Science.gov

Sample records for non-contact stiffness measurement

  1. Non-Contact Stiffness Measurement of a Suspended Single Walled Carbon Nanotube Device

    NASA Technical Reports Server (NTRS)

    Zheng, Yun; Su, Chanmin; Getty, Stephanie

    2010-01-01

    A new nanoscale electric field sensor was developed for studying triboelectric charging in terrestrial and Martian dust devils. This sensor is capable to measure the large electric fields for large dust devils without saturation. However, to quantify the electric charges and the field strength it is critical to calibrate the mechanical stiffness of the sensor devices. We performed a technical feasibility study of the Nano E-field Sensor stiffness by a non-contact stiffness measurement method. The measurement is based on laser Doppler vibrometer measurement of the thermal noise due to energy flunctuations in the devices. The experiment method provides a novel approach to acquire data that is essential in analyzing the quantitative performance of the E-field Nano Sensor. To carry out the non-contact stiffness measurement, we fabricated a new Single-Walled Carbon Nanotube (SWCNT) E-field sensor with different SWCNTs suspension conditions. The power spectra of the thermal induced displacement in the nano E-field sensor were measured at the accuracy of picometer. The power spectra were then used to derive the mechanical stiffness of the sensors. Effect of suspension conditions on stiffness and sensor sensitivty was discussed. After combined deformation and resistivity measurement, we can compare with our laboratory testing and field testing results. This new non-contact measurement technology can also help to explore to other nano and MEMS devices in the future.

  2. Non Contact Measuring Machine

    NASA Astrophysics Data System (ADS)

    Carvalho, Fernando D.; Sebastiao, Pedro; Henriques, Bernardo G.

    1989-01-01

    One of the problems of the production of cables is the measurement of the thickness plastic cover at the production line. If for some reason the thickness of the plastic is smaller than the minimum necessary several meters of cable may be lost. If the problem exists in the middle of a long cable and the default is not detected in time, the loss will be significant. To solve this problem it is possible to use automatic measuring machines which may detect a default as soon as it happens. It is also possible to interact with the production line in order to avoid any losses. In this paper it is presented a non contact measuring machine, developed for this purpose. The machine uses a laser which is scanned through a field of 80 mm. The interruption of the beam gives information about the external dimension of the object. The technical study of the resolution, sensitivity and precision are presented on the paper. Also the hardware solution and the software are presented. The machine has an interface which allows communication with a PC. The PC may receive information from several measuring units and to interact with machines installed at the production line. The prototype is finished and is going to be tested in the industry.

  3. Non-contact measurement of carotid arterial stiffness by two-point heart-pulse laser detection

    NASA Astrophysics Data System (ADS)

    Benedetti, M.; Favalli, V.; Mariano, A.; Rebrova, N.; Consoli, A.; Ayadi, J.; Gilardi, L.; Perna, M.; Minzioni, P.; Arbustini, E.; Giuliani, G.

    2016-02-01

    Arterial stiffness (AS) is a recognized predictor of cardiovascular risk and mortality, and a potential marker for monitoring the beneficial effects of medical treatments for arterial diseases. AS is typically evaluated indirectly, by assessing the so called pulse wave velocity (PWV), i.e. the speed at which the pressure wave created by the heart contraction travels along the aorta and other arteries. PWV is generally measured using piezoelectric transducers, or via a complex ultrasound technique, but in both cases it requires a direct contact with the patient, which could also modify the measured parameters. In the EU project "NISTAS" (Non-invasive screening of the status of the vascular system) [1], we develop a contactless system allowing to measure the PWV thanks to a technology derived from laser triangulation devices. The measurement principle consists in the detection of the small (around 100μm) displacement of the neck skin, induced by the transit of the pressure wave in the carotid. By simultaneously measuring the displacement caused by the pulse wave in two distinct points along the carotid, the time required by the pressure wave to travel a certain distance can be measured, and the PWV can then be easily calculated. The chosen technique for the skin displacement measurement is laser triangulation in its 2D variant (i.e. "laser profilometry"), which is robust to slight movements of the target, it does not suffer from speckle-pattern signal fading, and it can be conveniently implemented using low-cost optical components. Two light lines, emitted by two blue LEDs are projected on the target (the patient's neck skin), and the skin displacement versus time is measured using a high-frame-rate CMOS camera. In this manuscript we present the results obtained by measuring the PWV of 10 volunteers. It is foreseen that this technique can become a simple and widespread point-of-care method for large-scale cardiovascular system screening over large populations.

  4. Non-contact temperature measurement requirements

    NASA Technical Reports Server (NTRS)

    Higgins, D. B.; Witherow, W. K.

    1989-01-01

    The Marshall Space Flight Center is involved with levitation experiments for Spacelab, Space Station, and drop tube/tower operations. These experiments have temperature measurement requirements, that of course must be non-contact in nature. The experiment modules involved are the Acoustic Levitator Furnace (ALF), and the Modular Electromagnetic Levitator (MEL). User requirements of the ALF and drop tube are presented. The center also has temperature measurement needs that are not microgravity experiment oriented, but rather are related to the propulsion system for the STS. This requirement will also be discussed.

  5. Non-Contact Electrical Conductivity Measurement Technique for Molten Metals

    NASA Technical Reports Server (NTRS)

    Rhim, W. K.; Ishikawa, T.

    1998-01-01

    A non-contact technique of measuring the electrical conductivity (or resistivity) of conducting liquids while they are levitated by the high temperature electrostatic levitator in a high vacuum is reported.

  6. Electronic Non-Contacting Linear Position Measuring System

    DOEpatents

    Post, Richard F.

    2005-06-14

    A non-contacting linear position location system employs a special transmission line to encode and transmit magnetic signals to a receiver on the object whose position is to be measured. The invention is useful as a non-contact linear locator of moving objects, e.g., to determine the location of a magnetic-levitation train for the operation of the linear-synchronous motor drive system.

  7. Non-contact measurement of contact wire

    NASA Astrophysics Data System (ADS)

    Yi, Yaxing; Ye, Xuemei; Li, Zhongke; Yue, Kaiduan

    2008-12-01

    The overhead contact system is the power supply unit of the electric locomotive. This article is to introduce our newly developed method to measure the height and pull out value of the contact wire. A carema dolly which can move on railway is applied to bear the weight of the measure equipment; two linear CCD cameras are installed on the dolly symmetrically about the midline of two rails. While the dolly move along the railway, two CCD cameras grasp the image synchronously, and a computer real-time process the images, the height and pull out value can be calculate out from the images.

  8. Non contact probing of interfacial stiffnesses between two plates by zero-group velocity Lamb modes

    NASA Astrophysics Data System (ADS)

    Mezil, Sylvain; Laurent, Jérôme; Royer, Daniel; Prada, Claire

    2014-07-01

    A non contact technique using zero-group velocity (ZGV) Lamb modes is developed to probe the bonding between two solid plates coupled by a thin layer. The layer thickness is assumed to be negligible compared with the plate thickness and the acoustic wavelength. The coupling layer is modeled by a normal and a tangential spring to take into account the normal and shear interfacial stresses. Theoretical ZGV frequencies are determined for a symmetrical bi-layer structure and the effect of the interfacial stiffnesses on the cut-off and ZGV frequencies are evaluated. Experiments are conducted with two glass plates bonded by a drop of water, oil, or salol, leading to a few micrometer thick layer. An evaluation of normal and shear stiffnesses is obtained using ZGV resonances locally excited and detected with laser ultrasonic techniques.

  9. Method and apparatus for non-contact charge measurement

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Lin, Kuan-Chan (Inventor); Hightower, James C. (Inventor)

    1994-01-01

    A method and apparatus for the accurate non-contact detection and measurement of static electric charge on an object using a reciprocating sensing probe that moves relative to the object. A monitor measures the signal generated as a result of this cyclical movement so as to detect the electrostatic charge on the object.

  10. Measuring elastic constants using non-contact ultrasonic techniques

    NASA Astrophysics Data System (ADS)

    Edwards, R. S.; Perry, R.; Cleanthous, D.; Backhouse, D. J.; Moore, I. J.; Clough, A. R.; Stone, D. I.

    2012-05-01

    The use of ultrasound for measuring elastic constants and phase transitions is well established. Standard measurements use piezoelectric transducers requiring couplant and contact with the sample. Recently, non-destructive testing (NDT) has seen an increase in the use of non-contact ultrasonic techniques, for example electromagnetic acoustic transducers (EMATs) and laser ultrasound, due to their many benefits. For measurements of single crystals over a range of temperatures non-contact techniques could also bring many benefits. These techniques do not require couplant, and hence do not suffer from breaking of the bond between transducer and sample during thermal cycling, and will potentially lead to a simpler and more adaptable measurement system with lower risk of sample damage. We present recent work adapting EMAT advances from NDT to measurements of single crystals at cryogenic temperatures and illustrate this with measurements of magnetic phase transitions in Gd64Sc36 using both contact and non-contact transducers. We discuss the measurement techniques implemented to overcome noise problems, and a digital pulse-echo-overlap technique, using data analysis in the frequency domain to measure the velocity.

  11. Non-Contact Conductivity Measurement for Automated Sample Processing Systems

    NASA Technical Reports Server (NTRS)

    Beegle, Luther W.; Kirby, James P.

    2012-01-01

    A new method has been developed for monitoring and control of automated sample processing and preparation especially focusing on desalting of samples before analytical analysis (described in more detail in Automated Desalting Apparatus, (NPO-45428), NASA Tech Briefs, Vol. 34, No. 8 (August 2010), page 44). The use of non-contact conductivity probes, one at the inlet and one at the outlet of the solid phase sample preparation media, allows monitoring of the process, and acts as a trigger for the start of the next step in the sequence (see figure). At each step of the muti-step process, the system is flushed with low-conductivity water, which sets the system back to an overall low-conductivity state. This measurement then triggers the next stage of sample processing protocols, and greatly minimizes use of consumables. In the case of amino acid sample preparation for desalting, the conductivity measurement will define three key conditions for the sample preparation process. First, when the system is neutralized (low conductivity, by washing with excess de-ionized water); second, when the system is acidified, by washing with a strong acid (high conductivity); and third, when the system is at a basic condition of high pH (high conductivity). Taken together, this non-contact conductivity measurement for monitoring sample preparation will not only facilitate automation of the sample preparation and processing, but will also act as a way to optimize the operational time and use of consumables

  12. Non-contact measurement of rotation angle with solo camera

    NASA Astrophysics Data System (ADS)

    Gan, Xiaochuan; Sun, Anbin; Ye, Xin; Ma, Liqun

    2015-02-01

    For the purpose to measure a rotation angle around the axis of an object, a non-contact rotation angle measurement method based on solo camera was promoted. The intrinsic parameters of camera were calibrated using chessboard on principle of plane calibration theory. The translation matrix and rotation matrix between the object coordinate and the camera coordinate were calculated according to the relationship between the corners' position on object and their coordinates on image. Then the rotation angle between the measured object and the camera could be resolved from the rotation matrix. A precise angle dividing table (PADT) was chosen as the reference to verify the angle measurement error of this method. Test results indicated that the rotation angle measurement error of this method did not exceed +/- 0.01 degree.

  13. Advances in Non-Contact Measurement of Creep Properties

    NASA Technical Reports Server (NTRS)

    Hyers, Robert; Canepari, Stacy; White, Erica Bischoff; Cretegny, Laurent; Rogers, jan

    2009-01-01

    As the required service temperatures for superalloys increases, so do the demands on testing for development of these alloys. Non-contact measurement of creep of refractory metals using electrostatic levitation has been demonstrated at temperatures up to 2300 C using samples of only 20-40 mg. These measurements load the spherical specimen by inertial forces due to rapid rotation. However, the first measurements relied on photon pressure to accelerate the samples to the high rotational rates of thousands of rotations per second, limiting the applicability to low stresses and high temperatures. Recent advances in this area extend this measurement to higher stresses and lower-temperatures through the use of an induction motor to drive the sample to such high rotational speeds. Preliminary results on new measurements on new materials will be presented.

  14. Non-Contact EDDY Current Hole Eccentricity and Diameter Measurement

    NASA Technical Reports Server (NTRS)

    Chern, E. James

    1998-01-01

    Precision holes are among the most critical features of a mechanical component. Deviations from permissible tolerances can impede operation and result in unexpected failure. We have developed an automated non-contact eddy current hole diameter and eccentricity measuring system. The operating principle is based on the eddy current lift-off effect, which is the coil impedance as a function of the distance between the coil and the test object. An absolute eddy current probe rotates in the hole. The impedance of each angular position is acquired and input to the computer for integration and analysis. The eccentricity of the hole is the profile of the impedance as a function of angular position as compared to a straight line, an ideal hole. The diameter of the hole is the sum of the diameter of the probe and twice the distance-calibrated impedance. An eddy current image is generated by integrating angular scans for a plurality of depths between the top and bottom to display the eccentricity profile. This system can also detect and image defects in the hole. The method for non-contact eddy current hole diameter and eccentricity measurement has been granted a patent by the U.S. Patent and Trademark Office.

  15. Combined non-contact coordinate measurement system and calibration method

    NASA Astrophysics Data System (ADS)

    Fan, Yiyan; Zhao, Bin

    2015-07-01

    A combined non-contact measurement system comprising attitude angle sensor, angle encoder, laser rangefinder, and total station is adopted to measure the spatial coordinate of the hidden zones in large-scale space. The laser from the total station is aimed at the optical system of the attitude angle sensor to obtain the spatial coordinate and the spatial attitude angles. Then, the angle encoder driven by a stepping motor is rotated to drive the laser rangefinder to direct at the measured point. This approach is used to obtain the distance from the rangefinder to the measured point and the angle of the angle encoder. Finally, the spatial coordinates of the measured point can be calculated by using these measured parameters. For the measurement system, we propose a weighted least squares (WLS) calibration method, in which weights are determined for the angular distribution density. Experimental results show that the measurement system could expand the scale and achieve reliable precision during combined measurement and the measurement error of the weighted least squares method is less than that of the ordinary least square (OLS) method.

  16. Anthropometry of external auditory canal by non-contactable measurement.

    PubMed

    Yu, Jen-Fang; Lee, Kun-Che; Wang, Ren-Hung; Chen, Yen-Sheng; Fan, Chun-Chieh; Peng, Ying-Chin; Tu, Tsung-Hsien; Chen, Ching-I; Lin, Kuei-Yi

    2015-09-01

    Human ear canals cannot be measured directly with existing general measurement tools. Furthermore, general non-contact optical methods can only conduct simple peripheral measurements of the auricle and cannot obtain the internal ear canal shape-related measurement data. Therefore, this study uses the computed tomography (CT) technology to measure the geometric shape of the ear canal and the shape of the ear canal using a non-invasive method, and to complete the anthropometry of external auditory canal. The results of the study show that the average height and width of ear canal openings, and the average depth of the first bend for men are generally longer, wider and deeper than those for women. In addition, the difference between the height and width of the ear canal opening is about 40% (p < 0.05). Hence, the circular cross-section shape of the earplugs should be replaced with an elliptical cross-section shape during manufacturing for better fitting.

  17. Anthropometry of external auditory canal by non-contactable measurement.

    PubMed

    Yu, Jen-Fang; Lee, Kun-Che; Wang, Ren-Hung; Chen, Yen-Sheng; Fan, Chun-Chieh; Peng, Ying-Chin; Tu, Tsung-Hsien; Chen, Ching-I; Lin, Kuei-Yi

    2015-09-01

    Human ear canals cannot be measured directly with existing general measurement tools. Furthermore, general non-contact optical methods can only conduct simple peripheral measurements of the auricle and cannot obtain the internal ear canal shape-related measurement data. Therefore, this study uses the computed tomography (CT) technology to measure the geometric shape of the ear canal and the shape of the ear canal using a non-invasive method, and to complete the anthropometry of external auditory canal. The results of the study show that the average height and width of ear canal openings, and the average depth of the first bend for men are generally longer, wider and deeper than those for women. In addition, the difference between the height and width of the ear canal opening is about 40% (p < 0.05). Hence, the circular cross-section shape of the earplugs should be replaced with an elliptical cross-section shape during manufacturing for better fitting. PMID:25959317

  18. Non-contact Laser-based Human Respiration Rate Measurement

    NASA Astrophysics Data System (ADS)

    Scalise, L.; Marchionni, P.; Ercoli, I.

    2011-08-01

    At present the majority of the instrumentation, used in clinical environments, to measure human respiration rate are based on invasive and contact devices. The gold standard instrument is considered the spirometer which is largely used; it needs a direct contact and requires a collaboration by the patient. Laser Doppler Vibrometer (LDVi) is an optical, non-contact measurement system for the assessment of a surface velocity and displacement. LDVi has already been used for the measurement of the cardiac activity and for the measurement of the chest-wall displacements. The aims of this work are to select the best measurement point on the thoracic surface for LDVi monitoring of the respiration rate (RR) and to compare measured data with the RR valued provided by the spirometer. The measurement system is composed by a LDV system and a data acquisition board installed on a PC. Tests were made on 10 different point of the thorax for each patient. Patients population was composed by 33 subjects (17 male and 16 female). The optimal measurement point was chosen considering the maximum peak-to-peak value of the displacement measured by LDV. Before extracting RR we have used a special wavelet decomposition for better selection of the expiration peaks. A standard spirometer was used for the validation of the data. From tests it results that the optimal measurement point, namely is located on the inferior part of the thoracic region (left, front side). From our tests we have obtained a close correlation between the RR values measured by the spirometer and those measured by the proposed method: a difference of 14±211 ms on the RR value is reported for the entire population of 33 subjects. Our method allows a no-contact measurement of lungs activity (respiration period), reducing the electric and biological risks. Moreover it allows to measure in critical environment like in RMN or in burned skin where is difficult or impossible to apply electrodes.

  19. Non-contact scanning measurement utilizing a space mapping method

    NASA Astrophysics Data System (ADS)

    Chang, Ming; Lin, Kao-Hui

    1998-12-01

    In this study, a novel approach to a measuring methodology and calibration method for an optical non-contact scanning probe system is proposed and verified by experiments. The optical probe consists of a line laser diode and two charge-coupled device (CCD) cameras and is placed on a computer numerical control (CNC) machine to measure the workpiece profiles. A space mapping method using the least-squares algorithm is presented for the probe calibration and profile measurement. This method provides a simple and accurate calculation of the relationship between the real space plane and its related image space plane in a CCD camera. A transparent grid with regularly spaced nodal points is used to construct the space mapping function. The space coordinate of an object can be obtained from its image in the CCD camera via the mapping function. The measured profile data are smoothed by the B-spline blending function and can be transferred to a CAD/CAM package for industrial applications. Experimental results show that this technique can determine the 3-D profile of an object with an accuracy of 60 μm.

  20. Investigation of a non-contact strain measurement technique

    SciTech Connect

    Talarico, L.J.; Damiano, B.

    1997-03-01

    The goal of this project was to investigate the feasibility of a new non-contact technique for directly and continuously monitoring peak strain in rotating components. The technique utilizes the unique strain-sensitive magnetic material properties of TRansformation Induced Plasticity (TRIP) steel alloys to measure strain. These alloys are weakly magnetic when unstrained but become strongly ferromagnetic after mechanical deformation. A computer study was performed to determine whether the strain-induced change in the magnetic material properties of a TRIP steel gage bonded to a rotating component would cause significant perturbations in the magnetic flux of a stationary electromagnet. The effects of strain level, distance between the rotating component and the stationary electromagnet, and motion-induced eddy currents on flux perturbation magnitude were investigated. The calculated results indicate that a TRIP steel strain sensing element can cause a significant perturbation in the magnetic flux of a stationary electromagnet. The magnetic flux perturbation magnitude was found to be inversely proportional to the distance between the magnet face and the TRIP steel element and directly proportional to the TRIP steel strain level. The effect of motion-induced eddy currents on the magnetic flux was found to be negligible. It appears that the technique can be successfully applied to measure peak strain in rotating components, however, the sensitivity of the magnetic flux perturbation magnitude to the distance between the strain sensing element and the electromagnet may require making an independent proximity measurement.

  1. Non-Contact Measurements of Creep Properties of Refractory Materials

    NASA Technical Reports Server (NTRS)

    Lee, Jonghyun; Bradshaw, Richard C.; Hyers, Robert W.; Rogers, Jan R.; Rathz, Thomas J.; Wall, James J.; Choo, Hahn; Liaw, Peter

    2006-01-01

    State-of-the-art technologies for hypersonic aircraft, nuclear electric/thermal propulsion for spacecraft, and more efficient jet engines are driving ever more demanding needs for high-temperature (>2000 C) materials. At such high temperatures, creep rises as one of the most important design factors to be considered. Since conventional measurement techniques for creep resistance are limited to about 17OO0C, a new technique is in demand for higher temperatures. This paper presents a non-contact method using electrostatic levitation (ESL) which is applicable to both metallic and non-metallic materials. The samples were rotated quickly enough to cause creep deformation by centrifugal acceleration. The deformation of the samples was captured with a high speed camera and then the images were analyzed to estimate creep resistance. Finite element analyses were performed and compared to the experiments to verify the new method. Results are presented for niobium and tungsten, representative refractory materials at 2300 C and 2700 C respectively.

  2. Non-contact temperature measurements for biotechnology discipline working group

    NASA Technical Reports Server (NTRS)

    Snyder, Robert S.

    1988-01-01

    In the biotechnology research areas, there is interest in measuring temperature changes over very small dimensions, such as the surface of a 10-micrometer diameter biological cell immersed in cell culture fluid. Non-interference measurements of other properties, such as chemical constituents and their concentrations, are also needed. Contacting probes for pH have recently been developed to penetrate a cell but questions have been raised about their accuracy and net value.

  3. Non-contact temperature measurement of a falling drop

    NASA Technical Reports Server (NTRS)

    Hofmeister, William; Bayuzick, R. J.; Robinson, M. B.

    1989-01-01

    The 105 meter drop tube at NASA-Marshall has been used in a number of experiments to determine the effects of containerless, microgravity processing on the undercooling and solidification behavior of metals and alloys. These experiments have been limited, however, because direct temperature measurement of the falling drops has not been available. Undercooling and nucleation temperatures are calculated from thermophysical properties based on droplet cooling models. In most cases these properties are not well known, particularly in the undercooled state. This results in a large amount of uncertainty in the determination of nucleation temperatures. If temperature measurement can be accomplished then the thermal history of the drops could be well documented. This would lead to a better understanding of the thermophysical and thermal radiative properties of undercooled melts. An effort to measure the temperature of a falling drop is under way. The technique uses two color pyrometry and high speed data acquisition. The approach is presented along with some preliminary data from drop tube experiments. The results from droplet cooling models is compared with noncontact temperature measurements.

  4. Advances in Non-contact Measurement of Creep Properties

    NASA Technical Reports Server (NTRS)

    Hyers, Robert W.; Canepari, Stacy; Rogers, Jan. R.

    2009-01-01

    Our team has developed a novel approach to measuring creep at extremely high temperatures using electrostatic levitation (ESL). This method has been demonstrated on niobium up to 2300 C, while ESL has melted tungsten (3400 C). High-precision machined spheres of the sample are levitated in the NASA MSFC ESL, a national user facility, and heated with a laser. The laser is aligned off-center so that the absorbed photons transfer their momentum to the sample, causing it to rotate at up to 250,000+ RPM. The rapid rotation loads the sample through centripetal acceleration, causing it to deform. The deformation of the sample is captured on high-speed video, which is analyzed by machine-vision software from the University of Massachusetts. The deformations are compared to finite element models to determine the constitutive constants in the creep relation. Furthermore, the noncontact method exploits stress gradients within the sample to determine the stress exponent in a single test. This method was validated in collaboration with the University of Tennessee for niobium at 1985 C, with agreement within the uncertainty of the conventional measurements. A similar method is being employed on Ultra-High-Temperature ZrB2- SiC composites, which may see application in rocket nozzles and sharp leading edges for hypersonic vehicles.

  5. Proposal on Calculation of Ventilation Threshold Using Non-contact Respiration Measurement with Pattern Light Projection

    NASA Astrophysics Data System (ADS)

    Aoki, Hirooki; Ichimura, Shiro; Fujiwara, Toyoki; Kiyooka, Satoru; Koshiji, Kohji; Tsuzuki, Keishi; Nakamura, Hidetoshi; Fujimoto, Hideo

    We proposed a calculation method of the ventilation threshold using the non-contact respiration measurement with dot-matrix pattern light projection under pedaling exercise. The validity and effectiveness of our proposed method is examined by simultaneous measurement with the expiration gas analyzer. The experimental result showed that the correlation existed between the quasi ventilation thresholds calculated by our proposed method and the ventilation thresholds calculated by the expiration gas analyzer. This result indicates the possibility of the non-contact measurement of the ventilation threshold by the proposed method.

  6. The Practical Implementation of Non-Contacting Laser Strain Measurements Systems

    NASA Technical Reports Server (NTRS)

    Yunis, Isam; Quinn, roger D.; Kadambi, Jaikrishnan R.

    2000-01-01

    Measurement of stress and strain in rotating turbomachinery is critical to many industries. The search for a non-contacting, non-interfering, non-degrading measurement system is on going and extensive. While several methods seem promising in theory, implementation has proven troublesome. This work uncovers and quantifies these implementation issues in the context of a laser measurement system. Both a Laser Doppler Velocimeter system and a displacement laser system are utilized. It is found that the key issues are signal to noise ratio, rigid body compensation, measurement location, and conversion of intermittent measurements to a continuous signal. Accounting for these factors leads to successful measurements. These results should lead to better ideas and more practical solutions to the non-contacting, non-degrading, non-interfering strain measurement system problem.

  7. Residual Stress Relaxation and Stiffness-Confinement Effects in Polymer Films: Characterization by Non-Contact Ellipsometry and Fluorescence Techniques

    NASA Astrophysics Data System (ADS)

    Askar, Shadid; Torkelson, John

    2015-03-01

    The relaxation of residual stresses in spin-coated polymer films is characterized using two optical techniques: ellipsometry and fluorescence. Both techniques show that residual stresses relax over hours at several tens of degrees above the film glass transition temperature (Tg). Ellipsometry shows that thickness can increase or decrease during residual stress relaxation depending on thermal history of the film. However, the presence or relaxation of stresses has no measurable effect on Tg as measured by ellipsometry. We have adapted the well-known sensitivity of the pyrene dye fluorescence spectral shape to local environment polarity in order to characterize stress relaxation and to monitor stiffness-confinement effects. The spectral shape of the pyrene fluorescence spectrum shows similar stress relaxation regardless of whether relaxation is accompanied by increases or decreases in film thickness. Fluorescence also indicates that single-layer polystyrene films supported on silica stiffen with decreasing nanoscale thickness. For the first time, stiffness gradients as a function of distance from interfaces are demonstrated using pyrene label fluorescence in conjunction with multilayer films.

  8. Non-Contact Plant Growth Measurement Method and System Based on Ubiquitous Sensor Network Technologies

    PubMed Central

    Suk, Jinweon; Kim, Seokhoon; Ryoo, Intae

    2011-01-01

    This paper proposes a non-contact plant growth measurement system using infrared sensors based on the ubiquitous sensor network (USN) technology. The proposed system measures plant growth parameters such as the stem radius of plants using real-time non-contact methods, and generates diameter, cross-sectional area and thickening form of plant stems using this measured data. Non-contact sensors have been used not to cause any damage to plants during measurement of the growth parameters. Once the growth parameters are measured, they are transmitted to a remote server using the sensor network technology and analyzed in the application program server. The analyzed data are then provided for administrators and a group of interested users. The proposed plant growth measurement system has been designed and implemented using fixed-type and rotary-type infrared sensor based measurement methods and devices. Finally, the system performance is compared and verified with the measurement data that have been obtained by practical field experiments. PMID:22163849

  9. A novel non-contact measurement method of the inner diameter

    NASA Astrophysics Data System (ADS)

    Jia, Bingtian; Liu, Changjie; Li, Xingqiang; Fu, Luhua; Wang, Zhong

    2015-08-01

    High accuracy automatic measurement of engine box is significant for enhancing the quality and performance of the engine. To complete the fast automatic measurement of the engine box shaft hole diameter, a new non-contact methods for inner hole diameter measuring is proposed in this paper, a mathematic model is built according to this method. A probe based on laser displacement sensors is developed to meet the method by distributing the laser displacement sensors in the probe cross-section uniformly. By this method, shaft hole diameter can be got with single measurement. This method eliminates some defects involved in existing shaft hole diameter non-contact measuring methods, it does not need the rotation of the probe and accurate locating of the probe center and the shaft hole center. Experiments proved that the methods can be used to complete the task of the shaft hole diameter measuring with simple operation and accurate result. Experiments have also shown that the proposed method is an effective method of non-contact high accuracy diameter measurement.

  10. Measuring stream discharge by non-contact methods: A proof-of-concept experiment

    USGS Publications Warehouse

    Costa, J.E.; Spicer, K.R.; Cheng, R.T.; Haeni, F.P.; Melcher, N.B.; Thurman, E.M.; Plant, W.J.; Keller, W.C.

    2000-01-01

    This report describes an experiment to make a completely non-contact open-channel discharge measurement. A van-mounted, pulsed doppler (10GHz) radar collected surface-velocity data across the 183-m wide Skagit River, Washington at a USGS streamgaging station using Bragg scattering from short waves produced by turbulent boils on the surface of the river. Surface velocities were converted to mean velocities for 25 sub-sections by assuming a normal open-channel velocity profile (surface velocity times 0.85). Channel cross-sectional area was measured using a 100 MHz ground-penetrating radar antenna suspended from a cableway car over the river. Seven acoustic doppler current profiler discharge measurements and a conventional current-meter discharge measurement were also made. Three non-contact discharge measurements completed in about a 1-hour period were within 1 % of the gaging station rating curve discharge values. With further refinements, it is thought that open-channel flow can be measured reliably by non-contact methods.

  11. Contact and non-contact ultrasonic measurement in the food industry: a review

    NASA Astrophysics Data System (ADS)

    Taufiq Mohd Khairi, Mohd; Ibrahim, Sallehuddin; Yunus, Mohd Amri Md; Faramarzi, Mahdi

    2016-01-01

    The monitoring of the food manufacturing process is vital since it determines the safety and quality level of foods which directly affect the consumers’ health. Companies which produce high quality products will gain trust from consumers. This factor helps the companies to make profits. The use of efficient and appropriate sensors for the monitoring process can also reduce cost. The food assessing process based on an ultrasonic sensor has attracted the attention of the food industry due to its excellent capabilities in several applications. The utilization of low or high frequencies for the ultrasonic transducer has provided an enormous benefit for analysing, modifying and guaranteeing the quality of food. The contact and non-contact ultrasonic modes for measurement also contributed significantly to the food processing. This paper presents a review of the application of the contact and non-contact mode of ultrasonic measurement focusing on safety and quality control areas. The results from previous researches are shown and elaborated.

  12. Space charge distributions in insulating polymers: A new non-contacting way of measurement

    SciTech Connect

    Marty-Dessus, D. Ziani, A. C.; Berquez, L.; Petre, A.

    2015-04-15

    A new technique for the determination of space charge profiles in insulating polymers is proposed. Based on the evolution of an existing thermal wave technique called Focused Laser Intensity Modulation Method ((F)LIMM), it allows non-contact measurements on thin films exhibiting an internal charge to be studied. An electrostatic model taking into account the new sample-cell geometry proposed was first developed. It has been shown, in particular, that it was theoretically possible to calculate the internal charge from experimental measurements while allowing an evaluation of the air layer appearing between the sample and the electrode when non-contact measurements are performed. These predictions were confirmed by an experimental implementation for two thin polymer samples (25 μm-polyvinylidenefluoride and 50 μm-polytetrafluoroethylene (PTFE)) used as tests. In these cases, minimum air-layer thickness was determined with an accuracy of 3% and 20%, respectively, depending on the signal-to-noise ratio during the experimental procedure. In order to illustrate the reachable possibilities of this technique, 2D and 3D cartographies of a negative space charge implanted by electron beam within the PTFE test sample were depicted: like in conventional (F)LIMM, a multidimensional representation of a selectively implanted charge remains possible at a few microns depth, but using a non-contacting way of measurement.

  13. Space charge distributions in insulating polymers: A new non-contacting way of measurement

    NASA Astrophysics Data System (ADS)

    Marty-Dessus, D.; Ziani, A. C.; Petre, A.; Berquez, L.

    2015-04-01

    A new technique for the determination of space charge profiles in insulating polymers is proposed. Based on the evolution of an existing thermal wave technique called Focused Laser Intensity Modulation Method ((F)LIMM), it allows non-contact measurements on thin films exhibiting an internal charge to be studied. An electrostatic model taking into account the new sample-cell geometry proposed was first developed. It has been shown, in particular, that it was theoretically possible to calculate the internal charge from experimental measurements while allowing an evaluation of the air layer appearing between the sample and the electrode when non-contact measurements are performed. These predictions were confirmed by an experimental implementation for two thin polymer samples (25 μm-polyvinylidenefluoride and 50 μm-polytetrafluoroethylene (PTFE)) used as tests. In these cases, minimum air-layer thickness was determined with an accuracy of 3% and 20%, respectively, depending on the signal-to-noise ratio during the experimental procedure. In order to illustrate the reachable possibilities of this technique, 2D and 3D cartographies of a negative space charge implanted by electron beam within the PTFE test sample were depicted: like in conventional (F)LIMM, a multidimensional representation of a selectively implanted charge remains possible at a few microns depth, but using a non-contacting way of measurement.

  14. A model undergraduate research institute for study of emerging non-contact measurement technologies and techniques

    NASA Astrophysics Data System (ADS)

    Dvonch, Curt; Smith, Christopher; Bourne, Stefanie; Blandino, Joseph R.; Miles, Jonathan J.

    2006-04-01

    The Infrared Development and Thermal Structures Laboratory (IDTSL) is an undergraduate research laboratory in the College of Integrated Science and Technology (CISAT) at James Madison University (JMU) in Harrisonburg, Virginia. During the 1997-98 academic year, Dr. Jonathan Miles established the IDTSL at JMU with the support of a collaborative research grant from the NASA Langley Research Center and with additional support from the College of Integrated Science and Technology at JMU. The IDTSL supports research and development efforts that feature non-contact thermal and mechanical measurements and advance the state of the art. These efforts all entail undergraduate participation intended to significantly enrich their technical education. The IDTSL is funded by major government organizations and the private sector and provides a unique opportunity to undergraduates who wish to participate in projects that push the boundaries of non-contact measurement technologies, and provides a model for effective hands-on, project oriented, student-centered learning that reinforces concepts and skills introduced within the Integrated Science and Technology (ISAT) curriculum. The lab also provides access to advanced topics and emerging measurement technologies; fosters development of teaming and communication skills in an interdisciplinary environment; and avails undergraduates of professional activities including writing papers, presentation at conferences, and participation in summer internships. This paper provides an overview of the Infrared Development and Thermal Structures Laboratory, its functionality, its record of achievements, and the important contribution it has made to the field of non-contact measurement and undergraduate education.

  15. Non-contact measurements of ultrasonic waves on paper webs using a photorefractive interferometer

    DOEpatents

    Brodeur, Pierre H.; Lafond, Emmanuel F.

    2000-01-01

    An apparatus and method for non-contact measurement of ultrasonic waves on moving paper webs employs a photorefractive interferometer. The photorefractive interferometer employs an optical head in which the incident beam and reflected beam are coaxial, thus enabling detection of both in-plane and out-of-plane waves with a single apparatus. The incident beam and reference beams are focused into a line enabling greater power to be used without damaging the paper.

  16. Non-Contact Method for Measurement of Surface/Interfacial Liquid Properties with Laser Manipulation Technique

    SciTech Connect

    Mitani, Shujiro; Sakai, Keiji

    2008-07-07

    The laser manipulation technique is a powerful tool for studying the liquid surface properties such as surface tension and viscosity. This method has several remarkable features, for example, non-contact, wide range and high sensitivity. Ultra-low interfacial tension, {approx}l{mu}N/m, was measured with this method on the water/heptane interface containing surfactant. This method is also applicable to the observation of highly-viscous and colloidal liquids.

  17. Non-contact angle measurement based on parallel multiplex laser feedback interferometry

    NASA Astrophysics Data System (ADS)

    Zhang, Song; Tan, Yi-Dong; Zhang, Shu-Lian

    2014-11-01

    We present a novel precise angle measurement scheme based on parallel multiplex laser feedback interferometry (PLFI), which outputs two parallel laser beams and thus their displacement difference reflects the angle variation of the target. Due to its ultrahigh sensitivity to the feedback light, PLFI realizes the direct non-contact measurement of non-cooperative targets. Experimental results show that PLFI has an accuracy of 8″ within a range of 1400″. The yaw of a guide is also measured and the experimental results agree with those of the dual-frequency laser interferometer Agilent 5529A.

  18. A high-stability non-contact dilatometer for low-amplitude temperature-modulated measurements.

    PubMed

    Luckabauer, Martin; Sprengel, Wolfgang; Würschum, Roland

    2016-07-01

    Temperature modulated thermophysical measurements can deliver valuable insights into the phase transformation behavior of many different materials. While especially for non-metallic systems at low temperatures numerous powerful methods exist, no high-temperature device suitable for modulated measurements of bulk metallic alloy samples is available for routine use. In this work a dilatometer for temperature modulated isothermal and non-isothermal measurements in the temperature range from room temperature to 1300 K is presented. The length measuring system is based on a two-beam Michelson laser interferometer with an incremental resolution of 20 pm. The non-contact measurement principle allows for resolving sinusoidal length change signals with amplitudes in the sub-500 nm range and physically decouples the length measuring system from the temperature modulation and heating control. To demonstrate the low-amplitude capabilities, results for the thermal expansion of nickel for two different modulation frequencies are presented. These results prove that the novel method can be used to routinely resolve length-change signals of metallic samples with temperature amplitudes well below 1 K. This high resolution in combination with the non-contact measurement principle significantly extends the application range of modulated dilatometry towards high-stability phase transformation measurements on complex alloys.

  19. A high-stability non-contact dilatometer for low-amplitude temperature-modulated measurements.

    PubMed

    Luckabauer, Martin; Sprengel, Wolfgang; Würschum, Roland

    2016-07-01

    Temperature modulated thermophysical measurements can deliver valuable insights into the phase transformation behavior of many different materials. While especially for non-metallic systems at low temperatures numerous powerful methods exist, no high-temperature device suitable for modulated measurements of bulk metallic alloy samples is available for routine use. In this work a dilatometer for temperature modulated isothermal and non-isothermal measurements in the temperature range from room temperature to 1300 K is presented. The length measuring system is based on a two-beam Michelson laser interferometer with an incremental resolution of 20 pm. The non-contact measurement principle allows for resolving sinusoidal length change signals with amplitudes in the sub-500 nm range and physically decouples the length measuring system from the temperature modulation and heating control. To demonstrate the low-amplitude capabilities, results for the thermal expansion of nickel for two different modulation frequencies are presented. These results prove that the novel method can be used to routinely resolve length-change signals of metallic samples with temperature amplitudes well below 1 K. This high resolution in combination with the non-contact measurement principle significantly extends the application range of modulated dilatometry towards high-stability phase transformation measurements on complex alloys. PMID:27475604

  20. A high-stability non-contact dilatometer for low-amplitude temperature-modulated measurements

    NASA Astrophysics Data System (ADS)

    Luckabauer, Martin; Sprengel, Wolfgang; Würschum, Roland

    2016-07-01

    Temperature modulated thermophysical measurements can deliver valuable insights into the phase transformation behavior of many different materials. While especially for non-metallic systems at low temperatures numerous powerful methods exist, no high-temperature device suitable for modulated measurements of bulk metallic alloy samples is available for routine use. In this work a dilatometer for temperature modulated isothermal and non-isothermal measurements in the temperature range from room temperature to 1300 K is presented. The length measuring system is based on a two-beam Michelson laser interferometer with an incremental resolution of 20 pm. The non-contact measurement principle allows for resolving sinusoidal length change signals with amplitudes in the sub-500 nm range and physically decouples the length measuring system from the temperature modulation and heating control. To demonstrate the low-amplitude capabilities, results for the thermal expansion of nickel for two different modulation frequencies are presented. These results prove that the novel method can be used to routinely resolve length-change signals of metallic samples with temperature amplitudes well below 1 K. This high resolution in combination with the non-contact measurement principle significantly extends the application range of modulated dilatometry towards high-stability phase transformation measurements on complex alloys.

  1. Non-contact measurements of water jet spreading width with a laser instrument

    NASA Astrophysics Data System (ADS)

    Funami, Yuki; Hasuya, Ryo; Tanabe, Kotaro; Nakanishi, Yuji

    2016-08-01

    Jet spreading width is one of the important characteristics of water jets discharging into the air. Many researchers have dealt with measuring this width, and contact measuring methods on the water jet surface were employed in a lot of the cases. In order to avoid undesirable effects caused by the contact on the jet surface, we introduce non-contact measuring methods with a laser instrument to the measurements of jet spreading width. In measurements, a transmitter emits sheet-like laser beam to a receiver. The water jet between the transmitter and the receiver interrupts the laser beam and makes a shadow. The minimum and maximum values of the shadow width are measured. In addition, pictures of the water jet are taken with a scale, and the shadow width is measured from the pictures. The experiments on various needle strokes were performed. Three kinds of width consistent with the jet structure were obtained. In the results, it can be concluded that our non-contact measuring methods are feasible. The data of jet spreading widths and jet taper were obtained and are useful for future applications.

  2. Looking to the Future: Non-contact Methods for Measuring Streamflow

    USGS Publications Warehouse

    Costa, J.E.; Cheng, R.T.; Haeni, F.P.; Melcher, N.B.; Spicer, K.R.; Plant, J.; Keller, W.C.; Hayes, K.; Wahl, T.L.; Pugh, C.A.; Oberg, K.A.; Vermeyen, T.B.

    2002-01-01

    We have conducted a series of proof-of-concept experiments to demonstrate whether it is possible to make completely non-contact open-channel discharge measurements. After an extensive evaluation of potential technologies, we concluded a combination of high-frequency (microwave) radar (for measuring surface velocity) and low-frequency radar (ground-penetrating radar) for measuring channel cross-section, had the best chance for success. The first experiment in 1999 on the Skagit River, Washington, using non-contact methods, produced a discharge value nearly exactly the same as from an ADCP and current meter. Surface-velocity data were converted to mean velocity based on measurements of the velocity profile (multiplied by 0.85), and radar signal speed in impure fresh water was measured to be 0.11-0.12 ft/ns. The weak link was thought to be the requirement to suspend the GPR antenna over the water, which required a bridge or cableway. Two contractors, expert with radar, were unsuccessful in field experiments to measure channel cross-section from the riverbank. Another series of experiments were designed to demonstrate whether both radar systems could be mounted on a helicopter, flown back and forth across a river, and provide data to compute flow. In Sept. 2000 and May 2001, a series of helicopter flights with mounted radar systems successfully measured surface velocity and channel cross-section of the Cowlitz River, Washington.

  3. Non-Contact Measurement of Density and Thickness Variation in Dielectric Materials

    NASA Technical Reports Server (NTRS)

    Roth, Ron

    2009-01-01

    This non-contact, single-sided terahertz electromagnetic measurement and imaging method characterizes micro structural (e.g., spatially-lateral density) and thickness variation in dielectric (insulating) materials. This method was demonstrated for space shuttle external tank sprayed-on foam insulation and has been designed for use as an inspection method for current and future NASA thermal protection systems and other dielectric material inspection applications where no contact can be made with the sample due to fragility and it is impractical to use ultrasonic methods

  4. Solid state lasers for use in non-contact temperature measurements

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.

    1989-01-01

    The last decade has seen a series of dramatic developments in solid state laser technology. Prominent among these has been the emergence of high power semiconductor laser diode arrays and a deepening understanding of the dynamics of solid state lasers. Taken in tandem these two developments enable the design of laser diode pumped solid state lasers. Pumping solid state lasers with semiconductor diodes relieves the need for cumbersome and inefficient flashlamps and results in an efficient and stable laser with the compactness and reliability. It provides a laser source that can be reliably used in space. These new coherent sources are incorporated into the non-contact measurement of temperature. The primary focus is the development and characterization of new optical materials for use in active remote sensors of the atmosphere. In the course of this effort several new materials and new concepts were studied which can be used for other sensor applications. The general approach to the problem of new non-contact temperature measurements has had two components. The first component centers on passive sensors using optical fibers; an optical fiber temperature sensor for the drop tube was designed and tested at the Marshall Space Flight Center. Work on this problem has given insight into the use of optical fibers, especially new IR fibers, in thermal metrology. The second component of the effort is to utilize the experience gained in the study of passive sensors to examine new active sensor concepts. By active sensor are defined as a sensing device or mechanism which is interrogated in some way be radiation, usually from a laser. The status of solid state lasers as sources for active non-contact temperature sensors are summarized. Some specific electro-optic techniques are described which are applicable to the sensor problems at hand. Work on some of these ideas is in progress while other concepts are still being worked out.

  5. Non-contact automatic measurement of free-form surface profiles on CNC machines

    NASA Astrophysics Data System (ADS)

    Fan, Kuang-Chao; Wen, Kuang-Pu

    1993-09-01

    This paper describes the work to develop a non-contact type automatic measurement system for any free-form surfaces on a CNC machine tool or a coordinate measuring machine (CMM) and its CAD/CAM integration. A laser probe made by Keyence Co. model LC-2220 was integrated into the CNC machine as the non-contact sensor. A measurement software has been developed for automatic surface tracing of any free-form profile. Data transfer to any commercially available CAD/CAM system for reverse engineering is also available via proper DXF file. Extensive calibration work has been carried out on the systematic accuracy of the laser probe with respect to the color material surface slope and edge detection of the workpiece by the use of a HP5528 laser interferometer system. Having employed the surface painting technique the shape error of the copied object relative to its master piece was found within 30 micrometers which is deemed adequate enough to the mold industry.

  6. Non-contact measurement of an object's angular position by means of laser goniometer

    NASA Astrophysics Data System (ADS)

    Filatov, Yu. V.; Nikolaev, M. S.; Pavlov, P. A.; Venediktov, V. Y.

    2014-10-01

    The report presents results of analysis and experimental research of the laser goniometer in the mode of operation - noncontact measurements of an object's angular position. An important feature of this mode is an extremely large range of measurement with high accuracy. With the usual resolution of about 0,1 arcs the laser goniometer has in this mode of operation an essential advantage against photo-electric autocollimators with their rather small measuring range. Obtained results confirm that the laser dynamic goniometer using in the mode of non-contact measurement of an object's angular position can be characterized by the range of angle measurements up to 15…20 deg and accuracy of constant angles on the level 0,05…0,1 arcs. The error of angles changing in time has additional components on the level of 0,2 arcs connected with influence of optical polygon face unflatness and difficulties of use the statistical averaging of measurement results.

  7. Non-contact direct measurement of the magnetocaloric effect in thin samples

    SciTech Connect

    Cugini, F. Porcari, G.; Solzi, M.

    2014-07-15

    An experimental setup, based on a non-contact temperature sensor, is proposed to directly measure the magnetocaloric effect of samples few micrometers thick. The measurement of the adiabatic temperature change of foils and ribbons is fundamental to design innovative devices based on magnetocaloric thin materials or micro-structuring bulk samples. The reliability of the proposed setup is demonstrated by comparing the measurements performed on a bulk gadolinium sample with the results obtained by an experimental setup based on a Cernox bare chip thermoresistance and by in-field differential scanning calorimetry. We show that this technique can measure the adiabatic temperature variation on gadolinium sheets as thin as 27 μm. Heat transfer simulations are added to describe the capability of the presented technique.

  8. Non-contact direct measurement of the magnetocaloric effect in thin samples.

    PubMed

    Cugini, F; Porcari, G; Solzi, M

    2014-07-01

    An experimental setup, based on a non-contact temperature sensor, is proposed to directly measure the magnetocaloric effect of samples few micrometers thick. The measurement of the adiabatic temperature change of foils and ribbons is fundamental to design innovative devices based on magnetocaloric thin materials or micro-structuring bulk samples. The reliability of the proposed setup is demonstrated by comparing the measurements performed on a bulk gadolinium sample with the results obtained by an experimental setup based on a Cernox bare chip thermoresistance and by in-field differential scanning calorimetry. We show that this technique can measure the adiabatic temperature variation on gadolinium sheets as thin as 27 μm. Heat transfer simulations are added to describe the capability of the presented technique. PMID:25085161

  9. Non-contact measurement of pulse wave velocity using RGB cameras

    NASA Astrophysics Data System (ADS)

    Nakano, Kazuya; Aoki, Yuta; Satoh, Ryota; Hoshi, Akira; Suzuki, Hiroyuki; Nishidate, Izumi

    2016-03-01

    Non-contact measurement of pulse wave velocity (PWV) using red, green, and blue (RGB) digital color images is proposed. Generally, PWV is used as the index of arteriosclerosis. In our method, changes in blood volume are calculated based on changes in the color information, and is estimated by combining multiple regression analysis (MRA) with a Monte Carlo simulation (MCS) model of the transit of light in human skin. After two pulse waves of human skins were measured using RGB cameras, and the PWV was calculated from the difference of the pulse transit time and the distance between two measurement points. The measured forehead-finger PWV (ffPWV) was on the order of m/s and became faster as the values of vital signs raised. These results demonstrated the feasibility of this method.

  10. A review of non-contact, low-cost physiological information measurement based on photoplethysmographic imaging.

    PubMed

    Liu, He; Wang, Yadong; Wang, Lei

    2012-01-01

    In recent decades, there has been increasing interest in low-cost, non-contact and pervasive methods for measuring physiological information, such as heart rate (HR), respiratory rate, heart rate variability (HRV) and oxyhemoglobin saturation. The conventional methods including wet adhesive Ag/AgCl electrodes for HR and HRV, the capnograph device for respiratory status and pulse oximetry for oxyhemoglobin saturation provide excellent signals but are expensive, troublesome and inconvenient. A method to monitor physiological information based on photoplethysmographic imaging offers a new means for health monitoring. Blood volume can be indirectly assessed in terms of blood velocity, blood flow rate and blood pressure, which, in turn, can reflect changes in physiological parameters. Changes in blood volume can be determined from the spectra of light reflected from or transmitted through body tissues. Images of an area of the skin surface are consecutively captured with the color camera of a computer or smartphone and, by processing and analyzing the light signals, physiological information such as HR, respiratory rate, HRV and oxyhemoglobin saturation can be acquired. In this paper, we review the latest developments in using photoplethysmographic imaging for non-contact health monitoring and discuss the challenges and future directions for this field. PMID:23366332

  11. Common mode noise cancellation for electrically non-contact ECG measurement system on a chair.

    PubMed

    Keun Kim, Ko; Kyu Lim, Yong; Suk Park, Kwang

    2005-01-01

    Electrically non-contact ECG measurement system on a chair can be applied to a number of various fields for continuous health monitoring in daily life. However, the body is floated electrically for this system due to the capacitive electrodes and the floated body is very sensitive to the external noises or motion artifacts which affect the measurement system as the common mode noise. In this paper, the Driven-Seat-Ground circuit similar to the Driven-Right-Leg circuit is proposed to reduce the common mode noise. The analysis of this equivalent circuit is performed and the output signal waveforms are compared between with Driven-Seat-Ground and with capacitive ground. As the results, the Driven-Seat-Ground circuit improves significantly the properties of the fully capacitive ECG measurement system as the negative feedback.

  12. The non-contact precision measurement and noise reduction method for liquid volume metrology

    NASA Astrophysics Data System (ADS)

    Wang, Jintao; Liu, Ziyong; Tong, Lin; Zhang, Long; Guo, Ligong; Bao, Xuesong

    2011-12-01

    Liquid volume is one important metrology method for commercial transaction in international trade, and vertical tank is used as main metrology tool. One non-contact optical measurement system was raised by using laser scanning method. The coordinates of vertical tank shell were acquired by phase-shift ranging method and angular measurement, and the set of coordinates is named as data cloud. The measurement errors of distance and angle are 2mm and 2" respectively. Wavelet was applied to noise reduction and curve feature extraction for data cloud. Iterative method was used to deduce the radius at each course height. One 1000m3 vertical tank used as test object, comparison experiment was carried out with strap method (international arbitral standard). The experimental results show that the noise due to tank shell surface characteristics and laser scanning devices could be filtered satisfactorily, and the local curve features of tank shell were described correctly.

  13. Enhancement to Non-Contacting Stress Measurement of Blade Vibration Frequency

    NASA Technical Reports Server (NTRS)

    Platt, Michael; Jagodnik, John

    2011-01-01

    A system for turbo machinery blade vibration has been developed that combines time-of-arrival sensors for blade vibration amplitude measurement and radar sensors for vibration frequency and mode identification. The enabling technology for this continuous blade monitoring system is the radar sensor, which provides a continuous time series of blade displacement over a portion of a revolution. This allows the data reduction algorithms to directly calculate the blade vibration frequency and to correctly identify the active modes of vibration. The work in this project represents a significant enhancement in the mode identification and stress calculation accuracy in non-contacting stress measurement system (NSMS) technology when compared to time-of-arrival measurements alone.

  14. Non-contact passive temperature measuring system and method of operation using micro-mechanical sensors

    SciTech Connect

    2000-04-18

    A non-contact infrared thermometer measures target temperatures remotely without requiring the ratio of the target size to the target distance to the thermometer. A collection means collects and focuses target IR radiation on an IR detector. The detector measures thermal energy of the target over a spectrum using micromechanical sensors. A processor means calculates the collected thermal energy in at least two different spectral regions using a first algorithm in program form and further calculates the ratio of the thermal energy in the at least two different spectral regions to obtain the target temperature independent of the target size, distance to the target and emissivity using a second algorithm in program form.

  15. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials

    SciTech Connect

    Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.

    2015-11-03

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.

  16. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials

    DOE PAGES

    Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.

    2015-11-03

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying withmore » transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.« less

  17. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials

    PubMed Central

    Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.

    2015-01-01

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants. PMID:26527099

  18. Non-contact passive temperature measuring system and method of operation using micro-mechanical sensors

    DOEpatents

    Thundat, Thomas G.; Oden, Patrick I.; Datskos, Panagiotis G.

    2000-01-01

    A non-contact infrared thermometer measures target temperatures remotely without requiring the ratio of the target size to the target distance to the thermometer. A collection means collects and focusses target IR radiation on an IR detector. The detector measures thermal energy of the target over a spectrum using micromechanical sensors. A processor means calculates the collected thermal energy in at least two different spectral regions using a first algorithm in program form and further calculates the ratio of the thermal energy in the at least two different spectral regions to obtain the target temperature independent of the target size, distance to the target and emissivity using a second algorithm in program form.

  19. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials.

    PubMed

    Hofmann, F; Mason, D R; Eliason, J K; Maznev, A A; Nelson, K A; Dudarev, S L

    2015-01-01

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants. PMID:26527099

  20. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials.

    PubMed

    Hofmann, F; Mason, D R; Eliason, J K; Maznev, A A; Nelson, K A; Dudarev, S L

    2015-11-03

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.

  1. Magnetic induction spectroscopy: non-contact measurement of the electrical conductivity spectra of biological samples

    NASA Astrophysics Data System (ADS)

    Barai, A.; Watson, S.; Griffiths, H.; Patz, R.

    2012-08-01

    Measurement of the electrical conductivity of biological tissues as a function of frequency, often termed ‘bioelectrical impedance spectroscopy (BIS)’, provides valuable information on tissue structure and composition. In implementing BIS though, there can be significant practical difficulties arising from the electrode-sample interface which have likely limited its deployment in industrial applications. In magnetic induction spectroscopy (MIS) these difficulties are eliminated through the use of fully non-contacting inductive coupling between the sensors and sample. However, inductive coupling introduces its own set of technical difficulties, primarily related to the small magnitudes of the induced currents and their proportionality with frequency. This paper describes the design of a practical MIS system incorporating new, highly-phase-stable electronics and compares its performance with that of electrode-based BIS in measurements on biological samples including yeast suspensions in saline (concentration 50-400 g l-1) and solid samples of potato, cucumber, tomato, banana and porcine liver. The shapes of the MIS spectra were in good agreement with those for electrode-based BIS, with a residual maximum discrepancy of 28%. The measurement precision of the MIS was 0.05 S m-1 at 200 kHz, improving to 0.01 S m-1 at a frequency of 20 MHz, for a sample volume of 80 ml. The data-acquisition time for each MIS measurement was 52 s. Given the value of spectroscopic conductivity information and the many advantages of obtaining these data in a non-contacting manner, even through electrically-insulating packaging materials if necessary, it is concluded that MIS is a technique with considerable potential for monitoring bio-industrial processes and product quality.

  2. Non-Contact Thermal Properties Measurement with Low-Power Laser and IR Camera System

    NASA Technical Reports Server (NTRS)

    Hudson, Troy L.; Hecht, Michael H.

    2011-01-01

    As shown by the Phoenix Mars Lander's Thermal and Electrical Conductivity Probe (TECP), contact measurements of thermal conductivity and diffusivity (using a modified flux-plate or line-source heat-pulse method) are constrained by a number of factors. Robotic resources must be used to place the probe, making them unavailable for other operations for the duration of the measurement. The range of placement is also limited by mobility, particularly in the case of a lander. Placement is also subject to irregularities in contact quality, resulting in non-repeatable heat transfer to the material under test. Most important from a scientific perspective, the varieties of materials which can be measured are limited to unconsolidated or weakly-cohesive regolith materials, rocks, and ices being too hard for nominal insertion strengths. Accurately measuring thermal properties in the laboratory requires significant experimental finesse, involving sample preparation, controlled and repeatable procedures, and, practically, instrumentation much more voluminous than the sample being tested (heater plates, insulation, temperature sensors). Remote measurements (infrared images from orbiting spacecraft) can reveal composite properties like thermal inertia, but suffer both from a large footprint (low spatial resolution) and convolution of the thermal properties of a potentially layered medium. In situ measurement techniques (the Phoenix TECP is the only robotic measurement of thermal properties to date) suffer from problems of placement range, placement quality, occupation of robotic resources, and the ability to only measure materials of low mechanical strength. A spacecraft needs the ability to perform a non-contact thermal properties measurement in situ. Essential components include low power consumption, leveraging of existing or highly-developed flight technologies, and mechanical simplicity. This new in situ method, by virtue of its being non-contact, bypasses all of these

  3. A Non-Contact Measurement System for the Range of Motion of the Hand

    PubMed Central

    Pham, Trieu; Pathirana, Pubudu N.; Trinh, Hieu; Fay, Pearse

    2015-01-01

    An accurate and standardised tool to measure the active range of motion (ROM) of the hand is essential to any progressive assessment scenario in hand therapy practice. Goniometers are widely used in clinical settings for measuring the ROM of the hand. However, such measurements have limitations with regard to inter-rater and intra-rater reliability and involve direct physical contact with the hand, possibly increasing the risk of transmitting infections. The system proposed in this paper is the first non-contact measurement system utilising Intel Perceptual Technology and a Senz3D Camera for measuring phalangeal joint angles. To enhance the accuracy of the system, we developed a new approach to achieve the total active movement without measuring three joint angles individually. An equation between the actual spacial position and measurement value of the proximal inter-phalangeal joint was established through the measurement values of the total active movement, so that its actual position can be inferred. Verified by computer simulations, experimental results demonstrated a significant improvement in the calculation of the total active movement and successfully recovered the actual position of the proximal inter-phalangeal joint angles. A trial that was conducted to examine the clinical applicability of the system involving 40 healthy subjects confirmed the practicability and consistency in the proposed system. The time efficiency conveyed a stronger argument for this system to replace the current practice of using goniometers. PMID:26225976

  4. Non-contact measurement of facial surface vibration patterns during singing by scanning laser Doppler vibrometer

    PubMed Central

    Kitamura, Tatsuya; Ohtani, Keisuke

    2015-01-01

    This paper presents a method of measuring the vibration patterns on facial surfaces by using a scanning laser Doppler vibrometer (LDV). The surfaces of the face, neck, and body vibrate during phonation and, according to Titze (2001), these vibrations occur when aerodynamic energy is efficiently converted into acoustic energy at the glottis. A vocalist's vibration velocity patterns may therefore indicate his or her phonatory status or singing skills. LDVs enable laser-based non-contact measurement of the vibration velocity and displacement of a certain point on a vibrating object, and scanning LDVs permit multipoint measurements. The benefits of scanning LDVs originate from the facts that they do not affect the vibrations of measured objects and that they can rapidly measure the vibration patterns across planes. A case study is presented herein to demonstrate the method of measuring vibration velocity patterns with a scanning LDV. The objective of the experiment was to measure the vibration velocity differences between the modal and falsetto registers while three professional soprano singers sang sustained vowels at four pitch frequencies. The results suggest that there is a possibility that pitch frequency are correlated with vibration velocity. However, further investigations are necessary to clarify the relationships between vibration velocity patterns and phonation status and singing skills. PMID:26579054

  5. Non-contact measurement of facial surface vibration patterns during singing by scanning laser Doppler vibrometer.

    PubMed

    Kitamura, Tatsuya; Ohtani, Keisuke

    2015-01-01

    This paper presents a method of measuring the vibration patterns on facial surfaces by using a scanning laser Doppler vibrometer (LDV). The surfaces of the face, neck, and body vibrate during phonation and, according to Titze (2001), these vibrations occur when aerodynamic energy is efficiently converted into acoustic energy at the glottis. A vocalist's vibration velocity patterns may therefore indicate his or her phonatory status or singing skills. LDVs enable laser-based non-contact measurement of the vibration velocity and displacement of a certain point on a vibrating object, and scanning LDVs permit multipoint measurements. The benefits of scanning LDVs originate from the facts that they do not affect the vibrations of measured objects and that they can rapidly measure the vibration patterns across planes. A case study is presented herein to demonstrate the method of measuring vibration velocity patterns with a scanning LDV. The objective of the experiment was to measure the vibration velocity differences between the modal and falsetto registers while three professional soprano singers sang sustained vowels at four pitch frequencies. The results suggest that there is a possibility that pitch frequency are correlated with vibration velocity. However, further investigations are necessary to clarify the relationships between vibration velocity patterns and phonation status and singing skills.

  6. Non-contacting Measurement of Oil Film Thickness Between Loaded Metallic Gear Teeth

    NASA Astrophysics Data System (ADS)

    Cox, Daniel B.; Ceccio, Steven L.; Dowling, David R.

    2013-11-01

    The mechanical power transmission efficiency of gears is depends on the lubrication condition between gear teeth. While the lubrication levels can be generally predicted, an effective in-situ non-contacting measurement of oil film thicknesses between loaded metallic gear teeth has proved elusive. This study explores a novel oil film thickness measurement technique based on optical fluence, the light energy transmitted between loaded gear teeth. A gear testing apparatus that allowed independent control of gear rotation rate, load torque, and oil flow was designed and built. Film thickness measurements made with 5-inch-pitch-diameter 60-tooth spur gears ranged from 0.3 to 10.2 mil. These results are compared with film thickness measurements made in an earlier investigation (MacConochie and Cameron, 1960), as well as with predictions from two film thickness models: a simple two-dimensional squeezed oil film and the industry-accepted model as described by the American Gear Manufacturers Association (AGMA 925, 2003). In each case, the measured film thicknesses were larger than the predicted thicknesses, though these discrepancies might be attributed to the specifics the experiments and to challenges associated with calibrating the fluence measurements. [Sponsored by General Electric].

  7. Non-contact strip speed measurement using electrostatic sensing and correlation signal-processing techniques

    NASA Astrophysics Data System (ADS)

    Yan, Yong; Rodrigues, Shaun J.; Xie, Zizhuo

    2011-07-01

    Accurate and reliable strip speed measurement is desirable in many manufacturing industries for both monitoring and control purposes. This paper presents the recent development in non-contact measurement of strip speed using electrostatic sensors in combination with correlation signal-processing techniques. A pair of metal electrodes is used to obtain signals from the moving strip. The speed of the strip is then determined from the known fixed spacing between the electrodes and the time delay between the two signals. Experimental tests were conducted on a motorized strip speed test rig under a range of conditions. An optical tachometer was used as a reference instrument to gauge the accuracy of the strip speed measurement system. The system design considerations, advantages and limitations are addressed. Results demonstrate that the system is capable of measuring strip speed robustly with a relative error not greater than ±1.8% and a repeatability of 2.5% over the speed range of 0.8 to 10 m s-1.

  8. Non-contact skin emissivity: measurement from reflectance using step change in ambient radiation temperature.

    PubMed

    Togawa, T

    1989-02-01

    A method of estimating skin emissivity based on reflectance measurement upon transient stepwise change in the ambient radiation temperature was proposed. To effect this change, two shades at different temperatures were switched mechanically, and the change in radiation from the skin surface was recorded through an aperture for each shade by a high-resolution, fast-response radiometer having a sensitivity within the 8-14 microns range. Measurements were made on the forehead, forearm, palm and back of the hand in 10 male and 10 female subjects. No significant differences in emissivity were observed among sites and between sexes. The overall average of the skin emissivity obtained was 0.971 +/- 0.005 (SD). This result is inconsistent with most reported skin emissivity values. However, as the former studies had many inherent inadequacies, both theoretical and experimental, it is considered that most of these reported skin emissivities are unacceptable. The method proposed in this study has the following advantages: (1) relative calibration between instruments is unnecessary, (2) non-contact measurement can be achieved, and (3) each measurement can be made within one minute.

  9. Wireless non-contact measurement of human's heartbeat and bloodflow with microwave interferometry

    NASA Astrophysics Data System (ADS)

    Nguyen, Andrew

    2009-03-01

    We present a technique for measuring human's heart beat and blood flow. The technique is based on interferometry at radio frequency (RF) and can produce very fine resolution and fast response. RF interferometry is a process detecting the change of phase and capable of resolving any physical quantity being measured within a fraction of the operating wavelength. It has relatively faster system response time than other techniques due to the fact that it is typically operated with a single-frequency source rather than across a frequency range. In measurement of heart beat and blood flow in the human body, a RF signal is used as the irradiating source and the change of the phase of the return signal over time is detected in the signal processing. This phase change is processed to extract the Doppler frequency shift used for calculating the heart beat or blood flow. Accurate wireless non-contact measurement of human's heart beat and blood flow with RF interferometry will advance the practice of medicine and promise substantial benefits to patients and medical professionals.

  10. Non-contact C-V measurements of ultra thin dielectrics

    NASA Astrophysics Data System (ADS)

    Edelman, P.; Savtchouk, A.; Wilson, M.; D'Amico, J.; Kochey, J. N.; Marinskiy, D.; Lagowski, J.

    2004-07-01

    In this paper, we present a non-contact C-V technique for ultra-thin dielectrics on silicon. The technique uses incremental corona charging of dielectric and a measurement of the surface potential with a vibrating capacitive electrode. A differential quasistatic C-V curve is generated using time-resolved measurements. The technique incorporates transconductance corrections that enable corresponding ultra-low electrical oxide thickness (EOT) determination down to the sub-nanometer range. It also provides a means for monitoring the flat band voltage, V{FB}, the interface trap spectrum, D{IT}, and the total dielectric charge, Q{TOT}. This technique is seen as a replacement for not only MOS C-V measurements but also for mercury-probe C-V. In addition, EOT measurement by the corona C-V has a major advantage over optical thickness methods because it is not affected by water adsorption and molecular airborne contamination, MAC. These effects have been a problem for optical metrology of ultra-thin dielectrics.

  11. The non-contact heart rate measurement system for monitoring HRV.

    PubMed

    Huang, Ji-Jer; Yu, Sheng-I; Syu, Hao-Yi; See, Aaron Raymond

    2013-01-01

    A noncontact ECG monitoring and analysis system was developed using capacitive-coupled device integrated to a home sofa. Electrodes were placed on the backrest of a sofa separated from the body with only the chair covering and the user's clothing. The study also incorporates measurements using different fabric materials, and a pure cotton material was chosen to cover the chair's backrest. The material was chosen to improve the signal to noise ratio. The system is initially implemented on a home sofa and is able to measure non-contact ECG through thin cotton clothing and perform heart rate analysis to calculate the heart rate variability (HRV) parameters. It was also tested under different conditions and results from reading and sleeping exhibited a stable ECG. Subsequently, results from our calculated HRV were found to be identical to those of a commercially available HRV analyzer. However, HRV parameters are easily affected by motion artifacts generated during drinking or eating with the latter producing a more severe disturbance. Lastly, parameters measured are saved on a cloud database, providing users with a long-term monitoring and recording for physiological information.

  12. Non-contact surface resistivity measurement for materials greater than 109 Ω

    NASA Astrophysics Data System (ADS)

    Sugimoto, Toshiyuki; Taguchi, Koichi

    2015-10-01

    A non-contact surface resistivity probe for materials with resistivity greater than 109 Ω has been developed using surface potential measurement combined with corona charging. The probe is composed of a grid type corona charger and a surface voltmeter located next to the charger. A test material was placed below the probe without contact to the material at a gap of 2 mm. The time variation of the surface potential and the saturation surface potential beneath the charged area are theoretically a function of the surface resistivity; therefore, measurement of the rise time and the saturation potential can be used to predict the surface resistivity in the ranges of lower and higher surface resistivity, respectively. The calibration equation for the probe was determined by solving the circuit equation for a one-dimensional simple circuit model and by extension of the simple model to the actual probe arrangement using experimentally derived constants. The lower surface resistivity, ρsal (from 109 to 8×1013 Ω), can be predicted from ρs = 1.0×1011×Tm1.64 using a 63% rise time, Tm. The higher surface resistivity, ρsah (from 8×1013 to 1016 Ω), can be predicted using the equation ρs = 3.0×1014×Vm1.70 with the converted surface potential, Vm.

  13. Contact Versus Non-Contact Measurement of a Helicopter Main Rotor Composite Blade

    SciTech Connect

    Luczak, Marcin; Dziedziech, Kajetan; Peeters, Bart; Van der Auweraer, Herman; Vivolo, Marianna; Desmet, Wim

    2010-05-28

    The dynamic characterization of lightweight structures is particularly complex as the impact of the weight of sensors and instrumentation (cables, mounting of exciters...) can distort the results. Varying mass loading or constraint effects between partial measurements may determine several errors on the final conclusions. Frequency shifts can lead to erroneous interpretations of the dynamics parameters. Typically these errors remain limited to a few percent. Inconsistent data sets however can result in major processing errors, with all related consequences towards applications based on the consistency assumption, such as global modal parameter identification, model-based damage detection and FRF-based matrix inversion in substructuring, load identification and transfer path analysis [1]. This paper addresses the subject of accuracy in the context of the measurement of the dynamic properties of a particular lightweight structure. It presents a comprehensive comparative study between the use of accelerometer, laser vibrometer (scanning LDV) and PU-probe (acoustic particle velocity and pressure) measurements to measure the structural responses, with as final aim the comparison of modal model quality assessment. The object of the investigation is a composite material blade from the main rotor of a helicopter. The presented results are part of an extensive test campaign performed with application of SIMO, MIMO, random and harmonic excitation, and the use of the mentioned contact and non-contact measurement techniques. The advantages and disadvantages of the applied instrumentation are discussed. Presented are real-life measurement problems related to the different set up conditions. Finally an analysis of estimated models is made in view of assessing the applicability of the various measurement approaches for successful fault detection based on modal parameters observation as well as in uncertain non-deterministic numerical model updating.

  14. Non-contact strain measurement in the mouse forearm loading model using digital image correlation (DIC).

    PubMed

    Begonia, Mark T; Dallas, Mark; Vizcarra, Bruno; Liu, Ying; Johnson, Mark L; Thiagarajan, Ganesh

    2015-12-01

    This study investigates the use of a non-contact method known as digital image correlation (DIC) to measure strains in the mouse forearm during axial compressive loading. A two camera system was adapted to analyze the medial and lateral forearm displacements simultaneously, and the derived DIC strain measurements were compared to strain gage readings from both the ulna and radius. Factors such as region-of-interest (ROI) location, lens magnification, noise, and out-of-plane motion were examined to determine their influence on the DIC strain measurements. We confirmed that our DIC system can differentiate ROI locations since it detected higher average strains in the ulna compared to the radius and detected compressive strains on medial bone surfaces vs. tensile strains on lateral bone surfaces. Interestingly, the DIC method also captured heterogeneity in surface strain fields which are not detectable by strain gage based methods. A separate analysis of the noise intrinsic to the DIC system also revealed that the noise constituted less than 4.5% of all DIC strain measurements. Furthermore, finite element (FE) simulations of the forearm showed that out-of-plane motion was not a significant factor that influenced DIC measurements. Finally, we observed that average DIC strain measurements can be up to 1.5-2 times greater than average strain gage readings on the medial bone surfaces. These findings suggest that strain experienced in the mouse forearm model by loading is better captured through DIC as opposed to strain gages, which as a result of being glued to the bone surface artificially stiffen the bone and lead to an underestimation of the strain response. PMID:26388521

  15. Non-contact strain measurement in the mouse forearm loading model using digital image correlation (DIC).

    PubMed

    Begonia, Mark T; Dallas, Mark; Vizcarra, Bruno; Liu, Ying; Johnson, Mark L; Thiagarajan, Ganesh

    2015-12-01

    This study investigates the use of a non-contact method known as digital image correlation (DIC) to measure strains in the mouse forearm during axial compressive loading. A two camera system was adapted to analyze the medial and lateral forearm displacements simultaneously, and the derived DIC strain measurements were compared to strain gage readings from both the ulna and radius. Factors such as region-of-interest (ROI) location, lens magnification, noise, and out-of-plane motion were examined to determine their influence on the DIC strain measurements. We confirmed that our DIC system can differentiate ROI locations since it detected higher average strains in the ulna compared to the radius and detected compressive strains on medial bone surfaces vs. tensile strains on lateral bone surfaces. Interestingly, the DIC method also captured heterogeneity in surface strain fields which are not detectable by strain gage based methods. A separate analysis of the noise intrinsic to the DIC system also revealed that the noise constituted less than 4.5% of all DIC strain measurements. Furthermore, finite element (FE) simulations of the forearm showed that out-of-plane motion was not a significant factor that influenced DIC measurements. Finally, we observed that average DIC strain measurements can be up to 1.5-2 times greater than average strain gage readings on the medial bone surfaces. These findings suggest that strain experienced in the mouse forearm model by loading is better captured through DIC as opposed to strain gages, which as a result of being glued to the bone surface artificially stiffen the bone and lead to an underestimation of the strain response.

