms of divergence at the intraspecies level. In banana (Musa sp.), two diploid wild species Musa acuminata (A genome) and Musa balbisiana (B genome) contribute to the polyploid genome of many cultivars. The M. balbisiana species is associated with vigour and tolerance to pests and disease and little is known on the genome structure and haplotype diversity within this species. Here, we compare two genomic sequences of 253 and 223 kb corresponding to two haplotypes of the RGA08 resistance gene analog locus in M. balbisiana "Pisang Klutuk Wulung" (PKW). Sequence comparison revealed two regions of contrasting features. The first is a highly colinear gene-rich region where the two haplotypes diverge only by single nucleotide polymorphisms and two repetitive element insertions. The second corresponds to a large cluster of RGA08 genes, with 13 and 18 predicted RGA genes and pseudogenes spread over 131 and 152 kb respectively on each haplotype. The RGA08 cluster is enriched in repetitive element insertions, in duplicated non-coding intergenic sequences including low complexity regions and shows structural variations between haplotypes. Although some allelic relationships are retained, a large diversity of RGA08 genes occurs in this single M. balbisiana genotype, with several RGA08 paralogs specific to each haplotype. The RGA08 gene family has evolved by mechanisms of unequal recombination, intragenic sequence exchange and diversifying selection. An unequal recombination event taking place between duplicated non-coding intergenic sequences resulted in a different RGA08 gene content between haplotypes pointing out the role of such duplicated regions in the evolution of RGA clusters. Based on the synonymous substitution rate in coding sequences, we estimated a 1 million year divergence time for these M. balbisiana haplotypes. A large RGA08 gene cluster identified in wild banana corresponds to a highly variable genomic region between haplotypes surrounded by conserved flanking regions. High level of sequence identity (70 to 99%) of the genic and intergenic regions suggests a recent and rapid evolution of this cluster in M. balbisiana.
ICF target 2D modeling using Monte Carlo SNB electron thermal transport in DRACO
NASA Astrophysics Data System (ADS)
Chenhall, Jeffrey; Cao, Duc; Moses, Gregory
2016-10-01
The iSNB (implicit Schurtz Nicolai Busquet multigroup diffusion electron thermal transport method is adapted into a Monte Carlo (MC) transport method to better model angular and long mean free path non-local effects. The MC model was first implemented in the 1D LILAC code to verify consistency with the iSNB model. Implementation of the MC SNB model in the 2D DRACO code enables higher fidelity non-local thermal transport modeling in 2D implosions such as polar drive experiments on NIF. The final step is to optimize the MC model by hybridizing it with a MC version of the iSNB diffusion method. The hybrid method will combine the efficiency of a diffusion method in intermediate mean free path regions with the accuracy of a transport method in long mean free path regions allowing for improved computational efficiency while maintaining accuracy. Work to date on the method will be presented. This work was supported by Sandia National Laboratories and the Univ. of Rochester Laboratory for Laser Energetics.
Robinson, Emily J; Goldstein, Laura H; McCrone, Paul; Perdue, Iain; Chalder, Trudie; Mellers, John D C; Richardson, Mark P; Murray, Joanna; Reuber, Markus; Medford, Nick; Stone, Jon; Carson, Alan; Landau, Sabine
2017-06-06
Dissociative seizures (DSs), also called psychogenic non-epileptic seizures, are a distressing and disabling problem for many patients in neurological settings with high and often unnecessary economic costs. The COgnitive behavioural therapy versus standardised medical care for adults with Dissociative non-Epileptic Seizures (CODES) trial is an evaluation of a specifically tailored psychological intervention with the aims of reducing seizure frequency and severity and improving psychological well-being in adults with DS. The aim of this paper is to report in detail the quantitative and economic analysis plan for the CODES trial, as agreed by the trial steering committee. The CODES trial is a multicentre, pragmatic, parallel group, randomised controlled trial performed to evaluate the clinical effectiveness and cost-effectiveness of 13 sessions of cognitive behavioural therapy (CBT) plus standardised medical care (SMC) compared with SMC alone for adult outpatients with DS. The objectives and design of the trial are summarised, and the aims and procedures of the planned analyses are illustrated. The proposed analysis plan addresses statistical considerations such as maintaining blinding, monitoring adherence with the protocol, describing aspects of treatment and dealing with missing data. The formal analysis approach for the primary and secondary outcomes is described, as are the descriptive statistics that will be reported. This paper provides transparency to the planned inferential analyses for the CODES trial prior to the extraction of outcome data. It also provides an update to the previously published trial protocol and guidance to those conducting similar trials. ISRCTN registry ISRCTN05681227 (registered on 5 March 2014); ClinicalTrials.gov NCT02325544 (registered on 15 December 2014).
Negligible impact of rare autoimmune-locus coding-region variants on missing heritability.
Hunt, Karen A; Mistry, Vanisha; Bockett, Nicholas A; Ahmad, Tariq; Ban, Maria; Barker, Jonathan N; Barrett, Jeffrey C; Blackburn, Hannah; Brand, Oliver; Burren, Oliver; Capon, Francesca; Compston, Alastair; Gough, Stephen C L; Jostins, Luke; Kong, Yong; Lee, James C; Lek, Monkol; MacArthur, Daniel G; Mansfield, John C; Mathew, Christopher G; Mein, Charles A; Mirza, Muddassar; Nutland, Sarah; Onengut-Gumuscu, Suna; Papouli, Efterpi; Parkes, Miles; Rich, Stephen S; Sawcer, Steven; Satsangi, Jack; Simmonds, Matthew J; Trembath, Richard C; Walker, Neil M; Wozniak, Eva; Todd, John A; Simpson, Michael A; Plagnol, Vincent; van Heel, David A
2013-06-13
Genome-wide association studies (GWAS) have identified common variants of modest-effect size at hundreds of loci for common autoimmune diseases; however, a substantial fraction of heritability remains unexplained, to which rare variants may contribute. To discover rare variants and test them for association with a phenotype, most studies re-sequence a small initial sample size and then genotype the discovered variants in a larger sample set. This approach fails to analyse a large fraction of the rare variants present in the entire sample set. Here we perform simultaneous amplicon-sequencing-based variant discovery and genotyping for coding exons of 25 GWAS risk genes in 41,911 UK residents of white European origin, comprising 24,892 subjects with six autoimmune disease phenotypes and 17,019 controls, and show that rare coding-region variants at known loci have a negligible role in common autoimmune disease susceptibility. These results do not support the rare-variant synthetic genome-wide-association hypothesis (in which unobserved rare causal variants lead to association detected at common tag variants). Many known autoimmune disease risk loci contain multiple, independently associated, common and low-frequency variants, and so genes at these loci are a priori stronger candidates for harbouring rare coding-region variants than other genes. Our data indicate that the missing heritability for common autoimmune diseases may not be attributable to the rare coding-region variant portion of the allelic spectrum, but perhaps, as others have proposed, may be a result of many common-variant loci of weak effect.
The non-coding RNA landscape of human hematopoiesis and leukemia.
Schwarzer, Adrian; Emmrich, Stephan; Schmidt, Franziska; Beck, Dominik; Ng, Michelle; Reimer, Christina; Adams, Felix Ferdinand; Grasedieck, Sarah; Witte, Damian; Käbler, Sebastian; Wong, Jason W H; Shah, Anushi; Huang, Yizhou; Jammal, Razan; Maroz, Aliaksandra; Jongen-Lavrencic, Mojca; Schambach, Axel; Kuchenbauer, Florian; Pimanda, John E; Reinhardt, Dirk; Heckl, Dirk; Klusmann, Jan-Henning
2017-08-09
Non-coding RNAs have emerged as crucial regulators of gene expression and cell fate decisions. However, their expression patterns and regulatory functions during normal and malignant human hematopoiesis are incompletely understood. Here we present a comprehensive resource defining the non-coding RNA landscape of the human hematopoietic system. Based on highly specific non-coding RNA expression portraits per blood cell population, we identify unique fingerprint non-coding RNAs-such as LINC00173 in granulocytes-and assign these to critical regulatory circuits involved in blood homeostasis. Following the incorporation of acute myeloid leukemia samples into the landscape, we further uncover prognostically relevant non-coding RNA stem cell signatures shared between acute myeloid leukemia blasts and healthy hematopoietic stem cells. Our findings highlight the importance of the non-coding transcriptome in the formation and maintenance of the human blood hierarchy.While micro-RNAs are known regulators of haematopoiesis and leukemogenesis, the role of long non-coding RNAs is less clear. Here the authors provide a non-coding RNA expression landscape of the human hematopoietic system, highlighting their role in the formation and maintenance of the human blood hierarchy.
Sikorav, J L; Duval, N; Anselmet, A; Bon, S; Krejci, E; Legay, C; Osterlund, M; Reimund, B; Massoulié, J
1988-01-01
In this paper, we show the existence of alternative splicing in the 3' region of the coding sequence of Torpedo acetylcholinesterase (AChE). We describe two cDNA structures which both diverge from the previously described coding sequence of the catalytic subunit of asymmetric (A) forms (Schumacher et al., 1986; Sikorav et al., 1987). They both contain a coding sequence followed by a non-coding sequence and a poly(A) stretch. Both of these structures were shown to exist in poly(A)+ RNAs, by S1 mapping experiments. The divergent region encoded by the first sequence corresponds to the precursor of the globular dimeric form (G2a), since it contains the expected C-terminal amino acids, Ala-Cys. These amino acids are followed by a 29 amino acid extension which contains a hydrophobic segment and must be replaced by a glycolipid in the mature protein. Analyses of intact G2a AChE showed that the common domain of the protein contains intersubunit disulphide bonds. The divergent region of the second type of cDNA consists of an adjacent genomic sequence, which is removed as an intron in A and Ga mRNAs, but may encode a distinct, less abundant catalytic subunit. The structures of the cDNA clones indicate that they are derived from minor mRNAs, shorter than the three major transcripts which have been described previously (14.5, 10.5 and 5.5 kb). Oligonucleotide probes specific for the asymmetric and globular terminal regions hybridize with the three major transcripts, indicating that their size is determined by 3'-untranslated regions which are not related to the differential splicing leading to A and Ga forms. Images PMID:3181125
Transcripts with in silico predicted RNA structure are enriched everywhere in the mouse brain
2012-01-01
Background Post-transcriptional control of gene expression is mostly conducted by specific elements in untranslated regions (UTRs) of mRNAs, in collaboration with specific binding proteins and RNAs. In several well characterized cases, these RNA elements are known to form stable secondary structures. RNA secondary structures also may have major functional implications for long noncoding RNAs (lncRNAs). Recent transcriptional data has indicated the importance of lncRNAs in brain development and function. However, no methodical efforts to investigate this have been undertaken. Here, we aim to systematically analyze the potential for RNA structure in brain-expressed transcripts. Results By comprehensive spatial expression analysis of the adult mouse in situ hybridization data of the Allen Mouse Brain Atlas, we show that transcripts (coding as well as non-coding) associated with in silico predicted structured probes are highly and significantly enriched in almost all analyzed brain regions. Functional implications of these RNA structures and their role in the brain are discussed in detail along with specific examples. We observe that mRNAs with a structure prediction in their UTRs are enriched for binding, transport and localization gene ontology categories. In addition, after manual examination we observe agreement between RNA binding protein interaction sites near the 3’ UTR structures and correlated expression patterns. Conclusions Our results show a potential use for RNA structures in expressed coding as well as noncoding transcripts in the adult mouse brain, and describe the role of structured RNAs in the context of intracellular signaling pathways and regulatory networks. Based on this data we hypothesize that RNA structure is widely involved in transcriptional and translational regulatory mechanisms in the brain and ultimately plays a role in brain function. PMID:22651826
1988-07-29
VOLff2) 6 July 19837 A-74 A1.5.6 MONITORING NON-CONTROLLED OBJECTS AIM, 7 OIHERS REPORT AIRSPACEJ FIRST 10 DETECT INTRUSION IradR’SIoN BY NON-CON’TROLLED 1...1988 Volume II: ACF/ACCC Terminal and En Route Controllers (ClIG 1) 6 . Porliming Organization Code 7 . Author(s) 8. Performing Organization Report No...MANEUVER SYSTEM GENERATES ABSORPT ION PREVIOUSLY PREPARED RECEIVED MANEUVER FOR A FLIGHT CLEAPANCEI D0T/FAA/AP-47-01 (VOLt2) 6 July 1987 A- 7 A,1.O
Shao, Tingru; Huang, Jiaxin; Zheng, Zenan; Wu, Qingqing; Liu, Tiancai; Lv, Xiaozhi
2018-05-09
Oral squamous cell carcinoma (OSCC) is one of the most lethal malignancies worldwide and the most common type of oral cancer, characterized by invasive growth, frequent regional metastases, high recurrence, and poor prognosis. In the current study, we investigated the use of long non-coding RNAs (lncRNAs), tumor-specific growth factor (TSGF), and squamous cell carcinoma antigen (SCCA) as potential biomarkers for OSCC screening. LncRNA expression was measured by microarray analysis in three sets of OSCC and paired normal mucosal tissues. The potential lncRNAs involved in OSCC development were investigated by bioinformatics and verification experiments. We also determined the expression of these potential biomarkers in tissue and serum samples in a case-control study of 80 OSCC cases and 70 controls. Receiver operating characteristics, decision curve analysis, and the combined detection of lncRNA AC007271.3, TSGF, and SCCA were carried out to screen for OSCC biomarkers. A total of 691 lncRNAs (433 upregulated and 258 downregulated) were differentially expressed in OSCC tissues compared with normal controls (p< 0.05). Based on Gene Ontology and pathway analysis, we selected four differentially expressed lncRNAs (AC007271.3, AC007182.6, LOC283481, and RP11-893F2.9), and showed that aberrant AC007271.3 levels in OSCC patients were significantly associated with clinical stage, especially in early-stage disease, in an expanded case-control study. The combination of AC007271.3 and SCCA (AUC=0.902, p< 0.001) showed significantly better ability to discriminate between OSCC and controls compared with SCCA or AC007271.3 alone. Serum AC007271.3, SCCA, and TSGF levels could also discriminate between OSCC and normal controls with sensitivities of 77.6%, 55.0%, and 63.3%, and specificities of 84.5%, 93.3%, and 66.7%, respectively. These results suggest that AC007271.3, SCCA, and TSGF could be novel circulating biomarkers for the determination of OSCC. However, further validation in large-scale prospective studies is necessary. © 2018 The Author(s). Published by S. Karger AG, Basel.
Decoding the non-coding genome: elucidating genetic risk outside the coding genome.
Barr, C L; Misener, V L
2016-01-01
Current evidence emerging from genome-wide association studies indicates that the genetic underpinnings of complex traits are likely attributable to genetic variation that changes gene expression, rather than (or in combination with) variation that changes protein-coding sequences. This is particularly compelling with respect to psychiatric disorders, as genetic changes in regulatory regions may result in differential transcriptional responses to developmental cues and environmental/psychosocial stressors. Until recently, however, the link between transcriptional regulation and psychiatric genetic risk has been understudied. Multiple obstacles have contributed to the paucity of research in this area, including challenges in identifying the positions of remote (distal from the promoter) regulatory elements (e.g. enhancers) and their target genes and the underrepresentation of neural cell types and brain tissues in epigenome projects - the availability of high-quality brain tissues for epigenetic and transcriptome profiling, particularly for the adolescent and developing brain, has been limited. Further challenges have arisen in the prediction and testing of the functional impact of DNA variation with respect to multiple aspects of transcriptional control, including regulatory-element interaction (e.g. between enhancers and promoters), transcription factor binding and DNA methylation. Further, the brain has uncommon DNA-methylation marks with unique genomic distributions not found in other tissues - current evidence suggests the involvement of non-CG methylation and 5-hydroxymethylation in neurodevelopmental processes but much remains unknown. We review here knowledge gaps as well as both technological and resource obstacles that will need to be overcome in order to elucidate the involvement of brain-relevant gene-regulatory variants in genetic risk for psychiatric disorders. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Studtmann, Katrin; Ölschläger-Schütt, Janin; Buck, Friedrich; Richter, Dietmar; Sala, Carlo; Bockmann, Jürgen; Kindler, Stefan; Kreienkamp, Hans-Jürgen
2014-01-01
Local protein synthesis in dendrites enables neurons to selectively change the protein complement of individual postsynaptic sites. Though it is generally assumed that this mechanism requires tight translational control of dendritically transported mRNAs, it is unclear how translation of dendritic mRNAs is regulated. We have analyzed here translational control elements of the dendritically localized mRNA coding for the postsynaptic scaffold protein Shank1. In its 5′ region, the human Shank1 mRNA exhibits two alternative translation initiation sites (AUG+1 and AUG+214), three canonical upstream open reading frames (uORFs1-3) and a high GC content. In reporter assays, fragments of the 5′UTR with high GC content inhibit translation, suggesting a contribution of secondary structures. uORF3 is most relevant to translation control as it overlaps with the first in frame start codon (AUG+1), directing translation initiation to the second in frame start codon (AUG+214). Surprisingly, our analysis points to an additional uORF initiated at a non-canonical ACG start codon. Mutation of this start site leads to an almost complete loss of translation initiation at AUG+1, demonstrating that this unconventional uORF is required for Shank1 synthesis. Our data identify a novel mechanism whereby initiation at a non-canonical site allows for translation of the main Shank1 ORF despite a highly structured 5′UTR. PMID:24533096
Fan, Zenghua; Zhao, Meng; Joshi, Parth D.; Li, Ping; Zhang, Yan; Guo, Weimin; Xu, Yichi; Wang, Haifang; Zhao, Zhihu
2017-01-01
Abstract Circadian rhythm exerts its influence on animal physiology and behavior by regulating gene expression at various levels. Here we systematically explored circadian long non-coding RNAs (lncRNAs) in mouse liver and examined their circadian regulation. We found that a significant proportion of circadian lncRNAs are expressed at enhancer regions, mostly bound by two key circadian transcription factors, BMAL1 and REV-ERBα. These circadian lncRNAs showed similar circadian phases with their nearby genes. The extent of their nuclear localization is higher than protein coding genes but less than enhancer RNAs. The association between enhancer and circadian lncRNAs is also observed in tissues other than liver. Comparative analysis between mouse and rat circadian liver transcriptomes showed that circadian transcription at lncRNA loci tends to be conserved despite of low sequence conservation of lncRNAs. One such circadian lncRNA termed lnc-Crot led us to identify a super-enhancer region interacting with a cluster of genes involved in circadian regulation of metabolism through long-range interactions. Further experiments showed that lnc-Crot locus has enhancer function independent of lnc-Crot's transcription. Our results suggest that the enhancer-associated circadian lncRNAs mark the genomic loci modulating long-range circadian gene regulation and shed new lights on the evolutionary origin of lncRNAs. PMID:28335007
Kim, Sangkyu; Welsh, David A; Myers, Leann; Cherry, Katie E; Wyckoff, Jennifer; Jazwinski, S Michal
2015-02-28
We have completed a genome-wide linkage scan for healthy aging using data collected from a family study, followed by fine-mapping by association in a separate population, the first such attempt reported. The family cohort consisted of parents of age 90 or above and their children ranging in age from 50 to 80. As a quantitative measure of healthy aging, we used a frailty index, called FI34, based on 34 health and function variables. The linkage scan found a single significant linkage peak on chromosome 12. Using an independent cohort of unrelated nonagenarians, we carried out a fine-scale association mapping of the region suggestive of linkage and identified three sites associated with healthy aging. These healthy-aging sites (HASs) are located in intergenic regions at 12q13-14. HAS-1 has been previously associated with multiple diseases, and an enhancer was recently mapped and experimentally validated within the site. HAS-2 is a previously uncharacterized site possessing genomic features suggestive of enhancer activity. HAS-3 contains features associated with Polycomb repression. The HASs also contain variants associated with exceptional longevity, based on a separate analysis. Our results provide insight into functional genomic networks involving non-coding regulatory elements that are involved in healthy aging and longevity.
Kim, Sangkyu; Welsh, David A.; Myers, Leann; Cherry, Katie E.; Wyckoff, Jennifer; Jazwinski, S. Michal
2015-01-01
We have completed a genome-wide linkage scan for healthy aging using data collected from a family study, followed by fine-mapping by association in a separate population, the first such attempt reported. The family cohort consisted of parents of age 90 or above and their children ranging in age from 50 to 80. As a quantitative measure of healthy aging, we used a frailty index, called FI34, based on 34 health and function variables. The linkage scan found a single significant linkage peak on chromosome 12. Using an independent cohort of unrelated nonagenarians, we carried out a fine-scale association mapping of the region suggestive of linkage and identified three sites associated with healthy aging. These healthy-aging sites (HASs) are located in intergenic regions at 12q13–14. HAS-1 has been previously associated with multiple diseases, and an enhancer was recently mapped and experimentally validated within the site. HAS-2 is a previously uncharacterized site possessing genomic features suggestive of enhancer activity. HAS-3 contains features associated with Polycomb repression. The HASs also contain variants associated with exceptional longevity, based on a separate analysis. Our results provide insight into functional genomic networks involving non-coding regulatory elements that are involved in healthy aging and longevity. PMID:25682868
Implementation of non-axisymmetric mesh system in the gyrokinetic PIC code (XGC) for Stellarators
NASA Astrophysics Data System (ADS)
Moritaka, Toseo; Hager, Robert; Cole, Micheal; Chang, Choong-Seock; Lazerson, Samuel; Ku, Seung-Hoe; Ishiguro, Seiji
2017-10-01
Gyrokinetic simulation is a powerful tool to investigate turbulent and neoclassical transports based on the first-principles of plasma kinetics. The gyrokinetic PIC code XGC has been developed for integrated simulations that cover the entire region of Tokamaks. Complicated field line and boundary structures should be taken into account to demonstrate edge plasma dynamics under the influence of X-point and vessel components. XGC employs gyrokinetic Poisson solver on unstructured triangle mesh to deal with this difficulty. We introduce numerical schemes newly developed for XGC simulation in non-axisymmetric Stellarator geometry. Triangle meshes in each poloidal plane are defined by PEST poloidal angle in the VMEC equilibrium so that they have the same regular structure in the straight field line coordinate. Electric charge of marker particle is distributed to the triangles specified by the field-following projection to the neighbor poloidal planes. 3D spline interpolation in a cylindrical mesh is also used to obtain equilibrium magnetic field at the particle position. These schemes capture the anisotropic plasma dynamics and resulting potential structure with high accuracy. The triangle meshes can smoothly connect to unstructured meshes in the edge region. We will present the validation test in the core region of Large Helical Device and discuss about future challenges toward edge simulations.