  16. Advanced video extensometer for non-contact, real-time, high-accuracy strain measurement.

    PubMed

    Pan, Bing; Tian, Long

    2016-08-22

    We developed an advanced video extensometer for non-contact, real-time, high-accuracy strain measurement in material testing. In the established video extensometer, a "near perfect and ultra-stable" imaging system, combining the idea of active imaging with a high-quality bilateral telecentric lens, is constructed to acquire high-fidelity video images of the test sample surface, which is invariant to ambient lighting changes and small out-of-plane motions occurred between the object surface and image plane. In addition, an efficient and accurate inverse compositional Gauss-Newton algorithm incorporating a temporal initial guess transfer scheme and a high-accuracy interpolation method is employed to achieve real-time, high-accuracy displacement tracking with negligible bias error. Tensile tests of an aluminum sample and a carbon fiber filament sample were performed to demonstrate the efficiency, repeatability and accuracy of the developed advanced video extensometer. The results indicate that longitudinal and transversal strains can be estimated and plotted at a rate of 117 fps and with a maximum strain error less than 30 microstrains. PMID:27557188

  17. Non-contact Real-time heart rate measurements based on high speed circuit technology research

    NASA Astrophysics Data System (ADS)

    Wu, Jizhe; Liu, Xiaohua; Kong, Lingqin; Shi, Cong; Liu, Ming; Hui, Mei; Dong, Liquan; Zhao, Yuejin

    2015-08-01

    In recent years, morbidity and mortality of the cardiovascular or cerebrovascular disease, which threaten human health greatly, increased year by year. Heart rate is an important index of these diseases. To address this status, the paper puts forward a kind of simple structure, easy operation, suitable for large populations of daily monitoring non-contact heart rate measurement. In the method we use imaging equipment video sensitive areas. The changes of light intensity reflected through the image grayscale average. The light change is caused by changes in blood volume. We video the people face which include the sensitive areas (ROI), and use high-speed processing circuit to save the video as AVI format into memory. After processing the whole video of a period of time, we draw curve of each color channel with frame number as horizontal axis. Then get heart rate from the curve. We use independent component analysis (ICA) to restrain noise of sports interference, realized the accurate extraction of heart rate signal under the motion state. We design an algorithm, based on high-speed processing circuit, for face recognition and tracking to automatically get face region. We do grayscale average processing to the recognized image, get RGB three grayscale curves, and extract a clearer pulse wave curves through independent component analysis, and then we get the heart rate under the motion state. At last, by means of compare our system with Fingertip Pulse Oximeter, result show the system can realize a more accurate measurement, the error is less than 3 pats per minute.

  18. A non-contact temperature measurement system for controlling photothermal medical laser treatments

    NASA Astrophysics Data System (ADS)

    Kaya, Ã.-zgür; Gülsoy, Murat

    2016-03-01

    Photothermal medical laser treatments are extremely dependent on the generated tissue temperature. It is necessary to reach a certain temperature threshold to achieve successful results, whereas preventing to exceed an upper temperature value is required to avoid thermal damage. One method to overcome this problem is to use previously conducted dosimetry studies as a reference. Nevertheless, these results are acquired in controlled environments using uniform subjects. In the clinical environment, the optical and thermal characteristics (tissue color, composition and hydration level) vary dramatically among different patients. Therefore, the most reliable solution is to use a closed-loop feedback system that monitors the target tissue temperature to control laser exposure. In this study, we present a compact, non-contact temperature measurement system for the control of photothermal medical laser applications that is cost-efficient and simple to use. The temperature measurement is achieved using a focused, commercially available MOEMS infrared thermocouple sensor embedded in an off-axis arrangement on the laser beam delivery hand probe. The spot size of the temperature sensor is ca. 2.5 mm, reasonably smaller than the laser spot sizes used in photothermal medical laser applications. The temperature readout and laser control is realized using a microcontroller for fast operation. The utilization of the developed system may enable the adaptation of several medical laser treatments that are currently conducted only in controlled laboratory environments into the clinic. Laser tissue welding and cartilage reshaping are two of the techniques that are limited to laboratory research at the moment. This system will also ensure the safety and success of laser treatments aiming hyperthermia, coagulation and ablation, as well as LLLT and PDT.

  19. Non-contact optical measurement of lens capsule thickness during simulated accommodation

    NASA Astrophysics Data System (ADS)

    Ziebarth, Noel; Manns, Fabrice; Acosta, Ana-Carolina; Parel, Jean-Marie

    2005-04-01

    Purpose: To non-invasively measure the thickness of the anterior and posterior lens capsule, and to determine if it significantly changes during accommodation. Methods: Anterior and posterior capsule thickness was measured on post-mortem lenses using a non-contact optical system using a focus-detection technique. The optical system uses a 670nm laser beam delivered to a single-mode fiber coupler. The output of the fiber coupler is focused on the tissue surface using an aspheric lens (NA=0.68) mounted on a translation stage with a motorized actuator. Light reflected from the sample surface is collected by the fiber coupler and sent to a photoreceiver connected to a computer-controlled data acquisition system. Optical intensity peaks are detected when the aspheric lens is focused on the capsule boundaries. The capsule thickness is equal to the distance traveled between two peaks multiplied by the capsule refractive index. Anterior and posterior lens capsule thickness measurements were performed on 18 cynomolgus (age average: 6+/-1 years, range: 4-7 years) eyes, 1 rhesus (age: 2 years) eye, and 12 human (age average: 65+/-16, range: 47-92) eyes during simulated accommodation. The mounted sample was placed under the focusing objective of the optical system so that the light was incident on the center pole. Measurements were taken of the anterior lens capsule in the unstretched and the stretched 5mm states. The lens was flipped, and the same procedure was performed for the posterior lens capsule. Results: The precision of the optical system was determined to be +/-0.5um. The resolution is 4um and the sensitivity is 52dB. The human anterior lens capsule thickness was 6.0+/-1.2um unstretched and 4.9+/-0.9um stretched (p=0.008). The human posterior lens capsule was 5.7+/-1.2um unstretched and 5.7+/-1.4um stretched (p=0.974). The monkey anterior lens capsule thickness was 5.9+/-1.9um unstretched and 4.8+/-1.0um stretched (p=0.002). The monkey posterior lens capsule was 5

  20. Stiffness Coefficients Measurement of Cylindrical Rods by Laser Ultrasonics

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Rossignol, C.; Audoin, B.

    2004-02-01

    A non-contact laser-ultrasonic technique is applied to the nondestructive measurement of the stiffness properties of cylindrical rods. Acoustic waves generated in a cylinder by a laser line source under thermoelastic regime are identified by the comparison between experiment and theory. Two stiffness coefficients c11 and c12 are determined by measuring the arrival time of the reflected longitudinal wave (LL) and that of the head wave (HW). The effects of laser beamwidth and time duration on the measurement are found by numerical simulations. For such an application, a radius of 0.3 mm appears as a minimum limit for the sample size using a laser source of 0.1 mm beamwidth and 20 ns time duration. Stiffness coefficients of three aluminum rods are experimentally measured with good accuracy.

  1. Strategy for non-contact freeform measurements with a cylinder coordinate measuring instrument

    NASA Astrophysics Data System (ADS)

    Beutler, A.

    2015-10-01

    The strategy for measuring and analyzing freeforms with a new high precision cylinder coordinate measuring instrument equipped with an optical point sensor is presented. As freeforms compared to aspheres are not rotationally symmetric considering outline and shape the measuring process has to be designed in new ways. In addition fiducials on the sample or fixture have to be measured to determine position and orientation, i.e. a coordinate system, of the sample. In the following analysis process this coordinate system has to be taken into account. The performance of the measuring instrument is demonstrated and measuring results of different samples are shown.

  2. Antennas for Terahertz Applications: Focal Plane Arrays and On-chip Non-contact Measurement Probes

    NASA Astrophysics Data System (ADS)

    Trichopoulos, Georgios C.

    . Additionally, a butterfly-shaped antenna layout is introduced that enables broadband imaging. The alternative design presented here, allows for video-rate imaging in the 0.6--1.2 THz band and maintains a small antenna footprint, resulting in densely packed FPAs. In both antenna designs, we optimize the impedance matching between the antennas and the integrated electronic devices, thus achieving optimum responsivity levels for high sensitivity and low noise performance. Subsequently, we present the design details of the first THz camera and the first THz camera images captured. With the realized THz camera, imaging of concealed objects is achieved with <1mm diffraction limited spatial resolution. Moreover, motivated by the THz camera's real-time image acquisition, we developed the first camera-based THz computer tomography system that allows rapid cross-sectional imaging (˜2 min). For the design and analysis of the THz camera performance, we developed an in-house hybrid electromagnetic model, combining full-wave and high-frequency computational methods. The antenna radiation and impedance computation is first carried out using full-wave modeling of the FPA. Subsequently, we employ scalar diffraction theory to compute the field distribution at any point in space. Thus, the hybrid electromagnetic model allows fast and accurate design of THz antennas and modeling of the complete THz imaging system. Finally, motivated by the novel THz antenna layouts and the quasioptical techniques, we developed a novel non-contact probe measurement method for on-chip device characterization. In the THz regime, traditional contact probes are too small and fragile, thus inhibiting accurate and reliable circuit measurements. By integrating the device under test (DUT) with THz antennas that act as the measurement probes, we may couple the incident and reflected signal from and to the network analyzer without residing to any physical connection.

  3. Non-contact large-scale separated surfaces flatness measurement by using laser beam and laser distance sensor

    NASA Astrophysics Data System (ADS)

    Li, Xudong; Fan, Bo; Jiang, Hongzhi; Zhao, Huijie

    2015-07-01

    Large-scale separated surface is very common in modern manufacturing industry. The measurement of the flatness of such surfaces is one of the most important procedures when evaluating the manufacturing quality. Usually, the measurement needs to be accomplished in an in-situ and non-contact way. Although there are many conventional approaches such as autocollimator, capacitance displacement sensor and even CMM, they can not meet the needs from the separated surfaces measurement either because of their contact-nature or inapplicable to separated surfaces. A non-contact large-scale separated surfaces flatness measurement device utilizing laser beam and laser distance sensor (LDS) is proposed. The laser beam is rotated to form an optical reference plane. The LDS is used to measure the distance between the surface and the sensor accurately. A Position Sensitive Detector (PSD) is mounted with the LDS firmly to determine the distance between the LDS and the reference plane and then the distance between the surface and the reference plane can be obtained by subtracting the two distances. The device can be easily mounted on a machine-tool spindle and is moved to measure all the separated surfaces. Then all the data collected are used to evaluate the flatness of these separated surfaces. The accuracy analysis, the corresponding flatness evaluation algorithm, the prototype construction and experiments are also discussed. The proposed approach and device feature as high accuracy, in-situ usage and the higher degree of automatic measurement, and can be used in the areas that call for non-contact and separated surfaces measurement.

  4. High-precision Non-Contact Measurement of Creep of Ultra-High Temperature Materials for Aerospace

    NASA Technical Reports Server (NTRS)

    Rogers, Jan R.; Hyers, Robert

    2008-01-01

    For high-temperature applications (greater than 2,000 C) such as solid rocket motors, hypersonic aircraft, nuclear electric/thermal propulsion for spacecraft, and more efficient jet engines, creep becomes one of the most important design factors to be considered. Conventional creep-testing methods, where the specimen and test apparatus are in contact with each other, are limited to temperatures approximately 1,700 C. Development of alloys for higher-temperature applications is limited by the availability of testing methods at temperatures above 2000 C. Development of alloys for applications requiring a long service life at temperatures as low as 1500 C, such as the next generation of jet turbine superalloys, is limited by the difficulty of accelerated testing at temperatures above 1700 C. For these reasons, a new, non-contact creep-measurement technique is needed for higher temperature applications. A new non-contact method for creep measurements of ultra-high-temperature metals and ceramics has been developed and validated. Using the electrostatic levitation (ESL) facility at NASA Marshall Space Flight Center, a spherical sample is rotated quickly enough to cause creep deformation due to centrifugal acceleration. Very accurate measurement of the deformed shape through digital image analysis allows the stress exponent n to be determined very precisely from a single test, rather than from numerous conventional tests. Validation tests on single-crystal niobium spheres showed excellent agreement with conventional tests at 1985 C; however the non-contact method provides much greater precision while using only about 40 milligrams of material. This method is being applied to materials including metals and ceramics for non-eroding throats in solid rockets and next-generation superalloys for turbine engines. Recent advances in the method and the current state of these new measurements will be presented.

  5. Experimental Methodology for Determining Turbomachinery Blade Damping Using Magnetic Bearing Excitation and Non-Contacting Optical Measurements

    NASA Technical Reports Server (NTRS)

    Provenza, Andrew J.; Duffy, Kirsten P.

    2010-01-01

    Experiments to determine the effects of turbomachinery fan blade damping concepts such as passively shunted piezoelectric materials on blade response are ongoing at the NASA Glenn Research Center. A vertical rotor is suspended and excited with active magnetic bearings (AMBs) usually in a vacuum chamber to eliminate aerodynamic forces. Electromagnetic rotor excitation is superimposed onto rotor PD-controlled support and can be fixed to either a stationary or rotating frame of reference. The rotor speed is controlled with an air turbine system. Blade vibrations are measured using optical probes as part of a Non-Contacting Stress Measurement System (NSMS). Damping is calculated from these measurements. It can be difficult to get accurate damping measurements using this experimental setup and some of the details of how to obtain quality results are seemingly nontrivial. The intent of this paper is to present those details.

  6. Application of the HHT Method to the Non-contact Thickness Measurement of an Axially Moving Thin Plate

    NASA Astrophysics Data System (ADS)

    Wu, Yangfang; Lu, Qianqian; Xia, Chunlin; Ding, Fan

    2016-06-01

    Non-contact thickness measuring systems can be found in a wide spectrum of technologies. In this paper, Hilbert-Huang transform method is used to analyze the real time signals of a measuring system which includes two round conveyor strings carrying a thin plate, a solar wafer as a sample under test. The vibrations of moving strings and the plate, which are sensitive to moving speed and initial tension in the string, are introduced briefly; the relevant analyses should be helpful for the system design. Using EMD-based time-domain filtering and complementary method, thickness variations and error bands are estimated for different cases. The results show that HHT method as an adaptive time-frequency method, should be potential in measurement engineering applications.

  7. Non-contact measurement of helicopter device position in wind tunnels with the use of optical videogrammetry method

    NASA Astrophysics Data System (ADS)

    Kuruliuk, K. A.; Kulesh, V. P.

    2016-10-01

    An optical videogrammetry method using one digital camera for non-contact measurements of geometric shape parameters, position and motion of models and structural elements of aircraft in experimental aerodynamics was developed. The tests with the use of this method for measurement of six components (three linear and three angular ones) of real position of helicopter device in wind tunnel flow were conducted. The distance between camera and test object was 15 meters. It was shown in practice that, in the conditions of aerodynamic experiment instrumental measurement error (standard deviation) for angular and linear displacements of helicopter device does not exceed 0,02° and 0.3 mm, respectively. Analysis of the results shows that at the minimum rotor thrust deviations are systematic and generally are within ± 0.2 degrees. Deviations of angle values grow with the increase of rotor thrust.

  8. A novel non-contact profiler design for measuring synchrotron radiation mirrors

    SciTech Connect

    Lin, Yao; Takacs, P.Z.; Furenlid, K.; DeBiasse, R.A. ); Wang, Run-Wen . Shanghai Inst. of Optics and Fine Mechanics)

    1990-08-01

    A novel optical profiler is described in this paper for measurement of surface profiles of synchrotron radiation (SR) mirrors. The measurement is based on a combination of an optical heterodyne technique and a precise phase measurement procedure without a reference surface. A Zeeman two-frequency He-Ne laser is employed as the light source. The common-path optical system, which uses a birefringent lens as the beam splitter, minimizes the effects of air turbulence, sample vibration and temperature variation. A special autofocus system allows the profiler to measure the roughness and shape of a sample surface. The optical system is mounted on a large linear air-bearing slide, and is capable of scanning over distances covering the spatial period range from several microns to nearly one meter with a high measurement accuracy. 9 refs., 5 figs.

  9. High-speed non-contact measuring apparatus for gauging the thickness of moving sheet material

    DOEpatents

    Grann, Eric B.; Holcomb, David E.

    2000-01-01

    An optical measurement apparatus is provided for measuring the thickness of a moving sheet material (18). The apparatus has a pair of optical measurement systems (21, 31) attached to opposing surfaces (14, 16) of a rigid support structure (10). A pair of high-power laser diodes (20,30) and a pair of photodetector arrays (22,32) are attached to the opposing surfaces. Light emitted from the laser diodes is reflected off of the sheet material surfaces (17, 19) and received by the respective photodetector arrays. An associated method for implementing the apparatus is also provided.

  10. Non-contact measurement of diamagnetic susceptibility change by a magnetic levitation technique

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Mogi, I.; Awaji, S.; Watanabe, K.

    2011-03-01

    A new method for measuring the temperature dependence of the diamagnetic susceptibility is described. It is based on the Faraday method and employs a magnetic levitation technique. The susceptibility of a magnetically levitating diamagnetic sample is determined from the product of the magnetic flux density and the field gradient at the levitating position observed using a micro CCD camera. The susceptibility of a sample during containerless melting and solidification can be measured to a precision of better than ±0.05%. The temperature dependence of the susceptibility of paraffin wax was measured by the magnetic levitation technique with an accuracy of ±0.25%. This method enables sensitive and contactless measurements of the diamagnetic susceptibility across the melting point with in situ observations.

  11. Non-contact high precision measurement of surface form tolerances and central thickness for optical elements

    NASA Astrophysics Data System (ADS)

    Lou, Ying

    2010-10-01

    The traditional contact measuring methods could not satisfy the current optical elements measuring requirements. Noncontact high precision measuring theory, principle and instrument of the surface form tolerances and central thickness for optical elements were studied in the paper. In comparison with other types of interferometers, such as Twyman-Green and Mach-Zehnder, a Fizeau interferometer has the advantages of having fewer optical components, greater accuracy, and is easier to use. Some relations among the 3/A(B/C), POWER/PV and N/ΔN were studied. The PV with POWER removed can be the reference number of ΔN. The chromatic longitudinal aberration of a special optical probe can be used for non-contanct central thickness measurement.

  12. Non-contact profiling for high precision fast asphere topology measurement

    NASA Astrophysics Data System (ADS)

    Petter, Jürgen; Berger, Gernot

    2013-04-01

    Quality control in the fabrication of high precision optics these days needs nanometer accuracy. However, the fast growing number of optics with complex aspheric shapes demands an adapted measurement method as existing metrology systems more and more reach their limits. In this contribution the authors present a unique and highly flexible approach for measuring spheric and aspheric optics with diameters from 2mm up to 420mm and with almost unlimited spheric departures. Based on a scanning point interferometer the system combines the high precision and the speed of an optical interferometer with the high form flexibility of a classical tactile scanning system. This enables the measurement of objects with steep or strongly changing slopes such as "pancake" or "gull wing" objects. The high accuracy of ±50nm over the whole surface is achieved by using a full reference concept ensuring the position control even over long scanning paths. The core of the technology is a multiwavelength interferometer (MWLI); by use of several wavelengths this sensor system allows for the measurement of objects with polished as well as with ground surfaces. Furthermore, a large absolute measurement range facilitates measuring surfaces with steps or discontinuities like diffractive structures or even segmented objects. As all the measurements can be done using one and the same system, a direct comparison is possible during production and after finishing an object. The contribution gives an insight into the functionality of the MWLI-sensor as well as into the concept of the reference system of the scanning metrology system. Furthermore, samples of application are discussed.

  13. A non-contact optical procedure for precise measurement of respiration rate and flow

    NASA Astrophysics Data System (ADS)

    Scalise, Lorenzo; Marchionni, Paolo; Ercoli, Ilaria

    2010-04-01

    The use of standard instrumentation for the assessment of the respiration rate as of flow is an important goal in medicine. Spirometers, textile-based capacitive sensors or photopletismography are standard contact instrumentations used for such aim; the main drawback in the use of such instrumentations is the necessity to have a direct contact of the instrument with the patient. In this paper, we present an optical no-contact method for monitoring of both the respiration rate and flow. This method is based on the measurement of external chest wall movement by a laser Doppler vibrometer. The measurement procedure has already been demonstrated to be extremely well performing for what concern the monitoring of the cardiac activity. The proposed method can be operated at a distance of 1.5 m, on different point of the patient thoracic and abdominal area. We have monitored respiration rate and flow on 8 patients with a spirometer and simultaneously with the proposed noncontact measurement procedure. Bland-Altman analysis of the respiration rate measured with both instruments demonstrate a mean error on the determination of the respiration rate of < 1% and of the < 4% for the instantaneous flow. We also report a study on the optimal position on the thoracic area based on quality of the signal measured on the same population of subject.

  14. NPL freeform artefact for verification of non-contact measuring systems

    NASA Astrophysics Data System (ADS)

    McCarthy, Michael B.; Brown, Stephen B.; Evenden, Anthony; Robinson, Andy D.

    2011-03-01

    For decades three-dimensional (3D) measurements of engineering components have been made using fixed metrologyroom based coordinate measuring machines (CMMs) fitted most commonly with single point or to a much lesser extent, scanning tactile probes. Over the past decade there has been a rapid uptake in development and subsequent use of portable optical-based 3D coordinate measuring systems. These optical based systems capture vast quantities of point data in a very short time, often permitting freeform surfaces to be digitised. Documented standards for the verification of fixed CMMs fitted with tactile probes are now widely available, whereas verification procedures and more specifically verification artefacts for optical-based systems are still in their infancy. To assist industry in the verification of optical based coordinates systems, this paper describes a freeform verification artefact that has been developed, calibrated and used to support a measurement intercomparison between a fixed CMM and a number of optical based systems. These systems employ technologies involving laser triangulation scanning, photogrammetry and fringe projection. The NPL freeform verification artefact is presented and a measurement intercomparison is reported which identifies that the accuracy of the optical-based systems tested is not as good as tactile probing systems.

  15. Non-contact measurement of respiratory function and deduction of tidal volume.

    PubMed

    Lee, Yee Siong; Pathirana, Pubudu N; Steinfort, Christopher Louis; Caelli, Terry

    2014-01-01

    This paper further the investigation of Doppler radar feasibility in measuring the flow in and out due to inhalation and exhalation under different conditions of breathing activities. Three different experiment conditions were designed to investigate the feasibility and consistency of Doppler radar which includes the combination of the states of normal breathing, deep breathing and apnoea state were demonstrated. The obtained Doppler radar signals were correlated and compared with the gold standard medical device, spirometer, yielding a good correlations between both devices. We also demonstrated the calibration of the Doppler radar signal can be performed in a simple manner in order to have a good agreements with the spirometer readings. The measurement of the flow in and out during the breathing activities can be measured accurately under different dynamics of breathing as long as the calibration is performed correctly. PMID:25570029

  16. Combined Amplitude and Frequency Measurements for Non-Contacting Turbomachinery Blade Vibration

    NASA Technical Reports Server (NTRS)

    Platt, Michael J. (Inventor); Jagodnik, John J. (Inventor)

    2013-01-01

    A method and apparatus for measuring the vibration of rotating blades, such as turbines, compressors, fans, or pumps, including sensing the return signal from projected energy and/or field changes from a plurality of sensors mounted on the machine housing. One or more of the sensors has a narrow field of measurement and the data is processed to provide the referenced time of arrival of each blade, and therefore the blade tip deflection due to vibration. One or more of the sensors has a wide field of measurement, providing a time history of the approaching and receding blades, and the data is processed to provide frequency content and relative magnitudes of the active mode(s) of blade vibration. By combining the overall tip deflection magnitude with the relative magnitudes of the active modes, the total vibratory stress state of the blade can be determined.

  17. Non-contact measurement of respiratory function and deduction of tidal volume.

    PubMed

    Lee, Yee Siong; Pathirana, Pubudu N; Steinfort, Christopher Louis; Caelli, Terry

    2014-01-01

    This paper further the investigation of Doppler radar feasibility in measuring the flow in and out due to inhalation and exhalation under different conditions of breathing activities. Three different experiment conditions were designed to investigate the feasibility and consistency of Doppler radar which includes the combination of the states of normal breathing, deep breathing and apnoea state were demonstrated. The obtained Doppler radar signals were correlated and compared with the gold standard medical device, spirometer, yielding a good correlations between both devices. We also demonstrated the calibration of the Doppler radar signal can be performed in a simple manner in order to have a good agreements with the spirometer readings. The measurement of the flow in and out during the breathing activities can be measured accurately under different dynamics of breathing as long as the calibration is performed correctly.

  18. Microwave radiometry for continuous non-contact temperature measurements during microwave heating.

    PubMed

    Stephan, Karl D; Pearce, John A

    2005-01-01

    Temperature measurement during microwave heating in industrial and commercial processes can improve quality, throughput, and energy conservation. Conventional ways of measuring temperature inside a microwave oven cavity are costly, inconvenient, or unsuitable for high-volume industrial applications. In this paper, we describe the theory of microwave radiometry as applied to the measurement of temperature during microwave heating. By extending the theory of radiative transfer to the case of thermal microwave radiation inside a cavity, we show that the same characteristics which make a microwave cavity suitable for heating materials also assist in obtaining meaningful temperature data with microwave radiometry. We present experimental data from the heating of liquid and solid materials which confirm the essential features of the theory, and show agreement between this method and more conventional methods of +/-4 degrees C.

  19. Non-contact current-phase measurements of topological weak links with scanning SQUID

    NASA Astrophysics Data System (ADS)

    Watson, C. A.; Sochnikov, I.; Kirtley, J. R.; Moler, K. A.; Deng, M.; Chang, W.; Krogstrup, P.; Jespersen, T. S.; Nygard, J.; Marcus, C. M.; Maier, L.; Gould, C.; Tkachov, G.; Hankiewicz, E. M.; Brüne, C.; Buhmann, H.; Molenkamp, L. W.

    2015-03-01

    Topological superconductivity has recently generated substantial interest as a pathway to Majorana physics in the solid state. Experimental efforts have focused on the superconducting proximity effect in topologically non-trivial junctions, but proof of the topological nature of the induced superconductivity remains elusive. We employ scanning superconducting quantum interference device (SQUID) susceptometry to study conventional superconducting Nb rings interrupted by weak links of 3D topological insulator HgTe and Al rings with InAs nanowire junctions. Varying the flux through each ring, we directly measure the current-phase relation (CPR) of the junction. Forward skewness in the CPR of 3D-HgTe which persists even in junctions long compared to the mean free path suggests that helicity may play a role in the high transmittance of Andreev Bound States that carry the Josephson current. Progress in InAs nanowire junction CPR measurements is also discussed. These measurements showcase the CPR as a fundamental characteristic of superconducting weak links and establish scanning SQUID microscopy as a powerful probe for performing such measurements.

  20. Non-contact Creep Resistance Measurement for Ultra-high temperature Materials

    NASA Technical Reports Server (NTRS)

    Hyers, Robert W.; Lee, Jonghuyn; Bradshaw, Richard C.; Rogers, Jan; Rathz, Thomas J.; Wall, James J.; Choo, Hahn; Liaw, Peter K.

    2005-01-01

    Continuing pressures for higher performance and efficiency in propulsion are driving ever more demanding needs for high-temperature materials. Some immediate applications in spaceflight include combustion chambers for advanced chemical rockets and turbomachinery for jet engines and power conversion in nuclear-electric propulsion. In the case of rockets, the combination of high stresses and high temperatures make the characterization of creep properties very important. Creep is even more important in the turbomachinery, where a long service life is an additional constraint. Some very high-temperature materials are being developed, including platinum group metals, carbides, borides, and silicides. But the measurement of creep properties at very high temperatures is itself problematic, because the testing instrument must operate at such high temperatures. Conventional techniques are limited to about 1700 C. A new, containerless technique for measuring creep deformation has been developed. This technique is based on electrostatic levitation (ESL) of a spherical sample, which is heated to the measurement temperature and rotated at a rate such that the centrifugal acceleration causes creep deformation. Creep of samples has been demonstrated at up to 2300 C in the ESL facility at NASA MSFC, while ESL itself has been applied at over 3000 C, and has no theoretical maximum temperature. The preliminary results and future directions of this NASA-funded research collaboration will be presented.

  1. Development of a baby friendly non-contact method for measuring vital signs: First results of clinical measurements in an open incubator at a neonatal intensive care unit

    NASA Astrophysics Data System (ADS)

    Klaessens, John H.; van den Born, Marlies; van der Veen, Albert; Sikkens-van de Kraats, Janine; van den Dungen, Frank A.; Verdaasdonk, Rudolf M.

    2014-02-01

    For infants and neonates in an incubator vital signs, such as heart rate, breathing, skin temperature and blood oxygen saturation are measured by sensors and electrodes sticking to the skin. This can damage the vulnerable skin of neonates and cause infections. In addition, the wires interfere with the care and hinder the parents in holding and touching the baby. These problems initiated the search for baby friendly 'non-contact' measurement of vital signs. Using a sensitive color video camera and specially developed software, the heart rate was derived from subtle repetitive color changes. Potentially also respiration and oxygen saturation could be obtained. A thermal camera was used to monitor the temperature distribution of the whole body and detect small temperature variations around the nose revealing the respiration rate. After testing in the laboratory, seven babies were monitored (with parental consent) in the neonatal intensive care unit (NICU) simultaneously with the regular monitoring equipment. From the color video recordings accurate heart rates could be derived and the thermal images provided accurate respiration rates. To correct for the movements of the baby, tracking software could be applied. At present, the image processing was performed off-line. Using narrow band light sources also non-contact blood oxygen saturation could be measured. Non-contact monitoring of vital signs has proven to be feasible and can be developed into a real time system. Besides the application on the NICU non-contact vital function monitoring has large potential for other patient groups.

  2. Graphics modelling of non-contact thickness measuring robotics work cell

    NASA Technical Reports Server (NTRS)

    Warren, Charles W.

    1990-01-01

    A system was developed for measuring, in real time, the thickness of a sprayable insulation during its application. The system was graphically modelled, off-line, using a state-of-the-art graphics workstation and associated software. This model was to contain a 3D color model of a workcell containing a robot and an air bearing turntable. A communication link was established between the graphics workstations and the robot's controller. Sequences of robot motion generated by the computer simulation are transmitted to the robot for execution.

  3. Non-contact Creep Resistance Measurement for Ultra-High Temperature Materials

    NASA Technical Reports Server (NTRS)

    Lee, J.; Bradshaw, C.; Rogers, J. R.; Rathz, T. J.; Wall, J. J.; Choo, H.; Liaw, P. K.; Hyers, R. W.

    2005-01-01

    Conventional techniques for measuring creep are limited to about 1700 C, so a new technique is required for higher temperatures. This technique is based on electrostatic levitation (ESL) of a spherical sample, which is rotated quickly enough to cause creep deformation by centrifugal acceleration. Creep of samples has been demonstrated at up to 2300 C in the ESL facility at NASA MSFC, while ESL itself has been applied at over 3000 C, and has no theoretical maximum temperature. The preliminary results and future directions of this NASA-funded research collaboration will be presented.

  4. Non-contact subsurface temperature measurements following mid-infrared laser irradiation

    NASA Astrophysics Data System (ADS)

    Avanesyan, Sergey M.; Haglund, Richard F.

    2013-07-01

    A difficult challenge in laser processing at nanosecond time scales is monitoring substrate temperature in the laser focal volume, particularly for mid-infrared laser irradiation where the absorption depth is relatively large and the attained temperatures are often relatively low. Here, we describe time-dependent measurements of the subsurface temperature of a target material following absorption of pulsed mid-infrared (MIR) laser irradiation, by detecting the luminescence from micron-size ceramic phosphor particles (Gd-doped YAG:Ce) embedded in the target material at a concentration of up to 10 %. Temperature calibrations were obtained by measuring the luminescence decay of the probe particles in an oil-bath heater. A silica-nanoparticle film was irradiated by an Er:YAG laser operating in a free-running mode over a fluence range up to but below the ablation threshold, while the third harmonic of the Nd:YAG laser excited the luminescence of the probe particles. From the temperature calibrations, it was possible to infer the thermal history of the target as a function of time delay between the Er:YAG and Nd:YAG laser pulses.

  5. Structural health monitoring by high-frequency vibration measurement with non-contact laser excitation

    NASA Astrophysics Data System (ADS)

    Kajiwara, I.; Miyamoto, D.; Hosoya, N.; Nishidome, C.

    2011-04-01

    This paper proposes a vibration testing and health monitoring system based on an impulse response excited by a laser ablation. High power YAG pulse laser is used for producing an ideal impulse force on structural surface. It is possible to measure high frequency vibration responses in this system. A health monitoring system is constructed by this vibration testing system and a damage detecting algorithm. A microscopic damage of structures can be extracted by detecting fluctuations of high frequency vibration response with the present health monitoring system. In this study, loosening of bolt tightening torques is defined as the damage of the system. The damage is detected and identified by statistical evaluations with Recognition-Taguchi method.

  6. Development of a non-contact multi-axis reverse engineering measurement system for small complex objects

    NASA Astrophysics Data System (ADS)

    Shiou, F. J.; Lai, Y. C.

    2005-01-01

    This study presents the development of a non-contact multi-axis measurement system, which consists of a circular triangulation laser probe system, a multi-axis CNC engraving machine, and a PC, to digitize the 3D profile of small workpieces. The information in the whole measuring system, comprising a personal computer, a CNC engraving machine controller, and a controller of the circular triangulation laser probe, was integrated technically. Three scanning methods for the developed measurement system were proposed to configure the scanning path, namely the multiple-fold scanning method, the rotational scanning method, and the radial scanning method. The homogenous transformation matrix method was used to calculate the data registration of different digitized data sets. The measurement error of the development system was analyzed by digitizing a designed 3D test carrier. The root mean square error was about 0.028 mm and was obtained through a comparison between the digitized, reconstructed data and the measured data obtained with a CNC coordinate measuring machine (CMM). The developed system was applied successfully to the reverse engineering measurement of some small complex models, such as a tooth model and a toy model.

  7. Study of non-contact measurement of the thermal expansion coefficients of materials based on laser feedback interferometry

    SciTech Connect

    Zheng, Fasong; Tan, Yidong; Zhang, Shulian; Lin, Jing; Ding, Yingchun

    2015-04-15

    The noncooperative and ultrahigh sensitive length measurement approach is of great significance to the study of a high-precision thermal expansion coefficient (TEC) determination of materials at a wide temperature range. The novel approach is presented in this paper based on the Nd:YAG microchip laser feedback interferometry with 1064 nm wavelength, the beam frequency of which is shifted by a pair of acousto-optic modulators and then the heterodyne phase measurement technique is used. The sample is placed in a muffle furnace with two coaxial holes opened on the opposite furnace walls. The measurement beams are perpendicular and coaxial on each surface of the sample, the configuration which can not only achieve the length measurement of sample but also eliminate the influence of the distortion of the sample supporter. The reference beams inject on the reference mirrors which are put as possible as near the holes, respectively, to eliminate the air disturbances and the influence of thermal lens effect out of the furnace chamber. For validation, the thermal expansion coefficients of aluminum and steel 45 samples are measured from room temperature to 748 K, which proved measurement repeatability of TECs is better than 0.6 × 10{sup −6}(K{sup −1}) at the range of 298 K–598 K and the high-sensitive non-contact measurement of the low reflectivity surface induced by the oxidization of the samples at the range of 598 K–748 K.

  8. Study of non-contact measurement of the thermal expansion coefficients of materials based on laser feedback interferometry

    NASA Astrophysics Data System (ADS)

    Zheng, Fasong; Tan, Yidong; Lin, Jing; Ding, Yingchun; Zhang, Shulian

    2015-04-01

    The noncooperative and ultrahigh sensitive length measurement approach is of great significance to the study of a high-precision thermal expansion coefficient (TEC) determination of materials at a wide temperature range. The novel approach is presented in this paper based on the Nd:YAG microchip laser feedback interferometry with 1064 nm wavelength, the beam frequency of which is shifted by a pair of acousto-optic modulators and then the heterodyne phase measurement technique is used. The sample is placed in a muffle furnace with two coaxial holes opened on the opposite furnace walls. The measurement beams are perpendicular and coaxial on each surface of the sample, the configuration which can not only achieve the length measurement of sample but also eliminate the influence of the distortion of the sample supporter. The reference beams inject on the reference mirrors which are put as possible as near the holes, respectively, to eliminate the air disturbances and the influence of thermal lens effect out of the furnace chamber. For validation, the thermal expansion coefficients of aluminum and steel 45 samples are measured from room temperature to 748 K, which proved measurement repeatability of TECs is better than 0.6 × 10-6(K-1) at the range of 298 K-598 K and the high-sensitive non-contact measurement of the low reflectivity surface induced by the oxidization of the samples at the range of 598 K-748 K.

  9. Study of non-contact measurement of the thermal expansion coefficients of materials based on laser feedback interferometry.

    PubMed

    Zheng, Fasong; Tan, Yidong; Lin, Jing; Ding, Yingchun; Zhang, Shulian

    2015-04-01

    The noncooperative and ultrahigh sensitive length measurement approach is of great significance to the study of a high-precision thermal expansion coefficient (TEC) determination of materials at a wide temperature range. The novel approach is presented in this paper based on the Nd:YAG microchip laser feedback interferometry with 1064 nm wavelength, the beam frequency of which is shifted by a pair of acousto-optic modulators and then the heterodyne phase measurement technique is used. The sample is placed in a muffle furnace with two coaxial holes opened on the opposite furnace walls. The measurement beams are perpendicular and coaxial on each surface of the sample, the configuration which can not only achieve the length measurement of sample but also eliminate the influence of the distortion of the sample supporter. The reference beams inject on the reference mirrors which are put as possible as near the holes, respectively, to eliminate the air disturbances and the influence of thermal lens effect out of the furnace chamber. For validation, the thermal expansion coefficients of aluminum and steel 45 samples are measured from room temperature to 748 K, which proved measurement repeatability of TECs is better than 0.6 × 10(-6)(K(-1)) at the range of 298 K-598 K and the high-sensitive non-contact measurement of the low reflectivity surface induced by the oxidization of the samples at the range of 598 K-748 K. PMID:25933843

  10. The non-contact measure of the heart rate variability by laser Doppler vibrometry: comparison with electrocardiography

    NASA Astrophysics Data System (ADS)

    Cosoli, G.; Casacanditella, L.; Tomasini, E. P.; Scalise, L.

    2016-06-01

    The assessment of the heart rate variability (HRV) is of utmost importance, being one of the most promising markers of the activity of the autonomic nervous system and associated to cardiovascular mortality. Different signals can be used to perform HRV, primarily electrocardiography (ECG), photoplethysmography (PPG), phonocardiography (PCG) or vibrocardiography (VCG), since the fundamental aspect is the individuation of a periodic feature strictly correlated with cardiac activity (i.e. R-peak in ECG or the first sound in PCG). In this work, the authors demonstrate that the VCG performances in HRV analysis are sufficiently accurate if compared to the ones measured by ECG (i.e. standard methodology); moreover, the authors want to prove the feasibility of such measurement in correspondence of different measurement points (i.e. carotid artery—which is the typical VCG measurement point—and the radial artery on the wrist)1. Results show that VCG has a mean deviation of  <1 bpm with respect to ECG in heart rate (HR) measurement; carotid artery is the most accurate site for the assessment, but also the radial artery is a valid site, even if with a reduced SNR. With regards to HRV parameters, the mean percentage deviation is  <10% in correspondence of carotid artery, and  ≈16% for the radial artery. So, VCG allows for non-contact monitoring of the cardiac activity.

  11. Non-contact online thickness measurement system for metal films based on eddy current sensing with distance tracking technique.

    PubMed

    Li, Wei; Wang, Hongbo; Feng, Zhihua

    2016-04-01

    This paper proposes an online, non-contact metal film thickness measurement system based on eddy current sensing. The slope of the lift-off curve (LOC) is used for characterizing target thickness. Theoretical derivation was conducted to prove that the slope is independent of the lift-off variation. In practice, the measurement has some immunity to the lift-off, but not perfect. The slope of LOC is still affected at some extent by the lift-off. Hence, a height tracking system was also proposed, which could stabilize the distance between the sensor and the target and significantly reduce the lift-off effect. The height tracking system contains a specially designed probe, which could vibrate rapidly to obtain a fast measurement speed, and its height can be adjusted up and down continuously to stabilize the lift-off. The sensor coil in the thickness measurement system was also used as the height sensor in the height tracking system. Several experiments were conducted to test the system performances under static and dynamic conditions. This measurement system demonstrated significant advantages, such as simple and clear conversion between the slope of LOC and target thickness, high resolution and stability, and minimized effect of lift-off variation.

  12. Non-contact online thickness measurement system for metal films based on eddy current sensing with distance tracking technique

    NASA Astrophysics Data System (ADS)

    Li, Wei; Wang, Hongbo; Feng, Zhihua

    2016-04-01

    This paper proposes an online, non-contact metal film thickness measurement system based on eddy current sensing. The slope of the lift-off curve (LOC) is used for characterizing target thickness. Theoretical derivation was conducted to prove that the slope is independent of the lift-off variation. In practice, the measurement has some immunity to the lift-off, but not perfect. The slope of LOC is still affected at some extent by the lift-off. Hence, a height tracking system was also proposed, which could stabilize the distance between the sensor and the target and significantly reduce the lift-off effect. The height tracking system contains a specially designed probe, which could vibrate rapidly to obtain a fast measurement speed, and its height can be adjusted up and down continuously to stabilize the lift-off. The sensor coil in the thickness measurement system was also used as the height sensor in the height tracking system. Several experiments were conducted to test the system performances under static and dynamic conditions. This measurement system demonstrated significant advantages, such as simple and clear conversion between the slope of LOC and target thickness, high resolution and stability, and minimized effect of lift-off variation.

  13. Non-contact online thickness measurement system for metal films based on eddy current sensing with distance tracking technique.

    PubMed

    Li, Wei; Wang, Hongbo; Feng, Zhihua

    2016-04-01

    This paper proposes an online, non-contact metal film thickness measurement system based on eddy current sensing. The slope of the lift-off curve (LOC) is used for characterizing target thickness. Theoretical derivation was conducted to prove that the slope is independent of the lift-off variation. In practice, the measurement has some immunity to the lift-off, but not perfect. The slope of LOC is still affected at some extent by the lift-off. Hence, a height tracking system was also proposed, which could stabilize the distance between the sensor and the target and significantly reduce the lift-off effect. The height tracking system contains a specially designed probe, which could vibrate rapidly to obtain a fast measurement speed, and its height can be adjusted up and down continuously to stabilize the lift-off. The sensor coil in the thickness measurement system was also used as the height sensor in the height tracking system. Several experiments were conducted to test the system performances under static and dynamic conditions. This measurement system demonstrated significant advantages, such as simple and clear conversion between the slope of LOC and target thickness, high resolution and stability, and minimized effect of lift-off variation. PMID:27131700

  14. Evaluating a Radar-Based, Non Contact Streamflow Measurement System in the San Joaquin River at Vernalis, California

    USGS Publications Warehouse

    Cheng, Ralph T.; Gartner, Jeffrey W.; Mason, Jr., Robert R.; Costa, John E.; Plant, William J.; Spicer, Kurt R.; Haeni, F. Peter; Melcher, Nick B.; Keller, William C.; Hayes, Ken

    2004-01-01

    Accurate measurement of flow in the San Joaquin River at Vernalis, California, is vital to a wide range of Federal and State agencies, environmental interests, and water contractors. The U.S. Geological Survey uses a conventional stage-discharge rating technique to determine flows at Vernalis. Since the flood of January 1997, the channel has scoured and filled as much as 20 feet in some sections near the measurement site resulting in an unstable stage-discharge rating. In response to recent advances in measurement techniques and the need for more accurate measurement methods, the Geological Survey has undertaken a technology demonstration project to develop and deploy a radar-based streamflow measuring system on the bank of the San Joaquin River at Vernalis, California. The proposed flow-measurement system consists of a ground-penetrating radar system for mapping channel geometries, a microwave radar system for measuring surface velocities, and other necessary infrastructure. Cross-section information derived from ground penetrating radar provided depths similar to those measured by other instruments during the study. Likewise, surface-velocity patterns and magnitudes measured by the pulsed Doppler radar system are consistent with near surface current measurements derived from acoustic velocity instruments. Since the ratio of surface velocity to mean velocity falls to within a small range of theoretical value, using surface velocity as an index velocity to compute river discharge is feasable. Ultimately, the non-contact radar system may be used to make continuous, near-real-time flow measurements during high and medium flows. This report documents the data collected between April 14, 2002 and May 17, 2002 for the purposes of testing this radar based system. Further analyses of the data collected during this field effort will lead to further development and improvement of the system.

  15. Non-contact multi-frequency magnetic induction spectroscopy system for industrial-scale bio-impedance measurement

    NASA Astrophysics Data System (ADS)

    O'Toole, M. D.; Marsh, L. A.; Davidson, J. L.; Tan, Y. M.; Armitage, D. W.; Peyton, A. J.

    2015-03-01

    Biological tissues have a complex impedance, or bio-impedance, profile which changes with respect to frequency. This is caused by dispersion mechanisms which govern how the electromagnetic field interacts with the tissue at the cellular and molecular level. Measuring the bio-impedance spectra of a biological sample can potentially provide insight into the sample’s properties and its cellular structure. This has obvious applications in the medical, pharmaceutical and food-based industrial domains. However, measuring the bio-impedance spectra non-destructively and in a way which is practical at an industrial scale presents substantial challenges. The low conductivity of the sample requires a highly sensitive instrument, while the demands of industrial-scale operation require a fast high-throughput sensor of rugged design. In this paper, we describe a multi-frequency magnetic induction spectroscopy (MIS) system suitable for industrial-scale, non-contact, spectroscopic bio-impedance measurement over a bandwidth of 156 kHz-2.5 MHz. The system sensitivity and performance are investigated using calibration and known reference samples. It is shown to yield rapid and consistently sensitive results with good long-term stability. The system is then used to obtain conductivity spectra of a number of biological test samples, including yeast suspensions of varying concentration and a range of agricultural produce, such as apples, pears, nectarines, kiwis, potatoes, oranges and tomatoes.

  16. Leg stiffness measures depend on computational method.

    PubMed

    Hébert-Losier, Kim; Eriksson, Anders

    2014-01-01

    Leg stiffness is often computed from ground reaction force (GRF) registrations of vertical hops to estimate the force-resisting capacity of the lower-extremity during ground contact, with leg stiffness values incorporated in a spring-mass model to describe human motion. Individual biomechanical characteristics, including leg stiffness, were investigated in 40 healthy males. Our aim is to report and discuss the use of 13 different computational methods for evaluating leg stiffness from a double-legged repetitive hopping task, using only GRF registrations. Four approximations for the velocity integration constant were combined with three mathematical expressions, giving 12 methods for computing stiffness using double integrations. One frequency-based method that considered ground contact times was also trialled. The 13 methods thus defined were used to compute stiffness in four extreme cases, which were the stiffest, and most compliant, consistent and variable subjects. All methods provided different stiffness measures for a given individual, but the between-method variations in stiffness were consistent across the four atypical subjects. The frequency-based method apparently overestimated the actual stiffness values, whereas double integrations' measures were more consistent. In double integrations, the choice of the integration constant and mathematical expression considerably affected stiffness values, as variations during hopping were more or less emphasized. Stating a zero centre of mass position at take-off gave more consistent results, and taking a weighted-average of the force or displacement curve was more forgiving to variations in performance. In any case, stiffness values should always be accompanied by a detailed description of their evaluation methods, as our results demonstrated that computational methods affect calculated stiffness. PMID:24188972

  17. Validating mass spectrometry measurements of nuclear materials via a non-contact volume analysis method of ion sputter craters

    SciTech Connect

    Willingham, David G.; Naes, Benjamin E.; Fahey, Albert J.

    2015-01-01

    A combination of secondary ion mass spectrometry, optical profilometry and a statistically-driven algorithm was used to develop a non-contact volume analysis method to validate the useful yields of nuclear materials. The volume analysis methodology was applied to ion sputter craters created in silicon and uranium substrates sputtered by 18.5 keV O- and 6.0 keV Ar+ ions. Sputter yield measurements were determined from the volume calculations and were shown to be comparable to Monte Carlo calculations and previously reported experimental observations. Additionally, the volume calculations were used to determine the useful yields of Si+, SiO+ and SiO2+ ions from the silicon substrate and U+, UO+ and UO2+ ions from the uranium substrate under 18.5 keV O- and 6.0 keV Ar+ ion bombardment. This work represents the first steps toward validating the interlaboratory and cross-platform performance of mass spectrometry for the analysis of nuclear materials.

  18. Measurement of Creep Properties of Ultra-High-Temperature Materials by a Novel Non-Contact Technique

    NASA Technical Reports Server (NTRS)

    Hyers, Robert W.; Lee, Jonghyun; Rogers, Jan R.; Liaw, Peter K.

    2007-01-01

    A non-contact technique for measuring the creep properties of materials has been developed and validated as part of a collaboration among the University of Massachusetts, NASA Marshall Space Flight Center Electrostatic Levitation Facility (ESL), and the University of Tennessee. This novel method has several advantages over conventional creep testing. The sample is deformed by the centripetal acceleration from the rapid rotation, and the deformed shapes are analyzed to determine the strain. Since there is no contact with grips, there is no theoretical maximum temperature and no concern about chemical compatibility. Materials may be tested at the service temperature even for extreme environments such as rocket nozzles, or above the service temperature for accelerated testing of materials for applications such as jet engines or turbopumps for liquid-fueled engines. The creep measurements have been demonstrated to 2400 C with niobium, while the test facility, the NASA MSFC ESL, has processed materials up to 3400 C. Furthermore, the ESL creep method employs a distribution of stress to determine the stress exponent from a single test, versus the many tests required by conventional methods. Determination of the stress exponent from the ESL creep tests requires very precise measurement of the surface shape of the deformed sample for comparison to deformations predicted by finite element models for different stress exponents. An error analysis shows that the stress exponent can be determined to about 1% accuracy with the current methods and apparatus. The creep properties of single-crystal niobium at 1985 C showed excellent agreement with conventional tests performed according to ASTM Standard E-139. Tests on other metals, ceramics, and composites relevant to rocket propulsion and turbine engines are underway.

  19. Large-scale and non-contact surface topography measurement using scanning ion conductance microscopy and sub-aperture stitching technique

    NASA Astrophysics Data System (ADS)

    Zhuang, Jian; Guo, Renfei; Li, Fei; Yu, Dehong

    2016-08-01

    In this paper, we propose a large-scale and non-contact surface topography measurement method using a non-contact scanning probe microscopy (SPM) technique, scanning ion conductance microscopy (SICM), combined with the sub-aperture stitching technique. The phase correlation techniques were first applied to the three-dimensional (3D) images measured by the SICM to acquire an initially coarse stitching position. Then the tip-tilt compensated sub-aperture stitching algorithm is utilized to eliminate tilts and translations among adjacent images and expand the lateral measuring range of the existing hopping mode SICM system. This SICM and the stitching based method has been used to measure some large-scale samples (micrometer to millimeter scale) in a non-contact, quantitative and high resolution way. Simulation and experimental results on these samples verify the feasibility of this method and the effectiveness of the stitching algorithm. A measuring range of 1.08 mm  ×  0.55 mm and a lateral resolution of 100 nm or even higher were obtained in these experiments. Compared with atomic force microscopy (AFM), the non-contact feature of the proposed method ensures less damage to the surface topography. The non-optical feature makes the data stitching simpler than the existing optical microscopic methods, which need consider how to compensate the vignetting effect caused by the inhomogeneity of light.

  20. Non-contact laser speckle sensor for measuring one- and two-dimensional angular displacement Capteur non-contact de laser speckle pour mesurer le déplacement angulaire à une ou deux dimensions

    NASA Astrophysics Data System (ADS)

    Rose, Bjarke; Imam, Husain; Hanson, Steen G.

    1998-06-01

    A novel method for measurement of angular displacement in one or two dimensions for arbitrarily shaped objects is presented. The method is based on Fourier transforming the scattered field from a single laser beam that illuminates the target. The angular distribution of the light field at the target is linearly mapped onto an array image sensor placed in the Fourier plane. Measuring this displacement facilitates the determination of the angular displacement. It is demonstrated both theoretically and experimentally that the angular displacement sensor is insensitive to object shape, target distance and any longitudinal or transverse movement of the target, if the image sensor is placed in the Fourier plane. A straightforward procedure to place the image sensor in the Fourier plane is presented here. Theoretically and experimentally, it is shown that the method has a resolution of 0.3 mdeg for small angular displacements, and methods for further improvement in resolution are discussed. No special surface treatment is required for surfaces having irregularities of the order of or larger than the wavelength of the incident light. It is shown that this is the case for most surfaces of practical interest. Furthermore, it is shown that robust, non-contact optical systems for industrial applications can be produced.

  1. Near-infrared spectroscopy system with non-contact source and detector for in vivo multi-distance measurement of deep biological tissue

    NASA Astrophysics Data System (ADS)

    Funane, Tsukasa; Atsumori, Hirokazu; Kiguchi, Masashi; Tanikawa, Yukari; Okada, Eiji

    2013-03-01

    A non-contact near-infrared spectroscopy (NIRS) scanning system with a phosphor cell placed on the skin for in vivo measurement of biological tissue was developed and evaluated. Because the phosphor is excited by the light that propagates in the tissue, and the excitation light is cut by optical filters, the light that propagates in the tissue is selectively detected. The non-contact system was extended to create a scanning system that can flexibly change source positions with a galvano scanner. The optical scanning system was used for non-contact measurement of the human forearm muscle, and the dependence of optical-density change (ΔOD) caused by the upper-arm occlusion and release on source-detector distance was observed. The obtained ΔOD demonstrates the effectiveness of using this system for multi-distance human-forearm measurement. Furthermore, a human forehead was measured with the system. To extract a deep-layer signal, a surface-layer subtraction method with short-distance regression was applied to measured data. On the basis of the correlation with a simultaneously measured laser-Doppler flowmetry signal, it was confirmed that the deep-layer signal was successfully extracted. The extraction result demonstrates that the optical scanning system can be used as a multi-distance NIRS system for measuring the human brain activity at the forehead.

  2. Profile measurement of a bent neutron mirror using an ultrahigh precision non-contact measurement system with an auto focus laser probe

    NASA Astrophysics Data System (ADS)

    Morita, S.; Guo, J.; Yamada, N. L.; Torikai, N.; Takeda, S.; Furusaka, M.; Yamagata, Y.

    2016-07-01

    A bent neutron mirror has been considered as one of the best solutions for focusing neutron beams from the viewpoint of cost-benefit performance. Although the form deviation of the bent profile is expected because of the large spot size, it is difficult to measure due to its geometric limitation. Here, we propose a non-contact measurement system using an auto focus (AF) laser probe on an ultrahigh precision machine tool to precisely evaluate the form deviation of the bent mirror. The AF laser probe is composed of a diode laser, a position sensitive sensor, a charge-coupled device (CCD) camera and a microscope objective lens which is actuated by an electromagnetic motor with 1 nm resolution for position sensing and control. The sensor enables a non-contact profile measurement of a high precision surface without any surface damage in contrast with contact-type ultrahigh precision coordinate measurement machines with ruby styli. In the on-machine measurement system, a personal computer simultaneously acquires a displacement signal from the AF laser probe and 3-axis positional coordinates of the ultrahigh machine tool branched between the linear laser scales and the numerical controller. The acquisition rate of the 4-axis positional data in 1 nm resolution is more than 10 Hz and the simultaneity between the axes is negligible. The profile of a neutron bent mirror was measured from a transparent side using the developed system, and the result proves that the form deviation of the mirror enlarged the the spot size of focused neuron beam.

  3. Thermographic and oxygenation imaging system for non-contact skin measurements to determine the effects of regional block anesthesia

    NASA Astrophysics Data System (ADS)

    Klaessens, John H. G. M.; Landman, Mattijs; de Roode, Rowland; Noordmans, Herke Jan; Verdaasdonk, Rudolf M.

    2010-02-01

    Regional anesthetic blocks are performed on patients who will undergo surgery of the hand. In this study, thermal and oxygenation imaging techniques were applied to observe the region affected by the peripheral block as a fast objective, non-contact, method compared to the standard pinpricks or cold sensation tests. The temperature images were acquired with an IR thermal camera (FLIR ThermoCam SC640). The data were recorded and analyzed with the ThermaCamTM Researcher software. Images at selected wavelengths were obtained with a CCD camera combined with a Liquid Crystal Tunable Filter (420-730 nm). The concentration changes of oxygenated and deoxygenated hemoglobin in the dermis of the skin were calculated using the modified Lambert Beer equation. In 10 patients an anesthetic block was placed by administering 20-30 ml Ropivacaine 7,5 mg/ml around the plexus brachialis. The anesthetic block of the axillary, ulnar, median and radial nerve causes dilatation of the blood vessels inducing an increase of blood flow and, consequently, an increase of the skin temperature and skin oxygenation in the lower arm. Both imaging methods showed distinct oxygenation and temperature differences at the surface of the skin of the hand with a good correlation with the areas with the nerve blocks. For oxygenation imaging a CCD camera with LED light source of selected wavelengths might be a relative inexpensive method to observe the effectiveness of regional blocks.

  4. Calibration of quartz tuning fork spring constants for non-contact atomic force microscopy: direct mechanical measurements and simulations

    PubMed Central

    Langewisch, Gernot; Schurig, Philipp; Hölscher, Hendrik; Fuchs, Harald; Schirmeisen, André

    2014-01-01

    Summary Quartz tuning forks are being increasingly employed as sensors in non-contact atomic force microscopy especially in the “qPlus” design. In this study a new and easily applicable setup has been used to determine the static spring constant at several positions along the prong of the tuning fork. The results show a significant deviation from values calculated with the beam formula. In order to understand this discrepancy the complete sensor set-up has been digitally rebuilt and analyzed by using finite element method simulations. These simulations provide a detailed view of the strain/stress distribution inside the tuning fork. The simulations show quantitative agreement with the beam formula if the beam origin is shifted to the position of zero stress onset inside the tuning fork base and torsional effects are also included. We further found significant discrepancies between experimental calibration values and predictions from the shifted beam formula, which are related to a large variance in tip misalignment during the tuning fork assembling process. PMID:24778977

  5. Calibration of quartz tuning fork spring constants for non-contact atomic force microscopy: direct mechanical measurements and simulations.

    PubMed

    Falter, Jens; Stiefermann, Marvin; Langewisch, Gernot; Schurig, Philipp; Hölscher, Hendrik; Fuchs, Harald; Schirmeisen, André

    2014-01-01

    Quartz tuning forks are being increasingly employed as sensors in non-contact atomic force microscopy especially in the "qPlus" design. In this study a new and easily applicable setup has been used to determine the static spring constant at several positions along the prong of the tuning fork. The results show a significant deviation from values calculated with the beam formula. In order to understand this discrepancy the complete sensor set-up has been digitally rebuilt and analyzed by using finite element method simulations. These simulations provide a detailed view of the strain/stress distribution inside the tuning fork. The simulations show quantitative agreement with the beam formula if the beam origin is shifted to the position of zero stress onset inside the tuning fork base and torsional effects are also included. We further found significant discrepancies between experimental calibration values and predictions from the shifted beam formula, which are related to a large variance in tip misalignment during the tuning fork assembling process.

  6. Laser application on haptics: Tactile stiffness measurement

    NASA Astrophysics Data System (ADS)

    Scalise, L.; Memeo, M.; Cannella, F.; Valente, M.; Caldwell, D. G.; Tomasini, E. P.

    2012-06-01

    There is a great interest in exploring the proprieties of the sense of the touch, its detailed knowledge in fact is a key issue in the area of robotics, haptics and human-machine interaction. In this paper, the authors focus their attention on a novel measurement method for the assessment of the tactile stiffness based on a original test rig; tactile stiffness is defined as the ratio between force, exerted by the finger, and the displacement of the finger tip operated during the test. To reach this scope, the paper describes a specific experimental test-rig used for the evaluation of subject tactile sensitivity, where finger force applied during tests as well as displacement and velocity of displacement, operated by the subject under investigation, are measured. Results show that tactile stiffness is linear respect to stimuli spatial difference (which is proportional to the difficulty to detect the variation of them). In particular, it has been possible to relate the force and displacement measured during the tests. The relationship between the response of the subject to the grating, velocity and force is determined. These results permit to carry out the further experimental tests on the same subject avoiding the use of a load cell and therefore simplifying the measurement test rig and data post-processing. Indeed, the first aspect (use of a load cell) can be relevant, because the grating positions are different, requiring a specific re-calibration and setting before each trial; while the second aspect allows simplify the test rig complexity and the processing algorithm.

  7. A non-contact method based on multiple signal classification algorithm to reduce the measurement time for accurately heart rate detection

    NASA Astrophysics Data System (ADS)

    Bechet, P.; Mitran, R.; Munteanu, M.

    2013-08-01

    Non-contact methods for the assessment of vital signs are of great interest for specialists due to the benefits obtained in both medical and special applications, such as those for surveillance, monitoring, and search and rescue. This paper investigates the possibility of implementing a digital processing algorithm based on the MUSIC (Multiple Signal Classification) parametric spectral estimation in order to reduce the observation time needed to accurately measure the heart rate. It demonstrates that, by proper dimensioning the signal subspace, the MUSIC algorithm can be optimized in order to accurately assess the heart rate during an 8-28 s time interval. The validation of the processing algorithm performance was achieved by minimizing the mean error of the heart rate after performing simultaneous comparative measurements on several subjects. In order to calculate the error the reference value of heart rate was measured using a classic measurement system through direct contact.

  8. OroSTIFF: Face-referenced measurement of perioral stiffness in health and disease.

    PubMed

    Chu, Shin-Ying; Barlow, Steven M; Kieweg, Douglas; Lee, Jaehoon

    2010-05-28

    A new device and automated measurement technology known as OroSTIFF is described to characterize non-participatory perioral stiffness in healthy adults for eventual application to patients with orofacial movement disorders associated with neuromotor disease, traumatic injury, or congenital clefts of the upper lip. Previous studies of perioral biomechanics required head stabilization for extended periods of time during measurement, which precluded sampling patients with involuntary body/head movements (dyskinesias), or pediatric subjects. The OroSTIFF device is face-referenced and avoids the complications associated with head-restraint. Supporting data of non-participatory perioral tissue stiffness using OroSTIFF are included from 10 male and 10 female healthy subjects. The OroSTIFF device incorporates a pneumatic glass air cylinder actuator instrumented for pressure, and an integrated subminiature displacement sensor to encode lip aperture. Perioral electromyograms were simultaneously sampled to confirm passive muscle state for the superior and inferior divisions of the orbicularis oris muscles. Perioral stiffness, derived as a quotient from resultant force (DeltaF) and interangle span (DeltaX), was modeled with multilevel regression techniques. Real-time calculation of the perioral stiffness function demonstrated a significant quadratic relation between imposed interangle stretch and resultant force. This stiffness growth function also differed significantly between males and females. This study demonstrates the OroSTIFF 'proof-of-concept' for cost-effective non-invasive stimulus generation and derivation of perioral stiffness in a group of healthy unrestrained adults, and a case study to illustrate the dose-dependent effects of Levodopa on perioral stiffness in an individual with advanced Parkinson's disease who exhibited marked dyskinesia and rigidity.

  9. Non-contact measurement of electric potential of photovoltaic cells in a module and novel characterization technologies

    NASA Astrophysics Data System (ADS)

    Hishikawa, Yoshihiro; Yamagoe, Kengo; Onuma, Tsuyoshi

    2015-08-01

    A novel noncontact method of measuring the electric potential of component cells in photovoltaic (PV) modules is investigated using electrostatic field measurement technology. Experimental results for various kinds of PV cells and modules are presented, and their measurement principle as well as practical factors that affect the measurement results are discussed. It is demonstrated that the DC electric potential of the cells in various crystalline silicon and thin-film PV modules can be measured indoors through their cover glass or backsheet within a resolution of the output voltage of about 1 cell. The method is also applicable to the outdoor measurement of PV modules under grid-connected operation, and enables various kinds of characterization such as identifying low-performance cells in a PV module and degraded modules in a PV array, and determining the balance of their output current under outdoor operating conditions. Different distributions of electric potential measured from the front and back surfaces are observed for some types of modules. These differences are suggested, by the results of the analysis of experiments and numerical simulations, to originate from the modification of the module’s surface electric potential by slight current flow through its component materials such as the cover glass, ethylene vinyl acetate (EVA), and backsheet.

  10. Comments on containerless bulk crystal growth and epitaxy in space and on their implications regarding non-contact temperature measurements

    NASA Technical Reports Server (NTRS)

    Bachmann, Klaus J.

    1989-01-01

    Containerless methods are sought for bulk crystal growth and epitaxy which thus far are a less visible component of materials science in space efforts. In the opinion of the author, this is an anomaly which ought to be corrected, because container interactions are a major problem in earth bound materials processing, including crystal growth, and can be avoided or at least significantly reduced in space. The space environment is unique in solving some of these problems, e.g., memory effects in the integration of different classes of materials in high resolution multilayer heterostructures by molecular beam epitaxy or organometallic molecular beam epitaxy. Spectroscopic method of noncontact temperature measurements exist that could be developed in this context. The error in the absolute temperature measurement achieved by these techniques decreases with decreasing substrate temperature and supplements pyrometric measurements that are better suited for high temperature measurements.

  11. Pulse electrochemical machining on Invar alloy: Optical microscopic/SEM and non-contact 3D measurement study of surface analyses

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Choi, S. G.; Choi, W. K.; Yang, B. Y.; Lee, E. S.

    2014-09-01

    In this study, Invar alloy (Fe 63.5%, Ni 36.5%) was electrochemically polished by PECM (Pulse Electro Chemical Machining) in a mixture of NaCl, glycerin, and distilled water. A series of PECM experiments were carried out with different voltages and different electrode shapes, and then the surfaces of polished Invar alloy were investigated. The polished Invar alloy surfaces were investigated by optical microscope, scanning electron microscope (SEM), and non-contact 3D measurement (white light microscopes) and it was found that different applied voltages produced different surface characteristics on the Invar alloy surface because of the locally concentrated applied voltage on the Invar alloy surface. Moreover, we found that the shapes of electrode also have an effect on the surface characteristics on Invar alloy surface by influencing the applied voltage. These experimental findings provide fundamental knowledge for PECM of Invar alloy by surface analysis.

  12. Non-contact main cable NDE technique for suspension bridge using magnetic flux-based B-H loop measurements

    NASA Astrophysics Data System (ADS)

    Park, Seunghee; Kim, Ju-Won; Moon, Dae-Joong

    2015-04-01

    In this study, a noncontact main cable NDE method has been developed. This cable NDE method utilizes the direct current (DC) magnetization and a searching coil-based total flux measurement. A total flux sensor head prototype was fabricated that consists of an electro-magnet yoke and a searching coil sensor. To obtain a B-H loop, a magnetic field was generated by applying a cycle of low frequency direct current to the electro-magnet yoke. During the magnetization, a search coil sensor measures the electromotive force from magnetized cable. During the magnetization process, a search coil sensor was measured the magnetic flux density. Total flux was calculated by integrating the measured magnetic flux using a fluxmeter. A B-H loop is obtained by using relationship between a cycle of input DC voltage and measured total flux. The B-H loop can reflect the property of the ferromagnetic materials. Therefore, the cross-sectional loss of cable can be detected using variation of features from the B-H curve. To verify the feasibility of the proposed steel cable NDE method, a series of experimental studies using a main-cable mock-up specimen has been performed in this study.

  13. Non-contact, ultrasound-based indentation method for measuring elastic properties of biological tissues using harmonic motion imaging (HMI).

    PubMed

    Vappou, Jonathan; Hou, Gary Y; Marquet, Fabrice; Shahmirzadi, Danial; Grondin, Julien; Konofagou, Elisa E

    2015-04-01

    Noninvasive measurement of mechanical properties of biological tissues in vivo could play a significant role in improving the current understanding of tissue biomechanics. In this study, we propose a method for measuring elastic properties non-invasively by using internal indentation as generated by harmonic motion imaging (HMI). In HMI, an oscillating acoustic radiation force is produced by a focused ultrasound transducer at the focal region, and the resulting displacements are estimated by tracking radiofrequency signals acquired by an imaging transducer. In this study, the focal spot region was modeled as a rigid cylindrical piston that exerts an oscillatory, uniform internal force to the underlying tissue. The HMI elastic modulus EHMI was defined as the ratio of the applied force to the axial strain measured by 1D ultrasound imaging. The accuracy and the precision of the EHMI estimate were assessed both numerically and experimentally in polyacrylamide tissue-mimicking phantoms. Initial feasibility of this method in soft tissues was also shown in canine liver specimens in vitro. Very good correlation and agreement was found between the measured Young's modulus and the HMI modulus in the numerical study (r(2) > 0.99, relative error <10%) and on polyacrylamide gels (r(2) = 0.95, relative error <24%). The average HMI modulus on five liver samples was found to EHMI = 2.62  ±  0.41 kPa, compared to EMechTesting = 4.2  ±  2.58 kPa measured by rheometry. This study has demonstrated for the first time the initial feasibility of a non-invasive, model-independent method to estimate local elastic properties of biological tissues at a submillimeter scale using an internal indentation-like approach. Ongoing studies include in vitro experiments in a larger number of samples and feasibility testing in in vivo models as well as pathological human specimens.

  14. Non-contact, ultrasound-based indentation method for measuring elastic properties of biological tissues using Harmonic Motion Imaging (HMI)

    NASA Astrophysics Data System (ADS)

    Vappou, Jonathan; Hou, Gary Y.; Marquet, Fabrice; Shahmirzadi, Danial; Grondin, Julien; Konofagou, Elisa E.

    2015-04-01

    Noninvasive measurement of mechanical properties of biological tissues in vivo could play a significant role in improving the current understanding of tissue biomechanics. In this study, we propose a method for measuring elastic properties non-invasively by using internal indentation as generated by harmonic motion imaging (HMI). In HMI, an oscillating acoustic radiation force is produced by a focused ultrasound transducer at the focal region, and the resulting displacements are estimated by tracking radiofrequency signals acquired by an imaging transducer. In this study, the focal spot region was modeled as a rigid cylindrical piston that exerts an oscillatory, uniform internal force to the underlying tissue. The HMI elastic modulus EHMI was defined as the ratio of the applied force to the axial strain measured by 1D ultrasound imaging. The accuracy and the precision of the EHMI estimate were assessed both numerically and experimentally in polyacrylamide tissue-mimicking phantoms. Initial feasibility of this method in soft tissues was also shown in canine liver specimens in vitro. Very good correlation and agreement was found between the measured Young’s modulus and the HMI modulus in the numerical study (r2 > 0.99, relative error <10%) and on polyacrylamide gels (r2 = 0.95, relative error <24%). The average HMI modulus on five liver samples was found to EHMI = 2.62  ±  0.41 kPa, compared to EMechTesting = 4.2  ±  2.58 kPa measured by rheometry. This study has demonstrated for the first time the initial feasibility of a non-invasive, model-independent method to estimate local elastic properties of biological tissues at a submillimeter scale using an internal indentation-like approach. Ongoing studies include in vitro experiments in a larger number of samples and feasibility testing in in vivo models as well as pathological human specimens.

  15. Non-contact, Ultrasound-based Indentation Method for Measuring Elastic Properties of Biological Tissues Using Harmonic Motion Imaging (HMI)

    PubMed Central

    Vappou, Jonathan; Hou, Gary Y.; Marquet, Fabrice; Shahmirzadi, Danial; Grondin, Julien; Konofagou, Elisa E.

    2015-01-01

    Noninvasive measurement of mechanical properties of biological tissues in vivo could play a significant role in improving the current understanding of tissue biomechanics. In this study, we propose a method for measuring elastic properties non-invasively by using internal indentation as generated by Harmonic Motion Imaging (HMI). In HMI, an oscillating acoustic radiation force is produced by a focused ultrasound transducer at the focal region, and the resulting displacements are estimated by tracking RF signals acquired by an imaging transducer. In this study, the focal spot region was modeled as a rigid cylindrical piston that exerts an oscillatory, uniform internal force to the underlying tissue. The HMI elastic modulus EHMI was defined as the ratio of the applied force to the axial strain measured by 1D ultrasound imaging. The accuracy and the precision of the EHMI estimate were assessed both numerically and experimentally in polyacrylamide tissue-mimicking phantoms. Initial feasibility of this method in soft tissues was also shown in canine liver specimens in vitro. Very good correlation and agreement was found between the actual Young’s modulus and the HMI modulus in the numerical study (r2>0.99, relative error <10%) and on polyacrylamide gels (r2=0.95, relative error <24%). The average HMI modulus on five liver samples was found to EHMI=2.62±0.41 kPa, compared to EMechTesting=4.2±2.58 kPa measured by rheometry. This study has demonstrated for the first time the initial feasibility of a non-invasive, model-independent method to estimate local elastic properties of biological tissues at a submillimeter scale using an internal indentation-like approach. Ongoing studies include in vitro experiments in a larger number of samples and feasibility testing in in vivo models as well as pathological human specimens. PMID:25776065

  16. Optical non-contact localization of liquid-gas interfaces on disk during rotation for measuring flow rates and viscosities.

    PubMed

    Hoffmann, Jochen; Riegger, Lutz; Bundgaard, Frederik; Mark, Daniel; Zengerle, Roland; Ducrée, Jens

    2012-12-21

    We present a novel technique for the spatio-temporally resolved localization of liquid-gas interfaces on centrifugal microfluidic platforms based on total internal reflection (TIR) at the channel wall. The simple setup consists of a line laser and a linear image sensor array mounted in a stationary instrument. Apart from identifying the presence of usually unwanted gas bubbles, the here described online meniscus detection allows to measure liquid volumes with a high precision of 1.9%. Additionally, flow rates and viscosities (range: 1-12 mPa s, precision of 4.3%) can be sensed even during rotation at frequencies up to 30 Hz.