Enrichment of Circular Code Motifs in the Genes of the Yeast Saccharomyces cerevisiae.
Michel, Christian J; Ngoune, Viviane Nguefack; Poch, Olivier; Ripp, Raymond; Thompson, Julie D
2017-12-03
A set X of 20 trinucleotides has been found to have the highest average occurrence in the reading frame, compared to the two shifted frames, of genes of bacteria, archaea, eukaryotes, plasmids and viruses. This set X has an interesting mathematical property, since X is a maximal C3 self-complementary trinucleotide circular code. Furthermore, any motif obtained from this circular code X has the capacity to retrieve, maintain and synchronize the original (reading) frame. Since 1996, the theory of circular codes in genes has mainly been developed by analysing the properties of the 20 trinucleotides of X, using combinatorics and statistical approaches. For the first time, we test this theory by analysing the X motifs, i.e., motifs from the circular code X, in the complete genome of the yeast Saccharomyces cerevisiae . Several properties of X motifs are identified by basic statistics (at the frequency level), and evaluated by comparison to R motifs, i.e., random motifs generated from 30 different random codes R. We first show that the frequency of X motifs is significantly greater than that of R motifs in the genome of S. cerevisiae . We then verify that no significant difference is observed between the frequencies of X and R motifs in the non-coding regions of S. cerevisiae , but that the occurrence number of X motifs is significantly higher than R motifs in the genes (protein-coding regions). This property is true for all cardinalities of X motifs (from 4 to 20) and for all 16 chromosomes. We further investigate the distribution of X motifs in the three frames of S. cerevisiae genes and show that they occur more frequently in the reading frame, regardless of their cardinality or their length. Finally, the ratio of X genes, i.e., genes with at least one X motif, to non-X genes, in the set of verified genes is significantly different to that observed in the set of putative or dubious genes with no experimental evidence. These results, taken together, represent the first evidence for a significant enrichment of X motifs in the genes of an extant organism. They raise two hypotheses: the X motifs may be evolutionary relics of the primitive codes used for translation, or they may continue to play a functional role in the complex processes of genome decoding and protein synthesis.
CHEK2 contribution to hereditary breast cancer in non-BRCA families.
Desrichard, Alexis; Bidet, Yannick; Uhrhammer, Nancy; Bignon, Yves-Jean
2011-01-01
Mutations in the BRCA1 and BRCA2 genes are responsible for only a part of hereditary breast cancer (HBC). The origins of "non-BRCA" HBC in families may be attributed in part to rare mutations in genes conferring moderate risk, such as CHEK2, which encodes for an upstream regulator of BRCA1. Previous studies have demonstrated an association between CHEK2 founder mutations and non-BRCA HBC. However, very few data on the entire coding sequence of this gene are available. We investigated the contribution of CHEK2 mutations to non-BRCA HBC by direct sequencing of its whole coding sequence in 507 non-BRCA HBC cases and 513 controls. We observed 16 mutations in cases and 4 in controls, including 9 missense variants of uncertain consequence. Using both in silico tools and an in vitro kinase activity test, the majority of the variants were found likely to be deleterious for protein function. One variant present in both cases and controls was proposed to be neutral. Removing this variant from the pool of potentially deleterious variants gave a mutation frequency of 1.48% for cases and 0.29% for controls (P = 0.0040). The odds ratio of breast cancer in the presence of a deleterious CHEK2 mutation was 5.18. Our work indicates that a variety of deleterious CHEK2 alleles make an appreciable contribution to breast cancer susceptibility, and their identification could help in the clinical management of patients carrying a CHEK2 mutation.
Comprehensive Analysis of Genome Rearrangements in Eight Human Malignant Tumor Tissues
Wang, Chong
2016-01-01
Carcinogenesis is a complex multifactorial, multistage process, but the precise mechanisms are not well understood. In this study, we performed a genome-wide analysis of the copy number variation (CNV), breakpoint region (BPR) and fragile sites in 2,737 tumor samples from eight tumor entities and in 432 normal samples. CNV detection and BPR identification revealed that BPRs tended to accumulate in specific genomic regions in tumor samples whereas being dispersed genome-wide in the normal samples. Hotspots were observed, at which segments with similar alteration in copy number were overlapped along with BPRs adjacently clustered. Evaluation of BPR occurrence frequency showed that at least one was detected in about and more than 15% of samples for each tumor entity while BPRs were maximal in 12% of the normal samples. 127 of 2,716 tumor-relevant BPRs (termed ‘common BPRs’) exhibited also a noticeable occurrence frequency in the normal samples. Colocalization assessment identified 20,077 CNV-affecting genes and 169 of these being known tumor-related genes. The most noteworthy genes are KIAA0513 important for immunologic, synaptic and apoptotic signal pathways, intergenic non-coding RNA RP11-115C21.2 possibly acting as oncogene or tumor suppressor by changing the structure of chromatin, and ADAM32 likely importance in cancer cell proliferation and progression by ectodomain-shedding of diverse growth factors, and the well-known tumor suppressor gene p53. The BPR distributions indicate that CNV mutations are likely non-random in tumor genomes. The marked recurrence of BPRs at specific regions supports common progression mechanisms in tumors. The presence of hotspots together with common BPRs, despite its small group size, imply a relation between fragile sites and cancer-gene alteration. Our data further suggest that both protein-coding and non-coding genes possessing a range of biological functions might play a causative or functional role in tumor biology. This research enhances our understanding of the mechanisms for tumorigenesis and progression. PMID:27391163
Modification and Validation of Conceptual Design Aerodynamic Prediction Method HASC95 With VTXCHN
NASA Technical Reports Server (NTRS)
Albright, Alan E.; Dixon, Charles J.; Hegedus, Martin C.
1996-01-01
A conceptual/preliminary design level subsonic aerodynamic prediction code HASC (High Angle of Attack Stability and Control) has been improved in several areas, validated, and documented. The improved code includes improved methodologies for increased accuracy and robustness, and simplified input/output files. An engineering method called VTXCHN (Vortex Chine) for prediciting nose vortex shedding from circular and non-circular forebodies with sharp chine edges has been improved and integrated into the HASC code. This report contains a summary of modifications, description of the code, user's guide, and validation of HASC. Appendices include discussion of a new HASC utility code, listings of sample input and output files, and a discussion of the application of HASC to buffet analysis.
Imprinted and X-linked non-coding RNAs as potential regulators of human placental function
Buckberry, Sam; Bianco-Miotto, Tina; Roberts, Claire T
2014-01-01
Pregnancy outcome is inextricably linked to placental development, which is strictly controlled temporally and spatially through mechanisms that are only partially understood. However, increasing evidence suggests non-coding RNAs (ncRNAs) direct and regulate a considerable number of biological processes and therefore may constitute a previously hidden layer of regulatory information in the placenta. Many ncRNAs, including both microRNAs and long non-coding transcripts, show almost exclusive or predominant expression in the placenta compared with other somatic tissues and display altered expression patterns in placentas from complicated pregnancies. In this review, we explore the results of recent genome-scale and single gene expression studies using human placental tissue, but include studies in the mouse where human data are lacking. Our review focuses on the ncRNAs epigenetically regulated through genomic imprinting or X-chromosome inactivation and includes recent evidence surrounding the H19 lincRNA, the imprinted C19MC cluster microRNAs, and X-linked miRNAs associated with pregnancy complications. PMID:24081302
Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans
Holdt, Lesca M.; Stahringer, Anika; Sass, Kristina; Pichler, Garwin; Kulak, Nils A.; Wilfert, Wolfgang; Kohlmaier, Alexander; Herbst, Andreas; Northoff, Bernd H.; Nicolaou, Alexandros; Gäbel, Gabor; Beutner, Frank; Scholz, Markus; Thiery, Joachim; Musunuru, Kiran; Krohn, Knut; Mann, Matthias; Teupser, Daniel
2016-01-01
Circular RNAs (circRNAs) are broadly expressed in eukaryotic cells, but their molecular mechanism in human disease remains obscure. Here we show that circular antisense non-coding RNA in the INK4 locus (circANRIL), which is transcribed at a locus of atherosclerotic cardiovascular disease on chromosome 9p21, confers atheroprotection by controlling ribosomal RNA (rRNA) maturation and modulating pathways of atherogenesis. CircANRIL binds to pescadillo homologue 1 (PES1), an essential 60S-preribosomal assembly factor, thereby impairing exonuclease-mediated pre-rRNA processing and ribosome biogenesis in vascular smooth muscle cells and macrophages. As a consequence, circANRIL induces nucleolar stress and p53 activation, resulting in the induction of apoptosis and inhibition of proliferation, which are key cell functions in atherosclerosis. Collectively, these findings identify circANRIL as a prototype of a circRNA regulating ribosome biogenesis and conferring atheroprotection, thereby showing that circularization of long non-coding RNAs may alter RNA function and protect from human disease. PMID:27539542
40 CFR 1043.70 - General recordkeeping and reporting requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... POLLUTION CONTROLS CONTROL OF NOX, SOX, AND PM EMISSIONS FROM MARINE ENGINES AND VESSELS SUBJECT TO THE... operators of non-Party vessels must keep these records as specified in the NOX Technical Code and... operator has fuel receipts (or equivalent records) for the preceding three years showing it operated using...
40 CFR 1043.70 - General recordkeeping and reporting requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... POLLUTION CONTROLS CONTROL OF NOX, SOX, AND PM EMISSIONS FROM MARINE ENGINES AND VESSELS SUBJECT TO THE... operators of non-Party vessels must keep these records as specified in the NOX Technical Code and... operator has fuel receipts (or equivalent records) for the preceding three years showing it operated using...
40 CFR 1043.70 - General recordkeeping and reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... POLLUTION CONTROLS CONTROL OF NOX, SOX, AND PM EMISSIONS FROM MARINE ENGINES AND VESSELS SUBJECT TO THE... operators of non-Party vessels must keep these records as specified in the NOX Technical Code and... operator has fuel receipts (or equivalent records) for the preceding three years showing it operated using...
40 CFR 1043.70 - General recordkeeping and reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... POLLUTION CONTROLS CONTROL OF NOX, SOX, AND PM EMISSIONS FROM MARINE ENGINES AND VESSELS SUBJECT TO THE... operators of non-Party vessels must keep these records as specified in the NOX Technical Code and... operator has fuel receipts (or equivalent records) for the preceding three years showing it operated using...
40 CFR 1043.70 - General recordkeeping and reporting requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... POLLUTION CONTROLS CONTROL OF NOX, SOX, AND PM EMISSIONS FROM MARINE ENGINES AND VESSELS SUBJECT TO THE... operators of non-Party vessels must keep these records as specified in the NOX Technical Code and... operator has fuel receipts (or equivalent records) for the preceding three years showing it operated using...
Regulatory BC1 RNA in Cognitive Control
ERIC Educational Resources Information Center
Iacoangeli, Anna; Dosunmu, Aderemi; Eom, Taesun; Stefanov, Dimitre G.; Tiedge, Henri
2017-01-01
Dendritic regulatory BC1 RNA is a non-protein-coding (npc) RNA that operates in the translational control of gene expression. The absence of BC1 RNA in BC1 knockout (KO) animals causes translational dysregulation that entails neuronal phenotypic alterations including prolonged epileptiform discharges, audiogenic seizure activity in vivo, and…
Niu, Zhitao; Pan, Jiajia; Zhu, Shuying; Li, Ludan; Xue, Qingyun; Liu, Wei; Ding, Xiaoyu
2017-01-01
Apostasioideae, consists of only two genera, Apostasia and Neuwiedia , which are mainly distributed in Southeast Asia and northern Australia. The floral structure, taxonomy, biogeography, and genome variation of Apostasioideae have been intensively studied. However, detailed analyses of plastome composition and structure and comparisons with those of other orchid subfamilies have not yet been conducted. Here, the complete plastome sequences of Apostasia wallichii and Neuwiedia singapureana were sequenced and compared with 43 previously published photosynthetic orchid plastomes to characterize the plastome structure and evolution in the orchids. Unlike many orchid plastomes (e.g., Paphiopedilum and Vanilla ), the plastomes of Apostasioideae contain a full set of 11 functional NADH dehydrogenase ( ndh ) genes. The distribution of repeat sequences and simple sequence repeat elements enhanced the view that the mutation rate of non-coding regions was higher than that of coding regions. The 10 loci- ndhA intron, matK-5'trnK , clpP-psbB , rps8-rpl14 , trnT-trnL , 3'trnK-matK , clpP intron , psbK-trnK , trnS-psbC , and ndhF-rpl32 -that had the highest degrees of sequence variability were identified as mutational hotspots for the Apostasia plastome. Furthermore, our results revealed that plastid genes exhibited a variable evolution rate within and among different orchid genus. Considering the diversified evolution of both coding and non-coding regions, we suggested that the plastome-wide evolution of orchid species was disproportional. Additionally, the sequences flanking the inverted repeat/small single copy (IR/SSC) junctions of photosynthetic orchid plastomes were categorized into three types according to the presence/absence of ndh genes. Different evolutionary dynamics for each of the three IR/SSC types of photosynthetic orchid plastomes were also proposed.
Niu, Zhitao; Pan, Jiajia; Zhu, Shuying; Li, Ludan; Xue, Qingyun; Liu, Wei; Ding, Xiaoyu
2017-01-01
Apostasioideae, consists of only two genera, Apostasia and Neuwiedia, which are mainly distributed in Southeast Asia and northern Australia. The floral structure, taxonomy, biogeography, and genome variation of Apostasioideae have been intensively studied. However, detailed analyses of plastome composition and structure and comparisons with those of other orchid subfamilies have not yet been conducted. Here, the complete plastome sequences of Apostasia wallichii and Neuwiedia singapureana were sequenced and compared with 43 previously published photosynthetic orchid plastomes to characterize the plastome structure and evolution in the orchids. Unlike many orchid plastomes (e.g., Paphiopedilum and Vanilla), the plastomes of Apostasioideae contain a full set of 11 functional NADH dehydrogenase (ndh) genes. The distribution of repeat sequences and simple sequence repeat elements enhanced the view that the mutation rate of non-coding regions was higher than that of coding regions. The 10 loci—ndhA intron, matK-5′trnK, clpP-psbB, rps8-rpl14, trnT-trnL, 3′trnK-matK, clpP intron, psbK-trnK, trnS-psbC, and ndhF-rpl32—that had the highest degrees of sequence variability were identified as mutational hotspots for the Apostasia plastome. Furthermore, our results revealed that plastid genes exhibited a variable evolution rate within and among different orchid genus. Considering the diversified evolution of both coding and non-coding regions, we suggested that the plastome-wide evolution of orchid species was disproportional. Additionally, the sequences flanking the inverted repeat/small single copy (IR/SSC) junctions of photosynthetic orchid plastomes were categorized into three types according to the presence/absence of ndh genes. Different evolutionary dynamics for each of the three IR/SSC types of photosynthetic orchid plastomes were also proposed. PMID:29046685
Novotny, Peter; Tang, Xiaojia; Kalari, Krishna R.; Gorodkin, Jan
2014-01-01
Traditional mutation assessment methods generally focus on predicting disruptive changes in protein-coding regions rather than non-coding regulatory regions like untranslated regions (UTRs) of mRNAs. The UTRs, however, are known to have many sequence and structural motifs that can regulate translational and transcriptional efficiency and stability of mRNAs through interaction with RNA-binding proteins and other non-coding RNAs like microRNAs (miRNAs). In a recent study, transcriptomes of tumor cells harboring mutant and wild-type KRAS (V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog) genes in patients with non-small cell lung cancer (NSCLC) have been sequenced to identify single nucleotide variations (SNVs). About 40% of the total SNVs (73,717) identified were mapped to UTRs, but omitted in the previous analysis. To meet this obvious demand for analysis of the UTRs, we designed a comprehensive pipeline to predict the effect of SNVs on two major regulatory elements, secondary structure and miRNA target sites. Out of 29,290 SNVs in 6462 genes, we predict 472 SNVs (in 408 genes) affecting local RNA secondary structure, 490 SNVs (in 447 genes) affecting miRNA target sites and 48 that do both. Together these disruptive SNVs were present in 803 different genes, out of which 188 (23.4%) were previously known to be cancer-associated. Notably, this ratio is significantly higher (one-sided Fisher's exact test p-value = 0.032) than the ratio (20.8%) of known cancer-associated genes (n = 1347) in our initial data set (n = 6462). Network analysis shows that the genes harboring disruptive SNVs were involved in molecular mechanisms of cancer, and the signaling pathways of LPS-stimulated MAPK, IL-6, iNOS, EIF2 and mTOR. In conclusion, we have found hundreds of SNVs which are highly disruptive with respect to changes in the secondary structure and miRNA target sites within UTRs. These changes hold the potential to alter the expression of known cancer genes or genes linked to cancer-associated pathways. PMID:24416147
Sabarinathan, Radhakrishnan; Wenzel, Anne; Novotny, Peter; Tang, Xiaojia; Kalari, Krishna R; Gorodkin, Jan
2014-01-01
Traditional mutation assessment methods generally focus on predicting disruptive changes in protein-coding regions rather than non-coding regulatory regions like untranslated regions (UTRs) of mRNAs. The UTRs, however, are known to have many sequence and structural motifs that can regulate translational and transcriptional efficiency and stability of mRNAs through interaction with RNA-binding proteins and other non-coding RNAs like microRNAs (miRNAs). In a recent study, transcriptomes of tumor cells harboring mutant and wild-type KRAS (V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog) genes in patients with non-small cell lung cancer (NSCLC) have been sequenced to identify single nucleotide variations (SNVs). About 40% of the total SNVs (73,717) identified were mapped to UTRs, but omitted in the previous analysis. To meet this obvious demand for analysis of the UTRs, we designed a comprehensive pipeline to predict the effect of SNVs on two major regulatory elements, secondary structure and miRNA target sites. Out of 29,290 SNVs in 6462 genes, we predict 472 SNVs (in 408 genes) affecting local RNA secondary structure, 490 SNVs (in 447 genes) affecting miRNA target sites and 48 that do both. Together these disruptive SNVs were present in 803 different genes, out of which 188 (23.4%) were previously known to be cancer-associated. Notably, this ratio is significantly higher (one-sided Fisher's exact test p-value = 0.032) than the ratio (20.8%) of known cancer-associated genes (n = 1347) in our initial data set (n = 6462). Network analysis shows that the genes harboring disruptive SNVs were involved in molecular mechanisms of cancer, and the signaling pathways of LPS-stimulated MAPK, IL-6, iNOS, EIF2 and mTOR. In conclusion, we have found hundreds of SNVs which are highly disruptive with respect to changes in the secondary structure and miRNA target sites within UTRs. These changes hold the potential to alter the expression of known cancer genes or genes linked to cancer-associated pathways.
The control gain region for synchronization in non-diffusively coupled complex networks
NASA Astrophysics Data System (ADS)
Gequn, Liu; Wenhui, Li; Huijie, Yang; Knowles, Gareth
2014-07-01
The control gain region for synchronization of non-diffusively coupled networks was studied with respect to three conditions: synchronization, synchronization in finite time, and synchronization in the minimum time. Based on cancellation control methodology and master stability function formalism, we found that a complete feasible control gain region may be bounded, unbounded, empty or a union of several bounded and unbounded regions, with a similar shape to the synchronized region. An interesting possibility emerged that a network could be synchronized by both negative and positive feedback control simultaneously. By bridging synchronizability and synchronizing response speeds with a settling time index, we have developed timed synchronized region (TSR) as a substitute for the classical synchronized region to study finite time synchronization. As for the last condition, a graphical method was developed to estimate control gain with the minimum synchronization time (CGMST). Each condition has examples provided for illustration and verification.
Controlled encoding strategies in memory tests in lithium patients.
Opgenoorth, E; Karlick-Bolten, E
1986-03-01
The "levels of processing" theory (Craik and Lockhart) and "dual coding" theory (Paivio) provide new aspects for clinical memory research work. Therefore, an incidental learning paradigm on the basis of these two theoretical approaches was chosen to test aspects of memory performances with lithium therapy. Results of two experiments, with controlled non-semantic processing (rating experiment "comparison of size") and additive semantic processing (rating "living--non-living") indicate a slight reduction in recall (Fig. 1) and recognition performance (Fig. 2) in lithium patients. Effects on encoding strategies are of equal quality in patients and healthy subjects (Tab. 1, 2) but performance differs between both groups: poorer systematic benefit from within code repetitions ("word-word" items, "picture-picture" items) and dual coding (repeated variable item presentation "picture-word") is obtained. The less efficient encoding strategies in the speeded task are discussed with respect to cognitive rigidity and slowing of performance by emotional states. This investigation of so-called "memory deficits" with lithium is an attempt to explore impairments at an early stage of processing; the characterization of the perceptual cognitive analysis seems useful for further clinical research work on this topic.
Decoding the ubiquitous role of microRNAs in neurogenesis.
Nampoothiri, Sreekala S; Rajanikant, G K
2017-04-01
Neurogenesis generates fledgling neurons that mature to form an intricate neuronal circuitry. The delusion on adult neurogenesis was far resolved in the past decade and became one of the largely explored domains to identify multifaceted mechanisms bridging neurodevelopment and neuropathology. Neurogenesis encompasses multiple processes including neural stem cell proliferation, neuronal differentiation, and cell fate determination. Each neurogenic process is specifically governed by manifold signaling pathways, several growth factors, coding, and non-coding RNAs. A class of small non-coding RNAs, microRNAs (miRNAs), is ubiquitously expressed in the brain and has emerged to be potent regulators of neurogenesis. It functions by fine-tuning the expression of specific neurogenic gene targets at the post-transcriptional level and modulates the development of mature neurons from neural progenitor cells. Besides the commonly discussed intrinsic factors, the neuronal morphogenesis is also under the control of several extrinsic temporal cues, which in turn are regulated by miRNAs. This review enlightens on dicer controlled switch from neurogenesis to gliogenesis, miRNA regulation of neuronal maturation and the differential expression of miRNAs in response to various extrinsic cues affecting neurogenesis.
Singh, Kh Dhanachandra; Karthikeyan, Muthusamy
2014-12-01
The renin-angiotensin-aldosterone system (RAAS) plays a key role in the regulation of blood pressure (BP). Mutations on the genes that encode components of the RAAS have played a significant role in genetic susceptibility to hypertension and have been intensively scrutinized. The identification of such probably causal mutations not only provides insight into the RAAS but may also serve as antihypertensive therapeutic targets and diagnostic markers. The methods for analyzing the SNPs from the huge dataset of SNPs, containing both functional and neutral SNPs is challenging by the experimental approach on every SNPs to determine their biological significance. To explore the functional significance of genetic mutation (SNPs), we adopted combined sequence and sequence-structure-based SNP analysis algorithm. Out of 3864 SNPs reported in dbSNP, we found 108 missense SNPs in the coding region and remaining in the non-coding region. In this study, we are reporting only those SNPs in coding region to be deleterious when three or more tools are predicted to be deleterious and which have high RMSD from the native structure. Based on these analyses, we have identified two SNPs of REN gene, eight SNPs of AGT gene, three SNPs of ACE gene, two SNPs of AT1R gene, three SNPs of CYP11B2 gene and three SNPs of CMA1 gene in the coding region were found to be deleterious. Further this type of study will be helpful in reducing the cost and time for identification of potential SNP and also helpful in selecting potential SNP for experimental study out of SNP pool.
Quality of head injury coding from autopsy reports with AIS © 2005 update 2008.
Schick, Sylvia; Humrich, Anton; Graw, Matthias
2018-02-28
ABSTACT Objective: Coding injuries from autopsy reports of traffic accident victims according to Abbreviated Injury Scale AIS © 2005 update 2008 [1] is quite time consuming. The suspicion arose, that many issues leading to discussion between coder and control reader were based on information required by the AIS that was not documented in the autopsy reports. To quantify this suspicion, we introduced an AIS-detail-indicator (AIS-DI). To each injury in the AIS Codebook one letter from A to N was assigned indicating the level of detail. Rules were formulated to receive repeatable assignments. This scheme was applied to a selection of 149 multiply injured traffic fatalities. The frequencies of "not A" codes were calculated for each body region and it was analysed, why the most detailed level A had not been coded. As a first finding, the results of the head region are presented. 747 AIS head injury codes were found in 137 traffic fatalities, and 60% of these injuries were coded with an AIS-DI of level A. There are three different explanations for codes of AIS-DI "not A": Group 1 "Missing information in autopsy report" (5%), Group 2 "Clinical data required by AIS" (20%), and Group 3 "AIS system determined" (15%). Groups 1 and 2 show consequences for the ISS in 25 cases. Other body regions might perform differently. The AIS-DI can indicate the quality of the underlying data basis and, depending on the aims of different AIS users it can be a helpful tool for quality checks.
Tobacco outlet density and converted versus native non-daily cigarette use in a national US sample.
Kirchner, Thomas R; Anesetti-Rothermel, Andrew; Bennett, Morgane; Gao, Hong; Carlos, Heather; Scheuermann, Taneisha S; Reitzel, Lorraine R; Ahluwalia, Jasjit S
2017-01-01
Investigate whether non-daily smokers' (NDS) cigarette price and purchase preferences, recent cessation attempts, and current intentions to quit are associated with the density of the retail cigarette product landscape surrounding their residential address. Cross-sectional assessment of N=904 converted NDS (CNDS). who previously smoked every day, and N=297 native NDS (NNDS) who only smoked non-daily, drawn from a national panel. Kernel density estimation was used to generate a nationwide probability surface of tobacco outlets linked to participants' residential ZIP code. Hierarchically nested log-linear models were compared to evaluate associations between outlet density, non-daily use patterns, price sensitivity and quit intentions. Overall, NDS in ZIP codes with greater outlet density were less likely than NDS in ZIP codes with lower outlet density to hold 6-month quit intentions when they also reported that price affected use patterns (G 2 =66.1, p<0.001) and purchase locations (G 2 =85.2, p<0.001). CNDS were more likely than NNDS to reside in ZIP codes with higher outlet density (G 2 =322.0, p<0.001). Compared with CNDS in ZIP codes with lower outlet density, CNDS in high-density ZIP codes were more likely to report that price influenced the amount they smoke (G 2 =43.9, p<0.001), and were more likely to look for better prices (G 2 =59.3, p<0.001). NDS residing in high-density ZIP codes were not more likely to report that price affected their cigarette brand choice compared with those in ZIP codes with lower density. This paper provides initial evidence that the point-of-sale cigarette environment may be differentially associated with the maintenance of CNDS versus NNDS patterns. Future research should investigate how tobacco control efforts can be optimised to both promote cessation and curb the rising tide of non-daily smoking in the USA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacArthur, Stewart; Li, Xiao-Yong; Li, Jingyi
2009-05-15
BACKGROUND: We previously established that six sequence-specific transcription factors that initiate anterior/posterior patterning in Drosophila bind to overlapping sets of thousands of genomic regions in blastoderm embryos. While regions bound at high levels include known and probable functional targets, more poorly bound regions are preferentially associated with housekeeping genes and/or genes not transcribed in the blastoderm, and are frequently found in protein coding sequences or in less conserved non-coding DNA, suggesting that many are likely non-functional. RESULTS: Here we show that an additional 15 transcription factors that regulate other aspects of embryo patterning show a similar quantitative continuum of functionmore » and binding to thousands of genomic regions in vivo. Collectively, the 21 regulators show a surprisingly high overlap in the regions they bind given that they belong to 11 DNA binding domain families, specify distinct developmental fates, and can act via different cis-regulatory modules. We demonstrate, however, that quantitative differences in relative levels of binding to shared targets correlate with the known biological and transcriptional regulatory specificities of these factors. CONCLUSIONS: It is likely that the overlap in binding of biochemically and functionally unrelated transcription factors arises from the high concentrations of these proteins in nuclei, which, coupled with their broad DNA binding specificities, directs them to regions of open chromatin. We suggest that most animal transcription factors will be found to show a similar broad overlapping pattern of binding in vivo, with specificity achieved by modulating the amount, rather than the identity, of bound factor.« less
Pitchiaya, Sethuramasundaram; Krishnan, Vishalakshi; Custer, Thomas C.; Walter, Nils G.
2013-01-01
Non-coding RNAs (ncRNAs) recently were discovered to outnumber their protein-coding counterparts, yet their diverse functions are still poorly understood. Here we report on a method for the intracellular Single-molecule High Resolution Localization and Counting (iSHiRLoC) of microRNAs (miRNAs), a conserved, ubiquitous class of regulatory ncRNAs that controls the expression of over 60% of all mammalian protein coding genes post-transcriptionally, by a mechanism shrouded by seemingly contradictory observations. We present protocols to execute single particle tracking (SPT) and single-molecule counting of functional microinjected, fluorophore-labeled miRNAs and thereby extract diffusion coefficients and molecular stoichiometries of micro-ribonucleoprotein (miRNP) complexes from living and fixed cells, respectively. This probing of miRNAs at the single molecule level sheds new light on the intracellular assembly/disassembly of miRNPs, thus beginning to unravel the dynamic nature of this important gene regulatory pathway and facilitating the development of a parsimonious model for their obscured mechanism of action. PMID:23820309
Preeclampsia: novel insights from global RNA profiling of trophoblast subpopulations.
Gormley, Matthew; Ona, Katherine; Kapidzic, Mirhan; Garrido-Gomez, Tamara; Zdravkovic, Tamara; Fisher, Susan J
2017-08-01
The maternal signs of preeclampsia, which include the new onset of high blood pressure, can occur because of faulty placentation. We theorized that transcriptomic analyses of trophoblast subpopulations in situ would lend new insights into the role of these cells in preeclampsia pathogenesis. Our goal was to enrich syncytiotrophoblasts, invasive cytotrophoblasts, or endovascular cytotrophoblasts from the placentas of severe preeclampsia cases. Total RNA was subjected to global transcriptional profiling to identify RNAs that were misexpressed compared with controls. This was a cross-sectional analysis of placentas from women who had been diagnosed with severe preeclampsia. Gestational age-matched controls were placentas from women who had a preterm birth with no signs of infection. Laser microdissection enabled enrichment of syncytiotrophoblasts, invasive cytotrophoblasts, or endovascular cytotrophoblasts. After RNA isolation, a microarray approach was used for global transcriptional profiling. Immunolocalization identified changes in messenger RNA expression that carried over to the protein level. Differential expression of non-protein-coding RNAs was confirmed by in situ hybridization. A 2-way analysis of variance of non-coding RNA expression identified particular classes that distinguished trophoblasts in cases vs controls. Cajal body foci were visualized by coilin immunolocalization. Comparison of the trophoblast subtype data within each group (severe preeclampsia or noninfected preterm birth) identified many highly differentially expressed genes. They included molecules that are known to be expressed by each subpopulation, which is evidence that the method worked. Genes that were expressed differentially between the 2 groups, in a cell-type-specific manner, encoded a combination of molecules that previous studies associated with severe preeclampsia and those that were not known to be dysregulated in this pregnancy complication. Gene ontology analysis of the syncytiotrophoblast data highlighted the dysregulation of immune functions, morphogenesis, transport, and responses to vascular endothelial growth factor and progesterone. The invasive cytotrophoblast data provided evidence of alterations in cellular movement, which is consistent with the shallow invasion often associated with severe preeclampsia. Other dysregulated pathways included immune, lipid, oxygen, and transforming growth factor-beta responses. The data for endovascular cytotrophoblasts showed disordered metabolism, signaling, and vascular development. Additionally, the transcriptional data revealed the differential expression in severe preeclampsia of 2 classes of non-coding RNAs: long non-coding RNAs and small nucleolar RNAs. The long non-coding RNA, urothelial cancer associated 1, was the most highly up-regulated in this class. In situ hybridization confirmed severe preeclampsia-associated expression in syncytiotrophoblasts. The small nucleolar RNAs, which chemically modify RNA structure, also correlated with severe preeclampsia. Thus, we enumerated Cajal body foci, sites of small nucleolar RNA activity, in primary cytotrophoblasts that were isolated from control and severe preeclampsia placentas. In severe preeclampsia, cytotrophoblasts had approximately double the number of these foci as the control samples. A laser microdissection approach enabled the identification of novel messenger RNAs and non-coding RNAs that were misexpressed by various trophoblast subpopulations in severe preeclampsia. The results suggested new avenues of investigation, in particular, the roles of PRG2, Kell blood group determinants, and urothelial cancer associated 1 in syncytiotrophoblast diseases. Additionally, many of the newly identified dysregulated molecules might have clinical utility as biomarkers of severe preeclampsia. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Amelard, Robert; Scharfenberger, Christian; Wong, Alexander; Clausi, David A.
2015-03-01
Non-contact camera-based imaging photoplethysmography (iPPG) is useful for measuring heart rate in conditions where contact devices are problematic due to issues such as mobility, comfort, and sanitation. Existing iPPG methods analyse the light-tissue interaction of either active or passive (ambient) illumination. Many active iPPG methods assume the incident ambient light is negligible to the active illumination, resulting in high power requirements, while many passive iPPG methods assume near-constant ambient conditions. These assumptions can only be achieved in environments with controlled illumination and thus constrain the use of such devices. To increase the number of possible applications of iPPG devices, we propose a dual-mode active iPPG system that is robust to changes in ambient illumination variations. Our system uses a temporally-coded illumination sequence that is synchronized with the camera to measure both active and ambient illumination interaction for determining heart rate. By subtracting the ambient contribution, the remaining illumination data can be attributed to the controlled illuminant. Our device comprises a camera and an LED illuminant controlled by a microcontroller. The microcontroller drives the temporal code via synchronizing the frame captures and illumination time at the hardware level. By simulating changes in ambient light conditions, experimental results show our device is able to assess heart rate accurately in challenging lighting conditions. By varying the temporal code, we demonstrate the trade-off between camera frame rate and ambient light compensation for optimal blood pulse detection.
Gan, Han Ming; Tan, Mun Hua; Lee, Yin Peng; Austin, Christopher M
2016-05-01
The mitochondrial genome sequence of the Australian tadpole shrimp, Triops australiensis is presented (GenBank Accession Number: NC_024439) and compared with other Triops species. Triops australiensis has a mitochondrial genome of 15,125 base pairs consisting of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a non-coding AT-rich region. The T. australiensis mitogenome is composed of 36.4% A, 16.1% C, 12.3% G and 35.1% T. The mitogenome gene order conforms to the primitive arrangement for Branchiopod crustaceans, which is also conserved within the Pancrustacean.
Austin, Christopher M; Tan, Mun Hua; Lee, Yin Peng; Croft, Laurence J; Meekan, Mark G; Pierce, Simon J; Gan, Han Ming
2016-01-01
The complete mitochondrial genome of the parasitic copepod Pandarus rhincodonicus was obtained from a partial genome scan using the HiSeq sequencing system. The Pandarus rhincodonicus mitogenome has 14,480 base pairs (62% A+T content) made up of 12 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a putative 384 bp non-coding AT-rich region. This Pandarus mitogenome sequence is the first for the family Pandaridae, the second for the order Siphonostomatoida and the sixth for the Copepoda.
NASA Technical Reports Server (NTRS)
Chang, Dong Kyung; Metzgar, David; Wills, Christopher; Boland, C. Richard
2003-01-01
All "minor" components of the human DNA mismatch repair (MMR) system-MSH3, MSH6, PMS2, and the recently discovered MLH3-contain mononucleotide microsatellites in their coding sequences. This intriguing finding contrasts with the situation found in the major components of the DNA MMR system-MSH2 and MLH1-and, in fact, most human genes. Although eukaryotic genomes are rich in microsatellites, non-triplet microsatellites are rare in coding regions. The recurring presence of exonal mononucleotide repeat sequences within a single family of human genes would therefore be considered exceptional.
Epigenetic deregulation in chronic lymphocytic leukemia: Clinical and biological impact.
Mansouri, Larry; Wierzbinska, Justyna Anna; Plass, Christoph; Rosenquist, Richard
2018-02-07
Deregulated transcriptional control caused by aberrant DNA methylation and/or histone modifications is a hallmark of cancer cells. In chronic lymphocytic leukemia (CLL), the most common adult leukemia, the epigenetic 'landscape' has added a new layer of complexity to our understanding of this clinically and biologically heterogeneous disease. Early studies identified aberrant DNA methylation, often based on single gene promoter analysis with both biological and clinical impact. Subsequent genome-wide profiling studies revealed differential DNA methylation between CLLs and controls and in prognostics subgroups of the disease. From these studies, it became apparent that DNA methylation in regions outside of promoters, such as enhancers, is important for the regulation of coding genes as well as for the regulation of non-coding RNAs. Although DNA methylation profiles are reportedly stable over time and in relation to therapy, a higher epigenetic heterogeneity or 'burden' is seen in more aggressive CLL subgroups, albeit as non-recurrent 'passenger' events. More recently, DNA methylation profiles in CLL analyzed in relation to differentiating normal B-cell populations revealed that the majority of the CLL epigenome reflects the epigenomes present in the cell of origin and that only a small fraction of the epigenetic alterations represents truly CLL-specific changes. Furthermore, CLL patients can be grouped into at least three clinically relevant epigenetic subgroups, potentially originating from different cells at various stages of differentiation and associated with distinct outcomes. In this review, we summarize the current understanding of the DNA methylome in CLL, the role of histone modifying enzymes, highlight insights derived from animal models and attempts made to target epigenetic regulators in CLL along with the future directions of this rapidly advancing field. Copyright © 2018 Elsevier Ltd. All rights reserved.
Klein, Joern; Hussain, Manzoor; Ahmad, Munir; Afzal, Muhammad; Alexandersen, Soren
2008-01-01
Background Foot-and-mouth disease (FMD) is endemic in Pakistan and causes huge economic losses. This work focus on the Landhi Dairy Colony (LDC), located in the suburbs of Karachi. LDC is the largest Buffalo colony in the world, with more than 300,000 animals (around 95% buffaloes and 5% cattle, as well as an unknown number of sheep and goats). Each month from April 2006 to April 2007 we collected mouth-swabs from apparently healthy buffaloes and cattle, applying a convenient sampling based on a two-stage random sampling scheme, in conjunction with participatory information from each selected farm. Furthermore, we also collected epithelium samples from animals with clinical disease, as well as mouth-swabs samples from those farms. In addition, we analysed a total of 180 serum samples randomly collecting 30 samples each month at the local slaughterhouse, from October 2006 to March 2007. Samples have been screened for FMDV by real-time RT-PCR and the partial or full 1D coding region of selected isolates has been sequenced. Serum samples have been analysed by applying serotype-specific antibody ELISA and non-structural proteins (NSP) antibody ELISA. Results FMDV infection prevalence at aggregate level shows an endemic occurrence of FMDV in the colony, with peaks in August 2006, December 2006 and February 2007 to March 2007. A significant association of prevalence peaks to the rainy seasons, which includes the coldest time of the year and the muslimic Eid-festival, has been demonstrated. Participatory information indicated that 88% of all questioned farmers vaccinate their animals. Analysis of the serum samples showed high levels of antibodies for serotypes O, A, Asia 1 and C. The median endpoint-titre for all tested serotypes, except serotype C, in VNT titration is at a serum dilution of equal or above 1/100. All 180 serum samples collected have been tested for antibodies against the non-structural proteins and all but four have been found positive. Out of the 106 swab-samples from apparently healthy and affected animals positive in real-time RT-PCR, we sequenced the partial or full 1D coding region from 58 samples. In addition we sequenced the full 1D coding region of 17 epithelium samples from animals with clinical signs of FMD. From all sequenced samples, swabs and epithelium, 19 belong to the regional PanAsia II lineage of serotype O and 56 to the A/Iran/2005 lineage of serotype A. Conclusion For an effective and realisable FMD control program in LDC, we suggest to introduce a twice annually mass vaccination of all buffaloes and cattle in the colony. These mass vaccinations should optimally take place shortly before the beginning of the two rainy periods, e.g. in June and September. Those vaccinations should, in our opinion, be in addition to the already individually performed vaccinations of single animals, as the latter usually targets only newly introduced animals. This suggested combination of mass vaccination of all large ruminants with the already performed individually vaccination should provide a continuous high level of herd immunity in the entire colony. Vaccines used for this purpose should contain the matching vaccine strains, i.e. as our results indicate antigens for A/Iran/2005 and the regional type of serotype O (PanAsia II), but also antigens of the, in this world region endemic, Asia 1 lineage should be included. In the long term it will be important to control the vaccine use, so that subclinical FMD will be avoided. PMID:18445264
Platelet function is modified by common sequence variation in megakaryocyte super enhancers
Petersen, Romina; Lambourne, John J.; Javierre, Biola M.; Grassi, Luigi; Kreuzhuber, Roman; Ruklisa, Dace; Rosa, Isabel M.; Tomé, Ana R.; Elding, Heather; van Geffen, Johanna P.; Jiang, Tao; Farrow, Samantha; Cairns, Jonathan; Al-Subaie, Abeer M.; Ashford, Sofie; Attwood, Antony; Batista, Joana; Bouman, Heleen; Burden, Frances; Choudry, Fizzah A.; Clarke, Laura; Flicek, Paul; Garner, Stephen F.; Haimel, Matthias; Kempster, Carly; Ladopoulos, Vasileios; Lenaerts, An-Sofie; Materek, Paulina M.; McKinney, Harriet; Meacham, Stuart; Mead, Daniel; Nagy, Magdolna; Penkett, Christopher J.; Rendon, Augusto; Seyres, Denis; Sun, Benjamin; Tuna, Salih; van der Weide, Marie-Elise; Wingett, Steven W.; Martens, Joost H.; Stegle, Oliver; Richardson, Sylvia; Vallier, Ludovic; Roberts, David J.; Freson, Kathleen; Wernisch, Lorenz; Stunnenberg, Hendrik G.; Danesh, John; Fraser, Peter; Soranzo, Nicole; Butterworth, Adam S.; Heemskerk, Johan W.; Turro, Ernest; Spivakov, Mikhail; Ouwehand, Willem H.; Astle, William J.; Downes, Kate; Kostadima, Myrto; Frontini, Mattia
2017-01-01
Linking non-coding genetic variants associated with the risk of diseases or disease-relevant traits to target genes is a crucial step to realize GWAS potential in the introduction of precision medicine. Here we set out to determine the mechanisms underpinning variant association with platelet quantitative traits using cell type-matched epigenomic data and promoter long-range interactions. We identify potential regulatory functions for 423 of 565 (75%) non-coding variants associated with platelet traits and we demonstrate, through ex vivo and proof of principle genome editing validation, that variants in super enhancers play an important role in controlling archetypical platelet functions. PMID:28703137
DROP: Detecting Return-Oriented Programming Malicious Code
NASA Astrophysics Data System (ADS)
Chen, Ping; Xiao, Hai; Shen, Xiaobin; Yin, Xinchun; Mao, Bing; Xie, Li
Return-Oriented Programming (ROP) is a new technique that helps the attacker construct malicious code mounted on x86/SPARC executables without any function call at all. Such technique makes the ROP malicious code contain no instruction, which is different from existing attacks. Moreover, it hides the malicious code in benign code. Thus, it circumvents the approaches that prevent control flow diversion outside legitimate regions (such as W ⊕ X ) and most malicious code scanning techniques (such as anti-virus scanners). However, ROP has its own intrinsic feature which is different from normal program design: (1) uses short instruction sequence ending in "ret", which is called gadget, and (2) executes the gadgets contiguously in specific memory space, such as standard GNU libc. Based on the features of the ROP malicious code, in this paper, we present a tool DROP, which is focused on dynamically detecting ROP malicious code. Preliminary experimental results show that DROP can efficiently detect ROP malicious code, and have no false positives and negatives.
Kawano, Tomonori
2013-03-01
There have been a wide variety of approaches for handling the pieces of DNA as the "unplugged" tools for digital information storage and processing, including a series of studies applied to the security-related area, such as DNA-based digital barcodes, water marks and cryptography. In the present article, novel designs of artificial genes as the media for storing the digitally compressed data for images are proposed for bio-computing purpose while natural genes principally encode for proteins. Furthermore, the proposed system allows cryptographical application of DNA through biochemically editable designs with capacity for steganographical numeric data embedment. As a model case of image-coding DNA technique application, numerically and biochemically combined protocols are employed for ciphering the given "passwords" and/or secret numbers using DNA sequences. The "passwords" of interest were decomposed into single letters and translated into the font image coded on the separate DNA chains with both the coding regions in which the images are encoded based on the novel run-length encoding rule, and the non-coding regions designed for biochemical editing and the remodeling processes revealing the hidden orientation of letters composing the original "passwords." The latter processes require the molecular biological tools for digestion and ligation of the fragmented DNA molecules targeting at the polymerase chain reaction-engineered termini of the chains. Lastly, additional protocols for steganographical overwriting of the numeric data of interests over the image-coding DNA are also discussed.