  17. The Effect of Electrode Designs Based on the Anatomical Heart Location for the Non-Contact Heart Activity Measurement.

    PubMed

    Gi, Sun Ok; Lee, Young-Jae; Koo, Hye Ran; Lee, Seung Pyo; Lee, Kang-Hwi; Kim, Kyeng-Nam; Kang, Seung-Jin; Lee, Joo Hyeon; Lee, Jeong-Whan

    2015-12-01

    This research is an extension of a previous research [1] on the different effects of sensor location that is relatively suitable for heart rate sensing. This research aimed to elucidate the causes of wide variations in heart rate measurements from the same sensor position among subjects, as observed in previous research [1], and to enhance designs of the inductive textile electrode to overcome these variations. To achieve this, this study comprised two parts: In part 1, X-ray examinations were performed to determine the cause of the wide variations noted in the findings from previous research [1], and we found that at the same sensor position, the heart activity signal differed with slight differences in the positions of the heart of each subject owing to individual differences in the anatomical heart location. In part 2, three types of dual-loop-type textile electrodes were devised to overcome variations in heart location that were confirmed in part 1 of the study. The variations with three types of sensor designs were compared with that with a single-round type of electrode design, by using computer simulation and by performing a t-test on the data obtained from the experiments. We found that the oval-oval shaped, dual-loop-type textile electrode was more suitable than the single round type for determining morphological characteristics as well as for measuring appropriate heart activity signals. Based on these results, the oval-oval, dual-loop-type was a better inductive textile electrode that more effectively overcomes individual differences in heart location during heart activity sensing based on the magnetic-induced conductivity principle.

  18. Non-contact distance measurement and profilometry using thermal near-field radiation towards a high resolution inspection and metrology solution

    NASA Astrophysics Data System (ADS)

    Bijster, Roy; Sadeghian, Hamed; van Keulen, Fred

    2016-03-01

    Optical near-field technologies such as solid immersion lenses and hyperlenses are candidate solutions for high resolution and high throughput wafer inspection and metrology for the next technology nodes. Besides sub-diffraction limited optical performance, these concepts share the necessity of extreme proximity to the sample at distances that are measured in tens of nanometers. For the instrument this poses two major challenges: 1) how to measure the distance to the sample? and 2) how to position accurately and at high speed? For the first challenge near-field thermal radiation is proposed as a mechanism for an integrated distance sensor (patent pending). This sensor is realized by making a sensitive calorimeter (accuracy of 2:31nW root sum squared). When used for distance measurement an equivalent uncertainty of 1nm can be achieved for distances smaller than 100 nm. By scanning the distance sensor over the sample, thermal profilometry is realized, which can be used to inspect surfaces in a non-intrusive and non-contact way. This reduces wear of the probe and minimizes the likelihood of damaging the sample.

  19. Analytical, Numerical, and Experimental Investigation on a Non-Contact Method for the Measurements of Creep Properties of Ultra-High-Temperature Materials

    NASA Technical Reports Server (NTRS)

    Lee, Jonghyun; Hyers, Robert W.; Rogers, Jan R.; Rathz, Thomas J.; Choo, Hahn; Liaw, Peter

    2006-01-01

    Responsive access to space requires re-use of components such as rocket nozzles that operate at extremely high temperatures. For such applications, new ultra-hightemperature materials that can operate over 2,000 C are required. At the temperatures higher than the fifty percent of the melting temperature, the characterization of creep properties is indispensable. Since conventional methods for the measurement of creep is limited below 1,700 C, a new technique that can be applied at higher temperatures is strongly demanded. This research develops a non-contact method for the measurement of creep at the temperatures over 2,300 C. Using the electrostatic levitator in NASA MSFC, a spherical sample was rotated to cause creep deformation by centrifugal acceleration. The deforming sample was captured with a digital camera and analyzed to measure creep deformation. Numerical and analytical analyses have also been conducted to compare the experimental results. Analytical, numerical, and experimental results showed a good agreement with one another.

  20. Exploring Alternative Non-contact temperature measurements for 99Mo production facility NorthStar FY14 Activity 5, Deliverable 2

    SciTech Connect

    Holloway, Michael Andrew; Dalmas, Dale

    2015-03-04

    We have conducted an experiment to explore an alternative non-contact method of measuring the Inconel target window temperature. This experiment involves using a standard color camera to observe the visible light emitted from the Inconel target window at high heat in order to estimate the window temperature. The safety limit to prevent target window failure is 700 °C and therefore we need a reliable and accurate method of measuring temperature especially in the range of 600 °C to 700 °C if it is to replace the IR camera. In this temperature range the window will emit a significant amount of black body radiation within the visible range and hence the idea of using a color camera. The goal is to see if the shift in window color (determined by the RBG pixel values of the camera) as the target window is heated to 700 °C can be calibrated to the temperature.The reasons for exploring this as an alternative to an IR are camera are: significant cost reduction and potentially less complicated to calibrate.

  1. Design and modeling of magnetically driven electric-field sensor for non-contact DC voltage measurement in electric power systems

    NASA Astrophysics Data System (ADS)

    Wang, Decai; Li, Ping; Wen, Yumei

    2016-10-01

    In this paper, the design and modeling of a magnetically driven electric-field sensor for non-contact DC voltage measurement are presented. The magnetic drive structure of the sensor is composed of a small solenoid and a cantilever beam with a cylindrical magnet mounted on it. The interaction of the magnet and the solenoid provides the magnetic driving force for the sensor. Employing magnetic drive structure brings the benefits of low driving voltage and large vibrating displacement, which consequently results in less interference from the drive signal. In the theoretical analyses, the capacitance calculation model between the wire and the sensing electrode is built. The expression of the magnetic driving force is derived by the method of linear fitting. The dynamical model of the magnetic-driven cantilever beam actuator is built by using Euler-Bernoulli theory and distributed parameter method. Taking advantage of the theoretical model, the output voltage of proposed sensor can be predicted. The experimental results are in good agreement with the theoretical results. The proposed sensor shows a favorable linear response characteristic. The proposed sensor has a measuring sensitivity of 9.87 μV/(V/m) at an excitation current of 37.5 mA. The electric field intensity resolution can reach 10.13 V/m.

  2. In vivo measurement of bending stiffness in fracture healing

    PubMed Central

    Hente, Reiner; Cordey, Jacques; Perren, Stephan M

    2003-01-01

    Background Measurement of the bending stiffness a healing fracture represents a valid variable in the assessment of fracture healing. However, currently available methods typically have high measurement errors, even for mild pin loosening. Furthermore, these methods cannot provide actual values of bending stiffness, which precludes comparisons among individual fractures. Thus, even today, little information is available with regards to the fracture healing pattern with respect to actual values of bending stiffness. Our goals were, therefore: to develop a measurement device that would allow accurate and sensitive measurement of bending stiffness, even in the presence of mild pin loosening; to describe the course of healing in individual fractures; and help to evaluate whether the individual pattern of bending stiffness can be predicted at an early stage of healing. Methods A new measurement device has been developed to precisely measure the bending stiffness of the healing fracture by simulating four-point-bending. The system was calibrated on aluminum models and intact tibiae. The influence of pin loosening on measurement error was evaluated. The system was tested at weekly intervals in an animal experiment to determine the actual bending stiffness of the fracture. Transverse fractures were created in the right tibia of twelve sheep, and then stabilized with an external fixator. At ten weeks, bending stiffness of the tibiae were determined in a four-point-bending test device to validate the in-vivo-measurement data. Results In-vivo bending stiffness can be measured accurately and sensitive, even in the early phase of callus healing. Up to a bending stiffness of 10 Nm/degree, measurement error was below 3.4% for one pin loose, and below 29.3% for four pins loose, respectively. Measurement of stiffness data over time revealed a significant logarithmic increase between the third and seventh weeks, whereby the logarithmic rate of change among sheep was similar, but

  3. Time-resolved non-contact fluorescence diffuse optical tomography measurements with ultra-fast time-correlated single photon counting avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Bérubé-Lauzière, Yves; Robichaud, Vincent; Lapointe, Éric

    2007-07-01

    The design and fabrication of time-correlated single photon counting (TCSPC) avalanche photodiodes (APDs) and associated quenching circuits have made significant progresses in recent years. APDs with temporal resolutions comparable to microchannel plate photomultiplier tubes (MCP-PMTs) are now available. MCP-PMTs were until these progresses the best TCSPC detectors with timing resolutions down to 30ps. APDs can now achieve these resolutions at a fraction of the cost. Work is under way to make the manufacturing of TCSPC APDs compatible with standard electronics fabrication practices. This should allow to further reduce their cost and render them easier to integrate in complex multi-channel TCSPC electronics, as needed in diffuse optical tomography (DOT) systems. Even if their sensitive area is much smaller than that of the ubiquitous PMT used in TCSPC, we show that with appropriate selection of optical components, TCSPC APDs can be used in time-domain DOT. To support this, we present experimental data and calculations clearly demonstrating that comparable measurements can be obtained with APDs and PMTs. We are, to our knowledge, the first group using APDs in TD DOT, in particular in non-contact TD fluorescence DOT.

  4. Non-Contact Gaging with Laser Probe

    SciTech Connect

    Clinesmith, Mike

    2009-03-20

    A gage has been constructed using conventional (high end) components for the application of measuring fragile syntactic foam parts in a non-contact mode. Success with this approach has been achieved through a novel method of transferring (mapping) high accuracy local measurements of a coated aluminum master, taken on a Leitz Coordinate Measurement Machine (CMM), to the gage software system. The mapped data is then associated with local voltage readings from two (inner and outer) laser triangulating probes. This couples discreet laser probe offset and linearity characteristics to the measured master geometry. The gage software compares real part measured data against the master data to provide non-contact part inspection that results in a high accuracy and low uncertainty performance. Uncertainty from the part surface becomes the prevailing contributor to the gaging process. The gaging process provides a high speed, hands off measurement with nearly zero impedance.

  5. Non-contact ECG monitoring

    NASA Astrophysics Data System (ADS)

    Smirnov, Alexey S.; Erlikh, Vadim V.; Kodkin, Vladimir L.; Keller, Andrei V.; Epishev, Vitaly V.

    2016-03-01

    The research is dedicated to non-contact methods of electrocardiography. The authors describe the routine of experimental procedure and suggest the approach to solving the problems which arise at indirect signal recording. The paper presents the results of experiments conducted by the authors, covers the flow charts of ECG recorders and reviews the drawbacks of filtering methods used in foreign equivalents.

  6. Arterial Stiffness in Children: Pediatric Measurement and Considerations

    PubMed Central

    Savant, Jonathan D.; Furth, Susan L.; Meyers, Kevin E.C.

    2014-01-01

    Background Arterial stiffness is a natural consequence of aging, accelerated in certain chronic conditions, and predictive of cardiovascular events in adults. Emerging research suggests the importance of arterial stiffness in pediatric populations. Methods There are different indices of arterial stiffness. The present manuscript focuses on carotid-femoral pulse wave velocity and pulse wave analysis, although other methodologies are discussed. Also reviewed are specific measurement considerations for pediatric populations and the literature describing arterial stiffness in children with certain chronic conditions (primary hypertension, obesity, diabetes, chronic kidney disease, hypercholesterolemia, genetic syndromes involving vasculopathy, and solid organ transplant recipients). Conclusions The measurement of arterial stiffness in children is feasible and, under controlled conditions, can give accurate information about the underlying state of the arteries. This potentially adds valuable information about the functionality of the cardiovascular system in children with a variety of chronic diseases well beyond that of the brachial artery blood pressure. PMID:26587447

  7. Non- contacting capacitive diagnostic device

    DOEpatents

    Ellison, Timothy

    2005-07-12

    A non-contacting capacitive diagnostic device includes a pulsed light source for producing an electric field in a semiconductor or photovoltaic device or material to be evaluated and a circuit responsive to the electric field. The circuit is not in physical contact with the device or material being evaluated and produces an electrical signal characteristic of the electric field produced in the device or material. The diagnostic device permits quality control and evaluation of semiconductor or photovoltaic device properties in continuous manufacturing processes.

  8. Tilting pad journal bearings - Measured and predicted stiffness coefficients

    SciTech Connect

    Parkins, D.W.; Horner, D. Michell Bearings, Newcastle-upon-Tyne )

    1993-07-01

    This paper presents measured and calculated characteristics of a tilting pad journal bearing suitable for high speed machinery. Descriptions are given of the experimental techniques used with this variety of bearing and the theoretical model for predicting performance. Measured values of pad temperature, eccentricity, attitude angle, and the four stiffness coefficients are given for a range of loads and rotational speeds. Data are given for both load on pad and between pad configurations, the two principal loading arrangements. Comparisons are made between the measured and predicted bearing temperatures and stiffness coefficients over a wide range of values. 11 refs.

  9. Tilting pad journal bearings - Measured and predicted stiffness coefficients

    NASA Astrophysics Data System (ADS)

    Parkins, D. W.; Horner, D.

    1993-07-01

    This paper presents measured and calculated characteristics of a tilting pad journal bearing suitable for high speed machinery. Descriptions are given of the experimental techniques used with this variety of bearing and the theoretical model for predicting performance. Measured values of pad temperature, eccentricity, attitude angle, and the four stiffness coefficients are given for a range of loads and rotational speeds. Data are given for both load on pad and between pad configurations, the two principal loading arrangements. Comparisons are made between the measured and predicted bearing temperatures and stiffness coefficients over a wide range of values.

  10. Damage detection using experimentally measured mass and stiffness matrices

    NASA Technical Reports Server (NTRS)

    Peterson, L. D.; Alvin, K. F.; Doebling, S. W.; Park, K. C.

    1993-01-01

    A method is presented for locating physical damage or change in a structure using experimentally measured mass and stiffness matrices. The approach uses a recently developed algorithm for transforming a state-space realization into a second order structural model with physical displacements as the generalized coordinates. This is accomplished by first rotating a state-space model of the identified structural dynamics into modal coordinates and approximating the mass normalized modal vectors for the output measurement set. Next, the physical mass, damping and stiffness matrices are synthesized directly from the measured modal parameters. This yields experimental mass and stiffness matrices for the structure without the use of a finite element model or a numerical search. The computed mass and stiffness are asymptotically equivalent to a static condensation of the global physical coordinate model. Techniques for solving the inverse connectivity problem are then developed whereby it is possible to assess the stiffness in a region of the structure bounded by several sensors. Applications to both simulated data and experimental data are used to discuss the effectiveness of the approach.

  11. Damage detection using experimentally measured mass and stiffness matrices

    NASA Astrophysics Data System (ADS)

    Peterson, L. D.; Alvin, K. F.; Doebling, S. W.; Park, K. C.

    1993-04-01

    A method is presented for locating physical damage or change in a structure using experimentally measured mass and stiffness matrices. The approach uses a recently developed algorithm for transforming a state-space realization into a second order structural model with physical displacements as the generalized coordinates. This is accomplished by first rotating a state-space model of the identified structural dynamics into modal coordinates and approximating the mass normalized modal vectors for the output measurement set. Next, the physical mass, damping and stiffness matrices are synthesized directly from the measured modal parameters. This yields experimental mass and stiffness matrices for the structure without the use of a finite element model or a numerical search. The computed mass and stiffness are asymptotically equivalent to a static condensation of the global physical coordinate model. Techniques for solving the inverse connectivity problem are then developed whereby it is possible to assess the stiffness in a region of the structure bounded by several sensors. Applications to both simulated data and experimental data are used to discuss the effectiveness of the approach.

  12. Cellular mechanoadaptation to substrate mechanical properties: contributions of substrate stiffness and thickness to cell stiffness measurements using AFM.

    PubMed

    Vichare, Shirish; Sen, Shamik; Inamdar, Mandar M

    2014-02-28

    Mechanosensing by adherent cells is usually studied by quantifying cell responses on hydrogels that are covalently linked to a rigid substrate. Atomic force microscopy (AFM) represents a convenient way of characterizing the mechanoadaptation response of adherent cells on hydrogels of varying stiffness and thickness. Since AFM measurements reflect the effective cell stiffness, therefore, in addition to measuring real cytoskeletal alterations across different conditions, these measurements might also be influenced by the geometry and physical properties of the substrate itself. To better understand how the physical attributes of the gel influence AFM stiffness measurements of cells, we have used finite element analysis to simulate the indentation of cells of various spreads resting on hydrogels of varying stiffness and thickness. Consistent with experimental results, our simulation results indicate that for well spread cells, stiffness values are significantly over-estimated when experiments are performed on cells cultured on soft and thin gels. Using parametric studies, we have developed scaling relationships between the effective stiffness probed by AFM and the bulk cell stiffness, taking cell and tip geometry, hydrogel properties, nuclear stiffness and cell contractility into account. Finally, using simulated mechanoadaptation responses, we have demonstrated that a cell stiffening response may arise purely due to the substrate properties. Collectively, our results demonstrate the need to take hydrogel properties into account while estimating cell stiffness using AFM indentation. PMID:24651595

  13. Measuring anisotropic muscle stiffness properties using elastography.

    PubMed

    Green, M A; Geng, G; Qin, E; Sinkus, R; Gandevia, S C; Bilston, L E

    2013-11-01

    Physiological and pathological changes to the anisotropic mechanical properties of skeletal muscle are still largely unknown, with only a few studies quantifying changes in vivo. This study used the noninvasive MR elastography (MRE) technique, in combination with diffusion tensor imaging (DTI), to measure shear modulus anisotropy in the human skeletal muscle in the lower leg. Shear modulus measurements parallel and perpendicular to the fibre direction were made in 10 healthy subjects in the medial gastrocnemius, soleus and tibialis anterior muscles. The results showed significant differences in the medial gastrocnemius (μ‖ = 0.86 ± 0.15 kPa; μ⊥ = 0.66 ± 0.19 kPa, P < 0.001), soleus (μ‖ = 0.83 ± 0.22 kPa; μ⊥ = 0.65 ± 0.13 kPa, P < 0.001) and the tibialis anterior (μ‖ = 0.78 ± 0.24 kPa; μ⊥ = 0.66 ± 0.16 kPa, P = 0.03) muscles, where the shear modulus measured in the direction parallel is greater than that measured in the direction perpendicular to the muscle fibres. No significant differences were measured across muscle groups. This study provides the first direct estimates of the anisotropic shear modulus in the triceps surae muscle group, and shows that the technique may be useful for the probing of mechanical anisotropy changes caused by disease, aging and injury.

  14. Experimental measurement of the stiffness of the cupula.

    PubMed

    Grant, J W; Van Buskirk, W C

    1976-06-01

    An experimental procedure is described which consists of cutting the canal duct, inserting a micropipette and administering known volumetric displacements to the cupula. The cupula is made visible by dying the endolymph. Known displacements are administered to the cupula, and the time constant of the return to its equilibrium position is measured. With this information, the stiffness of the cupula is calculated. The experiment was successfully carried out on five White King pigeons. The mean stiffness found in somewhat less than other results reported in the literature, and reasons for this discrepancy are noted.

  15. Lase Ultrasonic Web Stiffness tester

    SciTech Connect

    Tim Patterson, Ph.D., IPST at Ga Tech

    2009-01-12

    The objective is to provide a sensor that uses non-contact, laser ultrasonics to measure the stiffness of paper during the manufacturing process. This will allow the manufacturer to adjust the production process in real time, increase filler content, modify fiber refining and as result produce a quality product using less energy. The sensor operates by moving back and forth across the paper web, at pre-selected locations firing a laser at the sheet, measuring the out-of-plane velocity of the sheet then using that measurement to calculate sheet stiffness.

  16. Non-contact transportation using near-field acoustic levitation

    PubMed

    Ueha; Hashimoto; Koike

    2000-03-01

    Near-field acoustic levitation, where planar objects 10 kg in weight can levitate stably near the vibrating plate, is successfully applied both to non-contact transportation of objects and to a non-contact ultrasonic motor. Transporting apparatuses and an ultrasonic motor have been fabricated and their characteristics measured. The theory of near-field acoustic levitation both for a piston-like sound source and a flexural vibration source is also briefly described. PMID:10829622

  17. A novel assessment technique for measuring ankle orientation and stiffness.

    PubMed

    Zhang, Mingming; Davies, T Claire; Nandakumar, Anoop; Quan Xie, Sheng

    2015-09-18

    The measurement of ankle orientation and stiffness can provide insight into improvements and allows for effective monitoring during a rehabilitation program. Existing assessment techniques have a variety of limitations. Dynamometer based methods rely on manual manipulation. The use of torque meter is usually for single degree-of-freedom (DOF) devices. This study proposes a novel ankle assessment technique that can be used for multiple DOFs devices working in both manual and automatic modes using the position sensor and the multi-axis load cell. As a preliminary evaluation, an assessment device for ankle dorsiflexion and plantarflexion was constructed. Nine subjects participated to evaluate the effectiveness of the assessment device in determining ankle orientation and stiffness. The measured ankle orientation was consistent with that from the NDI Polaris optical tracking system. The measured ankle torque and stiffness compared well with published data. The test-retest reliability was high with intraclass correlation coefficient (ICC2, 1) values greater than 0.846 and standard error of measurement (SEM) less than 1.38. PMID:26159061

  18. Features of the non-contact carotid pressure waveform: Cardiac and vascular dynamics during rebreathing

    NASA Astrophysics Data System (ADS)

    Casaccia, S.; Sirevaag, E. J.; Richter, E. J.; O'Sullivan, J. A.; Scalise, L.; Rohrbaugh, J. W.

    2016-10-01

    This report amplifies and extends prior descriptions of the use of laser Doppler vibrometry (LDV) as a method for assessing cardiovascular activity, on a non-contact basis. A rebreathing task (n = 35 healthy individuals) was used to elicit multiple effects associated with changes in autonomic drive as well as blood gases including hypercapnia. The LDV pulse was obtained from two sites overlying the carotid artery, separated by 40 mm. A robust pulse signal was obtained from both sites, in accord with the well-described changes in carotid diameter over the blood pressure cycle. Emphasis was placed on extracting timing measures from the LDV pulse, which could serve as surrogate measures of pulse wave velocity (PWV) and the associated arterial stiffness. For validation purposes, a standard measure of pulse transit time (PTT) to the radial artery was obtained using a tonometric sensor. Two key measures of timing were extracted from the LDV pulse. One involved the transit time along the 40 mm distance separating the two LDV measurement sites. A second measure involved the timing of a late feature of the LDV pulse contour, which was interpreted as reflection wave latency and thus a measure of round-trip travel time. Both LDV measures agreed with the conventional PTT measure, in disclosing increased PWV during periods of active rebreathing. These results thus provide additional evidence that measures based on the non-contact LDV technique might provide surrogate measures for those obtained using conventional, more obtrusive assessment methods that require attached sensors.

  19. Can arterial stiffness parameters be measured in the sitting position?

    PubMed

    Nürnberger, Jens; Michalski, Rene; Türk, Tobias R; Opazo Saez, Anabelle; Witzke, Oliver; Kribben, Andreas

    2011-02-01

    Despite the introduction of arterial stiffness measurements in the European recommendation, pulse wave velocity (PWV) and augmentation index (AI) are still not used routinely in clinical practice. It would be of advantage if such measurements were done in the sitting position as is done for blood pressure. The aim of this study was to evaluate whether there is a difference in stiffness parameters in sitting vs. supine position. Arterial stiffness was measured in 24 healthy volunteers and 20 patients with cardiovascular disease using three different devices: SphygmoCor (Atcor Medical, Sydney, Australia), Arteriograph (TensioMed, Budapest, Hungary) and Vascular Explorer (Enverdis, Jena, Germany). Three measurements were performed in supine position followed by three measurements in sitting position. Methods were compared using correlation and Bland-Altman analysis. There was a significant correlation between PWV in supine and sitting position (Arteriograph: P<0.0001, r=0.93; Vascular Explorer; P<0.0001, r=0.87). There were significant correlations between AI sitting and AI supine using Arteriograph (P<0.0001, r=0.97), Vascular Explorer (P<0.0001, r=0.98) and SphygmoCor (P<0.0001, r=0.96). When analyzed by Bland-Altman, PWV and AI measurements in supine vs. sitting showed good agreement. There was no significant difference in PWV obtained with the three different devices (Arteriograph 7.5±1.6 m s(-1), Vascular Explorer 7.3±0.9 m s(-1), SphygmoCor 7.0±1.8 m s(-1)). AI was significantly higher using the Arteriograph (17.6±15.0%) than Vascular Explorer and SphygmoCor (10.2±15.1% and 10.3±18.1%, respectively). The close agreement between sitting and supine measurements suggests that both PWV and AI can be reliably measured in the sitting position.

  20. Non-contact contour gage

    DOEpatents

    Bieg, Lothar F.

    1990-12-18

    A fluid probe for measuring the surface contour of a machined part is provided whereby the machined part can remain on the machining apparatus during surface contour measurement. A measuring nozzle in a measuring probe directs a measuring fluid flow onto the surface. The measuring nozzle is on the probe situated midway between two guide nozzles that direct guide fluid flows onto the surface. When the guide fluid flows interact with the surface, they cause the measuring flow and measuring probe to be oriented perpendicular to the surface. The measuring probe includes a pressure chamber whose pressure is monitored. As the measuring fluid flow encounters changes in surface contour, pressure changes occur in the pressure chamber. The surface contour is represented as data corresponding to pressure changes in the pressure chamber as the surface is scanned.

  1. Direct measurement of human ankle stiffness during quiet standing: the intrinsic mechanical stiffness is insufficient for stability

    PubMed Central

    Loram, Ian D; Lakie, Martin

    2002-01-01

    During quiet standing the human ‘inverted pendulum’ sways irregularly. In previous work where subjects balanced a real inverted pendulum, we investigated what contribution the intrinsic mechanical ankle stiffness makes to achieve stability. Using the results of a plausible model, we suggested that intrinsic ankle stiffness is inadequate for providing stability. Here, using a piezo-electric translator we applied small, unobtrusive mechanical perturbations to the foot while the subject was standing freely. These short duration perturbations had a similar size and velocity to movements which occur naturally during quiet standing, and they produced no evidence of any stretch reflex response in soleus, or gastrocnemius. Direct measurement confirms our earlier conclusion; intrinsic ankle stiffness is not quite sufficient to stabilise the body or pendulum. On average the directly determined intrinsic stiffness is 91 ± 23 % (mean ± s.d.) of that necessary to provide minimal stabilisation. The stiffness was substantially constant, increasing only slightly with ankle torque. This stiffness cannot be neurally regulated in quiet standing. Thus we attribute this stiffness to the foot, Achilles’ tendon and aponeurosis rather than the activated calf muscle fibres. Our measurements suggest that the triceps surae muscles maintain balance via a spring-like element which is itself too compliant to guarantee stability. The implication is that the brain cannot set ankle stiffness and then ignore the control task because additional modulation of torque is required to maintain balance. We suggest that the triceps surae muscles maintain balance by predictively controlling the proximal offset of the spring-like element in a ballistic-like manner. PMID:12482906

  2. A method for measuring exchange stiffness in ferromagnetic films

    SciTech Connect

    Girt, Erol; Huttema, W.; Montoya, E.; Kardasz, B.; Eyrich, C.; Heinrich, B.; Mryasov, O. N.; Dobin, A. Yu.; Karis, O.

    2011-04-01

    An exchange stiffness, A{sub ex}, in ferromagnetic films is obtained by fitting the M(H) dependence of two ferromagnetic layers antiferromagnetically coupled across a nonmagnetic spacer layer with a simple micromagnetic model. In epitaxial and textured structures this method allows measuring A{sub ex} between the crystallographic planes perpendicular to the growth direction of ferromagnetic films. Our results show that A{sub ex} between [0001] planes in textured Co grains is 1.54 {+-} 0.12 x 10{sup -11} J/m.

  3. Muscle stiffness measured under conditions simulating natural sound production.

    PubMed

    Dobrunz, L E; Pelletier, D G; McMahon, T A

    1990-08-01

    Isolated whole frog gastrocnemius muscles were electrically stimulated to peak twitch tension while held isometrically in a bath at 4 degrees C. A quartz hydrophone detected vibrations of the muscle by measuring the pressure fluctuations caused by muscle movement. A small steel collar was slipped over the belly of the muscle. Transient forces including plucks and steady sinusoidal driving were applied to the collar by causing currents to flow in a coil held near the collar. The instantaneous resonant frequencies measured by the pluck and driving techniques were the same at various times during a twitch contraction cycle. The strain produced by the plucking technique in the outermost fibers was less than 1.6 x 10(-4%), a strain three orders of magnitude less than that required to drop the tension to zero in quick-length-change experiments. Because the pressure transients recorded by the hydrophone during plucks and naturally occurring sounds were of comparable amplitude, strains in the muscle due to naturally occurring sound must also be of the order 10(-3%). A simple model assuming that the muscle is an elastic bar under tension was used to calculate the instantaneous elastic modulus E as a function of time during a twitch, given the tension and resonant frequency. The result for Emax, the peak value of E during a twitch, was typically 2.8 x 10(6) N/m2. The methods used here for measuring muscle stiffness are unusual in that the apparatus used for measuring stiffness is separate from the apparatus controlling and measuring force and length. PMID:2207252

  4. Measuring changes in muscle stiffness after eccentric exercise using elastography.

    PubMed

    Green, M A; Sinkus, R; Gandevia, S C; Herbert, R D; Bilston, L E

    2012-06-01

    Muscle stiffness has been reported to increase following eccentric muscle exercise, but to date only indirect methods have been used to measure it. This study aimed to use Magnetic Resonance Elastography (MRE), a noninvasive imaging technique, to assess the time-course of passive elasticity changes in the medial gastrocnemius and soleus muscles before and after a bout of eccentric exercise. Shear storage modulus (G') and loss modulus (G'') measurements were made in eight healthy subjects for both muscles in vivo before, one hour after, 48 hours after and 1 week after eccentric exercise. The results show a 21% increase in medial gastrocnemius storage modulus following eccentric exercise with a peak occurring ~48 hours after exercise (before exercise 1.15 ± 0.23 kPa, 48 hours after 1.38 ± 0.27 kPa). No significant changes in soleus muscle storage modulus were measured for the exercise protocol used in this study, and no significant changes in loss modulus were observed. This study provides the first direct measurements in skeletal muscle before and after eccentric exercise damage and suggests that MRE can be used to detect the time course of changes to muscle properties.

  5. Measurement of stiffness of standing trees and felled logs using acoustics: A review.

    PubMed

    Legg, Mathew; Bradley, Stuart

    2016-02-01

    This paper provides a review on the use of acoustics to measure stiffness of standing trees, stems, and logs. An outline is given of the properties of wood and how these are related to stiffness and acoustic velocity throughout the tree. Factors are described that influence the speed of sound in wood, including the different types of acoustic waves which propagate in tree stems and lumber. Acoustic tools and techniques that have been used to measure the stiffness of wood are reviewed. The reasons for a systematic difference between direct and acoustic measurements of stiffness for standing trees, and methods for correction, are discussed. Other techniques, which have been used in addition to acoustics to try to improve stiffness measurements, are also briefly described. Also reviewed are studies which have used acoustic tools to investigate factors that influence the stiffness of trees. These factors include different silvicultural practices, geographic and environmental conditions, and genetics. PMID:26936543

  6. Measurement of stiffness of standing trees and felled logs using acoustics: A review.

    PubMed

    Legg, Mathew; Bradley, Stuart

    2016-02-01

    This paper provides a review on the use of acoustics to measure stiffness of standing trees, stems, and logs. An outline is given of the properties of wood and how these are related to stiffness and acoustic velocity throughout the tree. Factors are described that influence the speed of sound in wood, including the different types of acoustic waves which propagate in tree stems and lumber. Acoustic tools and techniques that have been used to measure the stiffness of wood are reviewed. The reasons for a systematic difference between direct and acoustic measurements of stiffness for standing trees, and methods for correction, are discussed. Other techniques, which have been used in addition to acoustics to try to improve stiffness measurements, are also briefly described. Also reviewed are studies which have used acoustic tools to investigate factors that influence the stiffness of trees. These factors include different silvicultural practices, geographic and environmental conditions, and genetics.

  7. A novel method to estimate changes in stress-induced salivary α-amylase using heart rate variability and respiratory rate, as measured in a non-contact manner using a single radar attached to the back of a chair.

    PubMed

    Matsui, Takemi; Katayose, Satoshi

    2014-08-01

    The authors have developed a non-contact system which estimates changes in salivary α-amylase (sAA ratio) induced by stress. Before and after stressful sound exposure, a single 24 GHz compact radar which is attached to the back of a chair measures the low frequency (LF) component of heart rate variability and respiratory rate, α-amylase in the subjects' buccal secretions was measured by using an α-amylase assay kit. Using multiple regression analysis, sAA ratio was estimated using stress-induced LF change (LF ratio) and stress-induced respiratory rate change (respiratory rate ratio). Twelve healthy subjects were tested (12 males, 22 ± 2 years), who were exposed to audio stimuli with a composite tone of 2120 Hz and 2130 Hz sine waves at a sound pressure level of 95 dB after a silent period through a headphone. The result showed that sAA ratio estimated using multiple regression analysis significantly correlated with measured sAA ratio (R = 0.76, p < 0.01). This indicates that the system may serve for a stress management in the future.

  8. Measuring Age-Dependent Myocardial Stiffness across the Cardiac Cycle using MR Elastography: A Reproducibility Study

    PubMed Central

    Wassenaar, Peter A; Eleswarpu, Chethanya N; Schroeder, Samuel A; Mo, Xiaokui; Raterman, Brian D; White, Richard D; Kolipaka, Arunark

    2015-01-01

    Purpose To assess reproducibility in measuring left ventricular (LV) myocardial stiffness in volunteers throughout the cardiac cycle using magnetic resonance elastography (MRE) and to determine its correlation with age. Methods Cardiac MRE (CMRE) was performed on 29 normal volunteers, with ages ranging from 21 to 73 years. For assessing reproducibility of CMRE-derived stiffness measurements, scans were repeated per volunteer. Wave images were acquired throughout the LV myocardium, and were analyzed to obtain mean stiffness during the cardiac cycle. CMRE-derived stiffness values were correlated to age. Results Concordance correlation coefficient revealed good inter-scan agreement with rc of 0.77, with p-value<0.0001. Significantly higher myocardial stiffness was observed during end-systole (ES) compared to end-diastole (ED) across all subjects. Additionally, increased deviation between ES and ED stiffness was observed with increased age. Conclusion CMRE-derived stiffness is reproducible, with myocardial stiffness changing cyclically across the cardiac cycle. Stiffness is significantly higher during ES compared to ED. With age, ES myocardial stiffness increases more than ED, giving rise to an increased deviation between the two. PMID:26010456

  9. Skinfold thickness as a predictor of arterial stiffness: obesity and fatness linked to higher stiffness measurements in hypertensive patients.

    PubMed

    Selcuk, Ali; Bulucu, Fatih; Kalafat, Firdevs; Cakar, Mustafa; Demirbas, Seref; Karaman, Murat; Ay, Seyid Ahmet; Saglam, Kenan; Balta, Sevket; Demirkol, Sait; Arslan, Erol

    2013-01-01

    Hypertensive patients have strong evidence of endothelial dysfunction. Some novel endothelial dysfunction parameters such as pulse wave velocity (PWV), augmentation index (AIx), and central aortic pressure (CAP) have been investigated as predictive markers of atherosclerosis. It is well known that obesity has relationships with endothelial dysfunction and atherosclerosis. We aimed to investigate relationships between anthropometric measurements and arterial stiffness parameters in essentially hypertensive patients. The study population included 100 patients (56 females, 44 males) newly or formerly diagnosed as essentially hypertensive in an outpatient clinic. Arterial stiffness measurements, including PWV, AIx, CAP, and body mass index (BMI); waist circumference, hip circumference; waist/hip ratio; and triceps, biceps, subscapular, and suprailiac skinfold thicknesses were also applied to all the study patients. Then, the relationships between BMI, anthropometric measurements, and arterial stiffness parameters were investigated. The mean systolic arterial blood pressure of the study population was 135.85 ± 15.27 mm Hg and the mean diastolic arterial blood pressure of the study population was 84.17 ± 9.58 mm Hg. The parameters such as PWV, AIx, and CAP measured for arterial stiffness had correlations between BMI and different anthropometric measurements. The statistically significant correlations were present between PWV and triceps skinfold thickness (TST) (r = 0.377, P < .001) and it was also seen when regression analysis was performed (PWV = 6.41 + [0.072 × TST]; R(2) = 0.142, F[1-98] = 16.23, P < .001). Triceps skinfold thickness among these correlations may be used to estimate the carotid-femoral PWV, which is an indicator of subclinical organ damage due to hypertension.

  10. Motion-compensated non-contact detection of heart rate

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Liu, Ming; Dong, Liquan; Zhao, Yuejin; Liu, Xiaohua

    2015-12-01

    A new non-contact heart rate detection method based on the dual-wavelength technique is proposed and demonstrated experimentally. It is a well-known fact that the differences in the circuits of two detection modules result in different responses of two modules for motion artifacts. This poses a great challenge to compensate the motion artifacts during measurements. In order to circumvent this problem, we have proposed the amplitude spectrum and phase spectrum adaptive filter. Comparing with the time-domain adaptive filter and independent component analysis, the amplitude spectrum and phase spectrum adaptive filter can suppress the interference caused by the two circuit differences and effectively compensate the motion artifacts. To make the device is much compact and portable, a photoelectric probe is designed. The measurement distance is from several centimeters up to several meters. Moreover, the data obtained by using this non-contact detection system is compared with those of the conventional finger blood volume pulse (BVP) sensor by simultaneously measuring the heart rate of the subject. The data obtained from the proposed non-contact system are consistent and comparable with that of the BVP sensor.

  11. Sources of Variability in Musculo-Articular Stiffness Measurement

    PubMed Central

    Ditroilo, Massimiliano; Watsford, Mark; Murphy, Aron; De Vito, Giuseppe

    2013-01-01

    The assessment of musculo-articular stiffness (MAS) with the free-oscillation technique is a popular method with a variety of applications. This study examined the sources of variability (load applied and frequency of oscillation) when MAS is assessed. Over two testing occasions, 14 healthy men (27.7±5.2 yr, 1.82±0.04 m, 79.5±8.4 kg) were measured for isometric maximum voluntary contraction and MAS of the knee flexors using submaximal loads relative to the individual's maximum voluntary contraction (MAS%MVC) and a single absolute load (MASABS). As assessment load increased, MAS%MVC (coefficient of variation (CV)  =  8.1–12.1%; standard error of measurement (SEM)  =  51.6–98.8 Nm−1) and frequency (CV  =  4.8–7.0%; SEM  =  0.060–0.075 s−1) variability increased consequently. Further, similar levels of variability arising from load (CV  =  6.7%) and frequency (CV  =  4.8–7.0%) contributed to the overall MAS%MVC variability. The single absolute load condition yielded better reliability scores for MASABS (CV  =  6.5%; SEM  =  40.2 Nm−1) and frequency (CV  =  3.3%; SEM  =  0.039 s−1). Low and constant loads for MAS assessment, which are particularly relevant in the clinical setting, exhibited superior reliability compared to higher loads expressed as a percentage of maximum voluntary contraction, which are more suitable for sporting situations. Appropriate sample size and minimum detectable change can therefore be determined when prospective studies are carried out. PMID:23667662

  12. Photonic non-contact estimation of blood lactate level.

    PubMed

    Abraham, Chen; Beiderman, Yevgeny; Ozana, Nisan; Tenner, Felix; Schmidt, Michael; Sanz, Martin; Garcia, Javier; Zalevsky, Zeev

    2015-10-01

    The ability to measure the blood lactate level in a non-invasive, non-contact manner is very appealing to the sports industry as well as the home care field. That is mainly because this substance level is an imperative parameter in the course of devolving a personal workout programs. Moreover, the blood lactate level is also a pivotal means in estimation of muscles' performance capability. In this manuscript we propose an optical non-contact approach to estimate the concentration level of this parameter. Firstly, we introduce the connection between the physiological muscle tremor and the lactate blood levels. Secondly, we suggest a photonic optical method to estimate the physiological tremor. Lastly, we present the results of tests conducted to establish proof of concept to this connection. PMID:26504661

  13. Non-contacting Hand Image Certification System Using Morphological Analysis

    NASA Astrophysics Data System (ADS)

    Moritani, Motoki; Saitoh, Fumihiko

    This paper proposes a non-contacting certification system by using morphological analysis of hand images to access security control. The non-contacting hand image certification system is more effective than contacting system where psychological resistance and conformability are required. The morphology is applied to get useful individual characteristic even if the pose of a hand is changed. First, a hand image is captured using the transmitted lighting. Next, the wrist area is removed from the hand area. The pattern spectrum that represents the form of the hand area is measured by the morphological analysis, and the spectrum is normalized to the invariant pattern to the scale change. Finally, the certification of an individual is performed by the neural network. The experimental results show that the sufficient accuracy to certificate individuals was obtained by the proposed system.

  14. PolyMUMPs MEMS device to measure mechanical stiffness of single cells in aqueous media

    NASA Astrophysics Data System (ADS)

    Warnat, S.; King, H.; Forbrigger, C.; Hubbard, T.

    2015-02-01

    A method of experimentally determining the mechanical stiffness of single cells by using differential displacement measurements in a two stage spring system is presented. The spring system consists of a known MEMS reference spring and an unknown cellular stiffness: the ratio of displacements is related to the ratio of stiffness. A polyMUMPs implementation for aqueous media is presented and displacement measurements made from optical microphotographs using a FFT based displacement method with a repeatability of ~20 nm. The approach was first validated on a MEMS two stage spring system of known stiffness. The measured stiffness ratios of control structures (i) MEMS spring systems and (ii) polystyrene microspheres were found to agree with theoretical values. Mechanical tests were then performed on Saccharomyces cerevisiae (Baker’s yeast) in aqueous media. Cells were placed (using a micropipette) inside MEMS measuring structures and compressed between two jaws using an electrostatic actuator and displacements measured. Tested cells showed stiffness values between 5.4 and 8.4 N m-1 with an uncertainty of 11%. In addition, non-viable cells were tested by exposing viable cells to methanol. The resultant mean cell stiffness dropped by factor of 3 × and an explicit discrimination between viable and non-viable cells based on mechanical stiffness was seen.

  15. Report on Non-Contact DC Electric Field Sensors

    SciTech Connect

    Miles, R; Bond, T; Meyer, G

    2009-06-16

    This document reports on methods used to measure DC electrostatic fields in the range of 100 to 4000 V/m using a non-contact method. The project for which this report is written requires this capability. Non-contact measurements of DC fields is complicated by the effect of the accumulation of random space-charges near the sensors which interfere with the measurement of the field-of-interest and consequently, many forms of field measurements are either limited to AC measurements or use oscillating devices to create pseudo-AC fields. The intent of this document is to report on methods discussed in the literature for non-contact measurement of DC fields. Electric field meters report either the electric field expressed in volts per distance or the voltage measured with respect to a ground reference. Common commercial applications for measuring static (DC) electric fields include measurement of surface charge on materials near electronic equipment to prevent arcing which can destroy sensitive electronic components, measurement of the potential for lightning to strike buildings or other exposed assets, measurement of the electric fields under power lines to investigate potential health risks from exposure to EM fields and measurement of fields emanating from the brain for brain diagnostic purposes. Companies that make electric field sensors include Trek (Medina, NY), MKS Instruments, Boltek, Campbell Systems, Mission Instruments, Monroe Electronics, AlphaLab, Inc. and others. In addition to commercial vendors, there are research activities continuing in the MEMS and optical arenas to make compact devices using the principles applied to the larger commercial sensors.

  16. Non-contact FBG sensing based steam turbine rotor dynamic balance vibration detection system

    NASA Astrophysics Data System (ADS)

    Li, Tianliang; Tan, Yuegang; Cai, Lin

    2015-10-01

    This paper has proposed a non-contact vibration sensor based on fiber Bragg grating sensing, and applied to detect vibration of steam turbine rotor dynamic balance experimental platform. The principle of the sensor has been introduced, as well as the experimental analysis; performance of non-contact FBG vibration sensor has been analyzed in the experiment; in addition, turbine rotor dynamic vibration detection system based on eddy current displacement sensor and non-contact FBG vibration sensor have built; finally, compared with results of signals under analysis of the time domain and frequency domain. The analysis of experimental data contrast shows that: the vibration signal analysis of non-contact FBG vibration sensor is basically the same as the result of eddy current displacement sensor; it verified that the sensor can be used for non-contact measurement of steam turbine rotor dynamic balance vibration.

  17. Precision non-contact polishing tool

    DOEpatents

    Taylor, John S.

    1997-01-01

    A non-contact polishing tool that combines two orthogonal slurry flow geometries to provide flexibility in altering the shape of the removal footprint. By varying the relative contributions of the two flow geometries, the footprint shape can be varied between the characteristic shapes corresponding to the two independent flow regimes. In addition, the tool can include a pressure activated means by which the shape of the brim of the tool can be varied. The tool can be utilized in various applications, such as x-ray optical surfaces, x-ray lithography, lenses, etc., where stringent shape and finish tolerances are required.

  18. Precision non-contact polishing tool

    DOEpatents

    Taylor, J.S.

    1997-01-07

    A non-contact polishing tool is disclosed that combines two orthogonal slurry flow geometries to provide flexibility in altering the shape of the removal footprint. By varying the relative contributions of the two flow geometries, the footprint shape can be varied between the characteristic shapes corresponding to the two independent flow regimes. In addition, the tool can include a pressure activated means by which the shape of the brim of the tool can be varied. The tool can be utilized in various applications, such as x-ray optical surfaces, x-ray lithography, lenses, etc., where stringent shape and finish tolerances are required. 5 figs.

  19. A new method of measuring the stiffness of astronauts' EVA gloves

    NASA Astrophysics Data System (ADS)

    Mousavi, Mehdi; Appendino, Silvia; Battezzato, Alessandro; Bonanno, Alberto; Chen Chen, Fai; Crepaldi, Marco; Demarchi, Danilo; Favetto, Alain; Pescarmona, Francesco

    2014-04-01

    Hand fatigue is one of the most important problems of astronauts during their missions to space. This fatigue is due to the stiffness of the astronauts' gloves known as Extravehicular Activity (EVA) gloves. The EVA glove has a multilayered, bulky structure and is pressurized against the vacuum of space. In order to evaluate the stiffness of EVA gloves, different methods have been proposed in the past. In particular, the effects of wearing an EVA glove on the performance of the hands have been published by many researchers to represent the stiffness of the EVA glove. In this paper, a new method for measuring the stiffness of EVA gloves is proposed. A tendon-actuated finger probe is designed and used as an alternative to the human index finger in order to be placed inside an EVA glove and measure its stiffness. The finger probe is equipped with accelerometers, which work as tilt sensors, to measure the angles of its phalanges. The phalanges are actuated by applying different amount of torque using the tendons of the finger probe. Moreover, a hypobaric glove box is designed and realized to simulate the actual operating pressure of the EVA glove and to measure its stiffness in both pressurized and non-pressurized conditions. In order to prove the right performance of the proposed finger probe, an Orlam-DM EVA glove is used to perform a number of tests. The equation of stiffness for the PIP joint of this glove is extracted from the results acquired from the tests. This equation presents the torque required to flex the middle phalanx of the glove. Then, the effect of pressurization on the stiffness is highlighted in the last section. This setup can be used to measure the stiffness of different kinds of EVA gloves and allows direct, numerical comparison of their stiffness.

  20. In vivo and in vitro measurements of pulmonary arterial stiffness: A brief review

    PubMed Central

    Tian, Lian; Chesler, Naomi C.

    2012-01-01

    During the progression of pulmonary hypertension (PH), proximal pulmonary arteries (PAs) undergo remodeling such that they become thicker and the elastic modulus increases. Both of these changes increase the vascular stiffness. The increase in pulmonary vascular stiffness contributes to increased right ventricular (RV) afterload, which causes RV hypertrophy and eventually failure. Studies have found that proximal PA stiffness or its inverse, compliance, is strongly related to morbidity and mortality in patients with PH. Therefore, accurate in vivo measurement of PA stiffness is useful for prognoses in patients with PH. It is also important to understand the structural changes in PAs that occur with PH that are responsible for stiffening. Here, we briefly review the most common parameters used to quantify stiffness and in vivo and in vitro methods for measuring PA stiffness in human and animal models. For in vivo approaches, we review invasive and noninvasive approaches that are based on measurements of pressure and inner or outer diameter or cross-sectional area. For in vitro techniques, we review several different testing methods that mimic one, two or several aspects of physiological loading (e.g., uniaxial and biaxial testing, dynamic inflation-force testing). Many in vivo and in vitro measurement methods exist in the literature, and it is important to carefully choose an appropriate method to measure PA stiffness accurately. Therefore, advantages and disadvantages of each approach are discussed. PMID:23372936

  1. Flow visualization of a non-contact transport device by Coanda effect

    NASA Astrophysics Data System (ADS)

    Iki, Norihiko; Abe, Hiroyuki; Okada, Takashi

    2014-08-01

    AIST proposes new technology of non-contact transport device utilizing Coanda effect. A proposed non-contact transport device has a cylindrical body and circular slit for air. The air flow around non-contact device is turbulent and its flow pattern depends on the injection condition. Therefore we tried visualization of the air flow around non -contact device as the first step of PIV measurement. Several tracer particles were tried such as TiO2 particles, water droplets, potatoes starch, rice starch, corn starch. Hot-wire anemometer is employed to velocity measurement. TiO2 particles deposit inside of a slit and clogging of a slit occurs frequently. Potato starch particles do not clog a slit but they are too heavy to trace slow flow area. Water droplets by ultrasonic atomization also deposit inside of slit but they are useful to visualize flow pattern around a non-contact transport device by being supplied from circumference. Coanda effect of proposed non-contact transport device was confirmed and injected air flow pattern switches by a work. Air flow around non-contact trance port device is turbulent and its velocity range is wide. Therefore flow measurement by tracer part icle has traceability issue. Suitable tracer and exposure condition depends on target area.

  2. Microwave non-contact imaging of subcutaneous human body tissues.

    PubMed

    Kletsov, Andrey; Chernokalov, Alexander; Khripkov, Alexander; Cho, Jaegeol; Druchinin, Sergey

    2015-10-01

    A small-size microwave sensor is developed for non-contact imaging of a human body structure in 2D, enabling fitness and health monitoring using mobile devices. A method for human body tissue structure imaging is developed and experimentally validated. Subcutaneous fat tissue reconstruction depth of up to 70 mm and maximum fat thickness measurement error below 2 mm are demonstrated by measurements with a human body phantom and human subjects. Electrically small antennas are developed for integration of the microwave sensor into a mobile device. Usability of the developed microwave sensor for fitness applications, healthcare, and body weight management is demonstrated.

  3. Microwave non-contact imaging of subcutaneous human body tissues

    PubMed Central

    Chernokalov, Alexander; Khripkov, Alexander; Cho, Jaegeol; Druchinin, Sergey

    2015-01-01

    A small-size microwave sensor is developed for non-contact imaging of a human body structure in 2D, enabling fitness and health monitoring using mobile devices. A method for human body tissue structure imaging is developed and experimentally validated. Subcutaneous fat tissue reconstruction depth of up to 70 mm and maximum fat thickness measurement error below 2 mm are demonstrated by measurements with a human body phantom and human subjects. Electrically small antennas are developed for integration of the microwave sensor into a mobile device. Usability of the developed microwave sensor for fitness applications, healthcare, and body weight management is demonstrated. PMID:26609415

  4. Non-contact photoacoustic tomography with a laser Doppler vibrometer

    NASA Astrophysics Data System (ADS)

    Xu, Guan; Wang, Cheng; Feng, Ting; Oliver, David E.; Wang, Xueding

    2014-03-01

    Most concurrent photoacoustic tomography systems are based on traditional ultrasound measurement regime, which requires the contact or acoustic coupling material between the biological tissue and the ultrasound transducer. This study investigates the feasibility of non-contact measurement of photacoustic signals generated inside biomedical tissues by observing the vibrations at the surface of the tissues with a commercial laser Doppler vibrometer. The vibrometer with 0- 2MHz measurement bandwidth and 5 MHz sampling frequency was integrated to a conventional rotational PAT data acquisition system. The data acquisition of the vibrometer was synchronized to the laser illumination from an Nd:YAG laser with output at 532nm. The laser energy was tuned to 17.5mJ per square centimeter. The PA signals were acquired at 120 angular locations uniformly distributed around the scanned objects. The frequency response of the measurement system was first calibrated. 2-inch-diamater cylindrical phantoms containing small rubber plates and biological tissues were afterwards imaged. The phantoms were made from 5% intralipid solution in 10% porcine gelatin to simulate the light scattering in biological tissue and to backscatter the measurement laser from the vibrometer. Time-domain backprojection method was used for the image reconstruction. Experiments with real-tissue phantoms show that with laser illumination of 17.5 mJ/cm2 at 532 nm, the non-contact photoacoustic (PA) imaging system with 15dB detection bandwidth of 2.5 MHz can resolve spherical optical inclusions with dimension of 500μm and multi-layered structure with optical contrast in strongly scattering medium. The experiment results prompt the potential implementation of the non-contact PAT to achieve "photoacoustic camera".

  5. Measurement of the local aortic stiffness by a non-invasive bioelectrical impedance technique.

    PubMed

    Collette, Mathieu; Lalande, Alain; Willoteaux, Serge; Leftheriotis, Georges; Humeau, Anne

    2011-04-01

    Aortic stiffness measurement is well recognized as an independent predictor of cardiovascular mortality and morbidity. Recently, a simple method has been proposed for the evaluation of the local aortic stiffness (AoStiff) using a non-invasive bioelectrical impedance (BI) technique. This approach relies on a novel interpretation of the arterial stiffness where AoStiff is computed from the measurement of two new BI variables: (1) the local aortic flow resistance (AoRes) exerted by the drag forces onto the flow; (2) the local aortic wall distensibility (AoDist). Herein, we propose to detail and compare these three indices with the reference pulse wave velocity (PWV) measurement and the direct assessment of the aortic drag forces (DF) and distensibility (DS) obtained by the magnetic resonance imaging technique. Our results show a significant correlation between AoStiff and PWV (r = 0.79; P < 0.0001; 120 patients at rest; mean age 44 ± 16 years), and also between AoRes and DF (r = 0.95; P = 0.0011) and between AoDist and DS (r = 0.93; P = 0.0022) on eight patients at rest (mean age 52 ± 19 years). These first results suggest that local aortic stiffness can be explored reliably by the BI technique.

  6. Magnetic torque tweezers: measuring torsional stiffness in DNA and RecA-DNA filaments.

    PubMed

    Lipfert, Jan; Kerssemakers, Jacob W J; Jager, Tessa; Dekker, Nynke H

    2010-12-01

    We introduce magnetic torque tweezers, which enable direct single-molecule measurements of torque. Our measurements of the effective torsional stiffness C of dsDNA indicated a substantial force dependence, with C = approximately 40 nm at low forces up to C = approximately 100 nm at high forces. The initial torsional stiffness of RecA filaments was nearly twofold larger than that for dsDNA, yet at moderate torques further build-up of torsional strain was prevented. PMID:20953173

  7. Stiffness matrix determination of composite materials using lamb wave group velocity measurements

    NASA Astrophysics Data System (ADS)

    Putkis, O.; Croxford, A. J.

    2013-04-01

    The use of Lamb waves in Non-Destructive Evaluation (NDE) and Structural Health Monitoring (SHM) is gaining popularity due to their ability to travel long distances without significant attenuation, therefore offering large area inspections with a small number of sensors. The design of a Lamb-wave-based NDE/SHM system for composite materials is more complicated than for metallic materials due to the directional dependence of Lamb wave propagation characteristics such as dispersion and group velocity. Propagation parameters can be theoretically predicted from known material properties, specifically the stiffness matrix and density. However, in practice it is difficult to obtain the stiffness matrix of a particular material or structure with high accuracy, hence introducing errors in theoretical predictions and inaccuracies in the resulting propagation parameters. Measured Lamb wave phase velocities can be used to infer the stiffness matrix, but the measurements are limited to the principal directions due to the steering effect (different propagation directions of phase and corresponding group velocities). This paper proposes determination of the stiffness matrix from the measured group velocities, which can be unambiguously measured in any direction. A highly anisotropic carbon-fibre-reinforced polymer plate is chosen for the study. The influence of different stiffness matrix elements on the directional group velocity profile is investigated. Thermodynamic Simulated Annealing (TSA) is used as a tool for inverse, multi variable inference of the stiffness matrix. A good estimation is achieved for particular matrix elements.

  8. Non-Contact Laser Based Ultrasound Evaluation of Canned Foods

    NASA Astrophysics Data System (ADS)

    Shelton, David

    2005-03-01

    Laser-Based Ultrasound detection was used to measure the velocity of compression waves transmitted through canned foods. Condensed broth, canned pasta, and non-condensed soup were evaluated in these experiments. Homodyne adaptive optics resulted in measurements that were more accurate than the traditional heterodyne method, as well as yielding a 10 dB gain in signal to noise. A-Scans measured the velocity of ultrasound sent through the center of the can and were able to distinguish the quantity of food stuff in its path, as well as distinguish between meat and potato. B-Scans investigated the heterogeneity of the sample’s contents. The evaluation of canned foods was completely non-contact and would be suitable for continuous monitoring in production. These results were verified by conducting the same experiments with a contact piezo transducer. Although the contact method yields a higher signal to noise ratio than the non-contact method, Laser-Based Ultrasound was able to detect surface waves the contact transducer could not.

  9. A non-contact fiber Bragg grating vibration sensor.

    PubMed

    Li, Tianliang; Tan, Yuegang; Wei, Li; Zhou, Zude; Zheng, Kai; Guo, Yongxing

    2014-01-01

    A non-contact vibration sensor based on fiber Bragg grating (FBG) sensing has been proposed and studied in this paper. The principle of the sensor as well as simulation and experimental analyses are introduced. When the distance between the movable head and the measured shaft changed, the diaphragm deformed under magnetic coupling of the permanent magnet on the measured magnetic shaft. As a result, the center wavelength of the FBG connected to the diaphragm changed, based on which the vibration displacement of the rotating shaft could be obtained. Experimental results show that the resonant frequency of the sensor is about 1500 Hz and the working band ranges within 0-1300 Hz, which is consistent with the simulation analysis result; the sensitivity is -1.694 pm/μm and the linearity is 2.92% within a range of 2-2.4 mm. It can be used to conduct non-contact measurement on the vibration of the rotating shaft system.

  10. Non-Contact Heart Rate Monitoring Using Lab Color Space.

    PubMed

    Rahman, Hamidur; Ahmed, Mobyen Uddin; Begum, Shahina

    2016-01-01

    Research progressing during the last decade focuses more on non-contact based systems to monitor Heart Rate (HR) which are simple, low-cost and comfortable to use. Most of the non-contact based systems are using RGB videos which is suitable for lab environment. However, it needs to progress considerably before they can be applied in real life applications. As luminance (light) has significance contribution on RGB videos HR monitoring using RGB videos are not efficient enough in real life applications in outdoor environment. This paper presents a HR monitoring method using Lab color facial video captured by a webcam of a laptop computer. Lab color space is device independent and HR can be extracted through facial skin color variation caused by blood circulation considering variable environmental light. Here, three different signal processing methods i.e., Fast Fourier Transform (FFT), Independent Component Analysis (ICA) and Principal Component Analysis (PCA) have been applied on the color channels in video recordings and blood volume pulse (BVP) has been extracted from the facial regions. In this study, HR is subsequently quantified and compare with a reference measurement. The result shows that high degrees of accuracy have been achieved compared to the reference measurements. Thus, this technology has significant potential for advancing personal health care, telemedicine and many real life applications such as driver monitoring. PMID:27225552

  11. Accuracy and reproducibility of bending stiffness measurements by mechanical response tissue analysis in artificial human ulnas.

    PubMed

    Arnold, Patricia A; Ellerbrock, Emily R; Bowman, Lyn; Loucks, Anne B

    2014-11-01

    Osteoporosis is characterized by reduced bone strength, but no FDA-approved medical device measures bone strength. Bone strength is strongly associated with bone stiffness, but no FDA-approved medical device measures bone stiffness either. Mechanical Response Tissue Analysis (MRTA) is a non-significant risk, non-invasive, radiation-free, vibration analysis technique for making immediate, direct functional measurements of the bending stiffness of long bones in humans in vivo. MRTA has been used for research purposes for more than 20 years, but little has been published about its accuracy. To begin to investigate its accuracy, we compared MRTA measurements of bending stiffness in 39 artificial human ulna bones to measurements made by Quasistatic Mechanical Testing (QMT). In the process, we also quantified the reproducibility (i.e., precision and repeatability) of both methods. MRTA precision (1.0±1.0%) and repeatability (3.1 ± 3.1%) were not as high as those of QMT (0.2 ± 0.2% and 1.3+1.7%, respectively; both p<10(-4)). The relationship between MRTA and QMT measurements of ulna bending stiffness was indistinguishable from the identity line (p=0.44) and paired measurements by the two methods agreed within a 95% confidence interval of ± 5%. If such accuracy can be achieved on real human ulnas in situ, and if the ulna is representative of the appendicular skeleton, MRTA may prove clinically useful.

  12. Accuracy and reproducibility of bending stiffness measurements by mechanical response tissue analysis in artificial human ulnas.

    PubMed

    Arnold, Patricia A; Ellerbrock, Emily R; Bowman, Lyn; Loucks, Anne B

    2014-11-01

    Osteoporosis is characterized by reduced bone strength, but no FDA-approved medical device measures bone strength. Bone strength is strongly associated with bone stiffness, but no FDA-approved medical device measures bone stiffness either. Mechanical Response Tissue Analysis (MRTA) is a non-significant risk, non-invasive, radiation-free, vibration analysis technique for making immediate, direct functional measurements of the bending stiffness of long bones in humans in vivo. MRTA has been used for research purposes for more than 20 years, but little has been published about its accuracy. To begin to investigate its accuracy, we compared MRTA measurements of bending stiffness in 39 artificial human ulna bones to measurements made by Quasistatic Mechanical Testing (QMT). In the process, we also quantified the reproducibility (i.e., precision and repeatability) of both methods. MRTA precision (1.0±1.0%) and repeatability (3.1 ± 3.1%) were not as high as those of QMT (0.2 ± 0.2% and 1.3+1.7%, respectively; both p<10(-4)). The relationship between MRTA and QMT measurements of ulna bending stiffness was indistinguishable from the identity line (p=0.44) and paired measurements by the two methods agreed within a 95% confidence interval of ± 5%. If such accuracy can be achieved on real human ulnas in situ, and if the ulna is representative of the appendicular skeleton, MRTA may prove clinically useful. PMID:25261885

  13. Integration of Acoustic Radiation Force and Optical Imaging for Blood Plasma Clot Stiffness Measurement

    PubMed Central

    Wang, Caroline W.; Perez, Matthew J.; Helmke, Brian P.; Viola, Francesco; Lawrence, Michael B.

    2015-01-01

    Despite the life-preserving function blood clotting serves in the body, inadequate or excessive blood clot stiffness has been associated with life-threatening diseases such as stroke, hemorrhage, and heart attack. The relationship between blood clot stiffness and vascular diseases underscores the importance of quantifying the magnitude and kinetics of blood’s transformation from a fluid to a viscoelastic solid. To measure blood plasma clot stiffness, we have developed a method that uses ultrasound acoustic radiation force (ARF) to induce micron-scaled displacements (1-500 μm) on microbeads suspended in blood plasma. The displacements were detected by optical microscopy and took place within a micro-liter sized clot region formed within a larger volume (2 mL sample) to minimize container surface effects. Modulation of the ultrasound generated acoustic radiation force allowed stiffness measurements to be made in blood plasma from before its gel point to the stage where it was a fully developed viscoelastic solid. A 0.5 wt % agarose hydrogel was 9.8-fold stiffer than the plasma (platelet-rich) clot at 1 h post-kaolin stimulus. The acoustic radiation force microbead method was sensitive to the presence of platelets and strength of coagulation stimulus. Platelet depletion reduced clot stiffness 6.9 fold relative to platelet rich plasma. The sensitivity of acoustic radiation force based stiffness assessment may allow for studying platelet regulation of both incipient and mature clot mechanical properties. PMID:26042775

  14. Integration of acoustic radiation force and optical imaging for blood plasma clot stiffness measurement.

    PubMed

    Wang, Caroline W; Perez, Matthew J; Helmke, Brian P; Viola, Francesco; Lawrence, Michael B

    2015-01-01

    Despite the life-preserving function blood clotting serves in the body, inadequate or excessive blood clot stiffness has been associated with life-threatening diseases such as stroke, hemorrhage, and heart attack. The relationship between blood clot stiffness and vascular diseases underscores the importance of quantifying the magnitude and kinetics of blood's transformation from a fluid to a viscoelastic solid. To measure blood plasma clot stiffness, we have developed a method that uses ultrasound acoustic radiation force (ARF) to induce micron-scaled displacements (1-500 μm) on microbeads suspended in blood plasma. The displacements were detected by optical microscopy and took place within a micro-liter sized clot region formed within a larger volume (2 mL sample) to minimize container surface effects. Modulation of the ultrasound generated acoustic radiation force allowed stiffness measurements to be made in blood plasma from before its gel point to the stage where it was a fully developed viscoelastic solid. A 0.5 wt % agarose hydrogel was 9.8-fold stiffer than the plasma (platelet-rich) clot at 1 h post-kaolin stimulus. The acoustic radiation force microbead method was sensitive to the presence of platelets and strength of coagulation stimulus. Platelet depletion reduced clot stiffness 6.9 fold relative to platelet rich plasma. The sensitivity of acoustic radiation force based stiffness assessment may allow for studying platelet regulation of both incipient and mature clot mechanical properties. PMID:26042775

  15. Scale-independent stiffness measurement of upper limbs with lymphedema by a circular compression.

    PubMed

    Tanaka, Nobuyuki; Kataoka, Tsuyoshi; Kaneko, Makoto; Yamato, Masayuki; Okano, Teruo

    2012-01-01

    Lymphedema caused by the dissection of lymphatic node for treating a breast cancer produces serious swelling on the limbs and reduces the quality of life of the patient. For quantitative assessing the disease, this study newly proposed the stiffness measurement method of upper limb with lymphedema. A measurement system, where a roll-up belt was installed to circularly compress the limb by pulling the belt was developed. Both the belt tension and displacement were measured during the compresson of limb. Scale-independent stiffness index was newly derived from the bulk modulus and applied the measured force and displacement. The stiffness index of upper limb with lymphedema was measured. The index of affected limb was larger than that of healthy limb in a patient.

  16. Measurement of passive ankle stiffness in subjects with chronic hemiparesis using a novel ankle robot

    PubMed Central

    Roy, Anindo; Bever, Christopher T.; Forrester, Larry W.; Macko, Richard F.; Hogan, Neville

    2011-01-01

    Our objective in this study was to assess passive mechanical stiffness in the ankle of chronic hemiparetic stroke survivors and to compare it with those of healthy young and older (age-matched) individuals. Given the importance of the ankle during locomotion, an accurate estimate of passive ankle stiffness would be valuable for locomotor rehabilitation, potentially providing a measure of recovery and a quantitative basis to design treatment protocols. Using a novel ankle robot, we characterized passive ankle stiffness both in sagittal and in frontal planes by applying perturbations to the ankle joint over the entire range of motion with subjects in a relaxed state. We found that passive stiffness of the affected ankle joint was significantly higher in chronic stroke survivors than in healthy adults of a similar cohort, both in the sagittal as well as frontal plane of movement, in three out of four directions tested with indistinguishable stiffness values in plantarflexion direction. Our findings are comparable to the literature, thus indicating its plausibility, and, to our knowledge, report for the first time passive stiffness in the frontal plane for persons with chronic stroke and older healthy adults. PMID:21346215

  17. Ultrasonic measurements of stiffness in thermal-mechanically fatigued IM7/5260 composites

    SciTech Connect

    Seale, M.D.; Madaras, E.I. )

    1999-08-01

    In recent years, ultrasonic methods have been developed that can measure the mechanical stiffness of composites. The Lamb wave velocity is directly related to the material parameters, so an effective method exists to ascertain the stiffness of composites by measuring the velocity of these waves. In this study, a Lamb wave measurement system was used to measure the bending and out-of-plane stiffness coefficients of thermoset composite laminates undergoing thermal-mechanical loading. A series of 16 ply and 32 ply composite laminates were subjected to thermal-mechanical fatigue (TMF) in load frames equipped with special environmental chambers. The composite system studied was a graphite fiber-reinforced bismaleimide thermoset, IM7/5260. The samples were subjected to both high and low temperature profiles as well as high-strain and low-strain profiles. The bending and out-of-plane stiffnesses for composite samples that have undergone over 6,000 cycles of combined thermal and mechanical fatigue are reported. The Lamb wave generated elastic stiffness results have shown decreases of up to 64% at 4,706 cycles for samples subjected to TMF at high temperatures and less than a 10% decrease at over 6,000 cycles for samples subjected to TMF at low temperatures.

  18. Measurement of the UH-60A Hub Large Rotor Test Apparatus Control System Stiffness

    NASA Technical Reports Server (NTRS)

    Kufeld, Robert M.

    2014-01-01

    This purpose of this report is to provides details of the measurement of the control system stiffness of the UH-60A rotor hub mounted on the Large Rotor Test Apparatus (UH-60A/LRTA). The UH-60A/LRTA was used in the 40- by 80-Foot Wind Tunnel to complete the full-scale wind tunnel test portion of the NASA / ARMY UH-60A Airloads Program. This report describes the LRTA control system and highlights the differences between the LRTA and UH-60A aircraft. The test hardware, test setup, and test procedures are also described. Sample results are shown, including the azimuthal variation of the measured control system stiffness for three different loadings and two different dynamic actuator settings. Finally, the azimuthal stiffness is converted to fixed system values using multi-blade transformations for input to comprehensive rotorcraft prediction codes.

  19. Piezoelectric Sensor to Measure Soft and Hard Stiffness with High Sensitivity for Ultrasonic Transducers

    PubMed Central

    Li, Yan-Rui; Su, Chih-Chung; Lin, Wen-Jin; Chang, Shuo-Hung

    2015-01-01

    During dental sinus lift surgery, it is important to monitor the thickness of the remaining maxilla to avoid perforating the sinus membrane. Therefore, a sensor should be integrated into ultrasonic dental tools to prevent undesirable damage. This paper presents a piezoelectric (PZT) sensor installed in an ultrasonic transducer to measure the stiffness of high and low materials. Four design types using three PZT ring materials and a split PZT for actuator and sensor ring materials were studied. Three sensor locations were also examined. The voltage signals of the sensor and the displacement of the actuator were analyzed to distinguish the low and high stiffness. Using sensor type T1 made of the PZT-1 material and the front location A1 provided a high sensitivity of 2.47 Vm/kN. The experimental results demonstrated that our design can measure soft and hard stiffness. PMID:26110400

  20. Piezoelectric Sensor to Measure Soft and Hard Stiffness with High Sensitivity for Ultrasonic Transducers.

    PubMed

    Li, Yan-Rui; Su, Chih-Chung; Lin, Wen-Jin; Chang, Shuo-Hung

    2015-06-11

    During dental sinus lift surgery, it is important to monitor the thickness of the remaining maxilla to avoid perforating the sinus membrane. Therefore, a sensor should be integrated into ultrasonic dental tools to prevent undesirable damage. This paper presents a piezoelectric (PZT) sensor installed in an ultrasonic transducer to measure the stiffness of high and low materials. Four design types using three PZT ring materials and a split PZT for actuator and sensor ring materials were studied. Three sensor locations were also examined. The voltage signals of the sensor and the displacement of the actuator were analyzed to distinguish the low and high stiffness. Using sensor type T1 made of the PZT-1 material and the front location A1 provided a high sensitivity of 2.47 Vm/kN. The experimental results demonstrated that our design can measure soft and hard stiffness.

  1. Optoelectronic tweezers for the measurement of the relative stiffness of erythrocytes

    NASA Astrophysics Data System (ADS)

    Neale, Steven L.; Mody, Nimesh; Selman, Colin; Cooper, Jonathan M.

    2012-10-01

    In this paper we describe the first use of Optoelectronic Tweezers (OET), an optically controlled micromanipulation method, to measure the relative stiffness of erythrocytes in mice. Cell stiffness is an important measure of cell health and in the case of erythrocytes, the most elastic cells in the body, an increase in cell stiffness can indicate pathologies such as type II diabetes mellitus or hypertension (high blood pressure). OET uses a photoconductive device to convert an optical pattern into and electrical pattern. The electrical fields will create a dipole within any polarisable particles in the device, such as cells, and non-uniformities of the field can be used to place unequal forces onto each side of the dipole thus moving the particle. In areas of the device where there are no field gradients, areas of constant illumination, the force on each side of the dipole will be equal, keeping the cell stationary, but as there are opposing forces on each side of the cell it will be stretched. The force each cell will experience will differ slightly so the stretching will depend on the cells polarisability as well as its stiffness. Because of this a relative stiffness rather than absolute stiffness is measured. We show that with standard conditions (20Vpp, 1.5MHz, 10mSm-1 medium conductivity) the cell's diameter changes by around 10% for healthy mouse erythrocytes and we show that due to the low light intensities required for OET, relative to conventional optical tweezers, multiple cells can be measured simultaneously.

  2. Non-contact feature detection using ultrasonic Lamb waves

    DOEpatents

    Sinha, Dipen N.