NASA Astrophysics Data System (ADS)
Grenier, Christophe; Anbergen, Hauke; Bense, Victor; Chanzy, Quentin; Coon, Ethan; Collier, Nathaniel; Costard, François; Ferry, Michel; Frampton, Andrew; Frederick, Jennifer; Gonçalvès, Julio; Holmén, Johann; Jost, Anne; Kokh, Samuel; Kurylyk, Barret; McKenzie, Jeffrey; Molson, John; Mouche, Emmanuel; Orgogozo, Laurent; Pannetier, Romain; Rivière, Agnès; Roux, Nicolas; Rühaak, Wolfram; Scheidegger, Johanna; Selroos, Jan-Olof; Therrien, René; Vidstrand, Patrik; Voss, Clifford
2018-04-01
In high-elevation, boreal and arctic regions, hydrological processes and associated water bodies can be strongly influenced by the distribution of permafrost. Recent field and modeling studies indicate that a fully-coupled multidimensional thermo-hydraulic approach is required to accurately model the evolution of these permafrost-impacted landscapes and groundwater systems. However, the relatively new and complex numerical codes being developed for coupled non-linear freeze-thaw systems require verification. This issue is addressed by means of an intercomparison of thirteen numerical codes for two-dimensional test cases with several performance metrics (PMs). These codes comprise a wide range of numerical approaches, spatial and temporal discretization strategies, and computational efficiencies. Results suggest that the codes provide robust results for the test cases considered and that minor discrepancies are explained by computational precision. However, larger discrepancies are observed for some PMs resulting from differences in the governing equations, discretization issues, or in the freezing curve used by some codes.
Gutiérrez, Verónica; Rego, Natalia; Naya, Hugo; García, Graciela
2015-10-28
Among teleosts, the South American genus Austrolebias (Cyprinodontiformes: Rivulidae) includes 42 taxa of annual fishes divided into five different species groups. It is a monophyletic genus, but morphological and molecular data do not resolve the relationship among intrageneric clades and high rates of substitution have been previously described in some mitochondrial genes. In this work, the complete mitogenome of a species of the genus was determined for the first time. We determined its structure, gene order and evolutionary peculiar features, which will allow us to evaluate the performance of mitochondrial genes in the phylogenetic resolution at different taxonomic levels. Regarding gene content and order, the circular mitogenome of A. charrua (17,271 pb) presents the typical pattern of vertebrate mitogenomes. It contains the full complement of 13 proteins-coding genes, 22 tRNA, 2 rRNA and one non-coding control region. Notably, the tRNA-Cys was only 57 bp in length and lacks the D-loop arm. In three full sibling individuals, heteroplasmatic condition was detected due to a total of 12 variable sites in seven protein-coding genes. Among cyprinodontiforms, the mitogenome of A. charrua exhibits the lowest G+C content (37 %) and GCskew, as well as the highest strand asymmetry with a net difference of T over A at 1st and 3rd codon positions. Considering the 12 coding-genes of the H strand, correspondence analyses of nucleotide composition and codon usage show that A and T at 1st and 3rd codon positions have the highest weight in the first axis, and segregate annual species from the other cyprinodontiforms analyzed. Given the annual life-style, their mitogenomes could be under different selective pressures. All 13 protein-coding genes are under strong purifying selection and we did not find any significant evidence of nucleotide sites showing episodic selection (dN >dS) at annual lineages. When fast evolving third codon positions were removed from alignments, the "supergene" tree recovers our reference species phylogeny as well as the Cytb, ND4L and ND6 genes. Therefore, third codon positions seem to be saturated in the aforementioned coding regions at intergeneric Cyprinodontiformes comparisons. The complete mitogenome obtained in present work, offers relevant data for further comparative studies on molecular phylogeny and systematics of this taxonomic controversial endemic genus of annual fishes.
Origin of sphinx, a young chimeric RNA gene in Drosophila melanogaster
Wang, Wen; Brunet, Frédéric G.; Nevo, Eviatar; Long, Manyuan
2002-01-01
Non-protein-coding RNA genes play an important role in various biological processes. How new RNA genes originated and whether this process is controlled by similar evolutionary mechanisms for the origin of protein-coding genes remains unclear. A young chimeric RNA gene that we term sphinx (spx) provides the first insight into the early stage of evolution of RNA genes. spx originated as an insertion of a retroposed sequence of the ATP synthase chain F gene at the cytological region 60DB since the divergence of Drosophila melanogaster from its sibling species 2–3 million years ago. This retrosequence, which is located at 102F on the fourth chromosome, recruited a nearby exon and intron, thereby evolving a chimeric gene structure. This molecular process suggests that the mechanism of exon shuffling, which can generate protein-coding genes, also plays a role in the origin of RNA genes. The subsequent evolutionary process of spx has been associated with a high nucleotide substitution rate, possibly driven by a continuous positive Darwinian selection for a novel function, as is shown in its sex- and development-specific alternative splicing. To test whether spx has adapted to different environments, we investigated its population genetic structure in the unique “Evolution Canyon” in Israel, revealing a similar haplotype structure in spx, and thus similar evolutionary forces operating on spx between environments. PMID:11904380
An, Shi-Qi; Febrer, Melanie; McCarthy, Yvonne; Tang, Dong-Jie; Clissold, Leah; Kaithakottil, Gemy; Swarbreck, David; Tang, Ji-Liang; Rogers, Jane; Dow, J Maxwell; Ryan, Robert P
2013-01-01
The bacterium Xanthomonas campestris is an economically important pathogen of many crop species and a model for the study of bacterial phytopathogenesis. In X. campestris, a regulatory system mediated by the signal molecule DSF controls virulence to plants. The synthesis and recognition of the DSF signal depends upon different Rpf proteins. DSF signal generation requires RpfF whereas signal perception and transduction depends upon a system comprising the sensor RpfC and regulator RpfG. Here we have addressed the action and role of Rpf/DSF signalling in phytopathogenesis by high-resolution transcriptional analysis coupled to functional genomics. We detected transcripts for many genes that were unidentified by previous computational analysis of the genome sequence. Novel transcribed regions included intergenic transcripts predicted as coding or non-coding as well as those that were antisense to coding sequences. In total, mutation of rpfF, rpfG and rpfC led to alteration in transcript levels (more than fourfold) of approximately 480 genes. The regulatory influence of RpfF and RpfC demonstrated considerable overlap. Contrary to expectation, the regulatory influence of RpfC and RpfG had limited overlap, indicating complexities of the Rpf signalling system. Importantly, functional analysis revealed over 160 new virulence factors within the group of Rpf-regulated genes. PMID:23617851
Li, Hu; Liu, Hui; Shi, Aimin; Štys, Pavel; Zhou, Xuguo; Cai, Wanzhi
2012-01-01
Many of true bugs are important insect pests to cultivated crops and some are important vectors of human diseases, but few cladistic analyses have addressed relationships among the seven infraorders of Heteroptera. The Enicocephalomorpha and Nepomorpha are consider the basal groups of Heteroptera, but the basal-most lineage remains unresolved. Here we report the mitochondrial genome of the unique-headed bug Stenopirates sp., the first mitochondrial genome sequenced from Enicocephalomorpha. The Stenopirates sp. mitochondrial genome is a typical circular DNA molecule of 15, 384 bp in length, and contains 37 genes and a large non-coding fragment. The gene order differs substantially from other known insect mitochondrial genomes, with rearrangements of both tRNA genes and protein-coding genes. The overall AT content (82.5%) of Stenopirates sp. is the highest among all the known heteropteran mitochondrial genomes. The strand bias is consistent with other true bugs with negative GC-skew and positive AT-skew for the J-strand. The heteropteran mitochondrial atp8 exhibits the highest evolutionary rate, whereas cox1 appears to have the lowest rate. Furthermore, a negative correlation was observed between the variation of nucleotide substitutions and the GC content of each protein-coding gene. A microsatellite was identified in the putative control region. Finally, phylogenetic reconstruction suggests that Enicocephalomorpha is the sister group to all the remaining Heteroptera. PMID:22235294
Error control techniques for satellite and space communications
NASA Technical Reports Server (NTRS)
Costello, Daniel J., Jr.
1991-01-01
Shannon's capacity bound shows that coding can achieve large reductions in the required signal to noise ratio per information bit (E sub b/N sub 0 where E sub b is the energy per bit and (N sub 0)/2 is the double sided noise density) in comparison to uncoded schemes. For bandwidth efficiencies of 2 bit/sym or greater, these improvements were obtained through the use of Trellis Coded Modulation and Block Coded Modulation. A method of obtaining these high efficiencies using multidimensional Multiple Phase Shift Keying (MPSK) and Quadrature Amplitude Modulation (QAM) signal sets with trellis coding is described. These schemes have advantages in decoding speed, phase transparency, and coding gain in comparison to other trellis coding schemes. Finally, a general parity check equation for rotationally invariant trellis codes is introduced from which non-linear codes for two dimensional MPSK and QAM signal sets are found. These codes are fully transparent to all rotations of the signal set.
Hemipteran Mitochondrial Genomes: Features, Structures and Implications for Phylogeny
Wang, Yuan; Chen, Jing; Jiang, Li-Yun; Qiao, Ge-Xia
2015-01-01
The study of Hemipteran mitochondrial genomes (mitogenomes) began with the Chagas disease vector, Triatoma dimidiata, in 2001. At present, 90 complete Hemipteran mitogenomes have been sequenced and annotated. This review examines the history of Hemipteran mitogenomes research and summarizes the main features of them including genome organization, nucleotide composition, protein-coding genes, tRNAs and rRNAs, and non-coding regions. Special attention is given to the comparative analysis of repeat regions. Gene rearrangements are an additional data type for a few families, and most mitogenomes are arranged in the same order to the proposed ancestral insect. We also discuss and provide insights on the phylogenetic analyses of a variety of taxonomic levels. This review is expected to further expand our understanding of research in this field and serve as a valuable reference resource. PMID:26039239
USDA-ARS?s Scientific Manuscript database
The aneupolyploidy genome of sugarcane (Saccharum hybrids spp.) and lack of a classical genetic linkage map make genetics research most difficult for sugarcane. Whole genome sequencing and genetic characterization of sugarcane and related taxa are far behind other crops. In this study, universal PCR...
Barbosa, M S; Wettstein, F O
1987-01-01
Cottontail rabbit papillomavirus (CRPV) early proteins are present at very low levels in virus-induced tumors and cannot be detected by immunological methods. Furthermore, cells in culture are not readily transformed by the virus. To overcome these difficulties in identifying and characterizing the putative transforming protein(s) coded by the E6 open reading frame, the early cottontail rabbit papillomavirus region was expressed under the control of the late simian virus 40 promoter. Mapping of the transcripts in transiently transfected COS-7 cells indicated that transcription was initiated in the late region of simian virus 40. Two E6-coded polypeptides were identified, representing translation products initiated at the first and second AUG codons. Images PMID:3039182
Analysis of alterative cleavage and polyadenylation by 3′ region extraction and deep sequencing
Hoque, Mainul; Ji, Zhe; Zheng, Dinghai; Luo, Wenting; Li, Wencheng; You, Bei; Park, Ji Yeon; Yehia, Ghassan; Tian, Bin
2012-01-01
Alternative cleavage and polyadenylation (APA) leads to mRNA isoforms with different coding sequences (CDS) and/or 3′ untranslated regions (3′UTRs). Using 3′ Region Extraction And Deep Sequencing (3′READS), a method which addresses the internal priming and oligo(A) tail issues that commonly plague polyA site (pA) identification, we comprehensively mapped pAs in the mouse genome, thoroughly annotating 3′ ends of genes and revealing over five thousand pAs (~8% of total) flanked by A-rich sequences, which have hitherto been overlooked. About 79% of mRNA genes and 66% of long non-coding RNA (lncRNA) genes have APA; but these two gene types have distinct usage patterns for pAs in introns and upstream exons. Promoter-distal pAs become relatively more abundant during embryonic development and cell differentiation, a trend affecting pAs in both 3′-most exons and upstream regions. Upregulated isoforms generally have stronger pAs, suggesting global modulation of the 3′ end processing activity in development and differentiation. PMID:23241633
Region-of-interest determination and bit-rate conversion for H.264 video transcoding
NASA Astrophysics Data System (ADS)
Huang, Shu-Fen; Chen, Mei-Juan; Tai, Kuang-Han; Li, Mian-Shiuan
2013-12-01
This paper presents a video bit-rate transcoder for baseline profile in H.264/AVC standard to fit the available channel bandwidth for the client when transmitting video bit-streams via communication channels. To maintain visual quality for low bit-rate video efficiently, this study analyzes the decoded information in the transcoder and proposes a Bayesian theorem-based region-of-interest (ROI) determination algorithm. In addition, a curve fitting scheme is employed to find the models of video bit-rate conversion. The transcoded video will conform to the target bit-rate by re-quantization according to our proposed models. After integrating the ROI detection method and the bit-rate transcoding models, the ROI-based transcoder allocates more coding bits to ROI regions and reduces the complexity of the re-encoding procedure for non-ROI regions. Hence, it not only keeps the coding quality but improves the efficiency of the video transcoding for low target bit-rates and makes the real-time transcoding more practical. Experimental results show that the proposed framework gets significantly better visual quality.
Jiang, Wenhui; Liu, Tianxiang; Nan, Wenzhi; Jeewani, Diddugodage Chamila; Niu, Yanlu; Li, Chunlian; Shi, Xue; Wang, Cong; Wang, Jiahuan; Li, Yang; Wang, Zhonghua
2018-01-01
Abstract Purple pericarps of bread wheat (Triticum aestivum L.) are a useful source of dietary anthocyanins. Previous mapping results indicated that the purple pericarp trait is controlled by two complementary genes located on chromosomes 7D and 2A. However, the identity of the genes and the mechanisms by which they regulate the trait are unknown. In this study, two transcription factors were characterised as anthocyanin activators in purple pericarps: TaPpm1 (purple pericarp-MYB 1) and TaPpb1 (purple pericarp-bHLH 1). Three non-functional variants were detected in the coding sequence of TaPpm1 from non-purple seed lines, in which the function of TaPpm1 was destroyed either by insertion-induced frame shifts or truncated peptides. There were six 261-bp tandem repeats in the promoter region of TaPpb1 in the purple-grained varieties, while there was only one repeat unit present in the non-purple varieties. Furthermore, using yeast two-hybrid, dual luciferase, yeast one-hybrid, and transient assays, we were able to demonstrate that the interaction of TaPpm1 and TaPpb1 co-regulates the synthesis of anthocyanin. Overall, our results provide a better understanding of the molecular basis of anthocyanin synthesis in the wheat pericarp and indicate the existence of an integrated regulatory mechanism that controls production. PMID:29562292
Evaluation of 10 genes encoding cardiac proteins in Doberman Pinschers with dilated cardiomyopathy.
O'Sullivan, M Lynne; O'Grady, Michael R; Pyle, W Glen; Dawson, John F
2011-07-01
To identify a causative mutation for dilated cardiomyopathy (DCM) in Doberman Pinschers by sequencing the coding regions of 10 cardiac genes known to be associated with familial DCM in humans. 5 Doberman Pinschers with DCM and congestive heart failure and 5 control mixed-breed dogs that were euthanized or died. RNA was extracted from frozen ventricular myocardial samples from each dog, and first-strand cDNA was synthesized via reverse transcription, followed by PCR amplification with gene-specific primers. Ten cardiac genes were analyzed: cardiac actin, α-actinin, α-tropomyosin, β-myosin heavy chain, metavinculin, muscle LIM protein, myosinbinding protein C, tafazzin, titin-cap (telethonin), and troponin T. Sequences for DCM-affected and control dogs and the published canine genome were compared. None of the coding sequences yielded a common causative mutation among all Doberman Pinscher samples. However, 3 variants were identified in the α-actinin gene in the DCM-affected Doberman Pinschers. One of these variants, identified in 2 of the 5 Doberman Pinschers, resulted in an amino acid change in the rod-forming triple coiled-coil domain. Mutations in the coding regions of several genes associated with DCM in humans did not appear to consistently account for DCM in Doberman Pinschers. However, an α-actinin variant was detected in some Doberman Pinschers that may contribute to the development of DCM given its potential effect on the structure of this protein. Investigation of additional candidate gene coding and noncoding regions and further evaluation of the role of α-actinin in development of DCM in Doberman Pinschers are warranted.
Liu, Ye; Li, Nan; Zhang, Shoufeng; Zhang, Fei; Lian, Hai; Wang, Ying; Zhang, Jinxia; Hu, Rongliang
2013-12-01
The genome of Irkut virus, isolate IRKV-THChina12, the first non-rabies lyssavirus from China (of bat origin), has been completely sequenced. In general, coding and non-coding regions of this viral genome are similar to those of other lyssaviruses. However, alignment of the deduced amino acid sequences of the structural proteins of IRKV-THChina12 with those of other lyssavirus representatives revealed significant variability between viral species. The nucleoprotein and matrix protein were found to be the most conserved, followed by the large protein, glycoprotein and phosphoprotein. Differences in the antigenic sites in glycoprotein may result in only partial protection of the available rabies biologics against Irkut virus, which is of particular concern for pre- and post-exposure rabies prophylaxis. Copyright © 2013 Elsevier Inc. All rights reserved.
Cellular miR-2909 RNomics governs the genes that ensure immune checkpoint regulation.
Kaul, Deepak; Malik, Deepti; Wani, Sameena
2018-06-20
Cross-talk between coding RNAs and regulatory non-coding microRNAs, within human genome, has provided compelling evidence for the existence of flexible checkpoint control of T-Cell activation. The present study attempts to demonstrate that the interplay between miR-2909 and its effector KLF4 gene has the inherent capacity to regulate genes coding for CTLA4, CD28, CD40, CD134, PDL1, CD80, CD86, IL-6 and IL-10 within normal human peripheral blood mononuclear cells (PBMCs). Based upon these findings, we propose a pathway that links miR-2909 RNomics with the genes coding for immune checkpoint regulators required for the maintenance of immune homeostasis.
Tam, Vivian; Edge, Jennifer S; Hoffman, Steven J
2016-10-12
Shortages of health workers in low-income countries are exacerbated by the international migration of health workers to more affluent countries. This problem is compounded by the active recruitment of health workers by destination countries, particularly Australia, Canada, UK and USA. The World Health Organization (WHO) adopted a voluntary Code of Practice in May 2010 to mitigate tensions between health workers' right to migrate and the shortage of health workers in source countries. The first empirical impact evaluation of this Code was conducted 11-months after its adoption and demonstrated a lack of impact on health workforce recruitment policy and practice in the short-term. This second empirical impact evaluation was conducted 4-years post-adoption using the same methodology to determine whether there have been any changes in the perceived utility, applicability, and implementation of the Code in the medium-term. Forty-four respondents representing government, civil society and the private sector from Australia, Canada, UK and USA completed an email-based survey evaluating their awareness of the Code, perceived impact, changes to policy or recruitment practices resulting from the Code, and the effectiveness of non-binding Codes generally. The same survey instrument from the original study was used to facilitate direct comparability of responses. Key lessons were identified through thematic analysis. The main findings between the initial impact evaluation and the current one are unchanged. Both sets of key informants reported no significant policy or regulatory changes to health worker recruitment in their countries as a direct result of the Code due to its lack of incentives, institutional mechanisms and interest mobilizers. Participants emphasized the existence of previous bilateral and regional Codes, the WHO Code's non-binding nature, and the primacy of competing domestic healthcare priorities in explaining this perceived lack of impact. The Code has probably still not produced the tangible improvements in health worker flows it aspired to achieve. Several actions, including a focus on developing bilateral codes, linking the Code to topical global priorities, and reframing the Code's purpose to emphasize health system sustainability, are proposed to improve the Code's uptake and impact.
Prediction of plant lncRNA by ensemble machine learning classifiers.
Simopoulos, Caitlin M A; Weretilnyk, Elizabeth A; Golding, G Brian
2018-05-02
In plants, long non-protein coding RNAs are believed to have essential roles in development and stress responses. However, relative to advances on discerning biological roles for long non-protein coding RNAs in animal systems, this RNA class in plants is largely understudied. With comparatively few validated plant long non-coding RNAs, research on this potentially critical class of RNA is hindered by a lack of appropriate prediction tools and databases. Supervised learning models trained on data sets of mostly non-validated, non-coding transcripts have been previously used to identify this enigmatic RNA class with applications largely focused on animal systems. Our approach uses a training set comprised only of empirically validated long non-protein coding RNAs from plant, animal, and viral sources to predict and rank candidate long non-protein coding gene products for future functional validation. Individual stochastic gradient boosting and random forest classifiers trained on only empirically validated long non-protein coding RNAs were constructed. In order to use the strengths of multiple classifiers, we combined multiple models into a single stacking meta-learner. This ensemble approach benefits from the diversity of several learners to effectively identify putative plant long non-coding RNAs from transcript sequence features. When the predicted genes identified by the ensemble classifier were compared to those listed in GreeNC, an established plant long non-coding RNA database, overlap for predicted genes from Arabidopsis thaliana, Oryza sativa and Eutrema salsugineum ranged from 51 to 83% with the highest agreement in Eutrema salsugineum. Most of the highest ranking predictions from Arabidopsis thaliana were annotated as potential natural antisense genes, pseudogenes, transposable elements, or simply computationally predicted hypothetical protein. Due to the nature of this tool, the model can be updated as new long non-protein coding transcripts are identified and functionally verified. This ensemble classifier is an accurate tool that can be used to rank long non-protein coding RNA predictions for use in conjunction with gene expression studies. Selection of plant transcripts with a high potential for regulatory roles as long non-protein coding RNAs will advance research in the elucidation of long non-protein coding RNA function.