    2011-06-28

    Apparatus and method for non-contact ultrasonic detection of features on or within the walls of hollow pipes are described. An air-coupled, high-power ultrasonic transducer for generating guided waves in the pipe wall, and a high-sensitivity, air-coupled transducer for detecting these waves, are disposed at a distance apart and at chosen angle with respect to the surface of the pipe, either inside of or outside of the pipe. Measurements may be made in reflection or transmission modes depending on the relative position of the transducers and the pipe. Data are taken by sweeping the frequency of the incident ultrasonic waves, using a tracking narrow-band filter to reduce detected noise, and transforming the frequency domain data into the time domain using fast Fourier transformation, if required.

  3. Comparison of Measurements of Profile Stiffness in HSX to Nonlinear Gyrokinetic Calculations

    NASA Astrophysics Data System (ADS)

    Weir, Gavin

    2014-10-01

    Tokamaks and stellarators have observed significant differences in profile stiffness, defined as the ratio of the transient thermal diffusivity obtained from heat pulse propagation to the diffusivity obtained from steady-state power balance. Typically, stellarators have measured stiffness values below 2 and tokamaks have observed stiffness greater than 4. In this paper we present the first results on stiffness measurements in the quasihelically symmetric experiment HSX in which the neoclassical transport is comparable to that in a tokamak and turbulent transport dominates throughout the plasma. Electron Cyclotron Emission (ECE) is used to measure the local electron temperature perturbation from modulating the ECRH system on HSX. Spectral analysis of the ECE data yields a profile of the perturbed amplitude and a resulting transient electron thermal diffusivity that is close to the steady-state diffusivity. This evidence of a lack of stiffness in HSX agrees with the scaling of the steady-state heat flux with temperature gradient. The experimental data is compared to gyrokinetic calculations using the GENE code with two kinetic species. Linear calculations demonstrate that the Trapped Electron Mode (TEM) is the dominant long-wavelength microturbulence instability with growth rates that scale linearly with electron temperature gradient. Nonlinear gyrokinetic flux tube simulations indicate that the TEM contributes significantly to the saturated heat fluxes in HSX, shifting the transport-carrying wavenumbers to larger values than in typical Ion Temperature Gradient (ITG) turbulence. A set of nonlinear simulations are being executed, examining the saturated nonlinear heat flux as a function of the electron temperature gradient, to obtain a stiffness value from the simulations to compare with experimental results. This work is supported by DOE Grant DE-FG02-93ER54222.

  4. Non-contact time-resolved diffuse reflectance imaging at null source-detector separation.

    PubMed

    Mazurenka, M; Jelzow, A; Wabnitz, H; Contini, D; Spinelli, L; Pifferi, A; Cubeddu, R; Mora, A Dalla; Tosi, A; Zappa, F; Macdonald, R

    2012-01-01

    We report results of the proof-of-principle tests of a novel non-contact tissue imaging system. The system utilizes a quasi-null source-detector separation approach for time-domain near-infrared spectroscopy, taking advantage of an innovative state-of-the-art fast-gated single photon counting detector. Measurements on phantoms demonstrate the feasibility of the non-contact approach for the detection of optically absorbing perturbations buried up to a few centimeters beneath the surface of a tissue-like turbid medium. The measured depth sensitivity and spatial resolution of the new system are close to the values predicted by Monte Carlo simulations for the inhomogeneous medium and an ideal fast-gated detector, thus proving the feasibility of the non-contact approach for high density diffuse reflectance measurements on tissue. Potential applications of the system are also discussed. PMID:22274351

  5. Assessment of impact factors on shear wave based liver stiffness measurement.

    PubMed

    Ling, Wenwu; Lu, Qiang; Quan, Jierong; Ma, Lin; Luo, Yan

    2013-02-01

    Shear wave based ultrasound elastographies have been implemented as non-invasive methods for quantitative assessment of liver stiffness. Nonetheless, there are only a few studies that have investigated impact factors on liver stiffness measurement (LSM). Moreover, standard examination protocols for LSM are still lacking in clinical practice. Our study aimed to assess the impact factors on LSM to establish its standard examination protocols in clinical practice. We applied shear wave based elastography point quantification (ElastPQ) in 21 healthy individuals to determine the impact of liver location (segments I-VIII), breathing phase (end-inspiration and end-expiration), probe position (sub-costal and inter-costal position) and examiner on LSM. Additional studies in 175 healthy individuals were also performed to determine the influence of gender and age on liver stiffness. We found significant impact of liver location on LSM, while the liver segment V displayed the lowest coefficient of variation (CV 21%). The liver stiffness at the end-expiration was significantly higher than that at the end-inspiration (P=2.1E-05). The liver stiffness was 8% higher in men than in women (3.8 ± 0.7 kPa vs. 3.5 ± 0.4 kPa, P=0.0168). In contrast, the liver stiffness was comparable in the different probe positions, examiners and age groups (P>0.05). In conclusion, this study reveals significant impact from liver location, breathing phase and gender on LSM, while furthermore strengthening the necessity for the development of standard examination protocols on LSM.

  6. Usefulness of liver stiffness measurement during acute cellular rejection in liver transplantation.

    PubMed

    Crespo, Gonzalo; Castro-Narro, Graciela; García-Juárez, Ignacio; Benítez, Carlos; Ruiz, Pablo; Sastre, Lydia; Colmenero, Jordi; Miquel, Rosa; Sánchez-Fueyo, Alberto; Forns, Xavier; Navasa, Miquel

    2016-03-01

    Liver stiffness measurement (LSM) is a useful method to estimate liver fibrosis and portal hypertension. The inflammatory process that takes place in post-liver transplant acute cellular rejection (ACR) may also increase liver stiffness. We aimed to explore the association between liver stiffness and the severity of ACR, as well as to assess the relationship between liver stiffness and response to rejection treatment in a prospective study that included 27 liver recipients with biopsy-proven ACR, 30 stable recipients with normal liver tests, and 30 hepatitis C virus (HCV)-infected LT recipients with histologically diagnosed HCV recurrence. Patients with rejection were stratified into 2 groups (mild and moderate/severe) according to the severity of rejection evaluated with the Banff score. Routine biomarkers and LSM with FibroScan were performed at the time of liver biopsy (baseline) and at 7, 30, and 90 days in patients with rejection and at baseline in control patients. Median baseline liver stiffness was 5.9 kPa in the mild rejection group, 11 kPa in the moderate/severe group (P = 0.001), 4.2 kPa in stable recipients (P = 0.02 versus mild rejection), and 13.6 kPa in patients with recurrent HCV (P = 0.17 versus moderate/severe rejection). The area under the receiver operator characteristic curve of LSM to discriminate mild versus moderate/severe ACR was 0.924, and a LSM value of 8.5 kPa yielded a positive predictive value of 100% to diagnose moderate/severe rejection. Liver stiffness improved in 7%, 21%, and 64% of patients with moderate/severe rejection at 7, 30, and 90 days. In conclusion, according to the results of this exploratory study, LSM is associated with the severity of ACR in liver transplantation and thus may be of help in its assessment. PMID:26609794

  7. Differentiating untreated and cross-linked porcine corneas of the same measured stiffness with optical coherence elastography

    PubMed Central

    Li, Jiasong; Han, Zhaolong; Singh, Manmohan; Twa, Michael D.; Larin, Kirill V.

    2014-01-01

    Abstract. Structurally degenerative diseases, such as keratoconus, can significantly alter the stiffness of the cornea, directly affecting the quality of vision. Ultraviolet-induced collagen cross-linking (CXL) effectively increases corneal stiffness and is applied clinically to treat keratoconus. However, measured corneal stiffness is also influenced by intraocular pressure (IOP). Therefore, experimentally measured changes in corneal stiffness may be attributable to the effects of CXL, changes in IOP, or both. We present a noninvasive measurement method using phase-stabilized swept-source optical coherence elastography to distinguish between CXL and IOP effects on measured corneal stiffness. This method compared the displacement amplitude attenuation of a focused air-pulse-induced elastic wave. The damping speed of the displacement amplitudes at each measurement position along the wave propagation were compared for different materials. This method was initially tested on gelatin and agar phantoms of the same stiffness for validation. Consequently, untreated and CXL-treated porcine corneas of the same measured stiffness, but at different IOPs, were also evaluated. The results suggest that this noninvasive method may have the potential to detect the early stages of ocular diseases such as keratoconus or may be applied during CLX procedures by factoring in the effects of IOP on the measured corneal stiffness. PMID:25408955

  8. Differentiating untreated and cross-linked porcine corneas of the same measured stiffness with optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Li, Jiasong; Han, Zhaolong; Singh, Manmohan; Twa, Michael D.; Larin, Kirill V.

    2014-11-01

    Structurally degenerative diseases, such as keratoconus, can significantly alter the stiffness of the cornea, directly affecting the quality of vision. Ultraviolet-induced collagen cross-linking (CXL) effectively increases corneal stiffness and is applied clinically to treat keratoconus. However, measured corneal stiffness is also influenced by intraocular pressure (IOP). Therefore, experimentally measured changes in corneal stiffness may be attributable to the effects of CXL, changes in IOP, or both. We present a noninvasive measurement method using phase-stabilized swept-source optical coherence elastography to distinguish between CXL and IOP effects on measured corneal stiffness. This method compared the displacement amplitude attenuation of a focused air-pulse-induced elastic wave. The damping speed of the displacement amplitudes at each measurement position along the wave propagation were compared for different materials. This method was initially tested on gelatin and agar phantoms of the same stiffness for validation. Consequently, untreated and CXL-treated porcine corneas of the same measured stiffness, but at different IOPs, were also evaluated. The results suggest that this noninvasive method may have the potential to detect the early stages of ocular diseases such as keratoconus or may be applied during CLX procedures by factoring in the effects of IOP on the measured corneal stiffness.

  9. Contact stiffness and damping identification for hardware-in-the-loop contact simulator with measurement delay compensation

    NASA Astrophysics Data System (ADS)

    Qi, Chenkun; Zhao, Xianchao; Gao, Feng; Ren, Anye; Sun, Qiao

    2016-06-01

    The hardware-in-the-loop (HIL) contact simulator is to simulate the contact process of two flying objects in space. The contact stiffness and damping are important parameters used for the process monitoring, compliant contact control and force compensation control. In this study, a contact stiffness and damping identification approach is proposed for the HIL contact simulation with the force measurement delay. The actual relative position of two flying objects can be accurately measured. However, the force measurement delay needs to be compensated because it will lead to incorrect stiffness and damping identification. Here, the phase lead compensation is used to reconstruct the actual contact force from the delayed force measurement. From the force and position data, the contact stiffness and damping are identified in real time using the recursive least squares (RLS) method. The simulations and experiments are used to verify that the proposed stiffness and damping identification approach is effective.

  10. Inductive Non-Contact Position Sensor

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Garcia, Alyssa; Simmons, Stephen

    2010-01-01

    Optical hardware has been developed to measure the depth of defects in the Space Shuttle Orbiter's windows. In this hardware, a mirror is translated such that its position corresponds to the defect's depth, so the depth measurement problem is transferred to a mirror-position measurement problem. This is preferable because the mirror is internal to the optical system and thus accessible. Based on requirements supplied by the window inspectors, the depth of the defects needs to be measured over a range of 200 microns with a resolution of about 100 nm and an accuracy of about 400 nm. These same requirements then apply to measuring the position of the mirror, and in addition, since this is a scanning system, a response time of about 10 ms is needed. A market search was conducted and no sensor that met these requirements that also fit into the available housing volume (less than one cubic inch) was found, so a novel sensor configuration was constructed to meet the requirements. This new sensor generates a nearly linearly varying magnetic field over a small region of space, which can easily be sampled, resulting in a voltage proportional to position. Experiments were done with a range of inductor values, drive voltages, drive frequencies, and inductor shapes. A rough mathematical model was developed for the device that, in most aspects, describes how it operates and what electrical parameters should be chosen for best performance. The final configuration met all the requirements, yielding a small rugged sensor that was easy to use and had nanometer resolution over more than the 200-micron range required. The inductive position sensor is a compact device (potentially as small as 2 cubic centimeters), which offers nanometer-position resolution over a demonstrated range of nearly 1 mm. One of its advantages is the simplicity of its electrical design. Also, the sensor resolution is nearly uniform across its operational range, which is in contrast to eddy current and

  11. Non-contact current and voltage sensor

    SciTech Connect

    Carpenter, Gary D; El-Essawy, Wael; Ferreira, Alexandre Peixoto; Keller, Thomas Walter; Rubio, Juan C; Schappert, Michael A

    2014-03-25

    A detachable current and voltage sensor provides an isolated and convenient device to measure current passing through a conductor such as an AC branch circuit wire, as well as providing an indication of an electrostatic potential on the wire, which can be used to indicate the phase of the voltage on the wire, and optionally a magnitude of the voltage. The device includes a housing that contains the current and voltage sensors, which may be a ferrite cylinder with a hall effect sensor disposed in a gap along the circumference to measure current, or alternative a winding provided through the cylinder along its axis and a capacitive plate or wire disposed adjacent to, or within, the ferrite cylinder to provide the indication of the voltage.

  12. A simple indentation device for measuring micrometer-scale tissue stiffness

    NASA Astrophysics Data System (ADS)

    Levental, I.; Levental, K. R.; Klein, E. A.; Assoian, R.; Miller, R. T.; Wells, R. G.; Janmey, P. A.

    2010-05-01

    Mechanical properties of cells and extracellular matrices are critical determinants of function in contexts including oncogenic transformation, neuronal synapse formation, hepatic fibrosis and stem cell differentiation. The size and heterogeneity of biological specimens and the importance of measuring their mechanical properties under conditions that resemble their environments in vivo present a challenge for quantitative measurement. Centimeter-scale tissue samples can be measured by commercial instruments, whereas properties at the subcellular (nm) scale are accessible by atomic force microscopy, optical trapping, or magnetic bead microrheometry; however many tissues are heterogeneous on a length scale between micrometers and millimeters which is not accessible to most current instrumentation. The device described here combines two commercially available technologies, a micronewton resolution force probe and a micromanipulator for probing soft biological samples at sub-millimeter spatial resolution. Several applications of the device are described. These include the first measurement of the stiffness of an intact, isolated mouse glomerulus, quantification of the inner wall stiffness of healthy and diseased mouse aortas, and evaluation of the lateral heterogeneity in the stiffness of mouse mammary glands and rat livers with correlation of this heterogeneity with malignant or fibrotic pathology as evaluated by histology.

  13. Coupled Biomechanical Response of the Cornea Assessed by Non-Contact Tonometry. A Simulation Study

    PubMed Central

    2015-01-01

    The mechanical response of the cornea subjected to a non-contact air-jet tonometry diagnostic test represents an interplay between its geometry, the corneal material behavior and the loading. The objective is to study this interplay to better understand and interpret the results obtained with a non-contact tonometry test. A patient-specific finite element model of a healthy eye, accounting for the load free configuration, was used. The corneal tissue was modeled as an anisotropic hyperelastic material with two preferential directions. Three different sets of parameters within the human experimental range obtained from inflation tests were considered. The influence of the IOP was studied by considering four pressure levels (10–28 mmHg) whereas the influence of corneal thickness was studied by inducing a uniform variation (300–600 microns). A Computer Fluid Dynamics (CFD) air-jet simulation determined pressure loading exerted on the anterior corneal surface. The maximum apex displacement showed a linear variation with IOP for all materials examined. On the contrary, the maximum apex displacement followed a cubic relation with corneal thickness. In addition, a significant sensitivity of the apical displacement to the corneal stiffness was also obtained. Explanation to this behavior was found in the fact that the cornea experiences bending when subjected to an air-puff loading, causing the anterior surface to work in compression whereas the posterior surface works in tension. Hence, collagen fibers located at the anterior surface do not contribute to load bearing. Non-contact tonometry devices give useful information that could be misleading since the corneal deformation is the result of the interaction between the mechanical properties, IOP, and geometry. Therefore, a non-contact tonometry test is not sufficient to evaluate their individual contribution and a complete in-vivo characterization would require more than one test to independently determine the membrane

  14. Pulse Wave Analysis by Applanation Tonometry for the Measurement of Arterial Stiffness

    PubMed Central

    Doupis, John; Papanas, Nikolaos; Cohen, Alison; McFarlan, Lyndsay; Horton, Edward

    2016-01-01

    The aim of our study was to investigate the association between pulse wave velocity (PWV) and pulse wave analysis (PWA)-derived measurements for the evaluation of arterial stiffness. A total of 20 (7 male and 13 female) healthy, non-smoking individuals, with mean age 31 ± 12years were included. PWV and PWA measurements were performed using a SphygmoCor apparatus (Atcor Medical Blood Pressure Analysis System, Sydney Australia). PWV significantly correlated with all central aortic haemodynamic parameters, especially with pulse pressure (PP) (p < 0.0001), augmentation index corrected for 75 pulses/min (AI75) (p = 0.035) and augmentation pressure (AP) (p = 0.005). Male subjects presented significantly higher PWV compared with females (p = 0.03), while there were no differences in PP, AP and AI75. In conclusion, PWA is strongly correlated with PWV as a method for the evaluation of arterial stiffness.

  15. Pulse Wave Analysis by Applanation Tonometry for the Measurement of Arterial Stiffness.

    PubMed

    Doupis, John; Papanas, Nikolaos; Cohen, Alison; McFarlan, Lyndsay; Horton, Edward

    2016-01-01

    The aim of our study was to investigate the association between pulse wave velocity (PWV) and pulse wave analysis (PWA)-derived measurements for the evaluation of arterial stiffness. A total of 20 (7 male and 13 female) healthy, non-smoking individuals, with mean age 31 ± 12years were included. PWV and PWA measurements were performed using a SphygmoCor apparatus (Atcor Medical Blood Pressure Analysis System, Sydney Australia). PWV significantly correlated with all central aortic haemodynamic parameters, especially with pulse pressure (PP) (p < 0.0001), augmentation index corrected for 75 pulses/min (AI75) (p = 0.035) and augmentation pressure (AP) (p = 0.005). Male subjects presented significantly higher PWV compared with females (p = 0.03), while there were no differences in PP, AP and AI75. In conclusion, PWA is strongly correlated with PWV as a method for the evaluation of arterial stiffness. PMID:27651842

  16. Pulse Wave Analysis by Applanation Tonometry for the Measurement of Arterial Stiffness

    PubMed Central

    Doupis, John; Papanas, Nikolaos; Cohen, Alison; McFarlan, Lyndsay; Horton, Edward

    2016-01-01

    The aim of our study was to investigate the association between pulse wave velocity (PWV) and pulse wave analysis (PWA)-derived measurements for the evaluation of arterial stiffness. A total of 20 (7 male and 13 female) healthy, non-smoking individuals, with mean age 31 ± 12years were included. PWV and PWA measurements were performed using a SphygmoCor apparatus (Atcor Medical Blood Pressure Analysis System, Sydney Australia). PWV significantly correlated with all central aortic haemodynamic parameters, especially with pulse pressure (PP) (p < 0.0001), augmentation index corrected for 75 pulses/min (AI75) (p = 0.035) and augmentation pressure (AP) (p = 0.005). Male subjects presented significantly higher PWV compared with females (p = 0.03), while there were no differences in PP, AP and AI75. In conclusion, PWA is strongly correlated with PWV as a method for the evaluation of arterial stiffness. PMID:27651842

  17. Ultrasound Elastography: The New Frontier in Direct Measurement of Muscle Stiffness

    PubMed Central

    Brandenburg, Joline E.; Eby, Sarah F.; Song, Pengfei; Zhao, Heng; Brault, Jeffrey S.; Chen, Shigao; An, Kai-Nan

    2014-01-01

    The use of brightness-mode ultrasound and Doppler ultrasound in physical medicine and rehabilitation has increased dramatically. The continuing evolution of ultrasound technology has also produced ultrasound elastography, a cutting-edge technology that can directly measure the mechanical properties of tissue, including muscle stiffness. Its real-time and direct measurements of muscle stiffness can aid the diagnosis and rehabilitation of acute musculoskeletal injuries and chronic myofascial pain. It can also help monitor outcomes of interventions affecting muscle in neuromuscular and musculoskeletal diseases, and it can better inform the functional prognosis. This technology has implications for even broader use of ultrasound in physical medicine and rehabilitation practice, but more knowledge about its uses and limitations is essential to its appropriate clinical implementation. In this review, we describe different ultrasound elastography techniques for studying muscle stiffness, including strain elastography, acoustic radiation force impulse imaging, and shear-wave elastography. We discuss the basic principles of these techniques, including the strengths and limitations of their measurement capabilities. We review the current muscle research, discuss physiatric clinical applications of these techniques, and note directions for future research. PMID:25064780

  18. Measuring the stiffness of bacterial cells from growth rates in hydrogels of tunable elasticity

    PubMed Central

    Tuson, Hannah H.; Auer, George K.; Renner, Lars D.; Hasebe, Mariko; Tropini, Carolina; Salick, Max; Crone, Wendy C.; Gopinathan, Ajay; Huang, Kerwyn Casey; Weibel, Douglas B.

    2012-01-01

    Summary Although bacterial cells are known to experience large forces from osmotic pressure differences and their local microenvironment, quantitative measurements of the mechanical properties of growing bacterial cells have been limited. We provide an experimental approach and theoretical framework for measuring the mechanical properties of live bacteria. We encapsulated bacteria in agarose with a user-defined stiffness, measured the growth rate of individual cells, and fit data to a thin-shell mechanical model to extract the effective longitudinal Young's modulus of the cell envelope of Escherichia coli (50–150 MPa), Bacillus subtilis (100–200 MPa), and Pseudomonas aeruginosa (100–200 MPa). Our data provide estimates of cell wall stiffness similar to values obtained via the more labor-intensive technique of atomic force microscopy. To address physiological perturbations that produce changes in cellular mechanical properties, we tested the effect of A22-induced MreB depolymerization on the stiffness of E. coli. The effective longitudinal Young's modulus was not significantly affected by A22 treatment at short time scales, supporting a model in which the interactions between MreB and the cell wall persist on the same time scale as growth. Our technique therefore enables the rapid determination of how changes in genotype and biochemistry affect the mechanical properties of the bacterial envelope. PMID:22548341

  19. Non-contact method for characterization of small size thermoelectric modules.

    PubMed

    Manno, Michael; Yang, Bao; Bar-Cohen, Avram

    2015-08-01

    Conventional techniques for characterization of thermoelectric performance require bringing measurement equipment into direct contact with the thermoelectric device, which is increasingly error prone as device size decreases. Therefore, the novel work presented here describes a non-contact technique, capable of accurately measuring the maximum ΔT and maximum heat pumping of mini to micro sized thin film thermoelectric coolers. The non-contact characterization method eliminates the measurement errors associated with using thermocouples and traditional heat flux sensors to test small samples and large heat fluxes. Using the non-contact approach, an infrared camera, rather than thermocouples, measures the temperature of the hot and cold sides of the device to determine the device ΔT and a laser is used to heat to the cold side of the thermoelectric module to characterize its heat pumping capacity. As a demonstration of the general applicability of the non-contact characterization technique, testing of a thin film thermoelectric module is presented and the results agree well with those published in the literature.

  20. Pulmonary vascular stiffness: measurement, modeling, and implications in normal and hypertensive pulmonary circulations.

    PubMed

    Hunter, Kendall S; Lammers, Steven R; Shandas, Robin

    2011-07-01

    This article introduces the concept of pulmonary vascular stiffness, discusses its increasingly recognized importance as a diagnostic marker in the evaluation of pulmonary vascular disease, and describes methods to measure and model it clinically, experimentally, and computationally. It begins with a description of systems-level methods to evaluate pulmonary vascular compliance and recent clinical efforts in applying such techniques to better predict patient outcomes in pulmonary arterial hypertension. It then progresses from the systems-level to the local level, discusses proposed methods by which upstream pulmonary vessels increase in stiffness, introduces concepts around vascular mechanics, and concludes by describing recent work incorporating advanced numerical methods to more thoroughly evaluate changes in local mechanical properties of pulmonary arteries. PMID:23733649

  1. Pulmonary Vascular Stiffness: Measurement, Modeling, and Implications in Normal and Hypertensive Pulmonary Circulations

    PubMed Central

    Hunter, Kendall S.; Lammers, Steven R.; Shandas, Robin

    2014-01-01

    This article introduces the concept of pulmonary vascular stiffness, discusses its increasingly recognized importance as a diagnostic marker in the evaluation of pulmonary vascular disease, and describes methods to measure and model it clinically, experimentally, and computationally. It begins with a description of systems-level methods to evaluate pulmonary vascular compliance and recent clinical efforts in applying such techniques to better predict patient outcomes in pulmonary arterial hypertension. It then progresses from the systems-level to the local level, discusses proposed methods by which upstream pulmonary vessels increase in stiffness, introduces concepts around vascular mechanics, and concludes by describing recent work incorporating advanced numerical methods to more thoroughly evaluate changes in local mechanical properties of pulmonary arteries. PMID:23733649

  2. A Novel Multidirectional, Non-Contact Strain-Sensing Nanocomposite

    NASA Astrophysics Data System (ADS)

    Withey, Paul; Vemuru, Srivishnu; Bachilo, Sergei; Nagarajaiah, Satish; Weisman, R. Bruce

    2013-03-01

    Single-walled carbon nanotubes (SWCNTs) have been successfully dispersed in a polymeric host resulting in the development of a novel strain-sensitive nanocomposite material with promise for scalability. Dubbed ``strain paint'' this new material when coated onto a surface becomes a smart-skin sensor that can detect strain through load transfer from the polymeric host to embedded SWCNTs. Strain is easily measured in a non-contact manner via laser excitation and detection of the unique near-infrared (NIR) fluorescence spectrum of semiconducting SWCNTs. When strained, each (n , m) SWCNT type exhibits a predictable shift in its NIR fluorescence peak. SWCNTs with high intensity are easily detected in the bulk fluorescence spectrum of raw, unsorted SWCNTs embedded in the polymer. Thin films of the polymer/SWCNT nanocomposite were spin-coated onto substrates, strains typically up to 1% were applied, and strain magnitudes were determined by resistive strain gauges bonded to the coating and substrate. Spectral shifts reveal a linear response to strain with little hysteresis. Two SWCNT types exhibiting opposite spectral shifts with strain were used to improve sensitivity. Strain along any direction is determined simply by adjusting the polarization of the excitation laser.

  3. Development of Novel Non-Contact Electrodes for Mobile Electrocardiogram Monitoring System

    PubMed Central

    Chou, Willy; Wang, Hsing-Yu; Huang, Yan-Jun; Pan, Jeng-Shyang

    2013-01-01

    Real-time monitoring of cardiac health is helpful for patients with cardiovascular disease. Many telemedicine systems based on ubiquitous computing and communication techniques have been proposed for monitoring the user's electrocardiogram (ECG) anywhere and anytime. Usually, wet electrodes are used in these telemedicine systems. However, wet electrodes require conduction gels and skin preparation that can be inconvenient and uncomfortable for users. In order to overcome this issue, a new non-contact electrode circuit was proposed and applied in developing a mobile electrocardiogram monitoring system. The proposed non-contact electrode can measure bio-potentials across thin clothing, allowing it to be embedded in a user's normal clothing to monitor ECG in daily life. We attempted to simplify the design of these non-contact electrodes to reduce power consumption while continuing to provide good signal quality. The electrical specifications and the performance of monitoring arrhythmia in clinical settings were also validated to investigate the reliability of the proposed design. Experimental results show that the proposed non-contact electrode provides good signal quality for measuring ECG across thin clothes. PMID:27170853

  4. Liver stiffness measurements by means of supersonic shear imaging in patients without known liver pathology.

    PubMed

    Sirli, Roxana; Bota, Simona; Sporea, Ioan; Jurchis, Ana; Popescu, Alina; Gradinaru-Tascău, Oana; Szilaski, Milana

    2013-08-01

    We used supersonic shear imaging to determine the liver stiffness (LS) values of 82 patients without known liver pathology and studied the factors that influence these measurements. Five LS measurements were made in each subject, and the median value, expressed in kilopascals, was calculated. Reliable LS measurements were obtained in 84.5% of patients. Higher body mass index and older age were associated with failure to obtain reliable measurements. The mean value of LS measurements determined by SSI in our cohort of patients without known liver pathology was 6 ± 1.4 kPa. The mean LS measurements determined by SSI for men were significantly higher than those for women; body mass index did not significantly influence SSI measurements. Thus, 6 kPa is the mean SSI value in patients without known liver pathology, with higher values being obtained in men.

  5. Inter-platform reproducibility of liver and spleen stiffness measured with MR Elastography

    PubMed Central

    Yasar, Temel Kaya; Wagner, Mathilde; Bane, Octavia; Besa, Cecilia; Babb, James S; Kannengiesser, Stephan; Fung, Maggie; Ehman, Richard L.; Taouli, Bachir

    2016-01-01

    Purpose To assess inter-platform reproducibility of liver stiffness (LS) and spleen stiffness (SS) measured with MR elastography (MRE) based on a 2D GRE sequence. Materials and Methods This prospective HIPAA-compliant and IRB-approved study involved 12 subjects (5 healthy volunteers and 7 patients with liver disease). A multi-slice 2D-GRE-based MRE sequence was performed using two systems from different vendors (3.0T GE and 1.5T Siemens) on the same day. Two independent observers measured LS and SS on confidence maps. Bland-Altman analysis (with coefficient of reproducibility, CR), coefficient of variability (CV) and intraclass correlation (ICC) were used to analyze inter-platform, intra- and inter-observer variability. Human data was validated using a gelatin-based phantom. Results There was excellent reproducibility of phantom stiffness measurement (CV 4.4%). Mean LS values were 3.44–3.48 kPa and 3.62–3.63 kPa, and mean SS values were 7.54–7.91 kPa and 8.40–8.85 kPa at 3.0T and 1.5T for observers 1 and 2, respectively. The mean CVs between platforms were 9.2%–11.5% and 13.1%–14.4% for LS and SS, respectively for observers 1 and 2. There was excellent inter-platform reproducibility (ICC >0.88 and CR <36.2%) for both LS and SS, and excellent intra- and inter-observer reproducibility (intra-observer: ICC >0.99, CV <2.1%, CR <6.6%; inter-observer: ICC >0.97, CV and CR <16%). Conclusion This study demonstrates that 2D-GRE MRE provides platform- and observer-independent LS and SS measurements. PMID:26469708

  6. Measuring stiffness and residual stress of thin films by contact resonance atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ma, Chengfu; Chen, Yuhang; Chen, Jianfeng; Chu, Jiaru

    2016-11-01

    A method based on contact resonance atomic force microscopy (AFM) was proposed to determine the mechanical properties of thin films. By analyzing the contact resonance frequencies of an AFM probe while the tip was in contact with the sample, the stiffness and residual stress of a freestanding circular SiN x membrane were evaluated quantitatively. The obtained magnitude of residual stress was in reasonable agreement with that determined by wafer curvature measurement. The method was verified to have much better mechanical sensitivity than the popular AFM bending test method. Its promising application to fast, nondestructive mechanical mapping of thin-film-type structures at the nanoscale was also demonstrated.

  7. Measurements of Tibiofemoral Kinematics During Soft and Stiff Drop Landings Using Biplane Fluoroscopy

    PubMed Central

    Myers, Casey A.; Torry, Michael R.; Peterson, Daniel S.; Shelburne, Kevin B.; Giphart, J. Erik; Krong, Jacob P.; Woo, Savio L-Y.; Steadman, J. Richard

    2014-01-01

    Background Previous laboratory studies of landing have defined landing techniques in terms of soft or stiff landings according to the degree of maximal knee flexion angle attained during the landing phase and the relative magnitude of the ground-reaction force. Current anterior cruciate ligament injury prevention programs are instructing athletes to land softly to avoid excessive strain on the anterior cruciate ligament. Purpose This study was undertaken to measure, describe, and compare tibiofemoral rotations and translations of soft and stiff landings in healthy individuals using biplane fluoroscopy. Study Design Controlled laboratory study. Methods The in vivo, lower extremity, 3-dimensional knee kinematics of 16 healthy adults (6 male and 10 female) instructed to land softly and stiffly in different trials were collected in biplane fluoroscopy as they performed the landing from a height of 40 cm. Results Average and maximum relative anterior tibial translation (average, 2.8 ± 1.2 mm vs 3.0 ± 1.4 mm; maximum, 4.7 ± 1.6 mm vs 4.4 ± 0.8 mm), internal/external rotation (average, 3.7° ± 5.1° vs 2.7° ± 4.3°; maximum, 5.6° ± 5.5° vs 4.9° ± 4.7°), and varus/valgus (average, 0.2° ± 1.2° vs 0.2° ± 1.0°; maximum, 1.7° ± 1.2° vs 1.6° ± 0.9°) were all similar between soft and stiff landings, respectively. The peak vertical ground-reaction force was significantly larger for stiff landings than for soft landings (2.60 ± 1.32 body weight vs 1.63 ± 0.73; P < .001). The knee flexion angle total range of motion from the minimum angle at contact to the maximum angle at peak knee flexion was significantly greater for soft landings than for stiff (55.4° ± 8.8° vs 36.8° ± 11.1°; P < .01). Conclusion Stiff landings, as defined by significantly lower knee flexion angles and significantly greater peak ground-reaction forces, do not result in larger amounts of anterior tibial translation or knee rotation in either varus/valgus or internal

  8. Non-contact method for characterization of a rotational table

    NASA Astrophysics Data System (ADS)

    La Moure Shattuck, Judson, III; Parisi, Vincent M.; Smerdon, Arryn J.

    2007-04-01

    The United States Air Force (USAF) uses and evaluates a variety of helmet-mounted trackers for incorporation into their high performance aircraft. The primary head tracker technologies commercially available are magnetic trackers, inertial trackers, and optical trackers. Each head tracker has a unique method of determining the pilot's head position within the cockpit of the aircraft. Magnetic trackers generally have a small head mounted size and minimal head weight. Because they sense a generated magnetic field, their accuracy can be affected by other magnetic fields or ferrous components within the cockpit. Inertial trackers cover the entire head motion box but require constant motion in order to accommodate drifting of the inertial sensors or a secondary system that updates the inertial system, often referred to as a hybrid system. Although optical head trackers (OHT) are immune to magnetic fields some of their limitations may be daylight/night vision goggle (NVG) compatibility issues and, depending on system configuration, may require numerous emitters and/or receivers to cover a large head motion box and provide a wide field of regard. The Dynamic Tracker Test Fixture (DTTF) was designed by the Helmet Mounted Sensory Technology (HMST) laboratory to accurately measure azimuth rotation in both static and dynamic conditions for the purpose of determining the accuracy of a variety of head trackers. Before the DTTF could be used as an evaluation tool, it required characterization to determine the amount and location of any induced elevation or roll as the table rotated in azimuth. Optimally, the characterization method would not affect the DTTF's movement so a non-contact method was devised. This paper describes the characterization process and its results.

  9. Non-contact ultrasonic defect imaging in composites

    NASA Astrophysics Data System (ADS)

    Tenoudji, F. Cohen; Citerne, J. M.; Dutilleul, H.; Busquet, D.

    2016-02-01

    In the situations where conventional NDT ultrasonic techniques using immersion of the part under inspection or its contact with the transducers cannot be used, in-air investigation presents an alternative. The huge impedance mismatch between the part material and air (transmission loss in the order of 80 dB for a thin metallic plate) induces having to deal very small signals and unfavorable signal to noise ratios. The approach adopted here is the use of the crack of a spark generated by an induction coil as a sound source and an electrostatic polyethylene membrane microphone as a receiver [1]. The advantage of this source is that the spark power is high (several kilowatts) and its power is directly coupled to air during the energy release. In some difficult situations, an elliptical mirror is used to concentrate the sound beam power on the surface of the part [2,3]. Stability and reproducibility of the sound generated by the spark, which are a necessity in order to perform quantitative evaluations, are achieved in our experiment. This permits also an increase of the signal to noise ratio by signal accumulation. The sound pulse duration of few microseconds allows operating in pulse echo in some circumstances. The bandwidth of the source is large, of several hundred of kilohertz, and that of the microphone above 100 kHz allow the flexibility to address different kinds of materials. The technique allows an easy, in-air, non contact, inspection of structural composite parts, with pulse waves, with an excellent signal to noise ratio. An X-Y ultrasonic scanning ultrasonic system for material inspection using this technique has been realized. Results obtained in transmission and reflection are presented. Defects in carbon composite plates and in honeycomb are imaged in transmission Echographic measurements show that defect detection can be performed in thin plates using Lamb waves propagation when only one sided inspection of the part is possible.

  10. Measuring Multi-Joint Stiffness during Single Movements: Numerical Validation of a Novel Time-Frequency Approach

    PubMed Central

    Piovesan, Davide; Pierobon, Alberto; DiZio, Paul; Lackner, James R.

    2012-01-01

    This study presents and validates a Time-Frequency technique for measuring 2-dimensional multijoint arm stiffness throughout a single planar movement as well as during static posture. It is proposed as an alternative to current regressive methods which require numerous repetitions to obtain average stiffness on a small segment of the hand trajectory. The method is based on the analysis of the reassigned spectrogram of the arm's response to impulsive perturbations and can estimate arm stiffness on a trial-by-trial basis. Analytic and empirical methods are first derived and tested through modal analysis on synthetic data. The technique's accuracy and robustness are assessed by modeling the estimation of stiffness time profiles changing at different rates and affected by different noise levels. Our method obtains results comparable with two well-known regressive techniques. We also test how the technique can identify the viscoelastic component of non-linear and higher than second order systems with a non-parametrical approach. The technique proposed here is very impervious to noise and can be used easily for both postural and movement tasks. Estimations of stiffness profiles are possible with only one perturbation, making our method a useful tool for estimating limb stiffness during motor learning and adaptation tasks, and for understanding the modulation of stiffness in individuals with neurodegenerative diseases. PMID:22448233

  11. Non-Contact Measurement of the Spectral Emissivity through Active/Passive Synergy of CO₂ Laser at 10.6 µm and 102F FTIR (Fourier Transform Infrared) Spectrometer.

    PubMed

    Zhang, Ren-Hua; Su, Hong-Bo; Tian, Jing; Mi, Su-Juan; Li, Zhao-Liang

    2016-01-01

    In the inversion of land surface temperature (LST) from satellite data, obtaining the information on land surface emissivity is most challenging. How to solve both the emissivity and the LST from the underdetermined equations for thermal infrared radiation is a hot research topic related to quantitative thermal infrared remote sensing. The academic research and practical applications based on the temperature-emissivity retrieval algorithms show that directly measuring the emissivity of objects at a fixed thermal infrared waveband is an important way to close the underdetermined equations for thermal infrared radiation. Based on the prior research results of both the authors and others, this paper proposes a new approach of obtaining the spectral emissivity of the object at 8-14 µm with a single-band CO₂ laser at 10.6 µm and a 102F FTIR spectrometer. Through experiments, the spectral emissivity of several key samples, including aluminum plate, iron plate, copper plate, marble plate, rubber sheet, and paper board, at 8-14 µm is obtained, and the measured data are basically consistent with the hemispherical emissivity measurement by a Nicolet iS10 FTIR spectrometer for the same objects. For the rough surface of materials, such as marble and rusty iron, the RMSE of emissivity is below 0.05. The differences in the field of view angle and in the measuring direction between the Nicolet FTIR method and the method proposed in the paper, and the heterogeneity in the degree of oxidation, polishing and composition of the samples, are the main reasons for the differences of the emissivities between the two methods. PMID:27347964

  12. Non-Contact Measurement of the Spectral Emissivity through Active/Passive Synergy of CO2 Laser at 10.6 µm and 102F FTIR (Fourier Transform Infrared) Spectrometer

    PubMed Central

    Zhang, Ren-Hua; Su, Hong-Bo; Tian, Jing; Mi, Su-Juan; Li, Zhao-Liang

    2016-01-01

    In the inversion of land surface temperature (LST) from satellite data, obtaining the information on land surface emissivity is most challenging. How to solve both the emissivity and the LST from the underdetermined equations for thermal infrared radiation is a hot research topic related to quantitative thermal infrared remote sensing. The academic research and practical applications based on the temperature-emissivity retrieval algorithms show that directly measuring the emissivity of objects at a fixed thermal infrared waveband is an important way to close the underdetermined equations for thermal infrared radiation. Based on the prior research results of both the authors and others, this paper proposes a new approach of obtaining the spectral emissivity of the object at 8–14 µm with a single-band CO2 laser at 10.6 µm and a 102F FTIR spectrometer. Through experiments, the spectral emissivity of several key samples, including aluminum plate, iron plate, copper plate, marble plate, rubber sheet, and paper board, at 8–14 µm is obtained, and the measured data are basically consistent with the hemispherical emissivity measurement by a Nicolet iS10 FTIR spectrometer for the same objects. For the rough surface of materials, such as marble and rusty iron, the RMSE of emissivity is below 0.05. The differences in the field of view angle and in the measuring direction between the Nicolet FTIR method and the method proposed in the paper, and the heterogeneity in the degree of oxidation, polishing and composition of the samples, are the main reasons for the differences of the emissivities between the two methods. PMID:27347964

  13. Non-Contact Measurement of the Spectral Emissivity through Active/Passive Synergy of CO₂ Laser at 10.6 µm and 102F FTIR (Fourier Transform Infrared) Spectrometer.

    PubMed

    Zhang, Ren-Hua; Su, Hong-Bo; Tian, Jing; Mi, Su-Juan; Li, Zhao-Liang

    2016-06-24

    In the inversion of land surface temperature (LST) from satellite data, obtaining the information on land surface emissivity is most challenging. How to solve both the emissivity and the LST from the underdetermined equations for thermal infrared radiation is a hot research topic related to quantitative thermal infrared remote sensing. The academic research and practical applications based on the temperature-emissivity retrieval algorithms show that directly measuring the emissivity of objects at a fixed thermal infrared waveband is an important way to close the underdetermined equations for thermal infrared radiation. Based on the prior research results of both the authors and others, this paper proposes a new approach of obtaining the spectral emissivity of the object at 8-14 µm with a single-band CO₂ laser at 10.6 µm and a 102F FTIR spectrometer. Through experiments, the spectral emissivity of several key samples, including aluminum plate, iron plate, copper plate, marble plate, rubber sheet, and paper board, at 8-14 µm is obtained, and the measured data are basically consistent with the hemispherical emissivity measurement by a Nicolet iS10 FTIR spectrometer for the same objects. For the rough surface of materials, such as marble and rusty iron, the RMSE of emissivity is below 0.05. The differences in the field of view angle and in the measuring direction between the Nicolet FTIR method and the method proposed in the paper, and the heterogeneity in the degree of oxidation, polishing and composition of the samples, are the main reasons for the differences of the emissivities between the two methods.

  14. Ultrasound imaging system for measuring stiffness variation in the fingerpad skin in vivo

    NASA Astrophysics Data System (ADS)

    Wu, Wan-Chen; Raju, Balasundar I.; Srinivasan, Mandayam A.

    2005-04-01

    An elasticity imaging system was developed for measuring the stiffness variation at different depths of the human fingerpad skin in vivo. In this system, ultrasonic backscatter microscopy (UBM) with a single high frequency (28MHz) transducer was employed to obtain data on tissue heterogeneity at high axial resolution (~25 mm). The dorsal side of the finger was fixed on a manually controlled vertical stage and an acrylic indentor was applied to the fingerpad. A slit cut vertically through the indentor at the center and a piece of transparency sheet attached to the bottom allowed most of the ultrasound power to pass though while maintaining a flat surface in contact with the skin. With the assumption that the skin can be modeled as a semi-infinite layered structure, only data from a single A-line was obtained for strain analysis. The data at continuous indentation steps were cross-correlated to calculate the displacement at different spots along the depth. The de-correlation at certain regions was resolved by removing the data points with lower correlation coefficients, and curve fitting was applied to overcome the lack of resolution due to sampling. The fingerpads of 10 human subjects were tested in vivo and a gelatin phantom was made and tested for comparison. The results showed that even though some data were degraded due to the hypoechoic nature of the subcutaneous fat, the axial strain profile through the skin thickness (up to 3mm in depth) could be extracted as a measure of the stiffness variation.

  15. Profile stiffness measurements in the Helically Symmetric experiment and comparison to nonlinear gyrokinetic calculationsa)

    NASA Astrophysics Data System (ADS)

    Weir, G. M.; Faber, B. J.; Likin, K. M.; Talmadge, J. N.; Anderson, D. T.; Anderson, F. S. B.

    2015-05-01

    Stiffness measurements are presented in the quasi-helically symmetric experiment (HSX), in which the neoclassical transport is comparable to that in a tokamak and turbulent transport dominates throughout the plasma. Electron cyclotron emission is used to measure the local electron temperature response to modulated electron cyclotron resonant heating. The amplitude and phase of the heat wave through the steep electron temperature gradient (ETG) region of the plasma are used to determine a transient electron thermal diffusivity that is close to the steady-state diffusivity. The low stiffness in the region between 0.2 ≤ r/a ≤ 0.4 agrees with the scaling of the steady-state heat flux with temperature gradient in this region. These experimental results are compared to gyrokinetic calculations in a flux-tube geometry using the gyrokinetic electromagnetic numerical experiment code with two kinetic species. Linear simulations show that the ETG mode may be experimentally relevant within r/a ≤ 0.2, while the Trapped Electron Mode (TEM) is the dominant long-wavelength microturbulence instability across most of the plasma. The TEM is primarily driven by the density gradient. Non-linear calculations of the saturated heat flux driven by the TEM and ETG bracket the experimental heat flux.

  16. Profile stiffness measurements in the Helically Symmetric experiment and comparison to nonlinear gyrokinetic calculations

    SciTech Connect

    Weir, G. M.; Faber, B. J.; Likin, K. M.; Talmadge, J. N.; Anderson, D. T.; Anderson, F. S. B.

    2015-05-15

    Stiffness measurements are presented in the quasi-helically symmetric experiment (HSX), in which the neoclassical transport is comparable to that in a tokamak and turbulent transport dominates throughout the plasma. Electron cyclotron emission is used to measure the local electron temperature response to modulated electron cyclotron resonant heating. The amplitude and phase of the heat wave through the steep electron temperature gradient (ETG) region of the plasma are used to determine a transient electron thermal diffusivity that is close to the steady-state diffusivity. The low stiffness in the region between 0.2 ≤ r/a ≤ 0.4 agrees with the scaling of the steady-state heat flux with temperature gradient in this region. These experimental results are compared to gyrokinetic calculations in a flux-tube geometry using the gyrokinetic electromagnetic numerical experiment code with two kinetic species. Linear simulations show that the ETG mode may be experimentally relevant within r/a ≤ 0.2, while the Trapped Electron Mode (TEM) is the dominant long-wavelength microturbulence instability across most of the plasma. The TEM is primarily driven by the density gradient. Non-linear calculations of the saturated heat flux driven by the TEM and ETG bracket the experimental heat flux.

  17. Non-contact intracellular binding of chloroplasts in vivo

    NASA Astrophysics Data System (ADS)

    Li, Yuchao; Xin, Hongbao; Liu, Xiaoshuai; Li, Baojun

    2015-06-01

    Non-contact intracellular binding and controllable manipulation of chloroplasts in vivo was demonstrated using an optical fiber probe. Launching a 980-nm laser beam into a fiber, which was placed about 3 μm above the surface of a living plant (Hydrilla verticillata) leaf, enabled stable binding of different numbers of chloroplasts, as well as their arrangement into one-dimensional chains and two-dimensional arrays inside the leaf without damaging the chloroplasts. Additionally, the formed chloroplast chains were controllably transported inside the living cells. The optical force exerted on the chloroplasts was calculated to explain the experimental results. This method provides a flexible method for studying intracellular organelle interaction with highly organized organelle-organelle contact in vivo in a non-contact manner.

  18. Non-contact intracellular binding of chloroplasts in vivo.

    PubMed

    Li, Yuchao; Xin, Hongbao; Liu, Xiaoshuai; Li, Baojun

    2015-06-04

    Non-contact intracellular binding and controllable manipulation of chloroplasts in vivo was demonstrated using an optical fiber probe. Launching a 980-nm laser beam into a fiber, which was placed about 3 μm above the surface of a living plant (Hydrilla verticillata) leaf, enabled stable binding of different numbers of chloroplasts, as well as their arrangement into one-dimensional chains and two-dimensional arrays inside the leaf without damaging the chloroplasts. Additionally, the formed chloroplast chains were controllably transported inside the living cells. The optical force exerted on the chloroplasts was calculated to explain the experimental results. This method provides a flexible method for studying intracellular organelle interaction with highly organized organelle-organelle contact in vivo in a non-contact manner.

  19. Non-contact rail flaw detection system: first field test

    NASA Astrophysics Data System (ADS)

    Rizzo, Piervincenzo; Coccia, Stefano; Lanza di Scalea, Francesco; Bartoli, Ivan; Fateh, Mahmood

    2007-04-01

    Researchers at UCSD, with the initial support of NSF and the current support of the Federal Railroad Administration (FRA), have been working on a flaw detection prototype for rails that uses non-contact ultrasonic probing and robust data processing algorithms to provide high speed and high reliability defect detection in these structures. Besides the obvious advantages of non-contact probing, the prototype uses ultrasonic guided waves able to detect and quantify transverse cracks in the rail head, notoriously the most dangerous of all rail track defects. This paper will report on the first field test which was conducted in Gettysburg, PA in March 2006 with the technical support of ENSCO, Inc. Good results were obtained for the detection of both surface-breaking and internal cracks ranging in size from 2% cross-sectional head area (H.A.) reduction to 80% H.A. reduction.

  20. Simulation Test System of Non-Contact D-dot Voltage Transformer

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Wang, Jingang; Luo, Ruixi; Gao, Can; Songnong, Li; Kongjun, Zhou

    2016-04-01

    The development trend of future voltage transformer in smart grid is non-contact measurement, miniaturization and intellectualization. This paper proposes one simulation test system of non-contact D-dot transformer for voltage measurement. This simulation test system consists of D-dot transformer, signal processing circuit and ground PC port. D-dot transformer realizes the indirect voltage measurement by measuring the change rate of electric displacement vector, a non-contact means (He et al. 2004, Principles and experiments of voltage transformer based on self-integrating D-dot probe. Proc CSEE 2014;15:2445-51). Specific to the characteristics of D-dot transformer signals, signal processing circuits with strong resistance to interference and distortion-free amplified sensor output signal are designed. WIFI wireless network is used to transmit the voltage detection to LabVIEW-based ground collection port and LabVIEW technology is adopted for signal reception, data processing and analysis and other functions. Finally, a test platform is established to simulate the performance of the whole test system of single-phase voltage transformer. Test results indicate that this voltage transformer has sound real-time performance, high accuracy and fast response speed and the simulation test system is stable and reliable and can be a new prototype of voltage transformers.

  1. Non-contact fluid characterization in containers using ultrasonic waves

    DOEpatents

    Sinha, Dipen N.

    2012-05-15

    Apparatus and method for non-contact (stand-off) ultrasonic determination of certain characteristics of fluids in containers or pipes are described. A combination of swept frequency acoustic interferometry (SFAI), wide-bandwidth, air-coupled acoustic transducers, narrowband frequency data acquisition, and data conversion from the frequency domain to the time domain, if required, permits meaningful information to be extracted from such fluids.

  2. Non-contact friction for ion-surface interactions

    NASA Astrophysics Data System (ADS)

    Jentschura, Ulrich D.; Lach, Grzegorz

    2015-05-01

    Non-contact friction forces are exerted on physical systems through dissipative processes, when the two systems are not in physical contact with each other, or, in quantum mechanical terms, when the overlap of their wave functions is negligible. Non-contact friction is mediated by the exchange of virtual quanta, with the additional requirement that the scattering process needs to have an inelastic component. For finite-temperature ion-surface interactions, the friction is essentially caused by Ohmic resistance due to the motion of the image charge moving in a dielectric material. A conceivable experiment is difficult because the friction force needs to be isolated from the interaction with the image charge, which significantly distorts the ion's flight path. We propose an experimental setup which is designed to minimize the influence of the image charge interaction though a compensation mechanism, and evaluate the energy loss due to non-contact friction for helium ions (He+) interacting with gold, vanadium, titanium and graphite surfaces. Interactions with the infinite series of mirror charges in the plates are summed in terms of the logarithmic derivatives of the Gamma function, and of the Hurwitz zeta function.

  3. [Non-contact heart rate estimation based on joint approximate diagonalization of eigenmatrices algorithm].

    PubMed

    Wang Yinazhi; Han Tailin

    2014-08-01

    Based on the imaging photoplethysmography (iPPG) and blind source separation (BSS) theory the author put forward a method for non-contact heartbeat frequency estimation. Using the recorded video images of the human face in the ambient light with Webcam, we detected the human face through software, separated the detected facial image into three channels RGB components. And then preprocesses i.e. normalization, whitening, etc. were carried out to a certain number of RGB data. After the independent component analysis (ICA)'theory and joint approximate diagonalization of eigenmatrices (JADE) algorithm were applied, we estimated the frequency of heart rate through spectrum analysis. Taking advantage of the consistency of Bland-Altman theory analysis and the commercial Pulse Oximetry Sensor test results, the root mean square error of the algorithm result was calculated as 2. 06 beat/min. It indicated that the algorithm could realize the non-contact measurement of heart rate and lay the foundation for the re- mote and non-contact measurement of multi-parameter physiological measurements. PMID:25464777

  4. [Non-contact heart rate estimation based on joint approximate diagonalization of eigenmatrices algorithm].

    PubMed

    Wang Yinazhi; Han Tailin

    2014-08-01

    Based on the imaging photoplethysmography (iPPG) and blind source separation (BSS) theory the author put forward a method for non-contact heartbeat frequency estimation. Using the recorded video images of the human face in the ambient light with Webcam, we detected the human face through software, separated the detected facial image into three channels RGB components. And then preprocesses i.e. normalization, whitening, etc. were carried out to a certain number of RGB data. After the independent component analysis (ICA)'theory and joint approximate diagonalization of eigenmatrices (JADE) algorithm were applied, we estimated the frequency of heart rate through spectrum analysis. Taking advantage of the consistency of Bland-Altman theory analysis and the commercial Pulse Oximetry Sensor test results, the root mean square error of the algorithm result was calculated as 2. 06 beat/min. It indicated that the algorithm could realize the non-contact measurement of heart rate and lay the foundation for the re- mote and non-contact measurement of multi-parameter physiological measurements. PMID:25508408

  5. Design of a quasi-zero-stiffness based sensor system for the measurement of absolute vibration displacement of moving platforms

    NASA Astrophysics Data System (ADS)

    Jing, Xingjian; Wang, Yu; Li, Quankun; Sun, Xiuting

    2016-09-01

    This study presents the analysis and design of a novel sensor system for measuring the absolute vibration displacement of moving platforms based on the concept of quasi-zero-stiffness (QZS). The sensor system is constructed using positive- and negative-stiffness springs, which make it possible to achieve an equivalent QZS and consequently to create a broadband vibration-free point for absolute vibration displacement measurement in moving platforms. Theoretical analysis is conducted for the analysis and design of the influence of structure parameters on system measurement performance. A prototype is designed which can avoid the drawback of instability in existing QZS systems with negative stiffness, and corresponding data-processing software is developed to fulfill time domain measurements. Both the simulation and experimental results verify the effectiveness of this novel sensor system.

  6. Low-dose doxazosin improved aortic stiffness and endothelial dysfunction as measured by noninvasive evaluation.

    PubMed

    Komai, Norio; Ohishi, Mitsuru; Moriguchi, Atsushi; Yanagitani, Yoshihiro; Jinno, Toyohisa; Matsumoto, Keiko; Katsuya, Tomohiro; Rakugi, Hiromi; Higaki, Jitsuo; Ogihara, Toshio

    2002-01-01

    Evaluation of atherosclerosis is important in the treatment of hypertension. To evaluate the preventive effects of a small amount of alpha-blockade, arterial and endothelial dysfunction were measured by noninvasive tests, i.e., pulse wave velocity, acceleration plethysmography and strain-gauge plethysmography, in patients with essential hypertension. Fifteen patients (65+/-3 years old) with essential hypertension (WHO stage I or II) were analyzed in this study. We performed noninvasive evaluations to measure aortic stiffness and endothelial dysfunction, in addition to measuring blood pressure, cholesterol profile, and levels of cells adhesion molecules and nitric oxide before and 6 and 12 months after the start of doxazosin treatment (1.0 mg/day). Blood pressure and heart rate did not significantly change during treatment. The pulse wave velocity index was significantly reduced both at 6 (7.72+/-0.23 m/s; p<0.05) and 12 (7.34+/-0.26 m/s; p<0.05) months after the start of treatment compared to the pretreatment level that at baseline. There was also a significant improvement in b/a after 12 months (-0.46+/-0.04; p<0.05) and in d/a after 6 months (-0.38+/-0.03; p<0.05) and 12 months (-0.39+/-0.03; p=0.05) compared to the pretreatment values. Moreover, reactive hyperemia evaluated by strain-gauge plethysmography after 6 months (1.34+/-0.11; p<0.05) and 12 months (1.49+/-0.16; p<0.05) was significantly improved compared to that before treatment, and NOx was significantly increased after 12 months (89.7+/-15.7 micromol/l; p<0.005). These data suggest that a low dose of doxazosin may play an important role in improving arterial stiffness and endothelial dysfunction without changing cardiac hemodynamics.

  7. Preliminary Test Results of a Non-Contacting Finger Seal on a Herringbone-Grooved Rotor

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Degado, Irebert R.

    2008-01-01

    Low leakage, non-contacting finger seals have potential to reduce gas turbine engine specific fuel consumption by 2 to 3 percent and to reduce direct operating costs by increasing the time between engine overhauls. A non-contacting finger seal with concentric lift-pads operating adjacent to a test rotor with herringbone grooves was statically tested at 300, 533, and 700 K inlet air temperatures at pressure differentials up to 576 kPa. Leakage flow factors were approximately 70 percent less than state-of-the-art labyrinth seals. Leakage rates are compared to first order predictions. Initial spin tests at 5000 rpm, 300 K inlet air temperature and pressure differentials to 241 kPa produced no measurable wear.

  8. [Clinical value and measurement of arterial stiffness for the assessment of cardiovascular risk in light of recent results].

    PubMed

    Nemcsik, János; Tislér, András; Kiss, István

    2015-02-01

    Cardiovascular risk stratification is fundamental for the development of effective prevention and therapeutic strategies. Although there are numerous scores and risk tables available, a difference still exists between the estimated and real number of cardiovascular events. Measurement of arterial stiffness can provide additional information to risk stratification. The most widely accepted parameter of arterial stiffness is aortic pulse wave velocity, which has been included in the guideline of the European Society of Hypertension in 2007 and 2013, although American guidelines still omit it. In this review the authors summarize the evidence with regards to the different steps required for clinical application of arterial stiffness measurement and they also discuss the questions that evolved from the methodological variability of different measurement techniques.

  9. Functionalized AFM probes for force spectroscopy: eigenmode shapes and stiffness calibration through thermal noise measurements.

    PubMed

    Laurent, Justine; Steinberger, Audrey; Bellon, Ludovic

    2013-06-01

    The functionalization of an atomic force microscope (AFM) cantilever with a colloidal bead is a widely used technique when the geometry between the probe and the sample must be controlled, particularly in force spectroscopy. But some questions remain: how does a bead glued at the end of a cantilever influence its mechanical response? And more importantly for quantitative measurements, can we still determine the stiffness of the AFM probe with traditional techniques?In this paper, the influence of the colloidal mass loading on the eigenmode shape and resonant frequency is investigated by measuring the thermal noise on rectangular AFM microcantilevers with and without beads attached at their extremities. The experiments are performed with a home-made ultra-sensitive AFM, based on differential interferometry. The focused beam from the interferometer probes the cantilever at different positions and the spatial shapes of the modes are determined up to the fifth resonance, without external excitation. The results clearly demonstrate that the first eigenmode is almost unchanged by mass loading. However the oscillation behavior of higher resonances presents a marked difference: with a particle glued at its extremity, the nodes of the modes are displaced towards the free end of the cantilever. These results are compared to an analytical model taking into account the mass and inertial moment of the load in an Euler-Bernoulli framework, where the normalization of the eigenmodes is explicitly worked out in order to allow a quantitative prediction of the thermal noise amplitude of each mode. A good agreement between the experimental results and the analytical model is demonstrated, allowing a clean calibration of the probe stiffness.

  10. Dynamic torsional response analysis of mechanoluminescent paint and its application to non-contacting automotive torque transducers

    NASA Astrophysics Data System (ADS)

    Kim, Gi-Woo; Kim, Ji-Sik

    2014-01-01

    This paper presents the result of a preliminary experimental study on the dynamic torsional response analysis of mechanoluminescent (ML) paint for potential development as a new type of non-contacting torque transducer. The torsional torque applied to a transmission shaft is measured by sensing the ML intensity emitting from an ML paint coating a transmission shaft. This study provides the fundamental knowledge for the development of new non-contacting torque sensing technology based on the ML intensity detection. The proposed measurement principle appears to offer potential applications in automotive torque measurement systems, even though the loading rate-dependent characteristics of the ML intensity needs to be examined further.

  11. Differential Laser Doppler based Non-Contact Sensor for Dimensional Inspection with Error Propagation Evaluation

    PubMed Central

    Mekid, Samir; Vacharanukul, Ketsaya

    2006-01-01

    To achieve dynamic error compensation in CNC machine tools, a non-contact laser probe capable of dimensional measurement of a workpiece while it is being machined has been developed and presented in this paper. The measurements are automatically fed back to the machine controller for intelligent error compensations. Based on a well resolved laser Doppler technique and real time data acquisition, the probe delivers a very promising dimensional accuracy at few microns over a range of 100 mm. The developed optical measuring apparatus employs a differential laser Doppler arrangement allowing acquisition of information from the workpiece surface. In addition, the measurements are traceable to standards of frequency allowing higher precision.

  12. Face-Referenced Measurement of Perioral Stiffness and Speech Kinematics in Parkinson's Disease

    ERIC Educational Resources Information Center

    Chu, Shin Ying; Barlow, Steven M.; Lee, Jaehoon

    2015-01-01

    Purpose: Perioral biomechanics, labial kinematics, and associated electromyographic signals were sampled and characterized in individuals with Parkinson's disease (PD) as a function of medication state. Method: Passive perioral stiffness was sampled using the OroSTIFF system in 10 individuals with PD in a medication ON and a medication OFF state…

  13. Non contact method for in vivo assessment of skin mechanical properties for assessing effect of ageing.

    PubMed

    Boyer, G; Pailler Mattei, C; Molimard, J; Pericoi, M; Laquieze, S; Zahouani, H

    2012-03-01

    The assessment of human tissue properties by objective and quantitative devices is very important to improve the understanding of its mechanical behaviour. The aim of this paper is to present a non contact method to measure the mechanical properties of human skin in vivo. A complete non contact device using an air flow system has been developed. Validation and assessment of the method have been performed on inert visco-elastic material. An in vivo study on the forearm of two groups of healthy women aged of 23.2±1.6 and 60.4±2.4 has been performed. Main parameters assessed are presented and a first interpretation to evaluate the reduced Young's modulus is proposed. Significant differences between the main parameters of the curve are shown with ageing. As tests were performed with different loads, the influence of the stress is also observed. We found a reduced Young's modulus with an air flow force of 10 mN of 14.38±3.61 kPa for the youngest group and 6.20±1.45 kPa for the oldest group. These values agree with other studies using classical or dynamic indentation. Non contact test using the developed device gives convincing results.

  14. Non-contact optoacoustic imaging by raster scanning a piezoelectric air-coupled transducer

    NASA Astrophysics Data System (ADS)

    Deán-Ben, X. Luís.; Pang, Genny A.; Montero de Espinosa, Francisco; Razansky, Daniel

    2016-03-01

    Optoacoustic techniques rely on ultrasound transmission between optical absorbers within tissues and the measurement location. Much like in echography, commonly used piezoelectric transducers require either direct contact with the tissue or through a liquid coupling medium. The contact nature of this detection approach then represents a disadvantage of standard optoacoustic systems with respect to other imaging modalities (including optical techniques) in applications where non-contact imaging is needed, e.g. in open surgeries or when burns or other lesions are present in the skin. Herein, non-contact optoacoustic imaging using raster-scanning of a spherically-focused piezoelectric air-coupled ultrasound transducer is demonstrated. When employing laser fluence levels not exceeding the maximal permissible human exposure, it is shown possible to attain detectable signals from objects as small as 1 mm having absorption properties representative of blood at near-infrared wavelengths with a relatively low number of averages. Optoacoustic images from vessel-mimicking tubes embedded in an agar phantom are further showcased. The initial results indicate that the air-coupled ultrasound detection approach can be potentially made suitable for non-contact biomedical imaging with optoacoustics.

  15. Non-contact evaluation of milk-based products using air-coupled ultrasound

    NASA Astrophysics Data System (ADS)

    Meyer, S.; Hindle, S. A.; Sandoz, J.-P.; Gan, T. H.; Hutchins, D. A.

    2006-07-01

    An air-coupled ultrasonic technique has been developed and used to detect physicochemical changes of liquid beverages within a glass container. This made use of two wide-bandwidth capacitive transducers, combined with pulse-compression techniques. The use of a glass container to house samples enabled visual inspection, helping to verify the results of some of the ultrasonic measurements. The non-contact pulse-compression system was used to evaluate agglomeration processes in milk-based products. It is shown that the amplitude of the signal varied with time after the samples had been treated with lactic acid, thus promoting sample destabilization. Non-contact imaging was also performed to follow destabilization of samples by scanning in various directions across the container. The obtained ultrasonic images were also compared to those from a digital camera. Coagulation with glucono-delta-lactone of skim milk poured into this container could be monitored within a precision of a pH of 0.15. This rapid, non-contact and non-destructive technique has shown itself to be a feasible method for investigating the quality of milk-based beverages, and possibly other food products.

  16. Noninvasive pulse transit time measurement for arterial stiffness monitoring in microgravity.

    PubMed

    McCall, Corey; Rostosky, Rea; Wiard, Richard M; Inan, Omer T; Giovangrandi, Laurent; Cuttino, Charles Marsh; Kovacs, Gregory T A

    2015-01-01

    The use of a noninvasive hemodynamic monitor to estimate arterial stiffness, by measurement of pulse transit time (PTT), was demonstrated in microgravity. The monitor's utility for space applications was shown by establishing the correlation between ground-based and microgravity-based measurements. The system consists of a scale-based ballistocardiogram (BCG) and a toe-mounted photoplethysmogram (PPG). PTT was measured from the BCG I-wave to the intersecting tangents of the first trough and maximum first derivative of the PPG waveforms of each subject. The system was tested on a recent series of parabolic flights in which the PTT of nine subjects was measured on the ground and in microgravity. An average of 60.2 ms PTT increase from ground to microgravity environments was shown, and was consistent across all test subjects (standard deviation = 32.9 ms). This increase in PTT could be explained by a number of factors associated with microgravity and reported in previous research, including elimination of hydrostatic pressure, reduction of intrathoracic pressure, and reduction of mean arterial pressure induced by vasodilation. PMID:26737764

  17. Noninvasive pulse transit time measurement for arterial stiffness monitoring in microgravity.

    PubMed

    McCall, Corey; Rostosky, Rea; Wiard, Richard M; Inan, Omer T; Giovangrandi, Laurent; Cuttino, Charles Marsh; Kovacs, Gregory T A

    2015-01-01

    The use of a noninvasive hemodynamic monitor to estimate arterial stiffness, by measurement of pulse transit time (PTT), was demonstrated in microgravity. The monitor's utility for space applications was shown by establishing the correlation between ground-based and microgravity-based measurements. The system consists of a scale-based ballistocardiogram (BCG) and a toe-mounted photoplethysmogram (PPG). PTT was measured from the BCG I-wave to the intersecting tangents of the first trough and maximum first derivative of the PPG waveforms of each subject. The system was tested on a recent series of parabolic flights in which the PTT of nine subjects was measured on the ground and in microgravity. An average of 60.2 ms PTT increase from ground to microgravity environments was shown, and was consistent across all test subjects (standard deviation = 32.9 ms). This increase in PTT could be explained by a number of factors associated with microgravity and reported in previous research, including elimination of hydrostatic pressure, reduction of intrathoracic pressure, and reduction of mean arterial pressure induced by vasodilation.

  18. Evaluation of Stiffness Changes in a High-Rise Building by Measurements of Lateral Displacements Using GPS Technology

    PubMed Central

    Choi, Se Woon; Kim, Ill Soo; Park, Jae Hwan; Kim, Yousok; Sohn, Hong Gyoo; Park, Hyo Seon

    2013-01-01

    The outrigger truss system is one of the most frequently used lateral load resisting structural systems. However, little research has been reported on the effect of installation of outrigger trusses on improvement of lateral stiffness of a high-rise building through full-scale measurements. In this paper, stiffness changes of a high-rise building due to installation of outrigger trusses have been evaluated by measuring lateral displacements using a global positioning system (GPS). To confirm the error range of the GPS measurement system used in the full-scale measurement tests, the GPS displacement monitoring system is investigated through a free vibration test of the experimental model. Then, for the evaluation of lateral stiffness of a high-rise building under construction, the GPS displacement monitoring system is applied to measurements of lateral displacements of a 66-story high-rise building before and after installation of outrigger truss. The stiffness improvement of the building before and after the installation is confirmed through the changes of the natural frequencies and the ratios of the base shear forces to the roof displacements. PMID:24233025

  19. Non-contact optical three dimensional liner metrology.

    SciTech Connect

    Sebring, R. J.; Anderson, W. E.; Bartos, J. J.; Garcia, F.; Randolph, B.; Salazar, M. A.; Edwards, J. M.

    2001-01-01

    We optically captured the 'as-built' liner geometry of NTLX (near term liner experiments) for Shiva Star using ultra-precision ranging lasers. We subsequently verified the resulting digitized geometry against the 3D CAD model of the part. The results confirmed that the Liner contours are within designed tolerances but revealed subtle fabrication artifacts that would typically go undetected. These features included centimeters long waviness and saddle and bulge regions of 1 micron or less in magnitude. The laser technology typically provided 10 micron spatial resolution with {+-}12 nanometer ranging precision. Atlas liners in the future may have to be diamond turned and will have the centimeter wavelength and 100 angstrom amplitude requirements. The advantages of using laser technology are (1) it avoids surface damage that may occur with conventional contact probes and (2) dramatically improves spatial resolution over CMM, capacitance and inductance type probes. Our work is the result of a perceived future need to develop precision, non-contact, liner inspection techniques to verify geometry, characterize machining artifacts and map wall thickness on delicate diamond turned surfaces. Capturing 'as-built' geometry in a non-contact way coupled with part-to-CAD verification software tools creates a new metrology competency for MST-7.

  20. Comparison of contact and non-contact asphere surface metrology devices

    NASA Astrophysics Data System (ADS)

    DeFisher, Scott; Fess, Edward M.

    2013-09-01

    Metrology of asphere surfaces is critical in the precision optics industry. Surface metrology serves as feedback into deterministic grinding and polishing platforms. Many different techniques and devices are used to qualify an asphere surface during fabrication. A contact profilometer is one of the most common measurement technologies used in asphere manufacturing. A profilometer uses a fine stylus to drag a diamond or ruby tip over the surface, resulting in a high resolution curved profile. Coordinate measuring machines (CMM) apply a similar concept by touching the optic with a ruby or silicon carbine sphere. A CMM is able to move in three dimensions while collecting data points along the asphere surface. Optical interferometers use a helium-neon laser with transmission spheres to compare a reflected wavefront from an asphere surface to a reference spherical wavefront. Large departure aspheres can be measured when a computer generated hologram (CGH) is introduced between the interferometer and the optic. OptiPro Systems has developed a non-contact CMM called UltraSurf. It utilizes a single point non-contact sensor, and high accuracy air bearings. Several different commercial non-contact sensors have been integrated, allowing for the flexibility to measure a variety of surfaces and materials. Metrology of a sphere and an asphere using a profilometer, CMM, Interferometer with a CGH, and the UltraSurf will be presented. Cross-correlation of the measured surface error magnitude and shape will be demonstrated. Comparisons between the techniques and devices will be also presented with attention to accuracy, repeatability, and overall measurement time.

  1. Aging increases stiffness of cardiac myocytes measured by atomic force microscopy nanoindentation.

    PubMed

    Lieber, Samuel C; Aubry, Nadine; Pain, Jayashree; Diaz, Gissela; Kim, Song-Jung; Vatner, Stephen F

    2004-08-01

    It is well established that the aging heart exhibits left ventricular (LV) diastolic dysfunction and changes in mechanical properties, which are thought to be due to alterations in the extracellular matrix. We tested the hypothesis that the mechanical properties of cardiac myocytes significantly change with aging, which could contribute to the global changes in LV diastolic dysfunction. We used atomic force microscopy (AFM), which determines cellular mechanical property changes at nanoscale resolution in myocytes, from young (4 mo) and old (30 mo) male Fischer 344 x Brown Norway F1 hybrid rats. A measure of stiffness, i.e., apparent elastic modulus, was determined by analyzing the relationship between AFM indentation force and depth with the classical infinitesimal strain theory and by modeling the AFM probe as a blunted conical indenter. This is the first study to demonstrate a significant increase (P < 0.01) in the apparent elastic modulus of single, aging cardiac myocytes (from 35.1 +/- 0.7, n = 53, to 42.5 +/- 1.0 kPa, n = 58), supporting the novel concept that the mechanism mediating LV diastolic dysfunction in aging hearts resides, in part, at the level of the myocyte.