Villegas, Victoria E; Rahman, Mohammed Ferdous-Ur; Fernandez-Barrena, Maite G; Diao, Yumei; Liapi, Eleni; Sonkoly, Enikö; Ståhle, Mona; Pivarcsi, Andor; Annaratone, Laura; Sapino, Anna; Ramírez Clavijo, Sandra; Bürglin, Thomas R; Shimokawa, Takashi; Ramachandran, Saraswathi; Kapranov, Philipp; Fernandez-Zapico, Martin E; Zaphiropoulos, Peter G
2014-07-01
Non-coding RNAs are a complex class of nucleic acids, with growing evidence supporting regulatory roles in gene expression. Here we identify a non-coding RNA located head-to-head with the gene encoding the Glioma-associated oncogene 1 (GLI1), a transcriptional effector of multiple cancer-associated signaling pathways. The expression of this three-exon GLI1 antisense (GLI1AS) RNA in cancer cells was concordant with GLI1 levels. siRNAs knockdown of GLI1AS up-regulated GLI1 and increased cellular proliferation and tumor growth in a xenograft model system. Conversely, GLI1AS overexpression decreased the levels of GLI1, its target genes PTCH1 and PTCH2, and cellular proliferation. Additionally, we demonstrate that GLI1 knockdown reduced GLI1AS, while GLI1 overexpression increased GLI1AS, supporting the role of GLI1AS as a target gene of the GLI1 transcription factor. Activation of TGFβ and Hedgehog signaling, two known regulators of GLI1 expression, conferred a concordant up-regulation of GLI1 and GLI1AS in cancer cells. Finally, analysis of the mechanism underlying the interplay between GLI1 and GLI1AS indicates that the non-coding RNA elicits a local alteration of chromatin structure by increasing the silencing mark H3K27me3 and decreasing the recruitment of RNA polymerase II to this locus. Taken together, the data demonstrate the existence of a novel non-coding RNA-based negative feedback loop controlling GLI1 levels, thus expanding the repertoire of mechanisms regulating the expression of this oncogenic transcription factor. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Supersymmetric and non-supersymmetric models without catastrophic Goldstone bosons
NASA Astrophysics Data System (ADS)
Braathen, Johannes; Goodsell, Mark D.; Staub, Florian
2017-11-01
The calculation of the Higgs mass in general renormalisable field theories has been plagued by the so-called "Goldstone Boson Catastrophe," where light (would-be) Goldstone bosons give infra-red divergent loop integrals. In supersymmetric models, previous approaches included a workaround that ameliorated the problem for most, but not all, parameter space regions; while giving divergent results everywhere for non-supersymmetric models! We present an implementation of a general solution to the problem in the public code SARAH, along with new calculations of some necessary loop integrals and generic expressions. We discuss the validation of our code in the Standard Model, where we find remarkable agreement with the known results. We then show new applications in Split SUSY, the NMSSM, the Two-Higgs-Doublet Model, and the Georgi-Machacek model. In particular, we take some first steps to exploring where the habit of using tree-level mass relations in non-supersymmetric models breaks down, and show that the loop corrections usually become very large well before naive perturbativity bounds are reached.
A geo-coded inventory of anophelines in the Afrotropical Region south of the Sahara: 1898-2016.
Kyalo, David; Amratia, Punam; Mundia, Clara W; Mbogo, Charles M; Coetzee, Maureen; Snow, Robert W
2017-01-01
Background : Understanding the distribution of anopheline vectors of malaria is an important prelude to the design of national malaria control and elimination programmes. A single, geo-coded continental inventory of anophelines using all available published and unpublished data has not been undertaken since the 1960s. Methods : We have searched African, European and World Health Organization archives to identify unpublished reports on anopheline surveys in 48 sub-Saharan Africa countries. This search was supplemented by identification of reports that formed part of post-graduate theses, conference abstracts, regional insecticide resistance databases and more traditional bibliographic searches of peer-reviewed literature. Finally, a check was made against two recent repositories of dominant malaria vector species locations ( circa 2,500). Each report was used to extract information on the survey dates, village locations (geo-coded to provide a longitude and latitude), sampling methods, species identification methods and all anopheline species found present during the survey. Survey records were collapsed to a single site over time. Results : The search strategy took years and resulted in 13,331 unique, geo-coded survey locations of anopheline vector occurrence between 1898 and 2016. A total of 12,204 (92%) sites reported the presence of 10 dominant vector species/sibling species; 4,473 (37%) of these sites were sampled since 2005. 4,442 (33%) sites reported at least one of 13 possible secondary vector species; 1,107 (25%) of these sites were sampled since 2005. Distributions of dominant and secondary vectors conform to previous descriptions of the ecological ranges of these vectors. Conclusion : We have assembled the largest ever geo-coded database of anophelines in Africa, representing a legacy dataset for future updating and identification of knowledge gaps at national levels. The geo-coded database is available on Harvard Dataverse as a reference source for African national malaria control programmes planning their future control and elimination strategies.
A geo-coded inventory of anophelines in the Afrotropical Region south of the Sahara: 1898-2016
Kyalo, David; Amratia, Punam; Mundia, Clara W.; Mbogo, Charles M.; Coetzee, Maureen; Snow, Robert W.
2017-01-01
Background: Understanding the distribution of anopheline vectors of malaria is an important prelude to the design of national malaria control and elimination programmes. A single, geo-coded continental inventory of anophelines using all available published and unpublished data has not been undertaken since the 1960s. Methods: We have searched African, European and World Health Organization archives to identify unpublished reports on anopheline surveys in 48 sub-Saharan Africa countries. This search was supplemented by identification of reports that formed part of post-graduate theses, conference abstracts, regional insecticide resistance databases and more traditional bibliographic searches of peer-reviewed literature. Finally, a check was made against two recent repositories of dominant malaria vector species locations ( circa 2,500). Each report was used to extract information on the survey dates, village locations (geo-coded to provide a longitude and latitude), sampling methods, species identification methods and all anopheline species found present during the survey. Survey records were collapsed to a single site over time. Results: The search strategy took years and resulted in 13,331 unique, geo-coded survey locations of anopheline vector occurrence between 1898 and 2016. A total of 12,204 (92%) sites reported the presence of 10 dominant vector species/sibling species; 4,473 (37%) of these sites were sampled since 2005. 4,442 (33%) sites reported at least one of 13 possible secondary vector species; 1,107 (25%) of these sites were sampled since 2005. Distributions of dominant and secondary vectors conform to previous descriptions of the ecological ranges of these vectors. Conclusion: We have assembled the largest ever geo-coded database of anophelines in Africa, representing a legacy dataset for future updating and identification of knowledge gaps at national levels. The geo-coded database is available on Harvard Dataverse as a reference source for African national malaria control programmes planning their future control and elimination strategies. PMID:28884158
Medical Ultrasound Video Coding with H.265/HEVC Based on ROI Extraction
Wu, Yueying; Liu, Pengyu; Gao, Yuan; Jia, Kebin
2016-01-01
High-efficiency video compression technology is of primary importance to the storage and transmission of digital medical video in modern medical communication systems. To further improve the compression performance of medical ultrasound video, two innovative technologies based on diagnostic region-of-interest (ROI) extraction using the high efficiency video coding (H.265/HEVC) standard are presented in this paper. First, an effective ROI extraction algorithm based on image textural features is proposed to strengthen the applicability of ROI detection results in the H.265/HEVC quad-tree coding structure. Second, a hierarchical coding method based on transform coefficient adjustment and a quantization parameter (QP) selection process is designed to implement the otherness encoding for ROIs and non-ROIs. Experimental results demonstrate that the proposed optimization strategy significantly improves the coding performance by achieving a BD-BR reduction of 13.52% and a BD-PSNR gain of 1.16 dB on average compared to H.265/HEVC (HM15.0). The proposed medical video coding algorithm is expected to satisfy low bit-rate compression requirements for modern medical communication systems. PMID:27814367
Medical Ultrasound Video Coding with H.265/HEVC Based on ROI Extraction.
Wu, Yueying; Liu, Pengyu; Gao, Yuan; Jia, Kebin
2016-01-01
High-efficiency video compression technology is of primary importance to the storage and transmission of digital medical video in modern medical communication systems. To further improve the compression performance of medical ultrasound video, two innovative technologies based on diagnostic region-of-interest (ROI) extraction using the high efficiency video coding (H.265/HEVC) standard are presented in this paper. First, an effective ROI extraction algorithm based on image textural features is proposed to strengthen the applicability of ROI detection results in the H.265/HEVC quad-tree coding structure. Second, a hierarchical coding method based on transform coefficient adjustment and a quantization parameter (QP) selection process is designed to implement the otherness encoding for ROIs and non-ROIs. Experimental results demonstrate that the proposed optimization strategy significantly improves the coding performance by achieving a BD-BR reduction of 13.52% and a BD-PSNR gain of 1.16 dB on average compared to H.265/HEVC (HM15.0). The proposed medical video coding algorithm is expected to satisfy low bit-rate compression requirements for modern medical communication systems.
Zhao, Na; Xiao, Jianqiu; Zheng, Zhiyong; Fei, Guoqiang; Zhang, Feng; Jin, Lirong; Zhong, Chunjiu
2015-04-01
Our previous studies have demonstrated that ceruloplasmin (CP) dysmetabolism is correlated with Parkinson's disease (PD). However, the causes of decreased serum CP levels in PD patients remain to be clarified. This study aimed to explore the potential association between genetic variants of the CP gene and PD. Clinical features, serum CP levels, and the CP gene (both promoter and coding regions) were analyzed in 60 PD patients and 50 controls. A luciferase reporter system was used to investigate the function of promoter single-nucleotide polymorphisms (SNPs). High-density comparative genomic hybridization microarrays were also used to detect large-scale copy-number variations in CP and an additional 47 genes involved in PD and/or copper/iron metabolism. The frequencies of eight SNPs (one intronic SNP and seven promoter SNPs of the CP gene) and their haplotypes were significantly different between PD patients, especially those with lowered serum CP levels, and controls. However, the luciferase reporter system revealed no significant effect of the risk haplotype on promoter activity of the CP gene. Neither these SNPs nor their haplotypes were correlated with the Hoehn and Yahr staging of PD. The results of this study suggest that common genetic variants of CP are associated with PD and further investigation is needed to explore their functions in PD.
Shafer, Morgan W.; Unterberg, Ezekial A.; Wingen, Andreas; ...
2014-12-29
Recent observations on DIII-D have advanced the understanding of plasma response to applied resonant magnetic perturbations (RMPs) in both H-mode and L-mode plasmas. Three distinct 3D features localized in minor radius are imaged via filtered soft x-ray emission: (i) the formation of lobes extending from the unperturbed separatrix in the X-point region at the plasma boundary, (ii) helical kink-like perturbations in the steep-gradient region inside the separatrix, and (iii) amplified islands in the core of a low-rotation L-mode plasma. In this study, these measurements are used to test and to validate plasma response models, which are crucial for providing predictivemore » capability of edge-localized mode control. In particular, vacuum and two-fluid resistive magnetohydrodynamic(MHD) responses are tested in the regions of these measurements. At the plasma boundary in H-mode discharges with n = 3 RMPs applied, measurements compare well to vacuum-field calculations that predict lobe structures. Yet in the steep-gradient region, measurements agree better with calculations from the linear resistive two-fluid MHD code, M3D-C1. Relative to the vacuum fields, the resistive two-fluid MHD calculations show a reduction in the pitch-resonant components of the normal magnetic field (screening), and amplification of non-resonant components associated with ideal kink modes. However, the calculations still over-predict the amplitude of the measuredperturbation by a factor of 4. In a slowly rotating L-mode plasma with n = 1 RMPs, core islands are observed amplified from vacuum predictions. Finally, these results indicate that while the vacuum approach describes measurements in the edge region well, it is important to include effects of extended MHD in the pedestal and deeper in the plasma core.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-30
...] FDA's Public Database of Products With Orphan-Drug Designation: Replacing Non-Informative Code Names... replaced non- informative code names with descriptive identifiers on its public database of products that... on our public database with non-informative code names. After careful consideration of this matter...
Facts and updates about cardiovascular non-coding RNAs in heart failure.
Thum, Thomas
2015-09-01
About 11% of all deaths include heart failure as a contributing cause. The annual cost of heart failure amounts to US $34,000,000,000 in the United States alone. With the exception of heart transplantation, there is no curative therapy available. Only occasionally there are new areas in science that develop into completely new research fields. The topic on non-coding RNAs, including microRNAs, long non-coding RNAs, and circular RNAs, is such a field. In this short review, we will discuss the latest developments about non-coding RNAs in cardiovascular disease. MicroRNAs are short regulatory non-coding endogenous RNA species that are involved in virtually all cellular processes. Long non-coding RNAs also regulate gene and protein levels; however, by much more complicated and diverse mechanisms. In general, non-coding RNAs have been shown to be of great value as therapeutic targets in adverse cardiac remodelling and also as diagnostic and prognostic biomarkers for heart failure. In the future, non-coding RNA-based therapeutics are likely to enter the clinical reality offering a new treatment approach of heart failure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, O.; Masters, C.; Lewis, M.B.
1994-09-01
In an 8-year-old girl and her father, both of whom have severe type III OI, we have previously used RNA/RNA hybrid analysis to demonstrate a mismatch in the region of {alpha}1(I) mRNA coding for aa 558-861. We used SSCP to further localize the abnormality to a subregion coding for aa 579-679. This region was subcloned and sequenced. Each patient`s cDNA has a deletion of the sequences coding for the last residue of exon 34, and all of exons 35 and 36 (aa 604-639), followed by an insertion of 156 nt from the 3{prime}-end of intron 36. PCR amplification of leukocytemore » DNA from the patients and the clinically normal paternal grandmother yielded two fragments: a 1007 bp fragment predicted from normal genomic sequences and a 445 bp fragment. Subcloning and sequencing of the shorter genomic PCR product confirmed the presence of a 565 bp genomic deletion from the end of exon 34 to the middle of intron 36. The abnormal protein is apparently synthesized and incorporated into helix. The inserted nucleotides are in frame with the collagenous sequence and contain no stop codons. They encode a 52 aa non-collagenous region. The fibroblast procollagen of the patients has both normal and electrophoretically delayed pro{alpha}(I) bands. The electrophoretically delayed procollagen is very sensitive to pepsin or trypsin digestion, as predicted by its non-collagenous sequence, and cannot be visualized as collagen. This unique OI collagen mutation is an excellent candidate for molecular targeting to {open_quotes}turn off{close_quotes} a dominant mutant allele.« less
Maruyama, Atsushi; Mimura, Junsei; Itoh, Ken
2014-01-01
Recent studies have disclosed the function of enhancer RNAs (eRNAs), which are long non-coding RNAs transcribed from gene enhancer regions, in transcriptional regulation. However, it remains unclear whether eRNAs are involved in the regulation of human heme oxygenase-1 gene (HO-1) induction. Here, we report that multiple nuclear-enriched eRNAs are transcribed from the regions adjacent to two human HO-1 enhancers (i.e. the distal E2 and proximal E1 enhancers), and some of these eRNAs are induced by the oxidative stress-causing reagent diethyl maleate (DEM). We demonstrated that the expression of one forward direction (5′ to 3′) eRNA transcribed from the human HO-1 E2 enhancer region (named human HO-1enhancer RNA E2-3; hereafter called eRNA E2-3) was induced by DEM in an NRF2-dependent manner in HeLa cells. Conversely, knockdown of BACH1, a repressor of HO-1 transcription, further increased DEM-inducible eRNA E2-3 transcription as well as HO-1 expression. In addition, we showed that knockdown of eRNA E2-3 selectively down-regulated DEM-induced HO-1 expression. Furthermore, eRNA E2-3 knockdown attenuated DEM-induced Pol II binding to the promoter and E2 enhancer regions of HO-1 without affecting NRF2 recruitment to the E2 enhancer. These findings indicate that eRNAE2-3 is functional and is required for HO-1 induction. PMID:25404134
Control of Ebola hemorrhagic fever: vaccine development and our Ebola project in Sierra Leone.
Watanabe, Tokiko; Kawaoka, Yoshihiro
2016-01-01
Since December 2013, West Africa has experienced the worst Ebola virus outbreak in recorded history. Of the 28,639 cases reported to the World Health Organization as of March 2016, nearly half (14,124) occurred in Sierra Leone. With a case fatality rate of approximately 40%, this outbreak has claimed the lives of 11,316 individuals. No FDA-approved vaccines or drugs are available to prevent or treat Ebola virus infection. Experimental vaccines and therapies are being developed; however, their safety and efficacy are still being evaluated. Therefore, there is an urgent need to develop control measures to prevent or limit future Ebola virus outbreaks.Previously, we developed a replication-defective Ebola virus that lacks the coding region for the essential viral transcription activator VP30 (Ebola ΔVP30 virus). Here, we evaluated the vaccine efficacy of Ebola ΔVP30 virus in a non-human primate model and describe our collaborative Ebola project in Sierra Leone.
Bayesian variable selection for post-analytic interrogation of susceptibility loci.
Chen, Siying; Nunez, Sara; Reilly, Muredach P; Foulkes, Andrea S
2017-06-01
Understanding the complex interplay among protein coding genes and regulatory elements requires rigorous interrogation with analytic tools designed for discerning the relative contributions of overlapping genomic regions. To this aim, we offer a novel application of Bayesian variable selection (BVS) for classifying genomic class level associations using existing large meta-analysis summary level resources. This approach is applied using the expectation maximization variable selection (EMVS) algorithm to typed and imputed SNPs across 502 protein coding genes (PCGs) and 220 long intergenic non-coding RNAs (lncRNAs) that overlap 45 known loci for coronary artery disease (CAD) using publicly available Global Lipids Gentics Consortium (GLGC) (Teslovich et al., 2010; Willer et al., 2013) meta-analysis summary statistics for low-density lipoprotein cholesterol (LDL-C). The analysis reveals 33 PCGs and three lncRNAs across 11 loci with >50% posterior probabilities for inclusion in an additive model of association. The findings are consistent with previous reports, while providing some new insight into the architecture of LDL-cholesterol to be investigated further. As genomic taxonomies continue to evolve, additional classes such as enhancer elements and splicing regions, can easily be layered into the proposed analysis framework. Moreover, application of this approach to alternative publicly available meta-analysis resources, or more generally as a post-analytic strategy to further interrogate regions that are identified through single point analysis, is straightforward. All coding examples are implemented in R version 3.2.1 and provided as supplemental material. © 2016, The International Biometric Society.
Localization of TFIIB binding regions using serial analysis of chromatin occupancy
Yochum, Gregory S; Rajaraman, Veena; Cleland, Ryan; McWeeney, Shannon
2007-01-01
Background: RNA Polymerase II (RNAP II) is recruited to core promoters by the pre-initiation complex (PIC) of general transcription factors. Within the PIC, transcription factor for RNA polymerase IIB (TFIIB) determines the start site of transcription. TFIIB binding has not been localized, genome-wide, in metazoans. Serial analysis of chromatin occupancy (SACO) is an unbiased methodology used to empirically identify transcription factor binding regions. In this report, we use TFIIB and SACO to localize TFIIB binding regions across the rat genome. Results: A sample of the TFIIB SACO library was sequenced and 12,968 TFIIB genomic signature tags (GSTs) were assigned to the rat genome. GSTs are 20–22 base pair fragments that are derived from TFIIB bound chromatin. TFIIB localized to both non-protein coding and protein-coding loci. For 21% of the 1783 protein-coding genes in this sample of the SACO library, TFIIB binding mapped near the characterized 5' promoter that is upstream of the transcription start site (TSS). However, internal TFIIB binding positions were identified in 57% of the 1783 protein-coding genes. Internal positions are defined as those within an inclusive region greater than 2.5 kb downstream from the 5' TSS and 2.5 kb upstream from the transcription stop. We demonstrate that both TFIIB and TFIID (an additional component of PICs) bound to internal regions using chromatin immunoprecipitation (ChIP). The 5' cap of transcripts associated with internal TFIIB binding positions were identified using a cap-trapping assay. The 5' TSSs for internal transcripts were confirmed by primer extension. Additionally, an analysis of the functional annotation of mouse 3 (FANTOM3) databases indicates that internally initiated transcripts identified by TFIIB SACO in rat are conserved in mouse. Conclusion: Our findings that TFIIB binding is not restricted to the 5' upstream region indicates that the propensity for PIC to contribute to transcript diversity is far greater than previously appreciated. PMID:17997859
Polymorphism of BMP4 gene in Indian goat breeds differing in prolificacy.
Sharma, Rekha; Ahlawat, Sonika; Maitra, A; Roy, Manoranjan; Mandakmale, S; Tantia, M S
2013-12-10
Bone morphogenetic proteins (BMPs) are members of the TGF-β (transforming growth factor-beta) superfamily, of which BMP4 is the most important due to its crucial role in follicular growth and differentiation, cumulus expansion and ovulation. Reproduction is a crucial trait in goat breeding and based on the important role of BMP4 gene in reproduction it was considered as a possible candidate gene for the prolificacy of goats. The objective of the present study was to detect polymorphism in intronic, exonic and 3' un-translated regions of BMP4 gene in Indian goats. Nine different goat breeds (Barbari, Beetal, Black Bengal, Malabari, Jakhrana (Twinning>40%), Osmanabadi, Sangamneri (Twinning 20-30%), Sirohi and Ganjam (Twinning<10%)) differing in prolificacy and geographic distribution were employed for polymorphism scanning. Cattle sequence (AC_000167.1) was used to design primers for the amplification of a targeted region followed by direct DNA sequencing to identify the genetic variations. Single nucleotide polymorphisms (SNPs) were not detected in exon 3, the intronic region and the 3' flanking region. A SNP (G1534A) was identified in exon 2. It was a non-synonymous mutation resulting in an arginine to lysine change in a corresponding protein sequence. G to A transition at the 1534 locus revealed two genotypes GG and GA in the nine investigated goat breeds. The GG genotype was predominant with a genotype frequency of 0.98. The GA genotype was present in the Black Bengal as well as Jakhrana breed with a genotype frequency of 0.02. A microsatellite was identified in the 3' flanking region, only 20 nucleotides downstream from the termination site of the coding region, as a short sequence with more than nineteen continuous and repeated CA dinucleotides. Since the gene is highly evolutionarily conserved, identification of a non-synonymous SNP (G1534A) in the coding region gains further importance. To our knowledge, this is the first report of a mutation in the coding region of the caprine BMP4 gene. But whether the reproduction trait of goat is associated with the BMP4 polymorphism, needs to be further defined by association studies in more populations so as to delineate an effect on it. © 2013 Elsevier B.V. All rights reserved.
Ruiz Esparza-Garrido, Ruth; Rodríguez-Corona, Juan Manuel; López-Aguilar, Javier Enrique; Rodríguez-Florido, Marco Antonio; Velázquez-Wong, Ana Claudia; Viedma-Rodríguez, Rubí; Salamanca-Gómez, Fabio; Velázquez-Flores, Miguel Ángel
2017-10-01
Expression changes for long non-coding RNAs (lncRNAs) have been identified in adult glioblastoma multiforme (GBM) and in a mixture of adult and pediatric astrocytoma. Since adult and pediatric astrocytomas are molecularly different, the mixture of both could mask specific features in each. We determined the global expression patterns of lncRNAs and messenger RNA (mRNAs) in pediatric astrocytoma of different histological grades. Transcript expression changes were determined with an HTA 2.0 array. lncRNA interactions with microRNAs and mRNAs were predicted by using an algorithm and the LncTar tool, respectively. Interactomes were constructed with the HIPPIE database and visualized with the Cytoscape platform. The array showed expression changes in 156 and 207 lncRNAs in tumors (versus the control) and in pediatric GBM (versus low-grade astrocytoma), respectively. Predictions identified lncRNAs that have putative microRNA binding sites, which might suggest that they function as sponges in these tumors. Also, lncRNAs were shown to interact with many mRNAs, such as Pleckstrin homology-like domain, family A, member 1 (PHLDA1) and sulfatase 2 (SULF2). For example, qPCR found long intergenic non-coding RNA regulator of reprogramming (linc-RoR) expression levels upregulated in pediatric GBM when they were compared with control tissues or with low-grade tumors. Meanwhile, PHLDA1 and ELAV-like RNA binding protein 1 (ELAV1) showed expression changes in tumors relative to the control. Our data showed many lncRNAs with expression changes in pediatric astrocytoma, which might be involved in the regulation of different signaling pathways.