  2. Non-contact displacement estimation using Doppler radar.

    PubMed

    Gao, Xiaomeng; Singh, Aditya; Yavari, Ehsan; Lubecke, Victor; Boric-Lubecke, Olga

    2012-01-01

    Non-contact Doppler radar has been used extensively for detection of physiological motion. Most of the results published to date have been focused on estimation of the physiological rates, such as respiratory rate and heart rate, with CW and modulated waveforms in various settings. Accurate assessment of chest displacement may take this type of monitoring to the new level, by enabling the estimation of associated cardiopulmonary volumes, and possibly pulse pressure. To obtain absolute chest displacement with highest precision, full nonlinear phase demodulation of the quadrature radar outputs must be performed. The accuracy of this type of demodulation is limited by the drifting received RF power, varying dc offset, and channel quadrature imbalance. In this paper we demonstrate that if relatively large motion is used to calibrate the system, smaller motion displacement may be acquired with the accuracy on the order of 30 µm. PMID:23366212

  3. Non-contact displacement estimation using Doppler radar.

    PubMed

    Gao, Xiaomeng; Singh, Aditya; Yavari, Ehsan; Lubecke, Victor; Boric-Lubecke, Olga

    2012-01-01

    Non-contact Doppler radar has been used extensively for detection of physiological motion. Most of the results published to date have been focused on estimation of the physiological rates, such as respiratory rate and heart rate, with CW and modulated waveforms in various settings. Accurate assessment of chest displacement may take this type of monitoring to the new level, by enabling the estimation of associated cardiopulmonary volumes, and possibly pulse pressure. To obtain absolute chest displacement with highest precision, full nonlinear phase demodulation of the quadrature radar outputs must be performed. The accuracy of this type of demodulation is limited by the drifting received RF power, varying dc offset, and channel quadrature imbalance. In this paper we demonstrate that if relatively large motion is used to calibrate the system, smaller motion displacement may be acquired with the accuracy on the order of 30 µm.

  4. Non-contact type seal device for turbocharger

    SciTech Connect

    Washimi, K.; Shibata, M.; Ugajin, M.

    1987-02-24

    A non-contact type seal device is described for a turbocharger, comprising: a retainer mounted in a compressor chamber of a housing of the turbocharger; a collar attached to a compressor wheel mounting portion of a rotor shaft of the turbocharger; and a ring provided on an inner peripheral surface of the retainer, an annular groove receiving the ring being formed in an outer peripheral surface of the collar; a first gap being formed between the outer peripheral surface of the collar and the inner peripheral surface of the retainer; a second gap being formed between the inner surface of the annular groove and each of inner and opposite end surfaces of the ring; and a threaded groove being formed in the inner peripheral surface of the retainer in opposition to the outer peripheral surface of the collar.

  5. Ultrasound assisted optical elastography for measurement of tissue stiffness: contribution to the measurement from scattering coefficient variation

    NASA Astrophysics Data System (ADS)

    Bharat Chandran, R. S.; Usha Devi, C.; Vasu, R. M.; Sood, A. K.

    2007-05-01

    In ultrasound assisted optical elastography (UAOE) the amplitude of vibration inside the object introduced by an ultrasound (US) beam is read out by a coherent light beam. The measurement is the depth of modulation in the intensity autocorrelation of light that intercepted the insonified region and detected at the boundary. It is observed that the measured depth of modulation is owing to refractive index modulation and scattering coefficient modulation, in addition to the tissue-particle vibration. Since elasticity is measured from the amplitude of vibration it is essential to characterize and separate the contribution to the modulation from refractive index and scattering coefficient modulations. In this work we report the contribution of the scattering coefficient modulation in the insonified region to the measured modulation in the autocorrelation. We found through simulation studies that the contribution from scattering coefficient is small compared to the vibration. In addition, this contribution becomes smaller as the stiffness in the region increases. We also provide a means of quantifying this contribution so that the effect of vibration amplitude can be separated from the overall measured modulation depth.

  6. Influence of measurement depth on the stiffness assessment of healthy liver with real-time shear wave elastography.

    PubMed

    Wang, Cong-Zhi; Zheng, Jian; Huang, Ze-Ping; Xiao, Yang; Song, Dan; Zeng, Jie; Zheng, Hai-Rong; Zheng, Rong-Qin

    2014-03-01

    The purpose of this study was to determine the measurement depth range within which liver stiffness can be reliably assessed using real-time shear wave elastography (SWE) technology. Measurements were performed on phantoms and healthy volunteers. In the first group of patients, measurements were performed at depths of 2-8 cm from the probe surface. In the second group of patients, measurements were conducted 0-7 cm below the liver capsule. Success rate of measurements (SRoM), success rate of patients (SRoS) and coefficients of variation (CVs) of repeated measurements were compared. The SRoMs at 3-7 cm and the CVs at 2-5 cm from the probe surface were significantly higher and lower than those at other depths (p < 0.001), respectively. SRoS was zero 0-1 cm below the liver capsule. Furthermore, the features of 2-D stiffness mapping images were also found to change with depth. According to our results, the depth range for the most reliable liver stiffness assessment using SWE should be 3-5 cm from the probe surface and simultaneously 1-2 cm below the liver capsule.

  7. Measuring the effects of aging and sex on regional brain stiffness with MR elastography in healthy older adults

    PubMed Central

    Arani, Arvin; Murphy, Matthew C; Glaser, Kevin J; Manduca, Armando; Lake, David S; Kruse, Scott; Jack, Clifford R; Ehman, Richard; Huston, John

    2015-01-01

    Changes in tissue composition and cellular architecture have been associated with neurological disease, and these in turn can affect biomechanical properties. Natural biological factors such as aging and an individual’s sex also affect underlying tissue biomechanics in different brain regions. Understanding the normal changes is necessary before determining the efficacy of stiffness imaging for neurological disease diagnosis and therapy monitoring. The objective of this study was to evaluate global and regional changes in brain stiffness as a function of age and sex, using improved MRE acquisition and processing that has been shown to provide median stiffness values that are typically reproducible to within 1% in global measurements and within 2% for regional measurements. Furthermore, this is the first study to report the effects of age and sex over the entire cerebrum volume and over the full frontal, occipital, parietal, temporal, deep gray matter/white matter (insula, deep gray nuclei and white matter tracts), and cerebellum volumes. In 45 volunteers, we observed a significant linear correlation between age and brain stiffness in the cerebrum (P<.0001), frontal lobes (P<.0001), occipital lobes (P=.0005), parietal lobes (P=.0002), and the temporal lobes (P<.0001) of the brain. No significant linear correlation between brain stiffness and age was observed in the cerebellum (P=.74), and the sensory-motor regions (P=.32) of the brain, and a weak linear trend was observed in the deep gray matter/white matter (P=.075). A multiple linear regression model predicted an annual decline of 0.011±0.002 kPa in cerebrum stiffness with a theoretical median age value (76 years old) of 2.56±0.08 kPa. Sexual dimorphism was observed in the temporal (P=.03) and occipital (P=.001) lobes of the brain, but no significant difference was observed in any of the other brain regions (P>.20 for all other regions). The model predicted female occipital and temporal lobes to be 0.23 k

  8. Measuring the effects of aging and sex on regional brain stiffness with MR elastography in healthy older adults.

    PubMed

    Arani, Arvin; Murphy, Matthew C; Glaser, Kevin J; Manduca, Armando; Lake, David S; Kruse, Scott A; Jack, Clifford R; Ehman, Richard L; Huston, John

    2015-05-01

    Changes in tissue composition and cellular architecture have been associated with neurological disease, and these in turn can affect biomechanical properties. Natural biological factors such as aging and an individual's sex also affect underlying tissue biomechanics in different brain regions. Understanding the normal changes is necessary before determining the efficacy of stiffness imaging for neurological disease diagnosis and therapy monitoring. The objective of this study was to evaluate global and regional changes in brain stiffness as a function of age and sex, using improved MRE acquisition and processing that have been shown to provide median stiffness values that are typically reproducible to within 1% in global measurements and within 2% for regional measurements. Furthermore, this is the first study to report the effects of age and sex over the entire cerebrum volume and over the full frontal, occipital, parietal, temporal, deep gray matter/white matter (insula, deep gray nuclei and white matter tracts), and cerebellum volumes. In 45 volunteers, we observed a significant linear correlation between age and brain stiffness in the cerebrum (P<.0001), frontal lobes (P<.0001), occipital lobes (P=.0005), parietal lobes (P=.0002), and the temporal lobes (P<.0001) of the brain. No significant linear correlation between brain stiffness and age was observed in the cerebellum (P=.74), and the sensory-motor regions (P=.32) of the brain, and a weak linear trend was observed in the deep gray matter/white matter (P=.075). A multiple linear regression model predicted an annual decline of 0.011 ± 0.002 kPa in cerebrum stiffness with a theoretical median age value (76 years old) of 2.56 ± 0.08 kPa. Sexual dimorphism was observed in the temporal (P=.03) and occipital (P=.001) lobes of the brain, but no significant difference was observed in any of the other brain regions (P>.20 for all other regions). The model predicted female occipital and temporal lobes to be 0.23 k

  9. Microfluidic acoustic trapping force and stiffness measurement using viscous drag effect.

    PubMed

    Lee, Jungwoo; Jeong, Jong Seob; Shung, K Kirk

    2013-01-01

    It has recently been demonstrated that it was possible to individually trap 70μm droplets flowing within a 500μm wide microfluidic channel by a 24MHz single element piezo-composite focused transducer. In order to further develop this non-invasive approach as a microfluidic particle manipulation tool of high precision, the trapping force needs to be calibrated to a known force, i.e., viscous drag force arising from the fluid flow in the channel. However, few calibration studies based on fluid viscosity have been carried out with focused acoustic beams for moving objects in microfluidic environments. In this paper, the acoustic trapping force (F(trapping)) and the trap stiffness (or compliance k) are experimentally determined for a streaming droplet in a microfluidic channel. F(trapping) is calibrated to viscous drag force produced from syringe pumps. Chebyshev-windowed chirp coded excitation sequences sweeping the frequency range from 18MHz to 30MHz is utilized to drive the transducer, enabling the beam transmission through the channel/fluid interface for interrogating the droplets inside the channel. The minimum force (F(min,trapping)) required for initially immobilizing drifting droplets is determined as a function of pulse repetition frequency (PRF), duty factor (DTF), and input voltage amplitude (V(in)) to the transducer. At PRF=0.1kHz and DTF=30%, F(min,trapping) is increased from 2.2nN for V(in)=22V(pp) to 3.8nN for V(in)=54V(pp). With a fixed V(in)=54V(pp) and DTF=30%, F(min,trapping) can be varied from 3.8nN at PRF=0.1kHz to 6.7nN at PRF=0.5kHz. These findings indicate that both higher driving voltage and more frequent beam transmission yield stronger traps for holding droplets in motion. The stiffness k can be estimated through linear regression by measuring the trapping force (F(trapping)) corresponding to the displacement (x) of a droplet from the trap center. By plotting F(trapping) - x curves for certain values of V(in) (22/38/54V(pp)) at DTF=10% and

  10. Non-Contact Thermal Characterization of NASA's HERMeS Hall Thruster

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Kamhawi, Hani; Meyers, James L.; Yim, John T.; Neff, Gregory

    2015-01-01

    The Thermal Characterization Test of NASAs 12.5-kW Hall thruster is being completed. This thruster is being developed to support of a number of potential Solar Electric Propulsion Technology Demonstration Mission concepts, including the Asteroid Redirect Robotic Mission concept. As a part of this test, an infrared-based, non-contact thermal imaging system was developed to measure Hall thruster surfaces that are exposed to high voltage or harsh environment. To increase the accuracy of the measurement, a calibration array was implemented, and a pilot test was performed to determine key design parameters for the calibration array. The raw data is analyzed in conjunction with a simplified thermal model of the channel to account for reflection. The reduced data will be used to refine the thruster thermal model, which is critical to the verification of the thruster thermal specifications. The present paper will give an overview of the decision process that led to identification of the need for a non-contact temperature diagnostic, the development of said diagnostic, the measurement results, and the simplified thermal model of the channel.

  11. A rapid, fully non-contact, hybrid system for generating Lamb wave dispersion curves.

    PubMed

    Harb, M S; Yuan, F G

    2015-08-01

    A rapid, fully non-contact, hybrid system which encompasses an air-coupled transducer (ACT) and a laser Doppler vibrometer (LDV) is presented for profiling A0 Lamb wave dispersion of an isotropic aluminum plate. The ACT generates ultrasonic pressure incident upon the surface of the plate. The pressure waves are partially refracted into the plate. The LDV is employed to measure the out-of-plane velocity of the excited Lamb wave mode at some distances where the Lamb waves are formed in the plate. The influence of the ACT angle of incidence on Lamb wave excitation is investigated and Snell's law is used to directly compute Lamb wave dispersion curves including phase and group velocity dispersion curves in aluminum plates from incident angles found to generate optimal A0 Lamb wave mode. The measured curves are compared to results obtained from a two-dimensional (2-D) Fast Fourier transform (FFT), Morlet wavelet transform (MWT) and theoretical predictions. It was concluded that the experimental results obtained using Snell's law concept are well in accordance with the theoretical solutions. The high degree of accuracy in the measured data with the theoretical results proved a high sensitivity of the air-coupled and laser ultrasound in characterizing Lamb wave dispersion in plate-like structures. The proposed non-contact hybrid system can effectively characterize the dispersive relation without knowledge of neither the materials characteristics nor the mathematical model.

  12. In-line 90 nm Technology Gate Oxide Nitrogen Monitoring With Non-Contact Electrical Technique

    NASA Astrophysics Data System (ADS)

    Pic, Nicolas; Polisski, Gennadi; Paire, Emmanuel; Rizzo, Véronique; Grosjean, Catherine; Bortolotti, Benjamin; D'Amico, John; Cabuil, Nicolas

    2009-09-01

    The continuous race to reduce the dimensions of IC components has lead to the introduction of Nitrogen in the thin gate oxide layer in order to increase the dielectric constant and to improve the gate dielectric properties. It is mandatory to apply in-line monitoring to control the amount of Nitrogen to ensure that electrical behavior is correct over time. Historically, this monitoring was performed by measuring the delay to reoxidation (D2R) with an ellipsometer. But, this method is not suitable in production as it is depending on both initial oxidation and reoxidation reproducibility, which implies implementing dedicated Statistical Process Control (SPC) monitoring at these two specific processing steps. We are here presenting an alternative method to D2R for 90 nm Technology gate oxide grown by Rapid Thermal Process (RTP). Applying a non-contact Metrology technique, which couples Kelvin probe surface voltage measurement with surface Corona deposition, directly after the nitridation step, the interface trapped charge (QIT) is obtained by integration of the interface state density over the space charge region. In summary, this electrical non-contact monitoring is more sensitive to the Nitrogen content compared to ellipsometer measurement after nitridation or after D2R, less sensitive compared to D2R to any initial oxide variation, and it allows simplification of the qualification procedure at this process step by skipping the reoxidation.

  13. Continuous non-contact vital sign monitoring in neonatal intensive care unit

    PubMed Central

    Guazzi, Alessandro; Jorge, João; Davis, Sara; Watkinson, Peter; Green, Gabrielle; Shenvi, Asha; McCormick, Kenny; Tarassenko, Lionel

    2014-01-01

    Current technologies to allow continuous monitoring of vital signs in pre-term infants in the hospital require adhesive electrodes or sensors to be in direct contact with the patient. These can cause stress, pain, and also damage the fragile skin of the infants. It has been established previously that the colour and volume changes in superficial blood vessels during the cardiac cycle can be measured using a digital video camera and ambient light, making it possible to obtain estimates of heart rate or breathing rate. Most of the papers in the literature on non-contact vital sign monitoring report results on adult healthy human volunteers in controlled environments for short periods of time. The authors' current clinical study involves the continuous monitoring of pre-term infants, for at least four consecutive days each, in the high-dependency care area of the Neonatal Intensive Care Unit (NICU) at the John Radcliffe Hospital in Oxford. The authors have further developed their video-based, non-contact monitoring methods to obtain continuous estimates of heart rate, respiratory rate and oxygen saturation for infants nursed in incubators. In this Letter, it is shown that continuous estimates of these three parameters can be computed with an accuracy which is clinically useful. During stable sections with minimal infant motion, the mean absolute error between the camera-derived estimates of heart rate and the reference value derived from the ECG is similar to the mean absolute error between the ECG-derived value and the heart rate value from a pulse oximeter. Continuous non-contact vital sign monitoring in the NICU using ambient light is feasible, and the authors have shown that clinically important events such as a bradycardia accompanied by a major desaturation can be identified with their algorithms for processing the video signal. PMID:26609384

  14. Continuous non-contact vital sign monitoring in neonatal intensive care unit.

    PubMed

    Villarroel, Mauricio; Guazzi, Alessandro; Jorge, João; Davis, Sara; Watkinson, Peter; Green, Gabrielle; Shenvi, Asha; McCormick, Kenny; Tarassenko, Lionel

    2014-09-01

    Current technologies to allow continuous monitoring of vital signs in pre-term infants in the hospital require adhesive electrodes or sensors to be in direct contact with the patient. These can cause stress, pain, and also damage the fragile skin of the infants. It has been established previously that the colour and volume changes in superficial blood vessels during the cardiac cycle can be measured using a digital video camera and ambient light, making it possible to obtain estimates of heart rate or breathing rate. Most of the papers in the literature on non-contact vital sign monitoring report results on adult healthy human volunteers in controlled environments for short periods of time. The authors' current clinical study involves the continuous monitoring of pre-term infants, for at least four consecutive days each, in the high-dependency care area of the Neonatal Intensive Care Unit (NICU) at the John Radcliffe Hospital in Oxford. The authors have further developed their video-based, non-contact monitoring methods to obtain continuous estimates of heart rate, respiratory rate and oxygen saturation for infants nursed in incubators. In this Letter, it is shown that continuous estimates of these three parameters can be computed with an accuracy which is clinically useful. During stable sections with minimal infant motion, the mean absolute error between the camera-derived estimates of heart rate and the reference value derived from the ECG is similar to the mean absolute error between the ECG-derived value and the heart rate value from a pulse oximeter. Continuous non-contact vital sign monitoring in the NICU using ambient light is feasible, and the authors have shown that clinically important events such as a bradycardia accompanied by a major desaturation can be identified with their algorithms for processing the video signal. PMID:26609384

  15. Neonatal non-contact respiratory monitoring based on real-time infrared thermography

    PubMed Central

    2011-01-01

    Background Monitoring of vital parameters is an important topic in neonatal daily care. Progress in computational intelligence and medical sensors has facilitated the development of smart bedside monitors that can integrate multiple parameters into a single monitoring system. This paper describes non-contact monitoring of neonatal vital signals based on infrared thermography as a new biomedical engineering application. One signal of clinical interest is the spontaneous respiration rate of the neonate. It will be shown that the respiration rate of neonates can be monitored based on analysis of the anterior naris (nostrils) temperature profile associated with the inspiration and expiration phases successively. Objective The aim of this study is to develop and investigate a new non-contact respiration monitoring modality for neonatal intensive care unit (NICU) using infrared thermography imaging. This development includes subsequent image processing (region of interest (ROI) detection) and optimization. Moreover, it includes further optimization of this non-contact respiration monitoring to be considered as physiological measurement inside NICU wards. Results Continuous wavelet transformation based on Debauches wavelet function was applied to detect the breathing signal within an image stream. Respiration was successfully monitored based on a 0.3°C to 0.5°C temperature difference between the inspiration and expiration phases. Conclusions Although this method has been applied to adults before, this is the first time it was used in a newborn infant population inside the neonatal intensive care unit (NICU). The promising results suggest to include this technology into advanced NICU monitors. PMID:22243660

  16. Effect of neighboring cells on cell stiffness measured by optical tweezers indentation

    NASA Astrophysics Data System (ADS)

    Yousafzai, Muhammad S.; Coceano, Giovanna; Mariutti, Alberto; Ndoye, Fatou; Amin, Ladan; Niemela, Joseph; Bonin, Serena; Scoles, Giacinto; Cojoc, Dan

    2016-05-01

    We report on the modification of mechanical properties of breast cancer cells when they get in contact with other neighboring cells of the same type. Optical tweezers vertical indentation was employed to investigate cell mechanics in isolated and contact conditions, by setting up stiffness as a marker. Two human breast cancer cell lines with different aggressiveness [MCF-7 (luminal breast cancer) and MDA-MB-231 (basal-like breast cancer)] and one normal immortalized breast cell line HBL-100 (normal and myoepithelial) were selected. We found that neighboring cells significantly alter cell stiffness: MDA-MB-231 becomes stiffer when in contact, while HBL-100 and MCF-7 exhibit softer character. Cell stiffness was probed at three cellular subregions: central (above nucleus), intermediate (cytoplasm), and near the leading edge. In an isolated condition, all cells showed a significant regional variation in stiffness: higher at the center and fading toward the leading edge. However, the regional variation becomes statistically insignificant when the cells were in contact with other neighboring cells. The proposed approach will contribute to understand the intriguing temporal sequential alterations in cancer cells during interaction with their surrounding microenvironment.

  17. Non-contact tamper sensing by electronic means

    DOEpatents

    Gritton, Dale G.

    1993-01-01

    A tamper-sensing system for an electronic tag 10 which is to be fixed to a surface 11 of an article 12, the tamper-sensing system comprising a capacitor having two non-contacting, capacitively-coupled elements 16, 19. Fixing of the body to the article will establish a precise location of the capacitor elements 16 and 19 relative to each other. When interrogated, the tag will generate a tamper-sensing signal having a value which is a function of the amount of capacity of the capacitor elements. The precise relative location of the capacitor elements cannot be duplicated if the tag is removed and affixed to a surrogate article having a fiducial capacitor element 19 fixed thereto. A very small displacement, in the order of 2-10 microns, of the capacitor elements relative to each other if the tag body is removed and fixed to a surrogate article will result in the tamper-sensing signal having a different, and detectable, value when the tag is interrogated.

  18. Modular Architecture of a Non-Contact Pinch Actuation Micropump

    PubMed Central

    Chee, Pei Song; Arsat, Rashidah; Adam, Tijjani; Hashim, Uda; Rahim, Ruzairi Abdul; Leow, Pei Ling

    2012-01-01

    This paper demonstrates a modular architecture of a non-contact actuation micropump setup. Rapid hot embossing prototyping was employed in micropump fabrication by using printed circuit board (PCB) as a mold material in polymer casting. Actuator-membrane gap separation was studied, with experimental investigation of three separation distances: 2.0 mm, 2.5 mm and 3.5 mm. To enhance the micropump performance, interaction surface area between plunger and membrane was modeled via finite element analysis (FEA). The micropump was evaluated against two frequency ranges, which comprised a low driving frequency range (0–5 Hz, with 0.5 Hz step increments) and a nominal frequency range (0–80 Hz, with 10 Hz per step increments). The low range frequency features a linear relationship of flow rate with the operating frequency function, while two magnitude peaks were captured in the flow rate and back pressure characteristic in the nominal frequency range. Repeatability and reliability tests conducted suggest the pump performed at a maximum flow rate of 5.78 mL/min at 65 Hz and a backpressure of 1.35 kPa at 60 Hz.

  19. High magnetic field ohmically decoupled non-contact technology

    DOEpatents

    Wilgen, John [Oak Ridge, TN; Kisner, Roger [Knoxville, TN; Ludtka, Gerard [Oak Ridge, TN; Ludtka, Gail [Oak Ridge, TN; Jaramillo, Roger [Knoxville, TN

    2009-05-19

    Methods and apparatus are described for high magnetic field ohmically decoupled non-contact treatment of conductive materials in a high magnetic field. A method includes applying a high magnetic field to at least a portion of a conductive material; and applying an inductive magnetic field to at least a fraction of the conductive material to induce a surface current within the fraction of the conductive material, the surface current generating a substantially bi-directional force that defines a vibration. The high magnetic field and the inductive magnetic field are substantially confocal, the fraction of the conductive material is located within the portion of the conductive material and ohmic heating from the surface current is ohmically decoupled from the vibration. An apparatus includes a high magnetic field coil defining an applied high magnetic field; an inductive magnetic field coil coupled to the high magnetic field coil, the inductive magnetic field coil defining an applied inductive magnetic field; and a processing zone located within both the applied high magnetic field and the applied inductive magnetic field. The high magnetic field and the inductive magnetic field are substantially confocal, and ohmic heating of a conductive material located in the processing zone is ohmically decoupled from a vibration of the conductive material.

  20. Supported lipid bilayer microarrays created by non-contact printing.

    PubMed

    Kaufmann, Stefan; Sobek, Jens; Textor, Marcus; Reimhult, Erik

    2011-07-21

    Arrays of supported lipid bilayers (SLBs) provide great potential for future drug development and multiplexed biological research, but are difficult to prepare due to the sensitivity of both the lipid and protein structural arrangement to air exposure. A novel way to produce arrays of SLBs is presented based on non-contact dispensing of vesicles to a substrate through a thin surface confined water film. The approach presents many degrees of freedom since it is not limited to a specific substrate, lipid composition, linker or controlled environment. The method allows adjustment of spot size (180-360 μm) by repeated dispensing as well as control over the composition of the spots and subsequent analytes. SLB formation by vesicle adsorption and rupture allows for incorporation of membrane proteins through pre-formed proteoliposomes. Dispensing through a dip-and-rinse water film avoids contamination, disruptive drying and the need for complex buffer compositions. Furthermore, no humidity control is necessary which simplifies the production step and prolongs the life-time of the spotting system. We characterize the method with respect to control over spot size, bilayer mobility and the formation process as well as demonstrate the possibility to fuse bilayer spots with subsequently added vesicles. Since complex lipid compositions and multiple spotting nozzles can be used, this novel technique is expected to be a promising platform for future applications, e.g. patterning to monitor peptide/protein-lipid interactions, for glycomics using glycolipids or lipopolysaccharides, and to study mixing of spatially confined lipid membranes.

  1. A non-contact time-domain scanning brain imaging system: first in-vivo results

    NASA Astrophysics Data System (ADS)

    Mazurenka, M.; Di Sieno, L.; Boso, G.; Contini, D.; Pifferi, A.; Dalla Mora, A.; Tosi, A.; Wabnitz, H.; Macdonald, R.

    2013-06-01

    We present results of first in-vivo tests of an optical non-contact scanning imaging system, intended to study oxidative metabolism related processes in biological tissue by means of time-resolved near-infrared spectroscopy. Our method is a novel realization of the short source-detector separation approach and based on a fast-gated single-photon avalanche diode to detect late photons only. The scanning system is built in quasi-confocal configuration and utilizes polarizationsensitive detection. It scans an area of 4×4 cm2, recording images with 32×32 pixels, thus creating a high density of source-detector pairs. To test the system we performed a range of in vivo measurements of hemodynamic changes in several types of biological tissues, i.e. skin (Valsalva maneuver), muscle (venous and arterial occlusions) and brain (motor and cognitive tasks). Task-related changes in hemoglobin concentrations were clearly detected in skin and muscle. The brain activation shows weaker, but yet detectable changes. These changes were localized in pixels near the motor cortex area (C3). However, it was found that even very short hair substantially impairs the measurement. Thus the applicability of the scanner is limited to hairless parts of body. The results of our first in-vivo tests prove the feasibility of non-contact scanning imaging as a first step towards development of a prototype for biological tissue imaging for various medical applications.

  2. Development of Non-contact Respiratory Monitoring System for Newborn Using a FG Vision Sensor

    NASA Astrophysics Data System (ADS)

    Kurami, Yoshiyuki; Itoh, Yushi; Natori, Michiya; Ohzeki, Kazuo; Aoki, Yoshimitsu

    In recent years, development of neonatal care is strongly hoped, with increase of the low-birth-weight baby birth rate. Especially respiration of low-birth-weight baby is incertitude because central nerve and respiratory function is immature. Therefore, a low-birth-weight baby often causes a disease of respiration. In a NICU (Neonatal Intensive Care Unit), neonatal respiration is monitored using cardio-respiratory monitor and pulse oximeter at all times. These contact-type sensors can measure respiratory rate and SpO2 (Saturation of Peripheral Oxygen). However, because a contact-type sensor might damage the newborn's skin, it is a real burden to monitor neonatal respiration. Therefore, we developed the respiratory monitoring system for newborn using a FG (Fiber Grating) vision sensor. FG vision sensor is an active stereo vision sensor, it is possible for non-contact 3D measurement. A respiratory waveform is calculated by detecting the vertical motion of the thoracic and abdominal region with respiration. We attempted clinical experiment in the NICU, and confirmed the accuracy of the obtained respiratory waveform was high. Non-contact respiratory monitoring of newborn using a FG vision sensor enabled the minimally invasive procedure.

  3. Size dependence of shape and stiffness of single sessile oil nanodroplets as measured by atomic force microscopy.

    PubMed

    Munz, Martin; Mills, Tom

    2014-04-22

    This article presents results and guidelines on the quantitative analysis of size, shape, and stiffness of single sessile oil droplets in air and in water. Atomic force microscopy (AFM) facilitates the analysis of micro- and nanoscale droplets which are of growing importance for agrochemicals, cosmetics, or foodstuffs containing emulsions with nanoscale compartments or droplets. Measurement of droplet shape and stiffness provides information on the contact angle with the support surface as well as the interfacial tension of the liquid-liquid interface. In this study, micro- and nanoscale droplets were imaged both in amplitude modulation (AM) and force mapping modes. The effects of the AM mode set point ratio on the measured droplet shape are discussed, and a modified spherical cap model is suggested to extract the droplet-substrate contact angle. This model was applied to a population of different sized oil droplets imaged in water and led to the finding that the contact angle with the solid support varies with the droplet size. Force mapping was undertaken to measure the droplet stiffness as a function of the droplet size. Smaller droplets were found to be stiffer, in reasonable agreement with the Attard-Miklavcic model [Langmuir 2001, 17, 8217-8223] which describes the deformation of a sessile droplet in the nonwetting regime, i.e., by partial wrapping of the droplet around the probe surface. The model limitations are discussed in terms of the diverging droplet stiffness predicted for droplet radii similar to the probe radius as well as the error propagation associated with the droplet shape function.

  4. Accuracy and reliability of a dynamic biomechanical skin measurement probe for the analysis of stiffness and viscoelasticity.

    PubMed

    Dawes-Higgs, Elizabeth K; Swain, Michael V; Higgs, Robin J E D; Appleyard, Richard C; Kossard, Steven

    2004-02-01

    A novel instrument has been devised for the in vivo examination of the dynamic biomechanical properties of skin. These properties include stiffness and viscoelasticity. The advantage of the device is its ability to examine the skin dynamically, thereby eliminating preconditioning effects. Furthermore, it is portable, hand-held and easy to operate in the clinical environment. The objective of this study was to determine the accuracy and reliability of the dynamic biomechanical skin measurement (DBSM) probe. The accuracy was determined by examining a series of silicone elastomer specimens. A comparison of the shear modulus (G*), obtained from a static indentation system, with stiffness, obtained from the DBSM probe, was performed. The reliability was determined by examining both silicone elastomers and forearm volar skin in vivo. In both cases assessment was by six different operators (inter-reliability) and also by an individual operator (intra-reliability). Statistical analysis was performed using Levene's test of homogeneity and analysis of variance to ascertain if there were significant differences between operators (inter-reliability) and with one individual operator (intra-reliability). It can be concluded, from this study, that the DBSM probe is accurate (R2 = 0.96, p = 0.01). It is also inter- and intra-reliable when assessing elastomer stiffness and skin stiffness. However, phase lag was not found to be a useful indicator of device reliability. It is anticipated that this device will be used to examine dermatological conditions and the benefits, or otherwise, of treatment. The DBSM probe promises to contribute to the objective measurement of physical properties of the skin in future investigative studies. PMID:15005308

  5. Two non-contact photoelectric angular position sensors for motion control applications

    NASA Astrophysics Data System (ADS)

    Xu, Tao; Chen, Xiaolu; Bo, Jiang

    2013-01-01

    The angular position sensor can be integrated into most motion control applications where precision monitoring of angular position is required. In order to eliminate mechanical wear of present angular position sensors for determining the rotation orientation, two new non-contact methods utilizing photoelectric switches are proposed and the corresponding sensors are established. One sensor comprises a gravitational ball, one or more light sources and a circular array of photodetectors, and realizes angular position measurement by setting a block between the light source and the corresponding photodetector which is rotated to the lowest point. Another sensor consists of transmitter-receiver sets and an optical encoder. Different from traditional rotary encoder, the transmitter-receiver sets are arranged around the circumference of rotation, and the optical encoder is only one-turn encoder. The concrete configurations of the sensors are described in detail and typical prototypes are illustrated. Both the angular position sensors are non-contact, compact, and low-cost. They can resist harsh environmental conditions such as vibration, excessive ambient temperature, dirt, moisture and dew, so it is especially well-suited for motion control applications.

  6. Theoretical and experimental research on a disk-type non-contact ultrasonic motor.

    PubMed

    Yang, Bin; Liu, Jingquan; Chen, Di; Cai, Bingchu

    2006-07-01

    We developed a disk-type non-contact ultrasonic motor based on B22 vibration mode. The rotors of SU-8 photoresist are fabricated by the UV-LIGA process to control their shapes and thicknesses. So the structures of them are optimized by the experiments. It is found that the revolution speed of disk-type non-contact ultrasonic motor not only depends on the vibration amplitude of the stator, but also the weight and construction of the rotors. The maximum revolution speed of the optimal rotor is 3569 rpm at the input voltage of 20 V and the driving frequency of 45.6 kHz. The exciting principle of traveling wave is presented with theoretical equations. The electric signals applied to the piezoelectric ceramic are designed by the principle. The natural frequency and corresponding vibration mode are calculated and analyzed using finite element method. It is shown that experimental results are in good agreement with simulation, which verifies the effectiveness of the finite element model. Moreover, the levitation distance between the stator and rotor is measured by a CCD laser displacement transducer.

  7. COMPACT NON-CONTACT TOTAL EMISSION DETECTION FOR IN-VIVO MULTI-PHOTON EXCITATION MICROSCOPY

    PubMed Central

    Glancy, Brian; Karamzadeh, Nader S.; Gandjbakhche, Amir H.; Redford, Glen; Kilborn, Karl; Knutson, Jay R.; Balaban, Robert S.

    2014-01-01

    Summary We describe a compact, non-contact design for a Total Emission Detection (c-TED) system for intra-vital multi-photon imaging. To conform to a standard upright two-photon microscope design, this system uses a parabolic mirror surrounding a standard microscope objective in concert with an optical path that does not interfere with normal microscope operation. The non-contact design of this device allows for maximal light collection without disrupting the physiology of the specimen being examined. Tests were conducted on exposed tissues in live animals to examine the emission collection enhancement of the c-TED device compared to heavily optimized objective-based emission collection. The best light collection enhancement was seen from murine fat (5×-2× gains as a function of depth), while murine skeletal muscle and rat kidney showed gains of over two and just under two-fold near the surface, respectively. Gains decreased with imaging depth (particularly in the kidney). Zebrafish imaging on a reflective substrate showed close to a two-fold gain throughout the entire volume of an intact embryo (approximately 150 μm deep). Direct measurement of bleaching rates confirmed that the lower laser powers (enabled by greater light collection efficiency) yielded reduced photobleaching in vivo. The potential benefits of increased light collection in terms of speed of imaging and reduced photo-damage, as well as the applicability of this device to other multi-photon imaging methods is discussed. PMID:24251437

  8. Non-contact ultrasonic guided wave inspection of rails: field test results and updates

    NASA Astrophysics Data System (ADS)

    Mariani, Stefano; Nguyen, Thompson V.; Zhu, Xuan; Lanza di Scalea, Francesco; Fateh, Mahmood

    2015-04-01

    The University of California at San Diego (UCSD), under a Federal Railroad Administration (FRA) Office of Research and Development (R&D) grant, is developing a system for high-speed and non-contact rail defect detection. A prototype using an ultrasonic air-coupled guided wave signal generation and air-coupled signal detection, paired with a real-time statistical analysis algorithm, has been realized. This system requires a specialized filtering approach based on electrical impedance matching due to the inherently poor signal-to-noise ratio of air-coupled ultrasonic measurements in rail steel. Various aspects of the prototype have been designed with the aid of numerical analyses. In particular, simulations of ultrasonic guided wave propagation in rails have been performed using a Local Interaction Simulation Approach (LISA) algorithm. The system's operating parameters were selected based on Receiver Operating Characteristic (ROC) curves, which provide a quantitative manner to evaluate different detection performances based on the trade-off between detection rate and false positive rate. Results from the first field test of the non-contact air-coupled defect detection prototype conducted at the Transportation Technology Center (TTC) in Pueblo, Colorado, in October 2014 are presented and discussed in this paper. The results indicate that the prototype is able to detect internal cracks with high reliability.

  9. Non contact mechanical testing at high temperature using electromagnetic forces

    NASA Astrophysics Data System (ADS)

    Gangireddy, Sindhura

    Ultra high temperature ceramics (UHTCs) recently captured interest as potential materials for reusable thermal protection systems and other components in future generation supersonic and hypersonic vehicles where temperatures can reach > 2000 °C. A novel method for mechanical testing of UHTCs at such ultra high temperatures is developed utilizing electromagnetic force. Resistively heated and self-supported specimens in thin ribbon geometry under application of a transverse magnetic field undergo flexural stress from the electromagnetic Lorentz forces, which act as a distributed mechanical load and deform the specimen. This non-contact technique, termed Electro-Magnetic Mechanical Apparatus (EMMA), allows performing rapid tests in a low cost table-top apparatus at temperatures, as high as 2200 °C, otherwise impossible to achieve. The flexibility of this method offers ample opportunity to explore a wide range of mechanical properties. For example utilizing a DC current for resistive heating with a DC magnetic field creates constant loads for Creep testing; replacing with a AC current generates cyclic loads for Fatigue testing; larger magnetic fields can be used for Fast -- Fracture experiments; and impulse excitation of the magnetic field vibrates the specimens and enables the determination of the material's Elastic and Loss Modulus. Zirconium Diboride and Silicon Carbide (ZrB2-SiC) is a prominent member of UHTCs. The creep properties of this composite are explored using this technique in the temperature range 1600 -- 2200 °C under stress ranging from 20 -- 50 MPa in ambient air as well as non-reactive Nitrogen atmosphere. The kinetic parameters of creep, activation energy and stress exponent are established in the testing range. The creep response from the two environments is compared to understand the effect of the concomitant oxidation during high temperature testing in air. Comparison of creep data from conventional 3-pt, 4-pt flexure tests corroborate the

  10. Study and Experiment on Non-Contact Voltage Sensor Suitable for Three-Phase Transmission Line.

    PubMed

    Zhou, Qiang; He, Wei; Xiao, Dongping; Li, Songnong; Zhou, Kongjun

    2015-12-30

    A voltage transformer, as voltage signal detection equipment, plays an important role in a power system. Presently, more and more electric power systems are adopting potential transformer and capacitance voltage transformers. Transformers are often large in volume and heavyweight, their insulation design is difficult, and an iron core or multi-grade capacitance voltage division structure is generally adopted. As a result, the detection accuracy of transformer is reduced, a huge phase difference exists between detection signal and voltage signal to be measured, and the detection signal cannot accurately and timely reflect the change of conductor voltage signal to be measured. By aiming at the current problems of electric transformation, based on electrostatic induction principle, this paper designed a non-contact voltage sensor and gained detection signal of the sensor through electrostatic coupling for the electric field generated by electric charges of the conductor to be measured. The insulation structure design of the sensor is simple and its volume is small; phase difference of sensor measurement is effectively reduced through optimization design of the electrode; and voltage division ratio and measurement accuracy are increased. The voltage sensor was tested on the experimental platform of simulating three-phase transmission line. According to the result, the designed non-contact voltage sensor can realize accurate and real-time measurement for the conductor voltage. It can be applied to online monitoring for the voltage of three-phase transmission line or three-phase distribution network line, which is in accordance with the development direction of the smart grid.

  11. Study and Experiment on Non-Contact Voltage Sensor Suitable for Three-Phase Transmission Line

    PubMed Central

    Zhou, Qiang; He, Wei; Xiao, Dongping; Li, Songnong; Zhou, Kongjun

    2015-01-01

    A voltage transformer, as voltage signal detection equipment, plays an important role in a power system. Presently, more and more electric power systems are adopting potential transformer and capacitance voltage transformers. Transformers are often large in volume and heavyweight, their insulation design is difficult, and an iron core or multi-grade capacitance voltage division structure is generally adopted. As a result, the detection accuracy of transformer is reduced, a huge phase difference exists between detection signal and voltage signal to be measured, and the detection signal cannot accurately and timely reflect the change of conductor voltage signal to be measured. By aiming at the current problems of electric transformation, based on electrostatic induction principle, this paper designed a non-contact voltage sensor and gained detection signal of the sensor through electrostatic coupling for the electric field generated by electric charges of the conductor to be measured. The insulation structure design of the sensor is simple and its volume is small; phase difference of sensor measurement is effectively reduced through optimization design of the electrode; and voltage division ratio and measurement accuracy are increased. The voltage sensor was tested on the experimental platform of simulating three-phase transmission line. According to the result, the designed non-contact voltage sensor can realize accurate and real-time measurement for the conductor voltage. It can be applied to online monitoring for the voltage of three-phase transmission line or three-phase distribution network line, which is in accordance with the development direction of the smart grid. PMID:26729119

  12. Direct assessment of the mechanical modulus of graphene co-doped with low concentrations of boron-nitrogen by a non-contact approach

    NASA Astrophysics Data System (ADS)

    Pan, Shun-Hsien; Medina, Henry; Wang, Sheng-Bo; Chou, Li-Jen; Wang, Zhiming M.; Chen, Kuei-Hsien; Chen, Li-Chyong; Chueh, Yu-Lun

    2014-07-01

    Boron and nitrogen co-doping has been shown to be an effective way to induce a band gap in graphene for electrical applications but only a few theoretical studies have been done to understand the elastic and mechanical properties of the modified graphene. Until now, no experimental assessment of the mechanical modulus of boron-nitrogen-doped graphene (BNG) has been reported in the literature. Here, we demonstrate a novel non-contact approach to determine the in-plane stiffness of BNG at low BN concentrations. The in-plane stiffness of BNG with 2 at% BN concentration was estimated to be about 309 N m-1, which is lower than that of pristine graphene, in good agreement with some theoretical studies. Moreover, we correlated the conductivity of BNG with induced strain and found the BNG to be more sensitive than pristine graphene in response to externally applied strain. This result indicates that BNG is a more suitable material than graphene for strain sensor applications.Boron and nitrogen co-doping has been shown to be an effective way to induce a band gap in graphene for electrical applications but only a few theoretical studies have been done to understand the elastic and mechanical properties of the modified graphene. Until now, no experimental assessment of the mechanical modulus of boron-nitrogen-doped graphene (BNG) has been reported in the literature. Here, we demonstrate a novel non-contact approach to determine the in-plane stiffness of BNG at low BN concentrations. The in-plane stiffness of BNG with 2 at% BN concentration was estimated to be about 309 N m-1, which is lower than that of pristine graphene, in good agreement with some theoretical studies. Moreover, we correlated the conductivity of BNG with induced strain and found the BNG to be more sensitive than pristine graphene in response to externally applied strain. This result indicates that BNG is a more suitable material than graphene for strain sensor applications. Electronic supplementary

  13. Multi-dimensional, non-contact metrology using trilateration and high resolution FMCW ladar.

    PubMed

    Mateo, Ana Baselga; Barber, Zeb W

    2015-07-01

    Here we propose, describe, and provide experimental proof-of-concept demonstrations of a multidimensional, non-contact-length metrology system design based on high resolution (millimeter to sub-100 micron) frequency modulated continuous wave (FMCW) ladar and trilateration based on length measurements from multiple, optical fiber-connected transmitters. With an accurate FMCW ladar source, the trilateration-based design provides 3D resolution inherently independent of standoff range and allows self-calibration to provide flexible setup of a field system. A proof-of-concept experimental demonstration was performed using a highly stabilized, 2 THz bandwidth chirped laser source, two emitters, and one scanning emitter/receiver providing 1D surface profiles (2D metrology) of diffuse targets. The measured coordinate precision of <200 microns was determined to be limited by laser speckle issues caused by diffuse scattering of the targets. PMID:26193132

  14. Experiments toward non-contact safety standards for automated industrial vehicles

    NASA Astrophysics Data System (ADS)

    Bostelman, Roger; Hong, Tsai; Madhavan, Raj

    2005-05-01

    The performance evaluation of an obstacle detection and segmentation algorithm for Automated Guided Vehicle (AGV) navigation in factory-like environments using a new 3D real-time range camera is the subject of this paper. Our approach expands on the US ASME B56.5 Safety Standard, which now allows for non-contact safety sensors, by performing tests on objects specifically sized in both the US and the British Safety Standards. These successful tests placed the recommended, as well as smaller, material-covered and sized objects on the vehicle path for static measurement. The segmented (mapped) obstacles were then verified in range to the objects and object size using simultaneous, absolute measurements obtained using a relatively accurate 2D scanning laser rangefinder. These 3D range cameras are expected to be relatively inexpensive and used indoors and possibly used outdoors for a vast amount of mobile robot applications building on experimental results explained in this paper.

  15. The influence of lateral forces on the cell stiffness measurement by optical tweezers vertical indentation

    NASA Astrophysics Data System (ADS)

    Ndoye, Fatou; Sulaiman Yousafzai, Muhammad; Coceano, Giovanna; Bonin, Serena; Scoles, Giacinto; Ka, Oumar; Niemela, Joseph; Cojoc, Dan

    2016-01-01

    We studied the lateral forces arising during the vertical indentation of the cell membrane by an optically trapped microbead, using back focal plane interferometry to determine force components in all directions. We analyzed the cell-microbead interaction and showed that indeed the force had also lateral components. Using the Hertz model, we calculated and compared the elastic moduli resulting from the total and vertical forces, showing that the differences are important and the total force should be considered. To confirm our results we analyzed cells from two breast cancer cell lines: MDA-MB-231 and HBL-100, known to have different cancer aggressiveness and hence stiffness.

  16. Atomic force acoustic microscopy: Influence of the lateral contact stiffness on the elastic measurements.

    PubMed

    Flores-Ruiz, F J; Espinoza-Beltrán, F J; Diliegros-Godines, C J; Siqueiros, J M; Herrera-Gómez, A

    2016-09-01

    Atomic force acoustic microscopy is a dynamic technique where the resonances of a cantilever, that has its tip in contact with the sample, are used to quantify local elastic properties of surfaces. Since the contact resonance frequencies (CRFs) monotonically increase with the tip-sample contact stiffness, they are used to evaluate the local elastic properties of the surfaces through a suitable contact mechanical model. The CRFs depends on both, normal and lateral contact stiffness, kN and kS respectively, where the last one is taken either as constant (kS<1), or as zero, leading to uncertainty in the estimation of the elastic properties of composite materials. In this work, resonance spectra for free and contact vibration were used in a finite element analysis of cantilevers to show the influence of kS in the resonance curves due to changes in the kS/kN ratio. These curves have regions for the different vibrational modes that are both, strongly and weakly dependent on kS, and they can be used in a selective manner to obtain a precise mapping of elastic properties. PMID:27428309

  17. Atomic force acoustic microscopy: Influence of the lateral contact stiffness on the elastic measurements.

    PubMed

    Flores-Ruiz, F J; Espinoza-Beltrán, F J; Diliegros-Godines, C J; Siqueiros, J M; Herrera-Gómez, A

    2016-09-01

    Atomic force acoustic microscopy is a dynamic technique where the resonances of a cantilever, that has its tip in contact with the sample, are used to quantify local elastic properties of surfaces. Since the contact resonance frequencies (CRFs) monotonically increase with the tip-sample contact stiffness, they are used to evaluate the local elastic properties of the surfaces through a suitable contact mechanical model. The CRFs depends on both, normal and lateral contact stiffness, kN and kS respectively, where the last one is taken either as constant (kS<1), or as zero, leading to uncertainty in the estimation of the elastic properties of composite materials. In this work, resonance spectra for free and contact vibration were used in a finite element analysis of cantilevers to show the influence of kS in the resonance curves due to changes in the kS/kN ratio. These curves have regions for the different vibrational modes that are both, strongly and weakly dependent on kS, and they can be used in a selective manner to obtain a precise mapping of elastic properties.

  18. Non-contacting transfer of elastic energy into explosive simulants for dynamic property estimation

    SciTech Connect

    Greeney, Nathan S.; Strovink, Kurt M.; Scales, John A.; Jessop, Andrew M.; Stuart Bolton, J.; Watson, Christopher C.; Adams, Douglas E.

    2014-05-21

    Non-contacting acoustical methods can be used to extract various material properties of liquid or solid samples without disturbing the sample. These methods are useful even in the lab since they do not involve coupling anything to the sample, which might change its properties. A forteriori, when dealing with potentially dangerous materials, non-contacting methods may be the only safe solutions to mechanical characterization. Here, we show examples of using laser ultrasound to remotely insonify and monitor the elastic properties of several granular explosive simulants. The relatively short near-infrared laser pulse length (a few hundred nanoseconds) provides a broad-band thermoelastic source of ultrasound; we intentionally stay in the thermoelastic regime to avoid damaging the material. Then, we use a scanning laser Doppler vibrometer to measure the ultrasonic response of the sample. LDV technology is well established and very sensitive at ultrasonic frequencies; atomic level motions can be measured with modest averaging. The resulting impulse response of the explosive simulant can be analyzed to determine decay rates and wave speeds, with stiffer samples showing faster wave speeds and lower decay rates. On the other hand, at the low-frequency end of the acoustic spectrum, we use an electronically phased array to couple into a freely suspended sample's normal modes. This allows us to gently heat up the sample (3 °C in just under 5 min, as shown with a thermal IR camera). In addition to the practical interest in making the sample more chemically visible through heat, these two measurements (low-frequency resonant excitation vs high-frequency wave propagation) bracket the frequency range of acoustic non-destructive evaluation methods available.

  19. Non-contact ultrasonic technique for Lamb wave characterization in composite plates.

    PubMed

    Harb, M S; Yuan, F G

    2016-01-01

    A fully non-contact single-sided air-coupled and laser ultrasonic non-destructive system based on the generation and detection of Lamb waves is implemented for the characterization of A0 Lamb wave mode dispersion in a composite plate. An air-coupled transducer (ACT) radiates acoustic pressure on the surface of the composite and generates Lamb waves within the structure. The out-of-plane velocity of the propagating wave is measured using a laser Doppler vibrometer (LDV). In this study, the non-contact automated system focuses on measuring A0 mode frequency-wavenumber, phase velocity dispersion curves using Snell's law and group velocity dispersion curves using Morlet wavelet transform (MWT) based on time-of-flight along different wave propagation directions. It is theoretically demonstrated that Snell's law represents a direct link between the phase velocity of the generated Lamb wave mode and the coincidence angle of the ACT. Using Snell's law and MWT, the former three dispersion curves of the A0 mode are easily and promptly generated from a set of measurements obtained from a rapid ACT angle scan experiment. In addition, the phase velocity and group velocity polar characteristic wave curves are also computed to analyze experimentally the angular dependency of Lamb wave propagation. In comparison with the results from the theory, it is confirmed that using the ACT/LDV system and implementing simple Snell's law method is highly sensitive and effective in characterizing the dispersion curves of Lamb waves in composite structures as well as its angular dependency.

  20. Non-contacting transfer of elastic energy into explosive simulants for dynamic property estimation

    NASA Astrophysics Data System (ADS)

    Greeney, Nathan S.; Strovink, Kurt M.; Scales, John A.; Jessop, Andrew M.; Stuart Bolton, J.; Watson, Christopher C.; Adams, Douglas E.

    2014-05-01

    Non-contacting acoustical methods can be used to extract various material properties of liquid or solid samples without disturbing the sample. These methods are useful even in the lab since they do not involve coupling anything to the sample, which might change its properties. A forteriori, when dealing with potentially dangerous materials, non-contacting methods may be the only safe solutions to mechanical characterization. Here, we show examples of using laser ultrasound to remotely insonify and monitor the elastic properties of several granular explosive simulants. The relatively short near-infrared laser pulse length (a few hundred nanoseconds) provides a broad-band thermoelastic source of ultrasound; we intentionally stay in the thermoelastic regime to avoid damaging the material. Then, we use a scanning laser Doppler vibrometer to measure the ultrasonic response of the sample. LDV technology is well established and very sensitive at ultrasonic frequencies; atomic level motions can be measured with modest averaging. The resulting impulse response of the explosive simulant can be analyzed to determine decay rates and wave speeds, with stiffer samples showing faster wave speeds and lower decay rates. On the other hand, at the low-frequency end of the acoustic spectrum, we use an electronically phased array to couple into a freely suspended sample's normal modes. This allows us to gently heat up the sample (3 °C in just under 5 min, as shown with a thermal IR camera). In addition to the practical interest in making the sample more chemically visible through heat, these two measurements (low-frequency resonant excitation vs high-frequency wave propagation) bracket the frequency range of acoustic non-destructive evaluation methods available.

  1. Non-contact optical sensor for detection of glucose concentration using a magneto-optic effect

    NASA Astrophysics Data System (ADS)

    Ozana, Nisan; Beiderman, Yevgeny; Anand, Arun; Javidi, Baharam; Polani, Sagi; Schwarz, Ariel; Shemer, Amir; García, Javier; Zalevsky, Zeev

    2016-03-01

    In this paper we aim to experimentally verify a speckle based technique for non-contact measurement of glucose concentration in blood stream while the vision for the final device aims to contain a single wristwatch-style device containing an AC (alternating) electro-magnet generated by a solenoid, a laser and a camera. The experiments presented in work are performed in-vitro in order to verify the effects that are responsible for the operation principle. When a glucose substance is inserted into a solenoid generating an alternating magnetic field it exhibits Faraday rotation which affects the temporal changes of the secondary speckle patterns distribution. The temporal frequency resulting from the AC magnetic field was found to have a lock-in amplification role which increased the observability of the relatively small magneto-optic effect. Experimental results to support the proposed concept are presented.

  2. Non-contact single shot elastography using line field low coherence holography

    PubMed Central

    Liu, Chih-Hao; Schill, Alexander; Wu, Chen; Singh, Manmohan; Larin, Kirill V.

    2016-01-01

    Optical elastic wave imaging is a powerful technique that can quantify local biomechanical properties of tissues. However, typically long acquisition times make this technique unfeasible for clinical use. Here, we demonstrate non-contact single shot elastographic holography using a line-field interferometer integrated with an air-pulse delivery system. The propagation of the air-pulse induced elastic wave was imaged in real time, and required a single excitation for a line-scan measurement. Results on tissue-mimicking phantoms and chicken breast muscle demonstrated the feasibility of this technique for accurate assessment of tissue biomechanical properties with an acquisition time of a few milliseconds using parallel acquisition. PMID:27570694

  3. Non-contact single shot elastography using line field low coherence holography.

    PubMed

    Liu, Chih-Hao; Schill, Alexander; Wu, Chen; Singh, Manmohan; Larin, Kirill V

    2016-08-01

    Optical elastic wave imaging is a powerful technique that can quantify local biomechanical properties of tissues. However, typically long acquisition times make this technique unfeasible for clinical use. Here, we demonstrate non-contact single shot elastographic holography using a line-field interferometer integrated with an air-pulse delivery system. The propagation of the air-pulse induced elastic wave was imaged in real time, and required a single excitation for a line-scan measurement. Results on tissue-mimicking phantoms and chicken breast muscle demonstrated the feasibility of this technique for accurate assessment of tissue biomechanical properties with an acquisition time of a few milliseconds using parallel acquisition. PMID:27570694

  4. Non-contact physiological signal detection using continuous wave Doppler radar.

    PubMed

    Qiao, Dengyu; He, Tan; Hu, Boping; Li, Ye

    2014-01-01

    The aim of this work is to show non-contact physiological signal monitoring system based on continuous-wave (CW) Doppler radar, which is becoming highly attractive in the field of health care monitoring of elderly people. Two radar signal processing methods were introduced in this paper: one to extract respiration and heart rates of a single person and the other to separate mixed respiration signals. To verify the validity of the methods, physiological signal is obtained from stationary human subjects using a CW Doppler radar unit. The sensor operating at 24 GHz is located 0.5 meter away from the subject. The simulation results show that the respiration and heart rates are clearly extracted, and the mixed respiration signals are successfully separated. Finally, reference respiration and heart rate signals are measured by an ECG monitor and compared with the results tracked by the CW Doppler radar monitoring system. PMID:24211989

  5. Non-contact physiological signal detection using continuous wave Doppler radar.

    PubMed

    Qiao, Dengyu; He, Tan; Hu, Boping; Li, Ye

    2014-01-01

    The aim of this work is to show non-contact physiological signal monitoring system based on continuous-wave (CW) Doppler radar, which is becoming highly attractive in the field of health care monitoring of elderly people. Two radar signal processing methods were introduced in this paper: one to extract respiration and heart rates of a single person and the other to separate mixed respiration signals. To verify the validity of the methods, physiological signal is obtained from stationary human subjects using a CW Doppler radar unit. The sensor operating at 24 GHz is located 0.5 meter away from the subject. The simulation results show that the respiration and heart rates are clearly extracted, and the mixed respiration signals are successfully separated. Finally, reference respiration and heart rate signals are measured by an ECG monitor and compared with the results tracked by the CW Doppler radar monitoring system.

  6. Non-contact and noise tolerant heart rate monitoring using microwave doppler sensor and range imagery.

    PubMed

    Matsunag, Daichi; Izumi, Shintaro; Okuno, Keisuke; Kawaguchi, Hiroshi; Yoshimoto, Masahiko

    2015-01-01

    This paper describes a non-contact and noise-tolerant heart beat monitoring system. The proposed system comprises a microwave Doppler sensor and range imagery using Microsoft Kinect™. The possible application of the proposed system is a driver health monitoring. We introduce the sensor fusion approach to minimize the heart beat detection error. The proposed algorithm can subtract a body motion artifact from Doppler sensor output using time-frequency analysis. The body motion artifact is a crucially important problem for biosignal monitoring using microwave Doppler sensor. The body motion speed is obtainable from range imagery, which has 5-mm resolution at 30-cm distance. Measurement results show that the success rate of the heart beat detection is improved about 75% on average when the Doppler wave is degraded by the body motion artifact.

  7. Non-contact opto-fluidics-based liquid level sensor for harsh environments

    NASA Astrophysics Data System (ADS)

    Riza, Nabeel A.; Reza, Syed Azer

    2010-04-01

    This paper presents a non-intrusive, non-contact liquid level sensor. The proposed sensor is a free-space-based optical sensor that uses opto-fluidic technology-based agile optics to direct light from a laser source to the Liquid Under Test (LUT). The presented design makes the proposed sensor ideal for use in environments where levels have to be determined for caustic or toxic liquids having a small window interface on the containers carrying them. The proposed design uses very low optical power levels (< 100 μW) making it useful for measuring levels of combustible liquids (e.g., jet fuels) which have a danger of being ignited at higher power levels. The proposed sensor can find potential applications in transportation, chemical and aerospace industries.

  8. Feasibility study using non-contact ultrasonic sensors for assessing reservoir fill state

    SciTech Connect

    Min, S.; Wei-yang Lu

    1995-12-01

    The change out of reservoirs in weapon systems can pose a significant safety threat if the reservoir has inadvertently transferred its contents. While the possibility of this occurring is very remote, the consequence can be extremely severe. There is therefore a need for equipment and procedures to determine the gas containment status before the component is removed from the weapon during normal maintenance procedures. The objective of this project was to demonstrate the feasibility of using ultrasonics to detect a change in stress states of a filled and unfilled reservoir. Electromagnetic-acoustic transducers (EMATs) and laser ultrasonics (LU), two non-contact ultrasonic techniques, were examined. A second approach which measures the changes in modal resonances was also explored. This report summarizes the experimental results from an initial feasibility study aimed at demonstrating the use of acoustics to determine the gas containment status of GTS reservoirs.

  9. Rapid non-contact inspection of composite ailerons using air-coupled ultrasound

    NASA Astrophysics Data System (ADS)

    Panda, Rabi Sankar; Karpenko, Oleksii; Udpa, Lalita; Haq, Mahmoodul; Rajagopal, Prabhu; Balasubramaniam, Krishnan

    2016-02-01

    This paper demonstrates an approach for rapid non-contact air-coupled ultrasonic inspection of composite ailerons with complex cross-sectional profile including thickness changes, curvature and the presence of a number of stiffeners. Low-frequency plate guided ultrasonic modes are used in B-scan mode for the measurements in pitch-catch mode. Appropriate probe holder angles suitable for generating and receiving lower order guided wave modes are discussed. Different embodiments of the pitch-catch tandem positions along and across stiffener and curved regions of the test sample enable a rapid test campaign capturing the feature-rich sample profile. Techniques to distinguish special features in the stiffener are presented.

  10. Design of an automated device to measure sagittal plane stiffness of an articulated ankle-foot orthosis.

    PubMed

    Kobayashi, Toshiki; Leung, Aaron K L; Akazawa, Yasushi; Naito, Hisashi; Tanaka, Masao; Hutchins, Stephen W

    2010-12-01

    The purpose of this study was to design a new automated stiffness measurement device which could perform a simultaneous measurement of both dorsi- and plantarflexion angles and the corresponding resistive torque around the rotational centre of an articulated ankle-foot orthosis (AAFO). This was achieved by controlling angular velocities and range of motion in the sagittal plane. The device consisted of a hydraulic servo fatigue testing machine, a torque meter, a potentiometer, a rotary plate and an upright supporter to enable an AAFO to be attached to the device via a surrogate shank. The accuracy of the device in reproducing the range of motion and angular velocity was within 4% and 1% respectively in the range of motion of 30° (15° plantarflexion to 15° dorsiflexion) at the angular velocity of 10°/s, while that in the measurement of AAFO torque was within 8% at the 0° position. The device should prove useful to assist an orthotist or a manufacturer to quantify the stiffness of an AAFO and inform its clinical use. PMID:20681928

  11. Micro- and nano-force evaluation of bioengineered muscle cells: a non-contact two-dimensional biosensing using surface acoustic wave devices.

    PubMed

    Wong, Yoke-Rung

    2015-08-01

    A high degree of cell-generated force measurement is required to evaluate the biomechanical performance of bioengineered muscle tissues. However, the conventional cantilever types of direct force measurement methods have limitations in developing a non-contact two-dimensional force sensing device for a single muscle cell. In this paper, a method is proposed and discussed by using focused surface acoustic wave and magneto-optic Kerr measurements. To depict the capability of the proposed method, a conceptual design of such a sensory device is demonstrated for non-contact two-dimensional force measurement of a single muscle cell.

  12. DistancePPG: Robust non-contact vital signs monitoring using a camera.

    PubMed

    Kumar, Mayank; Veeraraghavan, Ashok; Sabharwal, Ashutosh

    2015-05-01

    Vital signs such as pulse rate and breathing rate are currently measured using contact probes. But, non-contact methods for measuring vital signs are desirable both in hospital settings (e.g. in NICU) and for ubiquitous in-situ health tracking (e.g. on mobile phone and computers with webcams). Recently, camera-based non-contact vital sign monitoring have been shown to be feasible. However, camera-based vital sign monitoring is challenging for people with darker skin tone, under low lighting conditions, and/or during movement of an individual in front of the camera. In this paper, we propose distancePPG, a new camera-based vital sign estimation algorithm which addresses these challenges. DistancePPG proposes a new method of combining skin-color change signals from different tracked regions of the face using a weighted average, where the weights depend on the blood perfusion and incident light intensity in the region, to improve the signal-to-noise ratio (SNR) of camera-based estimate. One of our key contributions is a new automatic method for determining the weights based only on the video recording of the subject. The gains in SNR of camera-based PPG estimated using distancePPG translate into reduction of the error in vital sign estimation, and thus expand the scope of camera-based vital sign monitoring to potentially challenging scenarios. Further, a dataset will be released, comprising of synchronized video recordings of face and pulse oximeter based ground truth recordings from the earlobe for people with different skin tones, under different lighting conditions and for various motion scenarios.

  13. DistancePPG: Robust non-contact vital signs monitoring using a camera.

    PubMed

    Kumar, Mayank; Veeraraghavan, Ashok; Sabharwal, Ashutosh

    2015-05-01

    Vital signs such as pulse rate and breathing rate are currently measured using contact probes. But, non-contact methods for measuring vital signs are desirable both in hospital settings (e.g. in NICU) and for ubiquitous in-situ health tracking (e.g. on mobile phone and computers with webcams). Recently, camera-based non-contact vital sign monitoring have been shown to be feasible. However, camera-based vital sign monitoring is challenging for people with darker skin tone, under low lighting conditions, and/or during movement of an individual in front of the camera. In this paper, we propose distancePPG, a new camera-based vital sign estimation algorithm which addresses these challenges. DistancePPG proposes a new method of combining skin-color change signals from different tracked regions of the face using a weighted average, where the weights depend on the blood perfusion and incident light intensity in the region, to improve the signal-to-noise ratio (SNR) of camera-based estimate. One of our key contributions is a new automatic method for determining the weights based only on the video recording of the subject. The gains in SNR of camera-based PPG estimated using distancePPG translate into reduction of the error in vital sign estimation, and thus expand the scope of camera-based vital sign monitoring to potentially challenging scenarios. Further, a dataset will be released, comprising of synchronized video recordings of face and pulse oximeter based ground truth recordings from the earlobe for people with different skin tones, under different lighting conditions and for various motion scenarios. PMID:26137365

  14. A non-contact method for imaging the posterior chest using magnetic induction principles that allows to monitor pulmonary oedema

    NASA Astrophysics Data System (ADS)

    Giirsoy, D.; Scharfetter, H.

    2010-04-01

    Real time monitoring of lung function is of particular importance for the patients who are in the intensive care unit, and thus spend long durations of time in a supine position. This kind of recumbent positioning of the patients gives rise to a markedly increased fluid accumulation in the posterior lung regions associated with the gravity dependency. In order to monitor the temporal behavior of the accumulation, we proposed a non-contact semi-tomography method which uses magnetic induction principles. In the proposed method, an eddy current density is induced within the dorsal tissues including the posterior lungs via the transmitter coils which are embedded into the patient bed, and the magnetic field strength is measured similarly using an array of sensor coils in a non-contact manner. For the assessment of the method, we used a patient specific, MRI-guided realistic chest model and presented the reconstructed time-differential images.

  15. Finger Stiffness.

    PubMed

    Oosterhoff, Thijs C H; Nota, Sjoerd P F T; Ring, David

    2015-06-01

    Background Finger stiffness varies substantially in patients with hand and upper extremity illness and can be notably more than expected for a given pathophysiology. In prior studies, pain intensity and magnitude of disability consistently correlate with coping strategies such as catastrophic thinking and kinesiophobia, which can be characterized as overprotectiveness. In this retrospective study we address the primary research question whether patients with finger stiffness are more often overprotective when the primary pathology is outside the hand (e.g. distal radius fracture) than when it is located within the hand. Methods In an orthopaedic hand surgery department 160 patients diagnosed with more finger stiffness than expected for a given pathophysiology or time point of recovery between December 2006 and September 2012 were analyzed to compare the proportion of patients characterized as overprotective for differences by site of pathology: (1) inside the hand, (2) outside the hand, and (3) psychiatric etiology (e.g. clenched fist). Results Among 160 subjects with more finger stiffness than expected, 132 (82 %) were characterized as overprotective including 88 of 108 (81 %) with pathology in the hand, 39 of 44 (89 %) with pathology outside the hand, and 5 of 8 (63 %) with psychiatric etiology. These differences were not significant. Conclusions Overprotectiveness is common in patients with more finger stiffness than expected regardless the site and type of primary pathology. It seems worthwhile to recognize and treat maladaptive coping strategies early during recovery to limit impairment, symptoms, and disability. PMID:26078497

  16. Multimodal system for non-contact photoacoustic imaging, optical coherence tomography, and mid-infrared photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Leiss-Holzinger, E.; Brandstetter, M.; Langer, G.; Buchsbaum, A.; Burgholzer, P.; Lendl, B.; Berer, T.

    2016-03-01

    We present a multimodal optical setup, allowing non-contact photoacoustic imaging, optical coherence tomography (OCT), and non-contact mid-infrared photoacoustic spectroscopy. Photoacoustic signals are generated using a Nd:YAG laser and a tunable quantum cascade laser for photoacoustic imaging and spectroscopy, respectively. Photoacoustic signals are acquired by measuring the surface displacement of a specimen using a fiber-optic Mach-Zehnder interferometer. In the same fiber-optic network a spectral-domain OCT system is realized. Light from the photoacoustic detection laser and the OCT source are multiplexed into one fiber and the same objective is used for both imaging modalities. Light reflected from specimens is demultiplexed and guided to the respective imaging systems. To allow fast non-contact PAI and OCT imaging the detection spot is scanned across the specimens' surface using a galvanometer scanner. As the same fiber-network and optical components are used for photoacoustic and OCT imaging the obtained images are co-registered intrinsically. Imaging is demonstrated on tissue mimicking and biological samples; spectral information is obtained for polystyrene and hemoglobin.

  17. A Study of a Handrim-Activated Power-Assist Wheelchair Based on a Non-Contact Torque Sensor

    PubMed Central

    Nam, Ki-Tae; Jang, Dae-Jin; Kim, Yong Chol; Heo, Yoon; Hong, Eung-Pyo

    2016-01-01

    Demand for wheelchairs is increasing with growing numbers of aged and disabled persons. Manual wheelchairs are the most commonly used assistive device for mobility because they are convenient to transport. Manual wheelchairs have several advantages but are not easy to use for the elderly or those who lack muscular strength. Therefore, handrim-activated power-assist wheelchairs (HAPAW) that can aid driving power with a motor by detecting user driving intentions through the handrim are being researched. This research will be on HAPAW that judge user driving intentions by using non-contact torque sensors. To deliver the desired motion, which is sensed from handrim rotation relative to a fixed controller, a new driving wheel mechanism is designed by applying a non-contact torque sensor, and corresponding torques are simulated. Torques are measured by a driving wheel prototype and compared with simulation results. The HAPAW prototype was developed using the wheels and a driving control algorithm that uses left and right input torques and time differences are used to check if the non-contact torque sensor can distinguish users’ driving intentions. Through this procedure, it was confirmed that the proposed sensor can be used effectively in HAPAW. PMID:27509508

  18. A Study of a Handrim-Activated Power-Assist Wheelchair Based on a Non-Contact Torque Sensor.

    PubMed

    Nam, Ki-Tae; Jang, Dae-Jin; Kim, Yong Chol; Heo, Yoon; Hong, Eung-Pyo

    2016-01-01

    Demand for wheelchairs is increasing with growing numbers of aged and disabled persons. Manual wheelchairs are the most commonly used assistive device for mobility because they are convenient to transport. Manual wheelchairs have several advantages but are not easy to use for the elderly or those who lack muscular strength. Therefore, handrim-activated power-assist wheelchairs (HAPAW) that can aid driving power with a motor by detecting user driving intentions through the handrim are being researched. This research will be on HAPAW that judge user driving intentions by using non-contact torque sensors. To deliver the desired motion, which is sensed from handrim rotation relative to a fixed controller, a new driving wheel mechanism is designed by applying a non-contact torque sensor, and corresponding torques are simulated. Torques are measured by a driving wheel prototype and compared with simulation results. The HAPAW prototype was developed using the wheels and a driving control algorithm that uses left and right input torques and time differences are used to check if the non-contact torque sensor can distinguish users' driving intentions. Through this procedure, it was confirmed that the proposed sensor can be used effectively in HAPAW. PMID:27509508

  19. Evaluation of arterial stiffness with plasma GGT levels and pulse wave velocity measurement in patients with FMF

    PubMed Central

    Yılmaz, Filiz; Ulu, Sena; Akcı, Önder; Ahsen, Ahmet; Demir, Kasım; Yüksel, Şeref

    2014-01-01

    Objective Pulse wave velocity (PWV) is a non-invasive technique used to evaluate the arterial elasticity, which is an early indicator of atherosclerosis. Lately, gamma glutamyl transferase (GGT) is considered a determiner of arterial stiffness (AS). In this study, we aimed to evaluate the relationship between GGT levels and AS with PWV in patients with Familial Mediterranean fever (FMF). Material and Methods The study was conducted with 60 patients with FMF and 40 controls. Genetic analysis of the patients were performed. AS was assessed by PWV and, after the measurement of PWV, the presence of AS was determined. Results Mean PWV values and AS frequency were significantly higher in patients with FMF compared with the control group (p<0.001 and p=0.004, respectively). Mean GGT levels of FMF patients were higher than in the control group but the difference was not statistically different. In the correlation analysis, PWV and AS were positively correlated with FMF (r=0349, p<0.001; r=0.435, p<0.001, respectively). FMF duration and FMF were associated with GGT (r=0.300, p=0.02; r=0199, p=0.047, respectively). Conclusion Increased PWV values in FMF patients may indicate arterial stiffness. These patients may be followed closely with PWV as an early indicator of atherosclerosis. Therefore, the cardiovascular risk can be determined in the early stages of disease and it may be possible to take necessary precautions. PMID:27708864

  20. Stiffness and heterogeneity of the pulmonary endothelial glycocalyx measured by atomic force microscopy.

    PubMed

    O'Callaghan, Ryan; Job, Kathleen M; Dull, Randal O; Hlady, Vladimir

    2011-09-01

    The mechanical properties of endothelial glycocalyx were studied using atomic force microscopy with a silica bead (diameter ∼18 μm) serving as an indenter. Even at indentations of several hundred nanometers, the bead exerted very low compressive pressures on the bovine lung microvascular endothelial cell (BLMVEC) glycocalyx and allowed for an averaging of stiffness in the bead-cell contact area. The elastic modulus of BLMVEC glycocalyx was determined as a pointwise function of the indentation depth before and after enzymatic degradation of specific glycocalyx components. The modulus-indentation depth profiles showed the cells becoming progressively stiffer with increased indentation. Three different enzymes were used: heparinases III and I and hyaluronidase. The main effects of heparinase III and hyaluronidase enzymes were that the elastic modulus in the cell junction regions increased more rapidly with the indentation than in BLMVEC controls, and that the effective thickness of glycocalyx was reduced. Cytochalasin D abolished the modulus increase with the indentation. The confocal profiling of heparan sulfate and hyaluronan with atomic force microscopy indentation data demonstrated marked heterogeneity of the glycocalyx composition between cell junctions and nuclear regions.

  1. A non-contact optical technique for vehicle tracking along bounded trajectories

    NASA Astrophysics Data System (ADS)

    Giancola, S.; Giberti, H.; Sala, R.; Tarabini, M.; Cheli, F.; Garozzo, M.

    2015-11-01

    This paper presents a method for measuring the non-controlled trajectory of a cart along a bounded rectilinear path. The method uses non-contact measurement devices to identify the position of a movable laser scanner working in helical mode in order to reconstruct the 3D model of bridges. The main idea of the proposed method is to use vision systems in order to identify the coordinates of the laser scanner placed on the cart with respect to the global reference system. A fit-to-purpose vision system has been implemented: the system uses three CCD's cameras mounted on the cart to identify the relative rotations with respect to the environment. Two lasers pointers and a laser distance meter are fixed at the starting point of the trajectory and pointing in the direction of motion of the cart, creating three dots on a plane placed on the cart. One of the camera detects the cart displacements and rotations in the plane using a blob analysis procedure. The method described in this paper has a constant uncertainty and the measurement range only depends on the lasers power. The theoretical accuracy of the measurement system is close to 1 mm for the translation along the motion direction and around 0.5 mm along the other two directions. Orientations measurement have a theoretical accuracy of less than 0.1 °. The solution has been implemented for the 3D reconstruction of concrete bridge; preliminary experimental results are presented and discussed.

  2. Dynamic vehicle-track interaction in switches and crossings and the influence of rail pad stiffness - field measurements and validation of a simulation model

    NASA Astrophysics Data System (ADS)

    Pålsson, Björn A.; Nielsen, Jens C. O.

    2015-06-01

    A model for simulation of dynamic interaction between a railway vehicle and a turnout (switch and crossing, S&C) is validated versus field measurements. In particular, the implementation and accuracy of viscously damped track models with different complexities are assessed. The validation data come from full-scale field measurements of dynamic track stiffness and wheel-rail contact forces in a demonstrator turnout that was installed as part of the INNOTRACK project with funding from the European Union Sixth Framework Programme. Vertical track stiffness at nominal wheel loads, in the frequency range up to 20 Hz, was measured using a rolling stiffness measurement vehicle (RSMV). Vertical and lateral wheel-rail contact forces were measured by an instrumented wheel set mounted in a freight car featuring Y25 bogies. The measurements were performed for traffic in both the through and diverging routes, and in the facing and trailing moves. The full set of test runs was repeated with different types of rail pad to investigate the influence of rail pad stiffness on track stiffness and contact forces. It is concluded that impact loads on the crossing can be reduced by using more resilient rail pads. To allow for vehicle dynamics simulations at low computational cost, the track models are discretised space-variant mass-spring-damper models that are moving with each wheel set of the vehicle model. Acceptable agreement between simulated and measured vertical contact forces at the crossing can be obtained when the standard GENSYS track model is extended with one ballast/subgrade mass under each rail. This model can be tuned to capture the large phase delay in dynamic track stiffness at low frequencies, as measured by the RSMV, while remaining sufficiently resilient at higher frequencies.

  3. Bayesian inference of hidden corrosion in steel bridge connections: Non-contact and sparse contact approaches

    NASA Astrophysics Data System (ADS)

    Earls, C. J.

    2013-12-01

    This paper describes approaches for inferring the presence and nature of hidden corrosion occurring between connection plies in steel truss bridges. The proposed methods furnish, both non-contact and very sparse contact inspection modalities supporting this goal.

  4. Handheld non-contact evaluation of fastener flushness and countersink surface profiles using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Wang, James H.; Wang, Michael R.

    2016-07-01

    We report the use of spectral domain optical coherence tomography (SD-OCT) for non-contact optical evaluation of fastener flushness and countersink surface profile. Using a handheld galvanometer scanner of only 0.5 lb in weight the SD-OCT can perform line scan surface profile measurement of fastener and countersink without demanding accurate scan center alignment. It demonstrates fast measurement of fastener flushness, radius, slant angle, as well as countersink edge radius and surface angle within 90 ms suitable for handheld operation. With the use of a broadband light source at 840 nm center wavelength and 45 nm spectral bandwidth and a lens of 60 mm focal length, the low coherence interferometry based SD-OCT measurement offers axial depth resolution of 8.5 μm, lateral resolution of 19 μm, and measurement depth of 3.65 mm in the air. Multi-line scans can yield 3D surface profiles of fastener and countersink.

  5. A non-contact approach for PWV detection: application in a clinical setting.

    PubMed

    Campo, Adriaan; Heuten, Hilde; Goovaerts, Inge; Ennekens, Guy; Vrints, Christiaan; Dirckx, Joris

    2016-07-01

    A need for screening methods for arteriosclerosis led to the development of several approaches to measure pulse wave velocity (PWV) being indicative of arterial stiffness. Carotid-femoral PWV (cfPWV) can be measured between common carotid artery (CCA) and femoral artery (FA) displaying the physiologically important stiffness of the conduit arteries. However, this measurement approach has several disadvantages, and a local PWV-measurement of CCA-stiffness has been proposed as an alternative in the past. In the presented pilot study, laser Doppler vibrometry (LDV) is used to measure PWV locally in the CCA (PWVLDV) in 48 patients aged between 48 and 70, with known atherosclerotic arterial disease: stabilized coronary artery disease (CAD), cerebro-vascular disease (CVD) or peripheral artery disease (PAD). Additionally, cfPWV, CCA distensibility coefficient (DC), CCA intima-media thickness (IMT), blood pressure (BP) and age were evaluated. LDV is a valid method for local PWV-measurement. The method is potentially easy to use, and causes no discomfort to the patient. PWVLDV correlates with age (R  =  0.432; p  =  0.002) as reported in related studies using other techniques, and measured values lay between 2.5 and 5.8 m s(-1), which is well in line with literature measures of local PWV in the CCA. In conclusion, PWVLDV potentially is a marker for arterial health, but more research in a larger and more homogeneous patient population is mandatory. In future studies, blood velocity measurements should be incorporated, as well as a reference method such as pulse wave imaging (PWI) or magnetic resonance imaging (MRI). PMID:27244585

  6. A pilot study of scanning acoustic microscopy as a tool for measuring arterial stiffness in aortic biopsies

    PubMed Central

    Akhtar, Riaz; Cruickshank, J. Kennedy; Zhao, Xuegen; Derby, Brian; Weber, Thomas

    2016-01-01

    This study explores the use of scanning acoustic microscopy (SAM) as a potential tool for characterisation of arterial stiffness using aortic biopsies. SAM data is presented for human tissue collected during aortic bypass graft surgery for multi-vessel coronary artery disease. Acoustic wave speed as determined by SAM was compared to clinical data for the patients namely, pulse wave velocity (PWV), blood pressure, cholesterol and glucose levels. There was no obvious trend relating acoustic wave speed to PWV values, and an inverse relationship was found between systolic and diastolic blood pressure and acoustic wave speed. However, in patients with a higher cholesterol or glucose level, the acoustic wave speed increased. A more detailed investigation is needed to relate SAM data to clinical measurements. PMID:26985242

  7. Automatic non-contact 3-dimensional gauging via sensor fusion

    NASA Astrophysics Data System (ADS)

    Zhang, Yi F.

    1993-09-01

    The methods by which damaged rolling element bearings generate vibration at a low speed how that vibratioll may be measured and separated from vibration produced by other mechanical components and how that vibration may be analyzed and interpreted as well as examined for a variety damage locations and operating conditions.

  8. Non-contact prediction of soil moisture profiles using radio wave reflection

    NASA Astrophysics Data System (ADS)

    Needham, Duane Lee

    Scope and method of study. This study investigated the potential of non-contact measurement of volumetric soil moisture profiles by detecting reflected VHF and UHF radio waves. The investigation included a variability analysis of the dielectric properties of soil, tests to relate volumetric moisture content to dielectric properties, a simulation of radio wave reflection from various profiles, and field trials in which antennas transmitted and received radio waves for detection of the moisture gradient in the soil directly below the instrument. In addition to the measurements, an algorithm was devised to resolve layers of moisture from radio wave reflections of multiple frequencies. Potential applications for such an instrument may include irrigation scheduling, detection of plant stress, and hydrological research. Findings and conclusions. The model that simulated reflection coefficients in the frequency range of 80 MHz to 1 GHz was tested using hypothetical and existent moisture profiles. Results of simulated profiles indicated that reflection coefficients could be used to distinguish between volumetric surface moisture and could detect subsurface moisture to a depth of 45.7 cm. Reflection measurements made in the field trials indicated that linear correlation could be made with volumetric moisture in the top 15.2 cm. The profile restoration algorithm closely predicted simulated surface moisture but had a high failure rate predicting subsurface moisture. Results of the study indicated that reflection coefficients could be used to detect soil moisture at depth, but the restoration algorithm did not effectively resolve moisture layers.

  9. A non-contact vital sign monitoring system for ambulances using dual-frequency microwave radars.

    PubMed

    Suzuki, Satoshi; Matsui, Takemi; Kawahara, Hiroshi; Ichiki, Hiroto; Shimizu, Jun; Kondo, Yoko; Gotoh, Shinji; Yura, Hirofumi; Takase, Bonpei; Ishihara, Masayuki

    2009-01-01

    We developed a novel non-contact monitoring system to measure the vital signs of casualties inside a moving ambulance. This system was designed to prevent exposure of patients to infectious organisms under biochemical hazard conditions. The system consists of two microwave radars: a 10-GHz respiratory-monitoring radar is positioned 20 cm away from the surface of the isolator. The 24-GHz cardiac-monitoring radar is positioned below the stretcher underneath the isolator. The subject (22.13 +/- 0.99 years) was placed inside the isolator on a stretcher in the simulated ambulance. While the ambulance was in motion at a speed of approximately 10 km/h, the heart rates determined by the cardiac-monitoring radar correlated significantly with those measured by ECG (r = 0.69, p < 0.01), and the respiratory rates derived from the respiratory-monitoring radar correlated with those measured by the respiration curves (r = 0.97, p < 0.0001). The proposed system appears promising for future on-ambulance monitoring of the vital sign of casualties exposed to toxins. PMID:18946695

  10. Non-contact microrheology at the air-water interface

    NASA Astrophysics Data System (ADS)

    Boatwright, Thomas; Shlomovitz, Roie; Levine, Alex; Dennin, Michael

    2012-02-01

    Mechanical properties of biological interfaces, such as cell membranes, have the potential to be measured with optical tweezers. We report on an approach to measure air-water interfacial properties through microrheology of particles near, but not contacting, the surface. An inverted optical tweezer traps beads of micron size or greater in the bulk, and can then translate them perpendicular to the interface. Through the measurement of thermally driven fluctuations, the mobility of the particle is found to vary as a function of submerged depth and the boundary conditions at the interface. Near a rigid wall, the mobility is confirmed to decrease in a way consistent with Faxèn's law. Very close to the free air-water interface, the mobility changes with the opposite sign, increasing by about 30% at the surface, consistent with recent calculations by Shlomovitz and Levine. In addition, the presence of a Langmuir monolayer at the interface is found to significantly change the mobility of the particle close to the interface. With an accurate theory, it should be possible to infer the shear modulus of a monolayer from the fluctuations of the particle beneath the interface. Since particles are not embedded in the monolayer, this technique avoids impacting the system of study.

  11. Prospective Comparison of Liver Stiffness Measurements between Two Point Shear Wave Elastography Methods: Virtual Touch Quantification and Elastography Point Quantification

    PubMed Central

    Yoo, Hyunsuk; Yoon, Jeong Hee; Lee, Dong Ho; Chang, Won; Han, Joon Koo

    2016-01-01

    Objective To prospectively compare technical success rate and reliable measurements of virtual touch quantification (VTQ) elastography and elastography point quantification (ElastPQ), and to correlate liver stiffness (LS) measurements obtained by the two elastography techniques. Materials and Methods Our study included 85 patients, 80 of whom were previously diagnosed with chronic liver disease. The technical success rate and reliable measurements of the two kinds of point shear wave elastography (pSWE) techniques were compared by χ2 analysis. LS values measured using the two techniques were compared and correlated via Wilcoxon signed-rank test, Spearman correlation coefficient, and 95% Bland-Altman limit of agreement. The intraobserver reproducibility of ElastPQ was determined by 95% Bland-Altman limit of agreement and intraclass correlation coefficient (ICC). Results The two pSWE techniques showed similar technical success rate (98.8% for VTQ vs. 95.3% for ElastPQ, p = 0.823) and reliable LS measurements (95.3% for VTQ vs. 90.6% for ElastPQ, p = 0.509). The mean LS measurements obtained by VTQ (1.71 ± 0.47 m/s) and ElastPQ (1.66 ± 0.41 m/s) were not significantly different (p = 0.209). The LS measurements obtained by the two techniques showed strong correlation (r = 0.820); in addition, the 95% limit of agreement of the two methods was 27.5% of the mean. Finally, the ICC of repeat ElastPQ measurements was 0.991. Conclusion Virtual touch quantification and ElastPQ showed similar technical success rate and reliable measurements, with strongly correlated LS measurements. However, the two methods are not interchangeable due to the large limit of agreement. PMID:27587964

  12. Non-contact assessment of melanin distribution via multispectral temporal illumination coding

    NASA Astrophysics Data System (ADS)

    Amelard, Robert; Scharfenberger, Christian; Wong, Alexander; Clausi, David A.

    2015-03-01

    Melanin is a pigment that is highly absorptive in the UV and visible electromagnetic spectra. It is responsible for perceived skin tone, and protects against harmful UV effects. Abnormal melanin distribution is often an indicator for melanoma. We propose a novel approach for non-contact melanin distribution via multispectral temporal illumination coding to estimate the two-dimensional melanin distribution based on its absorptive characteristics. In the proposed system, a novel multispectral, cross-polarized, temporally-coded illumination sequence is synchronized with a camera to measure reflectance under both multispectral and ambient illumination. This allows us to eliminate the ambient illumination contribution from the acquired reflectance measurements, and also to determine the melanin distribution in an observed region based on the spectral properties of melanin using the Beer-Lambert law. Using this information, melanin distribution maps can be generated for objective, quantitative assessment of skin type of individuals. We show that the melanin distribution map correctly identifies areas with high melanin densities (e.g., nevi).

  13. Non-Contact Thermal Characterization of NASA's HERMeS Hall Thruster

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Kamhawi, Hani; Myers, James L.; Yim, John T.; Neff, Gregory

    2015-01-01

    The thermal characterization test of NASA's 12.5-kW Hall Effect Rocket with Magnetic Shielding has been completed. This thruster was developed to support a number of potential Solar Electric Propulsion Technology Demonstration Mission concepts, including the Asteroid Redirect Robotic Mission concept. As a part of the preparation for this characterization test, an infrared-based, non-contact thermal imaging system was developed to measure the temperature of various thruster surfaces that are exposed to high voltage or plasma. An in-situ calibration array was incorporated into the setup to improve the accuracy of the temperature measurement. The key design parameters for the calibration array were determined in a separate pilot test. The raw data from the characterization test was analyzed though further work is needed to obtain accurate anode temperatures. Examination of the front pole and discharge channel temperatures showed that the thruster temperature was driven more by discharge voltage than by discharge power. Operation at lower discharge voltages also yielded more uniform temperature distributions than at higher discharge voltages. When operating at high discharge voltage, increasing the magnetic field strength appeared to have made the thermal loading azimuthally more uniform.

  14. Non-contact characterization of bacteria by time-resolved fluorescence

    NASA Astrophysics Data System (ADS)

    Bouchard, Alain; Frechette, Julie; Long, William F.; Vernon, Marcia; Cormier, Jean-Francois; Vallee, Real; Mafu, Akier A.; Lemay, Marie-Josee

    2004-07-01

    Accurate real-time methods for the detection of pathogenic microorganisms in the agri-food industry would represent an improvement over standard methods of analysis. We are currently developing a non-contact, scanning optical system for the detection of bacteria on meat surfaces based on fluorescence lifetime and intensity measurements. The system detects autofluorescent light emitted by the naturally occurring fluorophores in bacteria. Potential expected advantages of this system include accurate and efficient 2D real-time mapping of bacterial contamination of surfaces, and elimination of sample-to-sample cross-contamination. Furthermore, as the technique only requires minimal sample preparation and handling, the chemical properties of the specimen are preserved. This article presents the preliminary results obtained from a time-resolved fluorescence imaging system for the characterization of a non-pathogenic gram-negative bacteria, Pseudomonas fluorescens. Additionally we present a particular application of the system of interest to the agri-food industry, demonstrating its potential as a real-time macroscopic imaging system for mapping bacterial contamination on meat surfaces. Initial results indicate that the combination of fluorescence lifetime and intensity measurements provides a means for characterizing biological media and for detecting microorganisms on surfaces.

  15. Full-field speckle interferometry for non-contact photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Horstmann, Jens; Spahr, Hendrik; Buj, Christian; Münter, Michael; Brinkmann, Ralf

    2015-05-01

    A full-field speckle interferometry method for non-contact and prospectively high speed Photoacoustic Tomography is introduced and evaluated as proof of concept. Thermoelastic pressure induced changes of the objects topography are acquired in a repetitive mode without any physical contact to the object. In order to obtain high acquisition speed, the object surface is illuminated by laser pulses and imaged onto a high speed camera chip. In a repetitive triple pulse mode, surface displacements can be acquired with nanometre sensitivity and an adjustable sampling rate of e.g. 20 MHz with a total acquisition time far below one second using kHz repetition rate lasers. Due to recurring interferometric referencing, the method is insensitive to thermal drift of the object due to previous pulses or other motion. The size of the investigated area and the spatial and temporal resolution of the detection are scalable. In this study, the approach is validated by measuring a silicone phantom and a porcine skin phantom with embedded silicone absorbers. The reconstruction of the absorbers is presented in 2D and 3D. The sensitivity of the measurement with respect to the photoacoustic detection is discussed. Potentially, Photoacoustic Imaging can be brought a step closer towards non-anaesthetized in vivo imaging and new medical applications not allowing acoustic contact, such as neurosurgical monitoring or burnt skin investigation.

  16. Stiff railguns

    NASA Astrophysics Data System (ADS)

    Weldon, W. F.; Bacon, J. L.; Weeks, D. A.; Zowarka, R. C., Jr.

    1991-01-01

    Stiff guns have been operated with both plasma and solid armatures. A performance gain was seen in the plasma railgun as stiffness was increased. A stiff gun will help to maintain the bore shape and preserve the integrity of the seam between rail and insulator under the extreme asymmetric loads sustained during high-pressure operation. The hydraulically preloaded moly and ceramic gun has been fired six times at pressures as high as 87 ksi, and the bore still holds roughing vacuum up to two hours after the test. The elimination of seam leakage helps control bore erosion associated with plasma reconstitution from the rail and plasma perturbation that might result in loss-initiating instabilities. Reduced rail deflection allows solid and transitioning armatures to track the bore surface. An analysis of the strain energy associated with the deflection of the railgun structure is presented, and this mechanism is found to be a small fraction of the energy associated with armature loss and the rail resistive loss.

  17. Non-contact atomic-level interfacial force microscopy

    SciTech Connect

    Houston, J.E.; Fleming, J.G.

    1997-02-01

    The scanning force microscopies (notably the Atomic Force Microscope--AFM), because of their applicability to nearly all materials, are presently the most widely used of the scanning-probe techniques. However, the AFM uses a deflection sensor to measure sample/probe forces which suffers from an inherent mechanical instability that occurs when the rate of change of the force with respect to the interfacial separation becomes equal to the spring constant of the deflecting member. This instability dramatically limits the breadth of applicability of AFM-type techniques to materials problems. In the course of implementing a DOE sponsored basic research program in interfacial adhesion, a self-balancing force sensor concept has been developed and incorporated into an Interfacial Force Microscopy (IFM) system by Sandia scientists. This sensor eliminates the instability problem and greatly enhances the applicability of the scanning force-probe technique to a broader range of materials and materials parameters. The impact of this Sandia development was recognized in 1993 by a Department of Energy award for potential impact on DOE programs and by an R and D 100 award for one of the most important new products of 1994. However, in its present stage of development, the IFM is strictly a research-level tool and a CRADA was initiated in order to bring this sensor technology into wide-spread availability by making it accessible in the form of a commercial instrument. The present report described the goals, approach and results of this CRADA effort.

  18. Air microjet system for non-contact force application and the actuation of micro-structures

    NASA Astrophysics Data System (ADS)

    Khare, S. M.; Venkataraman, V.

    2016-01-01

    We demonstrate a non-contact technique to apply calibrated and localized forces in the micro-Newton to milli-Newton range using an air microjet. An electromagnetically actuated diaphragm controlled by a signal generator is used to generate the air microjet. With a nozzle diameter of 150 μm, the microjet diameter was maintained to a maximum of 1 mm at a distance of 5 mm from the nozzle. The force generated by the microjet was measured using a commercial force sensor to determine the velocity profile of the jet. Axial flow velocities of up to 25 m s-1 were obtained at distances as long as 6 mm. The microjet exerted a force up to 1 μN on a poly dimethyl siloxane (PDMS) micropillar (50 μm in diameter, 157 μm in height) and 415 μN on a PDMS membrane (3 mm in diameter, 28 μm thick). We also demonstrate that from a distance of 6 mm our microjet can exert a peak pressure of 187 Pa with a total force of about 84 μN on a flat surface with 8 V operating voltage. Out of the cleanroom fabrication and robust design make this system cost effective and durable.

  19. Reliability of Abdominal Muscle Stiffness Measured Using Elastography during Trunk Rehabilitation Exercises.

    PubMed

    MacDonald, David; Wan, Alan; McPhee, Megan; Tucker, Kylie; Hug, François

    2016-04-01

    The aim of this study was to assess the intra-session and inter-rater reliability of shear modulus measured in abdominal muscles during two commonly used trunk stability exercises. Thirty healthy volunteers performed a series of abdominal hollow and abdominal brace tasks. Supersonic shear imaging was used to measure the shear modulus (considered an index of muscle tension) of the four anterior trunk muscles: obliquus externus abdominis, obliquus internus abdominis, transversus abdominis and rectus abdominis. Because of measurement artifacts, internus abdominis and transversus abdominis data were not analyzed for 36.7% and 26.7% of the participants, respectively. These participants exhibited thicker superficial fat layers than the others. For the remaining participants, fair to excellent intra-session and inter-rater reliability was observed with moderate to high intra-class coefficients (0.45-0.97) and low to moderate standard error of measurement values (0.38-3.53 kPa). Reliability values were consistently greater for superficial than for deeper muscles.

  20. Reliability of Abdominal Muscle Stiffness Measured Using Elastography during Trunk Rehabilitation Exercises.

    PubMed

    MacDonald, David; Wan, Alan; McPhee, Megan; Tucker, Kylie; Hug, François

    2016-04-01

    The aim of this study was to assess the intra-session and inter-rater reliability of shear modulus measured in abdominal muscles during two commonly used trunk stability exercises. Thirty healthy volunteers performed a series of abdominal hollow and abdominal brace tasks. Supersonic shear imaging was used to measure the shear modulus (considered an index of muscle tension) of the four anterior trunk muscles: obliquus externus abdominis, obliquus internus abdominis, transversus abdominis and rectus abdominis. Because of measurement artifacts, internus abdominis and transversus abdominis data were not analyzed for 36.7% and 26.7% of the participants, respectively. These participants exhibited thicker superficial fat layers than the others. For the remaining participants, fair to excellent intra-session and inter-rater reliability was observed with moderate to high intra-class coefficients (0.45-0.97) and low to moderate standard error of measurement values (0.38-3.53 kPa). Reliability values were consistently greater for superficial than for deeper muscles. PMID:26746381

  1. Long-range non-contact imaging photoplethysmography: cardiac pulse wave sensing at a distance

    NASA Astrophysics Data System (ADS)

    Blackford, Ethan B.; Estepp, Justin R.; Piasecki, Alyssa M.; Bowers, Margaret A.; Klosterman, Samantha L.

    2016-03-01

    Non-contact, imaging photoplethysmography uses photo-optical sensors to measure variations in light absorption, caused by blood volume pulsations, to assess cardiopulmonary parameters including pulse rate, pulse rate variability, and respiration rate. Recently, researchers have studied the applications and methodology of imaging photoplethysmography. Basic research has examined some of the variables affecting data quality and accuracy of imaging photoplethysmography including signal processing, imager parameters (e.g. frame rate and resolution), lighting conditions, subject motion, and subject skin tone. This technology may be beneficial for long term or continuous monitoring where contact measurements may be harmful (e.g. skin sensitivities) or where imperceptible or unobtrusive measurements are desirable. Using previously validated signal processing methods, we examined the effects of imager-to-subject distance on one-minute, windowed estimates of pulse rate. High-resolution video of 22, stationary participants was collected using an enthusiast-grade, mirrorless, digital camera equipped with a fully-manual, super-telephoto lens at distances of 25, 50, and 100 meters with simultaneous contact measurements of electrocardiography, and fingertip photoplethysmography. By comparison, previous studies have usually been conducted with imager-to-subject distances of up to only a few meters. Mean absolute error for one-minute, windowed, pulse rate estimates (compared to those derived from gold-standard electrocardiography) were 2.0, 4.1, and 10.9 beats per minute at distances of 25, 50, and 100 meters, respectively. Long-range imaging presents several unique challenges among which include decreased, observed light reflectance and smaller regions of interest. Nevertheless, these results demonstrate that accurate pulse rate measurements can be obtained from over long imager-to-participant distances given these constraints.

  2. Multimodal non-contact photoacoustic and OCT imaging with galvanometer scanning

    NASA Astrophysics Data System (ADS)

    Berer, Thomas; Hochreiner, Armin; Leiss-Holzinger, Elisabeth; Bauer-Marschallinger, Johannes; Buchsbaum, Andreas

    2015-03-01

    In this paper we present multimodal non-contact photoacoustic and optical coherence tomography (OCT) imaging using a galvanometer scanner. Photoacoustic signals are acquired without contact on the surface of a specimen using an interferometric technique. The interferometer is realized in a fiber-optic network using a fiber laser at 1550 nm as source. In the same fiber-optic network a spectral-domain OCT system is realized, using a broadband light source at 1300 nm. Light from the fiber laser and the OCT source are multiplexed into the same fiber and the same objective is used for both imaging modalities. Fast non-contact photoacoustic and OCT imaging is demonstrated by scanning the detection spot utilizing a galvanometer scanner. Multimodal photoacoustic and OCT imaging is shown on agarose phantoms. As the same fiber network and optical components are used for non-contact photoacoustic and OCT imaging the obtained images are co-registered intrinsically.

  3. Non-contact optoacoustic imaging with focused air-coupled transducers

    SciTech Connect

    Deán-Ben, X. Luís; Pang, Genny A.; Razansky, Daniel; Montero de Espinosa, Francisco

    2015-08-03

    Non-contact optoacoustic imaging employing raster-scanning of a spherically focused air-coupled ultrasound transducer is showcased herein. Optoacoustic excitation with laser fluence within the maximal permissible human exposure limits in the visible and near-infrared spectra is applied to objects with characteristic dimensions smaller than 1 mm and absorption properties representative of the whole blood at near-infrared wavelengths, and these signals are shown to be detectable without contact to the sample using an air-coupled transducer with reasonable signal averaging. Optoacoustic images of vessel-mimicking tubes embedded in an agar phantom captured with this non-contact sensing technique are also showcased. These initial results indicate that an air-coupled ultrasound detection approach can be suitable for non-contact biomedical imaging with optoacoustics.

  4. Non-contact fiber-optical trapping of motile bacteria: dynamics observation and energy estimation

    PubMed Central

    Xin, Hongbao; Liu, Qingyuan; Li, Baojun

    2014-01-01

    The dynamics and energy conversion of bacteria are strongly associated with bacterial activities, such as survival, spreading of bacterial diseases and their pathogenesis. Although different discoveries have been reported on trapped bacteria (i.e. immobilized bacteria), the investigation on the dynamics and energy conversion of motile bacteria in the process of trapping is highly desirable. Here, we report a non-contact optical trapping of motile bacteria using a modified tapered optical fiber. Using Escherichia coli as an example, both single and multiple motile bacteria have been trapped and manipulated in a non-contact manner. Bacterial dynamics has been observed and bacterial energy has been estimated in the trapping process. This non-contact optical trapping provides a new opportunity for better understanding the bacterial dynamics and energy conversion at the single cell level. PMID:25300713

  5. Non-contact optoacoustic imaging with focused air-coupled transducers

    NASA Astrophysics Data System (ADS)

    Deán-Ben, X. Luís; Pang, Genny A.; Montero de Espinosa, Francisco; Razansky, Daniel

    2015-08-01

    Non-contact optoacoustic imaging employing raster-scanning of a spherically focused air-coupled ultrasound transducer is showcased herein. Optoacoustic excitation with laser fluence within the maximal permissible human exposure limits in the visible and near-infrared spectra is applied to objects with characteristic dimensions smaller than 1 mm and absorption properties representative of the whole blood at near-infrared wavelengths, and these signals are shown to be detectable without contact to the sample using an air-coupled transducer with reasonable signal averaging. Optoacoustic images of vessel-mimicking tubes embedded in an agar phantom captured with this non-contact sensing technique are also showcased. These initial results indicate that an air-coupled ultrasound detection approach can be suitable for non-contact biomedical imaging with optoacoustics.

  6. Inverse measurement of stiffness by the normalization technique for J-integral fracture toughness

    SciTech Connect

    Brown, Eric

    2012-06-07

    The single specimen normalization technique for J-integral fracture toughness has been successfully employed by several researchers to study the strongly non-linear fracture response of ductile semicrystalline polymers. As part of the normalization technique the load and the plastic component of displacement are normalized. The normalized data is then fit with a normalization function that approximates a power law for small displacements that are dominated by blunting and smoothly transitions to a linear relationship for large displacements that are dominated by stable crack extension. Particularly for very ductile polymers the compliance term used to determine the plastic displacement can dominate the solution and small errors in determining the elastic modulus can lead to large errors in the normalization or even make it ill-posed. This can be further complicated for polymers where the elastic modulus is strong strain rate dependent and simply using a 'quasistatic' modulus from a dogbone measurement may not equate to the dominant strain rate in the compact tension specimen. The current work proposes directly measuring the compliance of the compact tension specimen in the solution of J-integral fracture toughness and then solving for the elastic modulus. By comparison with a range of strain rate data the dominant strain rate can then be determined.

  7. Effect of water desorption on the rheology and dynamic response of human hair to a non-contact impact.

    PubMed

    Jamart, J; Djaghloul, M; Bergheau, J M; Zahouani, H

    2015-06-01

    Human hair is a non-homogeneous complex material made of keratin fibers oriented along the longitudinal axis which offer anisotropic mechanical properties. Nowadays, it is possible to measure the mechanical properties of hairs with the classical tests, but most often, these tests are destructive and make hard to measure the influence of some external factors or treatments on the behavior of a same hair fiber. In the current paper, vibrations induced by a non-contact impact have been utilized as a representative response of the mechanical behavior of hair. The characteristics of the vibratory response allow measuring the variation in the mechanical properties and the instantaneous effect of an external factor on the properties of a same sample. First, load relaxation tests have been performed on hair samples after moisturization and for different times of an air-drying process in order to characterize the change in the visco-elastic behavior of hair during the water desorption. Other hair samples have been tested with our non-contact impact and vibration technique in order to observe the change in the vibratory response during the water desorption. The vibratory response has then been correlated to the mechanical properties of the hair fiber.

  8. A remote and non-contact method for obtaining the blood-pulse waveform with a laser Doppler vibrometer

    NASA Astrophysics Data System (ADS)

    Desjardins, Candida L.; Antonelli, Lynn T.; Soares, Edward

    2007-02-01

    The use of lasers to remotely and non-invasively detect the blood pressure waveform of humans and animals would provide a powerful diagnostic tool. Current blood pressure measurement tools, such as a cuff, are not useful for burn and trauma victims, and animals require catheterization to acquire accurate blood pressure information. The purpose of our sensor method and apparatus invention is to remotely and non-invasively detect the blood pulse waveform of both animals and humans. This device is used to monitor an animal or human's skin in proximity to an artery using radiation from a laser Doppler vibrometer (LDV). This system measures the velocity (or displacement) of the pulsatile motion of the skin, indicative of physiological parameters of the arterial motion in relation to the cardiac cycle. Tests have been conducted that measures surface velocity with an LDV and a signal-processing unit, with enhanced detection obtained with optional hardware including a retro-reflector dot. The blood pulse waveform is obtained by integrating the velocity signal to get surface displacement using standard signal processing techniques. Continuous recording of the blood pulse waveform yields data containing information on cardiac health and can be analyzed to identify important events in the cardiac cycle, such as heart rate, the timing of peak systole, left ventricular ejection time and aortic valve closure. Experimental results are provided that demonstrates the current capabilities of the optical, non-contact sensor for the continuous, non-contact recording of the blood pulse waveform without causing patient distress.

  9. Non-contact dual pulse Doppler system based respiratory and heart rates estimation for CHF patients.

    PubMed

    Tran, Vinh Phuc; Ali Al-Jumaily, Adel

    2015-01-01

    Long term continuous patient monitoring is required in many health systems for monitoring and analytical diagnosing purposes. Most of monitoring systems had shortcomings related to their functionality or patient comfortably. Non-contact continuous monitoring systems have been developed to address some of these shortcomings. One of such systems is non-contact physiological vital signs assessments for chronic heart failure (CHF) patients. This paper presents a novel automated estimation algorithm for the non-contact physiological vital signs assessments for CHF patients based on a patented novel non-contact biomotion sensor. A database consists of twenty CHF patients with New York Heart Association (NYHA) heart failure Classification Class II & III, whose underwent full Polysomnography (PSG) analysis for the diagnosis of sleep apnea, disordered sleep, or both, were selected for the study. The patients mean age is 68.89 years, with mean body weight of 86.87 kg, mean BMI of 28.83 (obesity) and mean recorded sleep duration of 7.78 hours. The propose algorithm analyze the non-contact biomotion signals and estimate the patients' respiratory and heart rates. The outputs of the algorithm are compared with gold-standard PSG recordings. Across all twenty patients' recordings, the respiratory rate estimation median accuracy achieved 92.4689% with median error of ± 1.2398 breaths per minute. The heart rate estimation median accuracy achieved 88.0654% with median error of ± 7.9338 beats per minute. Due to the good performance of the propose novel automated estimation algorithm, the patented novel non-contact biomotion sensor can be an excellent tool for long term continuous sleep monitoring for CHF patients in the home environment in an ultra-convenient fashion. PMID:26737221

  10. Arterial Stiffness

    PubMed Central

    Avolio, Alberto

    2013-01-01

    Stiffness of large arteries has been long recognized as a significant determinant of pulse pressure. However, it is only in recent decades, with the accumulation of longitudinal data from large and varied epidemiological studies of morbidity and mortality associated with cardiovascular disease, that it has emerged as an independent predictor of cardiovascular risk. This has generated substantial interest in investigations related to intrinsic causative and associated factors responsible for the alteration of mechanical properties of the arterial wall, with the aim to uncover specific pathways that could be interrogated to prevent or reverse arterial stiffening. Much has been written on the haemodynamic relevance of arterial stiffness in terms of the quantification of pulsatile relationships of blood pressure and flow in conduit arteries. Indeed, much of this early work regarded blood vessels as passive elastic conduits, with the endothelial layer considered as an inactive lining of the lumen and as an interface to flowing blood. However, recent advances in molecular biology and increased technological sophistication for the detection of low concentrations of biochemical compounds have elucidated the highly important regulatory role of the endothelial cell affecting vascular function. These techniques have enabled research into the interaction of the underlying passive mechanical properties of the arterial wall with the active cellular and molecular processes that regulate the local environment of the load-bearing components. This review addresses these emerging concepts. PMID:26587425

  11. Non-contact flow gauging for the extension and development of rating curves

    NASA Astrophysics Data System (ADS)

    Perks, Matthew; Large, Andy; Russell, Andy

    2015-04-01

    Accurate measurement of river discharge is fundamental to understanding hydrological processes, associated hazards and ecological responses within fluvial systems. Established protocols for determining river discharge are partial, predominantly invasive and logistically difficult during high flows. There is demand for new methods for accurate quantification of flow velocity under high-flow/flood conditions to in turn enable better post-event reconstruction of peak discharge. As a consequence considerable effort has been devoted to the development of innovative technologies for the representation of flow in open channels. Remotely operated fixed and mobile systems capable of providing quantitative estimates of instantaneous and time-averaged flow characteristics using non-contact methods has been a major development. Amongst the new approaches for stand-alone continuous monitoring of surface flows is Large Scale Particle Image Velocimetry (LSPIV). Here we adapt the LSPIV concept, to provide continuous discharge measurements in non-uniform channels with complex flow conditions. High Definition videos (1080p; 30fps) of the water surface are acquired at 5 minute intervals. The image is rectified to correct for perspective distortion using a new, open source tool which minimises errors resulting from oblique image capture. Naturally occurring artefacts on the water surface (e.g. bubbles, debris, etc.) are tracked with the Kanade-Lucas-Tomasi (KLT) algorithm. The data generated is in the form of a complex surface water velocity field which can be interrogated to extract a range of hydrological information such as the streamwise velocity at a cross-section of interest, or even allow the interrogation of hydrodynamic flow structures. Here we demonstrate that this approach is capable of generating river discharge data comparable to concurrent measurements made using existing, accepted technologies (e.g. ADCP). The outcome is better constraint and extension of rating curves

  12. Laser Doppler vibrometer measurement on spiders in moving-coil loudspeakers

    NASA Astrophysics Data System (ADS)

    Kong, Xiaopeng; Zeng, Xinwu; Tian, Zhangfu

    2014-12-01

    The spider is the dominate stiffness to suspend the cone for a moving-coil loudspeaker unit, and is most commonly a concentrically corrugated fabric disk. A subwoofer closed box is designed to excite the tested spiders pneumatically, and the Laser Doppler Vibrometer (LDV) is used to measure the velocity of the moving spiders. The effective stiffness, loss factor and some viscoelastic behaviors such as level dependent stiffness have been investigated. The results find that, this pneumatic non-contact dynamic technique successfully measured the viscoelastic behaviors of spiders from extremely low frequency 5 Hz to 200 Hz, and the effective stiffness of spiders is dependent on the input voltage level, which is higher level with lower stiffness.

  13. Studies on the Evaluation Methods for the Food Quality with a Non-contact type Capacitance Sensor.

    NASA Astrophysics Data System (ADS)

    Narumiya, Tadaoki; Hagura, Yoshio

    Changes of capacitance and temperature of ethyl alcohol, hamburger and dough with cheese filling were measured with specially-made measuring devices during the freezing and thawing. The results of measurement of capacitance and temperature suggest a linear correlation for ethyl alcohol as a single constituent substance. The adequate correlation is too estimated from the results of food samples, though the capacitance of food sample varies greatly at the start and end of freezing and thawing process. It has been demonstrated that the quality or physical condition of food sample can be determined easily by the measurement of capacitance using the specially-made devices. Also the quality or physical condition of food can be determined easily by the non-contact and non-destructive measurements of capacitance. A variety application of the present technique is conceivable for the process control of the freezing and thawing foods.

  14. A non-contact capacitance based electrocardiograph and associated heart-rate detection using enhanced Fourier interpolation method.

    PubMed

    Kumar Thakur, Rupak; Anoop, C S

    2015-08-01

    Cardio-vascular health monitoring has gained considerable attention in the recent years. Principle of non-contact capacitive electrocardiograph (ECG) and its applicability as a valuable, low-cost, easy-to-use scheme for cardio-vascular health monitoring has been demonstrated in some recent research papers. In this paper, we develop a complete non-contact ECG system using a suitable front-end electronic circuit and a heart-rate (HR) measurement unit using enhanced Fourier interpolation technique. The front-end electronic circuit is realized using low-cost, readily available components and the proposed HR measurement unit is designed to achieve fairly accurate results. The entire system has been extensively tested to verify its efficacy and test results show that the developed system can estimate HR with an accuracy of ±2 beats. Detailed tests have been conducted to validate the performance of the system for different cloth thicknesses of the subject. Some basic tests which illustrate the application of the proposed system for heart-rate variability estimation has been conducted and results reported. The developed system can be used as a portable, reliable, long-term cardiac health monitoring device and can be extended to human drowsiness detection.

  15. Automatic Detection of Whole Night Snoring Events Using Non-Contact Microphone

    PubMed Central

    Dafna, Eliran; Tarasiuk, Ariel; Zigel, Yaniv

    2013-01-01

    Objective Although awareness of sleep disorders is increasing, limited information is available on whole night detection of snoring. Our study aimed to develop and validate a robust, high performance, and sensitive whole-night snore detector based on non-contact technology. Design Sounds during polysomnography (PSG) were recorded using a directional condenser microphone placed 1 m above the bed. An AdaBoost classifier was trained and validated on manually labeled snoring and non-snoring acoustic events. Patients Sixty-seven subjects (age 52.5±13.5 years, BMI 30.8±4.7 kg/m2, m/f 40/27) referred for PSG for obstructive sleep apnea diagnoses were prospectively and consecutively recruited. Twenty-five subjects were used for the design study; the validation study was blindly performed on the remaining forty-two subjects. Measurements and Results To train the proposed sound detector, >76,600 acoustic episodes collected in the design study were manually classified by three scorers into snore and non-snore episodes (e.g., bedding noise, coughing, environmental). A feature selection process was applied to select the most discriminative features extracted from time and spectral domains. The average snore/non-snore detection rate (accuracy) for the design group was 98.4% based on a ten-fold cross-validation technique. When tested on the validation group, the average detection rate was 98.2% with sensitivity of 98.0% (snore as a snore) and specificity of 98.3% (noise as noise). Conclusions Audio-based features extracted from time and spectral domains can accurately discriminate between snore and non-snore acoustic events. This audio analysis approach enables detection and analysis of snoring sounds from a full night in order to produce quantified measures for objective follow-up of patients. PMID:24391903

  16. Development of a non-contact diagnostic tool for high power lasers

    NASA Astrophysics Data System (ADS)

    Simmons, Jed A.; Guttman, Jeffrey L.; McCauley, John

    2016-03-01

    High power lasers in excess of 1 kW generate enough Rayleigh scatter, even in the NIR, to be detected by silicon based sensor arrays. A lens and camera system in an off-axis position can therefore be used as a non-contact diagnostic tool for high power lasers. Despite the simplicity of the concept, technical challenges have been encountered in the development of an instrument referred to as BeamWatch. These technical challenges include reducing background radiation, achieving high signal to noise ratio, reducing saturation events caused by particulates crossing the beam, correcting images to achieve accurate beam width measurements, creating algorithms for the removal of non-uniformities, and creating two simultaneous views of the beam from orthogonal directions. Background radiation in the image was reduced by the proper positioning of the back plane and the placement of absorbing materials on the internal surfaces of BeamWatch. Maximizing signal to noise ratio, important to the real-time monitoring of focus position, was aided by increasing lens throughput. The number of particulates crossing the beam path was reduced by creating a positive pressure inside BeamWatch. Algorithms in the software removed non-uniformities in the data prior to generating waist width, divergence, BPP, and M2 results. A dual axis version of BeamWatch was developed by the use of mirrors. By its nature BeamWatch produced results similar to scanning slit measurements. Scanning slit data was therefore taken and compared favorably with BeamWatch results.

  17. Non-Contact Thrust Stand Calibration Method for Repetitively-Pulsed Electric Thrusters

    NASA Technical Reports Server (NTRS)

    Wong, Andrea R.; Toftul, Alexandra; Polzin, Kurt A.; Pearson, J. Boise

    2011-01-01

    A thrust stand calibration technique for use in testing repetitively-pulsed electric thrusters for in-space propulsion has been developed and tested using a modified hanging pendulum thrust stand. In the implementation of this technique, current pulses are applied to a solenoidal coil to produce a pulsed magnetic field that acts against the magnetic field produced by a permanent magnet mounted to the thrust stand pendulum arm. The force on the magnet is applied in this non-contact manner, with the entire pulsed force transferred to the pendulum arm through a piezoelectric force transducer to provide a time-accurate force measurement. Modeling of the pendulum arm dynamics reveals that after an initial transient in thrust stand motion the quasisteady average deflection of the thrust stand arm away from the unforced or zero position can be related to the average applied force through a simple linear Hooke s law relationship. Modeling demonstrates that this technique is universally applicable except when the pulsing period is increased to the point where it approaches the period of natural thrust stand motion. Calibration data were obtained using a modified hanging pendulum thrust stand previously used for steady-state thrust measurements. Data were obtained for varying impulse bit at constant pulse frequency and for varying pulse frequency. The two data sets exhibit excellent quantitative agreement with each other as the constant relating average deflection and average thrust match within the errors on the linear regression curve fit of the data. Quantitatively, the error on the calibration coefficient is roughly 1% of the coefficient value.

  18. NON-CONTACT ACOUSTO-THERMAL SIGNATURES OF PLASTIC DEFORMATION IN TI-6AL-4V

    SciTech Connect

    Welter, J. T.; Jata, K. V.; Blodgett, M. P.; Malott, G.; Schehl, N.; Sathish, S.

    2010-02-22

    Plastic deformation introduces changes in a material which include increases in: dislocations, strains, residual stress, and yield stress. However, these changes have a very small impact on the material properties such as elastic modulus, conductivity and ultrasonic wave speed. This is due to the fact that interatomic forces govern these properties, and they are not affected by plastic deformation to any large degree. This is evident from the fact that the changes in electrical resistance and ultrasonic velocity in plastically deformed and virgin samples are very small and can only be determined by highly controlled experiments. Except for X-ray diffraction, there are no direct nondestructive methods for measuring strain and the residual stress. This paper presents an application of the non-contact acousto-thermal signature (NCATS) NDE methodology to detect plastic deformation in flat dog bone Ti-6Al-4V samples. Results of the NCATS measurements on samples subjected to incremental amounts of plastic deformation are presented. The maximum temperature attained by the sample due to acoustic excitation is found to be sensitive to the amount of plastic strain. It is observed that the temperature induced by acoustic excitation increases to a peak followed by a decrease to failure. The maximum temperature peak occurs at plastic strains of 12-14%. It is observed that there is a correlation between the peak in maximum temperature rise and the strain at the experimentally determined ultimate tensile strength. A microstructural based explanation for this will be presented. The results are discussed in reference to utilizing this technique for detection and evaluation of plastic deformation.

  19. Illumination-compensated non-contact imaging photoplethysmography via dual-mode temporally coded illumination

    NASA Astrophysics Data System (ADS)

    Amelard, Robert; Scharfenberger, Christian; Wong, Alexander; Clausi, David A.

    2015-03-01

    Non-contact camera-based imaging photoplethysmography (iPPG) is useful for measuring heart rate in conditions where contact devices are problematic due to issues such as mobility, comfort, and sanitation. Existing iPPG methods analyse the light-tissue interaction of either active or passive (ambient) illumination. Many active iPPG methods assume the incident ambient light is negligible to the active illumination, resulting in high power requirements, while many passive iPPG methods assume near-constant ambient conditions. These assumptions can only be achieved in environments with controlled illumination and thus constrain the use of such devices. To increase the number of possible applications of iPPG devices, we propose a dual-mode active iPPG system that is robust to changes in ambient illumination variations. Our system uses a temporally-coded illumination sequence that is synchronized with the camera to measure both active and ambient illumination interaction for determining heart rate. By subtracting the ambient contribution, the remaining illumination data can be attributed to the controlled illuminant. Our device comprises a camera and an LED illuminant controlled by a microcontroller. The microcontroller drives the temporal code via synchronizing the frame captures and illumination time at the hardware level. By simulating changes in ambient light conditions, experimental results show our device is able to assess heart rate accurately in challenging lighting conditions. By varying the temporal code, we demonstrate the trade-off between camera frame rate and ambient light compensation for optimal blood pulse detection.

  20. Nondestructive evaluation and characterization of GFRP using non-contact ultrasound and complementary method

    NASA Astrophysics Data System (ADS)

    Steigmann, R.; Iftimie, N.; Dobrescu, G. S.; Barsanescu, P. D.; Curtu, I.; Stanciu, M. D.; Savin, A.

    2016-08-01

    This paper presents two methods, non-contact low frequency ultrasound method and fiber Bragg gratings, and their application to nondestructive testing of glass fiber reinforced composites used in wind turbine blades. Theoretical models are used and experimental results are in good concordance with destructive testing results.

  1. A novel method of measuring leaf epidermis and mesophyll stiffness shows the ubiquitous nature of the sandwich structure of leaf laminas in broad-leaved angiosperm species

    PubMed Central

    Onoda, Yusuke; Schieving, Feike; Anten, Niels P. R.

    2015-01-01

    Plant leaves commonly exhibit a thin, flat structure that facilitates a high light interception per unit mass, but may increase risks of mechanical failure when subjected to gravity, wind and herbivory as well as other stresses. Leaf laminas are composed of thin epidermis layers and thicker intervening mesophyll layers, which resemble a composite material, i.e. sandwich structure, used in engineering constructions (e.g. airplane wings) where high bending stiffness with minimum weight is important. Yet, to what extent leaf laminas are mechanically designed and behave as a sandwich structure remains unclear. To resolve this issue, we developed and applied a novel method to estimate stiffness of epidermis- and mesophyll layers without separating the layers. Across a phylogenetically diverse range of 36 angiosperm species, the estimated Young’s moduli (a measure of stiffness) of mesophyll layers were much lower than those of the epidermis layers, indicating that leaf laminas behaved similarly to efficient sandwich structures. The stiffness of epidermis layers was higher in evergreen species than in deciduous species, and strongly associated with cuticle thickness. The ubiquitous nature of sandwich structures in leaves across studied species suggests that the sandwich structure has evolutionary advantages as it enables leaves to be simultaneously thin and flat, efficiently capturing light and maintaining mechanical stability under various stresses. PMID:25675956

  2. A novel method of measuring leaf epidermis and mesophyll stiffness shows the ubiquitous nature of the sandwich structure of leaf laminas in broad-leaved angiosperm species.

    PubMed

    Onoda, Yusuke; Schieving, Feike; Anten, Niels P R

    2015-05-01

    Plant leaves commonly exhibit a thin, flat structure that facilitates a high light interception per unit mass, but may increase risks of mechanical failure when subjected to gravity, wind and herbivory as well as other stresses. Leaf laminas are composed of thin epidermis layers and thicker intervening mesophyll layers, which resemble a composite material, i.e. sandwich structure, used in engineering constructions (e.g. airplane wings) where high bending stiffness with minimum weight is important. Yet, to what extent leaf laminas are mechanically designed and behave as a sandwich structure remains unclear. To resolve this issue, we developed and applied a novel method to estimate stiffness of epidermis- and mesophyll layers without separating the layers. Across a phylogenetically diverse range of 36 angiosperm species, the estimated Young's moduli (a measure of stiffness) of mesophyll layers were much lower than those of the epidermis layers, indicating that leaf laminas behaved similarly to efficient sandwich structures. The stiffness of epidermis layers was higher in evergreen species than in deciduous species, and strongly associated with cuticle thickness. The ubiquitous nature of sandwich structures in leaves across studied species suggests that the sandwich structure has evolutionary advantages as it enables leaves to be simultaneously thin and flat, efficiently capturing light and maintaining mechanical stability under various stresses. PMID:25675956

  3. A novel method of measuring leaf epidermis and mesophyll stiffness shows the ubiquitous nature of the sandwich structure of leaf laminas in broad-leaved angiosperm species.

    PubMed

    Onoda, Yusuke; Schieving, Feike; Anten, Niels P R

    2015-05-01

    Plant leaves commonly exhibit a thin, flat structure that facilitates a high light interception per unit mass, but may increase risks of mechanical failure when subjected to gravity, wind and herbivory as well as other stresses. Leaf laminas are composed of thin epidermis layers and thicker intervening mesophyll layers, which resemble a composite material, i.e. sandwich structure, used in engineering constructions (e.g. airplane wings) where high bending stiffness with minimum weight is important. Yet, to what extent leaf laminas are mechanically designed and behave as a sandwich structure remains unclear. To resolve this issue, we developed and applied a novel method to estimate stiffness of epidermis- and mesophyll layers without separating the layers. Across a phylogenetically diverse range of 36 angiosperm species, the estimated Young's moduli (a measure of stiffness) of mesophyll layers were much lower than those of the epidermis layers, indicating that leaf laminas behaved similarly to efficient sandwich structures. The stiffness of epidermis layers was higher in evergreen species than in deciduous species, and strongly associated with cuticle thickness. The ubiquitous nature of sandwich structures in leaves across studied species suggests that the sandwich structure has evolutionary advantages as it enables leaves to be simultaneously thin and flat, efficiently capturing light and maintaining mechanical stability under various stresses.

  4. Effects of non contact low-frequency ultrasound on healing of suspected deep tissue injury: a retrospective analysis.

    PubMed

    Honaker, Jeremy S; Forston, Michael R; Davis, Emily A; Wiesner, Michelle M; Morgan, Jennifer A

    2013-02-01

    The purpose of this study was to assess the effectiveness of non contact low-frequency ultrasound on the healing of suspected deep tissue injury (SDTI). Participants were adults ranging in age from 28 to 93 years old, with multiple diagnoses including anaemia, diabetes mellitus and hypertension. Data were examined retrospectively on 85 patients (intervention group = 43 and non intervention group = 42) with 127 SDTI (intervention group = 64 and non intervention group = 63). Participants in both groups received standard of care for treating pressure ulcers. A severity score was used to assess SDTI severity before treatment and healing/progression after treatment. This scale measures surface area, wound colour/tissue assessment, and skin integrity with potential scores of 3 to 18 (higher scores indicate greater severity). A significant difference in changes in wound severity was found (t = 5·67, P < 0.000). Difference in mean change scores was 2·52 on the 3-18 severity scale. The decrease in wound severity for the intervention group was 1·45. Severity in the non intervention group increased by 1·06. This exploratory study of the effect of the non contact low-frequency ultrasound provides initial findings that support its use with SDTI.

  5. Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media

    NASA Astrophysics Data System (ADS)

    Ambroziński, Łukasz; Pelivanov, Ivan; Song, Shaozhen; Yoon, Soon Joon; Li, David; Gao, Liang; Shen, Tueng T.; Wang, Ruikang K.; O'Donnell, Matthew

    2016-07-01

    A non-contact method for efficient, non-invasive excitation of mechanical waves in soft media is proposed, in which we focus an ultrasound (US) signal through air onto the surface of a medium under study. The US wave reflected from the air/medium interface provides radiation force to the medium surface that launches a transient mechanical wave in the transverse (lateral) direction. The type of mechanical wave is determined by boundary conditions. To prove this concept, a home-made 1 MHz piezo-ceramic transducer with a matching layer to air sends a chirped US signal centered at 1 MHz to a 1.6 mm thick gelatin phantom mimicking soft biological tissue. A phase-sensitive (PhS)-optical coherence tomography system is used to track/image the mechanical wave. The reconstructed transient displacement of the mechanical wave in space and time demonstrates highly efficient generation, thus offering great promise for non-contact, non-invasive characterization of soft media, in general, and for elasticity measurements in delicate soft tissues and organs in bio-medicine, in particular.

  6. Effect of explosive contact and non-contact shock-processing on structure, microstructure and mechanical characteristics of aluminum

    NASA Astrophysics Data System (ADS)

    Sharma, A. D.; Sharma, A. K.; Thakur, N.

    2013-06-01

    Contact and non-contact techniques are used to obtain monoliths of micro-sized aluminum powder under explosive shock loading. The measurement technique involves instrumented detonics to determine the velocity of detonation and compaction of powder in a single-shot experiment. The compacted specimens were examined for crystallographic, micro-strain, particle size, microstructure, mechanical strength, microhardness and density variations. Results indicate that non-contact technique gives rise to uniform thick compacts with negligible change in particle size, micro-strain, microhardness and microstructure with lower density. Whereas the compacts obtained by contact arrangement are accompanied by a substantial change in these parameters with higher density. Compacts of uniform density greater than 98 % theoretical value have been obtained by using explosive mixture of detonation velocity of 4.2 km/s. The compacted specimens possess micro-strain 2.8×10-3, microhardness (60±2) H v, tensile strength of 112 MPa and compressive strength of 116 MPa with elongation up to 6.4 %. Fracture/void free compacts obtained by contact arrangement have tremendous use in materials science and technology.

  7. Endoluminal non-contact soft tissue ablation using fiber-based Er:YAG laser delivery

    NASA Astrophysics Data System (ADS)

    Kundrat, Dennis; Fuchs, Alexander; Schoob, Andreas; Kahrs, Lüder A.; Ortmaier, Tobias

    2016-03-01

    The introduction of Er:YAG lasers for soft and hard tissue ablation has proven promising results over the last decades due to strong absorption at 2.94 μm wavelength by water molecules. An extension to endoluminal applications demands laser delivery without mirror arms due to dimensional constraints. Therefore, fiber-based solutions are advanced to provide exible access while keeping space requirements to a minimum. Conventional fiber-based treatments aim at laser-tissue interactions in contact mode. However, this procedure is associated with disadvantages such as advancing decrease in power delivery due to particle coverage of the fiber tip, tissue carbonization, and obstructed observation of the ablation progress. The objective of this work is to overcome aforementioned limitations with a customized fiber-based module for non-contact robot-assisted endoluminal surgery and its associated experimental evaluation. Up to the authors knowledge, this approach has not been presented in the context of laser surgery at 2.94 μm wavelength. The preliminary system design is composed of a 3D Er:YAG laser processing unit enabling automatic laser to fiber coupling, a GeO2 solid core fiber, and a customized module combining collimation and focusing unit (focal length of 20 mm, outer diameter of 8 mm). The performance is evaluated with studies on tissue substitutes (agar-agar) as well as porcine samples that are analysed by optical coherence tomography measurements. Cuts (depths up to 3mm) with minimal carbonization have been achieved under adequate moistening and sample movement (1.5mms-1). Furthermore, an early cadaver study is presented. Future work aims at module miniaturization and integration into an endoluminal robot for scanning and focus adaptation.

  8. Non-invasive technique for assessment of vascular wall stiffness using laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Campo, Adriaan; Segers, Patrick; Heuten, Hilde; Goovaerts, Inge; Ennekens, Guy; Vrints, Christiaan; Baets, Roel; Dirckx, Joris

    2014-06-01

    It has been shown that in cardiovascular risk management, stiffness of large arteries has a very good predictive value for cardiovascular disease and mortality. This parameter is best known when estimated from the pulse wave velocity (PWV) measured between the common carotid artery (CCA) in the neck and femoral artery in the groin, but may also be determined locally from short-distance measurements on a short vessel segment. In this work, we propose a novel, non-invasive, non-contact laser Doppler vibrometry (LDV) technique for evaluating PWV locally in an elastic vessel. First, the method was evaluated in a phantom setup using LDV and a reference method. Values correlated significantly between methods (R ≤ 0.973 (p ≤ 0.01)); and a Bland-Altman analysis indicated that the mean bias was reasonably small (mean bias ≤ -2.33 ms). Additionally, PWV was measured locally on the skin surface of the CCA in 14 young healthy volunteers. As a preliminary validation, PWV measured on two locations along the same artery was compared. Local PWV was found to be between 3 and 20 m s-1, which is in line with the literature (PWV = 5-13 m s-1). PWV assessed on two different locations on the same artery correlated significantly (R = 0.684 (p < 0.01)). In summary, we conclude that this new non-contact method is a promising technique to measure local vascular stiffness in a fully non-invasive way, providing new opportunities for clinical diagnosing.

  9. Assessment of the stiffness tensor of orthotropic materials from phase velocities measured by means of a line source-point receiver laser-ultrasonic method

    NASA Astrophysics Data System (ADS)

    Audoin, B.; Reverdy, F.

    1999-12-01

    The laser ultrasonic technique is used to generate and detect ultrasonic waves in a composite specimen. When the laser beam is focused by means of a cylindrical lens, the line-source generates transient divergent waves that propagate at group velocity. The phase and group velocities of acoustic waves in elastically anisotropic solids are in general not equal. Anisotropy gives rise to folded ray curves in which the acoustic rays are more concentrated in some directions than in others. In particular the energy density can be very high at the cuspidal edges. The propagation in such media gives rise to internal diffraction by which waves are observed which are not explained by ray theory. The measurement of the stiffness tensor of an anisotropic material by means of laser generated ultrasound is a non trivial matter for essentially two reasons. First, the recovering of the coefficients from the group velocities is a double iterative numerical process that requires a high accuracy in the velocity measurement. Second, internal diffraction is not taken into account by such an algorithm and it provides undesired velocity data which induce a shift of the identified stiffness coefficients. In this paper, it is shown that phase velocities can be measured using signals generated by a line source. The measurement of the stiffness coefficients from such velocities avoids the aforementioned difficulties. The process is successfully applied to an actual composite material.

  10. Extracting accurate temperatures of molten basalts from non-contact thermal infrared radiance data

    NASA Astrophysics Data System (ADS)

    Fontanella, N. R.; Ramsey, M. S.; Lee, R.

    2013-12-01

    The eruptive and emplacement temperature of a lava flow relates important information on parameters such as the composition, rheology, and emplacement processes. It can also serve as a critical input into flow cooling and propagation models used for hazard prediction. One of the most common ways to determine temperatures of active lava flows is to use non-contact thermal infrared (TIR) measurements, either from ground-based radiometers and cameras or air and space-based remote sensing instruments. These temperature measurements assume a fixed value for the lava emissivity in order to solve the Planck Equation for temperature. The research presented here examines the possibility of variable emissivity in a material's molten state and the effect it has on deriving accurate surface temperature. Emplacement of a pahoehoe lava lobe at Kilauea volcano, Hawaii was captured with high spatial resolution/high frame rate TIR video in order to study this phenomenon. The data show the appearance of molten lava at a breakout point until it cools to form a glassy crust that begins to fold. Emissivity was adjusted sequentially along linear transects from a starting value of 1.0 to lower values until the TIR temperature matched the known temperature measured with a thermocouple. Below an emissivity of ~0.89, temperatures of the molten lava rose above the known lava temperature. This value suggests a decrease in emissivity with a change of state and is likely due to changes in the atomic bond structure of the melt. We have also recently completed the first ever calibrated laboratory-based emissivity measurements of molten basalts, and these high spectral resolution data confirm the field-based estimates. In contrast to rhyolites, basalts appear to display a less dramatic change between their glassy and molten spectra due to their higher melting and glass transition temperatures and the quick formation time of the crust. Therefore, the change in emissivity for molten rhyolite could

  11. Note: Reliable and non-contact 6D motion tracking system based on 2D laser scanners for cargo transportation

    NASA Astrophysics Data System (ADS)

    Kim, Young-Keun; Kim, Kyung-Soo

    2014-10-01

    Maritime transportation demands an accurate measurement system to track the motion of oscillating container boxes in real time. However, it is a challenge to design a sensor system that can provide both reliable and non-contact methods of 6-DOF motion measurements of a remote object for outdoor applications. In the paper, a sensor system based on two 2D laser scanners is proposed for detecting the relative 6-DOF motion of a crane load in real time. Even without implementing a camera, the proposed system can detect the motion of a remote object using four laser beam points. Because it is a laser-based sensor, the system is expected to be highly robust to sea weather conditions.

  12. Note: Reliable and non-contact 6D motion tracking system based on 2D laser scanners for cargo transportation

    SciTech Connect

    Kim, Young-Keun; Kim, Kyung-Soo

    2014-10-15

    Maritime transportation demands an accurate measurement system to track the motion of oscillating container boxes in real time. However, it is a challenge to design a sensor system that can provide both reliable and non-contact methods of 6-DOF motion measurements of a remote object for outdoor applications. In the paper, a sensor system based on two 2D laser scanners is proposed for detecting the relative 6-DOF motion of a crane load in real time. Even without implementing a camera, the proposed system can detect the motion of a remote object using four laser beam points. Because it is a laser-based sensor, the system is expected to be highly robust to sea weather conditions.

  13. Feasibility on Ultrasonic Velocity using Contact and Non-Contact Nondestructive Techniques for Carbon/Carbon Composites

    NASA Astrophysics Data System (ADS)

    Im, K. H.; Chang, M.; Hsu, D. K.; Song, S. J.; Cho, H.; Park, J. W.; Kweon, Y. S.; Sim, J. K.; Yang, I. Y.

    2007-03-01

    Advanced materials are to be required to have specific functions associated with extremely environments. One of them is carbon/carbon(C/C) composite material, which has obvious advantages over conventional materials. The C/Cs have become to be utilized as parts of aerospace applications and its low density, high thermal conductivity and excellent mechanical properties at elevated temperatures make it an ideal material for aircraft brake disks. Because of permeation of coupling medium such as water, it is desirable to perform contact-less nondestructive evaluation to assess material properties and part homogeneity. In this work, a C/C composite material was characterized with non-contact and contact ultrasonic methods using a scanner with automatic-data acquisition function. Also through transmission mode was performed because of the main limitation for air-coupled transducers, which is the acoustic impedance mismatch between most materials and air. Especially ultrasonic images and velocities for C/C composite disk brake were compared and found to be consistent to some degree with the non-contact and contact ultrasonic measurement methods. Low frequency through-transmission scans based on both amplitude of the ultrasonic pulse was used for mapping out the material property inhomogeneity. Measured results were compared with those obtained by the dry-coupling ultrasonic UT system and through transmission method in immersion. Finally, feasibility has been found to measure and compare ultrasonic velocities of C/C composites with using the contact/noncontact peak-delay measurement method based on the pulse overlap method.

  14. Characterization of a time-resolved non-contact scanning diffuse optical imaging system exploiting fast-gated single-photon avalanche diode detection.

    PubMed

    Di Sieno, Laura; Wabnitz, Heidrun; Pifferi, Antonio; Mazurenka, Mikhail; Hoshi, Yoko; Dalla Mora, Alberto; Contini, Davide; Boso, Gianluca; Becker, Wolfgang; Martelli, Fabrizio; Tosi, Alberto; Macdonald, Rainer

    2016-03-01

    We present a system for non-contact time-resolved diffuse reflectance imaging, based on small source-detector distance and high dynamic range measurements utilizing a fast-gated single-photon avalanche diode. The system is suitable for imaging of diffusive media without any contact with the sample and with a spatial resolution of about 1 cm at 1 cm depth. In order to objectively assess its performances, we adopted two standardized protocols developed for time-domain brain imagers. The related tests included the recording of the instrument response function of the setup and the responsivity of its detection system. Moreover, by using liquid turbid phantoms with absorbing inclusions, depth-dependent contrast and contrast-to-noise ratio as well as lateral spatial resolution were measured. To illustrate the potentialities of the novel approach, the characteristics of the non-contact system are discussed and compared to those of a fiber-based brain imager.

  15. Characterization of a time-resolved non-contact scanning diffuse optical imaging system exploiting fast-gated single-photon avalanche diode detection.

    PubMed

    Di Sieno, Laura; Wabnitz, Heidrun; Pifferi, Antonio; Mazurenka, Mikhail; Hoshi, Yoko; Dalla Mora, Alberto; Contini, Davide; Boso, Gianluca; Becker, Wolfgang; Martelli, Fabrizio; Tosi, Alberto; Macdonald, Rainer

    2016-03-01

    We present a system for non-contact time-resolved diffuse reflectance imaging, based on small source-detector distance and high dynamic range measurements utilizing a fast-gated single-photon avalanche diode. The system is suitable for imaging of diffusive media without any contact with the sample and with a spatial resolution of about 1 cm at 1 cm depth. In order to objectively assess its performances, we adopted two standardized protocols developed for time-domain brain imagers. The related tests included the recording of the instrument response function of the setup and the responsivity of its detection system. Moreover, by using liquid turbid phantoms with absorbing inclusions, depth-dependent contrast and contrast-to-noise ratio as well as lateral spatial resolution were measured. To illustrate the potentialities of the novel approach, the characteristics of the non-contact system are discussed and compared to those of a fiber-based brain imager. PMID:27036830

  16. Non-contact tunable damping of a cantilever beam structure embedded with photo-rheological fluids

    NASA Astrophysics Data System (ADS)

    Cho, Min-Young; Kim, Ji-Sik; Choi, Seung-Bok; Kim, Gi-Woo

    2016-02-01

    This research presents an introduction to non-contact tunable damping using a new class of photo-rheological fluids (PRFs) whose rheological behavior can be changed by using ultraviolet (UV) light. When the PRF is irradiated by UV light, its viscosity decreases; the viscosity recovers to its initial value when UV light is switched off, implying that the viscosity of PRF is reversible and tunable. We demonstrate that UV light can be used to induce the changes in the viscosity of PRFs, and that the proposed method can be successfully applied to realize non-contact tunable damping of vibrating structures. The additional advantages of PRF include no deposition associated with the single-phase solution of PRF and no electro-magnetic interference shielding.

  17. A simple and non-contact optical imaging probe for evaluation of corneal diseases.

    PubMed

    Hong, Xun Jie Jeesmond; Shinoj, V K; Murukeshan, V M; Baskaran, M; Aung, T

    2015-09-01

    Non-contact imaging techniques are preferred in ophthalmology. Corneal disease is one of the leading causes of blindness worldwide, and a possible way of detection is by analyzing the shape and optical quality of the cornea. Here, a simple and cost-effective, non-contact optical probe system is proposed and illustrated. The probe possesses high spatial resolutions and is non-dependent on coupling medium, which are significant for a clinician and patient friendly investigation. These parameters are crucial, when considering an imaging system for the objective diagnosis and management of corneal diseases. The imaging of the cornea is performed on ex vivo porcine samples and subsequently on small laboratory animals, in vivo. The clinical significance of the proposed study is validated by performing imaging of the New Zealand white rabbit's cornea infected with Pseudomonas.

  18. Non-Contacting Finger Seals Static Performance Test Results at Ambient and High Temperatures

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.

    2016-01-01

    The non-contacting finger seal is an advanced seal concept with potential to reduce specific fuel consumption in gas turbine engines by 2 to 3 with little to no wear of the seal or rotor. Static performance tests and bind-up tests of eight different non-contacting finger seal configurations were conducted in air at pressure differentials up to 689.4 kPa and temperatures up to 922 K. Four of the seals tested were designed to have lift pads concentric to a herringbone-grooved rotor which generates hydrodynamic lift when rotating. The remaining seals were tested with a smooth rotor; one seal had a circumferential taper and one had an axial taper on the lift pad inner diameter to create hydrodynamic lift during rotation. The effects of the aft finger axial thickness and of the forward finger inner diameter on leakage performance were investigated as well and compared to analytical predictions.

  19. Non-Contacting Finger Seals Static Performance Test Results at Ambient and High Temperatures

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.

    2016-01-01

    The non-contacting finger seal is an advanced seal concept with potential to reduce specific fuel consumption in gas turbine engines by 2 to 3 percent with little to no wear of the seal or rotor. Static performance tests and bind-up tests of eight different non-contacting finger seal configurations were conducted in air at pressure differentials up to 689.4 kPa and temperatures up to 922 K. Four of the seals tested were designed to have lift pads concentric to a herringbone-grooved rotor which generates hydrodynamic lift when rotating. The remaining seals were tested with a smooth rotor; one seal had a circumferential taper and one had an axial taper on the lift pad inner diameter to create hydrodynamic lift during rotation. The effects of the aft finger axial thickness and of the forward finger inner diameter on leakage performance were investigated as well and compared to analytical predictions.

  20. Non-contact data access with direction identification for industrial differential serial bus

    NASA Astrophysics Data System (ADS)

    Xie, Kai; Li, Xiaoping; Zhang, Hanlu; Yang, Ming; Ye, Yinghao

    2013-06-01

    We propose a non-contact method for accessing data in industrial differential serial bus applications, which could serve as an effective and safe online testing and diagnosing tool. The data stream and the transmission direction are reconstructed simultaneously from the near-field emanations of a twisted pair, eliminating direct contact with the actual conductors, and avoiding damage to the insulation (only the outer sheathing is removed). A non-contact probe with the ability to sense electric and magnetic fields is presented, as are theories for data reconstruction, direction identification, and a circuit implementation. The prototype was built using inexpensive components and then tested on a standard RS-485 industrial serial bus. Experimental results verified the validity of the proposed scheme.

  1. The use of non-contact structured light scanning in burns pressure splint construction.

    PubMed

    Pilley, M J; Hitchens, C; Rose, G; Alexander, S; Wimpenny, D I

    2011-11-01

    This paper describes the use of a non-contact structured light scanning technique, computer aided design (CAD) and additive manufacturing (AM) to produce a burns pressure therapy splint, also known as mask or conformer. Masks such as this are used in the treatment of hypertrophic scars resulting from burns injuries. The case study described here is of a nine year old girl with significant hypertrophic scars to her face, especially her nasal bridge. Non-contact structured light scanning was used to capture accurate data of the patients face. This data was then post processed and used to produce a model of the patients face using the three dimensional printing processes from Z Corporation. The plaster model formed was then used to generate a former on which a polyethylene tetrephthalate glycol (PETG) mask was vacuum formed. The results illustrate the benefits and effectiveness in terms of accuracy of adopting an integrated surface scanning, CAD and AM approach for easier intervention and treatment.

  2. [Development of Non-Contact Monitoring Device for Breathing and Heartbeat].

    PubMed

    Hu, Ye; Li, Chuantao; Qi, Fugui; Wang, Shuaijie; Zhang, Hua; Wang, Jianqi; Lu, Guohua

    2015-07-01

    Physiological monitoring devices in modern clinical area are basically used electrodes or sensors directly touching the surface of human subject body, which will increase physiological and psychological load of the subjects. In order to realize non-contact monitoring of respiration and heartbeat, firstly, the micro bioradar was used to detect human body motion signal. Then, the respiration signal and heartbeat signal was extracted from the body-motion signal by using signal and conditioning circuits, digital filter and signal processing. Finally, the results of heart rate and breathing rate was wirelessly transmitted. The experimental results showed that the device for non-contact monitoring of respiration and heartbeat waveforms has advantages of small volume, low power consumption, which can realize the monitoring of physiological parameters in real time.

  3. A simple and non-contact optical imaging probe for evaluation of corneal diseases

    NASA Astrophysics Data System (ADS)

    Hong, Xun Jie Jeesmond; Shinoj, V. K.; Murukeshan, V. M.; Baskaran, M.; Aung, T.