NPTFit: A Code Package for Non-Poissonian Template Fitting
NASA Astrophysics Data System (ADS)
Mishra-Sharma, Siddharth; Rodd, Nicholas L.; Safdi, Benjamin R.
2017-06-01
We present NPTFit, an open-source code package, written in Python and Cython, for performing non-Poissonian template fits (NPTFs). The NPTF is a recently developed statistical procedure for characterizing the contribution of unresolved point sources (PSs) to astrophysical data sets. The NPTF was first applied to Fermi gamma-ray data to provide evidence that the excess of ˜GeV gamma-rays observed in the inner regions of the Milky Way likely arises from a population of sub-threshold point sources, and the NPTF has since found additional applications studying sub-threshold extragalactic sources at high Galactic latitudes. The NPTF generalizes traditional astrophysical template fits to allow for the ability to search for populations of unresolved PSs that may follow a given spatial distribution. NPTFit builds upon the framework of the fluctuation analyses developed in X-ray astronomy, thus it likely has applications beyond those demonstrated with gamma-ray data. The NPTFit package utilizes novel computational methods to perform the NPTF efficiently. The code is available at http://github.com/bsafdi/NPTFit and up-to-date and extensive documentation may be found at http://nptfit.readthedocs.io.
Cloutier, Sara C; Wang, Siwen; Ma, Wai Kit; Al Husini, Nadra; Dhoondia, Zuzer; Ansari, Athar; Pascuzzi, Pete E; Tran, Elizabeth J
2016-02-04
Long non-coding (lnc)RNAs, once thought to merely represent noise from imprecise transcription initiation, have now emerged as major regulatory entities in all eukaryotes. In contrast to the rapidly expanding identification of individual lncRNAs, mechanistic characterization has lagged behind. Here we provide evidence that the GAL lncRNAs in the budding yeast S. cerevisiae promote transcriptional induction in trans by formation of lncRNA-DNA hybrids or R-loops. The evolutionarily conserved RNA helicase Dbp2 regulates formation of these R-loops as genomic deletion or nuclear depletion results in accumulation of these structures across the GAL cluster gene promoters and coding regions. Enhanced transcriptional induction is manifested by lncRNA-dependent displacement of the Cyc8 co-repressor and subsequent gene looping, suggesting that these lncRNAs promote induction by altering chromatin architecture. Moreover, the GAL lncRNAs confer a competitive fitness advantage to yeast cells because expression of these non-coding molecules correlates with faster adaptation in response to an environmental switch. Copyright © 2016 Elsevier Inc. All rights reserved.
Liu, Zhongliang; Hui, Yi; Shi, Lei; Chen, Zhenyu; Xu, Xiangjie; Chi, Liankai; Fan, Beibei; Fang, Yujiang; Liu, Yang; Ma, Lin; Wang, Yiran; Xiao, Lei; Zhang, Quanbin; Jin, Guohua; Liu, Ling; Zhang, Xiaoqing
2016-09-13
Loss-of-function studies in human pluripotent stem cells (hPSCs) require efficient methodologies for lesion of genes of interest. Here, we introduce a donor-free paired gRNA-guided CRISPR/Cas9 knockout strategy (paired-KO) for efficient and rapid gene ablation in hPSCs. Through paired-KO, we succeeded in targeting all genes of interest with high biallelic targeting efficiencies. More importantly, during paired-KO, the cleaved DNA was repaired mostly through direct end joining without insertions/deletions (precise ligation), and thus makes the lesion product predictable. The paired-KO remained highly efficient for one-step targeting of multiple genes and was also efficient for targeting of microRNA, while for long non-coding RNA over 8 kb, cleavage of a short fragment of the core promoter region was sufficient to eradicate downstream gene transcription. This work suggests that the paired-KO strategy is a simple and robust system for loss-of-function studies for both coding and non-coding genes in hPSCs. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Bondar, Constanza; Plaza-Izurieta, Leticia; Fernandez-Jimenez, Nora; Irastorza, Iñaki; Withoff, Sebo; Wijmenga, Cisca; Chirdo, Fernando; Bilbao, Jose Ramon
2014-01-01
Celiac disease (CD) is an immune mediated, polygenic disorder, where HLA-DQ2/DQ8 alleles contribute around 35% to genetic risk, but several other genes are also involved. Genome-wide association studies (GWASs) and the more recent immunochip genotyping projects have fine-mapped 39 regions of genetic susceptibility to the disease, most of which harbor candidate genes that could participate in this disease process. We focused our attention to the GWAS peak on chr6: 127.99–128.38 Mb, a region including two genes, thymocyte-expressed molecule involved in selection (THEMIS) and protein tyrosine phosphatase, receptor type, kappa (PTPRK), both of which have immune-related functions. The aim of this work was to evaluate the expression levels of these two genes in duodenal mucosa of active and treated CD patients and in controls, and to determine whether SNPs (rs802734, rs55743914, rs72975916, rs10484718 and rs9491896) associated with CD have any influence on gene expression. THEMIS showed higher expression in active CD compared with treated patients and controls, whereas PTPRK showed lower expression. Our study confirmed the association of this region with CD in our population, but only the genotype of rs802734 showed some influence in the expression of THEMIS. On the other hand, we found a significant positive correlation between THEMIS and PTPRK mRNA levels in CD patients but not in controls. Our results suggest a possible role for both candidate genes in CD pathogenesis and the existence of complex, regulatory relationships that reside in the vast non-coding, functional intergenic regions of the genome. Further investigation is needed to clarify the impact of the disease-associated SNPs on gene function. PMID:23820479
Quantized phase coding and connected region labeling for absolute phase retrieval.
Chen, Xiangcheng; Wang, Yuwei; Wang, Yajun; Ma, Mengchao; Zeng, Chunnian
2016-12-12
This paper proposes an absolute phase retrieval method for complex object measurement based on quantized phase-coding and connected region labeling. A specific code sequence is embedded into quantized phase of three coded fringes. Connected regions of different codes are labeled and assigned with 3-digit-codes combining the current period and its neighbors. Wrapped phase, more than 36 periods, can be restored with reference to the code sequence. Experimental results verify the capability of the proposed method to measure multiple isolated objects.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-10
... Andalusia, AL, as the Air Traffic Control Tower at South Alabama Regional Airport at Bill Benton Field has... Alabama Regional Airport at Bill Benton Field. This action also would update the geographic coordinates of... 1, Code of Federal Regulations, part 51, subject to the annual revision of FAA, Order 7400.9 and...
Jaramillo-Correa, J P; Bousquet, J; Beaulieu, J; Isabel, N; Perron, M; Bouillé, M
2003-05-01
Primers previously developed to amplify specific non-coding regions of the mitochondrial genome in Angiosperms, and new primers for additional non-coding mtDNA regions, were tested for their ability to direct DNA amplification in 12 conifer taxa and to detect sequence-tagged-site (STS) polymorphisms within and among eight species in Picea. Out of 12 primer pairs, nine were successful at amplifying mtDNA in most of the taxa surveyed. In conifers, indels and substitutions were observed for several loci, allowing them to distinguish between families, genera and, in some cases, between species within genera. In Picea, interspecific polymorphism was detected for four loci, while intraspecific variation was observed for three of the mtDNA regions studied. One of these (SSU rRNA V1 region) exhibited indel polymorphisms, and the two others ( nad1 intron b/c and nad5 intron1) revealed restriction differences after digestion with Sau3AI (PCR-RFLP). A fourth locus, the nad4L- orf25 intergenic region, showed a multibanding pattern for most of the spruce species, suggesting a possible gene duplication. Maternal inheritance, expected for mtDNA in conifers, was observed for all polymorphic markers except the intergenic region nad4L- orf25. Pooling of the variation observed with the remaining three markers resulted in two to six different mtDNA haplotypes within the different species of Picea. Evidence for intra-genomic recombination was observed in at least two taxa. Thus, these mitotypes are likely to be more informative than single-locus haplotypes. They should be particularly useful for the study of biogeography and the dynamics of hybrid zones.
Mutational Analysis of the Rhodopsin Gene in Sector Retinitis Pigmentosa.
Napier, Maria L; Durga, Dash; Wolsley, Clive J; Chamney, Sarah; Alexander, Sharon; Brennan, Rosie; Simpson, David A; Silvestri, Giuliana; Willoughby, Colin E
2015-01-01
To determine the role of rhodopsin (RHO) gene mutations in patients with sector retinitis pigmentosa (RP) from Northern Ireland. A case series of sector RP in a tertiary ocular genetics clinic. Four patients with sector RP were recruited from the Royal Victoria Hospital (Belfast, Northern Ireland) and Altnagelvin Hospital (Londonderry, Northern Ireland) following informed consent. The diagnosis of sector RP was based on clinical examination, International Society for Clinical Electrophysiology of Vision (ISCEV) standard electrophysiology, and visual field analysis. DNA was extracted from peripheral blood leucocytes and the coding regions and adjacent flanking intronic sequences of the RHO gene were polymerase chain reaction (PCR) amplified and cycle sequenced. Rhodopsin mutational status. A heterozygous missense mutation in RHO (c.173C > T) resulting in a non-conservative substitution of threonine to methionine (p. Thr58Met) was identified in one patient and was absent from 360 control individuals. This non-conservative substitution (p.Thr58Met) replaces a highly evolutionary conserved polar hydrophilic threonine residue with a non-polar hydrophobic methionine residue at position 58 near the cytoplasmic border of helix A of RHO. The study identified a RHO gene mutation (p.Thr58Met) not previously reported in RP in a patient with sector RP. These findings outline the phenotypic variability associated with RHO mutations. It has been proposed that the regional effects of RHO mutations are likely to result from interplay between mutant alleles and other genetic, epigenetic and environmental factors.
Transterm—extended search facilities and improved integration with other databases
Jacobs, Grant H.; Stockwell, Peter A.; Tate, Warren P.; Brown, Chris M.
2006-01-01
Transterm has now been publicly available for >10 years. Major changes have been made since its last description in this database issue in 2002. The current database provides data for key regions of mRNA sequences, a curated database of mRNA motifs and tools to allow users to investigate their own motifs or mRNA sequences. The key mRNA regions database is derived computationally from Genbank. It contains 3′ and 5′ flanking regions, the initiation and termination signal context and coding sequence for annotated CDS features from Genbank and RefSeq. The database is non-redundant, enabling summary files and statistics to be prepared for each species. Advances include providing extended search facilities, the database may now be searched by BLAST in addition to regular expressions (patterns) allowing users to search for motifs such as known miRNA sequences, and the inclusion of RefSeq data. The database contains >40 motifs or structural patterns important for translational control. In this release, patterns from UTRsite and Rfam are also incorporated with cross-referencing. Users may search their sequence data with Transterm or user-defined patterns. The system is accessible at . PMID:16381889
PVRL1 Variants Contribute to Non-Syndromic Cleft Lip and Palate in Multiple Populations
Avila, Joseph R.; Jezewski, Peter A.; Vieira, Alexandre R.; Orioli, Iêda M.; Castilla, Eduardo E.; Christensen, Kaare; Daack-Hirsch, Sandra; Romitti, Paul A.; Murray, Jeffrey C.
2007-01-01
Poliovirus Receptor Like-1 (PVRL1) is a member of the immunoglobulin super family that acts in the initiation and maintenance of epithelial adherens junctions and is mutated in the cleft lip and palate/ectodermal dysplasia 1 syndrome (CLPED1, OMIM #225000). In addition, a common non-sense mutation in PVRL1 was discovered more often among non-syndromic sporadic clefting cases in Northern Venezuela in a previous case-control study. The present work sought to ascertain the role of PVRL1 in the sporadic forms of orofacial clefting in multiple populations. Multiple rare and common variants from all three splice isoforms were initially ascertained by sequencing 92 Iowan and 86 Filipino cases and CEPH controls. Using a family-based analysis to examine these variants, the common glycine allele of the G361V coding variant was significantly overtransmitted among all orofacial clefting phenotypes (P = 0.005). This represented G361V genotyping from over 800 Iowan, Danish, and Filipino families. Among four rare amino acid changes found within the V1 and C1 domains, S112T and T131A were found adjacent to critical amino acid positions within the V1 variable domain, regions previously shown to mediate cell-to-cell and cell-to-virus adhesion. The T131A variant was not found in over 1,300 non-affected control samples although the alanine is found in other species. The serine of the S112T variant position is conserved across all known PVRL1 sequences. Together these data suggest that both rare and common mutations within PVRL1 make a minor contribution to disrupting the initiation and regulation of cell-to-cell adhesion and downstream morphogenesis of the embryonic face. PMID:17089422
Genetic characterisation of the recent foot-and-mouth disease virus subtype A/IRN/2005
Klein, Joern; Hussain, Manzoor; Ahmad, Munir; Normann, Preben; Afzal, Muhammad; Alexandersen, Soren
2007-01-01
Background According to the World Reference Laboratory for FMD, a new subtype of FMDV serotype A was detected in Iran in 2005. This subtype was designated A/IRN/2005, and rapidly spread throughout Iran and moved westwards into Saudi Arabia and Turkey where it was initially detected from August 2005 and subsequently caused major disease problems in the spring of 2006. The same subtype reached Jordan in 2007. As part of an ongoing project we have also detected this subtype in Pakistan with the first positive samples detected in April 2006. To characterise this subtype in detail, we have sequenced and analysed the complete coding sequence of three subtype A/IRN/2005 isolates collected in Pakistan in 2006, the complete coding sequence of one subtype A/IRN/2005 isolate collected during the first outbreak in Turkey in 2005 and, in addition, the partial 1D coding sequence derived from 4 epithelium samples and 34 swab-samples from Asian buffaloes or cattle subsequently found to be infected with the A/IRN/2005 subtype. Results The phylogenies of the genome regions encoding for the structural proteins, displayed, with the exception of 1A, distinct, serotype-specific clustering and an evolutionary relationship of the A/IRN/2005 sublineage with the A22 sublineage. Potential recombination events have been detected in parts of the genome region coding for the non-structural proteins of FMDV. In addition, amino acid substitutions have been detected in the deduced VP1 protein sequence, potentially related to clinical or subclinical outcome of FMD. Indications of differential susceptibility for developing a subclinical course of disease between Asian buffaloes and cattle have been detected. Furthermore, hitherto unknown insertions of 2 amino acids before the second start codon, as well as sublineage specific amino acids have been detected in the genome region encoding for the leader proteinase of A/IRN/2005 sublineage. Conclusion Our findings indicate that the A/IRN/2005 sublineage has undergone two different paths of evolution for the structural and non-structural genome regions. The structural genome regions have had their evolutionary starting point in the A22 sublineage. It can be assumed that, due to the quasispecies structure of FMDV populations and the error-prone replication process, advantageous mutations in a changed environment have been fixed and lead to the occurrence of the new A/IRN/2005 sublineage. Together with this mechanism, recombination within the non-structural genome regions, potentially modifying the virulence of the virus, may be involved in the success of this new sublineage. The possible origin of this recombinant virus may be a co-infection with Asia1 and a serotype A precursor of the A/IRN/2005 sublineage potentially within Asian Buffaloes, as these appears to relatively easy become infected, but usually without developing clinical disease and consequently showing not a strong acute inflammatory immune response against a second FMDV infection. PMID:18001482
del Val, Coral; Rivas, Elena; Torres-Quesada, Omar; Toro, Nicolás; Jiménez-Zurdo, José I
2007-01-01
Bacterial small non-coding RNAs (sRNAs) are being recognized as novel widespread regulators of gene expression in response to environmental signals. Here, we present the first search for sRNA-encoding genes in the nitrogen-fixing endosymbiont Sinorhizobium meliloti, performed by a genome-wide computational analysis of its intergenic regions. Comparative sequence data from eight related α-proteobacteria were obtained, and the interspecies pairwise alignments were scored with the programs eQRNA and RNAz as complementary predictive tools to identify conserved and stable secondary structures corresponding to putative non-coding RNAs. Northern experiments confirmed that eight of the predicted loci, selected among the original 32 candidates as most probable sRNA genes, expressed small transcripts. This result supports the combined use of eQRNA and RNAz as a robust strategy to identify novel sRNAs in bacteria. Furthermore, seven of the transcripts accumulated differentially in free-living and symbiotic conditions. Experimental mapping of the 5′-ends of the detected transcripts revealed that their encoding genes are organized in autonomous transcription units with recognizable promoter and, in most cases, termination signatures. These findings suggest novel regulatory functions for sRNAs related to the interactions of α-proteobacteria with their eukaryotic hosts. PMID:17971083
Basu, Swaraj; Larsson, Erik
2018-05-31
Antisense transcripts and other long non-coding RNAs are pervasive in mammalian cells, and some of these molecules have been proposed to regulate proximal protein-coding genes in cis For example, non-coding transcription can contribute to inactivation of tumor suppressor genes in cancer, and antisense transcripts have been implicated in the epigenetic inactivation of imprinted genes. However, our knowledge is still limited and more such regulatory interactions likely await discovery. Here, we make use of available gene expression data from a large compendium of human tumors to generate hypotheses regarding non-coding-to-coding cis -regulatory relationships with emphasis on negative associations, as these are less likely to arise for reasons other than cis -regulation. We document a large number of possible regulatory interactions, including 193 coding/non-coding pairs that show expression patterns compatible with negative cis -regulation. Importantly, by this approach we capture several known cases, and many of the involved coding genes have known roles in cancer. Our study provides a large catalog of putative non-coding/coding cis -regulatory pairs that may serve as a basis for further experimental validation and characterization. Copyright © 2018 Basu and Larsson.
CHEK2 contribution to hereditary breast cancer in non-BRCA families
2011-01-01
Background Mutations in the BRCA1 and BRCA2 genes are responsible for only a part of hereditary breast cancer (HBC). The origins of "non-BRCA" HBC in families may be attributed in part to rare mutations in genes conferring moderate risk, such as CHEK2, which encodes for an upstream regulator of BRCA1. Previous studies have demonstrated an association between CHEK2 founder mutations and non-BRCA HBC. However, very few data on the entire coding sequence of this gene are available. Methods We investigated the contribution of CHEK2 mutations to non-BRCA HBC by direct sequencing of its whole coding sequence in 507 non-BRCA HBC cases and 513 controls. Results We observed 16 mutations in cases and 4 in controls, including 9 missense variants of uncertain consequence. Using both in silico tools and an in vitro kinase activity test, the majority of the variants were found likely to be deleterious for protein function. One variant present in both cases and controls was proposed to be neutral. Removing this variant from the pool of potentially deleterious variants gave a mutation frequency of 1.48% for cases and 0.29% for controls (P = 0.0040). The odds ratio of breast cancer in the presence of a deleterious CHEK2 mutation was 5.18. Conclusions Our work indicates that a variety of deleterious CHEK2 alleles make an appreciable contribution to breast cancer susceptibility, and their identification could help in the clinical management of patients carrying a CHEK2 mutation. PMID:22114986
González, Rodrigo M; Ricardi, Martiniano M; Iusem, Norberto D
2011-05-20
Eukaryotic DNA methylation is one of the most studied epigenetic processes, as it results in a direct and heritable covalent modification triggered by external stimuli. In contrast to mammals, plant DNA methylation, which is stimulated by external cues exemplified by various abiotic types of stress, is often found not only at CG sites but also at CNG (N denoting A, C or T) and CNN (asymmetric) sites. A genome-wide analysis of DNA methylation in Arabidopsis has shown that CNN methylation is preferentially concentrated in transposon genes and non-coding repetitive elements. We are particularly interested in investigating the epigenetics of plant species with larger and more complex genomes than Arabidopsis, particularly with regards to the associated alterations elicited by abiotic stress. We describe the existence of CNN-methylated epialleles that span Asr1, a non-transposon, protein-coding gene from tomato plants that lacks an orthologous counterpart in Arabidopsis. In addition, to test the hypothesis of a link between epigenetics modifications and the adaptation of crop plants to abiotic stress, we exhaustively explored the cytosine methylation status in leaf Asr1 DNA, a model gene in our system, resulting from water-deficit stress conditions imposed on tomato plants. We found that drought conditions brought about removal of methyl marks at approximately 75 of the 110 asymmetric (CNN) sites analysed, concomitantly with a decrease of the repressive H3K27me3 epigenetic mark and a large induction of expression at the RNA level. When pinpointing those sites, we observed that demethylation occurred mostly in the intronic region. These results demonstrate a novel genomic distribution of CNN methylation, namely in the transcribed region of a protein-coding, non-repetitive gene, and the changes in those epigenetic marks that are caused by water stress. These findings may represent a general mechanism for the acquisition of new epialleles in somatic cells, which are pivotal for regulating gene expression in plants.
Bain, Peter A; Papanicolaou, Alexie; Kumar, Anupama
2015-01-01
Murray-Darling rainbowfish (Melanotaenia fluviatilis [Castelnau, 1878]; Atheriniformes: Melanotaeniidae) is a small-bodied teleost currently under development in Australasia as a test species for aquatic toxicological studies. To date, efforts towards the development of molecular biomarkers of contaminant exposure have been hindered by the lack of available sequence data. To address this, we sequenced messenger RNA from brain, liver and gonads of mature male and female fish and generated a high-quality draft transcriptome using a de novo assembly approach. 149,742 clusters of putative transcripts were obtained, encompassing 43,841 non-redundant protein-coding regions. Deduced amino acid sequences were annotated by functional inference based on similarity with sequences from manually curated protein sequence databases. The draft assembly contained protein-coding regions homologous to 95.7% of the complete cohort of predicted proteins from the taxonomically related species, Oryzias latipes (Japanese medaka). The mean length of rainbowfish protein-coding sequences relative to their medaka homologues was 92.1%, indicating that despite the limited number of tissues sampled a large proportion of the total expected number of protein-coding genes was captured in the study. Because of our interest in the effects of environmental contaminants on endocrine pathways, we manually curated subsets of coding regions for putative nuclear receptors and steroidogenic enzymes in the rainbowfish transcriptome, revealing 61 candidate nuclear receptors encompassing all known subfamilies, and 41 putative steroidogenic enzymes representing all major steroidogenic enzymes occurring in teleosts. The transcriptome presented here will be a valuable resource for researchers interested in biomarker development, protein structure and function, and contaminant-response genomics in Murray-Darling rainbowfish.
Lim, Chun Shen; Brown, Chris M
2017-01-01
Structured RNA elements may control virus replication, transcription and translation, and their distinct features are being exploited by novel antiviral strategies. Viral RNA elements continue to be discovered using combinations of experimental and computational analyses. However, the wealth of sequence data, notably from deep viral RNA sequencing, viromes, and metagenomes, necessitates computational approaches being used as an essential discovery tool. In this review, we describe practical approaches being used to discover functional RNA elements in viral genomes. In addition to success stories in new and emerging viruses, these approaches have revealed some surprising new features of well-studied viruses e.g., human immunodeficiency virus, hepatitis C virus, influenza, and dengue viruses. Some notable discoveries were facilitated by new comparative analyses of diverse viral genome alignments. Importantly, comparative approaches for finding RNA elements embedded in coding and non-coding regions differ. With the exponential growth of computer power we have progressed from stem-loop prediction on single sequences to cutting edge 3D prediction, and from command line to user friendly web interfaces. Despite these advances, many powerful, user friendly prediction tools and resources are underutilized by the virology community.
Lim, Chun Shen; Brown, Chris M.
2018-01-01
Structured RNA elements may control virus replication, transcription and translation, and their distinct features are being exploited by novel antiviral strategies. Viral RNA elements continue to be discovered using combinations of experimental and computational analyses. However, the wealth of sequence data, notably from deep viral RNA sequencing, viromes, and metagenomes, necessitates computational approaches being used as an essential discovery tool. In this review, we describe practical approaches being used to discover functional RNA elements in viral genomes. In addition to success stories in new and emerging viruses, these approaches have revealed some surprising new features of well-studied viruses e.g., human immunodeficiency virus, hepatitis C virus, influenza, and dengue viruses. Some notable discoveries were facilitated by new comparative analyses of diverse viral genome alignments. Importantly, comparative approaches for finding RNA elements embedded in coding and non-coding regions differ. With the exponential growth of computer power we have progressed from stem-loop prediction on single sequences to cutting edge 3D prediction, and from command line to user friendly web interfaces. Despite these advances, many powerful, user friendly prediction tools and resources are underutilized by the virology community. PMID:29354101
Georgitsi, M; Karhu, A; Winqvist, R; Visakorpi, T; Waltering, K; Vahteristo, P; Launonen, V; Aaltonen, L A
2007-01-01
Germline mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene were recently identified in individuals with pituitary adenoma predisposition (PAP). These patients have prolactin (PRL) or growth hormone (GH) oversecreting pituitary adenomas, the latter exhibiting acromegaly or gigantism. Loss-of-heterozygosity (LOH) analysis revealed that AIP is lost in PAP tumours, suggesting that it acts as a tumour-suppressor gene. Aryl hydrocarbon receptor interacting protein is involved in several pathways, but it is best characterised as a cytoplasmic partner of the aryl hydrocarbon receptor (AHR). To examine the possible role of AIP in the genesis of common cancers, we performed somatic mutation screening in a series of 373 colorectal cancers (CRCs), 82 breast cancers, and 44 prostate tumour samples. A missense R16H (47G>A) change was identified in two CRC samples, as well as in the respective normal tissues, but was absent in 209 healthy controls. The remaining findings were silent, previously unreported, changes of the coding, non-coding, or untranslated regions of AIP. These results suggest that somatic AIP mutations are not common in CRC, breast, and prostate cancers. PMID:17242703
Li, Juan; Chen, Fen; Sugiyama, Hiromu; Blair, David; Lin, Rui-Qing; Zhu, Xing-Quan
2015-07-01
In the present study, near-complete mitochondrial (mt) genome sequences for Schistosoma japonicum from different regions in the Philippines and Japan were amplified and sequenced. Comparisons among S. japonicum from the Philippines, Japan, and China revealed a geographically based length difference in mt genomes, but the mt genomic organization and gene arrangement were the same. Sequence differences among samples from the Philippines and all samples from the three endemic areas were 0.57-2.12 and 0.76-3.85 %, respectively. The most variable part of the mt genome was the non-coding region. In the coding portion of the genome, protein-coding genes varied more than rRNA genes and tRNAs. The near-complete mt genome sequences for Philippine specimens were identical in length (14,091 bp) which was 4 bp longer than those of S. japonicum samples from Japan and China. This indel provides a unique genetic marker for S. japonicum samples from the Philippines. Phylogenetic analyses based on the concatenated amino acids of 12 protein-coding genes showed that samples of S. japonicum clustered according to their geographical origins. The identified mitochondrial indel marker will be useful for tracing the source of S. japonicum infection in humans and animals in Southeast Asia.
Survival in commercially insured multiple sclerosis patients and comparator subjects in the U.S.
Kaufman, D W; Reshef, S; Golub, H L; Peucker, M; Corwin, M J; Goodin, D S; Knappertz, V; Pleimes, D; Cutter, G
2014-05-01
Compare survival in patients with multiple sclerosis (MS) from a U.S. commercial health insurance database with a matched cohort of non-MS subjects. 30,402 MS patients and 89,818 non-MS subjects (comparators) in the OptumInsight Research (OIR) database from 1996 to 2009 were included. An MS diagnosis required at least 3 consecutive months of database reporting, with two or more ICD-9 codes of 340 at least 30 days apart, or the combination of 1 ICD-9-340 code and at least 1 MS disease-modifying treatment (DMT) code. Comparators required the absence of ICD-9-340 and DMT codes throughout database reporting. Up to three comparators were matched to each patient for: age in the year of the first relevant code (index year - at least 3 months of reporting in that year were required); sex; region of residence in the index year. Deaths were ascertained from the National Death Index and the Social Security Administration Death Master File. Subjects not identified as deceased were assumed to be alive through the end of 2009. Annual mortality rates were 899/100,000 among MS patients and 446/100,000 among comparators. Standardized mortality ratios compared to the U.S. population were 1.70 and 0.80, respectively. Kaplan-Meier analysis yielded a median survival from birth that was 6 years lower among MS patients than among comparators. The results show, for the first time in a U.S. population, a survival disadvantage for contemporary MS patients compared to non-MS subjects from the same healthcare system. The 6-year decrement in lifespan parallels a recent report from British Columbia. Copyright © 2013 Elsevier B.V. All rights reserved.
cncRNAs: Bi-functional RNAs with protein coding and non-coding functions
Kumari, Pooja; Sampath, Karuna
2015-01-01
For many decades, the major function of mRNA was thought to be to provide protein-coding information embedded in the genome. The advent of high-throughput sequencing has led to the discovery of pervasive transcription of eukaryotic genomes and opened the world of RNA-mediated gene regulation. Many regulatory RNAs have been found to be incapable of protein coding and are hence termed as non-coding RNAs (ncRNAs). However, studies in recent years have shown that several previously annotated non-coding RNAs have the potential to encode proteins, and conversely, some coding RNAs have regulatory functions independent of the protein they encode. Such bi-functional RNAs, with both protein coding and non-coding functions, which we term as ‘cncRNAs’, have emerged as new players in cellular systems. Here, we describe the functions of some cncRNAs identified from bacteria to humans. Because the functions of many RNAs across genomes remains unclear, we propose that RNAs be classified as coding, non-coding or both only after careful analysis of their functions. PMID:26498036
Yong, Hoi-Sen; Lim, Phaik-Eem; Eamsobhana, Praphathip
2017-01-01
The tephritid fruit fly Zeugodacus tau (Walker) is a polyphagous fruit pest of economic importance in Asia. Studies based on genetic markers indicate that it forms a species complex. We report here (1) the complete mitogenome of Z. tau from Malaysia and comparison with that of China as well as the mitogenome of other congeners, and (2) the relationship of Z. tau taxa from different geographical regions based on sequences of cytochrome c oxidase subunit I gene. The complete mitogenome of Z. tau had a total length of 15631 bp for the Malaysian specimen (ZT3) and 15835 bp for the China specimen (ZT1), with similar gene order comprising 37 genes (13 protein-coding genes—PCGs, 2 rRNA genes, and 22 tRNA genes) and a non-coding A + T-rich control region (D-loop). Based on 13 PCGs and 15 mt-genes, Z. tau NC_027290 (China) and Z. tau ZT1 (China) formed a sister group in the lineage containing also Z. tau ZT3 (Malaysia). Phylogenetic analysis based on partial sequences of cox1 gene indicates that the taxa from China, Japan, Laos, Malaysia, Bangladesh, India, Sri Lanka, and Z. tau sp. A from Thailand belong to Z. tau sensu stricto. A complete cox1 gene (or 13 PCGs or 15 mt-genes) instead of partial sequence is more appropriate for determining phylogenetic relationship. PMID:29216281
Wang, Ying; Cao, Jinjun; Li, Weihai
2017-03-13
We present the complete mitochondrial (mt) genome sequence of the stonefly, Styloperla spinicercia Wu, 1935 (Plecoptera: Styloperlidae), the type species of the genus Styloperla and the first complete mt genome for the family Styloperlidae. The genome is circular, 16,129 base pairs long, has an A+T content of 70.7%, and contains 37 genes including the large and small ribosomal RNA (rRNA) subunits, 13 protein coding genes (PCGs), 22 tRNA genes and a large non-coding region (CR). All of the PCGs use the standard initiation codon ATN except ND1 and ND5, which start with TTG and GTG. Twelve of the PCGs stop with conventional terminal codons TAA and TAG, except ND5 which shows an incomplete terminator signal T. All tRNAs have the classic clover-leaf structures with the dihydrouridine (DHU) arm of tRNASer(AGN) forming a simple loop. Secondary structures of the two ribosomal RNAs are presented with reference to previous models. The structural elements and the variable numbers of tandem repeats are described within the control region. Phylogenetic analyses using both Bayesian (BI) and Maximum Likelihood (ML) methods support the previous hypotheses regarding family level relationships within the Pteronarcyoidea. The genetic distance calculated based on 13 PCGs and two rRNAs between Styloperla sp. and S. spinicercia is provided and interspecific divergence is discussed.
Nantón, Ana; Ruiz-Ruano, Francisco J.; Camacho, Juan Pedro M.; Méndez, Josefina
2017-01-01
Background Four species of the genus Donax (D. semistriatus, D. trunculus, D. variegatus and D. vittatus) are common on Iberian Peninsula coasts. Nevertheless, despite their economic importance and overexploitation, scarce genetic resources are available. In this work, we newly determined the complete mitochondrial genomes of these four representatives of the family Donacidae, with the aim of contributing to unveil phylogenetic relationships within the Veneroida order, and of developing genetic markers being useful in wedge clam identification and authentication, and aquaculture stock management. Principal findings The complete female mitochondrial genomes of the four species vary in size from 17,044 to 17,365 bp, and encode 13 protein-coding genes (including the atp8 gene), 2 rRNAs and 22 tRNAs, all located on the same strand. A long non-coding region was identified in each of the four Donax species between cob and cox2 genes, presumably corresponding to the Control Region. The Bayesian and Maximum Likelihood phylogenetic analysis of the Veneroida order indicate that all four species of Donax form a single clade as a sister group of other bivalves within the Tellinoidea superfamily. However, although Tellinoidea is actually monophyletic, none of its families are monophyletic. Conclusions Sequencing of complete mitochondrial genomes provides highly valuable information to establish the phylogenetic relationships within the Veneroida order. Furthermore, we provide here significant genetic resources for further research and conservation of this commercially important fishing resource. PMID:28886105
Development of a Grid-Based Gyro-Kinetic Simulation Code
NASA Astrophysics Data System (ADS)
Lapillonne, Xavier; Brunetti, Maura; Tran, Trach-Minh; Brunner, Stephan
2006-10-01
A grid-based semi-Lagrangian code using cubic spline interpolation is being developed at CRPP, for solving the electrostatic drift-kinetic equations [M. Brunetti et. al, Comp. Phys. Comm. 163, 1 (2004)] in a cylindrical system. This 4-dim code, CYGNE, is part of a project with long term aim of studying microturbulence in toroidal fusion devices, in the more general frame of gyro-kinetic equations. Towards their non-linear phase, the simulations from this code are subject to significant overshoot problems, reflected by the development of negative value regions of the distribution function, which leads to bad energy conservation. This has motivated the study of alternative schemes. On the one hand, new time integration algorithms are considered in the semi-Lagrangian frame. On the other hand, fully Eulerian schemes, which separate time and space discretisation (method of lines), are investigated. In particular, the Essentially Non Oscillatory (ENO) approach, constructed so as to minimize the overshoot problem, has been considered. All these methods have first been tested in the simpler case of the 2-dim guiding-center model for the Kelvin-Helmholtz instability, which enables to address the specific issue of the E xB drift also met in the more complex gyrokinetic-type equations. Based on these preliminary studies, the most promising methods are being implemented and tested in CYGNE.
Beermann, Julia; Kirste, Dominique; Iwanov, Katharina; Lu, Dongchao; Kleemiß, Felix; Kumarswamy, Regalla; Schimmel, Katharina; Bär, Christian; Thum, Thomas
2018-01-01
The mammalian cell cycle is a complex and tightly controlled event. Myriads of different control mechanisms are involved in its regulation. Long non-coding RNAs (lncRNA) have emerged as important regulators of many cellular processes including cellular proliferation. However, a more global and unbiased approach to identify lncRNAs with importance for cell proliferation is missing. Here, we present a lentiviral shRNA library-based approach for functional lncRNA profiling. We validated our library approach in NIH3T3 (3T3) fibroblasts by identifying lncRNAs critically involved in cell proliferation. Using stringent selection criteria we identified lncRNA NR_015491.1 out of 3842 different RNA targets represented in our library. We termed this transcript Ntep (non-coding transcript essential for proliferation), as a bona fide lncRNA essential for cell cycle progression. Inhibition of Ntep in 3T3 and primary fibroblasts prevented normal cell growth and expression of key fibroblast markers. Mechanistically, we discovered that Ntep is important to activate P53 concomitant with increased apoptosis and cell cycle blockade in late G2/M. Our findings suggest Ntep to serve as an important regulator of fibroblast proliferation and function. In summary, our study demonstrates the applicability of an innovative shRNA library approach to identify long non-coding RNA functions in a massive parallel approach. PMID:29099486
The Single-Nucleotide Resolution Transcriptome of Pseudomonas aeruginosa Grown in Body Temperature
Dandekar, Ajai A.; Edelheit, Sarit; Greenberg, E. Peter; Sorek, Rotem; Lory, Stephen
2012-01-01
One of the hallmarks of opportunistic pathogens is their ability to adjust and respond to a wide range of environmental and host-associated conditions. The human pathogen Pseudomonas aeruginosa has an ability to thrive in a variety of hosts and cause a range of acute and chronic infections in individuals with impaired host defenses or cystic fibrosis. Here we report an in-depth transcriptional profiling of this organism when grown at host-related temperatures. Using RNA-seq of samples from P. aeruginosa grown at 28°C and 37°C we detected genes preferentially expressed at the body temperature of mammalian hosts, suggesting that they play a role during infection. These temperature-induced genes included the type III secretion system (T3SS) genes and effectors, as well as the genes responsible for phenazines biosynthesis. Using genome-wide transcription start site (TSS) mapping by RNA-seq we were able to accurately define the promoters and cis-acting RNA elements of many genes, and uncovered new genes and previously unrecognized non-coding RNAs directly controlled by the LasR quorum sensing regulator. Overall we identified 165 small RNAs and over 380 cis-antisense RNAs, some of which predicted to perform regulatory functions, and found that non-coding RNAs are preferentially localized in pathogenicity islands and horizontally transferred regions. Our work identifies regulatory features of P. aeruginosa genes whose products play a role in environmental adaption during infection and provides a reference transcriptional landscape for this pathogen. PMID:23028334
AP1 Keeps Chromatin Poised for Action | Center for Cancer Research
The human genome harbors gene-encoding DNA, the blueprint for building proteins that regulate cellular function. Embedded across the genome, in non-coding regions, are DNA elements to which regulatory factors bind. The interaction of regulatory factors with DNA at these sites modifies gene expression to modulate cell activity. In cells, DNA exists in a complex with proteins
A-to-I RNA Editing: An Overlooked Source of Cancer Mutations.
Ben-Aroya, Shay; Levanon, Erez Y
2018-05-14
RNA editing is a source of transcriptomic diversity, mainly in non-coding regions, and is found to be altered in cancer. In this issue of Cancer Cell, Peng et al. show that RNA editing events are manifested at the proteomic levels and are a source of cancer protein heterogeneity. Copyright © 2018. Published by Elsevier Inc.
USDA-ARS?s Scientific Manuscript database
Newcastle disease virus (NDV), avian paramyxovirus type 1, has been developed as a vector to express foreign genes for vaccine and gene therapy purposes. The foreign genes are usually inserted into a non-coding region of the NDV genome as an independent transcription unit (ITU), which potentially a...
USDA-ARS?s Scientific Manuscript database
The Persian walnut (Juglans regia L.), a diploid species native to the mountainous regions of Central Asia, is the major walnut species cultivated for nut production and is one of the most widespread tree nut species in the world. The high nutritional value of J. regia nuts is associated with a rich...
RNA editing site recognition in heterologous plant mitochondria.
Choury, David; Araya, Alejandro
2006-12-01
RNA editing is a process that modifies the information content of mitochondrial messenger RNAs in flowering plants changing specific cytosine residues into uridine. To gain insight into editing site recognition, we used electroporation to introduce engineered wheat (Triticum aestivum) or potato (Solanum tuberosum) mitochondrial cox2 genes, and an atp9-containing chimeric gene, into non-cognate mitochondria, and observed the efficiency of editing in these contexts. Both wheat and potato mitochondria were able to express "foreign" constructs, and their products were properly spliced. Seventeen and twelve editing sites are present in the coding regions of wheat and potato cox2 transcripts, respectively. Eight are common to both plants, whereas nine are specific to wheat, and four to potato. An analogous situation is found for the atp9 mRNA coding regions from these species. We found that both mitochondria were able to recognize sites that are already present as T at the genomic level, making RNA editing unnecessary for that specific residue in the cognate organelle. Our results demonstrate that non-cognate mitochondria are able to edit residues that are not edited in their own transcripts, and support the hypothesis that the same trans-acting factor may recognize several editing sites.
Raghavan, Sathees C.; Hsieh, Chih-Lin; Lieber, Michael R.
2005-01-01
The t(14;18) chromosomal translocation is the most common translocation in human cancer, and it occurs in all follicular lymphomas. The 150-bp bcl-2 major breakpoint region (Mbr) on chromosome 18 is a fragile site, because it adopts a non-B DNA conformation that can be cleaved by the RAG complex. The non-B DNA structure and the chromosomal translocation can be recapitulated on intracellular human minichromosomes where immunoglobulin 12- and 23-signals are positioned downstream of the bcl-2 Mbr. Here we show that either of the two coding ends in these V(D)J recombination reactions can recombine with either of the two broken ends of the bcl-2 Mbr but that neither signal end can recombine with the Mbr. Moreover, we show that the rejoining is fully dependent on DNA ligase IV, indicating that the rejoining phase relies on the nonhomologous DNA end-joining pathway. These results permit us to formulate a complete model for the order and types of cleavage and rejoining events in the t(14;18) translocation. PMID:16024785
Mutations in PIGY: expanding the phenotype of inherited glycosylphosphatidylinositol deficiencies
Ilkovski, Biljana; Pagnamenta, Alistair T.; O'Grady, Gina L.; Kinoshita, Taroh; Howard, Malcolm F.; Lek, Monkol; Thomas, Brett; Turner, Anne; Christodoulou, John; Sillence, David; Knight, Samantha J.L.; Popitsch, Niko; Keays, David A.; Anzilotti, Consuelo; Goriely, Anne; Waddell, Leigh B.; Brilot, Fabienne; North, Kathryn N.; Kanzawa, Noriyuki; Macarthur, Daniel G.; Taylor, Jenny C.; Kini, Usha; Murakami, Yoshiko; Clarke, Nigel F.
2015-01-01
Glycosylphosphatidylinositol (GPI)-anchored proteins are ubiquitously expressed in the human body and are important for various functions at the cell surface. Mutations in many GPI biosynthesis genes have been described to date in patients with multi-system disease and together these constitute a subtype of congenital disorders of glycosylation. We used whole exome sequencing in two families to investigate the genetic basis of disease and used RNA and cellular studies to investigate the functional consequences of sequence variants in the PIGY gene. Two families with different phenotypes had homozygous recessive sequence variants in the GPI biosynthesis gene PIGY. Two sisters with c.137T>C (p.Leu46Pro) PIGY variants had multi-system disease including dysmorphism, seizures, severe developmental delay, cataracts and early death. There were significantly reduced levels of GPI-anchored proteins (CD55 and CD59) on the surface of patient-derived skin fibroblasts (∼20–50% compared with controls). In a second, consanguineous family, two siblings had moderate development delay and microcephaly. A homozygous PIGY promoter variant (c.-540G>A) was detected within a 7.7 Mb region of autozygosity. This variant was predicted to disrupt a SP1 consensus binding site and was shown to be associated with reduced gene expression. Mutations in PIGY can occur in coding and non-coding regions of the gene and cause variable phenotypes. This article contributes to understanding of the range of disease phenotypes and disease genes associated with deficiencies of the GPI-anchor biosynthesis pathway and also serves to highlight the potential importance of analysing variants detected in 5′-UTR regions despite their typically low coverage in exome data. PMID:26293662
Dickinson, Joanne L; Sale, Michèle M; Passmore, Abraham; FitzGerald, Liesel M; Wheatley, Catherine M; Burdon, Kathryn P; Craig, Jamie E; Tengtrisorn, Supaporn; Carden, Susan M; Maclean, Hector; Mackey, David A
2006-01-01
To examine the contribution of mutations within the Norrie disease (NDP) gene to the clinically similar retinal diseases Norrie disease, X-linked familial exudative vitreoretinopathy (FEVR), Coat's disease and retinopathy of prematurity (ROP). A dataset comprising 13 Norrie-FEVR, one Coat's disease, 31 ROP patients and 90 ex-premature babies of <32 weeks' gestation underwent an ophthalmologic examination and were screened for mutations within the NDP gene by direct DNA sequencing, denaturing high-performance liquid chromatography or gel electrophoresis. Controls were only screened using denaturing high-performance liquid chromatography and gel electrophoresis. Confirmation of mutations identified was obtained by DNA sequencing. Evidence for two novel mutations in the NDP gene was presented: Leu103Val in one FEVR patient and His43Arg in monozygotic twin Norrie disease patients. Furthermore, a previously described 14-bp deletion located in the 5' unstranslated region of the NDP gene was detected in three cases of regressed ROP. A second heterozygotic 14-bp deletion was detected in an unaffected ex-premature girl. Only two of the 13 Norrie-FEVR index cases had the full features of Norrie disease with deafness and mental retardation. Two novel mutations within the coding region of the NDP gene were found, one associated with a severe disease phenotypes of Norrie disease and the other with FEVR. A deletion within the non-coding region was associated with only mild-regressed ROP, despite the presence of low birthweight, prematurity and exposure to oxygen. In full-term children with retinal detachment only 15% appear to have the full features of Norrie disease and this is important for counselling parents on the possible long-term outcome.