    2015-09-01

    Non-contact imaging techniques are preferred in ophthalmology. Corneal disease is one of the leading causes of blindness worldwide, and a possible way of detection is by analyzing the shape and optical quality of the cornea. Here, a simple and cost-effective, non-contact optical probe system is proposed and illustrated. The probe possesses high spatial resolutions and is non-dependent on coupling medium, which are significant for a clinician and patient friendly investigation. These parameters are crucial, when considering an imaging system for the objective diagnosis and management of corneal diseases. The imaging of the cornea is performed on ex vivo porcine samples and subsequently on small laboratory animals, in vivo. The clinical significance of the proposed study is validated by performing imaging of the New Zealand white rabbit's cornea infected with Pseudomonas.

  4. Sequential afterglow processing and non-contact Corona-Kelvin metrology of 4H-silicon carbide

    NASA Astrophysics Data System (ADS)

    Short, Eugene L., III

    Silicon carbide (SiC) is a wide band-gap semiconductor with advantageous electrical and thermal properties making it attractive for high temperature and power applications. However, difficulties with oxide/SiC structures have posed challenges to the development of practical MOS-type devices. Surface conditioning and oxidation of 4H-SiC were investigated using a novel sequential afterglow processing approach combined with the unique capabilities of non-contact corona-Kelvin metrology. The use of remote plasma assisted thermal oxidation facilitated film growth at low temperature and pressure with the flexibility of sequential in-situ processing options including pre-oxidation surface conditioning. Corona-Kelvin metrology (C-KM) provided a fast, nondestructive method for electrical evaluation of oxide films and semiconductor surfaces. Non-contact C-KM oxide capacitance-voltage characteristics combined with direct measurement of SiC surfaces using C-KM depletion surface barrier monitoring and XPS analysis of surface chemistry were interpreted relating the impact of afterglow conditioning on the surface and its influence on subsequent oxide thin film growth. Afterglow oxide films of thicknesses 50--500 A were fabricated on SiC epi-layers at low growth temperatures in the range 600--850°C, an achievement not possible using conventional atmospheric oxidation techniques. The inclusion of pre-oxidation surface conditioning in forming gas (N2:H2)* afterglow was found to produce an increase in oxide growth rate (10--25%) and a significant improvement in oxide film thickness uniformity. Analysis of depletion voltage transients on conditioned SiC surfaces revealed the highest degree of surface passivation, uniformity, and elimination of sources of charge compensation accomplished by the (N2:H2)* afterglow treatment for 20 min. at 600--700°C compared to other conditioning variations. The state of surface passivation was determined to be very stable and resilient when exposed

  5. Demonstration of a non-contact x-ray source using an inductively heated pyroelectric accelerator

    NASA Astrophysics Data System (ADS)

    Klopfer, Michael; Satchouk, Vladimir; Cao, Anh; Wolowiec, Thomas; Alivov, Yahya; Molloi, Sabee

    2015-04-01

    X-ray emission from pyroelectric sources can be produced through non-contact thermal cycling using induction heating. In this study, we demonstrated a proof of concept non-contact x-ray source powered via induction heating. An induction heater operating at 62.5 kHz provided a total of 6.5 W of delivered peak thermal power with 140 V DC of driving voltage. The heat was applied to a ferrous substrate mechanically coupled to a cubic 1 cm3 Lithium Niobate (LiNbO3) pyroelectric crystal maintained in a 3-12 mTorr vacuum. The maximum temperature reached was 175 °C in 86 s of heating. The cooling cycle began immediately after heating and was provided by passive radiative cooling. The total combined cycle time was 250 s. x-ray photons were produced and analyzed in both heating and cooling phases. Maximum photon energies of 59 keV and 55 keV were observed during heating and cooling, respectively. Non-contact devices such as this, may find applications in cancer therapy (brachytherapy), non-destructive testing, medical imaging, and physics education fields.

  6. Nanoscale incipient asperity sliding and interface micro-slip assessed by the measurment of tangential contact stiffness

    SciTech Connect

    Gao, Yanfei; Lucas, Barry N.; Hay, Jack C.; Oliver, Warren C.; Pharr, George Mathews

    2006-01-01

    Experiments with a multidimensional nano-contact system have shown that, prior to kinetic frictional sliding, there is a significant reduction of the tangential contact stiffness relative to the elastic prediction. The reduction occurs at contact sizes below about 50-200 nm for aluminum single crystals and several other materials. Using a cohesive interface model, we find that this reduction corresponds to a transition from a small-scale-slip to large-scale-slip condition of the interface.

  7. Physical Non-Contact Communication between Microscopic Aquatic Species: Novel Experimental Evidences for an Interspecies Information Exchange.

    PubMed

    Fels, Daniel

    2016-01-01

    Previous experiments on physical non-contact communication within same species gave rise to test for this type of communication also across the species border, which was the aim of the present study. It was found that autotrophic unicellular organisms (Euglena viridis), separated by cuvettes, affected the proliferation rate of heterotrophic unicellular organisms (Paramecium caudatum). Further, the heterotrophic unicellular organism affected also the proliferation rate of a multicellular heterotrophic organism (Rotatoria sp.) and vice versa. In the case when populations (of Euglena viridis and Paramecium caudatum) were shielded against electromagnetic fields in the optical spectrum from each other, no effects were measured. The results may support the notion that the organisation of ecosystems relies also on the exchange of electromagnetic fields from their constituting biosystems. PMID:27042178

  8. Physical Non-Contact Communication between Microscopic Aquatic Species: Novel Experimental Evidences for an Interspecies Information Exchange

    PubMed Central

    2016-01-01

    Previous experiments on physical non-contact communication within same species gave rise to test for this type of communication also across the species border, which was the aim of the present study. It was found that autotrophic unicellular organisms (Euglena viridis), separated by cuvettes, affected the proliferation rate of heterotrophic unicellular organisms (Paramecium caudatum). Further, the heterotrophic unicellular organism affected also the proliferation rate of a multicellular heterotrophic organism (Rotatoria sp.) and vice versa. In the case when populations (of Euglena viridis and Paramecium caudatum) were shielded against electromagnetic fields in the optical spectrum from each other, no effects were measured. The results may support the notion that the organisation of ecosystems relies also on the exchange of electromagnetic fields from their constituting biosystems. PMID:27042178

  9. Automated real-time search and analysis algorithms for a non-contact 3D profiling system

    NASA Astrophysics Data System (ADS)

    Haynes, Mark; Wu, Chih-Hang John; Beck, B. Terry; Peterman, Robert J.

    2013-04-01

    The purpose of this research is to develop a new means of identifying and extracting geometrical feature statistics from a non-contact precision-measurement 3D profilometer. Autonomous algorithms have been developed to search through large-scale Cartesian point clouds to identify and extract geometrical features. These algorithms are developed with the intent of providing real-time production quality control of cold-rolled steel wires. The steel wires in question are prestressing steel reinforcement wires for concrete members. The geometry of the wire is critical in the performance of the overall concrete structure. For this research a custom 3D non-contact profilometry system has been developed that utilizes laser displacement sensors for submicron resolution surface profiling. Optimizations in the control and sensory system allow for data points to be collected at up to an approximate 400,000 points per second. In order to achieve geometrical feature extraction and tolerancing with this large volume of data, the algorithms employed are optimized for parsing large data quantities. The methods used provide a unique means of maintaining high resolution data of the surface profiles while keeping algorithm running times within practical bounds for industrial application. By a combination of regional sampling, iterative search, spatial filtering, frequency filtering, spatial clustering, and template matching a robust feature identification method has been developed. These algorithms provide an autonomous means of verifying tolerances in geometrical features. The key method of identifying the features is through a combination of downhill simplex and geometrical feature templates. By performing downhill simplex through several procedural programming layers of different search and filtering techniques, very specific geometrical features can be identified within the point cloud and analyzed for proper tolerancing. Being able to perform this quality control in real time

  10. "Non-Contact Ultrasonic Treatment of Metals in a Magnetic Field"

    SciTech Connect

    Ludtka, Gerard Michael; Wilgen, John B; Kisner, Roger A; Jaramillo, Roger A; Ludtka, Gail Mackiewicz-

    2007-01-01

    A concept has been originated for non-contact ultrasonic treatment of metals based on the use of an induction coil located in a high-field superconducting magnet. An advantage of using a high magnetic field environment (> 9 T) is that this allows the induced surface current in the sample to be decreased proportionately. As a result, the incidental induction heating associated with the use of the EMAT (Electromagnetic Acoustical Transducer) is greatly reduced, which improves the energy efficiency of the EMAT approach. The method can be coupled with high-field magnetic processing, but can also be used where only ultrasonic treatment is beneficial. In the proof-of-principle experiments, a high-field EMAT was used for non-contact ultrasonic processing of aluminum samples during solidification. The magnetic field for the EMAT was supplied by a high-field (20 Tesla) resistive magnet, and the current was provided by an induction coil. This resulted in a highly efficient EMAT that delivered 0.5 MPa (~5 atmospheres) of acoustic drive to the surface of the sample while coupling less than 100 watts of incidental induction heating. The exceptionally high energy efficiency of the electromagnetic transducer is due to the use of the high magnetic field, which reduces the current needed to achieve the same acoustic pressure. In these initial experiments, aluminum samples of A356 alloy were heated to the liquid state and allowed to solidify at a controlled cooling rate while subjected to the non-contact ultrasonic stimulation (0.5 MPa @ 165 kHz) provided by an induction coil located within the 200 mm (~8-inch) bore of a 20-T Bitter resistive magnet.

  11. Non-contact cardiopulmonary monitoring algorithm for a 24 GHz Doppler radar.

    PubMed

    Birsan, Nicusor; Munteanu, Doru-Petru

    2012-01-01

    The paper presents the particularities of using a Doppler radar in the 24 GHz band for non-contact cardiopulmonary monitoring. To separate heart beat from respiration we looked for a pattern in time-frequency domain instead of trying to extract directly the distance from phase observation in the baseband signal. By selecting the proper components from the Gabor transform prior expansion we obtained good accuracy for heart beat and respiration rates. Also, with minor correction in frequency, the algorithm leads to usable heartbeat waveform, opening new doors for further information extraction. PMID:23366613

  12. Automating a precision braze paste dispensing operation using non- contact sensing

    SciTech Connect

    Schmitt, D; Novak, J; Maslakowski, J; Thiele, A

    1993-01-01

    This paper describes a collaborative effort between Sandia National Laboratories and the Rocketdyne Division of Rockwell International Corporation to develop an automated braze paste dispensing system for rocket engine nozzle manufacturing. The motivation for automating this manufacturing process is to reduce the amount of labor and excess material required. A critical requirement for this system is the automatic location of key nozzle features using non-contact sensors. Sandia has demonstrated that the low-cost Multi-Axis Seam Tracking (MAST) capacitive sensor can be used to accurately locate the nozzle surface and tube gaps.

  13. Non-contact 3D fingerprint scanner using structured light illumination

    NASA Astrophysics Data System (ADS)

    Troy, Mike; Hassebrook, Laurence; Yalla, Veeraganesh; Daley, Raymond

    2011-03-01

    As crime prevention and national security remain a top priority, requirements for the use of fingerprints for identification continue to grow. While the size of fingerprint databases continues to expand, new technologies that can improve accuracy and ultimately matching performance will become more critical to maintain the effectiveness of the systems. FlashScan3D has developed non-contact, fingerprint scanners based on the principles of Structured Light Illumination (SLI) that capture 3Dimensional data of fingerprints quickly, accurately and independently of an operator. FlashScan3D will present findings from various research projects performed for the US Army and the Department of Homeland Security.

  14. Non-contact cardiopulmonary monitoring algorithm for a 24 GHz Doppler radar.

    PubMed

    Birsan, Nicusor; Munteanu, Doru-Petru

    2012-01-01

    The paper presents the particularities of using a Doppler radar in the 24 GHz band for non-contact cardiopulmonary monitoring. To separate heart beat from respiration we looked for a pattern in time-frequency domain instead of trying to extract directly the distance from phase observation in the baseband signal. By selecting the proper components from the Gabor transform prior expansion we obtained good accuracy for heart beat and respiration rates. Also, with minor correction in frequency, the algorithm leads to usable heartbeat waveform, opening new doors for further information extraction.

  15. Liquid crystal droplet array for non-contact electro-optic inspections

    NASA Astrophysics Data System (ADS)

    Ren, Hongwen; Xianyu, Haiqing; Wu, Shin-Tson

    2010-09-01

    We report a high density liquid crystal (LC) droplet array for non-contact inspection. The incident light is modulated by changing the shape of each droplet using a dielectric force even though the electrode and droplet array are separated by a fairly large air gap. The reshaped LC droplets cause colour change which is easily inspected by the human eye. In a sample with 30 µm thick polymer cavity and 130 µm air gap, LC droplet surface reshaping is clearly observed as the applied voltage exceeds 40 Vrms. Potential application of such a LC droplet array for inspecting the defected thin-film-transistor pixels is emphasized.

  16. A non-contact complete knee dislocation with popliteal artery disruption, a rare martial arts injury.

    PubMed

    Viswanath, Y K; Rogers, I M

    1999-09-01

    Complete knee dislocation is a rare injury and an associated incidence of popliteal artery damage ranges from 16-60% of cases. It occurs commonly in road traffic accidents and in high velocity trauma where significant contact remains as the usual mode of injury. We describe a rare case of non-contact knee dislocation with popliteal artery injury sustained while practising Aikido, a type of martial art. This patient successfully underwent closed reduction of the knee with an emergency vein bypass graft. Similar injury in association with Aikido has not been described in the English literature previously. Various martial art injuries are briefly discussed and safety recommendations made.

  17. A non-contact imaging-based approach to detecting stage I pressure ulcers.

    PubMed

    Leachtenauer, Jon; Kell, Steve; Turner, Beverely; Newcomer, Chris; Lyder, Courtney; Alwan, Majd

    2006-01-01

    This paper describes a non-contact imaging-based method to detect stage I pressure ulcers over a wide range of melanin levels. Two approaches were explored: the first used broad and narrow band visible spectrum imaging, and the second used near infrared (NIR) imaging. Preliminary results are presented together with results of numerical analysis of different erythema indices derived from the visible spectrum images. The results have shown that a low-cost imaging-based approach to detecting pressure ulcers is feasible and can yield promising results when applied to subjects with darker skin pigmentation. PMID:17946762

  18. Acute Compartment Syndrome after Non-Contact Peroneus Longus Muscle Rupture.

    PubMed

    Merriman, Jarrad; Villacis, Diego; Kephart, Curtis; Yi, Anthony; Romano, Russ; Hatch, George F Rick

    2015-12-01

    This case demonstrates a rare variation in the pattern of injury and the presentation of acute lateral compartment syndrome of the leg. Although uncommon, lateral compartment syndrome of the leg after an ankle inversion leading to peroneus longus muscle rupture has been previously documented. This case was unusual because there was no overt ankle injury and the patient was able to continue physical activity, in spite of a significant rupture of the peroneus longus muscle that was determined later. This case highlights the necessary vigilance clinicians must maintain when assessing non-contact injuries in patients with possible compartment syndrome.

  19. Non-contact and Unrestrained Respiration Monitoring System for Sleeping Person Using Near-infrared Bright Spots Matrix Irradiation

    NASA Astrophysics Data System (ADS)

    Aoki, Hirooki; Aoki, Hiroichi; Nakajima, Masato

    Measurement of biological information appears to be an effective method to obtain an understanding of health conditions measures to maintain and improve the health of elderly people. However, every conventional bioinstrumentation technique imposes a sense of restraint that results in aversion against measurements that would last over consecutive days. To solve this problem, we propose a system for monitoring the respiration of sleepers, and it uses a fiber grating vision sensor, which is a type of optical range finder, to achieve non-contact and unrestrained monitoring. The signals obtained by the system include the respiration rate, shifts of the ventilation, and the body movement interval of the sleeper. The information enables to investigate the stability of the sleeper throughout the night. We examined the measuring accuracy, validity, and effectiveness of our proposed system. And all-night monitoring performed at elderly care facility revealed that respiratory disturbances during sleep occurred in many of the residents and that sleep apnea is a common syndrome, especially among residents who have senile dementia or have had a stroke. We were able to carry out the all-night monitoring with this system for a total of about 370 times, according to our schedule, without experiencing any failure, accident, or interruption. Our proposed system is highly effective for monitoring elderly dementia patients who are likely to become uncooperative during measurement with existing monitoring methods that use certain amounts of restraint.

  20. Calibration of non-contact ultrasound as an online sensor for wood characterization: Effects of temperature, moisture, and scanning direction

    NASA Astrophysics Data System (ADS)

    Vun, R. Y.; Hoover, K.; Janowiak, J.; Bhardwaj, M.

    2008-01-01

    Numerous handheld moisture meters are available for measuring moisture levels of wood and building materials for a vast range of quality control and moisture diagnosis applications. However, many methods currently available require physical contact of a probe with the test material to operate. The contact requirement of such devices has limited applications for these purposes. There is a tremendous demand for dynamic online quality assessment of in-process materials for moisture content (MC) measurements. In this paper, a non-destructive non-contact ultrasound technology was used to evaluate the effects of increasing temperature in two MC levels and of increasing MC in lumber. The results show that the ultrasonic absolute transmittance and velocity parameters are directly correlated very well (R2≥0.87) with temperature for the two moisture levels in wood. At constant temperature, however, the velocity is inversely correlated with MC. It was also found that the distribution of MC along the length is marginally insignificant to both ultrasonic measurements. The transmittance measurement along the orthogonal thickness direction is insignificant above the fiber saturation MC; similarly, the velocity measurement is marginally insignificant. The study concludes a positive correlation and a good fit for this technology to advance into the development of an automated device for determining wood moisture levels, which will in turn be used to control the dynamics of wood drying/sterilization processes. Further calibration research is recommended to ascertain the constraints and limitations of the technology to specific wood species and dimension.

  1. Lamb wave dispersion and anisotropy profiling of composite plates via non-contact air-coupled and laser ultrasound

    NASA Astrophysics Data System (ADS)

    Harb, M. S.; Yuan, F. G.

    2015-03-01

    Conventional ultrasound inspection has been a standard non-destructive testing method for providing an in-service evaluation and noninvasive means of probing the interior of a structure. In particular, measurement of the propagation characteristics of Lamb waves allows inspection of plates that are typical components in aerospace industry. A rapid, complete non-contact hybrid approach for excitation and detection of Lamb waves is presented and applied for non-destructive evaluation of composites. An air-coupled transducer (ACT) excites ultrasonic waves on the surface of a composite plate, generating different propagating Lamb wave modes and a laser Doppler vibrometer (LDV) is used to measure the out-of-plane velocity of the plate. This technology, based on direct waveform imaging, focuses on measuring dispersive curves for A0 mode in a composite laminate and its anisotropy. A two-dimensional fast Fourier transform (2D-FFT) is applied to out-of-plane velocity data captured experimentally using LDV to go from the time-spatial domain to frequency-wavenumber domain. The result is a 2D array of amplitudes at discrete frequencies and wavenumbers for A0 mode in a given propagation direction along the composite. The peak values of the curve are then used to construct frequency wavenumber and phase velocity dispersion curves, which are also obtained directly using Snell's law and the incident angle of the excited ultrasonic waves. A high resolution and strong correlation between numerical and experimental results are observed for dispersive curves with Snell's law method in comparison to 2D-FFT method. Dispersion curves as well as velocity curves for the composite plate along different directions of wave propagation are measured. The visual read-out of the dispersion curves at different propagation directions as well as the phase velocity curves provide profiling and measurements of the composite anisotropy. The results proved a high sensitivity of the air-coupled and laser

  2. Label-free and non-contact optical biosensing of glucose with quantum dots.

    PubMed

    Khan, Saara A; Smith, Gennifer T; Seo, Felix; Ellerbee, Audrey K

    2015-02-15

    We present a label-free, optical sensor for biomedical applications based on changes in the visible photoluminescence (PL) of quantum dots in a thin polymer film. Using glucose as the target molecule, the screening of UV excitation due to pre-absorption by the product of an enzymatic assay leads to quenching of the PL of quantum dots (QDs) in a non-contact scheme. The irradiance changes in QD PL indicate quantitatively the level of glucose present. The non-contact nature of the assay prevents surface degradation of the QDs, which yields an efficient, waste-free, cost-effective, portable, and sustainable biosensor with attractive market features. The limit of detection of the demonstrated biosensor is ~3.5 µm, which is competitive with existing contact-based bioassays. In addition, the biosensor operates over the entire clinically relevant range of glucose concentrations of biological fluids including urine and whole blood. The comparable results achieved across a range of cost-affordable detectors, including a spectrophotometer, portable spectrometer, and iPhone camera, suggest that label-free and visible quantification of glucose with QD films can be applied to low-cost, point-of-care biomedical sensing as well as scientific applications in the laboratory for characterizing glucose or other analytes.

  3. NON-CONTACT ULTRASONIC TREATMENT OF METALS IN A MAGNETIC FIELD

    SciTech Connect

    Wilgen, John B; Kisner, Roger A; Jaramillo, Roger A; Ludtka, Gerard Michael; Ludtka, Gail Mackiewicz-

    2007-01-01

    A high-field EMAT (Electromagnetic Acoustical Transducer) has been used for non-contact ultrasonic processing of aluminum samples during solidification. The magnetic field for the EMAT is supplied by a high-field (20 Tesla) resistive magnet, and the current is provided by an induction coil. This resulted in a highly efficient EMAT that delivered 0.5 MPa of acoustic drive to the surface of the sample while coupling less than 100 watts of incidental induction heating. The exceptionally high energy efficiency of the electromagnetic transducer is due to the use of high magnetic field, which reduces the current needed to achieve the same acoustic pressure. In the initial experiments, aluminum samples of A356 alloy were heated to the liquid state and allowed to solidify at a controlled cooling rate while subjected to the non-contact ultrasonic stimulation (0.5 MPa @ 165 kHz) provided by an induction coil located within the bore of a 20-T resistive magnet

  4. Laser desorption of explosives as a way to create an effective non-contact sampling device

    NASA Astrophysics Data System (ADS)

    Akmalov, Artem E.; Chistyakov, Alexander A.; Kotkovskii, Gennadii E.

    2015-10-01

    Comparison of desorption effectiveness of Nd3+:YAG nanosecond laser sources (λ=266, 354, 532 nm) has been carried out to investigate a possibility of creating a non-contact sampling device for detectors of explosives based on principles of ion mobility spectrometry (IMS) and field asymmetric ion mobility spectrometry (FAIMS). The results of mass spectrometric study of laser desorption of nitroamine, nitrate ester and nitroaromatic compounds from a quartz substrate are presented. It is shown that irradiation of adsorbed layers of studied samples by a single pulse of non-resonant laser radiation (λ=532 nm) leads to efficient desorption at laser intensity 107 W/cm2 and above. Excitation of the first singlet state of nitro compounds by resonant radiation (λ=354 nm) provides heating of adsorbed layers and thermal desorption. A strongly non-equilibrium (non-thermal) dissociation process is developed when the second singlet state of nitroaromatic molecules is excited by radiation at λ=266 nm, along with thermal desorption. It is shown that Nd3+: YAG laser with wavelength λ=266 nm, pulse duration 5-10 ns, intensity 107-109 W/cm2 is the most effective source for creation a non-contact sampling device based on desorption of explosives from surfaces.

  5. An infrared-driven flexible pyroelectric generator for non-contact energy harvester.

    PubMed

    Zhao, Tingting; Jiang, Weitao; Liu, Hongzhong; Niu, Dong; Li, Xin; Liu, Weihua; Li, Xuan; Chen, Bangdao; Shi, Yongsheng; Yin, Lei; Lu, Bingheng

    2016-04-21

    In recent years, energy harvesting technologies, which can scavenge many kinds of energies from our living environment to power micro/nanodevices, have attracted increasing attention. However, remote energy transmission, flexibility and electric waveform controllability remain the key challenges for wireless power supply by an energy harvester. In this paper, we design a new infrared-driven non-contact pyroelectric generator for harvesting heat energy, which avoids direct contact between the pyroelectric generator and heat source and realizes remote energy transfer exploiting the photothermal and penetrability of infrared light. The output voltage (under the input impedance of 100 MOhm) and short-circuit current of the pyroelectric generator consisting of a CNT/PVDF/CNT layer (20 mm × 5 mm × 100 μm) can be as large as 1.2 V and 9 nA, respectively, under a 1.45 W cm(-2) near-infrared laser (808 nm). We also demonstrate the means by which the pyroelectric generator can modulate square waveforms with controllable periods through irradiation frequency, which is essential for signal sources and medical stimulators. The overshoot of square waveforms are in a range of 9.0%-13.1% with a rise time of 120 ms. The prepared pyroelectric generator can light a liquid crystal display (LCD) in a vacuum chamber from outside. This work paves the way for non-contact energy harvesting for some particular occasions where near-field energy control is not available. PMID:27025660

  6. High-Throughput Non-Contact Vitrification of Cell-Laden Droplets Based on Cell Printing

    NASA Astrophysics Data System (ADS)

    Shi, Meng; Ling, Kai; Yong, Kar Wey; Li, Yuhui; Feng, Shangsheng; Zhang, Xiaohui; Pingguan-Murphy, Belinda; Lu, Tian Jian; Xu, Feng

    2015-12-01

    Cryopreservation is the most promising way for long-term storage of biological samples e.g., single cells and cellular structures. Among various cryopreservation methods, vitrification is advantageous by employing high cooling rate to avoid the formation of harmful ice crystals in cells. Most existing vitrification methods adopt direct contact of cells with liquid nitrogen to obtain high cooling rates, which however causes the potential contamination and difficult cell collection. To address these limitations, we developed a non-contact vitrification device based on an ultra-thin freezing film to achieve high cooling/warming rate and avoid direct contact between cells and liquid nitrogen. A high-throughput cell printer was employed to rapidly generate uniform cell-laden microdroplets into the device, where the microdroplets were hung on one side of the film and then vitrified by pouring the liquid nitrogen onto the other side via boiling heat transfer. Through theoretical and experimental studies on vitrification processes, we demonstrated that our device offers a high cooling/warming rate for vitrification of the NIH 3T3 cells and human adipose-derived stem cells (hASCs) with maintained cell viability and differentiation potential. This non-contact vitrification device provides a novel and effective way to cryopreserve cells at high throughput and avoid the contamination and collection problems.

  7. A simple non-equilibrium theory of non-contact dissipation force microscopy

    NASA Astrophysics Data System (ADS)

    Kantorovich, L. N.

    2001-02-01

    The tip-surface interaction in the non-contact atomic force microscopy (NC-AFM) leads to energy dissipation. Recently, this effect has been harnessed to obtain images with atomic resolution. In an important paper Gauthier and Tsukada (GT) (1999 Phys. Rev. B 60 11716) suggested a theory of this, so-called non-contact dissipation force microscopy (NC-DFM) using a stochastic approach within a simple one-atomic representation of the surface. In this paper we elaborate on this model further, stressing the importance of a consistent non-equilibrium consideration. Then, using a more general model, we offer an alternative derivation based on a rather simple approach to non-equilibrium phenomenon used by Kirkwood for the Brownian motion. We show that our method leads to the final result similar to that obtained in the GT paper. We also discuss some other models for the energy dissipation in NC-AFM. In particular, we emphasise that the `stick and slip' (or adhesion hysteresis) model of energy dissipation, although containing a specific element which requires additional features to be incorporated in our model, is to be considered using non-equilibrium methods.

  8. Experience in non-contact Nd YAG laser in pulmonary surgery. A pilot study.

    PubMed

    Moghissi, K; Dench, M; Goebells, P

    1988-01-01

    This paper presents our experience and the results of a pilot study in non-contact Nd YAG laser in pulmonary surgery. During an 18-month period laser was used in 43 patients undergoing pulmonary surgery. All patients had a thoracotomy using a conventional surgical technique but the laser was employed for the pulmonary operation. The laser equipment consisted of Pilkington Fibrelase 100, delivering 10-100 watts energy in pulses of 1-9 s. The laser energy was applied using our sterile applicator and as a non-contact mode. Seven patients (group 1) had "coin" pulmonary lesions excised solely by laser evaporation and fulguration of 0.5-1 cm around the margin of the lesion. In 24 patients (group 2) laser was used in conjunction with conventional surgery in order to excise the residual disease and to provide better clearance with less loss of healthy parenchyma. In 17 patients (group 3) the laser was used to dispose of lymph nodes which were inaccessible for resection by conventional surgical methods. In 8 patients (group 4) laser was used for the purpose of haemostasis. Some patients in groups 2, 3 and 4 fell into categories other than that of their defined groups. There was no mortality or morbidity associated with the laser in these patients. This experience indicates the potential usefulness of laser in lung surgery and its particular value in pulmonary "coin" lesions and in association with conventional surgery in order to achieve conservative lung resection. PMID:3272211

  9. Preliminary Test Results of a Non-Contacting Finger Seal on a Herringbone-Grooved Rotor

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Delgado, Irebert R.

    2009-01-01

    The baseline non-contacting finger seal is a NASA patented design. The primary difference between it and Gul Aroras design patented by AlliedSignal is that there are no lift pads on the high pressure fingers. The baseline non-contacting finger seal is comprised of a back plate, aft spacer, aft (or low pressure) finger element, forward (or high pressure) finger element, forward spacer, and front plate. The components are held together with 20 flat head screws. A typical seal would have a back plate of approximately the same thickness as the front plate and would be riveted together. The thicker back plate allows use of threaded fasteners so that different finger elements can be tested without having to replace all the individual seal components. The finger elements are essentially washers made of thin sheet stock with multiple curved slots machined around the inner diameter to form the fingers. They are clocked so that the fingers of one cover the slots of the other. The aft finger element fingers have axial extensions or "lift pads" at the seal id that are concentric to the rotor. The fingers act as cantilever beams and flex in response to rotor dynamic motion and radial growth of the rotor due to centrifugal or thermal forces.

  10. High-Throughput Non-Contact Vitrification of Cell-Laden Droplets Based on Cell Printing.

    PubMed

    Shi, Meng; Ling, Kai; Yong, Kar Wey; Li, Yuhui; Feng, Shangsheng; Zhang, Xiaohui; Pingguan-Murphy, Belinda; Lu, Tian Jian; Xu, Feng

    2015-01-01

    Cryopreservation is the most promising way for long-term storage of biological samples e.g., single cells and cellular structures. Among various cryopreservation methods, vitrification is advantageous by employing high cooling rate to avoid the formation of harmful ice crystals in cells. Most existing vitrification methods adopt direct contact of cells with liquid nitrogen to obtain high cooling rates, which however causes the potential contamination and difficult cell collection. To address these limitations, we developed a non-contact vitrification device based on an ultra-thin freezing film to achieve high cooling/warming rate and avoid direct contact between cells and liquid nitrogen. A high-throughput cell printer was employed to rapidly generate uniform cell-laden microdroplets into the device, where the microdroplets were hung on one side of the film and then vitrified by pouring the liquid nitrogen onto the other side via boiling heat transfer. Through theoretical and experimental studies on vitrification processes, we demonstrated that our device offers a high cooling/warming rate for vitrification of the NIH 3T3 cells and human adipose-derived stem cells (hASCs) with maintained cell viability and differentiation potential. This non-contact vitrification device provides a novel and effective way to cryopreserve cells at high throughput and avoid the contamination and collection problems. PMID:26655688

  11. Non-contact protein microarray fabrication using a procedure based on liquid bridge formation.

    PubMed

    Hartmann, Michael; Sjödahl, Johan; Stjernström, Mårten; Redeby, Johan; Joos, Thomas; Roeraade, Johan

    2009-01-01

    Contemporary microarrayers of contact or non-contact format used in protein microarray fabrication still suffer from a number of problems, e.g. generation of satellite spots, inhomogeneous spots, misplaced or even absent spots, and sample carryover. In this paper, a new concept of non-contact sample deposition that reduces such problems is introduced. To show the potential and robustness of this pressure-assisted deposition technique, different sample solutions known to cause severe problems or to be even impossible to print with conventional microarrayers were accurately printed. The samples included 200 mg mL(-1) human serum albumin, highly concentrated sticky cell adhesion proteins, pure high-salt cell-lysis buffer, pure DMSO, and a suspension of 5-microm polystyrene beads. Additionally, a water-immiscible liquid fluorocarbon, which was shown not to affect the functionality of the capture molecules, was employed as a lid to reduce evaporation during microarray printing. The fluorocarbon liquid lid was shown to circumvent hydrolysis of water-sensitive activated surfaces during long-term deposition procedures. PMID:19023564

  12. Laser excitation and fully non-contact sensing ultrasonic propagation imaging system for damage evaluation

    NASA Astrophysics Data System (ADS)

    Dhital, Dipesh; Lee, Jung Ryul; Park, Chan Yik; Flynn, Eric

    2012-04-01

    Various types of damages occur in aerospace, mechanical and many other engineering structures, and a reliable nondestructive evaluation technique is essential to detect any possible damage at the initiation phase. Ultrasound has been widely used but the conventional contact ultrasonic inspection techniques are not suitable for mass and couplant sensitive structures and are relatively slow. This study presents a fully non-contact hybrid laser ultrasonic generation and piezoelectric air-coupled transducer (ACT)/laser Doppler vibrometer (LDV) sensing technique combined with ultrasonic wave propagation imaging (UWPI), ultrasonic spectral imaging (USI) and wavelet-transformed ultrasonic propagation imaging (WUPI) algorithms to extract defect-sensitive features aimed at performing a thorough diagnosis of damage. Optimization enables improved performance efficiency of ACT and LDV to be used as receivers for non-contact hybrid laser ultrasonic propagation imaging (UPI) system as shown from the experimental results in this study. Real fatigue closed surface micro crack on metal structure was detected using hybrid laser ultrasonic generation/ACT sensing system, with size detection accuracy as high as 96%. Impact damages on carbon fiber reinforced plastic composite wing-box specimen were detected and localized using hybrid laser ultrasonic generation/LDV sensing system.

  13. An infrared-driven flexible pyroelectric generator for non-contact energy harvester.

    PubMed

    Zhao, Tingting; Jiang, Weitao; Liu, Hongzhong; Niu, Dong; Li, Xin; Liu, Weihua; Li, Xuan; Chen, Bangdao; Shi, Yongsheng; Yin, Lei; Lu, Bingheng

    2016-04-21

    In recent years, energy harvesting technologies, which can scavenge many kinds of energies from our living environment to power micro/nanodevices, have attracted increasing attention. However, remote energy transmission, flexibility and electric waveform controllability remain the key challenges for wireless power supply by an energy harvester. In this paper, we design a new infrared-driven non-contact pyroelectric generator for harvesting heat energy, which avoids direct contact between the pyroelectric generator and heat source and realizes remote energy transfer exploiting the photothermal and penetrability of infrared light. The output voltage (under the input impedance of 100 MOhm) and short-circuit current of the pyroelectric generator consisting of a CNT/PVDF/CNT layer (20 mm × 5 mm × 100 μm) can be as large as 1.2 V and 9 nA, respectively, under a 1.45 W cm(-2) near-infrared laser (808 nm). We also demonstrate the means by which the pyroelectric generator can modulate square waveforms with controllable periods through irradiation frequency, which is essential for signal sources and medical stimulators. The overshoot of square waveforms are in a range of 9.0%-13.1% with a rise time of 120 ms. The prepared pyroelectric generator can light a liquid crystal display (LCD) in a vacuum chamber from outside. This work paves the way for non-contact energy harvesting for some particular occasions where near-field energy control is not available.

  14. High-Throughput Non-Contact Vitrification of Cell-Laden Droplets Based on Cell Printing

    PubMed Central

    Shi, Meng; Ling, Kai; Yong, Kar Wey; Li, Yuhui; Feng, Shangsheng; Zhang, Xiaohui; Pingguan-Murphy, Belinda; Lu, Tian Jian; Xu, Feng

    2015-01-01

    Cryopreservation is the most promising way for long-term storage of biological samples e.g., single cells and cellular structures. Among various cryopreservation methods, vitrification is advantageous by employing high cooling rate to avoid the formation of harmful ice crystals in cells. Most existing vitrification methods adopt direct contact of cells with liquid nitrogen to obtain high cooling rates, which however causes the potential contamination and difficult cell collection. To address these limitations, we developed a non-contact vitrification device based on an ultra-thin freezing film to achieve high cooling/warming rate and avoid direct contact between cells and liquid nitrogen. A high-throughput cell printer was employed to rapidly generate uniform cell-laden microdroplets into the device, where the microdroplets were hung on one side of the film and then vitrified by pouring the liquid nitrogen onto the other side via boiling heat transfer. Through theoretical and experimental studies on vitrification processes, we demonstrated that our device offers a high cooling/warming rate for vitrification of the NIH 3T3 cells and human adipose-derived stem cells (hASCs) with maintained cell viability and differentiation potential. This non-contact vitrification device provides a novel and effective way to cryopreserve cells at high throughput and avoid the contamination and collection problems. PMID:26655688

  15. Microfluidic impact printer with interchangeable cartridges for versatile non-contact multiplexed micropatterning.

    PubMed

    Ding, Yuzhe; Huang, Eric; Lam, Kit S; Pan, Tingrui

    2013-05-21

    Biopatterning has been increasingly used for well-defined cellular microenvironment, patterned surface topology, and guided biological cues; however, it meets challenges on biocompatibility, thermal and chemical sensitivity, as well as limited availability of reagents. In this paper, we aim at combining the desired features from non-contact inkjet printing and dot-matrix impact printing to establish a versatile multiplexed micropatterning platform, referred to as Microfluidic Impact Printer (MI-Printer), for emerging biomedical applications. Using this platform, we can achieve the distinct features of no cross-contamination, sub-microliter ink loading with a minimal dead volume, high-throughput printing, biocompatible non-contact processing, sequential patterning with self-alignment, wide adaptability for complex media (e.g., cell suspension or colloidal solutions), interchangeable/disposable cartridge design, and simple assembly and configuration, all highly desirable towards laboratory-based research and development. Specifically, the printing resolution of the MI-printer platform has been experimentally characterized and theoretically analysed. Optimal printing resolution of 80 μm has been repeatedly obtained. Furthermore, two useful functions of the MI-printer, multiplexed printing and combinatorial printing, have been experimentally demonstrated with less than 10 μm misalignment. Moreover, molecular and biological patterning, utilizing the multiplexed and combinatorial printing, has been implemented to illustrate the utility of this versatile printing technique for emerging biomedical applications.

  16. Non-contact measurement of oxygen saturation with an RGB camera.

    PubMed

    Guazzi, Alessandro R; Villarroel, Mauricio; Jorge, João; Daly, Jonathan; Frise, Matthew C; Robbins, Peter A; Tarassenko, Lionel

    2015-09-01

    A novel method (Sophia) is presented to track oxygen saturation changes in a controlled environment using an RGB camera placed approximately 1.5 m away from the subject. The method is evaluated on five healthy volunteers (Fitzpatrick skin phenotypes II, III, and IV) whose oxygen saturations were varied between 80% and 100% in a purpose-built chamber over 40 minutes each. The method carefully selects regions of interest (ROI) in the camera image by calculating signal-to-noise ratios for each ROI. This allows it to track changes in oxygen saturation accurately with respect to a conventional pulse oximeter (median coefficient of determination, 0.85). PMID:26417504

  17. Non-contact measurement of oxygen saturation with an RGB camera

    PubMed Central

    Guazzi, Alessandro R.; Villarroel, Mauricio; Jorge, João; Daly, Jonathan; Frise, Matthew C.; Robbins, Peter A.; Tarassenko, Lionel

    2015-01-01

    A novel method (Sophia) is presented to track oxygen saturation changes in a controlled environment using an RGB camera placed approximately 1.5 m away from the subject. The method is evaluated on five healthy volunteers (Fitzpatrick skin phenotypes II, III, and IV) whose oxygen saturations were varied between 80% and 100% in a purpose-built chamber over 40 minutes each. The method carefully selects regions of interest (ROI) in the camera image by calculating signal-to-noise ratios for each ROI. This allows it to track changes in oxygen saturation accurately with respect to a conventional pulse oximeter (median coefficient of determination, 0.85). PMID:26417504

  18. Utilizing Non-Contact Stress Measurement System (NSMS) as a Health Monitor

    NASA Technical Reports Server (NTRS)

    Hayes, Terry; Hayes, Bryan; Bynum, Ken

    2011-01-01

    Continuously monitor all 156 blades throughout the entire operating envelope without adversely affecting tunnel conditions or compromise compressor shell integrity, Calculate dynamic response and identify the frequency/mode to determine individual blade deflection amplitudes, natural frequencies, phase, and damping (Q), Log static deflection to build a database of deflection values at certain compressor conditions to use as basis for real-time online Blade Stack monitor, Monitor for stall, surge, flutter, and blade damage, Operate with limited user input, low maintenance cost, safe illumination of probes, easy probe replacement, and require little or no access to compressor.

  19. Non-contact small animal fluorescence imaging system for simultaneous multi-directional angular-dependent data acquisition

    PubMed Central

    Lee, Jong Hwan; Kim, Hyun Keol; Chandhanayingyong, Chandhanarat; Lee, Francis Young-In; Hielscher, Andreas H.

    2014-01-01

    We present a novel non-contact small animal fluorescent molecular tomography (FMT) imaging system. At the heart of the system is a new mirror-based imaging head that was designed to provide 360-degree measurement data from an entire animal surface in one step. This imaging head consists of two conical mirrors, which considerably reduce multiple back reflections between the animal and mirror surfaces. These back reflections are common in existing mirror-based imaging heads and tend to degrade the quality of raw measurement data. In addition, the introduction of a novel ray-transfer operator allows for the inclusion of the angular dependent data in the image reconstruction process, which results in higher image resolution. We describe in detail the system design and implementation of the hardware components as well as the transport-theory-based image reconstruction algorithm. Using numerical simulations, measurements on a well-defined phantom and a live animal, we evaluate the system performance and show the advantages of our approach. PMID:25071965

  20. Study on the Non-contact Acoustic Inspection Method for Concrete Structures by using Strong Ultrasonic Sound source

    NASA Astrophysics Data System (ADS)

    Sugimoto, Tsuneyoshi; Uechi, Itsuki; Sugimoto, Kazuko; Utagawa, Noriyuki; Katakura, Kageyoshi

    Hammering test is widely used to inspect the defects in concrete structures. However, this method has a major difficulty in inspect at high-places, such as a tunnel ceiling or a bridge girder. Moreover, its detection accuracy is dependent on a tester's experience. Therefore, we study about the non-contact acoustic inspection method of the concrete structure using the air borne sound wave and a laser Doppler vibrometer. In this method, the concrete surface is excited by air-borne sound wave emitted with a long range acoustic device (LRAD), and the vibration velocity on the concrete surface is measured by a laser Doppler vibrometer. A defect part is detected by the same flexural resonance as the hammer method. It is already shown clearly that detection of a defect can be performed from a long distance of 5 m or more using a concrete test object. Moreover, it is shown that a real concrete structure can also be applied. However, when the conventional LRAD was used as a sound source, there were problems, such as restrictions of a measurement angle and the surrounding noise. In order to solve these problems, basic examination which used the strong ultrasonic wave sound source was carried out. In the experiment, the concrete test object which includes an imitation defect from 5-m distance was used. From the experimental result, when the ultrasonic sound source was used, restrictions of a measurement angle become less severe and it was shown that circumference noise also falls dramatically.

  1. Gas-coupled laser acoustic detection as a non-contact line detector for photoacoustic and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Johnson, Jami L.; van Wijk, Kasper; Caron, James N.; Timmerman, Miriam

    2016-02-01

    Conventional contacting transducers for ultrasonic wave detection are highly sensitive and tuned for real-time imaging with fixed array geometries. However, optical detection provides an alternative to contacting transducers when a small sensor footprint, a large frequency bandwidth, or non-contacting detection is required. Typical optical detection relies on a Doppler-shifted reflection of light from the target, but gas coupled-laser acoustic detection (GCLAD) provides an alternative optical detection method for photoacoustic (PA) and ultrasound imaging that does not involve surface reflectivity. Instead, GCLAD is a line-detector that measures the deflection of an optical beam propagating parallel to the sample, as the refractive index of the air near the sample is affected by particle displacement on the sample surface. We describe the underlying principles of GCLAD and derive a formula for quantifying the surface displacement from a remote GCLAD measurement. We discuss a design for removing the location-dependent displacement bias along the probe beam and a method for measuring the attenuation coefficient of the surrounding air. GCLAD results are used to quantify the surface displacement in a laser-ultrasound experiment, which shows 94% agreement to line-integrated data from a commercial laser vibrometer point detector. Finally, we demonstrate the feasibility of PA imaging of an artery-sized absorber using a detector 5.8 cm from a phantom surface.

  2. Viscous drag effect in the flexural rigidity and cantilever stiffness of bio- and nano-filaments measured with the shooting-bead method.

    PubMed

    Samarbakhsh, Abdorreza; Tuszynski, Jack A

    2009-07-01

    The so-called shooting-bead method is a fast and easy experimental technique for evaluating cantilever stiffness and flexural rigidity of semiflexible to semirigid rodlike biological and nano-filaments based on the measurement of just two distances. In this paper we have derived the shooting-bead formula for cantilever stiffness and flexural rigidity taking into account the effects of the viscous drag force exerted on the filament itself. To this end, we have defined a key variable, called the filament energy-loss factor (or filament drag factor), which accounts for all the energy-loss effects. It has been shown that due to the logarithmic dependence of the filament energy-loss factor on the radius and the length of the filament, inclusion of this factor in the formula for the flexural rigidity has a very noticeable effect on the result even for very thin or long filaments. It has also been shown that the effect due to the consideration of filament energy-loss factor on calculation of the flexural rigidity increases with increasing the flexibility of the filament. We have also considered various sources of experimental error and estimated their effects. PMID:19658725

  3. Viscous drag effect in the flexural rigidity and cantilever stiffness of bio- and nano-filaments measured with the shooting-bead method.

    PubMed

    Samarbakhsh, Abdorreza; Tuszynski, Jack A

    2009-07-01

    The so-called shooting-bead method is a fast and easy experimental technique for evaluating cantilever stiffness and flexural rigidity of semiflexible to semirigid rodlike biological and nano-filaments based on the measurement of just two distances. In this paper we have derived the shooting-bead formula for cantilever stiffness and flexural rigidity taking into account the effects of the viscous drag force exerted on the filament itself. To this end, we have defined a key variable, called the filament energy-loss factor (or filament drag factor), which accounts for all the energy-loss effects. It has been shown that due to the logarithmic dependence of the filament energy-loss factor on the radius and the length of the filament, inclusion of this factor in the formula for the flexural rigidity has a very noticeable effect on the result even for very thin or long filaments. It has also been shown that the effect due to the consideration of filament energy-loss factor on calculation of the flexural rigidity increases with increasing the flexibility of the filament. We have also considered various sources of experimental error and estimated their effects.

  4. Measurements of the Stiffness and Thickness of the Pavement Asphalt Layer Using the Enhanced Resonance Search Method

    PubMed Central

    Zakaria, Nur Mustakiza; Yusoff, Nur Izzi Md.; Hardwiyono, Sentot; Mohd Nayan, Khairul Anuar

    2014-01-01

    Enhanced resonance search (ERS) is a nondestructive testing method that has been created to evaluate the quality of a pavement by means of a special instrument called the pavement integrity scanner (PiScanner). This technique can be used to assess the thickness of the road pavement structure and the profile of shear wave velocity by using the principle of surface wave and body wave propagation. In this study, the ERS technique was used to determine the actual thickness of the asphaltic pavement surface layer, while the shear wave velocities obtained were used to determine its dynamic elastic modulus. A total of fifteen locations were identified and the results were then compared with the specifications of the Malaysian PWD, MDD UKM, and IKRAM. It was found that the value of the elastic modulus of materials is between 3929 MPa and 17726 MPa. A comparison of the average thickness of the samples with the design thickness of MDD UKM showed a difference of 20 to 60%. Thickness of the asphalt surface layer followed the specifications of Malaysian PWD and MDD UKM, while some of the values of stiffness obtained are higher than the standard. PMID:25276854

  5. Measurements of the stiffness and thickness of the pavement asphalt layer using the enhanced resonance search method.

    PubMed

    Zakaria, Nur Mustakiza; Yusoff, Nur Izzi Md; Hardwiyono, Sentot; Nayan, Khairul Anuar Mohd; El-Shafie, Ahmed

    2014-01-01

    Enhanced resonance search (ERS) is a nondestructive testing method that has been created to evaluate the quality of a pavement by means of a special instrument called the pavement integrity scanner (PiScanner). This technique can be used to assess the thickness of the road pavement structure and the profile of shear wave velocity by using the principle of surface wave and body wave propagation. In this study, the ERS technique was used to determine the actual thickness of the asphaltic pavement surface layer, while the shear wave velocities obtained were used to determine its dynamic elastic modulus. A total of fifteen locations were identified and the results were then compared with the specifications of the Malaysian PWD, MDD UKM, and IKRAM. It was found that the value of the elastic modulus of materials is between 3929 MPa and 17726 MPa. A comparison of the average thickness of the samples with the design thickness of MDD UKM showed a difference of 20 to 60%. Thickness of the asphalt surface layer followed the specifications of Malaysian PWD and MDD UKM, while some of the values of stiffness obtained are higher than the standard.

  6. Free radicals induced in aqueous solution by non-contact atmospheric-pressure cold plasma

    SciTech Connect

    Tani, Atsushi; Fukui, Satoshi; Ono, Yusuke; Kitano, Katsuhisa; Ikawa, Satoshi

    2012-06-18

    To understand plasma-induced chemical processing in liquids, we investigated the formation of free radicals in aqueous solution exposed to different types of non-contact atmospheric-pressure helium plasma using the spin-trapping technique. Both hydroxyl radical (OH{center_dot}) and superoxide anion radical (O{sub 2}{sup -}{center_dot}) adducts were observed when neutral oxygen gas was additionally supplied to the plasma. In particular, O{sub 2}{sup -}{center_dot} can be dominantly induced in the solution via oxygen flow into the afterglow gas of helium plasma. This type of plasma treatment can potentially be used in medical applications to control infectious diseases, because the O{sub 2}{sup -}{center_dot} is crucial for sterilization of liquids via atmospheric-pressure plasma.

  7. Reduction in spall threshold due to non-contact impact: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Rawat, S.; Warrier, M.; Chaturvedi, S.; Chavan, V. M.

    2012-06-01

    Impact of single crystal copper plates at 1100 m/s impact velocity has been simulated using the molecular dynamics code LAMMPS [1]. We validate the void nucleation threshold obtained under tri-axial strain conditions [2] by high velocity impact of copper plates. In this set up, the flyer remains in intimate contact with the target before the impact. We have also performed the impact of non-contact configuration of the flyer-target system, where the flyer starts a small distance away from the target before impact. Due to small misalignment of crystal planes in the flyer & target, the shock produced by impact creates defects in the target during its propagation. These defects become preferred void nucleation sites at the time of interaction of release waves and lead to spall at a lower value of tensile pressure.

  8. A novel radar sensor for the non-contact detection of speech signals.

    PubMed

    Jiao, Mingke; Lu, Guohua; Jing, Xijing; Li, Sheng; Li, Yanfeng; Wang, Jianqi

    2010-01-01

    Different speech detection sensors have been developed over the years but they are limited by the loss of high frequency speech energy, and have restricted non-contact detection due to the lack of penetrability. This paper proposes a novel millimeter microwave radar sensor to detect speech signals. The utilization of a high operating frequency and a superheterodyne receiver contributes to the high sensitivity of the radar sensor for small sound vibrations. In addition, the penetrability of microwaves allows the novel sensor to detect speech signals through nonmetal barriers. Results show that the novel sensor can detect high frequency speech energies and that the speech quality is comparable to traditional microphone speech. Moreover, the novel sensor can detect speech signals through a nonmetal material of a certain thickness between the sensor and the subject. Thus, the novel speech sensor expands traditional speech detection techniques and provides an exciting alternative for broader application prospects.

  9. Non-contact laser sealing of thin polyester food packaging films

    NASA Astrophysics Data System (ADS)

    Brown, Neil; Kerr, David; Parkin, Robert M.; Jackson, Michael R.; Shi, Fangmin

    2012-10-01

    We describe a laser-based, non-contact sealing technique for thin, polyester-based lidding films, used in PET containers for food packaging. The method uses a beam-steered laser to seal the container, thereby enabling virtually instant changeover from one product line to another. Unlike conventional sealing PET film processes, no bespoke tooling is required to hold the package components in close proximity and under pressure whilst the seal is formed. This greatly reduces sealing machine tooling costs and potential downtime at product changeovers. Results are presented that show that the process is able to produce seals of higher strength using thin (26 μm) polyester film than those from the conventional thermal/mechanical process. This provides a potential for increased production flexibility, reduction in product wastage, and for reducing the cost and embodied energy in construction of a less massive sealing machine.

  10. Investigation of the Sintering Process Using Non-Contact Electromagnetic Acoustic Transducers

    SciTech Connect

    James C. Foley; David K. Rehbein; Daniel J. Barnard

    2001-05-30

    In-situ characterizations of green state part density and sintering state have long been desired in the powder metal community. Recent advances in non-contact electromagnetic acoustic transducer (EMAT) technology have enabled in-situ monitoring of acoustic amplitude and velocity as sintering proceeds. Samples were made from elemental powders of Al (99.99%), Al (99.7%), Ag, (99.99%), Cu (99.99%) and Fe (99.9%). The powders were pressed in a uniaxial die and examined with acoustic waves for changes in velocity and amplitude during sintering for the samples containing Al, Ag, and Cu. The changes in acoustic properties were correlated with sample microstructures and mechanical properties. Evolution of a series of reverberating echoes during sintering is shown to provide information on the state of sintering, and changes in sintering kinetics as well as having the potential for detection of interior flaws.

  11. Inverse analysis of water profile in starch by non-contact photopyroelectric method

    NASA Astrophysics Data System (ADS)

    Frandas, A.; Duvaut, T.; Paris, D.

    2000-07-01

    The photopyroelectric (PPE) method in a non-contact configuration was proposed to study water migration in starch sheets used for biodegradable packaging. A 1-D theoretical model was developed, allowing the study of samples having a water profile characterized by an arbitrary continuous function. An experimental setup was designed or this purpose which included the choice of excitation source, detection of signals, signal and data processing, and cells for conditioning the samples. We report here the development of an inversion procedure allowing for the determination of the parameters that influence the PPE signal. This procedure led to the optimization of experimental conditions in order to identify the parameters related to the water profile in the sample, and to monitor the dynamics of the process.

  12. Non-contact defect diagnostics in Cz-Si wafers using resonance ultrasonic vibrations

    NASA Astrophysics Data System (ADS)

    Belyaev, A.; Kochelap, V. A.; Tarasov, I.; Ostapenko, S.

    2001-01-01

    A new resonance effect of generation of sub-harmonic acoustic vibrations was applied to characterize defects in as-grown and processed Cz-Si wafers. Ultrasonic vibrations were generated into standard 8″ wafers using an external ultrasonic transducer and their amplitude recorded in a non-contact mode using a scanning acoustic probe. By tuning the frequency, f, of the transducer we observed generation of intense sub-harmonic acoustic mode ("whistle" or w-mode) with f/2 frequency. The characteristics of the w-mode-amplitude dependence, frequency scans, spatial distribution allow a clear distinction versus harmonic vibrations of the same wafer. The origin of sub-harmonic vibrations observed on 8″ Cz-Si wafers is attributed to a parametric resonance of flexural vibrations in thin silicon circular plates. We present evidence that "whistle" effect shows a strong dependence on the wafer's growth and processing history and can be used for quality assurance purposes.

  13. Scanning, non-contact, hybrid broadband diffuse optical spectroscopy and diffuse correlation spectroscopy system

    PubMed Central

    Johansson, Johannes D.; Mireles, Miguel; Morales-Dalmau, Jordi; Farzam, Parisa; Martínez-Lozano, Mar; Casanovas, Oriol; Durduran, Turgut

    2016-01-01

    A scanning system for small animal imaging using non-contact, hybrid broadband diffuse optical spectroscopy (ncDOS) and diffuse correlation spectroscopy (ncDCS) is presented. The ncDOS uses a two-dimensional spectrophotometer retrieving broadband (610-900 nm) spectral information from up to fifty-seven source-detector distances between 2 and 5 mm. The ncDCS data is simultaneously acquired from four source-detector pairs. The sample is scanned in two dimensions while tracking variations in height. The system has been validated with liquid phantoms, demonstrated in vivo on a human fingertip during an arm cuff occlusion and on a group of mice with xenoimplanted renal cell carcinoma. PMID:26977357

  14. Plate-shaped non-contact ultrasonic transporter using flexural vibration.

    PubMed

    Ishii, Takahiko; Mizuno, Yosuke; Koyama, Daisuke; Nakamura, Kentaro; Harada, Kana; Uchida, Yukiyoshi

    2014-02-01

    We developed a plate-shaped non-contact transporter based on ultrasonic vibration, exploiting a phenomenon that a plate can be statically levitated at the place where its gravity and the acoustic radiation force are balanced. In the experiment, four piezoelectric zirconate titanate elements were attached to aluminum plates, on which lattice flexural vibration was excited at 22.3 kHz. The vibrating plates were connected to a loading plate via flexible posts that can minimize the influence of the flexure induced by heavy loads. The distribution of the vibration displacement on the plate was predicted through finite-element analysis to find the appropriate positions of the posts. The maximum levitation height of this transporter was 256 μm with no load. When two vibrating plates were connected to a loading plate, the maximum transportable load was 4.0 kgf. PMID:23876434

  15. An infrared-driven flexible pyroelectric generator for non-contact energy harvester

    NASA Astrophysics Data System (ADS)

    Zhao, Tingting; Jiang, Weitao; Liu, Hongzhong; Niu, Dong; Li, Xin; Liu, Weihua; Li, Xuan; Chen, Bangdao; Shi, Yongsheng; Yin, Lei; Lu, Bingheng

    2016-04-01

    In recent years, energy harvesting technologies, which can scavenge many kinds of energies from our living environment to power micro/nanodevices, have attracted increasing attention. However, remote energy transmission, flexibility and electric waveform controllability remain the key challenges for wireless power supply by an energy harvester. In this paper, we design a new infrared-driven non-contact pyroelectric generator for harvesting heat energy, which avoids direct contact between the pyroelectric generator and heat source and realizes remote energy transfer exploiting the photothermal and penetrability of infrared light. The output voltage (under the input impedance of 100 MOhm) and short-circuit current of the pyroelectric generator consisting of a CNT/PVDF/CNT layer (20 mm × 5 mm × 100 μm) can be as large as 1.2 V and 9 nA, respectively, under a 1.45 W cm-2 near-infrared laser (808 nm). We also demonstrate the means by which the pyroelectric generator can modulate square waveforms with controllable periods through irradiation frequency, which is essential for signal sources and medical stimulators. The overshoot of square waveforms are in a range of 9.0%-13.1% with a rise time of 120 ms. The prepared pyroelectric generator can light a liquid crystal display (LCD) in a vacuum chamber from outside. This work paves the way for non-contact energy harvesting for some particular occasions where near-field energy control is not available.In recent years, energy harvesting technologies, which can scavenge many kinds of energies from our living environment to power micro/nanodevices, have attracted increasing attention. However, remote energy transmission, flexibility and electric waveform controllability remain the key challenges for wireless power supply by an energy harvester. In this paper, we design a new infrared-driven non-contact pyroelectric generator for harvesting heat energy, which avoids direct contact between the pyroelectric generator and heat

  16. A reflectance model for non-contact mapping of venous oxygen saturation using a CCD camera

    NASA Astrophysics Data System (ADS)

    Li, Jun; Dunmire, Barbrina; Beach, Kirk W.; Leotta, Daniel F.

    2013-11-01

    A method of non-contact mapping of venous oxygen saturation (SvO2) is presented. A CCD camera is used to image skin tissue illuminated alternately by a red (660 nm) and an infrared (800 nm) LED light source. Low cuff pressures of 30-40 mmHg are applied to induce a venous blood volume change with negligible change in the arterial blood volume. A hybrid model combining the Beer-Lambert law and the light diffusion model is developed and used to convert the change in the light intensity to the change in skin tissue absorption coefficient. A simulation study incorporating the full light diffusion model is used to verify the hybrid model and to correct a calculation bias. SvO2 in the fingers, palm, and forearm for five volunteers are presented and compared with results in the published literature. Two-dimensional maps of venous oxygen saturation are given for the three anatomical regions.

  17. Non-Contact Printed Aluminum Metallization of Si Photovoltaic Devices: Preprint

    SciTech Connect

    Platt, H. A. S.; van Hest, M. F. A. M.; Li, Y.; Novak, J. P.

    2012-06-01

    Alternative solution-based techniques such as aerosol jet printing offer the dual benefits of contactless pattern deposition and high material utilization. We have used aerosol jet printing to investigate non-contact printed Al metal ink as a replacement for screen printed Al back contacts on wafer Si solar cells. This particle-based ink can be prepared at high loadings of 60 weight % metal, which enables rapid deposition of 1 - 10 um thick lines. Al lines printed on Si wafers and heated between 550 and 800 degrees C form low resistance contacts suitable for current extraction. The effectiveness of these printed Al back contacts has further been demonstrated by incorporating them into a series of 21 cm2 crystalline Si solar cells that produced a champion power conversion efficiency of 13%.

  18. Real-time Non-contact Millimeter Wave Characterization of Water-Freezing and Ice-Melting Dynamics

    SciTech Connect

    Sundaram, S. K.; Woskov, Paul P.

    2008-11-12

    We applied millimeter wave radiometry for the first time to monitor water-freezing and ice-melting dynamics in real-time non-contact. The measurements were completed at a frequency of 137 GHz. Small amounts (about 2 mL) of freshwater or saltwater were frozen over a Peltier cooler and the freezing and melting sequence was recorded. Saltwater was prepared in the laboratory that contained 3.5% of table salt to simulate the ocean water. The dynamics of freezing-melting was observed by measuring the millimeter wave temperature as well as the changes in the ice or water surface reflectivity and position. This was repeated using large amounts of freshwater and saltwater (800 mL) mimicking glaciers. Millimeter wave surface level fluctuations indicated as the top surface melted, the light ice below floated up indicating lower surface temperature until the ice completely melted. Our results are useful for remote sensing and tracking temperature for potentially large-scale environmental applications, e.g., global warming.

  19. Real-time detection of respiration rate with non-contact mode based on low-end imaging equipment

    NASA Astrophysics Data System (ADS)

    Jin, Xiaoli; Dong, Liquan; Zhao, Yuejin; Liu, Xiaohua; Liu, Ming; Yang, Lei; Liu, Weiyu; Zhao, Jingsheng; Xing, Jinhui

    2013-09-01

    Standard instrumentation for the assessment of respiration rate is large and based on invasive method, and not suitable for daily inspection. An optical, simple and non-contact measurement method to detect human respiration rate using lowend imaging equipment is discussed. This technology is based on the visible light absorption of blood, which contains many important physiological information of the cardiovascular system. The light absorption of facial area can be indirectly reflected to gray value of the corresponding area image. In this paper, we acquire the respiration rate through the video signal captured by low-end imaging equipment. Firstly, the color CCD captures the facial area below the eyes and every frame of the video can be separated into three RGB channels. The blue channel is extracted as the research object. Then, we calculate the mean gray value for each image and draw the mean gray curve along the time. Fourier transform can get the frequency spectrogram of the graph, which is filtered through the Fourier filter. The extreme point is the value of the respiratory rate. Finally, an available interface program is designed and we have some volunteers tested. The correlation coefficient between the experimental data and the data provided by a reference instrument is 0.98. The consistency of the experimental results is very well. This technology costs so low that it will be widely used in medical and daily respiration rate measurement.

  20. UCSD/FRA non-contact ultrasonic guided-wave system for rail inspection: an update

    NASA Astrophysics Data System (ADS)

    Coccia, Stefano; Phillips, Robert; Nucera, Claudio; Bartoli, Ivan; Salamone, Salvatore; Lanza di Scalea, Francesco; Fateh, Mahmood; Carr, Gary

    2011-04-01

    The University of California at San Diego (UCSD), under a Federal Railroad Administration (FRA) Office of Research and Development (R&D) grant, is developing a system for high-speed and non-contact rail defect detection. A prototype has been designed and field tested with the support of Volpe National Transportation Systems Center and ENSCO, Inc. The goal of this project is to develop a rail defect detection system that provides (a) better defect detection reliability (including internal transverse head defects under shelling and vertical split head defects), and (b) higher inspection speed than achievable by current rail inspection systems. This effort is also in direct response to Safety Recommendations issued by the National Transportation Safety Board (NTSB) following the disastrous train derailments at Superior, WI in 1992 and Oneida, NY in 2007 among others. The UCSD prototype uses non-contact ultrasonic probing of the rail head (laser and air-coupled), ultrasonic guided waves, and a proprietary real-time statistical analysis algorithm that maximizes the sensitivity to defects while minimizing false positives. The current design allows potential inspection speeds up to 40 mph, although all field tests have been conducted up to 15 mph so far. This paper summarizes (a) the latest technology development test conducted at the rail defect farm of Herzog, Inc. in St Joseph, MO in June 2010, and (b) the completion of the new Rail Defect Farm facility at the UCSD Camp Elliott Field Station with partial in-kind donations from the Burlington Northern Santa Fe (BNSF) Railway.

  1. Acoustic trapping as a generic non-contact incubation site for multiplex bead-based assays.

    PubMed

    Tenje, Maria; Xia, Hongyan; Evander, Mikael; Hammarström, Björn; Tojo, Axel; Belák, Sándor; Laurell, Thomas; LeBlanc, Neil

    2015-01-01

    In this study, we show a significantly reduced assay time and a greatly increased bead recovery for a commercial Luminex-based multiplex diagnostic immunoassay by performing all liquid handling steps of the assay protocol in a non-contact acoustic trapping platform. The Luminex assay is designed for detecting antibodies in poultry serum for infectious bursal disease virus, infectious bronchitis virus, Newcastle disease virus and avian reovirus. Here, we show proof-of-concept of a microfluidic system capable of being fully automated and handling samples in a parallel format with a miniature physical footprint where the affinity beads are retained in a non-contact levitated mode in a glass capillary throughout the assay protocol. The different steps are: incubation with the serum sample, secondary antibodies and fluorescent reporters and finally washing to remove any non-specifically bound species. A Luminex 200 instrument was used for the readout. The flow rates applied to the capillary during the initial trapping event and the wash steps were optimised for maximum bead recovery, resulting in a bead recovery of 75% for the complete assay. This can be compared to a bead recovery of approximately 30% when an automatic wash station was used when the assay was performed in the conventional manual format. The time for the incubation steps for a single assay was reduced by more than 50%, without affecting assay performance, since intermediate wash steps became redundant in the continuously perfused bead trapping capillary. We analyzed seven samples, in triplicates, and we can show that the readout of the assay performed in the acoustic trap compared 100% to the control ELISAs (positive or negative readout) and resulted in comparable S/P values as the conventional manual protocol. As the acoustic trapping does not require the particles to have magnetic properties, a greater degree of freedom in selecting microparticles can be provided. In extension, this can provide an

  2. Dimensional error analysis in point cloud-based inspection using a non-contact method for data acquisition

    NASA Astrophysics Data System (ADS)

    Popov, Ivan; Onuh, Spencer; Dotchev, Krassimir

    2010-07-01

    The digital reconstruction of a computer aided design model from a physical object in the case of non-existence of such models has been a great challenge to engineers. With the advent of coordinate measuring machines (CMM), topological information of the points on the object's surface can be extracted in the form of a point cloud. However, CMM has been a very slow process with relatively low resolution which becomes a hurdle for a rapid manufacturing process. As a result, a non-contact method has been developed to provide higher speed and high resolution scanning. Therefore, the source of uncertainties for a non-contact probe, especially the laser scanner, had been reviewed to identify the potential improvement areas. Although the uncertainties are related to data acquisition capability, the surface construction effectiveness from the point clouds has similar importance to obtain the most accurate contour with minimum deviation from the actual surface. This can be achieved by eliminating the noise and by fitting the best shape according to the feature, such as a plane, cylinder or sphere, to the point cloud. The main aim of this work is to analyse and improve the performance of the laser scanner in terms of dimensional accuracy. A DIGIBOT II™ 3D laser digitizer which uses a remote ranging method was examined in the present work. The triangulation scanning system of this digitizer uses a high energy light source projected on the object's surface and a detector to sense the reflection. It was found that the scanning errors consist of random errors and systematic errors. For this scanner, the scanning data are random and follow the Gaussian distribution after the outliers are eliminated from the point cloud. The random error follows a systematic pattern where it varies with the scan depth and it is at a minimum when the y-coordinate is 228 mm and where the value of the error would be -0.0642 mm. The first systematic error is caused by the difference in the

  3. Nonparticipatory Stiffness in the Male Perioral Complex

    ERIC Educational Resources Information Center

    Chu, Shin-Ying; Barlow, Steven M.; Lee, Jaehoon

    2009-01-01

    Purpose: The objective of this study was to extend previous published findings in the authors' laboratory using a new automated technology to quantitatively characterize nonparticipatory perioral stiffness in healthy male adults. Method: Quantitative measures of perioral stiffness were sampled during a nonparticipatory task using a…

  4. Impaired parasympathetic augmentation under relaxation in patients with depression as assessed by a novel non-contact microwave radar system.

    PubMed

    Matsui, Takemi; Kakisaka, Kota; Shinba, Toshikazu

    2016-01-01

    In order to conduct objective screening of major depressive disorder (MDD), a chair-based system was developed which measures alteration of parasympathetic activation induced by relaxing audio-visual exposure in a non-contact way using dual compact-radars attached to a chair back. The system determines autonomic activation by calculating low (LF) and high frequency (HF) components of heart rate variability (HRV) before and after relaxation. Forty-one subjects (28 normal subjects, 13 MDD subjects) were exposed to relaxing natural sounds and images for 10 min. In order to determine the possibility of MDD from autonomic alteration induced by relaxing, linear discriminant analysis was conducted using LF and HF before and after relaxation. F-test revealed the significance of derived linear discriminant function (p < 0.001). The Mahalanobis distance and U value were 3.2 and 0.89, respectively. The derived linear discriminant function achieved 85% sensitivity (11 out of 13 MDD patients) and 89% specificity (25 out of 28 normal subjects).

  5. Defect detection performance of the UCSD non-contact air-coupled ultrasonic guided wave inspection of rails prototype

    NASA Astrophysics Data System (ADS)

    Mariani, Stefano; Nguyen, Thompson V.; Sternini, Simone; Lanza di Scalea, Francesco; Fateh, Mahmood; Wilson, Robert

    2016-04-01

    The University of California at San Diego (UCSD), under a Federal Railroad Administration (FRA) Office of Research and Development (R&D) grant, is developing a system for high-speed and non-contact rail defect detection. A prototype using an ultrasonic air-coupled guided wave signal generation and air-coupled signal detection, paired with a real-time statistical analysis algorithm, has been realized. This system requires a specialized filtering approach based on electrical impedance matching due to the inherently poor signal-to-noise ratio of air-coupled ultrasonic measurements in rail steel. Various aspects of the prototype have been designed with the aid of numerical analyses. In particular, simulations of ultrasonic guided wave propagation in rails have been performed using a Local Interaction Simulation Approach (LISA) algorithm. The system's operating parameters were selected based on Receiver Operating Characteristic (ROC) curves, which provide a quantitative manner to evaluate different detection performances based on the trade-off between detection rate and false positive rate. The prototype based on this technology was tested in October 2014 at the Transportation Technology Center (TTC) in Pueblo, Colorado, and again in November 2015 after incorporating changes based on lessons learned. Results from the 2015 field test are discussed in this paper.

  6. High-resolution imaging of C60 molecules using tuning-fork-based non-contact atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Pawlak, R.; Kawai, S.; Fremy, S.; Glatzel, T.; Meyer, E.

    2012-02-01

    Recent advances in non-contact atomic force microscopy (nc-AFM) have led to the possibility of achieving unprecedented resolution within molecular structures, accomplished by probing short-range repulsive interaction forces. Here we investigate C60 molecules adsorbed on KBr(111) and Cu(111) by tuning-fork-based nc-AFM. First, measurements of C60 deposited on KBr(001) were conducted in cryogenic conditions revealing highly resolved nc-AFM images of the self-assembly. Using constant-frequency shift mode as well as three-dimensional spectroscopic measurements, we observe that the relatively weak molecule-substrate interaction generally leads to the disruption of molecular assembled structures when the tip is probing the short-range force regime. This particular issue hindered us in resolving the chemical structure of this molecule on the KBr surface. To obtain a better anchoring of C60 molecules, nc-AFM measurements were performed on Cu(111). Sub-molecular resolutions within the molecules was achieved which allowed a direct and unambiguous visualization of their orientations on the supporting substrate. Furthermore, three-dimensional spectroscopic measurements of simultaneous force and current have been performed above the single molecules giving information of the C60 molecular orientation as well as its local conductivity. We further discuss the different imaging modes in nc-AFM such as constant-frequency shift nc-AFM, constant-height nc-AFM and constant-current nc-AFM as well as three-dimensional spectroscopic measurement (3D-DFS) employed to achieve such resolution at the sub-molecular scale.

  7. High-resolution imaging of C60 molecules using tuning-fork-based non-contact atomic force microscopy.

    PubMed

    Pawlak, R; Kawai, S; Fremy, S; Glatzel, T; Meyer, E

    2012-02-29

    Recent advances in non-contact atomic force microscopy (nc-AFM) have led to the possibility of achieving unprecedented resolution within molecular structures, accomplished by probing short-range repulsive interaction forces. Here we investigate C(60) molecules adsorbed on KBr(111) and Cu(111) by tuning-fork-based nc-AFM. First, measurements of C(60) deposited on KBr(001) were conducted in cryogenic conditions revealing highly resolved nc-AFM images of the self-assembly. Using constant-frequency shift mode as well as three-dimensional spectroscopic measurements, we observe that the relatively weak molecule-substrate interaction generally leads to the disruption of molecular assembled structures when the tip is probing the short-range force regime. This particular issue hindered us in resolving the chemical structure of this molecule on the KBr surface. To obtain a better anchoring of C(60) molecules, nc-AFM measurements were performed on Cu(111). Sub-molecular resolutions within the molecules was achieved which allowed a direct and unambiguous visualization of their orientations on the supporting substrate. Furthermore, three-dimensional spectroscopic measurements of simultaneous force and current have been performed above the single molecules giving information of the C(60) molecular orientation as well as its local conductivity. We further discuss the different imaging modes in nc-AFM such as constant-frequency shift nc-AFM, constant-height nc-AFM and constant-current nc-AFM as well as three-dimensional spectroscopic measurement (3D-DFS) employed to achieve such resolution at the sub-molecular scale.