Mutations in PIGY: expanding the phenotype of inherited glycosylphosphatidylinositol deficiencies.
Ilkovski, Biljana; Pagnamenta, Alistair T; O'Grady, Gina L; Kinoshita, Taroh; Howard, Malcolm F; Lek, Monkol; Thomas, Brett; Turner, Anne; Christodoulou, John; Sillence, David; Knight, Samantha J L; Popitsch, Niko; Keays, David A; Anzilotti, Consuelo; Goriely, Anne; Waddell, Leigh B; Brilot, Fabienne; North, Kathryn N; Kanzawa, Noriyuki; Macarthur, Daniel G; Taylor, Jenny C; Kini, Usha; Murakami, Yoshiko; Clarke, Nigel F
2015-11-01
Glycosylphosphatidylinositol (GPI)-anchored proteins are ubiquitously expressed in the human body and are important for various functions at the cell surface. Mutations in many GPI biosynthesis genes have been described to date in patients with multi-system disease and together these constitute a subtype of congenital disorders of glycosylation. We used whole exome sequencing in two families to investigate the genetic basis of disease and used RNA and cellular studies to investigate the functional consequences of sequence variants in the PIGY gene. Two families with different phenotypes had homozygous recessive sequence variants in the GPI biosynthesis gene PIGY. Two sisters with c.137T>C (p.Leu46Pro) PIGY variants had multi-system disease including dysmorphism, seizures, severe developmental delay, cataracts and early death. There were significantly reduced levels of GPI-anchored proteins (CD55 and CD59) on the surface of patient-derived skin fibroblasts (∼20-50% compared with controls). In a second, consanguineous family, two siblings had moderate development delay and microcephaly. A homozygous PIGY promoter variant (c.-540G>A) was detected within a 7.7 Mb region of autozygosity. This variant was predicted to disrupt a SP1 consensus binding site and was shown to be associated with reduced gene expression. Mutations in PIGY can occur in coding and non-coding regions of the gene and cause variable phenotypes. This article contributes to understanding of the range of disease phenotypes and disease genes associated with deficiencies of the GPI-anchor biosynthesis pathway and also serves to highlight the potential importance of analysing variants detected in 5'-UTR regions despite their typically low coverage in exome data. © The Author 2015. Published by Oxford University Press.
Free-Form Region Description with Second-Order Pooling.
Carreira, João; Caseiro, Rui; Batista, Jorge; Sminchisescu, Cristian
2015-06-01
Semantic segmentation and object detection are nowadays dominated by methods operating on regions obtained as a result of a bottom-up grouping process (segmentation) but use feature extractors developed for recognition on fixed-form (e.g. rectangular) patches, with full images as a special case. This is most likely suboptimal. In this paper we focus on feature extraction and description over free-form regions and study the relationship with their fixed-form counterparts. Our main contributions are novel pooling techniques that capture the second-order statistics of local descriptors inside such free-form regions. We introduce second-order generalizations of average and max-pooling that together with appropriate non-linearities, derived from the mathematical structure of their embedding space, lead to state-of-the-art recognition performance in semantic segmentation experiments without any type of local feature coding. In contrast, we show that codebook-based local feature coding is more important when feature extraction is constrained to operate over regions that include both foreground and large portions of the background, as typical in image classification settings, whereas for high-accuracy localization setups, second-order pooling over free-form regions produces results superior to those of the winning systems in the contemporary semantic segmentation challenges, with models that are much faster in both training and testing.
Chureau, Corinne; Chantalat, Sophie; Romito, Antonio; Galvani, Angélique; Duret, Laurent; Avner, Philip; Rougeulle, Claire
2011-02-15
X chromosome inactivation (XCI) is an essential epigenetic process which involves several non-coding RNAs (ncRNAs), including Xist, the master regulator of X-inactivation initiation. Xist is flanked in its 5' region by a large heterochromatic hotspot, which contains several transcription units including a gene of unknown function, Ftx (five prime to Xist). In this article, we describe the characterization and functional analysis of murine Ftx. We present evidence that Ftx produces a conserved functional long ncRNA, and additionally hosts microRNAs (miR) in its introns. Strikingly, Ftx partially escapes X-inactivation and is upregulated specifically in female ES cells at the onset of X-inactivation, an expression profile which closely follows that of Xist. We generated Ftx null ES cells to address the function of this gene. In these cells, only local changes in chromatin marks are detected within the hotspot, indicating that Ftx is not involved in the global maintenance of the heterochromatic structure of this region. The Ftx mutation, however, results in widespread alteration of transcript levels within the X-inactivation center (Xic) and particularly important decreases in Xist RNA levels, which were correlated with increased DNA methylation at the Xist CpG island. Altogether our results indicate that Ftx is a positive regulator of Xist and lead us to propose that Ftx is a novel ncRNA involved in XCI.
Song, Chao; Hu, Gengdong; Qiu, Liping; Fan, Limin; Meng, Shunlong; Chen, Jiazhang
2016-11-01
The complete mitochondrial genome of Hyporhamphus intermedius was determined to be 16,720 bp in length with (A + T) content of 56.3%, and it consists of 13 protein-coding genes, 22 tRNAs, two ribosomal RNAs, and a control region. The gene composition and the structural arrangement of the H. intermedius complete mtDNA were identical to most of the other vertebrates. Interestingly, two tandem repeat units were identified across tRNA-Pro and control region (2*41 bp), while in most of the fishes the tandem repeat units are located in the control region. The molecular data we presented here could play a useful role to study the evolutionary relationships and population genetics of Hemirhamphidae fish.
Huang, Chen; Morlighem, Jean-Étienne R L; Cai, Jing; Liao, Qiwen; Perez, Carlos Daniel; Gomes, Paula Braga; Guo, Min; Rádis-Baptista, Gandhi; Lee, Simon Ming-Yuen
2017-07-13
Long non-coding RNAs (lncRNAs) have been shown to play regulatory roles in a diverse range of biological processes and are associated with the outcomes of various diseases. The majority of studies about lncRNAs focus on model organisms, with lessened investigation in non-model organisms to date. Herein, we have undertaken an investigation on lncRNA in two zoanthids (cnidarian): Protolpalythoa varibilis and Palythoa caribaeorum. A total of 11,206 and 13,240 lncRNAs were detected in P. variabilis and P. caribaeorum transcriptome, respectively. Comparison using NONCODE database indicated that the majority of these lncRNAs is taxonomically species-restricted with no identifiable orthologs. Even so, we found cases in which short regions of P. caribaeorum's lncRNAs were similar to vertebrate species' lncRNAs, and could be associated with lncRNA conserved regulatory functions. Consequently, some high-confidence lncRNA-mRNA interactions were predicted based on such conserved regions, therefore revealing possible involvement of lncRNAs in posttranscriptional processing and regulation in anthozoans. Moreover, investigation of differentially expressed lncRNAs, in healthy colonies and colonial individuals undergoing natural bleaching, indicated that some up-regulated lncRNAs in P. caribaeorum could posttranscriptionally regulate the mRNAs encoding proteins of Ras-mediated signal transduction pathway and components of innate immune-system, which could contribute to the molecular response of coral bleaching.
Regions of extreme synonymous codon selection in mammalian genes
Schattner, Peter; Diekhans, Mark
2006-01-01
Recently there has been increasing evidence that purifying selection occurs among synonymous codons in mammalian genes. This selection appears to be a consequence of either cis-regulatory motifs, such as exonic splicing enhancers (ESEs), or mRNA secondary structures, being superimposed on the coding sequence of the gene. We have developed a program to identify regions likely to be enriched for such motifs by searching for extended regions of extreme codon conservation between homologous genes of related species. Here we present the results of applying this approach to five mammalian species (human, chimpanzee, mouse, rat and dog). Even with very conservative selection criteria, we find over 200 regions of extreme codon conservation, ranging in length from 60 to 178 codons. The regions are often found within genes involved in DNA-binding, RNA-binding or zinc-ion-binding. They are highly depleted for synonymous single nucleotide polymorphisms (SNPs) but not for non-synonymous SNPs, further indicating that the observed codon conservation is being driven by negative selection. Forty-three percent of the regions overlap conserved alternative transcript isoforms and are enriched for known ESEs. Other regions are enriched for TpA dinucleotides and may contain conserved motifs/structures relating to mRNA stability and/or degradation. We anticipate that this tool will be useful for detecting regions enriched in other classes of coding-sequence motifs and structures as well. PMID:16556911
NASA Astrophysics Data System (ADS)
Jara, Daniel; de Dreuzy, Jean-Raynald; Cochepin, Benoit
2017-12-01
Reactive transport modeling contributes to understand geophysical and geochemical processes in subsurface environments. Operator splitting methods have been proposed as non-intrusive coupling techniques that optimize the use of existing chemistry and transport codes. In this spirit, we propose a coupler relying on external geochemical and transport codes with appropriate operator segmentation that enables possible developments of additional splitting methods. We provide an object-oriented implementation in TReacLab developed in the MATLAB environment in a free open source frame with an accessible repository. TReacLab contains classical coupling methods, template interfaces and calling functions for two classical transport and reactive software (PHREEQC and COMSOL). It is tested on four classical benchmarks with homogeneous and heterogeneous reactions at equilibrium or kinetically-controlled. We show that full decoupling to the implementation level has a cost in terms of accuracy compared to more integrated and optimized codes. Use of non-intrusive implementations like TReacLab are still justified for coupling independent transport and chemical software at a minimal development effort but should be systematically and carefully assessed.
Okamoto, Kiyoko; Ami, Yasushi; Suzaki, Yuriko; Otsuki, Noriyuki; Sakata, Masafumi; Takeda, Makoto; Mori, Yoshio
2016-04-01
The marker of Japanese domestic rubella vaccines is their lack of immunogenicity in guinea pigs. This has long been thought to be related to the temperature sensitivity of the viruses, but supporting evidence has not been described. In this study, we generated infectious clones of TO-336.vac, a Japanese domestic vaccine, TO-336.GMK5, the parental virus of TO-336.vac, and their mutants, and determined the molecular bases of their temperature sensitivity and immunogenicity in guinea pigs. The results revealed that Ser(1159) in the non-structural protein-coding region was responsible for the temperature sensitivity of TO-336.vac dominantly, while the structural protein-coding region affected the temperature sensitivity subordinately. The findings further suggested that the temperature sensitivity of TO-336.vac affected the antibody induction in guinea pigs after subcutaneous inoculation. Copyright © 2016 Elsevier Inc. All rights reserved.
Combined LAURA-UPS hypersonic solution procedure
NASA Technical Reports Server (NTRS)
Wood, William A.; Thompson, Richard A.
1993-01-01
A combined solution procedure for hypersonic flowfields around blunted slender bodies was implemented using a thin-layer Navier-Stokes code (LAURA) in the nose region and a parabolized Navier-Stokes code (UPS) on the after body region. Perfect gas, equilibrium air, and non-equilibrium air solutions to sharp cones and a sharp wedge were obtained using UPS alone as a preliminary step. Surface heating rates are presented for two slender bodies with blunted noses, having used LAURA to provide a starting solution to UPS downstream of the sonic line. These are an 8 deg sphere-cone in Mach 5, perfect gas, laminar flow at 0 and 4 deg angles of attack and the Reentry F body at Mach 20, 80,000 ft equilibrium gas conditions for 0 and 0.14 deg angles of attack. The results indicate that this procedure is a timely and accurate method for obtaining aerothermodynamic predictions on slender hypersonic vehicles.
A-to-I RNA editing independent of ADARs in filamentous fungi
Wang, Chenfang; Xu, Jin-Rong; Liu, Huiquan
2016-01-01
ABSTRACT ADAR mediated A-to-I RNA editing is thought to be unique to animals and occurs mainly in the non-coding regions. Recently filamentous fungi such as Fusarium graminearum were found to lack orthologs of animal ADARs but have stage-specific A-to-I editing during sexual reproduction. Unlike animals, majority of editing sites are in the coding regions and often result in missense and stop loss changes in fungi. Furthermore, whereas As in RNA stems are targeted by animal ADARs, RNA editing in fungi preferentially targets As in hairpin loops, implying that fungal RNA editing involves mechanisms related to editing of the anticodon loop by ADATs. Identification and characterization of fungal adenosine deaminases and their stage-specific co-factors may be helpful to understand the evolution of human ADARs. Fungi also can be used to study biological functions of missense and stop loss RNA editing events in eukaryotic organisms. PMID:27533598
Passive control of rotorcraft high-speed impulsive noise
NASA Astrophysics Data System (ADS)
Szulc, O.; Doerffer, P.; Tejero, F.
2016-10-01
A strong, normal shock wave, terminating a local supersonic area located at the tip of a helicopter blade, not only limits the aerodynamic performance, but also constitutes an origin of the High-Speed Impulsive (HSI) noise. The application of a passive control device (a shallow cavity covered by a perforated plate) just beneath the interaction region weakens the compression level, thus reducing the main source of the HSI noise. The numerical investigation based on the URANS approach and Bohning/Doerffer (BD) transpiration law (SPARC code) confirms a large potential of the new method. Two exemplary implementations, adapted to model helicopter rotors tested at NASA Ames facility in transonic conditions: Caradonna-Tung (lifting, transonic hover) and Caradonna-Laub-Tung (non-lifting, high-speed forward flight), demonstrate the possible gains in terms of the reduction of acoustic pressure fluctuations in the near-field of the blade tip. The CFD results are validated against the experimental data obtained for the reference configurations (no control), while the analysis of the passive control arrangement is based on a purely numerical research. The normal shock wave is effectively eliminated by the wall ventilation exerting a positive impact on the generated level of the HSI noise.
Hu, Xiao-Su; Issa, Mohamad; Bisconti, Silvia; Kovelman, Ioulia; Kileny, Paul; Basura, Gregory
2017-01-01
Tinnitus, or phantom sound perception, leads to increased spontaneous neural firing rates and enhanced synchrony in central auditory circuits in animal models. These putative physiologic correlates of tinnitus to date have not been well translated in the brain of the human tinnitus sufferer. Using functional near-infrared spectroscopy (fNIRS) we recently showed that tinnitus in humans leads to maintained hemodynamic activity in auditory and adjacent, non-auditory cortices. Here we used fNIRS technology to investigate changes in resting state functional connectivity between human auditory and non-auditory brain regions in normal-hearing, bilateral subjective tinnitus and controls before and after auditory stimulation. Hemodynamic activity was monitored over the region of interest (primary auditory cortex) and non-region of interest (adjacent non-auditory cortices) and functional brain connectivity was measured during a 60-second baseline/period of silence before and after a passive auditory challenge consisting of alternating pure tones (750 and 8000Hz), broadband noise and silence. Functional connectivity was measured between all channel-pairs. Prior to stimulation, connectivity of the region of interest to the temporal and fronto-temporal region was decreased in tinnitus participants compared to controls. Overall, connectivity in tinnitus was differentially altered as compared to controls following sound stimulation. Enhanced connectivity was seen in both auditory and non-auditory regions in the tinnitus brain, while controls showed a decrease in connectivity following sound stimulation. In tinnitus, the strength of connectivity was increased between auditory cortex and fronto-temporal, fronto-parietal, temporal, occipito-temporal and occipital cortices. Together these data suggest that central auditory and non-auditory brain regions are modified in tinnitus and that resting functional connectivity measured by fNIRS technology may contribute to conscious phantom sound perception and potentially serve as an objective measure of central neural pathology. PMID:28604786
NASA Astrophysics Data System (ADS)
Barnes, W. T.; Cargill, P. J.; Bradshaw, S. J.
2016-09-01
The properties that are expected of “hot” non-flaring plasmas due to nanoflare heating in active regions are investigated using hydrodynamic modeling tools, including a two-fluid development of the Enthalpy Based Thermal Evolution of Loops code. Here we study a single nanoflare and show that while simple models predict an emission measure distribution extending well above 10 MK, which is consistent with cooling by thermal conduction, many other effects are likely to limit the existence and detectability of such plasmas. These include: differential heating between electrons and ions, ionization non-equilibrium, and for short nanoflares, the time taken for the coronal density to increase. The most useful temperature range to look for this plasma, often called the “smoking gun” of nanoflare heating, lies between 106.6 and 107 K. Signatures of the actual heating may be detectable in some instances.
"Hot" Non-flaring Plasmas in Active Region Cores Heated by Single Nanoflares
NASA Astrophysics Data System (ADS)
Barnes, Will Thomas; Cargill, Peter; Bradshaw, Stephen
2016-05-01
We use hydrodynamic modeling tools, including a two-fluid development of the EBTEL code, to investigate the properties expected of "hot" (i.e. between 106.7 and 107.2 K) non-flaring plasmas due to nanoflare heating in active regions. Here we focus on single nanoflares and show that while simple models predict an emission measure distribution extending well above 10 MK that is consistent with cooling by thermal conduction, many other effects are likely to limit the existence and detectability of such plasmas. These include: differential heating between electrons and ions, ionization non-equilibrium and, for short nanoflares, the time taken for the coronal density to increase. The most useful temperature range to look for this plasma, often called the "smoking gun" of nanoflare heating, lies between 1 MK and 10 MK. Signatures of the actual heating may be detectable in some instances.
Mongini, Patricia K. A.; Kramer, Jill M.; Ishikawa, Tomo-o; Herschman, Harvey; Esposito, Donna
2014-01-01
Sjogren’s syndrome (SS) is characterized by salivary gland leukocytic infiltrates and impaired salivation (xerostomia). Cox-2 (Ptgs2) is located on chromosome 1 within the span of the Aec2 region. In an attempt to demonstrate that COX-2 drives antibody-dependent hyposalivation, NOD.B10 congenic mice bearing a Cox-2flox gene were generated. A congenic line with non-NOD alleles in Cox-2-flanking genes failed manifest xerostomia. Further backcrossing yielded disease-susceptible NOD.B10 Cox-2flox lines; fine genetic mapping determined that critical Aec2 genes lie within a 1.56 to 2.17 Mb span of DNA downstream of Cox-2. Bioinformatics analysis revealed that susceptible and non-susceptible lines exhibit non-synonymous coding SNPs in 8 protein-encoding genes of this region, thereby better delineating candidate Aec2 alleles needed for SS xerostomia. PMID:24685748
Inertial vestibular coding of motion: concepts and evidence
NASA Technical Reports Server (NTRS)
Hess, B. J.; Angelaki, D. E.
1997-01-01
Central processing of inertial sensory information about head attitude and motion in space is crucial for motor control. Vestibular signals are coded relative to a non-inertial system, the head, that is virtually continuously in motion. Evidence for transformation of vestibular signals from head-fixed sensory coordinates to gravity-centered coordinates have been provided by studies of the vestibulo-ocular reflex. The underlying central processing depends on otolith afferent information that needs to be resolved in terms of head translation related inertial forces and head attitude dependent pull of gravity. Theoretical solutions have been suggested, but experimental evidence is still scarce. It appears, along these lines, that gaze control systems are intimately linked to motor control of head attitude and posture.
Data compression and genomes: a two-dimensional life domain map.
Menconi, Giulia; Benci, Vieri; Buiatti, Marcello
2008-07-21
We define the complexity of DNA sequences as the information content per nucleotide, calculated by means of some Lempel-Ziv data compression algorithm. It is possible to use the statistics of the complexity values of the functional regions of different complete genomes to distinguish among genomes of different domains of life (Archaea, Bacteria and Eukarya). We shall focus on the distribution function of the complexity of non-coding regions. We show that the three domains may be plotted in separate regions within the two-dimensional space where the axes are the skewness coefficient and the curtosis coefficient of the aforementioned distribution. Preliminary results on 15 genomes are introduced.
2010-01-01
Background Comparative sequence analysis of complex loci such as resistance gene analog clusters allows estimating the degree of sequence conservation and mechanisms of divergence at the intraspecies level. In banana (Musa sp.), two diploid wild species Musa acuminata (A genome) and Musa balbisiana (B genome) contribute to the polyploid genome of many cultivars. The M. balbisiana species is associated with vigour and tolerance to pests and disease and little is known on the genome structure and haplotype diversity within this species. Here, we compare two genomic sequences of 253 and 223 kb corresponding to two haplotypes of the RGA08 resistance gene analog locus in M. balbisiana "Pisang Klutuk Wulung" (PKW). Results Sequence comparison revealed two regions of contrasting features. The first is a highly colinear gene-rich region where the two haplotypes diverge only by single nucleotide polymorphisms and two repetitive element insertions. The second corresponds to a large cluster of RGA08 genes, with 13 and 18 predicted RGA genes and pseudogenes spread over 131 and 152 kb respectively on each haplotype. The RGA08 cluster is enriched in repetitive element insertions, in duplicated non-coding intergenic sequences including low complexity regions and shows structural variations between haplotypes. Although some allelic relationships are retained, a large diversity of RGA08 genes occurs in this single M. balbisiana genotype, with several RGA08 paralogs specific to each haplotype. The RGA08 gene family has evolved by mechanisms of unequal recombination, intragenic sequence exchange and diversifying selection. An unequal recombination event taking place between duplicated non-coding intergenic sequences resulted in a different RGA08 gene content between haplotypes pointing out the role of such duplicated regions in the evolution of RGA clusters. Based on the synonymous substitution rate in coding sequences, we estimated a 1 million year divergence time for these M. balbisiana haplotypes. Conclusions A large RGA08 gene cluster identified in wild banana corresponds to a highly variable genomic region between haplotypes surrounded by conserved flanking regions. High level of sequence identity (70 to 99%) of the genic and intergenic regions suggests a recent and rapid evolution of this cluster in M. balbisiana. PMID:20637079