  8. Relationship Between Urinary Cross-Linked N-Telopeptide of Type-I Collagen and Heel Stiffness Index Measured by Quantitative Ultrasound in Middle-Aged and Elderly Men.

    PubMed

    Nishimura, Takayuki; Arima, Kazuhiko; Abe, Yasuyo; Kanagae, Mitsuo; Mizukami, Satoshi; Okabe, Takuhiro; Tomita, Yoshihito; Goto, Hisashi; Horiguchi, Itsuko; Aoyagi, Kiyoshi

    2015-11-01

    The aim of the present study was to investigate the age-related patterns and the relationship between levels of urinary cross-linked N-telopeptide of type-I collagen (NTx) and heel stiffness index measured by quantitative ultrasound (QUS) in men with a special reference to age groups of aged 40 to 59 years and ≥60 years.A total of 379 men participated in this study. Heel stiffness index (bone mass) was measured by QUS. Spot urine samples were collected, and urinary NTx was measured. The values were corrected for creatinine (Cre) concentration.Stiffness index was significantly lower in men aged ≥60 years compared with men aged 40 to 59 years (P < 0.0001). There was no significant difference of Log (NTx/Cre) by 10-year age groups. Multiple regression analysis showed that higher level of urinary NTx/Cre was significantly correlated with lower stiffness index after adjusting for age and body mass index in men aged ≥60 years, but not in men aged 40 to 59 years.Higher rates of bone resorption were associated with lower stiffness index only in elderly men. Our results may indicate a different mechanism of low bone mass among different age groups. PMID:26554777

  9. The non-contact monitoring of heart and respiratory rates using laser irradiation: an experimental simultaneous monitoring with and without clothes during biochemical hazards.

    PubMed

    Matsui, T; Ishizuka, T; Ishihara, M; Ishihara, M; Matsumura, K; Kikuchi, M; Kurita, A

    2003-01-01

    The purpose of this study is to develop a non-contact method to evaluate the heart and respiratory rates simultaneously using a single optical sensor which can be used without the removal of clothes before a decontamination procedure in biochemical hazards. We measured the heart and respiratory rates with and without clothes to assess the vital sign monitoring before decontamination. In order to monitor the heart and respiratory rates of rabbits simultaneously, the respiratory and cardiac peaks were separated using fast Fourier transform from a 5 mW helium-neon laser (wavelength 632.8 nm) reflected off the chest walls of rabbits. A cloth (50 mm x 50 mm, 2 mm thick) was placed on the chest of the rabbits to simulate the vital sign monitoring with clothes. The heart rate measured using this method agreed with the rate derived from an electrocardiogram (r = 0.82, p<0.05). The respiratory rate correlated with the manually measured respirator rate (r = 0.93, p<0.05). This method appears promising as a non-contact method for monitoring the heart and respiratory rates of patients under biochemically hazardous conditions.

  10. The non-contact monitoring of heart and respiratory rates using laser irradiation: an experimental simultaneous monitoring with and without clothes during biochemical hazards.

    PubMed

    Matsui, T; Ishizuka, T; Ishihara, M; Ishihara, M; Matsumura, K; Kikuchi, M; Kurita, A

    2003-01-01

    The purpose of this study is to develop a non-contact method to evaluate the heart and respiratory rates simultaneously using a single optical sensor which can be used without the removal of clothes before a decontamination procedure in biochemical hazards. We measured the heart and respiratory rates with and without clothes to assess the vital sign monitoring before decontamination. In order to monitor the heart and respiratory rates of rabbits simultaneously, the respiratory and cardiac peaks were separated using fast Fourier transform from a 5 mW helium-neon laser (wavelength 632.8 nm) reflected off the chest walls of rabbits. A cloth (50 mm x 50 mm, 2 mm thick) was placed on the chest of the rabbits to simulate the vital sign monitoring with clothes. The heart rate measured using this method agreed with the rate derived from an electrocardiogram (r = 0.82, p<0.05). The respiratory rate correlated with the manually measured respirator rate (r = 0.93, p<0.05). This method appears promising as a non-contact method for monitoring the heart and respiratory rates of patients under biochemically hazardous conditions. PMID:12775459

  11. Evaluation of liver stiffness measurement by fibroscan as compared to liver biopsy for assessment of hepatic fibrosis in children with chronic hepatitis C.

    PubMed

    Awad, Mohiee El-Deen Abd El-Aziz; Shiha, Gamal Elsayed; Sallam, Fersan Abdallah; Mohamed, Amany; El Tawab, Abd

    2013-12-01

    The study evaluated liver stiffness measurement (LSM) using non-invasive transient elastography (TE) in comparison with liver biopsy for assessment of hepatic fibrosis in children with chronic hepatitis C (CHC). Thirty children (mean age 10.13 +/- 3.4 years) with CHC were subjected to histopathological assessment of liver biopsy specimens using METAVIER score and LSM using TE (FibroScan) as well as appropriate laboratory investigations. The results showed a highly significant stepwise increase of the mean liver stiffness values with increasing histological severity of hepatic fibrosis with the highest level detected in patients with stage F4 "cirrhosis" and significant differences for F3 and F4 vs. other fibrosis stages. There were significant positive correlations between LSM and several parameters of activity and progression of the chronic liver disease including METAVIER fibrosis stages (r=0.774, p=0.0001), necroinflammatory activity grades, AST, ALT, total serum bilirubin, prothrombin time and Child-Pugh grades as well as biochemical serum fibrosis markers (Fibrotest, Actitest, AST-to-platelet ratio index, Forns index and hyaluronic acid). The variables significantly negatively associated with the LSM were platelets count and serum albumin. The highest predictive performance of LSM was detected for stage F4 "cirrhosis", followed by F3 "advanced fibrosis" where accuracy of(96.7%, 85.3%) and AUROC of (1.00, 0.815) were obtained for these fibrosis stages at cutoff values of 9.5 and 12.5 kPa, respectively. The negative predictive values to exclude advanced fibrosis and cirrhosis at these cutoffs were high, whereas positive predictive values were modest.

  12. Indirect measure of visceral adiposity ‘A Body Shape Index’ (ABSI) is associated with arterial stiffness in patients with type 2 diabetes

    PubMed Central

    Bouchi, Ryotaro; Asakawa, Masahiro; Ohara, Norihiko; Nakano, Yujiro; Takeuchi, Takato; Murakami, Masanori; Sasahara, Yuriko; Numasawa, Mitsuyuki; Minami, Isao; Izumiyama, Hajime; Hashimoto, Koshi; Yoshimoto, Takanobu; Ogawa, Yoshihiro

    2016-01-01

    Objective Among indirect measures of visceral adiposity, A Body Shape Index (ABSI), which is defined as waist circumference (WC)/(body mass index (BMI)2/3×height1/2), is unique in that ABSI is positively correlated with visceral adiposity and is supposed to be independent of BMI. ABSI has been also shown to be linearly and positively associated with visceral fat mass and all-cause and cardiovascular disease (CVD) in the general population. It is, however, uncertain whether ABSI could be associated with arterial stiffness in patients with diabetes. Methods This is a cross-sectional study of 607 patients with type 2 diabetes (mean age 64±12 years; 40.0% female). Visceral fat area (VFA, cm2) and subcutaneous fat area (SFA, cm2) were assessed with a dual-impedance analyzer. In order to estimate the risk for CVD, brachial-ankle pulse wave velocity (baPWV, cm) was used for the assessment of arterial stiffness. Results ABSI was significantly and positively correlated with VFA (r=0.138, p=0.001) and negatively associated with BMI (r=−0.085, p=0.037). The correlation of z-score for ABSI with VFA remained significant (r=0.170, p<0.001) but not with BMI (r=0.009, p=0.820). ABSI (standardized β 0.095, p=0.043) but not WC (standardized β −0.060, p=0.200) was significantly and positively correlated with baPWV in the multivariate model including BMI as a covariate. Conclusions ABSI appears to reflect visceral adiposity independently of BMI and to be a substantial marker of arterial stiffening in patients with type 2 diabetes. PMID:27026809

  13. Microfluidic impact printer with interchangeable cartridges for versatile non-contact multiplexed micropatterning

    PubMed Central

    Ding, Yuzhe; Huang, Eric; Lam, Kit S.; Pan, Tingrui

    2015-01-01

    Biopatterning has been increasingly used for well-defined cellular microenvironment, patterned surface topology, and guided biological cues; however, it meets additional challenges on biocompatibility, temperature and chemical sensitivity and limited reagent volume. In this paper, we target at combining the desired features from the non-contact inkjet printing and the dot-matrix impact printing to establish a versatile multiplexed micropatterning platform, referred to as Microfluidic Impact Printer (MI-Printer), for emerging biomedical applications. Using this platform, we can achieve the distinct features of no cross-contamination, minute volume manipulation with minimal dead volume, high-throughput and biocompatible printing process, multiplexed patterning with automatic alignment, printing availability for complex medium (cell suspension or colloidal solutions), interchangeable/disposable microfluidic cartridge design with out-of-cleanroom microfabrication, simple printing system assembly and configuration, all highly desirable towards biological applications. Specifically, the printing resolution of the MI-printer platform has been experimentally characterized and theoretically analyzed. Printed droplets with 80µm in diameter have been repeatedly obtained. Furthermore, two unique features of MI-printer platform, multiplexed printing and self-alignment printing, have been successfully experimentally demonstrated (less than 10µm misalignment). In addition, combinatorial patterning and biological patterning, which utilizes the multiplexed and self-alignment printing nature of the MI-printer, have been devised to demonstrate the applicability of this robust printing technique for emerging biomedical applications. PMID:23525299

  14. The importance of illumination in a non-contact photoplethysmography imaging system for burn wound assessment

    NASA Astrophysics Data System (ADS)

    Mo, Weirong; Mohan, Rachit; Li, Weizhi; Zhang, Xu; Sellke, Eric W.; Fan, Wensheng; DiMaio, J. Michael; Thatcher, Jeffery E.

    2015-02-01

    We present a non-contact, reflective photoplethysmogram (PPG) imaging method and a prototype system for identifying the presence of dermal burn wounds during a burn debridement surgery. This system aims to provide assistance to clinicians and surgeons in the process of dermal wound management and wound triage decisions. We examined the system variables of illumination uniformity and intensity and present our findings. An LED array, a tungsten light source, and eventually high-power LED emitters were studied as illumination methods for our PPG imaging device. These three different illumination sources were tested in a controlled tissue phantom model and an animal burn model. We found that the low heat and even illumination pattern using high power LED emitters provided a substantial improvement to the collected PPG signal in our animal burn model. These improvements allow the PPG signal from different pixels to be comparable in both time-domain and frequency-domain, simplify the illumination subsystem complexity, and remove the necessity of using high dynamic range cameras. Through the burn model output comparison, such as the blood volume in animal burn data and controlled tissue phantom model, our optical improvements have led to more clinically applicable images to aid in burn assessment.

  15. Resolving Intra- and Inter-Molecular Structure with Non-Contact Atomic Force Microscopy

    PubMed Central

    Jarvis, Samuel Paul

    2015-01-01

    A major challenge in molecular investigations at surfaces has been to image individual molecules, and the assemblies they form, with single-bond resolution. Scanning probe microscopy, with its exceptionally high resolution, is ideally suited to this goal. With the introduction of methods exploiting molecularly-terminated tips, where the apex of the probe is, for example, terminated with a single CO, Xe or H2 molecule, scanning probe methods can now achieve higher resolution than ever before. In this review, some of the landmark results related to attaining intramolecular resolution with non-contact atomic force microscopy (NC-AFM) are summarised before focussing on recent reports probing molecular assemblies where apparent intermolecular features have been observed. Several groups have now highlighted the critical role that flexure in the tip-sample junction plays in producing the exceptionally sharp images of both intra- and apparent inter-molecular structure. In the latter case, the features have been identified as imaging artefacts, rather than real intermolecular bonds. This review discusses the potential for NC-AFM to provide exceptional resolution of supramolecular assemblies stabilised via a variety of intermolecular forces and highlights the potential challenges and pitfalls involved in interpreting bonding interactions. PMID:26307976

  16. Development and study of novel non-contact ultrasonic motor based on principle of structural asymmetry.

    PubMed

    Stepanenko, Dmitry A; Minchenya, Vladimir T

    2012-09-01

    The article presents novel design of non-contact rotary ultrasonic motor consisting of ring-shaped stator vibrating in in-plane flexural mode and rotor provided with blades. In contrast to other motors with similar design proposed motor relies on the use of standing ultrasonic waves. This simplifies design and electronic control of motor and becomes possible due to introduction of artificial asymmetry, for example by tilting one or several blades of the rotor relative to the surface normal. Operating principle of the proposed motor is based on acoustic radiation torque exerted on rotor by ultrasonic waves propagating in air or fluid gap between rotor and stator. This torque is calculated using finite element method by means of COMSOL Multiphysics software. Dynamics of rotor is studied using MathCad software and general theory of nonlinear conservative oscillators. Role of asymmetry is explained on the basis of comparative analysis of potential functions and phase trajectories for symmetric and asymmetric cases. It is shown that direction of rotation is determined by structural parameters of motor, particularly tilting direction (clockwise or counter-clockwise) of the blades. Conceptual design of motor with bidirectional rotation is described. Direction and velocity of rotation in the proposed conceptual design can be potentially controlled by changing excitation frequency of stator.

  17. One-Step, Non-Contact Pattern Transfer by Direct-Current Plasma Immersion Ion Implantation

    NASA Astrophysics Data System (ADS)

    Kwok, Dixon T. K.; Chu, Paul K.

    2009-10-01

    A one-step non-contact pattern transferring method is demonstrated. Clear non-identical images with well-defined boundaries are simultaneously transferred to a substrate by -15 kV plasma immersion ion implantation through a patterned metal mask. The metal mask is 6 cm away from the substrate and no lens system is necessary for the pattern transfer. To avoid diversification of compensating ions, the electric field must be smoothed out by the fine mesh overlapping on top of the metal mask. Complex patterns with micrometer size line-widths can be transferred onto a silicon wafer by placing the metal masks 4 mm away from the wafer. Scanning electron microscopy (SEM) discloses that by negatively biasing the metal mask, ions coming from a hole with a diameter of 200 micrometers in the mask can be confined to a smaller region of 100 micrometers. The ion focusing effect is confirmed by two-dimensional multiple grid particle-in-cell (PIC) simulation.

  18. Development and study of novel non-contact ultrasonic motor based on principle of structural asymmetry.

    PubMed

    Stepanenko, Dmitry A; Minchenya, Vladimir T

    2012-09-01

    The article presents novel design of non-contact rotary ultrasonic motor consisting of ring-shaped stator vibrating in in-plane flexural mode and rotor provided with blades. In contrast to other motors with similar design proposed motor relies on the use of standing ultrasonic waves. This simplifies design and electronic control of motor and becomes possible due to introduction of artificial asymmetry, for example by tilting one or several blades of the rotor relative to the surface normal. Operating principle of the proposed motor is based on acoustic radiation torque exerted on rotor by ultrasonic waves propagating in air or fluid gap between rotor and stator. This torque is calculated using finite element method by means of COMSOL Multiphysics software. Dynamics of rotor is studied using MathCad software and general theory of nonlinear conservative oscillators. Role of asymmetry is explained on the basis of comparative analysis of potential functions and phase trajectories for symmetric and asymmetric cases. It is shown that direction of rotation is determined by structural parameters of motor, particularly tilting direction (clockwise or counter-clockwise) of the blades. Conceptual design of motor with bidirectional rotation is described. Direction and velocity of rotation in the proposed conceptual design can be potentially controlled by changing excitation frequency of stator. PMID:22520741

  19. Resolving Intra- and Inter-Molecular Structure with Non-Contact Atomic Force Microscopy.

    PubMed

    Jarvis, Samuel Paul

    2015-08-21

    A major challenge in molecular investigations at surfaces has been to image individual molecules, and the assemblies they form, with single-bond resolution. Scanning probe microscopy, with its exceptionally high resolution, is ideally suited to this goal. With the introduction of methods exploiting molecularly-terminated tips, where the apex of the probe is, for example, terminated with a single CO, Xe or H2 molecule, scanning probe methods can now achieve higher resolution than ever before. In this review, some of the landmark results related to attaining intramolecular resolution with non-contact atomic force microscopy (NC-AFM) are summarised before focussing on recent reports probing molecular assemblies where apparent intermolecular features have been observed. Several groups have now highlighted the critical role that flexure in the tip-sample junction plays in producing the exceptionally sharp images of both intra- and apparent inter-molecular structure. In the latter case, the features have been identified as imaging artefacts, rather than real intermolecular bonds. This review discusses the potential for NC-AFM to provide exceptional resolution of supramolecular assemblies stabilised via a variety of intermolecular forces and highlights the potential challenges and pitfalls involved in interpreting bonding interactions.

  20. Method for non-contact particle manipulation and control of particle spacing along an axis

    DOEpatents

    Goddard, Gregory Russ; Kaduchak, Gregory; Jett, James Hubert; Graves, Steven Wayde

    2013-09-10

    One or more of the embodiments of the present invention provide for a method of non-contact particle manipulation and control of particle spacing along an axis which includes axial and radial acoustic standing wave fields. Particles are suspended in an aqueous solution, and this solution then flows into the cylindrical flow channel. While the solution flows through the flow channel, the outer structure of the flow channel is vibrated at a resonant frequency, causing a radial acoustic standing wave field to form inside the flow channel in the solution. These radial acoustic standing waves focus the particles suspended in the solution to the center axis of the cylindrical flow channel. At the same time, a transducer is used to create an axial acoustic standing wave field in the flow channel parallel to the axis of the flow channel. This drives the particles, which are already being focused to the center axis of the flow channel, to nodes or anti-nodes of the axial standing wave at half-wavelength intervals, depending on whether the particles are more or less dense and more or less compressible than the surrounding fluid.

  1. Management of infectious fractures with "Non-Contact Plate" (NCP) method.

    PubMed

    Alemdar, Celil; Azboy, Ibrahim; Atiç, Ramazan; Özkul, Emin; Gem, Mehmet; Kapukaya, Ahmet

    2015-09-01

    The aim of this study was to evaluate the outcomes of internal fixation with Non-Contact Plating (NCP) after deep infection caused by previous surgeries of the tibia or femur fractures. The study included 15 patients (4 female and 11 male). The mean age patients was 36.6 years (range, 21-64 years). There were 6 femur and 9 tibia fractures. The mean follow-up period was 25.7 months (range, 15-45 months). The study comprised 11 open and 4 closed fractures. External fixator was used in 3, plate in 4, and intramedullary nail in 8 patients for index surgery. Deep infection was diagnosed via clinical findings, laboratory parameters, and microbiological evaulation. Deep infection was diagnosed within a mean period of 5.5 weeks (range, 2-10 weeks). The infecting organism was methicillin-resistant staphylococcus aureus (MRSA) in 5, methicillin-sensitive staphylococcus aureus (MSSA) in 6, pseudomonas auroginosa in 2, and enterobacteriacea in 2 patients. Union achieved in all patients. Mean time to union was 17 (range, 11-38) weeks. Delayed union was observed in 3 patients who required additional surgeries. Of these one patient developed osteomyelitis. The NCP is an effective alternative method in the treatment of deep infection encountered after internal or external fixation for the tibia, or femur fractures.

  2. Management of infectious fractures with "Non-Contact Plate" (NCP) method.

    PubMed

    Alemdar, Celil; Azboy, Ibrahim; Atiç, Ramazan; Özkul, Emin; Gem, Mehmet; Kapukaya, Ahmet

    2015-09-01

    The aim of this study was to evaluate the outcomes of internal fixation with Non-Contact Plating (NCP) after deep infection caused by previous surgeries of the tibia or femur fractures. The study included 15 patients (4 female and 11 male). The mean age patients was 36.6 years (range, 21-64 years). There were 6 femur and 9 tibia fractures. The mean follow-up period was 25.7 months (range, 15-45 months). The study comprised 11 open and 4 closed fractures. External fixator was used in 3, plate in 4, and intramedullary nail in 8 patients for index surgery. Deep infection was diagnosed via clinical findings, laboratory parameters, and microbiological evaulation. Deep infection was diagnosed within a mean period of 5.5 weeks (range, 2-10 weeks). The infecting organism was methicillin-resistant staphylococcus aureus (MRSA) in 5, methicillin-sensitive staphylococcus aureus (MSSA) in 6, pseudomonas auroginosa in 2, and enterobacteriacea in 2 patients. Union achieved in all patients. Mean time to union was 17 (range, 11-38) weeks. Delayed union was observed in 3 patients who required additional surgeries. Of these one patient developed osteomyelitis. The NCP is an effective alternative method in the treatment of deep infection encountered after internal or external fixation for the tibia, or femur fractures. PMID:26435249

  3. Cellular Response to Non-contacting Nanoscale Sublayer: Cells Sense Several Nanometer Mechanical Property.

    PubMed

    Azuma, Tomoyuki; Teramura, Yuji; Takai, Madoka

    2016-05-01

    Cell adhesion is influenced not only from the surface property of materials but also from the mechanical properties of the nanometer sublayer just below the surface. In this study, we fabricated a well-defined diblock polymer brush composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) and 2-aminoethyl methacrylate (AEMA). The underlying layer of poly(MPC) is a highly viscous polymer, and the surface layer of poly(AEMA) is a cell-adhesive cationic polymer. The adhesion of L929 mouse fibroblasts was examined on the diblock polymer brush to see the effect of a non-contacting underlying polymer layer on the cell-adhesion behavior. Cells could sense the viscoelasticity of the underlying layers at the nanometer level, although the various fabricated diblock polymer brushes had the same surface property and the functional group. Thus, we found a new factor which could control cell spread at the nanometer level, and this insight would be important to design nanoscale biomaterials and interfaces. PMID:27064435

  4. Stiff Person Syndrome.

    PubMed

    Saigal, Renu; Goyal, Laxmikant; Yadav, Rn; Agrawal, Abhishek; Mital, Pradeep; Patel, Bhavesh

    2015-08-01

    Stiff-person syndrome or Moersch-Woltmann is a very rare and disabling neurologic disorder characterized by muscle rigidity and episodic spasms involving axial and limb musculature. It is an autoimmune disorder resulting in a malfunction of aminobutyric acid mediated inhibitory networks in the central nervous system. We describe a patient of stiff person syndrome. PMID:27604442

  5. Arterial Stiffness Gradient

    PubMed Central

    Fortier, Catherine; Agharazii, Mohsen

    2016-01-01

    Background Aortic stiffness is a strong predictor of cardiovascular mortality in various clinical conditions. The aim of this review is to focus on the arterial stiffness gradient, to discuss the integrated role of medium-sized muscular conduit arteries in the regulation of pulsatile pressure and organ perfusion and to provide a rationale for integrating their mechanical properties into risk prediction. Summary The physiological arterial stiffness gradient results from a higher degree of vascular stiffness as the distance from the heart increases, creating multiple reflective sites and attenuating the pulsatile nature of the forward pressure wave along the arterial tree down to the microcirculation. The stiffness gradient hypothesis simultaneously explains its physiological beneficial effects from both cardiac and peripheral microcirculatory points of view. The loss or reversal of stiffness gradient leads to the transmission of a highly pulsatile pressure wave into the microcirculation. This suggests that a higher degree of stiffness of medium-sized conduit arteries may play a role in protecting the microcirculation from a highly pulsatile forward pressure wave. Using the ratio of carotid-femoral pulse wave velocity (PWV) to carotid-radial PWV, referred to as PWV ratio, a recent study in a dialysis cohort has shown that the PWV ratio is a better predictor of mortality than the classical carotid-femoral PWV. Key Messages Theoretically, the use of the PWV ratio seems more logical for risk determination than aortic stiffness as it provides a better estimation of the loss of stiffness gradient, which is the unifying hypothesis that explains the impact of aortic stiffness both on the myocardium and on peripheral organs. PMID:27195235

  6. Arterial Stiffness and Cardiovascular Therapy

    PubMed Central

    Janić, Miodrag; Lunder, Mojca; Šabovič, Mišo

    2014-01-01

    The world population is aging and the number of old people is continuously increasing. Arterial structure and function change with age, progressively leading to arterial stiffening. Arterial stiffness is best characterized by measurement of pulse wave velocity (PWV), which is its surrogate marker. It has been shown that PWV could improve cardiovascular event prediction in models that included standard risk factors. Consequently, it might therefore enable better identification of populations at high-risk of cardiovascular morbidity and mortality. The present review is focused on a survey of different pharmacological therapeutic options for decreasing arterial stiffness. The influence of several groups of drugs is described: antihypertensive drugs (angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, calcium channel blockers, beta-blockers, diuretics, and nitrates), statins, peroral antidiabetics, advanced glycation end-products (AGE) cross-link breakers, anti-inflammatory drugs, endothelin-A receptor antagonists, and vasopeptidase inhibitors. All of these have shown some effect in decreasing arterial stiffness. Nevertheless, further studies are needed which should address the influence of arterial stiffness diminishment on major adverse cardiovascular and cerebrovascular events (MACCE). PMID:25170513

  7. Laser vaporization of trace explosives for enhanced non-contact detection

    NASA Astrophysics Data System (ADS)

    Furstenberg, Robert; Papantonakis, Michael; Kendziora, Christopher A.; Bubb, Daniel M.; Corgan, Jeffrey; McGill, R. Andrew

    2010-04-01

    Trace explosives contamination is found primarily in the form of solid particulates on surfaces, due to the low vapor pressure of most explosives materials. Today, the standard sampling procedure involves physical removal of particulate matter from surfaces of interest. A variety of collection methods have been used including air-jetting or swabbing surfaces of interest. The sampled particles are typically heated to generate vapor for analysis in hand held, bench top, or portal detection systems. These sampling methods are time-consuming (and hence costly), require a skilled technician for optimal performance, and are inherently non-selective, allowing non-explosives particles to be co-sampled and analyzed. This can adversely affect the sensitivity and selectivity of detectors, especially those with a limited dynamic range. We present a new approach to sampling solid particles on a solid surface that is targeted, non-contact, and which selectively enhances trace explosive signatures thus improving the selectivity and sensitivity of existing detectors. Our method involves the illumination of a surface of interest with infrared laser light with a wavelength that matches a distinctive vibrational mode of an explosive. The resonant coupling of laser energy results in rapid heating of explosive particles and rapid release of a vapor plume. Neighboring particles unrelated to explosives are generally not directly heated as their vibrational modes are not resonant with the laser. As a result, the generated vapor plume includes a higher concentration of explosives than if the particles were heated with a non-selective light source (e.g. heat lamp). We present results with both benchtop infrared lasers as well as miniature quantum cascade lasers.

  8. Non-contact hematoma damage and healing assessment using reflectance photoplethysmographic imaging

    NASA Astrophysics Data System (ADS)

    Amelard, Robert; Pfisterer, Kaylen J.; Clausi, David A.; Wong, Alexander

    2016-03-01

    Impact trauma may cause a hematoma, which is the leakage of venous blood into surrounding tissues. Large hematomas can be dangerous as they may inhibit local blood ow. Hematomas are often diagnosed visually, which may be problematic if the hematoma leaks deeper than the visible penetration depth. Furthermore, vascular wound healing is often monitored at home without the aid of a clinician. We therefore investigated the use of near infrared (NIR) re ectance photoplethysmographic imaging (PPGI) to assess vascular damage resulting from a hematoma, and monitor the healing process. In this case study, the participant experienced internal vascular damage in the form of a hematoma. Using a PPGI system with dual-mode temporally coded illumination for ambient-agnostic data acquisition and mounted optical elements, the tissue was illuminated with a spatially uniform irradiance pattern of 850 nm wavelength light for increased tissue penetration and high oxy-to-deoxyhemoglobin absorption ratio. Initial and follow-up PPGI data collection was performed to assess vascular damage and healing. The tissue PPGI sequences were spectrally analyzed, producing spectral maps of the tissue area. Experimental results show that spatial differences in spectral information can be observed around the damaged area. In particular, the damaged site exhibited lower pulsatility than the surrounding healthy tissue. This pulsatility was largely restored in the follow-up data, suggesting that the tissue had undergone vascular healing. These results indicate that hematomas can be assessed and monitored in a non-contact visual manner, and suggests that PPGI can be used for tissue health assessment, with potential extensions to peripheral vascular disease.

  9. Non-contact video-based vital sign monitoring using ambient light and auto-regressive models.

    PubMed

    Tarassenko, L; Villarroel, M; Guazzi, A; Jorge, J; Clifton, D A; Pugh, C

    2014-05-01

    Remote sensing of the reflectance photoplethysmogram using a video camera typically positioned 1 m away from the patient's face is a promising method for monitoring the vital signs of patients without attaching any electrodes or sensors to them. Most of the papers in the literature on non-contact vital sign monitoring report results on human volunteers in controlled environments. We have been able to obtain estimates of heart rate and respiratory rate and preliminary results on changes in oxygen saturation from double-monitored patients undergoing haemodialysis in the Oxford Kidney Unit. To achieve this, we have devised a novel method of cancelling out aliased frequency components caused by artificial light flicker, using auto-regressive (AR) modelling and pole cancellation. Secondly, we have been able to construct accurate maps of the spatial distribution of heart rate and respiratory rate information from the coefficients of the AR model. In stable sections with minimal patient motion, the mean absolute error between the camera-derived estimate of heart rate and the reference value from a pulse oximeter is similar to the mean absolute error between two pulse oximeter measurements at different sites (finger and earlobe). The activities of daily living affect the respiratory rate, but the camera-derived estimates of this parameter are at least as accurate as those derived from a thoracic expansion sensor (chest belt). During a period of obstructive sleep apnoea, we tracked changes in oxygen saturation using the ratio of normalized reflectance changes in two colour channels (red and blue), but this required calibration against the reference data from a pulse oximeter.

  10. Model-based estimation of knee stiffness.

    PubMed

    Pfeifer, Serge; Vallery, Heike; Hardegger, Michael; Riener, Robert; Perreault, Eric J

    2012-09-01

    During natural locomotion, the stiffness of the human knee is modulated continuously and subconsciously according to the demands of activity and terrain. Given modern actuator technology, powered transfemoral prostheses could theoretically provide a similar degree of sophistication and function. However, experimentally quantifying knee stiffness modulation during natural gait is challenging. Alternatively, joint stiffness could be estimated in a less disruptive manner using electromyography (EMG) combined with kinetic and kinematic measurements to estimate muscle force, together with models that relate muscle force to stiffness. Here we present the first step in that process, where we develop such an approach and evaluate it in isometric conditions, where experimental measurements are more feasible. Our EMG-guided modeling approach allows us to consider conditions with antagonistic muscle activation, a phenomenon commonly observed in physiological gait. Our validation shows that model-based estimates of knee joint stiffness coincide well with experimental data obtained using conventional perturbation techniques. We conclude that knee stiffness can be accurately estimated in isometric conditions without applying perturbations, which presents an important step toward our ultimate goal of quantifying knee stiffness during gait.

  11. Model-Based Estimation of Knee Stiffness

    PubMed Central

    Pfeifer, Serge; Vallery, Heike; Hardegger, Michael; Riener, Robert; Perreault, Eric J.

    2013-01-01

    During natural locomotion, the stiffness of the human knee is modulated continuously and subconsciously according to the demands of activity and terrain. Given modern actuator technology, powered transfemoral prostheses could theoretically provide a similar degree of sophistication and function. However, experimentally quantifying knee stiffness modulation during natural gait is challenging. Alternatively, joint stiffness could be estimated in a less disruptive manner using electromyography (EMG) combined with kinetic and kinematic measurements to estimate muscle force, together with models that relate muscle force to stiffness. Here we present the first step in that process, where we develop such an approach and evaluate it in isometric conditions, where experimental measurements are more feasible. Our EMG-guided modeling approach allows us to consider conditions with antagonistic muscle activation, a phenomenon commonly observed in physiological gait. Our validation shows that model-based estimates of knee joint stiffness coincide well with experimental data obtained using conventional perturbation techniques. We conclude that knee stiffness can be accurately estimated in isometric conditions without applying perturbations, which presents an important step towards our ultimate goal of quantifying knee stiffness during gait. PMID:22801482

  12. Regional brain stiffness changes across the Alzheimer's disease spectrum☆

    PubMed Central

    Murphy, Matthew C.; Jones, David T.; Jack, Clifford R.; Glaser, Kevin J.; Senjem, Matthew L.; Manduca, Armando; Felmlee, Joel P.; Carter, Rickey E.; Ehman, Richard L.; Huston, John

    2015-01-01

    Magnetic resonance elastography (MRE) is an MRI-based technique to noninvasively measure tissue stiffness. Currently well established for clinical use in the liver, MRE is increasingly being investigated to measure brain stiffness as a novel biomarker of a variety of neurological diseases. The purpose of this work was to apply a recently developed MRE pipeline to measure regional brain stiffness changes in human subjects across the Alzheimer's disease (AD) spectrum, and to gain insights into the biological processes underlying those stiffness changes by correlating stiffness with existing biomarkers of AD. The results indicate that stiffness changes occur mostly in the frontal, parietal and temporal lobes, in accordance with the known topography of AD pathology. Furthermore, stiffness in those areas correlates with existing imaging biomarkers of AD including hippocampal volumes and amyloid PET. Additional analysis revealed preliminary but significant evidence that the relationship between brain stiffness and AD severity is nonlinear and non-monotonic. Given that similar relationships have been observed in functional MRI experiments, we used task-free fMRI data to test the hypothesis that brain stiffness was sensitive to structural changes associated with altered functional connectivity. The analysis revealed that brain stiffness is significantly and positively correlated with default mode network connectivity. Therefore, brain stiffness as measured by MRE has potential to provide new and essential insights into the temporal dynamics of AD, as well as the relationship between functional and structural plasticity as it relates to AD pathophysiology. PMID:26900568

  13. Regional brain stiffness changes across the Alzheimer's disease spectrum.

    PubMed

    Murphy, Matthew C; Jones, David T; Jack, Clifford R; Glaser, Kevin J; Senjem, Matthew L; Manduca, Armando; Felmlee, Joel P; Carter, Rickey E; Ehman, Richard L; Huston, John

    2016-01-01

    Magnetic resonance elastography (MRE) is an MRI-based technique to noninvasively measure tissue stiffness. Currently well established for clinical use in the liver, MRE is increasingly being investigated to measure brain stiffness as a novel biomarker of a variety of neurological diseases. The purpose of this work was to apply a recently developed MRE pipeline to measure regional brain stiffness changes in human subjects across the Alzheimer's disease (AD) spectrum, and to gain insights into the biological processes underlying those stiffness changes by correlating stiffness with existing biomarkers of AD. The results indicate that stiffness changes occur mostly in the frontal, parietal and temporal lobes, in accordance with the known topography of AD pathology. Furthermore, stiffness in those areas correlates with existing imaging biomarkers of AD including hippocampal volumes and amyloid PET. Additional analysis revealed preliminary but significant evidence that the relationship between brain stiffness and AD severity is nonlinear and non-monotonic. Given that similar relationships have been observed in functional MRI experiments, we used task-free fMRI data to test the hypothesis that brain stiffness was sensitive to structural changes associated with altered functional connectivity. The analysis revealed that brain stiffness is significantly and positively correlated with default mode network connectivity. Therefore, brain stiffness as measured by MRE has potential to provide new and essential insights into the temporal dynamics of AD, as well as the relationship between functional and structural plasticity as it relates to AD pathophysiology.

  14. Amorphous Silicon Thin-Film Thermal Property and Optical Damage Investigations by Non-Contact Laser Methods

    NASA Astrophysics Data System (ADS)

    Kuo, Bob Shih-Wei

    The objective of this investigation is to develop a reliable optical system for determining the thermal properties of thin solid-film materials and to study the effects of these properties on laser damage threshold. The system is tested with actually measuring the thermal conductivity and interface resistance of a set of well-studied silicon film samples and these results are related to the damage thresholds. In the first part, an in situ, non-contact, photothermal displacement (PTD) interferometer for performing thermal conductivity measurements is established. Localized transient surface motion is generated through photothermoelastic coupling of a short, heating laser pulse to the sample under investigation. The maximum surface displacement is found to be linearly dependent on the laser power. The thermal conductivity, on the other hand, determines the proportionality of the linear dependence. Both thin-film thermal conductivity and film/substrate interface thermal resistance are derived from the measured, effective thermal diffusivity by employing simple heat-flow analysis. Wedge -shaped Si films, vacuum deposited on single crystal Si wafers are studied with this technique. A sample prepared by ion bombardment of the wafer surface prior to film deposition shows the same film diffusivity as a sample film deposited on an as-cast wafer, while the uncleaned sample exhibits higher interface thermal resistance. It is found that the thin-film thermal conductivity is somewhat lower than the bulk value. However, the existence of an interface thermal resistance, when combined with film thermal diffusivity, can result in an effective thermal diffusivity as low as two orders of magnitude lower than the bulk value. To substantiate the PTD measurements, laser damage tests are performed on these same samples following the derivation of thermal data. These damage-test results show the significant roles of the thermal properties of the samples on their respective damage

  15. Evaluation of Histological and non-Invasive Methods for the Detection of Liver Fibrosis: The Values of Histological and Digital Morphometric Analysis, Liver Stiffness Measurement and APRI Score.

    PubMed

    Halász, Tünde; Horváth, Gábor; Kiss, András; Pár, Gabriella; Szombati, Andrea; Gelley, Fanni; Nemes, Balázs; Kenessey, István; Piurkó, Violetta; Schaff, Zsuzsa

    2016-01-01

    Prognosis and treatment of liver diseases mainly depend on the precise evaluation of the fibrosis. Comparisons were made between the results of Metavir fibrosis scores and digital morphometric analyses (DMA), liver stiffness (LS) values and aminotransferase-platelet ratio (APRI) scores, respectively. Liver biopsy specimens stained with Sirius red and analysed by morphometry, LS and APRI measurements were taken from 96 patients with chronic liver diseases (56 cases of viral hepatitis, 22 cases of autoimmune- and 18 of mixed origin). The strongest correlation was observed between Metavir score and DMA (r = 0.75 p < 0.05), followed in decreasing order by LS and Metavir (r = 0.61), LS and DMA (r = 0.47) LS and APRI (r = 0.35) and Metavir and APRI (r = 0.24), respectively. DMA is a helpful additional tool for the histopathological evaluation of fibrosis, even when the sample size is small and especially in case of advanced fibrosis. The non-invasive methods showed good correlation with the histopathological methods; LS proved to be more accurate than APRI. The stronger correlation between LS values and Metavir scores, as well as the results of DMA in case of appropriate sample size were remarkable.

  16. Hierarchies of plant stiffness.

    PubMed

    Brulé, Veronique; Rafsanjani, Ahmad; Pasini, Damiano; Western, Tamara L

    2016-09-01

    Plants must meet mechanical as well as physiological and reproductive requirements for survival. Management of internal and external stresses is achieved through their unique hierarchical architecture. Stiffness is determined by a combination of morphological (geometrical) and compositional variables that vary across multiple length scales ranging from the whole plant to organ, tissue, cell and cell wall levels. These parameters include, among others, organ diameter, tissue organization, cell size, density and turgor pressure, and the thickness and composition of cell walls. These structural parameters and their consequences on plant stiffness are reviewed in the context of work on stems of the genetic reference plant Arabidopsis thaliana (Arabidopsis), and the suitability of Arabidopsis as a model system for consistent investigation of factors controlling plant stiffness is put forward. Moving beyond Arabidopsis, the presence of morphological parameters causing stiffness gradients across length-scales leads to beneficial emergent properties such as increased load-bearing capacity and reversible actuation. Tailoring of plant stiffness for old and new purposes in agriculture and forestry can be achieved through bioengineering based on the knowledge of the morphological and compositional parameters of plant stiffness in combination with gene identification through the use of genetics.

  17. Hierarchies of plant stiffness.

    PubMed

    Brulé, Veronique; Rafsanjani, Ahmad; Pasini, Damiano; Western, Tamara L

    2016-09-01

    Plants must meet mechanical as well as physiological and reproductive requirements for survival. Management of internal and external stresses is achieved through their unique hierarchical architecture. Stiffness is determined by a combination of morphological (geometrical) and compositional variables that vary across multiple length scales ranging from the whole plant to organ, tissue, cell and cell wall levels. These parameters include, among others, organ diameter, tissue organization, cell size, density and turgor pressure, and the thickness and composition of cell walls. These structural parameters and their consequences on plant stiffness are reviewed in the context of work on stems of the genetic reference plant Arabidopsis thaliana (Arabidopsis), and the suitability of Arabidopsis as a model system for consistent investigation of factors controlling plant stiffness is put forward. Moving beyond Arabidopsis, the presence of morphological parameters causing stiffness gradients across length-scales leads to beneficial emergent properties such as increased load-bearing capacity and reversible actuation. Tailoring of plant stiffness for old and new purposes in agriculture and forestry can be achieved through bioengineering based on the knowledge of the morphological and compositional parameters of plant stiffness in combination with gene identification through the use of genetics. PMID:27457986

  18. Objectively measured physical activity and sedentary-time are associated with arterial stiffness in Brazilian young adults

    PubMed Central

    Horta, Bernardo Lessa; Schaan, Beatriz D.; Bielemann, Renata Moraes; Vianna, Carolina Ávila; Gigante, Denise Petrucci; Barros, Fernando C.; Ekelund, Ulf; Hallal, Pedro Curi

    2015-01-01

    Objective To examine the associations between objectively measured physical activity and sedentary time with pulse wave velocity (PWV) in Brazilian young adults. Methods Cross-sectional analysis with participants of the 1982 Pelotas (Brazil) Birth Cohort who were followed-up from birth to 30 years of age. Overall physical activity (PA) assessed as the average acceleration (mg), time spent in moderate-to-vigorous physical activity (MVPA – min/day) and sedentary time (min/day) were calculated from acceleration data. Carotid-femoral PWV (m/s) was assessed using a portable ultrasound. Systolic and diastolic blood pressure (SBP/DBP), waist circumference (WC) and body mass index (BMI) were analyzed as possible mediators. Multiple linear regression and g-computation formula were used in the analyses. Results Complete data were available for 1241 individuals. PWV was significantly lower in the two highest quartiles of overall PA (0.26 m/s) compared with the lowest quartile. Participants in the highest quartile of sedentary time had 0.39 m/s higher PWV (95%CI: 0.20; 0.57) than those in the lowest quartile. Individuals achieving ≥30 min/day in MVPA had lower PWV (β = −0.35; 95%CI: −0.56; −0.14). Mutually adjusted analyses between MVPA and sedentary time and PWV changed the coefficients, although results from sedentary time remained more consistent. WC captured 44% of the association between MVPA and PWV. DBP explained 46% of the association between acceleration and PWV. Conclusions Physical activity was inversely related to PWV in young adults, whereas sedentary time was positively associated. Such associations were only partially mediated by WC and DBP. PMID:26386211

  19. Hypertension and arterial stiffness in heart transplantation patients

    PubMed Central

    de Souza-Neto, João David; de Oliveira, Ítalo Martins; Lima-Rocha, Hermano Alexandre; Oliveira-Lima, José Wellington; Bacal, Fernando

    2016-01-01

    OBJECTIVES: Post-transplantation hypertension is prevalent and is associated with increased cardiovascular morbidity and subsequent graft dysfunction. The present study aimed to identify the factors associated with arterial stiffness as measured by the ambulatory arterial stiffness index. METHODS: The current study used a prospective, observational, analytical design to evaluate a group of adult heart transplantation patients. Arterial stiffness was obtained by monitoring ambulatory blood pressure and using the ambulatory arterial stiffness index as the surrogate outcome. Multivariate logistic regression analyses were performed to control confounding. RESULTS: In a group of 85 adult heart transplantation patients, hypertension was independently associated with arterial stiffness (OR 4.98, CI 95% 1.06-23.4) as well as systolic and diastolic blood pressure averages and nighttime descent. CONCLUSIONS: Measurement of ambulatory arterial stiffness index is a new, non-invasive method that is easy to perform, may contribute to better defining arterial stiffness prognosis and is associated with hypertension.

  20. Hypertension and arterial stiffness in heart transplantation patients

    PubMed Central

    de Souza-Neto, João David; de Oliveira, Ítalo Martins; Lima-Rocha, Hermano Alexandre; Oliveira-Lima, José Wellington; Bacal, Fernando

    2016-01-01

    OBJECTIVES: Post-transplantation hypertension is prevalent and is associated with increased cardiovascular morbidity and subsequent graft dysfunction. The present study aimed to identify the factors associated with arterial stiffness as measured by the ambulatory arterial stiffness index. METHODS: The current study used a prospective, observational, analytical design to evaluate a group of adult heart transplantation patients. Arterial stiffness was obtained by monitoring ambulatory blood pressure and using the ambulatory arterial stiffness index as the surrogate outcome. Multivariate logistic regression analyses were performed to control confounding. RESULTS: In a group of 85 adult heart transplantation patients, hypertension was independently associated with arterial stiffness (OR 4.98, CI 95% 1.06-23.4) as well as systolic and diastolic blood pressure averages and nighttime descent. CONCLUSIONS: Measurement of ambulatory arterial stiffness index is a new, non-invasive method that is easy to perform, may contribute to better defining arterial stiffness prognosis and is associated with hypertension. PMID:27652829

  1. Nanocharacterization of the negative stiffness of ferroelectric materials

    NASA Astrophysics Data System (ADS)

    Alipour Skandani, A.; Ctvrtlik, R.; Al-Haik, M.

    2014-08-01

    Phase changing materials such as ferroelectric materials could exhibit negative stiffness under certain thermomechanical environments. This negative stiffness is embodied by a deflection along the opposite direction of the applied load. So far negative stiffness materials were investigated with the specific morphology of embedded inclusions in stiff matrices then the resulting composite is studied to measure the behavior of each constituent indirectly. In this study, a modified nonisothermal nanoindentation method is developed to measure the negative stiffness of triglycine sulfate single crystal directly. This in-situ method is intended to first demonstrate the feasibility of detecting the negative stiffness via nanoindentation and nanocreep of a ferroelectric material at its Curie point and then to quantify the negative stiffness without the need for embedding the crystal within a stiffer matrix.

  2. Modeling and robust H-infinite control of a novel non-contact ultra-quiet Stewart spacecraft

    NASA Astrophysics Data System (ADS)

    Xu, Yufei; Liao, He; Liu, Lei; Wang, Yue

    2015-02-01

    This paper presents the modeling and robust H∞ control of a novel ultra-quiet spacecraft which employs the non-contact Stewart platform to actively control its support module (SM) and payload module (PM). The SM and PM are mechanically separated such that the disturbances and vibrations from the SM can be perfectly suppressed. However, this novel spacecraft has internal instability. To overcome the instability, this paper derives the dynamics model of the non-contact Stewart spacecraft using Newton-Euler approach at first. Then, the mixed sensitivity robust H∞ control is developed to guarantee both the attitude stability and precision pointing. Finally, simulation studies are provided to validate the effectiveness of the proposed approach.

  3. The Frequency and Determinants of Liver Stiffness Measurement Failure: A Retrospective Study of “Real-Life” 38,464 Examinations

    PubMed Central

    Han, Ping; Li, Fan; Li, Bing; Zang, Hong; Niu, Xiaoxia; Li, Zhongbin; Xin, Shaojie; Chen, Guofeng

    2014-01-01

    Objective To investigate the frequency and determinants of liver stiffness measurement (LSM) failure by means of FibroScan in “real-life” Chinese patients. Methods A total of 38,464 “real-life” Chinese patients in 302 military hospital of China through the whole year of 2013, including asymptomatic carrier, chronic hepatitis B, chronic hepatitis C, liver cirrhosis (LC), alcoholic liver disease, autoimmune liver disease, hepatocellular carcinoma (HCC) and other, were enrolled, their clinical and biological parameters were retrospectively investigated. Liver fibrosis was evaluated by FibroScan detection. S probe (for children with height less than 1.20 m) and M probe (for adults) were used. LSM failure defined as zero valid shots (unsuccessful LSM), or the ratio of the interquartile range to the median of 10 measurements (IQR/M) greater than 0.30 plus median LSM greater or equal to 7.1 kPa (unreliable LSM). Results LSM failure occurred in 3.34% of all examinations (1286 patients out of 38,464), among them, there were 958 cases (2.49%) with unsuccessful LSM, and 328 patients (0.85%) with unreliable LSM. Statistical analyses showed that LSM failure was independently associated with body mass index (BMI) greater than 30 kg/m2, female sex, age greater than 50 years, intercostal spaces (IS) less than 9 mm, decompensated liver cirrhosis and HCC patients. There were no significant differences among other diseases. By changing another skilled operator, success was achieved on 301 cases out of 1286, which reduced the failure rate to 2.56%, the decrease was significant (P<0.0001). Conclusions The principal reasons of LSM failure are ascites, obesity and narrow of IS. The failure rates of HCC, decompensated LC, elder or female patients are higher. These results emphasize the need for adequate operator training, technological improvements and optimal criteria for specific patient subpopulations. PMID:25122123

  4. Is passive metatarsophalangeal joint stiffness related to leg stiffness, vertical stiffness and running economy during sub-maximal running?

    PubMed

    Man, Hok Sum; Lam, Wing Kai; Lee, Justin; Capio, Catherine M; Leung, Aaron Kam Lun

    2016-09-01

    This study examined whether passive metatarsophalangeal joints (MPJ) stiffness was associated with leg stiffness (Kleg) vertical stiffness (Kvert) and running economy (RE) during sub-maximal running. Nine male experienced runners underwent passive MPJ stiffness measurements in standing and sitting positions followed by sub-maximal running on an instrumented treadmill. With the individual foot position properly aligned, the MPJ passive stiffness in both sitting (MPJsit) and standing positions (MPJstand) were measured with a computerized dynamometer. Data were collected at a running speed of 2.78m/s, representing a stabilized level of energy expenditure. Pedar pressure insole was used to determine the contact time (tc) and peak reaction force for the calculation of Kleg and Kvert. A respiratory gas analysis system was used to estimate the RE. Bivariate correlation test was performed to examine the correlation among MPJ stiffness, contact time, Kleg, Kvert, and RE. The results showed that MPJsit and MPJstand were inversely correlated with RE (p=0.04, r=-0.68 to -0.69), suggesting that stiffer MPJ improves RE. In addition, MPJsit was correlated positively with Kleg (p<0.01, r=0.87),Kvert (p=0.03, r=0.70) but inversely with tc (p=0.02, r=-0.76), while MPJstand was correlated positively with the Kvert (p=0.02, r=0.77). These findings suggested that strength of toe plantar flexors provides stability and agility in the stance phase for more effective and faster forward movement.

  5. Muscle short-range stiffness can be used to estimate the endpoint stiffness of the human arm

    PubMed Central

    Hu, Xiao; Murray, Wendy M.

    2011-01-01

    The mechanical properties of the human arm are regulated to maintain stability across many tasks. The static mechanics of the arm can be characterized by estimates of endpoint stiffness, considered especially relevant for the maintenance of posture. At a fixed posture, endpoint stiffness can be regulated by changes in muscle activation, but which activation-dependent muscle properties contribute to this global measure of limb mechanics remains unclear. We evaluated the role of muscle properties in the regulation of endpoint stiffness by incorporating scalable models of muscle stiffness into a three-dimensional musculoskeletal model of the human arm. Two classes of muscle models were tested: one characterizing short-range stiffness and two estimating stiffness from the slope of the force-length curve. All models were compared with previously collected experimental data describing how endpoint stiffness varies with changes in voluntary force. Importantly, muscle properties were not fit to the experimental data but scaled only by the geometry of individual muscles in the model. We found that force-dependent variations in endpoint stiffness were accurately described by the short-range stiffness of active arm muscles. Over the wide range of evaluated arm postures and voluntary forces, the musculoskeletal model incorporating short-range stiffness accounted for 98 ± 2, 91 ± 4, and 82 ± 12% of the variance in stiffness orientation, shape, and area, respectively, across all simulated subjects. In contrast, estimates based on muscle force-length curves were less accurate in all measures, especially stiffness area. These results suggest that muscle short-range stiffness is a major contributor to endpoint stiffness of the human arm. Furthermore, the developed model provides an important tool for assessing how the nervous system may regulate endpoint stiffness via changes in muscle activation. PMID:21289133

  6. Non-invasive assessment of changes in liver fibrosis via liver stiffness measurement in patients with chronic hepatitis B: impact of antiviral treatment on fibrosis regression

    PubMed Central

    Kim, Seung Up; Kim, Do Young; Ahn, Sang Hoon; Choi, Eun Hee; Seok, Jae Yeon; Lee, Jung Min; Park, Young Nyun; Chon, Chae Yoon; Han, Kwang-Hyub

    2010-01-01

    Background Liver stiffness measurement (LSM) can assess liver fibrosis in patients with chronic hepatitis B (CHB). We evaluated whether LSM can be used to assess changes in liver fibrosis during antiviral treatment using nucleos(t)ide analogs in patients with CHB. Methods We recruited 41 patients with CHB who had significant liver fibrosis, normal or slightly elevated serum alanine aminotransferase (ALT) levels (≤2 × upper limit of normal), and detectable serum hepatitis B virus DNA before antiviral treatment. Patients in Group 1 (n = 23) and Group 2 (n = 18) underwent follow-up LSM after antiviral treatment for 1 and 2 years, respectively. Results The mean age, ALT and LSM value of all patients (34 men and 7 women) before antiviral treatment were 46.6 ± 9.5 years, 40.6 ± 17.2 IU/L and 12.9 ± 8.6 kPa, respectively. Hepatitis B e antigen (HBeAg) was detected in 31 patients (75.6%). Fibrosis stage was F2 in 12 (29.3%), F3 in 6 (14.6%) and F4 in 23 (56.1%) patients. After antiviral treatment, LSM values and DNA positivity decreased significantly as compared to baseline (P = 0.018 and P < 0.001 in Group 1; P = 0.017 and P < 0.001 in Group 2, respectively), whereas ALT levels were unchanged (P = 0.063 in Group 1; P = 0.082 in Group 2). Conclusions Our preliminary data suggest that LSM can be used to assess liver fibrosis regression after antiviral treatment using nucleos(t)ide analogs in patients with CHB. PMID:21286337

  7. Sensitivity of overall vehicle stiffness to local joint stiffness

    NASA Technical Reports Server (NTRS)

    Chon, Choon T.

    1987-01-01

    How overall vehicle stiffness is affected by local joint stiffness is discussed. By using the principle of virtual work and the minimum strain energy theorem, a closed form expression for the sensitivity coefficient was derived. The insensitivity of the vehicle stiffness to a particular joint, when its stiffness exceeds a certain value (or threshold value), was proven mathematically. In order to investigate the sensitivity of the structure to the joint stiffness, a so-called stick model was created, and the modeling technique is briefly described. Some data on joint stiffness of tested vehicles are also presented.

  8. Exercise, Vascular Stiffness, and Tissue Transglutaminase

    PubMed Central

    Steppan, Jochen; Sikka, Gautam; Jandu, Simran; Barodka, Viachaslau; Halushka, Marc K.; Flavahan, Nicholas A.; Belkin, Alexey M.; Nyhan, Daniel; Butlin, Mark; Avolio, Alberto; Berkowitz, Dan E.; Santhanam, Lakshmi

    2014-01-01

    Background Vascular aging is closely associated with increased vascular stiffness. It has recently been demonstrated that decreased nitric oxide (NO)‐induced S‐nitrosylation of tissue transglutaminase (TG2) contributes to age‐related vascular stiffness. In the current study, we tested the hypothesis that exercise restores NO signaling and attenuates vascular stiffness by decreasing TG2 activity and cross‐linking in an aging rat model. Methods and Results Rats were subjected to 12 weeks of moderate aerobic exercise. Aging was associated with diminished phosphorylated endothelial nitric oxide synthase and phosphorylated vasodilator‐stimulated phosphoprotein abundance, suggesting reduced NO signaling. TG2 cross‐linking activity was significantly increased in old animals, whereas TG2 abundance remained unchanged. These alterations were attenuated in the exercise cohort. Simultaneous measurement of blood pressure and pulse wave velocity (PWV) demonstrated increased aortic stiffness in old rats, compared to young, at all values of mean arterial pressure (MAP). The PWV‐MAP correlation in the old sedentary and old exercise cohorts was similar. Tensile testing of the vessels showed increased stiffness of the aorta in the old phenotype with a modest restoration of mechanical properties toward the young phenotype with exercise. Conclusions Increased vascular stiffness during aging is associated with decreased TG2 S‐nitrosylation, increased TG2 cross‐linking activity, and increased vascular stiffness likely the result of decreased NO bioavailability. In this study, a brief period of moderate aerobic exercise enhanced NO signaling, attenuated TG cross‐linking activity, and reduced ex vivo tensile properties, but failed to reverse functional vascular stiffness in vivo, as measured by PWV. PMID:24721796

  9. The relationships between active extensibility, and passive and active stiffness of the knee flexors.

    PubMed

    Blackburn, J Troy; Padua, Darin A; Riemann, Bryan L; Guskiewicz, Kevin M

    2004-12-01

    Insufficient active knee flexor stiffness may predispose the anterior cruciate ligament to injury. Insufficient passive stiffness may result in insufficient active stiffness. Similarly, higher levels of musculotendinous extensibility may inhibit active and passive muscle stiffness, potentially contributing to an increased risk of injury. The literature is both limited and inconsistent concerning relationships between extensibility, passive stiffness, and active stiffness. Extensibility was measured as the maximal active knee extension angle from a supine position with the hip flexed to 90 degrees . Passive stiffness was calculated as the slope of the moment-angle curve resulting from passive knee extension. Active stiffness was assessed via acceleration associated with damped oscillatory motion about the knee. Stepwise multiple regression indicated that passive stiffness accounted for 25% of active muscle stiffness variance. The linear combination of extensibility and passive stiffness explained only 2% more variance compared to passive stiffness alone. Musculotendinous extensibility was moderately related to passive muscle stiffness, and weakly related to active muscle stiffness. The moderate relationship observed between active and passive stiffness emphasizes the dependence of active muscle stiffness on cross-bridge formation, and the relatively smaller contribution from parallel elastic tissues. Additionally, heightened extensibility does not appear to be a predisposing factor for reduced muscle stiffness. PMID:15491843

  10. Gender, Vertical Height and Horizontal Distance Effects on Single-Leg Landing Kinematics: Implications for Risk of non-contact ACL Injury

    PubMed Central

    Ali, Nicholas; Rouhi, Gholamreza; Robertson, Gordon

    There is a lack of studies investigating gender differences in whole-body kinematics during single-leg landings from increasing vertical heights and horizontal distances. This study determined the main effects and interactions of gender, vertical height, and horizontal distance on whole-body joint kinematics during single-leg landings, and established whether these findings could explain the gender disparity in non-contact anterior cruciate ligament (ACL) injury rate. Recreationally active males (n=6) and females (n=6) performed single-leg landings from a takeoff deck of vertical height of 20, 40, and 60 cm placed at a horizontal distance of 30, 50 and 70 cm from the edge of a force platform, while 3D kinematics and kinetics were simultaneously measured. It was determined that peak vertical ground reaction force (VGRF) and the ankle flexion angle exhibited significant gender differences (p=0.028, partial η 2 =0.40 and p=0.035, partial η 2 =0.37, respectively). Peak VGRF was significantly correlated to the ankle flexion angle (r= −0.59, p=0.04), hip flexion angle (r= −0.74, p=0.006), and trunk flexion angle (r= −0.59, p=0.045). Peak posterior ground reaction force (PGRF) was significantly correlated to the ankle flexion angle (r= −0.56, p=0.035), while peak knee abduction moment was significantly correlated to the knee flexion angle (r= −0.64, p=0.03). Rearfoot landings may explain the higher ACL injury rate among females. Higher plantar-flexed ankle, hip, and trunk flexion angles were associated with lower peak ground reaction forces, while higher knee flexion angle was associated with lower peak knee abduction moment, and these kinematics implicate reduced risk of non-contact ACL injury. PMID:24146702

  11. Numerical assessment of the stiffness index.

    PubMed

    Epstein, Sally; Vergnaud, Anne-Claire; Elliott, Paul; Chowienczyk, Phil; Alastruey, Jordi

    2014-01-01

    Elevated systemic vascular stiffness is associated with increased risk of cardiovascular disease. It has been suggested that the time difference between the two characteristic peaks of the digital volume pulse (DVP) measured at the finger using photoplethysmography is related to the stiffness of the arterial tree, and inversely proportional to the stiffness index (SI). However, the precise physical meaning of the SI and its relation to aortic pulse wave velocity (aPWV) is yet to be ascertained. In this study we investigated numerically the effect of changes in arterial wall stiffness, peripheral resistances, peripheral compliances or peripheral wave reflections on the SI and aPWV. The SI was calculated from the digital area waveform simulated using a nonlinear one-dimensional model of pulse wave propagation in a 75-artery network, which includes the larger arteries of the hand. Our results show that aPWV is affected by changes in aortic stiffness, but the SI is primarily affected by changes in the stiffness of all conduit vessels. Thus, the SI is not a direct substitute for aPWV. Moreover, our results suggest that peripheral reflections in the upper body delay the time of arrival of the first peak in the DVP. The second peak is predominantly caused by the impedance mismatch within the 75 arterial segments, rather than by peripheral reflections.

  12. Stiffness of Railway Soil-Steel Structures

    NASA Astrophysics Data System (ADS)

    Machelski, Czesław

    2015-12-01

    The considerable influence of the soil backfill properties and that of the method of compacting it on the stiffness of soil-steel structures is characteristic of the latter. The above factors (exhibiting randomness) become apparent in shell deformation measurements conducted during construction and proof test loading. A definition of soil-shell structure stiffness, calculated on the basis of shell deflection under the service load, is proposed in the paper. It is demonstrated that the stiffness is the inverse of the deflection influence function used in structural mechanics. The moving load methodology is shown to be useful for testing, since it makes it possible to map the shell deflection influence line also in the case of group loads (concentrated forces), as in bridges. The analyzed cases show that the shell's span, geometry (static scheme) and the height of earth fill influence the stiffness of the structure. The soil-steel structure's characteristic parameter in the form of stiffness k is more suitable for assessing the quality of construction works than the proposed in code geometric index ω applied to beam structures. As shown in the given examples, parameter k is more effective than stiffness parameter λ used to estimate the deformation of soil-steel structures under construction. Although the examples concern railway structures, the methodology proposed in the paper is suitable also for road bridges.

  13. Variable stiffness materials for reconfigurable surface applications

    NASA Astrophysics Data System (ADS)

    McKnight, Geoff; Henry, Chris

    2005-05-01

    Reconfigurable and morphing structures can potentially provide a range of new functionalities including system optimization over broad operational conditions and multi-mission capability. Previous efforts in morphing surfaces have generally focused on small deformation of high stiffness structural materials (e.g. aluminum, CFRP) or large deformation of low stiffness non-structural materials (e.g. elastomers). This paper introduces a new approach to achieving large strains in materials with high elastic moduli (5 to 30+ GPa). The work centers on creating variable stiffness composite materials which exhibit a controllable change in elastic modulus (bending or axial) and large reversible strains (5-15%). Several prototype materials were prepared using a commercial shape memory polymer, and measurements on these materials indicate a controllable change in stiffness as a function of temperature along with large reversible strain accommodation. We have fabricated and tested several design variations of laminar morphing materials which exhibit structural stiffness values of 8-12 GPa, changes in modulus of 15-77x, and large reversible bending strain and recovery of 2% area change in specific sample types. Results indicate that significant controllable changes in stiffness are possible.

  14. Modified spleen stiffness measurement by transient elastography is associated with presence of large oesophageal varices in patients with compensated hepatitis C virus cirrhosis.

    PubMed

    Calvaruso, V; Bronte, F; Conte, E; Simone, F; Craxì, A; Di Marco, V

    2013-12-01

    To evaluate the accuracy of liver transient elastography (TE), spleen TE and other noninvasive tests (AAR, APRI score, platelet count, platelet/spleen ratio) in predicting the presence and the size of oesophageal varices in compensated hepatitis C virus (HCV) cirrhosis, we studied 112 consecutive patients with compensated HCV cirrhosis who underwent biochemical tests, gastrointestinal endoscopy, liver TE and spleen TE by Fibroscan(®) (Echosens, Paris, France) using a modified software version with a range between 1.5 and 150 kPa. Spleen TE was not reliable in 16 patients (14.3%). Among the 96 patients with a valid measurement (69.8% men, mean age: 63.2 ± 9.5 years), 43.7% had no oesophageal varices, 29.2% had grade 1% and 27.1% had grade 2 or grade 3 oesophageal varices. Patients with values of 75 kPa by standard spleen TE had mean values of modified spleen TE of 117 kPa (range: 81.7-149.5). Linear regression revealed a significant correlation between modified spleen TE and oesophageal varix size (r = 0.501; beta: 0.763, SE: 0.144; P < 0.001). On univariate analysis, the variables associated with grade 2/grade 3 oesophageal varices were AAR score, APRI score, platelet/spleen ratio, liver TE and modified spleen TE. On multivariate analysis, only modified spleen TE (OR: 1.026; 95% CI: 1.007-1.046; P = 0.006) and AAR (OR: 14.725; 95% CI: 1.928-112.459; P = 0.010) remained independently associated with grade 2/grade 3 oesophageal varices. Platelet/spleen ratio was the best predictor of oesophageal varices area under the ROC curve (AUROC: 0.763, cut-off: 800, sensitivity: 74%, specificity: 70%), while modified spleen TE was more accurate in predicting grade 2/grade 3 oesophageal varices (AUROC: 0.82, cut-off: 54.0 kPa, sensitivity: 80%, specificity: 70%). Portal hypertension increases spleen stiffness, and the measurement of modified spleen TE is an accurate, noninvasive tool for predicting the presence of large oesophageal varices in patients with compensated HCV

  15. A non-contact, thermal noise based method for the calibration of lateral deflection sensitivity in atomic force microscopy

    SciTech Connect

    Mullin, Nic Hobbs, Jamie K.

    2014-11-15

    Calibration of lateral forces and displacements has been a long standing problem in lateral force microscopies. Recently, it was shown by Wagner et al. that the thermal noise spectrum of the first torsional mode may be used to calibrate the deflection sensitivity of the detector. This method is quick, non-destructive and may be performed in situ in air or liquid. Here we make a full quantitative comparison of the lateral inverse optical lever sensitivity obtained by the lateral thermal noise method and the shape independent method developed by Anderson et al. We find that the thermal method provides accurate results for a wide variety of rectangular cantilevers, provided that the geometry of the cantilever is suitable for torsional stiffness calibration by the torsional Sader method, in-plane bending of the cantilever may be eliminated or accounted for and that any scaling of the lateral deflection signal between the measurement of the lateral thermal noise and the measurement of the lateral deflection is eliminated or corrected for. We also demonstrate that the thermal method may be used to characterize the linearity of the detector signal as a function of position, and find a deviation of less than 8% for the instrument used.

  16. Right Ventricular Myocardial Stiffness in Experimental Pulmonary Arterial Hypertension

    PubMed Central

    Rain, Silvia; Andersen, Stine; Najafi, Aref; Gammelgaard Schultz, Jacob; da Silva Gonçalves Bós, Denielli; Handoko, M. Louis; Bogaard, Harm-Jan; Vonk-Noordegraaf, Anton; Andersen, Asger; van der Velden, Jolanda; Ottenheijm, Coen A.C.

    2016-01-01

    Background— The purpose of this study was to determine the relative contribution of fibrosis-mediated and myofibril-mediated stiffness in rats with mild and severe right ventricular (RV) dysfunction. Methods and Results— By performing pulmonary artery banding of different diameters for 7 weeks, mild RV dysfunction (Ø=0.6 mm) and severe RV dysfunction (Ø=0.5 mm) were induced in rats. The relative contribution of fibrosis- and myofibril-mediated RV stiffness was determined in RV trabecular strips. Total myocardial stiffness was increased in trabeculae from both mild and severe RV dysfunction in comparison to controls. In severe RV dysfunction, increased RV myocardial stiffness was explained by both increased fibrosis-mediated stiffness and increased myofibril-mediated stiffness, whereas in mild RV dysfunction, only myofibril-mediated stiffness was increased in comparison to control. Histological analyses revealed that RV fibrosis gradually increased with severity of RV dysfunction, whereas the ratio of collagen I/III expression was only elevated in severe RV dysfunction. Stiffness measurements in single membrane-permeabilized RV cardiomyocytes demonstrated a gradual increase in RV myofibril stiffness, which was partially restored by protein kinase A in both mild and severe RV dysfunction. Increased expression of compliant titin isoforms was observed only in mild RV dysfunction, whereas titin phosphorylation was reduced in both mild and severe RV dysfunction. Conclusions— RV myocardial stiffness is increased in rats with mild and severe RV dysfunction. In mild RV dysfunction, stiffness is mainly determined by increased myofibril stiffness. In severe RV dysfunction, both myofibril- and fibrosis-mediated stiffness contribute to increased RV myocardial stiffness. PMID:27370069

  17. Cancer Cell Stiffness: Integrated Roles of Three-Dimensional Matrix Stiffness and Transforming Potential

    PubMed Central

    Baker, Erin L.; Lu, Jing; Yu, Dihua; Bonnecaze, Roger T.; Zaman, Muhammad H.

    2010-01-01

    While significant advances have been made toward revealing the molecular mechanisms that influence breast cancer progression, much less is known about the associated cellular mechanical properties. To this end, we use particle-tracking microrheology to investigate the interplay among intracellular mechanics, three-dimensional matrix stiffness, and transforming potential in a mammary epithelial cell (MEC) cancer progression series. We use a well-characterized model system where human-derived MCF10A MECs overexpress either ErbB2, 14-3-3ζ, or both ErbB2 and 14-3-3ζ, with empty vector as a control. Our results show that MECs possessing ErbB2 transforming potential stiffen in response to elevated matrix stiffness, whereas non-transformed MECs or those overexpressing only 14-3-3ζ do no exhibit this response. We further observe that overexpression of ErbB2 alone is associated with the highest degree of intracellular sensitivity to matrix stiffness, and that the effect of transforming potential on intracellular stiffness is matrix-stiffness-dependent. Moreover, our intracellular stiffness measurements parallel cell migration behavior that has been previously reported for these MEC sublines. Given the current knowledge base of breast cancer mechanobiology, these findings suggest that there may be a positive relationship among intracellular stiffness sensitivity, cell motility, and perturbed mechanotransduction in breast cancer. PMID:20923638

  18. Cancer cell stiffness: integrated roles of three-dimensional matrix stiffness and transforming potential.

    PubMed

    Baker, Erin L; Lu, Jing; Yu, Dihua; Bonnecaze, Roger T; Zaman, Muhammad H

    2010-10-01

    While significant advances have been made toward revealing the molecular mechanisms that influence breast cancer progression, much less is known about the associated cellular mechanical properties. To this end, we use particle-tracking microrheology to investigate the interplay among intracellular mechanics, three-dimensional matrix stiffness, and transforming potential in a mammary epithelial cell (MEC) cancer progression series. We use a well-characterized model system where human-derived MCF10A MECs overexpress either ErbB2, 14-3-3ζ, or both ErbB2 and 14-3-3ζ, with empty vector as a control. Our results show that MECs possessing ErbB2 transforming potential stiffen in response to elevated matrix stiffness, whereas non-transformed MECs or those overexpressing only 14-3-3ζ do no exhibit this response. We further observe that overexpression of ErbB2 alone is associated with the highest degree of intracellular sensitivity to matrix stiffness, and that the effect of transforming potential on intracellular stiffness is matrix-stiffness-dependent. Moreover, our intracellular stiffness measurements parallel cell migration behavior that has been previously reported for these MEC sublines. Given the current knowledge base of breast cancer mechanobiology, these findings suggest that there may be a positive relationship among intracellular stiffness sensitivity, cell motility, and perturbed mechanotransduction in breast cancer.

  19. Variable stiffness torsion springs

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C. (Inventor); Polites, Michael E. (Inventor)

    1994-01-01

    In a torsion spring the spring action is a result of the relationships between the torque applied in twisting the spring, the angle through which the torsion spring twists, and the modulus of elasticity of the spring material in shear. Torsion springs employed industrially have been strips, rods, or bars, generally termed shafts, capabable of being flexed by twisting their axes. They rely on the variations in shearing forces to furnish an internal restoring torque. In the torsion springs herein the restoring torque is external and therefore independent of the shearing modulus of elasticity of the torsion spring shaft. Also provided herein is a variable stiffness torsion spring. This torsion spring can be so adjusted as to have a given spring constant. Such variable stiffness torsion springs are extremely useful in gimballed payloads such as sensors, telescopes, and electronic devices on such platforms as a space shuttle or a space station.

  20. Variable stiffness torsion springs

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C. (Inventor); Polites, Michael E. (Inventor)

    1995-01-01

    In a torsion spring the spring action is a result of the relationships between the torque applied in twisting the spring, the angle through which the torsion spring twists, and the modulus of elasticity of the spring material in shear. Torsion springs employed industrially have been strips, rods, or bars, generally termed shafts, capabable of being flexed by twisting their axes. They rely on the variations in shearing forces to furnish an internal restoring torque. In the torsion springs herein the restoring torque is external and therefore independent of the shearing modulus of elasticity of the torsion spring shaft. Also provided herein is a variable stiffness torsion spring. This torsion spring can be so adjusted as to have a given spring constant. Such variable stiffness torsion springs are extremely useful in gimballed payloads such as sensors, telescopes, and electronic devices on such platforms as a space shuttle or a space station.